forked from rdpackages/rdrobust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrdplot_illustration.py
70 lines (57 loc) · 2.45 KB
/
rdplot_illustration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
###########################################################################
## RDROBUST Python Package
## Python Script for Empirical Illustration
## Authors: Sebastian Calonico, Matias D. Cattaneo,
# Max H. Farrell, Ricardo Masini and Rocio Titiunik
###########################################################################
### Impot rdrobust package
from rdrobust import rdplot
import pandas as pd
from plotnine import *
### Load Data
df = pd.read_csv('rdrobust_senate.csv')
x = df.margin
y = df.vote
c = 0
###########################################################################
# Generate input data for output plot
###########################################################################
plot1 = rdplot(y,x, ci=95, hide=True)
rdplot_mean_bin = plot1.vars_bins["rdplot_mean_bin"]
rdplot_mean_y = plot1.vars_bins["rdplot_mean_y"]
y_hat = plot1.vars_poly["rdplot_y"]
x_plot = plot1.vars_poly["rdplot_x"]
rdplot_cil_bin = plot1.vars_bins["rdplot_ci_l"]
rdplot_cir_bin = plot1.vars_bins["rdplot_ci_r"]
rdplot_mean_bin = plot1.vars_bins["rdplot_mean_bin"]
y_hat_r = y_hat[x_plot>=c]
y_hat_l = y_hat[x_plot<c]
x_plot_r = x_plot[x_plot>=c]
x_plot_l = x_plot[x_plot<c]
col_lines = "red"
col_dots = "darkblue"
type_dots = 20
title = "RD Plot"
x_label = "X axis"
y_label = "Y axis"
x_lim = (min(x),max(x))
y_lim = (min(y), max(y))
###########################################################################
# Generate rdplot using ggplot2
###########################################################################
temp_plot = (ggplot() + theme_bw() +
geom_point(aes(x=rdplot_mean_bin, y=rdplot_mean_y), color=col_dots, na_rm=True) +
geom_line(aes(x=x_plot_l, y=y_hat_l), color=col_lines, na_rm=True) +
geom_line(aes(x=x_plot_r, y=y_hat_r), color=col_lines, na_rm=True) +
labs(x = x_label, y = y_label) + ggtitle(title) +
labs(title = title, y = y_label, x = x_label) +
coord_cartesian(xlim = x_lim, ylim = y_lim) +
theme(legend_position = "None") +
geom_vline(xintercept = c, size = 0.5))
print(temp_plot)
## Add confidence intervals
temp_plot = temp_plot + geom_errorbar(aes(x = rdplot_mean_bin, ymin = rdplot_cil_bin, ymax = rdplot_cir_bin))
print(temp_plot)
# Shade
temp_plot = temp_plot + geom_ribbon(aes(x = rdplot_mean_bin, ymin = rdplot_cil_bin, ymax = rdplot_cir_bin))
print(temp_plot)