forked from langchain-ai/chat-langchain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ingest.py
161 lines (135 loc) · 5.26 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""Load html from files, clean up, split, ingest into Weaviate."""
import logging
import os
import re
from parser import langchain_docs_extractor
import weaviate
from bs4 import BeautifulSoup, SoupStrainer
from constants import WEAVIATE_DOCS_INDEX_NAME
from langchain.document_loaders import RecursiveUrlLoader, SitemapLoader
from langchain.indexes import SQLRecordManager, index
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.utils.html import PREFIXES_TO_IGNORE_REGEX, SUFFIXES_TO_IGNORE_REGEX
from langchain_community.vectorstores import Weaviate
from langchain_core.embeddings import Embeddings
from langchain_openai import OpenAIEmbeddings
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_embeddings_model() -> Embeddings:
return OpenAIEmbeddings(model="text-embedding-3-small", chunk_size=200)
def metadata_extractor(meta: dict, soup: BeautifulSoup) -> dict:
title = soup.find("title")
description = soup.find("meta", attrs={"name": "description"})
html = soup.find("html")
return {
"source": meta["loc"],
"title": title.get_text() if title else "",
"description": description.get("content", "") if description else "",
"language": html.get("lang", "") if html else "",
**meta,
}
def load_langchain_docs():
return SitemapLoader(
"https://python.langchain.com/sitemap.xml",
filter_urls=["https://python.langchain.com/"],
parsing_function=langchain_docs_extractor,
default_parser="lxml",
bs_kwargs={
"parse_only": SoupStrainer(
name=("article", "title", "html", "lang", "content")
),
},
meta_function=metadata_extractor,
).load()
def load_langsmith_docs():
return RecursiveUrlLoader(
url="https://docs.smith.langchain.com/",
max_depth=8,
extractor=simple_extractor,
prevent_outside=True,
use_async=True,
timeout=600,
# Drop trailing / to avoid duplicate pages.
link_regex=(
f"href=[\"']{PREFIXES_TO_IGNORE_REGEX}((?:{SUFFIXES_TO_IGNORE_REGEX}.)*?)"
r"(?:[\#'\"]|\/[\#'\"])"
),
check_response_status=True,
).load()
def simple_extractor(html: str) -> str:
soup = BeautifulSoup(html, "lxml")
return re.sub(r"\n\n+", "\n\n", soup.text).strip()
def load_api_docs():
return RecursiveUrlLoader(
url="https://api.python.langchain.com/en/latest/",
max_depth=8,
extractor=simple_extractor,
prevent_outside=True,
use_async=True,
timeout=600,
# Drop trailing / to avoid duplicate pages.
link_regex=(
f"href=[\"']{PREFIXES_TO_IGNORE_REGEX}((?:{SUFFIXES_TO_IGNORE_REGEX}.)*?)"
r"(?:[\#'\"]|\/[\#'\"])"
),
check_response_status=True,
exclude_dirs=(
"https://api.python.langchain.com/en/latest/_sources",
"https://api.python.langchain.com/en/latest/_modules",
),
).load()
def ingest_docs():
WEAVIATE_URL = os.environ["WEAVIATE_URL"]
WEAVIATE_API_KEY = os.environ["WEAVIATE_API_KEY"]
RECORD_MANAGER_DB_URL = os.environ["RECORD_MANAGER_DB_URL"]
text_splitter = RecursiveCharacterTextSplitter(chunk_size=4000, chunk_overlap=200)
embedding = get_embeddings_model()
client = weaviate.Client(
url=WEAVIATE_URL,
auth_client_secret=weaviate.AuthApiKey(api_key=WEAVIATE_API_KEY),
)
vectorstore = Weaviate(
client=client,
index_name=WEAVIATE_DOCS_INDEX_NAME,
text_key="text",
embedding=embedding,
by_text=False,
attributes=["source", "title"],
)
record_manager = SQLRecordManager(
f"weaviate/{WEAVIATE_DOCS_INDEX_NAME}", db_url=RECORD_MANAGER_DB_URL
)
record_manager.create_schema()
docs_from_documentation = load_langchain_docs()
logger.info(f"Loaded {len(docs_from_documentation)} docs from documentation")
docs_from_api = load_api_docs()
logger.info(f"Loaded {len(docs_from_api)} docs from API")
docs_from_langsmith = load_langsmith_docs()
logger.info(f"Loaded {len(docs_from_langsmith)} docs from Langsmith")
docs_transformed = text_splitter.split_documents(
docs_from_documentation + docs_from_api + docs_from_langsmith
)
docs_transformed = [doc for doc in docs_transformed if len(doc.page_content) > 10]
# We try to return 'source' and 'title' metadata when querying vector store and
# Weaviate will error at query time if one of the attributes is missing from a
# retrieved document.
for doc in docs_transformed:
if "source" not in doc.metadata:
doc.metadata["source"] = ""
if "title" not in doc.metadata:
doc.metadata["title"] = ""
indexing_stats = index(
docs_transformed,
record_manager,
vectorstore,
cleanup="full",
source_id_key="source",
force_update=(os.environ.get("FORCE_UPDATE") or "false").lower() == "true",
)
logger.info(f"Indexing stats: {indexing_stats}")
num_vecs = client.query.aggregate(WEAVIATE_DOCS_INDEX_NAME).with_meta_count().do()
logger.info(
f"LangChain now has this many vectors: {num_vecs}",
)
if __name__ == "__main__":
ingest_docs()