-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
331 lines (262 loc) · 10.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import json
from io import BytesIO
from pathlib import Path
from threading import Event
from typing import Any, Generator
import torch
import torchaudio
import transformers
transformers.logging.set_verbosity_error()
from exllamav2 import ExLlamaV2, ExLlamaV2Config, ExLlamaV2Tokenizer, attn
from exllamav2.generator import (
ExLlamaV2DynamicGenerator,
ExLlamaV2DynamicJob,
ExLlamaV2Sampler,
)
from fastapi import UploadFile
from huggingface_hub import snapshot_download
from jinja2 import Template
from transformers import Pipeline, pipeline
from xcodec2.modeling_xcodec2 import XCodec2Model
import utils
from schema import Query
from utils import Progress, Timer
class Model:
def __init__(
self,
model: str,
codec: str,
whisper: str,
voices: Path,
cache: str = "fp16",
max_seq_len: int = 2048,
device: str = "cuda",
dtype: str = "fp32",
max_voice_len: int = 15,
rebuild_cache: bool = False,
sample_rate: int = 16000,
) -> None:
utils.log("Starting [[cyan]LLaSA WebUI[/cyan]]")
self.cache = utils.get_cache(cache)
self.max_seq_len = max_seq_len
self.device = device
self.dtype = utils.get_dtype(dtype)
self.max_voice_len = max_voice_len
self.rebuild_cache = rebuild_cache
self.sample_rate = sample_rate
self.model = self.load_model(model)
self.codec = self.load_codec(codec)
self.whisper = self.load_whisper(whisper)
self.voice_dir = voices
self.voice_cache = voices / ".cache"
self.voice_cache.mkdir(parents=True, exist_ok=True)
self.voices = self.load_voices()
self.template = Template(
self.model.tokenizer.tokenizer_config_dict.get("chat_template", "")
)
eos = self.model.tokenizer.single_id("<|SPEECH_GENERATION_END|>")
first = self.model.tokenizer.single_id("<|s_0|>")
last = self.model.tokenizer.single_id("<|s_65535|>")
self.stop_conditions = [eos]
self.gen_settings = ExLlamaV2Sampler.Settings.greedy()
self.gen_settings.allow_tokens(
tokenizer=self.model.tokenizer,
tokens=[eos] + list(range(first, last + 1)),
)
def load_model(self, path: str) -> ExLlamaV2DynamicGenerator:
if not Path(path).is_dir():
path = snapshot_download(path)
config = ExLlamaV2Config(path)
config.max_seq_len = self.max_seq_len
model = ExLlamaV2(config, lazy_load=True)
cache = self.cache(model, lazy=True)
paged = attn.has_flash_attn
with Progress("Loading model", len(model.modules) + 1) as progress:
model.load_autosplit(cache, callback=progress)
with Progress("Loading tokenizer"):
tokenizer = ExLlamaV2Tokenizer(config, lazy_init=True)
return ExLlamaV2DynamicGenerator(model, cache, tokenizer, paged=paged)
def load_codec(self, path: str) -> XCodec2Model:
with Progress("Loading codec"):
codec = XCodec2Model.from_pretrained(path)
return codec.eval().to(self.device, self.dtype)
def load_whisper(self, path: str | None = None) -> Pipeline:
if hasattr(self, "whisper") and self.whisper:
self.whisper.model.to(self.device)
return self.whisper
with Progress("Loading whisper"):
whisper = pipeline(
task="automatic-speech-recognition",
model=path,
device=self.device,
torch_dtype=self.dtype,
)
whisper.model.cpu()
torch.cuda.empty_cache()
return whisper
def offload_whisper(self) -> None:
if hasattr(self, "whisper") and self.whisper:
self.whisper.model.cpu()
torch.cuda.empty_cache()
def load_voices(self) -> dict[str, dict[str, Any]]:
suffixes = [f".{s}" for s in Query.formats()]
files = [f for f in self.voice_dir.glob("*.*") if f.suffix in suffixes]
voices = {}
with Progress("Caching voices", len(files)) as progress:
for file in files:
self.encode(file, rebuild_cache=self.rebuild_cache)
progress()
for file in self.voice_cache.glob("*.json"):
name = file.stem.lower()
voices[name] = json.loads(file.read_text(encoding="utf-8"))
return voices
async def cache_voice(self, file: UploadFile) -> list[str]:
buffer = await file.read()
buffer = BytesIO(buffer)
name, data = self.encode(buffer, file.filename, rebuild_cache=True)
self.voices[name] = data
return sorted(self.voices)
def encode(
self,
audio: BytesIO | Path,
name: str = "",
text: str = "",
rebuild_cache: bool = False,
) -> tuple[str, dict[str, Any] | None]:
name = Path(name if name else audio).stem.lower()
file = self.voice_cache / f"{name}.json"
if file.exists() and not rebuild_cache:
return name, None
audio, sample_rate = torchaudio.load(audio)
audio = audio.to(self.device)
audio = utils.process_audio(
audio=audio,
input_rate=sample_rate,
output_rate=self.sample_rate,
max_len=self.max_voice_len,
)
if not text:
text = self.voice_dir / f"{name}.txt"
if not text.exists():
self.load_whisper()
text = self.whisper(audio[0].cpu().numpy())["text"]
text = utils.process_text(text)
with torch.autocast(self.device, self.dtype), torch.inference_mode():
audio = self.codec.encode_code(audio, self.sample_rate)
audio = audio[0, 0, :].tolist()
file.write_text(
json.dumps({"audio": audio, "text": text}, ensure_ascii=False),
encoding="utf-8",
)
self.offload_whisper()
return name, {"audio": audio, "text": text}
def decode(self, audio: list[str]) -> torch.Tensor:
audio = [int(a[4:-2]) for a in audio if a]
audio = torch.tensor([[audio]], device=self.device)
with torch.autocast(self.device, self.dtype), torch.inference_mode():
audio = self.codec.decode_code(audio)
return audio[0, 0, :].unsqueeze(0)
def get_bytes(self, audio: torch.Tensor, sample_rate: int, format: str) -> bytes:
audio = utils.process_audio(audio, self.sample_rate, sample_rate)
buffer = BytesIO()
torchaudio.save(buffer, audio.cpu(), sample_rate, format=format)
return buffer.getvalue()
def get_voice(self, voice: str) -> tuple[str, str]:
voice = self.voices.get(voice.lower(), {})
audio = voice.get("audio", [])
audio = "".join([f"<|s_{a}|>" for a in audio])
text = voice.get("text", "")
text += " " if text else ""
return audio, text
def __call__(
self, query: Query, abort_event: Event
) -> Generator[list[str], None, None]:
self.gen_settings.temperature = query.temperature
self.gen_settings.token_repetition_penalty = query.penalty
self.gen_settings.top_k = query.top_k
self.gen_settings.top_p = query.top_p
text = utils.clean_text(query.input)
pairs = utils.get_pairs(text, query.voice)
chunks = []
for pair in pairs:
split = utils.split_text(pair["text"], query.max_len)
chunks.extend([{"voice": pair["voice"], "text": s} for s in split])
count = len(chunks)
digits = len(str(count))
tokens = 0
with Timer() as timer:
for index, chunk in enumerate(chunks):
if not query.reuse or index == 0 or audio != chunk["voice"]:
audio, text = self.get_voice(chunk["voice"])
utils.log(chunk["text"])
messages = [
{
"role": "user",
"content": (
"Convert the text to speech:"
"<|TEXT_UNDERSTANDING_START|>"
f"{text}{chunk['text']}"
"<|TEXT_UNDERSTANDING_END|>"
),
},
{
"role": "assistant",
"content": f"<|SPEECH_GENERATION_START|>{audio}",
},
]
input = self.template.render(messages=messages)
input_ids = self.model.tokenizer.encode(input, add_bos=True)[:, :-1]
max_new_tokens = self.max_seq_len - input_ids.shape[-1]
if max_new_tokens < 2:
continue
job = ExLlamaV2DynamicJob(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=2,
gen_settings=self.gen_settings,
seed=query.seed,
stop_conditions=self.stop_conditions,
)
self.model.enqueue(job)
output = []
with Progress(
f"Generating chunk [bright_cyan]{index + 1:0{digits}}/"
f"{count}[/bright_cyan]",
max_new_tokens,
) as progress:
while self.model.num_remaining_jobs():
for result in self.model.iterate():
text = result.get("text")
progress()
if text:
output.append(text)
tokens += 1
if abort_event and abort_event.is_set():
self.model.clear_queue()
return
if not output:
continue
if query.reuse:
audio = "".join(output)
text = chunk["text"]
yield output
self.model.clear_queue()
timer(f"Generated {tokens / 50:.2f} seconds of audio with seed {query.seed}")
def generate(self, query: Query, abort_event: Event) -> bytes | None:
outputs = []
for output in self(query, abort_event):
if query.join:
outputs.extend(output)
else:
outputs.append(output)
if not outputs:
return
if query.join:
outputs = [outputs]
outputs = [self.decode(o) for o in outputs]
output = torch.cat(outputs, dim=-1)
return self.get_bytes(output, query.rate, query.format)
def stream(self, query: Query, abort_event: Event) -> Generator[bytes, None, None]:
for output in self(query, abort_event):
output = self.decode(output)
yield self.get_bytes(output, query.rate, query.format)