-
Notifications
You must be signed in to change notification settings - Fork 0
/
aggr.py
246 lines (195 loc) · 9.13 KB
/
aggr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from typing import Optional
import torch
from torch import Tensor
from torch.nn import Parameter
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.nn.inits import zeros
from torch_geometric.typing import (
Adj,
OptPairTensor,
OptTensor,
SparseTensor,
torch_sparse,
)
from torch_geometric.utils import add_remaining_self_loops
from torch_geometric.utils import add_self_loops as add_self_loops_fn
from torch_geometric.utils import (
is_torch_sparse_tensor,
scatter,
spmm,
to_edge_index,
)
from torch_geometric.utils.num_nodes import maybe_num_nodes
from torch_geometric.utils.sparse import set_sparse_value
@torch.jit._overload
def gcn_norm(edge_index, edge_weight, num_nodes, improved, add_self_loops,
flow, dtype):
# type: (Tensor, OptTensor, Optional[int], bool, bool, str, Optional[int]) -> OptPairTensor # noqa
pass
@torch.jit._overload
def gcn_norm(edge_index, edge_weight, num_nodes, improved, add_self_loops,
flow, dtype):
# type: (SparseTensor, OptTensor, Optional[int], bool, bool, str, Optional[int]) -> SparseTensor # noqa
pass
def gcn_norm(edge_index, edge_weight=None, num_nodes=None, improved=False,
add_self_loops=True, flow="source_to_target", dtype=None):
fill_value = 2. if improved else 1.
if isinstance(edge_index, SparseTensor):
assert edge_index.size(0) == edge_index.size(1)
adj_t = edge_index
if not adj_t.has_value():
adj_t = adj_t.fill_value(1., dtype=dtype)
if add_self_loops:
adj_t = torch_sparse.fill_diag(adj_t, fill_value)
deg = torch_sparse.sum(adj_t, dim=1)
deg_inv_sqrt = deg.pow_(-0.5)
deg_inv_sqrt.masked_fill_(deg_inv_sqrt == float('inf'), 0.)
adj_t = torch_sparse.mul(adj_t, deg_inv_sqrt.view(-1, 1))
adj_t = torch_sparse.mul(adj_t, deg_inv_sqrt.view(1, -1))
return adj_t
if is_torch_sparse_tensor(edge_index):
assert edge_index.size(0) == edge_index.size(1)
if edge_index.layout == torch.sparse_csc:
raise NotImplementedError("Sparse CSC matrices are not yet "
"supported in 'gcn_norm'")
adj_t = edge_index
if add_self_loops:
adj_t, _ = add_self_loops_fn(adj_t, None, fill_value, num_nodes)
edge_index, value = to_edge_index(adj_t)
col, row = edge_index[0], edge_index[1]
deg = scatter(value, col, 0, dim_size=num_nodes, reduce='sum')
deg_inv_sqrt = deg.pow_(-0.5)
deg_inv_sqrt.masked_fill_(deg_inv_sqrt == float('inf'), 0)
value = deg_inv_sqrt[row] * value * deg_inv_sqrt[col]
return set_sparse_value(adj_t, value), None
assert flow in ['source_to_target', 'target_to_source']
num_nodes = maybe_num_nodes(edge_index, num_nodes)
if add_self_loops:
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype,
device=edge_index.device)
row, col = edge_index[0], edge_index[1]
idx = col if flow == 'source_to_target' else row
deg = scatter(edge_weight, idx, dim=0, dim_size=num_nodes, reduce='sum')
deg_inv_sqrt = deg.pow_(-0.5)
deg_inv_sqrt.masked_fill_(deg_inv_sqrt == float('inf'), 0)
edge_weight = deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
return edge_index, edge_weight
class GCNAggr(MessagePassing):
r"""The graph convolutional operator from the `"Semi-supervised
Classification with Graph Convolutional Networks"
<https://arxiv.org/abs/1609.02907>`_ paper
.. math::
\mathbf{X}^{\prime} = \mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}
\mathbf{\hat{D}}^{-1/2} \mathbf{X} \mathbf{\Theta},
where :math:`\mathbf{\hat{A}} = \mathbf{A} + \mathbf{I}` denotes the
adjacency matrix with inserted self-loops and
:math:`\hat{D}_{ii} = \sum_{j=0} \hat{A}_{ij}` its diagonal degree matrix.
The adjacency matrix can include other values than :obj:`1` representing
edge weights via the optional :obj:`edge_weight` tensor.
Its node-wise formulation is given by:
.. math::
\mathbf{x}^{\prime}_i = \mathbf{\Theta}^{\top} \sum_{j \in
\mathcal{N}(i) \cup \{ i \}} \frac{e_{j,i}}{\sqrt{\hat{d}_j
\hat{d}_i}} \mathbf{x}_j
with :math:`\hat{d}_i = 1 + \sum_{j \in \mathcal{N}(i)} e_{j,i}`, where
:math:`e_{j,i}` denotes the edge weight from source node :obj:`j` to target
node :obj:`i` (default: :obj:`1.0`)
Args:
in_channels (int): Size of each input sample, or :obj:`-1` to derive
the size from the first input(s) to the forward method.
out_channels (int): Size of each output sample.
improved (bool, optional): If set to :obj:`True`, the layer computes
:math:`\mathbf{\hat{A}}` as :math:`\mathbf{A} + 2\mathbf{I}`.
(default: :obj:`False`)
cached (bool, optional): If set to :obj:`True`, the layer will cache
the computation of :math:`\mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}
\mathbf{\hat{D}}^{-1/2}` on first execution, and will use the
cached version for further executions.
This parameter should only be set to :obj:`True` in transductive
learning scenarios. (default: :obj:`False`)
add_self_loops (bool, optional): If set to :obj:`False`, will not add
self-loops to the input graph. (default: :obj:`True`)
normalize (bool, optional): Whether to add self-loops and compute
symmetric normalization coefficients on the fly.
(default: :obj:`True`)
bias (bool, optional): If set to :obj:`False`, the layer will not learn
an additive bias. (default: :obj:`True`)
**kwargs (optional): Additional arguments of
:class:`torch_geometric.nn.conv.MessagePassing`.
Shapes:
- **input:**
node features :math:`(|\mathcal{V}|, F_{in})`,
edge indices :math:`(2, |\mathcal{E}|)`,
edge weights :math:`(|\mathcal{E}|)` *(optional)*
- **output:** node features :math:`(|\mathcal{V}|, F_{out})`
"""
_cached_edge_index: Optional[OptPairTensor]
_cached_adj_t: Optional[SparseTensor]
def __init__(
self,
improved: bool = False,
cached: bool = False,
add_self_loops: bool = True,
normalize: bool = True,
**kwargs,
):
kwargs.setdefault('aggr', 'add')
super().__init__(**kwargs)
self.improved = improved
self.cached = cached
self.add_self_loops = add_self_loops
self.normalize = normalize
self._cached_edge_index = None
self._cached_adj_t = None
self.reset_parameters()
def reset_parameters(self):
super().reset_parameters()
self._cached_edge_index = None
self._cached_adj_t = None
def forward(self, x: Tensor, edge_index: Adj,
edge_weight: OptTensor = None) -> Tensor:
if isinstance(x, (tuple, list)):
raise ValueError(f"'{self.__class__.__name__}' received a tuple "
f"of node features as input while this layer "
f"does not support bipartite message passing. "
f"Please try other layers such as 'SAGEConv' or "
f"'GraphConv' instead")
if self.normalize:
if isinstance(edge_index, Tensor):
cache = self._cached_edge_index
if cache is None:
edge_index, edge_weight = gcn_norm( # yapf: disable
edge_index, edge_weight, x.size(self.node_dim),
self.improved, self.add_self_loops, self.flow, x.dtype)
if self.cached:
self._cached_edge_index = (edge_index, edge_weight)
else:
edge_index, edge_weight = cache[0], cache[1]
elif isinstance(edge_index, SparseTensor):
cache = self._cached_adj_t
if cache is None:
edge_index = gcn_norm( # yapf: disable
edge_index, edge_weight, x.size(self.node_dim),
self.improved, self.add_self_loops, self.flow, x.dtype)
if self.cached:
self._cached_adj_t = edge_index
else:
edge_index = cache
# propagate_type: (x: Tensor, edge_weight: OptTensor)
out = self.propagate(edge_index, x=x, edge_weight=edge_weight,
size=None)
return out
def message(self, x_j: Tensor, edge_weight: OptTensor) -> Tensor:
return x_j if edge_weight is None else edge_weight.view(-1, 1) * x_j
class Aggregator(MessagePassing):
def __init__(self, aggr):
self.aggr = aggr
super(Aggregator, self).__init__(aggr)
def forward(self, x, edge_index, edge_attr=None):
out = self.propagate(edge_index, x=x, edge_attr=edge_attr)
return out
def message(self, x_j: Tensor) -> Tensor:
return x_j