- Paper title : Learning Contrastive Feature Representations for Facial Action Unit Detection
-
Python 3
-
torch >= 1.4.0
-
torchvision
-
pillow
-
numpy
-
tqdm
-
timm
-
easydict
-
pyyaml == 5.4.1
-
Check the required python packages in
requirements.txt
.
pip install -r requirements.txt
The Datasets we used:
We provide tools for prepareing data in tool/
.
After Downloading raw data files, you can use these tools to process them, aligning with our protocals.
Training with ImageNet pre-trained models
Make sure that you download the ImageNet pre-trained models to checkpoints/
(or you alter the checkpoint path setting in model/swin_transformer.py
)
The download links of pre-trained models are in checkpoints/checkpoints.txt
- to train our approach on BP4D Dataset, run:
python train_graph_au.py --dataset "BP4D" --exp_name "Graphau_bp4d_swin_nce_step_1" --fold 1 --gpu_ids '0' --info_nce 'enhance'
- to train our approach on DISFA Dataset, run:
python train_graph_au.py --dataset "DISFA" --exp_name "Graphau_disfa_swin_nce_step_1" --fold 1 --gpu_ids '0' --info_nce 'enhance'
We adhere to the established linear evaluation protocol, as commonly employed in previous studies CPC and Simclr. Please refer to this link.
Fold1: 'F001','M007','F018','F008','F002','M004','F010','F009','M012','M001','F016','M014','F023','M008'
Fold2: 'M011','F003','M010','M002','F005','F022','M018','M017','F013','M016','F020','F011','M013','M005'
Fold3: 'F007','F015','F006','F019','M006','M009','F012','M003','F004','F021','F017','M015','F014'
Fold1: 'SN002','SN010','SN001','SN026','SN027','SN032','SN030','SN009','SN016'
Fold2: 'SN013','SN018','SN011','SN028','SN012','SN006','SN031','SN021','SN024'
Fold3: 'SN003','SN029','SN023','SN025','SN008','SN005','SN007','SN017','SN004'
BP4D
Method | Source | AU1 | AU2 | AU4 | AU6 | AU7 | AU10 | AU12 | AU14 | AU15 | AU17 | AU23 | AU24 | Avg. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SimCLR | 2020 ICML | 38.0 | 36.4 | 37.2 | 66.6 | 64.7 | 76.2 | 76.2 | 51.1 | 29.8 | 56.1 | 27.5 | 37.7 | 49.8 |
MoCo | 2020 CVPR | 30.8 | 41.3 | 42.1 | 70.2 | 70.4 | 78.7 | 82.5 | 53.3 | 25.2 | 59.1 | 31.5 | 34.3 | 51.6 |
EAC-Net | 2018 TPAMI | 39.0 | 35.2 | 48.6 | 76.1 | 72.9 | 81.9 | 86.2 | 58.8 | 37.5 | 59.1 | 35.9 | 35.8 | 55.9 |
ROI | 2017 CVPR | 36.2 | 31.6 | 43.4 | 77.1 | 73.7 | 85.0 | 87.0 | 62.6 | 45.7 | 58.0 | 38.3 | 37.4 | 56.4 |
ARL | 2019 TAC | 45.8 | 39.8 | 55.1 | 75.7 | 77.2 | 82.3 | 86.6 | 58.8 | 47.6 | 62.1 | 47.4 | 55.4 | 61.1 |
EmoCo | 2021 FG | 50.2 | 44.7 | 53.9 | 74.8 | 76.6 | 83.7 | 87.9 | 61.7 | 47.6 | 59.8 | 46.9 | 54.6 | 61.9 |
MAL | 2023 TAC | 47.9 | 49.5 | 52.1 | 77.6 | 77.8 | 82.8 | 88.3 | 66.4 | 49.7 | 59.7 | 45.2 | 48.5 | 62.2 |
CLP | 2023 TIP | 47.7 | 50.9 | 49.5 | 75.8 | 78.7 | 80.2 | 84.1 | 67.1 | 52.0 | 62.7 | 45.7 | 54.8 | 62.4 |
JÂA-Net | 2021 IJCV | 53.8 | 47.8 | 58.2 | 78.5 | 75.8 | 82.7 | 88.2 | 63.7 | 43.3 | 61.8 | 45.6 | 49.9 | 62.4 |
MMA-Net | 2023 PRL | 52.5 | 50.9 | 58.3 | 76.3 | 75.7 | 83.8 | 87.9 | 63.8 | 48.7 | 61.7 | 46.5 | 54.4 | 63.4 |
GeoConv | 2022 PR | 48.4 | 44.2 | 59.9 | 78.4 | 75.6 | 83.6 | 86.7 | 65.0 | 53.0 | 64.7 | 49.5 | 54.1 | 63.6 |
AAR | 2023 TIP | 53.2 | 47.7 | 56.7 | 75.9 | 79.1 | 82.9 | 88.6 | 60.5 | 51.5 | 61.9 | 51.0 | 56.8 | 63.8 |
SEV-Net | 2021 CVPR | 58.2 | 50.4 | 58.3 | 81.9 | 73.9 | 87.7 | 87.5 | 61.6 | 52.6 | 62.2 | 44.6 | 47.6 | 63.9 |
KSRL | 2022 CVPR | 53.3 | 47.4 | 56.2 | 79.4 | 80.7 | 85.1 | 89.0 | 67.4 | 55.9 | 61.9 | 48.5 | 49.0 | 64.5 |
AC2D | 2024 IJCV | 54.2 | 54.7 | 56.5 | 77.0 | 76.2 | 84.0 | 89.0 | 63.6 | 54.8 | 63.6 | 46.5 | 54.8 | 64.6 |
MEGraph | 2022 IJCAI | 52.7 | 44.3 | 60.9 | 79.9 | 80.1 | 85.3 | 89.2 | 69.4 | 55.4 | 64.4 | 49.8 | 55.1 | 65.5 |
SACL | 2024 TAC | 57.8 | 48.8 | 59.4 | 79.1 | 78.8 | 84.0 | 88.2 | 65.2 | 56.1 | 63.8 | 50.8 | 55.2 | 65.6 |
CLEF | 2023 ICCV | 55.8 | 46.8 | 63.3 | 79.5 | 77.6 | 83.6 | 87.8 | 67.3 | 55.2 | 63.5 | 53.0 | 57.8 | 65.9 |
AUNCE(Ours) | - | 53.6 | 49.8 | 61.6 | 78.4 | 78.8 | 84.7 | 89.6 | 67.4 | 55.1 | 65.4 | 50.9 | 58.0 | 66.1 |
DISFA
Method | Source | AU1 | AU2 | AU4 | AU6 | AU9 | AU12 | AU25 | AU26 | Avg. |
---|---|---|---|---|---|---|---|---|---|---|
SIMCLR | 2020 ICML | 21.2 | 23.3 | 47.5 | 42.4 | 35.5 | 66.8 | 81.5 | 52.7 | 46.4 |
MoCo | 2020 CVPR | 22.7 | 18.2 | 45.9 | 45.4 | 34.1 | 72.9 | 83.4 | 54.5 | 47.1 |
EAC-Net | 2018 TPAMI | 41.5 | 26.4 | 66.4 | 50.7 | 80.5 | 89.3 | 88.9 | 15.6 | 48.5 |
ROI | 2017 CVPR | 41.5 | 26.4 | 66.4 | 50.7 | 80.5 | 89.3 | 88.9 | 15.6 | 48.5 |
ARL | 2019 TAC | 43.9 | 42.1 | 63.6 | 41.8 | 40.0 | 76.2 | 95.2 | 66.8 | 58.7 |
CLP | 2023 TIP | 42.4 | 38.7 | 63.5 | 59.7 | 38.9 | 73.0 | 85.0 | 58.1 | 57.4 |
MAL | 2023 TAC | 43.8 | 39.3 | 68.9 | 47.4 | 48.6 | 72.7 | 90.6 | 52.6 | 58.0 |
EmoCo | 2021 FG | 42.7 | 41.0 | 66.3 | 45.1 | 50.9 | 75.5 | 88.9 | 58.6 | 58.6 |
SEV-Net | 2021 CVPR | 55.3 | 53.1 | 61.5 | 53.6 | 38.2 | 71.6 | 95.7 | 41.5 | 58.8 |
GeoConv | 2022 PR | 65.5 | 65.8 | 67.2 | 48.6 | 51.4 | 72.6 | 80.9 | 44.9 | 62.1 |
MEGraph | 2022 IJCAI | 52.5 | 45.7 | 76.1 | 51.8 | 46.5 | 76.1 | 92.9 | 57.6 | 62.4 |
JÂA-Net | 2021 IJCV | 62.4 | 60.7 | 67.1 | 41.1 | 45.1 | 73.5 | 90.9 | 67.4 | 63.5 |
AAR | 2023 TIP | 62.4 | 53.6 | 71.5 | 39.0 | 48.8 | 76.1 | 91.3 | 70.6 | 64.2 |
KSRL | 2022 CVPR | 60.4 | 59.2 | 67.5 | 52.7 | 51.5 | 76.1 | 91.3 | 57.7 | 64.5 |
CLEF | 2023 ICCV | 64.3 | 61.8 | 68.4 | 49.0 | 55.2 | 72.9 | 89.9 | 57.0 | 64.8 |
AC2D | 2024 IJCV | 57.8 | 59.2 | 70.1 | 50.1 | 54.4 | 75.1 | 90.3 | 66.2 | 65.4 |
SACL | 2024 TAC | 62.0 | 65.7 | 74.5 | 53.2 | 43.1 | 76.9 | 95.6 | 53.1 | 65.5 |
MMA-Net | 2023 PRL | 63.8 | 54.8 | 73.6 | 39.2 | 61.5 | 73.1 | 92.3 | 70.5 | 66.0 |
AUNCE(Ours) | - | 61.8 | 58.9 | 74.9 | 49.7 | 56.2 | 73.5 | 92.1 | 64.2 | 66.4 |
The trained models can be downloaded here.
Our paper will come soon.