forked from codeplaysoftware/cutlass-fork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path62_hopper_sparse_gemm.cu
596 lines (480 loc) · 21.7 KB
/
62_hopper_sparse_gemm.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/***************************************************************************************************
* Copyright (c) 2024 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Hopper Sparse GEMM example.
This example demonstrates how to construct and run a structured sparse GEMM kernel
on NVIDIA Hopper architecture.
*/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cute/tensor.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/thread/linear_combination.h"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/transform/device/transform_universal_adapter.hpp"
#include "cutlass/transform/kernel/sparse_gemm_compressor.hpp"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/reference/device/tensor_fill.h"
#include "helper.h"
using namespace cute;
#if defined(CUTLASS_ARCH_MMA_SPARSE_SM90_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// GEMM kernel configurations
/////////////////////////////////////////////////////////////////////////////////////////////////
// A matrix configuration
using ElementA = cutlass::half_t; // Element type for A matrix operand
using LayoutTagA = cutlass::layout::RowMajor; // Layout type for A matrix operand
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value; // Memory access granularity/alignment of A matrix in units of elements (up to 16 bytes)
// B matrix configuration
using ElementB = cutlass::half_t; // Element type for B matrix operand
using LayoutTagB = cutlass::layout::ColumnMajor; // Layout type for B matrix operand
constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value; // Memory access granularity/alignment of B matrix in units of elements (up to 16 bytes)
// C/D matrix configuration
using ElementC = float; // Element type for C and D matrix operands
using LayoutTagC = cutlass::layout::ColumnMajor; // Layout type for C and D matrix operands
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value; // Memory access granularity/alignment of C matrix in units of elements (up to 16 bytes)
// Core kernel configurations
using ElementAccumulator = float; // Element type for internal accumulation
using TileShape = Shape<_128,_128,_128>; // Threadblock-level tile size for sparse kernel
using TileShapeRef = Shape<_128,_128, _64>; // Threadblock-level tile size for reference (dense) kernel
using ClusterShape = Shape<_1,_2,_1>; // Shape of the threadblocks in a cluster
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecialized; // Kernel schedule policy
using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecialized; // Epilogue schedule policy
using ProblemShape = Shape<int,int,int,int>;
// Sparse kernel setup
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
TileShape, ClusterShape,
cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementAccumulator,
ElementC, LayoutTagC, AlignmentC,
ElementC, LayoutTagC, AlignmentC,
EpilogueSchedule
>::CollectiveOp;
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassSparseTensorOp,
ElementA, LayoutTagA, AlignmentA,
ElementB, LayoutTagB, AlignmentB,
ElementAccumulator,
TileShape, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
KernelSchedule
>::CollectiveOp;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
ProblemShape,
CollectiveMainloop,
CollectiveEpilogue
>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
// Reference (dense) kernel setup
using CollectiveEpilogueRef = typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
TileShapeRef, ClusterShape,
cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementAccumulator,
ElementC, LayoutTagC, AlignmentC,
ElementC, LayoutTagC, AlignmentC,
EpilogueSchedule
>::CollectiveOp;
using CollectiveMainloopRef = typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
ElementA, LayoutTagA, AlignmentA,
ElementB, LayoutTagB, AlignmentB,
ElementAccumulator,
TileShapeRef, ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
KernelSchedule
>::CollectiveOp;
using GemmKernelRef = cutlass::gemm::kernel::GemmUniversal<
ProblemShape,
CollectiveMainloopRef,
CollectiveEpilogue
>;
using GemmRef = cutlass::gemm::device::GemmUniversalAdapter<GemmKernelRef>;
// Layouts
using LayoutA = typename Gemm::GemmKernel::CollectiveMainloop::LayoutA;
using LayoutE = typename Gemm::GemmKernel::CollectiveMainloop::LayoutE;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideC = typename Gemm::GemmKernel::StrideC;
using StrideD = typename Gemm::GemmKernel::StrideD;
// Layouts for reference (non-sparse) tensors
using StrideA = cutlass::gemm::TagToStrideA_t<LayoutTagA>;
using StrideE = StrideA;
using ElementE = typename Gemm::GemmKernel::CollectiveMainloop::ElementE;
using SparseConfig = typename Gemm::GemmKernel::CollectiveMainloop::SparseConfig;
// Offline compressor kernel
using CompressorUtility = cutlass::transform::kernel::StructuredSparseCompressorUtility<
ProblemShape,
ElementA,
LayoutTagA,
SparseConfig>;
using CompressorKernel = cutlass::transform::kernel::StructuredSparseCompressor<
ProblemShape,
ElementA,
LayoutTagA,
SparseConfig,
cutlass::arch::Sm90>;
using Compressor = cutlass::transform::device::TransformUniversalAdapter<CompressorKernel>;
//
// Data members
//
ProblemShape problem_shape;
StrideA stride_A;
StrideA stride_A_compressed;
StrideE stride_E;
StrideB stride_B;
StrideC stride_C;
StrideD stride_D;
LayoutA layout_A;
LayoutE layout_E;
uint64_t seed;
cutlass::DeviceAllocation<typename Gemm::ElementA> block_A;
cutlass::DeviceAllocation<typename Gemm::ElementA> block_A_compressed;
cutlass::DeviceAllocation<typename Gemm::CollectiveMainloop::ElementE> block_E;
cutlass::DeviceAllocation<typename Gemm::ElementB> block_B;
cutlass::DeviceAllocation<typename Gemm::ElementC> block_C;
cutlass::DeviceAllocation<typename Gemm::EpilogueOutputOp::ElementOutput> block_D;
cutlass::DeviceAllocation<typename Gemm::EpilogueOutputOp::ElementOutput> block_D_ref;
#endif // defined(CUTLASS_ARCH_MMA_SPARSE_SM90_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Testbed utility types
/////////////////////////////////////////////////////////////////////////////////////////////////
// Command line options parsing
struct Options {
bool help;
float alpha, beta;
int iterations;
int m, n, k, l;
Options():
help(false),
m(5120), n(4096), k(16384), l(1),
alpha(1.f), beta(0.f),
iterations(10)
{ }
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
return;
}
cmd.get_cmd_line_argument("m", m);
cmd.get_cmd_line_argument("n", n);
cmd.get_cmd_line_argument("k", k);
cmd.get_cmd_line_argument("l", l);
cmd.get_cmd_line_argument("alpha", alpha);
cmd.get_cmd_line_argument("beta", beta);
cmd.get_cmd_line_argument("iterations", iterations);
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out << "62_hopper_sparse_gemm\n\n"
<< " Hopper Sparse GEMM example.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement\n\n"
<< " --m=<int> Sets the M extent of the GEMM\n"
<< " --n=<int> Sets the N extent of the GEMM\n"
<< " --k=<int> Sets the K extent of the GEMM\n"
<< " --l=<int> Sets the L extent of the GEMM (batch size)\n"
<< " --alpha=<f32> Epilogue scalar alpha\n"
<< " --beta=<f32> Epilogue scalar beta\n\n"
<< " --iterations=<int> Number of profiling iterations to perform.\n\n";
out
<< "\n\nExamples:\n\n"
<< "$ " << "62_hopper_sparse_gemm" << " --m=4096 --n=5120 --k=8192 --l=1 --alpha=2 --beta=0.707 \n\n";
return out;
}
/// Compute performance in GFLOP/s
double gflops(double runtime_s) const
{
// Two flops per multiply-add
uint64_t flop = uint64_t(2) * m * n * k;
double gflop = double(flop) / double(1.0e9);
return gflop / runtime_s;
}
};
#if defined(CUTLASS_ARCH_MMA_SPARSE_SM90_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// GEMM setup and evaluation
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Helper to initialize a block of device data
template <class Element>
bool initialize_block(
cutlass::DeviceAllocation<Element>& block,
uint64_t seed) {
Element scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
if (bits_input == 1) {
scope_max = Element(2);
scope_min = Element(0);
} else if (bits_input <= 8) {
scope_max = Element(2);
scope_min = Element(-2);
} else {
scope_max = Element(8);
scope_min = Element(-8);
}
cutlass::reference::device::BlockFillRandomUniform(
block.get(), block.size(), seed, scope_max, scope_min, 0);
return true;
}
/// Make A structured sparse by replacing elements with 0 and compress it
bool sparsify_and_compress()
{
auto [M, N, K, L] = problem_shape;
CompressorUtility compressor_utility(problem_shape, stride_A);
int ME = compressor_utility.get_metadata_m_physical();
int KE = compressor_utility.get_metadata_k_physical();
int KC = compressor_utility.get_tensorA_k_physical();
block_A_compressed.reset(M * KC * L);
block_E.reset(ME * KE * L);
stride_A_compressed = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, KC, L));
stride_E = cutlass::make_cute_packed_stride(StrideE{}, cute::make_shape(ME, KE, L));
// Random sparsification is performed on host
std::vector<ElementA> block_A_host(block_A.size());
cutlass::device_memory::copy_to_host(block_A_host.data(), block_A.get(), block_A.size());
compressor_utility.structure_sparse_zero_mask_fill(block_A_host.data(), static_cast<int>(seed + 2024));
cutlass::device_memory::copy_to_device(block_A.get(), block_A_host.data(), block_A.size());
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = 0;
hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
typename Compressor::Arguments arguments {
problem_shape,
{ block_A.get(),
stride_A,
block_A_compressed.get(),
block_E.get() },
{hw_info} };
Compressor compressor_op;
size_t workspace_size = Compressor::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
CUTLASS_CHECK(compressor_op.can_implement(arguments));
CUTLASS_CHECK(compressor_op.initialize(arguments, workspace.get()));
CUTLASS_CHECK(compressor_op.run());
CUDA_CHECK(cudaDeviceSynchronize());
return true;
}
/// Initialize operands to be used in the GEMM and reference GEMM
bool initialize(Options const& options) {
problem_shape = make_tuple(options.m, options.n, options.k, options.l);
auto [M, N, K, L] = problem_shape;
stride_A = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L));
stride_B = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, L));
stride_C = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, L));
stride_D = cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, L));
// Allocate memory for tensors
block_A.reset(M * K * L);
block_B.reset(N * K * L);
block_C.reset(M * N * L);
block_D.reset(M * N * L);
block_D_ref.reset(M * N * L);
// Fill input tensors with data
initialize_block(block_A, seed + 2021);
initialize_block(block_B, seed + 2022);
initialize_block(block_C, seed + 2023);
// Replace 0 in A with 1 to avoid metadata changes
std::vector<ElementA> block_A_host(block_A.size());
cutlass::device_memory::copy_to_host(block_A_host.data(), block_A.get(), block_A.size());
for (size_t i = 0; i < block_A.size(); ++i) if (block_A_host[i] == ElementA(0)) block_A_host[i] = ElementA(1.0);
cutlass::device_memory::copy_to_device(block_A.get(), block_A_host.data(), block_A.size());
if (!sparsify_and_compress()) {
return false;
};
// Build the compressed/metadata layouts
layout_A = SparseConfig::fill_layoutA(problem_shape);
layout_E = SparseConfig::fill_layoutE(problem_shape);
return true;
}
/// Populates a Gemm::Arguments structure from the given commandline options
typename Gemm::Arguments make_args(Options const& options)
{
typename Gemm::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
problem_shape,
{ block_A_compressed.get(), layout_A, block_B.get(), stride_B, block_E.get(), layout_E },
{ { ElementAccumulator(options.alpha), ElementAccumulator(options.beta) },
block_C.get(), stride_C, block_D.get(), stride_D }
};
return arguments;
}
typename GemmRef::Arguments make_args_ref(Options const& options)
{
typename GemmRef::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
problem_shape,
{ block_A.get(), stride_A, block_B.get(), stride_B },
{ { ElementAccumulator(options.alpha), ElementAccumulator(options.beta) },
block_C.get(), stride_C, block_D_ref.get(), stride_D }
};
return arguments;
}
template<class Engine, class Layout>
void print_device_tensor(cute::Tensor<Engine, Layout> const& t)
{
// Assumes size = cosize, i.e. compact tensor
std::vector<typename Engine::value_type> data_host(t.size());
cutlass::device_memory::copy_to_host(data_host.data(), t.data(), t.size());
auto t_host = cute::make_tensor(data_host.data(), t.layout());
cute::print_tensor(t_host);
}
bool verify(Options const& options) {
CUDA_CHECK(cudaDeviceSynchronize());
bool passed = cutlass::reference::device::BlockCompareEqual(block_D_ref.get(), block_D.get(), block_D.size());
#if 0
if (!passed) {
auto [M, N, K, L] = problem_shape;
CompressorUtility compressor_utility(problem_shape, stride_A);
int ME = compressor_utility.get_metadata_m_physical();
int KE = compressor_utility.get_metadata_k_physical();
int KC = compressor_utility.get_tensorA_k_physical();
cute::print("A (original): "); print_device_tensor(make_tensor(block_A.get(), make_shape(M, K, L), stride_A));
cute::print("A (compressed): "); print_device_tensor(make_tensor(block_A_compressed.get(), make_shape(M, KC, L), stride_A_compressed));
cute::print("E (physical): "); print_device_tensor(make_tensor(block_E.get(), make_shape(ME, KE, L), stride_E));
cute::print("E (logical): "); print_device_tensor(make_tensor(block_E.get(), upcast<CollectiveMainloop::ElementEMmaSparsity>(layout_E)));
cute::print("B: "); print_device_tensor(make_tensor(block_B.get(), make_shape(N, K, L), stride_B));
cute::print("C: "); print_device_tensor(make_tensor(block_C.get(), make_shape(M, N, L), stride_C));
cute::print("D reference: "); print_device_tensor(make_tensor(block_D_ref.get(), make_shape(M, N, L), stride_D));
cute::print("D computed: "); print_device_tensor(make_tensor(block_D.get(), make_shape(M, N, L), stride_D));
}
#endif
return passed;
}
template<typename Gemm>
struct Runner
{
using Arguments = typename Gemm::Arguments;
Runner(Arguments args): arguments(args) {
// Using the arguments, query for extra workspace required for matrix multiplication computation
size_t workspace_size = Gemm::get_workspace_size(arguments);
// Allocate workspace memory
workspace.reset(workspace_size);
// Check if the problem size is supported or not
CUTLASS_CHECK(gemm.can_implement(arguments));
}
void run() {
CUTLASS_CHECK(gemm.initialize(arguments, workspace.get()));
CUTLASS_CHECK(gemm.run());
}
void benchmark(Options const& options) {
if (options.iterations > 0)
{
GpuTimer timer;
timer.start();
for (int iter = 0; iter < options.iterations; ++iter) {
run();
}
timer.stop();
// Compute average runtime and GFLOPs.
float elapsed_ms = timer.elapsed_millis();
double avg_runtime_ms = double(elapsed_ms) / double(options.iterations);
double gflops = options.gflops(avg_runtime_ms / 1000.0);
std::cout << " Avg runtime: " << avg_runtime_ms << " ms" << std::endl;
std::cout << " GFLOPS: " << gflops << std::endl;
}
}
Gemm gemm;
Arguments arguments;
cutlass::device_memory::allocation<uint8_t> workspace;
};
/// Execute the example (verification and timing)
void run(Options &options) {
bool init = initialize(options);
if (!init) {
std::cout << "Initialization failure" << std::endl;
exit(EXIT_FAILURE);
}
Runner<Gemm> gemm(make_args(options));
Runner<GemmRef> gemm_ref(make_args_ref(options));
gemm.run();
gemm_ref.run();
bool passed = verify(options);
std::cout << " Problem Size: " << options.m << 'x' << options.n << 'x' << options.k << std::endl;
std::cout << " Disposition: " << (passed ? "Passed" : "Failed") << std::endl;
if (!passed) {
exit(EXIT_FAILURE);
}
std::cout << "Sparse GEMM:" << std::endl;
gemm.benchmark(options);
std::cout << "Dense GEMM:" << std::endl;
gemm_ref.benchmark(options);
}
#endif // defined(CUTLASS_ARCH_MMA_SPARSE_SM90_SUPPORTED)
///////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, char const **args) {
// CUTLASS must be compiled with CUDA 12.2 Toolkit to run this example
// and must have compute capability at least 90.
if (__CUDACC_VER_MAJOR__ < 12 || (__CUDACC_VER_MAJOR__ == 12 && __CUDACC_VER_MINOR__ < 2)) {
std::cerr << "This example requires CUDA 12.2 or newer.\n";
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
return 0;
}
cudaDeviceProp props;
int current_device_id;
CUDA_CHECK(cudaGetDevice(¤t_device_id));
CUDA_CHECK(cudaGetDeviceProperties(&props, current_device_id));
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (props.major < 9) {
std::cerr
<< "This example requires a GPU of NVIDIA's Hopper Architecture or "
<< "later (compute capability 90 or greater).\n";
return 0;
}
//
// Parse options
//
Options options;
options.parse(argc, args);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
//
// Evaluate CUTLASS kernels
//
#if defined(CUTLASS_ARCH_MMA_SPARSE_SM90_SUPPORTED)
run(options);
#endif
return EXIT_SUCCESS;
}
/////////////////////////////////////////////////////////////////////////////////////////////////