|
17 | 17 | from sklearn.utils import check_random_state
|
18 | 18 |
|
19 | 19 | from aeon.classification.base import BaseClassifier
|
20 |
| -from aeon.transformations.collection import TimeSeriesScaler |
| 20 | +from aeon.transformations.collection import Normalizer |
21 | 21 | from aeon.transformations.collection.dictionary_based import SAX, SFA
|
22 | 22 | from aeon.utils.validation._dependencies import _check_soft_dependencies
|
23 | 23 |
|
@@ -201,7 +201,7 @@ def _build_univariate_ensemble(self, X, y):
|
201 | 201 |
|
202 | 202 | from imblearn.over_sampling import SMOTE, RandomOverSampler
|
203 | 203 |
|
204 |
| - X = TimeSeriesScaler().fit_transform(X).squeeze() |
| 204 | + X = Normalizer().fit_transform(X).squeeze() |
205 | 205 |
|
206 | 206 | if self.variant in [1, 2, 3]:
|
207 | 207 | perc_length = self.perc_length / self._n_channels
|
@@ -411,7 +411,7 @@ def _predict_proba_unvivariate(self, X) -> np.ndarray:
|
411 | 411 | 2D np.ndarray of shape (n_cases, n_classes_)
|
412 | 412 | Predicted probabilities using the ordering in ``classes_``.
|
413 | 413 | """
|
414 |
| - X = TimeSeriesScaler().fit_transform(X).squeeze() |
| 414 | + X = Normalizer().fit_transform(X).squeeze() |
415 | 415 |
|
416 | 416 | pred_mat = np.zeros((X.shape[0], self.n_classes_))
|
417 | 417 |
|
@@ -455,7 +455,7 @@ def _predict_proba_dimension_ensemble(self, X) -> np.ndarray:
|
455 | 455 | 2D np.ndarray of shape (n_cases, n_classes_)
|
456 | 456 | Predicted probabilities using the ordering in ``classes_``.
|
457 | 457 | """
|
458 |
| - X = TimeSeriesScaler().fit_transform(X) |
| 458 | + X = Normalizer().fit_transform(X) |
459 | 459 |
|
460 | 460 | ensemble_pred_mats = None
|
461 | 461 |
|
|
0 commit comments