forked from codeplaysoftware/cutlass-fork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayout_composed.hpp
652 lines (565 loc) · 18.1 KB
/
layout_composed.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp> // CUTE_HOST_DEVICE, CUTE_GCC_UNREACHABLE
#include <cute/layout.hpp> // cute::tuple
#include <cute/numeric/integral_constant.hpp> // cute::true_type, cute::false_type, cute::Int
/* This implements a ComposedLayout of the form
* LayoutA o Offset o LayoutB
* and is useful in cases where composition() does not or cannot apply to LayoutA and LayoutB.
* For example, when the "divisibility condition" in shape_div is violated in composition(LayoutA, LayoutB).
*
* This ComposedLayout provides similar functionality to Layout including tiling, partitioning,
* coordinate-to-index mapping and layout manipulations, but is not considered a "normal" layout.
* For example, this layout provides shape() and size() functions, but does not provide stride() functions.
* Mostly, the similar functionality is accomplished by applying each operation to LayoutB only
* as LayoutB defines the domain.
*/
namespace cute
{
// A Layout of non-trivially composable functions: F o I o L
template <class LayoutA, class Offset, class LayoutB>
struct ComposedLayout : private cute::tuple<LayoutA, Offset, LayoutB> // EBO for static layouts
{
CUTE_HOST_DEVICE constexpr
ComposedLayout(LayoutA const& layoutA = {},
Offset const& offset = {},
LayoutB const& layoutB = {})
: cute::tuple<LayoutA, Offset, LayoutB>(layoutA, offset, layoutB)
{}
//
// Accessors
//
static constexpr int rank = LayoutB::rank;
CUTE_HOST_DEVICE constexpr
decltype(auto)
layout_a() const {
return get<0>(static_cast<cute::tuple<LayoutA, Offset, LayoutB> const&>(*this));
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
offset() const {
return get<1>(static_cast<cute::tuple<LayoutA, Offset, LayoutB> const&>(*this));
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
layout_b() const {
return get<2>(static_cast<cute::tuple<LayoutA, Offset, LayoutB> const&>(*this));
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
layout() const {
return *this;
}
CUTE_HOST_DEVICE constexpr
decltype(auto)
shape() const {
return layout_b().shape();
}
// Doesn't really make sense to ask for the strides of this "layout"
CUTE_HOST_DEVICE constexpr
decltype(auto)
stride() const = delete;
//
// Mappings
//
// Map a logical coordinate to a linear index (Coord has no Underscore slice operators)
// OR
// Slice the layout and return the sublayout (Coord has an Underscore slice op)
template <class Coord>
CUTE_HOST_DEVICE constexpr
auto
operator()(Coord const& coord) const {
if constexpr (has_underscore<Coord>::value) {
return slice(coord, *this);
} else {
return layout_a()(offset() + layout_b()(coord)); // (A o O o B)(c)
}
CUTE_GCC_UNREACHABLE;
}
// Convenience function for multi-dimensional coordinates
template <class Coord0, class Coord1, class... Coords>
CUTE_HOST_DEVICE constexpr
auto
operator()(Coord0 const& c0, Coord1 const& c1, Coords const&... cs) const {
return operator()(make_coord(c0,c1,cs...));
}
//
// Compose
//
template <class OtherLayout>
CUTE_HOST_DEVICE constexpr
auto
compose(OtherLayout const& other) const {
return composition(*this, other);
}
template <class... Layouts>
CUTE_HOST_DEVICE constexpr
auto
compose(Layouts const&... layouts) const {
return composition(*this, make_tile(layouts...));
}
template <class OtherShape>
CUTE_HOST_DEVICE constexpr
auto
with_shape(OtherShape const& shape) const {
return composition(*this, make_layout(shape));
}
template <class... Shapes>
CUTE_HOST_DEVICE constexpr
auto
with_shape(Shapes const&... shapes) const {
return composition(*this, make_layout(make_shape(shapes...)));
}
//
// Tile
//
template <class OtherLayout>
CUTE_HOST_DEVICE constexpr
auto
tile(OtherLayout const& other) const {
return tiled_divide(*this, other);
}
template <class... Layouts>
CUTE_HOST_DEVICE constexpr
auto
tile(Layouts const&... layouts) const {
return tiled_divide(*this, make_tile(layouts...));
}
// Equality, return a static or dynamic boolean
template <class... Args>
CUTE_HOST_DEVICE constexpr
auto
operator==(ComposedLayout<Args...> const& other) const {
return this->layout_a() == other.layout_a() &&
this->layout_b() == other.layout_b() &&
this->offset() == other.offset();
}
};
template <class A, class O, class B>
struct is_layout<ComposedLayout<A,O,B>> : true_type {};
template <class T>
struct is_composed_layout : false_type {};
template <class A, class O, class B>
struct is_composed_layout<ComposedLayout<A,O,B>> : true_type {};
//
// Constructors
//
template <class LayoutA, class Offset, class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
make_composed_layout(LayoutA const& layoutA,
Offset const& offset,
LayoutB const& layoutB)
{
return ComposedLayout<LayoutA, Offset, LayoutB>{layoutA, offset, layoutB};
}
//
// Utilities
//
// Return the layout of a mode
template <int... Is, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
decltype(auto)
layout(ComposedLayout<A,O,B> const& clayout)
{
return composition(clayout.layout_a(), clayout.offset(), layout<Is...>(clayout.layout_b()));
}
// Return the shape of a mode
template <int... Is, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
decltype(auto)
shape(ComposedLayout<A,O,B> const& layout)
{
return shape<Is...>(layout.layout_b());
}
// Doesn't make sense to directly ask for the strides of this "layout"
template <int... Is, class Fn, class O, class Layout>
CUTE_HOST_DEVICE constexpr
decltype(auto)
stride(ComposedLayout<Fn,O,Layout> const& layout) = delete;
// Return the number of elements in a mode
template <int... Is, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
decltype(auto)
size(ComposedLayout<A,O,B> const& layout)
{
return size<Is...>(layout.layout_b());
}
// Return the number of modes
template <int... Is, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
rank(ComposedLayout<A,O,B> const& layout)
{
return rank<Is...>(layout.layout_b());
}
// Return the depth of the layout
template <int... Is, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
depth(ComposedLayout<A,O,B> const& layout)
{
return depth<Is...>(layout.layout_b());
}
// Return the codomain size of a mode
template <int... Is, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
cosize(ComposedLayout<A,O,B> const& layout)
{
return cosize<Is...>(layout.layout_b());
}
//
// Operations to manipulate Layouts like a tuple of pairs
//
template <size_t I, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
get(ComposedLayout<A,O,B> const& a)
{
return composition(a.layout_a(), a.offset(), get<I>(a.layout_b()));
}
template <int Begin, int End, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
take(ComposedLayout<A,O,B> const& a)
{
return composition(a.layout_a(), a.offset(), take<Begin,End>(a.layout_b()));
}
template <class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
flatten(ComposedLayout<A,O,B> const& a)
{
return composition(a.layout_a(), a.offset(), flatten(a.layout_b()));
}
template <int N, class A, class O, class B, class X>
CUTE_HOST_DEVICE constexpr
auto
append(ComposedLayout<A,O,B> const& a, X const& x)
{
return composition(a.layout_a(), a.offset(), append<N>(a.layout_b(), x));
}
template <int Begin, int End, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
group(ComposedLayout<A,O,B> const& a)
{
return composition(a.layout_a(), a.offset(), group<Begin,End>(a.layout_b()));
}
//
// Slice a ComposedLayout
//
template <class Coord, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
slice_and_offset(Coord const& coord, ComposedLayout<A,O,B> const& layout)
{
auto [slice, offset] = slice_and_offset(coord, layout.layout_b());
return cute::make_tuple(ComposedLayout{layout.layout_a(), layout.offset() + offset, slice}, Int<0>{});
}
template <class Coord, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
slice(Coord const& coord, ComposedLayout<A,O,B> const& layout)
{
return get<0>(slice_and_offset(coord, layout));
}
// Compute a pointer offset and (potentially modified) layout from a coordinate
// For composed layout tensors the offset is accumulated in the layout itself while pointer is not updated
template <class Coord, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
domain_offset(Coord const& coord, ComposedLayout<A,O,B> const& layout)
{
return cute::make_tuple(ComposedLayout{layout.layout_a(), layout.offset() + layout.layout_b()(coord), layout.layout_b()}, Int<0>{});
}
//
// composition
//
template <class LayoutA,
class Offset,
class LayoutB>
CUTE_HOST_DEVICE constexpr
auto
composition(LayoutA const& layoutA,
Offset const& offset,
LayoutB const& layoutB)
{
return ComposedLayout<LayoutA, Offset, LayoutB>{layoutA, offset, layoutB};
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
composition(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), composition(a.layout_b(), b));
}
template <class ShapeA, class StrideA,
class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
composition(Layout<ShapeA,StrideA> const& a,
ComposedLayout<A,O,B> const& b)
{
CUTE_STATIC_ASSERT_V(b.offset() == Int<0>{}, "Require offset == 0.");
return composition(composition(a, b.layout_a()), b.layout_b());
}
//
// complement
//
template <class A, class O, class B, class CoTarget>
CUTE_HOST_DEVICE constexpr
auto
complement(ComposedLayout<A,O,B> const& layout, CoTarget const& cotarget)
{
return complement(layout.layout_b(), cotarget);
}
template <class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
complement(ComposedLayout<A,O,B> const& layout)
{
return complement(layout, cosize(layout));
}
//
// inverse
//
template <class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
right_inverse(ComposedLayout<A,O,B> const& layout)
{
return composition(right_inverse(layout.layout_b()), right_inverse(layout.offset()), right_inverse(layout.layout_a()));
}
template <class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
left_inverse(ComposedLayout<A,O,B> const& layout)
{
return composition(left_inverse(layout.layout_b()), left_inverse(layout.offset()), left_inverse(layout.layout_a()));
}
//
// Other operations
//
template <class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
zip(ComposedLayout<A,O,B> const& a)
{
return composition(a.layout_a(), a.offset(), zip(a.layout_b()));
}
// Partitions
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
logical_divide(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), logical_divide(a.layout_b(), b));
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
tile_unzip(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), tile_unzip(a.layout_b(), b));
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
tiled_divide(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), tiled_divide(a.layout_b(), b));
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
zipped_divide(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), zipped_divide(a.layout_b(), b));
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
flat_divide(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), flat_divide(a.layout_b(), b));
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
logical_product(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), logical_product(a.layout_b(), b));
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
zipped_product(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), zipped_product(a.layout_b(), b));
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
tiled_product(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), tiled_product(a.layout_b(), b));
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
flat_product(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), flat_product(a.layout_b(), b));
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
blocked_product(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), blocked_product(a.layout_b(), b));
}
template <class A, class O, class B, class Tiler>
CUTE_HOST_DEVICE constexpr
auto
raked_product(ComposedLayout<A,O,B> const& a,
Tiler const& b)
{
return composition(a.layout_a(), a.offset(), raked_product(a.layout_b(), b));
}
template <class A, class O, class B,
class Shape, class ModeOrder = GenColMajor>
CUTE_HOST_DEVICE constexpr
auto
tile_to_shape(ComposedLayout<A,O,B> const& layout,
Shape const& trg_shape,
ModeOrder const& ord_shape = {})
{
return composition(layout.layout_a(), layout.offset(), tile_to_shape(layout.layout_b(), trg_shape, ord_shape));
}
template <class A, class O, class B,
class Shape>
CUTE_HOST_DEVICE constexpr
auto
filter(ComposedLayout<A,O,B> const& layout, Shape const& trg_profile)
{
return composition(layout.layout_a(), layout.offset(), filter(layout.layout_b(), trg_profile));
}
template <class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
coalesce(ComposedLayout<A,O,B> const& layout)
{
return composition(layout.layout_a(), layout.offset(), coalesce(layout.layout_b()));
}
template <class A, class O, class B, class Shape>
CUTE_HOST_DEVICE constexpr
auto
coalesce(ComposedLayout<A,O,B> const& layout, Shape const& trg_profile)
{
return composition(layout.layout_a(), layout.offset(), coalesce(layout.layout_b(), trg_profile));
}
//
// Upcast and Downcast
//
template <int N, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
upcast(ComposedLayout<A,O,B> const& layout)
{
return composition(upcast<N>(layout.layout_a()), upcast<N>(layout.offset()), upcast<N>(layout.layout_b()));
}
template <int N, class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
downcast(ComposedLayout<A,O,B> const& layout)
{
return composition(downcast<N>(layout.layout_a()), downcast<N>(layout.offset()), downcast<N>(layout.layout_b()));
}
template <class OldType, class NewType,
class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
recast_layout(ComposedLayout<A,O,B> const& layout)
{
using scale = decltype(trait_ratio(sizeof_bits<NewType>{}, sizeof_bits<OldType>{}));
if constexpr (scale::num == 1 && scale::den == 1) {
return layout;
}
else if constexpr (scale::num == 1) {
return downcast<scale::den>(layout);
}
else if constexpr (scale::den == 1) {
return upcast<scale::num>(layout);
}
else {
static_assert(dependent_false<scale>, "Recast not supported.");
}
CUTE_GCC_UNREACHABLE;
}
template <class A, class O, class B>
CUTE_HOST_DEVICE constexpr
auto
max_alignment(ComposedLayout<A,O,B> const& layout)
{
// Do not attempt for general ComposedLayouts
//return gcd(max_alignment(layout.layout_a()), max_alignment(layout.offset()), max_alignment(layout.layout_b()));
return Int<1>{};
}
//
// Display utilities
//
template <class A, class O, class B>
CUTE_HOST_DEVICE void print(ComposedLayout<A,O,B> const& layout)
{
print(layout.layout_a()); print(" o "); print(layout.offset()); print(" o "); print(layout.layout_b());
}
#if !defined(__CUDACC_RTC__)
template <class A, class O, class B>
CUTE_HOST std::ostream& operator<<(std::ostream& os, ComposedLayout<A,O,B> const& layout)
{
return os << layout.layout_a() << " o " << layout.offset() << " o " << layout.layout_b();
}
#endif
} // end namespace cute