-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCBVR_Old.m
181 lines (161 loc) · 7.44 KB
/
CBVR_Old.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
clc;
% This script Contains code for classifying TV Channel and finding sport
% out of Cricket and Football.
% Below is the video filename on which this script will run.
filename = 'SonySix/sonySix2-005_2.mp4';
% If SVM model has not been generated, generate one with
% multiclassLogoTrainer.m script.
svmModelFileURI = 'LogoModelRealDataWithOriginal.mat';
% filename = 'TenSports/Demo.mp4';
%% Load SVM Model
load(svmModelFileURI, 'classificationMdlSVM', 'tvChannelClasses', 'expectedLogoCorners');
if (exist('classificationMdlSVM', 'var')~=1) || (exist('tvChannelClasses', 'var')~=1) || (exist('expectedLogoCorners', 'var')~=1)
disp('Status: SVM Classification Model not found.');
disp('Status: Exiting...');
return;
else
disp('Status: SVM Classification Model Loaded.');
featureVectorSize = length(classificationMdlSVM.PredictorNames);
end
%% Control Variables
showOutput = true;
sportRecognitionEnabled = true;
saveResults = true;
%% Result saving functionality
if saveResults
resultFolder = strcat(strrep(filename, '.', '_'), '_results');
resultFile = fullfile(resultFolder, 'Results.txt');
mkdir(resultFolder);
fileID = fopen(resultFile,'wt');
fclose(fileID);
end
%% CBVR Start
corners = getTimedframeCorners(filename); disp('Status: Timed Frame Corners Extracted.');
cornerHeight = size(corners,1);
cornerWidth = size(corners,2);
numFrames = size(corners, 4);
currentEdgeField = zeros(cornerHeight, cornerWidth, 4);
timeAveragedEdgeField = zeros(cornerHeight, cornerWidth, 4);
if showOutput
figure;
end
for i = 1 : numFrames
alpha = getAlpha(i);
for j = 1 : 4
currentEdgeField(:,:,j) = edge(rgb2gray(corners(:,:,:,i,j)),'canny');
timeAveragedEdgeField(:,:,j) = alpha*timeAveragedEdgeField(:,:,j) + (1-alpha)*currentEdgeField(:,:,j);
end
if showOutput
subplot(3,4,1), imshow(corners(:,:,:,i,1)), title(sprintf('Frame %d', i));
subplot(3,4,2), imshow(corners(:,:,:,i,2));
subplot(3,4,3), imshow(corners(:,:,:,i,3));
subplot(3,4,4), imshow(corners(:,:,:,i,4));
subplot(3,4,5), imshow(currentEdgeField(:,:,1));
subplot(3,4,6), imshow(currentEdgeField(:,:,2));
subplot(3,4,7), imshow(currentEdgeField(:,:,3));
subplot(3,4,8), imshow(currentEdgeField(:,:,4));
subplot(3,4,9), imshow(timeAveragedEdgeField(:,:,1));
subplot(3,4,10), imshow(timeAveragedEdgeField(:,:,2));
subplot(3,4,11), imshow(timeAveragedEdgeField(:,:,3));
subplot(3,4,12), imshow(timeAveragedEdgeField(:,:,4));
end
k = waitforbuttonpress;
end
disp('Status: Average Edge Fields calculated.');
trinarisationImage = zeros(cornerHeight, cornerWidth, 4);
binaryLogoMask = zeros(cornerHeight, cornerWidth, 4);
minIntesity = min(timeAveragedEdgeField(:));
maxIntesity = max(timeAveragedEdgeField(:));
if showOutput
figure;
end
for j = 1 : 4
[ trinarisationImage(:,:,j), binaryLogoMask(:,:,j) ] = hysteresis3d(timeAveragedEdgeField(:,:,j), 0.2, 0.7, minIntesity, maxIntesity);
if showOutput
subplot(2,4,j), imshow(trinarisationImage(:,:,j));
subplot(2,4,j+4), imshow(binaryLogoMask(:,:,j));
end
end
disp('Status: Prominent Edges Extracted.');
closedLogoMask = zeros(cornerHeight, cornerWidth, 4);
holeFilledLogoMask = zeros(cornerHeight, cornerWidth, 4);
openedLogoMask = zeros(cornerHeight, cornerWidth, 4);
disk5px = strel('disk',5);
if showOutput
h = figure('Name','Disk 5px Morphological Operarions','NumberTitle','off');
end
for j = 1 : 4
fprintf('Status: Processing Corner %d.\n', j);
% ocrResults = ocr(binaryLogoMask(:,:,j));
% recognizedText = ocrResults.Text;
% fprintf('Status: Text in Corner %d: %s.\n', j, recognizedText);
closedLogoMask(:,:,j) = imclose(binaryLogoMask(:,:,j), disk5px);
holeFilledLogoMask(:,:,j) = imfill(closedLogoMask(:,:,j),'holes');
openedLogoMask(:,:,j) = imopen(holeFilledLogoMask(:,:,j), disk5px);
if showOutput
figure(h);
subplot(3,4,j), imshow(closedLogoMask(:,:,j)), title('Closed Logo Mask');
subplot(3,4,j+4), imshow(holeFilledLogoMask(:,:,j)), title('Hole Filled Logo Mask');
subplot(3,4,j+8), imshow(openedLogoMask(:,:,j)), title('Opened Logo Mask');
end
CC = bwconncomp(openedLogoMask(:,:,j));
stats = regionprops(CC, 'BoundingBox', 'Area');
fprintf('Corner %d - Number of ConnComps = %d.\n', j, size(stats,1));
for k = 1 : size(stats,1)
fprintf('Status: Processing Corner %d - ConnComp %d.\n', j, k);
disp(stats(k));
if satisfyShapeConstraints(stats(k), j, cornerHeight, cornerWidth)
% logo has been detected
fprintf('Corner %d - ConnComp %d satisfies shape constraints.\n', j, k);
% classify the detected logo
gdFeatures = zeros(numFrames, featureVectorSize);
for m = 1 : numFrames
featureVector = getGridDescriptors(imcrop(corners(:,:,:,m,j), stats(k).BoundingBox));
gdFeatures(m,:) = featureVector(:);
end
labels = predict(classificationMdlSVM, gdFeatures);
mostOccuringLabel = mode(labels);
fprintf('Logo classified as: %s.\n', char(tvChannelClasses(mostOccuringLabel)));
% check if occurs in expected corner
if expectedLogoCorners(mostOccuringLabel) == j
% show the classified logo
if showOutput
figure('Name',sprintf('Corner %d - ConnComp %d classified as: %s', j, k, char(tvChannelClasses(mostOccuringLabel))),'NumberTitle','off');
imshow(imcrop(binaryLogoMask(:,:,j), stats(k).BoundingBox));
end
if saveResults
imwrite(imcrop(binaryLogoMask(:,:,j), stats(k).BoundingBox), fullfile(resultFolder, sprintf('Step7_Corner%d_%s.png', j, char(tvChannelClasses(mostOccuringLabel)))));
fileID = fopen(resultFile,'at');
fprintf(fileID, 'Detected Logo: %s, Corner: %d\n', char(tvChannelClasses(mostOccuringLabel)), j);
fclose(fileID);
end
else
disp('Logo does not occur in expected corner, so not considered.');
end
else
fprintf('Corner %d - ConnComp %d does not satisfy shape constraints.\n', j, k);
end
end
end
% Sport Recognition
if sportRecognitionEnabled
sportCategory = getSport(binaryLogoMask(:,:,:));
fprintf('\nStatus: Sport Category: %s\n', sportCategory);
end
fprintf('\n%d frames processed in all.\n', numFrames);
%% Save Results
if saveResults
for i = 1 : 4
imwrite(timeAveragedEdgeField(:,:,i), fullfile(resultFolder, sprintf('Step1_Corner%d_timeAveragedEdgeField.png', i)));
imwrite(trinarisationImage(:,:,i) , fullfile(resultFolder, sprintf('Step2_Corner%d_trinarisationImage.png', i)));
imwrite(binaryLogoMask(:,:,i) , fullfile(resultFolder, sprintf('Step3_Corner%d_binaryLogoMask.png', i)));
imwrite(closedLogoMask(:,:,i) , fullfile(resultFolder, sprintf('Step4_Corner%d_closedLogoMask.png', i)));
imwrite(holeFilledLogoMask(:,:,i) , fullfile(resultFolder, sprintf('Step5_Corner%d_holeFilledLogoMask.png', i)));
imwrite(openedLogoMask(:,:,i) , fullfile(resultFolder, sprintf('Step6_Corner%d_openedLogoMask.png', i)));
end
if sportRecognitionEnabled
fileID = fopen(resultFile,'at');
fprintf(fileID, 'SportCategory: %s\n', sportCategory);
fclose(fileID);
end
end