diff --git a/aeon/clustering/_r_cluster.py b/aeon/clustering/_r_cluster.py index 17199484db..dffcb34e39 100644 --- a/aeon/clustering/_r_cluster.py +++ b/aeon/clustering/_r_cluster.py @@ -19,13 +19,13 @@ class RCluster(BaseClusterer): ---------- num_kernels : int , default = 84 The number of convolutional kernels used to transform the input time series - These kernels are fixed and pre-defined (not random) and are optimized + These kernels are fixed and pre-defined (not random) and are optimized for computational speed and feature diversity max_dilations_per_kernel : int , default = 32 The maximum number of dilation rates applied to each kernel - Dilations control the spacing of the kernel's receptive field + Dilations control the spacing of the kernel's receptive field over the time series, capturing patterns at varying scales @@ -34,9 +34,9 @@ class RCluster(BaseClusterer): num_cluster : int , default = 8 The number of clusters used - + n_init : int , default = 10 - The number of times the clustering algorithm (e.g., KMeans) will run with + The number of times the clustering algorithm (e.g., KMeans) will run with different centroid seeds to avoid poor local optima @@ -88,9 +88,9 @@ def __fit_biases(X, dilations, num_features_per_dilation, quantiles): # equivalent to: # >>> from itertools import combinations - # >>> indices = np.array([_ for _ in combinations(np.arange(9), 3)], - #dtype = np.int32) - #MODIFICATION + # >>> indices = np.array([_ for _ in combinations(np.arange(9), 3)], + # dtype = np.int32) + # MODIFICATION indices = np.array( ( 1, @@ -471,7 +471,7 @@ def __transform(self, X, parameters): # equivalent to: # >>> from itertools import combinations # >>> indices = np.array([_ for _ in combinations(np.arange(9), 3)] - #, dtype = np.int32) + # , dtype = np.int32) indices = np.array( ( 1,