-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathProgExample2.m
318 lines (275 loc) · 9.4 KB
/
ProgExample2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
% Simulaton results of example2 under adaptive event-triggered scheme
clear
close all
clc
% The parameters of discrete time system
A=[0.75 -0.5 0;0.7 0 0;0 1 0];
B=[0.2;0.3;0.6];
F=eye(3);
C=[0.1 0 0];
D=0.4;
G=0;
L=[0.01 0.04 0.01];
% The given parameters
theta1=0.2;
theta2=0.8;
theta3=1;
Mtilde=[0.4;0.2;0.3];
Mtilde2=0.1;
N1tilde=[0.3 0.1 0.2];
N2tilde=0.2;
N3tilde=[0.3 0.4 0.2];
gamma=1.1;
Fbar=[0.03 0 0;0 0.01 0;0 0 0.02];
Gbar=[0 0 0;0 0 0;0 0 0];
alphabar=0.5;
a=(1-alphabar)*alphabar;
H=Fbar'*Fbar+Gbar'*Gbar;
% Solve the LMI of theorem2.
setlmis([]);
P1=lmivar(1,[2 1]);
P2=lmivar(1,[2 1]);
phi=lmivar(1,[1 1]);
Afhat=lmivar(2,[2 2]);
Bfhat=lmivar(2,[2 1]);
Cftilde=lmivar(2,[1 2]);
rho=lmivar(1,[1 1]);
P1=lmivar(1,[3 1]);
P2=lmivar(1,[3 1]);
phi=lmivar(1,[1 1]);
Afhat=lmivar(2,[3 3]);
Bfhat=lmivar(2,[3 1]);
Cftilde=lmivar(2,[1 3]);
rho=lmivar(1,[1 1]);
lmiterm([1 1 1 P1],-1,1);
lmiterm([1 1 1 0],H);
lmiterm([1 1 1 phi],theta2*C',C);
lmiterm([1 2 1 P2],-1,1);
lmiterm([1 2 2 P2],-1,1);
lmiterm([1 3 1 phi],theta2*D',C);
lmiterm([1 3 3 phi],theta2*D',D);
lmiterm([1 3 3 0],-gamma^2);
lmiterm([1 4 4 0],-1);
lmiterm([1 5 1 phi],theta2*G',C);
lmiterm([1 5 3 phi],theta2*G',D);
lmiterm([1 5 5 0],-1);
lmiterm([1 5 5 phi],theta2*G',G);
lmiterm([1 6 6 phi],-1,1);
lmiterm([1 7 1 P1],1,A);
lmiterm([1 7 1 Bfhat],(1-alphabar),C);
lmiterm([1 7 2 Afhat],1,1);
lmiterm([1 7 3 P1],1,B);
lmiterm([1 7 3 Bfhat],(1-alphabar),D);
lmiterm([1 7 4 P1],1,F);
lmiterm([1 7 4 Bfhat],(1-alphabar),G);
lmiterm([1 7 6 Bfhat],(alphabar-1),1);
lmiterm([1 7 7 P1],-1,1);
lmiterm([1 8 1 P2],1,A);
lmiterm([1 8 1 Bfhat],(1-alphabar),C);
lmiterm([1 8 2 Afhat],1,1);
lmiterm([1 8 3 P2],1,B);
lmiterm([1 8 3 Bfhat],(1-alphabar),D);
lmiterm([1 8 4 P2],1,F);
lmiterm([1 8 4 Bfhat],(1-alphabar),G);
lmiterm([1 8 6 Bfhat],(alphabar-1),1);
lmiterm([1 8 7 P2],-1,1);
lmiterm([1 8 8 P2],-1,1);
lmiterm([1 9 1 Bfhat],sqrt(a),C);
lmiterm([1 9 3 Bfhat],sqrt(a),D);
lmiterm([1 9 4 Bfhat],sqrt(a),G);
lmiterm([1 9 6 Bfhat],-sqrt(a),1);
lmiterm([1 9 9 P1],-1,1);
lmiterm([1 10 1 Bfhat],sqrt(a),C);
lmiterm([1 10 3 Bfhat],sqrt(a),D);
lmiterm([1 10 4 Bfhat],sqrt(a),G);
lmiterm([1 10 6 Bfhat],-sqrt(a),1);
lmiterm([1 10 9 P2],-1,1);
lmiterm([1 10 10 P2],-1,1);
lmiterm([1 11 1 0],L);
lmiterm([1 11 2 Cftilde],-1,1);
lmiterm([1 11 11 0],-1);
lmiterm([1 12 1 rho],1-alphabar,N2tilde*C);
lmiterm([1 12 2 rho],1,N1tilde);
lmiterm([1 12 3 rho],1-alphabar,N2tilde*D);
lmiterm([1 12 4 rho],1-alphabar,N2tilde*G);
lmiterm([1 12 6 rho],1-alphabar,N2tilde);
lmiterm([1 12 12 rho],-1,1);
lmiterm([1 13 1 rho],1,N2tilde*C);
lmiterm([1 13 3 rho],1,N2tilde*D);
lmiterm([1 13 4 rho],1,N2tilde*G);
lmiterm([1 13 6 rho],-1,N2tilde);
lmiterm([1 13 13 rho],-1,1);
lmiterm([1 14 2 rho],1,N3tilde);
lmiterm([1 14 14 rho],-1,1);
lmiterm([1 15 7 P2],Mtilde',1);
lmiterm([1 15 8 P2],Mtilde',1);
lmiterm([1 15 15 rho],-1,1);
lmiterm([1 16 9 P2],sqrt(a)*Mtilde',1);
lmiterm([1 16 10 P2],sqrt(a)*Mtilde',1);
lmiterm([1 16 16 rho],-1,1);
lmiterm([1 17 11 0],-Mtilde2');
lmiterm([1 17 17 rho],-1,1);
lmiterm([-2 1 1 P1],1,1);
lmiterm([-2 2 1 P2],1,1);
lmiterm([-2 2 2 P2],1,1)
lmiterm([-3 1 1 P1],1,1);
lmiterm([-4 1 1 P2],1,1);
lmiterm([-5 1 1 phi],1,1);
lmiterm([-6 1 1 rho],1,1);
lmisys=getlmis;
[tmin,xfeasp]=feasp(lmisys)
% Solve the matrix variables.
MP1=dec2mat(lmisys,xfeasp,P1)
MP2=dec2mat(lmisys,xfeasp,P2)
Mphi=dec2mat(lmisys,xfeasp,phi)
MAfhat=dec2mat(lmisys,xfeasp,Afhat)
MBfhat=dec2mat(lmisys,xfeasp,Bfhat)
MCftilde=dec2mat(lmisys,xfeasp,Cftilde)
Mrho=dec2mat(lmisys,xfeasp,rho)
Aftilde=inv(MP2)*MAfhat
Bftilde=inv(MP2)*MBfhat
load('DoSData.mat');% Load the DoS attack data.
x(:,1)=[0;0;0];
xf(:,1)=[0;0;0];
for k=1:length(alpha)
if k==1
if alpha(k)==0 %no DoS attack
omega(k)=sin(k)*exp(-k);
f(:,k)=[0.03*sin(x(1,k));0.01*sin(x(2,k));0.02*sin(x(3,k))];
x(:,k+1)=A*x(:,k)+B*omega(k)+F*f(:,k);
y(:,k)=C*x(:,k)+D*omega(k)+0;
z(:,k)=L*x(:,k);
% Event trigger
sl=1;
releaseinstant=sl;
yf(:,k)=y(:,sl);
delta(k)=sin(k);
Af=Aftilde+Mtilde*delta(k)*N1tilde;
Bf=Bftilde+Mtilde*delta(k)*N2tilde;
Cf=MCftilde+Mtilde2*delta(k)*N3tilde;
xf(:,k+1)=Af*xf(:,k)+Bf*yf(:,k);
zf(:,k)=Cf*xf(:,k);
else %there is DoS attack
omega(k)=sin(k)*exp(-k);
f(:,k)=[0.03*sin(x(1,k));0.01*sin(x(2,k));0.02*sin(x(3,k))];
x(:,k+1)=A*x(:,k)+B*omega(k)+F*f(:,k);
y(:,k)=C*x(:,k)+D*omega(k)+0;
z(:,k)=L*x(:,k);
% Event trigger
sl=1;
releaseinstant=sl;
yf(:,k)=0;
delta(k)=sin(k);
Af=Aftilde+Mtilde*delta(k)*N1tilde;
Bf=Bftilde+Mtilde*delta(k)*N2tilde;
Cf=MCftilde+Mtilde2*delta(k)*N3tilde;
xf(:,k+1)=Af*xf(:,k)+Bf*yf(:,k);
zf(:,k)=Cf*xf(:,k);
end
end
if k>=2 & k<=length(alpha)
if alpha(k)==0 %no DoS attack
omega(k)=sin(k)*exp(-k);
f(:,k)=[0.03*sin(x(1,k));0.01*sin(x(2,k));0.02*sin(x(3,k))];
x(:,k+1)=A*x(:,k)+B*omega(k)+F*f(:,k);
y(:,k)=C*x(:,k)+D*omega(k)+0;
z(:,k)=L*x(:,k);
% Event trigger
theta(k)=theta2+(theta1-theta2)*2/pi*atan(theta3*sqrt((y(:,k)-y(:,sl))'*(y(:,k)-y(:,sl))));
if (y(:,k)-y(:,sl))'*Mphi*(y(:,k)-y(:,sl))>theta(k)*y(:,k)'*Mphi*y(:,k)
sl=k;
releaseinstant=[releaseinstant sl];
yf(:,k)=y(:,sl);
else
yf(:,k)=0;
end
delta(k)=sin(k);
Af=Aftilde+Mtilde*delta(k)*N1tilde;
Bf=Bftilde+Mtilde*delta(k)*N2tilde;
Cf=MCftilde+Mtilde2*delta(k)*N3tilde;
xf(:,k+1)=Af*xf(:,k)+Bf*yf(:,k);
zf(:,k)=Cf*xf(:,k);
else % There is DoS attack.
omega(k)=sin(k)*exp(-k);
f(:,k)=[0.03*sin(x(1,k));0.01*sin(x(2,k));0.02*sin(x(3,k))];
x(:,k+1)=A*x(:,k)+B*omega(k)+F*f(:,k);
y(:,k)=C*x(:,k)+D*omega(k)+0;
z(:,k)=L*x(:,k);
% Event trigger
theta(k)=theta2+(theta1-theta2)*2/pi*atan(theta3*sqrt((y(:,k)-y(:,sl))'*(y(:,k)-y(:,sl))));
if (y(:,k)-y(:,sl))'*Mphi*(y(:,k)-y(:,sl))>theta(k)*y(:,k)'*Mphi*y(:,k)
sl=k;
releaseinstant=[releaseinstant sl];
yf(:,k)=0;
else
yf(:,k)=0;
end
delta(k)=sin(k);
Af=Aftilde+Mtilde*delta(k)*N1tilde;
Bf=Bftilde+Mtilde*delta(k)*N2tilde;
Cf=MCftilde+Mtilde2*delta(k)*N3tilde;
xf(:,k+1)=Af*xf(:,k)+Bf*yf(:,k);
zf(:,k)=Cf*xf(:,k);
end
end
end
length(releaseinstant)% triggering times
e=z-zf;
sqrt((e*e'))/sqrt((omega*omega'))% the steady ratio value
% Plot the instant of DoS attacks.
figure
set(gcf,'unit','centimeters','Position',[2 10 6 5]);
set(gca, 'FontName','Times New Roman','fontsize',8);
plot([1:200],alpha,'.')
axis([0,200,-0.2,1.2]);
xlabel('\fontname{Times New Roman}\fontsize{8}Time (k)')
ylabel('\fontname{Times New Roman}\fontsize{8}\alpha(k)')
% Plot the event-triggered instant and release interval.
figure
set(gcf,'unit','centimeters','Position',[10 10 6 5]);
set(gca, 'FontName','Times New Roman','fontsize',8);
releaseinstant1=releaseinstant-1;
releaseinterval=releaseinstant1-[0 releaseinstant1(1:length(releaseinstant)-1)];
stem(releaseinstant1,releaseinterval)
box on
xlabel('\fontname{Times New Roman}\fontsize{8}Time (k)')
ylabel('\fontname{Times New Roman}\fontsize{8}Release interval')
% Plot the responses of signals z(k) and zf(k).
figure
set(gcf,'unit','centimeters','Position',[18 10 6 5]);
set(gca, 'FontName','Times New Roman','fontsize',8);
plot([1:200],z(1,1:200),'-','LineWidth',2);hold on
% subplot(2,2,1)
plot([1:200],zf(1,1:200),'r--','LineWidth',2)
legend('z(k)','z_f(k)');
xlabel('\fontname{Times New Roman}\fontsize{8}Time (k)')
ylabel('\fontname{Times New Roman}\fontsize{8}z(k) and its estimation z_f(k)')
% PLot the filtering error.
figure
set(gcf,'unit','centimeters','Position',[2 2 6 5]);
set(gca, 'FontName','Times New Roman','fontsize',8);
plot([1:200],e(1,1:200),'Linewidth',2)
xlabel('\fontname{Times New Roman}\fontsize{8}Time (k)')
ylabel('\fontname{Times New Roman}\fontsize{8}Filtering error')
% PLot the evolution trajectory of adaptive threshold.
figure
set(gcf,'unit','centimeters','Position',[10 2 6 5]);
set(gca, 'FontName','Times New Roman','fontsize',8);
plot([1:200],theta(1,1:200),'-','LineWidth',2);
axis([0,200,0,0.9]);
set(gca,'YTick',[0:0.2:0.9]);
xlabel('\fontname{Times New Roman}\fontsize{8}Time (k)')
ylabel('\fontname{Times New Roman}\fontsize{8}Threshold \theta(k)')
%Plot the ratio.
figure
set(gcf,'unit','centimeters','Position',[18 2 6 5]);
set(gca, 'FontName','Times New Roman','fontsize',8);
Ratio = [];
for i = 1:1:size(e,2)
e_t = e(1,1:i); omega_t = omega(1,1:i);
Ratio_t = sqrt((e_t*e_t'))/sqrt((omega_t*omega_t'));
Ratio = [Ratio Ratio_t];
end
plot([1:200],Ratio, 'LineWidth',2)
xlabel('\fontname{Times New Roman}\fontsize{8}Time (k)')
ylabel('\fontname{Times New Roman}\fontsize{8}Ratio')