-
Notifications
You must be signed in to change notification settings - Fork 0
/
graph_op.cpp
302 lines (281 loc) · 8.13 KB
/
graph_op.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#include <iostream>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <string>
#include <functional>
using namespace std;
typedef unsigned int uint32;
class Node {
public:
float dist;
uint32 x, y;
Node(float _d, uint32 _x, uint32 _y) :dist(_d), x(_x), y(_y) {}
bool operator<(const Node& n) const { return dist < n.dist; }
bool operator>(const Node& n) const { return dist > n.dist; }
bool operator<=(const Node& n) const { return dist <= n.dist; }
bool operator>=(const Node& n) const { return dist >= n.dist; }
};
class pointData {
float* data;
uint32 num, col = 0;
typedef struct {
string info = "Index out of range!";
}OutOfRangeError;
typedef struct {
string info = "Input parameters must be one of 'x' or 'y' or 'z'";
}InvalidParameterError;
public:
pointData() :data(NULL), num(0) {}
pointData(float* _input, uint32 _num) :data(_input), num(_num) {}
uint32& column() { return this->col; }
float distance(uint32 i, uint32 j) {
pointData& item = *this;
float *a = item(i), *b = item(j);
float ans = (a[0] - b[0])*(a[0] - b[0]) + (a[1] - b[1])*(a[1] - b[1]) + (a[2] - b[2])*(a[2] - b[2]);
return sqrt(ans);
}
float* end() const {
if (col == 0)
return data + 3 * num;
else
return data + num;
}
void set_data(float* _data) { data = _data; }
// for vector with 3*num floats
float* operator()(uint32 idx) const {
if (idx >= num) {
OutOfRangeError e;
throw e;
}
return data + 3 * idx;
}
// for vector with 3*num floats
float& operator()(uint32 idx, char c) {
if (idx >= num) {
OutOfRangeError e;
throw e;
}
pointData& item = *this;
if (c == 'x')
return *(data + 3 * idx);
else if (c == 'y')
return *(data + 3 * idx + 1);
else if (c == 'z')
return *(data + 3 * idx + 2);
else {
InvalidParameterError e;
throw e;
}
}
// for col*col matrix
float& operator()(uint32 i, uint32 j, uint32 col) {
if (i*col + j >= num) {
OutOfRangeError e;
throw e;
}
return *(data + i*col + j);
}
friend ostream& operator<<(ostream& os, pointData& pdata);
};
ostream& operator<<(ostream& os, pointData& pdata) {
os << "---------ADJACENCY MATRIX----------" << endl;
for (uint32 i = 0; i < pdata.col; i++) {
for (uint32 j = 0; j < pdata.col; j++) {
os << pdata(i, j, pdata.col) << "\t";
}
os << endl;
}
os << "-----------------------------------" << endl;
return os;
}
extern "C" {
/**
* @brief Generate a graph based on k-nearest neighbor search
* @param points three dimensional points representing the point cloud
* @param num the number of points
* @param k the number of nearest neighbors to compute
* @param output a num*num matrix representing the adjacency matrix for the graph
**/
void gen_graph(float* points, int num, int k, float* output) {
pointData data(points, num), out(output, num*num);
out.column() = num;
priority_queue<Node, vector<Node>, greater<Node>> que;
for (int i = 0; i < num; i++) {
for (int j = 0; j < num; j++) {
if (i == j) {
out(i, j, num) = 0;
continue;
}
float tmp = data.distance(i, j);
que.push(Node(tmp, i, j));
if (que.size() > k)
que.pop();
}
while (!que.empty()) {
out(que.top().x, que.top().y, num) = que.top().dist;
out(que.top().y, que.top().x, num) = que.top().dist;
que.pop();
}
}
}
/**
* @brief Generate graphs based on k-nearest neighbor search
* @param points three dimensional points representing the point cloud
* @param num_points the number of points
* @param num_graphs the number of graphs
* @param k the number of nearest neighbors to compute
* @param output num_graphs number of num*num matrices representing the adjacency matrix for the graph
**/
void gen_graphs(float* points, int num_points, int num_graphs, uint32 k, float* output) {
pointData data(points, num_points), out(output, num_points * num_points);
vector<pointData> data_vec, out_vec;
out.column() = num_points;
data_vec.push_back(data);
out_vec.push_back(out);
for (uint32 idx = 1; idx < num_graphs; idx++) {
data_vec.push_back(pointData(data_vec.back().end(), num_points));
out_vec.push_back(pointData(out_vec.back().end(), num_points * num_points));
out_vec.back().column() = num_points;
}
for (uint32 idx = 0; idx < num_graphs; idx++) {
priority_queue<Node, vector<Node>, greater<Node>> que;
for (int i = 0; i < num_points; i++) {
for (int j = 0; j < num_points; j++) {
if (i == j) {
out_vec[idx](i, j, num_points) = 0;
continue;
}
float tmp = data_vec[idx].distance(i, j);
que.push(Node(tmp, i, j));
if (que.size() > k)
que.pop();
}
while (!que.empty()) {
out_vec[idx](que.top().x, que.top().y, num_points) = que.top().dist;
out_vec[idx](que.top().y, que.top().x, num_points) = que.top().dist;
que.pop();
}
}
}
}
/**
* @brief Generate graphs based on k-nearest neighbor search
* @param points three dimensional points representing the point cloud
* @param num_points the number of points
* @param num_graphs the number of graphs
* @param k the number of nearest neighbors to compute
* @param output num_graphs of num*num Laplacian matrices for the graph
**/
void gen_laplacian(float* points, int num_points, int num_graphs, uint32 k, float* output) {
pointData data(points, num_points), out(output, num_points * num_points);
vector<pointData> data_vec, out_vec;
out.column() = num_points;
data_vec.push_back(data);
out_vec.push_back(out);
for (uint32 idx = 1; idx < num_graphs; idx++) {
data_vec.push_back(pointData(data_vec.back().end(), num_points));
out_vec.push_back(pointData(out_vec.back().end(), num_points * num_points));
out_vec.back().column() = num_points;
}
for (uint32 idx = 0; idx < num_graphs; idx++) {
priority_queue<Node, vector<Node>, greater<Node>> que;
for (int i = 0; i < num_points; i++) {
for (int j = 0; j < num_points; j++) {
if (i == j) {
out_vec[idx](i, j, num_points) = 0;
continue;
}
float tmp = data_vec[idx].distance(i, j);
que.push(Node(tmp, i, j));
if (que.size() > k)
que.pop();
}
out_vec[idx](i, i, num_points) = float(que.size());
while (!que.empty()) {
out_vec[idx](que.top().x, que.top().y, num_points) = -que.top().dist;
out_vec[idx](que.top().y, que.top().x, num_points) = -que.top().dist;
que.pop();
}
}
}
}
} // extern "C"
//int _test1() {
// int m, n;
// while (cin >> m >> n) {
// float* pdata = new float[m*n * 3];
// float* pout = new float[m*n*n];
// for (int i = 0; i < m; i++) {
// for (int j = 0; j < n; j++) {
// cin >> pdata[3 * (i*n + j)] >> pdata[3 * (i*n + j) + 1] >> pdata[3 * (i*n + j) + 2];
// }
// }
// gen_graphs(pdata, n, m, 2, pout);
// pointData view(pout, n*n);
// view.column() = n;
// for (int i = 0; i < m; i++) {
// cout << view << endl;
// view.set_data(view.end());
// }
// delete pdata;
// delete pout;
// }
// return 0;
//}
//
//int _test2() {
// int n;
// while (cin >> n) {
// float* pdata = new float[n * 3];
// float* pout = new float[n*n];
// for (int j = 0; j < n; j++) {
// cin >> pdata[3 * j] >> pdata[3 * j + 1] >> pdata[3 * j + 2];
// }
// gen_graph(pdata, n, 2, pout);
// pointData view(pout, n*n);
// view.column() = n;
// cout << view << endl;
// delete pdata;
// delete pout;
// }
// return 0;
//}
//
//int test3() {
// int m, n;
// while (cin >> m >> n) {
// float* pdata = new float[m*n * 3];
// float* pout = new float[m*n*n];
// float* plaplacian = new float[m*n*n];
// for (int i = 0; i < m; i++) {
// for (int j = 0; j < n; j++) {
// cin >> pdata[3 * (i*n + j)] >> pdata[3 * (i*n + j) + 1] >> pdata[3 * (i*n + j) + 2];
// }
// }
// gen_graphs(pdata, n, m, 2, pout);
// gen_laplacian(pdata, n, m, 2, plaplacian);
// pointData view_adj(pout, n*n), view_laplacian(plaplacian, n*n);
// view_adj.column() = n;
// view_laplacian.column() = n;
// for (int i = 0; i < m; i++) {
// cout << view_adj << endl;
// view_adj.set_data(view_adj.end());
// }
// cout << "=====================================" << endl << endl;
// for (int i = 0; i < m; i++) {
// cout << view_laplacian << endl;
// view_laplacian.set_data(view_laplacian.end());
// }
// delete pdata;
// delete pout;
// delete plaplacian;
// }
// return 0;
//}
//
//int main() {
// test3();
// return 0;
//}