forked from salesforce/Merlion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
normalize.py
212 lines (173 loc) · 7.28 KB
/
normalize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#
# Copyright (c) 2022 salesforce.com, inc.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
#
"""
Transforms that rescale the input or otherwise normalize it.
"""
from collections import OrderedDict
import logging
from typing import Iterable, Mapping
import numpy as np
import pandas as pd
import scipy.special
import scipy.stats
from sklearn.preprocessing import StandardScaler
from merlion.transform.base import InvertibleTransformBase, TransformBase
from merlion.utils import UnivariateTimeSeries, TimeSeries
logger = logging.getLogger(__name__)
class AbsVal(TransformBase):
"""
Takes the absolute value of the input time series.
"""
@property
def requires_inversion_state(self):
"""
``False`` because the "pseudo-inverse" is just the identity (i.e. we lose sign information).
"""
return False
@property
def identity_inversion(self):
return True
def train(self, time_series: TimeSeries):
pass
def __call__(self, time_series: TimeSeries) -> TimeSeries:
return TimeSeries(
OrderedDict(
(name, UnivariateTimeSeries(var.index, np.abs(var.np_values))) for name, var in time_series.items()
)
)
class Rescale(InvertibleTransformBase):
"""
Rescales the bias & scale of input vectors or scalars by pre-specified amounts.
"""
def __init__(self, bias=0.0, scale=1.0, normalize_bias=True, normalize_scale=True):
super().__init__()
self.bias = bias
self.scale = scale
self.normalize_bias = normalize_bias
self.normalize_scale = normalize_scale
@property
def requires_inversion_state(self):
"""
``False`` because rescaling operations are stateless to invert.
"""
return False
def train(self, time_series: TimeSeries):
pass
@property
def is_trained(self):
return self.bias is not None and self.scale is not None
def __call__(self, time_series: TimeSeries) -> TimeSeries:
if not self.is_trained:
raise RuntimeError(f"Cannot use {type(self).__name__} without training it first!")
bias = self.bias if isinstance(self.bias, Mapping) else {name: self.bias for name in time_series.names}
scale = self.scale if isinstance(self.scale, Mapping) else {name: self.scale for name in time_series.names}
assert set(time_series.names).issubset(bias.keys()) and set(time_series.names).issubset(scale.keys())
new_vars = OrderedDict()
for name, var in time_series.items():
if self.normalize_bias:
var = var - bias[name]
if self.normalize_scale:
var = var / scale[name]
new_vars[name] = UnivariateTimeSeries.from_pd(var)
ret = TimeSeries(new_vars, check_aligned=False)
ret._is_aligned = time_series._is_aligned
return ret
def _invert(self, time_series: TimeSeries) -> TimeSeries:
if not self.is_trained:
raise RuntimeError(f"Cannot use {type(self).__name__} without training it first!")
bias = self.bias if isinstance(self.bias, Mapping) else {name: self.bias for name in time_series.names}
scale = self.scale if isinstance(self.scale, Mapping) else {name: self.scale for name in time_series.names}
assert set(time_series.names).issubset(bias.keys()) and set(time_series.names).issubset(scale.keys())
new_vars = OrderedDict()
for name, var in time_series.items():
if self.normalize_scale:
var = var * scale[name]
if self.normalize_bias:
var = var + bias[name]
new_vars[name] = UnivariateTimeSeries.from_pd(var)
ret = TimeSeries(new_vars, check_aligned=False)
ret._is_aligned = time_series._is_aligned
return ret
class MeanVarNormalize(Rescale):
"""
A learnable transform that rescales the values of a time series to have
zero mean and unit variance.
"""
def __init__(self, bias=None, scale=None, normalize_bias=True, normalize_scale=True):
super().__init__(bias, scale, normalize_bias, normalize_scale)
def train(self, time_series: TimeSeries):
bias, scale = {}, {}
for name, var in time_series.items():
scaler = StandardScaler().fit(var.np_values.reshape(-1, 1))
bias[name] = float(scaler.mean_)
scale[name] = float(scaler.scale_)
self.bias = bias
self.scale = scale
class MinMaxNormalize(Rescale):
"""
A learnable transform that rescales the values of a time series to be
between zero and one.
"""
def __init__(self, bias=None, scale=None, normalize_bias=True, normalize_scale=True):
super().__init__(bias, scale, normalize_bias, normalize_scale)
def train(self, time_series: TimeSeries):
bias, scale = {}, {}
for name, var in time_series.items():
minval, maxval = var.min(), var.max()
bias[name] = minval
scale[name] = np.maximum(1e-8, maxval - minval)
self.bias = bias
self.scale = scale
class BoxCoxTransform(InvertibleTransformBase):
"""
Applies the Box-Cox power transform to the time series, with power lmbda.
When lmbda is None, we
When lmbda > 0, it is ((x + offset) ** lmbda - 1) / lmbda.
When lmbda == 0, it is ln(lmbda + offset).
"""
def __init__(self, lmbda=None, offset=0.0):
super().__init__()
if lmbda is not None:
if isinstance(lmbda, dict):
assert all(isinstance(x, (int, float)) for x in lmbda.values())
else:
assert isinstance(lmbda, (int, float))
self.lmbda = lmbda
self.offset = offset
@property
def requires_inversion_state(self):
"""
``False`` because the Box-Cox transform does is stateless to invert.
"""
return False
def train(self, time_series: TimeSeries):
if self.lmbda is None:
self.lmbda = {name: scipy.stats.boxcox(var.np_values + self.offset)[1] for name, var in time_series.items()}
logger.info(f"Chose Box-Cox lambda = {self.lmbda}")
elif not isinstance(self.lmbda, Mapping):
self.lmbda = {name: self.lmbda for name in time_series.names}
assert len(self.lmbda) == time_series.dim
def __call__(self, time_series: TimeSeries) -> TimeSeries:
new_vars = OrderedDict()
for name, var in time_series.items():
y = scipy.special.boxcox(var + self.offset, self.lmbda[name])
var = pd.Series(y, index=var.index, name=var.name)
new_vars[name] = UnivariateTimeSeries.from_pd(var)
return TimeSeries(new_vars)
def _invert(self, time_series: TimeSeries) -> TimeSeries:
new_vars = []
for name, var in time_series.items():
lmbda = self.lmbda[name]
if lmbda > 0:
var = (lmbda * var + 1) ** (1 / lmbda)
nanvals = var.isna()
if nanvals.any():
var[nanvals] = 0
else:
var = var.apply(np.exp)
new_vars.append(UnivariateTimeSeries.from_pd(var - self.offset))
return TimeSeries(new_vars)