forked from kaitanie/incl-physicsdays
-
Notifications
You must be signed in to change notification settings - Fork 0
/
poster.tex
482 lines (393 loc) · 16.3 KB
/
poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
\documentclass[20pt]{article}
\usepackage[latin1]{inputenc}
\usepackage{epsf}
\usepackage{graphicx,psfrag,color,pstcol,pst-grad}
\usepackage{pst-blur}
\usepackage{amsmath,amssymb}
\usepackage{latexsym}
\usepackage{calc}
\usepackage{multicol,xspace}
\usepackage{verbatim} % for comment
\graphicspath{{.}{inclposter-2007/}{images/}}
% defines the width and height of the poster, scaled down to a viewable size
%\def\width{12in} % this is 3'/3 = 36'' / 3 = 12''
%\def\height{17in} % this is 4'/3 = 48'' / 3 = 16''+ 3'/3 (for top and bottom inch)
%A1:
% size: 59.4cm wide x 84 cm high (A1)
% (23.5 inches x 33 inches)
%A2:
% size: 42 cm wide x 59.4 cm high (A2)
% (16.5 inches x 23.5 inches)
\def\width{42cm} % this is 3'/3 = 36'' / 3 = 12''
\def\height{59.4cm} % this is 4'/3 = 48'' / 3 = 16''+ 3'/3 (for top and bottom inch)
% Set paper format
\setlength{\paperwidth}{\width}
\setlength{\paperheight}{\height}
\special{papersize=\width,\height}
\pagestyle{empty}
% width of colored background
\newlength{\bgwidth}
%\setlength{\bgwidth}{12in}
\setlength{\bgwidth}{42cm}
% height of colored background
\newlength{\bgheight}
%\setlength{\bgheight}{16.3in}
\setlength{\bgheight}{58cm}
% Removing all margins and spacing
\setlength{\topmargin}{-0.5in}
%\setlength{\topmargin}{0.3in}
\setlength{\headheight}{0in}
\setlength{\headsep}{0in}
\setlength{\topskip}{0in}
\setlength{\footskip}{0in}
\setlength{\oddsidemargin}{-0.45in}
%\setlength{\parindent}{0em}
%\setlength{\parskip}{5cm}
%\setlength{\itemsep}{0.1cm}
%\setlength{\parsep}{0.1cm}
% Set textwidth to leave 1 inch on each side
\setlength{\textwidth}{\paperwidth}
\addtolength{\textwidth}{-1.0in}
\setlength{\textheight}{\paperheight}
\addtolength{\textheight}{-0.3in}
% The white box where the text is
\newsavebox{\dummybox}
\newenvironment{textbox}
{\begin{lrbox}{\dummybox}\begin{minipage}{0.9\columnwidth}}
{\end{minipage}\end{lrbox}\raisebox{-\depth}{\psshadowbox[framesep=1em,framearc=.1,shadow=true]{\usebox{\dummybox}}}\vspace{0.005\textheight}}
% Colors for the sections and subsections
%\definecolor{udsect}{rgb}{0 ,0 ,1}
%\definecolor{udsubsect}{rgb}{0, 0.5, 0}
\definecolor{udsect}{rgb}{0.0, 0.4, 0.27}
\definecolor{udsubsect}{rgb}{0.0, 0.4, 0.27}
\newcommand{\masyv}{\texttt{MASyV}\xspace}
\newcommand{\cimmsim}{\texttt{CImmSim}\xspace}
\newcommand{\maimmune}{\texttt{ma\_immune}\xspace}
\begin{document}
\huge
\begin{center}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Background %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\newrgbcolor{gradbegin}{1 0.82 0.16}
%\newrgbcolor{gradend}{0.0 0.4 0.27}
%\psframe[linestyle=none,fillstyle=solid,fillcolor=gradbegin](-0.5\bgwidth,1.6in)(0.5\bgwidth,-0.5\bgheight)
%\psframe[linestyle=none,fillstyle=gradient,gradbegin=gradbegin,gradend=gradend,gradmidpoint=1](-0.5\bgwidth,-0.35\bgheight)(0.5\bgwidth,-0.45\bgheight)
%\psframe[linecolor=gradend,fillstyle=solid,fillcolor=gradend](-0.5\bgwidth,-0.4489\bgheight)(0.5\bgwidth,-\bgheight)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Header %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\vspace{-2.0cm}
%\psbox[fillstyle=solid,linewidth=1pt,framearc=.5]{\makebox[0.98\textwidth]{
\parbox[c]{1.4cm}{\includegraphics[width=3.8cm]{images/hiplogo.eps}}
\hspace{0.6cm}
\parbox[c]{0.8\linewidth}{
\begin{center}
\textbf{\Huge INCL/ABLA INTRA-NUCLEAR CASCADE MODELS \\ IN {\sf GEANT4~9.2}} \\[0.5em]
\textbf{\LARGE Aatos Heikkinen$^{1}$, \underline{Pekka Kaitaniemi}$^{\dagger, 1, 2}$} \\[0.3em]
{\Large $^{\dagger}$ {\tt [email protected]}} \\
{\LARGE $^1$~Helsinki Institute of Physics, P.O.B. 64, FIN-00014 University of Helsinki, Finland}\\
{\LARGE $^2$~CEN-Saclay, CEA-IRFU/SPhN, 91 191 Gif sur Yvette, France}
\vskip2cm
\end{center}
}
\parbox[c]{5.3cm}{\hspace{-1.0cm} \includegraphics[width=5.6cm]{images/g4logo.eps}}
%}}
% Helsinki Institute of Physics, P.O.B. 64, FIN-00014 University of Helsinki, Finland
% email: [email protected]
\vspace{-2cm}
\begin{multicols}{3}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{textbox}
\section*{{\Huge {\sf ABSTRACT}}}
%% \begin{center}
%% \textsf{\Large\color{udsubsect}\underline{ABSTRACT}}
%% \end{center}
%We discuss the status of INCL intra-nuclear cascade and ABLA fission/de-excitation codes
%in the latest release of the detector simulation toolkit {\sf Geant4 9.2} \cite{pk09aCollaboration, pk08aProceedings}.
We have introduced INCL \cite{incl} model in {\sf Geant4 9.2} \cite{g4},
which is well established for targets heavier than Aluminium
and projectile energies from $\sim$ 150 MeV up to 2.5 GeV $\sim$ 3 GeV \cite{pk08bProceedings}.
\vspace{1cm}
{\color{udsect}
We present a new {\sf Geant4} physics list, based on INCL and ABLA models,
prepared for nuclear physics applications
in the domain dominated by spallation.
}
\vspace{1cm}
Validity of the new {\sf Geant4} physics list
is demonstrated from the perspective of accelerator driven systems
and EURISOL project.
%especially with the neutron double differential cross sections and residual nuclei production.
%An example application utilizing the physics list is introduced.
%Finally,
\end{textbox}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\hspace{-1cm} \includegraphics[scale=0.73]{images/cascade.eps}
\begin{comment}
\begin{textbox}
\section*{{\Huge {\sf INCL PARAMETERS}}}
%\section*{\textbf{\Large\color{udsubsect}\underline{INCL parameters}}}
{\color{udsect}
Li\`ege intra-nuclear cascade, {\sf INCL}, \cite{incl} requires \emph{only two free parameters}:
\begin{itemize}
\item potential depth, and
\item stopping time, $t_{stop}$, defined as the point in time when the cascade is
finished and evaporation starts:
\begin{equation}
t_{stop} = f_{stop}t_0 (A_{target}/208) ^{0.16}.
\end{equation}
\end{itemize}
Here $A_{target}$ is the target mass number, $t_0 = 70 fm/c$, and
$f_{stop}$ is a scaling factor for the stopping time \cite{g4incl}.
\vskip0.5cm
The number of parameters is kept low in order to have as much
\emph{predictive power} as possible.
}
% Good default value for this factor is $f_{stop}$ = 1.0
\end{textbox}
\end{comment}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{textbox}
%\section*{{\Huge {\sf INCL}}}
%INCL is an intra-nuclear cascade model developed at the university of
%Li\`ege and CEA/Saclay.
%\end{textbox}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{textbox}
%\section*{{\Huge {\sf ABLA MODEL FOR EVAPO\-RATI\-ON AND FISSION}}}
%\section*{\color{udsect} ABLA}
%ABLA is a fission and evaporation code that is developed at GSI, Darmstadt.
%\end{textbox}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{comment}
\begin{textbox}
\section*{{\Huge {\sf p(1.2 GeV) + Pb $\rightarrow$ n + X}}}
\vskip-1.5cm
\begin{figure}
\vskip3.5cm
{\Huge {\sf p(1.2 GeV) + Pb $\rightarrow$ n + X}}
\includegraphics[scale=0.70]{images/lead.eps}
\label{fig:pPbdd1200MeV}
\end{figure}
\vskip-0.3cm
% FIXME linespread
{\Large {\sf {\linespread{1.5} Double-differential for neutron production cross section
from {\sf Geant4} {\sf INCL} and {\sf ABLA} models. Neutron evaporation from {\sf ABLA} model is
shown below E $\simeq$ 20 MeV. Black and red histograms are the
results from the original {\sf FORTRAN} version and new {\sf C++} implementation, respectively. Blue data points are
from Ref.~\cite{data}.}}}
\end{textbox}
\end{comment}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{textbox}
\section*{{\Huge {\sf GEANT4 PHYSICS LISTS}}}
An unique feature of {\sf Geant4} is to
\emph{decouple physics models, cross sections, and processes}
using abstract interfaces, and manage the usage of different options with the physics lists.
\begin{itemize}
\item Users can run their simulation using different physics model
configuration and compare the results.
{\color{udsect}
\item Physics lists allow users to find good balance between various goals (e.g. CPU
time requirements vs. accuracy of results).
}
%\item Allow alternative implementations
\item Further, the {\sf Geant4} physics system can be easily extended.
%\item Each application must define explicitly what physics
%configuration to use
\end{itemize}
%\begin{comment}
%The options are: use a \emph{reference physics list} or build your own.
%\begin{itemize}
%\item Everything related to physics is a \emph{process}.
%\item Each particle has a pointer to its \emph{particle definition}.
%\item Particle definition has exactly one \emph{process manager}.
%\item Process manager keeps track of different processes assigned to the particle.
%\item Process has cross section and a model associated with it.
%\end{itemize}
%\end{comment}
\end{textbox}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\vspace{-5cm}
\begin{textbox}
\section*{{\Huge {\sf A NEW PHYSICS LIST}}}
{\color{udsect}
We have implemented a new physics list called {\sf QGSP\_\-INCL\-ABLA} with
spallation physics in mind.
}
\vspace{1cm}
This list uses INCL/ABLA models for proton,
neutron and pion inelastic interactions in the energy range 0 - 3
GeV. In this energy range INCL/ABLA is \emph{the only model used} for the
%aforementioned
these processes.
\end{textbox}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{textbox}
\vspace{4cm}
\section*{{\Huge {\sf FRAGMENT YIELD}}}
\vspace{-1cm}
%Fragments produced in reaction: p(1 GeV) + Pb
\begin{center}
\includegraphics[scale=0.70]{images/fragments.eps}
\vspace{2cm}
%Isotope production:
\includegraphics[scale=0.60]{images/pPbIsotopes.eps}
\end{center}
%\end{textbox}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{textbox}
\vspace{1cm}
\section*{{\Huge {\sf NEUTRON PRODUCTION}}}
\vspace{-1cm}
%Neutron production:
\begin{center}
%\includegraphics[scale=0.5]{images/zirkonium.eps}
%\includegraphics[scale=0.5]{images/iron.eps}
\includegraphics[scale=0.69]{images/aluminum.eps}
\end{center}
%\end{textbox}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\vspace{5cm}
\begin{center}
{\Huge {\sf 1 GeV PROTON ON CARBON TARGET}}
\vspace{1cm}
\includegraphics[scale=0.67,angle=90]{images/masses.eps}
\end{center}
\begin{textbox}
\section*{{\Huge {\sf LIGHT TARGETS}}}
{\color{udsect}
In order to choose between ABLA and Fermi break-up we have
introduced a selection rule in the code.
So, \emph{{\sf INCL} can now be used with the {\sf Geant4} Fermi break-up model}.
}
\vspace{1cm}
Currently, cascade remnant nuclei lighter than A $<$ 13 are handled using Fermi break-up.
\end{textbox}
\begin{textbox}
\section*{{\Huge {\sf CARBON PROJECTILES}}}
An ongoing work is to improve of the physics models for the treatment of
light ion beams up to Carbon.
\vspace{1cm}
{\color{udsect}
Carbon beams are of particular interest for medical applications of {\sf
Geant4}, and recently, a Carbon projectile support has been added to the {\sf INCL}
cascade.
%{\tt NOTE: CARBON FIGS PRODUCED USING BUGGY CODE. THEY WILL NOT BE
%PART OF THE POSTER}
%\begin{center}
%{\Huge {\sf C(400 MeV/nucleon) + Cu}}
%\includegraphics[scale=0.6,angle=0]{images/carbonCopper.eps}
%\end{center}
%\begin{center}
%{\Huge {\sf C(400 MeV/nucleon) + Cu}}
%\includegraphics[scale=0.6,angle=0]{images/carbonCopperLin.eps}
%\end{center}
}
%\vspace{-1cm}
\end{textbox}
\begin{comment}
\begin{textbox}
\section*{{\Huge {\sf ABLA EVAPORATION}}}
{\color{udsect}
The ablation code {\sf ABLA} \cite{abla} for evaporation and fission modeling is developed at GSI, Darmstadt.
\vskip0.5cm
The probabilities for emission of particle type $j$ = \{$p$, $n$, $\alpha$\}
are calculated using formula:
\begin{equation}
W_j(N,Z,E) = \frac{\Gamma_j(N,Z,E)}{\sum_k\Gamma_k(N,Z,E)},
\label{eqn:probabilities}
\end{equation}
where $N$ is neutron
number, $Z$ charge number and $E$ excitation energy.
\vskip0.5cm
The emission width, $\Gamma_j$, for particle $j$ is defined as:
\index{emission width}
\begin{equation}
\Gamma_j = \frac{1}{2 \pi \rho_c(E)} \frac{4 m_j R^2}{\hbar^2} T_j^2 \rho_j(E - S_j - B_j),
\label{eqn:emissionwidth}
\end{equation}
where:
\begin{itemize}
\item $\rho_c(E)$ and $\rho_j(E - S_j - B_j)$ are the level densities
of the compound nucleus and the exit channel, respectively.
\item $B_j$ the height of the Coulomb barrier,
\item $S_j$ the separation energy,
\item $R$ the radius,
\item $T_j$ the temperature of the remnant nucleus after
emission, and
\item $m_j$ the mass of the emitted particle.
\end{itemize}
}
\end{textbox}
\end{comment}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\section*{{\Huge {\sf }}}
%{\Huge {\sf p(0.8 GeV) + Pb $\rightarrow$ n + X}}
%\includegraphics[scale=0.45]{images/vladimir.eps}
%{\Large {\sf Comparison of various models in {\sf Geant4}. Li\`ege cascade together with ABLA (label ``LIEGE'') is compared against experimental data and other {\sf Geant4} models (BIC, BERT, RPG).
% {\sf INCL/ABLA} simulation is in good agreement with experimental data. (\emph{Courtesy of
% V. Ivantchenko, Geant4 collaboration}.)}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{textbox}
%\section*{{\Huge {\sf ACKNOWLEDGEMENTS}}}
%This work has been a collaborative effort with the original developers from
%Li\`ege University, GSI and CEA. We acknowledge the help from J.~Cugnon,
%A.~Boudard, Y.~Yariv, S.~Leray, C.~Schmidt and K.~H.~Schmidt
%on reimplementing the original {\sf FORTRAN} codes in {\sf C++} language.
%\end{textbox}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\vskip2cm
%\begin{textbox}
\addcontentsline{toc}{section}{References}
%\section*{{\Huge {\sf REFERENCES}}}
{\Large
%\bibliographystyle{abbrv}
%\bibliography{latex_poster}
%\bibliographystyle{unsrt}
\begin{thebibliography}{9}
\bibitem{incl} A. Boudard et al., \emph{Intranuclear cascade model for
a comprehensive description of spallation reaction data}, Phys.
Rev. C66 (2002) 044615
\bibitem{g4} \emph{Geant4 collaboration website} \\ {\tt http://\-cern.ch/\-geant4}
\bibitem{pk08bProceedings}
A. Heikkinen, P. Kaitaniemi, and A. Boudard,
{\em Implementation of INCL4 cascade and ABLA evaporation codes in Geant4},
Journal of Physics: Conference Series 119 (2008) 032024,
{\sf [doi:10.1088/1742-6596/119/3/032024]}
\bibitem{abla} J. Benlliure et al., \emph{Calculated nuclide
production yields in relativistic collisions of fissile nuclei},
Nuc. Phys. A628 (1998) 458
\bibitem{g4incl} \emph{Geant4 Physics Reference Manual: INCL~4.2 Cascade and ABLA~V3 Evaporation with Fission}
%\\ {\tt http://geant4.web.cern.ch/\-geant4/\-UserDocumentation/\-UsersGuides/\-PhysicsReferenceManual/\-html/\-node185.html}
\bibitem{data} X.Ledoux et al., \emph{Spallation Neutron Production by
0.8, 1.2, and 1.6 GeV Protons on Pb Targets} Phys. Rev. Lett. 82
(1999)
%\bibitem{pk09aCollaboration}
%P. Kaitaniemi and A. Heikkinen with Geant4 Collaboration
%{\tt http://www.geant4.org}{http://www.geant4.org}
%\bibitem{fp} P. Kaitaniemi, A. Heikkinen, \emph{Implementing INCL4
% hadronic cascade and ABLA de-excitation codes in Geant4},
% Proceedings of the 41th Annual Meeting of the Finnish Physical
% Society (2007)
%\bibitem{pk08aProceedings}
%P. Kaitaniemi and A. Heikkinen,
%{\em INCL4 cascade and ABLA evaporation codes in Geant4},
%Proceedings of the XLII annual conference of the Finnish Physical Society,
% March 27-29 2008, Turku, Finland.
% Report Series in Physics L 31, University of Turku, 2008.
%\bibitem{carbone}
%D.L. Olson et al.,
%{\em Factorization of fragment-production cross sections in relativistic heavy-ion collisions},
%Phys. Rev. C28, 1602 (1983)
%{\sf [doi:10.1103/PhysRevC.28.1602]}
\end{thebibliography}
%\end{textbox}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
\end{multicols}
\end{center}
\end{document}