-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPvalue.py
269 lines (201 loc) · 8.23 KB
/
Pvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import sys
import time
import numpy as np
import pandas as pd
# not compatible with pandas 1.1.0
# pip3 install --user -U pandas==1.0.5
# see https://github.com/limix/pandas-plink/issues/18
from pandas_plink import read_plink
import scipy
import scipy.stats
# Set the random seed
seedMax = 2**32 - 1
seed = int(time.time()*10000000) % seedMax
np.random.seed(seed)
# https://www.hackdeploy.com/fitting-probability-distributions-with-python/
class Distribution(object):
def __init__(self, dist_names_list=[]):
self.dist_names = ['gamma', 'norm', 'lognorm', 'expon']
self.dist_results = []
self.params = {}
self.DistributionName = ""
self.PValue = 0
self.Param = None
self.isFitted = False
def Fit(self, y):
self.dist_results = []
self.params = {}
for dist_name in self.dist_names:
dist = getattr(scipy.stats, dist_name)
param = dist.fit(y)
self.params[dist_name] = param
# Applying the Kolmogorov-Smirnov test
D, p = scipy.stats.kstest(y, dist_name, args=param)
self.dist_results.append((dist_name, p))
# select the best fitted distribution
sel_dist, p = (max(self.dist_results, key=lambda item: item[1]))
# store the name of the best fit and its p value
self.DistributionName = sel_dist
self.PValue = p
self.isFitted = True
return self.DistributionName, self.PValue
def Pvalue(self, obs):
if self.isFitted:
dist_name = self.DistributionName
param = self.params[dist_name]
# initiate the scipy distribution
dist = getattr(scipy.stats, dist_name)
return (1 - dist.cdf(obs, *param[:-2], loc=param[-2], scale=param[-1]))
else:
raise ValueError('Must first run the Fit method.')
# fit the best distribution and compute pvalue for the observation
def FitPval(self, y, obs, statName):
self.dist_results = []
self.params = {}
for dist_name in self.dist_names:
dist = getattr(scipy.stats, dist_name)
param = dist.fit(y)
self.params[dist_name] = param
# Applying the Kolmogorov-Smirnov test
D, p = scipy.stats.kstest(y, dist_name, args=param)
self.dist_results.append((dist_name, p))
# select the best fitted distribution
sel_dist, p = (max(self.dist_results, key=lambda item: item[1]))
# store the name of the best fit and its p value
self.DistributionName = sel_dist
self.PValue = p
self.isFitted = True
# calculate pvalue for the observation
dist_name = self.DistributionName
param = self.params[dist_name]
# initiate the scipy distribution
dist = getattr(scipy.stats, dist_name)
PValueObs = (
1 - dist.cdf(obs, *param[:-2], loc=param[-2], scale=param[-1]))
return {statName+'-dist': self.DistributionName, statName+'-distPval': self.PValue, statName+'-pval': PValueObs}
# Return: A genotype datafream generated from plink bfile (BDF: Bfile DataFrame)
def BDF(prefix):
(bim, fam, bed) = read_plink(prefix, verbose=True)
bdf = pd.DataFrame(bed.compute().astype('int8')).join(bim[['snp']]) .set_index(
'snp').append(fam.trait.astype('int8')).transpose().astype('category')
bdf['cnt'] = 1
return bdf
# Return the Contingency Table (CT) with sum (s) and row weight (w) given a number of SNPs and Bfile Data Frame
def CT(bdf, SNPs, pheno='trait'):
ct = bdf.groupby([pheno]+SNPs).count()[['cnt']]
ctrl = ct.loc[ct.index.get_level_values(pheno) == 1].droplevel(
level=0).rename(columns={"cnt": "ctrl"})
case = ct.loc[ct.index.get_level_values(pheno) == 2].droplevel(
level=0).rename(columns={"cnt": "case"})
ctx = ctrl.join(case)
ctx['s'] = ctx.sum(axis=1)
total = ctx['s'].sum()
ctx['w'] = ctx['s']/total
return ctx.fillna(0)
# Return Weighted Average Purity (WAP) given a contingency table
def WAP(ct):
return ((((ct.ctrl/ct.s)**2) + ((ct.case/ct.s)**2)) * ct.w).sum()
# Return Mximum Lower Order WAP (MLOWAP). Lower Order means to exclude 1 SNP from combination
def MLOWAP(ct, SNPs):
if len(SNPs)<2:
return WAP(pd.DataFrame(ct.sum()).transpose())
lowaps = list()
for i in range(0, len(SNPs)):
lo = SNPs.copy()
del lo[i]
ctx = ct.groupby(lo).sum()
lowaps.append(WAP(ctx))
return max(lowaps)
# return Alpha and Beta (BitEpi) given contingency table and list of SNPs
def AB(ct, SNPs):
wap = WAP(ct)
mlowap = MLOWAP(ct, SNPs)
return {'beta': wap, 'alpha': (wap - mlowap)}
# Compute Alpha and Beta statistics as well as corresponding pvalue for a given interactive SNPs
def PvalueCnt(bdf, SNPs, numRepeat):
ct = CT(bdf, SNPs)
ab = AB(ct, SNPs)
# rab for AB with random phenotype
rab = list()
for i in range(numRepeat):
bdf['RandomPheno'] = np.random.permutation(bdf['trait'])
ct = CT(bdf, SNPs, pheno='RandomPheno')
rab.append(AB(ct, SNPs))
ac = len([r for r in rab if r['alpha'] > ab['alpha']])
bc = len([r for r in rab if r['beta'] > ab['beta']])
pv = {'beta': bc/numRepeat, 'alpha': ac/numRepeat}
return (ab, pv)
def PvalueDist(bdf, SNPs, numRepeat):
ct = CT(bdf, SNPs)
ab = AB(ct, SNPs)
# rab for AB with random phenotype
rab = list()
for i in range(numRepeat):
if(i % 100 == 99):
print(">>> ", i, "permutation done")
bdf['RandomPheno'] = np.random.permutation(bdf['trait'])
ct = CT(bdf, SNPs, pheno='RandomPheno')
rab.append(AB(ct, SNPs))
dst = Distribution()
a = dst.FitPval(list(map(lambda r: r['alpha'], rab)), ab['alpha'], 'alpha')
b = dst.FitPval(list(map(lambda r: r['beta'], rab)), ab['beta'], 'beta')
for d in (a, b):
ab.update(d)
return ab
def Pvalue(bdf, SNPs, numRepeat):
return PvalueDist(bdf, SNPs, numRepeat)
# return PvalueCnt(bdf, SNPs, numRepeat)
# Compute pvalue for list of interaction (only consider top numInteraction in the file)
def EpiPvalue(bfilePrefix, epiFile, numInteraction, numRepeat):
# Read Plink bfile into pandas dataframe
bdf = BDF(bfilePrefix)
# Read BitEpi output into pandas dataframe
epiInt = pd.read_csv(epiFile)
# compute pvalue for the top interactions
result = list()
for i in range(numInteraction):
print("Interaction:", i)
row = epiInt.iloc[i]
SNPs = list(row[1:].values)
rd = {'firstCol': row[0], 'SNPs': "#".join(SNPs)}
pvalue = Pvalue(bdf, SNPs, numRepeat)
rd.update(pvalue)
result.append(rd)
return result
# Compute pvalue of random combination of SNPs
def RndPvalue(bfilePrefix, numSNPs, numInteraction, numRepeat):
# Read Plink bfile into pandas dataframe
bdf = BDF(bfilePrefix)
varId = bdf.columns.values[0:-2]
# compute pvalue for random interactions
result = list()
for i in range(numInteraction):
print("Interaction:", i)
np.random.shuffle(varId)
SNPs = list(varId[0:numSNPs])
rd = {'firstCol': 0, 'SNPs': "#".join(SNPs)}
pvalue = Pvalue(bdf, SNPs, numRepeat)
rd.update(pvalue)
result.append(rd)
return result
if __name__ == '__main__':
argc = len(sys.argv)
if(argc < 7):
print("Enter a command and path to the inptu file")
exit()
command = sys.argv[1]
bfilePrefix = sys.argv[2]
numInteraction = int(sys.argv[3])
numRepeat = int(sys.argv[4])
outputFile = sys.argv[5]
if(command == "rnd"):
order = int(sys.argv[6])
pvals = RndPvalue(bfilePrefix, order, numInteraction, numRepeat)
if(command == "epi"):
epiFile = sys.argv[6]
pvals = EpiPvalue(bfilePrefix, epiFile, numInteraction, numRepeat)
pd.DataFrame(pvals).to_csv(outputFile, sep='\t', index=None)
# pd.DataFrame(list(map(lambda x: {'firstCol': x['firstCol'], 'SNPs': x['SNPs'],
# 'beta': x['stat']['beta'], 'alpha': x['stat']['alpha'],
# 'pval-beta': x['pvalue']['beta'], 'pval-alpha': x['pvalue']['alpha'], },
# pvals))).to_csv(outputFile, sep='\t', index=None)