-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
285 lines (243 loc) · 12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import pandas as pd
import numpy as np
from bs4 import BeautifulSoup as bs
import requests
import yaml
from datetime import datetime, date, time
from dateutil.relativedelta import relativedelta
from pandas_datareader import data as pdr
import yfinance as yf
yf.pdr_override()
import matplotlib.pyplot as plt
def get_dji():
""" Dataframe of info of all tickers in Dow Jones Industrial Average. """
url = 'https://www.dogsofthedow.com/dow-jones-industrial-average-companies.htm'
request = requests.get(url,headers={'User-Agent': 'Mozilla/5.0'})
soup = bs(request.text, "lxml")
stats = soup.find('table',class_='tablepress tablepress-id-42 tablepress-responsive')
df = pd.read_html(str(stats))[0]
print(f"DJI: Contains {len(df)} tickers.")
return df
def get_spy():
""" Dataframe of info of all tickers in SP&500. """
url = 'https://www.slickcharts.com/sp500'
request = requests.get(url,headers={'User-Agent': 'Mozilla/5.0'})
soup = bs(request.text, "lxml")
stats = soup.find('table',class_='table table-hover table-borderless table-sm')
df = pd.read_html(str(stats))[0]
df['% Chg'] = df['% Chg'].str.strip('()-%')
df['% Chg'] = pd.to_numeric(df['% Chg'], errors='coerce').fillna(0)
df['Chg'] = pd.to_numeric(df['Chg'])
df = df.drop('#', axis=1)
print(f"SPY: Contains {len(df)} tickers.")
return df
def get_qqq():
""" Dataframe of info of all tickers in Nasdaq 100. """
df = pd.DataFrame()
urls = ['https://www.dividendmax.com/market-index-constituents/nasdaq-100',
'https://www.dividendmax.com/market-index-constituents/nasdaq-100?page=2',
'https://www.dividendmax.com/market-index-constituents/nasdaq-100?page=3']
for url in urls:
request = requests.get(url,headers={'User-Agent': 'Mozilla/5.0'})
soup = bs(request.text, "lxml")
stats = soup.find('table',class_='mdc-data-table__table')
temp = pd.read_html(str(stats))[0]
temp.rename(columns={'Market Cap':'Market Cap $bn'},inplace=True)
temp['Market Cap $bn'] = temp['Market Cap $bn'].str.strip("£$bn")
temp['Market Cap $bn'] = temp['Market Cap $bn'].str.replace('m', '*1e-3').astype(str)
temp['Market Cap $bn'] = temp['Market Cap $bn'].apply(lambda x: eval(x))
temp['Market Cap $bn'] = pd.to_numeric(temp['Market Cap $bn'])
df = df.append(temp)
df = df.sort_values('Market Cap $bn',ascending=False)
df = df.drop('Unnamed: 2', axis=1)
df.rename(columns={'Ticker':'Symbol'},inplace=True)
df = df.reset_index(drop=True)
print(f"QQQ: Contains {len(df)} tickers.")
return df
class NestedObject:
def __init__(self, dictionary):
for key, value in dictionary.items():
if isinstance(value, dict):
setattr(self, key, NestedObject(value))
else:
setattr(self, key, value)
def load_args(filepath='args.yaml'):
with open(filepath, 'r') as f:
data = yaml.safe_load(f)
return NestedObject(data)
def str2datetime(date_str):
return datetime.strptime(date_str, '%Y-%m-%d')
def parse_period_date(period):
d = period.days
m = period.months
y = period.years
return relativedelta(days=d, months=m, years=y)
def get_dates(args):
if args.method == 'interval':
startdate = str2datetime(args.interval.start_date)
enddate = str2datetime(args.interval.end_date)
elif args.method == 'back_from_today':
enddate = date.today()
startdate = enddate - parse_period_date(args.back_from_today)
else:
ValueError("Incorrect value in args.yaml for method.")
return startdate, enddate
def get_pdr_data(tickers, startdate, enddate, progress=False, clean=True):
""" Returns Yahoo Finance price data for the given tickers. """
df = pdr.get_data_yahoo(tickers, start=startdate, end=enddate, progress=progress)['Close']
# df = df.xs(key='Adj Close', level='Price', axis=1)
if not clean:
return df.sort_index()
else:
return clean_df(df.sort_index())
def get_benchmark_data(market_ticker, riskfree_ticker, startdate, enddate):
""" Get data for the benchmark tickers provided in the args.yaml file. """
market_data = get_pdr_data(market_ticker, startdate, enddate, progress=False, clean=False)
nonholiday_dates = market_data.index[:-1]
market_return = compute_return(market_data, was_annual=False, retain_symbols=True)
riskfree_data = get_pdr_data(riskfree_ticker, startdate, enddate, progress=False, clean=False)
riskfree_return = compute_return(riskfree_data, was_annual=True, retain_symbols=True)
return market_return, riskfree_return, sorted(list(nonholiday_dates.to_pydatetime()))
def is_df_okay(df):
""" Returns True if there are no missing entries (NaN) in the df. """
return not df.isnull().any().any()
def clean_df(df):
""" Remove columns that contain NaN in any row. """
bad_cols = df.columns[df.isnull().any()]
return df.drop(bad_cols, axis=1)
def nearest_datetime(datetime_list, item):
""" Get nearest date in a list. """
diffs = [abs(dt - item) for dt in datetime_list]
i = np.argmin(diffs)
return datetime_list[i]
def linspace_datetime(datetime_list, start, end, delta, include_end=False):
""" Return a list of linearly spaced dates. """
start = datetime.combine(start, time())
end = datetime.combine(end, time())
if delta == relativedelta():
return [nearest_datetime(datetime_list, start)]
result = set()
current = start
while current < end:
result.add(nearest_datetime(datetime_list, current))
current += delta
if include_end:
result.add(end)
return sorted(list(result))
def compute_return(df, was_annual=False, retain_symbols=False):
""" Compute daily return for every ticker in the provided df. """
if was_annual:
# Riskfree data should be converted to daily from annual.
riskfree_annual_return = (df/100)[:-1]
riskfree_daily_return = (1 + riskfree_annual_return)**(1/252) - 1
riskfree_daily_return = riskfree_daily_return.to_numpy()
# riskfree_annual_log_return = np.log(1 + riskfree_annual_return)
# riskfree_daily_log_return = (riskfree_annual_log_return/252).to_numpy()
# riskfree_daily_return = riskfree_daily_log_return
if not retain_symbols:
return riskfree_daily_return
elif isinstance(df, pd.Series):
return pd.DataFrame(riskfree_daily_return, index=df.index[:-1])
else: # df is a pd.DataFrame instance.
return pd.DataFrame(riskfree_daily_return, columns=df.columns)
else:
# Stock market data is already retrieved as daily from Yahoo.
# market_return = np.diff(np.log(df), axis=0)
market_return = df.pct_change().dropna().values
if not retain_symbols:
return market_return
elif isinstance(df, pd.Series):
return pd.DataFrame(market_return, index=df.index[:-1])
else: # df is already a pd.DataFrame instance.
return pd.DataFrame(market_return, columns=df.columns, index=df.index[:-1])
def compute_sharpe_ratio(ticker_return_df, riskfree_return_df, retain_symbols=False):
""" Compute daily Sharpe ratio (what we use). """
if np.array(ticker_return_df).ndim == 1:
excess_return = ticker_return_df - riskfree_return_df
else:
excess_return = ticker_return_df - riskfree_return_df.reshape(-1, 1)
sharpe = excess_return.mean(axis=0) / excess_return.std(axis=0, ddof=1)
if not retain_symbols:
return np.array(sharpe)
elif retain_symbols and isinstance(ticker_return_df, np.ndarray):
return pd.DataFrame(sharpe, columns=ticker_return_df.columns)
else: # is a pd.Series instance, and already has symbols retained.
return sharpe
def compute_sortino_ratio(ticker_return_df, riskfree_return_df, retain_symbols=False):
""" Compute daily Sortino ratio. """
if np.array(ticker_return_df).ndim == 1:
excess_return = ticker_return_df - riskfree_return_df
else:
excess_return = ticker_return_df - riskfree_return_df.reshape(-1, 1)
downside_return = excess_return.copy()
downside_return[downside_return > 0] = 0
sortino = excess_return.mean(axis=0) / np.sqrt(np.mean(downside_return**2, axis=0))
if not retain_symbols:
return np.array(sortino)
elif retain_symbols and isinstance(ticker_return_df, np.ndarray):
return pd.DataFrame(sortino, columns=ticker_return_df.columns)
else: # is a pd.Series instance, and already has symbols retained.
return sortino
def get_stocks_utility(stocks_tickers, riskfree_ticker, startdate, enddate, utility, progress=True, clean=True):
""" Download, and compute sharpe/sortino ratio for the provided tickers. """
stocks_data = get_pdr_data(stocks_tickers, startdate, enddate, progress=progress, clean=clean)
assert is_df_okay(stocks_data)
riskfree_data = get_pdr_data(riskfree_ticker, startdate, enddate, progress=False, clean=False)
riskfree_return = compute_return(riskfree_data, was_annual=True)
stocks_return = compute_return(stocks_data, retain_symbols=True)
if utility == 'sharpe':
stocks_utility = compute_sharpe_ratio(stocks_return, riskfree_return, retain_symbols=True)
elif utility == 'sortino':
stocks_utility = compute_sortino_ratio(stocks_return, riskfree_return, retain_symbols=True)
else:
ValueError("Incorrect arg for utility.")
return stocks_utility.sort_values(ascending=False)
def get_stocks_utility_from_data(stocks_data, riskfree_ticker, startdate, enddate, utility):
""" Faster than above. Compute sharpe/sortino ratios from data downloaded earlier. """
assert is_df_okay(stocks_data)
riskfree_data = get_pdr_data(riskfree_ticker, startdate, enddate, progress=False, clean=False)
startdate = datetime.combine(startdate, time())
enddate = datetime.combine(enddate, time())
# mask = (startdate <= stocks_data.index.to_pydatetime()) & (stocks_data.index.to_pydatetime() <= enddate)
mask = [(item in riskfree_data.index) for item in stocks_data.index] # returns list of boolean mask
stocks_data = stocks_data[mask]
stocks_return = compute_return(stocks_data, retain_symbols=True)
riskfree_return = compute_return(riskfree_data, was_annual=True, retain_symbols=False)
if utility == 'sharpe':
stocks_utility = compute_sharpe_ratio(stocks_return, riskfree_return, retain_symbols=True)
if utility == 'sortino':
stocks_utility = compute_sortino_ratio(stocks_return, riskfree_return, retain_symbols=True)
else:
ValueError("Incorrect arg for utility.")
return stocks_utility.sort_values(ascending=False)
class Portfolio():
def __init__(self, init_balance):
self.previous_tickers = None
self.current_tickers = None
self.value = init_balance # float, US Dollars
self.size = 0 # int, num. of stocks
# self.fig, self.ax = plt.subplots()
def verbose(self):
print("Portfolio $Value:", self.value)
print(self.current_tickers)
def plot(self):
pass
def rebalance(self, df, min_threshold=0.0):
self.previous_tickers = self.current_tickers
tickers = df.index
vals = df.values
mask = (vals >= min_threshold)
tickers = tickers[mask]
vals = vals[mask]
self.current_tickers = pd.DataFrame(np.nan, index=tickers, columns=['!Utility', '%Weight', '$Value'])
self.current_tickers.loc[tickers, '!Utility'] = vals
self.current_tickers.loc[tickers, '%Weight'] = vals/vals.sum()
self.current_tickers.loc[tickers, '$Value'] = self.value * self.current_tickers.loc[tickers, '%Weight']
self.size = len(tickers)
def update(self, stocks_return, dt):
dt_str = dt.strftime('%Y-%m-%d')
todays_returns = stocks_return.loc[dt_str, self.current_tickers.index]
self.current_tickers['$Value'] *= (1+todays_returns)
self.value = self.current_tickers['$Value'].sum()
self.current_tickers['%Weight'] = self.current_tickers['$Value'] / self.value
# self.ax.plot(x_values, y_values)