-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathTrain_deSpeckNet_DAG.m
51 lines (38 loc) · 1.76 KB
/
Train_deSpeckNet_DAG.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
%author: Adugna Mullissa
%Description: This script runs deSpeckNet training task on single polarization SAR intensity images.
% The input image and the label should be stored in the same folder as this script. The default names are
%Train2 and Test2. This script trains deSpeckNet without TV loss.
% This script is modified from https://github.com/cszn/DnCNN.
clc;
clear all
rng('default')
addpath('utilities');
addpath('../../matlab/matlab');
%-------------------------------------------------------------------------
% Configuration
%-------------------------------------------------------------------------
opts.modelName = 'deSspeckNet'; % model name
opts.learningRate = [logspace(-3,-3,25) logspace(-4,-4,25)];% learning rate
opts.batchSize = 128; %
opts.gpus = 1; %set to [] when using CPU
opts.numSubBatches = 2;
% solver
opts.solver = 'Adam'; % global
opts.derOutputs = {'objective',100, 'objective1',1} ; %Loss weights for Lclean and Lnoisy respectively
opts.backPropDepth = Inf;
%-------------------------------------------------------------------------
% Initialize model
%-------------------------------------------------------------------------
net = deSpeckNet_Init();
%-------------------------------------------------------------------------
% Train
%-------------------------------------------------------------------------
[net, info] = deSpecknet_train_dag(net, ...
'learningRate',opts.learningRate, ...
'derOutputs',opts.derOutputs, ...
'numSubBatches',opts.numSubBatches, ...
'backPropDepth',opts.backPropDepth, ...
'solver',opts.solver, ...
'batchSize', opts.batchSize, ...
'modelname', opts.modelName, ...
'gpus',opts.gpus) ;