-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_3.py
221 lines (167 loc) · 7.13 KB
/
ex_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import numpy as np
import pickle
class NeuralNetwork:
def __init__(self, train_x, train_y, hidden_layer_size, train_validation_ratio):
self.train_size = train_x.shape[0]
# shuffle samples
s = np.arange(self.train_size)
np.random.shuffle(s)
train_x = train_x[s]
train_y = train_y[s]
# Divides data
self.train_validation_ratio = train_validation_ratio
self.train_x = train_x[:int(self.train_size * self.train_validation_ratio), :]
self.validation_x = train_x[int(self.train_size * self.train_validation_ratio):, :]
self.train_y = train_y[:int(self.train_size * self.train_validation_ratio)]
self.validation_y = train_y[int(self.train_size * self.train_validation_ratio):]
self.w1 = np.random.uniform(-0.08, 0.08, (hidden_layer_size, 784))
self.b1 = np.random.uniform(-0.08, 0.08, (hidden_layer_size, 1))
self.w2 = np.random.uniform(-0.08, 0.08, (10, hidden_layer_size))
self.b2 = np.random.uniform(-0.08, 0.08, (10, 1))
self.params = {'w1': self.w1, 'b1': self.b1, 'w2': self.w2, 'b2': self.b2}
def train(self, num_of_epochs, learning_rate, should_print=True):
for epoch in range(num_of_epochs):
# Shuffles arrays
s = np.arange(self.train_x.shape[0])
np.random.shuffle(s)
self.train_x = self.train_x[s]
self.train_y = self.train_y[s]
loss_sum = 0
validation_loss = 0
validation_success = 0
# Trains model
for x, y in zip(self.train_x, self.train_y):
y = int(y)
# Normalizes vector
x = np.ndarray.astype(x, dtype=float)
x /= 255.0
x = np.expand_dims(x, axis=1)
# Forward propagation
back_params = {}
y_hat = self.forward_propagation(x, back_params)
h1, z1 = back_params['h1'], back_params['z1']
# Computes loss_sum
loss_sum -= np.log(y_hat[y])
# Backward propagation
backward_params = {'y_hat': y_hat, 'h1': h1, 'w2': self.params['w2'], 'z1': z1}
dw1, db1, dw2, db2 = self.backward_propagation(x, y, backward_params)
# update
derivatives = {'dw1': dw1, 'db1': db1, 'dw2': dw2, 'db2': db2}
self._update(derivatives, learning_rate)
# Validates
for x, y in zip(self.validation_x, self.validation_y):
y = int(y)
# Normalizes vector
x = np.ndarray.astype(x, dtype=float)
x /= 255.0
x = np.expand_dims(x, axis=1)
# Applies forward propagation
y_hat = self.forward_propagation(x)
# Computes success
if y == np.argmax(y_hat):
validation_success += 1
# Computes loss_sum
validation_loss -= np.log(y_hat[y])
avg_loss = loss_sum / (self.train_size * self.train_validation_ratio)
avg_validation_loss = validation_loss / (self.train_size * (1 - self.train_validation_ratio))
validation_accuracy = validation_success / (self.train_size * (1 - self.train_validation_ratio))
if should_print:
print('Epoch #' + str(epoch) + ', Validation accuracy: ' + str(
validation_accuracy) + ', Loss sum: ' + str(avg_loss[0]) + ', Validation loss sum: ' + str(
avg_validation_loss[0]))
def _update(self, derivatives, learning_rate):
w1, b1, w2, b2 = [self.params[key] for key in ('w1', 'b1', 'w2', 'b2')]
dw1, db1, dw2, db2 = [derivatives[key] for key in ('dw1', 'db1', 'dw2', 'db2')]
w2 -= learning_rate * dw2
b2 -= learning_rate * db2
w1 -= learning_rate * dw1
b1 -= learning_rate * db1
self.params = {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2}
def predict(self, sample):
sample = np.asmatrix(sample).T
return np.argmax(self.forward_propagation(sample))
def forward_propagation(self, sample, back_params=None):
# Follows procedure given in notes
if back_params is None:
back_params = {}
w1, b1, w2, b2 = [self.params[key] for key in ('w1', 'b1', 'w2', 'b2')]
activation_func = active['func']
z1 = np.dot(w1, sample) + b1
h1 = activation_func(z1)
z2 = np.dot(w2, h1) + b2
y_hat = softmax(z2)
back_params['z1'], back_params['h1'], back_params['z2'], back_params['h2'] = z1, h1, z2, y_hat
return y_hat
@staticmethod
def backward_propagation(x, y, params):
y_hat, h1, w2, z1 = [params[key] for key in ('y_hat', 'h1', 'w2', 'z1')]
active_derivative = active['derivative']
dz2 = y_hat
dz2[y] -= 1
dw2 = np.dot(dz2, h1.T)
db2 = dz2
dz1 = np.dot(y_hat.T, w2).T * active_derivative(z1)
dw1 = np.dot(dz1, x.T)
db1 = dz1
return dw1, db1, dw2, db2
def softmax(x):
e_z = np.exp(x - np.max(x))
return e_z / e_z.sum()
def leaky_relu(x):
for i in range(len(x)):
x[i] = max(0.01 * x[i], x[i])
return x
def d_leaky_relu(x):
for i in range(len(x)):
x[i] = max(0.01 * np.sign(x[i]), np.sign(x[i]))
return x
# activation functions
activation_funcs = {'leakyReLU': {'func': leaky_relu, 'derivative': d_leaky_relu}}
active = activation_funcs['leakyReLU']
def read_resources(train_x, train_y, test):
x, y, t = None, None, None
if os.path.exists(train_x + ".npy"):
x = np.load(train_x + ".npy")
else:
x = np.loadtxt(train_x)
np.save(train_x, x)
if os.path.exists(train_y + ".npy"):
y = np.load(train_y + ".npy")
else:
y = np.loadtxt(train_y)
np.save(train_y, y)
if os.path.exists(test + ".npy"):
t = np.load(test + ".npy")
else:
t = np.loadtxt(test)
np.save(test, t)
return x, y, t
if __name__ == '__main__':
file_path = "my_neural_network.pkl"
# Reads data
print("Reading resources...")
x, y, test = read_resources("train_x", "train_y", "test_x")
print("Reading done!")
nn = None
if os.path.exists(file_path):
print("Loading pre-trained neural network from \"" + file_path + "\"...")
with open(file_path, 'rb') as f:
nn = pickle.load(f)
print("Loading done!")
else:
print("Pre-trained neural network was not found. Creating a new network.")
nn = NeuralNetwork(x, y, 100, 0.8)
print("Training neural network...")
nn.train(10, 0.001)
print("Training done!")
print("Saving neural network to file \"" + file_path + "\" for later use...")
with open(file_path, 'wb') as f:
pickle.dump(nn, f)
print("Saving done!")
# Writes predictions of given tests
print("Predicting samples from tests file and writes predictions to output file...")
with open("test.pred", "w") as f:
for t in test:
f.write(str(nn.predict(t)) + '\n')
print("Testing done!")