-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
281 lines (215 loc) · 7.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# To add a new cell, type '# %%'
# To add a new markdown cell, type '# %% [markdown]'
# %%
import subprocess
import time
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from IPython import get_ipython
# %% [markdown]
# # Load pytorch library
# %%
import torch
import torchvision
import torchvision.transforms as transforms
# %% [markdown]
# # Define validation dataset ratio
# %%
valid_ratio = 0.3
# %% [markdown]
# # Define the MNIST training and validation sets, and possible transforms to be applied. Optional augmentation can be done within the transform.
# %%
transform = transforms.Compose(
[
# transforms.RandomRotation(degrees=30),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
train_valid_dataset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transform)
nb_train = int((1.0 - valid_ratio) * len(train_valid_dataset))
nb_valid = int(valid_ratio * len(train_valid_dataset))
train_dataset, valid_dataset = torch.utils.data.dataset.random_split(
train_valid_dataset, [nb_train, nb_valid])
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=500,
shuffle=True)
validloader = torch.utils.data.DataLoader(valid_dataset, batch_size=500,
shuffle=True)
classes = ('0', '1', '2', '3',
'4', '5', '6', '7', '8', '9')
# %% [markdown]
# # Visualize the MNIST dataset.
# %%
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images[:4, ]))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
# %% [markdown]
# # Construct the CNN.
# %%
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
"""
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(32 * 7 * 7, 512)
self.fc2 = nn.Linear(512, 128)
self.fc3 = nn.Linear(128, 10)
"""
self.conv1 = nn.Conv2d(1, 8, 3, 1, 1)
self.pool = nn.MaxPool2d(2, 2, 0)
self.conv2 = nn.Conv2d(8, 16, 3, 1, 1)
self.conv3 = nn.Conv2d(16, 16, 3, 1, 0)
self.fc1 = nn.Linear(16 * 5 * 5, 512)
self.fc2 = nn.Linear(512, 128)
self.fc3 = nn.Linear(128, 10)
def forward(self, x):
"""
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = F.relu(self.conv3(x))
x = x.view(-1, 32 * 7 * 7)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
"""
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = F.relu(self.conv3(x))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# %%
# %% [markdown]
# # Instantiate the CNN and print out the number of parameters.
# %%
# %%
net = Net()
print(sum([p.numel() for p in net.parameters()]))
# %% [markdown]
# # Define the loss function and the optimizer.
# %%
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# %% [markdown]
# # Select the device to train the CNN! "cuda:0" means the first GPU device.
# %%
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net.to(device)
# %% [markdown]
# # Mount your google drive to current virtual machine. And define the path to store the trained CNN parameters.
# %%
#from google.colab import drive
# drive.mount('/content/drive')
PATH = 'mnist_net.pth'
# %% [markdown]
# # Train the CNN and store the best model based on the validation loss.
# %%
start_time = time.time()
best_loss = np.float('inf')
for epoch in range(10): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
epoch_loss = running_loss / (i+1)
print("Epoch: ", epoch, " train loss: ", '%.3f' % epoch_loss)
with torch.no_grad():
running_loss = 0.0
for i, data in enumerate(validloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[1].to(device)
# forward
outputs = net(inputs)
loss = criterion(outputs, labels)
# print statistics
running_loss += loss.item()
epoch_loss = running_loss / (i+1)
print("Epoch: ", epoch, " validation loss: ", '%.3f' % epoch_loss)
if epoch_loss < best_loss:
torch.save(net.state_dict(), PATH)
best_loss = epoch_loss
time_elap = (time.time() - start_time) // 60
print('Finished Training in %d mins' % time_elap)
# %% [markdown]
# # Define the test dataset.
# %%
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
testset = torchvision.datasets.MNIST(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=1)
# %% [markdown]
# # Visualize the test dataset.
# %%
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
# %% [markdown]
# # Load the learned CNN parameters. This is required when you have trained the CNN and do no want to train it again by loading the learned parameters.
# %%
net.load_state_dict(torch.load(PATH))
# %% [markdown]
# # Get the predictions for the first 4 images in the test dataset.
# %%
with torch.no_grad():
outputs = net(images.to(device))
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
# %% [markdown]
# # Infer on the whole test dataset.
# %%
testloader = torch.utils.data.DataLoader(testset, batch_size=200,
shuffle=False, num_workers=1)
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images.to(device))
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels.to(device)).sum().item()
print('Accuracy of the network on the 10000 test images: %.3F %%' % (
100 * correct / total))
# %% [markdown]
# # check the GPU device assigned by Google.
# %%
get_ipython().system('ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi')
print(subprocess.getoutput('nvidia-smi'))