diff --git a/aeon/similarity_search/__init__.py b/aeon/similarity_search/__init__.py index f576c41f03..26b79c7da2 100644 --- a/aeon/similarity_search/__init__.py +++ b/aeon/similarity_search/__init__.py @@ -1,7 +1,5 @@ """Similarity search module.""" -__all__ = ["BaseSimilaritySearch", "QuerySearch", "SeriesSearch"] +__all__ = ["BaseSimilaritySearch"] -from aeon.similarity_search.base import BaseSimilaritySearch -from aeon.similarity_search.query_search import QuerySearch -from aeon.similarity_search.series_search import SeriesSearch +from aeon.similarity_search._base import BaseSimilaritySearch diff --git a/aeon/similarity_search/_base.py b/aeon/similarity_search/_base.py new file mode 100644 index 0000000000..07140c7495 --- /dev/null +++ b/aeon/similarity_search/_base.py @@ -0,0 +1,73 @@ +"""Base class for similarity search.""" + +__maintainer__ = ["baraline"] +__all__ = [ + "BaseSimilaritySearch", +] + + +from abc import abstractmethod +from typing import Union + +import numpy as np +from numba.typed import List + +from aeon.base import BaseAeonEstimator + + +class BaseSimilaritySearch(BaseAeonEstimator): + """Base class for similarity search applications.""" + + _tags = { + "requires_y": False, + "fit_is_empty": False, + } + + @abstractmethod + def __init__(self): + super().__init__() + + @abstractmethod + def fit( + self, + X: Union[np.ndarray, List], + y=None, + ): + """ + Fit estimator to X. + + State change: + Changes state to "fitted". + + Writes to self: + _is_fitted : flag is set to True. + + Parameters + ---------- + X : Series or Collection, any supported type + Data to fit transform to, of python type as follows: + Series: 2D np.ndarray shape (n_channels, n_timepoints) + Collection: 3D np.ndarray shape (n_cases, n_channels, n_timepoints) + or list of 2D np.ndarray, case i has shape (n_channels, n_timepoints_i) + y: ignored, exists for API consistency reasons. + + Returns + ------- + self : a fitted instance of the estimator + """ + ... + + @abstractmethod + def predict( + self, + X: Union[np.ndarray, None] = None, + ): + """ + Predict method. + + Parameters + ---------- + X : 2D np.array of shape ``(n_cases, n_timepoints)`` + Optional data to use for predict. + """ + ... diff --git a/aeon/similarity_search/_commons.py b/aeon/similarity_search/_commons.py deleted file mode 100644 index 1d20a6a5b0..0000000000 --- a/aeon/similarity_search/_commons.py +++ /dev/null @@ -1,504 +0,0 @@ -"""Helper and common function for similarity search estimators and functions.""" - -__maintainer__ = ["baraline"] - -import warnings - -import numpy as np -from numba import njit, prange -from numba.typed import List -from scipy.signal import convolve - -from aeon.utils.numba.general import ( - get_all_subsequences, - normalise_subsequences, - sliding_mean_std_one_series, - z_normalise_series_2d, -) - - -@njit(cache=True, fastmath=True) -def _compute_dist_profile(X_subs, q): - """ - Compute the distance profile between subsequences and a query. - - Parameters - ---------- - X_subs : array, shape=(n_samples, n_channels, query_length) - Input subsequences extracted from a time series. - q : array, shape=(n_channels, query_length) - Query used for the distance computation - - Returns - ------- - dist_profile : np.ndarray, 1D array of shape (n_samples) - The distance between the query all subsequences. - - """ - n_candidates, n_channels, q_length = X_subs.shape - dist_profile = np.zeros(n_candidates) - for i in range(n_candidates): - for j in range(n_channels): - for k in range(q_length): - dist_profile[i] += (X_subs[i, j, k] - q[j, k]) ** 2 - return dist_profile - - -@njit(cache=True, fastmath=True) -def naive_squared_distance_profile( - X, - q, - mask, - normalise=False, - X_means=None, - X_stds=None, -): - """ - Compute a squared euclidean distance profile. - - Parameters - ---------- - X : array, shape=(n_samples, n_channels, n_timepoints) - Input time series dataset to search in. - q : array, shape=(n_channels, query_length) - Query used during the search. - mask : array, shape=(n_samples, n_timepoints - query_length + 1) - Boolean mask indicating candidates for which the distance - profiles computed for each query should be set to infinity. - normalise : bool - Wheter to use a z-normalised distance. - X_means : array, shape=(n_samples, n_channels, n_timepoints - query_length + 1) - Mean of each candidate (subsequence) of length query_length in X. The - default is None, meaning that these values will be computed if normalise - is True. If provided, the computations will be skipped. - X_stds : array, shape=(n_samples, n_channels, n_timepoints - query_length + 1) - Standard deviation of each candidate (subsequence) of length query_length - in X. The default is None, meaning that these values will be computed if - normalise is True. If provided, the computations will be skipped. - - Returns - ------- - out : np.ndarray, 1D array of shape (n_samples, n_timepoints_t - query_length + 1) - The distance between the query and all candidates in X. - - """ - query_length = q.shape[1] - dist_profiles = List() - # Init distance profile array with unequal length support - for i in range(len(X)): - dist_profiles.append(np.zeros(X[i].shape[1] - query_length + 1)) - if normalise: - q = z_normalise_series_2d(q) - else: - q = q.astype(np.float64) - for i in range(len(X)): - # Numba don't support strides with integers ? - - X_subs = get_all_subsequences(X[i].astype(np.float64), query_length, 1) - if normalise: - if X_means is None and X_stds is None: - _X_means, _X_stds = sliding_mean_std_one_series(X[i], query_length, 1) - else: - _X_means, _X_stds = X_means[i], X_stds[i] - X_subs = normalise_subsequences(X_subs, _X_means, _X_stds) - dist_profile = _compute_dist_profile(X_subs, q) - dist_profile[~mask[i]] = np.inf - dist_profiles[i] = dist_profile - return dist_profiles - - -@njit(cache=True, fastmath=True) -def naive_squared_matrix_profile(X, T, query_length, mask, normalise=False): - """ - Compute a squared euclidean matrix profile. - - Parameters - ---------- - X : array, shape=(n_samples, n_channels, n_timepoints_x) - Input time series dataset to search in. - T : array, shape=(n_channels, n_timepoints_t) - Time series from which queries are extracted. - query_length : int - Length of the queries to extract from T. - mask : array, shape=(n_samples, n_timepoints_x - query_length + 1) - Boolean mask indicating candidates for which the distance - profiles computed for each query should be set to infinity. - normalise : bool - Wheter to use a z-normalised distance. - - Returns - ------- - out : np.ndarray, 1D array of shape (n_timepoints_t - query_length + 1) - The minimum distance between each query in T and all candidates in X. - """ - X_subs = List() - for i in range(len(X)): - i_subs = get_all_subsequences(X[i].astype(np.float64), query_length, 1) - if normalise: - X_means, X_stds = sliding_mean_std_one_series(X[i], query_length, 1) - i_subs = normalise_subsequences(i_subs, X_means, X_stds) - X_subs.append(i_subs) - - n_candidates = T.shape[1] - query_length + 1 - mp = np.full(n_candidates, np.inf) - - for i in range(n_candidates): - q = T[:, i : i + query_length] - if normalise: - q = z_normalise_series_2d(q) - for id_sample in range(len(X)): - dist_profile = _compute_dist_profile(X_subs[id_sample], q) - dist_profile[~mask[id_sample]] = np.inf - mp[i] = min(mp[i], dist_profile.min()) - return mp - - -def fft_sliding_dot_product(X, q): - """ - Use FFT convolution to calculate the sliding window dot product. - - This function applies the Fast Fourier Transform (FFT) to efficiently compute - the sliding dot product between the input time series `X` and the query `q`. - The dot product is computed for each channel individually. The sliding window - approach ensures that the dot product is calculated for every possible subsequence - of `X` that matches the length of `q` - - Parameters - ---------- - X : array, shape=(n_channels, n_timepoints) - Input time series - q : array, shape=(n_channels, query_length) - Input query - - Returns - ------- - out : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) - Sliding dot product between q and X. - """ - n_channels, n_timepoints = X.shape - query_length = q.shape[1] - out = np.zeros((n_channels, n_timepoints - query_length + 1)) - for i in range(n_channels): - out[i, :] = convolve(np.flipud(q[i, :]), X[i, :], mode="valid").real - return out - - -def get_ith_products(X, T, L, ith): - """ - Compute dot products between X and the i-th subsequence of size L in T. - - Parameters - ---------- - X : array, shape = (n_channels, n_timepoints_X) - Input data. - T : array, shape = (n_channels, n_timepoints_T) - Data containing the query. - L : int - Overall query length. - ith : int - Query starting index in T. - - Returns - ------- - np.ndarray, 2D array of shape (n_channels, n_timepoints_X - L + 1) - Sliding dot product between the i-th subsequence of size L in T and X. - - """ - return fft_sliding_dot_product(X, T[:, ith : ith + L]) - - -@njit(cache=True) -def numba_roll_1D_no_warparound(array, shift, warparound_value): - """ - Roll the rows of an array. - - Wheter to allow values at the end of the array to appear at the start after - being rolled out of the array length. - - Parameters - ---------- - array : np.ndarray of shape (n_columns) - Array to roll. - shift : int - The amount of indexes the values will be rolled on each row of the array. - Must be inferior or equal to n_columns. - warparound_value : any type - A value of the type of array to insert instead of the value that got rolled - over the array length - - Returns - ------- - rolled_array : np.ndarray of shape (n_rows, n_columns) - The rolled array. Can also be a TypedList in the case where n_columns changes - between rows. - - """ - length = array.shape[0] - _a1 = array[: length - shift] - array[shift:] = _a1 - array[:shift] = warparound_value - return array - - -@njit(cache=True) -def numba_roll_2D_no_warparound(array, shift, warparound_value): - """ - Roll the rows of an array. - - Wheter to allow values at the end of the array to appear at the start after - being rolled out of the array length. - - Parameters - ---------- - array : np.ndarray of shape (n_rows, n_columns) - Array to roll. Can also be a TypedList in the case where n_columns changes - between rows. - shift : int - The amount of indexes the values will be rolled on each row of the array. - Must be inferior or equal to n_columns. - warparound_value : any type - A value of the type of array to insert instead of the value that got rolled - over the array length - - Returns - ------- - rolled_array : np.ndarray of shape (n_rows, n_columns) - The rolled array. Can also be a TypedList in the case where n_columns changes - between rows. - - """ - for i in prange(len(array)): - length = len(array[i]) - _a1 = array[i][: length - shift] - array[i][shift:] = _a1 - array[i][:shift] = warparound_value - return array - - -@njit(cache=True) -def extract_top_k_and_threshold_from_distance_profiles_one_series( - distance_profiles, - id_x, - k=1, - threshold=np.inf, - exclusion_size=None, - inverse_distance=False, -): - """ - Extract the top-k smallest values from distance profiles and apply threshold. - - This function processes a distance profile and extracts the top-k smallest - distance values, optionally applying a threshold to exclude distances above - a given value. It also optionally handles exclusion zones to avoid selecting - neighboring timestamps. - - Parameters - ---------- - distance_profiles : np.ndarray, 2D array of shape (n_cases, n_candidates) - Precomputed distance profile. Can be a TypedList if n_candidates vary between - cases. - id_x : int - Identifier of the series or subsequence from which the distance profile - is computed. - k : int - Number of matches to returns - threshold : float - All matches below this threshold will be returned - exclusion_size : int or None, optional, default=None - Size of the exclusion zone around the current subsequence. This prevents - selecting neighboring subsequences within the specified range, useful for - avoiding trivial matches in time series data. If set to `None`, no - exclusion zone is applied. - inverse_distance : bool, optional - Wheter to return the worst matches instead of the bests. The default is False. - - Returns - ------- - top_k_dist : np.ndarray - Array of the top-k smallest distance values, potentially excluding values above - the threshold or those within the exclusion zone. - top_k : np.ndarray - Array of shape (k, 2) where each row contains the `id_x` identifier and the - index of the corresponding subsequence (or timestamp) with the top-k smallest - distances. - """ - if inverse_distance: - # To avoid div by 0 case - distance_profiles += 1e-8 - distance_profiles[distance_profiles != np.inf] = ( - 1 / distance_profiles[distance_profiles != np.inf] - ) - - if threshold != np.inf: - distance_profiles[distance_profiles > threshold] = np.inf - - _argsort = np.argsort(distance_profiles) - - if distance_profiles[distance_profiles <= threshold].shape[0] < k: - _k = distance_profiles[distance_profiles <= threshold].shape[0] - elif _argsort.shape[0] < k: - _k = _argsort.shape[0] - else: - _k = k - - if exclusion_size is None: - indexes = np.zeros((_k, 2), dtype=np.int_) - for i in range(_k): - indexes[i, 0] = id_x - indexes[i, 1] = _argsort[i] - return distance_profiles[_argsort[:_k]], indexes - else: - # Apply exclusion zone to avoid neighboring matches - top_k = np.zeros((_k, 2), dtype=np.int_) - exclusion_size - top_k_dist = np.zeros((_k), dtype=np.float64) - - top_k[0, 0] = id_x - top_k[0, 1] = _argsort[0] - - top_k_dist[0] = distance_profiles[_argsort[0]] - - n_inserted = 1 - i_current = 1 - - while n_inserted < _k and i_current < _argsort.shape[0]: - candidate_timestamp = _argsort[i_current] - - insert = True - LB = candidate_timestamp >= (top_k[:, 1] - exclusion_size) - UB = candidate_timestamp <= (top_k[:, 1] + exclusion_size) - if np.any(UB & LB): - insert = False - - if insert: - top_k[n_inserted, 0] = id_x - top_k[n_inserted, 1] = _argsort[i_current] - top_k_dist[n_inserted] = distance_profiles[_argsort[i_current]] - n_inserted += 1 - i_current += 1 - return top_k_dist[:n_inserted], top_k[:n_inserted] - - -def extract_top_k_and_threshold_from_distance_profiles( - distance_profiles, - k=1, - threshold=np.inf, - exclusion_size=None, - inverse_distance=False, -): - """ - Extract the best matches from a distance profile given k and threshold parameters. - - Parameters - ---------- - distance_profiles : np.ndarray, 2D array of shape (n_cases, n_candidates) - Precomputed distance profile. Can be a TypedList if n_candidates vary between - cases. - k : int - Number of matches to returns - threshold : float - All matches below this threshold will be returned - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestamp - exclusion_size` and - :math:`id_timestamp + exclusion_size` which cannot be returned - as best match if :math:`id_timestamp` was already selected. By default, - the value None means that this is not used. - inverse_distance : bool, optional - Wheter to return the worst matches instead of the bests. The default is False. - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(n_matches)``, contains the distance between - the query and its best matches in X_. The second array, of shape - ``(n_matches, 2)``, contains the indexes of these matches as - ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - # This whole function could be optimized and maybe made in numba to avoid stepping - # out of numba mode during distance computations - - n_cases_ = len(distance_profiles) - - id_timestamps = np.concatenate( - [np.arange(distance_profiles[i].shape[0]) for i in range(n_cases_)] - ) - id_samples = np.concatenate( - [[i] * distance_profiles[i].shape[0] for i in range(n_cases_)] - ) - - distance_profiles = np.concatenate(distance_profiles) - - if inverse_distance: - # To avoid div by 0 case - distance_profiles += 1e-8 - distance_profiles[distance_profiles != np.inf] = ( - 1 / distance_profiles[distance_profiles != np.inf] - ) - - if threshold != np.inf: - distance_profiles[distance_profiles > threshold] = np.inf - - _argsort_1d = np.argsort(distance_profiles) - _argsort = np.asarray( - [ - [id_samples[_argsort_1d[i]], id_timestamps[_argsort_1d[i]]] - for i in range(len(_argsort_1d)) - ], - dtype=int, - ) - - if distance_profiles[distance_profiles <= threshold].shape[0] < k: - _k = distance_profiles[distance_profiles <= threshold].shape[0] - warnings.warn( - f"Only {_k} matches are bellow the threshold of {threshold}, while" - f" k={k}. The number of returned match will be {_k}.", - stacklevel=2, - ) - elif _argsort.shape[0] < k: - _k = _argsort.shape[0] - warnings.warn( - f"The number of possible match is {_argsort.shape[0]}, but got" - f" k={k}. The number of returned match will be {_k}.", - stacklevel=2, - ) - else: - _k = k - - if exclusion_size is None: - return distance_profiles[_argsort_1d[:_k]], _argsort[:_k] - else: - # Apply exclusion zone to avoid neighboring matches - top_k = np.zeros((_k, 2), dtype=int) - top_k_dist = np.zeros((_k), dtype=float) - - top_k[0] = _argsort[0, :] - top_k_dist[0] = distance_profiles[_argsort_1d[0]] - - n_inserted = 1 - i_current = 1 - - while n_inserted < _k and i_current < _argsort.shape[0]: - candidate_sample, candidate_timestamp = _argsort[i_current] - - insert = True - is_from_same_sample = top_k[:, 0] == candidate_sample - if np.any(is_from_same_sample): - LB = candidate_timestamp >= ( - top_k[is_from_same_sample, 1] - exclusion_size - ) - UB = candidate_timestamp <= ( - top_k[is_from_same_sample, 1] + exclusion_size - ) - if np.any(UB & LB): - insert = False - - if insert: - top_k[n_inserted] = _argsort[i_current] - top_k_dist[n_inserted] = distance_profiles[_argsort_1d[i_current]] - n_inserted += 1 - i_current += 1 - return top_k_dist[:n_inserted], top_k[:n_inserted] diff --git a/aeon/similarity_search/base.py b/aeon/similarity_search/base.py deleted file mode 100644 index 5b0ce8c555..0000000000 --- a/aeon/similarity_search/base.py +++ /dev/null @@ -1,232 +0,0 @@ -"""Base class for similarity search.""" - -__maintainer__ = ["baraline"] - -from abc import abstractmethod -from collections.abc import Iterable -from typing import Optional, final - -import numpy as np -from numba import get_num_threads, set_num_threads -from numba.typed import List - -from aeon.base import BaseCollectionEstimator -from aeon.utils.numba.general import sliding_mean_std_one_series - - -class BaseSimilaritySearch(BaseCollectionEstimator): - """ - Base class for similarity search applications. - - Parameters - ---------- - distance : str, default="euclidean" - Name of the distance function to use. A list of valid strings can be found in - the documentation for :func:`aeon.distances.get_distance_function`. - If a callable is passed it must either be a python function or numba function - with nopython=True, that takes two 1d numpy arrays as input and returns a float. - distance_args : dict, default=None - Optional keyword arguments for the distance function. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - normalise : bool, default=False - Whether the distance function should be z-normalised. - speed_up : str, default='fastest' - Which speed up technique to use with for the selected distance - function. By default, the fastest algorithm is used. A list of available - algorithm for each distance can be obtained by calling the - `get_speedup_function_names` function of the child classes. - n_jobs : int, default=1 - Number of parallel jobs to use. - - Attributes - ---------- - X_ : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input time series stored during the fit method. - - Notes - ----- - For now, the multivariate case is only treated as independent. - Distances are computed for each channel independently and then - summed together. - """ - - _tags = { - "capability:multivariate": True, - "capability:unequal_length": True, - "capability:multithreading": True, - "fit_is_empty": False, - "X_inner_type": ["np-list", "numpy3D"], - } - - @abstractmethod - def __init__( - self, - distance: str = "euclidean", - distance_args: Optional[dict] = None, - inverse_distance: bool = False, - normalise: bool = False, - speed_up: str = "fastest", - n_jobs: int = 1, - ): - self.distance = distance - self.distance_args = distance_args - self.inverse_distance = inverse_distance - self.normalise = normalise - self.n_jobs = n_jobs - self.speed_up = speed_up - super().__init__() - - @final - def fit(self, X: np.ndarray, y=None): - """ - Fit method: data preprocessing and storage. - - Parameters - ---------- - X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - Input array to be used as database for the similarity search - y : optional - Not used. - - Raises - ------ - TypeError - If the input X array is not 3D raise an error. - - Returns - ------- - self - """ - prev_threads = get_num_threads() - X = self._preprocess_collection(X) - # Store minimum number of n_timepoints for unequal length collections - self.min_timepoints_ = min([X[i].shape[-1] for i in range(len(X))]) - self.n_channels_ = X[0].shape[0] - self.n_cases_ = len(X) - if self.metadata_["unequal_length"]: - X = List(X) - set_num_threads(self._n_jobs) - self._fit(X, y) - set_num_threads(prev_threads) - self.is_fitted = True - return self - - def _store_mean_std_from_inputs(self, query_length: int) -> None: - """ - Store the mean and std of each subsequence of size query_length in X_. - - Parameters - ---------- - query_length : int - Length of the query. - - Returns - ------- - None - - """ - means = [] - stds = [] - - for i in range(len(self.X_)): - _mean, _std = sliding_mean_std_one_series(self.X_[i], query_length, 1) - - stds.append(_std) - means.append(_mean) - - self.X_means_ = List(means) - self.X_stds_ = List(stds) - - def _init_X_index_mask( - self, - X_index: Optional[Iterable[int]], - query_length: int, - exclusion_factor: Optional[float] = 2.0, - ) -> np.ndarray: - """ - Initiliaze the mask indicating the candidates to be evaluated in the search. - - Parameters - ---------- - X_index : Iterable - Any Iterable (tuple, list, array) of length two used to specify the index of - the query X if it was extracted from the input data X given during the fit - method. Given the tuple (id_sample, id_timestamp), the similarity search - will define an exclusion zone around the X_index in order to avoid matching - X with itself. If None, it is considered that the query is not extracted - from X_ (the training data). - query_length : int - Length of the queries. - exclusion_factor : float, optional - The exclusion factor is used to prevent candidates close or equal to the - query sample point to be returned as best matches. It is used to define a - region between :math:`id_timestamp - query_length//exclusion_factor` and - :math:`id_timestamp + query_length//exclusion_factor` which cannot be used - in the search. The default is 2.0. - - Raises - ------ - ValueError - If the length of the q_index iterable is not two, will raise a ValueError. - TypeError - If q_index is not an iterable, will raise a TypeError. - - Returns - ------- - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean array which indicates the candidates that should be evaluated in the - similarity search. - - """ - if self.metadata_["unequal_length"]: - mask = List( - [ - np.ones(self.X_[i].shape[1] - query_length + 1, dtype=bool) - for i in range(self.n_cases_) - ] - ) - else: - mask = np.ones( - (self.n_cases_, self.min_timepoints_ - query_length + 1), - dtype=bool, - ) - if X_index is not None: - if isinstance(X_index, Iterable): - if len(X_index) != 2: - raise ValueError( - "The X_index should contain an interable of size 2 such as " - "(id_sample, id_timestamp), but got an iterable of " - "size {}".format(len(X_index)) - ) - else: - raise TypeError( - "If not None, the X_index parameter should be an iterable, here " - "X_index is of type {}".format(type(X_index)) - ) - - if exclusion_factor <= 0: - raise ValueError( - "The value of exclusion_factor should be superior to 0, but got " - "{}".format(len(exclusion_factor)) - ) - - i_instance, i_timestamp = X_index - profile_length = self.X_[i_instance].shape[1] - query_length + 1 - exclusion_LB = max(0, int(i_timestamp - query_length // exclusion_factor)) - exclusion_UB = min( - profile_length, - int(i_timestamp + query_length // exclusion_factor), - ) - mask[i_instance][exclusion_LB:exclusion_UB] = False - - return mask - - @abstractmethod - def _fit(self, X, y=None): ... - - @abstractmethod - def get_speedup_function_names(self): - """Return a dictionnary containing the name of the speedup functions.""" - ... diff --git a/aeon/similarity_search/collection/__init__.py b/aeon/similarity_search/collection/__init__.py new file mode 100644 index 0000000000..3a08ed22d6 --- /dev/null +++ b/aeon/similarity_search/collection/__init__.py @@ -0,0 +1,8 @@ +"""Similarity search for time series collection.""" + +__all__ = ["BaseCollectionSimilaritySearch", "RandomProjectionIndexANN"] + +from aeon.similarity_search.collection._base import BaseCollectionSimilaritySearch +from aeon.similarity_search.collection.neighbors._rp_cosine_lsh import ( + RandomProjectionIndexANN, +) diff --git a/aeon/similarity_search/collection/_base.py b/aeon/similarity_search/collection/_base.py new file mode 100644 index 0000000000..ecb3e31ccc --- /dev/null +++ b/aeon/similarity_search/collection/_base.py @@ -0,0 +1,120 @@ +"""Base similiarity search for collections.""" + +__maintainer__ = ["baraline"] +__all__ = [ + "BaseCollectionSimilaritySearch", +] + +from abc import abstractmethod +from typing import final + +import numpy as np + +from aeon.base import BaseCollectionEstimator +from aeon.similarity_search._base import BaseSimilaritySearch + + +class BaseCollectionSimilaritySearch(BaseCollectionEstimator, BaseSimilaritySearch): + """Similarity search base class for collections.""" + + # tag values specific to CollectionTransformers + _tags = { + "input_data_type": "Collection", + "capability:multivariate": True, + "X_inner_type": ["numpy3D"], + } + + @final + def fit( + self, + X: np.ndarray, + y=None, + ): + """ + Fit method: data preprocessing and storage. + + Parameters + ---------- + X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) + Input array to be used as database for the similarity search. If it is an + unequal length collection, it should be a list of 2d numpy arrays. + y : optional + Not used. + + Raises + ------ + TypeError + If the input X array is not 3D raise an error. + + Returns + ------- + self + """ + self.reset() + X = self._preprocess_collection(X) + # Store minimum number of n_timepoints for unequal length collections + self.n_channels_ = X[0].shape[0] + self.n_cases_ = len(X) + self._fit(X, y=y) + self.is_fitted = True + return self + + @abstractmethod + def _fit(self, X: np.ndarray, y=None): ... + + @final + def predict(self, X, **kwargs): + """ + Predict function. + + Parameters + ---------- + X : np.ndarray, shape = (n_cases, n_channels, n_tiempoints) + Collections of series to predict on. + kwargs : dict, optional + Additional keyword argument as dict or individual keywords args + to pass to use. + + Returns + ------- + indexes : np.ndarray, shape = (n_cases, k) + Indexes of series in the that are similar to X. + distances : np.ndarray, shape = (n_cases, k) + Distance of the matches to each series + + """ + self._check_is_fitted() + if X[0].ndim == 1: + X = X[np.newaxis, :, :] + X = self._preprocess_collection(X) + self._check_predict_series_format(X) + indexes, distances = self._predict(X, **kwargs) + return indexes, distances + + def _check_predict_series_format(self, X): + """ + Check wheter a series X in predict is correctly formated. + + Parameters + ---------- + X : np.ndarray, shape = (n_channels, n_timepoints) + A series to be used in predict. + """ + if isinstance(X, np.ndarray): + if X[0].ndim != 2: + raise TypeError( + "A np.ndarray given in predict must be 3D" + f"(n_channels, n_timepoints) but found {X.ndim}D." + ) + else: + raise TypeError( + "Expected a 3D np.ndarray in predict but found" f" {type(X)}." + ) + if self.n_channels_ != X[0].shape[0]: + raise ValueError( + f"Expected X to have {self.n_channels_} channels but" + f" got {X[0].shape[0]} channels." + ) + + @abstractmethod + def _predict(self, X, **kwargs): ... diff --git a/aeon/similarity_search/collection/motifs/__init__.py b/aeon/similarity_search/collection/motifs/__init__.py new file mode 100644 index 0000000000..fc014bcced --- /dev/null +++ b/aeon/similarity_search/collection/motifs/__init__.py @@ -0,0 +1 @@ +"""Motif search for time series collection.""" diff --git a/aeon/similarity_search/collection/neighbors/__init__.py b/aeon/similarity_search/collection/neighbors/__init__.py new file mode 100644 index 0000000000..f5cf0d925b --- /dev/null +++ b/aeon/similarity_search/collection/neighbors/__init__.py @@ -0,0 +1,7 @@ +"""Neighbors search for time series collection.""" + +__all__ = ["RandomProjectionIndexANN"] + +from aeon.similarity_search.collection.neighbors._rp_cosine_lsh import ( + RandomProjectionIndexANN, +) diff --git a/aeon/similarity_search/collection/neighbors/_rp_cosine_lsh.py b/aeon/similarity_search/collection/neighbors/_rp_cosine_lsh.py new file mode 100644 index 0000000000..c6c0b72eb7 --- /dev/null +++ b/aeon/similarity_search/collection/neighbors/_rp_cosine_lsh.py @@ -0,0 +1,289 @@ +"""Random projection LSH index.""" + +import numpy as np +from numba import get_num_threads, njit, prange, set_num_threads + +from aeon.similarity_search.collection._base import BaseCollectionSimilaritySearch +from aeon.utils.numba.general import z_normalise_series_3d + + +@njit(cache=True) +def _hamming_dist(X, Y): + d = 0 + for i in prange(X.shape[0]): + d += X[i] ^ Y[i] + return d + + +@njit(cache=True, parallel=True) +def _hamming_dist_series_to_collection(X_bool, collection_bool): + n_buckets = collection_bool.shape[0] + res = np.zeros(n_buckets, dtype=np.int64) + for i in prange(n_buckets): + res[i] = _hamming_dist(collection_bool[i], X_bool) + return res + + +@njit(cache=True, fastmath=True, parallel=True) +def _series_to_bool(X, hash_funcs, start_points, length): + n_hash_funcs = hash_funcs.shape[0] + res = np.empty(n_hash_funcs, dtype=np.bool_) + for j in prange(n_hash_funcs): + res[j] = _nb_flat_dot( + X[:, start_points[j] : start_points[j] + length], hash_funcs[j] + ) + return res + + +@njit(cache=True, fastmath=True) +def _nb_flat_dot(X, Y): + n_channels, n_timepoints = X.shape + out = 0 + for i in prange(n_channels): + for j in prange(n_timepoints): + out += X[i, j] * Y[i, j] + return out >= 0 + + +@njit(cache=True, parallel=True) +def _collection_to_bool(X, hash_funcs, start_points, length): + n_hash_funcs = hash_funcs.shape[0] + n_samples = X.shape[0] + res = np.empty((n_samples, n_hash_funcs), dtype=np.bool_) + for j in prange(n_hash_funcs): + for i in range(n_samples): + res[i, j] = _nb_flat_dot( + X[i, :, start_points[j] : start_points[j] + length], hash_funcs[j] + ) + return res + + +class RandomProjectionIndexANN(BaseCollectionSimilaritySearch): + """ + Random Projection Locality Sensitive Hashing index with cosine similarity. + + In this method based on SimHash, we define a hash function as a boolean operation + such as, given a random vector ``V`` of shape ``(n_channels, L)`` and a time series + ``X`` of shape ``(n_channels, n_timeponts)`` (with ``L<=n_timepoints``), we compute + ``X.V > 0`` to obtain the boolean result. + In the case where ``L k - current_k: + candidates = candidates[: k - current_k] + top_k[current_k : current_k + len(candidates)] = candidates + top_k_dist[current_k : current_k + len(candidates)] = dists[ + ids[_i_bucket] + ] + current_k += len(candidates) + else: + break + _i_bucket += 1 + + return top_k[:current_k], top_k_dist[:current_k] + + def _collection_to_hashes(self, X): + bool_hashes = _collection_to_bool( + X, self.hash_funcs_, self.start_points_, self.window_length_ + ) + return bool_hashes, [ + hash(bool_hashes[i].tobytes()) for i in range(len(bool_hashes)) + ] diff --git a/aeon/similarity_search/collection/neighbors/tests/__init__.py b/aeon/similarity_search/collection/neighbors/tests/__init__.py new file mode 100644 index 0000000000..89bc3412fb --- /dev/null +++ b/aeon/similarity_search/collection/neighbors/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for similarity search for time series collection neighbors module.""" diff --git a/aeon/similarity_search/collection/neighbors/tests/test_rp_cosine_lsh.py b/aeon/similarity_search/collection/neighbors/tests/test_rp_cosine_lsh.py new file mode 100644 index 0000000000..82c1d102f3 --- /dev/null +++ b/aeon/similarity_search/collection/neighbors/tests/test_rp_cosine_lsh.py @@ -0,0 +1 @@ +"""Tests for RandomProjectionIndexANN.""" diff --git a/aeon/similarity_search/collection/tests/__init__.py b/aeon/similarity_search/collection/tests/__init__.py new file mode 100644 index 0000000000..d136a8571e --- /dev/null +++ b/aeon/similarity_search/collection/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for similarity search for time series collection base class and commons.""" diff --git a/aeon/similarity_search/collection/tests/test_base.py b/aeon/similarity_search/collection/tests/test_base.py new file mode 100644 index 0000000000..c9d7af012b --- /dev/null +++ b/aeon/similarity_search/collection/tests/test_base.py @@ -0,0 +1,56 @@ +"""Test for collection similarity search base class.""" + +__maintainer__ = ["baraline"] + +import pytest + +from aeon.testing.mock_estimators._mock_similarity_searchers import ( + MockCollectionSimilaritySearch, +) +from aeon.testing.testing_data import ( + make_example_1d_numpy, + make_example_2d_numpy_series, + make_example_3d_numpy, +) + + +def test_input_shape_fit_predict_collection(): + """Test input shapes.""" + estimator = MockCollectionSimilaritySearch() + # dummy data to pass to fit when testing predict/predict_proba + X_3D_uni = make_example_3d_numpy(n_channels=1, return_y=False) + X_3D_multi = make_example_3d_numpy(n_channels=2, return_y=False) + X_2D_uni = make_example_2d_numpy_series(n_channels=1) + X_2D_multi = make_example_2d_numpy_series(n_channels=2) + X_1D = make_example_1d_numpy() + + # 2D are converted to 3D + valid_inputs_fit = [ + X_3D_uni, + X_3D_multi, + X_2D_uni, + X_2D_multi, + ] + # Valid inputs + for _input in valid_inputs_fit: + estimator.fit(_input) + + with pytest.raises(ValueError): + estimator.fit(X_1D) + + estimator_multi = MockCollectionSimilaritySearch().fit(X_3D_multi) + estimator_uni = MockCollectionSimilaritySearch().fit(X_3D_uni) + + estimator_uni.predict(X_2D_uni) + estimator_uni.predict(X_3D_uni) + estimator_multi.predict(X_2D_multi) + estimator_multi.predict(X_3D_multi) + + with pytest.raises(ValueError): + estimator_uni.predict(X_2D_multi) + with pytest.raises(ValueError): + estimator_multi.predict(X_2D_uni) + with pytest.raises(ValueError): + estimator_multi.predict(X_3D_uni) + with pytest.raises(ValueError): + estimator_uni.predict(X_3D_multi) diff --git a/aeon/similarity_search/distance_profiles/__init__.py b/aeon/similarity_search/distance_profiles/__init__.py deleted file mode 100644 index 4be73f9d8e..0000000000 --- a/aeon/similarity_search/distance_profiles/__init__.py +++ /dev/null @@ -1,18 +0,0 @@ -"""Distance profiles.""" - -__all__ = [ - "euclidean_distance_profile", - "normalised_euclidean_distance_profile", - "squared_distance_profile", - "normalised_squared_distance_profile", -] - - -from aeon.similarity_search.distance_profiles.euclidean_distance_profile import ( - euclidean_distance_profile, - normalised_euclidean_distance_profile, -) -from aeon.similarity_search.distance_profiles.squared_distance_profile import ( - normalised_squared_distance_profile, - squared_distance_profile, -) diff --git a/aeon/similarity_search/distance_profiles/euclidean_distance_profile.py b/aeon/similarity_search/distance_profiles/euclidean_distance_profile.py deleted file mode 100644 index 1dd781e467..0000000000 --- a/aeon/similarity_search/distance_profiles/euclidean_distance_profile.py +++ /dev/null @@ -1,102 +0,0 @@ -"""Optimized distance profile for euclidean distance.""" - -__maintainer__ = ["baraline"] - - -from typing import Union - -import numpy as np -from numba.typed import List - -from aeon.similarity_search.distance_profiles.squared_distance_profile import ( - normalised_squared_distance_profile, - squared_distance_profile, -) - - -def euclidean_distance_profile( - X: Union[np.ndarray, List], q: np.ndarray, mask: np.ndarray -) -> np.ndarray: - """ - Compute a distance profile using the squared Euclidean distance. - - It computes the distance profiles between the input time series and the query using - the squared Euclidean distance. The distance between the query and a candidate is - comptued using a dot product and a rolling sum to avoid recomputing parts of the - operation. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a numba TypedList - of 2D arrays of shape (n_channels, n_timepoints) - q : np.ndarray, 2D array of shape (n_channels, query_length) - The query used for similarity search. - mask : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - - Returns - ------- - distance_profiles : np.ndarray - 3D array of shape (n_cases, n_timepoints - query_length + 1) - The distance profile between q and the input time series X. - - """ - distance_profiles = squared_distance_profile(X, q, mask) - # Need loop as we can return a list of np array in the unequal length case - for i in range(len(distance_profiles)): - distance_profiles[i] = distance_profiles[i] ** 0.5 - return distance_profiles - - -def normalised_euclidean_distance_profile( - X: Union[np.ndarray, List], - q: np.ndarray, - mask: np.ndarray, - X_means: Union[np.ndarray, List], - X_stds: Union[np.ndarray, List], - q_means: np.ndarray, - q_stds: np.ndarray, -) -> np.ndarray: - """ - Compute a distance profile in a brute force way. - - It computes the distance profiles between the input time series and the query using - the specified distance. The search is made in a brute force way without any - optimizations and can thus be slow. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a numba TypedList - of 2D arrays of shape (n_channels, n_timepoints) - q : np.ndarray, 2D array of shape (n_channels, query_length) - The query used for similarity search. - mask : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Means of each subsequences of X of size query_length. Should be a numba - TypedList if X is unequal length. - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Stds of each subsequences of X of size query_length. Should be a numba - TypedList if X is unequal length. - q_means : np.ndarray, 1D array of shape (n_channels) - Means of the query q - q_stds : np.ndarray, 1D array of shape (n_channels) - - Returns - ------- - distance_profiles : np.ndarray - 3D array of shape (n_cases, n_timepoints - query_length + 1) - The distance profile between q and the input time series X. - - """ - distance_profiles = normalised_squared_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - # Need loop as we can return a list of np array in the unequal length case - for i in range(len(distance_profiles)): - distance_profiles[i] = distance_profiles[i] ** 0.5 - return distance_profiles diff --git a/aeon/similarity_search/distance_profiles/squared_distance_profile.py b/aeon/similarity_search/distance_profiles/squared_distance_profile.py deleted file mode 100644 index a42beeac2f..0000000000 --- a/aeon/similarity_search/distance_profiles/squared_distance_profile.py +++ /dev/null @@ -1,319 +0,0 @@ -"""Optimized distance profile for euclidean distance.""" - -__maintainer__ = ["baraline"] - - -from typing import Union - -import numpy as np -from numba import njit, prange -from numba.typed import List - -from aeon.similarity_search._commons import fft_sliding_dot_product -from aeon.utils.numba.general import AEON_NUMBA_STD_THRESHOLD - - -def squared_distance_profile( - X: Union[np.ndarray, List], q: np.ndarray, mask: np.ndarray -) -> np.ndarray: - """ - Compute a distance profile using the squared Euclidean distance. - - It computes the distance profiles between the input time series and the query using - the squared Euclidean distance. The distance between the query and a candidate is - comptued using a dot product and a rolling sum to avoid recomputing parts of the - operation. - - Parameters - ---------- - X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a numba TypedList - 2D array of shape (n_channels, n_timepoints) - q : np.ndarray, 2D array of shape (n_channels, query_length) - The query used for similarity search. - mask : np.ndarray, 3D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - - Returns - ------- - distance_profile : np.ndarray - 3D array of shape (n_cases, n_timepoints - query_length + 1) - The distance profile between q and the input time series X. - - """ - QX = [fft_sliding_dot_product(X[i], q) for i in range(len(X))] - if isinstance(X, np.ndarray): - QX = np.asarray(QX) - elif isinstance(X, List): - QX = List(QX) - distance_profiles = _squared_distance_profile(QX, X, q, mask) - if isinstance(X, np.ndarray): - distance_profiles = np.asarray(distance_profiles) - return distance_profiles - - -def normalised_squared_distance_profile( - X: Union[np.ndarray, List], - q: np.ndarray, - mask: np.ndarray, - X_means: np.ndarray, - X_stds: np.ndarray, - q_means: np.ndarray, - q_stds: np.ndarray, -) -> np.ndarray: - """ - Compute a distance profile in a brute force way. - - It computes the distance profiles between the input time series and the query using - the specified distance. The search is made in a brute force way without any - optimizations and can thus be slow. - - Parameters - ---------- - X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a numba TypedList - 2D array of shape (n_channels, n_timepoints) - q : np.ndarray, 2D array of shape (n_channels, query_length) - The query used for similarity search. - mask : np.ndarray, 3D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Means of each subsequences of X of size query_length - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Stds of each subsequences of X of size query_length - q_means : np.ndarray, 1D array of shape (n_channels) - Means of the query q - q_stds : np.ndarray, 1D array of shape (n_channels) - Stds of the query q - - Returns - ------- - distance_profiles : np.ndarray - 3D array of shape (n_cases, n_timepoints - query_length + 1) - The distance profile between q and the input time series X. - - """ - query_length = q.shape[1] - QX = [fft_sliding_dot_product(X[i], q) for i in range(len(X))] - if isinstance(X, np.ndarray): - QX = np.asarray(QX) - elif isinstance(X, List): - QX = List(QX) - - distance_profiles = _normalised_squared_distance_profile( - QX, mask, X_means, X_stds, q_means, q_stds, query_length - ) - if isinstance(X, np.ndarray): - distance_profiles = np.asarray(distance_profiles) - return distance_profiles - - -@njit(cache=True, fastmath=True, parallel=True) -def _squared_distance_profile(QX, X, q, mask): - """ - Compute squared distance profiles between query subsequence and time series. - - Parameters - ---------- - QX : List of np.ndarray - List of precomputed dot products between queries and time series, with each - element corresponding to a different time series. - Shape of each array is (n_channels, n_timepoints - query_length + 1). - X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a numba TypedList - 2D array of shape (n_channels, n_timepoints) - q : np.ndarray, 2D array of shape (n_channels, query_length) - The query used for similarity search. - mask : np.ndarray, 3D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - - Returns - ------- - distance_profiles : np.ndarray - 3D array of shape (n_cases, n_timepoints - query_length + 1) - The distance profile between q and the input time series X. - - """ - distance_profiles = List() - query_length = q.shape[1] - - # Init distance profile array with unequal length support - for i_instance in range(len(X)): - profile_length = X[i_instance].shape[1] - query_length + 1 - distance_profiles.append(np.full((profile_length), np.inf)) - - for _i_instance in prange(len(QX)): - # prange cast iterator to unit64 with parallel=True - i_instance = np.int_(_i_instance) - - distance_profiles[i_instance][mask[i_instance]] = ( - _squared_dist_profile_one_series(QX[i_instance], X[i_instance], q)[ - mask[i_instance] - ] - ) - return distance_profiles - - -@njit(cache=True, fastmath=True) -def _squared_dist_profile_one_series(QT, T, Q): - """ - Compute squared distance profile between query subsequence and a single time series. - - This function calculates the squared distance profile for a single time series by - leveraging the dot product of the query and time series as well as precomputed sums - of squares to efficiently compute the squared distances. - - Parameters - ---------- - QT : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) - The dot product between the query and the time series. - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - Q : np.ndarray - 2D array of shape (n_channels, query_length) representing query subsequence. - - Returns - ------- - distance_profile : np.ndarray - 2D array of shape (n_channels, n_timepoints - query_length + 1) - The squared distance profile between the query and the input time series. - """ - n_channels, profile_length = QT.shape - query_length = Q.shape[1] - _QT = -2 * QT - distance_profile = np.zeros(profile_length) - for k in prange(n_channels): - _sum = 0 - _qsum = 0 - for j in prange(query_length): - _sum += T[k, j] ** 2 - _qsum += Q[k, j] ** 2 - - distance_profile += _qsum + _QT[k] - distance_profile[0] += _sum - for i in prange(1, profile_length): - _sum += T[k, i + (query_length - 1)] ** 2 - T[k, i - 1] ** 2 - distance_profile[i] += _sum - return distance_profile - - -@njit(cache=True, fastmath=True, parallel=True) -def _normalised_squared_distance_profile( - QX, mask, X_means, X_stds, q_means, q_stds, query_length -): - """ - Compute the normalised squared distance profiles between query subsequence and input time series. - - Parameters - ---------- - QX : List of np.ndarray - List of precomputed dot products between queries and time series, with each element - corresponding to a different time series. - Shape of each array is (n_channels, n_timepoints - query_length + 1). - mask : np.ndarray, 3D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean mask of the shape of the distance profile indicating for which part - of it the distance should be computed. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Means of each subsequences of X of size query_length - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - query_length + 1) # noqa: E501 - Stds of each subsequences of X of size query_length - q_means : np.ndarray, 1D array of shape (n_channels) - Means of the query q - q_stds : np.ndarray, 1D array of shape (n_channels) - Stds of the query q - query_length : int - The length of the query subsequence used for the distance profile computation. - - Returns - ------- - List of np.ndarray - List of 2D arrays, each of shape (n_channels, n_timepoints - query_length + 1). - Each array contains the normalised squared distance profile between the query subsequence and the corresponding time series. - Entries in the array are set to infinity where the mask is False. - """ - distance_profiles = List() - Q_is_constant = q_stds <= AEON_NUMBA_STD_THRESHOLD - # Init distance profile array with unequal length support - for i_instance in range(len(QX)): - profile_length = QX[i_instance].shape[1] - distance_profiles.append(np.full((profile_length), np.inf)) - - for _i_instance in prange(len(QX)): - # prange cast iterator to unit64 with parallel=True - i_instance = np.int_(_i_instance) - - distance_profiles[i_instance][mask[i_instance]] = ( - _normalised_squared_dist_profile_one_series( - QX[i_instance], - X_means[i_instance], - X_stds[i_instance], - q_means, - q_stds, - query_length, - Q_is_constant, - )[mask[i_instance]] - ) - return distance_profiles - - -@njit(cache=True, fastmath=True) -def _normalised_squared_dist_profile_one_series( - QT, T_means, T_stds, Q_means, Q_stds, query_length, Q_is_constant -): - """ - Compute the z-normalised squared Euclidean distance profile for one time series. - - Parameters - ---------- - QT : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) - The dot product between the query and the time series. - T_means : np.ndarray, 1D array of length n_channels - The mean values of the time series for each channel. - - T_stds : np.ndarray, 2D array of shape (n_channels, profile_length) - The standard deviations of the time series for each channel and position. - Q_means : np.ndarray, 1D array of shape (n_channels) - Means of the query q - Q_stds : np.ndarray, 1D array of shape (n_channels) - Stds of the query q - query_length : int - The length of the query subsequence used for the distance profile computation. - Q_is_constant : np.ndarray - 1D array of shape (n_channels,) where each element is a Boolean indicating - whether the query standard deviation for that channel is less than or equal - to a specified threshold. - - Returns - ------- - np.ndarray - 2D array of shape (n_channels, n_timepoints - query_length + 1) containing the - z-normalised squared distance profile between the query subsequence and the time - series. Entries are computed based on the z-normalised values, with special - handling for constant values. - """ - n_channels, profile_length = QT.shape - distance_profile = np.zeros(profile_length) - - for i in prange(profile_length): - Sub_is_constant = T_stds[:, i] <= AEON_NUMBA_STD_THRESHOLD - for k in prange(n_channels): - # Two Constant case - if Q_is_constant[k] and Sub_is_constant[k]: - _val = 0 - # One Constant case - elif Q_is_constant[k] or Sub_is_constant[k]: - _val = query_length - else: - denom = query_length * Q_stds[k] * T_stds[k, i] - - p = (QT[k, i] - query_length * (Q_means[k] * T_means[k, i])) / denom - p = min(p, 1.0) - - _val = abs(2 * query_length * (1.0 - p)) - distance_profile[i] += _val - - return distance_profile diff --git a/aeon/similarity_search/distance_profiles/tests/__init__.py b/aeon/similarity_search/distance_profiles/tests/__init__.py deleted file mode 100644 index 566dda7367..0000000000 --- a/aeon/similarity_search/distance_profiles/tests/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Tests for distance profiles.""" diff --git a/aeon/similarity_search/distance_profiles/tests/test_euclidean_distance.py b/aeon/similarity_search/distance_profiles/tests/test_euclidean_distance.py deleted file mode 100644 index 2eafff78bb..0000000000 --- a/aeon/similarity_search/distance_profiles/tests/test_euclidean_distance.py +++ /dev/null @@ -1,208 +0,0 @@ -"""Tests for naive Euclidean distance profile.""" - -__maintainer__ = [] - - -import numpy as np -import pytest -from numba.typed import List -from numpy.testing import assert_array_almost_equal, assert_array_equal - -from aeon.similarity_search._commons import naive_squared_distance_profile -from aeon.similarity_search.distance_profiles.euclidean_distance_profile import ( - euclidean_distance_profile, - normalised_euclidean_distance_profile, -) -from aeon.utils.numba.general import sliding_mean_std_one_series - -DATATYPES = ["float64", "int64"] - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_distance(dtype): - """Test Euclidean distance.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - expected = [T**0.5 for T in naive_squared_distance_profile(X, q, mask)] - dist_profile = euclidean_distance_profile(X, q, mask) - - assert_array_almost_equal(dist_profile, expected) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_constant_case(dtype): - """Test Euclidean distance profile calculation.""" - X = np.ones((2, 1, 10), dtype=dtype) - q = np.zeros((1, 3), dtype=dtype) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - expected = [T**0.5 for T in naive_squared_distance_profile(X, q, mask)] - dist_profile = euclidean_distance_profile(X, q, mask) - - assert_array_almost_equal(dist_profile, expected) - - -def test_non_alteration_of_inputs_euclidean(): - """Test if input is altered during Euclidean distance profile.""" - X = np.asarray([[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]]) - X_copy = np.copy(X) - q = np.asarray([[3, 4, 5]]) - q_copy = np.copy(q) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - _ = euclidean_distance_profile(X, q, mask) - assert_array_equal(q, q_copy) - assert_array_equal(X, X_copy) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_distance(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - - dist_profile = normalised_euclidean_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = [ - T**0.5 for T in naive_squared_distance_profile(X, q, mask, normalise=True) - ] - - assert_array_almost_equal(dist_profile, expected) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_distance_unequal_length(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = List( - [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6]], dtype=dtype), - ] - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - X_means = List() - X_stds = List() - - for i in range(len(X)): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds.append(_std) - X_means.append(_mean) - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - mask = List( - [np.ones(X[i].shape[1] - q.shape[1] + 1, dtype=bool) for i in range(len(X))] - ) - - dist_profile = normalised_euclidean_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = [ - T**0.5 - for T in naive_squared_distance_profile( - X, q, mask, normalise=True, X_means=X_means, X_stds=X_stds - ) - ] - for i in range(len(X)): - assert_array_almost_equal(dist_profile[i], expected[i]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_distance_unequal_length(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = List( - [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6]], dtype=dtype), - ] - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - mask = List( - [np.ones(X[i].shape[1] - q.shape[1] + 1, dtype=bool) for i in range(len(X))] - ) - expected = [T**0.5 for T in naive_squared_distance_profile(X, q, mask)] - dist_profile = euclidean_distance_profile(X, q, mask) - for i in range(len(X)): - assert_array_almost_equal(dist_profile[i], expected[i]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_constant_case(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = np.ones((2, 2, 10), dtype=dtype) - q = np.zeros((2, 3), dtype=dtype) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - - dist_profile = normalised_euclidean_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = [ - T**0.5 for T in naive_squared_distance_profile(X, q, mask, normalise=True) - ] - - assert_array_almost_equal(dist_profile, expected) - - -def test_non_alteration_of_inputs_normalised_euclidean(): - """Test if input is altered during normalised Euclidean distance profile.""" - X = np.asarray([[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]]) - X_copy = np.copy(X) - q = np.asarray([[3, 4, 5]]) - q_copy = np.copy(q) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - _ = normalised_euclidean_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - - assert_array_equal(q, q_copy) - assert_array_equal(X, X_copy) diff --git a/aeon/similarity_search/distance_profiles/tests/test_squared_distance.py b/aeon/similarity_search/distance_profiles/tests/test_squared_distance.py deleted file mode 100644 index cdb7b35cbc..0000000000 --- a/aeon/similarity_search/distance_profiles/tests/test_squared_distance.py +++ /dev/null @@ -1,200 +0,0 @@ -"""Tests for naive Euclidean distance profile.""" - -__maintainer__ = [] - - -import numpy as np -import pytest -from numba.typed import List -from numpy.testing import assert_array_almost_equal, assert_array_equal - -from aeon.similarity_search._commons import naive_squared_distance_profile -from aeon.similarity_search.distance_profiles.squared_distance_profile import ( - normalised_squared_distance_profile, - squared_distance_profile, -) -from aeon.utils.numba.general import sliding_mean_std_one_series - -DATATYPES = ["float64", "int64"] - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_distance(dtype): - """Test Euclidean distance.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - expected = naive_squared_distance_profile(X, q, mask) - dist_profile = squared_distance_profile(X, q, mask) - - assert_array_almost_equal(dist_profile, expected) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_constant_case(dtype): - """Test Euclidean distance profile calculation.""" - X = np.ones((2, 1, 10), dtype=dtype) - q = np.zeros((1, 3), dtype=dtype) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - expected = naive_squared_distance_profile(X, q, mask) - dist_profile = squared_distance_profile(X, q, mask) - - assert_array_almost_equal(dist_profile, expected) - - -def test_non_alteration_of_inputs_euclidean(): - """Test if input is altered during Euclidean distance profile.""" - X = np.asarray([[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]]) - X_copy = np.copy(X) - q = np.asarray([[3, 4, 5]]) - q_copy = np.copy(q) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - _ = squared_distance_profile(X, q, mask) - assert_array_equal(q, q_copy) - assert_array_equal(X, X_copy) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_distance(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - - dist_profile = normalised_squared_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = naive_squared_distance_profile(X, q, mask, normalise=True) - - assert_array_almost_equal(dist_profile, expected) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_distance_unequal_length(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = List( - [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6]], dtype=dtype), - ] - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - X_means = List() - X_stds = List() - - for i in range(len(X)): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds.append(_std) - X_means.append(_mean) - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - mask = List( - [np.ones(X[i].shape[1] - q.shape[1] + 1, dtype=bool) for i in range(len(X))] - ) - - dist_profile = normalised_squared_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = naive_squared_distance_profile(X, q, mask, normalise=True) - for i in range(len(X)): - assert_array_almost_equal(dist_profile[i], expected[i]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_euclidean_distance_unequal_length(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = List( - [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6]], dtype=dtype), - ] - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - mask = List( - [np.ones(X[i].shape[1] - q.shape[1] + 1, dtype=bool) for i in range(len(X))] - ) - - expected = naive_squared_distance_profile(X, q, mask) - dist_profile = squared_distance_profile(X, q, mask) - for i in range(len(X)): - assert_array_almost_equal(dist_profile[i], expected[i]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_normalised_euclidean_constant_case(dtype): - """Test normalised Euclidean distance profile calculation.""" - X = np.ones((2, 2, 10), dtype=dtype) - q = np.zeros((2, 3), dtype=dtype) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - - dist_profile = normalised_squared_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - expected = naive_squared_distance_profile(X, q, mask, normalise=True) - - assert_array_almost_equal(dist_profile, expected) - - -def test_non_alteration_of_inputs_normalised_euclidean(): - """Test if input is altered during normalised Euclidean distance profile.""" - X = np.asarray([[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]]) - X_copy = np.copy(X) - q = np.asarray([[3, 4, 5]]) - q_copy = np.copy(q) - - search_space_size = X.shape[-1] - q.shape[-1] + 1 - - X_means = np.zeros((X.shape[0], X.shape[1], search_space_size)) - X_stds = np.zeros((X.shape[0], X.shape[1], search_space_size)) - - for i in range(X.shape[0]): - _mean, _std = sliding_mean_std_one_series(X[i], q.shape[-1], 1) - X_stds[i] = _std - X_means[i] = _mean - - q_means = q.mean(axis=-1) - q_stds = q.std(axis=-1) - - mask = np.ones((X.shape[0], X.shape[2] - q.shape[1] + 1), dtype=bool) - _ = normalised_squared_distance_profile( - X, q, mask, X_means, X_stds, q_means, q_stds - ) - - assert_array_equal(q, q_copy) - assert_array_equal(X, X_copy) diff --git a/aeon/similarity_search/matrix_profiles/__init__.py b/aeon/similarity_search/matrix_profiles/__init__.py deleted file mode 100644 index d04f1cbfd3..0000000000 --- a/aeon/similarity_search/matrix_profiles/__init__.py +++ /dev/null @@ -1,14 +0,0 @@ -"""Distance profiles.""" - -__all__ = [ - "stomp_normalised_euclidean_matrix_profile", - "stomp_euclidean_matrix_profile", - "stomp_normalised_squared_matrix_profile", - "stomp_squared_matrix_profile", -] -from aeon.similarity_search.matrix_profiles.stomp import ( - stomp_euclidean_matrix_profile, - stomp_normalised_euclidean_matrix_profile, - stomp_normalised_squared_matrix_profile, - stomp_squared_matrix_profile, -) diff --git a/aeon/similarity_search/matrix_profiles/stomp.py b/aeon/similarity_search/matrix_profiles/stomp.py deleted file mode 100644 index 509e68ad49..0000000000 --- a/aeon/similarity_search/matrix_profiles/stomp.py +++ /dev/null @@ -1,633 +0,0 @@ -"""Implementation of stomp for euclidean and squared euclidean distance profile.""" - -from typing import Optional - -__maintainer__ = ["baraline"] - - -from typing import Union - -import numpy as np -from numba import njit -from numba.typed import List - -from aeon.similarity_search._commons import ( - extract_top_k_and_threshold_from_distance_profiles_one_series, - get_ith_products, - numba_roll_1D_no_warparound, -) -from aeon.similarity_search.distance_profiles.squared_distance_profile import ( - _normalised_squared_dist_profile_one_series, - _squared_dist_profile_one_series, -) -from aeon.utils.numba.general import AEON_NUMBA_STD_THRESHOLD - - -def stomp_euclidean_matrix_profile( - X: Union[np.ndarray, List], - T: np.ndarray, - L: int, - mask: np.ndarray, - k: int = 1, - threshold: float = np.inf, - inverse_distance: bool = False, - exclusion_size: Optional[int] = None, -): - """ - Compute a euclidean euclidean matrix profile using STOMP [1]_. - - This improves on the naive matrix profile by updating the dot products for each - sucessive query in T instead of recomputing them. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a TypedList - of 2D arrays of shape (n_channels, n_timepoints) - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - The length of the subsequences considered during the search. This parameter - cannot be larger than n_timepoints and series_length. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for the - first query of size L in T. This mask will be updated during the algorithm. - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestomp - exclusion_size` and - :math:`id_timestomp + exclusion_size` which cannot be returned - as best match if :math:`id_timestomp` was already selected. By default, - the value None means that this is not used. - - References - ---------- - .. [1] Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one - Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary - Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah - Mueen, Philip Berisk and Eamonn Keogh. IEEE ICDM 2016 - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - MP, IP = stomp_squared_matrix_profile( - X, - T, - L, - mask, - k=k, - threshold=threshold, - exclusion_size=exclusion_size, - inverse_distance=inverse_distance, - ) - for i in range(len(MP)): - MP[i] = MP[i] ** 0.5 - return MP, IP - - -def stomp_squared_matrix_profile( - X: Union[np.ndarray, List], - T: np.ndarray, - L: int, - mask: np.ndarray, - k: int = 1, - threshold: float = np.inf, - inverse_distance: bool = False, - exclusion_size: Optional[int] = None, -): - """ - Compute a squared euclidean matrix profile using STOMP [1]_. - - This improves on the naive matrix profile by updating the dot products for each - sucessive query in T instead of recomputing them. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a TypedList - of 2D arrays of shape (n_channels, n_timepoints) - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - The length of the subsequences considered during the search. This parameter - cannot be larger than n_timepoints and series_length. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for the - first query of size L in T. This mask will be updated during the algorithm. - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestomp - exclusion_size` and - :math:`id_timestomp + exclusion_size` which cannot be returned - as best match if :math:`id_timestomp` was already selected. By default, - the value None means that this is not used. - - References - ---------- - .. [1] Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one - Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary - Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah - Mueen, Philip Berisk and Eamonn Keogh. IEEE ICDM 2016 - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - XdotT = [get_ith_products(X[i], T, L, 0) for i in range(len(X))] - if isinstance(X, np.ndarray): - XdotT = np.asarray(XdotT) - elif isinstance(X, List): - XdotT = List(XdotT) - - MP, IP = _stomp( - X, - T, - XdotT, - L, - mask, - k, - threshold, - exclusion_size, - inverse_distance, - ) - return MP, IP - - -def stomp_normalised_euclidean_matrix_profile( - X: Union[np.ndarray, List], - T: np.ndarray, - L: int, - X_means: Union[np.ndarray, List], - X_stds: Union[np.ndarray, List], - T_means: np.ndarray, - T_stds: np.ndarray, - mask: np.ndarray, - k: int = 1, - threshold: float = np.inf, - inverse_distance: bool = False, - exclusion_size: Optional[int] = None, -): - """ - Compute a euclidean matrix profile using STOMP [1]_. - - This improves on the naive matrix profile by updating the dot products for each - sucessive query in T instead of recomputing them. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a TypedList - of 2D arrays of shape (n_channels, n_timepoints) - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - The length of the subsequences considered during the search. This parameter - cannot be larger than n_timepoints and series_length. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Means of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Stds of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - T_means : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Means of each subsequences of T of size L. - T_stds : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Stds of each subsequences of T of size L. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for the - first query of size L in T. This mask will be updated during the algorithm. - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestomp - exclusion_size` and - :math:`id_timestomp + exclusion_size` which cannot be returned - as best match if :math:`id_timestomp` was already selected. By default, - the value None means that this is not used. - - References - ---------- - .. [1] Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one - Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary - Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah - Mueen, Philip Berisk and Eamonn Keogh. IEEE ICDM 2016 - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - MP, IP = stomp_normalised_squared_matrix_profile( - X, - T, - L, - X_means, - X_stds, - T_means, - T_stds, - mask, - k=k, - threshold=threshold, - exclusion_size=exclusion_size, - inverse_distance=inverse_distance, - ) - for i in range(len(MP)): - MP[i] = MP[i] ** 0.5 - return MP, IP - - -def stomp_normalised_squared_matrix_profile( - X: Union[np.ndarray, List], - T: np.ndarray, - L: int, - X_means: Union[np.ndarray, List], - X_stds: Union[np.ndarray, List], - T_means: np.ndarray, - T_stds: np.ndarray, - mask: np.ndarray, - k: int = 1, - threshold: float = np.inf, - inverse_distance: bool = False, - exclusion_size: Optional[int] = None, -): - """ - Compute a squared euclidean matrix profile using STOMP [1]_. - - This improves on the naive matrix profile by updating the dot products for each - sucessive query in T instead of recomputing them. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a TypedList - of 2D arrays of shape (n_channels, n_timepoints) - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - The length of the subsequences considered during the search. This parameter - cannot be larger than n_timepoints and series_length. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Means of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Stds of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - T_means : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Means of each subsequences of T of size L. - T_stds : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Stds of each subsequences of T of size L. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for the - first query of size L in T. This mask will be updated during the algorithm. - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestomp - exclusion_size` and - :math:`id_timestomp + exclusion_size` which cannot be returned - as best match if :math:`id_timestomp` was already selected. By default, - the value None means that this is not used. - - References - ---------- - .. [1] Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one - Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary - Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah - Mueen, Philip Berisk and Eamonn Keogh. IEEE ICDM 2016 - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - XdotT = [get_ith_products(X[i], T, L, 0) for i in range(len(X))] - if isinstance(X, np.ndarray): - XdotT = np.asarray(XdotT) - elif isinstance(X, List): - XdotT = List(XdotT) - - MP, IP = _stomp_normalised( - X, - T, - XdotT, - X_means, - X_stds, - T_means, - T_stds, - L, - mask, - k, - threshold, - exclusion_size, - inverse_distance, - ) - return MP, IP - - -def _stomp_normalised( - X, - T, - XdotT, - X_means, - X_stds, - T_means, - T_stds, - L, - mask, - k, - threshold, - exclusion_size, - inverse_distance, -): - """ - Compute the Matrix Profile using the STOMP algorithm with normalised distances. - - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input samples. If X is an unquel length collection, expect a TypedList - of 2D arrays of shape (n_channels, n_timepoints) - T : np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - Length of the subsequences used for the distance computation. - XdotT : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Precomputed dot products between each time series in X and the query series T. - X_means : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Means of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - X_stds : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints - L + 1) - Stds of each subsequences of X of size L. Should be a numba TypedList if X is - unequal length. - T_means : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Means of each subsequences of T of size L. - T_stds : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) - Stds of each subsequences of T of size L. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for the - first query of size L in T. This mask will be updated during the algorithm. - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestomp - exclusion_size` and - :math:`id_timestomp + exclusion_size` which cannot be returned - as best match if :math:`id_timestomp` was already selected. By default, - the value None means that this is not used. - - Returns - ------- - tuple of np.ndarray - - MP : array of shape (n_queries,) - Matrix profile distances for each query subsequence. - - IP : array of shape (n_queries,) - Indexes of the top matches for each query subsequence. - """ - n_queries = T.shape[1] - L + 1 - MP = np.empty(n_queries, dtype=object) - IP = np.empty(n_queries, dtype=object) - for i_x in range(len(X)): - for i in range(n_queries): - dist_profiles = _normalised_squared_dist_profile_one_series( - XdotT[i_x], - X_means[i_x], - X_stds[i_x], - T_means[:, i], - T_stds[:, i], - L, - T_stds[:, i] <= AEON_NUMBA_STD_THRESHOLD, - ) - dist_profiles[~mask[i_x]] = np.inf - if i + 1 < n_queries: - XdotT[i_x] = _update_dot_products_one_series( - X[i_x], T, XdotT[i_x], L, i + 1 - ) - - mask[i_x] = numba_roll_1D_no_warparound(mask[i_x], 1, True) - ( - top_dists, - top_indexes, - ) = extract_top_k_and_threshold_from_distance_profiles_one_series( - dist_profiles, - i_x, - k=k, - threshold=threshold, - exclusion_size=exclusion_size, - inverse_distance=inverse_distance, - ) - if i_x > 0: - top_dists, top_indexes = _sort_out_tops( - top_dists, MP[i], top_indexes, IP[i], k - ) - MP[i] = top_dists - IP[i] = top_indexes - else: - MP[i] = top_dists - IP[i] = top_indexes - - return MP, IP - - -def _stomp( - X, - T, - XdotT, - L, - mask, - k, - threshold, - exclusion_size, - inverse_distance, -): - n_queries = T.shape[1] - L + 1 - MP = np.empty(n_queries, dtype=object) - IP = np.empty(n_queries, dtype=object) - for i_x in range(len(X)): - for i in range(n_queries): - Q = T[:, i : i + L] - dist_profiles = _squared_dist_profile_one_series(XdotT[i_x], X[i_x], Q) - dist_profiles[~mask[i_x]] = np.inf - if i + 1 < n_queries: - XdotT[i_x] = _update_dot_products_one_series( - X[i_x], T, XdotT[i_x], L, i + 1 - ) - - mask[i_x] = numba_roll_1D_no_warparound(mask[i_x], 1, True) - ( - top_dists, - top_indexes, - ) = extract_top_k_and_threshold_from_distance_profiles_one_series( - dist_profiles, - i_x, - k=k, - threshold=threshold, - exclusion_size=exclusion_size, - inverse_distance=inverse_distance, - ) - if i_x > 0: - top_dists, top_indexes = _sort_out_tops( - top_dists, MP[i], top_indexes, IP[i], k - ) - MP[i] = top_dists - IP[i] = top_indexes - else: - MP[i] = top_dists - IP[i] = top_indexes - - return MP, IP - - -def _sort_out_tops(top_dists, prev_top_dists, top_indexes, prev_to_indexes, k): - """ - Sort and combine top distance results from previous and current computations. - - Parameters - ---------- - top_dists : np.ndarray - Array of distances from the current computation. Shape should be (n,). - prev_top_dists : np.ndarray - Array of distances from previous computations. Shape should be (n,). - top_indexes : np.ndarray - Array of indexes corresponding to the top distances from current computation. - Shape should be (n,). - prev_to_indexes : np.ndarray - Array of indexes corresponding to the top distances from previous computations. - Shape should be (n,). - k : int, default=1 - The number of best matches to return during predict for each subsequence. - - Returns - ------- - tuple - A tuple containing two elements: - - A 1D numpy array of sorted distances, of length min(k, - total number of distances). - - A 1D numpy array of indexes corresponding to the sorted distances, - of length min(k, total number of distances). - """ - all_dists = np.concatenate((prev_top_dists, top_dists)) - all_indexes = np.concatenate((prev_to_indexes, top_indexes)) - if k == np.inf: - return all_dists, all_indexes - else: - idx = np.argsort(all_dists)[:k] - return all_dists[idx], all_indexes[idx] - - -@njit(cache=True, fastmath=True) -def _update_dot_products_one_series( - X, - T, - XT_products, - L, - i_query, -): - """ - Update dot products of the i-th query of size L in T from the dot products of i-1. - - Parameters - ---------- - X: np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - Input time series on which the sliding dot product is computed. - T: np.ndarray, 2D array of shape (n_channels, series_length) - The series used for similarity search. Note that series_length can be equal, - superior or inferior to n_timepoints, it doesn't matter. - L : int - The length of the subsequences considered during the search. This parameter - cannot be larger than n_timepoints and series_length. - i_query : int - Query starting index in T. - - Returns - ------- - XT_products : np.ndarray of shape (n_cases, n_channels, n_timepoints - L + 1) - Sliding dot product between the i-th subsequence of size L in T and X. - - """ - n_channels = T.shape[0] - Q = T[:, i_query : i_query + L] - n_candidates = X.shape[1] - L + 1 - - for i_ft in range(n_channels): - # first element of all 0 to n-1 candidates * first element of previous query - _a1 = X[i_ft, : n_candidates - 1] * T[i_ft, i_query - 1] - # last element of all 1 to n candidates * last element of current query - _a2 = X[i_ft, L : L - 1 + n_candidates] * T[i_ft, i_query + L - 1] - - XT_products[i_ft, 1:] = XT_products[i_ft, :-1] - _a1 + _a2 - - # Compute first dot product - XT_products[i_ft, 0] = np.sum(Q[i_ft] * X[i_ft, :L]) - return XT_products diff --git a/aeon/similarity_search/matrix_profiles/tests/__init__.py b/aeon/similarity_search/matrix_profiles/tests/__init__.py deleted file mode 100644 index 3feb8d4ca5..0000000000 --- a/aeon/similarity_search/matrix_profiles/tests/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Tests for series methods.""" diff --git a/aeon/similarity_search/matrix_profiles/tests/test_stomp.py b/aeon/similarity_search/matrix_profiles/tests/test_stomp.py deleted file mode 100644 index ffcf7d0b6a..0000000000 --- a/aeon/similarity_search/matrix_profiles/tests/test_stomp.py +++ /dev/null @@ -1,205 +0,0 @@ -"""Tests for stomp algorithm.""" - -__maintainer__ = ["baraline"] - -import numpy as np -import pytest -from numba.typed import List -from numpy.testing import assert_almost_equal, assert_array_almost_equal, assert_equal - -from aeon.distances import get_distance_function -from aeon.similarity_search._commons import get_ith_products -from aeon.similarity_search.matrix_profiles.stomp import ( - _update_dot_products_one_series, - stomp_normalised_squared_matrix_profile, - stomp_squared_matrix_profile, -) -from aeon.utils.numba.general import sliding_mean_std_one_series - -DATATYPES = ["int64", "float64"] -K_VALUES = [1] - - -def test__update_dot_products_one_series(): - """Test the _update_dot_product function.""" - X = np.random.rand(1, 50) - T = np.random.rand(1, 25) - L = 10 - current_product = get_ith_products(X, T, L, 0) - for i_query in range(1, T.shape[1] - L + 1): - new_product = get_ith_products( - X, - T, - L, - i_query, - ) - current_product = _update_dot_products_one_series( - X, - T, - current_product, - L, - i_query, - ) - assert_array_almost_equal(new_product, current_product) - - -@pytest.mark.parametrize("dtype", DATATYPES) -@pytest.mark.parametrize("k", K_VALUES) -def test_stomp_squared_matrix_profile(dtype, k): - """Test stomp series search.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - - S = np.asarray([[3, 4, 5, 4, 3, 4, 5, 3, 2, 4, 5]], dtype=dtype) - L = 3 - mask = np.ones((X.shape[0], X.shape[2] - L + 1), dtype=bool) - distance = get_distance_function("squared") - mp, ip = stomp_squared_matrix_profile(X, S, L, mask, k=k) - for i in range(S.shape[-1] - L + 1): - q = S[:, i : i + L] - - expected = np.array( - [ - [distance(q, X[j, :, _i : _i + L]) for _i in range(X.shape[-1] - L + 1)] - for j in range(X.shape[0]) - ] - ) - id_bests = np.vstack( - np.unravel_index( - np.argsort(expected.ravel(), kind="stable"), expected.shape - ) - ).T - - for j in range(k): - assert_almost_equal(mp[i][j], expected[id_bests[j, 0], id_bests[j, 1]]) - assert_equal(ip[i][j], id_bests[j]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -@pytest.mark.parametrize("k", K_VALUES) -def test_stomp_normalised_squared_matrix_profile(dtype, k): - """Test stomp series search.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - - S = np.asarray([[3, 4, 5, 4, 3, 4, 5, 3, 2, 4, 5]], dtype=dtype) - L = 3 - mask = np.ones((X.shape[0], X.shape[2] - L + 1), dtype=bool) - distance = get_distance_function("squared") - X_means = [] - X_stds = [] - - for i in range(len(X)): - _mean, _std = sliding_mean_std_one_series(X[i], L, 1) - - X_stds.append(_std) - X_means.append(_mean) - X_means = np.asarray(X_means) - X_stds = np.asarray(X_stds) - - S_means, S_stds = sliding_mean_std_one_series(S, L, 1) - - mp, ip = stomp_normalised_squared_matrix_profile( - X, S, L, X_means, X_stds, S_means, S_stds, mask, k=k - ) - - for i in range(S.shape[-1] - L + 1): - q = (S[:, i : i + L] - S_means[:, i]) / S_stds[:, i] - - expected = np.array( - [ - [ - distance( - q, - (X[j, :, _i : _i + L] - X_means[j, :, _i]) / X_stds[j, :, _i], - ) - for _i in range(X.shape[-1] - L + 1) - ] - for j in range(X.shape[0]) - ] - ) - id_bests = np.vstack( - np.unravel_index(np.argsort(expected.ravel()), expected.shape) - ).T - - for j in range(k): - assert_almost_equal(mp[i][j], expected[id_bests[j, 0], id_bests[j, 1]]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_stomp_squared_matrix_profile_unequal_length(dtype): - """Test stomp with unequal length.""" - X = List( - [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6]], dtype=dtype), - ] - ) - L = 3 - mask = List( - [ - np.ones(X[0].shape[1] - L + 1, dtype=bool), - np.ones(X[1].shape[1] - L + 1, dtype=bool), - ] - ) - S = np.asarray([[3, 4, 5, 4, 3, 4, 5, 3, 2, 4, 5]], dtype=dtype) - - distance = get_distance_function("squared") - mp, ip = stomp_squared_matrix_profile(X, S, L, mask) - - for i in range(S.shape[-1] - L + 1): - q = S[:, i : i + L] - - expected = [ - [ - distance(q, X[j][:, _i : _i + q.shape[-1]]) - for _i in range(X[j].shape[-1] - q.shape[-1] + 1) - ] - for j in range(len(X)) - ] - assert_almost_equal(mp[i][0], np.concatenate(expected).min()) - - -@pytest.mark.parametrize("dtype", DATATYPES) -@pytest.mark.parametrize("k", K_VALUES) -def test_stomp_squared_matrix_profile_inverse(dtype, k): - """Test stomp series search for inverse distance.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - S = np.asarray([[3, 4, 5, 4, 3, 4, 5, 3, 2, 4, 5]], dtype=dtype) - L = 3 - mask = np.ones((X.shape[0], X.shape[2] - L + 1), dtype=bool) - distance = get_distance_function("squared") - mp, ip = stomp_squared_matrix_profile( - X, - S, - L, - mask, - k=k, - inverse_distance=True, - ) - - for i in range(S.shape[-1] - L + 1): - q = S[:, i : i + L] - - expected = np.array( - [ - [ - distance(q, X[j, :, _i : _i + q.shape[-1]]) - for _i in range(X.shape[-1] - q.shape[-1] + 1) - ] - for j in range(X.shape[0]) - ] - ) - expected += 1e-8 - expected = 1 / expected - id_bests = np.vstack( - np.unravel_index(np.argsort(expected.ravel()), expected.shape) - ).T - - for j in range(k): - assert_almost_equal(mp[i][j], expected[id_bests[j, 0], id_bests[j, 1]]) - assert_equal(ip[i][j], id_bests[j]) diff --git a/aeon/similarity_search/query_search.py b/aeon/similarity_search/query_search.py deleted file mode 100644 index 393439148d..0000000000 --- a/aeon/similarity_search/query_search.py +++ /dev/null @@ -1,428 +0,0 @@ -"""Base class for query search.""" - -__maintainer__ = ["baraline"] - -from typing import Optional, final - -import numpy as np -from numba import get_num_threads, set_num_threads - -from aeon.similarity_search._commons import ( - extract_top_k_and_threshold_from_distance_profiles, -) -from aeon.similarity_search.base import BaseSimilaritySearch -from aeon.similarity_search.distance_profiles.euclidean_distance_profile import ( - euclidean_distance_profile, - normalised_euclidean_distance_profile, -) -from aeon.similarity_search.distance_profiles.squared_distance_profile import ( - normalised_squared_distance_profile, - squared_distance_profile, -) - - -class QuerySearch(BaseSimilaritySearch): - """ - Query search estimator. - - The query search estimator will return a set of matches of a query in a search space - , which is defined by a time series dataset given during fit. Depending on the `k` - and/or `threshold` parameters, which condition what is considered a valid match - during the search, the number of matches will vary. If `k` is used, at most `k` - matches (the `k` best) will be returned, if `threshold` is used and `k` is set to - `np.inf`, all the candidates which distance to the query is inferior or equal to - `threshold` will be returned. If both are used, the `k` best matches to the query - with distance inferior to `threshold` will be returned. - - - Parameters - ---------- - k : int, default=1 - The number of best matches to return during predict for a given query. - threshold : float, default=np.inf - The number of best matches to return during predict for a given query. - distance : str, default="euclidean" - Name of the distance function to use. A list of valid strings can be found in - the documentation for :func:`aeon.distances.get_distance_function`. - If a callable is passed it must either be a python function or numba function - with nopython=True, that takes two 1d numpy arrays as input and returns a float. - distance_args : dict, default=None - Optional keyword arguments for the distance function. - normalise : bool, default=False - Whether the distance function should be z-normalised. - speed_up : str, default='fastest' - Which speed up technique to use with for the selected distance - function. By default, the fastest algorithm is used. A list of available - algorithm for each distance can be obtained by calling the - `get_speedup_function_names` function. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - n_jobs : int, default=1 - Number of parallel jobs to use. - store_distance_profiles : bool, default=False. - Whether to store the computed distance profiles in the attribute - "distance_profiles_" after calling the predict method. It will store the raw - distance profile, meaning without potential inversion or thresholding applied. - - Attributes - ---------- - X_ : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - The input time series stored during the fit method. This is the - database we search in when given a query. - distance_profile_function : function - The function used to compute the distance profile. This is determined - during the fit method based on the distance and normalise - parameters. - - Notes - ----- - For now, the multivariate case is only treated as independent. - Distances are computed for each channel independently and then - summed together. - """ - - def __init__( - self, - k: int = 1, - threshold: float = np.inf, - distance: str = "euclidean", - distance_args: Optional[dict] = None, - inverse_distance: bool = False, - normalise: bool = False, - speed_up: str = "fastest", - n_jobs: int = 1, - store_distance_profiles: bool = False, - ): - self.k = k - self.threshold = threshold - self.store_distance_profiles = store_distance_profiles - self._previous_query_length = -1 - self.axis = 1 - - super().__init__( - distance=distance, - distance_args=distance_args, - inverse_distance=inverse_distance, - normalise=normalise, - speed_up=speed_up, - n_jobs=n_jobs, - ) - - def _fit(self, X: np.ndarray, y=None): - """ - Check input format and store it to be used as search space during predict. - - Parameters - ---------- - X : np.ndarray, 3D array of shape (n_cases, n_channels, n_timepoints) - Input array to used as database for the similarity search - y : optional - Not used. - - Raises - ------ - TypeError - If the input X array is not 3D raise an error. - - Returns - ------- - self - - """ - self.X_ = X - self.distance_profile_function_ = self._get_distance_profile_function() - return self - - @final - def predict( - self, - X: np.ndarray, - axis=1, - X_index=None, - exclusion_factor=2.0, - apply_exclusion_to_result=False, - ) -> np.ndarray: - """ - Predict method : Check the shape of X and call _predict to perform the search. - - If the distance profile function is normalised, it stores the mean and stds - from X and X_, with X_ the training data. - - Parameters - ---------- - X : np.ndarray, 2D array of shape (n_channels, query_length) - Input query used for similarity search. - axis : int - The time point axis of the input series if it is 2D. If ``axis==0``, it is - assumed each column is a time series and each row is a time point. i.e. the - shape of the data is ``(n_timepoints,n_channels)``. ``axis==1`` indicates - the time series are in rows, i.e. the shape of the data is - ``(n_channels,n_timepoints)``. - X_index : Iterable - An Interable (tuple, list, array) of length two used to specify the index of - the query X if it was extracted from the input data X given during the fit - method. Given the tuple (id_sample, id_timestamp), the similarity search - will define an exclusion zone around the X_index in order to avoid matching - X with itself. If None, it is considered that the query is not extracted - from X_. - exclusion_factor : float, default=2. - The factor to apply to the query length to define the exclusion zone. The - exclusion zone is define from - :math:`id_timestamp - query_length//exclusion_factor` to - :math:`id_timestamp + query_length//exclusion_factor`. This also applies to - the matching conditions defined by child classes. For example, with - TopKSimilaritySearch, the k best matches are also subject to the exclusion - zone, but with :math:`id_timestamp` the index of one of the k matches. - apply_exclusion_to_result : bool, default=False - Wheter to apply the exclusion factor to the output of the similarity search. - This means that two matches of the query from the same sample must be at - least spaced by +/- :math:`query_length//exclusion_factor`. - This can avoid pathological matching where, for example if we extract the - best two matches, there is a high chance that if the best match is located - at :math:`id_timestamp`, the second best match will be located at - :math:`id_timestamp` +/- 1, as they both share all their values except one. - - Raises - ------ - TypeError - If the input X array is not 2D raise an error. - ValueError - If the length of the query is greater - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(n_matches)``, contains the distance between - the query and its best matches in X_. The second array, of shape - ``(n_matches, 2)``, contains the indexes of these matches as - ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - self._check_is_fitted() - prev_threads = get_num_threads() - set_num_threads(self._n_jobs) - - query_dim, query_length = self._check_query_format(X, axis) - - mask = self._init_X_index_mask( - X_index, - query_length, - exclusion_factor=exclusion_factor, - ) - - if self.normalise: - self.query_means_ = np.mean(X, axis=-1) - self.query_stds_ = np.std(X, axis=-1) - if self._previous_query_length != query_length: - self._store_mean_std_from_inputs(query_length) - - if apply_exclusion_to_result: - exclusion_size = query_length // exclusion_factor - else: - exclusion_size = None - - self._previous_query_length = query_length - - X_preds = self._predict( - self._call_distance_profile(X, mask), - exclusion_size=exclusion_size, - ) - set_num_threads(prev_threads) - return X_preds - - def _predict( - self, distance_profiles: np.ndarray, exclusion_size: Optional[int] = None - ) -> np.ndarray: - """ - Private predict method for QuerySearch. - - It takes the distance profiles and apply the `k` and `threshold` conditions to - return the set of best matches. - - Parameters - ---------- - distance_profiles : np.ndarray, 2D array of shape (n_cases, n_timepoints - query_length + 1) # noqa: E501 - Precomputed distance profile. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestamp - exclusion_size` and - :math:`id_timestamp + exclusion_size` which cannot be returned - as best match if :math:`id_timestamp` was already selected. By default, - the value None means that this is not used. - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(n_matches)``, contains the distance between - the query and its best matches in X_. The second array, of shape - ``(n_matches, 2)``, contains the indexes of these matches as - ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - - """ - if self.store_distance_profiles: - self.distance_profiles_ = distance_profiles - # Define id sample and timestamp to not "loose" them due to concatenation - return extract_top_k_and_threshold_from_distance_profiles( - distance_profiles, - k=self.k, - threshold=self.threshold, - exclusion_size=exclusion_size, - inverse_distance=self.inverse_distance, - ) - - def _check_query_format(self, X, axis): - if axis not in [0, 1]: - raise ValueError("The axis argument is expected to be either 1 or 0") - if self.axis != axis: - X = X.T - if not isinstance(X, np.ndarray) or X.ndim != 2: - raise TypeError( - "Error, only supports 2D numpy for now. If the query X is univariate " - "do X = X[np.newaxis, :]." - ) - - query_dim, query_length = X.shape - if query_length >= self.min_timepoints_: - raise ValueError( - "The length of the query should be inferior or equal to the length of " - "data (X_) provided during fit, but got {} for X and {} for X_".format( - query_length, self.min_timepoints_ - ) - ) - - if query_dim != self.n_channels_: - raise ValueError( - "The number of feature should be the same for the query X and the data " - "(X_) provided during fit, but got {} for X and {} for X_".format( - query_dim, self.n_channels_ - ) - ) - return query_dim, query_length - - def _get_distance_profile_function(self): - """ - Given distance and speed_up parameters, return the distance profile function. - - Raises - ------ - ValueError - If the distance parameter given at initialization is not a string nor a - numba function or a callable, or if the speedup parameter is unknow or - unsupported, raisea ValueError. - - Returns - ------- - function - The distance profile function matching the distance argument. - - """ - if isinstance(self.distance, str): - distance_dict = _QUERY_SEARCH_SPEED_UP_DICT.get(self.distance) - if distance_dict is None: - raise NotImplementedError( - f"No distance profile have been implemented for {self.distance}." - ) - else: - speed_up_profile = distance_dict.get(self.normalise).get(self.speed_up) - - if speed_up_profile is None: - raise ValueError( - f"Unknown or unsupported speed up {self.speed_up} for " - f"{self.distance} distance function with" - ) - self.speed_up_ = self.speed_up - return speed_up_profile - else: - raise ValueError( - f"Expected distance argument to be str but got {type(self.distance)}" - ) - - def _call_distance_profile(self, X: np.ndarray, mask: np.ndarray) -> np.ndarray: - """ - Obtain the distance profile function and call it with the query and the mask. - - Parameters - ---------- - X : np.ndarray, 2D array of shape (n_channels, query_length) - Input query used for similarity search. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - query_length + 1) - Boolean array which indicates the candidates that should be evaluated in - the similarity search. - - Returns - ------- - distance_profiles : np.ndarray, 2D array of shape (n_cases, n_timepoints - query_length + 1) # noqa: E501 - The distance profiles between the input time series and the query. - - """ - if self.normalise: - distance_profiles = self.distance_profile_function_( - self.X_, - X, - mask, - self.X_means_, - self.X_stds_, - self.query_means_, - self.query_stds_, - ) - else: - distance_profiles = self.distance_profile_function_(self.X_, X, mask) - - return distance_profiles - - @classmethod - def get_speedup_function_names(self) -> dict: - """ - Get available speedup for query search in aeon. - - The returned structure is a dictionnary that contains the names of all - avaialble speedups for normalised and non-normalised distance functions. - - Returns - ------- - dict - The available speedups name that can be used as parameters in - similarity search classes. - - """ - speedups = {} - for dist_name in _QUERY_SEARCH_SPEED_UP_DICT.keys(): - for normalise in _QUERY_SEARCH_SPEED_UP_DICT[dist_name].keys(): - speedups_names = list( - _QUERY_SEARCH_SPEED_UP_DICT[dist_name][normalise].keys() - ) - if normalise: - speedups.update({f"normalised {dist_name}": speedups_names}) - else: - speedups.update({f"{dist_name}": speedups_names}) - return speedups - - -_QUERY_SEARCH_SPEED_UP_DICT = { - "euclidean": { - True: { - "fastest": normalised_euclidean_distance_profile, - "Mueen": normalised_euclidean_distance_profile, - }, - False: { - "fastest": euclidean_distance_profile, - "Mueen": euclidean_distance_profile, - }, - }, - "squared": { - True: { - "fastest": normalised_squared_distance_profile, - "Mueen": normalised_squared_distance_profile, - }, - False: { - "fastest": squared_distance_profile, - "Mueen": squared_distance_profile, - }, - }, -} diff --git a/aeon/similarity_search/series/__init__.py b/aeon/similarity_search/series/__init__.py new file mode 100644 index 0000000000..6eb2c521be --- /dev/null +++ b/aeon/similarity_search/series/__init__.py @@ -0,0 +1,8 @@ +"""Similarity search for series.""" + +__all__ = ["BaseSeriesSimilaritySearch", "MassSNN", "StompMotif", "DummySNN"] + +from aeon.similarity_search.series._base import BaseSeriesSimilaritySearch +from aeon.similarity_search.series.motifs._stomp import StompMotif +from aeon.similarity_search.series.neighbors._dummy import DummySNN +from aeon.similarity_search.series.neighbors._mass import MassSNN diff --git a/aeon/similarity_search/series/_base.py b/aeon/similarity_search/series/_base.py new file mode 100644 index 0000000000..435715db69 --- /dev/null +++ b/aeon/similarity_search/series/_base.py @@ -0,0 +1,146 @@ +"""Base similiarity search for series.""" + +from abc import abstractmethod +from typing import final + +import numpy as np + +from aeon.base import BaseSeriesEstimator +from aeon.similarity_search._base import BaseSimilaritySearch + + +class BaseSeriesSimilaritySearch(BaseSeriesEstimator, BaseSimilaritySearch): + """Base class for similarity search applications on single series.""" + + _tags = { + "input_data_type": "Series", + "capability:multivariate": True, + } + + @abstractmethod + def __init__(self, axis=1): + super().__init__(axis=axis) + + @final + def fit( + self, + X: np.ndarray, + y=None, + ): + """ + Fit method: data preprocessing and storage. + + Parameters + ---------- + X : np.ndarray, 2D array of shape (n_channels, n_timepoints) + Input series to be used for the similarity search operations. + y : optional + Not used. + + Raises + ------ + TypeError + If the input X array is not 2D raise an error. + + Returns + ------- + self + """ + self.reset() + X = self._preprocess_series(X, self.axis, True) + # Store minimum number of n_timepoints for unequal length collections + self.n_channels_ = X.shape[0] + self.n_timepoints_ = X.shape[1] + self.X_ = X + self._fit(X, y=y) + self.is_fitted = True + return self + + @abstractmethod + def _fit( + self, + X: np.ndarray, + y=None, + ): ... + + @final + def predict(self, X=None, **kwargs): + """ + Predict function. + + Parameters + ---------- + X : np.ndarray, shape = (n_channels, n_tiempoints) + Series to predict on. + kwargs : dict, optional + Additional keyword argument as dict or individual keywords args + to pass to use. + + Returns + ------- + indexes : np.ndarray, shape = (k) + Indexes of series in the that are similar to X. + distances : np.ndarray, shape = (k) + Distance of the matches to each series + + """ + self._check_is_fitted() + if X is not None: + X = self._preprocess_series(X, self.axis, False) + self._check_predict_series_format(X) + else: + X = self.X_ + indexes, distances = self._predict(X, **kwargs) + return indexes, distances + + @abstractmethod + def _predict(self, X, **kwargs): ... + + def _check_X_index(self, X_index: int): + """ + Check wheter a X_index parameter is correctly formated and is admissible. + + Parameters + ---------- + X_index : int + Index of a timestamp in X_. + + """ + if X_index is not None: + if not isinstance(X_index, int): + raise TypeError("Expected an integer for X_index but got {X_index}") + + max_timepoints = self.n_timepoints_ + if hasattr(self, "length"): + max_timepoints -= self.length + if X_index >= max_timepoints or X_index < 0: + raise ValueError( + "The value of X_index cannot exced the number " + "of timepoint in series given during fit. Expected a value " + f"between [0, {max_timepoints - 1}] but got {X_index}" + ) + + def _check_predict_series_format(self, X): + """ + Check wheter a series X in predict is correctly formated. + + Parameters + ---------- + X : np.ndarray, shape = (n_channels, n_timepoints) + A series to be used in predict. + """ + if isinstance(X, np.ndarray): + if X.ndim != 2: + raise TypeError( + "A np.ndarray given in predict must be 2D" + f"(n_channels, n_timepoints) but found {X.ndim}D." + ) + else: + raise TypeError( + "Expected a 2D np.ndarray in predict but found" f" {type(X)}." + ) + if self.n_channels_ != X.shape[0]: + raise ValueError( + f"Expected X to have {self.n_channels_} channels but" + f" got {X.shape[0]} channels." + ) diff --git a/aeon/similarity_search/series/_commons.py b/aeon/similarity_search/series/_commons.py new file mode 100644 index 0000000000..8aa63826a8 --- /dev/null +++ b/aeon/similarity_search/series/_commons.py @@ -0,0 +1,221 @@ +"""Helper and common function for similarity search series estimators.""" + +__maintainer__ = ["baraline"] + +import numpy as np +from numba import njit +from scipy.signal import convolve + + +def fft_sliding_dot_product(X, q): + """ + Use FFT convolution to calculate the sliding window dot product. + + This function applies the Fast Fourier Transform (FFT) to efficiently compute + the sliding dot product between the input time series `X` and the query `q`. + The dot product is computed for each channel individually. The sliding window + approach ensures that the dot product is calculated for every possible subsequence + of `X` that matches the length of `q` + + Parameters + ---------- + X : array, shape=(n_channels, n_timepoints) + Input time series + q : array, shape=(n_channels, query_length) + Input query + + Returns + ------- + out : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) + Sliding dot product between q and X. + """ + n_channels, n_timepoints = X.shape + query_length = q.shape[1] + out = np.zeros((n_channels, n_timepoints - query_length + 1)) + for i in range(n_channels): + out[i, :] = convolve(np.flipud(q[i, :]), X[i, :], mode="valid").real + return out + + +def get_ith_products(X, T, L, ith): + """ + Compute dot products between X and the i-th subsequence of size L in T. + + Parameters + ---------- + X : array, shape = (n_channels, n_timepoints_X) + Input data. + T : array, shape = (n_channels, n_timepoints_T) + Data containing the query. + L : int + Overall query length. + ith : int + Query starting index in T. + + Returns + ------- + np.ndarray, 2D array of shape (n_channels, n_timepoints_X - L + 1) + Sliding dot product between the i-th subsequence of size L in T and X. + + """ + return fft_sliding_dot_product(X, T[:, ith : ith + L]) + + +@njit(cache=True, fastmath=True) +def _inverse_distance_profile(dist_profile): + return 1 / (dist_profile + 1e-8) + + +@njit(cache=True) +def _extract_top_k_from_dist_profile( + dist_profile, + k, + threshold, + allow_trivial_matches, + exclusion_size, +): + """ + Given a distance profiles, extract the top k lower distances. + + Parameters + ---------- + dist_profile : np.ndarray, shape = (n_timepoints - length + 1) + A distance profile of length ``n_timepoints - length + 1``, with + ``length`` the size of the query used to compute the distance profiles. + k : int + Number of best matches to return + threshold : float + A threshold on the distances of the best matches. To be returned, a candidate + must have a distance bellow this threshold. This can reduce the number of + returned matches to be bellow ``k`` + allow_trivial_matches : bool + Wheter to allow returning matches that are in the same neighborhood. + exclusion_size : int + The size of the exlusion size to apply when ``allow_trivial_matches`` is + False. It is applied on both side of existing matches (+/- their indexes). + + Returns + ------- + top_k_indexes : np.ndarray, shape = (k) + The indexes of the best matches in ``distance_profile``. + top_k_distances : np.ndarray, shape = (k) + The distances of the best matches. + + """ + top_k_indexes = np.zeros(k, dtype=np.int64) - 1 + top_k_distances = np.full(k, np.inf, dtype=np.float64) + ub = np.full(k, np.inf) + lb = np.full(k, -1.0) + # Could be optimized by using argpartition + sorted_indexes = np.argsort(dist_profile) + _current_k = 0 + if not allow_trivial_matches: + _current_j = 0 + # Until we extract k value or explore all the array or until dist is > threshold + while _current_k < k and _current_j < len(sorted_indexes): + # if we didn't insert anything or there is a conflict in lb/ub + if _current_k > 0 and np.any( + (sorted_indexes[_current_j] >= lb[:_current_k]) + & (sorted_indexes[_current_j] <= ub[:_current_k]) + ): + pass + else: + _idx = sorted_indexes[_current_j] + if dist_profile[_idx] <= threshold: + top_k_indexes[_current_k] = _idx + top_k_distances[_current_k] = dist_profile[_idx] + ub[_current_k] = min( + top_k_indexes[_current_k] + exclusion_size, + len(dist_profile), + ) + lb[_current_k] = max(top_k_indexes[_current_k] - exclusion_size, 0) + _current_k += 1 + else: + break + _current_j += 1 + else: + _current_k += min(k, len(dist_profile)) + dist_profile = dist_profile[sorted_indexes[:_current_k]] + dist_profile = dist_profile[dist_profile <= threshold] + _current_k = len(dist_profile) + + top_k_indexes[:_current_k] = sorted_indexes[:_current_k] + top_k_distances[:_current_k] = dist_profile[:_current_k] + + return top_k_indexes[:_current_k], top_k_distances[:_current_k] + + +# Could add aggregation function as parameter instead of just max +def _extract_top_k_motifs(MP, IP, k, allow_trivial_matches, exclusion_size): + criterion = np.zeros(len(MP)) + + for i in range(len(MP)): + if len(MP[i]) > 0: + criterion[i] = max(MP[i]) + else: + criterion[i] = np.inf + idx, _ = _extract_top_k_from_dist_profile( + criterion, k, np.inf, allow_trivial_matches, exclusion_size + ) + return [MP[i] for i in idx], [IP[i] for i in idx] + + +def _extract_top_r_motifs(MP, IP, k, allow_trivial_matches, exclusion_size): + criterion = np.zeros(len(MP)) + for i in range(len(MP)): + criterion[i] = len(MP[i]) + idx, _ = _extract_top_k_from_dist_profile( + _inverse_distance_profile(criterion), + k, + np.inf, + allow_trivial_matches, + exclusion_size, + ) + return [MP[i] for i in idx], [IP[i] for i in idx] + + +@njit(cache=True, fastmath=True) +def _update_dot_products( + X, + T, + XT_products, + L, + i_query, +): + """ + Update dot products of the i-th query of size L in T from the dot products of i-1. + + Parameters + ---------- + X: np.ndarray, 2D array of shape (n_channels, n_timepoints) + Input time series on which the sliding dot product is computed. + T: np.ndarray, 2D array of shape (n_channels, series_length) + The series used for similarity search. Note that series_length can be equal, + superior or inferior to n_timepoints, it doesn't matter. + L : int + The length of the subsequences considered during the search. This parameter + cannot be larger than n_timepoints and series_length. + i_query : int + Query starting index in T. + + Returns + ------- + XT_products : np.ndarray of shape (n_channels, n_timepoints - L + 1) + Sliding dot product between the i-th subsequence of size L in T and X. + + """ + n_channels = T.shape[0] + Q = T[:, i_query : i_query + L] + n_candidates = X.shape[1] - L + 1 + + for i_ft in range(n_channels): + # first element of all 0 to n-1 candidates * first element of previous query + _a1 = X[i_ft, : n_candidates - 1] * T[i_ft, i_query - 1] + # last element of all 1 to n candidates * last element of current query + _a2 = X[i_ft, L : L - 1 + n_candidates] * T[i_ft, i_query + L - 1] + + XT_products[i_ft, 1:] = XT_products[i_ft, :-1] - _a1 + _a2 + + # Compute first dot product + XT_products[i_ft, 0] = np.sum(Q[i_ft] * X[i_ft, :L]) + return XT_products diff --git a/aeon/similarity_search/series/motifs/__init__.py b/aeon/similarity_search/series/motifs/__init__.py new file mode 100644 index 0000000000..d4853a68fe --- /dev/null +++ b/aeon/similarity_search/series/motifs/__init__.py @@ -0,0 +1,7 @@ +"""Subsequence Neighbor search for series.""" + +__all__ = [ + "StompMotif", +] + +from aeon.similarity_search.series.motifs._stomp import StompMotif diff --git a/aeon/similarity_search/series/motifs/_stomp.py b/aeon/similarity_search/series/motifs/_stomp.py new file mode 100644 index 0000000000..b3b5fcd41f --- /dev/null +++ b/aeon/similarity_search/series/motifs/_stomp.py @@ -0,0 +1,498 @@ +"""Implementation of STOMP with squared euclidean distance.""" + +__maintainer__ = ["baraline"] +__all__ = ["StompMotif"] + +from typing import Optional + +import numpy as np +from numba import njit +from numba.typed import List + +from aeon.similarity_search.series._base import BaseSeriesSimilaritySearch +from aeon.similarity_search.series._commons import ( + _extract_top_k_from_dist_profile, + _extract_top_k_motifs, + _extract_top_r_motifs, + _inverse_distance_profile, + _update_dot_products, + get_ith_products, +) +from aeon.similarity_search.series.neighbors._mass import ( + _normalized_squared_distance_profile, + _squared_distance_profile, +) +from aeon.utils.numba.general import sliding_mean_std_one_series + + +class StompMotif(BaseSeriesSimilaritySearch): + """ + Estimator to extract top k motifs using STOMP, descibed in [1]_. + + This estimators allows to perform multiple type of motif search operations by using + different parameterization. We base oursleves on Figure 3 of [2]_ to establish the + following list, but modify the confusing naming for some of them. We do not yet + support "Learning" and "Valmod" motifs : + + - for "Pair Motifs" : This is the default configuration: { + "motif_size": 1, + } + + - for "k-motifs" : the extension of pair motifs: { + "motif_size": k, + } + + - for "r-motifs" (originaly named k-motifs, which was confusing as it is a range + based motif): { + "motif_size":np.inf, + "dist_threshold":r, + "motif_extraction_method":"r_motifs" + } + + Parameters + ---------- + length : int + The length of the motifs to extract. This is the length of the subsequence + that will be used in the computations. + normalize : bool + Wheter the computations between subsequences should use a z-normalied distance. + + Notes + ----- + This estimator only provide exact computation method, faster approximate methods + also exists in the litterature. We use a squared euclidean distance instead of the + euclidean distance, if you want euclidean distance results, you should square root + the obtained results. + + References + ---------- + .. [1] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael + Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk, and Eamonn Keogh. 2016. + Matrix profile II: Exploiting a novel algorithm and GPUs to break the one hundred + million barrier for time series motifs and joins. In 2016 IEEE 16th international + conference on data mining (ICDM). IEEE, 739–748. + .. [2] Patrick Schäfer and Ulf Leser. 2022. Motiflets: Simple and Accurate Detection + of Motifs in Time Series. Proc. VLDB Endow. 16, 4 (December 2022), 725–737. + https://doi.org/10.14778/3574245.3574257 + """ + + def __init__( + self, + length: int, + normalize: Optional[bool] = False, + ): + self.normalize = normalize + self.length = length + super().__init__() + + def _fit( + self, + X: np.ndarray, + y=None, + ): + if self.normalize: + self.X_means_, self.X_stds_ = sliding_mean_std_one_series(X, self.length, 1) + return self + + def _predict( + self, + X: np.ndarray = None, + k: Optional[int] = 1, + motif_size: Optional[int] = 1, + dist_threshold: Optional[float] = np.inf, + allow_trivial_matches: Optional[bool] = False, + exclusion_factor: Optional[float] = 2, + inverse_distance: Optional[bool] = False, + motif_extraction_method: Optional[str] = "k_motifs", + ): + """ + Exctract the motifs of X_ relative to a series X using STOMP matrix prfoile. + + To compute self-motifs, X is set to None. + + Parameters + ---------- + X : np.ndarray, shape=(n_channels, n_timepoint) + Series to use to compute the matrix profile against X_. If None, will + compute the self matrix profile of X_. Motifs will then be extracted from + the matrix profile. + k : int + The number of motifs to return. The default is 1, meaning we return only + the motif set with the minimal sum of distances to its query. + motif_size : int + The number of subsequences in a motif. Default is 1, meaning we extract + motif pairs (the query and its best match) + dist_threshold : float + The maximum allowed distance of a candidate subsequence of X to a query + subsequence from X_ for the candidate to be considered as a neighbor. + allow_trivial_matches: bool, optional + Wheter a neighbors of a match to a query can be also considered as matches + (True), or if an exclusion zone is applied around each match to avoid + trivial matches with their direct neighbors (False). + exclusion_factor : float, default=1. + A factor of the query length used to define the exclusion zone when + ``allow_trivial_matches`` is set to False. For a given timestamp, + the exclusion zone starts from + :math:`id_timestamp - length//exclusion_factor` and end at + :math:`id_timestamp + length//exclusion_factor`. + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, + the farther neighbors will be returned instead of the closest ones. + motif_extraction_method : str + A string indicating the methodology to use to extract the top motifs. + Available methods are "r_motifs" and "k_motifs". "r_motifs" means we rank + motif set by their cardinality, with higher is better. "k_motifs" means + we rank motif set by their maximum distance to their query + + Returns + ------- + np.ndarray, shape = (k, motif_size) + The indexes of the best matches in ``distance_profile``. + np.ndarray, shape = (k, motif_size) + The distances of the best matches. + + """ + if motif_extraction_method not in ["k_motifs", "r_motifs"]: + raise ValueError( + "Expected motif_extraction_method to be either 'k_motifs' or 'r_motifs'" + f"but got {motif_extraction_method}" + ) + + MP, IP = self.compute_matrix_profile( + X, + motif_size=motif_size, + dist_threshold=dist_threshold, + allow_trivial_matches=allow_trivial_matches, + exclusion_factor=exclusion_factor, + inverse_distance=inverse_distance, + ) + if motif_extraction_method == "k_motifs": + return _extract_top_k_motifs( + MP, IP, k, allow_trivial_matches, self.length // exclusion_factor + ) + elif motif_extraction_method == "r_motifs": + return _extract_top_r_motifs( + MP, IP, k, allow_trivial_matches, self.length // exclusion_factor + ) + + def compute_matrix_profile( + self, + X: np.ndarray = None, + motif_size: Optional[int] = 1, + dist_threshold: Optional[float] = np.inf, + allow_trivial_matches: Optional[bool] = False, + exclusion_factor: Optional[float] = 2, + inverse_distance: Optional[bool] = False, + ): + """ + Compute matrix profile. + + The matrix profile is computed on the series given in fit (X_). If X is + not given, computes the self matrix profile of X_. Otherwise, compute the matrix + profile of X_ relative to X. + + Parameters + ---------- + X : np.ndarray, shape = (n_channels, n_timepoints) + A 2D array time series on against which the matrix profile of X_ will be + computed. + motif_size : int + The number of subsequences in a motif. Default is 1, meaning we extract + motif pairs (the query and its best match). + dist_threshold : float + The maximum allowed distance of a candidate subsequence of X to a query + subsequence from X_ for the candidate to be considered as a neighbor. + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, + the worst matches to the query will be returned instead of the best ones. + exclusion_factor : float, default=1. + A factor of the query length used to define the exclusion zone when + ``allow_trivial_matches`` is set to False. For a given timestamp, + the exclusion zone starts from + :math:`id_timestamp - length//exclusion_factor` and end at + :math:`id_timestamp + length//exclusion_factor`. + + Returns + ------- + MP : TypedList of np.ndarray (n_timepoints - L + 1) + Matrix profile distances for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + IP : TypedList of np.ndarray (n_timepoints - L + 1) + Indexes of the top matches for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + """ + if X is None: + is_self_mp = True + X = self.X_ + if self.normalize: + X_means, X_stds = self.X_means_, self.X_stds_ + else: + is_self_mp = False + if self.normalize: + X_means, X_stds = sliding_mean_std_one_series(X, self.length, 1) + X_dotX = get_ith_products(X, self.X_, self.length, 0) + exclusion_size = self.length // exclusion_factor + + if motif_size == np.inf: + # convert infs here as numba seem to not be able to do == np.inf ? + motif_size = X.shape[1] - self.length + 1 + + if self.normalize: + MP, IP = _stomp_normalized( + self.X_, + X, + X_dotX, + self.X_means_, + self.X_stds_, + X_means, + X_stds, + self.length, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + is_self_mp, + ) + else: + MP, IP = _stomp( + self.X_, + X, + X_dotX, + self.length, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + is_self_mp, + ) + return MP, IP + + @classmethod + def _get_test_params(cls, parameter_set: str = "default"): + """Return testing parameter settings for the estimator. + + Parameters + ---------- + parameter_set : str, default="default" + Name of the set of test parameters to return, for use in tests. If no + special parameters are defined for a value, will return `"default"` set. + There are currently no reserved values for transformers. + + Returns + ------- + params : dict or list of dict, default = {} + Parameters to create testing instances of the class + Each dict are parameters to construct an "interesting" test instance, i.e., + `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance. + """ + if parameter_set == "default": + params = {"length": 3} + else: + raise NotImplementedError( + f"The parameter set {parameter_set} is not yet implemented" + ) + return params + + +@njit(cache=True, fastmath=True) +def _stomp_normalized( + X_A, + X_B, + AdotB, + X_A_means, + X_A_stds, + X_B_means, + X_B_stds, + L, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + is_self_mp, +): + """ + Compute the Matrix Profile using the STOMP algorithm with normalized distances. + + X_A : np.ndarray, 2D array of shape (n_channels, n_timepoints) + The series from which the queries will be extracted. + X_B : np.ndarray, 2D array of shape (n_channels, series_length) + The time series on which the distance profile of each query will be computed. + AdotB : np.ndarray, 2D array of shape (n_channels, series_length - L + 1) + Precomputed dot products between the first query of size L of X_A and X_B. + X_A_means : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) + Means of each subsequences of X_A of size L. + X_A_stds : np.ndarray, 2D array of shape (n_channels, n_timepoints - L + 1) + Stds of each subsequences of X of size L. + X_B_means : np.ndarray, 2D array of shape (n_channels, series_length - L + 1) + Means of each subsequences of X_B of size L. + X_B_stds : np.ndarray, 2D array of shape (n_channels, series_length - L + 1) + Stds of each subsequences of X_B of size L. + L : int + Length of the subsequences used for the distance computation. + motif_size : int + The number of subsequences to extract from each distance profile. + dist_threshold : float + The maximum allowed distance of a candidate subsequence of X to a query + subsequence from X_ for the candidate to be considered as a neighbor. + allow_trivial_matches : bool + Wheter the top-k candidates can be neighboring subsequences. + exclusion_size : int + The size of the exclusion zone used to prevent returning as top k candidates + the ones that are close to each other (for example i and i+1). + It is used to define a region between + :math:`id_timestamp - exclusion_size` and + :math:`id_timestamp + exclusion_size` which cannot be returned + as best match if :math:`id_timestamp` was already selected. By default, + the value None means that this is not used. + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, the + worst matches to the query will be returned instead of the best ones. + is_self_mp : bool + Wheter X_A == X_B. + + Returns + ------- + MP : TypedList of np.ndarray (n_timepoints - L + 1) + Matrix profile distances for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + IP : TypedList of np.ndarray (n_timepoints - L + 1) + Indexes of the top matches for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + """ + n_queries = X_A.shape[1] - L + 1 + _max_timestamp = X_B.shape[1] - L + 1 + MP = List() + IP = List() + + for i_q in range(n_queries): + # size T.shape[1] - L + 1 + dist_profile = _normalized_squared_distance_profile( + AdotB, X_B_means, X_B_stds, X_A_means[:, i_q], X_A_stds[:, i_q], L + ) + + if i_q + 1 < n_queries: + AdotB = _update_dot_products(X_B, X_A, AdotB, L, i_q + 1) + + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + + if is_self_mp: + ub = min(i_q + exclusion_size, _max_timestamp + 1) + lb = max(0, i_q - exclusion_size) + dist_profile[lb:ub] = np.inf + + _top_indexes, top_dists = _extract_top_k_from_dist_profile( + dist_profile, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + ) + top_indexes = np.zeros((len(_top_indexes), 2), dtype=np.int64) + for i_idx in range(len(_top_indexes)): + top_indexes[i_idx, 0] = i_q + top_indexes[i_idx, 1] = _top_indexes[i_idx] + MP.append(top_dists) + IP.append(top_indexes) + + return MP, IP + + +@njit(cache=True, fastmath=True) +def _stomp( + X_A, + X_B, + AdotB, + L, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + is_self_mp, +): + """ + Compute the Matrix Profile using the STOMP algorithm with non-normalized distances. + + X_A : np.ndarray, 2D array of shape (n_channels, n_timepoints) + The series from which the queries will be extracted. + X_B : np.ndarray, 2D array of shape (n_channels, series_length) + The time series on which the distance profile of each query will be computed. + AdotB : np.ndarray, 2D array of shape (n_channels, series_length - L + 1) + Precomputed dot products between the first query of size L of X_A and X_B. + L : int + Length of the subsequences used for the distance computation. + motif_size : int + The number of subsequences to extract from each distance profile. + dist_threshold : float + The maximum allowed distance of a candidate subsequence of X to a query + subsequence from X_ for the candidate to be considered as a neighbor. + allow_trivial_matches : bool + Wheter the top-k candidates can be neighboring subsequences. + exclusion_size : int + The size of the exclusion zone used to prevent returning as top k candidates + the ones that are close to each other (for example i and i+1). + It is used to define a region between + :math:`id_timestamp - exclusion_size` and + :math:`id_timestamp + exclusion_size` which cannot be returned + as best match if :math:`id_timestamp` was already selected. By default, + the value None means that this is not used. + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, the + worst matches to the query will be returned instead of the best ones. + is_self_mp : bool + Wheter X_A == X_B. + + Returns + ------- + MP : TypedList of np.ndarray (n_timepoints - L + 1) + Matrix profile distances for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + IP : TypedList of np.ndarray (n_timepoints - L + 1) + Indexes of the top matches for each query subsequence. n_timepoints is the + number of timepoint of X_. Each element of the list contains array of + variable size. + """ + n_queries = X_A.shape[1] - L + 1 + _max_timestamp = X_B.shape[1] - L + 1 + MP = List() + IP = List() + + # For each query of size L in X_A + for i_q in range(n_queries): + Q = X_A[:, i_q : i_q + L] + dist_profile = _squared_distance_profile(AdotB, X_B, Q) + if i_q + 1 < n_queries: + AdotB = _update_dot_products(X_B, X_A, AdotB, L, i_q + 1) + + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + + if is_self_mp: + ub = min(i_q + exclusion_size, _max_timestamp + 1) + lb = max(0, i_q - exclusion_size) + dist_profile[lb:ub] = np.inf + + _top_indexes, top_dists = _extract_top_k_from_dist_profile( + dist_profile, + motif_size, + dist_threshold, + allow_trivial_matches, + exclusion_size, + ) + top_indexes = np.zeros((len(_top_indexes), 2), dtype=np.int64) + for i_idx in range(len(_top_indexes)): + top_indexes[i_idx, 0] = i_q + top_indexes[i_idx, 1] = _top_indexes[i_idx] + MP.append(top_dists) + IP.append(top_indexes) + + return MP, IP diff --git a/aeon/similarity_search/series/motifs/tests/__init__.py b/aeon/similarity_search/series/motifs/tests/__init__.py new file mode 100644 index 0000000000..d0d8f2c42c --- /dev/null +++ b/aeon/similarity_search/series/motifs/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for series motif search methods.""" diff --git a/aeon/similarity_search/series/motifs/tests/test_stomp.py b/aeon/similarity_search/series/motifs/tests/test_stomp.py new file mode 100644 index 0000000000..67ff930de1 --- /dev/null +++ b/aeon/similarity_search/series/motifs/tests/test_stomp.py @@ -0,0 +1,149 @@ +""" +Tests for stomp algorithm. + +We do not test equality for returned indexes due to the unstable nature of argsort +and the fact that the "kind=stable" parameter is not yet supported in numba. We instead +test that the returned index match the expected distance value. +""" + +__maintainer__ = ["baraline"] + +import numpy as np +import pytest +from numpy.testing import assert_almost_equal, assert_array_almost_equal + +from aeon.similarity_search.series._commons import ( + _extract_top_k_from_dist_profile, + _inverse_distance_profile, + get_ith_products, +) +from aeon.similarity_search.series.motifs._stomp import _stomp, _stomp_normalized +from aeon.similarity_search.series.neighbors._dummy import ( + _naive_squared_distance_profile, +) +from aeon.testing.data_generation import make_example_2d_numpy_series +from aeon.utils.numba.general import ( + get_all_subsequences, + sliding_mean_std_one_series, + z_normalise_series_3d, +) + +MOTIFS_SIZE_VALUES = [1, 3] +THRESHOLD = [np.inf, 0.75] +THRESHOLD_NORM = [np.inf, 4.5] +NN_MATCHES = [True, False] +INVERSE = [True, False] + + +@pytest.mark.parametrize("motif_size", MOTIFS_SIZE_VALUES) +@pytest.mark.parametrize("threshold", THRESHOLD) +@pytest.mark.parametrize("allow_trivial_matches", NN_MATCHES) +@pytest.mark.parametrize("inverse_distance", INVERSE) +def test__stomp(motif_size, threshold, allow_trivial_matches, inverse_distance): + """Test STOMP method.""" + L = 3 + + X_A = make_example_2d_numpy_series( + n_channels=2, + n_timepoints=10, + ) + X_B = make_example_2d_numpy_series(n_channels=2, n_timepoints=10) + AdotB = get_ith_products(X_B, X_A, L, 0) + + exclusion_size = L + # MP : distances to best matches for each query + # IP : Indexes of best matches for each query + MP, IP = _stomp( + X_A, + X_B, + AdotB, + L, + motif_size, + threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + False, + ) + # For each query of size L in T + X_B_subs = get_all_subsequences(X_B, L, 1) + X_A_subs = get_all_subsequences(X_A, L, 1) + for i in range(X_A.shape[1] - L + 1): + dist_profile = _naive_squared_distance_profile(X_B_subs, X_A_subs[i]) + # Check that the top matches extracted have the same value that the + # top matches in the distance profile + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + + top_k_indexes, top_k_distances = _extract_top_k_from_dist_profile( + dist_profile, motif_size, threshold, allow_trivial_matches, exclusion_size + ) + # Check that the top matches extracted have the same value that the + # top matches in the distance profile + assert_array_almost_equal(MP[i], top_k_distances) + + # Check that the index in IP correspond to a distance profile point + # with value equal to the corresponding MP point. + for j, index in enumerate(top_k_indexes): + assert_almost_equal(MP[i][j], dist_profile[index]) + + +@pytest.mark.parametrize("motif_size", MOTIFS_SIZE_VALUES) +@pytest.mark.parametrize("threshold", THRESHOLD_NORM) +@pytest.mark.parametrize("allow_trivial_matches", NN_MATCHES) +@pytest.mark.parametrize("inverse_distance", INVERSE) +def test__stomp_normalised( + motif_size, threshold, allow_trivial_matches, inverse_distance +): + """Test STOMP normalised method.""" + L = 3 + + X_A = make_example_2d_numpy_series( + n_channels=2, + n_timepoints=10, + ) + X_B = make_example_2d_numpy_series(n_channels=2, n_timepoints=10) + X_A_means, X_A_stds = sliding_mean_std_one_series(X_A, L, 1) + X_B_means, X_B_stds = sliding_mean_std_one_series(X_B, L, 1) + AdotB = get_ith_products(X_B, X_A, L, 0) + + exclusion_size = L + # MP : distances to best matches for each query + # IP : Indexes of best matches for each query + MP, IP = _stomp_normalized( + X_A, + X_B, + AdotB, + X_A_means, + X_A_stds, + X_B_means, + X_B_stds, + L, + motif_size, + threshold, + allow_trivial_matches, + exclusion_size, + inverse_distance, + False, + ) + # For each query of size L in T + X_B_subs = z_normalise_series_3d(get_all_subsequences(X_B, L, 1)) + X_A_subs = z_normalise_series_3d(get_all_subsequences(X_A, L, 1)) + for i in range(X_A.shape[1] - L + 1): + dist_profile = _naive_squared_distance_profile(X_B_subs, X_A_subs[i]) + # Check that the top matches extracted have the same value that the + # top matches in the distance profile + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + top_k_indexes, top_k_distances = _extract_top_k_from_dist_profile( + dist_profile, motif_size, threshold, allow_trivial_matches, exclusion_size + ) + + # Check that the top matches extracted have the same value that the + # top matches in the distance profile + assert_array_almost_equal(MP[i], top_k_distances) + + # Check that the index in IP correspond to a distance profile point + # with value equal to the corresponding MP point. + for j, index in enumerate(top_k_indexes): + assert_almost_equal(MP[i][j], dist_profile[index]) diff --git a/aeon/similarity_search/series/neighbors/__init__.py b/aeon/similarity_search/series/neighbors/__init__.py new file mode 100644 index 0000000000..047bfbe9c4 --- /dev/null +++ b/aeon/similarity_search/series/neighbors/__init__.py @@ -0,0 +1,9 @@ +"""Subsequence Neighbor search for series.""" + +__all__ = [ + "DummySNN", + "MassSNN", +] + +from aeon.similarity_search.series.neighbors._dummy import DummySNN +from aeon.similarity_search.series.neighbors._mass import MassSNN diff --git a/aeon/similarity_search/series/neighbors/_dummy.py b/aeon/similarity_search/series/neighbors/_dummy.py new file mode 100644 index 0000000000..5ca1bb5c85 --- /dev/null +++ b/aeon/similarity_search/series/neighbors/_dummy.py @@ -0,0 +1,207 @@ +"""Implementation of NN with brute force.""" + +from typing import Optional + +__maintainer__ = ["baraline"] +__all__ = ["DummySNN"] + +import numpy as np +from numba import get_num_threads, njit, prange, set_num_threads + +from aeon.similarity_search.series._base import BaseSeriesSimilaritySearch +from aeon.similarity_search.series._commons import ( + _extract_top_k_from_dist_profile, + _inverse_distance_profile, +) +from aeon.utils.numba.general import ( + get_all_subsequences, + z_normalise_series_2d, + z_normalise_series_3d, +) +from aeon.utils.validation import check_n_jobs + + +class DummySNN(BaseSeriesSimilaritySearch): + """Estimator to compute the on profile and distance profile using brute force.""" + + _tags = {"capability:multithreading": True} + + def __init__( + self, + length: int, + normalize: Optional[bool] = False, + n_jobs: Optional[int] = 1, + ): + self.normalize = normalize + self.n_jobs = n_jobs + self.length = length + super().__init__() + + def _fit( + self, + X: np.ndarray, + y=None, + ): + prev_threads = get_num_threads() + + set_num_threads(check_n_jobs(self.n_jobs)) + + self.X_subs = get_all_subsequences(self.X_, self.length, 1) + if self.normalize: + self.X_subs = z_normalise_series_3d(self.X_subs) + set_num_threads(prev_threads) + return self + + def _predict( + self, + X: np.ndarray, + k: Optional[int] = 1, + dist_threshold: Optional[float] = np.inf, + exclusion_factor: Optional[float] = 2, + inverse_distance: Optional[bool] = False, + allow_neighboring_matches: Optional[bool] = False, + X_index: Optional[int] = None, + ): + """ + Compute nearest neighbors to X in subsequences of X_. + + Parameters + ---------- + X : np.ndarray, shape=(n_channels, length) + Subsequence we want to find neighbors for. + k : int + The number of neighbors to return. + dist_threshold : float + The maximum distance of neighbors to X. + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, + the farther neighbors will be returned instead of the closest ones. + exclusion_factor : float, default=1. + A factor of the query length used to define the exclusion zone when + ``allow_neighboring_matches`` is set to False. For a given timestamp, + the exclusion zone starts from + :math:`id_timestamp - length//exclusion_factor` and end at + :math:`id_timestamp + length//exclusion_factor`. + X_index : int, optional + If ``X`` is a subsequence of X_, specify its starting timestamp in ``X_``. + If specified, neighboring subsequences of X won't be able to match as + neighbors. + + Returns + ------- + np.ndarray, shape = (k) + The indexes of the best matches in ``distance_profile``. + np.ndarray, shape = (k) + The distances of the best matches. + + """ + if X.shape[1] != self.length: + raise ValueError( + f"Expected X to have {self.length} timepoints but" + f" got {X.shape[1]} timepoints." + ) + + X_index = self._check_X_index(X_index) + dist_profile = self.compute_distance_profile(X) + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + + exclusion_size = self.length // exclusion_factor + if X_index is not None: + exclusion_size = self.length // exclusion_factor + _max_timestamp = self.n_timepoints_ - self.length + ub = min(X_index + exclusion_size, _max_timestamp) + lb = max(0, X_index - exclusion_size) + dist_profile[lb:ub] = np.inf + + if k == np.inf: + k = len(dist_profile) + + return _extract_top_k_from_dist_profile( + dist_profile, + k, + dist_threshold, + allow_neighboring_matches, + exclusion_size, + ) + + def compute_distance_profile(self, X: np.ndarray): + """ + Compute the distance profile of X to all samples in X_. + + Parameters + ---------- + X : np.ndarray, 2D array of shape (n_channels, length) + The query to use to compute the distance profiles. + + Returns + ------- + distance_profile : np.ndarray, 1D array of shape (n_candidates) + The distance profile of X to X_. The ``n_candidates`` value + is equal to ``n_timepoins - length + 1``, with ``n_timepoints`` the + length of X_. + + """ + prev_threads = get_num_threads() + set_num_threads(check_n_jobs(self.n_jobs)) + if self.normalize: + X = z_normalise_series_2d(X) + distance_profile = _naive_squared_distance_profile(self.X_subs, X) + set_num_threads(prev_threads) + return distance_profile + + @classmethod + def _get_test_params(cls, parameter_set: str = "default"): + """Return testing parameter settings for the estimator. + + Parameters + ---------- + parameter_set : str, default="default" + Name of the set of test parameters to return, for use in tests. If no + special parameters are defined for a value, will return `"default"` set. + There are currently no reserved values for transformers. + + Returns + ------- + params : dict or list of dict, default = {} + Parameters to create testing instances of the class + Each dict are parameters to construct an "interesting" test instance, i.e., + `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance. + """ + if parameter_set == "default": + params = {"length": 20} + else: + raise NotImplementedError( + f"The parameter set {parameter_set} is not yet implemented" + ) + return params + + +@njit(cache=True, fastmath=True, parallel=True) +def _naive_squared_distance_profile( + X_subs, + Q, +): + """ + Compute a squared euclidean distance profile. + + Parameters + ---------- + X_subs : array, shape=(n_subsequences, n_channels, length) + Subsequences of size length of the input time series to search in. + Q : array, shape=(n_channels, query_length) + Query used during the search. + + Returns + ------- + out : np.ndarray, 1D array of shape (n_samples, n_timepoints_t - query_length + 1) + The distance between the query and all candidates in X. + + """ + n_subs, n_channels, length = X_subs.shape + dist_profile = np.zeros(n_subs) + for i in prange(n_subs): + for j in range(n_channels): + for k in range(length): + dist_profile[i] += (X_subs[i, j, k] - Q[j, k]) ** 2 + return dist_profile diff --git a/aeon/similarity_search/series/neighbors/_mass.py b/aeon/similarity_search/series/neighbors/_mass.py new file mode 100644 index 0000000000..7d052d9d89 --- /dev/null +++ b/aeon/similarity_search/series/neighbors/_mass.py @@ -0,0 +1,295 @@ +"""Implementation of NN with MASS.""" + +from typing import Optional + +__maintainer__ = ["baraline"] +__all__ = ["MassSNN"] + +import numpy as np +from numba import njit, prange + +from aeon.similarity_search.series._base import BaseSeriesSimilaritySearch +from aeon.similarity_search.series._commons import ( + _extract_top_k_from_dist_profile, + _inverse_distance_profile, + fft_sliding_dot_product, +) +from aeon.utils.numba.general import ( + AEON_NUMBA_STD_THRESHOLD, + sliding_mean_std_one_series, +) + + +class MassSNN(BaseSeriesSimilaritySearch): + """ + Estimator to compute the subsequences nearest neighbors using MASS _[1]. + + Parameters + ---------- + length : int + The length of the subsequences to use for the search. + normalize : bool + Wheter the subsequences should be z-normalized. + + References + ---------- + .. [1] Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy + Viswanathan, Chetan Kumar Gupta and Eamonn Keogh (2015), The Fastest Similarity + Search Algorithm for Time Series Subsequences under Euclidean Distance. + """ + + def __init__( + self, + length: int, + normalize: Optional[bool] = False, + ): + self.normalize = normalize + self.length = length + super().__init__() + + def _fit( + self, + X: np.ndarray, + y=None, + ): + if self.normalize: + self.X_means_, self.X_stds_ = sliding_mean_std_one_series(X, self.length, 1) + return self + + def _predict( + self, + X: np.ndarray, + k: Optional[int] = 1, + dist_threshold: Optional[float] = np.inf, + allow_trivial_matches: Optional[bool] = False, + exclusion_factor: Optional[float] = 2, + inverse_distance: Optional[bool] = False, + X_index: Optional[int] = None, + ): + """ + Compute nearest neighbors to X in subsequences of X_. + + Parameters + ---------- + X : np.ndarray, shape=(n_channels, length) + Subsequence we want to find neighbors for. + k : int + The number of neighbors to return. + dist_threshold : float + The maximum allowed distance of a candidate subsequence of X_ to X + for the candidate to be considered as a neighbor. + allow_trivial_matches: bool, optional + Wheter a neighbors of a match to a query can be also considered as matches + (True), or if an exclusion zone is applied around each match to avoid + trivial matches with their direct neighbors (False). + inverse_distance : bool + If True, the matching will be made on the inverse of the distance, and thus, + the farther neighbors will be returned instead of the closest ones. + exclusion_factor : float, default=1. + A factor of the query length used to define the exclusion zone when + ``allow_trivial_matches`` is set to False. For a given timestamp, + the exclusion zone starts from + :math:`id_timestamp - length//exclusion_factor` and end at + :math:`id_timestamp + length//exclusion_factor`. + X_index : int, optional + If ``X`` is a subsequence of X_, specify its starting timestamp in ``X_``. + If specified, neighboring subsequences of X won't be able to match as + neighbors. + + Returns + ------- + np.ndarray, shape = (k) + The indexes of the best matches in ``distance_profile``. + np.ndarray, shape = (k) + The distances of the best matches. + + """ + if X.shape[1] != self.length: + raise ValueError( + f"Expected X to have {self.length} timepoints but" + f" got {X.shape[1]} timepoints." + ) + X_index = self._check_X_index(X_index) + dist_profile = self.compute_distance_profile(X) + if inverse_distance: + dist_profile = _inverse_distance_profile(dist_profile) + + exclusion_size = self.length // exclusion_factor + if X_index is not None: + _max_timestamp = self.n_timepoints_ - self.length + ub = min(X_index + exclusion_size, _max_timestamp) + lb = max(0, X_index - exclusion_size) + dist_profile[lb:ub] = np.inf + + if k == np.inf: + k = len(dist_profile) + + return _extract_top_k_from_dist_profile( + dist_profile, + k, + dist_threshold, + allow_trivial_matches, + exclusion_size, + ) + + def compute_distance_profile(self, X: np.ndarray): + """ + Compute the distance profile of X to all samples in X_. + + Parameters + ---------- + X : np.ndarray, 2D array of shape (n_channels, length) + The query to use to compute the distance profiles. + + Returns + ------- + distance_profiles : np.ndarray, 2D array of shape (n_cases, n_candidates) + The distance profile of X to all samples in X_. The ``n_candidates`` value + is equal to ``n_timepoins - length + 1``. If X_ is an unequal length + collection, returns a numba typed list instead of an ndarray. + + """ + QT = fft_sliding_dot_product(self.X_, X) + + if self.normalize: + distance_profile = _normalized_squared_distance_profile( + QT, + self.X_means_, + self.X_stds_, + X.mean(axis=1), + X.std(axis=1), + self.length, + ) + else: + distance_profile = _squared_distance_profile( + QT, + self.X_, # T + X, # Q + ) + + return distance_profile + + @classmethod + def _get_test_params(cls, parameter_set: str = "default"): + """Return testing parameter settings for the estimator. + + Parameters + ---------- + parameter_set : str, default="default" + Name of the set of test parameters to return, for use in tests. If no + special parameters are defined for a value, will return `"default"` set. + There are currently no reserved values for transformers. + + Returns + ------- + params : dict or list of dict, default = {} + Parameters to create testing instances of the class + Each dict are parameters to construct an "interesting" test instance, i.e., + `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance. + """ + if parameter_set == "default": + params = {"length": 20} + else: + raise NotImplementedError( + f"The parameter set {parameter_set} is not yet implemented" + ) + return params + + +@njit(cache=True, fastmath=True) +def _squared_distance_profile(QT, T, Q): + """ + Compute squared distance profile between query subsequence and a single time series. + + This function calculates the squared distance profile for a single time series by + leveraging the dot product of the query and time series as well as precomputed sums + of squares to efficiently compute the squared distances. + + Parameters + ---------- + QT : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) + The dot product between the query and the time series. + T : np.ndarray, 2D array of shape (n_channels, series_length) + The series used for similarity search. Note that series_length can be equal, + superior or inferior to n_timepoints, it doesn't matter. + Q : np.ndarray + 2D array of shape (n_channels, query_length) representing query subsequence. + + Returns + ------- + distance_profile : np.ndarray + 2D array of shape (n_channels, n_timepoints - query_length + 1) + The squared distance profile between the query and the input time series. + """ + n_channels, profile_length = QT.shape + query_length = Q.shape[1] + _QT = -2 * QT + distance_profile = np.zeros(profile_length) + for k in prange(n_channels): + _sum = 0 + _qsum = 0 + for j in prange(query_length): + _sum += T[k, j] ** 2 + _qsum += Q[k, j] ** 2 + + distance_profile += _qsum + _QT[k] + distance_profile[0] += _sum + for i in prange(1, profile_length): + _sum += T[k, i + (query_length - 1)] ** 2 - T[k, i - 1] ** 2 + distance_profile[i] += _sum + return distance_profile + + +@njit(cache=True, fastmath=True) +def _normalized_squared_distance_profile( + QT, T_means, T_stds, Q_means, Q_stds, query_length +): + """ + Compute the z-normalized squared Euclidean distance profile for one time series. + + Parameters + ---------- + QT : np.ndarray, 2D array of shape (n_channels, n_timepoints - query_length + 1) + The dot product between the query and the time series. + T_means : np.ndarray, 1D array of length n_channels + The mean values of the time series for each channel. + T_stds : np.ndarray, 2D array of shape (n_channels, profile_length) + The standard deviations of the time series for each channel and position. + Q_means : np.ndarray, 1D array of shape (n_channels) + Means of the query q + Q_stds : np.ndarray, 1D array of shape (n_channels) + Stds of the query q + query_length : int + The length of the query subsequence used for the distance profile computation. + + + Returns + ------- + np.ndarray + 2D array of shape (n_channels, n_timepoints - query_length + 1) containing the + z-normalized squared distance profile between the query subsequence and the time + series. Entries are computed based on the z-normalized values, with special + handling for constant values. + """ + n_channels, profile_length = QT.shape + distance_profile = np.zeros(profile_length) + Q_is_constant = Q_stds <= AEON_NUMBA_STD_THRESHOLD + for i in prange(profile_length): + Sub_is_constant = T_stds[:, i] <= AEON_NUMBA_STD_THRESHOLD + for k in prange(n_channels): + # Two Constant case + if Q_is_constant[k] and Sub_is_constant[k]: + _val = 0 + # One Constant case + elif Q_is_constant[k] or Sub_is_constant[k]: + _val = query_length + else: + denom = query_length * Q_stds[k] * T_stds[k, i] + + p = (QT[k, i] - query_length * (Q_means[k] * T_means[k, i])) / denom + p = min(p, 1.0) + + _val = abs(2 * query_length * (1.0 - p)) + distance_profile[i] += _val + + return distance_profile diff --git a/aeon/similarity_search/series/neighbors/tests/__init__.py b/aeon/similarity_search/series/neighbors/tests/__init__.py new file mode 100644 index 0000000000..00ef2e73ec --- /dev/null +++ b/aeon/similarity_search/series/neighbors/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for series neighbors search methods.""" diff --git a/aeon/similarity_search/series/neighbors/tests/test_dummy.py b/aeon/similarity_search/series/neighbors/tests/test_dummy.py new file mode 100644 index 0000000000..e064b39fbf --- /dev/null +++ b/aeon/similarity_search/series/neighbors/tests/test_dummy.py @@ -0,0 +1,31 @@ +""" +Tests for stomp algorithm. + +We do not test equality for returned indexes due to the unstable nature of argsort +and the fact that the "kind=stable" parameter is not yet supported in numba. We instead +test that the returned index match the expected distance value. +""" + +__maintainer__ = ["baraline"] + +import numpy as np +from numpy.testing import assert_almost_equal + +from aeon.similarity_search.series.neighbors._dummy import ( + _naive_squared_distance_profile, +) +from aeon.testing.data_generation import make_example_2d_numpy_series +from aeon.utils.numba.general import get_all_subsequences + + +def test__naive_squared_distance_profile(): + """Test Euclidean distance with brute force.""" + L = 3 + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + Q = make_example_2d_numpy_series(n_channels=1, n_timepoints=L) + + dist_profile = _naive_squared_distance_profile(get_all_subsequences(X, L, 1), Q) + + for i_t in range(X.shape[1] - L + 1): + S = X[:, i_t : i_t + L] + assert_almost_equal(dist_profile[i_t], np.sum((S - Q) ** 2)) diff --git a/aeon/similarity_search/series/neighbors/tests/test_mass.py b/aeon/similarity_search/series/neighbors/tests/test_mass.py new file mode 100644 index 0000000000..b6bf1953ea --- /dev/null +++ b/aeon/similarity_search/series/neighbors/tests/test_mass.py @@ -0,0 +1,44 @@ +"""Tests for MASS algorithm.""" + +__maintainer__ = ["baraline"] + +import numpy as np +from numpy.testing import assert_almost_equal + +from aeon.similarity_search.series._commons import fft_sliding_dot_product +from aeon.similarity_search.series.neighbors._mass import ( + _normalized_squared_distance_profile, + _squared_distance_profile, +) +from aeon.testing.data_generation import make_example_2d_numpy_series +from aeon.utils.numba.general import sliding_mean_std_one_series, z_normalise_series_2d + + +def test__squared_distance_profile(): + """Test squared distance profile.""" + L = 3 + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + Q = make_example_2d_numpy_series(n_channels=1, n_timepoints=L) + QX = fft_sliding_dot_product(X, Q) + dist_profile = _squared_distance_profile(QX, X, Q) + for i_t in range(X.shape[1] - L + 1): + assert_almost_equal(dist_profile[i_t], np.sum((X[:, i_t : i_t + L] - Q) ** 2)) + + +def test__normalized_squared_distance_profile(): + """Test Euclidean distance.""" + L = 3 + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + Q = make_example_2d_numpy_series(n_channels=1, n_timepoints=L) + QX = fft_sliding_dot_product(X, Q) + X_mean, X_std = sliding_mean_std_one_series(X, L, 1) + Q_mean = Q.mean(axis=1) + Q_std = Q.std(axis=1) + + dist_profile = _normalized_squared_distance_profile( + QX, X_mean, X_std, Q_mean, Q_std, L + ) + Q = z_normalise_series_2d(Q) + for i_t in range(X.shape[1] - L + 1): + S = z_normalise_series_2d(X[:, i_t : i_t + L]) + assert_almost_equal(dist_profile[i_t], np.sum((S - Q) ** 2)) diff --git a/aeon/similarity_search/series/tests/__init__.py b/aeon/similarity_search/series/tests/__init__.py new file mode 100644 index 0000000000..4762fe16ce --- /dev/null +++ b/aeon/similarity_search/series/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for base class and commons functions.""" diff --git a/aeon/similarity_search/series/tests/test_base.py b/aeon/similarity_search/series/tests/test_base.py new file mode 100644 index 0000000000..1b4d17b991 --- /dev/null +++ b/aeon/similarity_search/series/tests/test_base.py @@ -0,0 +1,64 @@ +"""Test for series similarity search base class.""" + +__maintainer__ = ["baraline"] + +import pytest + +from aeon.testing.mock_estimators._mock_similarity_searchers import ( + MockSeriesSimilaritySearch, +) +from aeon.testing.testing_data import ( + make_example_1d_numpy, + make_example_2d_numpy_series, + make_example_3d_numpy, + make_example_3d_numpy_list, +) + + +def test_input_shape_fit_predict_series(): + """Test input shapes.""" + estimator = MockSeriesSimilaritySearch() + # dummy data to pass to fit when testing predict/predict_proba + X_3D_uni = make_example_3d_numpy(n_channels=1, return_y=False) + X_3D_multi = make_example_3d_numpy(n_channels=2, return_y=False) + X_3D_uni_list = make_example_3d_numpy_list(n_channels=1, return_y=False) + X_3D_multi_list = make_example_3d_numpy_list(n_channels=2, return_y=False) + X_2D_uni = make_example_2d_numpy_series(n_channels=1) + X_2D_multi = make_example_2d_numpy_series(n_channels=2) + X_1D = make_example_1d_numpy() + + valid_inputs_fit = [X_1D, X_2D_uni, X_2D_multi] + # 1D is converted to 2D univariate + for _input in valid_inputs_fit: + estimator.fit(_input) + + invalid_inputs_fit = [ + X_3D_multi, + X_3D_uni, + X_3D_multi_list, + X_3D_uni_list, + ] + for _input in invalid_inputs_fit: + with pytest.raises(ValueError): + estimator.fit(_input) + + estimator_multi = MockSeriesSimilaritySearch().fit(X_2D_multi) + estimator_uni = MockSeriesSimilaritySearch().fit(X_2D_uni) + + estimator_uni.predict(X_2D_uni) + # 1D is converted to 2D univariate + estimator_uni.predict(X_1D) + estimator_multi.predict(X_2D_multi) + + with pytest.raises(ValueError): + estimator_uni.predict(X_2D_multi) + with pytest.raises(ValueError): + estimator_multi.predict(X_2D_uni) + + for _input in [X_3D_uni, X_3D_uni_list]: + with pytest.raises(ValueError): + estimator_uni.predict(_input) + + for _input in [X_3D_multi, X_3D_multi_list]: + with pytest.raises(ValueError): + estimator_multi.predict(_input) diff --git a/aeon/similarity_search/series/tests/test_commons.py b/aeon/similarity_search/series/tests/test_commons.py new file mode 100644 index 0000000000..6ad6fcf589 --- /dev/null +++ b/aeon/similarity_search/series/tests/test_commons.py @@ -0,0 +1,171 @@ +"""Test _commons.py functions.""" + +__maintainer__ = ["baraline"] +import numpy as np +import pytest +from numba.typed import List +from numpy.testing import assert_, assert_array_almost_equal, assert_array_equal + +from aeon.similarity_search.series._commons import ( + _extract_top_k_from_dist_profile, + _extract_top_k_motifs, + _extract_top_r_motifs, + _inverse_distance_profile, + _update_dot_products, + fft_sliding_dot_product, + get_ith_products, +) +from aeon.testing.data_generation import ( + make_example_1d_numpy, + make_example_2d_numpy_series, +) + +K_VALUES = [1, 3, 5] +THRESHOLDS = [np.inf, 1.5] +NN_MATCHES = [False, True] +EXCLUSION_SIZE = [3, 5] + + +def test_fft_sliding_dot_product(): + """Test the fft_sliding_dot_product function.""" + L = 4 + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + Q = make_example_2d_numpy_series(n_channels=1, n_timepoints=L) + + values = fft_sliding_dot_product(X, Q) + # Compare values[0] only as input is univariate + assert_array_almost_equal( + values[0], + [np.dot(Q[0], X[0, i : i + L]) for i in range(X.shape[1] - L + 1)], + ) + + +def test__update_dot_products(): + """Test the _update_dot_product function.""" + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=20) + T = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + L = 7 + current_product = get_ith_products(X, T, L, 0) + for i_query in range(1, T.shape[1] - L + 1): + new_product = get_ith_products( + X, + T, + L, + i_query, + ) + current_product = _update_dot_products( + X, + T, + current_product, + L, + i_query, + ) + assert_array_almost_equal(new_product, current_product) + + +def test_get_ith_products(): + """Test i-th dot product of a subsequence of size L.""" + X = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + Q = make_example_2d_numpy_series(n_channels=1, n_timepoints=10) + L = 5 + + values = get_ith_products(X, Q, L, 0) + # Compare values[0] only as input is univariate + assert_array_almost_equal( + values[0], + [np.dot(Q[0, 0:L], X[0, i : i + L]) for i in range(X.shape[1] - L + 1)], + ) + + values = get_ith_products(X, Q, L, 4) + # Compare values[0] only as input is univariate + assert_array_almost_equal( + values[0], + [np.dot(Q[0, 4 : 4 + L], X[0, i : i + L]) for i in range(X.shape[1] - L + 1)], + ) + + +def test__inverse_distance_profile(): + """Test method to inverse a TypedList of distance profiles.""" + X = make_example_1d_numpy() + X_inv = _inverse_distance_profile(X) + assert_array_almost_equal(1 / (X + 1e-8), X_inv) + + +def test__extract_top_k_motifs(): + """Test motif extraction based on max distance.""" + MP = np.array( + [ + [1.0, 2.0], + [1.0, 4.0], + [0.5, 0.9], + [0.6, 0.7], + ] + ) + + IP = np.array( + [ + [1, 2], + [1, 4], + [0, 3], + [0, 7], + ] + ) + MP_k, IP_k = _extract_top_k_motifs(MP, IP, 2, True, 0) + assert_(len(MP_k) == 2) + assert_array_equal(MP_k[0], [0.6, 0.7]) + assert_array_equal(IP_k[0], [0, 7]) + assert_array_equal(MP_k[1], [0.5, 0.9]) + assert_array_equal(IP_k[1], [0, 3]) + + +def test__extract_top_r_motifs(): + """Test motif extraction based on motif set cardinality.""" + MP = List() + MP.append(List([1.0, 1.5, 2.0, 1.5])) + MP.append(List([1.0, 4.0])) + MP.append(List([0.5, 0.9, 1.0])) + MP.append(List([0.6, 0.7])) + + IP = List() + IP.append(List([1, 2, 3, 4])) + IP.append(List([1, 4])) + IP.append(List([0, 3, 6])) + IP.append(List([0, 7])) + + MP_k, IP_k = _extract_top_r_motifs(MP, IP, 2, True, 0) + assert_(len(MP_k) == 2) + assert_array_equal(MP_k[0], [1.0, 1.5, 2.0, 1.5]) + assert_array_equal(IP_k[0], [1, 2, 3, 4]) + assert_array_equal(MP_k[1], [0.5, 0.9, 1.0]) + assert_array_equal(IP_k[1], [0, 3, 6]) + + +@pytest.mark.parametrize("k", K_VALUES) +@pytest.mark.parametrize("threshold", THRESHOLDS) +@pytest.mark.parametrize("allow_nn_matches", NN_MATCHES) +@pytest.mark.parametrize("exclusion_size", EXCLUSION_SIZE) +def test__extract_top_k_from_dist_profile( + k, threshold, allow_nn_matches, exclusion_size +): + """Test method to esxtract the top k candidates from a list of distance profiles.""" + X = make_example_1d_numpy(n_timepoints=30) + X_sort = np.argsort(X) + exclusion_size = 3 + top_k_indexes, top_k_distances = _extract_top_k_from_dist_profile( + X, k, threshold, allow_nn_matches, exclusion_size + ) + + if len(top_k_indexes) == 0 or len(top_k_distances) == 0: + raise AssertionError("_extract_top_k_from_dist_profile returned empty list") + for i, index in enumerate(top_k_indexes): + assert_(X[index] == top_k_distances[i]) + + assert_(np.all(top_k_distances <= threshold)) + + if allow_nn_matches: + assert_(np.all(top_k_distances <= X[X_sort[len(top_k_indexes) - 1]])) + + if not allow_nn_matches: + same_X = np.sort(top_k_indexes) + if len(same_X) > 1: + assert_(np.all(np.diff(same_X) >= exclusion_size)) diff --git a/aeon/similarity_search/series_search.py b/aeon/similarity_search/series_search.py deleted file mode 100644 index 3c36cf9c4a..0000000000 --- a/aeon/similarity_search/series_search.py +++ /dev/null @@ -1,436 +0,0 @@ -"""Base class for series search.""" - -__maintainer__ = ["baraline"] - -from typing import Union, final - -import numpy as np -from numba import get_num_threads, set_num_threads - -from aeon.similarity_search.base import BaseSimilaritySearch -from aeon.similarity_search.matrix_profiles.stomp import ( - stomp_euclidean_matrix_profile, - stomp_normalised_euclidean_matrix_profile, - stomp_normalised_squared_matrix_profile, - stomp_squared_matrix_profile, -) -from aeon.utils.numba.general import sliding_mean_std_one_series - - -class SeriesSearch(BaseSimilaritySearch): - """ - Series search estimator. - - The series search estimator will return a set of matches for each subsequence of - size L in a time series given during predict. The matching of each subsequence will - be made against all subsequence of size L inside the time series given during fit, - which will represent the search space. - - Depending on the `k` and/or `threshold` parameters, which condition what is - considered a valid match during the search, the number of matches will vary. If `k` - is used, at most `k` matches (the `k` best) will be returned, if `threshold` is used - and `k` is set to `np.inf`, all the candidates which distance to the query is - inferior or equal to `threshold` will be returned. If both are used, the `k` best - matches to the query with distance inferior to `threshold` will be returned. - - - Parameters - ---------- - k : int, default=1 - The number of best matches to return during predict for each subsequence. - threshold : float, default=np.inf - The number of best matches to return during predict for each subsequence. - distance : str, default="euclidean" - Name of the distance function to use. A list of valid strings can be found in - the documentation for :func:`aeon.distances.get_distance_function`. - If a callable is passed it must either be a python function or numba function - with nopython=True, that takes two 1d numpy arrays as input and returns a float. - distance_args : dict, default=None - Optional keyword arguments for the distance function. - normalise : bool, default=False - Whether the distance function should be z-normalised. - speed_up : str, default='fastest' - Which speed up technique to use with for the selected distance - function. By default, the fastest algorithm is used. A list of available - algorithm for each distance can be obtained by calling the - `get_speedup_function_names` function. - inverse_distance : bool, default=False - If True, the matching will be made on the inverse of the distance, and thus, the - worst matches to the query will be returned instead of the best ones. - n_jobs : int, default=1 - Number of parallel jobs to use. - - Attributes - ---------- - X_ : array, shape (n_cases, n_channels, n_timepoints) - The input time series stored during the fit method. This is the - database we search in when given a query. - distance_profile_function : function - The function used to compute the distance profile. This is determined - during the fit method based on the distance and normalise - parameters. - - Notes - ----- - For now, the multivariate case is only treated as independent. - Distances are computed for each channel independently and then - summed together. - """ - - def __init__( - self, - k: int = 1, - threshold: float = np.inf, - distance: str = "euclidean", - distance_args: Union[None, dict] = None, - inverse_distance: bool = False, - normalise: bool = False, - speed_up: str = "fastest", - n_jobs: int = 1, - ): - self.k = k - self.threshold = threshold - self._previous_query_length = -1 - self.axis = 1 - - super().__init__( - distance=distance, - distance_args=distance_args, - inverse_distance=inverse_distance, - normalise=normalise, - speed_up=speed_up, - n_jobs=n_jobs, - ) - - def _fit(self, X, y=None): - """ - Check input format and store it to be used as search space during predict. - - Parameters - ---------- - X : array, shape (n_cases, n_channels, n_timepoints) - Input array to used as database for the similarity search - y : optional - Not used. - - Raises - ------ - TypeError - If the input X array is not 3D raise an error. - - Returns - ------- - self - - """ - self.X_ = X - self.matrix_profile_function_ = self._get_series_method_function() - return self - - @final - def predict( - self, - X: np.ndarray, - length: int, - axis: int = 1, - X_index=None, - exclusion_factor=2.0, - apply_exclusion_to_result=False, - ): - """ - Predict method : Check the shape of X and call _predict to perform the search. - - If the distance profile function is normalised, it stores the mean and stds - from X and X_, with X_ the training data. - - Parameters - ---------- - X : np.ndarray, 2D array of shape (n_channels, series_length) - Input time series used for the search. - length : int - The length parameter that will be used to extract queries from X. - axis : int - The time point axis of the input series if it is 2D. If ``axis==0``, it is - assumed each column is a time series and each row is a time point. i.e. the - shape of the data is ``(n_timepoints,n_channels)``. ``axis==1`` indicates - the time series are in rows, i.e. the shape of the data is - ``(n_channels,n_timepoints)``. - X_index : int - An integer indicating if X was extracted is part of the dataset that was - given during the fit method. If so, this integer should be the sample id. - The search will define an exclusion zone for the queries extarcted from X - in order to avoid matching with themself. If None, it is considered that - the query is not extracted from X_. - exclusion_factor : float, default=2. - The factor to apply to the query length to define the exclusion zone. The - exclusion zone is define from - ``id_timestamp - query_length//exclusion_factor`` to - ``id_timestamp + query_length//exclusion_factor``. This also applies to - the matching conditions defined by child classes. For example, with - TopKSimilaritySearch, the k best matches are also subject to the exclusion - zone, but with :math:`id_timestamp` the index of one of the k matches. - apply_exclusion_to_result : bool, default=False - Wheter to apply the exclusion factor to the output of the similarity search. - This means that two matches of the query from the same sample must be at - least spaced by +/- ``query_length//exclusion_factor``. - This can avoid pathological matching where, for example if we extract the - best two matches, there is a high chance that if the best match is located - at ``id_timestamp``, the second best match will be located at - ``id_timestamp`` +/- 1, as they both share all their values except one. - - Raises - ------ - TypeError - If the input X array is not 2D raise an error. - ValueError - If the length of the query is greater - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - self._check_is_fitted() - prev_threads = get_num_threads() - set_num_threads(self._n_jobs) - series_dim, series_length = self._check_series_format(X, length, axis) - - mask = self._init_X_index_mask( - None if X_index is None else [X_index, 0], - length, - exclusion_factor=exclusion_factor, - ) - - if self.normalise: - _mean, _std = sliding_mean_std_one_series(X, length, 1) - self.T_means_ = _mean - self.T_stds_ = _std - if self._previous_query_length != length: - self._store_mean_std_from_inputs(length) - - if apply_exclusion_to_result: - exclusion_size = length // exclusion_factor - else: - exclusion_size = None - - self._previous_query_length = length - - X_preds = self._predict( - X, - length, - mask, - exclusion_size, - X_index, - exclusion_factor, - apply_exclusion_to_result, - ) - set_num_threads(prev_threads) - return X_preds - - def _predict( - self, - X, - length, - mask, - exclusion_size, - X_index, - exclusion_factor, - apply_exclusion_to_result, - ): - """ - Private predict method for SeriesSearch. - - This method calculates the matrix profile for a given time series dataset by - comparing all possible subsequences of a specified length against a reference - time series. It handles exclusion zones to prevent nearby matches from being - selected and supports normalization. - - Parameters - ---------- - X : np.ndarray, 2D array of shape (n_channels, series_length) - Input time series used for the search. - length : int - The length parameter that will be used to extract queries from X. - axis : int - The time point axis of the input series if it is 2D. If ``axis==0``, it is - assumed each column is a time series and each row is a time point. i.e. the - shape of the data is ``(n_timepoints,n_channels)``. ``axis==1`` indicates - the time series are in rows, i.e. the shape of the data is - ``(n_channels,n_timepoints)``. - mask : np.ndarray, 2D array of shape (n_cases, n_timepoints - length + 1) - Boolean mask of the shape of the distance profiles indicating for which part - of it the distance should be computed. In this context, it is the mask for - the first query of size L in T. This mask will be updated during the - algorithm. - exclusion_size : int, optional - The size of the exclusion zone used to prevent returning as top k candidates - the ones that are close to each other (for example i and i+1). - It is used to define a region between - :math:`id_timestamp - exclusion_size` and - :math:`id_timestamp + exclusion_size` which cannot be returned - as best match if :math:`id_timestamp` was already selected. By default, - the value None means that this is not used. - - Returns - ------- - Tuple(ndarray, ndarray) - The first array, of shape ``(series_length - length + 1, n_matches)``, - contains the distance between all the queries of size length and their best - matches in X_. The second array, of shape - ``(series_length - L + 1, n_matches, 2)``, contains the indexes of these - matches as ``(id_sample, id_timepoint)``. The corresponding match can be - retrieved as ``X_[id_sample, :, id_timepoint : id_timepoint + length]``. - - """ - if self.normalise: - return self.matrix_profile_function_( - self.X_, - X, - length, - self.X_means_, - self.X_stds_, - self.T_means_, - self.T_stds_, - mask, - k=self.k, - threshold=self.threshold, - inverse_distance=self.inverse_distance, - exclusion_size=exclusion_size, - ) - else: - return self.matrix_profile_function_( - self.X_, - X, - length, - mask, - k=self.k, - threshold=self.threshold, - inverse_distance=self.inverse_distance, - exclusion_size=exclusion_size, - ) - - def _check_series_format(self, X, length, axis): - if axis not in [0, 1]: - raise ValueError("The axis argument is expected to be either 1 or 0") - if self.axis != axis: - X = X.T - if not isinstance(X, np.ndarray) or X.ndim != 2: - raise TypeError( - "Error, only supports 2D numpy for now. If the series X is univariate " - "do X = X[np.newaxis, :]." - ) - - series_dim, series_length = X.shape - if series_length < length: - raise ValueError( - "The length of the series should be superior or equal to the length " - "parameter given during predict, but got {} < {}".format( - series_length, length - ) - ) - - if series_dim != self.n_channels_: - raise ValueError( - "The number of feature should be the same for the series X and the data" - " (X_) provided during fit, but got {} for X and {} for X_".format( - series_dim, self.n_channels_ - ) - ) - return series_dim, series_length - - def _get_series_method_function(self): - """ - Given distance and speed_up parameters, return the series method function. - - Raises - ------ - ValueError - If the distance parameter given at initialization is not a string nor a - numba function or a callable, or if the speedup parameter is unknow or - unsupported, raisea ValueError. - - Returns - ------- - function - The series method function matching the distance argument. - - """ - if isinstance(self.distance, str): - distance_dict = _SERIES_SEARCH_SPEED_UP_DICT.get(self.distance) - if distance_dict is None: - raise NotImplementedError( - f"No distance profile have been implemented for {self.distance}." - ) - else: - speed_up_series_method = distance_dict.get(self.normalise).get( - self.speed_up - ) - - if speed_up_series_method is None: - raise ValueError( - f"Unknown or unsupported speed up {self.speed_up} for " - f"{self.distance} distance function with" - ) - self.speed_up_ = self.speed_up - return speed_up_series_method - else: - raise ValueError( - f"Expected distance argument to be str but got {type(self.distance)}" - ) - - @classmethod - def get_speedup_function_names(self): - """ - Get available speedup for series search in aeon. - - The returned structure is a dictionnary that contains the names of all - avaialble speedups for normalised and non-normalised distance functions. - - Returns - ------- - dict - The available speedups name that can be used as parameters in - similarity search classes. - - """ - speedups = {} - for dist_name in _SERIES_SEARCH_SPEED_UP_DICT.keys(): - for normalise in _SERIES_SEARCH_SPEED_UP_DICT[dist_name].keys(): - speedups_names = list( - _SERIES_SEARCH_SPEED_UP_DICT[dist_name][normalise].keys() - ) - if normalise: - speedups.update({f"normalised {dist_name}": speedups_names}) - else: - speedups.update({f"{dist_name}": speedups_names}) - return speedups - - -_SERIES_SEARCH_SPEED_UP_DICT = { - "euclidean": { - True: { - "fastest": stomp_normalised_euclidean_matrix_profile, - "STOMP": stomp_normalised_euclidean_matrix_profile, - }, - False: { - "fastest": stomp_euclidean_matrix_profile, - "STOMP": stomp_euclidean_matrix_profile, - }, - }, - "squared": { - True: { - "fastest": stomp_normalised_squared_matrix_profile, - "STOMP": stomp_normalised_squared_matrix_profile, - }, - False: { - "fastest": stomp_squared_matrix_profile, - "STOMP": stomp_squared_matrix_profile, - }, - }, -} diff --git a/aeon/similarity_search/tests/test__commons.py b/aeon/similarity_search/tests/test__commons.py deleted file mode 100644 index a97519ad31..0000000000 --- a/aeon/similarity_search/tests/test__commons.py +++ /dev/null @@ -1,49 +0,0 @@ -"""Test _commons.py functions.""" - -__maintainer__ = ["baraline"] - -import numpy as np -from numpy.testing import assert_array_almost_equal - -from aeon.similarity_search._commons import ( - fft_sliding_dot_product, - naive_squared_distance_profile, - naive_squared_matrix_profile, -) - - -def test_fft_sliding_dot_product(): - """Test the fft_sliding_dot_product function.""" - X = np.random.rand(1, 10) - q = np.random.rand(1, 5) - - values = fft_sliding_dot_product(X, q) - - assert_array_almost_equal( - values[0], - [np.dot(q[0], X[0, i : i + 5]) for i in range(X.shape[1] - 5 + 1)], - ) - - -def test_naive_squared_distance_profile(): - """Test naive squared distance profile computation is correct.""" - X = np.zeros((1, 1, 6)) - X[0, 0] = np.arange(6) - Q = np.array([[1, 2, 3]]) - query_length = Q.shape[1] - mask = np.ones((X.shape[0], X.shape[2] - query_length + 1), dtype=bool) - dist_profile = naive_squared_distance_profile(X, Q, mask) - assert_array_almost_equal(dist_profile[0], np.array([3.0, 0.0, 3.0, 12.0])) - - -def test_naive_squared_matrix_profile(): - """Test naive squared matrix profile computation is correct.""" - X = np.zeros((1, 1, 6)) - X[0, 0] = np.arange(6) - Q = np.zeros((1, 6)) - - Q[0] = np.arange(6, 12) - query_length = 3 - mask = np.ones((X.shape[0], X.shape[2] - query_length + 1), dtype=bool) - matrix_profile = naive_squared_matrix_profile(X, Q, query_length, mask) - assert_array_almost_equal(matrix_profile, np.array([27.0, 48.0, 75.0, 108.0])) diff --git a/aeon/similarity_search/tests/test_base.py b/aeon/similarity_search/tests/test_base.py new file mode 100644 index 0000000000..e066e14680 --- /dev/null +++ b/aeon/similarity_search/tests/test_base.py @@ -0,0 +1 @@ +"""Tests for base similarity search.""" diff --git a/aeon/similarity_search/tests/test_query_search.py b/aeon/similarity_search/tests/test_query_search.py deleted file mode 100644 index f97f6a50bf..0000000000 --- a/aeon/similarity_search/tests/test_query_search.py +++ /dev/null @@ -1,176 +0,0 @@ -"""Tests for QuerySearch.""" - -__maintainer__ = ["baraline"] - -import numpy as np -import pytest -from numpy.testing import assert_almost_equal, assert_array_equal - -from aeon.similarity_search.query_search import QuerySearch - -DATATYPES = ["int64", "float64"] - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_mean_std_equal_length(dtype): - """Test the mean and std computation of QuerySearch.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(normalise=True) - search.fit(X) - _ = search.predict(q, X_index=(1, 2)) - for i in range(len(X)): - for j in range(X[i].shape[1] - q.shape[1] + 1): - subsequence = X[i, :, j : j + q.shape[1]] - assert_almost_equal(search.X_means_[i][:, j], subsequence.mean(axis=-1)) - assert_almost_equal(search.X_stds_[i][:, j], subsequence.std(axis=-1)) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_mean_std_unequal_length(dtype): - """Test the mean and std computation of QuerySearch on unequal length data.""" - X = [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6, 5]], dtype=dtype), - ] - - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(normalise=True) - search.fit(X) - _ = search.predict(q, X_index=(1, 2)) - for i in range(len(X)): - for j in range(X[i].shape[1] - q.shape[1] + 1): - subsequence = X[i][:, j : j + q.shape[1]] - assert_almost_equal(search.X_means_[i][:, j], subsequence.mean(axis=-1)) - assert_almost_equal(search.X_stds_[i][:, j], subsequence.std(axis=-1)) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_threshold_and_k(dtype): - """Test the k and threshold combination of QuerySearch.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(k=3, threshold=1) - search.fit(X) - dist, idx = search.predict(q) - assert_array_equal(idx, [(0, 2), (1, 2)]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_inverse_distance(dtype): - """Test the inverse distance parameter of QuerySearch.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(k=1, inverse_distance=True) - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 5)]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_euclidean(dtype): - """Test the functionality of QuerySearch with Euclidean distance.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(k=1) - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 2)]) - - search = QuerySearch(k=3) - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 2), (1, 2), (1, 1)]) - - _, idx = search.predict(q, apply_exclusion_to_result=True) - assert_array_equal(idx, [(0, 2), (1, 2), (1, 4)]) - - search = QuerySearch(k=1, normalise=True) - search.fit(X) - q = np.asarray([[8, 8, 10]], dtype=dtype) - _, idx = search.predict(q) - assert_array_equal(idx, [(1, 2)]) - - _, idx = search.predict(q, apply_exclusion_to_result=True) - assert_array_equal(idx, [(1, 2)]) - - search = QuerySearch(k=1, normalise=True) - search.fit(X) - _, idx = search.predict(q, X_index=(1, 2)) - assert_array_equal(idx, [(1, 0)]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_euclidean_unequal_length(dtype): - """Test the functionality of QuerySearch on unequal length data.""" - X = [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6, 5]], dtype=dtype), - ] - - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(k=1) - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 2)]) - - search = QuerySearch(k=3) - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 2), (1, 2), (1, 1)]) - - _, idx = search.predict(q, apply_exclusion_to_result=True) - assert_array_equal(idx, [(0, 2), (1, 2), (1, 4)]) - - search = QuerySearch(k=1, normalise=True) - search.fit(X) - q = np.asarray([[8, 8, 10]], dtype=dtype) - _, idx = search.predict(q) - assert_array_equal(idx, [(1, 2)]) - - _, idx = search.predict(q, apply_exclusion_to_result=True) - assert_array_equal(idx, [(1, 2)]) - - search = QuerySearch(k=1, normalise=True) - search.fit(X) - _, idx = search.predict(q, X_index=(1, 2)) - assert_array_equal(idx, [(1, 0)]) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_QuerySearch_speedup(dtype): - """Test the speedup functionality of QuerySearch.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - q = np.asarray([[3, 4, 5]], dtype=dtype) - - search = QuerySearch(k=1, speed_up="fastest") - search.fit(X) - _, idx = search.predict(q) - assert_array_equal(idx, [(0, 2)]) - - search = QuerySearch( - k=1, - distance="euclidean", - speed_up="fastest", - normalise=True, - ) - search.fit(X) - q = np.asarray([[8, 8, 10]], dtype=dtype) - _, idx = search.predict(q) - assert_array_equal(idx, [(1, 2)]) diff --git a/aeon/similarity_search/tests/test_series_search.py b/aeon/similarity_search/tests/test_series_search.py deleted file mode 100644 index a10109359c..0000000000 --- a/aeon/similarity_search/tests/test_series_search.py +++ /dev/null @@ -1,74 +0,0 @@ -"""Tests for SeriesSearch similarity search algorithm.""" - -__maintainer__ = ["baraline"] - - -import numpy as np -import pytest - -from aeon.similarity_search.series_search import SeriesSearch - -DATATYPES = ["int64", "float64"] -K_VALUES = [1, 3] -normalise = [True, False] - -# See #2236 -# @pytest.mark.parametrize("k", K_VALUES) -# @pytest.mark.parametrize("normalise", normalise) -# def test_SeriesSearch_k(k, normalise): -# """Test the k and threshold combination of SeriesSearch.""" -# X = np.asarray([[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]]) -# S = np.asarray([[3, 4, 5, 4, 3, 4]]) -# L = 3 -# -# search = SeriesSearch(k=k, normalise=normalise) -# search.fit(X) -# mp, ip = search.predict(S, L) -# -# assert mp[0].shape[0] == ip[0].shape[0] == k -# assert len(mp) == len(ip) == S.shape[1] - L + 1 -# assert ip[0].shape[1] == 2 - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_SeriesSearch_error_predict(dtype): - """Test the functionality of SeriesSearch with Euclidean distance.""" - X = np.asarray( - [[[1, 2, 3, 4, 5, 6, 7, 8]], [[1, 2, 4, 4, 5, 6, 5, 4]]], dtype=dtype - ) - S = np.asarray([[3, 4, 5, 4, 3, 4, 5]], dtype=dtype) - L = 100 - - search = SeriesSearch() - search.fit(X) - with pytest.raises(ValueError): - mp, ip = search.predict(S, L) - L = 3 - S = np.asarray( - [ - [3, 4, 5, 4, 3, 4], - [6, 5, 3, 2, 4, 5], - ], - dtype=dtype, - ) - with pytest.raises(ValueError): - mp, ip = search.predict(S, L) - - S = [6, 5, 3, 2, 4, 5] - with pytest.raises(TypeError): - mp, ip = search.predict(S, L) - - -@pytest.mark.parametrize("dtype", DATATYPES) -def test_SeriesSearch_process_unequal_length(dtype): - """Test the functionality of SeriesSearch on unequal length data.""" - X = [ - np.array([[1, 2, 3, 4, 5, 6, 7, 8]], dtype=dtype), - np.array([[1, 2, 4, 4, 5, 6, 5]], dtype=dtype), - ] - S = np.asarray([[3, 4, 5, 4, 3, 4]], dtype=dtype) - L = 3 - - search = SeriesSearch() - search.fit(X) - mp, ip = search.predict(S, L) diff --git a/aeon/testing/mock_estimators/__init__.py b/aeon/testing/mock_estimators/__init__.py index 219fc3e987..e517e07ca0 100644 --- a/aeon/testing/mock_estimators/__init__.py +++ b/aeon/testing/mock_estimators/__init__.py @@ -29,8 +29,6 @@ "MockUnivariateSeriesTransformer", "MockMultivariateSeriesTransformer", "MockSeriesTransformerNoFit", - # similarity search - "MockSimilaritySearch", ] from aeon.testing.mock_estimators._mock_anomaly_detectors import ( @@ -64,4 +62,3 @@ MockSeriesTransformerNoFit, MockUnivariateSeriesTransformer, ) -from aeon.testing.mock_estimators._mock_similarity_search import MockSimilaritySearch diff --git a/aeon/testing/mock_estimators/_mock_similarity_search.py b/aeon/testing/mock_estimators/_mock_similarity_search.py deleted file mode 100644 index 55c9c435c7..0000000000 --- a/aeon/testing/mock_estimators/_mock_similarity_search.py +++ /dev/null @@ -1,21 +0,0 @@ -"""Mock similarity searchers useful for testing and debugging.""" - -__maintainer__ = ["baraline"] -__all__ = [ - "MockSimilaritySearch", -] - -from aeon.similarity_search.base import BaseSimilaritySearch - - -class MockSimilaritySearch(BaseSimilaritySearch): - """Mock similarity search for testing base class predict.""" - - def _fit(self, X, y=None): - """_fit dummy.""" - self.X_ = X - return self - - def predict(self, X): - """Predict dummy.""" - return [(0, 0)] diff --git a/aeon/testing/mock_estimators/_mock_similarity_searchers.py b/aeon/testing/mock_estimators/_mock_similarity_searchers.py new file mode 100644 index 0000000000..35251bf558 --- /dev/null +++ b/aeon/testing/mock_estimators/_mock_similarity_searchers.py @@ -0,0 +1,35 @@ +"""Mock series transformers useful for testing and debugging.""" + +__maintainer__ = ["baraline"] +__all__ = ["MockSeriesSimilaritySearch", "MockCollectionSimilaritySearch"] + +from aeon.similarity_search.collection._base import BaseCollectionSimilaritySearch +from aeon.similarity_search.series._base import BaseSeriesSimilaritySearch + + +class MockSeriesSimilaritySearch(BaseSeriesSimilaritySearch): + """Mock estimator for BaseMatrixProfile.""" + + def __init__(self): + super().__init__() + + def _fit(self, X, y=None): + return self + + def _predict(self, X): + """Compute matrix profiles between X_ and X or between all series in X_.""" + return [0], [0.1] + + +class MockCollectionSimilaritySearch(BaseCollectionSimilaritySearch): + """Mock estimator for BaseMatrixProfile.""" + + def __init__(self): + super().__init__() + + def _fit(self, X, y=None): + return self + + def _predict(self, X): + """Compute matrix profiles between X_ and X or between all series in X_.""" + return [0 for _ in range(len(X))], [0.1 for _ in range(len(X))] diff --git a/aeon/testing/testing_config.py b/aeon/testing/testing_config.py index 3d05d6679d..30703e7a2c 100644 --- a/aeon/testing/testing_config.py +++ b/aeon/testing/testing_config.py @@ -60,10 +60,6 @@ "ClaSPSegmenter": ["check_non_state_changing_method"], "HMMSegmenter": ["check_non_state_changing_method"], "RSTSF": ["check_non_state_changing_method"], - # Keeps length during predict to avoid recomputing means and std of data in fit - # if the next predict calls uses the same query length parameter. - "QuerySearch": ["check_non_state_changing_method"], - "SeriesSearch": ["check_non_state_changing_method"], # Unknown issue not producing the same results "RDSTRegressor": ["check_regressor_against_expected_results"], "RISTRegressor": ["check_regressor_against_expected_results"], diff --git a/aeon/testing/testing_data.py b/aeon/testing/testing_data.py index eb134cddda..3337f83b0c 100644 --- a/aeon/testing/testing_data.py +++ b/aeon/testing/testing_data.py @@ -10,7 +10,8 @@ from aeon.forecasting import BaseForecaster from aeon.regression import BaseRegressor from aeon.segmentation import BaseSegmenter -from aeon.similarity_search import BaseSimilaritySearch +from aeon.similarity_search.collection import BaseCollectionSimilaritySearch +from aeon.similarity_search.series import BaseSeriesSimilaritySearch from aeon.testing.data_generation import ( make_example_1d_numpy, make_example_2d_dataframe_collection, @@ -219,50 +220,6 @@ }, } -EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH = { - "numpy3D": { - "train": ( - make_example_3d_numpy( - n_cases=10, - n_channels=1, - n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=1, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, - "np-list": { - "train": ( - make_example_3d_numpy_list( - n_cases=10, - n_channels=1, - min_n_timepoints=20, - max_n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=1, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, -} - EQUAL_LENGTH_MULTIVARIATE_CLASSIFICATION = { "numpy3D": { "train": make_example_3d_numpy( @@ -401,50 +358,6 @@ }, } -EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH = { - "numpy3D": { - "train": ( - make_example_3d_numpy( - n_cases=10, - n_channels=2, - n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=2, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, - "np-list": { - "train": ( - make_example_3d_numpy_list( - n_cases=10, - n_channels=2, - min_n_timepoints=20, - max_n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=2, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, -} - UNEQUAL_LENGTH_UNIVARIATE_CLASSIFICATION = { "np-list": { "train": make_example_3d_numpy_list( @@ -553,30 +466,6 @@ }, } -UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH = { - "np-list": { - "train": ( - make_example_3d_numpy_list( - n_cases=10, - n_channels=1, - min_n_timepoints=10, - max_n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=1, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, -} - UNEQUAL_LENGTH_MULTIVARIATE_CLASSIFICATION = { "np-list": { "train": make_example_3d_numpy_list( @@ -685,30 +574,6 @@ }, } -UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH = { - "np-list": { - "train": ( - make_example_3d_numpy_list( - n_cases=10, - n_channels=2, - min_n_timepoints=10, - max_n_timepoints=20, - random_state=data_rng.randint(np.iinfo(np.int32).max), - return_y=False, - ), - None, - ), - "test": ( - make_example_2d_numpy_series( - n_timepoints=10, - n_channels=2, - random_state=data_rng.randint(np.iinfo(np.int32).max), - ), - None, - ), - }, -} - X_classification_missing_train, y_classification_missing_train = make_example_3d_numpy( n_cases=10, n_channels=1, @@ -825,12 +690,6 @@ for k, v in EQUAL_LENGTH_UNIVARIATE_REGRESSION.items() } ) -FULL_TEST_DATA_DICT.update( - { - f"EqualLengthUnivariate-SimilaritySearch-{k}": v - for k, v in EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH.items() - } -) FULL_TEST_DATA_DICT.update( { f"EqualLengthMultivariate-Classification-{k}": v @@ -843,12 +702,6 @@ for k, v in EQUAL_LENGTH_MULTIVARIATE_REGRESSION.items() } ) -FULL_TEST_DATA_DICT.update( - { - f"EqualLengthMultivariate-SimilaritySearch-{k}": v - for k, v in EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH.items() - } -) FULL_TEST_DATA_DICT.update( { f"UnequalLengthUnivariate-Classification-{k}": v @@ -861,12 +714,6 @@ for k, v in UNEQUAL_LENGTH_UNIVARIATE_REGRESSION.items() } ) -FULL_TEST_DATA_DICT.update( - { - f"UnequalLengthUnivariate-SimilaritySearch-{k}": v - for k, v in UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH.items() - } -) FULL_TEST_DATA_DICT.update( { f"UnequalLengthMultivariate-Classification-{k}": v @@ -879,12 +726,6 @@ for k, v in UNEQUAL_LENGTH_MULTIVARIATE_REGRESSION.items() } ) -FULL_TEST_DATA_DICT.update( - { - f"UnequalLengthMultivariate-SimilaritySearch-{k}": v - for k, v in UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH.items() - } -) FULL_TEST_DATA_DICT.update( { f"MissingValues-Classification-{k}": v @@ -916,9 +757,12 @@ def _get_datatypes_for_estimator(estimator): FULL_TEST_DATA_DICT. Each tuple is formatted (data_key, label_key). """ datatypes = [] - univariate, multivariate, unequal_length, missing_values = ( - _get_capabilities_for_estimator(estimator) - ) + ( + univariate, + multivariate, + unequal_length, + missing_values, + ) = _get_capabilities_for_estimator(estimator) task = _get_task_for_estimator(estimator) inner_types = estimator.get_tag("X_inner_type") @@ -1012,19 +856,19 @@ def _get_task_for_estimator(estimator): or isinstance(estimator, BaseEarlyClassifier) or isinstance(estimator, BaseClusterer) or isinstance(estimator, BaseCollectionTransformer) + or isinstance(estimator, BaseCollectionSimilaritySearch) ): data_label = "Classification" # collection data with continuous target labels elif isinstance(estimator, BaseRegressor): data_label = "Regression" - elif isinstance(estimator, BaseSimilaritySearch): - data_label = "SimilaritySearch" # series data with no secondary input elif ( isinstance(estimator, BaseAnomalyDetector) or isinstance(estimator, BaseSegmenter) or isinstance(estimator, BaseSeriesTransformer) or isinstance(estimator, BaseForecaster) + or isinstance(estimator, BaseSeriesSimilaritySearch) ): data_label = "None" else: diff --git a/aeon/testing/tests/test_testing_data.py b/aeon/testing/tests/test_testing_data.py index f9afe264dd..891bd5851a 100644 --- a/aeon/testing/tests/test_testing_data.py +++ b/aeon/testing/tests/test_testing_data.py @@ -6,19 +6,15 @@ from aeon.testing.testing_data import ( EQUAL_LENGTH_MULTIVARIATE_CLASSIFICATION, EQUAL_LENGTH_MULTIVARIATE_REGRESSION, - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH, EQUAL_LENGTH_UNIVARIATE_CLASSIFICATION, EQUAL_LENGTH_UNIVARIATE_REGRESSION, - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH, FULL_TEST_DATA_DICT, MISSING_VALUES_CLASSIFICATION, MISSING_VALUES_REGRESSION, UNEQUAL_LENGTH_MULTIVARIATE_CLASSIFICATION, UNEQUAL_LENGTH_MULTIVARIATE_REGRESSION, - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH, UNEQUAL_LENGTH_UNIVARIATE_CLASSIFICATION, UNEQUAL_LENGTH_UNIVARIATE_REGRESSION, - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH, ) from aeon.utils.data_types import COLLECTIONS_DATA_TYPES from aeon.utils.validation import ( @@ -108,31 +104,6 @@ def test_equal_length_univariate_collection(): EQUAL_LENGTH_UNIVARIATE_REGRESSION[key]["test"][1].dtype, np.floating ) - for key in EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH: - assert is_collection( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0], include_2d=True - ) - assert is_univariate(EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0]) - assert is_equal_length( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not has_missing( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_collection( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert is_univariate( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0], - is_collection=False, - ) - assert is_equal_length( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert not has_missing( - EQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - def test_unequal_length_univariate_collection(): """Test the contents of the unequal length univariate data dictionary.""" @@ -182,34 +153,6 @@ def test_unequal_length_univariate_collection(): UNEQUAL_LENGTH_UNIVARIATE_REGRESSION[key]["test"][1].dtype, np.floating ) - for key in UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH: - assert is_collection( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0], - include_2d=True, - ) - assert is_univariate( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_equal_length( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not has_missing( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_collection( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert is_univariate( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0], - is_collection=False, - ) - assert is_equal_length( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert not has_missing( - UNEQUAL_LENGTH_UNIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - def test_equal_length_multivariate_collection(): """Test the contents of the equal length multivariate data dictionary.""" @@ -259,34 +202,6 @@ def test_equal_length_multivariate_collection(): EQUAL_LENGTH_MULTIVARIATE_REGRESSION[key]["test"][1].dtype, np.floating ) - for key in EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH: - assert is_collection( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0], - include_2d=True, - ) - assert not is_univariate( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert is_equal_length( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not has_missing( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_collection( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert not is_univariate( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0], - is_collection=False, - ) - assert is_equal_length( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert not has_missing( - EQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - def test_unequal_length_multivariate_collection(): """Test the contents of the unequal length multivariate data dictionary.""" @@ -348,34 +263,6 @@ def test_unequal_length_multivariate_collection(): UNEQUAL_LENGTH_MULTIVARIATE_REGRESSION[key]["test"][1].dtype, np.floating ) - for key in UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH: - assert is_collection( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0], - include_2d=True, - ) - assert not is_univariate( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_equal_length( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not has_missing( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["train"][0] - ) - assert not is_collection( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert not is_univariate( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0], - is_collection=False, - ) - assert is_equal_length( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - assert not has_missing( - UNEQUAL_LENGTH_MULTIVARIATE_SIMILARITY_SEARCH[key]["test"][0] - ) - def test_missing_values_collection(): """Test the contents of the missing value data dictionary.""" diff --git a/aeon/testing/utils/estimator_checks.py b/aeon/testing/utils/estimator_checks.py index b2e0973dbf..d556ff0249 100644 --- a/aeon/testing/utils/estimator_checks.py +++ b/aeon/testing/utils/estimator_checks.py @@ -7,7 +7,7 @@ import numpy as np -from aeon.similarity_search.base import BaseSimilaritySearch +from aeon.similarity_search import BaseSimilaritySearch from aeon.testing.testing_data import FULL_TEST_DATA_DICT from aeon.utils.validation import get_n_cases diff --git a/aeon/utils/base/_identifier.py b/aeon/utils/base/_identifier.py index cf2722cfcb..03e8d8beaf 100644 --- a/aeon/utils/base/_identifier.py +++ b/aeon/utils/base/_identifier.py @@ -55,6 +55,8 @@ def get_identifier(estimator): identifiers.remove("collection-estimator") if len(identifiers) > 1 and "transformer" in identifiers: identifiers.remove("transformer") + if len(identifiers) > 1 and "similarity-search" in identifiers: + identifiers.remove("similarity-search") if len(identifiers) > 1: TypeError( diff --git a/aeon/utils/base/_register.py b/aeon/utils/base/_register.py index 1d81c2512c..5e81e29b33 100644 --- a/aeon/utils/base/_register.py +++ b/aeon/utils/base/_register.py @@ -24,7 +24,9 @@ from aeon.forecasting.base import BaseForecaster from aeon.regression.base import BaseRegressor from aeon.segmentation.base import BaseSegmenter -from aeon.similarity_search.base import BaseSimilaritySearch +from aeon.similarity_search._base import BaseSimilaritySearch +from aeon.similarity_search.collection import BaseCollectionSimilaritySearch +from aeon.similarity_search.series import BaseSeriesSimilaritySearch from aeon.transformations.base import BaseTransformer from aeon.transformations.collection import BaseCollectionTransformer from aeon.transformations.series import BaseSeriesTransformer @@ -36,6 +38,7 @@ "estimator": BaseAeonEstimator, "series-estimator": BaseSeriesEstimator, "transformer": BaseTransformer, + "similarity-search": BaseSimilaritySearch, # estimator types "anomaly-detector": BaseAnomalyDetector, "collection-transformer": BaseCollectionTransformer, @@ -44,14 +47,21 @@ "early_classifier": BaseEarlyClassifier, "regressor": BaseRegressor, "segmenter": BaseSegmenter, - "similarity_searcher": BaseSimilaritySearch, "series-transformer": BaseSeriesTransformer, "forecaster": BaseForecaster, + "series-similarity-search": BaseSeriesSimilaritySearch, + "collection-similarity-search": BaseCollectionSimilaritySearch, } # base classes which are valid for estimator to directly inherit from VALID_ESTIMATOR_BASES = { k: BASE_CLASS_REGISTER[k] for k in BASE_CLASS_REGISTER.keys() - - {"estimator", "collection-estimator", "series-estimator", "transformer"} + - { + "estimator", + "collection-estimator", + "series-estimator", + "transformer", + "similarity-search", + } } diff --git a/aeon/utils/discovery.py b/aeon/utils/discovery.py index 8fd4a05efe..d6e5ce61fc 100644 --- a/aeon/utils/discovery.py +++ b/aeon/utils/discovery.py @@ -92,6 +92,7 @@ def all_estimators( # ignore test modules and base classes "base", "tests", + "similarity_search" # ignore these submodules "benchmarking", "datasets", diff --git a/aeon/utils/numba/general.py b/aeon/utils/numba/general.py index 10e96abde6..958c584459 100644 --- a/aeon/utils/numba/general.py +++ b/aeon/utils/numba/general.py @@ -8,7 +8,9 @@ "first_order_differences_3d", "z_normalise_series_with_mean", "z_normalise_series", + "z_normalise_series_with_mean_std", "z_normalise_series_2d", + "z_normalise_series_2d_with_mean_std", "z_normalise_series_3d", "set_numba_random_seed", "choice_log", @@ -20,6 +22,7 @@ "slope_derivative_2d", "slope_derivative_3d", "generate_combinations", + "get_all_subsequences", ] @@ -273,7 +276,7 @@ def z_normalise_series_2d_with_mean_std( Parameters ---------- - X : array, shape = (n_channels, n_timestamps) + X : array, shape = (n_channels, n_timepoints) Input array to normalise. mean : array, shape = (n_channels) Mean of each channel of X. @@ -282,7 +285,7 @@ def z_normalise_series_2d_with_mean_std( Returns ------- - arr : array, shape = (n_channels, n_timestamps) + arr : array, shape = (n_channels, n_timepoints) The normalised array """ arr = np.zeros(X.shape) @@ -376,10 +379,10 @@ def get_subsequence( Parameters ---------- - X : array, shape (n_channels, n_timestamps) + X : array, shape (n_channels, n_timepoints) Input time series. i_start : int - A starting index between [0, n_timestamps - (length-1)*dilation] + A starting index between [0, n_timepoints - (length-1)*dilation] length : int Length parameter of the subsequence. dilation : int @@ -408,10 +411,10 @@ def get_subsequence_with_mean_std( Parameters ---------- - X : array, shape (n_channels, n_timestamps) + X : array, shape (n_channels, n_timepoints) Input time series. i_start : int - A starting index between [0, n_timestamps - (length-1)*dilation] + A starting index between [0, n_timepoints - (length-1)*dilation] length : int Length parameter of the subsequence. dilation : int @@ -451,15 +454,56 @@ def get_subsequence_with_mean_std( return values, means, stds +@njit(cache=True, fastmath=True, parallel=True) +def compute_mean_stds_collection_parallel(X): + """ + Return the mean and standard deviation for each channel of all series in X. + + Parameters + ---------- + X : array, shape (n_cases, n_channels, n_timepoints) + A time series collection + + Returns + ------- + means : array, shape (n_cases, n_channels) + The mean of each channel of each time series in X. + stds : array, shape (n_cases, n_channels) + The std of each channel of each time series in X. + + """ + n_channels = X[0].shape[0] + n_cases = len(X) + means = np.zeros((n_cases, n_channels)) + stds = np.zeros((n_cases, n_channels)) + for i_x in prange(n_cases): + n_timepoints = X[i_x].shape[1] + _s = np.zeros(n_channels) + _s2 = np.zeros(n_channels) + for i_t in range(n_timepoints): + for i_c in range(n_channels): + _s += X[i_x][i_c, i_t] + _s2 += X[i_x][i_c, i_t] ** 2 + + for i_c in range(n_channels): + means[i_x, i_c] = _s / n_timepoints + _std = _s2 / n_timepoints - means[i_x, i_c] ** 2 + if _s > AEON_NUMBA_STD_THRESHOLD: + stds[i_x, i_c] = _std**0.5 + + return means, stds + + @njit(fastmath=True, cache=True) def sliding_mean_std_one_series( X: np.ndarray, length: int, dilation: int ) -> tuple[np.ndarray, np.ndarray]: - """Return the mean and standard deviation for all subsequence (l,d) in X. + """ + Return the mean and standard deviation for all subsequence (l,d) in X. Parameters ---------- - X : array, shape (n_channels, n_timestamps) + X : array, shape (n_channels, n_timepoints) An input time series length : int Length of the subsequence @@ -468,14 +512,14 @@ def sliding_mean_std_one_series( Returns ------- - mean : array, shape (n_channels, n_timestamps - (length-1) * dilation) + mean : array, shape (n_channels, n_timepoints - (length-1) * dilation) The mean of each subsequence with parameter length and dilation in X. - std : array, shape (n_channels, n_timestamps - (length-1) * dilation) + std : array, shape (n_channels, n_timepoints - (length-1) * dilation) The standard deviation of each subsequence with parameter length and dilation in X. """ - n_channels, n_timestamps = X.shape - n_subs = n_timestamps - (length - 1) * dilation + n_channels, n_timepoints = X.shape + n_subs = n_timepoints - (length - 1) * dilation if n_subs <= 0: raise ValueError( "Invalid input parameter for sliding mean and std computations" @@ -493,7 +537,7 @@ def sliding_mean_std_one_series( _sum2 = np.zeros(n_channels) # Initialize first subsequence if it is valid - if np.all(_idx_sub < n_timestamps): + if np.all(_idx_sub < n_timepoints): for i_length in prange(length): _idx_sub[i_length] = (i_length * dilation) + i_mod_dil for i_channel in prange(n_channels): @@ -510,7 +554,7 @@ def sliding_mean_std_one_series( _idx_sub += dilation # As long as subsequences further subsequences are valid - while np.all(_idx_sub < n_timestamps): + while np.all(_idx_sub < n_timepoints): # Update sums and mean stds arrays for i_channel in prange(n_channels): _v_new = X[i_channel, _idx_sub[-1]] @@ -534,17 +578,17 @@ def normalise_subsequences(X_subs: np.ndarray, X_means: np.ndarray, X_stds: np.n Parameters ---------- - X_subs : array, shape (n_timestamps-(length-1)*dilation, n_channels, length) - The subsequences of an input time series of size n_timestamps given the + X_subs : array, shape (n_timepoints-(length-1)*dilation, n_channels, length) + The subsequences of an input time series of size n_timepoints given the length and dilation parameter. - X_means : array, shape (n_channels, n_timestamps-(length-1)*dilation) + X_means : array, shape (n_channels, n_timepoints-(length-1)*dilation) Mean of the subsequences to normalise. - X_stds : array, shape (n_channels, n_timestamps-(length-1)*dilation) + X_stds : array, shape (n_channels, n_timepoints-(length-1)*dilation) Stds of the subsequences to normalise. Returns ------- - array, shape = (n_timestamps-(length-1)*dilation, n_channels, length) + array, shape = (n_timepoints-(length-1)*dilation, n_channels, length) Z-normalised subsequences. """ n_subsequences, n_channels, length = X_subs.shape @@ -755,8 +799,8 @@ def get_all_subsequences(X: np.ndarray, length: int, dilation: int) -> np.ndarra Parameters ---------- - X : array, shape = (n_channels, n_timestamps) - An input time series as (n_channels, n_timestamps). + X : array, shape = (n_channels, n_timepoints) + An input time series as (n_channels, n_timepoints). length : int Length of the subsequences to generate. dilation : int @@ -764,11 +808,11 @@ def get_all_subsequences(X: np.ndarray, length: int, dilation: int) -> np.ndarra Returns ------- - array, shape = (n_timestamps-(length-1)*dilation, n_channels, length) + array, shape = (n_timepoints-(length-1)*dilation, n_channels, length) The view of the subsequences of the input time series. """ - n_features, n_timestamps = X.shape + n_features, n_timepoints = X.shape s0, s1 = X.strides - out_shape = (n_timestamps - (length - 1) * dilation, n_features, np.int64(length)) + out_shape = (n_timepoints - (length - 1) * dilation, n_features, np.int64(length)) strides = (s1, s0, s1 * dilation) return np.lib.stride_tricks.as_strided(X, shape=out_shape, strides=strides) diff --git a/aeon/utils/tags/_tags.py b/aeon/utils/tags/_tags.py index e1bacdd5ad..45801ef09a 100644 --- a/aeon/utils/tags/_tags.py +++ b/aeon/utils/tags/_tags.py @@ -138,7 +138,7 @@ class : identifier for the base class of objects this tag applies to "point belongs to.", }, "requires_y": { - "class": ["transformer", "anomaly-detector", "segmenter"], + "class": ["transformer", "anomaly-detector", "segmenter", "similarity-search"], "type": "bool", "description": "Does this estimator require y to be passed in its methods?", }, @@ -155,7 +155,7 @@ class : identifier for the base class of objects this tag applies to "values?", }, "input_data_type": { - "class": "transformer", + "class": ["transformer", "similarity-search"], "type": ("str", ["Series", "Collection"]), "description": "The input abstract data type of the transformer, input X. " "Series indicates a single series input, Collection indicates a collection of " diff --git a/docs/api_reference/similarity_search.rst b/docs/api_reference/similarity_search.rst index eb13cafd23..ec9d866b3f 100644 --- a/docs/api_reference/similarity_search.rst +++ b/docs/api_reference/similarity_search.rst @@ -4,56 +4,69 @@ Similarity search ================= The :mod:`aeon.similarity_search` module contains algorithms and tools for similarity -search tasks. +search tasks. First, we distinguish between `series` estimator and `collection` +estimators, similarly to the `aeon.transformer` module. Secondly, we distinguish between +estimators used `neighbors` (with sufix SNN for subsequence nearest neighbors, or ANN +for approximate nearest neighbors) search and estimators used for `motifs` search. -Similarity search estimators ----------------------------- +Series Similarity search estimators +----------------------------------- -.. currentmodule:: aeon.similarity_search +.. currentmodule:: aeon.similarity_search.series.neighbors .. autosummary:: :toctree: auto_generated/ :template: class.rst - QuerySearch - SeriesSearch + DummySNN + MassSNN -Distance profile functions --------------------------- - -.. currentmodule:: aeon.similarity_search.distance_profiles +.. currentmodule:: aeon.similarity_search.series.motifs .. autosummary:: :toctree: auto_generated/ - :template: function.rst + :template: class.rst + + StompMotif - euclidean_distance_profile - normalised_euclidean_distance_profile - squared_distance_profile - normalised_squared_distance_profile -Matrix profile functions --------------------------- +Collection Similarity search estimators +----------------------------------- -.. currentmodule:: aeon.similarity_search.matrix_profiles +.. currentmodule:: aeon.similarity_search.collection.neighbors .. autosummary:: :toctree: auto_generated/ - :template: function.rst + :template: class.rst + + RandomProjectionIndexANN - stomp_normalised_euclidean_matrix_profile - stomp_euclidean_matrix_profile - stomp_normalised_squared_matrix_profile - stomp_squared_matrix_profile -Base ----- +Base Estimators +--------------- -.. currentmodule:: aeon.similarity_search.base +.. currentmodule:: aeon.similarity_search._base .. autosummary:: :toctree: auto_generated/ :template: class.rst BaseSimilaritySearch + + +.. currentmodule:: aeon.similarity_search.series._base + +.. autosummary:: + :toctree: auto_generated/ + :template: class.rst + + BaseSeriesSimilaritySearch + +.. currentmodule:: aeon.similarity_search.collection._base + +.. autosummary:: + :toctree: auto_generated/ + :template: class.rst + + BaseCollectionSimilaritySearch diff --git a/docs/api_reference/utils.rst b/docs/api_reference/utils.rst index 40dea9f67c..6f43398a44 100644 --- a/docs/api_reference/utils.rst +++ b/docs/api_reference/utils.rst @@ -87,7 +87,6 @@ Mock Estimators MockUnivariateSeriesTransformer MockMultivariateSeriesTransformer MockSeriesTransformerNoFit - MockSimilaritySearch Utilities ^^^^^^^^^ diff --git a/docs/getting_started.md b/docs/getting_started.md index 36f18583cb..ce519359f2 100644 --- a/docs/getting_started.md +++ b/docs/getting_started.md @@ -21,8 +21,9 @@ classical techniques for the following learning tasks: - [**Clustering**](api_reference/clustering), where a collection of time series without any labels are used to train a model to label cases ([more details](examples/clustering/clustering.ipynb)). -- [**Similarity search**](api_reference/similarity_search), where the goal is to evaluate - the similarity between a query time series and a collection of other longer time series +- [**Similarity search**](api_reference/similarity_search), where the goal is to find + time series motifs or nearest neighbors in an efficient way for either single series + or collections. ([more details](examples/similarity_search/similarity_search.ipynb)). - [**Anomaly detection**](api_reference/anomaly_detection), where the goal is to find values or areas of a single time series that are not representative of the whole series. diff --git a/examples/similarity_search/code_speed.ipynb b/examples/similarity_search/code_speed.ipynb index f31155333d..65d2907604 100644 --- a/examples/similarity_search/code_speed.ipynb +++ b/examples/similarity_search/code_speed.ipynb @@ -27,15 +27,7 @@ "import pandas as pd\n", "from matplotlib import pyplot as plt\n", "\n", - "from aeon.similarity_search._commons import (\n", - " naive_squared_distance_profile,\n", - " naive_squared_matrix_profile,\n", - ")\n", - "from aeon.similarity_search.distance_profiles.squared_distance_profile import (\n", - " normalised_squared_distance_profile,\n", - " squared_distance_profile,\n", - ")\n", - "from aeon.similarity_search.matrix_profiles import stomp_squared_matrix_profile\n", + "from aeon.similarity_search.series import DummySNN, MassSNN\n", "from aeon.utils.numba.general import sliding_mean_std_one_series\n", "\n", "ggplot_styles = {\n", @@ -158,9 +150,9 @@ "for size in sizes:\n", " for query_length in query_lengths:\n", " X = rng.random((1, size))\n", - " _times = %timeit -r 7 -n 10 -q -o get_means_stds(X, query_length)\n", + " _times = %timeit -r 3 -n 3 -q -o get_means_stds(X, query_length)\n", " times.loc[(size, query_length), \"full computation\"] = _times.average\n", - " _times = %timeit -r 7 -n 10 -q -o sliding_mean_std_one_series(X, query_length, 1)\n", + " _times = %timeit -r 3 -n 3 -q -o sliding_mean_std_one_series(X, query_length, 1)\n", " times.loc[(size, query_length), \"sliding_computation\"] = _times.average" ] }, @@ -172,7 +164,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOcCAYAAADnnKdhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hUVf7H8c9MeoEUEjoBRLrSpNrAgiKLgg3BBqKoi33VVde1rmVtq4tY9ycqKizgqlgQBaTYRUFApKhAQiedkGQySeb+/ggZZpKZZJLMJJO579fz8DDl3HPP3O+dyfnee889FsMwDAEAAAAAAAAAAAAAAAAAAAAAAAAhxNrUDQAAAAAAAAAAAAAAAAAAAAAAAAD8jUEzAAAAAAAAAAAAAAAAAAAAAAAACDkMmgEAAAAAAAAAAAAAAAAAAAAAAEDIYdAMAAAAAAAAAAAAAAAAAAAAAAAAQg6DZgAAAAAAAAAAAAAAAAAAAAAAABByGDQDAAAAAAAAAAAAAAAAAAAAAACAkMOgGQAAAAAAAAAAAAAAAAAAAAAAAIQcBs0AAAAAAAAAAAAAAAAAAAAAAAAg5DBoBgAAAAAAAAAAAAAAAAAAAAAAACGHQTMAAAAAAAAAAAAAAAAAAAAAAAAIOQyaAQAAAAAAAAAAAAAAAAAAAAAAQMhh0AwAAAAAAAAAAAAAAAAAAAAAAABCDoNmAAAAAAAAAAAAAAAAAAAAAAAAEHIYNAMAAAAAAAAAAAAAAAAAAAAAAICQw6AZAAAAAAAAAAAAAAAAAAAAAAAAhBwGzQAAAAAAAAAAAAAAAAAAAAAAACDkMGgGAAAAAAAAAAAAAAAAAAAAAAAAIYdBMwAAAAAAAAAAAAAAAAAAAAAAAAg5DJoBAAAAAAAAAAAAAAAAAAAAAABAyGHQDAAANejSpYssFossFot27tzZ1M0JCWxTAAAAwB19ZP9jmwIAAAD1Q1/a/9imAAAAQP3Rn/Y/tikAM2LQDAAAMJUHH3zQmfj5+u+RRx7xuX7DMPT+++/roosuUrdu3RQTE6PU1FQNHjxYDz30kDIyMgL46QAAAAAEC7vdrjVr1uill17StGnTdPzxxys8PNyZZ0ydOrXedQcq71izZo1mzJihPn36qGXLlmrZsqX69OmjGTNmaM2aNfVuLwAAAICmtXnzZs2cOVMTJ05Unz59lJCQoIiICKWkpGjw4MG65ZZbtG7dOp/r27lzZ53PtRx77LF1bvOdd96pfv36KTk5WXFxcerRo4emTJmi5cuX13UTAAAAAAgSzfXaLc6hAM1beFM3AAAANF+jRo3SqlWrJEkrVqzQqFGjmrZBTWzv3r264oor9MUXX7i9brPZlJWVpZ9++klPP/20nn/++QZdIAcAAACYSXPMO2bNmqXbb79ddrvd73UHIu+w2+2688479fzzz8swDLf3Nm/erM2bN+vll1/WLbfcoieffFIRERH++jgAAABAs9Lc8pOlS5fqtttu06ZNmzy+n52drezsbP3000+aOXOmLr74Yr388stKTk5u5Ja6e/TRR/XQQw+ptLTU7fXffvtNv/32m+bMmaPJkyfrlVdeUYsWLZqolQAAAEDTa245SqBxDgWANwyaAQAApjVkyBANHTrUp3K1OXTokM4++2z98ssvzteGDh2qvn37Kj8/X1988YXy8vJ0+PBhXXXVVbJarbryyisb1H4AAAAAwSkrKysgA2YClXdMnz5dc+bMcT4/5phjNHz4cEnSd999p+3bt8swDD333HM6dOiQXnvtNb9/NgAAAAD+99NPP7kNmLFYLOrXr5969OihpKQkZWZm6quvvlJmZqYkaeHChfr111+1atUqtWrVyqd1tGjRwqe8IzU11af67r//fv3jH/9wPm/Xrp1OOeUURUdHu32eefPmKTs7W5988onCw7n0BQAAAGiOmsO1W5xDAUIDRw4AAIBpjR07Vg8++KBf6rrxxhudSVdycrIWLlyo008/3fl+YWGhrrvuOr3zzjuSKhKqE088Uccee6xf1g8AAAAg+HTq1ElDhgxxnvR56aWX9O6779a7vkDkHbNnz3ae7LFarXrmmWd08803y2q1SpIcDodmzpyp22+/XQ6HQ7Nnz9bIkSO5CQAAAADQjAwYMEDTp0/XJZdcUm0wjN1u17PPPqt7771X5eXl2rRpk2bMmKH58+f7VHdycrJmzZrll3YuX77cbcDMnXfeqUceeUSRkZHO1+bNm6dp06bJZrPp888/12OPPab777/fL+sHAAAA0LiC/dotzqEAocPa1A0AAABo7n755RdnQiVJc+fOdUu6JCkuLk5z5szRiSeeKKniJBQncQAAAIDQdNVVV2n//v3KyMjQ//73P9199906/fTTFRcXV+86A5F3lJSUuJ2M+utf/6pbb73VebJHqjgJdOutt+rOO+90vnb//fcHZCYdAAAAAP7Vo0cPffDBB1q3bp1mzJjhcfaYyMhI3XXXXXrqqaecry1YsEBbtmxpzKZKku655x7n40mTJunJJ590GzAjSZMnT9azzz7rfP70008rKyur0doIAAAAIPhwDgVAbRg0AwAA0EAvvfSSHA6HJGn06NE6++yzPZazWq168sknnc8XLFjAiRwAAAAgBHXu3Flt2rTxa52ByDs+/PBD7dq1S5KUkJCg++67z+v677//frVs2VKSlJ6erk8++aRenwMAAABA47ngggs0fvx4n8refPPNat++vfP54sWLA9Usj9asWaM1a9ZIqp7XVHXdddepe/fukqSCggK99dZbjdJGAAAAAMGJcygAasOgGQBoQg6HQ2+++aZGjx6ttm3bKjo6Wl26dNH48eP1wQcfOMuNGjVKFotFFotFK1eu9FhXly5dnGV27txZ67qnTp3qLP/GG2/UWt4wDL3//vuaMmWKevTooYSEBEVHR6tTp06aMGGC3nzzTZWVldVYx86dO53r7NKli/P1r776Stdcc4169eqlhIQEWSwW3XrrrVq3bp2zfFJSkmw2W63tlCoOjsfHxzuX3bBhg0/L+UNpaaneeustTZw4Ucccc4xatGihuLg4de3aVZMnT9b7778vwzBqrGPlypXOto8aNcr5+hdffKFJkybpmGOOUXR0tFq1aqVTTz1Vs2bNUmlpqc9tLC4u1rPPPquTTjpJKSkpiomJUbdu3TR58mQtX77cWa6mfary9VWrVjlfO+2005yvu/7zZf/avXu37rvvPvXv31+JiYmKi4tTr169dNNNNyk9Pd3nz9YUDMPQhx9+6Hx+1VVX1Vj+pJNOck7rWV5e7rYsAABAIJB3VCDvcEfeQd4hye034JJLLlFsbKzXOmNjYzVx4kTn8/fff9+XpgMAALghP6lAfuKO/CQ48pOwsDANGzbM+dyX75U/uf4GnHnmmerUqZPXshaLRVOmTHE+Jz8BAAD1RY5SgRzFHTlKcOQovuIcCgCfGACAJrFv3z5j2LBhhiSv/84//3zj0KFDxsiRI52vrVixwmN9nTt3dpbZsWNHreufMmWKs/zrr79eY9n169cbAwYMqLGtkoyePXsamzZt8lrPjh07nGU7d+5slJSUGNddd53Hum655RbDMAzjhBNOcL729ttv1/q5DMMw/vOf/ziXGTJkiE/LeFOX7bpixQqjW7dutW6n4cOHG7t3766xnsqyI0eONEpKSozp06fXWOegQYOMzMzMWj/Phg0bam3jddddZ9jt9ho/e22f0fVf1f2rar3vv/++kZCQ4HX5mJgY4+OPP671s/nqgQcecNb9wAMPNLi+rVu3urV37969tS7jGs/LLruswW0AAADwhryDvKOmesg7Apd3eOP6nZgyZYrPywUq72jXrp2zzNy5c2ut85133nGW79Chg8/tBwAAMAzyE/IT8pNgy088ueCCC5ztmDFjhtdyVfdtfxgxYoSzzscee6zW8l9//bWzfFhYmGGz2fzSDgAAYB7kKOQoNdVDjhK4HKW5XLvFORQgtIQLANDo8vLydPrpp2vz5s3O17p27aoRI0YoKipKmzZt0g8//KD3339fVmvTTgq2evVqnXvuuTp06JAkKSIiQkOGDFH37t0VERGhnTt36quvvpLNZtPWrVt14okn6ttvv1Xv3r1rrfu2227TK6+8Ikk6/vjj1b9/f0VERGjbtm3Oz33ttdfquuuukyS99tpruuyyy2qt97XXXnM+vuaaa+r8metj4cKFuuyyy5x3DYiJidHw4cPVpUsXWa1Wbdu2Td9++63Kysr03XffacSIEVqzZo3atGlTa93XXnut3nzzTVmtVg0bNky9evWSw+HQd999p61bt0qS1q5dqyuvvFKLFy/2Ws/vv/+uM844Q5mZmc7Xjj/+eA0YMEBWq1U///yz1q9fr1deeUUtWrSosU033HCDpIpR8Xv37pUkTZgwQR06dKhWtqZ9YdmyZbr++utVXl6utLQ0jRgxQi1bttSOHTu0cuVKlZWVqbi4WBMnTtQvv/yirl271tiuujpw4IDefvttbdu2TYcPH1ZiYqI6duyok08+WT169PCpDtfvcdu2bdWuXbtalxk0aJDH5QEAAPyJvKMCeQd5R1PnHf4QiLwjPz9f+/bt81jelzr37NmjQ4cOqWXLlrUuBwAAQH5SgfyE/CTY85ONGzc6H9c004ursrIyLV26VD/++KOysrIUHR2tlJQUDR48WEOHDlVUVJRP9bj+PviSnwwcOND5uLy8XNu2bdPxxx/v07oAAADIUSqQo5CjNHWOEqzXbnEOBQhBTT1qBwDMaNq0ac5RxZGRkcZrr71Wrcz333/vHNUdGRnZJHcr2Ldvn9G6dWtnuSuvvNLjSOz9+/cb559/vrPc8ccfb5SVlVUr53q3grCwMEOS0alTJ2P16tXVylbeDaqgoMCIj483JBkWi8X4448/avxcmzZtcq4jLi7OOHToUK3boia+bNdffvnFiImJcbbxjjvuMHJzc6uV++OPP4yTTz7ZWd8555zjsT7XuxVERUU577qwefNmt3IOh8N47rnn3EbKr1q1ymOdDofDOPXUU53lWrVqZSxZsqRaueXLlxutW7c2LBaL237n7bP7cieNqly3aVRUlBEXF2e89dZbhsPhcCv3yy+/GB06dHCWveqqq3yqvzaudyuo6d+gQYOM999/v9b6nnjiCecyw4YN86kNn3zyiXOZ2NjYBn4iAAAAz8g7yDvIO5ou7/CmvjPNBCLv+P77793iWlRUVGudhYWFbsv88MMPPn8GAABgbuQn5CfkJ8GXn1TlOnOLJGPNmjVey7ru2zX9S0pKMu69916joKCgxnUfOHDAbbmqsfcmNTXVucyCBQvq9HkBAIC5kaOQo5CjcO0W51AAc2naIbAAYELbtm3T66+/7nz+6quvatq0adXKDR06VJ9//rliY2Nlt9sbs4lO9957rw4ePChJuvnmm/Xmm296HIndpk0bLVy4UKeffrqkirtQvfvuuzXWXV5ertjYWC1btkynnHJKtfcr7zoVHx+vyZMnS5IMw9Ds2bNrrNf1TgUTJ06sddS9P9x8880qLi6WJD3zzDN66qmnlJiYWK3cMcccoyVLlqhPnz6SpE8//VTff/99jXWXlJSoe/fu+uKLL9SrVy+39ywWi2655RZddNFFztfmzZvnsZ7PPvtMq1evliRZrVYtWrRIZ599drVyp59+uj755BNZrdZG2e/sdrveffddXX755bJYLG7v9e3b13k3C6nijhBlZWUBb1OltWvX6vzzz9f06dNVXl7utVx2drbzsS93n5Aq7mpQqaioSCUlJfVvKAAAgAfkHRXIO8g7pODOO3wViLzDtc6WLVsqJiam1jpjY2Pd9vecnByf2gIAAMyN/KQC+Qn5iRS8+YnD4dCtt97qfD5s2DANHjy4wfXm5ubq0Ucf1eDBg7Vt2zav5VzzE6l+eQ/5CQAA8BU5SgVyFHIUKXhzFKlpr93iHAoQehg0AwCN7LXXXpNhGJIqkqspU6Z4LdujRw+3A9SNKTMzU2+//bakik7iE088UWP5sLAwPfroo87n77zzTq3ruPHGG32aRnH69OnOx2+88YbXTnBpaaneeust5/PGmN5z/fr1+uKLLyRVTANfW7zi4uJ03333OZ/7sp3++c9/Kj4+3uv7ron7Dz/84LGMa0I6adIknXTSSV7rGzx4sK688spa2+UP48aN05gxY7y+P3bsWGeScvjwYY/TYdZHr1699Pe//13Lly/Xvn37ZLfbVVBQoI0bN+qpp55Sx44dnWX/7//+T7fccovXug4fPux87EuC5Kmcax0AAAD+QN5xFHkHeUdT5R3+FIi8oz51Vi1LLgMAAHxBfnIU+Qn5SbDmJ//4xz+0Zs0aSRUX8D399NO1LtOiRQtNnTpV//3vf7V161YdPnxYJSUl2rVrlxYuXKgzzzzTWXbr1q0aM2aMMjMzPdZVNbeoT95DfgIAAHxFjnIUOQo5CtduVa+jvnVWLUuOAgQXBs0AQCNbsWKF8/EVV1xRa/maErNAWrZsmXO0+gUXXKDo6Ohalxk2bJji4uIkSV999VWt5SdNmuRTW4YMGaIBAwZIkvbs2aPPPvvMY7kPP/zQebC9T58+OvHEE32qvyEWL17sfDx58uRqI+49qbyrg1T7doqOjta5555bY5mBAwc6H+/cudNjmVWrVjkfX3755bW20Zcy/nDxxRfX+L7FYlH//v2dz719vrq46aabtHnzZv3jH//Q6aefrrZt2yoiIkLx8fE67rjjdMcdd2jTpk0655xznMu88MILXmNls9mcjyMjI31qQ+XdOCpV3u0CAADAX8g7jiLvIO9oirzD3wKRd9Snzqr1kssAAABfkJ8cRX5CfhKM+clHH32khx56yPn8rrvu0sknn1zjMu3atdPevXv1+uuv65JLLlGPHj0UFxenyMhIdezYURdddJGWLl2qV155xbmP7NixQ/fcc4/H+lzzE6l+eQ/5CQAA8BU5ylHkKOQoXLtVgXMoQOgLb+oGAICZGIah9evXO5+PGDGi1mV69Oih5OTkRp+u79tvv3U+3rBhg2688cY6LZ+bm6vCwkJnIlZVRESEjj/+eJ/ru/baazVjxgxJFSPvx44dW62M64j8q6++uk7trS/X7bRixQqlp6fXukzl3SokadeuXTWW7dmzpyIiImos06pVK+fjQ4cOVXt/z549bnfuGjZsWK1tHDJkiCwWi1tbA8GXfaC2z1dXrvV507JlS7377rsaMGCAfvvtN0nSE0884fEkketBCV+nRa06pWdd7kgAAABQG/KOo8g7KpB3NH7e4W+ByDvqU2fVesllAABAbchPjiI/qUB+Elz5yZo1azR58mTn5z7zzDP18MMP17pcVFRUtYvMPLn22muVnp6uxx57TFLFXckfffRRtWnTxq1c1QtA7Xa7TxeFkp8AAIC6Ikc5ihylAjkK125JnEMBzIBBMwDQiPLz8906UWlpaT4tl5aW1uiJ1969e52Pv/rqK5/uPlBVbm6u18QrKSlJ4eG+/xm67LLLdOedd6qwsFAfffSRMjMzlZqa6nx/9+7dzrsYREZGNtoUla7b6dNPP63z8rm5uTW+n5CQUGsdrolZWVlZtfddk67Y2FglJyfXWmeLFi2UkJCgvLy8Wss2RF0/X2lpaSCb4yY2NlZ33XWXc6rYL774Qna7vdrdA1ynX/X1DgFVy9U0hSsAAEBdkXccRd5RgbwjePMOXwUi76hPnVXLkssAAIDakJ8cRX5SgfwkePKTX3/9Veecc44KCwslVVyU9/7779dpP/XFPffco2effVbFxcUqLy/X0qVLq901u2puUVxc7NOgGfITAABQV+QoR5GjVCBHCZ4cpaqmvHaLcyhA6LE2dQMAwEwOHz7s9jw2Ntan5bwlL4GUn5/f4Do8JQGV6jqSumXLlrrkkkskVXS+58yZ4/b+G2+8IYfDIUkaP368UlJS6tja+mnodiovL6/xfV+mDK2N637n6z4nNU7H3R+fL5DOPPNM5+OioiKPd6NwvfvBgQMHfKp3//79zsexsbE+3Y0NAADAV+QdR5F3VCDvCO68wxeByDuq3hnOZrPVWmdRUZEKCgqcz305sQcAAMyN/OQo8pMK5CfBkZ/s2LFDo0ePVnZ2tiSpb9++WrJkSUC2QXx8vNudtDdv3lytTNU7Tdcn7yE/AQAAviBHOYocpQI5SnDkKN401bVbnEMBQg+DZgCgEVXtyBYVFfm0XOUdnvypMknxxjXZ+9e//iXDMOr8r0uXLn5t8/Tp052PXafzNAxDr7/+uvN55ejyxuC6nd577716badAc93vfN3npMDsd81Nu3bt3J5nZWVVK9OzZ0/nY1+meJWkjIwM5+NevXrVs3UAAACekXc0DHlH/ZB3BFYg8g7XOn2t17VOT3UAAABURX7SMOQn9UN+UrM9e/bojDPOcN6Ru1u3blq6dGlAL+hyPd/i6VxL69atlZiY6HzuS35is9nc7tjN+RYAAOALcpSGIUepH3KU+muqa7c4hwKEHgbNAEAjSkhIcJsesGpHyZtdu3bVWqa2aR6rqm2UfZs2bZyPXUdWN6Xhw4erX79+kiruQvXtt99KklasWKHt27dLkjp37uw2wjzQgnE7VeV654aioqJapxWVKu5wEOjpPZuDqsmnpzuH9O7d2/l4//79Pu0Ha9eu9bg8AACAP5B3NAx5R/2QdwRWIPKOhIQEt5NN69atq1OdHTp0UMuWLWtdBgAAmBv5ScOQn9QP+Yl3Bw4c0BlnnKEdO3ZIkjp27Khly5ZVuxDN31zPt3i7S7tr3lLX/CQsLEw9evRoQAsBAIBZkKM0DDlK/ZCj1F9TXbvFORQg9DBoBgAakcViUf/+/Z3Pv/vuu1qX+e2335xTo9fEtZPlS/mNGzfW+L7rNOlff/11rfU1Fk93LHC9c8FVV10lq7Xx/rwF63Zy1bFjR7fk6/vvv691mR9//NGnOykE+xSdDVU14Wnfvn21Mt27d1fHjh2dz1euXFlrvatWrXI+Pv300+vfQAAAAA/IOxqOvKPuyDsCK1B5x2mnneb3OgEAAFyRnzQc+UndkZ94lp2drdGjR2vr1q2SKmZ3WbZsmd/vPu6J6/kWT+dapIblJyeeeKKioqLq30AAAGAa5CgNR45Sd+Qo9deU125xDgUILQyaAYBG5tqZevvtt2stP2fOHJ/qdT2g/fPPP9dY9scff3TeQcqbs88+W+Hh4ZKkb775RuvXr/epHYF2+eWXKyYmRpI0f/587d69W++9954kyWq1atq0aY3annHjxjkfv/feezpw4ECjrt9XI0eOdD5+5513ai3vy74pSdHR0c7HpaWldW9YkJs9e7bzcd++fd0S2EoWi0XnnXee8/kbb7xRY53ffvuttm3bJqnizmfnnnuufxoLAADggryjYcg76oe8I3AClXdMmDDB+Xj+/PkqLi72WmdxcbEWLFjgcVkAAICakJ80DPlJ/ZCfuDt06JDOPvts54WZSUlJWrp0qXr27BnwdS9btsztzuyjRo3yWM41x1i2bJl2795dY72ueRH5CQAAqAtylIYhR6kfcpT6acprtziHAoQWBs0AQCO7+uqrnY+/++67Gju4v//+u5599lmf6nUdNf/mm296LVdWVqZbbrml1vo6dOigyy+/XJJkGIauvPJKHTp0yKe2OBwOZWZm+lS2rhITEzVx4kRJFdNQXnTRRbLZbJKks846S506dQrIer0ZOnSo8+B+cXGxrrjiCtntdp+WtdvtPk236Q+uCencuXNrvFPG2rVra9yHXLVq1cr5eM+ePfVvYCM5fPiwz2XfffddzZ071/m88vvgyfXXX++8S8Znn32mpUuXeizncDj017/+1fn84osvVmpqqs9tAgAA8BV5R8OQd9QPeUdgBSLvOO+885x3X8vLy9Ojjz7qdf3/+Mc/lJeXJ0nq3Lmz24lIAACAmpCfNAz5Sf2QnxxVVFSkP/3pT/rpp58kSS1atNCSJUvUr1+/etVnt9t9jnlmZqauv/565/PevXtr0KBBHssOGTJEQ4YMkSSVl5fr7rvv9lrvq6++6rzIrUWLFrryyit9bT4AAAA5SgORo9QPOUqF5nTtFudQgNDCoBkAaGQ9evTQ1KlTnc+vueYaj53cH3/8UaNHj1ZhYaEiIyNrrfeSSy5xdvy+/fZb3X333SovL3crs3v3bo0bN07ffPONT1OUP/roo2rXrp0kacOGDRo6dKg+//xzr+V3796tZ599Vj179tT8+fNrrb++XKf5dJ2u8pprrgnYOmvy/PPPKz4+XpK0dOlSnXrqqTVOo7lt2zb94x//UJcuXRptWtBzzjlHJ598sqSKzv+5556rZcuWVSu3cuVKjR07VuXl5T7td8cdd5zz8bvvvuvTtKBN6ZlnntHo0aP1v//9z+vo//z8fD3wwAOaNGmS8/N07dq1xgMWxx9/vC677DLn88mTJ1eblrOwsFBTp07VV199JUmKjIzUP/7xjwZ+IgAAAM/IOxqOvKPuyDsCKxB5R1RUlB566CHn88cff1wzZ86Uw+FwvuZwODRz5kw98cQTztcefvhhn2IHAAAgkZ/4A/lJ3ZGfVCgpKdGECROcOUJMTIw+/vhjDR06tN517t27V926ddOTTz6p9PR0j2UMw9Ann3yiIUOG6I8//pBUcffnp59+2vm99eTxxx93Pn7nnXd09913V7tb9oIFC3Trrbc6n99xxx0e7zYNAADgDTlKw5Gj1B05SoXmdO0W51CA0BLe1A0AADP617/+pW+//VZbt25VSUmJpk6dqocfflgjRoxQVFSUNm3apB9++EGGYeiCCy5Qdna2Vq1aVWOdnTt31vXXX68XX3xRkvTEE09o3rx5OvXUUxUdHa0//vhDX3/9tex2u84880y1bdu21mkc27dvr0WLFmns2LHKysrS1q1bdfbZZ6tDhw4aOnSoUlNTVVpaqqysLP3yyy+1ThvqLyeddJL69u2rTZs2OV9r3bq12zSLjem4447TvHnzdMkll6ioqEjff/+9hg8frm7dumnQoEFKTk6WzWbTwYMHtWHDhiYZ1W+xWDR79myNGDFC2dnZysrK0ujRo9W/f38NGDBAkrR+/Xrn9LB33HGHFi5c6DzZ4e0ExgUXXKC//e1vzpMf/fr104knnqgWLVo4y0yaNEmDBw8O6OfzlWEYWrZsmZYtW6aoqCj17dtXxx57rBITE2W327Vz5059//33bklZSkqKFi9e7Jxa1ptZs2Zp7dq12rRpk7Kzs3Xaaadp2LBh6tOnjw4dOqQvvvjC7e4Ur776qo499tiAfVYAAADyjoYh76g78g53lZ/ZVUZGhvPxhx9+6LFM5fbxJBB5x7Rp07Ry5Uq99dZbcjgcuuWWWzRz5kwNHz5cUsWdFisvcpOkq666irs4AwCAOiM/aRjyk7ojP6lw3333ud1huXfv3lqwYIEWLFhQ67KtWrVyu0DM1e7du3XXXXfprrvuUpcuXXT88ccrJSVFERERyszM1Pfff6+9e/e6LfPkk09q7NixNa7zjDPO0N///nc98sgjkiq+12+99ZZOOeUURUdH66efftIvv/ziLD969Gj97W9/q/WzAAAAVEWO0jDkKHVHjlKhuV27xTkUIIQYAIAmsWfPHmPw4MGGJK//zjvvPOPQoUPGyJEjna+tWLHCa53FxcXG2LFja6xz3LhxRm5urjFlyhTna6+//nqNbd25c6dxxhln1Fiv6782bdoYS5YsqVbPjh07nGU6d+7coO333HPPua3zjjvuaFB93nTu3Nm5jh07dtRY9ueffzZOOOEEn7dTly5djHXr1lWrZ8WKFc4yI0eO9KmdrvXW1sauXbvW2K5rr73WsNvtRvv27Z2v5ebmeq3znnvuqbG+qvtXXbapYRh12ldr88ADD/gcH0nGmDFjjN27d/tc/549e4zTTz+9xjrj4+ON2bNnN+hzAAAA+Iq8o3ODth95hzvyjrqpS+7h67Y1jMDkHSUlJcaNN95oWCwWr3VaLBbj5ptvNux2e0M2CwAAMDHyk84N2n7kJ+7IT3zjWldd/3nbZ133a1/+dejQwVi0aJHPbXY4HMY//vEPIyIiosZ6J02aZOTn5zdo+wAAAHMjR+ncoO1HjuKOHMU3zfHaLc6hAKGBmWYAoIm0b99e3333nebMmaN33nlHGzZsUH5+vtq0aaP+/ftrypQpuvDCC2WxWHyuMzo6Wh9//LHmzZunN998U2vXrlV+fr5at26t/v37a+rUqbrooovqVKdUcSeEZcuW6dtvv9XChQu1evVq7dq1S7m5uQoPD1erVq3UvXt3DR48WGeddZZGjRql8PDA/om54IIL3KZeb6rpPV31799fP/74oz7//HN98MEH+vrrr7V3717l5eUpKipKqamp6tmzp4YNG6azzz5bI0aMqHMs/NHGX375RS+//LIWLlyobdu2qaioSO3atdPQoUM1ffp0nXHGGZLkHFlvtVrVsmVLr3U+9thjOvnkk/X666/rp59+0oEDB1RUVNQon6eu7rzzTo0cOVLffPONvvvuO6Wnpys7O1vZ2dmyWCxKTExU9+7ddeKJJ2ry5Mnq379/nepv3769li1bpvfff1/vvPOO1q5dq3379ik+Pl5paWk699xzdfXVVystLS1AnxAAAMAdeUfDkHfUv41mzjsCLRB5R2RkpJ5//nldccUVmj17tlauXOm8016HDh00atQoXX311RoyZEigPhYAADAB8pOGIT+pfxvJT/yrc+fO2rhxo7799lt988032rRpk7KyspSdna2ioiK1bNlS7dq105AhQ3TOOefo/PPPV0REhM/1WywW/f3vf9eFF16o//u//9Pnn3+uXbt2qbS0VO3atdOIESM0ZcoUnXnmmQH8lAAAwAzIURqGHKX+bTRzjtIcr93iHAoQGiyGYRhN3QgAQM1GjRrlnOJzxYoVGjVqVNM2KAi8+eabmjp1qiTp5JNP1pdfftm0DQoxv/32m3r06CFJ6tWrlzZv3tzELQIAAECgkXdUR94RWOQdAAAA8Ib8pDryk8AiPwEAAEBNyFGqI0cJLHIUAPAva1M3AACA+njttdecj6dPn96ELQlN8+fPdz5mFDwAAADMirwjsMg7AAAAAN+RnwQW+QkAAABQN+QogUWOAgD+xaAZAECzs27dOufdCZKTkzVx4sQmblFo2bFjh55++mnn80svvbQJWwMAAAA0DfKOwCLvAAAAAHxHfhJY5CcAAABA3ZCjBBY5CgD4H4NmAADNis1m00033eR8fv311ys6OroJW9S8nHXWWVqyZInKyso8vv/JJ5/o5JNPVn5+viRpwIABOuussxqziQAAAECTI+9oGPIOAAAAwH/ITxqG/AQAAADwL3KUhiFHAYCmEd7UDQAAoDazZs3S77//rry8PC1fvly7d++WJKWkpOj2229v4tY1L0uXLtXSpUuVlJSkQYMGqVOnToqMjFRWVpZ++OEH57aVpBYtWmjOnDmyWhljCwAAgNBH3uE/5B0AAABAw5Cf+A/5CQAAANBw5Cj+Q44CAE2DQTMAgKD37rvvatWqVW6vhYWF6bXXXlNycnITtap5y83N1fLly72+3717dy1cuFDHH398I7YKAAAAaDrkHf5H3gEAAADUD/mJ/5GfAAAAAPVHjuJ/5CgA0LgYNAMAaFaSkpJ04okn6p577tFJJ53U1M1pdn755Rd98MEH+uabb5Senq6srCzl5OQoOjpaqampGjp0qMaNG6dJkyYpLCysqZsLAAAANAnyjoYh7wAAAAD8h/ykYchPAAAAAP8iR2kYchQAaBoWwzCMpm4EAAAAAAAAAAAAAAAAAAAAAAAA4E/Wpm4AAAAAAAAAAAAAAAAAAAAAAAAA4G8MmgEAAAAAAAAAAAAAAAAAAAAAAEDIYdAMAAAAAAAAAAAAAAAAAAAAAAAAQg6DZgAAAAAAAAAAAAAAAAAAAAAAABByGDQDAAAAAAAAAAAAAAAAAAAAAACAkMOgGQAAAAAAAAAAAAAAAAAAAAAAAIQcBs0AAAAAAAAAAAAAAAAAAAAAAAAg5DBoBgAAAAAAAAAAAAAAAAAAAAAAACEnvKkbgOYtKysrIPWGhYUpKSnJ+Tw3N1fl5eUBWReaHvE2F+JtHsTaXIi3uQRDvFNSUhp1fWgeApWfSMGx36PxEG/zINbmQrzNhXibS1PHm/wE3pCjwB+ItbkQb3Mh3uZCvM0jGGJNjgJvuM4L/kC8zYV4mwvxNg9ibS7BEO9gyFGYaQYAAAAAAAAAAAAAAAAAAAAAAAAhh0EzAAAAAAAAAAAAAAAAAAAAAAAACDkMmgEAAAAAAAAAAAAAAAAAAAAAAEDIYdAMAAAAAAAAAAAAAAAAAAAAAAAAQg6DZgAAAAAAAAAAAAAAAAAAAAAAABByGDQDAAAAAAAAAAAAAAAAAAAAAACAkMOgGQAAAAAAAAAAAAAAAAAAAAAAAIQcBs0AAAAAAAAAAAAAAAAAAAAAAAAg5DBoBgAAAAAAAAAAAAAAAAAAAAAAACGHQTMAAAAAAAAAAAAAAAAAAAAAAAAIOQyaAQAAAAAAAAAAAAAAAAAAAAAAQMhh0AwAAAAAAAAAAAAAAAAAAAAAAABCTnhTNwAAgJqUlpaqqKhIdrtdhmHIMIymbhJ8ZLFYlJWV5XxeWlpK/EIY8TaX+sbbarUqPDxc0dHRioqKktXKGH4AQPPicDhUUlIim82msrIyORyOpm4S6oA+q7kQb3OpT7wtFossFosiIyMVGxuriIiIQDcTqLOa+h78zpkHsTYX4h26ODYKAAAAAADQdBg0AwAISoZhKD8/X8XFxU3dFDSA68k8LigMfcTbXOoTb4fDobKyMtlsNlksFiUmJio6OjpQTQQAwK9sNpvy8vK4YK2Zo89qLsTbXOob77KyMhUVFSkmJkYJCQmyWCyBaB5QZ770PfidMw9ibS7EOzR5OjYaFxfX1M0CAAAAAAAwBQbNAACC0uHDh6sNmOGuW80PMTMX4m0u9Ym364xhhmEoNzdXSUlJDJwBAAQ9m82m3Nxct9cqZyhA80Kf1VyIt7nUJ96uFyIXFxcrLCxMLVq08GezgHrxte/B75x5EGtzId6hydOxUavVqqSkpCZuGQAAAAAAQOhj0AwAIOiUlZXp8OHDzuctWrRQbGwsJ4qaofDwo12NsrKyJmwJGgPxNpf6xNswDNntdhUWFqqkpESSlJeXp9atW/MbDwAIWg6HQ3l5ec7nUVFRiouLU2RkJINmmiH6rOZCvM2lPvF2OBwqKipSQUGBpIqbuMTExLjVBTS2uvQ9+J0zD2JtLsQ7NHk6NpqTk6O2bdtybBQAAAAAACDAOPoCAAg6lScLJCkuLk7x8fGcMACAEGCxWBQVFaWkpCRFRUVJqjhZ7Pq7DwBAsCkpKXHeDdj17xgDZgCg+bNarYqPj1dcXJzzNfITNDX6HgAQmrwdG3W9iRwAAAAAAAACgyuQAQBBx/XihJiYmCZsCQAgECwWi9tFaTabrQlbAwBAzVz/TsXFxXHBKgCEINfjTwyaQVOj7wEAoa3qsdFDhw41YWsAAAAAAADMgUEzAICgU15eLqnixEF4eHgTtwYAEAiRkZHOC3/KysqauDUAAHhX+XfKYrEoMjKyiVsDAAiE8PBwZ35SeVwKaCr0PQAg9LkeG7Xb7U3cGgAAAAAAgNDHoBkAQNBxOBySKk4McydFAAhNrr/xlb/7AAAEI/ITAAh95CcIJvQ9ACD0uf7GM2AXAAAAAAAg8Bg0AwAAAAAAAAAAAAAAAAAAAAAAgJDDoBkAAAAAAAAAAAAAAAAAAAAAAACEHAbNAAAAAAAAAAAAAAAAAAAAAAAAIOSEN3UD4B+rV6/Wli1btH37dmVkZKisrEwzZszQqFGjmrppAAAAAAAAAAAAAAAAAAAAAAAAjY5BMyFi/vz5yszMVIsWLZSUlKTMzMymbhIAAAAAAAAAAAAAAAAAAAAAAECTsTZ1A+Af1113nV544QW99tprGj16dFM3BwDQDO3evVu33367hgwZoo4dOyo1NVWpqalavHixX9dTWe+TTz5Z7b2vv/7a+f7XX3/t1/XCvObNm+fcrzIyMpq6OQAAAPAB+QlCFfkJAAQn+h4IVfQ9AAAAAAAAAGaaCRn9+vVr6iYAAJqx3bt368wzz1R2dnZTNwUAAACAyZGfAACAxkTfAwAAAAAAAABCm+kHzeTn5+v333/X77//rj/++EN//PGHCgoKJEkjR47UDTfc4HNdmZmZ+vTTT7V27VplZ2crPDxcbdu21YgRI3T22WcrKioqUB8DAIAG+de//uX82/W3v/1NI0aMUFxcnCSpU6dOTdw6NAcZGRk64YQTJEkvvPCCJk6cGND1ff3115owYYIk6YMPPtBJJ50U0PUBAACg8ZCfoKGq5ieXXnppQNdHfgIAzRt9DzSUa99j5syZmjx5ckDXR98DAAAAAAAAqBvTD5qZPn26X+r58ccf9fzzz6u4uNj5WklJiXMgzvLly3XPPfeobdu2flkfAAD+tHr1aknSOeeco5tuuqmJWwP41+TJkwN+ohoAAAD+Q36CUEZ+AgDBh74HQhl9DwAAAAAAAIBBM25SUlLUoUMHrV+/vk7L7dixQ88995zsdruio6M1YcIEHXfccbLb7fr666+1fPly7du3T48//rj++c9/KiYmJkCfAACA+tm3b58kqVu3bk3cEgAAAABmR34CAAAaE30PAAAAAAAAAAhtph80c9FFF6lbt27q1q2bEhMTdfDgQd144411quONN96Q3W5XWFiY/v73v6tHjx7O94477ji1a9dOb7/9tvbt26ePPvpIEydOrFbHnDlzVFpa6vM6x44dq3bt2tWpnQAAeGO32yVJERERTdwSAAAAAGZHfgIAABoTfQ8AAAAAAAAACG3Wpm5AU5s4caJOOOEEJSYm1mv533//XZs3b5YknXbaaW4DZiqNGzdOHTp0kCR9+umnKisrq1Zm6dKl+uyzz3z+l5OTU6/2AgBQad68eUpNTVVqaqrztaeeesr5WmpqqttA0kGDBlV7zZMbb7xRqampGjRoUMDa7guHw6H33ntPU6dO1YABA9SpUyd16tRJw4YN0/XXX68PP/zQ64BVu92u2bNna8KECerVq5fat2+vPn36aNKkSVq4cKEcDofX9Vb9/AcOHNADDzygYcOGKS0tTccff7yuvvpqbdmyxW25jIwM3XPPPRo2bJg6deqkPn366Prrr9eOHTu8ruvJJ590i2F+fr6eeOIJnXzyyercubO6d++uCRMm6L333qtxW1XW8eSTT9ZYbvz48UpNTdX48eOrLX/CCSc4n99www1u+5Gnunfu3KkXX3xRl112mQYNGuSMz8CBA3XNNddo+fLlHtuQkZGh1NRUTZgwwfnahAkTqq1v3rx5zvdd9/WMjAyvny8rK0uPPfaYTjvtNHXr1k0dO3bUoEGDNGPGDH333Xc1bpuq34/ff/9dt912mwYNGqQOHTqoT58+mjJlin788cca6wEAADAr8hPyk0qByE+SkpLIT8hPAMANfQ/6HpX83fe4+eabG3xsdNmyZR7bQN8DAAAAAAAAdeEwDB04VKJvfs/S29+l67ll25q6SU3G9DPNNNQPP/zgfHzaaad5LGO1WjVy5EjNnTtXhYWF2rRpk/r37+9W5q233gpoOwEAMJOMjAxNmTJFv/zyS7X3tm/fru3bt+t///ufPvjgA5100knVlp00aZJ+++03t9czMzO1fPlyLV++XG+++abeeustJSUl1diOX375RZdccokOHjzofK24uFgffvihli1bpvnz52v48OH68ssvNXXqVB06dMhZzmaz6X//+5+WL1+ujz76SL169apxXenp6brooou0c+dO52tFRUX6+uuv9fXXX2vx4sV6+eWXFR7e9N2/9PR0DRkyxON7u3fv1u7du7Vo0SJdfPHFmjlzZqO0ecWKFbr66qtVUFDg9vquXbu0a9cuLVy4UNOmTdPjjz8uq7XmceeffPKJZsyYoaKiIudrmZmZWrx4sT777DO99NJLOv/88wPyOQAAABB8yE8qkJ/4jvwEANAQ9D0qNPe+x8SJE/XCCy80SpvoewAAAAAAADRv+cVlysgtVnquTRm5NmXkHPk/1yZb2dGb4Fgs0qT+rRRuacLGNpGmPzLYzG3dulWSFBUVpWOOOcZruT59+rgtU3XQDAAAjW3s2LEaMGCAJOnUU0+VJF111VW66qqrnGXqOxNbUzp48KD+9Kc/af/+/ZKkU045RZdccom6d+8ui8Wi9PR0ffXVV/rwww+rLXv48GFdeOGFzpOrY8eO1aWXXqq2bdsqPT1dr732mr755ht9//33uuyyy/TRRx8pLCzMYzuKi4s1depUlZaW6t5779WJJ56osLAwffHFF3ruuedUVFSkG264QQsXLtSVV16pli1b6q677tIJJ5ygsrIyffzxx3rllVeUl5enW2+9VUuWLKnxc0+fPl0ZGRmaOnWqzj33XLVs2VKbNm3S888/rz/++EOLFi1S27Zt9cgjjzRsA3uwevVq7d+/XxMnTpQk3XvvvTr77LPdyqSkpDgfl5eXKzIyUqeddppGjhypnj17KjExUXl5efrjjz80e/ZsbdmyRQsXLlTnzp111113OZdt166dVq9erXXr1umWW26RJP373//WwIED3dbXvn17n9u/ceNGXX755bLb7YqIiNDVV1+tMWPGKDY2Vhs3btTMmTOVnp6u2bNnKy4uTvfff7/XujZv3qxFixapTZs2+vOf/6wBAwbIMAytWLFCM2fOlM1m0+23365TTjnFbZsAAACYHfkJ+Ym/eMpPxo4dq/LycmcZ8hPyEwCg70Hfw1+q9j3uuecenXPOOW5l6tP3WLBggbp06aI777zTuSx9DwAAAAAAAPMqtpdrV17FQJj0KgNj8m1lPtVhGNLuXJu6JEcFuLXBh0EzDbR7925JUtu2bb0eGJbcD05WLgMAqD+HYSi/2Lc/9KEgISZcVot/h/cmJCQoISHB7bWUlBT17t3br+tpbH/961+dJ4Xvv/9+3XTTTW7vDxw4UBMmTNCDDz6osjL3fejpp592nhT+y1/+onvuucf5Xv/+/XXuuedqxowZevfdd7VmzRrNmTPH7US6q6ysLBmGoc8++0xdu3Z1vn7CCScoOTlZd999tzIyMvSnP/1JrVu31ieffOJ2onDYsGEKDw/XrFmz9NNPP2nDhg3q16+f18+9bt06vfLKK7rgggucrw0YMEDjx4/XuHHjtGnTJv3nP//RZZdd5vcY9+7dW3Fxcc7n7du3r3Edbdq00U8//aS2bdtWe+/UU0/V1KlTdfPNN+u///2vXnzxRf35z39Wy5YtJUkRERHq3bu3cnJynMt07ty5QZ/p9ttvl91uV1hYmN555x232QMHDhyo8847T+PGjdPWrVv1wgsvaOLEiV7vbrlhwwb1799f77//vlq0aOF8ffDgweratav+/Oc/q6CgQO+++66uv/76ercZAAAEH3KUBtZHfkJ+4iee8pM+ffpU276VyE/IT4DmqLLfERZuOF8r9/I7Fyroe/iGvkfT9z3atWvX4GOjt956q+bOnasXXnhB1113HX0PAAAAAAAAkygrd2jvIbsyclxmjTny70CB3S/rSM8tZtAM6sZutzunqW7VqlWNZePj4xUVFaWSkhJlZ2f7vS3Lly/Xli1bJFVMnV752qZNmyRJvXr10hlnnOFzfb62saaBQg1RdWrv2qb6RvNGvM3Fl3hbfDj5mV9cptEvrvVbu4Ld0hmDlBQb0dTNaBCLxSLDMGov2AC///67Fi9eLKniTohVTwq7io+Pd3teUlKit99+W1LF382//vWv1ZaxWCx68skn9cUXXygnJ0evvfaa1xPDknT33Xe7nRSudOmll+rBBx+UzWZTVlaWZs2a5fHOelOnTtWsWbMkSd99912NJ4bPOusst5PCrp/zX//6l84++2w5HA698cYbeuKJJ7zWU19Vv7c1xTsuLs7tRLKnuh5++GEtXLhQRUVFWrVqlc4991y/trfS2rVrtW7dOknSFVdc4XZSuFJiYqKeeeYZjRs3Tg6HQ7Nnz9aTTz7ptc5///vfbieFK1144YV66KGHtH//fn333XfN+sRwXeLta32B6lciNDR1fiLRZzUb4m0e/spPJHKU5sBTHyaQyE+aLj/xxFuflfyk+ecnkn9zFPIT+CKQOQrHRj1rjn0Pf/H1N46+R3D1Pbypre9htVr1yCOPaP78+SosLNTq1as1bty4gLSFvkfw4fhDaON4k3kQazSFpj6Pwn5vLsTbXIi3uRBv8yDWTcswDB0ssB+ZMaZY6TnFysipeLwnr0RlDv9fYxkTEaauKXHqmhqnpNhIU54HYdBMA9hsNufj6OjoWstHR0erpKTEbTl/2bJli1atWuX22tatW7V161bn87oMmvnzn//sU7kFCxb4XGdDVL3bF0Ib8TYXT/GuvAud1WpVeLjnP1Wud1E0g7DwcK/bwp9q2ua+lvHWia7a0fJUj2uZsLCwOn/m5cuXO08Yz5gxo07L//TTT8rPz5dUceI2KsrzaOqkpCRNmDBBs2fP1tatW5WVleV2V8DKz2+xWHThhRd6bEOLFi10zDHH6Ndff1ViYqLOOussjxdEdOvWTS1atFBBQYF27dpVrS7XbX355Zd7/bxDhw5Vr169tGXLFn355Zdey9UW28o2WiyWGmPn6XlNSktLdfDgQR0+fFjl5eXO15OTk5WZmanNmzfr/PPP91p/bfuKa9nwKt+lL7/80vn4yiuv9FrPSSedpJ49e2rr1q01bsM+ffqof//+XtvSr18/7d+/X+np6Y3ynW4s9U2kKvfhiIgIJSUl+bNJCDHBlp9I9FnNhnibR33zE4kcJRD8nZ/U1GclPwmt/MTTcr72WclPQkN9chTyE9RFIHMUjo161hz7HrWVq2/fw9tvHH2P4Oh71LXfWFvf49dff9WECRPclqHvERo8nUvh+IO5EG/zINZoDMF2HoX93lyIt7kQb3Mh3uZBrAMjr8iu7VmF2pFZqB1ZFf+2ZxVqZ1ahikvLa6+gjsKtFqUlx1YMjjkyQKZrSpyOSYlXm5ZRAb+hYLDjaFQD2O1Hpzny5cBeZRnX5fzlhhtu0A033OD3egEAaE42bNggqeIClyFDhtRp2c2bNzsfn3DCCTWWHTx4sGbPnu1czvXEcKVWrVrVeJFNZbJxzDHH1NghbdmypQoKCnT48OEa2zRw4MAa3z/hhBO0ZcsW/f7777Lb7YqMjKyxfKCVlpbqjTfe0IIFC7Rhw4Ya+0eBmKWvUmXcIyMjdfzxx9dY9oQTTtDWrVv1xx9/eN2GPXr0qLGOyn2itngCAACg+SM/8Y78xDPyEwBAQ9D38I6+h2f0PQAAAAAAABqm2F6undkug2IyC7Uj67B2ZBUqt6g0IOtsnxDtHBDTNSVeXVNi1TUlXh2TYhQRxqxB3jBopgFcDwaWlZXVWr6yTFMfiPXFSy+91NRNAACgzipPICYlJdX5721ubq7zcWpqao1lW7du7XE5VzExMTXWUXkXOV/Lud5l0JPa2lz5vmEYysvLc/sMjS03N1cXXHCBfv75Z5/KB2KWvkp5eXmSKvaZ2gZBV26zmrahv+IJwB35CQCgOSI/qf198hN35CdA80GOgmBE36P29+l7uKPvAQBA6CBHAQAACJzScod25xZr55GZYioHxezILNTe/MAcu0mKjXAOijnGOUAmTl1axSkm0vNM1KgZg2YaIDo62vnYlwOWlWVclwtWrVq18qmct4PhDWW1Wt2m+8rPz5fD4QjIutD0iLe5+BLv0tJS52veBiXGR0hLZwwKXEODTHyEbwM0G8rhcNS6ntrKePv+lpeXyzCMGutxPVlWXl5e589cWb9hGHVe1rXdtX3GmtrpWk9NddS1rZ7a5Lqu2rZX1XZ5Klvb566pzVVPdFaNt6u77rrLeVJ47NixuvTSS9WnTx+lpKQoOjraeXfJAQMGaM+ePR4/W132FdeyVT+7r/HyVLY+27Au6wtmFotFYWFHE7Ca4l0Th8Mhh8Oh0tLSOvcra7pbKUJPU+cnEn1WsyHe5uGv/EQiRwkEf+cn5eXl1fowNdVDflJz+4I5P/G0nLc+K/mJb+sLdv7IUchPUBeBzFF8PTa67IYTZHXZ7x31zM2bi+bY96itnK9/T3z9jaPvERx9j9raUlvfw2q1KiwsTMcdd5z27NnT4H4qfY/gVdn3cMXxh9DG8SbzCIZYk6OYT1OfRwmG/R6Nh3ibC/E2F+JtHsS6OsMwlHnYrvQcm9Jzi5WeU6yMI4/35JWozOH/Y6/REValJUWrc1KMOifHKC254nFacrQSYyI8LFEuW+Eh2Qrrtp5giHcw5CgMmmmAyMhItWjRQgUFBbVOjX348GGVlJRI8j1RaQ4a605ADoeDuw6ZCPE2F0/x9uXkrtViUVKsp44BAqXyLnC1xaeoqMjj641x0r7yb2xeXp7sdnud7qjo2jE7ePCgunXr5rXswYMHPS7XlDIzM9WhQ4ca35cqTrInJia6vWexWGQYRq2dYW+xlarH11u8CwoK9MEHH0iSLrroohrvelR5p8NAqoxfbm6uysrKaryjYmXcPW1Ds/E13nWpj7/98IfG3I/os5oL8TaP+uYnEjlKY6tPfuLvPkxtyE+aLj/xxFO8yU9Chz+/3+Qn8Kf67Eu+HhtNjAl3+50oK7PUeV3wXUOPjTaEr79x9D2Cq+/hiS99j8r45ufnuz0PBPoewYfjD+ZCvM2DWCOYcJ0XAoF4mwvxNhfibR5mivUhW5kycm0Vg2JybRWPc23alWtTcan/B5KEWS3qkBClzknRSkuKPjIwJlqdkqKVGh8pq8Xzcd1AxsNM8XbFoJkG6tixozZv3qz9+/dXu1ulq71797otAwBAcxMfHy+p9guFtm/f3git8axfv35auHChSktLtWbNGp100kk+L9urVy/n47Vr12rEiBFey65du9bjck1p3bp1NZ4Yrrx74THHHFPthHl8fLwKCgpqjK1hGNqxY4fX9y1eOvBVbd++XaWlpZKkCRMmeC3322+/qbCwjsPi66Eyfna7Xb/88osGDBjgtey6desked6GAAAAaFzkJ3J739NyTYn8pH7ITwAgeNH3kNv7npZrSqHW99i2bZsOHz7sU50NQd8DAAAAAACEIltpuXbllSg9p1i78mxHZoypGCCTVxyY2W/btIisGBRz5F/npGilJceofctIhYdZA7JO1A2DZhqoZ8+e2rx5s0pKSrR9+3Z1797dY7lff/3VbZlQ4W2QUENV3rHL23OEFuJtLr7E29cTTGhcaWlp2rRpkzZs2CDDMDzGacuWLdq0aZPH5Svv2BdIo0eP1v333y/DMPTqq6/W6cRw//79lZCQoPz8fM2fP19//vOfPe6fhw8f1ocffiip4m9627Zt/db+hpg/f77GjRvn8b1169Zp8+bNkqRTTz212vuVsV2/fr3X+pctW+a8u6En0dHRzsclJSVe411WdjTxqOnujG+88YbX9zytr75Gjhypxx57TJI0d+5cryeG16xZo61bt0ryvA3Npur3v6Hfb4vFErB+JcwlkPsRfVZzId7mQX7SfNUnP/HUhwkk8pOmy0+ioqKcjyvzBU99VvKT0OHPHIX8BP5Un33J179P/s7NUbOGHhttCF9jTd8jOPoedrvdazlf+h4Wi0Wvv/662/Oq6HuELo4/hDaON5kHsUYw4zov+APxNhfibS7E2zxCIdZlDkN7821Kz7EpI6dY6bnFzsf7C7wfn2mIxJhwpSXFHJktJkadkysGxqQlRismMnjPK4RCvP2BQTMNNHToUOc02itWrPA4aMbhcGjVqlWSpLi4OPXt27cxmxhQjTXtekJCQqOsB8GBeJuLp3hnZWXJMAxZrVaFh/OnqjHVtM1PPvlkffrpp9q/f78++OADXXzxxW7vFxQU6LbbbvNad9UDcJ7W5VomLCyszvHv2bOnxo0bp48++kiLFy/Wiy++qJtvvtlj2cLCQpWWlioxMVGSFB4eriuuuEKzZs3S5s2b9eyzz+quu+5yW8YwDN1zzz3Kzs6WJE2fPr1aG107lTW1v/Jkp8Vi8elzetperutasmSJPvroI51//vluZQ4fPqw77rjDWX7atGnV6jn55JO1adMm/fTTT/rxxx81fPhwt/cPHDigv/3tb25tr1pHamqqIiMjZbfbtWPHDq8HXLt37+48sT9//nxddNFF1U78fvrpp3rttddq/Ozt27d3Ps7IyKhxG7q2JTw83K3s0KFDNXDgQK1bt05vvfWWxo8fr5EjR7otn5+f77YNr7nmGq/rq+13y9f9o7mp7wH2yu0RERHRaP1KhLbG3I/os5oL8TYP8pPg4u/8pGqfxfU5+Ulo5SetW7d2y08kz31W8pPQzE+k+uUo5CcIhPrsS/XtezDYq+H83feo7Te4vn0Pb7Gm7xEcfY/09HSvn8nXvsd//vOfGtdH3yM0eLpAheMP5kK8zYNYI5hwnRcCgXibC/E2F+JtHsEaa8MwdLCgRNszC7Ujq1A7sg5rR1ahtmcVKiO7SGUO/99EKDrCqq4p8TomJU5dK/+lxqlrqzglxYXG7LvBGu9A42hUAx177LHq3bu3Nm/erBUrVmjUqFHq0aOHW5mPP/5Ye/bskSSdc845HAQEADRLEydO1D//+U8VFBTo5ptv1o4dO3T66afLYrHo559/1osvvqi9e/eqX79+2rBhQ5O18+mnn9aPP/6offv26YEHHtDy5cs1efJk9ejRQxaLRRkZGfryyy/13nvvac6cOTr55JOdy/71r3/Vxx9/rJ07d+qf//ynfv31V1166aVq27at0tPT9Z///EdfffWVJGnIkCGaOnVqE33K6gYOHKjp06fr66+/1vjx49WiRQtt2rRJ//73v/Xbb79Jkq655hodd9xx1ZadMmWKXnvtNZWVlWny5Mn661//quHDh8tut+v777/Xiy++qNLSUnXr1k1//PGHx/WHh4dr4MCB+v777/XOO++oX79+Ov744xURESGp4gBsUlKSkpOTNXr0aH3++edavny5LrjgAk2bNk2dOnVSZmamPvroI82dO1ddunRRfn6+srKyPK6vU6dOat++vfbu3atZs2apffv26t69u/MkcGpqqlq0aOHTtvv3v/+tM888U3a7XRMnTtS1116rMWPGKDY2Vhs2bNBzzz2nnTt3SpJuvPFG9enTx6d6AQAAEDjkJ+Qn5CfkJwDQmOh70Peg70HfAwAAAAAABEZ+Uam2HxkQU/Vfkb3c7+sLs1qUlhx7dFBMSlzFIJnUOLVpES2r1bfZwNG8mH70xpYtW7R//37n80OHDjkf79+/XytXrnQrP2rUqGp1TJ06Vffdd5/sdrseeeQRnX/++erbt6/sdru++eYbLVu2TJLUrl07nXvuuQH5HAAABFpKSopmzpypa665RjabTY8//rgef/xx5/sxMTF6+eWX9dlnnzXpieHWrVtr8eLFuvTSS7V582atXr1aq1ev9mnZFi1aaNGiRbr44ou1bds2ffjhh/rwww+rlRs2bJjmzZsXVHfwfP311zV+/Hi99tprbndBrnTeeefp0Ucf9bhs79699dBDD+nee+9VXl6e250TpYqTum+//bYee+wxryeGJem2227T5MmTlZOTo+nTp7u9d9ddd+nuu++WJD3zzDM655xztHv3bq1cubJaf6tjx456++23NXHixBo/81/+8hfdcccdSk9P12WXXeb23gsvvKBLL720xuUrHX/88Zo3b56mTp2qgoICzZo1S7NmzapW7pprrtEDDzzgU50AAAAILPKTo8hPPCM/AQD4E32Po+h7eEbfAwAAAAAAwDtbabl2ZhdqR2bFTDGuA2NyCu0BWWe7hGi3gTGV/zolxyoirPoMsAhtph80s3z5cq1atcrje1u3btXWrVvdXvM0aKZr16669dZb9fzzz6u4uFjz5s2rVqZdu3a65557FBMT45d2B4vc3NyA1Gu1Wt2mf8rPz5fD4QjIutD0iLe5+BLv0tJS52tlZWWN2j6zczgcNW7zcePGafHixZo5c6a+//57HTp0SKmpqTr55JN14403qlevXvr00089LlteXi7DODoloqd1lZeXuz2ub/w7duyoFStWaOHChfrwww+1YcMG5eTkKDw8XO3bt9cJJ5ygc889V0OGDKm2jvbt22vFihV666239OGHH2rLli0qKChQYmKijj/+eF100UW68MILZbVaPbbPdX+uqf2V28IwDJ8+p6ft5bquDh06aNmyZXrhhRe0ePFi7d69W+Hh4erbt6+uvPJKXXTRRTW26dprr9Wxxx6rl19+WevWrVNxcbHatm2rM844QzfddJM6duxYY5stFovOPvtsLVq0SC+//LLWrl2r7OxslZaWVmt/27ZttXz5cj3//PP69NNPtXv3bkVFRalTp04aO3asrr32WiUmJtb42aWKu0C2atVKb775pjZt2qTc3FxnOdf9x3W/Kisr81jXqaeeqh9++EGvvPKKli1bpvT0dNntdqWmpmr48OGaMmWKhg8fLofDUePfqNq+Q77uH8HOYrG4XRhR9fvtq8rtWVpaWud+ZWNNH4/mJVD5iUSf1WyIt3mQnwQ3f+cn5eXl1fowNa2L/MS7YM9PJOnMM8905ifr1q1TVlYW+YmH913b0pz5I0chP0Eg1CdH8bXv4a/cHEf5u+9R22+wr32PusaavkfT9D3OOOMMvffee3r11Ve1bt26eh8bve6669SqVSu3bUXfIzR52p4cfwhtHG8yj2CINTkKvOE6L/gD8TYX4m0uxNs8AhXrMoehffklSs8pVkZusdJzbErPKVZ6brH2HwrMwJiW0eHqnBytzskx6pwUo87J0UpLjlFaYrRiIj3d9KVUhw/lB6QtwSoYvtvBkKNYDJMfQX/hhRe8DprxZMGCBV7fy8zM1OLFi7V27Vrnwee2bdtq+PDhGjNmjKKiovzR5KDibVrwhgoLC3P7guTm5rod1EVoId7m4ku8Dxw4IIfDIavVqjZt2jR2E+FH4eFHx+dyEsz/nnzyST311FOSKvohTY14m4s/4t2Q3/uUlJR6rROhLVD5iUSf1WyIt3mQn5gPfdbACbb8RCLeZtPQeJOfIBDqk6PUZV/kd848iHV1wdj38BfibQ6Vv/fR0dHq3r27JI4/hDqON5lHMMSaHAXecJ0X/IF4mwvxNhfibR4NibVhGMoqLFV6jk0ZubaKwTG5Nu3KtWl3XonKHP4flhAVblVaUrTzX+ekaKUlVzxOjInw+/pCTTB8t4MhRzH9TDM33HCDbrjhBr/UlZqaqilTpmjKlCl+qQ8AAAAAAAAAAAAAAAAAAAAAgMZSYCtTeu6RgTE5NqXnFh8ZJGNTcan/ZykJs0gdEqPdB8ccGRiTGh8pq8Xi93XCXEw/aAYAAAAAAAAAAAAAAAAAAAAAALOwlZYrPbtIG3dma2d20ZFBMsXKyLEptzgws9+2jo9QWlKMc6aYzkcGyHRIiFJ4mDUg6wQkBs2ggcLCwgJSr9VqrfE5QgvxNhdf4m1hVHBIqBpHi8Uiw/D/9IsIDsTbXPwdb4vFErB+JcwlkPsRfVZzId7mQX5iLvRZzYV4m4s/401+An+qz77ka9+D3znzINbmQrzNjeMPoY3jTeZBrBHMuM4L/kC8zYV4mwvxDk1lDkP78kuUnlOsjNxipedUzBazK69Ee/OLFYjDDi2jw9U5OVqdk2OODIyJUefkGHVKilZsJMffGxvf7QoMmkGDJCUlNcp6EhISGmU9CA7E21w8xTsrK0uGYchqtSo8nD9VoYILTvzPtQMbbN8V4m0u9Y135T4cERHRaP1KhLbG3I/os5oL8TYP8hNzoc/qX8Gcn0jE22zqE2/yEwRCffal+vY9+J0zD2JdIdj7Hv5CvEOXpwtUOP5gLsTbPIg1ggnXeSEQiLe5EG9zId7Nh2EYyiwo0fasQu048m97ZqF2ZB1WRk6RSsv9PzImOsKqLq3idExqnLqmxKlrSry6psTpmJQ4JcVF+n198B+zfrdD9wgiAAAAAAAAAAAAAAAAAAAAAADNXH5xqXZWDopxDpA5rB2ZhSq0l/t9fWFWizolxRwdFJNaMSima0qc2raMltXq26zZQDCwGMznDAAIMr/99pvsdrusVqvatWvX1M0BAATIvn375HA4FBkZqe7duzd1cwAA8Ij8BADMgfwEwYK+BwCYA30PAAAAAIAnttJypWcXaUfW4YqBMZlHZ4/JLrQHZJ1tW0ZXDIxxGRTTJSVOnZJiFRlefaZUoDliphk0SG5ubkDqtVqtbtM/5efny+FwBGRdaHrE21x8iXdpaanztbKyskZtH/zHYrEoLCzM+by8vFyM1Q1dxNtc/BVvh8Mhh8Oh0tLSOvcrG2v6eDQvgcpPJPqsZkO8zYP8xFzos5oL8TYXf8Sb/ASBUJ8cxde+B79z5kGszYV4m0dl38MVxx9CG8ebzCMYYk2OAm+4zgv+QLzNhXibC/FuPOUOQ/sOlSg9p1jpOTZl5BY7H+8/VKJAHAloERWmLskxSkuOUZdWMerdsVXF4JhWcSqzFXqIdakKC/JVGIC2oHEFw3c7GHIUBs2gQcrL/T+dlycOh6PR1oWmR7zNxVO8OQEUGqrGkbiGNuJtLv6Ot2EY/O2HXzTmfkSf1VyIt3mQn4Q2+qzmQrzNxZ/xJj+BP9VnX/J1/+V3zjyItbkQb3Pj+IO5EG/zINYIJlznhUAg3uZCvM2FeDeMYRjKLixVRq5NGbk2pR/5PyOnWLvzS1Ra7v+cPyrcqrSkaHVKjFLn5BilJUUrLSlanZOilRATLovFIkkKCwtzG8SQW0SszcSs320GzQAAAAAAAAAAAAAAAAAAAAAAUAeHS8qOzBbjOjimWBk5NhWV+n82jzCL1D4hSmlJMUpLrhgQUzk4pnWLSFmPDIwB4I5BMwAAAAAAAAAAAAAAAAAAAAAAVFFS5tDuvCODYlwGyGTkFiunqCwg60yNjzgyGCamYmBMcsXAmA4JUYoIswZknUAoY9AMAAAAAAAAAAAAAAAAAAAAAMCUyh2G9h0qcRkQc+Rfjk37DpXICMA6W0SFqXNyxcCYNJcZY9KSohUbGRaANQLmxaAZNEhYWGB+lK1Wa43PEVqIt7n4Em8LUwSGhKpxtFgsMoxApA8IBsTbXPwdb4vFErB+JcwlkPsRfVZzId7mQX5iLvRZzYV4m4s/401+An+qz77ka9+D3znzINbmQrzNjeMPoY3jTeZBrBHMuM4L/kC8zYV4m4sZ4m0YhrILS5WeW1wxY0xOsdJzbUrPKdbuPJtKy/2fg0eFW50DYTonx6hzcozzcWJMeJOcizRDrHEU8a5gMTjKBgAIMr/99pvsdrusVqvatWvX1M0BAATIvn375HA4FBkZqe7duzd1cwAA8Ij8BADMgfwEwYK+BwCYA30PAAAAAAicQ7ZS7cwq1I6sQm3PrPi/8t/hkjK/ry/MalHHpBh1TYlT15Q4HZMSp64p8eqaGqd2LaNltXKTPqCpMdMMAAAAAAAAAAAAAAAAAAAAAKBZsJWWKyOnyDkoxjlIJqtQWYdLArLONi2jjgyMiT8yMCZOXVPj1CkpVpHh5py9A2guGDQDAAAAAAAAAAAAAAAAAAAAAAga5Q5De/OKtT2rUDsyDzsHxezIKtSevGIZhv/X2SI6XMekugyKOfKvS0qc4qO47B5orvj2okFyc3MDUq/ValVCQoLzeX5+vhwOR0DWhaZHvM3Fl3iXlpY6Xysr8/90iGgcFotFYWFhzufl5eUyApGpICgQb3PxV7wdDoccDodKS0vr3K9MSkqq8/oQ+gKVn0j0Wc2GeJsH+Ym50Gc1F+JtLv6IN/kJAqE+OYqvfQ9+58yDWJsL8TaPyr6HK44/hDaON5lHMMSaHAXecJ0X/IF4mwvxNpemirdhGMopKlV6jk3pOcXKyC12Pt6VZ1Npuf/z4qhwq9KSotUpKVqdk2PU+cj/ackxSooJl8ViqbKEQ6VFBcot8ntTmgTfbXMJhngHQ47CoBk0SHl5eaOsx+FwNNq60PSIt7l4ijcngEJD1TgS19BGvM3F3/E2DIO//fCLxtyP6LOaC/E2D/KT0Eaf1VyIt7n4M97kJ/Cn+uxLvu6//M6ZB7E2F+Jtbhx/MBfibR7EGsGE67wQCMTbXIi3ufg73odLypSRa1NGrk3pORX/78q1KT3XpkK7//crq0VqnxCltKRodU6KUVpStNKSo9U5KVqtW0TKWm1gTAUzDh7hu20uZo03g2YAAAAAAAAAAAAAAAAAAAAAAPVmL3Nod96RgTFHBshk5NqUkWNTdlFpQNaZEhdRMTAmOVppRwbHdE6KVofEKEWEWQOyTgDND4NmAAAAAAAAAAAAAAAAAAAAAAA1KncYOlBgV0ZusXPGmMp/+w6VyBGASVPjo8LU2TlTzJFZY5Ki1SkpWnGRYf5fIYCQwxA6AABQL4MGDVJqaqpuvPHGau9lZGQoNTVVSUlJmjt3br3XMW/ePKWmpio1NVUZGRnV3h8/frxSU1M1fvz4eq8DaG5uvPFGpaamatCgQU3dFAAAgKBCjgI0DXIUAGbkS78jNTVV8+bNq/c66HcA1dHvAAAAAIDGYRiGsgvtWrf7kD7YeFAzV2Xojg+2aeLrG3TKv9fovP/8rBvf3aqnvkjX/HUH9O3OfO3Jb9iAmcgwi7qlxOi07kmaOrSd7j/7GP3f5D5aOmOQVtx4gt68/Dj9Y+yxumZEB53Vq5V6tYljwAwAnzHTDAAAAAAAAAAAAAAAAAAAAACYyOGSMu3KLVF6brF259m1r3CndmQVakdmoQpKyvy+PqtFatcyyjlrTMWMMTHqnBStNi0jZbVY/L5OAJAYNAMAAABUM2/ePN18882SpJ9++klpaWkBXd+TTz6pp556SpKUmZkZ0HUBAAAAaH7IUQAAQGOh3wEAAAAAocVe5tCe/IqBMRk5NmXkVvxLz7Upu7A0IOtMiYtQWlK0OidXDIpJS4pW56RotU+IUmS4NSDrBICaMGgGDRIWFpipzaxWa43PEVqIt7n4Em8LI8abvbS0NGVlZbn9nbBYLDKMBszB6cGiRYv8Wh/qr+r3NhDxRoVZs2Zp1qxZTdoGf8fbYrEErF8JcwnkfkSf1VyIt3mQn5gHOYr5kKM0nlDLUchP4E/12Zd87XvwOxe80tLSAnrhf2Ws6XeEJr7bNQuGfkcgcfwhtHG8yTyINYIZ13nBH4i3uRDv5qPcYehAQYnSc2xKzyl2DpBJzynWvkMlcgQgtYyPClPn5Jgjs8bEqHNSjHOQTFwUx1iDGd9tcyHeFRg0gwZJSkpqlPUkJCQ0ynoQHIi3uXiKd1ZWlgzDkNVqVXg4f6qCna9xqs8BONdlwsPD2R+akeZ+gVFj73uuyUhz3M/rG+/Kzx0REdFo/UqEtsbcj+izmgvxNg/yk9BAjgJPyFHqxow5CvkJAqE++1J9+x7N/XeuuQpkH9FbTIm1uTRFvOl3NA5PF6hw/MFciLd5EGsEE67zQiAQb3Mh3k3LMAxlF9q1I6tQOzILtT2rUDuyDmtHVqF2ZhfJXubw+zojw63q2ipOXVPi1DU1ruJxasXzVnGR3HwuRPDdNhezxts8R50AAAAAAAAAAAAAAAAAAAAAIEgdLinTzqwjg2Iyjw6M2Z5VqAJbmd/XZ7VIHZNiKwbGpMTpmCODYrqmxKldQozCrAyMAdD8mXN+HQAA4Gbfvn168MEHNXLkSKWlpSk1NVU9evTQiSeeqKuvvlpz587VoUOHfK4vIyNDSUlJSkpK0ty5c72Wy8vL04MPPqihQ4eqXbt26t69uyZMmKAPPvjAp/WMGzdOSUlJGjdunE9tWLFihSZNmqSePXuqTZs26t+/v/7yl79oz549ta4rJydH999/v4YMGaJ27dqpR48eOv/88/Xxxx9LkubOnetcX0ZGhk/tr4uCggLNmjVL5513nnr27KnWrVsrLS1Np556qv7617/qu+++87psVlaWHnnkEZ166qnq3Lmz2rZtq379+um6667Tt99+W+N6+/Xrp6SkJM2YMUOStH79ek2fPl19+/ZVu3btNGjQIN17773Kzs52W+7777/X1KlTddxxx6lt27YaOHCgHnjgARUUFHhdV9V4/vbbb7r11lvVv39/tW3bVr169dJVV12lNWvWeK3jq6++csbhq6++qvGzVZb75z//WW35G264wfla//79nWW91b1mzRo98sgjGjdunFt8hg8frr/85S/asmWLxzZU7jdPPPFEtXa5/nPdp2bMmKGkpCT169evxs+3adMm3XrrrTrhhBPUvn17derUSSNGjNDf/va3GvdRf393AAAA6oMchRzFG3IUchSJHAWAf9HvoN/hDf0O+h0S/Q4AAAAAgVFSVq7fDxbo80379cqqP3T3/zZo4ivfasijy3TcA59p3PNf6eZ56/Tssm364Oe9Wr87v8EDZlJbRGlo12RNGtJJ95zTS69ecYKW/eVUbf7HGK3+62l6c9pQPXheX105ootO6Z6qjkmxDJgBEDKYaQYNkpubG5B6rVar2/RP+fn5cjj8P3UcggPxNhdf4l1aWup8razM/6Pj4e7bb7/VZZddVu2EXWZmpjIzM7V582a99957SkxM1FlnnVVteYfDUS1OnuJWXl4uwzCcz7dt26YLL7xQ+/fvd75ms9m0atUqrVq1Sp9//rlGjBjhVmfVeivrMwyjxjaUl5frgQce0MyZM93KZGRk6PXXX9dHH32kRYsWqUePHtXaLUm//vqrLrroImVmZrq1deXKlVq5cqWuvPJKDR48uMa2NsSqVat03XXXVTv5Wlpaqo0bN2rjxo36z3/+49a+SitWrNDVV19dLb67du3Srl27tGDBAk2bNk2PP/64rFbv46kdDofmzp2r2267TXa73fn6jh079OKLL+qzzz7TJ598ojZt2uj555/XAw884BbvnTt3aubMmVq5cqUWLVqk+Pj4autwjeeSJUt09dVXq6ioyPn+gQMH9MEHH+jDDz/UQw89pOuvv75aHeXl5W6PfYmD6z7sunxNXOueN2+ebr755mplSktLtXXrVm3dulVz5szRY489pmnTpnltb01c9ynX30xvn++5557T448/Xu33dcuWLdqyZYtmz56tZ555RpdcconHdbm2r7bvzscff6xjjz3WLd6+cjgccjgcKi0trXO/srGmj0fzEqj8RKLPajbE2zzIT4ITOQo5CjkKOUrVdbm2L1A5CvkJAqE+OYqvfQ+LxaKwsDDn86p/1+CbQPc7vP3217Xf4aoy1vQ7gqvfsWjRIrVp00YvvPCCHnrooQb1O5YuXaqrrrpKhYWFzvfpdwRnv6Om705tKvserjj+ENo43mQewRBrchR4w3Ve8AfibS7Eu2EchqH9h0qUkWNTem6x0nNsSs8pVkZusfbml8gRgEM58ZFh6twqRp2TopWWHKPOSTHqnBytTknRio/ydMl4mYoKDqlIxNtMiLW5BEO8gyFHYdAMGsTXg5kN5XA4Gm1daHrE21w8xZuTu42npKRE1157rQoKChQfH6+rrrpKJ510klJSUlRaWqqMjAz98MMPWrx4cYPX5RrXgoICTZw40XlSeMKECbrkkkuUmpqqP/74Qy+99JLmzZvn9Q50dfXWW29pzZo1OvHEEzVlyhR169ZN+fn5mj9/vhYsWKCsrCzdcsst+vTTT6stm5+fr0suucR50nXixIm64IILlJKSou3bt+s///mP5syZo02bNvmlrVV99dVXmjRpksrKyhQWFqaLL75Y55xzjjp06KCSkhJt3bpVy5cv1+eff15t2Y0bN+ryyy+X3W5XRESErr76ao0ZM0axsbHauHGjZs6cqfT0dM2ePVtxcXG6//77vbZj06ZNev/999W1a1fNmDFDffr00eHDhzV37lwtXLhQf/zxh+677z6de+65uv/++zV48GBdc801OvbYY5Wdna3//Oc/WrZsmTZs2KB//etfNa5r//79uv766xUeHq57771XJ510knNbPP/88yooKNB9992ntLQ0jR07tuEb2cWAAQO0evVqffrpp3r88cclSQsWLFDbtm3dyqWlpTkfl5WVKTExUWPGjNGIESN0zDHHKDY2Vvv373eetM/Oztbdd9+t7t2765RTTnEuO3bsWA0YMECvv/66Xn/9dUnS6tWrq7WrXbt2Pn+G2bNn69FHH5UkpaSk6KabbtLQoUNVXl6u1atXa9asWSoqKtJNN92k5ORkjR492mtdvnx3brrppgb/RhiGwd9++EVj7kf0Wc2FeJsH+UnTI0chRyFHcUeO4q4xchTyE/hTffYlX/seVcvRZ6m7xux3uGpov6Ousabf0Tj9jgcffFB/+tOf9OCDDza43zF9+nSFhYXpvvvucw6eot/hm8bud3j77tQXxx/MhXibB7FGMOE6LwQC8TYX4l2dYRjKLSpTRq7tyL9ipR95vCvXJnu5/4/ZRIZZ1DExWp2To5WWVPGvc1KM0pKilRQbLovF8+wwdY0d8TYPYm0uZo03g2YAAM2T4ZDFFri7yQcbIzpJsni/0119/fDDD86Ts6+88kq1uyUOHjxYF1xwgR555BEVFxf7bb3PPPOM9uzZI0m69957deuttzrf69+/v84991xdeumlWrlypV/Wt2bNGl1xxRV65pln3BLDU089VZGRkXr77bf1448/asOGDerXr5/bsk899ZRzGz3yyCO67rrr3Np63nnn6aqrrvLribFKNptNf/7zn1VWVqbY2FjNnTvXeXFWpaFDh+qKK65wbk9Xt99+u+x2u8LCwvTOO+/otNNOc743cOBAnXfeeRo3bpy2bt2qF154QRMnTlSvXr08tuWXX37RkCFD9O677yo2Ntb5+sknnyybzaaPPvpI7733npYtW6bzzjtPr776qtvdTkeOHKlx48bpxx9/1DvvvKO//e1vCg/33BXdvn27WrZsqU8//dTtLn1DhgzROeeco7Fjx6qgoEB33323Ro8erYiICN82qA/i4uLUu3dv/fzzz87XunXr5nYiuKozzzxTF154odt2kaR+/frprLPO0vTp03Xeeedp06ZNeuKJJ9xODCckJCghIUEpKSnO13r37l3v9mdlZemhhx6SJLVt21ZLlixRhw4dnO8PGzZMZ599ts4991wVFRXp9ttv108//eR1G9b03YmOjtacOXO0Zs0aj98dAABMhxzFL8hRyFHIUdyRo7gjRwGOONLvsIQd/d2ylIf2jHiB6HvQ76Df4c9+x/vvv6/ly5dr3Lhx+r//+78G9zs+//xz9ezZ0znzCf2O2jVmv6O27w4AAACA0FNoL9euXFvFgJicYmVUPs616XCJ/y8+t1qkdi2j1DmpYpaYtKTKQTIxatMiUmFWzwNjAACeMWgGANAsWWy5avXa0KZuRqPJvvoHGTGt/F7vwYMHnY8r71jnSXh4uFq0aOGXddrtdr3zzjuSpL59++qWW26pViYiIkL//ve/NXjwYJWWljZ4nW3atNHjjz/u8U4KN9xwg95++21J0nfffed2cqukpET//e9/JVWcSHU9KVwpLCxMTz/9tFasWCGbzdbgtrpasGCB86T03/72t2onhV25nvyTpLVr12rdunWSpCuuuMLtpHClxMREPfPMMxo3bpwcDodmz56tJ5980mP9FotFzz33XLWTn5I0bdo0ffTRRyovL1dJSYmee+45t5PCUsV2uuKKK/Tjjz8qJydHW7duVd++fb1+nttvv93tYrRKvXr10m233aaHH35Y+/bt06effqrzzjvPaz2NobY7HbZs2VJ33XWXrrzySn3//ffKyclRcnJyQNoyb948FRUVSZIefvjhavuFVHHC+pZbbtHjjz+uffv2afHixRo/frzH+mr67tx4442aM2eOpOrfHQAAzIgcxT/IUchRyFEajhyFHAWhz2z9DikwfQ/6HfQ7AtHv+Ne//tXgfsedd96pnj17VnudfkfNGrPfUdN3BwAAAEDz90dWkb7dka/03GKl51QMjMkqbHiO7kmruAh1Tjo6Y0xacsWsMR0SohQZ7v+blwGAWfGLCgCAibVp08b5eO7cuY2yzvXr1ysvL0+SdMkll3idErR9+/YaNWqUX9Z57rnnKioqyuN7xx57rOLi4iRJ6enpbu/9/PPPys/PlyRddNFFXutv3bq1xxOvDfX5559LkmJjY3XFFVfUadlVq1Y5H1922WVeyw0bNsx54dfq1au9luvTp4/HC8QkuZ3gHTVqlJKSkmotV3Vbu7JYLLrkkku8vj958mTnflNTm5tKYWGhMjIytGXLFm3evFmbN292u3Pkpk2bArbuyu2RkJCgcePGeS13+eWXV1vGk5q+O927d1d8fLykmuMJAABQF+Qo5CjkKP5HjgIAntHvoN/h737HyJEj/dLvmDx5stf36Xd415j9jpq+OwAgSWXlDu3KKdI3v2cptygwF9gCAAD/2n+oRG98v1eT39yoS97YqOdWZej9DZlau7ugwQNm4iLD1KdNnMb0bqVrT+ygR/7UTW9dfpxW3nSCPvvzIL06qY/+fvYxunJoe406NlldW8UwYAYA/IyZZgAAMLFhw4apS5cu2rlzp/7+97/rf//7n8aOHasRI0Zo4MCBioyM9Ps6N2/e7Hw8YMCAGssOGjRIS5cubfA6u3fvXuP7iYmJKiws1OHDh91e37Jli/Nx//79a6yjf//++vTTT+vfSA82btzorNvTXQxrUtn2yMhIHXfccTWWHTRokLZt26bt27fLbrd7jHu3bt28Lp+QkFDnclW3tavOnTurVSvvdw5NSUlRWlqa0tPT9euvv3ot15iys7P10ksv6eOPP9b27dtlGEaNZQOl8vvVr18/RUREeC3XunVrpaWlKSMjw+07WVVt352EhAQdPny4xngCAADUBTlKBXIUcpSGIkchRwFQO/odFeh30O9oKLP2O7x9dwCYg2EYyi0q095DJdqdZ9Pe/BLtzS/RniP/7y+wq9xR8Xv4r/N76tRuiU3bYAAA4FFeUamWbcvRZ1uytW53QYPqigyzqGNitDonH501pnNSjDolRSs5NtzrjTMAAI2DQTMAAJhYRESE3n77bU2bNk3btm3TunXrtG7dOklSTEyMhg8frksuuUQTJkxQWFiYX9aZm5vrfJyamlpj2dre91VMTEyN71utFXdnKC8vd3u98q6PUsXJyJrU9n595OTkSHK/66WvKrdzYmKi2538PGndurWkigP8eXl5zueuatqGldtPUo0nsF3LVd3WrnzZlqmpqUpPT3eLUVNZv369Jk6c6IxXbWw2W8DaUrk9fNmGrVu3VkZGRo3bsL7fHQAAgPoiR6lAjkKO0hDkKOQoAHxDv6MC/Q7/9Tt8LUe/IzDodwDwt2J7ufa4DITZm1+i3flHB8gUlzp8qmd3XkmAWwoAAOqi2F6uVX/k6rPN2fpmZ75zoKsvLJLaJ0Q5B8WkJVUOkolRmxaRCrMyMAYAghWDZgAAzZIRnaTsq39o6mY0GiM6KWB19+zZU6tXr9Znn32mzz77TN9++6127Nih4uJirVixQitWrNBLL72kefPm+e1EbSXuohB4zXEbN6c22+12XXPNNcrJyVFERISuueYajRkzRt26dVNiYqKioqIkSTt37tSQIUMkqcY7LfpLc9qGAACECnIU/yFHCW3NcRs3pzaTowDmUNnvCA87epqvrLysCVsUeIHqe9DvCG3NcRs3pzbT7wDQ3JU5DB04VKK9h0q0J6/EZYBMxcCYnCL/9K/25AduwCAAAPBNWblD36Uf0pLNWVr5W65sZbUPfm0dH6HhXRLVOTlanY8MkOmQGK2ocGutywIAgg+DZtAg/rqzVlWud1vy9ByhhXibiy/x9umEhsUqI6aVv5plemFhYRo7dqzGjh0rSdq/f7+++OILzZ49W+vXr9f69et1xx136M0336z3OiwWiwzDUGJiovO1gwcPqlu3bl6XyczMrPf6/MG1rVlZWTW2NSsry+/rT05O1t69e3XgwIE6L5uUVHEhQW5ursrKymq8o+LBgwclVcTI9TM3RGW868OXuFeWqdpe198Ph8P7QY7CwsJ6ta2qL7/8Ujt37pQkPfHEE7riiis8lmusuz4mJibqwIEDPm3DyrjXJ+ZVf6cbeiLaYrEErF8JcwnkfkSf1VyIt3n4LT+RyFH8jBzFM3KU+iNHcUeOUnNd5Cfwl/rsS74eG1VsigzX+svLG+Vi9FDUGP2OSv7odzTkb1pd0O9oGlXj7ine9Ds8a6x+RyBx/CG0cbyp8RmGodyiUu3JL9HuvIqBMHvybBWDY/Js2n+oROUB/pMaHxUuiRwDwYPrvOAPxNtcmnO8HYah9XsK9OmvmVq6JVt5xbUPiG0RFabRvVJ0Tp8UDezY0nQzxzTneKNuiLW5EO8KDJpBg1QedA60hISERlkPggPxNhdP8c7KypJhGLJarTWezELgdOzYUVdeeaUmT56s0aNHa/369fr8889VWlqqmJgYt7Ke4uQpbpUH4I477jjnaxs2bNApp5zitR0///yzW51V6608CWixWGpsQ1hYmE/7UtXP0qdPH+fjX375RSeddJLXZTds2FBjW+ujf//+2rt3r9avXy+73a7Y2Fifl+3Tp4/ee+892e12bd68WQMHDvRatnI7d+vWzes66vp99HTAtbaYVMYzPT1dhw4dUnJysse6s7KylJGRIanic7rW43qSs6CgwGub09PTnY9r24driudvv/3mfHzRRRd5Lee6f3j67K7bq7bt7Jq4VC3bp08fHThwwLk+b3VlZmZq165dzmWqft6a2uqJp++gLyo/S0RERKP1KxHaGnM/os9qLsTbPMhPghc5SgVylKPIUchRalKfHIX8BIFQn32pvn0PLsT0H3/2O6r+btW33+GqMtb0O7xrqn5HTeXq0u/Iyclx9juqfrfpdwRfv6O+uaKnC1Q4/mAuxNs/iuxl2pVTrIycIu3KKdKu3CP/5xRrV26RiuzlAV1/uNWiDkkx6pQUq07JseqUHKO05Fjn86TYCGbAQlDhOi8EAvE2l+YQ7y37D2nRz3v14c97tSevuNbyUeFWndmnjcb3b6+RPVMVFc4xlkrNId7wD2JtLmaNtzmHCgEAAJ9EREQ4T4aWlZUpPz+/wXUOGDDAefJu/vz5Xu+KuHfvXq1YsaLB62uIgQMHqmXLlpKkBQsWeC138OBBffHFF35f/5gxYyRJRUVFdb6T5ahRo5yP3377ba/lfvjhB23ZskWSNHLkyLo3MgAMw9B///tfr+/PnTvXud+4fk5JSktLcz5et26d1zrefffdGtsQFRXlfFxSUuK1XFnZ0TuRFBUVeSzjcDg0Z84cv6yvNpUxzM/P10cffeS13FtvveV1GwIAAAQzchRylKZAjkKOAsCc6HfQ72gK9DvodwBwV1bu0K6cIn39e5b++0OGnvpsi26at04TXvhagx9Zqj73f6azn1ut6XN+1MMf/6rXv96pZZsPauuBAr8NmEltEaVBaYmaMKC9bjr9WD15UT/Nmz5cX911mrY+co5W3Xma3r5mmB6/4HjNGHWsxvVrr/6dEpUcF8mAGQAAGsnu3CK9uPJ3jXlutcY896VeWvlHjQNmwqwWndojVf+a2F8/3TdaL1w6SGf1bcuAGQAIYQyaAQDAxL755htt377d6/t2u11ff/21JCk+Pl4pKSkNXmdUVJQuu+wySdLGjRs1c+bMamXKysp0yy23yG63N3h9DREdHa1JkyZJktauXauXX365WhmHw6HbbrtNNpvN7+ufOHGi2rdvL0l65JFHnLHwZM+ePW7PTzjhBOcdFOfMmaNVq1ZVWyY/P1+33XabpIq72k2bNs1fTW+wp556yu1OhZW2bt2qZ555RpLUtm1bjR071u39xMRE9e3bV1LFCeTc3NxqdXz77bd65ZVXalx/mzZtnI937NjhtVy3bt2cj+fOneuxzEMPPaT169fXuL62bdv6tL7aXHbZZc47Yv7973/X3r17q5XZuHGjnn32WUlS+/bt9ac//ane6wMAAPA3cpSakaM0HXKU+iFHARDM6HfUjH5H06HfUT/0O4DmyTAMZR0u0bqMXC36eY9eWPG77np3gy79z3c65ckv1PO+JTrlyRW67P++193vbdQLK/7QR+v36uddeco67J+/lfFR4erVtoXO6tNGV5/cVQ+e20ezpw7W0ttO1eaHx2jNvWfqvRkn6blJA3X7WT01cXAnjejWSh2TYhVmZVAMAABNJafQrre+S9dFL32jk59YoSeXbNWW/QU1LjMwLVEPnddX391zhuZMG6oLBnVUfFTDZ0sFAAQ/fu3RIJ4OtvqD1Wp1m/4pPz9fDocjIOtC0yPe5uJLvEtLS52vud6pDP63cuVKPfPMMxo+fLhGjx6tPn36qFWrVrLZbPrjjz/05ptvOk9oXXrppZKqx8ThcFR7zVPcysvLnXdv+8tf/qL3339fe/fu1YMPPqgNGzZo4sSJSklJ0fbt2/XSSy9p3bp1GjBggH7++WdnnVXrrazPMIwa21BeXu7TvuTps9xxxx364IMPdPDgQd1zzz1at26dLrzwQrVq1Uo7duzQq6++qjVr1mjQoEFau3ZtndZXm/DwcL3wwgu6+OKLVVRUpAkTJujiiy/W2LFj1a5dO9ntdv32229atmyZPvvss2onh5955hmNGTNGdrtdEydO1DXXXKOzzjpLcXFxzpPyO3fulCTdcMMN6tGjh9d2e9o2NXGNd6XaYlJZvmvXrsrOztbo0aN10003Oe/o+fXXX2vmzJk6dOiQJOmxxx6T1WqtVs+0adN0++236+DBgzrnnHN0++23q1u3bsrLy9PSpUv1+uuvq3///lqzZo3Xz9a3b19FR0fLZrPp0UcfldVqVadOnZx3BGvXrp1iYmJ06qmnKjU1VZmZmXr00UeVnp6usWPHqlWrVtq+fbvefvttrV69WkOHDtUPP/zg9bMPGjTI+fiee+7RbbfdpjZt2jjXl5aWpvDwcGd7PW1TqeLE+AMPPKC77rpLe/fu1ahRo3TzzTdr6NChKisr0+rVqzVr1iwVFhbKYrHo6aeflsVicavHl++OxWJRWNjRO6x4+g76wuFwyOFwqLS0tM79ysaaPh7NS6DyE4k+q9kQb/MgPwk+5CjuyFHIUSqRo3iPk+SfHIX8BIFQnxzF175H1f3e0+8catYY/Q5Pv1v16Xe4qow1/Y7g63fUVK4+/Y5bbrlFJ554ogzDoN8RRP2OquraL3Vdrmr+yfGH0Gbm403F9nLtybdpd16J9h75f0++TXuP/F9cGtjtEG61qF3LKHVIjFKHhGi1T4xSx4ToiueJ0UqIDvcyI0yZbIWHZCus2/qCIdbkKPCG67zgD8TbXIIt3kX2cq38LUef/pqp73bmq8xR+7GQrq1iNLZPqsb0SVHHxOiKF8uKlJvrecZMMwu2eCNwiLW5BEO8gyFHYdAMGqS83D/T2dbG4XA02rrQ9Ii3uXiKNyd3G5fD4dA333yjb775xmuZc845R3//+98btB7XuLZs2VLz58/XhRdeqIMHD+q9997Te++951Z+0qRJOvHEE3XzzTc3aL0NlZSUpPnz5+viiy9WVlaWFixYoAULFriVmTRpkoYPH+48MRwVFeW39Z988sl65513dN111ykvL0/z5s3TvHnzfFr2+OOP19tvv62rr75aBQUFevHFF/Xiiy9WKzdt2rQGx7eqhnyP27Vrp0ceeUTTp0/XI488Uu19q9WqBx54QOeee67H5S+//HItX75cixcv1tatW3Xttde6vd+nTx+9/vrrOu6447y2IT4+XtOnT9fzzz+vDRs26OKLL3Z7/4MPPtBJJ52kuLg4zZo1S1OmTJHNZtObb76pN998063sSSedpH/+85865ZRTvK7vmGOO0fjx47Vo0SKtXLlSK1eudHv/p59+UlpamtflXU2bNk35+fn65z//qczMTN13333VykRFRemZZ57R6NGjfaqzqqrxbejvtmEY/O2HXzTmfkSf1VyIt3mQnwQHcpSakaPUDznKUeQotdfF3334S332JV/3X3/n5mbVWP0OVw3tdzRmrOl3NL527drp8ccf17Rp0/Twww9Xe59+R80ao98RSBx/MJdQineZw9CBQyXak1+ivfkV/1c8tmlPXolyiwN/E5JWcRHqkBClDglRap9wZHDMkeetW0TWOCNMoC8WC6VYo/njOi8EAvE2l6aId1m5Q9/uzNeSzdla9XuubGW1/+1u0yJSZ/VqpTG9W6lHaqxzgCz7at3w/TYPYm0uZo03g2YAADCxGTNmqE+fPlq9erU2btyo/fv3KysrS5LUunVrDRw4UBMnTtRZZ53l93X36tVLX331lZ5//nl98skn2rNnj+Lj49W7d29dccUVuuCCC3w+ARpoxx13nL766ivNnDlTS5Ys8djWl19+2Vm+ZcuWfl3/6aefrh9//FGvv/66Pv/8c/3xxx/Kz89XbGysunbtqhEjRujCCy/0uOxpp52mH374Qa+88oqWLVum9PR02e12paamavjw4ZoyZYqGDx/u1/b6w1lnnaWlS5dq1qxZ+uqrr3TgwAElJCRo2LBhmjFjhoYMGeJ1WavVqtmzZ+vNN9/Uf//7X23dulVSxV0ax48fr+uvv14xMTG1tuG+++5T165dtWDBAm3dulWHDh3ymDCcfvrpWrp0qWbOnKkvv/xS2dnZSkhIUI8ePXTRRRfpsssu0+7du2td30svvaQBAwboo48+0u+//67Dhw/X+0TNbbfdprPOOkuvvfaavvzySx04cEAWi0UdO3bUqFGjdN111/l8ohkAAKAxkaP4hhyl8ZGjkKMACD30O3xDv6PxnX322friiy/0/PPPa/Xq1fQ76oh+B+B/hmEot6hMew+VaHeezTkwZu+Rf/sPlag8wGM64yKtap8Q7TIo5ugAmfYJUYqOCKu9EgAA0Gw4DEPr9xRoyeZsLduWo3wfBuG2jA7TGT1a6ZzerTSgYwtZPc4kBwAwK4vBrafQAJUnD/wtLCzMbSqm3NxcU45qMwvibS6+xPvAgQNyOByyWq1q06ZNYzcRfhQefnR8bllZ4O8i1ZRuvfVWvfPOO2rfvr3Wr1/f1M1pEg2N9/jx4/XNN9/oxBNP1KJFi/zZNASAP77fDfm9T0lJqdc6EdoClZ9I9FnNhnibB/mJ+ZCjmAs5irk0NN7kJwiE+uQoddkXzfR3zeyCPdb0OxrOtd/xySefOF8PxnjDPyp/76Ojo9W9e3dJHH8IdcF+vKnYXu4yQ0yJ9uTb3AbGFJcGdjaWMKtF7VpGHhkIE+0+a0xilBKiw513iA92wRBrchR4w3Ve8AfibS6NGW/DMPR7VrGWbM7SZ5uztb/AXusyUeFWjTw2SWN6t9KILgmKCLMGpG1mwffbPIi1uQRDvIMhR2GmGQAAgAYqLi7WkiVLJEknnHBCE7cGAAAAgNmRowAAgMZCvwMAmocyh6EDh1wHxVQ+tmlPXolyfbh7e0O1iotwHwyTEO2cNaZ1i0iFWZvHoBgAAOBfe/NLtGRzlpZsztb27OJay4dZpGFdEjSmd4pGHpukuEhmnAMA1I5BMwAAALXYsWOHunTp4vEOVuXl5brzzjuVnZ0tSZo0aVJjNw8AAACAyZCjAACAxkK/AwCaB8MwlFtU5jZDjPP/vBIdKChRuRHYNsRFWp2zxFQOhql83D4hStERXNAKAAAq5BaVaunWbC3ZnK0New/7tEy/9vEa07uVzuzRSslxEQFuIQAg1DBoBgAAoBbPPPOM1q1bp/PPP1+DBg1SSkqKbDabfv31V7311lvasGGDJGnkyJEaPXp0E7cWAAAAQKgjRwEAAI2FfgcABI9ie7nLDDElbgNk9uaXqLjUEdD1h1ktatcy8shAmGj3WWMSo5QQHe5xkCUAAIAkFdrLter3XC3ZnKXvd+b7NKD3mFYxGtO7lc7u1UodEqMD30gAQMhi0AwAAIAPtm3bpieeeMLr+0OHDtWrr77qdjJg3759ysvLq/O6YmNj1blz5/o0EwAAAIBJkKMAAIDGQr8DABpHmcPQgUMlbjPFVDy2aU9eiXKLywLehlZxEe6DYRKi1T4hSh0To5QaH6kwK4NiAACA70rLHfp2Z76WbM7Wqt9zVVJW+yDfNi0iNaZ3K43pnaJjU2IYlAsA8AsGzQAAANTi1ltvVbdu3bR69Wrt2rVLWVlZKisrU1JSkgYMGKAJEybo/PPPl9VqdVvu0Ucf1fz58+u8vhNPPFGLFi3yV/MBAAAAhBhyFAAA0FjodwCA/xiGoexCuzJyirRlV6Z25xYfHSCTV6IDBSU+3XG9IeIirc6BMO2PDI6pHCDTPiFK0RFhgW0AAAAIeQ7D0M+7C/Tp5mwt35atQ7byWpdJiA7XmT2TNaZ3K/Xv0EJWBsoAAPyMQTMAAAC1OPbYY3Xbbbfptttua+qmhDROhgMAAAC+IUdpHOQoAADQ72gs9DuA0FFsL3eZIaZEe/Jt2pNfon35du09VKIie+0XjTZEmNWidi0jjwyEiXafNSYxSgnR4dytHQAA+J1hGNqWWaQlm7P1+ZZsHSiw17pMdLhVI49N0pjerTS8S4Iiwqy1LgMAQH0xaAYAACBAZs2apVmzZjV1MwAAAABAEjkKAABoPPQ7AISqMoehA4dcB8VUPrZpT16JcovLAt6GVnER7oNhjswc0zExSqnxkQqzMigGAAA0jt15Nn22JVufbc7W9uziWsuHWaThXRI1pncrjTw2SbGRzHIHAGgcDJpBg4SFBabTUnUK96rPEVqIt7n4Em/ubhQaqsbRYrHIMAI8pzyaDPE2F3/H22KxBKxfCXMJ5H5En9VciLd5kJ+YC31WcyHe5uLPeJOfwJ/qsy/52vfgd848iLW5EG9z4/hDcDAMQ7lFpdqdVzFLzN78Eu3OO/r/gUMlKg/w1zIuMkwdEl0Hw0SrQ2LFzDHtE6IUE0F/NZhxbBHBjOu84A/E21w8xTun0K7Pt2Tr01+ztGFvgU/1DOjQQuf0TdWZPVspOTYiEE2FH/D9Ng9ibS7EuwKDZtAgSUlJjbKehISERlkPggPxNhdP8c7KypJhGLJarQoP509VqOCCE3Mh3uZS33hXJmERERGN1q9EaGvM/Yg+q7kQb/MgPzEX+qzmQrzNpT7xJj9BINRnX6pv34PfOfMg1uZCvEOXpwtUOP7QeApLyrQrt0i7coq1K6dIGTlF2p1b8f+unGIVl5YHdP3hVos6JMUoLTlWHZNilZYcq07JMep05HFibAQ38QghfLcRTLjOC4FAvM3hcEmZPt+0Xx/8vFdf/56lckfto4h7tmmh8QPb69x+7dUpObYRWgl/4/ttHsTaXMwab870AwAAAAAAAAAAAAAAICSUlTu0L992ZBDMkcEwuRUDZHblFCm70B7wNqS2iKoYDFM5OCY5tmJQTKtYtW0ZrTArg2IAAEBws5c5tHLrQS1av1fLfj2gkjJHrct0SIzReQPaa/yA9urVtmUjtBIAAN8waAYAAAAAAAAAAAAAAADNgmEYyi60OwfF7M4tVkZ2kXYdmS1mX77Np7ufN0R8VLg6HRkU0yn56GwxlbPHREcwUxQAAGh+HA5D3+/I0Yfr92jxxv3KLy6tdZmk2Aj9qV87jR/QQSekJcnK4GAAQBBi0AwaJDc3NyD1Wq1Wt+mf8vPz5XDUPlIZzRPxNhdf4l1aWup8raysrFHbB/+xWCwKCzt6QqC8vFyGEdgTFGg6xNtc/BVvh8Mhh8Oh0tLSOvcrG2v6eDQvgcpPJPqsZkO8zYP8xFzos5oL8TYXf8Sb/ASBUJ8cxde+B79z5kGszYV4m0dl38MVxx/cFdnLtSffpj15Jdqbb9PuvJIjz23ak18iW2lgt1W41aJ2CVHqkBClDgnR6pBY+X/F44TocFksni4ILVPx4UMqrvIqx5vMIxhiTY4Cb7jOC/5AvEOPYRjaerBQn/6apSW/Zung4dpn5YuOsOq07sk6p0+qhndJUESYVZKUn58X4NYikPh+mwexNpdgiHcw5CgMmkGDlJeXN8p6HA5Ho60LTY94m4uneFceYHY4HDIMw8sBZwS7qifyOLEX2oi3ufgj3q4nhS0WC3/74ReNuR/RZzUX4m0eteUnDodDVqu1KZoGP6DPai7E21waGm/DMMhPEBD12Zd87XvwO2cexNpciLc5uB4bdR0kZbbjD2XlDu0vsGtvfon25pdoz5F/e48MlMktDvyNK1rFRRwZFFMxIKZ9QpTaJ0SpY2KUUuMjFVbDXdIbeoGR2eJtZsQawYTrvBAIxLv52p1n05LN2VqyOUs7c2y1lg+3WnRi10Sd1StZI7slKSaysi9rsA+EKL7f5kGszcWs8WbQDAAg6ERERDjvomiz2RQTE9PELQIA+FtRUZHzcWRkZBO2BACAmkVGRjrzk6KiIsXHxzdxiwAA/mazHb0oICIioglbAtD3AAAzcD02Ghsb24QtCSzDMJRbVFYxO4xzQMyRATJ5JTpQUKLyAI8Li4u0ug2GcQ6QSYxWu5ZRio7gxhgAAMBcsgtLtXRrxUCZX/YV+rTM0C7JOm9Ae409vp0s9kJTXmgNAGj+GDQDAAg60dHRKi6umLQ8Pz/f+RozzgBA82YYhsrKylRcXKzCwqMH4EL5xDAAoPmLjY11XtBUUFAgh8OhmJgYhYeHk6MAQDNnGIZsNpvz+JMkbt6CJkffAwBCk7djo0lJSU3YqoYrspc7Z4mp+P/IAJm8iue2sobNxlKbMKtF7VtGHhkUE+0yKKZikExCNH8/AQAADpeUaeVvuVqyJVs/pOfL4cPA5e6psTq7Vyud0zdVfbu0c76ea/dtoA0AAMGGQTMAgKATFRWlyMhI2e12GYahvLw8SZLVyt2emhvXmDV0mnoEP+JtLvWJt2EYMgz3I3AxMTHcyRkAENQiIiIUExPjHNhfWFiowsJCWSwWLrxphuizmgvxNpf6xLtqucjISGbCRJOrS9+D3znzINbmQrxDk6djo7GxsYqKimqiFvmmrNyh/QX2ozPEOAfI2LQnr0S5xWUBb0OruIijg2FcZo3pmBil1PhIhVnJzQEAAKqylzn0zY48LdmcrS+356qkrPaRMu1aRmpM7xSd3auVjk2tuPFlWFhYoJsKAECjYNAMACDoWCwWJSUlKTc3V3a73fk6J4eaN+JnLsTbXOob7/j4eMXHx/u5NQAA+F9CQoLCwsJ0+PBh52ueLnhC80Kf1VyIt7nUJ96RkZFKSkpiQCSCQn36HvzOmQexNhfiHbri4+OVkJDQ1M2QYRjKLSo7OkPMkcExe4/MFnOgoETlAU594yKtzsEwHY4MiKmYLSZa7VpGKTqCm+oBAAD4otxhaN3uQ1qyOVvLt+WooKS81mUSY8I1umcrjendSv3ax3NsDAAQshg0AwAISlarVcnJybLb7SouLlZpaSknh5oZi8XiNntEaWkpFxWGMOJtLvWNt9VqVVhYmKKiohQVFaXwcNIRAEDzYLFY1KJFC8XExKikpEQlJSUqLy8nR2lm6LOaC/E2l4bkKJWzekRGRnJRAIKGL30PfufMg1ibC/EOXZ6OjTZW36PIXu4yS4zt6OO8isExtrL/Z+/P49u67zvf/41zsHEFwEWiJIqLxEWLl8SJl9jOHsd2pFjO2s500nTL9Pamndzezsxv0mnnzsydpXfa9LY3ncl0OkubtmnWxrIt23FiO47tJF7iXQspUly0UeICgCCJ/ZzfH4BIQQtBiwAI8ryejwceJMFz8P1KH0A6Bzjv76e857am4dLWRm++Q4x/qWtMMBeQCfgr93cBAACw0di2rYHzC3r0yJQeH5jW5Fy66D41HkPv6w3pnl0turWzUW6TkDIAYOPjKjUAQNVyuVyLHx5g/TFNU6FQaPHncDisbLb4KhZYn6i3s1BvAIBTud1uud1u1dXVrfVUcA04hnEW6u0s1Bsb1XLHHjzvnYNaOwv1xrXIZC1NxFJLHWIWQzG5gEw4nin7HFrqPEsdYi50jQnmfm6t98o0CMUAAACU0slwQo8dndJjx6Y1NpMour1puHR7d0D37G7Re3YEVeM1KzBLAACqB6EZAAAAAAAAAAAAAACAKmTbtmYWMjoTTSwGYs5c1CnmXCypbJkbEtV5jaUwTMC3FJAJ+rWl0Se/h9XJAQAAym1qPqXvH5vRY0endHhifkX73NTeoLt3N+uDfU0K1niK7wAAwAZFaAYAAAAAAAAAAAAAAGCNzCczOj45r5MzcZ2OJpY6xuSDMYmMVdbxTcOlrY3efIcYv7Y2XgjF5AIyAb9bLhfdYgAAACptLpnRU8fDeuzolF4cn5W1grB0X2ut7tndrA/valZbo6/8kwQAYB0gNAMAAAAAAAAAAAAAAFAmmayliVhKZy50iYkmdWY2pYm5jE7NLGh6PlX2ObTUeZY6xFzoGhPM/dxa75VpEIoBAACoBsmMpR+PRPTokSk9eyKi1AraCm4L+HT37mbdvatZO1tqKzBLAADWF0IzAAAAAAAAAAAAAAAA18i2bc0sZHQmmsh1iLkQjsl3ijkXS2oF1zquSp3XWArDBHxLAZmgX1saffJ7jPJOAAAAANcsa9n62clZPXZ0Wk8en9FcMlt0n1CNW3ftatY9u5t1/ZZ6OgMCALAMQjMAAAAAAAAAAAAAAADLWEhlF7vEnI4mlr7PB2MSGaus45uGS1sbvfkOMX5tbbwQiskFZAJ+NxdKAgAArCO2bevouXk9dnRajx+b1tR8uug+tR5D7+tt0j27m3VLR6PcJsFoAABWgtAMAAAAAAAAAAAAAABwtEzW0kQstRiGWQrF5AIy4Xim7HNoqfPkQzE+bWv0L30f8Km13ivTIBQDAACw3o2HE3rs6JQeOzqt8XCi6PZuw6XbuwO6Z3eL3rMzKL/HrMAsAQDYWAjNAAAAAAAAAAAAAACADc22bc0sZHQmmsh3i8kHY/KdYs7Fksra5Z1DndfQtkAuDNMe8qt3S5M6mmq1valGdUrKw0LhAAAAG9LUXEqPD0zrsSPTOnJufkX73NTeoHt2t+iDfU0K1HCpLwAAq8H/pAAAAAAAAAAAAAAAYN1bSGWXOsREE4uhmAsBmUTGKuv4bsOlLY3efIcYv7Y2+tQe9GlrIHcL+N1yuXLdYkzTVCgUWtw3HM4om82WdX4AAAConLlkRk8Mzuh7R6f10slZWSsIaPdtqtW9u1t0V3+T2hp95Z8kAAAOQWgGq2Ka5Wn1ZxjGsj9jY6HezkK9nYNaOwv1dhbqjWpVrvMTiee901Bv56DWzkK9nYV6Owv1RrXiHAWlQK2dhXoXl85aOhdL6XQkkQ/D5LvGRBI6HU0ovJAp+xxa6j3aFvCrPZjrGLMtH5DZFvRrU71XpuFa0eNQb2eh3s5BrVHNuM4LpUC9l5fMWHpmOKxHj0zq2eGwUitoZdge9Ome3a26Z0+LdrbUVmCWK0e9nYV6Owe1dhbqneOybbvMDYYBAAAAAAAAAAAAAACWZ9u2puZSOhle0MmZC7e4xmcWdDK8oLPRhLIrWaJ7Fep9bm1vqtX2UI06mmq1vak2/7VG7aFa+T3lC0UCAABg/clatn4yPK2Dr57WY29OKJYsHuRuqfdq/w1bdd/bturt24OL3QgBAEB50GkGAAAAAAAAAAAAAABUXCKd1ZPHzuvQG2d1/FxMJ2fiiqezZR3TY7q0LViTC8Y01Wp7aCkUsz1Uq2Cth4sWAQAAsCzbtvX6qagOvnpGD71+RpOxZNF96rym7r6uTQfetk137GyW23TmSv8AAKwFQjMAAAAAAAAAAAAAAKAibNvWKycj+s7PTumh185oNlF8Je63alODb6lDTKhG7YvdYmrV1uiXaRCKAQAAwFs3PDmng6+e0YOvntbo9ELR7T2mS+/r36T737ZNH9y9ia6FAACsEZdt2+XtXYwNLRwOl+VxDcNQIBBY/DkajcqyrLKMhbVHvZ2FejsHtXYW6u0s1VDvUChU0fGwPpTr/ESqjuc9Kod6Owe1dhbq7SzU21nWut6cn+BqOEdBKVBrZ9no9Z6YTerQ4Uk9/OakRmfiq3qseq+prUGf2oN+bQ34tC3g17agX9sCPm0N+NbFxYgbvd4oRL2doxpqzTkKrobrvFAKTqz3+VhS3zs6rUePTuroxHzR7V2S3tnRqHv2tOpD/c1q9K/fte2dWG8no97OQa2dZbHeti0lZxVNypHnKOv3f2NUhWy2vK2xL7Asq2JjYe1Rb2eh3s5BrZ2FejsL9Ua1qOTzkOe9s1Bv56DWzkK9nYV6Owv1RrXgHAXlQK2dZSPUO57K6onjM3rk8JReHJ/VSlf0dBsubWn05gIxQb+2NvrUHswFYrYGfAr43XK5rt4tZj3+vW2EemPlqLdzUGtUE67zQjls1HrHEhk9cXxG3zs6rZdWeBy7a3Ot7tnVort2NWlzg2/x/o3097NR640ro97OQa03Flc8LDM6JjM6KjMyKnN2XIqdlGaGpWxa1m8cVtaBISlCMwAAAAAAAAAAAAAAoCQs29bLJ2f18OEpPTE4o3i6+IUY79jeoLv6m9XdXKNtAZ9a670yjauHYgAAAIBSS6QtPXsirO8dm9azJyJKZ4tHZdqDPt2zq0X37G5WV3NNBWYJAIDkSkRygZjomMzIqIzoRd8no8vvO39eqmmp0EyrB6EZAAAAAAAAAAAAAACwKuPhhA4dntQjR6Z0djZVdPvtQZ/27W3VR/a0aGvAV3R7AAAAoNQylq2Xxmf12NEpPXV8RvOp4oHv5lqP7trVpHt2t2hvW92yHRABALhWrkQ03y1mLBeKiYwu/ZyMXPPjmpERZQjNAAAAAAAAAAAAAAAAFBdLZPT4wLQOHZ7S62fmim5f7zN1V3+z9u9t0Q1b67nAEAAAABVn27YOT8zrsaNT+v6xGU0vpIvuU+c19IHeJt29u0Xv7GiUm66IAIAScCVnc2GYyKiM6Fg+FJPrGmMkwmUZ04iMSltuLstjVzNCMwAAAAAAAAAAAAAAYEUylq2fjkZ16PCknh4KK5W1l93ecEm3dQW0f2+r3rMzJL/HqNBMAQAAgCWj03E9dnRajx2b0qlIsuj2HtOlO3cEdfeuZt25g+NYAMC1uRCMMfJdYsyLvpYrGGMbblkN7coGO2WFuuXfsldq2iE171DKbpCWfytnQyI0AwAAAAAAAAAAAAAAlnV8ckEPvzmpx45Or2g17p0tNdq/t1X37m5WS723AjMEAAAACp2PpfT4sWk9enRKA+cXim7vkvTOjkbdvbtZH+xtUoOfS2wBAMW5kjGZkZHLusWYkTEZiZmyjGm7TFmN7coGu5QNdCob6Fr83mrYJpkeSZJpmvKHQks7hsNSNluWOVUz/kcHAAAAAAAAAAAAAACXmZlP67FjU3r48JQGV3CRYajGrXt2t2jf3hb1b6qVy+WqwCwBAACAJbOJjJ4cnNGjR6f08snYihbT3725Tnfvbtbdu5rVSuAbAHAFrlRMRuTiQMxoLiATHZMRL2cwZlsuEBPozIViFoMx7YvBGBRHaAYAAAAAAAAAAAAAAEiSUhlLPxoO69CRKf14JKqstfxlhm7DpXfvDGr/3lbd0R2Q2zQqNFMAAAAgJ5G29MxwWI8dm9ZzJyLKFDmGlaTtQZ/u2d2iu3c3q6uppgKzBABUu1wwZmwxDGNeFJIx4tNlGdN2GbIa2pUNXugWs9Q1hmBM6RCaAQAAAAAAAAAAAADAwWzb1uGJeT385qQeH5jWbCJbdJ+9bXXav7dVd+1qUrCGCzgAAABQWRnL1otjUT12dFpPHZ/RQtoquk9znUcf3tWse3Y1a09bHZ0RAcCBXKk5GRd3irkQkomMlj8Ys9gtJh+MCXTJatwmmXQ5KzdCMwAAAAAAAAAAAAAAONC5WFKPHJnSw4enNDaTKLr9pnqPPrKnRfv2tqq7mdW4AQAAUFm2bevNs3N67Oi0vj8wrZmFTNF96rymPtDXpHt2N+ud2xtlGgRlAGCjWwzGXNItxoyOyliYKsuYuWDMtsu7xQQ6lW1sJxizxgjNAAAAAAAAAAAAAADgEPFUVk8NhfXw4Um9ODYru8j2PrehD/SFtH9vKxcZAgAAYE2MTMf12NEpPXZ0WqejyaLbe0yX7twR1D27W3TnjqB8bqMCswQAVFRqfjEIc3G3GDM6JmNhsixD2nLlgjHBrqWuMYEuWcELwRhfWcbF6hGaAQAAAAAAAAAAAABgA7NsWy+fjOnQ4Uk9MTijhbRVdJ+b2hu0f2+rPtjfpDqvWYFZAgAAAEvOxZL63tFpPXZsWoPnF4pu75J0c0ej7tndovf3htTg5/JYAFj30gtL3WIWv47KiIzJXDhfliFzwZiti4GYbKBTVjDXNYZgzPrFUQEAAAAAAAAAAAAAABvQyXBChw5P6ZEjUzozW3xF7vagT/v2tOgje1q0LeivwAwBAACAJdF4Rk8Mzuixo1N65VSsaFdESdrTVqd7djfrw/3Naqn3ln2OAIASSy/IjI4vBmIuhGOMyGj5gzGXdosJdCkb2E4wZgMiNAMAAAAAAAAAAAAAwAYRS2T0/YEZPXx4Uq+fmSu6fZ3X1Id3NWnf3lbduLVeLperArMEAAAAchLprH40HNFjR6f045GoMlbxqExHyK97djfr7l3N6myqqcAsAQCrko7nwjAXdYsxI2MyoqMy58+VZchcMGZLLhgT6FrqFhPoVLaxQ3ITjHESQjMAAAAAAAAAAAAAAKxjGcvW86NRPXx4Uk8PhZXKLn+hoeGSbusMaN91rXrvzpD8HqNCMwUAAAByx68vjEX12NFp/fD4jBbSVtF9Wuo8+vCuZt27u0W7NtcS9gaAapOO5zrGRC+EYi4EY8Zkzk+Ubdhs/ZbFMIwVuCgYE+gkGINFhGYAAAAAAAAAAAAAAFiHhiYXdOjwlB45OqXp+XTR7Xc012j/3hbdu6dFrfXeCswQAAAAyLFtW2+cndOjR6b1g4FpheOZovvU+0x9oLdJ9+5p1k3tjTINgjIAsKYyiSt3i4mUOxjTpmw+EGMFOvPBmC5lAx2S21+2cbFxEJoBAAAAAAAAAAAAAGCdCC+k9djRaT18eFID5xeKbh+sceue3c3av7dV/ZtYkRsAAACVNTy1oMeOTut7R6d1ZjZZdHuv6dK7d4Z0z+5m3d4dlM9NV0QAqKgLwZgL4ZjIaK5bTHRU5ly5gzGXdIvJfyUYg9UiNAMAAAAAAAAAAAAAQBVLZSw9eyKihw9P6rmRqLKWvez2bsOld+8Mat/eFt3RHZTH5EJDAAAAVM7EbFLfO5YLygxOFg96Gy7p5o5G3bO7Re/vDanex6WtAFBW6YQUHpFmTsh36k25wicWQzLG3IRcWv59h2uVrWtTNth5SbeYfMcYT01ZxgQkQjMAAAAAAAAAAAAAAFQd27b15tk5HTo8qcePzSiayBTdZ09bnfbvbdGHdzUrWOOpwCwBAACAnEg8rScGZ/TY0Wm9ciq2on32ttXpnt0tumtXk1rqvGWeIQA4TCYpc3Y81y0mOiYjMprrFhMdl2JnpHwwprbEw2brNue7xXTmAjEXusYEOiRPqUcDVobQDAAAAAAAAAAAAAAAVeJsNK7vvnJa33phXCMz8aLbt9Z79JE9Ldq3p0U7Wrj4BAAAAJUTT2X11PFpPXZkSj8eLd4RUZI6m/y6Z1ez7tndou0hfwVmCQAbWDYpM3oyF4aJjMrId4sxo6MyYmfL1zGmdpOs4MWBmAvfE4xBdSI0AwAAAAAAAAAAAADAGkqks/rhsRl9b2BQzw5NyS5yTYvPbegDvSHt29uimzsCMg1XZSYKAAAAx0tnLT17fEoHXz2t7x2eUDxtFd2ntd6ju/NBmf5NtXK5OH4FgBVbDMZc3C0mF44xYmfKHIy5pFtM/ivBGKw3hGYAAAAAAAAAAAAAAKgwy7b1yqmYHj48pScGprWwgosNb2pv0L69LfpgX5PqfXzcDwAAgMp6YmBa/88TP9NkLFl02wafqQ/2Neme3c16e3sjQW8AWE42JXP2pIzI2GLXmMVgzNwZuezi7xlck/rNSjd2KhvoKAzHBDolb115xgTWAO+iAQAAAAAAAACAdSmeyup0LKHpkwmNTM2pv61R79ziXetpAQCwrFORhA4dntKhw1M6M1v8YsNtAZ/27W3RR/a0qD3or8AMAQAAgMt9/eUJfenJsWX7GfjcLr17R0j37G7W7d1Bed1GxeYHAFUvm5I5eyrfLaYwHGPETpctGGPVtuQCMflOMXbTDtVvv15q2iH5GjQXDiubzZZlbKBaEJrBqpimWZbHNQxj2Z+xsVBvZ6HezkGtnYV6Owv1RrUq1/mJxPPeaai3c1BrZ6HezkK9N5Z01tLpSFJj4bjGZxL5r3GNzSR0fi5VsO3H375Nt2zrXqOZAoU4R0EpUOuNI5bM6PtHp/Xw4fN65VSs6PYNPrfu2tWs/de16m3bGuRysSr3RsPr21mot3NQa1QzrvPCtbJtW//lmZP67z85dcXfGy7p1s6g7t3bovf30hFxI+H17SzUu0SyKRkXgjGRkVznmMiIjMhoeYMxNS2ygrlOMQVfA52Sr6FgW8MwpECg8GdsWLy2c1y2bS8X/AUAAAAAAAAAACgry7J1djahkcl5jUzN6cTUvEan5jUyNa+T4biy1so+ynjb9qAe+PwdZZ4tAAArk7VsPXN8Ut95+bQePzyhZGb5C2MMl3Rnb6s+cdM23b23TX5P+cJ3AAAAwEpkspZ+74E39fUXT172uxu3B/Wxt23Vvhu2qrXBtwazA4A1kk1L4TFp5oQ0MyxNDy99Hzkp2WXq2lLXmusO07RTat6x9H3TDsnfWJ4xgQ2CSC8AAAAAAAAAACg727Y1PZ/S6NS8TuQDMbmQzLxGp+eLXki8EiNT8yWYKQAAqzMwEdPfv3xK333ltM7HkkW379tcr0/c1K77375Nmxv9FZghAAAAUFwindU/+btX9PiRc5f97p9+uE+ff38PHREBbFzZtBQZLwzEXPg+Ml6+YExti9S88wrhmB2SP1B8fwBXRGgGAAAAAAAAAACUTCyR1ujUgkam5xc7x4zkgzKxRKYsY24N+NXdWqfuljqlMpa8bqMs4wAAcDXTc0k9+NoZfeflU3rz9GzR7UO1Hh142zZ94qZ2XbetkYsNAQAAUFWi8bQ+99WX9MLITMH9hkv69x+7Xv/glo41mhkAlFA2I0UudIw5kQ/F5IMx4bEyBmOalzrENF/ylWAMUBYu27bttZ4E1q9wOFyWxzUMQ4HA0j/80WhUlrX6VQZRnai3s1Bv56DWzkK9naUa6h0KhSo6HtaHcp2fSNXxvEflUG/noNbOQr2dhXqXXypj6WQkofGZuMbChV+n5tNlGTNY41ZnU406Q351NNWos6lGHSG/Optr1dbStLhdpevN+QmuhnMUlAK1rm7prKVnhsN66M1JPTscVsZa/qN3t+HSu3eG9NHrWnXnzpA8ZmHIk3o7C/V2FurtHNVQa85RcDVc54WVOh9L6Te/dUTHJxcK7veaLv0/9+/Sx27esXgf9d7YeH07y4att5WRMXtaRmREZmRURnRUZnhURmRURuyUXFZ5Fnqy/CFZwS5lg92ygp3KBrtk5b+3fWsbjNmwtcYVVUO9q+EchU4zWJVstkwpyktYllWxsbD2qLezUG/noNbOQr2dhXqjWlTyecjz3lmot3NQa2eh3s5Cva9N1rI1MZvUeDiRC8TkbyfDCZ2dTarIdcHXpNZjqKPJr+1BvzpDNepo8qsjlLs1+q/8kYZpFq7MT71RLThHQTlQ67Vn27aOTMzr4cNTevzYtKIr6KK2Z3Od9u1t0d27mhWs9Vx4pKK1pN7OQr2dhXo7B7VGNeE6L6zE2Excv/XtAZ2ZTRbcX+8z9cf39+nmrsKLXqm3s1BvZ1lX9bYyMmKnZUbGZEZHZUZGZUbHciGZMgdjsoFcICYb6JK1+H2n7OU6xlTZ3+u6qjVWzan1JjQDAAAAAAAAAIBD2bat6fn0YiBmMRwzE9epaFLpbOmTMW7Dpe1BnzrynWIu3DpDfjXXeeRyuYo/CAAAFXY+ltIjR6Z06PCkRmYSRbdvrffo3t0t2re3RTtbaiswQwAAAGB1jkzM6QvfGVA4XnhxeXOdR3/2yV3qbeW4FsAasjIyYmeWAjH5cIwRHZM5e0ouqzwd0C1fcDEIkw12yQp0KRvsVDbQtXwwBkBVITQDAAAAAAAAAMAGF0tkFgMxJxfDMXGNzyS0kLZKPp5L0pZGX0GnmAu3tkaf3AbBGABA9Uuks3rqeFiHjkzphbFo0S5rPrdL7+tp0v69LbqlMyCT/+8AAACwTjw/FtU/e2DwsveJOkJ+ffkT/doW9K/RzAA4ipWVMZcPxlzcLSY6WuZgTGAxGJMLxXRd1DEmWJYxAVQWoRkAAAAAAAAAADaARNrSqUhhIGY8ktD4TOKyFUJLpbnOc1m3mI6QX9uCfvncRlnGBACgnGzb1iunYnr48JSeGJzWfKp4uPTt7Q3at7dFH+prUr2Pj+ABAACwvjx+bFr/6pFhZS5Jie/eXKc//Xi/muo8azQzABuSlZUxdzYfilkKxxiRUZmzJ8sYjGlUNh+IsfJdY7KBfDCmJlSWMQFUD96xAwAAAAAAAABgnchkLZ2ZTWn84mBMvnPMuViqLGPWeU11NuUCMdsXwzE12h7ycWEwAGDDOBVJ6NDhKT1yZEqno8mi228L+PSRPS3at7dF7ay6DQAAgHXq6y9P6EtPjunSpoq3dDbqDw/0qc5rrsm8AKxzF4Ix+U4xuW4xY7mQTPSkXFZ53su2vA2LYRgr3ynmws+2Pyi56AgLOBWfZgEAAAAAAAAAUEUs29bkXC4YMzaT0MnwUjDmdDSprHXpZQyr5zVdFwVi/OoI1Sx2jwnVuuXiw0QAwAY0l8zoB4MzOnR4Sq+cihXdvs5r6EP9zdq/t0U3bmuQwf+PAAAAWKds29ZXnjul//nTM5f97q7+Jv2be3fKSxdhAMuxLRmxs/kgTC4cY+S7xpjR8bIHYy7tFpMNdsn2hwjGALgiQjMAAAAAAAAAAKyBSDyd6xgzkwvEjIeXAjKJjFXy8UyXtDXg0/Z8p5iOkF8d+Q4ymxq8XPgLAHCErGXrhbGoHj48pR8OzSiZWT6MarikWzoD2r+3Re/rCcnvYaVtAAAArG8Zy9YffH9ED7wxednvfu7tm/U7H+jkfSIAObYlY25CZmREZnRsKRQTGZU5Oy5XtlzBmPordovJBjtl+5sIxgB4ywjNAAAAAAAAAABQJguprE5GCoMx4+G4xsMJzSayZRlzU70n1ymmya+OYC4Y0xHya1vAJ4/JCqEAAGc6MbWghw9P6dGjU5qcSxfdfkdzjfbtbdG9u1u0qcFbgRkCAAAA5ZdIW/q9Q0P64VD4st/9xp3t+pVbt9JxGHCafDDGHTspDZ+TpoelmRE1Tg7KiI6VLxjjqZcVvBCI6cyHYrryHWMIxgAoLUIzAAAAAAAAAACsQjpr6XQkqbF8p5ixi4IxK7ko91oE/O5cp5iLusVsD/m1PehXrZcV8AEAkKTIQlqPHZvWocNTOnpuvuj2gRq37t7VrP17W7R7cx0XCwIAVic5J2VTkjhHA1AdYomMfueBQb18KlZwv+GSvnhXtz52w6Y1mhmAsrvQMWaxW8xFHWOi43Jlk5ftUoojGMtTd0m3mKWuMXZNM8EYABVDaAYAAAAAAAAAgCIs29a52VRBIObC7Uw0Kcsu/Zh+t3FZt5gL4Zhgjaf0AwIAsAGks5aeOxHRw4en9OyJiDJF/pM2DZfu3BHU/r0tunNHkK5sAIC3JpPMXXAaHZUZGZU7OibNnZKmh6S5Cbk/9rfKbrttrWcJAJqcS+m3vn1MQ1Pxgvu9pkv/YX+P3tfbtEYzA1AytiVj/pzMyKiMxUDMqMzImMzo2BWDMaVQEIy5KBSTDRKMAVA9CM0AAAAAAAAAACDJtm2FFzIaDyc0dlEwZmwmoVORhFLZ0idjTMOl9qCvIBDTGfKrI1Sj1noPK9wDALACtm3r6Ll5PXx4St87Nq1oPFN0n92b67Rvb4vu3tWsUC1hVADAMrJpGbFTuQtPFy8+HcldkBo7I5eufq5oREYkQjMA1tjYTFy/9e0BnZktvGC+3mfqj+/v003bG9doZgDeMtuSMX8+H4y5qFtMZFTm7LhcmUR5hvXULgZhcuGYpe/t2haCMQCqHqEZAAAAAAAAAICjzCUzBZ1ixsMJjc8kNBZOaD6VLcuYbQ1edTQtBWI6QrnOMVsCPrkNPlAEAOBaTM6l9MiRKR06PKUT0/Gi27fUeXTvnhbt29OintbaCswQALBuWFkZc2cvC8XkgjGn5LKKBzKvxIyMlnaeAPAWHZmY0xe+M6DwJcHy5jqP/uyTu9TLcTFQfWxbxvy5K3SLyYVkyhmMcTXtlJp3SE07NO/fonRjRz4Y00owBsC6RmgGAAAAAAAAALDhJNJZjc8s6MTkvI6cnNTYTHwxHDO9kC7LmE21bm3Ph2I686GYjpBf7UG//B6jLGMCAOA0iXRWPxwK69DhKT0/FpVVpBGcz+3Se3uatH9vi27pDBBWBQAns20Z8+dzq7IvhmJGciu0R8fkyqZKPqQRGSn5YwLASj0/FtU/e2BQC2mr4P6OkF9f/kS/tgX9azQzAEvHJfkwzGJHu/xxSab4whDXNKy7JtcpJtiV7xaz1DXGaGhTqKlpcdtUOKxstjyLTAFApRGaAQAAAAAAAACsS1nL1tnZ5GK3mLGZhMbDcZ2MJHV2Nim7yEW016LOaxR0irn41uDnLXcAAMrBtm29ejqmhw9P6QcDMyvqDPe2bQ3av7dFH+pvUr2P/6MBwDFsW67EzNKFpxdCMflV2l3phbIMa9W2KhvskhXaId+W3VLTTqm5R/NGqCzjAUAxjx+b1r96ZFiZS1LmuzfX6U8/3q+mOs8azQxwENuWa2FyKQxzoWvMhWBMmY5LFoMxF8IxwS5lA52yAl2y6jZdvWMMnWQAbGC8OwgAAAAAAAAAqFq2bWtqPq2xmYRORnKdYsbCua4xpyLJyz74LwWP6dL24EWBmCa/OoK5r821Hrn48BAAgIo4HUno0JEpHTo8pdPRZNHttzb6tG9vi/btbVE7q2YDwIbmSsYWu8UY0YsDMqMykrNlGdPyBZUNdudWZA92L67QbgW7ZHvrJUmmacoXuigoEw5LrNAOoMK+/vKEvvTkmC591+yWzkb94YE+1XnNNZkXsCHZtlwLU0vdYi4Jx5QvGOPPB2MKu8VYgU5ZdZsJwADAJQjNAAAAAAAAAADW3Gwik+8WE1/sHHPhFk9bJR/PcElbGn0FnWI6m/zqCNVoc4NXpsGHigAArIW5ZEZPDM7o0OEpvXwqVnT7Oq+hD/Y1a9/eFr29vUEGFwYBwMaRXli68PSiUIwZGZURny7LkJanXtYloZgL39v+YFnGBIBSsW1bX3nulP7nT89c9ru7+pv0b+7dKa/bWIOZAevcYjDmkm4xkVEZ0TEZ6fnyDGv6lrrF5L9aF8IxdZskF69nAFgpQjMAAAAAAAAAgIpIpLM6GUleMRgTiWfKMuamBp+2B33qCPly3WOa/OoM1WhbwMdFAgAAVImsZevF8agePjylp46HlcwsH5h1KbdK9v69rXp/b0h+DytlA8C6lU3KjJ7MXXwaHsl3jRmRGRmTOT9RliFt03dRIGYpFJMNdsuuaWZldgDrUsay9QffH9EDb0xe9rtPv32z/ukHOgmYAyth23JP/EzesR/lA7tjMiJjMtJz5RnO9Ckb6Fg6Ngl0ygpeCMZsJhgDACVCaAYAAAAAAAAAUDKZrKXT0aROhhMauyQYcy6WKsuYDT4z1y0mH4jpaq7VdZ2b1NVSp3qfW+FwWNlstixjAwCAazcyHdfDhyf16JEpnZ9LF92+q8mv/Xtbde+eZm1u8FVghgCAkrAyMmZPLXaJWbxFR2XETstll767qG14lG3crmywe/HC0wsXo1r1bVyACmBDSaQt/d6hIf1wKHzZ737jznb9yq1b5SIwAyzLDJ+Qb+AB+QYflDl7sqSPbZveXKeYxa4xXbnOdhyXAEDFEJoBAAAAAAAAALwllm3rfCx1WbeY8XBCpyMJZe3Sj+lzG/mOMX51NtXkQjIhvzpDfgVq3AUf/JumqVAoUPpJAACAVYvE0/re0WkdOjKlIxPzRbcP+N368K5m7d/boj1tdVzsBwDVyrZkzE3ku8RcFIqJjMicPSmXVfruorbLkNXQrmz+otOljjFdshq2SQaXRQHY+GKJjH7ngUG9fCpWcL/hkr54V7c+dsOmNZoZUP1cC1PyHX9IvoGD8px/Y1WPVRCMuahbDMEYAKgOnB0CAAAAAAAAAC5j27ai8UxBt5ixmbhORpIaDyeUzJR+JWDTJW0L5sIw2/OBmAvhmE0NXhlcJAsAwLqUzlp6biSiQ4en9MxwRBlr+YStabh0R3dA+/e26s4dQXndXFwEAFXBtuVamMoFY6KjlwRkxuTKJssybLa+bTEUk7sANR+OaWyXTDqPAXCuybmUfuvbxzQ0FS+432u69B/29+h9vU1rNDOgiqUX5DvxffkGHpDn5HNy2SvvUG4bXmUDHbmA7mLXmM7cMUrdZskwyzhxAMBqEJoBAAAAAAAAAAdbSGULOsWMheMan8l9H0uu/APDt2Jzg3cxDHOhW8z2kF/bAj65TS6KBQBgI7BtW8fOLejQkUk9dnRakXjxDgO7Ntdq/95W3b2rWaFaTwVmCQC4Elc8XBiKieaCMUZkVEa6eJewa2HVNF/UKaY7H5LJXYgqT01ZxgSA9WxsJq7f+vaAzswWBhbrfab++P4+3bS9cY1mBlQhKyPPyR/LN3hQvhOPy5VeKLpLJrhD6c73Lh2fXOgYQzAGANYlQjMAAAAAAAAAsMGlMpZOR5MaC8d1MpzUeDiusXwwZmo+XZYxgzXugmBMR8ivzqYabQ/65PfwwSIAABvV1FxKjxyZ0sOHp3RiOl50++Y6jz6yu0X79raop7W2AjMEAEiSKxWTsdglZnSpY0xkREYyWpYxLV9j/sLTC6GY/MrsgS7ZvoayjAkAG9GRiTl94TsDCl8STG+u8+jPPrlLvRxXA5Jty33+DfkGH5Tv+EMyFqaK7mLVtijZu1/JvgPKbLpeovM5AGwYhGYAAAAAAAAAYAPIWrbOxVIFgZiT4YTGwgmdnU3Ksks/Zo3HuEowxq9ADW8/AwDgFIm0paeHwzr05qR+OhYtetzhNV16b09I+/e26taugNwGFyIBQFlkEjIjY1foGjOyogtHr4Xtqc2HYjov6xpj+0NcfAoAq/T8WFT/7IFBLaStgvu3B336s0/u0ragf41mBlQHY/ZkLigzcFDu8HDR7W13jZI771ay74DS22+XDN7XBoCNiH/dAQAAAAAAAGCdsG1bMwuZXDAmnNB4PhwzHk7oVCShVLb0yRi34VJ70JcLxIRq1NHk1/agX51NfrXUeeTigicAABzJtm29dnpODx+e1PcHZjSfyhbd58Zt9dq/t1Uf6mtSg5+PqgGgJLIpmbOnckGYfKeYxc4xc2fLMqRteq8QiunOBWNqWwnGAECZPH5sWv/qkWFlLkmp795cpz/9eL+a6jxrNDNgbbniYfmGH5Vv4AF5zv6s6Pa2y1B6+51K9t+vZPeHJG9dBWYJAFhLvBMJAAAAAAAAAFVmLplZ7BZTeItrPmUVf4C3yCVpS6NP20M+dYRq1Nm01DmmrdHH6u8AAGDRmWhShw5P6tCRKZ2KJItuv6XRq317WrVvb4u2h1j1GgCuiZWVETudC8JcHIqJjMqInZLLLv15om24lW3cLivfJeZCKCYb6JLVsEVyGSUfEwBwdV9/eUJfenJMly6Zc0tno/7wQJ/qvOaazAtYM5mkvKNPyjfwgLxjT8tlpYvukt50vZL9B5Ts2S+7rrUCkwQAVAtCMwAAAAAAAACwBhJpS6ciVw7GzCxkyjJmc61HHflAzIVuMR0hv9qDfvncXPAEAACubD6V1RMDM3r48KRePhUrun2tx9AH+5u1b0+LbtreIIOOAwBQnG3JmD+XC8VERvNdY0ZzAZno+IouBH3LQ8olq2HbRaGYzsWuMVbDNsmkYwEArDXbtvVfnzul//HTM5f97q7+Jv2be3fKy/t6cArbkuf0C/INHpR36FEZqeLnp9mG9lxQpv+AsqGdFZgkAKAaEZoBAAAAAAAAgDLJWLYmZpMXdY2Jayyc0MlwQhOzqctWhiyFOq+pzpB/MRxz8a3ex1vCAABgZbKWrRfHZ3Xo8KSePB5WMrN8FwOXpJs7G7V/b6ve3xNSDStdA8DlbFuan5R5+lW5Z4aXQjGREZnRMbkyibIMm63brGywK981Jt8xJtilbGOH5PaVZUwAwOplLFt/8P0RPfDG5GW/+/TbN+uffqCTgDocwZwekG/goHyDB2XOTRTd3vIFlOzdp2T/AWXa3iHxOgEAx+MTUgAAAAAAAABYBdu2NTmX1ng4rvFwcjEYMx5O6HQkqYxV+miM13Rp+yWBmM5QjTpCfoVq3XLxISAAALhGo9NxPXx4Uo8enda5WKro9p1Nfu3f26J7d7eorZELrwFAklyJaD4Ik+sW446OSrGT0swJKTmrxjKMadU0LXaJWQzFBLuVDXRKntoyjAgAKKdE2tLvHRrSD4fCl/3uN+5s16/cupX3ALGhGXMT8g0+JN/gQbmnjhbd3ja9SnV/SMm++5TqfK9keiswSwDAekFoBgAAAAAAAABWIBrPFARiToYTi11j4unlV16/FoZL2hrwXdItpkadIb82N3pZRRIAAJRMJJ7W48emdejwlA5PzBfdvtFv6u5dzdq3t1V72+q4WA+AM6XmF0MxZmQk/zXXOcZIXH6BcylY3obFUMylXWNsXzmiOACAtRBLZPQ7Dwzq5VOxgvsNl/TFu7r1sRs2rdHMgPJypWLyDn9PvoGD8pz6iVxFerXbcim97VYl++9Xauc9sn0NFZopAGC9ITQDAAAAAAAAAHnxVFYnI7lQzFg4ofGZ3PfjkYSi8UxZxmyt9xQEYraH/OoM+bUt6JPHNMoyJgAAQCZr6bmRqB4+PKlnhiNFu+OZhku3dwe0f2+r3r0jKK+b4xQADpBJyoyOFXSNMSOjMiKjMhfOl2VI211T0CVm8ftgl2x/k0RQEQA2tKm5lH7rOwM6PrlQcL/XdOnf7+/R+3ub1mhmQJlkU/KOPyPfwAPyjjwhVzZZdJdMU5+Su+5Xsvejshq2VmCSAID1jtDMBjAzM6Of/OQneuWVV3T69GlFIhHV19erv79fBw4cUG9v71pPEQAAAAAAAKgaqYyl0em4RqfnF7vG5MIxcZ2fS5dlzEa/uRiM6ciHYjqa/Noe9KvWa5ZlTAAAgEvZtq2B8ws6dHhKjx2dUngFoeD+TbXav7dVd+9qVlOdpwKzBIAKy6ZlzJ7Kh2JGFrvFmJERGbGzRVc4vxa26c0FYi4KxeQ6x3TJqttMMAYAHGo8nNBvfuuYzswWhgbqfab++P4+3bSdrmLYIGxb7olX5Bs8KN/xQyvq0pet26xk331K9t+vbMuuCkwSALCREJrZAB599FEdPHhQmzdv1o033qjGxkadPXtWL774ol588UV94Qtf0O23377W0wQAAAAAAAAqxrJtnY+lFrvFnIomdSZ2XCNT8zoZjitbZCX1a+FzG7kwzEXdYjqacj8Ha7jAFAAArJ2puZQePTqthw9PangqXnT75lqP7t3TrP17W9XTWluBGQJAmVlZGXNnLwvFmJFRGbOn5LKzJR/SdpmyGttzQZjQDvm37pWad0pNOxWx6pQt/WkpAGAdOzIxpy98Z+CyYHtznUd/9sld6uW4HBuAER6Rf/CgfAMHZc6OF93e8tQr1XOPkv0HlN56q2SwABUA4NoQmtkAenp69K//9b/Wnj17Cu4/evSo/u2//bf6i7/4C918883yePhgHgAAAAAAABuHbduKxDOLwZjxcFxj4YROhhM6GUkomSn9FUim4dK2gG8xHHMhFNMR8qu13iuD1YABAECVSGYsPT0U1sOHJ/XT0aiKZYa9pkvv7Qlp395W3dYVkNvguAbAOmPbMubP5YIwkZF8MCZ/i47LZaVKP6Rcshq25rrFBHIdYy58bzW2S2buOg3TNOUPhZZ2DIelbOmDOgCA9en5saj+2QODWkhbBfdvD/r0Z5/cpW1B/xrNDFg918KUfMcPyTd4UJ5zrxXd3jbcSnW8V8n+A0p1f1By8/wHAKweoZkN4NZbb73i/bt379Z1112n1157TePj49q5c2eFZwYAAAAAAACs3lwyo5PhpMYjCY3PxDUeTiyGY2LJ8lxk1NbgXQzD5IIxNeoM+bWl0Su3aZRlTAAAgNWybVuvnZnTocOT+v7AjOZWcKx0w9Z67dvborv6m9Xo5+NjAFXOtuVKzCx1jFkMxYzKjI7JlV4oy7DZ2k2ygl25QMzFAZlAp+T2lWVMAIAzPH5sWv/qkWFlLkm5795cpz/9eL+a6lgoG+tQOi7vyPflHzgoz/gzK+rql267Scn++5XsuVd2TVMFJgkAcBLHv+sZjUY1NDSkoaEhDQ8Pa3h4WLFYTJL03ve+V5///OdX/FiTk5N69NFH9fLLL2t6elput1ttbW1617vepbvvvls+X+XfKDFNs+ArAAAAsBq2bWtyLqU3Jic1MBFT1rb1czfwhhUAAFi9VMbSqUhC4+HC21g4oen5dFnGDNW4FwMxHSHfYjCmPeiT38P7aQAAYP04E03qkSNTOnR4UicjyaLbtzV4tW9vi/btbVVHiFV7AVQfV3L2olDMiIzo6GJQxkjFyjKm5Q9dFIhZ6hpjBTple+vLMiYAwNm+/vKEvvTkmC5tCnlLR6P+8P4+1Xl5jxLriJWV59RP5Bt4QN4Tj8tIzxfdJRPsVrL/gJJ998kKdFZgkgAAp3J8aOZzn/tcSR7npZde0pe//GXF4/HF+5LJ5GIQ54knntAXv/hFtbW1lWS8lZiamtIbb7yhUCikjo6Oio0LAACAjSGeymp4Oq6hqQUNTS5oaDL3fSSeWdympd5HaAYAAKxY1rI1MZtcDMOM57vFjIcTOjublHXpp8MlUOsx1NHkV2dTrfq3hrSjpU5dLXUKudOq87hKPyAAAECFzKeyemJgRoeOTOpnJ4tfQF7jMfTBvibt39uim7Y3ynBxLARgjaUXlrrERJZCMWZ0VEZ8pixDWt76xS4xS51jupUNdMn2B8oyJgAAl7JtW//1uVP6Hz89c9nv7upv0r+5d6e8brpdYx2wbZmTh+UfOCjf8YdkLEwW3cWqaVKy96NK9t+vzKbrJc5NAQAV4PjQzMVaWlq0bds2vfbaa29pv5GREf3Jn/yJUqmU/H6/7r//fl133XVKpVJ67rnn9MQTT+js2bP6j//xP+oP/uAPVFNTU6Y/wZJMJqMvf/nLSqfT+oVf+AUZBgfRAAAAuLKsZetUJKGhqXguHJMPyZyKJC9b1ehSU3NJzcynFPCzyhEAAMixbVvT8+mCTjHj4YTGZ+I6FU0qnS19MsZjutQe8KmjqUYdIb86Q3515G/NdR65XC6ZpqlQKLS4TzgcVjabLflcAAAAyilr2Xp+LKqHD0/qqcGwEhlr2e1dkm7uaNS+vS36QG+TalipGkClZZMyo+MFoRjjQkhm/lxZhrTd/qVuMYGljjHZYJfsmmYuzAQArKmMZesPvj+iB964PFzw6bdv1j/9QCcBd1Q9Y/aUfIMPyjdwUO7wUNHtbbdfyR0fVrL/gNLtd0impwKzBABgieNDM5/85Ce1c+dO7dy5U8FgUOfPn9dv/uZvvqXH+Mu//EulUimZpqnf+73fU19f3+LvrrvuOm3ZskV/8zd/o7Nnz+qhhx7Spz/96cse46tf/arS6fSKx/zIRz6iLVu2XPF3lmXpv/yX/6KjR4/qgx/8oN7znve8pT8PAAAANq6Z+XQuFDO1oOOTcQ1PLmh4Oq5kkQsslnN8ckHv3N5QwlkCAID1IJbIFHSLyX0f1/hMQgvpaz+2uBqXpK0BnzpCfm3PB2IuhGPaGn0yDT5IBgAAG9fw5Jy+87NT+s7PTupcLFV0+46QX/v3tugje1rU1uirwAwBOJqVkTF7KheKiY7KjIwtBWTmzshll/4c0TY8ygY6FsMxVnApHGPVbZZcLCwKAKg+ibSl3zs0pB8OhS/73W/c2a5fuXWrXARmUK3iYXnf+Jq8x74rz5kXi25uuwyl2+9Qsv+AUjvuku2tr8AkAQC4MseHZq4UYHkrhoaGdPToUUnS+9///oLAzAX79+/XU089pdOnT+vRRx/Vxz/+cbndhX/13//+95VMJlc87m233XbF0IxlWfrKV76iZ599Vu9+97v1uc997i3+iQAAALARJNKWRqbj+XBMLiQzPBnX9MLKg9rLqfGY6mtr0K7NDQrUOP60AgCADSuRtnQqUhiIGY8kND6TUDieKcuYzXWegk4xF27bgn753Fz0BAAAnGVyLqUvfPcF/Wjw8lWoL9XoN/Xh/mbtv65Ve9vquNgOQGnZlozY2XwoZqlrjBkZkRE7JZdV+nNE22XIamxf6hoT7F4KyTRslQzemwYArB+xREa/88CgXj4VK7jfcElfvKtbH7th0xrNDFhGJikdeVB6/RvS8cdVly2+iEOmda8S/fcr2btfdh3PawBAdeAdhFV64YUXFr9///vff8VtDMPQe9/7Xn3ta1/T/Py8Dh8+rBtvvLFgm7/+679e9VwudJj50Y9+pDvuuEOf//znZRhcSAAAALCRWbatM9GkhiYvhGNyQZmT4YQse/WP75K0PeRXT0uNelpr1dtaq77N9bq+a4uM/Gru4XBY2Wx29YMBAIA1kbFsnY0mC4Mx+Q4yEytYxfxa1PvMgk4xHU016gz51R70qd7HW5YAAACSNJfM6PPfPKrjkwtX3cZ0Sbd3B7Vvb4veszMkLyFjAKth23ItTC4FYqIXhWOi43JlV74Q6FuRrd9SEIpZ7BrT2C6Z3rKMCQBAJU3NpfRb3xm47Njea7r07/f36P29TWs0M+AKbEvuMy/JP/CAvMOPSsnZortkG7Yp2X9Ayb4Dyjb1VGCSAAC8NXwCvUoDAwOSJJ/Ppx07dlx1uz179hTsc2loZrUuDszcfvvt+q3f+i0CMwAAABtMJJ7W0GQuFDN0oXvMVFzxtFWSxw/VuNXbWqudrbXqbalVT2uNdjTXyO8xC7YzTXMxMAMAANafSDytB16f1GunYxoLJ3Q6mlS2FGnbS/jcLm0PXtwtpkYdTbmgTLDGzcrnAAAAy8hYtn73oaGrBmb6NtVq354W3bO7Rc11ngrPDsC6ZttyJcJXCMWMyYiMykjPl2VYq7blok4x3bmQTKBL2UCH5Kkpy5gAAFSD8XBCv/mtYzozWxg+rfeZ+uP7+3TT9sY1mhlQyJwelG/wQfkGD8qMnSm6veULKNnzESX771dmy02Si+tVAQDVi9DMKp06dUqS1NbWJtM0r7rd1q1bL9unVCzL0le+8hX96Ec/0m233UZgBgAAYJ1LZSyNzMRzwZgLIZmpBU3OpUvy+D63Szuaa9XTUpMLyLTWqqellgssAADY4E5HEvrbn03owTcmlciUJnRruqStAV9BIGZ7voPMpgavDIIxAAAAb5lt2/rSk6P68Wi04P6mOq8+sqdZ+/a0qLe1do1mB2C9cKViMiIXQjFjua/RUZmRURnJaPEHuAaWL5jvGNO1FIoJdssKdsr2NpRlTAAAqtmRiTl94TsDCsczBfc313n0Z5/cxXE91pwxd06+4w/JN3BQ7qkjRbe3Ta9SXR9Qsv+AUp3vlUxfBWYJAMDqEZpZhVQqpVgsJklqbm5edtv6+nr5fD4lk0lNT0+XdB7f/va39fTTT8vv92vr1q36zne+c9k2t9xyi7q6ulb8mCud43JBodW4NPRDCGhjo97OQr2dg1o7C/W+NrZt6+xsUscnF3T8/IKOT85raHJBYzNxZUu02Pv2oF89rbXqyYdjelvrtD3kl7mKTjHUG5W21ucnEs97p6HezuGUWh+ZmNNfPX9aPxiY1rU2lNnc4M11i2mqUWeoRp1NfnU21WhrwCePuT7+3pxSb+RQb2eh3qg0zlFQbn/74hl969XzBfc11Xn1wP9+hwLutCyrNAFoVB9e285Sknqn47kQTGRUZuRErlNMZFRmeERGfKpEMy1ke+qUDXXLCl4IxOS6xljBbtk1oSvuwzOZ17eTUGushbU+R+F5f2U/HY3od757TAupwuP37SG/vvLpPdoW9K/RzFaHem8AqTl5hx6T99gDcp98Ti6t4IODzjulGz6t2fb3yfLmuiOV710PrBVe385BrZ2FeucQmlmFRCKx+L3fX/wg1u/3K5lMFuxXCpOTk4vz+fu///srbrNp06a3FJr5jd/4jRVt981vfnPFj7kagUCgIuOgOlBvZ6HezkGtnYV6Xy4aT2tgIqaBiVkdnYhpYCKmwYmYYslM8Z1XIFjr0a62Bu1qa9Sutgb1tzWob3OD6nzlP+Sn3ii3ajs/kXjeOw31do6NVGvbtvXM8Sn9+Y+G9dzQyj40D9V61N1Sp+6WenW31Oa/1qmrpVa13o33NuJGqjeKo97OQr1RbpyjoJwePzyhLz01WnCf123oL37xHepoZhVqp+G17SxXrXcmJYVHpekhaWZYmh7Of39Cmj1dnsm4/VLTjtytuUdq3pn72rRTrvpNctNVdNV4fTsHtUYlVNs5Cs976aHXzuj//PZRpS9ZKfH6bQH9r1++WS31G6c7B/VeJ7JpafhJ6fVvSMcekTLx4vu07pJu+Dnp+k9Jwe2SJKrtLLy+nYNaO4tT673xPu2uoFQqtfi92138r/LCNhfvVwqf//zn9fnPf76kjwkAAIBrk8pYOjE1p4GJmI6ezYVkBiZiOhMtTXDaaxrq2VS/GIzZtSUXktnU4JOLDyoBAHC8dNbSodfP6s9/dEJHz85edTu34dL+G7bo3b2t6m6tU3dznUJ13grOFAAAAJd641RUX/j6q7IvWeT3jz51o97R2bQ2kwJQGdmMFB2Xpk/kgzFDuXDMzLAUGZfsMnSYMtxSqDsXiGnamQ/G5L9v3CY5dOVZAABW6y+fG9G/efjIZcf1d/Q0688/807VV2DRQ0CSZNvS6Z/lgjJvfkdaWMECWw1bpOs+kQvLtF0vcQ0CAGCD4AhsFbzepQsJMpniK4Rf2Obi/arVV77ylbWeAgAAQFWzbVtno4lcOCYfjBmYiGl4cu6yFYOuVXuoZikck+8g09VSJ4/Jh5VwFs5PAKC4+WRG33jxpP7HsyM6Hbn6CnF1XlM/f0uHfuXObm0L1lRwhgAAbByco6AczkTi+tW/elHxdLbg/n/64T7dd+PWNZoVgJKyLCl2prBTzIVwTHhUstKlH9NlSIHtBZ1iFsMxgQ7J5JIRANgIOEepDrZt64+/P6gvPzl02e/237BFX/r0jfK5zTWYGRxnelh641u5sMzMieLbe+ul3fdJN/6c1PVuyeB5CgDYeHgHZBX8fv/i94lE8ZXDL2xz8X7Vqrm5eUXbhcPhsoxvGEZB+6doNCrLKsPqOagK1NtZqLdzUGtn2ej1nktmNDS5oKGpBR0/v6DjkwsampxXLJktvvMK1PtM9bbWqbe1Vr2batXTUque1torrDKU0dxstCRjrkY11DsUClV0PKyttT4/karjeY/Kod7OsRFqPT2f0td/NqFvvjKh2cTVF3VprvPoH7xjiz719jY1+t2SnVA4XJpOeOvFRqg3Vo56O8ta15vzE+fhHAWlNp/M6pf/9g2djyUL7v/oda36Rze1FtxHrTc2XtsbgG3LtTApMzIqIzIqM3xCxoXvo6NyZcpzHmbVtykb7JYV7Mp9DXXnvjZul9y+K+80GyvLXHBlvL6doxpqzTmK86z1OUo1PO/XWsay9R++N6zvvn7+st/93E1t+ucf6tJCbFYLazC3UqPe1cm1MC3v8YflPfaA3BOvFN3eNtxKd75Xqf4DSu+4S/LkF9mKFnawp97OQr2dg1o7SzXUuxrOUQjNrILX61VDQ4NisZimp5dvXTc3N6dkMvdG90pPVNaDbLY0F4oWY1lWxcbC2qPezkK9nYNaO8t6rXfGsjU+E9fQVDwXjJla0PBkXGdmk8V3XgG34VJXk189rUvBmJ6WGm1u8Mp1hbbG6+XvcL3WGxtPJZ+HPO+dhXo7x3qq9dhMXH/z0oQOHZ5Uapkudx0hv37x5i26d0+LfO5ct7r18mcst/VUb6we9XYW6o1qwTkKViJj2frnBwd0fLLw8rl3bG/Q797VJdsuPNaj1s5CvauXKxGRGRmVGRmRGR1d/N6IjMlIz5VlTKumWdl8KCYb6Lro+w7JU3v1HXkOVSVe385BrVFNuM6rPBJpS793aEg/HLo8lPQbd7brV27dKtuytFH/RpxW76qSjss78gP5Bw7Kc/IZuayrL6y1uMvmtyvZf0DJ3o/IrrnoOtYV1pB6Owv1dg5q7SxOrTehmVVqb2/X0aNHNTExoWw2K9O8cmu6M2fOFOwDAACAtWPbtqbm0xqazHeNmYpraGpBI9NxpZe56PSt2NzgzQdjatSbD8l0NvnlMY2SPD4AAHCmN87E9NUXz+qHx8Na7qjlhq31+sWbt+g9PSEZVwjnAgAAYO3Ztq0vPTmmH48UdhbubPLrDw/08T4SsMZcqbnFDjFmZCQfjBnLhWOSkbKMafkaLwnFdMkK5MIxtq+hLGMCAIBrF0tk9DsPDOrlU4Ud3AyX9MW7uvWxGzat0cywYVlZeU7/VL6BB+Qd/p6M9HzRXbKBTiX671ey7z5Zwa7yzxEAgCpEaGaV+vv7dfToUSWTSZ04cUK9vb1X3O7IkSMF+2wUVwsJrZZhGMv+jI2FejsL9XYOau0s1VzvhVRWw1O5cMzxyXkNTS5oaHJBkXjxVVZWos5r5jrGtNaqr7VWPa116mmtVaN/4x5qV3O94WzlOj+ReN47DfV2jvVSa8u29cxwWH/1/Bm9cmp22W3f2xPSL926TW9rb6zQ7NaP9VJvlAb1dhbqjWrFOQqK+dpLZ/StV88V3BescevLn9yjUJ1PErV2Guq9BjIJGReCMPlgjBEeyf28MFmWIW1PbS4ME+yWt2231LxTau7RrKdVWW9AusLCBzwT1j9e385BrVHNuM6rtKbnU/qNbxy9rGuk13TpP97Xpw/0NV9lz/XNqfVeU7Ytc+qIvMcekHfgoIz580V3sWqalOr7qFK77ld289skl0suSW/1XwHq7SzU2zmotbNQ75yNeyVfhdxyyy164IEHJElPPfXUFUMzlmXp6aefliTV1dVp7969lZxiWYVCoYqMEwgEKjIOqgP1dhbq7RzU2lnWot5Zy9bo9LwGJmI6dnZWxyZiGjgX09j0QvGdV8A0XNrRUqf+tgbt3tKo/s0N6m9rUHuoRi6Hr97O6xvVolLnJxLPe6eh3s5RbbVOZrI6+OoZ/bcfndDQ+bmrbuc1DX3s7dv0ufd0q2cTKw+vVLXVG+VFvZ2FeqNacI6C5Xz/yDn90ZOjBfd53Yb++2dv1g1dTVfdj1o7C/UukUxKioxJ08PSzLA0PZT7fnpYmj0tLdvH8xqZPqlpRy4Q07RDau7Jf79TroY2ua/wnjJLHzgLr2/noNaoJlznVVq/e+hnlwVmGnxu/cVn36nbdmzMwMyVOKXeayJyUnrjW9Lr35Qmjxbf3l0j7don3fBpGTs/IL/pkb/EU6LezkK9nYNaO4tT601oZpV6enq0e/duHT16VE899ZTe9773qa+vr2Cbhx9+WKdPn5Yk3XvvvXK7+WsHAABYjclYMheOmciHYyZiGjwXUzJjleTxNzf61N/WqF1tDdrVlgvH9Gyql89dvhViAQAALphNpPW158f1v54b0bnZ5FW3a/C79Qu3duqX7+jS5sZSf/QFAACAcnnzdFT/5O9ekX3Jdfp/9Kkb9c5lAjMAlmFlpejJpTDMxeGYyLhkZ0s/puGWgp2LnWIWQzLNPVLjNsng/WQAADaqyEJK3zs8UXBfa4NPf/XLt2jPVqKwWIV4RDpyMBeUGXu2+PYuQ+p+r3TDz0m790s+FtYCAOBKHJ/eOHbsmCYmlg5gZ2dnF7+fmJjQD3/4w4Lt3/e+9132GL/0S7+k3//931cqldK/+3f/Th/72Me0d+9epVIp/fjHP9YPfvADSdKWLVv00Y9+tCx/DgAAgI0onsrq+PmYjk3EdOxsTAPnZjUwEdPUXKokj1/rNdW3ueGicEwuKBOq85bk8QEAAN6KiWhC/+u5Ef3t8+OaS2auul1bo1+/eme3fv6W7Wrweyo4QwAAAKzWmUhcv/KXLyqeLryA/3fu6tN9N25do1kB64RtS7Nn8oGYfChm5kTu+/CIlC3N+8aFXFJgez4McyEck/8+2CGZnJMBAOBEzw5NybooBO9zG/r737hd25tq125SWL8ySen449Lr35AGv7ey49q2G3JBmes+ITVuKf8cAQBY51y2fekaRs7yn//zf9bTTz+94u2/+c1vXvH+l156SV/+8pcVj8ev+PstW7boi1/8otra2q5pntUqHA6X5XENwyho/xSNRmVZpVk5HtWHejsL9XYOau0sq623Zds6FUloaHJBx88v6PjkvIamFjQ+k1ApDlYNl9QRqlFPa61687ee1jptC/pkuFwlGMFZquH1Xan28VhfynV+IlXH8x6VQ72do1pqPTy5oK++cFqPHJlSxrr60c/Olhp99tZtumd3izymUcEZbgzVUm9UBvV2lrWuN+cnuBrOUXCp+WRWv/y3b+j45ELB/R+9rlX/5iM9cl3hfSpq7SzUW5JtyxWflhEZlRk+kfsaGZUROSEzMiZX5sqfx6+WVbdZ2WCXrNCO3Ndgl7LBHbIC2yV3eTp7Um9nod7OUQ215hwFV8N1XqXzrx8Z0sE3zi/+fHt3UP/503vWcEaV48R6l4VtyX3mJXmPfVee44dkJGeL7pJt2KZU/wGldt0vq7mvApOk3k5DvZ2DWjtLNdS7Gs5RHN9pplTe+c536o/+6I/0yCOP6OWXX9bMzIzcbrfa2tp022236Z577pHP51vraZZcNluGNtZXYFlWxcbC2qPezkK9nYNaO8ty9Y4spDU0taChqbiOTy5oaHJBw1NxJTKlORhvrvVoZ2uNelry4ZiWWnU318jvufzCUtuyxLNy9Xh9o1pU8nnI895ZqLdzVLLWtm3rlVMx/fWLZ/XMiciy275je4M+c/NW3dEdyF9IafOcLAFe285CvZ2FeqNacI6Ci2UsW/+/g4OXBWbesb1Bv3tX14o/qKbWzuKIemfT8ow/I9+J78mcHpAZGZGRmivLUJa/Sdlg10W3bmUDXcoGOiVv3TJz5DNxlB71dg5qjWrCdV6lYdu2fjxSGEB6V1dgQ/+Zl7PR611q5syQfAMPyDf4oMzY6aLbW94GpXo+okT//cpsfafkyl/3sEZ/59TbWai3c1BrZ3FqvR0fmvn85z+vz3/+8yV5rNbWVn32s5/VZz/72ZI8HgAAwHqWzFgamY7nAjKTuZDM0OSCpubTJXl8n9vQzuYa7WytVW8+JNPTUqumOk9JHh8AAKAcspatp4fC+uqLZ/Tm2fmrbueS9IG+Jn3m5i26bkt95SYIAACAkrNtW196ckzPjUQK7u8I+fWf7uujiyCcx7bkPvuyfIMPyjf0iIxE6Va9t7wNi4EYK3BROCbYJdvXWLJxAACAcw1PxTU5V/iZ97u6AlfZGpBc8+flO/6w/AMPyD15uOj2tuFVqut9Svbfr1Tn+yT3xlusHQCASnN8aAYAAACrY9m2JiIJvXT2nI6dndWxczEdOR3R+ExcWXv1j++S1B70qSffNSb3tUbtQb9Mw7X6AQAAACogkbZ06Mik/ubFszoZSV51O5/bpY/ubdUvvHOLtof8FZwhAKw/rlRMRmRUnuiYlDgrTQ9JXXdKO+9f66kBQIGvv3xO33r1XMF9gRq3/r9P9CtQw8e1cA5zejAXlFnhqtpXY7trcmGYQFdh55hAl+yaZsnF+8YAAKB8fjoaLfi5rcGrzibey8UlUvPynXhcvoGD8px6Ti67eHfR9Nableg7oFTPvbL9wfLPEQAAB+FdWKyKaZpleVzDMJb9GRsL9XYW6u0c1Hpjmk1kdHxyXkOTCzp+fkHHJxc0NDWvhVTxN3hWIljjVm9rrXpa69TbWqve1lrtbKlVjbc8xxy4Nry+Ua3KdX4i8bx3GurtHJWodTSe1jdfmdDf/eyswguZq24X8Lv16Zva9PM3tampzlvyeYDXttNQ7w0km5IRHZcZPiEjMiIzPCIjciL3dWHy8u1tS0bvxys/T+AKOEeBJD09NKM/fmqs4D6P6dKffHyXOpvriu5PrZ1lI9bbFTsr7+CD8h57QO6poyvezza9sgIdyga7ZAV35L6GupUNdsuu23zFYMx6+9vaiPXG1VFv56DWqGZc51UaP7kkNHPHjpDcbudchum0er8lVkbu8WfkPfaAvMOPy5WJF90l29SjVP/HlNp1n6zG7ZKq67iWejsL9XYOau0s1DvHZdt2Cdb/BgAAwEaSylganpzTwERMRydmNTAR08BETGejiZI8vtdtqHdTvfrbGrS7rVH9bQ3a1dag1gafXKwCCAAANoCTMwv6H8+O6JsvndRCKnvV7bYFa/S5d3fr0zdvV63XOR+sAkABy5JmT+c6xUwPSdPDS99HxqQVrMS5qO0G6X97pnxzBYC34M3TUX3qv/5E8XTh8eCf/vzbdOBt29ZoVkAFxCPSkYPSG9+SRp+VtIJLEtpvkfbcJ23aIzXvlALbJYPFlAAAQHWJp7K68d8+rlRm6b2K//qPbtI9121Zw1lhTdm2dOZl6fVvSm98W1qYKr5P/Wbp+k9JN3w6914W10gAAFB2fBIPAADgYLZt60w0oYGJWR09G1sMxwxPziljlSZbvb2pRv2bG7V7S8NiOKaruU5u05mpdQAAsLEdPhPVf/vRCT38+llllzme2ru1Ub/+3p36yHVtHBcBcI6FmYuCMRcHZIalFay8uSLTw7mLFbjYAMAaOxuN61f/6sXLAjP/5119BGawMaUT0vHv5S4WPP64lE0V36elT7r+09L1n5Sauss/RwAAgFX66ch0QWDGNFy6vadlDWeENTMzkguJv/6N3HtcxXjqciHxGz4tdb+XgDgAABVGaAYAAMAhZhNpDU7EdGwipmP57jHHJmKKJTIlefxAjWcxFLMr3z2mv61B9T4OOQEAwMZm27aeG5rWn/9oWM8cX34VuXf3tujX37NTd/Q002EPwMaUWpBmTly5a0x8pvTjuQwp2CE19yzdrIxkeko/FgCs0Fwyo1/5y5d0bjZZcP/Hb9qm3/pAzxrNCigDK5vrJPPGN6UjD0nJaPF96ttyIZnrPyVtuZGgKwAAWFeeHpgs+PmmjqAa/bwH4Rjz09Lhv88FxU+9UHx7lyn1fFC64eek/nslb1355wgAAK6IKxixKuFwuCyPaxiGAoHA4s/RaFSWZS2zB9Yz6u0s1Ns5qPXaSWctjc8kdHxyQccn5zU0uaDjkws6e8mH9NfKbbjU3Vyj3tZa9W6qU09Lrfo316u3vXXxws8L9U4vxBReKMmwqCLV8PoOhUIVHQ/rQ7nOT6TqeN6jcqi3c6y21hnL1g+OTeuvXjitY+fmr7qd6ZI+vLtFn71lm/o35z4Ui0Qi1zxvXBte285CvcvMysiYPS0jckJmeERGZERmeERm+ISMuTPlGbK2RdngDlmhbmWD3bJCO5QN7ZDVuF2Gt2ZN6835Ca6GcxRnyli2fvs7R3X07GzB/e/Y3qh/8YHtb/k4kFo7y7qot23LnDws78BBeQcfkjE3UXwXb4NSPfco1X+/Mu23La2q7fDzonVRb5QM9XaOaqg15yi4Gq7zWr0fHjtX8PPN2+vLeu5XjZxUb0lSJiHPiR/Ie+wBecZ+KJdVfFHSzOYbldr1MaX69suuzXcimk/lbuuM4+rtcNTbOai1s1RDvavhHIXQDFYlm80W36gELMuq2FhYe9TbWai3c1Dr0rNtW5NzaQ1N5UIxQ1MLGp6Ma2QmrnTWLskYbQ1e9bTWqre1VjtbatTTUquuJr/cplGwnWmaBSulU29nod6oFpV8HvK8dxbq7RwrrXU8ldXBNyf1tZcmdGaZYLLfbehjN2zSP3xHm7YEfJIq+28Vlsdr21mo9zWwbbkWpmRGRi6/RcflstIlH9Ly1MkKdikb7FY2uCP/Nfez7WtYZkfrkh+pN6oD5yjO9IdPjOrZE5GC+zpCfv2n+3plyF51nai1s1RTvY3Zk/INPijfwINyh4eKbm8bXqW63qtk3wGlut4vuf35X0iqkj9TtammeqP8qLdzUGtUE67zWp0z0aRGZ+IF993W2bgh/6xvxYast5WV58zz8g0clHfoMRnpuaK7ZBs7lOw/oETfAVmh7ot+sbH+bjZkvXFV1Ns5qLWzOLXehGYAAADWgYVUVsNTCxqaiucCMvmQzGyiNAewdV5TPa25UExva616WnIhmQY/h4sAAAAXzMyn9c1Xzulbr55TNHH11eRCNW793E1t+uTbNilY46ngDAHgrXOlYjIio/lAzKjM8InF71dyQcBbZRtuZRs7lA3tWAzEXLjZta3SRQsyAMB68/WXJ/TNVwpXng7UuPWnH+9XoIb32bD+uOIz8g09It/AQXkmXl7RPumttyrRf59SO++V7Q8U3wEAAGCd+MlopODnYI1bu/KdxbExmFPH5Bt4QL7Bh2TOF++oaPlDSvbuU7LvgDJtb+d9LQAAqhjvzgIAAFSRjGXrVDhxUfeYuIYmF3Q6evUVzN8K03CpM+TPd4/JhWR6WmrV1ugt6BQDAACAJSfDCf3NS2f18OFJJTNX7+i3PejTP7p5i/btaZXfY1x1OwCouGxK5uzJXBjmolCMGRmRsTBZniHr2y7qFrPUMcZqbJcMPpoAsPE8MxzWHz81VnCfx3TpSwf6tD3kX6NZAdcgvSDvyA/kH3hQnpPPyGVdfcGACzLNu5Tsv0/J3o/KathagUkCAABU3k9HowU/39oZkMFn7OueETsj3/GH5Bs4KPf0QNHtbdOn1I4PKdF3v9Idd0qmtwKzBAAAq8UnUwAAAGvAtm1NL6Q1NBlf7BozNLWgE1NxpbJXvxDzrdhU78mFYlrzt5YadTXVyOvmAk4AAICVePPsnP76xbN6cnBGyx2h7W2r02dv2ar39oRkGnxICmCN2JaMuYl8IKbwZsyeksu2Sj6k5QvkgzFdyoaWOsZkA52Sp7bk4wFAtTp2bl6/+/CQrEsOGv+ve3bobe0NazMp4K2wMvKcfE6+wQflO/G4XOmFortkG7Yq2Xufkv33KdvcX4FJAgAArJ1M1tILY4WhmXd101VvvXIlZ+UdfizXUfH083It+wmAZMuldPu7lOw/oNTOu2V7Oc8DAGC9ITSDVTFNsyyPaxjGsj9jY6HezkK9nYNaL4mnszqR7xxz/HwuHDN4fl6RePEV+lai1mtoZ0utelvr1JsPyPS21ipQ4ynJ468E9XYW6o1qVa7zE4nnvdNQb+e4Uq1t29azJyL6q+dP62cnZ5fd/z07Q/rFW7fqpvZGuvatA7y2nWUj19uViMgIn5AZPiEjMiIzPCIjckJmZFSuTKLk49mmL9chJh+KyX3dISvULbum6Yr7lO+o7Mo2cr2xvnGO4gznZpP67e8OKp4uDCf+b3du177rNq/68am1s1S03rYt89yr8h47KO/gwzLiU0V3sfxBpXv3Kdl/v7Jb3yG5cvOr9P/9GwWvb2eh3s5BrVHNuM7r2r12Zl7zqcJj/jt2NJX1vK9ardt6Z1PyjP5Q3mMPyDPyA7myqaK7ZFp2K7XrY0r13ye7vk2StE7+tCWzbuuNa0K9nYNaOwv1znHZtl2apcwBAAAcLmvZGp9Z0MDErI6ejWlgIqaBczGNTs+rFEdchkvqbqnTrrZG7WprUH9bg3a1Nao9VCODFc0BAABWJZWx9OBrZ/TffjSswXNzV93OY7p04G3b9I/fs0N9m1lNDkCZpOPS9LA0PZS/XfR9fKb047kMKdghNfdcdNuZ+9rYLjn0AxQAKGY+mdGn/utPdORsYdj642/fpi99+kaC1ahOU0PSG9+UXv+mFB4pvr3bL/V/RLrh09LOD0pub/nnCAAAUGX+6HsD+rOnhhZ/3r2lUY9+4d1rOCOsiG1LJ5+XXv+GdPi7UjxcfJ/GbdL1n8od/27eW/45AgCAiqDTDAAAwDWYnktqYCKmoxMxDUzMLgZkEpesKHmtWht82tXWkA/H5EIyPZvq5fc4b6UaAACAcool0vr6Cyf1P54d0cTs1Ts01Pvc+oVbO/TLd3SrLeCv4AwBbFhWVoqMXRKOyQdkoifLM2bdpsJATHOP1NIrhbokt688YwLABpW1bP3W371yWWDmlu4m/cdPXE9gBtUlNiG9+fe5sMyZV4pv7zKkHe+Trv+0tHu/5GPBAAAA4GxPD04W/PzevtY1mglWZHJwKSgeGSu+va9R2nNAuuHnpM47WEAGAIANiNAMAADAMhLprIbOz+nYREzHzs5q4FxMxyZimowlS/L4NR5TfZvrtautMd85JtdBprmei5UAAADK6fxsQv/zuVH97fNjiiUyV91uU4NPv3pnt/7BrR1q9HsqOEMAG4JtS3PnLw/FTA/lVnbPpko/pre+MBRzcecYf6D04wGAQ/3fDx/Rk8fOF9zX3VKnP/9H75DPzcI3qAKJWenoQ7mLBUd+JNkrWPBp6025FbX3flxq2Fz+OQIAAKwD03NJvXkmWnDfe/pa1mg2uKq589Kb38l1lVlJUNzwSH1357rK9N0jeVgsCwCAjYzQDFYlHF5By8JrYBiGAoGlD3Cj0agsqzQr96P6UG9nod7Osd5qbdm2zkSTOj65oOPn5zU0uaChyQWNheOy7NU/vkvS9pBfPa216mutU09rrXo31WpbwC/TuGTVyfSCwuGF1Q9aQeut3lidaqh3KBSq6HhYH8p1fiJVx/MelUO9N7aR6QV99YUzOnR4Uuns1Q/0uptr9NlbturePa3yug1l43MKxys4UZQcr21nqXi9kzGZkVEZkRMywyMyIiMywyMyIyNypWIlH8423LICHcoGd8gKdSsb2iErmPtq17ZKV+puELekePmOl9bSWr++OT/B1XCOsnH93c/O6i9/PFpwX7DGrT/5eJ+Umlc4NV+ysai1s6y63tmUPGNPy3vsAXlO/ECubPHFn7KBLqV2HVCq/4Cs0I7cnRlJZfw3DDm8vp2FejtHNdSacxRcDdd5XZvvHZmUfdFbyTUeQz0BV1nP+apZVdU7vSDv8OPyHvuu3OPPymVni++y9Waldt2vdO8+2f5g7s65uCQ+ALiSqqo3yo56Owe1dpZqqHc1nKMQmsGqZLPFDzRLwbKsio2FtUe9nYV6O0c11Toaz2hoakHHJxc0PLWgocm4hqcWtJAuzcFgqMatntba3K2lRj0ttdrZUiO/5worTNqWquSvpaSqqd4oP+qNalHJ5yHPe2eh3hvDq6dj+uoLZ/Sj4ciy2729vUG/ePMW3bEjKMPlkmRT/w2K17azlKTe2ZTM2ZMyLwrEmJFRmZETMhYmSzPRS4esb1M22J2/7VA22KVssFtWY7tkXOXtfT7Y4vWNqsE5ysb0zHBYf/TESMF9HtOlPzrQp22N3rLXgVo7y4rqbVtyn3lJvsGD8g09KiMZXX57SVZNs5K9+5XsP6DMphuWArc8t9YUr29nod7OQa1RTbjO69o8O1wYjnlnR6MM3jdeVPF6Wxl5Tj4n38BB+Ua+L1e6+IKkmeAOJXfdr2TffbIaty/9ghq+ZRvt9Y3lUW/noNbO4tR6E5oBAAAbVipjaXQmrqGpeC4gM7mgoakFnZ9Ll+TxfW6Xuptr1NtSq52tteppqVVva62a6zwleXwAAACsjmXb+tFQWF998axePzN31e1cLunuPW36B29v1d622grOEEDVsS0ZcxMXBWJGZEZOyIyMyJg9JZdd+kCK5WvMB2K6lQ11L4VkAp2Sh3+TAKCaHDs3r999eOiyztT/6u4delt7w9pMCo5lTg3kgjLHH5IZO1N0e8tTp9SOu5TsO6D09tuvHsAFAADAIsu29fxoYSj5XV2Bq2yNsrFtuc+/kTv+HXxIRny66C5WbYuSvR9Vov+Asq3XXbkzMwAAcAzeCQMAAOuebduamE0tdo8ZmopraHJBY+GEspd+gn2NtgV86mmtVW9LrXpac91j2kN+uQ3eWAEAAKg2yYylR45M6a9fPKvxcOKq23lNlz7xju363Lu7taO1XuFw2JGr6gBO5EpE8oGYkcLOMdFRuTJX/3fjWtmmV9lAl7KhfDgm3zEmG+yW7Q/xoT0ArAPnYyn99ncHFL+kW/Wv375N9+5pWaNZwWmM2Bn5Bh+Sb/Cg3NMDRbe3DbfSHe9Rou8+pbo/JHlqKjBLAACAjeP45IKmFwoX5by9O7g2k3EgY/ZkrqPMwEG5IyeKbm+7a5TceTdBcQAAcBmOCgAAwLoyl8xoaDKeD8fkb5NxzadKc3FjwO/WzpYa9bbWqqe1Vj0tNdrRUqs6r1mSxwcAAED5zCYy+var5/SNl89d9kHmxRp8pj719s36h+/cqp72zRWcIYCKSselmRPS9JD8p96Qa2Z4sYOMkQiXfDjbZchqaC8IxFy4WQ1bJJdR8jEBAJWxkMrq//jugCYv6WD9kT0t+rV3bVujWcEpXImIvEOPyj/4oDxnXljRPukt71Cy74CSPffKrmkq8wwBAAA2rp+MFHaZaQ/61B70r9FsnMEVD8s3/Kh8Aw/Ic/ZnRbe3XYbS2+9Usv9+Jbs/JHnrKjBLAACw3hCaAQAAVSmTtTQ6k8iHYpa6x0zEUiV5fI/pUndTzWIwpqe1Vr2ttWqp88jFCr8AAADrysRsUl/72YS++/r5y1b+vlhbg1e/8M4tOnB9q2q9pkyTYDSw7llZGbHT+TDMCZmR0cVgjGKnFzcr5ZrqVm3LRYGYiwIygQ7J9JVwJABANchatv7lw0MaPL9QcP9N7Q36vQ93814iyiMdlwYfU93P/lae0R/KZV19UYALMk29Svbdp2TffbIa2yswSQAAgI3vJ6ORgp/f1RVYm4lsdJmkvKNPyjfwgLxjT6/o+De96QYl+w8o2btfdi3dPwEAwPIIzQAAgDVl27bOz6UWu8cMT+UCMiPTcWUsuyRjbGn0qqcl3zkmH5LpDPnlNlnlFwAAYD07Prmgr754Ro8fm1F2mWPHvtZafebmLbqrv4ljQGA9sm254tO5MEz4RD4UkwvGmNFxuazSLK5wMctTJ+sKHWOywW7ZvoaSjwcAqF7/7w/H9MyJSMF9HSG//tOBXnndHFuihKys3Kd/Ij39qHT0ISk5K2+RXbJ1bUr2fVTJvvuUbdktEeICAAAomflUVq+dniu4713dwbWZzEZkW/KcfkG+wYPyDj0iIzVXdJds4/ZcUKbvgLKhHRWYJAAA2CgIzWBVyrUiq2EYy/6MjYV6Owv1do4r1Xo+mdXQ1IKOT85raHJBxydzXWRmE5mSjFnvM9XbWqve1rrFzjE7W2vV4OOQp9x4bTsL9Ua1KmfHCJ73zkK9q5tt23ppfFZ/+fxp/Xgksuy2t3QG9Eu3btNtXYErrgBOrZ2Feq8DqTmZ4REZkRP5ryMyw7mAjCsVK/lwtuGWFehQNrhDVigXiLFC3cqGdsqubb3iRac8a6oTr29UK85R1r+/+9lZff3lcwX3Bfxu/X+f3K3men9F5kCtNzjblnn+TXkHHpB38CEZ8+eL7mJ5G5Tu3afUrgPKbLtVcuWeE/TRXH94fTsL9XYOao1qxnVeb83Lp6IFC326DZdu7Qo5voP5auttTB2T79h35R14UMbc2aLbW/6gUr37ldr1MWW33LT4np2zq1A5G/X1jSuj3s5BrZ2Feue4bNsuzRLuAAAAeZmspdHpeR09G9PAREzHJmIaODerkzPxkjy+23BpZ2u9dm1pUH9bg3a1NWhXW6O2BPxXvBgSAAAA618ma+mxwxP686dP6I3T0atuZ7ikfTds1a+/Z4eu2xao4AwBrEgmJYVHpemhi27Dua9zE+UZs3Gb1LxTau4pvAU7JZNFFgAAV/bksXP6tb96SRc3NPSahv7m127VLd1NazcxbAwzJ6Q3vi29/k1p+njx7U2f1He3dMOnpd4PS25f+ecIAADgcL//wJv665+OLf58244mff0fv2sNZ7SORU9Lb+aPf8+9WXx70yf13yvd8HNSz4ckd7EejAAAAMvjE0EAAHDNbNvWZCypYxMxHZuYzX09G9PQ5JxSGaskY2wJ+PPBmEbtasuFZHa21svrdmbiGQAAwGniqay+9bOT+u/PjGh8ZuGq2/k9hn7undv1a+/eoe1NtRWcIYDLWJYUO3N5KGZ6SAqPSXa29GP6A1Jz71IgpiX/tWmH5K0r/XgAgA3t8JmofvNrrxQEZiTpP33yBgIzuHZzk9Lh70pvfFM69eIKdnBJ3e+Wrv+0tPujUk2w3DMEAADARZ4enCz4+b19m9ZoJutUYlY6+qD0+jekkWckFVvb3SV13ZkLyuy5L/d+HwAAQIkQmgEAACuykMpo8Nycjp3NhWMG8kGZ8EK6JI9f73Orb3O9dm3Jh2M254IygVpPSR4fAAAA68vMfEp/9eNRffUno8seczbVefXZd3XpM+/qVFMdq80BFbUwUxiIuRCQmRmW0lcPuV0z05fvGLOzMCDT3CPVNkl0HgUAlMBENKFf/cuXtJAqDHn+Hx/q1f1v37ZGs8K6lZyTBh7Jrag9/OTKwsNtN+Q6ylz3Calxa/nnCAAAgMuMTs1ftojTe/pa1mg260gmJQ0/kQvKDDwqZRLF99m0N3f8e/0npUB7+ecIAAAcidAMViUcDpflcQ3DUCCwlBaPRqOyrNJ0LED1od7OQr2rX9aydSqS0OD5eQ1NLmhoakHHzy/oVCRRdN2PlTBdUkdTjXpba9XbWqee1lr1barVlkafXJdc4GQl5xROlmBQlB2vbWephnqHQqGKjof1oVznJ1J1PO9ROdR7bZ2KJPQ3L57RwdfPK7FM98L2oE+fuWWbPnpdq2o8ppSaVzg1/5bGotbOQr2vUSYhIzIqMzwiM3JCRnhEZmRERviEjETp/++15ZLV2C4r1K1saIes4A5lg92yQt2yGrZKrit0HU1JSkUK7qLezrLW9eb8BFfDOcr6s5DK6le/9qYmZgsv7Nq3t1W/eFNLWWt6NdR6Hcqm5R5/Vt6BB+QdflyuTLz4Lo3bleo/oMzuj6lhxzsX76feGxuvb2eh3s5RDbXmHAVXw3VeK/fYa2cLfm6p82iLP7sm5wTV5rJ6RyJynXlJ3mMPyDv48IreM7Tq25TqP6BU//3Ktu7O3ymJv9+qsxFf37g66u0c1NpZqqHe1XCOQmgGq5LNrmA1pBKwLKtiY2HtUW9nod5ra2Y+nQvFTC5oaCqu4ckFDU/HlVzm4sS3YlODT/1tDdq9pVHtDYZ2NPnV3Vwjn/vyi5w48N5YeG07C/VGtajk85DnvbNQ78o4MjGnv37xrJ4YnJG1TFp7z+Y6/eItW/T+3iaZRi50Xar6UGtnod4XsbIyYqdlRkbyt1GZkRO5cEzsrFwlWULhkiFrmpUN5oIx2WBX7vtgt7KNHZLbd5WdbEnXVjPq7SzUG9WCc5T1JWvZ+hcPDurYucIg9tvbG/Qv7+qqmvcvqXWVsm25J16Wb/BB+Y4/IiMxU3QXyx9Ssnefkn33KdN2k+RyyTTNwm2ot6NQb2eh3s5BrVFNuM5r5Z4bLgxv3NoZqJpzgqoxNSS98U3Vv/p3MqPjRTe3vPVK7bxXyf4DSm+9RTLyx77r/LniNBvh9Y2Vo97OQa2dxan1JjQDAIADJNKWRqbj+XBM/ja5oJmFTEke3+82tLMl1z2mp7VWPS016tvcoB3bNi1uEw6HHXmwBQAAgKuzbVs/GY3qqy+c1UsnZ5fd9vbugH7x5q16x/aGyzoUAlgB25YrPn1RMGZEZvhELiATHZfLSpV+SE/tUhim4NYl29dY8vEAAFiNP/nhuJ4ZjhTc1xHy6w8P9Mp7hUWAAEkyw8PyDRyUb/AhmbPFLxS03X4lu+/KXSi4/U7J9FRglgAAAHgr0lnrsver39UduMrWzmNOvCJ95z9Kp17I/bzMtrbhVqrzfUr2H1Cq6wOS21+ZSQIAAFyC0AwAABuIZds6E03mwjH57jHHJxd0KpJYdrXulTJcUnvQnwvHtNSop7VWva212hrwybjkwsVLV8QDAAAALshkLT0+MKOvvnBGQ1Pxq25nGi7ds6tZn7l5i3paays4Q2D9cqXmZERGC8Mx+ZuRmiv5eLbhVraxYzEMkw12y8qHY6y6TRIhNwDAOvCNlyf0dy9PFNwX8Lv1Jx/vV7CGUAMKGXPn5Dv+kHyDD8o9ebjo9rbLVHr7HUr2H1Cy+y7JW1eBWQIAAOBavXY6pnh6qauMS7lOM5B8AwdV/+S/kLLLL8CTbrtJyf77ley5V3ZNU4VmBwAAcHWEZgAAWKci8bSGJuOLXWOGphY0PBUvePNmNZpq3eppudA5plY9rTXa0Vwjv4cwDAAAAK7NfCqrB14/r6/9bELnYlf/UK3WY+hjN2zSP3hHm9oafRWcIbBOZFMyZ09d1C1mRGZkVEZkRObC+fIMWd92xY4xVkM7K6QDANa1Z4fD+tJTYwX3uQ2X/vBArzpCrIKMHFcyJu/wY/INHpTn1E/lUvFVqtKb36Zk331K9u6TXdtSgVkCAACgFH48Ei34effmOoVqHf7+l22r9oU/Ve2LX77qJplgdy4o3nefrEBnBScHAABQHKEZAACqXCpjaWQm1zFmOB+SOT65oKn5dEke3+d2aUfzhXBMzWJIprnO4W/6ALgyKyMjdkqafFGaPi5lktJ1v7zWswIAVLmp+ZS+8fI5ffvVc4ols1fdrrnOo39wU5s+ceMmNfh52woOZ1sy5s/lQzGFnWOM2VNy2Vd/LV0ry9eobHDHYseYi8Mx8tDtCQCw8Qyen9fvPjx0WZfuf3XPDt20vXFtJoXqkU3KO/pD+QYflHf0SbmKrKYt5S8U7DugZN9HZQW7yj9HAAAAlNxPRwtDM7d1O7zLTCahhif+uXzHD13+u9oWJfr2K9F7QJlN19N1GgAAVC2uPgAAoErYtq2zsykdz3eNGZrM3cbDCWWLL1pXlEvStqBPvflQzM6WGvW21qo96Jdp8MYFgEKu+IzMyAmZ4dHc18gJmeERmdFxuayLLhDwB6S9v7Rm8wQAVLfRmbj+9qWzevjwlNLLHNR2Nvn1mZu36CO7W+R1GxWcIbD2XIlo/nhrZLFjzIWvrky85OPZplfZwCWhmFCXssEdsv0hPtgGADjG+VhK/8ffD2jhks7dn3vXNn1kD11BHMu25Dn9gnyDB+UdfkxGcrboLlZtq5K9+5Xsu48LBQEAANa5qbmUBicXCu67vSu4NpOpAq6FKTUe+nV5zr16+S9v+XXp7n+v+OycstnSL/ADAABQSoRmAABYA7FEZrFjzNBUXEOTCxqeWtB8yiq+8woEatzqbalVT2uNelpyXWR2NteoxmuW5PEBbBDZpMzIWO6izPCFCzVz4RgjGVnZYySicsWnJV+orFMFAKwvr5+J6asvnNXTQ2Etl/++cVu9PnPzFr1nZ0gGF5ZhI8sklo67Cm6jMhIzJR/OlktWY/slHWN2KBvsltWwRXIRTgMAONtCKqvf/u6Azs8VdvO+d3ez/vHt29ZoVlgzti1z+ph8AwflO/6QzLmJortYnnqldt6tZP8BpbfdJhm89w4AALARXNplps5r6rotdWs0m7VlTg2o8dCvyYydKbjfdhly3fufpFs+t0YzAwAAeOsIzWBVTLM8bwAbhrHsz9hYqLezOLHetm3rtdMx/Wg4rOPn53V8ckHnYqniO66Ax3RpR3OtejfV5kMyterdVKeWOo9ca3zRoRNr7WTUu4rZtlxzEzIjIzLCw7lwTPiEjPAJGbHTctmrD+u5o6Oyt7ACK9Zeuc5PJP6dcxrqfW0s29aPhsL6q+dP69XTsWW3fV9vkz57y1a9rb2xQrO7MmrtLGWvt5WVETstIx9GNsIj+a8nZMTOyLVshOwah6xpUTbULSvYnfsa2qFscIeswHbJ7b9se5ckp1zOyevbWag3qhXnKNUpa9n6vUcGNXC+cPXot7c36F9/pFfuKut8SK3Lx5g9Je/AQXkHDsqcHiy6vW14lO56n1K77le6+4OLx1ulfKVTb2eh3s5CvZ2DWqOacZ1XcT8dK+w0eGtXQD6vZ41ms3bcI0+p/tHflCs9X3C/7W3Qwr7/rLobDyzet57rjeI20usbxVFv56DWzkK9c1y2bZf+01oAAKBoPK3vvnxKX3thXIPn5lb9eO2hGu1qa9Sutgb1tzVo95YGdTXXyW068yAGwCWSMWl6SJoayn2dPi5NHZemh6VL3swsCX9QaumVmnuld/3vUtv1pR8DALAuJDNZPfDKaf23H53Q8OTV/8/xmoY+ftM2/dq7d6hnU30FZwiUkG1L85P5460Lt+Hc15kTUrY0CyQU8NRJzTul5p788VdP7uemnVJNsPTjAQCwwf3bh47ofz43UnBfV3Otvvu/36FQnXeNZoWKWZiRDn9XeuNb0vhPVrZP5x3S9Z+S9hyQapvKOz8AAACsmaxl653/7vsKLyx1pPwPH7te//DWjjWcVYXZtvT8n0vf+6J06eKLwQ7pH35T2rR7beYGAACwCnSaAQCghGzb1munovra82N68LUzSqTfegeHRr9bu7YshWN2tTWqb3O9GvzOW70EwCWyGSk6ng/GXAjF5C/WjJ0t/XiGR2rqzgVjWnryX/MXatY2S2vc0QoAsLai8bS+9vy4/tdzIzofS151uwa/W5+5rVO/dHuXNjVe3vkCqErJ2FIYZvFrPpCcnC2+/1tluKVQVz4Qc8mtoY3jLgAASuSrPxm9LDATrPXof/7SzQRmNrLUgjT4qPT6t6ShH0hWuvg+m/ZKN3xKuu6TUnB7+ecIAACANffm6WhBYEaS3tPXskazWQPZjPTY/0968b9f/rv2W6Sf/5pU31r5eQEAAJQAoRkAAEpgLpnRwVdP62vPj+vwmZVdQOUxXdrZWp8Px+RCMru2NKit0S8XF0QBzjY/fUm3mKHc1/BIeVYvr2/Lh2F2FgZjgp2SySkDAKDQ2Whc//PZEf3dCyc1l8xcdbstAb9+9c5u/fwtHar38f8JqlAmJUXGCrvGXOjaNzdRnjEbtubDyJfcgh2SyUIJAACU01PHzutfP3i44D6P6dKf/6N3aEcrnRA3nGxGGnk611Hm6ENSagXd4Bvbpes/Kd3waWnz3vLPEQAAAFXlR4OTBT/vaK1Te6h2jWZTYYmo9K1fkoafvPx3139Kuu/PJA+LYgEAgPWLKxawKuFwuCyPaxiGAoHA4s/RaFSW9da7NWB9oN7OstHqPXBuXt9+dUKPHJnUQmr5P8f2kF8f7GtW36Za9bbWqrOpITtgBQABAABJREFURh7TKNzISigSSZRxxpWz0WqN5VHva5BJyoiOyQyfkBkelhEekRk5ISN8QkYiUvLhbHeNsqFuWaEdygZ3KBvaKSvUrWywW/I1XHmn2dgV766GeodCoYqOh/WhXOcnUnU871E51PvKhibn9dUXzujRI1PKWPZVt+tpqdVnb92qu3e3yGMaSi/EFF6o4ETfAmrtALYl19w5mZERuSMjqlk4k+8YMyQ7PCaXnS35kJavcfGY68LxlhXqVjbQJXnrrrzT7Aou4sRbwuvbWda63pyf4Go4R6keA+fn9fmvvaFLD2P/r3t71Bcyylqr1aLWb4Ftyzz3urwDD8g7+JCMhamiu1i+gNK9H1Fq1/3KbL1ZcuXfs1+j5wT1dhbq7SzU2zmqodaco+BquM5reU8cOVvw820djVV9rlAqRnRc9Q/+qsyZ45f9Ln7bbytxyz+R5uKS4rntN0i9sTLU21mot3NQa2ephnpXwzkKoRmsSjZb+gsLrsSyrIqNhbVHvZ1lPdY7kc7q+wMz+s5r5/Tm2flltzUNl97XE9Inbtykd3Y0yijoIGOvuz/7aqzHWuPaUe8825Yxf05m5ITMfCjGDJ+QGRmVETsll13aExBbLlmN7coGu/LBmB3KBruVDe2QVbd56UP/S62yVtQb1aKSz0Oe987i5Hrbtq2XT8X01RfO6rmRyLLbvnN7oz5z8xbd3h3Id05cf8e7Tq71eudKRGVGRvK33PFW7vtRuTLxK++zivFs06tsoCt3rHXhFsr9bPubpKt1D+X5tWZ4fTsL9Ua14BylOkzOpfSFbx+9bNGjz71rm+7Z1bTu/t6o9eWMyIh8gw/JP3BQZnS06Pa26VOq+4NK9t2nVOd7JNOX+4VlS6quv1vq7SzU21mot3NQa1QTrvO6urlkRm+cKVxQ8NbOxnX353ir3GdfUsOh35CRmCm43za9in3wPynV91GpyEW167HeuHbU21mot3NQa2dxar0JzQAAsEInphb096+f16HDU4ollz9o2NLo1cdu2KT7rm9VS523QjMEsFZcqTkZkRG5wxdfqJn73pUu/dL6li+QD8VcuEgz/32gS3L7Sj4eAMB5spatp47P6KsvntWRiasHxQ2X9IHeJn3m5i3au6W+gjOEI2USMqNjuUBM+MRFIZnRyz7ULYXCQHJ3wc2q3yIZZsnHBAAApRVPZfXb3x3QuViq4P57djfrH9++bY1mhVJwLUzJd/xh+QYOynP+9aLb2y5D6fZ35YIyO++W7b1K52UAAAA40gtjs8pe1JnSa7r0ju0b+5jRN3BQ9U/8C7mswvMlq6ZZs/v+XJm2t6/RzAAAAEqP0AwAAMtIZSw9eXxG33ntvF45FVt2W8Ml3bkjqE/cuFm3dQVkGqtZtxhA1bGyMmKnli7QvPhCzflzJR/ONjzKBjoWO8VcHJJZdvVyAABWIZG29PDhSf3NS2d1KpK86nY+t0v3XdeqX3jnFrUH/RWcITY8Kytj7sxFx1qji8dcRuyMXLKLP8ZbHbKm+ZJQTFfu+Kuxg0AyAADrWNay9S8PDenYucIFTd62rUG/f/eOfHdErCeu1Jy8Jx6Xb+BBeU49t6IuzunW65TsP6Bk737ZdZsqMEsAAACsRz8ZjRT8/Pb2Bvk9G3TRHNtW7Qt/otoX/+yyX2Wa+jS7/y9kNbavwcQAAADKh9AMAABXMB5O6LuvnddDhycViWeW3ba13qP7r9+kA9e3qq2RC6qA9c4Vn8mHYi50jDmR+z46ftkqO6WQrd10SceYHbnVyxvbJYPDdQBAZUTiaX371fP6xssTCi9z/BuocevTb9usT799s0K1ngrOEBuKbcsVn76oU8zIRQGZsbIcc9meWmWD3XJv6peae6TmHs16Nyvd2CHb11jy8QAAwNr7k6fH9aPhSMF97UGf/uhAr3xuY20mhbcum5J3/Bn5Bg/KO/KEXJlE8V0aO5Tsv0/JvgPKhnZUYJIAAABYz2zb1k9GogX3vasruDaTKbdMQg1P/HP5jh+67Fepzvcqdvef0pURAABsSFyFBwBAXiZr6YdDYf39a+f1wvjsstu6JL2rK6CPv22T7twRkpuuMsD6kk3KjIwtXaAZXgrHGMlIyYez3TX5jjH5YMyFVcxD3bzpCABYU2eiSf3tS2d18I1JJTJXX6V5W8Cnf/iONt13XatqvBt0dT2UnCs1J2OxU8xoQUDGSC3fyfNa2IZb2cbtsvLHWplg9+L3Vt0mmW63QqHQ4vbZcFh2NlvyeQAAgLX3rVfO6e9+NlFwX6Pf1J9+vF9Bwt/Vz7bkPvuyfIMH5Rt6VEYiXHQXq6ZJyZ59SvYfUGbz2+jSDAAAgBUbm0loIla4kM+7ugNrNJvycc1PqvGR/02ec69e9rv4Db+o+Tv/JYs6AgCADYujHACA452JJvXd18/rwTcnNT2fXnbbplq37ruuVfffsEntQX+FZgjgmti2jPlzS51iIicWO8gYsVNy2Ve/MPiahpNLVmO7ssGugo4x2WC3rPo2ycUKpgCA6nHs3Ly++uJZPTEwrax99e12ba7VL968VR/oayIojivLpmXOnlwKw1zcNWb+XHmGrGvLH3N1X3TM1SWroV0yuQgWAACne+5ERH/45GjBfW7DpT880KfOppq1mRRWxJwelG/wQfkGH5QZO110e9tTq2T3XUr236d0+x0cCwIAAOCa/Hg0UvDzpnqPdjRvrHMHc2pAjYd+TWbsTMH9tsvU/Lt/X4kbPrNGMwMAAKgMQjMAAEfKWLaeOxHRd147p5+MRLXMdYKSpJs7GvXxGzbpfb0heUwufAeqydIK5ifkvjgcExmRK71Q8vEsXyAfisl3i7nwfaBLcvtKPh4AAKVi27aeH5vVV188oxfGlu+s+K6ugD5z8xbd3NEoFys0w7ZlzE8shWHCF3WMmT0pl136bi2Wt6EghLx4C3RK3rqSjwcAADaGwfPz+uJDx2Vd8obv793drXdsb1ybSWFZxtxZ+QYfkm/wQbmnjhbd3jbcSm9/txL99ynV/SHJU1uBWQIAAGAj++lItODn27qCG+p9cc/oU2r43hdkpOcL7re89Yrd/WWlO9+zRjMDAACoHEIzAABHOR9L6YE3zuvgG5M6d0l73UsF/G7t39uij924SV2sQAisLSsrI3ZKZngpELP4fRlWMLcNj7KBjotWL89fsBnqlu1vkjbQm6QAgI0vY9n6wcC0vvriWQ2ev3qg1HRJH97VrM/cvEV9mwglOJErEV061iq4jcqViZd8PNv0KhvoXDrWCnYrG8p1kOGYCwAAvFWTcyn99ncHtZAu7C78a7dt0/69rWs0K1yJKzkr79Cj8g0elOf0C3IVXdZKSrfdpGT/ASV77pVd01yBWQIAAMAJEmlLPzsVK7jv9u7AGs2mxGxb/tf/SnXP/nu57MLzpGxDu2b3/4WyzX1rNDkAAIDKIjQDANjwLNvWT0ej+vvXzuuZ4bCyRT5/u3FbvT5x42Z9sK9JPjddZYBKcsXDuU4xix1jTuRWM4+MyWUtH3S7FtnaTZd0jMldsGk1tksGh8oAgPVtIZXVwTcm9bWfndXZ2av/P1rjMXT/DZv0D29q05YAXdMcwcrKc+YFuc+9dlEYeVRGYqbkQ9lyyWrYdtEx19LNqt8iGWbJxwQAAM4TT2X1298duGyhpHt2N+vX79i2RrNCgUxS3tGn5Bs8KO/oD1f0Xl8m1KNk/31K9t0nq3F7BSYJAAAAp3n19KySmaVAieGSbuncAKEZK6O6Z/5v1bzxN5f9Kt12k2Y/8hXZtS1rMDEAAIC1wZWAAIANa3o+rYfenNR3Xz+v09HkstvWeU3t29uij9+wST2ttRWaIeBQ2aTMyNglHWNyQRkjGSn5cLa7ZrFLTOEq5t2yvQ0lHw8AgLU2M5/WN16Z0LdePafZRPaq2zXVuvXzN7XpEzduVqCGt4g2PNuWOXVUvoEH5Bt8SObC+ZI+vFXTfEkoJtcxJhvolNyEsQAAQPlkLVu/98iwjp0r7Kp447Z6/f7dO+Sie93asbLynHlevoEH5R1+TEYqVnSXbN1mJXv3K9l/QNmWPXQfBAAAQFn9ZCRa8PPetno1+tf3++Wu5KwaHvsn8p585rLfJfru09wH/oD3bAEAgOOs7yM8rDnTLM9qoIZhLPszNhbq7Szlrrdt23ppfFbffnVCTw7OKGMt31Zm75Z6ffJtm3X3rhbVeFnhuJR4bTvLZfV2ueSKT8oMn5ARHs4FY8IjMiInZMyeuqz982rZcslq3CYrlOsWYwV35rrGhLpl17dJrsuffzwjrx2vb1Srcp2fSDzvnWa91ntsJq6/fvGMHnrjvFLLtFfsCPn1i7ds1f7rNjm+s+J6rfVbYcyeknfgoLzHHpA5c3xVj2V7anMdYvJhZCvfPcYKdsv2X3n1xWo6y3JCvbGEejsL9Ua14hylMv7fH47o6aFwwX3bg379vx/frVqfZ41mVTrrrta2LXPycO4YdOBBGfPniu/ibVCq516ldt2vzLZbF7sRVtOxZKWsu3pjVai3s1Bv56DWqGZc53W5n44Vhmbu2BEq67lcuRnRcdU/+CsyZ4Yu+138tt9W4pZ/InOVwfT1XG+8ddTbWai3c1BrZ6HeOS7btpe/mhgAgHUgPJ/Sd14+pa89P64TU/PLblvrNXXgbdv0C7d26LptG6CtLrCWknP/f/buOzyOq9wf+Hdmq3pvlqxe3B07sWM7iVvcYlu2UyGBwA38IDckgVx6gAAXQuASLiQESKMECMnFaXZsuZc4xSXFcZNtddmWZPVedrbM/P6QI2e8siRrd2d3Nd/P8/DAOWfmzGu9q2VHO+85QEt5/3+ay4CWsgv/XQE4hv5dHBVrNBCfB8TlAXE5F/93bDZgsnr/ekREREHg47NteHZfJbafrMdQf+WZkR6Ne+fnYOmkJBhErtY8pvW1AcUbgGPrgbP7r+xc0QjEZAJxuRf+k3Pxf0ekcKVvIiIiCij/PHgGj2w4oeqLCjHh9a/NQ05CuJ+i0qm2auD4K8CxV4DmkuGPN5iBvGXAtDuAvOX82x4RERERaa6uvQ/zfrVH1ff61+ZhZnqMnyLy0NmDwP/dBfS2qPsNFmDdn4Cpt/knLiIiIqIAwJ1miIgoaCmKgo/OtOFfh86i6Ph52J1D71wxMSUSn7s2HWuvGocIa/CvMEikGdkFtJ8Bmi8UxwwUxpQDXee9fz3RBMRm9RfDxOdeKJDJ7S+QCY3jg5pEREQAZFnB3pJGPPt2Jd6vah3y2CUTE3HvghxckxEDgf8/OnY5bEDZ9v5CmbIdgMs+/DlJU4G0ay4WxcTnAdHpgIH3S0RERBT49pY04icb1QUzJoOAZ+++mgUzWulpAYpf7y+WOXdoBCcIQOb1wNTbgUlrgJAgfRiRiIiIiMaEd8qaVO2oEBOmp0X7JxhPHVsPbLzf/e/CYQnAZ18Gxs/yT1xEREREAYJFM0REFHQ6bQ68cbgW/zp0BqUN3UMeazGKKJw+Dnddm44Z46P5kCDRUHpbL9kt5kKRTGvlyB66vFLhyRcezrxQGBN/oTgmOgMw8GMqERHRYOxOGRuP1OK5tytR1nj5z8Img4B1V6Xiq/OzkZcUoWGEpClZ7t9J5ti/geKNgNQx/DlR6f0rCk67A0ic6PsYiYiIiHzg1PlOPPCvw5Av2WnxV7dMw5zsOP8EpRf2HqBka/9DeRW7Adk5/DlJU4FptwNTbgOiUn0fIxERERHRCOwrVRfNXJ8XH3y7tMsy8NYvgbd/7T6WOAm469/9CyURERER6RyfRiSPtLW1+WReURQRFRU10O7o6IAsD72DBAUv5ltfRptvRVFwsr4br3zcgO2nm2FzDH1OVlwIbrsqCaunJCLS2v9/d+3t7R7FTleGv9sByilB7DgDQ1slxLZKGNoqYWivhNhWBdHm/f9fV4whcMVkQY7Jhis6u/+/Y7Lhis4CLJd5gLezy+txkHcFwu93TAxXIiV3vro/AQLjdU/aCcR8d0lOvH6kAf/68Dyaui9fzBpuNuC2GUm48+oUJEZYADh9+rsR7AIx1yMhNpfAcvoNmEvehNhdN+zxsiUKjryVsE+4Gc5x1wCC2D+gs9dGsOabRof51hd/55v3J3Q5vEfxjaZuO+75xzH02F2q/v83Nw2Ls8PG3OffgMi17ITx7Lswl2yEuWI7BEfvsKe4IlJhL1gL+4R1kOPyL8wD3X0GvVIBkW/SDPOtL8y3fgRCrnmPQpfD57wucsoK3rmkaOaa1NDgup9w2hC241swlxW5DTkyFqL7pqcAJcLrn8GDMd80esy3vjDf+sFc60sg5DsQ7lFYNEMecblcwx/kBbIsa3Yt8j/mW1+Gy3ev3YVtp1rw+rEGnG4Y+os4k0HAjfmxuGVaImakRQzsKsPXU2Dg77aGFAViTwMM7ZUwtFXB0F418L/FrhoIinc/9CoQIEemwpBQMLBbTJclBY7IdMjhyRcfyrwUXw9jBn+/KVBo+Trk615f/Jnvpm47Xv6oHq8dbXR7KPDTEsJNuOvqFNw8LQHhlv4/9/A1euUC+Xdb7D4PS+kmWEo2wthyetjjFdEMe9ZiSAVrYc9YABgs/QOyAiAw/41aC+R8k/cx3/rCfFOg4D2K9/XZXfjGq6dQ36UuJF8+IQ73zhuni5+BZrlWFBgbjsBSshGW8iKIfa3Dx2aJhpS3ElL+WjhTZl78u6AO8uIrevndpn7Mt74w3/rBXFMg4XNeFx2v60KXpI7x2vTIgI/7E0JPEyK33AtTw1G3sb5pX0TP9T8ARKMmn8WDId/kPcy3vjDf+sFc64te882iGSIiCkiljT147Wgjtp1qRo996Af806ItuGVaIgqnJCAm1KRRhEQBwN4zUBBjbLtQGNNeBbG9GqKjx+uXky1RcEVnwxWdeWG3mGy4YrLgisqEwRKqqgh3trVB1uGHayIiIm+pbO7FPz+sx9aTzXDKymWPy44Lwd2zUrBiYhxMhssUqlLQEqQumCu2wVK6EaaagxBw+dfCJ+yp10IqWAd7zgoolkgNoiQiIiLShktW8KMtFTjVoP671/TUcPx4RfbAIkrkGUNbJSylG2EpfROGjrPDHq8YrbBn3Qgpfy3s6TcABrMGURIREREReeZAVYeqnRMfgsSI4Pgsa2g+jciir8DQpd6FXBEM6Jn/Y9imft5PkREREREFLhbNEBFRwLA5ZOwqacFrRxtx/Hz3kMcaRAELcqJx61VJmJUeCZFfiNJYJbsgdtX0F8d8UhjT1l8cY+hp8PrlFNEEV1Q6XNFZFwpjsgaKYxRrLMDfNSIiIp9RFAVHarvwj/fP453K9iGPnZkWgS/MSsG87Gh+Fh5rXHaYz74NS8lGmKt2QXDZhz3FGZsPqWAdpPxCyBHjNAiSiIiISHsbjjdiX3mbqi81yoLfrM2HxcgCck8IPY2wlG2GpWQjTE0nhj1eEUQ40q6DVLAG9uxlUMzhGkRJREREROQ9B6rbVe25mVH+CeQKmar3ImL7N9wW0ZTN4eha/hQcGfP9FBkRERFRYGPRDBER+V1VSx9eP9qIzcVNbtvfXiol0ox10xKxdkoC4sODY5UPopEQ+touFMRUDewe0//fZyDIwz8oeaVcoYmQo7PgjPmkKKa/QEaOTOvfppmIiIg045IV7Ctvwz8/OD9k8bgAYFFeDL4wexympPChtDFFUWCs/wiWko2wlG2BKLUPe4orLBlSfiGkgnVwxU/wfYxEREREfqQoCl75WL2ATKTVgCdvLeDu46Mk2LtgrtgOS+mbMNUcgKAMveM7ADiSpkPKXwMpbzWU0HgNoiQiIiIi8r72PgdO1quLTuZmRfsnmJFSFFiP/R1h7/7C7bO7KyINnaufhysu30/BEREREQU+PhFJRER+ITld2HaiHn9/rxKHz3UOeawoANdlR+PW6UmYmxkFg8iVtClIuSQYOs5e3CmmrfJCcUw1RFvb8OdfIcUYcmHHmKyLO8ZcaCvmCK9fj4iIiK6M5JRRVNyMFz88j7NttsseZzYIWD0lAZ+/JgXpMVYNIyRfM7RVwFKyAZaSN2Hoqhn2eNkcDnvOTZAK1sIxbjYgGjSIkoiIiMj/Shp7Ud7cp+r7yYocZMaG+CmiIOWyw3xmHyylb8JctRuCSxr+lKhM2ArW9u9qGJ2lQZBERERERL71/plOyMrFtsUo4qrUAP7+XHYi7O2fIeTEv9yGHMkz0bnqGSghcX4IjIiIiCh4sGiGiIg0dbatD88cqMcrH9WgtWfo3TMSwk1YNzURa6cmIDnSolGERB5SFIg9DQPFMAOFMW1VELtqRrRi4xVdDgLkiNQLhTEXd4xxRWdBDk8GBNGr1yMiIiLPdfQ58erRBvz7cD1ae52XPS7SasDtVyXhjhnJiAvj6tljhdDTCEvZZlhKNsLUdGLY4xXRBHvGAkgF62DPXAQYWThFRERE+lNU3KxqJ0eYcUNOtH+CCTaKDGPdh7CUboSlfCtEqWPYU+TQeEh5qyHlr4UzcSogcCErIiIiIho7DlSrPxNfPT4CFmNgfq8uSJ2I2PZ1mM+94zZmy1+L7sW/BIx8noaIiIhoOCyaISIin3O6ZOyraMdrRxvw/pmhd5UBgLmZUbh1eiKuz4mBkbvKUKCy9/TvFtNeCWNbFcT2KhjbKyG2V0N09Ax//hWSLVEXdorJvFAYk91fKBOVyT+CERERBYnzHRJe+qgeG443os9x+ULa5AgzPj8rBWumJCDUzJ1ExgLB3g1z5c7+Qpma90ZUSO1IuQZSwVpIOTdBCYnRIEoiIiKiwOR0ydh2Sl00s3JyPEQWcgzJ0FzSXyhTtgmGrrphj5dNYbBnL+vf1TBtLiDya2QiIiIiGnsURcHB6nZV37ysaL/EMhyx4ywiN38FxrZyt7Geax9C3zUPsMCdiIiIaIT4104iIvKZ8x0S3jjeiI3Hm9DS4xjy2JgQI9ZOTcC6aYlIi+bKyRQgZBfErpr+4pi2qgs7xlzYQaan3uuXU0QTXFHp/TvFDOwY018co1hj+QcvIiKiIFXa2IN/fnAeO063wKVc/rj8xFB8YVYKluTHwmgIzFXt6Aq4HDCdexeWko2wVO2E4LQNe4ozJqe/UCZ/DeTI8RoESURERBT49ld3oK1PvUPjqknxfoomsIlddbCUboKldCOMLSXDHq+IRtjTF0AqWAN75o2AKUSDKImIiIiI/KeiuQ9N3ernV+ZkRvkpmssznv8QkUX3QbS1qvoVgxldSx6HPW+1nyIjIiIiCk4smiEiIq9yyQreq2rH60cb8V5lO4Z4JhAAMCs9EjdPS8SivBiY+GAg+YnQ13ahIKZqYPeY/v8+A0G2e/16rtBEyNFZcMZ8UhTTv4OMHDmeKzgSERGNEYqi4IOznfjHB+dxsLpjyGNnZ0TiC7PG4dqMSAgskg1uigJjw1FYSjbAUlbk9oXmYOTQBEh5hbAVrIUrYTILpYmIiIgusflEk6o9bVw4MmJZ3PEJwdYOc/lWWEvfhKnu/RGdw10NiYiIiEivDlzy9/pxkRZkxATWwq6Wkg0I3/2w27MKckgcOlc9C2fyDD9FRkRERBS8+FQmERF5RWOXHRuPN2LD8SY0dA1dZBAVYsLtV6fhzmvTEWt0wOVyaRQl6ZpLgqHj7IWdYqou/nd7FURbm9cvpxhDLuwYk3Vxx5gLbcUc4fXrERERUWBwygp2l7binx/U4XRD72WPMwjAkoI43D0rBROSwjSMkHxBbK+CteRNWEo3wtBxZtjjZVMY7NnLIBWsgyNtLiAaNIiSiIiIKPh09DnxTmW7qm/VZO4yA6cN5uo9sJRshPnMPgjy0Du9A4AzNg9S/lpI+YWQI9M0CJKIiIiIKPAcqG5XtedkRQXOYlaKjNBDTyD0wz+6DTlj89G5+s+QI1P9EBgRERFR8GPRDBERjZqsKDhU3YHXjzXi7fI2uIbZVmbauHDcPiMZt8/JhdXU/1BYW5v3ixVIxxQFYk/DQDFMf2FM/w4yYlcNBEX27uUgQI5IvVAY88mOMf1FMnJ4MiBw9yQiIiK96LO78OaJJvzrw3rUdUqXPc5qFLFuWgLuujoF46IsGkZI3ib0NsNSVgRL6ZswNRwZ9nhFMMCRPh+2gjWwZy0BTKG+D5KIiIgoyO043QLHp/7wbDYIWFoQ58eI/Eh2AVVvI/TDF2Eq3wbR0T3sKa7wZEh5hZAK1sIVN4G7GhIRERGRrvXZXfi4pkvVNzczyk/RXMJpQ8Su78BSvsVtyJ6xAF3Ln+TinEREREQe0Kxopre3f3XV0NDBHwh46qmnsH79ejQ3NyMrKwv33XcfCgsLtQqPiIiuQGuPA2+eaMIbxxpR23H5BwIBIMxswMpJ8bh1eiJyE0JhMBgGCmaIRs3ec6EwphKG9moY2iphbK+E2F4N0dHj9cvJlshP7RSTfaFAJguuqAzAGFhbNRMREZG22nodWP9xA9Z/3IAOm/Oyx8WEGPGZmcm47apERIeYNIyQvMrRB3PVTlhLNsJ09h0IyvC7ZjqSZkAqWAMpdyWUUK6KTkRERHQlNhc3qdrzc2IQadXZmoBOG7DnUeDwP4HuegxXei9bImHPWQEpfy0cqbO5sA8RERER0QUf1XSpivINooBZ6ZF+jKif0NOEyC33wtRw1G2sb/p/oOe6hwFRZ/dBRERERF6myaepTZs2Yd26dQgPD0dNTQ0iItRVz1/60pfw97//HQCgKApKS0uxfft2PProo3j44Ye1CJGIiIahKAo+OteJ1442Ym9ZG5zy0NvKTEoKwy1XJWJ5QRxCzCySoVGQXRC7agd2iukvkKnq/9899V6/nCKa4IpK/1RhTNZAcYxijeUqjERERKRS027Dix+cx6biJkjOy382Tou24PPXpGD15ARYTXxYLSjJTphqDsBSsgHmyp0jKtJ2RWXAVrAOUv4ayNGZvo+RiIiIaAyqbulDcb36s9fqyfoqQha7zyNiy31A4/Ehj1MMZtgzF0PKXwN75kLAwF0tiYiIiIgudaCqXdWeNi4c4Rb/FqMYmk8jsugrMHTVqfoVwYCe+T+Bbern/BQZERER0diiyae+7du3Q1EUrFmzxq1g5t1338ULL7wAQRAQGhqK/Px8nD59Gn19ffjxj3+MwsJCTJkyRYswiYhoEB19TmwubsLrxxpxptU25LEhJhErJsbhlmlJmJgcplGEFOyEvjZ1Qcwn/7v9DATZ7vXryaEJcEVnwxnzSVFMNlzRmZAjx3N1FiIiIhpW8flu/POD89hT1oqh6sgnJYfhC7NSsCgvFgaRxbdBR1FgaDoBa8lGWMo2Q+xtGvYUOSQWUt5qSAXr4EycxqJrIiIiIg8VnWxWteNCTZiTFe2fYPzAeP5DRG69H2Jv86DjCgQ40ub2F8rkrIBiiRj0OCIiIiIi6negukPVnpMZ5adI+pmq9yJi+zfcFmqSzeHoWv4UHBnz/RQZERER0dijyZOhBw8ehCAIWLRokdvYc889BwAYN24cDhw4gLS0NJw7dw7XX389ampq8Oyzz+Kpp57SIkwiIrpAURQcq+vGa0cbsaukBXbX0LvK5CWE4tbpiVgxMc7vq3BQgHJKEFvKYGgpu1AQUwVDW39xjGhr8/rlFGPIhR1jsi7uGHOhrZj55TERERFdGUVR8F5lO/7xQR0+Otc15LHXZUXjC7NTMDMtAgKLJoKO2HEO5tNvwFKyEca2imGPV4xWSNnLIBWshSPtOsBg0iBKIiIiorHPJSvYcknRzIqJcTDqpCDdUvxvhO/7CQTZ4TbmTJgMW/5a2PNWQw5P8kN0RERERETBp7bdhrNt6oVi52VG+ycYRYH12AsIe/cxCIqsGnJFjkfn6ufhis3zT2xEREREY5QmTzY3NjYCAAoKCtzGtm3bBkEQ8OCDDyItLQ0AMH78eDz44IP47ne/i3379mkRIo2SwWDwybyiKA7ZprGF+Q4cXZITW4qb8OrHDShv7h3yWItRxLIJcbjtqmRMHRc+4gcCme8xTFEg9DTC0FYBsa0SxvYqoOss0FIOtJ9B1CV/7PH4chAgR6ZCjunfLUaOzukvkonJhhKeDAjury2+2nyHv9v6wnxToPLV/QnA173efJJfu1PGpqN1ePqtMpQ3Xf7zsVEUcNOkeHxh9jjkJnDHxWAiiiLQ2woUvwEcW4+ocweHPUcRRDjTr4e9YB3sOcsAczgAwHfvQOQtfC/XF+ZbX5hvClS8Rxm9D861o6FLvQv1mmlJPv2ZBgSXAyHvPArr0b+7j8XmALf/DT2hmZBlGQL4GXQsGuu/26TGfOsL860fzDUFMj0/53XorHpBrJhQIyaNi4Co9eJXLgdC3v5vWI+/6DbkTLka3aufA0LjAvqzfjDkm7yH+dYX5ls/mGt9Yb77aVI009TUBACIiFCv7F5cXIzm5mYIgoC1a9eqxq655hoAwJkzZ7QIkUYpJiZGk+tERfl3O0zSFvOtvWM17fjXwbN482gd+hyuIY/NSQjD567NwC0zUxEdavb42sx3EJK6+wthPvlPcxnQUga0VAD2bu9fzxoFxOUB8XlAXO6F/86DEJsFgykEBgBczzvw8HdbX5hvChRa3Z8AfN2Pdd2SE39+pxJ/ebcK5ztslz0u3GLEXdem457rMpESFaJhhOQxRx9Qug04th4o2wkMsoK3m5SrgGmfgTDlVpgikmACwBKp4Mb3cn1hvvWF+aZAwXuU0duxQ/394KSUSFxbkOanaDTS2wqs/xJQ/Y77WM6NwG1/AUJiMLYyTcMZa7/bNDTmW1+Yb/1grimQ6Pk5rw9r1DuLz89PRFxsrLZB9LUDr3wVqNzrPjbtMzAW/h7RJqu2MXlBIOabfIf51hfmWz+Ya33Ra741KZr5pEq9tbVV1f/uu+8CABISEtx2ofnkQ7rNdvmHU4iIaPR6JCfePFqHlw6dxfHajiGPNRkE3DQlBXddm45rs2JHvKsMBTHZBbSfvaQophxoLge66rx/PdEExGb1F8fE5QwUxiA+DwiNA/iaIyIiIg0oioJNx87j55tPoqlLuuxxiREW3HNdFu66Nh1RISzfDRqyC6h+t79Q5tSbgNQ5/DnR6cC0zwBT7wAS8n0fIxERERGhW3Ji24l6Vd8tM1P9FI1GGoqBl+8E2gdZTHDeg8CS/wbEQF5rmoiIiIgocDlcMvZXtKj6FuQnaBtEaxXw0meA5hL3sUU/BOZ/h89FEBEREfmQJkUzqampKC8vx5EjR7Bw4cKB/qKiIgiCgBtuuMHtnI6O/ge44+PjtQiRiEg3Tp3vxL8OncGGj+vQLTmHPDYjLhR3zk7HbVenIT7colGEpKneVnVhTPOF4pjWSsBl9/71wpMuFMPkqnePic4ADJp8LCEiIiIaVFVzDx7ZcALvljdf9pichDDcOz8Ha2eMg8XIB9aCgqIADSeAY/8Gjr82sgLwkBhg8i39xTLjZ/OLSiIiIiKNbTl+XrUjukEUsPaqMVw0c/JN4I3/BBw96n6DBVjze2D6Z/0TFxERERHRGHH4TJvb8zE35GlYNHPmAPDvzwG96sIdGK3Auj8BU27VLhYiIiIindLk6dQbbrgBZWVl+MMf/oDPf/7ziI+PxwcffIBt27YBAJYvX+52zqlTpwAAycnJWoRIo9TW1uaTeUVRVG3/1NHRAVmWfXIt8j/m2/dsDhd2nG7Ba0cacKyua8hjDQKwIC8Wt1+VjNmZURAFAXD0oq2t1yuxMN9+4JQgdpyFoa0CYnsVDG2VMLRVQmyrhGjz/vu4YgyBKyYLckw2zMmTBgpjOkyJkE1hg5/UOfTrkgIff7f1JRDyrdX28RRcfHV/AgTG6558Q3LKeOFgLf56sAZ2lzLoMTPSIvHFa8fhhpwYiIKA3q5OeOfTMfmK0FUHc8lGWE5vgKFlkJX7LmW0AgU3oSdnFezp8wGDub+/vd2ncZK2+F6uL8y3vvg737w/ocvhPcrorH+/WtW+LisaRqf3/kYdMBQZ1kNPIuTQk25DclgSulc/B1fydIgdHWM21+RuLP9ukzvmW1+Yb/0IhFzzHoUuR6/Pee04fk7VnpAUptk9hvn0Gwjd9T0IlyxaKofGo7vwebiSZwA+vHf0hUDPN3kX860vzLd+MNf6Egj5DoR7FE2KZr72ta/hhRdeQFVVFbKzs5Gfn4+TJ0/C6XQiNjYWn/nMZ9zO2bNnDwRBwKRJk7QIkUbJ5XINf5AXyLKs2bXI/5hv76lu6cNrxxpRVNyETtvQP9PkCDPWTUvE2qkJSAjvf0BMkWX4OhPMt5coCsSeRhjaK2H4pDCmvQqG9kqInTUQFO9+yFEgQI5IhSsmC67obLiis+CK6f9vOTwZEEQYDAaYP/VhR25rY651hL/b+sJ8U6DQ8nXI1/3YcOhMB/5nVzXOttkGHV+Qn4Cv35iL7EgBLpdLk8/HNHqC1Alz+VZYSzbCVHdo2OMVCHCmzYXp6s8BEwsBaxTsn3xm5e+3LvC9XF+Yb31hvilQ8B7lytV1SPjwbKeqb+WkuDHxb1Ox9yBi17dhqdzhNuRImoHOlX+CEpY46OfSsZJrGhnmW1+Yb31hvvWDuaZAotfnvPZXtqvaczIifR+fIiP00BMI/fCPbkPOuAJ0rnoecmTqmPhbdKDlm3yL+dYX5ls/mGt90Wu+NSmamTlzJh5//HF85zvfQXd3Nw4fPgwAMJlMeP755xEREaE6vqOjA0VFRQCAhQsXahEiEdGYYXfK2FvehteONOBwzdC7d4hC/yp9t05PxNysaBhEQaMoadTsPReKYaoGimOM7ZUQ26shOnq8fjnZEnlJUUx2f6FMVEb/atxEREREQai5x47f7T2L7adbBh1PijDjv9dOwfLJyRAEwacrhJOHXBLM1W/BUrIR5uq9EGT7sKc44ydCyl8LKb8QQlRqQKxqQ0RERET9tpxsVrUjrQbMzxlbn9fEjrOILLoXxtZStzHbxNvQvfBngMHih8iIiIiIiMae1h4HTjWon6WYkxnt24s6bYjY9R1Yyre4DdkzFqJr+RNQzBGDnEhEREREvqJJ0QwA/Nd//ReWLFmCV199FfX19UhJScGdd96JgoICt2PfeustzJo1CwCwevVqrUIkIgpqNe02vH60EW+eaEJ7n3PIY+PDTFg3NRHrpiUgOZJfvgUc2QWxq7Z/15i2qoEdYwxtVTD01Hv9copogisqvb8w5pLiGMUaCwgspiIiIqKxwSUreP1oI/747jl0S+4rpxgE4LMzk3HfDRlIS473Q4Q0IooMY92HsJZsgLliK0Spc9hTXOEp/YUyBWvgirv4tyiDL+MkIiIioiuiKAqKiptUfcsK4mA2in6KyPtMNfsRsfVBiFK7ql8RDOi5/mHYpv0H/x5LRERERORFh850qNqhJhHTU8N9dj2hpwmRW+6FqeGo21jf9P9Az3U/AET+ZZqIiIhIa5oVzQDA1KlTMXXq1GGPW7t2LdauXatBREREwc3pkvF2RTteO9qAQ2eGf1BsTmYUbp2eiBuyo2E0jJ0vGoOVYGuHoa3yU8Uxlf0FMh1nILiGXyH7SsmhCXBFZ8MZk/Wp3WOyIEeOB0RNPxIQERERae50Qw8e21mFk/WD7843NSUcDy/NRH5iGAwGfmEViAwtpbCUvglL6UYYuuqGPV42R8CeuxK2grVwjpsFCLwHIiIiIgpkR+u6ca5dUvWtmjxGitkVBdZj/0DYu7+AoKgL+GVLFLpWPAXH+Ov8FBwRERER0dh1oFpdNHNNeiRMPnpextB8GpGb/x8M3edV/YpgQM/8n8A29XM+uS4RERERDY9PyBIRBaH6TglvHGvExuNNaO5xDHlsTIgRa6Ym4OZpiUiLtmoUIakoCgxNJ2Cu2d9fJNPWXxwj2tq8fyljyIUdYzIv7hhzYQcZxcLtfYmIiEh/uiUnnnmvBus/boCsuI9HWAx4cH461k1LgMgVnQOO2N0AS9kmWEo2wth8ctjjFdEMe+ZCSAXrYM9YCBi5syYRERFRsLh0l5n0GCumpPhuBWjNuCSE7/sprCfXuw05Y/PQuepZyFEZfgiMiIiIiGhskxUFB6vbVX1zM6N9ci1T9V5EbP8GRId64S7ZHI6uFX+AI/0Gn1yXiIiIiEaGRTNEREHCJSvYX9WO1442Yn9V+6AP/H3a1eMjcMv0JCzKjYHZyBWV/cHQWg5L2WZYSjfB0FHttXkVCJAjUuFS7RjT/99yeDJX0CYiIiICoCgKdpW04n/3nrlsofnKSfF4aEE6YsNMGkdHQxHsXTBXbIelZCNMNQcgYJibHwCOcbNhK1gLe85NUKxRGkRJRERERN5kc8jYWdKq6ls9OR5CkBe2Cz1NiNz6NZjqD7uNSVlL0L30f6GYx0BhEBERERFRACpt7EVrr1PVNzfLy38/VhRYj72AsHcfg6DIqiFX5Hh0rn4ertg8716TiIiIiK6YV4tm3n77bW9ON2D+/Pk+mZeIKBg0ddux8XgT3jjWiIYu+5DHRloNWD05AbdMS0RmXIhGEdKniZ21/YUyZZtgbD7l0VyyJfKSophPdo3JAIzcNYiIiIjocmrabfifXdU4UN0x6HhGrBUPL8nENeksrggYLjvMZ9+BpWQDzFW7IbikYU9xxuZBKlgHKa8QcmSqBkESERERka+8XdGGbsk10BbQX+QezIwNxxCx9T4YuuvdxnpnPYje2V/nAkhERERERD504JJdZsZHW5AW7cVnLVwOhL3zM4SceMltyJFyNTpXPg0lJM571yMiIiKiUfNq0czChQu9vuKTIAhwOp3DH0hENIbIioL3z3TgtaONeLu8Da5hFlaeNi4ct0xPxJL8OFhN/JJNa0JvMyzlW2Ap3TToioFDUUQTXFHpF4phPlUcE5MFxRoLBPlKikRERERasjtl/OOD8/jboVpITvcP0RajgC/NScXd16RwN8ZAoCgw1h+GpfRNWMqKINrahj3FFZYEKb8QUv5auOIn8vMyERER0RixubhJ1Z6VHonkSIufovGcpWQjwvc87FYMrhhD0LXkcdhzb/JTZERERERE+nGgSr2w1pzMaK/OH3rot4MWzNgK1qF78WOAIXjvaYiIiIjGGq8WzQCAogzzZDcREV1Wa48Db57o31WmtmPolZXDzCJWTorHLdOTkJcQqlGE9AlB6oS5YgcsZZtgqtnvts3uYFyR4+FImwdnTM6FApksyJHjAdHr/3dMREREpDsfnO3Ar3ZV40yrbdDxeZlR+O6STO+uIkejYmirhKV0Iywlb8LQeXbY42VTOOw5yyEVrIUjdQ4gGjSIkoiIiIi00txtx8FLdolcOTlId5mRXQg98DhCP37ebcgVkYrOVc/2F38TEREREZFP9dhdOFrXreqbl+W93ecFexdCjr7gft1r/wt919zPBZ+IiIiIAoxXn9Ldu3fvZcfsdjt+9KMf4YMPPkBCQgLuuOMOzJ49G0lJSQCAhoYGfPDBB1i/fj0aGxsxa9Ys/OIXv4DJZPJmiEREAUdRFHx0rguvH2vEntJWOOWhiw8nJYXhlumJWDYhDqFmPiymKUcfzNV7YCnbBHP1PgiyfdhT5NAESHmrIOUVwpk0nX8YISIiIvKylh4Hnth3BltPtgw6nhBuwrcWZeDG/Fiv745LIyf0NsNStgmWko0wNR4f9nhFNMKevgBSwVrYs24EjCx2IiIiIhqrtp5qwaf/LB5iErE4L9Z/AY2SIHUiYsdDMJ/Z5zbmGHctOm96CkpInB8iIyIiIiLSnw/OdsD1qRsNoyjg6vGRXpvfXLUXguviMyOKYEDXst/BnrfKa9cgIiIiIu/xatHMggULBu1XFAUrV67Ehx9+iC9/+ct44oknEBYW5nbc3XffjV/96ld46KGH8Oc//xm//e1vsWXLFm+GSEQUMDr6nCg62YTXjjZedjXsT1iNIlZMjMMt0xMxKTlcowgJAOCyw3T23f4H/Kp2QXD0DnuKbInqXwk7vxCOcddyJWwiIiIiH5AVBa8fbcQf3zmHLsnlNi4KwGdmJOPe61IRbuHOfn5h74GlaicsJRtgOrcfguKep0s5kmdCKlgHKfcmKCHB96AkEREREV0ZRVGwubhJ1XdjfmzQLRhlaKtERNFXYWyvchvrm3o3eq7/IWDgQoFERERERFo5WKXezXJGWoRX7zPM5UWqtiP9ehbMEBEREQUwTZ4a+ctf/oLt27dj6dKleP559+3IPy00NBTPPfcczpw5g+3bt+O5557DV7/6VS3CJCLyOUVRcPx8N1470ohdpS2QnEPvKpMbH4JbpyfhpklxfNBPS7ILprr3YSndBHPFdohS+7CnKKZQSFlLIOUVwpF+PWAw+z5OIiIiIp0qaezBL3dW4cT5nkHHJyWH4QdLszAhyX3BDvIx2QnTuXdhKXkTlsodEJx9w57ijM7qL5TJXwM5Kl2DIImIiIgoUJQ09qKiWf2ZcfXkeD9FMzqm6r2I2PEQRHu3ql8RTehe8FNIkz/rp8iIiIiIiPRJURQcqFYXzczJjPLa/IK9C+azb6v6pNyVXpufiIiIiLxPkyewX3jhBQiCgK997WsjPuf+++/Hzp078fe//51FM0QU9LolJ7aebMFrRxtQ3jz0Q2Nmg4ClBXG49apETE0JhyAIGkWpc4oCY+Ox/kKZsiIYehuHP0U0w54xH1J+IeyZiwFTqAaBEhEREelXj92FZ9+rwf8droc8SP15uMWAB24Yj5unJcIg8nO0Zj75LF2yEZayzRD7WoY9RQ6Nh5S3GlL+WjgTpwK87yEiIiLSpaLiZlU7JdKMmeMj/RTNFVIUhHz8HEL3Pw4B6hsUOSQWnTc9Dee4a/wUHBERERGRfp1rl1DbIan65nqxaMZctReCyz7QVkQT7FlLvTY/EREREXmfJkUzp0+fBgCkp498tdDx48erziUiCkan6nvw2tEGbDvVAptTHvLYjFgrbp2eiFWTEhAVwl1ltGJoKYWlbBMsZZth6Dg77PGKIMKRNhdSXiHsOcuhWILkC1wiIiKiIKYoCvaUteF/91Sjsdsx6DE3TYzDNxamIz6MO/5pRew4A0vJm7CWbICho3rY4xVTKKTsZZDy18Ixfh4g8r6HiIiISM+cLhnbTqmLZlZOiocYDAXVjj6E73kY1rJNbkPOhMnoXPkM5IhxfgiMiIiIiIgOVLWr2nFhJuQleG8RVHPFFlXbMX4eFKv3inKIiIiIyPs0eTrBZrMBAM6dO4cZM2aM6Jxz584BACRJGuZIIqLA0md3YfvpFrx2tBGnGnqGPNYoClicH4tbpiXi6vER3FVGI2LnOVhKN8NStgnGlpIRneNIngEprxBS7kooYQk+jpCIiIiIPlHbbsOvd5/Be5d8yfWJ9Bgrvr8kE7Mz+IWUFoS+FljKtsBSshGmho+HPV4RDHCkXw8pfx2k7CXcnZGIiIiIBrxX1YG2Pqeqb+WkeD9FM3JiVx0it/wnjE3FbmNS3ip0Lf4fwBTih8iIiIiIiAgADlZ3qNpzM6O89jyOYO+C+cw+VZ+Us9IrcxMRERGR72hSNJObm4vjx4/jmWeewZo1a0Z0zjPPPAMAyMnJ8WVoREReU9bUi9ePNmDLyRb02F1DHpsaZcEt0xNRODkBsWEmjSLUN6GnCZbyIlhKN4/o4T4AcMZP7C+UyVsFOTLNxxESERER0ac5XDL++cF5/OVgLSSn4jZuNgj40pxUfGFWCsxG0Q8R6oijD+aqXbCWbITp3DsQZOfwpyRNh5S/FlLeKiihgf/gIxERERFpb3Nxk6o9bVw4MmIDu9jEeP5DRG69H2KveoccBQJ6534bfTPvBbg4FhERERGR39idMj4426nqm5PpvUW3zFV7IbjsA21FNMGevdRr8xMRERGRb2hSNHPHHXfg2LFj2L59O772ta/ht7/9LaxW66DHSpKEb33rW9i2bRsEQcBnP/tZLUIkIhoVm0PGrtIWvH60Ecfquoc81iAA83NjcOv0RMzOiILIL858TrB1wFyxDZayTTDVHoKgyMOe44rKgJRfCClvNVyxeRpESURERESX+uhcJ361swpVrbZBx+dkRuF7N2ZifMzgf1sgL5BdMNUcgKV0I8wV2yE6ht5FEwBcUemQ8tfClr8WckyWBkESERERUbBq73PgnYp2Vd+qyYFdbG0p/jfC9/0EguxQ9cvmcHQtewKOzEV+ioyIiIiIiD5xtK4LNufFZ0MEAHO8uFO9uWKLqu0YPw+K1XvzExEREZFvaFI0881vfhMvvvgiTp8+jWeffRYbNmzAHXfcgVmzZiExMRGCIKChoQEffPABXnnlFdTX1wMACgoK8M1vflOLEImIrkh1Sx9eP9aIzcVN6LQNvatMUoQZN09LxNqpCUgIN2sUoY45emGu2gVL6WaYz77t9gXmYFxhybDnrYKUtxrOxKlcCZCIiIjIT9p6HXhy31lsLm4edDwuzIRvLcrA0oJYCPzM5n2KAkPzSVhLNsJcugmG3sZhT5GtsZDyVkEqWAtn0lX8LE1EREREI7LzdCuc8sUdJc0GAcsK4vwY0RBcDoS9+wuEHP+n+1BUJjpXPQtXbK4fAiMiIiIioksdqOpQtScmhyE61OSVuQV7F8xn9qn6pJyVXpmbiIiIiHxLk6IZq9WKvXv3YtWqVTh8+DDq6+vx1FNPDXqsovT/gXzGjBnYvHkzLBaLFiESEQ3L7pSxt7wNrx9twEfnuoY8VgBwXXY0bp2eiHlZ0TCIfHDMp1wSzGffgaV0E8xVuyE4+4Y9RbbGQMpZASm/EM5xswBB1CBQIiIiIhqMrCjYeLwJT719dtCidFEAbr8qCfddn4ZwiyZ/ytAVsbMGltI3YSnZCGNb+bDHK0Yr7FlLYCtYB8f46wGDd75wJCIiIiL92FzcpGovyI1BhDXwPusLfa2I2PYgzLUH3cbs6Tega9mTXFWaiIiIiCiAHKhWF83MzfTiLjNVeyG47ANtRTTBnr3Ua/MTERERke9o9tfnpKQkHDp0CM888wyefvppnDx5ctDjJk6ciPvuuw/33XcfDAaDVuEREV1WTbsNbxxrxJvHm9DW5xzy2LgwE9ZNTcC6qYlIiWLRn0/JLphqD8JSthnmim0Qpc7hTzGFwZ69FFLeaj7cR0RERBQgypp68cudVThW1z3o+MSkMDy8NBOTksM1jmxsE2ztsJRvgaVkI0znPxz2eEUQ4UibB6lgLezZy6CYmQ8iIiIiGp3qlj4U1/eo+lZNTvBTNJdnaC5BZNFXYeiqcRvrnfH/0Dv3u4DI7zKJiIiIiAJFU7cdZU29qr65WdFem99csUXVdoyfxyJ6IiIioiCh6ZJNBoMB999/P+6//37U19fj+PHjaG1tBQDExMRg6tSpSElJ0TIkIqJBOV0y3qlsx2tHG3HwklUoBnNtRiRunZ6E+TnRMBq4Y4nPKAqM9R/DUrYZlvItEHubhj/FYIY9YyGk/ELYMxYBphANAiUiIiKi4fTaXXhufw1e/qgeLsV9PMxswP03pOHW6UncudFbnBLM1XthKd0Ac/VbEGTH8KckTIYtfy3seashhydpECQRERERjXWX7jITF2rCHC+u/uwN5ortiNj1bQgO9QN3isGM7kWPQZpws58iIyIiIiKiy7n0+Z5wiwFTUryzAJRg74b5zD5Vn5Sz0itzExEREZHv+W2f8+TkZCQnJ/vr8kREg6rvlLDhWBM2HG9Ec8/QD5BFhxixZkoCbp6WiPExVo0i1CFFgaGlBJbSTbCUbR50VT+3UwQDHOPnQcor7F8F2xKhQaBERERENBKKomBfeRse33MGDV32QY9ZNiEO31yYjvhws8bRjUGKDFPt+7CUboS5fCtEe9ewp7giUiHlr4FUsBau2DwNgiQiIiIivXDJCracbFb1rZgYB2OgFMorMkLffwqhH/zebcgVloSulc/AmTTND4EREREREdFwDlxSNDMrPdJr9xrmqj0QXBe/01BEI+zZS7wyNxERERH5nt+KZoiIAoVLVnCgqn9Xmfeq2iEPssr1p81Mi8CtVyVhUW4MzEbuKuMrYseZgUIZY2vZiM5xpFwDKb8QUs4KKKHxPo6QiIiIiK5UXYeEx3dX453K9kHH06It+P6STMzJjNY0rrHI0FwCS+kGWErfhKG7ftjjZUsUpNyVkArWwZkyExB4r0NERERE3vfB2U40dqsXrFo9JcFP0agJ9m6E7/oOLJU73MYcSTPQufJPUMIS/RAZERERERENxyUrOHRGXTQzLyvaa/ObK7ao2o7x10Gxem9+IiIiIvItFs2QRwwGg0/mFUVxyDaNLf7Kd1O3HRuONeD1ow2o7xx8hetPRFgMWDM1EbdMT0J2fKgm8Y1VQ+Vb6G6AuXQTzKWbYGw4OqL5nAmTYS9YA3veaiiRqf1zei9c8gDfy/WF+dYX5psCla/uTwC+7j3lcMl48YM6PPdeDWxO2W3cZBDwpTmpuGdOGiwBUJgerPkWus7DXLIR5pINMDafHvZ4xWCGI2sJ7BPWwpGxEDBaAAC++00KPMGaaxod5ltfmG99Yb4pUPEexd3WUy2qdkFiGCYk+3+ncLHjLMI3fQWGlhK3MWnS7ehd9CjEC5+XtRasuabRYb71hfnWF+ZbP5hrCmRj+TmvUw1d6Ohzqvquy4n1zr/Z3g3zmX2qLkfeKp/e8wWyQMg3aYf51hfmWz+Ya31hvvsJiqIMs6eC9zidThQVFeGdd95BZWUlurq64HK5hjxHEATs3r1bowiJaKyTZQXvVTTjXwfPYtepBjiH2VZmZno0PndtBlZNS4HVpM+bXZ/rbQVObgROvAZUvwtgBP+3FJcLTLkNmHobEJ/n8xCJiIiIaPTer2rFjzYcR2lD96Dj1+XG4edrpyA7IVzjyMYIWwdw8k3g2L9H+HlaADKvB6bdAUxcA4REaxAkERERERHQLTkx69Fd6HNc/G7wkdWT8OXrs/wYFYDKfcArXwT62tT9ggFY/gvg2v8EBME/sRERERER0Yj8fncZfruzdKCdmxiOXd9c4J3Jj78KvPbli23RCHy7DAiN9c78RERERORzmu008+677+Luu+/G2bNnB/qGqtcRBAGKokDgH6GJyAtauiW88lENXn7/LM609A55bLjFiHUzxuGu2RmYNC5Sowh1RuoCTm8BTrwKVOwBZOfw50SmAlNu6S+WSZnOLymJiIiIAlxrjx2/3HIKr3xUM+h4fLgFj6yeiDXTx/He/0o57UD5zv5CmZJtgEsa/pykKcDU2/sLz6PSfB8jEREREdElthw/ryqYMYgC1l41zn8BKQrw/nPAtocB5ZJF/qzRwO0vADmL/BEZERERERFdobdLm1Tt+XkJ3pu8+A11O3shC2aIiIiIgowmRTOnT5/GihUr0NfXB0VRYDabkZeXh9jYWN1u8UNEvqcoCg5VteKlQ2ex7UQ97C55yOOnpEbic9dmYM30cQizaFZTqB8OW/+DfcdfBUq3A86+4c8JjQcmr+svlBl/LcD/zyAiIiIKeLKs4JWPzuGXW0+jvdfhNi4IwOevzcC3lxcgKsTkhwiDlCwD5w71F8oUvwHY2oc/J2IcMO12YOodQPIUn4dIRERERDSU1y4pqF+Yn4D4cIt/gnFKQNE3gY9fdB9LmAjc+RIQm619XEREREREdMU6+hz4+Fy7qm9+frx3Jpe6gLKd6r7JN3tnbiIiIiLSjCZPhT/22GPo7e2FwWDAf//3f+PrX/86wsPDtbg0+VhbW9vwB42CKIqIiooaaHd0dECWhy54oODl7Xx39Dmw+UQTXjvSgKrWoQszrCYRKybG47arkjE5pf99yd7bBfvQm9HQSMlOGM/th7nkTZgrtkOwdw17imKOgD1nGewFa+Acf13/trYA0NHh42DJ2/heri/Mt74EQr5jYmI0vR4FB1/dnwCB8boPBuVNPfjF9kocqR38c9+EpDD8cFk2poyLgGzrRptN4wBHKJDyLbaWw3z6DZhLNsLQOfiuPZ+mmCNgz1sJ+4R1cKZeCwgXCs99+PsRzAIp1+R7zLe+MN/64u988/6ELof3KBfVtttwqKpV1be8INqnP6PLEXoaEV70nzCeP+w2Zs9eip7lvwOE8ID5DB1suSbPMN/6wnzrC/OtH4GQa96j0OWM1ee8dpW0wCUrA22LUURBjOiVf6+pZCPCP7XbuyIa0ZF8HZQAuV/wB3/nm7TFfOsL860fzLW+BEK+A+EeRZOimT179kAQBHzjG9/AD37wAy0uSRpxuVzDH+QFsixrdi3yv9HkW1EUHD/fjdePNmJnSQskpzLk8TnxIbh1eiJWTopH+IVdZfga8xJFhrH+MCylm2Ep3wKxr2X4UwwW2DMXQ8ovhD1jIWC8sLqgAoB5GTP4Xq4vzLe+MN8UKLR8HfJ1r9Znd+H5A7X410f1qi+mPhFmFnHf9eNx21VJMIpC0P3stM630NMIS+kmWEs3wthUPOzximiCPXMhpPy1sGcuvvh5WlYABNfP2t/4u60vzLe+MN/6wnxToOA9ykWbjjeo2pFWA67PitI8ZmPDMURsuQ+Gnnq3sd5ZD6J39tf7C88D+GcZ6Lkm72K+9YX51hfmWz+YawokY/U5r/2V6gL9GWkRMIne+feGlhap2o60eXCaIgL6nkFrfJ/TF+ZbX5hv/WCu9UWv+dakaKa5uRkAcPPN3JqQiLyrW3Ji26kWvHa0EWVNQ28PYzYIWFIQh1unJ2LauHAIgqBRlDqgKDA0n4KlbBMsZZth6Kob/hzRCGQvQk/2TbBlLoZijvB9nERERETkdfvK2/D47mrUd9kHHV+SH4tvLspAYoRZ48iCi2DvhrlyBywlG2Gq2Q9BGX5lF8e4WZDy10DKXQnFGu37IImIiIiIRkFRFBSdbFb1LSuIg9koahqHpWQjwvc8DOFTq0QDgGIMQdeSx2HPvUnTeIiIiIiIyHOKomB/VYeqb05m1GWOvjKCvRvmM2+p+qTclV6Zm4iIiIi0pUnRTEJCAurq6hASEqLF5YhIB07V9+D1Yw3YdqoFfY6hHyZLj7Hi1umJWDU5HtEhJo0i1Aexvap/R5myTTC2VQx7vAIBztTZMM34LDBxLRAWB3tbGxQdVq0SERERBbv6TgmP7zmDfeVtg46nRlnwvSWZmJcVrW1gwcTlgOncu7CWbIC5ahcEp23YU5wxuZAK1kLKXwM5Mk2DIImIiIiIPHO0rhs17epCldVTErQLQHYh9MDjCP34ebchV0QqOlc9C1f8RO3iISIiIiIir6lutaHhkkW95nmpaMZUvQeC6+LcimiEPXupV+YmIiIiIm1pUjRz/fXXY/369Thx4gRmzpypxSWJaAzqs7uwvaQFrx9pxMmGniGPNYoCFuXF4NbpSbh6fAR3lfEisasOlrKi/kKZpuIRneNInAoprxD2vJUQotIQExPj4yiJiIiIyFecLhkvfVSP5/bXwuZ0L2A3igK+ODsF91ybCqtJ25Wjg4KiwNhwBJaSjbCUFUG0tQ57ihyaACl/DWwFa+GKnwTw/oaIiIiIgkhRcZOqnR5jxeTkME2uLUidiNj+DZjPvu025hh3LTpvegpKSJwmsRARERERkfcdqG5XtZMizMiK887C3pbyraq2I20ed30nIiIiClKaFM1885vfxGuvvYYnn3wSd911F4xGTS5LRGNEeVMvXjvaiC0nm9FjH3pHktQoC26elog1UxIQG8ZdZbxF6GuBpXwbLGWbYKr7YETnOGNyIeWvhpS3GnJ01kC/wVdBEhEREZHPHantwi93VqGiuW/Q8avHR+DhJVnI9NIXUmOJ2FYFa+lGWEo3wtBxdtjjZVMY7DnLIRWsgyN1DiDykzQRERERBR+bQ8aO0+pC8dWT4zVZ6MrQVoGIonthbK9yG+ubejd6rv8hYOD3CEREREREwexAVYeqPSczyiv3G4K9G+Yz+1R9Uu5Kj+clIiIiIv/QpHpl1qxZeOKJJ/D1r38dt9xyC/76178iPj5ei0sTUZCyOWTsLm3B68cacbS2e8hjDQIwPzcGt0xLxLWZURC56rJXCPYumCt3wlK6CaZz70FQhi5YAgBXRCqkvNWQ8gvhipvAFbCJiIiIxoj2Pgf+8PY5bDjeNOh4TIgR/7UoAzdNjOMuj58i9DbDUrYZltI3YWo4OuzximiEI30+bPlrYM9aAphYfEREREREwW1fRZtqMSwBwMpJvv+O0FS9FxE7HoJoV3+/oIgmdC/4KaTJn/V5DERERERE5Fs2h4zDNZ2qvrmZUV6Z21S9B4JLGmgrohH27KVemZuIiIiItKdJ0czPfvYzAMDs2bOxefNmZGRkYOnSpZgwYQJCQ0OHPf/HP/6xr0MkogBR0dSNv+6rwuYTTeiwOYc8NinCjHVTE7B2aiISI8waRTjGOW0wV78FS9kmmKv3qv4AcDlySByk3JWQ8gvhTJ7JQhkiIiKiMURRFGwubsaT+86ivc/987kA4ObpiXjghvGItHJXWQCAoxeWyl2wlG6A6ey7Iyo+dyTNgFSwFlLeSighcRoESURERESkjaIT6sL7WemRSI60+O6CioKQw88h9MDjEKCohuSQWHTe9DSc467x3fWJiIiIiEgzH9d0QnJe/NwvCsDsDO8UzVjKt6rajrR5UKzRXpmbiIiIiLSnyRMtP/3pTwdWmhUEAX19fdi0aRM2bdo0ovNZNEM0trlkBZuP1eFfB8/iQGXLkMcKAOZlRePWqxIxLysaRpEFGh5zOWCqeQ+W0s0wV+6E6Bh6Zx8AkM0RsOesgJRfCEfqtYDIBySJiIiIxhpZUfDdjWV4q7xt0PH8hFA8vDQTU8dFaBxZAJKdMJ3bD0vpRlgqd0Bw9A57iisqE7aCdZDyCyFHZ/o+RiIiIiIijTV323HwTIeqb9VkH+4y4+hD+J6HYS1z//7RmTAZnSufgRwxznfXJyIiIiIiTR2oVt9vTEkJ984CX/YemM/sU3VJuSs9n5eIiIiI/Eazp5wVRRmyTUT6VNNuwyNFFTh+fuhCjbgwE9ZOTcDNUxOREuXDVej0QpFhrPsQlrJNsJRvg2hrHf4UoxX2rBsh5RXCnjEfMDAPRERERGPZe5XtgxbMhJpE3HtdGj4zM1nfReyKAmPj8f5CmbLNEHubhz1FDomFlFcIqWAtnInTuEsjEREREY1pW0+1QP7U14EhJhGL82J9ci2xqw6RW/4TxqZitzEpbxW6Fv8PYArxybWJiIiIiMg/Dl5SNDM30zu7zJir90BwSQNtRTTCnr3UK3MTERERkX9oUjQjy7IWlyGiIKIoCoqKm/Hr3dXodVz+PWJ2RiRunZ6EBTnRMBpEDSMcgxQFhqYTsJRugqW8CIbu+uFPEU1wpN/Q/2Bf1o2AOUyDQImIiIgoEOw47b4L5OK8GHxrcQaSIvRbQC12nO0vlCl5E8b2ymGPV4whkLKXQipYC0fadYDBpEGURERERET+pSgKNhc3qfpuzI9FiNng9WsZz3+IyC1fg9invodRIKB37rfRN/NeFqwTEREREY0x9Z0SKlv6VH1zs6K9MrelfIuq7UibB8XqnbmJiIiIyD8022mGiOgTXTYnHttZhZ0lg+9uEh1iROGUBNwyLRHjY6waRzf2GNoq+gtlSjfB0FE97PEKBDhSr4WUXwh7zgre+BMRERHpkM0hY98lu8zcd30avjwn1U8R+ZfQ1wZrySZYSjbAVH942OMVQYRj/HWQCtZBylrK4nMiIiIi0p2Sxl5UNKsfYFs9Od7r17EU/xvh+34CQXao+mVzOLqWPQFH5iKvX5OIiIiIiPzv0l1moqxGTEzywt/i7T0wn9mn6pJyV3o+LxERERH5FYtmiEhTH9d04pGiCtR32d3GMuNC8V9L8zEn1QqDoPghurFD7KqDpWwTLKWbYWw+OaJzHEnTIeUVwp67EnJ4ko8jJCIiIqJAdrC6XbUjpABg7ZQE/wXkD44+oGQrcGw9osp3QpCdw5+SOBVSwVpIuauhhOns50VERERE9CmX7jKTEmnGzPGR3ruAy4Gwd3+BkOP/dB+KykTnqmfhis313vWIiIiIiCigHLikaGZ2RiQMouc7TJqr90BwSQNtRTTCnr3U43mJiIiIyL9YNENEmnDKCv68vxZ/PVQLeZB6mDuuScNPCicjzGJEW1sbXC6X9kEGOaG3GZbyLbCUbhrR6tcA4IzNg5RfCClvNeSoDB9HSERERETBYsclu0LOHB+B+HCzn6LRmFNCyIHfA8f/Bdi7APQXDV2OK3J8f6FM/lq4YrK1iZGIiIiIKIA5XDK2nWpR9a2cFA9R8PwBNgAQ+loRse0BmGsPuY3Z029A17InoVijvHItIiIiIiIKPE5ZwaEz6qKZuZnRXpnbUr5F1XakzYVi9c7cREREROQ/mhfNtLa24m9/+xt27dqFEydOoLW1/0Gc2NhYTJkyBUuWLME999yD2NhYrUMjIh+pabfhkaIKHD/f7TYWYTHgkRU5uGNunh8iC36C1AlzxQ5YyjbBVLMfgiIPe44rcjykvNWQ8gvhiivQIEoiIiIiCiY2hwvvVLSp+pYWxPkpGm0ZWssRseMhGJtPDXmcbI2BlLcKUv4aOJNnAl56+I+IiIiIaCzYX9WB9j71To2rJntnJ0ZD82lEFt0LQ1eN21jvjP+H3rnfBUSDV65FRERERESBqfh8N7ol9WK8c7O8UDhv74H5zD5Vl5S7yvN5iYiIiMjvNC2aefbZZ/Htb38bvb29AABFubjdRG1tLerq6rBjxw789Kc/xf/+7//iq1/9qpbhEZGXKYqCLSeb8evd1eixuxdzzEyLwM9W5iA1JtQP0QUxRx/M1XtgKdsEc/U+CLJ92FPk0IT+h/ryCuFMms6H+oiIiIjost6tbEef4+Lnd1EAFuWN8YUtFAWW4v9D+LuPQnDaBj/EYIE960ZIBetgT78BMOhk5x0iIiIioiu0ubhJ1Z42LhzpMVaP5zW0VSDqtTsgOnpU/YrBjO5Fj0GacLPH1yAiIiIiosB3sFq9y0xufAgSwj3/m725eg8ElzTQVkQj7NlLPZ6XiIiIiPxPs6KZX/3qV/jhD384UCgTFRWFGTNmIDk5GQBQX1+Pjz/+GB0dHejp6cF9992H9vZ2fPe739UqRCLyom7JiV/urMb20y1uYwZRwH3XpeHuWSkwiCzeGBGXHaZz78FSugnmql1uXwoORrZEwZ6zHFJ+IRzjruXqekREREQ0IrtKWlXta8ZHIi7M5KdofE/oa0P43h/AUrljsFEgaz56clfDlrUUijlC8/iIiIiIiIJJe58D71S0q/pWTY73ytyhBx53+9u4KywJXSufgTNpmleuQUREREREgW9/VbuqPTcz2ivzWsq3qtqOtLlQrN6Zm4iIiIj8S5OimRMnTuCRRx6BoihISUnB448/jttvvx0mk/qhG6fTiVdeeQXf+c53UFdXhx/96EdYtWoVJk+erEWYROQlR2q78EhROc53uu+AMj7agkdX5WJySrgfIgsysgumuvdhLtsMS/k2iFL7sKcoxhBIWUtgzy/k6tdEREREdMX67C68U9mu6ltSEOefYDRgqjmI8J3fgqGn3n0wcRJw65+BpMmwt7VBcbm0D5CIiIiIKMjsON0Cp6wMtM0GAcu8cE8hdp+HuWqPqs+RNAOdK/8EJSzR4/mJiIiIiCg4tPc5cLJeXUw/NyvK84ntPTCfeUvVJeWu9HxeIiIiIgoImhTN/OEPf4DL5UJCQgIOHDiA9PT0wYMxGnHnnXfi+uuvx6xZs9DU1IQ//OEPePrpp7UIk4g85JQV/OVALf5ysBaf+k5swJopCfj24gyEmrnjyWUpCoyNx/p3lCnfAkNPw/CniGbYM+ZDyi+EPXMxYArVIFAiIiIiGoveqWyH5JQH2gYBWJwX48eIfMTlQOj7TyLko2cgwP3mxTbtC7AW/howhfghOCIiIiKi4LW5uFnVXpAbgwir519HWk6+AkG5WMiumELRueZvUCzcDZKIiIiISE/eP9Op+qu+1SjiqlTP7wvM1XsguKSBtiIaYc9a6vG8RERERBQYNCma2bNnDwRBwMMPP3zZgplPGz9+PL73ve/hW9/6Fnbv3q1BhETkqdp2Gx7ZUoFjdd1uYxEWA364LGtMr1DtKUNLKSxlm2Ap2wxDx9lhj1cEEY60uZDyCmHPXgbF6oVVM4iIiIhI93aWtKjaszKiEB1quszRwUnsOIuIHf8FU8MRtzHZGoPuG/8HrtxlsLJghoiIiIjoilS19Lmt+LxqcoLnE8tOWIv/reqy5a9hwQwRERERkQ4dqGpXta9Jj4TZKHo8r6V8q6rtSJsLJWQMLipGREREpFOaFM3U1tYCAObNmzfic6677joAQF1dnU9iIiLv2XKyGf+zqwo9dtltbGZaBH62MgfJkRY/RBbYxM5zsJRuhqVsE4wtJSM6x5E8A1JeIaTclVDCvPBlIxERERHRBT12F/Zf8mXTkoJY/wTjI5aSjQh768cQHe7F/va0eehe8hvI4Ung3phERERERFeuqLhJ1Y4LM2FOpucLPpmr98LQU6/qs025y+N5iYiIiIgouCiKggPVHao+b9xzwN4D85m3VF1S7krP5yUiIiKigKFJ0YzB0P+4idPpHPE5Llf/Fuui6HklOBH5RrfkxK92VWPbqRa3MYMo4N55qfji7HEwiIIfogtMQk8TLOVFsJRuhqnh4xGd44ybACm/EFLeasiRaT6OkIiIiIj06p2KNkhOZaBtEAUsyh0bRTOCvQth+34Ka8kGtzFFNKJ3zjfRN+MrgMC/QRARERERjYZLVrDlZLOq76aJcTB64fsB64mXVG1H0nS4EiZ7PC8REREREQWX8uY+NPc4VH1zvVKovweCSxpoK6IR9qylHs9LRERERIFDk6KZ9PR0nDp1Crt37x7xbjO7d+8eOJeIAs/R2i48UlSBuk7JbSwt2oJHV+ViSkq4HyILPIKtA+bK7bCUboKp9iAExX1Hnku5otL7d5TJL4QrNk+DKImIiIhI73aWtKra12ZEIipEkz8b+JSx4Sgitj8EQ+dZtzFXVAa6lj0BZ9I0P0RGRERERDR2fHC2E43d6ofXVk32fLd0seMsTGffUfXZJnOXGSIiIiIiPTpQ1a5qp0ZZkB5j9XheS/lWVduRNhdKSIzH8xIRERFR4NDk6ZelS5fi5MmT+M1vfoN169Zh6tSpQx5/4sQJPP744xAEAcuWLdMiRCIaIaes4C8HavGXg7WQFffxwsnx+PaNmQgzG7QPLpA4emGu2g1L2WaYz+yDIDuGPcUVlgx73ipIeavhTJwKCNyhh4iIiIi00S05sf+SL5uWFcT5JxhvkV0IOfwcQt9/AoLsvvOtbcIt6Jn/EyhmFvsTEREREXmqqLhJ1c5PDEVeQqjH81qL/w0BF7+MkM0RkPJWeTwvEREREREFn4PVHar2nMwoCJ4+W2PvgfnMW6ouKXelZ3MSERERUcDRpGjmoYcewjPPPIPu7m5cf/31eOSRR3DPPfcgLk79AE5LSwv+9re/4Re/+AW6urpgtVrx0EMPaREiEY1AXYeEHxWV41hdt9tYuMWAHy7NwtIJQf5gnSdcdpjPvg1L6SaYq3ZDcPYNe4psjYGUswJSfiGc42YBgqhBoEREREREavvK2+BwXXwQzSgKWJAbvKuoid31CN/5LZhrD7qNyeZwdC/8Oez5a/wQGRERERHR2NMtObGnrE3Vt3pyvOcTu+ywnlqv6pIm3AKYQjyfm4iIiIiIgkqf3YWPa7tUfXMzozye13xmLwSXNNBWBAPsWUs9npeIiIiIAosmRTMZGRl49tlncc8996C7uxvf+9738P3vfx9ZWVlITEyEIAhoaGhAVVUVFEWBoigQBAHPPvss0tPTtQiRiIax7VQzfrmzGj12l9vYjLQI/HxlDpIjLX6IzM9kF0y1B/t3lKnYBlHqHP4UUxjs2Ush5a2GY/z1gMGkQaBERERERJe3s6RV1Z6bGYUIqyZ/MvA6c+VOhO/+PkSp3W3MkTwDXct+BzlyvPaBERERERGNUbtLWyE55YG2QRSwYoLnRTPmyh0Q+9T3KrYpd3o8LxERERERBZ+PznWqFv8yiAKuSY/0eF5L2RZV2zF+HpSQ4F1UjIiIiIgGp9kTMF/4whcQFxeHe++9F3V1dVAUBRUVFaisrAQAKMrFD7Xjxo3Dc889h5UrudUhkb91S078z+5qbD3Z4jZmEICvXpeG/5g9DgbRw+1Og4miwNhwBJbSTbCUb4HY2zT8KQYz7BkLIeUXwp6xiCvhEREREVHA6LQ5cbC6Q9UXlDtIOm0Ie/cxhJz4l9uQIojou+Zr6J31ICAGZzEQEREREVGgKipuVrXnZUUhNszzxaKsJ15StR3jZsMVm+fxvEREREREFHwOXPI9xvRx4Qi3ePj3fnsPzGfeUnVJuXxekYiIiGgs0vRJkVWrVqG6uhpvvPEGdu3ahRMnTqC1tX+FqNjYWEyZMgVLlizBunXrYDJx5wUifztW14VHiipQ2yG5jaVGWfCL1bmYkhLuh8j8w9BcAkvZJljKNsPQeW7Y4xXBAMf4eZDyCmHPXgbFEqFBlEREREREV2ZfeRuc8sWFLMwGAfNzov0X0CgYmksQseMbMLaWuY25wpPRtfR3cKbO9kNkRERERERjW227DYdrulR9qyZ5vsuMoa0C5tpDqr4+7jJDRERERKRblxbNzMmM8nhO85m9EFwXn4lSBAPsWUs9npeIiIiIAo/my6sajUbcfvvtuP3227W+NBGNkFNW8LeDtfjzgVp8amfTAasnx+M7N2YizGzQPjiNiR1n+neUKds86AN4g3GkXAMpvxBSzgoooZ5/OUhERERE5Es7T6t3lZyXFe356mxaURRYj/8TYe/9EoLL7jYsZS9H9+LHoFijtY+NiIiIiEgHtpxU7zITaTVgfk6Mx/NaT7ysasvWWNhzlns8LxERERERBZ/adhvOttlUffOyoj2e11K+VdV2pM2DEuL5/QwRERERBZ4geQqGiLRS1yHhkS3lOFrb7TYWbjHgB0uzsGxCnB8i047Y3QBzeREspZtgajw2onOcCZMh5a2GlLcacsQ4H0dIREREROQd7X0OHDrbqepbUhDrp2iujNDXgojd34e5eo/bmGK0ovuGRyBN+gwgCH6IjoiIiIho7FMUBUWXFM0sK4iD2Sh6NrHTBsvp11Rdtkm3AQaLZ/MSEREREVFQunSXmZgQI/ITQz2b1N4Dc/VeVZeUt9KzOYmIiIgoYLFohogGbDvVjF/urEaP3eU2dlVqBH6+MgcpUWPzSymhrw3mim2wlG2CqfZ9CBhki51LOKOzYM8rhJRfCFdMtgZREhERERF511tlbXDJFz/7WowCbvDCqtC+Zjr3HsJ3fhuG3ka3MWf8JHQtfwKumBw/REZEREREpB9Ha7tR0y6p+lZPSfB4XktZEURJXdxvm/xZj+clIiIiIqLgdGnRzJysKIgeLphlPrMXguvi/YwiGGDPWurRnEREREQUuDQpmjl+/DjWrl0Lg8GAt956C6mpqUMeX1tbiwULFkBRFGzduhX5+flahBm07HY7Xn75ZVRWVqK+vh7d3d0IDQ1FcnIyFi9ejBtuuAFGI+uj6PK6JSd+vfsMtlyyIhwAGATgK/PScM+142AQx9gKzfYeWKp29e8oc+4dCLJz2FNc4ckXdpQphCthMletJiIiIqKgtrOkRdW+LisaYWaDn6IZAZcdoQd/i9CPnx90uG/6PeiZ9x2uQE1EREREpIHNxU2qdkasFZOTwzye13riZVXbPv4GyFEZHs9LRERERETBx+mS8eFZddHM3Mxoj+e1lG9VtR1p86CEBP6iYkREREQ0OppUUrz44ouorq7G8uXLhy2YAYDU1FTk5+dj+/btePHFF/Gzn/1MgyiDl81mw44dO5Cbm4sZM2YgMjISPT09OHLkCJ5++mns378fDz/8MERR9HeoFICO1XXhkaIK1HZIbmOpURY8uioHU8dF+CEyH3FKMJ95C5ayzTBX74HgtA17imyNhZR7E6T8QjhTrgYE/i4RERERUfBr63Xgw7Pq1ZuXFsT5KZrhie1ViNj+EExNJ9zG5JA4dC35NRwZC7UPjIiIiIhIh2wOGTtLWlV9qyfHQ/BwoSlD00mYGj5WX2vKnR7NSUREREREwetYXTd67LKqb05GlGeT2ntgrt6r6pJyb/JsTiIiIiIKaJoUzezbtw+CIGDNmjUjPmft2rXYtm0bdu/ezaKZYYSHh+Pvf/+7224yLpcLjz76KI4ePYojR45g5syZfoqQApFLVvC3Q3V4fn8NXIr7+MpJ8fjujRkIt4yBXYpkJ0w1B2Ap3QRz5Q6I9q7hTzGFw56zDFLeajjS5gEGkwaBEhERERFpZ09Zq+pewGoUcX12tN/iuSxFgeX0awh/+78hOHrdhu3pN6BryW+ghMb7ITgiIiIiIn3aV9GGHrtroC0AuGmi55/JrcXqXWZcYUmwZy72eF4iIiIiIgpOB6rVu8xMSApFbJhnz/CYz+yF4Lq4uLAiGGDPXubRnEREREQU2DR5Gr60tBQAMG3atBGfM2XKFABASUmJT2IaS0RRHHQXGYPBgFmzZqG4uBj19fV+iIwC1fkOCY9sqcCRWvfikTCzAQ8vzcQKL3y55VeKDGP9YVhKN8NSvgViX8vwpxgssGcuhpRfCHvGQsBo8X2cRERERER+suuSVaFvyIlGiNngp2gGJ0idCH/rEVjKNruNKaIJPfO+C9v0/+BukEREREREGis60aRqz0qPRHKkZ39TF+zdsJRsVPVJk+7golZERERERDp2oLpd1Z6bGe3xnJbyraq2I20elJAYj+clIiIiosClSdFMd3c3gP4dUUbqk2M7Ozt9EtMnOjo6UF5ejvLyclRUVKCiogJdXf2FBAsWLMD9998/4rmampqwdetWHD58GC0tLTAajUhOTsbcuXOxfPlyWCzaPoAvyzKOHj0KABg/frym16bAtf10C365swrdksttbHpqOH6+MhfjooK0WERRYGg+BUvZJljKNsPQVTf8KYIBjvTrIeUVwp69BIo5QoNAiYiIiIj8q6XHgY/Oqe+3lxTE+SmawRnPf4SIHf8FQ1et25gzOhtdy5+AK2GyHyIjIiIiItK3pm47Dp5Rr/a8arLnC3FZSt+E6OgZaCuCCNukOzyel4iIiIiIglNLjwOnG9Q70M/JjPJsUnsPzGfeUnVJuTd5NicRERERBTxNimZiYmLQ3NyM+vp6TJ8+fUTnfLIzSkSEbx9g/8pXvuKVeT788EM89dRT6OvrG+iTJGmgEGf37t14+OGHkZyc7JXrDcbpdOL1118HAHR1deHEiROora3FwoULMXXqVJ9dl4JDj92FX++qRtHJZrcxgwD8v7mpuGdOKoyi4IfoPCO2V/XvKFO2Cca2imGPVyDAOW4WpPxCSDkroITEahAlEREREVHg2FPaClm52A4xibguK9pv8ajILoR8+CeEfvAUBMW92N826Q503/AIYAr1Q3BERERERLT1ZLPqfiLUJGJxnod/Z1cUWE+8pOqyZy6GHDHOs3mJiIiIiChoHbqkWD/MLGLauJEv2j0Y85m9EJy2gbYiGGDPXurRnEREREQU+DQpmsnLy0NzczO2bduG5cuXj+icrVv7t0HMycnxZWgq8fHxSE1NHdidZaSqqqrwxBNPwG63w2q1Yt26dZgyZQrsdjvee+897N69G+fPn8cvf/lL/OpXv0JISIhP4nc6nXj11VcH2oIgoLCwEHfddZdPrkfB48T5bvxwczlqOyS3sdQoC36+KgfTxgXXDiti93lYyopgLt0EU9OJEZ3jSJgCe34hpLxVkMNTfBwhEREREVHg2lnSomrPz4mB1ST6KZqLxK46ROz8Jkx1H7iNyZZIdC96DHau+EZERERE5DeKomBzsXpxrhvzYxFiNng0r7HhKIzNp1R9til3ejQnEREREREFtwPV7ar2NelRMBk8+y7DUr5V1XakzeNiu0REREQ6oEnRzPLly7F//34899xz+OpXv4qJEycOeXxxcTGef/55CIKAFStW+DS22267DTk5OcjJyUF0dDQaGxvxwAMPXNEcL7zwAux2OwwGA370ox8hPz9/YGzKlClISUnBiy++iPPnz2PTpk244w73reT/8Y9/wOFwjPiaK1euREqK+qF/q9WK9evXQ5ZltLW14aOPPsLLL7+M0tJSPPzwwwgN5Sq8euOSFfztUB2e318Dl+I+ftOkOHzvxkyEWzR5K/CY0NcKS8U2WEo3wVj3AQQM8o+6hDMmF1L+akh5qyFHZ2kQJRERERFRYGvqtuPjmi5V39IJ/v9CyFy+FeF7fwBR6nQbc4ybja6l/8tVpomIiIiI/KyksReVLX2qvlWTEzye99JdZlwRaXCMv8HjeYmIiIiIKDjJioKDVeqdZuZmRnk2qaMX5jNvqbokLtRFREREpAuaPCl/33334de//jV6e3uxePFiPP/881i9evWgx7755pu499570dfXh9DQUNx///0+jW2wApYrUV5ejlOn+le+WrRokapg5hOrV6/G3r17UVtbi61bt+KWW26B0aj+0e/cuROS5L4LyOXMmTPHrWjmE6IoIi4uDsuWLUNERAR+97vf4fXXX8fnP//5K/iXUbCr75TwyJYKt4fhACDMbMDDSzOxYmK8HyK7MoK9C+bKnbCUboLp3HsQFNew57giUiHlrYaUXwhX3ARAEDSIlIiIiIgoOOwubVWVn4eZRczNjPZXOICjF+Hv/BzWk+vdhhTBgN7ZD6Lv6q8BomcrVxMRERERkec2Fzep2imRZswc79lO9oKtA5ayzao+2+TP8h6AiIiIiEjHSht70dbnVPXN8bBoxly9F4LTNtBWBAPs2Us9mpOIiIiIgoMmRTPx8fF45plncPfdd6OxsRFr165FdnY2rr/++oHCj/Pnz+Odd95BVVUVFEWBIAh4+umnkZSUpEWIo/b+++8P/O9FixYNeowoiliwYAFeeukl9PT0oLi4GNOnT1cd889//tMn8X1ynZMnT/pkfgpMO0634LGdVeiW3AtMpo0Lx89X5iA12uqHyEbIaYO5YjcsZZv6b1hdwxeUySFxkHJXQsovhDN5JgtliIiIiIguY2dJi6o9PzcGFqPol1gMTcWI2P4QjO2VbmOuiDR0LfstnClX+yEyIiIiIiK6lMMlY9sp9f3EyknxED38e7yl5HXV9wCKaIRt0u0ezUlERERERMHtQHW7qp0eY0Wah886Wcq3qNqOtHlQQmI9mpOIiIiIgoMmRTMA8LnPfQ6yLOO+++5Db28vKioqUFmpfihGUfrXug0LC8PTTz8dFDujlJSUAAAsFguys7Mve9ykSZNU51xaNOMrra2tAACDgatx6UGP3YXHd1djc3Gz25goAP9vbiq+NCcVRjEAC0pcDqByH3DiVUSf2gTB3j3sKbI5Avac5ZDyCuFImwOImr2lEREREREFpYYuCUdr1Z+1lxXEaR+IIsN69AWE7X8cgmx3G5byVqN74aNQLJ6tWE1ERERERN7zXlU72i9Z6XnV5ATPJlUUWE+8rOqyZy+DEhrv2bxERERERBTUDlR1qNqe7jIDRy/MZ95SdUm5N3k2JxEREREFDU2fML/77ruxdOlS/P73v0dRURFOnDgxUCgjiiKmTp2KwsJCPPDAAwG/w8wnampqAADJyclDFqaMGzfO7RxvxpCQkACLxaLqlyQJ//jHPwAAM2bM8Oo1KfCcON+NHxWVo6bdfVeWcZEW/HxVDqanBuADZ4oC84l/Awd/A/Q0AQCGKulRjFbYs26ElLca9owFgMEyxNFERERERPRpu0tbVe1wiwHXZnj4RdMVEnqbEbHrOzCffdttTDGFonv+TyFNuIW7RxIRERERBZiiSxbsmjYuHOkxnq30bKx7H8a2ClWfbcpdHs1JRERERETBrVty4midegGweR4WzZir90Jw2gbaimCAPXupR3MSERERUfDQfFuG5ORkPPbYY3jsscfgdDoHdkKJjY2F0Rhcu0TY7XZ0dXUBAOLihl6ZNzw8HBaLBZIkoaWlZchjr9T+/ftRVFSECRMmICEhASEhIWhtbcWRI0fQ1dWFiRMnYvXq1Vc050hj9NUONqIoDtmmi1yygr8drMUz756FS3EfXzkpHt9flo0ISwD+fjn6ELrnh7Ccfn3IwxTRCEfGAtjz18CRvQQwhwEAuH9ScOLvt34w1/rCfOsL801a8/f9CTB2Xvc7S9RFM4vzYhFiMWl2fWP1Wwjb8W2Ife67YzoTp6FnxZOQY7L8/ll/rOSbhsdc6wvzrS/Mt74w36Q1Pd6jtPc58E5Fu6pvzdREj/+NocXqXWZc0dmQ06+DgUX0A/gepy/Mt74w3/rCfOsHc03+4O97FG+/7g/XdsAlX3wIymQQMDszxqP4rRXbVG3n+HkQwz3cOVOn+D6nL8y3vjDf+sFc6wvz3c+vT9EbjUYkJib6MwSP2GwXq8+t1uFX0rJarZAkSXWeN1x99dVoa2tDaWkpSktLYbPZEBoaivT0dFx33XVYtGjRFd803HfffSM6bv369aMJ+YpFRWm78nGwqGvvw0OvHsH7Va1uY+EWIx5dNwXrZqT6IbIRaC4HXr0baDx5mQMEIPN6YOptECaugTk0FmZNAySt8PdbP5hrfWG+9YX5Jl8LtPsTIDhf9zVtvTh+ycpsN8/KRExMjO8v7pSAXT8FDv5p8PHrvgHjoh8hyhiYn/qDMd80Osy1vjDf+sJ86wvzTb6mx3uUTaer4fzUQ2tmo4jb5+QiKsSDIvzuJqBc/eCa4dr/h5jY2NHPqQN8j9MX5ltfmG99Yb71g7kmLQTaPYqnr/uPamtU7dlZsRiXFD/6Ce09QPVeVZdp+u3afD+iA3yf0xfmW1+Yb/1grvVFr/kOwK0ngofdbh/43yPZJeeTYz59njfk5OQgJyfHq3NS4Cs6dh4Pv34MnTan29jM9Gg8+dkZGB8b6ofIRuDkRmDD/YC9y30s9Wpgym3A5JuByBTtYyMiIiIiGqO2HD+vakeFmHBdjgdfMo1UUwnw6peBhuPuY+HJwM3PADmLfB8HERERERGN2msfqR9aWzopybOCGQA48iIgOy62DRZg+p2ezUlEREREREFNURTsK21S9c3P83BHmNLtgLPvYlswABNWezYnEREREQUVzYtmysrK8I9//AMHDhxAfX09+vr6sH37duTm5g4cc+LECZw9exZhYWFYsGCB1iGOmNl8cQVcp9O9cOFSnxzz6fMC1dNPP+3vEOgyeiQnfvpmMV655AsqABAF4MHFeXhwcS6MhgDcPsvlAHb+BDj4R/cxcwSw7o/ApLXax0VEREREAY33J95RdExdNLNicjLMRh/eNygKcPjvwNbvq7+M+kT+TcDaPwBhGhTuEBERERF5kd7uUcobu3C0pkPVd9vMNM8mlWXgw7+p+6bcAoRylxkiIiIiois1lu5Rqpp7UNOm/k5hfr6HRTMnN6jbWfOBsDjP5iQiIiKioKJZ0Ywsy/jud7+LJ598ErIsQ1H6t3AXBMFt55WzZ89i9erVMBqNqKqqQmpqqlZhXhGr1Trwv20227DHf3LMp88LVHFxI7sxaGtr88n1RVFUbf/U0dEBWZZ9cq1gUny+Cw9vKsO5NvfXW0qkBY8V5uGqtEh0dXYMcrZ/Cd31CN/yAIznP3Qbc8VPgOGz/wLi+4vnmO+xjb/f+sFc6wvzrS+BkG9ul64v/r4/AQLjde+J2nab20NuC7IjfPYzE2ztCN31fZgrtrmNKQYz+m74EaRpdwN2AbD7Lm+jFez5ppFjrvWF+dYX5ltf/J1v3p/oj97uUV5874yqHR9mwpQEo0f/PuOZfYhoV8/bWXAbXD78mQUrf7/HkbaYb31hvvWF+daPQMg171H0x9/3KN583W87ql4ALD7chCSLc/SxO3oRXbodwqe6erKWwc57j1ELhPc50g7zrS/Mt34w1/oSCPkOhHsUzYpm7r33Xvz1r3+FoihITU3F3Llz8eqrrw567MqVK5GVlYXq6mq8+uqr+MY3vqFVmFfEbDYjIiICXV1daGlpGfLY7u5uSJIEYOQ3KsHA5XJpch1ZljW7ViByyQr+8UEdnnmvFi5ZcRtfMTEO31+SiXCLMSB/TqaaA4jY/g2Ife6/J7aCm9F342OIiR830Kf3fOsN860fzLW+MN/6wnxToNDydRhsr/ttJ5tU7agQI2amhfvk32CsPYSInd+EobvebcwZm4euZU/CFV/Qv7J0kAi2fNPoMdf6wnzrC/OtL8w3BYqxcI/ikhUUFTeq+lZMjIOgyPDkcqHHXlS1nXETYE+YDo8m1Qm+x+kL860vzLe+MN/6wVxTIAmG57z2V6qLWeZmRHn0UKe5YhcE58XFiRXBAFvmEij8vfQavs/pC/OtL8y3fjDX+qLXfItaXGT37t34y1/+AgD4wQ9+gOrqaqxfv37Ic26//XYoioI9e/ZoEeKopaX1bz9fX18/5Auorq7O7RyikajvlHDf+lP44zs1bgUzYWYRP1uZg0dX5SLcolkN3MgpMkI+/BMiN37BrWBGEc3oWvgoupc8DphC/BQgEREREZE+7CpVfx5fnBcLoyhc5uhRcjkQevC3iHrjc4MWzPRN/Tza79jQXzBDRERERERB4YOzHWjqdqj6Vk9O8GhOsfs8zFXq7/9sU+4CBC/foxARERERUVCxO2V8eLZT1TcnK9qjOS3lW1VtR9pcKCGxHs1JRERERMFHk6fsn3vuOQD9O8g8+uijIzpn9uzZAIDi4mKfxeUNBQUFOHXqFCRJQmVlJfLy8gY97uTJk6pzxgqDweCTeUVRHLKtFztPN+PR7ZXotDndxqaOC8djhflIi7b6IbLhCbYOhO74JsxVu93GXJFp6Fn5NFxJU2EA8603zLd+MNf6wnzrC/NNgcpX9ydAcL/uz7b14XRDr6pv+cR4r/68xI5zCNv2dRjrP3Ybk63R6F3yazhylsF3GfKuYM43XRnmWl+Yb31hvvWF+aZANRbuUbacVBfgFySGoSA5wqM5radehaBcXIhOMYXCMfFmn/68ghnf4/SF+dYX5ltfmG/9YK4pkAX6c17HznXB5ry4q4wAYF52zOjjdvTCfGavuit/Fe89PMT3OX1hvvWF+dYP5lpfmO9+mhTNHDhwAIIg4Mtf/vKIz/n0Di6BbPbs2diwYQMAYO/evYMWzciyjH379gEAwsLCMHnyZC1D9KmYmBhNrhMVFaXJdQJFj+TEf28qxvoPa9zGRAF4YHEevr44F0ZDgL5x1R0B1n8BaD/jPpa3HIabn0Fk6OVXbdBbvvWO+dYP5lpfmG99Yb4pUGh1fwIE1+v+pSPqh9ziw81YMi3De/cTx14Bir4JSJ3uY1nzId78LMIjx3nnWn4STPkmzzDX+sJ86wvzrS/MNwWKYL9H6bI5sKesVdV3x+wMz/5dLidwcr2qS5h2B2KS00c/p87wPU5fmG99Yb71hfnWD+aaAkmgP+f18QH1c4LTxkcja1zi6AMpfgtw2i62BQPCZn4GYWHa3avpAd/n9IX51hfmWz+Ya33Ra741KZppbGwEAGRmZo74HJPJBABwOt132Agkubm5mDhxIk6dOoW9e/di4cKFyM/PVx2zefNm1NbWAgBuuukmGI2a/NgpSB2racc3/u8Iqpp73MZSo0PwxGevwqzMAN0mVFGAj14Atn4PcEnqMUEEFv0QuP6bgE6rFImIiIiI/GHzsfOq9oopyd4pmJG6gC3fAY6+7D4mGvs//1/3DUDkim1ERERERMFo6/F62BwXV3k2igLWXuVhQXzZdqCrTt13zZc8m5OIiIiIiMaEfaVNqvaCvHjPJix+Q93Omg+ExXk2JxEREREFJU2qN8LCwtDe3o6mpqbhD76gpqZ/h43YWN8WB5w+fVq1m01n58WVcevr6/HWW2+pjl+4cKHbHP/xH/+BRx55BHa7HY8++ihuvvlmTJ48GXa7Hfv378euXbsAACkpKSgsLPTJv4PGhm0nzuOBlz6GU1bcxgqnj8Oj66YgKsTkh8hGwN4LFH0LOPqS+1hoPHDbX4DshZqHRURERESkZxVN3Th1Xr0DzOppXtj1pfYj4NUvA21V7mMxWcCtfwHSrvb8OkRERERE5DevHq5RtRcWJCA+3OLZpB/+Vd1OvRpIme7ZnEREREREFPQaOm04Xd+l6ltQkDD6Ce09QOkOdd/kdaOfj4iIiIiCmiZFM9nZ2Th8+DBOnjyJpUuXjuicrVu3AgAmT57sy9Cwe/du7Nu3b9CxkpISlJSUqPoGK5rJysrCQw89hKeeegp9fX14+WX3VXZTUlLw8MMPIyQkxCtxB4q2tjafzCuKomr7p46ODsiyPMQZwa9HcuHb64+6FcyEmkV8f2k2Vk9OgGzrRpvtMhP4kdhWhbAt98HYfNptzJlyNbpX/hFKeDJwmdeLHvOtZ8y3fjDX+sJ860sg5Fur7eMpuPjq/gQIjNf9aLx66JyqHR9mQm6UMPqflSLD8tGzCDnwvxBk951hpYm3oHfhzwBz+GU//weDYM03XTnmWl+Yb31hvvXF3/nm/QldTjDfo9S22/B+Vauqb3lBjEf/JrHjLCLLd0P4VF/PxM/AHsT3Dlrw93scaYv51hfmW1+Yb/0IhFzzHoUuJ5Cf89p2vFHVDrcYkB4++phNZUUId/YNtBXBgI6UG6Dw/sNjgfA+R9phvvWF+dYP5lpfAiHfgXCPoknRzLJly/DRRx/hj3/8Ix588EGIojjk8SdPnsQLL7wAQRCwcuVKLUL02DXXXIPf/OY32LJlCw4fPozW1lYYjUYkJydjzpw5WLFiBSwWD1ffCkAul0uT68iyrNm1/GXziQZ029X/xikpYXh0VS7Soq0B+39I5ortCN/1XYiObrexvulfQs+87wIGE3AF+dNDvuki5ls/mGt9Yb71hfmmQKHl6zBYXvfbTzWr2ovzYwFFvpKP5wPE7gaE7/oWzDUH3MZkUzh6Fv4cUsGa/o4g+NlciWDJN3mOudYX5ltfmG99Yb4pUATzPcqbxxtU7UirAddlRnp0DcuxlyDg4sJhsjkCfTkrx9z9g6/xPU5fmG99Yb71hfnWD+aaAkkgP+f1boW6aP/ajCgIo/w+AwBCSzar2o60uXCao3j/4QN8n9MX5ltfmG/9YK71Ra/51qRo5utf/zp+//vfo6KiAv/5n/+JP/3pTzAaB7/0zp07cc8998BmsyEuLg5f+cpXfBrb/fffj/vvv98rcyUkJOCLX/wivvjFL3plPtIPRVHwyhH1F1BzMqPwxM35MBqGLjLzG5cDoQceR+iRv7gNyaZwdN/4K9hzb/JDYEREREREBAAVzb2obOlT9S0riBvVXOaqXQjf/X2INvcV2BxJV6Fr2e8gR6WPam4iIiIiIgosiqKgqFhdgL+sIA5mowffV7jssJ5ar+qSJtwCmEJGPycREREREY0JLlnB+2c6VX1zM6Muc/QIOHphPrNX1SXxGSYiIiIiXdOkaCYpKQnPPPMMvvCFL+Avf/kLtm/fjlWrVg2MP/nkk1AUBe+99x5Onz4NRVEgiiJeeOEFhIeHaxEikV8dqe1CRbP6YbbPX5MSsAUzYncDIrZ/HabzH7qNOWPz0HXTn+CKyfZDZERERERE9IldJepV2RLDTZiWeoX32E4bwt77JUKOv+g2pEBA3zX3oXfW1/t3lyQiIiIiojHhaG03ajskVd/qKQkezWmu3AGxT32PYptyp0dzEhERERHR2HCqoQcdNqeqb44HRTPmM29BcNoG2opggD172ajnIyIiIqLgp0nRDAB87nOfg8lkwr333otz587h2WefhSAIAIA///nPAPpXrgKA8PBw/P3vf1cV1lBgMhgMPplXFMUh22PNq0ebVO3xMVbMzY6BeOF3JJAYaw4gbMuDEPua3cakCbegd/GjgCkUV/LK0Fu+9Y751g/mWl+Yb31hvilQ+er+BAi+172iKG5FM0snxMN0mV1fB+VyIHzTl2CqPeQ2JIenoGf57+BMm3NFn/2DRbDlm0aPudYX5ltfmG99Yb4pUAXrPUrRSfXf/zNjQzAtNXLge73RCCl+WdV2pM4GEiaMyfsJb+N7nL4w3/rCfOsL860fzDUFskB9zuvgJbvMZMeFIDUmdNTxWCu2qdrOtLkQwz1bCIAu4vucvjDf+sJ86wdzrS/Mdz/NimYA4I477sCNN96IP/3pT9i0aROOHDkCp/NilfjkyZOxZs0afOMb30BiYqKWodEoxcTEaHKdqCgPttwMcE1dEvaUtqj6vjgvC3GxsX6K6DJkGXjvCWDPzwFFVo8ZzMBN/wPL1ffA4oVCn7Gcb3LHfOsHc60vzLe+MN8UKLS6PwEC/3V/ur4TVa3q3SxvmZV1ZT+jj18EBimYwcRCiIW/R0RogN2z+FCg55u8h7nWF+ZbX5hvfWG+KVAE4z2KzeFyK8C/fVY6Yj35zqKpFKg5qOoyzblX05/PWML3OH1hvvWF+dYX5ls/mGsKJIH6nNcH506p2osmJo8+VnsPULVH1WW66nbef/gQ3+f0hfnWF+ZbP5hrfdFrvjUtmgGAuLg4PPLII3jkkUcgyzJaW1vhcrkQGxsLk8mkdThEfrf+w3NwuJSBtsUo4rar0/wY0SD62oA37gNKt7qPRaUDd/wdSJ2pfVxERERERDSozUfPq9rjoqyYMT565BMoCnDoGXWfMQS46VfAzC8CAbgrJhEREREReW57cT26pIsL3gkCcMvMVM8m/ehv6nZoHDCx0LM5iYiIiIhoTOjodeDjs22qvvn5HuwKU7YDcH5qUTHBAEzg/QcRERGR3mleNPNpoigiPj7enyEQ+ZVLVvCvg2dUfWumj0N0qNlPEQ3i/FHg33cD7Wfcx/KWATc/C+hohWkiIiIiokCnKAqKjquLZlZNS4EoXkGhy9kDQP1xdd+tfwYmrvZChEREREREFKheO1yral+XE4+UqJDRT+joA478S9034/OA0TL6OYmIiIiIaMx4r6IZ8sW1hmExirg2y4PnkIo3qNtZNwBhcaOfj4iIiIjGBL8WzVDwa2trG/6gURBFUbX9U0dHB2RZ9sm1/OmtslbUddhUfWsnx/rs53pFFAXm4n8j9K0fQ3DZ1UMQYJv7LdhmfQ2QBEDyLF695Jv6Md/6wVzrC/OtL4GQb26hToPx5efoQHjdj1RJQw+qmntUffMzw6/o5xP2zlP4dCm/KyoDnUlzgUC4V9FAMOWbPMNc6wvzrS/Mt774O9+8P6HLCbZ7lMYuO94ta1L1LS+I9ujfYT75KsJsHaq+jtxbIOvk3sIb/P0eR9pivvWF+dYX5ls/AiHXvEehywnE57x2Hq9Rta8eH4m+7k70Xeb4ITl6EV26HZ9eQqwncxnsvP/wqkB4nyPtMN/6wnzrB3OtL4GQ70C4R9GkaMbhcKCsrAwAkJOTA4tFvXqUzWbDD3/4Q6xfvx7Nzc3IysrCfffdhwcffFCL8MgDLpdLk+vIsqzZtbS0/rB69edJyWGYkBji/3+row/h+34C6+nX3IbkkFh0LXsCjvHXoX+pB+/HOlbzTYNjvvWDudYX5ltfmG8KFFq+DgP5db/tZKOqPS7SckX3GWJXHUwV21V9fVM/D5ePPv8Hg0DON3kXc60vzLe+MN/6wnxToAi2e5SiEw2qFZ5DTSIW5kR7NK/5mHqXGfv4G+CISAP4OzpqfI/TF+ZbX5hvfWG+9YO5pkASaM95KYqC/VXtqr5rMyJHHae5cjcE58VyG0UwwJa1BAp/B32K73P6wnzrC/OtH8y1vug135oUzbzxxhu48847ERsbi5qaGrfxm2++GTt27ICi9P8l/vTp03jooYdQUlKCP/zhD1qESKS5c202HKhWr652+1VJformIrG9GpFb74ex5bTbmCN5JrpW/B5yeIofIiMiIiIiouEoioKdJa2qviUFsRAE4TJnuLOeeAmCcvEPJIopFNLE27wWIxERERERBR5FUbC5uFnVd2N+LELMhlHPaWg6CVPDx6o+25Q7Rz0fERERERGNLVUtfWjosqv65mVFj3o+S/lWVduRNgdKSNyo5yMiIiKisUPU4iLbt2+HoihYt26d2y4zRUVF2L69fwXbtLQ03HzzzUhNTYWiKHj66aexf/9+LUIk0txrRxtU7UirAUsL/HujZq7Yjuj1awctmOmbfg86bn6JBTNERERERAHsVEMPajskVd8V3Wc4bbAW/5+qyzbhFiiWSG+ER0REREREAep0Qy8qW/pUfasmJ3g0p7X4ZVXbFZYEe+Zij+YkIiIiIqKx49LFhpMizMiMtY5uMkcfzNV7VV1Szk2jDY2IiIiIxhhNdpo5fPgwBEHAggUL3Mb++te/AgDy8/Px/vvvIyIiAh0dHZg3bx5Onz6NP//5z5g3b54WYRJpxuaQ8eaJJlVf4eQEWE2a1LG5czkQevA3CP34z25DsikM3Tf+CvbclX4IjIiIiIiIrsSlu8ykRVswISl0xOdbSjdBtLWp+mxT7/ZKbEREREREFLg2F6u/s0iJNGPm+IhRzyfYu2Ep2ajqkybdARhMo56TiIiIiIjGlkuLZuZlRUEQhFHNZT7zFgTnxYUAFMEAe84yj+IjIiIiorFDk6KZxsZGAEBubq6qX5Zl7N69G4Ig4MEHH0RERP8f36OiovDAAw/g/vvvx4EDB7QIkUbJYDD4ZF5RFIdsB7vdJ1vQaXOp+m6fmeKzn+dQhJ5GhG15AKa6993GXHH56F71NOSYHPgysrGeb1JjvvWDudYX5ltfmG8KVL78PB0Mr3tFUbDrkqKZZRPiYTSO8NZfURBy7O+qLkf6DUBCgU/vBwJRMOSbvIO51hfmW1+Yb31hvilQBcs9isMlY/vpFlXf6imJMI30XmIQ5vLNEB09A21FEGGfeqdfvgcJdnyP0xfmW1+Yb31hvvWDuaZAFkjPedkcLnxc06Xqm5cdO+oYrRVbVW1n2lyI4YmjmouGxvc5fWG+9YX51g/mWl+Y736aFM00NzcDAEJCQlT9R44cQWdnJwRBwKpVq1RjU6ZMAQCcO3dOixBplGJiYjS5TlRUlCbX0crrx0+q2jfkxeOqnHHaB1L1DvDql4CeRvexaZ+BYfXvEGUO0zyssZZvGhrzrR/Mtb4w3/rCfFOg0Or+BAjM1/3HZ9twvlNS9d02OxsxMZEjm6D6PaD5lKrLdP2Dmv5cA1Ug5pt8g7nWF+ZbX5hvfWG+KVAEyz3KjuJ6tPc5VX13zctFTMwovx9QFKD4/1RdQv4KRKdPHm2I9Cl8j9MX5ltfmG99Yb71g7mmQBJIz3ntK22C5JQH2gZRwLLpGYgKGcXulPZeoHqvqss0/TZ+v6ERvs/pC/OtL8y3fjDX+qLXfGtSNGOxWOB0OgeKZz7x9ttvAwDS0tKQkZGhGvtk1xmXS70bB1GwO1bTjqPn2lV9d8/JGPxgX5FlYP+TwO6fAYqsHjOYgRW/Aq75EjDKLU+JiIiIiEh7RcfOq9rZ8WGYmBIx8gkOPaNux2QBuUu9EBkREREREQWy1w7XqNpXZ8QgK96DBbVqPwIajqv7rvnS6OcjIiIiIqIxZ19Jk6o9Y3z06ApmAKBsB+DovdgWDMDEQg+iIyIiIqKxRpP9dT4piDl06JCqf9OmTRAEAfPnz3c7p7W1FQCQkJDg+wCJNPTiwTOq9rgoKxZP0HA70L524N+fA3b91L1gJiod+NI2YNaXWTBDRERERBREZFlB0XF10cyqaSkQRvq5vv0ccHqzum/2VwGdbstLRERERKQXbT127Dmt3o3+1plpnk364V/V7eh0IGexZ3MSEREREdGY8naZumhmfr4Hzwie3KBuZ90AhMWPfj4iIiIiGnM02Wlm0aJFKC4uxlNPPYWbb74ZEydOxJtvvom33noLALBy5Uq3c06cOAEASElJ0SJEGqW2tjafzCuKomr7p46ODsiyPMQZwaHT5sTGI3WqvpunJaKrs0OT6xsaTyBsy9dg6DjrNubIWIie5b+DEhID+CivlzNW802DY771g7nWF+ZbXwIh39xOnQbjq/sTIDBe90M5UtOJ8x02Vd/8zLAR/0ys7/0RIZ8qqldMoWjPWqX5vUGgCPR8k/cw1/rCfOsL860v/s4370/ocoLhHuX/PjoPh0sZaJsNAq5PDxl17IKtA1HHX8Wny/f7Jn0Gto7OUc1H/n+PI20x3/rCfOsL860fgZBr3qPQ5QTKc17nOyWUN3ar+mYkW0YXn6MP0SXbVPcgPZnLYNfp9xtaCIT3OdIO860vzLd+MNf6Egj5DoR7FE2KZh588EE899xzaGxsxJQpUxATE4O2tjYoioK0tDTceuutbufs2LEDgiBg2rRpWoRIo+RyuTS5jizLml3LlzYcrYfkvPhGYxQFFE6J0+TfZjm5HuH7fgLBZVf1KxDQe+1D6Lvma4AgAgHwcx4r+aaRYb71g7nWF+ZbX5hvChRavg4D7XW/41Szqp0Va0VmjGVkMTptsBx/WdVlm3ArXMawgLg/CASBlm/yHeZaX5hvfWG+9YX5pkARDPcom46rd5lZkBuDUJMw6titJ1+B4JIG2opoRO+E26Dwd9Jr+B6nL8y3vjDf+sJ86wdzTYEkUJ7zer9KXdASFWJEfkLIqOIzV+6G4OwbaCuCAbasJbwH0RDf5/SF+dYX5ls/mGt90Wu+RS0ukpeXh3/+858IDQ2FoihobW2FoiiIjo7Gyy+/DLPZrDq+vr4eO3fuBAAsXszt2mlskBUFrx1Vf/m0OD8W8WHmy5zhJU4bwnd/DxF7HnYrmJGtsehc8wL6Zj3QXzBDRERERERBR1YU7CptUfUtnRAHQRAuc4aapfRNiFK7qs827W5vhUdERERERAGqsrkXJxt6VH2rJieMfkJFgfWEuiDfnr0MSmj86OckIiIiIqIxp7nHoWpPSgqDQRzZdxqXspRvUbUdqddCCYkbdWxERERENDZpstMMANx+++1YsGABioqKUF9fj5SUFKxZswaxsbFuxx47dgx33XUXAGDlypVahUjkU++f6cTZNpuq77bpiT69pthejchtD8DYfMptzJE0A10rfg85YpxPYyAiIiIiIt86WtuFpm71F0xL8t3vtQelKAg5+ndVlz39BrhicrwVHhERERERBaiik+odK+PCTJiTGTXq+Yx178PYVqHqs025a9TzERERERHR2GR3yap2iGmUC/06+mCu3qvqknL5rCERERERudOsaAYAEhMTcc899wx73LJly7Bs2TINIiLSzqtHGlTt7LgQzEiL8Nn1zJU7EL7rOxDt3W5jfdP/Az3zvgcYfLzLDRERERER+dyO062qdk58CLLjQ0d0rrHufRhbTqv6+qZ90WuxERERERFRYHLJCrZcUjRz08Q4GEe5ujMAhJx4SdV2RmfBkTpn1PMREREREdHYJDnVRTMW4+iKZsxn3oLg7BtoK4IB9hw+c0hERERE7jQtmiHSq4YuCW9XtKn6br8qCYIw+i+fLkt2IvTAbxD68fPuQ6YwdC/+Jex5q7x/XSIiIiIi0pxLVrCnVF00s7QgbsTnX7rLjCsqA46MBV6JjYiIiIiIAtcHZzvcdqxcPTlh1PMJvc0wV2xX9dmm3AX44nsQIiIiIiIKananomqPtmjGUr5F1XakXgslZOTfkRARERGRfrBohkgDbxxtgvyp+71Qk4ibJnn/Jk3oaUTk9m/AVPe+25gzNg9dN/0Rrpgcr1+XiIiIiIj84+OaLrT0qh90W1oQO6Jzxc5amKt2qvr6pt0NCKP7coqIiIiIiILH5mL1LjMFiaHITRjZjpWDsZ56DYJ88d5EMZghTbhl1PMREREREdHYZbtkpxnzaIpmHH0wV+9Vddlzb/IkLCIiIiIaw1g0Qx4xGAw+mVcUxSHbwcThkrHheKOqb9WUBESFWrx6HWPNQYRtfQBib7PbmFSwFr2LHwPMYfBNxjwzlvJNw2O+9YO51hfmW1+YbwpUvro/AQL3db/rkl1mChLDkJ0QPqJzQ4pfgqBc/GJKMYXBMfkOn/4cg0Wg5pu8j7nWF+ZbX5hvfWG+KVAF6j1Kt+TEW2Vtqr41UxNHH68iw1r8sqrLnr8aYhhXePYGvsfpC/OtL8y3vjDf+sFcUyALlOe8HLJ6p5kQk+GKYzNVvg3B2TfQVgQRzryV/I5DA3yf0xfmW1+Yb/1grvWF+e7HohnySExMjCbXiYqK0uQ6vrD5WB2ae9QrP395QT5iYiK9cwFFAd57Etj9M0BxqcdEE3DTr2C55suwCIJ3rqeBYM43XTnmWz+Ya31hvvWF+aZAodX9CRAYr3unS8beSx90m5E2sp+DvRc4+W9VlzDjc4hJzvBmiGNGIOSbtMFc6wvzrS/Mt74w3xQoAvUe5f+z9+dhcp3lnfh9V1XvWlurJe+WLe+yTQzYLAazY+xgwDa7DQQmARKSTDIkuSbhze83TJZ5MzNJgOQNYTUEAjisBpPYxlisYfNuI2+yZMuytbdaUnd1d9V5/xBu9emWWrLUdaq6n8/nunKln6fOqbpb3+rjfuhz1/MfP12f+2TntnIpXn/hydE7+zA/7OvBmyJ2Ppqb6nzOu6OzwO8/Ja5xaZF3WuSdFnmnQ9a0kla5zysr5W9ZnDe75+nXtu7G3LB0wvNj/tEnP73nYEq4zqVF3mmRdzpknZZU89Y0Aw32mR+ty42fdcKCOO2oKWqYGdgR8dX3RKz55sTH5h0bceWnI475tal5LQAAoKX8+OFtsXX3UG7u0lXLDu3ku74UMZBvuIln/ZcpqgwAAGhl//aLDbnxC09dHIsOt2EmIuJnn8yPl54VccwzD//5AACAGa06kv9Q4M72p7k7zNCeiPv/PT935uVHVhQAADOaphlooPuf7I//XLstN/eWC6fok5s33hnxxasjtq+d+NjJL4l47T9H9CyYmtcCAABazjfvejw3PvvoeXH8wlkHPzHLIv7zn/JzJ78kYtEpU1gdAADQih7dtid+Mu7vFq97xjGH/4R9GyLW3JCfO//tEaXS4T8nAAAwow0O13Pjzrby03uCB2+MGN6zb1wqR5x22RRUBgDATKVphiOyffv2gx90GMrlcm77p76+vqjX65Oc0Zo+fuvDufGCnva44OjOI/5367jni9Fzy59FqVbNzWdRisELfj8Gn/XbEdVSRLUx+Uy1mZI3h0be6ZB1WuSdllbIu6jt45leGrU+iWiN9/1Yw7V63HDXxtzci06Zf0j/Bm2P/SjmbLonN9d/5ptjpIH/ftNNq+VN48g6LfJOi7zT0uy8rU84kFZco/zLDx7Njed2tcUzjuo47Fq7fvzR6M72fUp01t4TO459WYT1xZRp9jWOYsk7LfJOi7zT0QpZW6NwIK1yn9fuwfz9TvXh6tOqbdZtX4iOMePhYy6MXcNt1iEFaYXrHMWRd1rknQ5Zp6UV8m6FNYqmGY5IrVY7+EFToF6vF/ZaU2X3UC2uv3tTbu7VZy+OcmSH/72MDMbsW/88uu770oSH6l290f+y/xvDxz0/op5FxPT69xprOubN4ZN3OmSdFnmnRd60iiLfh81+3//n2h2xY2AkN/fiU3oPqaae2z6ZG9fmnRDVY54X4ef4gJqdN8WRdVrknRZ5p0XetIpWW6NkWRbfGPd3i5eftiAqpcP8u0V9JDru/tfc1ODKX49aW4/1RQO5xqVF3mmRd1rknQ5Z00pa5T6v8TvNtJefRm3DA9G+9ju5qeqKV/g5ayLXubTIOy3yToes05Jq3ppmoEFuuHdL7B7at8grlyJeu2rJYT9fuW9dzL3ht6Nty70THhteel70v+Lvoz5n+WE/PwAAMH3cuGZbbnzmUbNi+bzOg55X3rkhOtbelJsbWPXWiFJ5SusDAABaz+0b+mNDX/4TnV915uLDfr6OR26Jyu4ncnODZ73psJ8PAABIQ3Uk3zTT2Xbof6PoWHdrlEYGRsdZqRzVk142ZbUBADAzaZqBBsiyLP7tjvyntT3vpPmx7BBuYtufjodvjNk3/bcoD/VPeGxg1dWx+7l/ElHp2M+ZAADATDNcq8ctD+SbZl566sJDOrfr7s9GKdv3x6h6+6yonv66Ka0PAABoTdffsyU3Pn5BV5x51KzDfr6uuz+XGw8vPSdqi8887OcDAADSML5ppqOtdMjndj70rdx4+OgLIutZNCV1AQAwc2magQa44/Fd8cDmPbm5K89d+vSfqD4SPT/+39Hzi49OeChr74n+i/8ihlZedrhlAgAA09B/rtsZ/dX8VrkvOXXBwU8cHoiue76Qm6qe/rrIOuZMZXkAAEALGhyux01rtubmLj1zUZRKh35z2ljlvvXRvv57+dc40y4zAADAwQ3V8k0zXYe608zwQHSs/U7+uU5+5VSVBQDADFZ408wdd9wR3/ve9+Lhhx+O/v7+qNVqkx5fKpXi4x//eEHVwdS47vYnc+Nj5nfGs0+Y97Seo7R7c8z999+N9sf/c8JjI70nR/8rPxK1BScfUZ0AAMD0M/5Gt1XLZ8dRcw++q2Xn/V+LcrUvNzdw9tVTWhsAANCavvvgttg9tO/GtFJEXHLG4X8ac9c9X4hSZKPjesecqJ7yqiMpEQAASMSEnWYqh9Y007Hu1iiNDIyOs1I5qie9bEprAwBgZiqsaWbNmjXxjne8I3784x8f8jlZlmmaYdrZtns4blqzLTd3xTlLo/w0Pq2tbcNPYu6/vy/KezZPeGzwlMti18X/M6Jj1hHXCgAATC9DI/X47oPbc3MvPXXhwU/Msui+49P55zr+BVHvPXEqywMAAFrUN+/Zkhs/8/i5sXTOwZvv96s2FF33fTE3VT3ttRHt3YdbHgAAkJDqSJYbdx7iTjOdD30rNx4++tmR9Rz+hwEAAJCOQppmNmzYEBdddFFs2bIlsmzvL72zZ8+O3t7eKJcPcXtFmCa+dvemGKnvW9x1tpXi0rMOcYGWZdF928ei50f/3yhl+V2YsnJ77H7ef4/Bs98S8TQacAAAgJnjx+v6Ylc1v1Z48coFBz2vfcOPo23b/bm5gVXXTGltAABAa9pVHYn/XJffdfLSMxcf9vN1PPwfUR7If3jY4FlvPOznAwAA0pFl2YSdZg6paWZ4IDoeuSU3NXTyJVNZGgAAM1ghTTP/83/+z9i8eXOUSqV45zvfGX/4h38YK1euLOKlabBKpdKQ5x3fTDVdmqtq9Sz+7Y5NubmXn7YoFs7uOqTzu37w19H9s3+cMF+fvTx2veojUTvqvGjMv3hzTde8OTzyToes0yLvtMibVtWo9UlE67zvx+9qed4xc2LZ/IN/mnP3XdfmxrX5J0b9xBdGpeTnd39aJW8aT9ZpkXda5J0WedOqWmWNsmn3YNTzH+QcLzl10WHX133P53Pj4aOfFbH4tBn594tW4BqXFnmnRd5pkXc6ZE0ra4X7vIbGNcxERHR3th20tvaHvxel4T2j46xUjpFTXtnQdRf75zqXFnmnRd7pkHVa5L1XIU0z3/72t6NUKsXVV18dH/3oR4t4SQrS29tbyOvMmzevkNc5Ujfd+2Q8sXMoN/eOF6yM3t75Bz95+yMRP/+nifMrXhzl1/5zzJ21cEpqnA6mS95MDXmnQ9ZpkXda5E2rKGp9EtGc9/3gcC1ufXB7bu7yZxx38O97+7qIh2/KTVUufHf0LkhnjXGkXOfSIeu0yDst8k6LvGkVrbJGybbnb0qb09UWy5cuOrwX2nx/xGM/zk21X/CbhX6vqXONS4u80yLvtMg7HbKmlbTCfV59A8MT5pYs7I3eeQf5gLB1N+aGpROeF/OPPuWw6mNquc6lRd5pkXc6ZJ2WVPMupGnm8ccfj4iIq6++uoiXg6b5zI/X5cZnHz0vzjnmEC8u//lPEdnYP1yVIl74xxEX/beIsk9FAACA1N16/+bYPVQbHZdKEa8866iDn/jTj+XXGh1zIs55YwMqBAAAWtH4m9LmdrUf/pP9/JP5cc/CiNMvO/znAwAAklIdqU2Y62o7yH1RwwMR9/97fu6My6euKAAAZrxC9td5qkt9/vz5RbwcNMW6rbtj9QObc3NvveD4KJVKBz95sC/iF9fm5579W3ubZjTMAAAAEXH9nRtz42efuCCWzO2a/KSh3RG/+HR+7rw3R3TNneLqAACAVrVzcCQ3ntd9mE0zwwMRt/9Lfu68t0S0dR5mZQAAQGqqw/UJc53tB7mF8YEbI4Z37xuXyhGn//oUVwYAwExWyE4z559/fnzrW9+K+++/P84777wiXpKCbN++vSHPWy6Xc9s/9fX1Rb0+cdHUSj5x6yORZfvGczor8bzjuw/p36jzF/8cPUO7RsdZqRw7T39T1Bv079tqpmPeHD55p0PWaZF3Wloh76K2j2d6adT6JKL57/uB4VrcdO8TubmLT55/0O+5467PxazBvtxc36mvT2atcbianTfFkXVa5J0Weael2Xlbn3AgrbJGeWJrfk0wq/3wauu497qJ64uTX2t90WDNvsZRLHmnRd5pkXc6WiFraxQOpBXu89q0dc+EuT39O6NaPvCHEs+6/QvRMWY8fPQFsWu4LcJapCla4TpHceSdFnmnQ9ZpaYW8W2GNUkjTzPve97745je/GR/96Efj9a9/fREvSUFqtYlbZjZCvV4v7LUOx+BwPb5656bc3GVnLY6O8iH8G9VHovO2T+Smhk56eQzPXh7Rwt9zI7V63kwteadD1mmRd1rkTaso8n1Y9Pt+9QNbY2DMp6+VSxEvXDF/8hqyLDpv/2Ruauj4F8bw3OOSXWscLte5dMg6LfJOi7zTIm9aRausUfoGhnPj2Z2Vw6qt4878LjNDxz4/huccY31RMNe4tMg7LfJOi7zTIWtaSSvc5zUwlN8Js61cisjqB15WjAxG+9rv5KaqJ7/Sz1ULcZ1Li7zTIu90yDotqeZ9kL0Np8ZLX/rS+KM/+qO45ZZb4t3vfncMDw8f/CSYRm66f2v0DeYXda87Z8khndvx0Lejsmtjbm7g3HdMWW0AAMD0d9Oabbnx+cfOjYWz2ic9p33Dj6Jt2wO5uYFV10x5bQAAQGvrr+b/fjGn8+l/pl5l873R/uRtubnBs954RHUBAADpqY7kP9W8s23y2xc71t0apeF9u9NkpXJUT3pZQ2oDAGDmKmSnmWuvvTZOP/30eM5znhMf/ehH4xvf+EZcccUVcdppp0VPT89Bz7/66qsLqBIO33W3P5kbP/v4uXH8gu6Dn5hl0X3bx3NTw0vPi5Flz5jK8gAAgGlsYKgW33t4R27uJacuPOh5XXd8OjcemX9iDB/3vKksDQAAmAZ2DuY/NXBuV+VpP0fXPZ/PjWuzlsbQCS86oroAAID0TGyaKU16fOeD38yNh49+dmQ9i6a8LgAAZrZCmmbe9ra3Ram07xfcjRs3xoc+9KFDOrdUKmmaoaXd98TuuHvj7tzclecuPaRz2574ebRvujM3N3Deb0xZbQAAwPT3vYd35P6IVClFvOiU3knPKe98NDrW3pybG1x1dUSpkA1nAQCAFtI/mN9pZvbT3GmmNLQrOtd8LTdXPeOqiMrku18CAACMN/R0dpoZGYyOR27Jn3/yJY0oCwCAGa6QppmIiCzLinopKNR1d+R3mVk6pyOet2LyG9ieMn6XmdqcY2LopJdOWW0AAMD0d+OarbnxM4+fF/N7Jr85reuuz0Yp9q3D6+2zo3raaxtSHwAA0Nr6q0e200zn/V+P8vC+Dw/LSuUYPOOqKakNAABIy+C4ppmOSZpmOtbdGqXhPaPjrFSO6kkva1htAADMXIU0zaxdu7aIl4HC7RwciW/fl7+B7TWrlkRbefKtQyMiyn3rouPhG3NzA+e8LaJcWC8bAADQ4nYP1eKHa3fk5l5y6oLJTxreE133fjE3VT3jisg6Zk9xdQAAwHSwc9xOM3O7nsbfIbIsuu7+XG5q6IQXRX3O8qkoDQAASMxQLf/B25PtNNP54Ldy4+Gjnx1Zz6KG1AUAwMxWyN35xx9/fBEvA4W7/p7NUR3zCQiVcikuP3vxIZ3bfcen8p/83DE7qmdcMeU1AgAA09f3Htoe1ZF964ZKuRQXnzx500zXmq9GubpzdJxFKQbOfmvDagQAAFpbfzXfNDO789D/PNj25B3RtuW+3NzgWW+ckroAAID0VMftNNNZOUDTzMhgdDzyndzU0MmXNKosAABmuAO3agOTyrIsrrt9U27uRaf0xqLZHQc9tzTYF133XZebGzzj9ZF1zJnSGgEAgOntxjXbcuNnHz835nVPcoNblkXXndfmpoaPf2HU55/QgOoAAIDpoH+wlhvP7aoc8rnjd5mpzTkmho99/pTUBQAApGdC08wBdprpWHdrlIb3jI6zUjmqJ72sobUBADBzaZqBw/TT9Ttj/fbB3NwV5y49pHO77v3XcQu7SgyuumZK6wMAAKa3XdWR+OHaHbm5l526cNJz2h/7YbRteyA3N3COtQYAAKRquFaPwXE3pc09xJ1mSoN90fnA9bm5wTPfEFE+9KYbAACAscY3zXS0lfZ7XOeD38qNh5c/K7KeRQ2rCwCAmU3TDBymL93+ZG580sLueMYxh7BTTG04uu7If/Lz0MmviPrco6eyPAAAYJq79cHtMVzLRsdt5VK84OTeSc8Zv8vMyPyTYvjY5zakPgAAoPXtHLfLTETEnK5Da5rpXPPlKNWqo+Os3BaDZ1w5ZbUBAADpGTqUnWZGBqPjke/kzzvlVY0sCwCAGe7Q/lfxQ/SiF70oIiJKpVLcfPPNE+YPx/jnorVUKo35NLFyuTzpuNme3FmN1Q9uz81d9Yyjoq3t4D9S7Q9cH5XdT+Tmqs94V8P+LaeDVs+bqSXvdMg6LfJOi7xpVY38nboZ7/ub7s+vOZ5z4vyYP6vzgMeX+9ZHx9r8+nno3LdFpa29IfXNZK5z6ZB1WuSdFnmnRd60qlZYo+wZHpowN7+nIyqVg/ycZFl03/353NTwipdHec7Sp1coR8w1Li3yTou80yLvdMiaVtYK93kN5Xtmoqu9MqGu9rXfi9LwntFxVirHyCmvTPreqlbiOpcWeadF3umQdVrkvdeUNs1897vfjYi9jS7j50ulUmRZtp+z9u+p48c/F62lt3fyTzmeKvPmzSvkdQ7VJ392f4z5wOfo6ajEm597SszpOsjNaFkWcecn8nPHXhBzT7946oucxlotbxpL3umQdVrknRZ50yqKWp9ENP5937dnOH78yI7c3GvOP27y7/EnfxMRYxYqnXOj58J3RE/nIeyIyaRc59Ih67TIOy3yTou8aRWtsEZZ258fd7WXY+nihQd/wke+H7H9odxUx3N+KzoK/J7YP9e4tMg7LfJOi7zTIWtaSSvc51WqbMyN5/Z0T6xr3Y35c45/bsw/+pQpq4+p5TqXFnmnRd7pkHVaUs17SptmLrroov02uRxoHqaj4Vo9Pv+T9bm515x39MEbZiIi1v0gYuMd+bnn/PYUVgcAAMwE/3HvEzE8plO/o60cLzl9kk90ru6K+MVn8nPnvSVCwwwAACStb2A4N57XfYg7Uf5s3AeALTwl4oTnT1FVAABAqgZHarlxZ/u4TzofHohY8+383JmXN7YoAABmvIbsNHOo8zAd/cc9T8bm/mpu7i0XHH9oJ//oI/lx7wkRp14yNYUBAAAzxvV35j9p7YUrF0/eqH/nFyKqfWMmShHPfGdjigMAAKaNneOaZuYeygeA7docce/X83PnvyPCB+QBAABHqDpcz4272iv5Ax68KWJ4975xqRxx+q8XUBkAADPZlDbNkJ7t27c35HnL5XJu+6e+vr6o1+uTnFGcT37/wdz43KPnxFFdtYP+W5S3Pxxz19wQY/+ktGfV26Lat7MBVU4vrZw3U0/e6ZB1WuSdllbIu6jt45leGrU+iSj2fb9jYDh+8OCW3NwLV8w98PeXZTH3R/8QY/+sNHTii2J3eUFEA/9NZrJWuM5RDFmnRd5pkXdamp239QkH0gprlCe29uXGs9pLB62r82f/HD31fc02WaUz+k54ZWTWF03R7GscxZJ3WuSdFnmnoxWytkbhQFrhPq/+PQO5cX14KFfXrNu+EB1jHh8++tmxa7jd3ztaSCtc5yiOvNMi73TIOi2tkHcrrFE0zXBEarXawQ+aAvV6vbDXmszarQPxs/X5Jpcrzl1ySLV13faJKEU2Oq53zIk9p742ogW+r1bTKnlTDHmnQ9ZpkXda5E2rKPJ92Mj3/c2/3BIj9X1rh862Ujz3xHkHfL32R38QlW355v6Bs6/2czmFXOfSIeu0yDst8k6LvGkVrbBG2TFup5k5nZXJ68rq0XnX53JT1VNeFSPtc/w9o0W4xqVF3mmRd1rknQ5Z00pa4T6vweH8fEdlTF0jg9G+9ubc49UVr/Qz1OJc59Ii77TIOx2yTkuqeZebXQBMJ9fd/mRu3NvdFi86ZcFBzysN7oiu+67LzQ2e9caIjllTWh8AADD93bhma2783BPnx6yOygGOjui649O58Ujvihg+9rkNqQ0AAJhe+gdHcuPZXQdeW0REtK//flR2PpqbGzzrTVNeFwAAkKbqSP5TzTva9t2+2LHu1igN7xkdZ6VyVFe8vLDaAACYuTTNwCHaM1SL6+/Zkpu7fNWS3OLtQLru/nyURgZHx1m5LQZXXT3lNQIAANPb9j3DE3a3fOmpCw94fLlvfXQ88p3c3OCqqyNKpYbUBwAATC/91fwnBs7tbJv0+K578rvMjCw6PUaWnjvVZQEAAIkaqmW5cdfYppkHb8g9Nrz8WZH1LCqkLgAAZjZNM3CIvn3f1tg9tO+PS6WIeO2qJQc/sTYUXXdem5uqnnxJ1Gcvm+IKAQCA6e47D2yLsX8v6morx/NOmn/A47vv+myUYt8J9Y7ZMXjqaxpYIQAAMJ3sHLfTzNyuAzfNlHdtjI6145ryz3qTpnwAAGDKVIfH7TRT+dXtiyOD0fnIzbnHhk6+pKiyAACY4TTNwCHIsiy+dPuTubnnrZgfy+Z1HvTczge+GZU9m3Jzg+e8fUrrAwAAZoab1mzLjZ+/Yn50d1T2f/DQ7ui894u5qerpV0V0zGpUeQAAwDTTP5jfaWZ25wHWFxHRee+XopTtO77ePiuqK3+9YbUBAADpqdbyTTOd7XtvX+xYd2uUhveMzmelclRXvLzQ2gAAmLk0zcAhuPPxXfHA5j25uSvPXXrwE7Msum//RG5qePmzYmTpqqksDwAAmAG27h6Onz+6Mzf3klMXHvD4rjVfjfJQ/+g4i1IMrHpLw+oDAACmn/7qIe40Ux+Jrnu+kJuqrvz1yDpmN6o0AAAgQdWRcU0zlb07W3Y8eENufnj5MyPrWVRYXQAAzGyaZuAQXDdul5mj53XGBSfMO+h57Rt+FG1b7s3NDZz3G1NaGwAAMDN85/5tUc/2jbvby/HcE+fv/+Asi647P52bGjrhRVGfd3zjCgQAAKad8TvNzOna/04zHY/cEpXdT+TmBs96Y8PqAgAA0jQ0vmmmrRwxMhgdj3wnf9zJryqyLAAAZjhNM3AQ23YPx033b8vNve6cJVEulQ56bvdt+V1mavOOj6ETXjSl9QEAADPDjWu25sYXreiNrvb9L9vbH/1BtG1/KDc3eM41DasNAACYnnaO22lmTuf+d5rpuvtzufHw0nOjtvjMhtUFAACkqTqS5cYdbeXoWHdrlId3j85lpXJUV7y86NIAAJjBNM3AQXz97s0xXNu3YOuolOLXz1p80PMq2x+KjnW35OYGzn1HRMmPHQAAkLd511Dc9lh/bu6lpy044PHd43aZGek9OYaPeU5DagMAAKanepbF7mp+p5m5XRObZsp966N9/fdyc3aZAQAAGqG6n51mOh68ITc3vPyZkfUsKrIsAABmOHfvwyRq9Sy+fMem3NxLT10Y83vaD3pu1+2fzI3rnfNi8LTXTml9AADAzHDz/dti7Gerzeoox4UnzN/vseW+ddH+SL5Bf3DV1RGHsBsmAACQjl3VWmTj5uZ0ViYc13XPF6I05sh659yonvyqBlcHAACkJsuyCU0z3TEUHY98Jzc3ZD0CAMAU2/8e7AV47LHH4oknnog9e/bEM5/5zOju7m5WKXBAP1q7Ix7fWc3NXXne0oOeVxrYFl2//HJubvCsN0W090xpfQAAwMxw45qtufFFJ/dGZ9v+P+ei+87P5m9o65gTg6de3sjyAACAaWjn4MiEuTnjd5qpDUXXfV/MTVVPe21Eu7/bAQAAU2uknk1o7F+0+YdRHt49Os5K5aiueHmxhQEAMOMVutNMf39//Nmf/Vkce+yxcfzxx8ezn/3suPjii2Pt2rW54/71X/81rrrqqnjXu95VZHkwwZduz+8yc9rSnjjzqFkHPa/r7s9Fqbav2SYrt8fg2W+d8voAAIDp78n+atyxYVdu7mWnLtz/wUO7o3P8DW1nXBXRcfB1CgAAkJZd1VpuXClF9LTn/zTY8fB/RHlgW25u8Mw3Nrw2AAAgPeN3mYmIWLj+P3Lj4eXPjKxnUVElAQCQiMJ2mnnggQfikksuiYcffjiybF/PeKlUmnDsBRdcEG95y1siy7K45ppr4nnPe15RZcKox3YMxg/X7sjNXXHu0v2+Z3Nq1ei+6zO5qeopr4r67IPvUAMAAKTn5vvzN6jN7qzEs4+ft99ju9Z8JcpD+xpssijFwNlvaWh9AADA9DR+p5k5XW0T/sbRdffncuPh5c+O2oKTG14bAACQnupIfp+ZzhiKuY/dkpsbOvmSIksCACARhew0Mzg4GK961avioYceip6ennj/+98f119//QGPP+GEE+Liiy+OiIivf/3rRZQIE3z5jk25LUFnd1biFacd4NOex+i8/xtR3rMlNzdw7jumuDoAAGCmuPGX+aaZF57cGx1t+1muZ/XouvPa3NTQiS+O+rzjGlkeAAAwTY1vmpnblf8svcr2h6Jjw3/m5gbOsssMAADQGON3mnlB+Y4oj+wZHWelclRPennRZQEAkIBCdpr5x3/8x3jwwQdj1qxZ8b3vfS/OPffcg57zyle+Mm6++eb40Y9+1PgCYZzqSD2+dvfm3NxlZy2OrvbK5CdmWXTf/onc1NDRF0Rt8ZlTXSIAADADbOyrxl0bd+XmXnrq/pv12x/9QbRtfyg3N7jq6obVBgAATG+7qrXceHZn/m8cXXd/Pjeudy+IoRUva3hdAABAmobGNc28qpJv4h9e/szIZi0usiQAABJRSNPMl7/85SiVSvG7v/u7h9QwExFxzjnnRETEAw880MDKOFKVykGaSA5TuVyedNxo37lva/QN5D+B7arzlh30+21b971o27omN1f9tf/SsH+nmaLZeVMseadD1mmRd1rkTatq5O/djXrff+eB7bnx3K62uPCk3qhUJj5/97hdZmoLTo768c+PSqk0JbWwj+tcOmSdFnmnRd5pkTetqtlrlF1D+RvS5nW176tpZDA6f/lvuceHzrgqKh09U1soR8w1Li3yTou80yLvdMiaVtbs+7yGs31fd8ZQvLj8i9zjI6dc6h6racB1Li3yTou80yHrtMh7r0KaZu67776IiHjZyw7906kWLtz7ybo7duxoRElMkd7e3kJeZ968eYW8zlO+fNe9ufFzT14Y5528/OAnfvPT+fHCU2LOua+JSPQCc7iKzpvmknc6ZJ0WeadF3rSKotYnEVP3vv/Og/fkxq88a1ksWbSfnWa2PhTxyC25qcqF74neBQumpA4m5zqXDlmnRd5pkXda5E2raPYaZSiezI0Xzu3eV9Ptn4uo7sw93vXc34quAmvm8LjGpUXeaZF3WuSdDlnTSpp9n1fHmCXIC8p3xOzS4JhHS9Hza6+PnjnWJNON61xa5J0WeadD1mlJNe9C7uTftWtXRETMnj37kM+pVqsREdHe3t6QmuBA7t7QF7et35Gbe+sFxx/8xE33RTx4U37uwvdomAEAAPbr0W174o7H+nJzr1q1bP8H//RjETH2I9jmRZzzhsYVBwAATHt9A8O58dzuMX9z+9kn8geveHHEghMLqAoAAEhVdbg2+vUllf/MP3jC8yLmLC24IgAAUlHI3fxP7RrzyCOPHPI599yz99N2jzrqqEaUBAf0L/+5LjdeOrczXnL6ISzKfvwP+XH3gohVbmIDAAD27/o7N+bGvT3tceGK/ewyU+2PuO2z+blnvDWiY1YDqwMAAKa7nYMjufG8p5pmNt4Z8dhP8wef/46CqgIAAFJVHalHRERnDMVLyr/IP3jGq5tQEQAAqWgr4kWe8YxnxLe+9a1YvXp1vPa1rz2kc6699toolUpx4YUXNrg6jsT27dsb8rzlcjm3/VNfX1/U6/WGvNZY/YMj8ZXbNuTmXrNqSfTv7DvAGXuV9myJeXf8a5TGzA2c/eYY3F2N2F1tQKUzS7PypjnknQ5Zp0XeaWmFvIvaPp7ppVHrk4jGvO+/ftujufGLTlkQu/az9ui849roqe4cHWdRip2nvj7qDfx+U9cK1zmKIeu0yDst8k5Ls/O2PuFAmr1G2bpzT27cESOxffv26Pnh/y86x8zXZy2NviXPjrDGaEnNvsZRLHmnRd5pkXc6WiFraxQOpNn3eW3ZsfdvHc8t3x2zS4Oj81mUom/5RZFZk0wLrXCdozjyTou80yHrtLRC3q2wRimkaeaKK66Ib37zm/HRj340/ut//a9x3HHHTXr83/7t38bq1aujVCrFG9/4xiJK5DDVarWDHzQF6vV6Ia/19buejMHhfReCSrkUrz5r0UFfu/uOz0SpNjQ6zsodsefMN0dW0L/PTFNU3rQGeadD1mmRd1rkTaso8n14pO/7R7cPxn1P7s7NvXhl78TnzOrRcfunclNDJ744hmcvj/BzVxjXuXTIOi3yTou80yJvWkWz1yh9A8O58az2ctQH+qL9l1/NzQ+e8fqoZSVrjGnCNS4t8k6LvNMi73TImlbS7Pu8Bof27oZ5Umljbn5k6bkx0rXQmmSacp1Li7zTIu90yDotqeZdLuJF3vrWt8aqVaticHAwXvjCF8YNN9wQWZaNPl4qlSLLsvjpT38ab37zm+MP/uAPolQqxfOf//x45StfWUSJEFmWxZdufzI3d/HJvbF4dsfkJ45Uo/uuz+Smqisvi2zW4qkuEQAAmCFuXLM1N17Q0xbPOHbuhOPa138/2nY8nJsbXHV1Q2sDAABmhv5q/g+fc7sq0Xn/16M8vK+BPyuVY/DMq4ouDQAASFB1ZO8HGXfESG4+627+J48DADCzFbLTTLlcjq9//evxvOc9Lx555JG49NJLo6enJ0qlUkREvPCFL4z+/v6oVqsRsbd5YcWKFfHFL36xiPIgIiJ+9ujOWLdtMDd3xblLD3pe5/1fi/LAttzcwLnvmNLaAACAmeWmNfk1xItOWRBt5dKE47rv/HRuPLLglBg+5jkNrQ0AAJgZ+gfzN6LN6axE122fy80NnfCiqM9eVmRZAABAop5qmmkf3zRTbm9GOQAAJKSQnWYiIo477ri4/fbb441vfGOUy+XYvXt3ZFkWWZbF5s2bY3BwcHT3mauuuip+8pOfxJIlS4oqD+JLt+V3mTlxQVf82rFzJj8py6L79k/kpoaOfW7UFp021eUBAAAzxCPbBuL+zXtycy85deGE48o71kbHuu/m5gZXXR1RmthcAwAAMFaWZbFz3E4zy3ffG21b7svNDZ71piLLAgAAEvZU00xbKb9WiYqmGQAAGquQnWaesmDBgviXf/mX+Iu/+Iv45je/GT/72c9i06ZNUavVYuHChXHeeefFZZddFitXriyyLIhN/UNx64Pbc3OvO3fp6G5IB9K+fnW0bXsgNzdw7m9MeX0AAMDMMX6XmYWz2uO8YyY27Hff9dncuN45NwZPvbyRpQEAADPE4HA9avUsN3fcun/LjWtzjonh455fZFkAAEDChmp71ygTd5op9BZGAAAS1JTfOI8//vh4z3ve04yXhv36yp2bojbmb0ddbeW49MxFBz1v/C4zIwtOieHjLprq8gAAgBnkP365NTd+8coFUSnnG/ZLQ7ui897rcnODZ1wV0d7T8PoAAIDpb2c1fxPa3NgVvetuyM0NnvXGiFK5yLIAAICEPbXTTHuM32mmownVAACQEv9LOMkbqdXjq3dtys298oxFMbtz8p6yypY10fHo93NzA+e8PeIgu9MAAADpemjLnnh460Bu7mWnLpxwXOcvvxzl4V2j46xUjsGz39rw+gAAgJmhfzB/E9rrKt+Lcq06Os7K7TF4+hVFlwUAACRsX9OMnWYAACiWphmSd+tDO2LzruHc3BXnLjnoed135HeZqXcviOqpr57S2gAAgJnlpjXbcuPFs9tj1dGz8wdl9ei689rc1NCJL4763GMaXR4AADBD9Od2msniLW035x4fWvGyyHoWFVsUAACQtAM1zUS5vQnVAACQksLbtOv1etx7773x8MMPR39/f9RqtYOec/XVVxdQGam67vYnc+NVy2fHqUtmTXpOaffm6Fzz9dzc4FlviWjrmvL6AACAmSHLsrhxzdbc3EtWLozyuN0q29d/L9p2rM3NDa6yLgYAAA7dzjE7zSyPrbGi9Hju8cEz31R0SQAAQOKGnmqaKeXvF7TTDAAAjVbYb5x79uyJD37wg/Gxj30stm7devATfqVUKmmaoWHWbh2In67fmZu78tylBz2v++7PRqk+NDrOKh0xcPabp7w+AABg5nhoy0A8sm0wN/fS0xZMOK77zk/nxiMLTonhoy9saG0AAMDM0j+475Obl5a25x7LKp0xfPSziy4JAABI3OCBdpqpdDShGgAAUlJI08yuXbvi4osvjl/84heRZVkRLwmH5N/uyO8yM7+7LV68cuJNazkjg9F117/kpqqnXh5Zz6KpLg8AAJhB/mPcLjNL53TEWctm5+bKO9ZGx7pbc3MDq66JGLcbDQAAwGT6q/s+uXlhKf/hYfWehdYYAABA4YZqe+8bbBvfNFNub0I1AACkpJCmmQ9+8IPx85//PCIiLrjggvgv/+W/xDnnnBPz58+PcrlcRAkwwcBQLb5x95bc3KvPXhwdbZO/Jzt/+ZUoD+Y/lW3gnLdPeX0AAMDMkWVZ3LRmW27upacuiPK4G9W67/xMblzvnBfVU1/d8PoAAICZZeeYnWYmNM10Lyy6HAAAgKj+aqeZjqjl5rNKIbcwAgCQsEJ+47zuuuuiVCrFJZdcEl/72tc0ytASvv3LrbF7aN8irBQRr121ZPKTsnp03/6J3NTQcc+P2sKVDagQAACYKe7fvCfWbx/Mzb3k1PyNaqWh/ui8799yc4NnXBXR3tPw+gAAgJmlvzqmaSb6co9lmmYAAIAmGPpV04ydZgAAKFoh3SsbNmyIiIj3ve99GmZoCVmWxZdufzI399yT5sfR87smPa993a3RtuPh3NzAue+c8voAAICZ5cZfbs2Nl8/tjDOPmpWb67zvy1Ee3jU6zkrlGDz7LYXUBwAAzCz9g/s+NGxhqT/3mJ1mAACAZhj8VdNM+7immUzTDAAADVZIB8uSJXt371i0aFERLwcHdffGXXH/pj25uSvOXXrQ87pv/3huPLJgZQwf+9wprQ0AAJhZsiyLG9dsy8295NQFUSqVxhxUj+47r80dM3TiS6I+95giSgQAAGaYnWN3minld5qpdy8ouhwAAIDRnWbaS7X8AxVNMwAANFYhTTPPetazIiJizZo1RbwcHNSXbt+UGx89rzMuPGHepOdUNt8bHY/9KDc3cO5vRIy90Q0AAGCc+57cHRv6qrm5l56a/2Tn9vWro9L3SG5ucNXVjS4NAACYoXI7zcTO3GOZnWYAAIAmqB5wp5m2ZpQDAEBCCmma+f3f//2IiPjwhz8cWZYV8ZJwQDv2DMeNa7bm5l57zpKolCdvfum+/RO5cb1nUVRPvWzK6wMAAGaW8bvMHDO/M05b2pOb677j07nxyIKVMXz0BQ2vDQAAmJl2Du67CW1RKd80U+/RNAMAABRvqLb3vsHxTTNRttMMAACNVUjTzHOe85z467/+6/jhD38Yb3jDG2LHjh1FvCzs19fu3hzDtX3NWx2VUrz6rMWTnlPe9WR0PnB9bm7g7LdEVDobUiMAADAzZFkWN41r2n/pqQujNGbHyvL2tdGxfnXumIFzrrGrJQAAcNh2VffdhLZgfNOMnWYAAIAmGPzVTjNtUcvNZxVNMwAANFZhexv+4R/+YaxYsSLe9a53xbHHHhsvfelLY+XKldHT03PQcz/wgQ8UUCEpqNWz+PIdm3JzLzl1YczvmXzx1XXXZ6JUHx4dZ5XOGDzrTQ2pEQAAmDnueWJ3bNw5lJt7yakLcuPuu67Njeud86K68tUNrw0AAJi5dg7uvQmtFPVYEP25xzTNAAAAzTD0q6aZDjvNAABQsMKaZjZt2hRf+cpXoq+vL+r1enzta1875HM1zTBVfvRIX2zoq+bmrjx3yeQnDe+Jrrs/n5saPO01kfmjEgAAcBA3/jK/y8xxvV2xcvG+D48oDfVH533/ljtm8MzXR7R3F1IfAAAw8wzX6qOf4Dw39kR7adynOHcv2N9pAAAADZNlWVR/tU5pH980Y6cZAAAarJCmma1bt8ZFF10UDzzwQGRZVsRLwn5dd/uTufHKJT1x1rLZk57T9cuvRLm6Izc3eM7bp7o0AABghqlnWdx0/7bc3EtPXRClUml03Hnfv0V5ePfoOCuVY/CstxRWIwAAMPP0D+5rkllU6pvwuJ1mAACAotXqWdR/ddtg2/jG/nJhn/sNAECiykW8yF/8xV/E/fffH1mWxRVXXBHf+c53YuvWrVGr1aJerx/0/2AqbNgxGD94eEdu7spzl+ZuWJsgq0f37Z/ITQ0d/8KoLTi5ARUCAAAzyV2P74on+4dycy89dczNaVk9uu+8Nvf40Ikvjfrco4soDwAAmKF2Vvd9avPC2Jl7rN4xO6Kts+iSAACAxD21G2bEfnaaKdtpBgCAxiqkTfvrX/96lEqleMtb3hKf/vSni3hJmODLd26KsfsczeqoxCtOm/zT1Doe+U5U+h7JzQ2c9xtTXxwAADDj3LQmv8vMiQu6YsWi7tFx+7pbo9K3LnfM4KqrC6kNAACYufoH992AtqDUn3sss8sMAADQBEMj++7aao9xO81UOoouBwCAxBTSNLNhw4aIiHjHO95RxMtRoEql0pDnLZfLk46frqGRenztrs25uV8/e0nM7p580TV+l5mRRadH/bjnRWWy3Wl42qY6b1qbvNMh67TIOy3yplU1an0S8fTf9/Usi5vuzzfNvOz0RdHWtm8Z3nNXfpeZkYWnRf2451hvtADXuXTIOi3yTou80yJvWlWz1ii7h/fdjLao1Jc7LutZ1NC6mHqucWmRd1rknRZ5p0PWtLJm3uc1nA2Pfj1+p5lyW4d1yjTiOpcWeadF3umQdVrkvVchTTOLFi2KDRs2xJw5c4p4OQrU29tbyOvMmzfviM7/6m0bYsdAfsH1Gy9YGb29sw980uO3RWz4z9xU2/N+N3oXLDiiWji4I82b6UXe6ZB1WuSdFnnTKopan0Qc/H3/k7XbYvOuodzcFc86KXp7f7Uu3vJAxLrVucfbnvMe640W5TqXDlmnRd5pkXda5E2raNYapVbZM/r1wtiZO65t7lGF1sXUc41Li7zTIu+0yDsdsqaVNPM+r20ju0a/bhu308zc+QsjrFOmLde5tMg7LfJOh6zTkmrehbQKPf/5z4+IiLvvvruIl4MJPvPjdbnxc1YsjJOXTNIwExHxo3/Ij2cfFXHW66a4MgAAYCb65p2P58anLp0Tpywd80ESP/lo/oTu3oizryygMgAAYKbbObDvE5wXlvJNMzFrUcHVAAAARAwOP9Uok0VnKf/Bx1FpL7weAADSUkjTzB/8wR9Ee3t7/M3f/E0MDg4W8ZIw6p7H++Ln67bn5t56wfGTn9S3IeKeL+fnnvWuiLaOKa4OAACYib7/4Jbc+NJVy/YNBvsibv9c/oRnXBPR0VNAZQAAwEy3c3DfDWgLJjTNLC64GgAAgIjqSD0iJu4yExERFfdjAQDQWG1FvMgznvGM+NjHPhbvfOc742Uve1l87GMfi5UrVxbx0jTY9u3bD37QYSiXy7ntn/r6+qJerx/Wc33i1ody48WzO+LXlnVMWnv39/8+uur7/qiUtXVF38mvjaxB32/qpjJvWp+80yHrtMg7La2Qd1HbxzO9NGp9EvH03vfDtXo8smV3bu7spZ2j9XXe9onoGdo1+lhWKkffyiutN1pIK1znKIas0yLvtMg7Lc3O2/qEA2nWGuXJ7f2j84vGNc3sKc+KqrXHtNLsaxzFknda5J0WeaejFbK2RuFAmnmf15ZtfRGx/6aZvl17ol6xTpkuWuE6R3HknRZ5p0PWaWmFvFthjVJI08w73vGOiIg444wz4vvf/36cccYZsWrVqli5cmX09Ez+SbqlUik+/vGPF1Emh6FW20/3fwPU6/XDeq1d1ZH45j2bc3OXn704ypEd+PmGdkfH3flPfR487XUx0jE3oqDvN3WHmzfTk7zTIeu0yDst8qZVFPk+nOx9/8iWPVHL8nMn9HbsPT6rR+cdn8o9NnTiS2Nk1lHWGy3MdS4dsk6LvNMi77TIm1bRrDVK38Dw6PzCyDfNjHT2+vmY5lzj0iLvtMg7LfJOh6xpJc28z2tgaO+HF3fEyITja1GOup+Tact1Li3yTou80yHrtKSadyFNM5/61KeiVCpFxN4mmHq9HnfccUfccccdk56XZZmmGY7I9fdsicGRfd1wlVLEa1YtmfScrvuui3I1/0ekgXPe3pD6AACAmefhrQO58aJZ7TG7c+/yu33drVHpW597fOCcawqrDQAAmPn6B/fdhLaw1Jd7LOteUHQ5AAAAUf3V/Vv722kmK7cXXQ4AAIkppGnmuOOOG22agaJkWRb/dvuTubkXnNwbS+Z0HPikei26x33qc/WEF0e998QGVAgAAMxEj2wbzI1PWtg9+nX3nZ/OPTay8LQYWf6sQuoCAADS0F/dexNaJWqxoLQr91i9e1EzSgIAABI3VNvbNNO+n51mQtMMAAANVkjTzCOPPFLEy0DOzx/tj7Xjbla78rylk57TsfamqOwc96nP5/3GlNcGAADMXGvH7TRzwq+aZirbH4qO9d/LPTZwzjURPmQCAACYQjt/tdNMb+ya8Fi9Z2HR5QAAAMTgr3aaaS/tZ6eZiqYZAAAaq9zsAqBRrhu3y8zxC7ri/GPnTnpO9+2fyI1HFp/pU58BAICnZe22fNPMiQv2Ns103fmZ3Hy9c35UV/56YXUBAABp2PWrnWYWlvpy81mUIuua34SKAACA1A2NTLbTTCGf+w0AQMI0zTAjbd41FLc8uD03d+W5S6M0ySc4tz15R7Rv/FlubuDc3/CpzwAAwCGrZ1msG7fj5YkLu6JU7Y+uX/5bbn7wzDdEtHUVWR4AAJCAp3aaWVjamZvPuua7GQ0AAGiK6kgWEQdqmrHTDAAAjaVphhnpq3duilo9Gx13tZXjVWcsmvSc8bvM1GYdFdWTX9mQ+gAAgJlpY181qr/6tLSnnLCwOzrvuy5Kw3tG57JSJQbPfnPR5QEAADNcPctGd5pZFPmmmXr3wmaUBAAAMPq3k/ao5eazcrsPNAYAoOE0zTDjjNTq8eU7N+XmXnnGwpjTdeBPTyv3Px4dD96QmxtcdXVEpaMhNQIAADPT2q0DufGczkos7CpH953X5uaHTnpp1OcsL7I0AAAgAbuqtXjqI8UWlvpyj2WaZgAAgCbZ1zQzbqcZu2ECAFCAKf2ts1KpREREqVSKkZGRCfOHY/xzwcGsfmhHbN41nJu74tylk57Tdeeno5Tt+ySDrK07Bs98Q0PqAwAAZq612wZz4xMXdkfH+tVR2bk+Nz+w6poiywIAABLRP7jvb2oLSv25x+o9mmYAAIDmGPpV00zbuKaZrNLejHIAAEjMlDbNZFn2tOahEa67/cnc+Oxls+PUJbMOeHxpaFd03fOvubnB06+IrGteQ+oDAABmrvE7zZy4sHvCLjMji06PkeXPLLIsAAAgEf3VfR8QtjDyO83U7TQDAAA0yehOM6Va/gE7zQAAUIAp/a3z//P/+f88rXmYao9sG4ifrN+Zm7vi3CWTntN575eiPLRrdJxFKQbOeVsjygMAAGa4R7blm2ae0f1kdDzwvdzcwKprIkqlIssCAAASsXPMTjOLSvm/l9S7FxRdDgAAQEREVGt7P3S7Y/xOM+WOZpQDAEBiNM0wo/zbHZty43ndbfGSUyf55LT6SHTf8anc1NBJL4n6/BOmvjgAAGBGy7Jswk4zz9/xtdy43tUb1ZWXFVkWAACQkNxOM+OaZjI7zQAAAE3y1E4zbeOaZuw0AwBAEcrNLgCmysBQLb5x9+bc3KvPWhydbQd+m3c8fGNU+h/LP8+572xIfQAAwMy2dc9w7ga1ubE7jn/8+twxg2e+IaKtq+jSAACARPSP2WlmQYzfaUbTDAAA0BxDv2qaaY9abj6rtDejHAAAElNIq/bq1asjIuKZz3xmdHd3H9I5g4OD8ZOf/CQiIi666KKG1cbM8e9rtsauMTeolSLitecsmfSc7ts/nhsPL1kVI8t+rRHlAQAAM9z4XWbe0L46KiP75rJSJQbPelPRZQEAAAnZOaZpZvxOM/UeTTMAAEBzVEebZsbvNKNpBgCAxiukaeaFL3xhlMvluPPOO+OMM844pHM2bNgwet7IyMjBTyBpWZbFl257Mjf3nBPnxzHzD/wJzm0bfxHtT9yWmxs49x0RpVJDagQAAGa2sU0z5ajH29r+IyLb9/jQSS+L+pzlTagMAABIxVO7X3bGUMwt5Rv7MzvNAAAATXLAphk7zQAAUIByUS+UZdnBD5rC80jLPU/sjjWb9uTmrjz3ILvM3PHJ3Lg2e1kMrXjFlNcGAACkYe3WwdGvLy7fFsuzfGP/wDnXFF0SAACQmP5f7TSzIPonPFbvXlB0OQAAABGxr2mmrVTLzWd2mgEAoACFNc08XfX63l+UK5VKkythOvjuA9ty4+VzO+PCE+cf8Pjyzsei46Fv5+YGV13j0wsAAIDD9si2fZ/i/IbKd3OPjSw6I0aWnV9sQQAAQHJ2/mqnmYWlvtx8Vm6LrHNuM0oCAACIodreD87uGL/TTLmtCdUAAJCalm2aWbduXUREzJs3r8mVMB2M32XmpactiEq5dMDju+/4dJSy+ui43j4rBs98fcPqAwAAZr61W/c1zZxRfiT32MDZb44oHXiNAgAAMBV2/WqnmYWl/E4z9a4FEaWW/bMgAAAwwz2100z7uKaZzAccAwBQgIa0aq9fv36/8xs3bozZs2dPem61Wo2HHnoo/uzP/ixKpVKceeaZjSiRGeb+cU0zpy+ddcBjS9X+6Lz3i7m56hlX+oQ1AADgsO2qjsSW3cMREVGJWhwV+d0wR5ac3YyyAACAxOys/qppJsbtNNOzsBnlAAAARMS+ppm2qOUfsNMMAAAFaMhvnSeeeOKEuSzL4mUve9nTfq6rr756KkpiBtuyeyi27hnOzZ2yuOeAx3fd+4UoD+8aHWelcgysuqZh9QEAADPf2F1mlsb2qJSy3OP12cuKLgkAAEjQzsG9N6AtLO3Mzde7Nc0AAADNc8CdZsodzSgHAIDENKRpJsuypzW/P11dXfG+970v3vGOd0xVWcxQD4zbZaa7vRzHzO/a/8H1kei641O5qaGTXhb1ecc1qDoAACAFD49pmlle2pJ7LGvriqyrt+iSAACABO16aqeZCU0zC5pRDgAAQEREDI02zYzbaabS3oRqAABITUOaZj75yU/mxm9/+9ujVCrF//gf/yOOPvroA55XKpWiq6srli1bFuedd17Mnj27EeUxw6wZ1zRzyuKeqJRL+z2246FvR2XXxtzcwLm/0bDaAACANDyydXD06+WlrbnHarOXR5T2v0YBAACYKlmW7dtpJvJNM5mdZgAAgCYa3WmmlN9pJsoNuX0RAAByGvJb5zXXXJMbv/3tb4+IiMsvvzzOOOOMRrwkCXtg88Smmf3Ksui+7eO5qeGl58XIsmc0qjQAACARa7ft22nm6HFNM/U5y4suBwAASNDgcD1G6llE7G+nGU0zAABAc4zUs6jtXapEe+SbZrKynWYAAGi8Qlq1b7nlloiIOPHEE4t4ORJz/6bdufHKJftvmml74ufRvunO3NzAee9oWF0AAEA61m7d1zSzTNMMAADQBP3V2ujXE5pmejTNAAAAzfHULjMREe1Ryz9Y0TQDAEDjFdI084IXvKCIlyFBg8P1WLd9MDd36pJZ+z22+7ZP5Ma1OUfH0Ekva1htAABAGgaH6/F4X3V0vLy0Jfd4bbamGQAAoPF2Du77xObxTTOZnWYAAIAmGco1zdhpBgCA4pWbXQAciYe27Il6tm9ciogVC7snHFfuWxcdD/9Hbm7gnLdFlAvpGwMAAGaw9dsHYsyyJI4ev9PM7GXFFgQAACSpv/rUzWdZLIq+3GP17gXFFwQAABD5nWba7DQDAEATaJphWrt/857c+LgFXdHdUZlwXPcdn47SmNvY6u2zo3rGlQ2vDwAAmPke3jqQGx9dHtc0M0fTDAAA0Hg7B/fefNYT1egqDeceq9tpBgAAaJKxTTMdpfE7zfjAYwAAGk/TDNPa/Zt258YrF/dMOKY02Bdd930pN1c98/WRdcxpaG0AAEAaHtk6OPr17NgTcyO/TqnNWV50SQAAQIKe2mlmYalvwmOaZgAAgGaZdKeZsp1mAABoPE0zTGvjd5pZuWRi00zXvf8apeF9x2WlcgysuqbhtQEAAGlYu23fTjPLStsmPF6fbacZAACg8aoj9aiUS7Eodubms7auiPaJfz8BAAAowlAtG/26PfI7zWiaAQCgCPY3ZNqqZ1k8sGlc08ziWfmDasPRdce1uamhFa+I+tyjG10eAACQiLVb9zXNLC9tzT1W714Y0dZVdEkAAECCXnfO0njtqiURD+yI+I998/XuhRGlUtPqAgAA0jY4vG+nmfFNM1lF0wwAAI1np5kZ6Ktf/WpcddVVcdVVV8X999/f7HIa5vG+auwZs6iKmLjTTOeDN0Rl9xO5uYHz3tnw2gAAgDSM1LNYv31wdLy8tCX3eG3O8qJLAgAAElYqlaJreHturt69oEnVAAAARAzVxjbN1PIPln3mNwAAjadpZoZZv359fOlLX4rOzs5ml9Jwa8btMtPb3RaLZo359IEsi+7bP5Y7ZnjZr8XI0nOKKA8AAEjAhh2DMVLPRscTdpqZrWkGAAAoVnlgW26cdS9sUiUAAAAR1RE7zQAA0FyaZmaQkZGR+MhHPhInnHBCPOtZz2p2OQ13/6bdufHKJT1RKpVGx22P/zTaNt+TO2bg3N8opDYAACANa7cO5MYntuVvTqvPWVZkOQAAAFEeGNfMr2kGAABoorFNM22l8TvNdBRcDQAAKdI0M4N8+ctfjsceeyze/e53R7k886O9f3N+p5mVi2flxt23fzw3rs09NoZOfEnD6wIAANKxdlu+aeaEcU0zNTvNAAAABSuNb5rp0TQDAAA0z9immY7xO82U24ouBwCABCX9W2dfX188+OCD8eCDD8ZDDz0UDz30UPT390dExAte8IJ473vfe8jPtXnz5rjhhhviF7/4RWzdujXa2triqKOOigsvvDBe/vKXR2dnZ6O+jYiIePjhh+MrX/lKXHXVVXHMMcc09LVaxf2bxjXNLOkZ/bq8Y210rL059/jAOW+LKFeKKA0AAEjE2q2DufGy0pbcuD5H0wwAAFCs8TvNZHaaAQAAmmhoJBv9um1c00xU2guuBgCAFCXdNPOud71rSp7nZz/7WXzoQx+KgYF9nzBcrVZHG3Fuvvnm+JM/+ZM46qijpuT1xhseHo6PfOQjccIJJ8SrX/3qhrxGq+kbGIkn+4dyc6cs3tc0033Hp6MU+xZc9Y45UT39isLqAwAA0vDI1n3rwFLUY/6IphkAAKC5ygP5HTDr3QuaVAkAAEB+p5n2qOUes9MMAABFKDe7gFaxaNGiOOecc572eWvXro2//du/jYGBgejq6oo3vOEN8cEPfjA+8IEPxItf/OKIiNi4cWP85V/+Za6pZip94QtfiI0bN8a73/3uKJfTiPSBzbtz445KKU5Y0BUREaXBHdF133W5xwfPfENkHbMLqw8AAJj5siyLR7btW+ctir6oZPlPSKvN1jQDAAAUq7Qnv9NM3U4zAABAE1VrY5tmxu00U+4ouBoAAFKUdKv2FVdcEStWrIgVK1bE/PnzY9OmTfHbv/3bT+s5PvWpT8XQ0FBUKpX40z/901i5cuXoY2eddVYsW7YsPvvZz8bGjRvjG9/4Rlx11VUTnuPaa6+N4eHhQ37NSy65JJYtWxYREffff3984xvfiCuvvDKOO+64p1X7dLZm057ceMWinmir7G0Y6rr781Ea2XfjWlaqxOCqqwutDwAAmPme7B+KPcP7/tBzdCl/Y1pW7oisx81pAABAgbJ6lAfH7zRjXQIAADRPfqeZcU0zlaRvXwQAoCBJ/9a5vwaWp+PBBx+M++67LyIiLr744lzDzFMuvfTSuOWWW2LDhg1xww03xGtf+9poa8v/s994441RrVYP+XUvuOCCWLZsWdRqtfjIRz4Sxx9/fFx++eVH9L1MN/ePa5o5ZXHP3i9qQ9F157W5x6onXxL1OT7dGQAAmFqbdg1Fd3s5Bn7VOHNi+7gb02YfFVFKYzdQAACgNZSqO6NUz9+EppkfAABopqGxTTOlWu6xrNxedDkAACQo6aaZI/WTn/xk9OuLL754v8eUy+V4wQteEJ/73Odi9+7dcc8998Q555yTO+Yzn/nMYb3+4OBgbNy4MSIi3vSmN+33mD/90z+NiIg//MM/jGc961mH9Tqt6IHN+aaZlUv2Ns10PvDNqOzZlHts8Nx3FFYXAACQjlXL58St7zs/NvUPxdqtA7F8zY8jHtz3eG3OsuYVBwAAJKk8sHXCXL17QRMqAQAA2GvsTjNtE3aa0TQDAEDjaZo5AmvWrImIiM7OzjjppJMOeNwZZ5yRO2d808zham9vjxe96EX7fey+++6LjRs3xvnnnx9z586NJUuWTMlrtoLhWj0e3jqQmzt1SU9ElkX37Z/IH7v8WTGydFWR5QEAAAkpl0px1NzOOGpuZ8x6tC/3WH22HS8BAIBilQbG7YDZMTui0tmkagAAACKqI9no1x3jmmbsNAMAQBE0zRyBxx57LCIijjrqqKhUKgc8bvnyfTdKPXXOVOjo6Ijf+q3f2u9jH/nIR2Ljxo1x+eWXx8qVK6fsNVvBw1sHYqSe5eZOWdwT7Rt+HG1b7s3ND9hlBgAAKEh518bcuD5H0wwAAFCs8p78TjNZ98ImVQIAALDX2J1m2qOWf1DTDAAABdA0c5iGhoaiv78/IiIWLpz8Dw6zZ8+Ozs7OqFarsXXr1kmPbRWHWudkzUJHolwuH3D84JbB3GNHz+uMeT2d0X3HJ3PztXknRG3FS6NSbkyNTJ3J8mbmkXc6ZJ0WeadF3hSt2euTiEN731fGNc1k845paE00jutcOmSdFnmnRd5pkTdFa+U1SqWa32km61lkXTLNucalRd5pkXda5J0OWdMMzV6jHOx9Pzzmw5Hbxu00U27vtGaZZlzn0iLvtMg7HbJOi7z30jRzmAYH9zVudHV1HfT4rq6uqFarufNa2bvf/e5DOu6LX/xigyvZa968eaNfr+vL34h21jHzo7e2JWLtzbn5ynN/O3oXLiqkPqbW2LyZ+eSdDlmnRd5pkTeN1mrrk4gDvO/HNc3MWrYyZvX2FlQRjeQ6lw5Zp0XeaZF3WuRNo7X0GiXbk5tvm7cseq1LZhTXuLTIOy3yTou80yFritBqa5Tx7/taPNUUk0VHKb/TzNz5CyOsWaY117m0yDst8k6HrNOSat6aZg7T0NDQ6NdtbQf/Z3zqmLHnNdJ73/veeO9731vIaxXt3o19ufHpy+ZG3POV/EFd8yPOfVNxRQEAAGkbHojYsyU/N/eY5tQCAACka/fm/HiWDxcDAACaqzqyt1GmLWoTH6x0FFwNAAAp0jRzmDo69v3CPjIyMsmR+WPGntfK/vEf/7HZJexXlmVx38b+3NwZy+ZGrHkof+CZr4nomFVgZQAAQKO06vokp2/DxLl5RxdfBwAA0HAtvUbZPa6Zv0fTDAAAzHQtvUaJiOpIPSIi2mM/99hV3L4IAEDj+a3zMHV1dY1+PTg4eNDjnzpm7HmtbOHChYd03Pbt2xvy+uVyObf9U19fX9Tr9di4sxp9A8O5Y4+elcXwloejfczcnp6jo9qg2ph6B8qbmUne6ZB1WuSdllbIu9c27Ulp9vok4uDv+7YN98WcMcfXO+dF356RiD3WJdNRK1znKIas0yLvtMg7Lc3O2/okPa28RpndtzH/95LyLH8vmeaafY2jWPJOi7zTIu90tELW1ijpafYa5WDv+92DQxER0b6fnWZ27BqILKxZppNWuM5RHHmnRd7pkHVaWiHvVlijaJo5TB0dHTFnzpzo7++PrVu3Tnrsrl27olqtRsShL1Kmi1ptP9tmNkC9Xo9arTZhl5nZnZVYMqstyjsfzc2PzF5eWG1MvafyJg3yToes0yLvtMibVlHk+3D8+75t3E4z9TnWJDOJ61w6ZJ0WeadF3mmRN62iGWuU0p7836xGOnv9PMwwrnFpkXda5J0WeadD1rSSou/zespkO83UslJkfkamNde5tMg7LfJOh6zTkmre5WYXMJ0dc8wxERHxxBNPTPrmefzxxyecw+F5YPOe3Hjl4p4o1YejvOuJ3Hxtrn9nAACgOOVdj+fGtdnLm1QJAACQsvJAvmkm65lZH+YGAABMP9XhAzfNRKWj4GoAAEiRnWaOwKmnnhr33XdfVKvVePjhh+OUU07Z73H33ntv7pyZpFKpNOR5y+Xyfsf3j2uaOXXp7GjfsylKkeXmS/OPb1htTL0D5c3MJO90yDot8k6LvGlVjVwDHOx937ZrY26czT3ammQac51Lh6zTIu+0yDst8qZVFb5GqY9EaXBH/sBZi61NpjnXuLTIOy3yTou80yFrWlnR93k9Zai2976uttLED6Uut3dGWLNMK65zaZF3WuSdDlmnRd57aZo5As961rPiq1/9akRE3HLLLfttmqnX63HrrbdGRMSsWbPizDPPLLLEhuvt7S3kdebNmxcREQ9uGczNn3fi4piXPZQ/uHNuzD/q+IhSqZDamHpP5U0a5J0OWadF3mmRN62iqPVJxH7e94ObcsOuJSdFV4H10Fiuc+mQdVrknRZ5p0XetIrC1yi7NkWM+5CxectWRMy2NplJXOPSIu+0yDst8k6HrGklRd/n9ZSnmmY69rPTTO/CJRGV9kLqojFc59Ii77TIOx2yTkuqeafZKjRFTj755Dj99NMjYm/TzP333z/hmOuvvz42bNgQERGvfOUro61Nn9LhqtWzWLl0Tiyf1zU6d8ayuRE71ucPnH+chhkAAKBYfY/lx/OObU4dAABAunZvHjdRiuhe0JRSAAAAnlId2bvDTFtM3Gkmyu6lAwCg8ZL+rfOXv/xlPPHEE6PjnTt3jn79xBNPxHe/+93c8S984QsnPMfb3va2+LM/+7MYGhqKD37wg/Ga17wmzjzzzBgaGoof/vCHcdNNN0VExLJly+Kyyy5ryPeRikq5FB+75vyIiNi+eyjue2JnnLJ0dsSa/TTNAAAAFCXL9tM0c0xzagEAANI1vmmmZ0FEJek/BQIAAE1Wq2cx/KudZtrH7zRTbvfByAAAFCLp/6X85ptvjltvvXW/j61ZsybWrFmTm9tf08yJJ54Yv/d7vxcf+tCHYmBgID7/+c9POGbZsmXxJ3/yJ9Hd3T0ldbeS7du3N+R5y+Vybvunvr6+qNfruWNOX1CJPf07IzY9GJ1j5ge7l8RAg+qiMQ4lb2YOeadD1mmRd1paIe+ito9nemnU+iRi8vd9aWBbzB8ZzB2/I+ZEZl0ybbXCdY5iyDot8k6LvNPS7LytTziQotcolU2PxOwxx9S6FsRO65Jpr9nXOIol77TIOy3yTkcrZG2NwoE04z6vgaF9u8t0jGuaySrtscOaZdpphescxZF3WuSdDlmnpRXyboU1StJNM1Pl/PPPj7/5m7+Jb33rW/GLX/witm3bFm1tbXHUUUfFBRdcEK94xSuis7Pz4E80DdVq+9k2swHq9foBX6vc92huPDL7mMLqojEmy5uZR97pkHVa5J0WedMqinwfjn3fV3bk1yRZqRIjXQsj/FzMGK5z6ZB1WuSdFnmnRd60iqLXKJXdW/JzXQv8LMxArnFpkXda5J0WeadD1rSSZtzntac6PDrfFvnXz8ptfj5mANe5tMg7LfJOh6zTkmreSTfNvPe97433vve9U/JcixcvjmuuuSauueaaKXk+Dl25/7HcuD736CZVAgAApKiy6/HcuD57aUQ56eU2AADQBEMnvjh2zloa5YGtUd6zNWqzj2p2SQAAQOKqtX2fYt5eyu80E+X2gqsBACBV7uJheqsNRXnXk/mpOcc0qRgAACBF5f7xTTPLmlQJAACQsvrcY2No7rHNLgMAAGBUdSQb/bp9/E4zFU0zAAAUQ9MMR6RSqTTkecvl8qTj0fn+J6MUWW6u1Htcw+qiMQ41b2YGeadD1mmRd1rkTatq5Dpgsvd92+4nco9lc462JpnmXOfSIeu0yDst8k6LvGlVzVqjMLPIOi3yTou80yLvdMiaVtaM+7zG9MxEe0zcacbfU6Yf17m0yDst8k6HrNMi7700zXBEent7C3mdefPm7f+Bbbfnx53zYv5RJzS6HBrsgHkzI8k7HbJOi7zTIm9aRVHrk4hx7/vBzbnHOhafFB0F1kLjuc6lQ9ZpkXda5J0WedMqmrZGYUaTdVrknRZ5p0Xe6ZA1raQZ93l17CqNft02bqeZSntXoesmGsN1Li3yTou80yHrtKSad5qtQswcO9bnx/OPa04dAABAunZuyI/nHdOcOgAAAAAAAFpIdXhfo0zH+J1mKu0FVwMAQKo0zTC9aZoBAACare+x/Hjesc2pAwAAAAAAoIUMjtRHv27XNAMAQJO0NbsAprft27c35HnL5XJu+6e+vr6o1+sTjuvZ9GB0jhkPdi+JgQbVROMcat7MDPJOh6zTIu+0tELetmpnfxq1PomY5H1fG4r5/U9EacyxO0tzo2ZdMq21wnWOYsg6LfJOi7zT0uy8rU84kKasUZhxZJ0WeadF3mmRdzpaIWtrFA6kGfd5bd2xc3S+rVTLnTeSlaLf31OmnVa4zlEceadF3umQdVpaIe9WWKNomuGI1Gq1gx80Ber1+n5fq7zz0dx4ZPbRhdVE4xwob2YmeadD1mmRd1rkTaso8n341Pu+vPPxKEWWe2y4Z2lkfiZmFNe5dMg6LfJOi7zTIm9aRTPWKMx8sk6LvNMi77TIOx2yppU04z6vgaF9u8uM32kmK7f7+ZgBXOfSIu+0yDsdsk5LqnmXm10AHInyzg25cX3uMU2qBAAASFG5//HcuN4+K7LOuU2qBgAAAAAAoHUMjez7FPP9Nc0AAEARNM0wfdWqUd79ZH5K0wwAAFCgyvimmTnLI0qlJlUDAAAAAADQOqqTNM1Eua3gagAASJWmGaatcv/GKEWWm6vPObpJ1QAAACkq7xrXNDN7WZMqAQAAAAAAaC1jm2baopZ7LKt0FF0OAACJ0q7NEalUKg153nK5POk4IqJt/M1pnXOj3NPbkHporEPJm5lD3umQdVrknRZ506oatT6JOPD7vm3XE7n5bO7RDa2DYrjOpUPWaZF3WuSdFnnTqpqxRmHmkXVa5J0WeadF3umQNa2sGfd5De/rmYmOUn6nmVKl3d9UpiHXubTIOy3yToes0yLvvTTNcER6e4tpUpk3b97EyYe35Ybl3uMLq4fG2m/ezFjyToes0yLvtMibVlHkemD0fT+4OTffuWRFdFqXzDiuc+mQdVrknRZ5p0XetIqmrFGY8WSdFnmnRd5pkXc6ZE0racZ9XuW2TaNft0e+aaaja1Z0+JvKtOc6lxZ5p0Xe6ZB1WlLNO81WIWaGHevz4/nHN6cOAAAgXX2P5cfzjm1OHQAAAAAAAC1mcGTfVjNtUcs/WGkvuBoAAFKlaYbpa0LTzHHNqQMAAEhTlkX0PZqfm3t0c2oBAAAAAABoMdXhfY0yHeN2mtE0AwBAUdqaXQDT2/bt2xvyvOVyObf9U19fX9Tr9dwxc7Y8nHsD7+lYFNUG1UNjHUrezBzyToes0yLvtLRC3kVtH8/00qj1ScT+3/fZwPaYP7Qrd1xfaW7UrUumvVa4zlEMWadF3mmRd1qanbf1CQdS9BrFdW5mknVa5J0WeadF3ulohaytUTiQZtzn1bd7YHR+/E4zgyNZDPibyrTTCtc5iiPvtMg7HbJOSyvk3QprFE0zHJFarXbwg6ZAvV6f8FqlnY/lxiOzlxdWD421v7yZueSdDlmnRd5pkTetosj3Yb1ej9iRX5NkUYrh7kURfh5mHNe5dMg6LfJOi7zTIm9aRdFrFO/7NMg6LfJOi7zTIu90yJpW0oz7vMbuNNM+bqeZrFTx8zEDuM6lRd5pkXc6ZJ2WVPPWNMP0VKtGZfeT+am5xzapGAAAIEW1+SfG9td/PSr9j0d518YoDe6IqHQ2uywAAAAAAICWMDiy71PM20vjmmbK7UWXAwBAojTNMC2V+x+fMFefc3QTKgEAAJLV1hm1xWdGbfGZza4EAAAAAACg5QyNZKNft8e4TzQvu3URAIBilJtdAByOys4NuXG9c15knXOaVA0AAAAAAAAAAABjVcfuNBPjdpqpdBRdDgAAidI0w7RU3vloblyfe0yTKgEAAAAAAAAAAGC8odq+ppm2CTvNtBdcDQAAqdI0w7RU6c/vNFObc3STKgEAAAAAAAAAAGC8wTE7zXSM22kmym0FVwMAQKr85skRqVQqDXnecrk86bhtXNNMNu/YhtVC4x0sb2YWeadD1mmRd1rkTatq5JrA+z4t8k6HrNMi77TIOy3yplVZozAVZJ0WeadF3mmRdzpkTStrxn1ewyPZ6Nfjd5optXe632sacp1Li7zTIu90yDot8t5L0wxHpLe3t5DXmTdvXn5izxO5YdfSldFVUC003oS8mdHknQ5Zp0XeaZE3raKo9UmE931q5J0OWadF3mmRd1rkTauwRqERZJ0WeadF3mmRdzpkTStpxn1eQ/s2mon2Un6nmZ7Zc6PH/V7TnutcWuSdFnmnQ9ZpSTXvNFuFmP52rM+P5x/XnDoAAAAAAAAAAACYoDqyr2umI/JNM1HpKLgaAABSpWmG6Wd4MGJXfqcZTTMAAAAAAAAAAACtozpcG/26LWr5B8vtBVcDAECq2ppdANPb9u3bG/K85XI5t/1TX19f1Ot7P3mgvP3hGL8x1PaYG9GgWmi8yfJm5pF3OmSdFnmnpRXyLmr7eKaXRq1PIlrjfU9x5J0OWadF3mmRd1qanbf1CQdijcJUkHVa5J0WeadF3ulohaytUTiQZtznNTiyr1GmfdxOM7sGh2LY/V7TTitc5yiOvNMi73TIOi2tkHcrrFE0zXBEarXawQ+aAvV6ffS1yjvW5x/rnB+1tp6Igmqh8cbmzcwn73TIOi3yTou8aRVFvg+979Mi73TIOi3yTou80yJvWoU1Co0g67TIOy3yTou80yFrWknR93nV6lkM17LR+fE7zdRLbX4+ZgDXubTIOy3yToes05Jq3uVmFwBPV2Xno7lxfe7RTaoEAAAAAAAAAACA8YZr+U8w7xi300yUfd43AADF0DTDtFPeuSE3rs05pkmVAAAAAAAAAAAAMN7gSL5ppr2Ub5rJyu1FlgMAQMI0zTDtVPofy43rczXNAAAAAAAAAAAAtIqhkSw3bota/oCKnWYAACiGphmmnYk7zRzdpEoAAAAAAAAAAAAYrzpup5mOGL/TTEeR5QAAkDBNM0w7dpoBAAAAAAAAAABoXeObZibsNFO20wwAAMXQNMP0MjIY5T2bc1O1OZpmAAAAAAAAAAAAWsX4ppn28TvNVNqLLAcAgIRp1+aIVCqVhjxvuVze77i884mJB/ce17A6KMaB8mZmknc6ZJ0WeadF3rSqRq4LvO/TIu90yDot8k6LvNMib1qVNQpTQdZpkXda5J0WeadD1rSyou/zGslKY2azaC/ld5opt3dFuOdr2nGdS4u80yLvdMg6LfLeq5RlWdbsIuCQPXhTxGdft2/cvSDij9Y2rx4AAAAAAAAAAAByVt+/Oa7+xE8iYu8uMw90XZ0/4Ld/HrHo5CZUBgBAatJsFWL62rE+P55/XHPqAAAAAAAAAAAAYL+qI/XRr9tjZOIBlfYCqwEAIGWaZphetq/LjzXNAAAAAAAAAAAAtJTB4dro122aZgAAaKK2ZhfA9LZ9+/aGPG+5XI558+aNjvv6+qJer8eszQ9Gx5jjBruXxkCDaqA4B8qbmUne6ZB1WuSdllbIu7e3t9DXY3po1PokojXe9xRH3umQdVrknRZ5p6XZeVufcCDWKEwFWadF3mmRd1rknY5WyNoahQMp+j6vbX39o3MdUZtw3o7+PZHV3Pc13bTCdY7iyDst8k6HrNPSCnm3whpF0wxHpFabuKBphHq9HrVaLUp9j+XmR2YvL6wGivNU3qRB3umQdVrknRZ50yqKfB9636dF3umQdVrknRZ5p0XetAprFBpB1mmRd1rknRZ5p0PWtJKi7/MaGNq3u8z+dpqpRSUyPx/TnutcWuSdFnmnQ9ZpSTXvcrMLgKej3P94blybc0yTKgEAAAAAAAAAAGB/hmr7PsG8vTSxaSYr+7xvAACK4TdPppXt19wa5f7Ho9K/Ico7H4uRJWc1uyQAAAAAAAAAAADGqI6MaZqJ/XyaeaW9wGoAAEiZphmml0pH1OefEPX5JzS7EgAAAAAAAAAAAPZjaCQb/bo9Ju40E6VKgdUAAJCycrMLAAAAAAAAAAAAAGaOwdxOM/mmmazcEVEqFV0SAACJ0jQDAAAAAAAAAAAATJmhXNNMLf9gpa3gagAASJmmGQAAAAAAAAAAAGDKVCfdaaa96HIAAEiYphkAAAAAAAAAAABgylRr+5pm2krjd5rRNAMAQHE0zQAAAAAAAAAAAABTpjq8r2mmY8JOM21FlwMAQML89gkAAAAAAAAAAABMmTefvywuPmVBVGv1WP7k+ohfjnmw3NG0ugAASI+mGY5IpVJpyPOWy+VJx8ws8k6LvNMh67TIOy3yplU1an0S4X2fGnmnQ9ZpkXda5J0WedOqrFGYCrJOi7zTIu+0yDsdsqaVFX2f1zOOmx/P+NVc+wNz800zlbaGrploHNe5tMg7LfJOh6zTIu+9SlmWZc0uAgAAAAAAAAAAAJiB7vxSxJffuW+85MyI9/ywefUAAJCUNFuFAAAAAAAAAAAAgMarD+fHlfbm1AEAQJI0zQAAAAAAAAAAAACNURvKjzXNAABQoLZmF8D0tn379oY8b7lcjnnz5o2O+/r6ol6vN+S1aD55p0Xe6ZB1WuSdllbIu7e3t9DXY3po1PokojXe9xRH3umQdVrknRZ5p6XZeVufcCDWKEwFWadF3mmRd1rknY5WyNoahQNp5n1enf07o2fMeDgrxa4GrplonFa4zlEceadF3umQdVpaIe9WWKNomuGI1Gq1Ql6nXq8X9lo0n7zTIu90yDot8k6LvGkVRb4Pve/TIu90yDot8k6LvNMib1qFNQqNIOu0yDst8k6LvNMha1pJM+/zqo9Uc+Os1OZnY4ZwnUuLvNMi73TIOi2p5l1udgEAAAAAAAAAAADAzFSqD+UnKu3NKQQAgCRpmgEAAAAAAAAAAAAaoz6SG2ZlTTMAABRH0wwAAAAAAAAAAADQEKXacH5C0wwAAAXSNAMAAAAAAAAAAAA0xvidZiqaZgAAKI6mGQAAAAAAAAAAAKAxakP5cbmtOXUAAJAkTTMAAAAAAAAAAABAQ5Tqw/mJsp1mAAAojqYZAAAAAAAAAAAAoDHqI7lhVtE0AwBAcTTNAAAAAAAAAAAAAA1RqtlpBgCA5tE0AwAAAAAAAAAAADRGPd80k5XbmlQIAAAp0jQDAAAAAAAAAAAANERpXNNMVOw0AwBAcTTNAAAAAAAAAAAAAI1RG8kNs3JHkwoBACBFmmYAAAAAAAAAAACAhpiw00y5rTmFAACQJE0zAAAAAAAAAAAAQGPUxjXNVNqbUwcAAEnSNAMAAAAAAAAAAAA0xridZjI7zQAAUCC/fXJEKpVKQ563XC5POmZmkXda5J0OWadF3mmRN62qUeuTCO/71Mg7HbJOi7zTIu+0yJtWZY3CVJB1WuSdFnmnRd7pkDWtrJn3eZXrI7lxqa2zoWsmGsd1Li3yTou80yHrtMh7r1KWZVmziwAAAAAAAAAAAABmoH9+UcSGn+8b//qHI57x1ubVAwBAUtJsFQIAAAAAAAAAAAAarzaUH1fam1MHAABJ0jQDAAAAAAAAAAAANEZtJD/WNAMAQIHaml0A09v27dsb8rzlcjnmzZs3Ou7r64t6vd6Q16L55J0WeadD1mmRd1paIe/e3t5CX4/poVHrk4jWeN9THHmnQ9ZpkXda5J2WZudtfcKBWKMwFWSdFnmnRd5pkXc6WiFraxQOpJn3ec0dHozKmPGugaEYbuCaicZphescxZF3WuSdDlmnpRXyboU1iqYZjkitVivkder1emGvRfPJOy3yToes0yLvtMibVlHk+9D7Pi3yToes0yLvtMg7LfKmVVij0AiyTou80yLvtMg7HbKmlTT1Pq/aUH4YFT8bM4TrXFrknRZ5p0PWaUk173KzCwAAAAAAAAAAAABmqPpIflz2Wd8AABRH0wwAAAAAAAAAAADQEKXacH6i0t6cQgAASJKmGQAAAAAAAAAAAKAx6vmmmUzTDAAABdI0AwAAAAAAAAAAADREaVzTTJQ1zQAAUBxNMwAAAAAAAAAAAEBj1MbtNKNpBgCAAmmaAQAAAAAAAAAAAKZeVo9SVsvPlduaUwsAAEnSNAMAAAAAAAAAAABMvfrwhKmsYqcZAACKo2kGAAAAAAAAAAAAmHq1kYlzZU0zAAAUR9MMAAAAAAAAAAAAMOVK+9lpRtMMAABF0jQDAAAAAAAAAAAATL36xJ1msoqmGQAAiqNpBgAAAAAAAAAAAJhypdrQxEk7zQAAUCBNMwAAAAAAAAAAAMDUqw9PmLLTDAAARdI0AwAAAAAAAAAAAEy5Un1k4mS5rfhCAABIlqYZAAAAAAAAAAAAYOrV8jvNZFGKKFWaVAwAACnSNAMAAAAAAAAAAABMvXq+aSYq7RGlUnNqAQAgSZpmAAAAAAAAAAAAgClXGr/TTLm9SZUAAJAqTTMAAAAAAAAAAADA1Bu/04ymGQAACqZpBgAAAAAAAAAAAJhypfpIfqLS1pxCAABIlqYZAAAAAAAAAAAAYOrVhnLDzE4zAAAUTNMMAAAAAAAAAAAAMOUm7DSjaQYAgIJpmgEAAAAAAAAAAACmXn04N8wqmmYAACiWphkAAAAAAAAAAABgypVqdpoBAKC52ppdANNbpVJpyPOWy+VJx8ws8k6LvNMh67TIOy3yplU1an0S4X2fGnmnQ9ZpkXda5J0WedOqrFGYCrJOi7zTIu+0yDsdsqaVNes+r3KMa5qptDd0vURjuc6lRd5pkXc6ZJ0Wee9VyrIsa3YRAAAAAAAAAAAAwAzzs09GXP97+8bHPCvinTc2rRwAANKTZqsQAAAAAAAAAAAA0Fj1iTvNAABAkTTNAAAAAAAAAAAAAFOvNpQfa5oBAKBgbc0ugOlt+/btDXnecrkc8+bNGx339fVFvV5vyGvRfPJOi7zTIeu0yDstrZB3b29voa/H9NCo9UlEa7zvKY680yHrtMg7LfJOS7Pztj7hQKxRmAqyTou80yLvtMg7Ha2QtTUKB9Ks+7w6d+2MnjHHD9dLsauB6yUaqxWucxRH3mmRdzpknZZWyLsV1iiaZjgitVqtkNep1+uFvRbNJ++0yDsdsk6LvNMib1pFke9D7/u0yDsdsk6LvNMi77TIm1ZhjUIjyDot8k6LvNMi73TImlbSrPu8spFq/vFSxc/FDOI6lxZ5p0Xe6ZB1WlLNu9zsAgAAAAAAAAAAAICZp1Qfzk9UOppTCAAAydI0AwAAAAAAAAAAAEy92khumJXbmlQIAACp0jQDAAAAAAAAAAAATLkJO82U25tTCAAAydI0AwAAAAAAAAAAAEy9CU0zdpoBAKBYmmYAAAAAAAAAAACAqVfLN81klY4mFQIAQKo0zQAAAAAAAAAAAABTrlQfyU+U25tTCAAAydI0AwAAAAAAAAAAAEy9+vidZtqaVAgAAKnSNAMAAAAAAAAAAABMuVJtKD9hpxkAAAqmaQYAAAAAAAAAAACYevWR3DDTNAMAQME0zQAAAAAAAAAAAABTrlQbzk9UNM0AAFAsTTMAAAAAAAAAAADA1Bu300yU25pTBwAAydI0AwAAAAAAAAAAAEy9+lBumJXtNAMAQLE0zQAAAAAAAAAAAABTrjR+p5mKphkAAIqlaQYAAAAAAAAAAACYerXh3NBOMwAAFE3TDAAAAAAAAAAAADDlSvV804ydZgAAKJqmGQAAAAAAAAAAAGDq1Udyw6zc1qRCAABIlaYZAAAAAAAAAAAAYMqVakP5ibKdZgAAKJamGQAAAAAAAAAAAGDqjd9pptLRpEIAAEiVphkAAAAAAAAAAABg6tWG8+NyW3PqAAAgWZpmAAAAAAAAAAAAgClXqo9vmmlvTiEAACRL0wwAAAAAAAAAAAAw9cY1zWQVO80AAFAsTTMAAAAAAAAAAADAlCvVxu8009GcQgAASJamGQAAAAAAAAAAAGDq1Udyw6xspxkAAIqlaQYAAAAAAAAAAACYWlk9SlktP1dpb04tAAAkS9s2AAAAAAAAAAAAMLXqwxOmsrKmGZiphoeHY8+ePTE0NBRZlkWWZc0uiaehVCrFli1bRsfDw8MynKFknZbDzbtcLkdbW1t0dXVFZ2dnlMvTe68WTTMAAAAAAAAAAADAlCrVJjbNhKYZmHGyLIu+vr4YGBhodikcobE30tfr9SZWQqPJOi2Hk3e9Xo+RkZEYHByMUqkU8+fPj66urkaV2HCaZgAAAAAAAAAAAICptZ+mmayiaQZmml27dk1omJnuOxKkSm7pkHVaDifvsTuGZVkW27dvj97e3mnbOKNpBgAAAAAAAAAAAJha9ZGJc2W3LMJMMjIyErt27Rodz5kzJ3p6etyQP021te27Ro+M7Ocazowh67QcTt5ZlsXQ0FDs3r07qtVqRETs2LEjlixZMi2v8dOvYgAAAAAAAAAAAKClleoTd5oJO83AjPLUjdQREbNmzYrZs2dPy5upAcgrlUrR2dkZvb290dnZGRF7G2nGXvenE23bM8R73/ve2Lx5834fO+OMM+LP//zPiy0IAAAAAAAAAACAdO2naSYra5qBmWTszdPd3d1NrASARiiVSjFr1qzR6/3g4OC0vN5rmplBenp64pJLLpkwv2TJkiZUAwAAAAAAAAAAQKpKtf3sNKNpBmaUWq0WEXtvqm5rc0sywEzU0a8EMLQAAHWvSURBVNERpVIpsiyLkZGRZpdzWPwXagaZNWtWXHXVVc0uAwAAAAAAAAAAgNSN22kmK5UjypUmFQM0Qr1ej4i9TTOlUqnJ1QDQCE9d47MsG73uTzflZhcAAAAAAAAAAAAAzCwTdpop+4xvAACKl/xvoX19ffHggw/Ggw8+GA899FA89NBD0d/fHxERL3jBC+K9733vIT/X5s2b44Ybbohf/OIXsXXr1mhra4ujjjoqLrzwwnj5y18enZ2djfo2IiJieHg4vvvd78a2bduip6cnVqxYEaecckpDXxMAAAAAAAAAAAAmGL/TTLmjSYUAAJCy5Jtm3vWud03J8/zsZz+LD33oQzEwMDA6V61WRxtxbr755viTP/mTOOqoo6bk9fZnx44d8Q//8A+5uRUrVsTv/u7vNvR1AQAAAAAAAAAAIKc+kh/baQYAgCbwW+gYixYtiqOPPjruuOOOp3Xe2rVr42//9m9jaGgourq64vLLL4+zzjorhoaG4gc/+EHcfPPNsXHjxvjLv/zL+Ku/+qvo7u6e8tpf+MIXxumnnx7HHntsdHV1xcaNG+P666+P1atXx//4H/8j/uZv/qYhrwsAAAAAAAAAAADjlWr5nWai0t6cQgAASFryTTNXXHFFrFixIlasWBHz58+PTZs2xW//9m8/ref41Kc+FUNDQ1GpVOJP//RPY+XKlaOPnXXWWbFs2bL47Gc/Gxs3boxvfOMbcdVVV014jmuvvTaGh4cnzB/IJZdcEsuWLRsdX3nllbnHTzjhhNHvY/Xq1XHzzTfHpZde+rS+LwAAAAAAAAAAADgs9fz9cJmmGQAAmiD5ppn9NbA8HQ8++GDcd999ERFx8cUX5xpmnnLppZfGLbfcEhs2bIgbbrghXvva10ZbW/6f/sYbb4xqtXrIr3vBBRfkmmYO5CUveUmsXr06fvnLX2qaAQAAAAAAAAAAoBClcU0zUU7+dkWAKfHYY4/F//2//zdWr14dGzduHL3/+NOf/nRccsklU/Y6ixcvjoiI//bf/lu8//3vzz32gx/8IC6//PKIiPjqV78az33uc6fsdUnX5z//+Xjf+94XERE///nP47jjjmtyRcwUfgs9Qj/5yU9Gv7744ov3e0y5XI4XvOAF8bnPfS52794d99xzT5xzzjm5Yz7zmc80pL65c+dGRDythhwAAAAAAAAAAAA4IrVxO82UO5pUCMDM8dhjj8VLXvKS2Lp1a7NLAZg2ys0uYLpbs2ZNRER0dnbGSSeddMDjzjjjjAnnFOGBBx6IiH3dngAAAAAAAAAAANBopfpIfsJOMwBH7P/8n/8TW7dujba2tvjABz4QN9xwQ6xevTpWr14dF110UbPLYxpYv3599Pb2Rm9vb3zuc59r+Ov94Ac/iMWLF8fixYvjBz/4QcNfD/bHb6FH6LHHHouIiKOOOioqlcoBj1u+fPmEc6bKhg0bYtGiRdHZ2Tlh/l/+5V8iIuJ5z3velL4mAAAAAAAAAAAAHND4nWYq7U0qBGDmWL16dUREvPKVr4zf+Z3faXI1MLXe+MY3xhvf+MZml8EMpGnmCAwNDUV/f39ERCxcuHDSY2fPnh2dnZ1RrVanfEu0H/zgB/HNb34zTj/99Fi0aFF0dXXF448/HrfddlvUarW4/PLLczvdHIpDrXGyRqEjUS6XJx0zs8g7LfJOh6zTIu+0yJuiNXt9EuF9nxp5p0PWaZF3WuSdFnlTNGsUiiTrtMg7LfJOi7zTIWuaodlrlMne9+Wo5R4rVdobulai8Vzn0nIoeZdKpaLK4Vc2btwYERErVqyY0ucdn6VsZ679ZZ1lWZOqodGmOu9SqTQtf5/TNHMEBgcHR7/u6uo66PFdXV1RrVZz502Fs846KzZs2BCPPPJI3HfffTE0NBRz5syJ8847L17+8pfHOeec87Sf893vfvchHffFL37xaT/34Zg3b14hr0NrkHda5J0OWadF3mmRN43WauuTCO/71Mg7HbJOi7zTIu+0yJtGs0ahmWSdFnmnRd5pkXc6ZE0RWm2Nknvfd+Z3lmnr6Ine3t5C6qAYrnNp2V/eW7ZsiSzLolwuR1ubW5KLMDQ0FBERnZ2dDf03H3tT/P7yHft4pVKR/zQyvuGh0Q0Q3iut5XDzfqpxsr29fVr+PqfN9wg89R+eiDikH+Cnjhl73lQ444wz4vd///fj7/7u7+LTn/50fP7zn4+PfvSj8f73v/+wGmYAAAAAAAAAAADgiNSH8+NK+/6PA2BSn/vc56K3tzd3o/pf//Vfj8719vbGe97zntHHVq1aNWFuf97znvdEb29vrFq1qmG1H4p6vR7XXXddXH311XHWWWfFsmXLYtmyZXH++efHu971rvja174Ww8PD+z13aGgoPvaxj8Vll10WJ598cixZsiROPfXUuPLKK+MLX/hC1Ov1A77u+O//ySefjD/7sz+L888/P5YvXx5nnHFGvP3tb4/77rsvd9769evjj/7oj+L888+PZcuWxcqVK+Nd73pXrF279oCv9Vd/9Ve5DPv6+uIv//Iv48ILL4xjjjkmTjzxxLjsssviuuuum/Tf6qnn+Ku/+qtJj7v00kujt7c3Lr300gnnj723/L3vfW/ufbS/537kkUfiwx/+cLzhDW+IVatWjeZz9tlnxzve8Y646aab9lvD+vXro7e3Ny677LLRucsuu2zC633uc58bfXzse339+vUH/P62bNkSH/zgB+Oiiy6K448/Po466qhYtWpV/OZv/mb86Ec/mvTfZvzPxwMPPBC/+7u/G6tWrYqlS5fGypUr4y1veUv89Kc/nfR5mF60ah2Bjo6O0a9HRkYOevxTx4w9r1X94z/+Y7NLAAAAiAjrEwAAoLVYowAAAK2kpdcotXEfLq1pBoBx1q9fH295y1virrvumvDYQw89FA899FBcd9118Y1vfCOe97znTTj3yiuvjPvvvz83v2nTprjpppvipptuik996lOjjRiTueuuu+LKK6+MJ598cnRuYGAgvvrVr8aNN94YX/rSl+LCCy+M1atXx1vf+tbYuXPn6HGDg4Nx3XXXxU033RTf+ta34vTTT5/0tdatWxevec1rJjTZfP/734/vf//78a1vfSs++tGPtsSOLOvWrYvzzjtvv4899thj8dhjj8VXvvKVuOqqq+IjH/lIITV/5zvfibe97W3R39+fm3/00Ufj0UcfjS9+8Yvxzne+M/76r/96dHeUA7n++uvjN3/zN2PPnj2jc5s3b45vfvOb8e1vfzs++tGPxmtf+9qGfB8Uq/k/TdNYV1fX6NeDg4MHPf6pY8ae16oWLlx4SMdt3769Ia9fLpdzW/n19fVN2u3J9CbvtMg7HbJOi7zT0gp5T8dtPjl8zV6fRLTG+57iyDsdsk6LvNMi77Q0O2/rk/RYo1AkWadF3mmRd1rknY5WyNoaJT3NXqNM9r7v2rUzusccO1SP2N3AtRKN1wrXOYpzKHkPDw+Pzh3Kh89zeF7+8pfH6tWrIyLioosuioiIt7/97fH2t7999Jj58+dPyKBer0+ay9g8a7VaVCqV3Hiy5xn7eK1WO6z8N23aFC9/+cvjiSeeiIiI5z//+fH6178+TjnllCiVSrFu3br4/ve/H1//+tcnvMauXbvi1a9+dTzyyCMREXHJJZfEm970pjjqqKNi3bp18fGPfzx++MMfxo9//ON4/etfH9/4xjdy39/Y739gYCDe+ta3xtDQUPz3//7f4znPeU5UKpX4zne+E3/7t38bu3fvjt/6rd+KL33pS/HmN7855s6dG3/0R38Uv/ZrvxYjIyNx/fXXxz/90z/Fjh074nd+53fi29/+9oTvdey/9dvf/vZYt25dvO1tb4vLLrss5s6dG/fcc0986EMfioceeii+8pWvxJIlS+KDH/zgAf/tDpZtlmWj/3/scatXr44nn3wyrrzyyoiI+O///b/HK17xitHjIyIWLVo0ek61Wo2Ojo64+OKL4wUveEGceuqpMX/+/NixY0c89NBD8YlPfCJ++ctfxhe/+MU47rjj4o/+6I9Gn2fx4sWxevXquO222+J3f/d3IyLi7/7u7yY04Sxfvnz09ca+r0ZGRiZ8j3fddVe88Y1vjKGhoWhvb4/f+I3fiFe84hXR09MTd911V/z93/99rFu3Lj72sY9Fd3d3fOADHzjgv9E999wTX/nKV2Lp0qXx7ne/O84999zIsixuueWW+Pu///sYHByM3/u934vnPOc5sWjRogM+T6srlUoTfrbH5n2o6vV61Ov1GB4eftq/V7bCGkXTzBHo6OiIOXPmRH9/f2zdunXSY3ft2hXVajUiDn2hMh2MvTg1Ur1eL+y1aD55p0Xe6ZB1WuSdFnnTKop8H3rfp0Xe6ZB1WuSdFnmnRd60CmsUGkHWaZF3WuSdFnmnQ9a0kmbc55WN22kmK7X5mZhhXOfSsr+8D+XG63qWRd9AWg0187rbolwqTd3zzZuXa2CK2NvYcLAdTZ6O8Vkezk31T9f73//+0YaZD3zgA/E7v/M7ucfPO++8uPzyy+PP//zPJzRP/M3f/M1ow8x//a//Nf7kT/5k9LFzzjknLrvssnjPe94T1113Xfz0pz+Na6+9NtdkNNaWLVsiy7L493//9zjxxBNH53/t134tFixYEH/8x38c69evj1e96lWxZMmS+OY3v5lronj2s58dbW1t8eEPfzh+/vOfx5133hmrVq064Pd92223xT/90z/ldjA599xz49WvfnVceumlcc8998Q///M/x5vf/OYpzTgi4vTTT49Zs2aNjpcvXx6nnXbaAY9funRp/PznP4+jjjpqwmMXXXRRvO1tb4v3ve998a//+q/xD//wD/Hud7875s6dGxER7e3tcfrpp8e2bdtGzzn++OOP6Hv6gz/4gxgaGopKpRL/8i//EhdffPHoY+edd178+q//elx66aWxZs2a+MhHPhJXXXXVAb+/O++8M84555z4yle+EnPmzBmdP//88+PEE0+Md7/73dHf3x/XXXdd/NZv/dZh19xsU/2znWXZtPxvv6aZI3TMMcfEfffdF0888cSELsuxHn/88dw5AAAAAAAAAAAAMGPVhnPDrNzepEKAZuobGImX/sMvml1GoW58zzOit8c1bzIPPvhgfOtb34qIvbvEjG+YGWv27Nm5cbVajc9+9rMREXHaaafF+9///gnnlEql+F//63/Fd77zndi2bVt8/OMfP2DTTETEH//xH+caZp7ypje9Kf78z/88BgcHY8uWLfHhD394v7uOvO1tb4sPf/jDERHx4x//eNKmmZe97GW5hpmx3+f/+T//J17+8pdHvV6PT33qU/HXf/3XB3yeIsyaNSvXZDNeqVSK//f//X/jS1/6UuzZsyduvfXWuOyyyxpSyy9+8Yu47bbbIiLirW99a65h5inz58+P//2//3dceumlUa/X4xOf+ET8r//1vw74nH/3d3+Xa5h5yute97r4f/6f/yeeeOKJ+PGPfzytm2bYS9PMETr11FPjvvvui2q1Gg8//HCccsop+z3u3nvvzZ0zUxyoSehIlcvlScfMLPJOi7zTIeu0yDst8qZVNWp9EuF9nxp5p0PWaZF3WuSdFnnTqqxRmAqyTou80yLvtMg7HbKmlTXjPq9ylv8U8lJbR0PXSjSe61xaDiXv0hTupkJzjc+y0dneeOONozte/OZv/ubTOveOO+6Ivr6+iIh4wxvecMD/tsyZMyde/epXxyc/+clYs2ZNPPHEE/vdMaVUKsWrX/3q/T5Hd3d3nHTSSXHvvffG/Pnz40UvetF+jzv++ONj9uzZsWvXrli3bt2k9b/xjW884GPPeMYz4rTTTotf/vKXsXr16kmf53DtL+tD3X1keHg4Nm/eHLt27crtNrJgwYLYvHlz3HPPPQ1rmrn11ltHv37zm998wOOe/exnx8qVK+P++++f9N/wjDPOiDPPPHO/j5VKpTj77LPjiSeeGN3RaLo6krwP9HzT8fc5TTNH6FnPelZ89atfjYiIW265Zb9NM/V6ffQHddasWQf8AZuOent7C3md8dvKMbPJOy3yToes0yLvtMj7/9/efYdHVeb//3/NpFIkBAhFEGkiXbq0FQVlAVFQkRW7iL23XdyVD7qyoiL7dRXF1VWwUGRdUUEUBaWIhbr0GlAUCJ2EkjBJZn5/5DezmUzJBKae+/m4rr12Zs6Z+9yZ17nvM2+vuTmIF9GqTyTOe9OQtznI2izkbRbyNgt5I15QoyASyNos5G0W8jYLeZuDrBFPYvI7rxTvH9inVaqitCjWSog85jmz+Mv74MGDcrlcstvtSk72/5PkpOTT/3F2okpKTg74eYRLsM881H1KL4Qq+yP40s/9tVN6e1JSUoX/3vXr10uSUlJS1K1btwq9f+vWrZ7HXbp0CfreLl26aPLkyZKkbdu2qUGDBp5t7r+/Zs2aysrKCtiG+9xv0qSJUlIC30EoIyNDx48f18mTJ336VPqz7ty5c9A+d+rUSZs3b1Z2dracTqdSU1N99ikvW/dCCZvNFjQ7f8/LKiws1JQpUzRz5kytXbtWDocj4L5Hjhw5o3Ol9L7JZcbRli1bJEmpqalq37590HY6d+6srVu3aseOHQE/w+bNmwdto0aNGpKkEydORHw8R9PpLnhxn8MpKSlR/W/f4cIy3zPUrFkztWzZUlLJopnSE7HbnDlztHv3bknSgAEDLDVwAAAAAAAAAAAAAAAAAADwUVzmR7VJvj9YBQCY6dChQ5JKFnX6W9AQzJEjRzyPgy12kaTatWv7fV9plSpVCtqGe7FAqPuVvgOLP+X12b3d5XLp6NGjQfeNtCNHjqhfv3764x//qBUrVgRdMCNJBQUFEeuL+7PIzMws97f47tyDfYbhyhOJwfjVG5s3b1ZOTo7neV5enudxTk6OFi5c6LX/xRdf7NPGrbfeqtGjR8vhcGjs2LG66qqr1Lp1azkcDn3//feaP3++JKlevXoRu+UUAAAAAAAAAAAAAAAAAABxo7jI+7k98L/OD8C6qldK1jcPdo11N6KqeiXjf54dNe47qiSSROrzqFGj9N///leSdPnll+uGG25Q69atlZWVpfT0dM/f0qZNG+3evVsuV+TvLJVInx/ih/Gz8oIFC7Ro0SK/27Zs2eK5lZObv0UzjRs31sMPP6xXX31V+fn5mj59us8+9erV05NPPlnuqrREE2jV5Zmy2+1et/LLzc2V0+mMyLEQe+RtFvI2B1mbhbzNEg95J+JtPhF5kapPpPg47xE95G0OsjYLeZuFvM0S67ypTxAINQrCgazNQt5mIW+zkLc54iFrahQEEovfeVXOP660UvsWFBYrP4K1EiIvHuY5RE8oeRcWFnpeKyoqs1CulGqpZv3I3VlcrEiPDKfTGfAzL32HjGC5HD9+3PO4uLhYSUlJXs+DHav09vKO40+NGjUklVyfTp48WaG7zZQ+L/fu3atGjRoF3Hfv3r2ex9WqVfPqZ+nzOVj/3QtBXC5XSH+nv8+r9LH27t2r+vXrB3z/vn37JJUsDqlatapXWzabzdOPYH05ceJEwD6XvXNKcXGx38Uux44d06xZsyRJQ4cO1aRJkwK2476by5meK6X3Lfs3unM/fPiwCgoKgt5txn1DDX+foVuwMeTeXrovicpms/mM7dNZ3OR0OuV0OlVYWFjh75XxUKMYv2gmXDp37qyXXnpJc+fO1apVq3T48GElJyerbt266tatm/r376+0tLTyG0ow0brllNPp5PZWBiFvs5C3OcjaLORtFvJGvIjmech5bxbyNgdZm4W8zULeZiFvxAtqFEQCWZuFvM1C3mYhb3OQNeJJTH7nVezw3mZLYkxYDPOcWfzlHY27SqDiqlatKul/CxkC2bFjh+dx2SwjnW27du3073//W4WFhVq+fLl69uwZ8ntbtGjhebxq1Sp179494L6rVq3y+75YWr16ddBFM+47uzRp0sRnMVHVqlV17NixoNm6XC7t3Lkz5P4EynrHjh0qLCyUJA0ZMiTg+7dt2+ZZpBNJ7vwcDofWr1+v9u3bB9x39erVkvx/hqYJ99h2uVwJee03ftHMfffdp/vuuy8sbWVlZemWW27RLbfcEpb2AAAAAAAAAAAAAAAAAABISM5Cr6eupJQYdQQAzNKwYUNt2LBBa9eulcvlks3me6efzZs3a8OGDTHoXYnLLrtM//d//yeXy6U333yzQotmLrjgAmVkZCg3N1cffvih7rnnHs/ddUo7fvy4PvvsM0nS+eefr7p164at/2fiww8/1KBBg/xuW716tTZt2iRJuuiii3y2u7Nds2ZNwPbnz5+v3NzcgNtL3wTi1KlTAfcrfXeVkydPBtxvypQpAbdJUnp6ekjHK0/v3r313HPPSZKmTZsWcNHM8uXLtWXLFkn+P0OYyXeGAAAAAAAAAAAAAAAAAAAAOAO24iLvF+xm/0vvABAtPXr0kCTl5OTo448/9tl+/PhxPfzww1HulbemTZtq4MCBkqS5c+dq4sSJAfc9ceKE151V0tLSdOONN0qSNm3apAkTJvi8x+Vy6U9/+pMOHTokSbr99tvD2Psz8+WXX+qTTz7xef348eN67LHHJEl2u93vTRzc2a5cuVI//fSTz/Z9+/bpz3/+c9Dj16hRw3P3lWB3pGncuLFnwdWMGTP83qFk3rx5evvtt4Mer06dOp7HP//8c9B9g+nYsaNnocz777+vxYsX++yTl5enxx9/XFLJZ3jbbbed9vFgLcbfaQZnJikpKSLtll3x6W8FKKyDvM1C3uYga7OQt1nIG/EqUvWJxHlvGvI2B1mbhbzNQt5mIW/EK2oUhANZm4W8zULeZiFvc5A14lksfudlc3kvmrElp0a0VkLkMc+ZJZS8/d3BBLE3dOhQvfjiizp27Jgefvhh7dy5U5dccolsNpvWrFmjSZMmae/evWrbtq3WrVsnyTfLaGT74osvauXKlcrJydEzzzyjb775Rtddd53OO+882Ww27dq1S999950++eQTTZ482etuNI8//rg+//xz/fzzz3rxxRe1ceNGDR8+XHXq1NGuXbv09ttva+nSpZKkLl266Oabb4743xOq9u3b6+6779b333+vK6+8UmeddZY2bNigV199Vdu3b5ckjRgxQq1bt/Z5780336zJkyerqKhIN954ox577DF169ZNDodDy5Yt06RJk1RUVKQmTZpox44dfo+fkpKiDh066KefftLUqVPVpk0btWnTRsnJJcsKMjMzlZmZqRo1aujSSy/V119/rW+++UbXXnutbr31Vp1zzjk6cOCA5syZoxkzZujcc89VXl6eDh486Pd4DRo00Nlnn609e/bo9ddf19lnn61mzZp55pTatWuratWqIX12f//739W/f385HA4NHz5cI0eOVL9+/VSlShWtW7dOr7zyimdhzn333aeWLVuG1K6V+Rvb/hZAVaS9RPw+x6IZnJHMzMyoHCcjIyMqx0F8IG+zkLc5yNos5G0W8ka8iFZ9InHem4a8zUHWZiFvs5C3Wcgb8YIaBZFA1mYhb7OQt1nI2xxkjXgSk9952bx/kFm5aoYqR7FWQuQxz5nFX94HDx6Uy+WS3W73/OAe0RHsM69bt65eeeUVjRw5UgUFBXrhhRf0wgsveLZXqlRJb7zxhubNm+dZNFP2R/Cln/s7VuntSUlJp5X/2WefrS+++ELXX3+9Nm3apCVLlmjJkiV+9y17jOrVq+vTTz/Vtddeq61bt2rOnDmaM2eOz/suvPBCTZ8+XWlpaT7bSi8EC9Z/96IDm80W0t/p7/MqfawpU6Zo8ODBmjx5siZPnuzz/iuvvFLjxo3ze6w2bdromWee0V/+8hcdPXpUo0eP9tqemZmpDz74QM8995x27NgRsM+PPPKIhg8frsOHD+uuu+7y2vanP/1Jo0aNklSySGXAgAH67bfftGjRIi1atMhr3wYNGmjq1KkaNmxYwL9dkh599FE9/vjj+uWXX3TTTTd5bXvttdd0/fXXS/I+r5KTk33a6tChg6ZPn65bb71Vx44d0+uvv67XX3/d53gjR47U008/HXRxZ3nzVqjnR6I53QUv7s8jJSUlqv/tO1xY5gsAAAAAAAAAAAAAAAAAAMLLWej9PMk6PzgFgHg3ZMgQzZs3T4MGDVKtWrWUmpqq+vXra/jw4VqwYIEGDx4c6y5Kkho1aqQlS5bo9ddfV79+/VS3bl2lpKSoUqVKatasma677jpNnTpV3bt393lvw4YNtWTJEr344ovq2bOnatSooZSUFNWuXVt9+/bVG2+8oblz58bdD/zPPfdcLVy4UI8++qjOP/98Va5cWdWqVVOPHj30z3/+U++++27QRRr33nuvPvroI/Xt21fVq1dXWlqazj33XI0cOVKLFi1Sjx49yu3D73//e3366acaOHCg6tWrp5SUFL/7NWjQQIsWLdIDDzygZs2aKS0tTdWqVVObNm30pz/9SUuWLFGLFi3KPd7tt9+u9957T3369FFWVtYZLULp06ePVq1apUcffVRt27bVWWedpbS0NDVo0EDXXnut5s6dq/Hjx3M3NHixuc7k/joAAAAAAAAAAAAAAAAAAABlvXmxtGf1/54Pfk3qcGPMugMg/LZt2yaHwyG73a569erFujtA3Hr++ec9d/s5cuRIjHsDVNzevXvldDqVmpqq8847L9bdqTCWbuOMRGrittvtXrfyy83NldPpjMixEHvkbRbyNgdZm4W8zRIPecfbvwKC+BDJ/7AUD+c9ooe8zUHWZiFvs5C3WWKdN/UJAqFGQTiQtVnI2yzkbRbyNkc8ZE2NgkBi8TuvsxwFXj9QPFHgkIMfCie0eJjnED2h5F1YWOh5raioKKr9Q3jZbDYlJSV5nhcXF4v7MoRP6bET67FC1mYJV95Op1NOp1OFhYUV/l4ZDzUKi2ZwRoqLi6NyHKfTGbVjIfbI2yzkbQ6yNgt5m4W8ES+ieR5y3puFvM1B1mYhb7OQt1nIG/GCGgWRQNZmIW+zkLdZyNscZI14EpPfeRUXevdBSYwJi2GeM4u/vPmhvXWUzZJsrYuszRLuvF0uV0Je++2x7gAAAAAAAAAAAAAAAAAAALAWm9Ph/UJSSmw6AgAAAKOxaAYAAAAAAAAAAAAAAAAAAISXs8jrqcvOohkAAABEH4tmAAAAAAAAAAAAAAAAAABAWNmKC71fYNEMAAAAYiA51h1AYktKSopIu3a7PehzWAt5m4W8zUHWZiFvs5A34lWk6hOJ89405G0OsjYLeZuFvM1C3ohX1CgIB7I2C3mbhbzNQt7mIGvEs5j8zqvMnWbsKakRrZUQecxzZgklb5vNFq3uIMLKZmmz2eRyuWLUG+v54x//qD/+8Y+x7oYksjZNuPO22WwJ+X3O5uIsBwAAAAAAAAAAAAAAAAAA4fRcA8lx7H/PR3wlNbwwdv0BEHbbtm2Tw+GQ3W5XvXr1Yt0dAECE7N27V06nU6mpqTrvvPNi3Z0KY5kvAAAAAAAAAAAAAAAAAAAIL2eh9/OklNj0AwAAAEZj0QwAAAAAAAAAAAAAAAAAAAivYof3cxbNAAAAIAaSY90BJLYjR45EpF273a6MjAzP89zcXDmdzogcC7FH3mYhb3OQtVnI2yzxkHdmZmZUj4fEEKn6RIqP8x7RQ97mIGuzkLdZyNsssc6b+gSBUKMgHMjaLORtFvI2C3mbIx6ypkZBIFH/nZezWJku7/M/90SBnBGslRB58TDPIXpCybuwsNDzWlFRUVT7h/Cy2WxKSkryPC8uLpbL5YphjxApZG2WcOXtdDrldDpVWFhY4e+V8VCjsGgGZ6S4uDgqx3E6nVE7FmKPvM1C3uYga7OQt1nIG/Eimuch571ZyNscZG0W8jYLeZuFvBEvqFEQCWRtFvI2C3mbhbzNQdaIJ1H/nVfRKd8+uGxyMiYshXnOLP7y5of21lE2S7K1LrI2S7jzdrlcCXntt8e6AwAAAAAAAAAAAAAAAAAAwDpsTofvi0mp0e8IAAAAjMeiGQAAAAAAAAAAAAAAAAAAED7FRT4vuezJMegIAAAATMeiGQAAAAAAAAAAAAAAAAAAED7OQt/X7CnR7wcAAACMx6IZAAAAAAAAAAAAAAAAAAAQNjan751mlMSiGQAAAEQfi2YAAAAAAAAAAAAAAAAAAED4FDt8XnJxpxkAAADEQHKsO4DElpSUFJF27XZ70OewFvI2C3mbg6zNQt5mIW/Eq0jVJxLnvWnI2xxkbRbyNgt5m4W8Ea+oURAOZG0W8jYLeZuFvM1B1ohn0f6dl11O3z6kpEn2yNVKiDzmObOEkrfNZotWdxBhZbO02WxyuVwx6g0iiazNEu68bTZbRP/bd6TYXJzlAAAAAAAAAAAAAAAAAAAgXHLWSW/0+t9zm10acyR2/QEQEdu2bZPD4ZDdble9evVi3R0AQITs3btXTqdTqampOu+882LdnQpjmS8AAAAAAAAAAAAAAAAAAAifYof386TU2PQDAAAAxmPRDAAAAAAAAAAAAAAAAAAACJ/iIu/n9pTY9AMAoHbt2ikzM1P33nuvz7Zdu3YpMzNTmZmZmjZt2mkfY9q0aZ52du3a5bN90KBByszM1KBBg077GECiuffee5WZmal27drFuivGS451B5DYjhyJzC0z7Xa7MjIyPM9zc3PldDojcizEHnmbhbzNQdZmIW+zxEPemZmZUT0eEkOk6hMpPs57RA95m4OszULeZiFvs8Q6b+oTBEKNgnAga7OQt1nI2yzkbY54yJoaBYFE+3deybmHdFap/Zz2ZOVGsE5CdMTDPIfoCSXvwsJCz2tFRWUWyyHuOJ1On5wC5VZcXCyXyxVy28XFxV5tlm3X3ZbL5eJciTGbzaakpCTP84pmjdCVnjNjdd6HK2+n0ymn06nCwsIKf6+MhxqFRTM4I6UvcpHkdDqjdizEHnmbhbzNQdZmIW+zkDfiRTTPQ857s5C3OcjaLORtFvI2C3kjXlCjIBLI2izkbRbyNgt5m4OsEU+i/Tsve+Epr9dd9hTGgwUxz5nFX9780N66yNa6ymab6FlPnz5dDz74oCRp5cqVatiwYUSP9+KLL2r8+PGSpAMHDkT0WOEQ7rxdLldCXvtZNAMAAAAAAAAAAAAAAAAAAMLHWeZfU0/ip4oAEI8aNmzo+eF/cnLk5upPP/00Ym0D8WrixImaOHFirLsBSfZYdwAAAAAAAAAAAAAAAAAAAFiHrdjh/YI9JTYdAQAAgPFYNAMAAAAAAAAAAAAAAAAAAMKnzJ1mXCyaAQAAQIywaAYAAAAAAAAAAAAAAAAAAISNzVno/UISi2YAIBxycnL017/+VX369FGTJk1Ur149tWrVShdddJHuvPNOTZ8+XceOHQu5vV27dikrK0tZWVmaNm1awP2OHj2qv/71r+revbvOOecctWzZUtdcc40+/fTTkI4zePBgZWVlafDgwUH7MH36dEnSwoULdcMNN6hVq1aqX7++OnXqpCeeeEJ79uwp91iHDx/WM888o27duumcc85Rq1atNHToUH3++eeSpOnTp3uOt2vXrpD6XxHHjx/X66+/rquuukqtWrXS2WefrcaNG+uSSy7RqFGj9NNPPwV878GDB/Xcc8/pkksuUdOmTdWgQQN17NhR9957r3788cegx+3YsaOysrJ0//33S5LWrFmju+++WxdccIHOOeccdenSRaNHj9ahQ4e83rds2TKNGDFC7du3V4MGDdSlSxf99a9/1fHjxwMeq2ye27dv16OPPqpOnTqpQYMGat26tW6//XatWLEiYBtLly715LB06dKgf5t7vxdffNHn/Q8++KDntU6dOnn2DdT2ihUr9Nxzz2nw4MFe+fTs2VNPPPGEtmzZ4rcP7vNm/PjxPv0q/b/S59T999+vrKwsdezYMejft3HjRj366KPq2rWrGjZsqEaNGqlXr1566qmngp6joY6dRx99VLt37w7aB6tLjnUHAAAAAAAAAAAAAAAAAACAhRRzpxkACLcffvhBN9xwg8+imAMHDujAgQPatGmTZs2apZo1a6pfv35hO+7WrVt1zTXXKCcnx/NaQUGBFi9erMWLF2vBggXq3r172I737LPP6pVXXvF6bdeuXZoyZYrmzJmjTz/9VM2bN/f73o0bN2ro0KE6cOCAV18XLVqkRYsW6eabb1bnzp3D1teyFi1apLvuustnYUphYaHWr1+v9evX6+233/bqn9u3336r22+/3SffX3/9Vb/++qv+/e9/a8SIERo3bpzs9uD3zZg5c6YeeeQRORwOz2s///yz3njjDX399df6/PPPVadOHb366qsaM2aMXC6X136vvvqqFi1apE8//VRVq1YNeqz58+fr9ttv18mTJz2v7d+/X5999pnmzJmjZ555RnfffXfQNqJl+vTpXots3AoLC7V161Zt3bpV77//vp577jmNGDEiKn16+eWXNW7cODmdTq/Xt2zZoi1btmjKlCmaMGGC/vCHP5TbVqCxM3nyZM2ePVtz5sxR06ZNw9r/RMGiGQAAAAAAAAAAAAAAAAAAEDY2p8P7BTs/VQSAM3Hq1CndeeedOnbsmKpWrarbbrtNPXv2VK1atVRYWKhdu3Zp2bJlmjt3bliPe+zYMQ0bNsyzYGbIkCH6wx/+oKysLGVnZ2vSpEmaPn26Nm/eHJbjvf/++1q+fLl69OihW265RU2bNlVubq4+/PBDzZw5UwcPHtRDDz2kL774wue9ubm5+sMf/uBZkDJs2DBdffXVqlWrlnbs2KG33npL7733njZs2BCWvpb13Xff6brrrlNRUZGSkpJ07bXXasCAAapfv75OnTqlLVu2aMGCBfrqq6983rtu3TrdeOONcjgcSklJ0e23367+/furcuXKWrdunV555RX98ssveuedd1SlShX93//9X8B+bNiwQbNmzVLjxo117733qlWrVjp+/LimTZumf//738rOztbo0aN1xRVX6P/+7//UuXNnjRw5Us2aNdOhQ4f01ltvaf78+Vq7dq3+/ve/Bz1WTk6O7r77biUnJ+svf/mLevbs6fksXn31VR07dkyjR49Ww4YNNXDgwDP/kEtp3769Fi9erC+++ELjxo2TVLJYqG7dul77NWzY0PO4qKhI1atXV//+/dW9e3c1adJElStXVk5OjtatW6e33npLhw4d0qhRo3Teeefpd7/7nee9AwcOVPv27TV58mRNnjxZkrR48WKfftWrVy/kv+Gdd97R3/72N0lSrVq19MADD6hr164qLi7W4sWLNXHiRJ08eVIPPPCAatSoocsuuyxgW6GMnQceeCDsc0Si4JsozkhSUlJE2i27ArK8FZFIbORtFvI2B1mbhbzNQt6IV5GqTyTOe9OQtznI2izkbRbyNgt5I15RoyAcyNos5G0W8jYLeZuDrBHPov07L7ur2HvH5NSI1kmIDuY5s4SSt81mK78hl1O2giPh6lZCcKVnSrbwjo9ly5Z5Fq7885//9LmTTOfOnXX11Vdr7Nixys/PP+Pj2Ww2uVwuTZgwQbt375Yk/eUvf9HDDz/s2eeCCy7QFVdcoeuvv14LFy4842NK0vLly3XTTTdpwoQJXufXRRddpNTUVH3wwQdasWKF1q5dq3bt2nm9d/z48Z7PaOzYsbrrrru8+nrllVfqtttu87vg5kwVFBTonnvuUVFRkSpXrqxp06Z5FpC4de3aVTfddJPn8yztsccek8PhUFJSkqZOnapLLrnEs61Dhw668sorNWjQIG3ZskWvvfaahg0bphYtWvjty/r169WlSxd99NFHqly5suf1Xr16qaCgQLNnz9bHH3+s+fPn68orr9Rbb73lNb579+6tQYMGacWKFZo6dar+/Oc/KznZ/5KDHTt2qFq1avriiy+87v7TpUsXDRgwQAMHDtSxY8c0atQoXXbZZUpJCd+d56pUqaKWLVvqv//9r+e1pk2bei2SKevSSy/VNddc4/W5SFK7du3Ur18/3XHHHbryyiu1YcMGvfDCC16LZjIyMpSRkaFatWp5XmvZsuVp9//gwYN65plnJEl169bVl19+qfr163u2X3jhhfr973+vK664QidPntRjjz2mlStXBvwMA42d3r17Kz09Xe+9956WL1+udevWqW3btqfdb5vNlpDf6Vg0gzOSmZkZleNkZGRE5TiID+RtFvI2B1mbhbzNQt6IF9GqTyTOe9OQtznI2izkbRbyNgt5I15QoyASyNos5G0W8jYLeZuDrBFPov47rzTvH3SmpFaKap2E6GCeM4u/vA8ePCiXyyW73R7wR/W2k4eU8XbXSHcvruTeuUquyjXD2ubBgwc9j3v16hXw805OTlZ6errfbf5yCtROUlKSHA6Hpk6dKklq3bq1HnvsMZ+FUsnJyZo4caI6dOigwsJCz2tl23W/z2azBe1D3bp1NX78eL8LAx588EF98MEHkkoWCHTs2NGz7dSpU5oxY4YkqWPHjrrvvvt83p+cnKyXX35Z3377rQoKCgL29XR89NFHngU7o0ePVu/evQPue+6553o9X7lypVavXi1Juvnmm/3eTaRWrVp6+eWXNWDAADmdTk2ZMkUvvfSS3/ZtNpteffVVVatWzWfbHXfcodmzZ6u4uFinTp3Syy+/rNTUVK99kpOTdeutt2rFihU6fPiwtm/frjZt2vgcw+2JJ55Qq1atfI7Vpk0bPfbYY3r66ae1d+9effXVVxo8eLBne+mFF0lJSSHl4O8cLt1OeXmec845QduvUaOG/vznP+uGG27QTz/9pLy8PNWoUcOnD6WPV15/A+374Ycf6uTJk5Kkv/3tbz7nhVRyLj/yyCP629/+pr1792revHkaMmSI3zaDjZ37779f7733nqSSBXgdOnQI2u9gf0tKSkpCfqdjmS8AAAAAAAAAAAAAAAAAAAifYof386RU//sBAEJSt25dz+Np06ZF5Zj//e9/dfToUUnS8OHDA95ZqH79+l53RjkTV155pdLS0vxuO++881S1alVJ0s8//+y1bfXq1crNzZUkDRs2LGD7tWvXVp8+fcLS19LmzZsnqeTuJzfffHOF3lv6Lj033XRTwP26deum888/X5K0aNGigPu1bt3as19ZpRe/XHzxxQEXP5Te75dffgl4LJvNpuHDhwfcfsMNN3jOm3DdjSicTpw4oV27dmnTpk3auHGjNm7c6LUQZf369RE7tjvDjIwMXXHFFQH3K30+BfsMT3fsmIJFMwAAAAAAAAAAAAAAAAAAIHycRd7Pk3z/1XMAQOi6deumRo0aSZKefPJJ9e3bV3//+9/1448/yuFwBH/zadq4caPncXl3pujUqVNYjnneeecF3e6+49Hx48e9Xt+0aZPn8QUXXBC0jdO5y0Z51q5d6zl25cqVK/Red99TU1PVtm3boPu6P+fs7OyAuTdr1izg+0vfMapp06Yh7Xfs2LGA+5177rmqWTPwXZVq1aqlhg0bSvI+n2Lp0KFD+utf/6ouXbronHPO0QUXXKAePXqoZ8+e6tmzp/7whz947Rsp7twvuOACv3eHcatdu7bnMyx9npd1umPHFGd+PykY7ciRIxFp1263e024ubm5cjqdETkWYo+8zULe5iBrs5C3WeIh70S8zSciL1L1iRQf5z2ih7zNQdZmIW+zkLdZYp039QkCoUZBOJC1WcjbLORtFvI2RzxkTY2CQKL9O6/0E3mqVGo/R7FLJyJYJyE64mGeQ/SEkndhYaHntaKiMovl/n+2Yv+vW1lRcZFcAT6P02Wz2fTBBx9oxIgR2rp1q1atWqVVq1ZJkipVqqRu3brpD3/4g4YMGaKkpCS/bTidTp+cAuVWXFzstWCgRo0aAfeV5LVwoqioyGdfl8vl+f9gfUhLSwt6HLu95H4RhYWFXvsdPnzY8zgzMzNoG6W/L/nr6+lwH7927doVbs/93urVq3v6FEitWrUklXyOBw8eVO3atX32Ke8zdHMv7ikuLvbk41Z6rJf9rN3Hd/envGNlZWXpl19+0ZEjR7z2LS4u9nocSp/9ncOl2ykvzzVr1mjYsGFe50swJ06c8Gmv9GdTXp+D7ev+blazZs1y26ldu7Z27drl8xmGMnZsNpuSkpI8Y+d0z3mn0ymn06nCwsIKf6+MhxqFRTM4I6UnmkhyOp1ROxZij7zNQt7mIGuzkLdZyBvxIprnIee9WcjbHGRtFvI2C3mbhbwRL6hREAlkbRbyNgt5m4W8zUHWiCfR/p2Xq+iU9+v2FMaDBTHPmcVf3mV/aO+PKz1Th25fFqluxSVXemR+IH7++edr8eLFmjdvnubNm6cffvhBO3fuVH5+vr799lt9++23mjRpkqZPn66srKwzOlbZbG022xm1h/LF6jMOZRwHkkjnhcPh0MiRI3X48GGlpKRo5MiR6t+/v5o2barq1asrLS1NkvTzzz+rS5cuks7sswlVpD/Dsn/Dmf5NLpcrIa/9LJoBAAAAAAAAAAAAAAAAAABh43NnCTs/VQSMZbPLValm+fshJElJSRo4cKAGDhwoScrJydE333yjd955R2vWrNGaNWv0+OOP69133z3jY7nvfCJJ+/fvV9OmTQPue+DAgTM+3pko3deDBw8G7evBgwfDfvwaNWpoz5492rdvX4Xf674Lh/suIsnJga+Z+/fvl1Sy0KL03xwroeTu3qdsf0svFgl217ITJ06cXufKWLJkiX7++WdJ0gsvvKCbbrrJ735Hjx4Ny/HKU716de3bty+kz9Cdezxknqjsse4AAAAAAAAAAAAAAAAAAACwEGeh11OXPSVGHQEAa6tbt66uv/56ffHFF2rXrp0k6auvvlJ+fv4Zt92yZUvP4//+979B9129evUZH+9MnH/++Z7Ha9asCbpvedtPh/uzX7NmjU6ePFmh97Zo0UJSyZ1Q1q9fH3Rf9+fcpEkTpaamnkZPw+uXX37R4cOHA24/ePCgdu3aJcn7fJKkqlWreh4HW6iSnZ0dtA+h3qlly5YtnsdXXXVVwP3KO9fDdWcY9+exdu1aFRUVBdzvwIED+vXXX73eg4pj0QwAAAAAAAAAAAAAAAAAAAifMotmuNMMAERWSkqKevToIUkqKipSbm7uGbd5wQUXeO5sMXPmTLlcLr/77d27VwsXLjzj452J9u3bq1q1apKkjz76KOB++/fv17fffhv24/fr10+SdPLkSb333nsVem/v3r09j6dNmxZwv+XLl3sWflx00UWn0cvwc7lcmjlzZsDtM2bM8Jw3ZfvcsGFDz+NgC1VmzZoVtA9paWmexw6HI+B+pRemBLp7jdPp1Pvvvx/y8U6dOhV032Dcn0dubq7mzJkTcL+pU6cG/AwROhbNAAAAAAAAAAAAAAAAAACAsLEVl1k0kxT7fw0fABLZDz/8oB07dgTc7nA49P3330uSqlSpolq1ap3xMdPS0jR8+HBJ0vr16zVx4kSffYqKivTII48EXawQDenp6Ro2bJikkrux/POf//TZx+l06vHHH1dBQUHYj3/ttdeqXr16kqRx48Zp6dKlAffds2eP1/OOHTuqffv2kqT3339fixcv9nlPXl6eHn/8cUmS3W7XbbfdFqaen7kJEyZo+/btPq9v3bpV/+///T9JUp06dTRgwACv7dWrV1fr1q0lSdOnT9eRI0d82vjxxx/15ptvBj1+nTp1PI937twZcL8mTZp4Hs+YMcPvPmPHjtXatWtDPt7PP/8cdN9ghg8frsqVK0uSxowZo7179/rss379er388suSpHr16mngwIGnfTzTsXwbAAAAAAAAAAAAAAAAAACEj7PI66nLnhKjjgCANSxZskQTJkxQt27ddNlll6lVq1aqWbOmCgoKlJ2drXfffdfzY/8bbrhBycnh+Yn4448/rk8//VR79uzRX//6V61fv17Dhg1TrVq1tGPHDk2aNEmrV69W+/btg94tJBr++Mc/6rPPPtP+/fv11FNPae3atbrmmmtUs2ZN7dy5U2+++aaWL1+ujh07atWqVZIkm80WlmOnp6fr9ddf17XXXquTJ09q6NChuvbaazVw4EDVq1dPDodD27Zt0/z58zVv3jzt3r3b6/1///vf1b9/fzkcDg0fPlwjR45Uv379VKVKFa1bt06vvPKKZ4HGfffdp5YtW4al32eqcePGOnTokPr3768HHnhAPXv2lCQtXbpUr7zyivLy8iSVLCRKTfVdQDtixAg99thjOnDggK644go99thjatq0qY4ePaqvv/5akydP1gUXXKDly5cH7EO7du2Unp6ugoICPf/880pJSdE555zjybZevXqqVKmSLrnkEmVlZenAgQMaN26cfv31Vw0cOFA1a9bUjh079MEHH2jx4sXq2rWrli1bFvB4Xbp08Tx+6qmn9Mgjj6hOnTqe4zVs2DCk8VerVi2NGTNGf/rTn7Rnzx717dtXDz74oLp27aqioiItXrxYEydO1IkTJ2Sz2TRhwgSlpPB96nSxaAYAAAAAAAAAAAAAAAAAAISNzVn2TjP8VBEAzpTT6dT333/vuaOMPwMGDNBTTz0VtmNWq1ZNH374oa655hrt379fH3/8sT7++GOvfa677jr16NFDDz74YNiOezoyMzP14Ycf6tprr9XBgwc1c+ZMzZw502uf6667Tt26dfMsmklLSwvb8Xv16qWpU6fqrrvu0tGjRzV9+nRNnz49pPe2bdtWH3zwgW6//XYdO3ZMr7/+ul5//XWf/UaMGBHWfM9UvXr1NHbsWN1xxx0aO3asz3a73a4xY8boiiuu8Pv+G2+8UQsWLNDcuXO1ZcsW3XnnnV7bW7VqpcmTJ6tNmzYB+1C1alXdcccdevXVV7V27Vpde+21Xts/+eQT9ezZU1WqVNHEiRN1yy23qKCgQO+++67effddr3179uyp559/Xr/73e8CHq9JkyYaPHiwPv30Uy1cuFALFy702r5y5Uo1bNgw4PtLGzFihHJzc/X888/rwIEDGj16tM8+aWlpmjBhgi677LKQ2oR/fBMFAAAAAAAAAAAAAAAAAABhc6LnkzrZ6Z6SxTPOQjmr1I11lwAgod17771q1aqVFi9erHXr1iknJ0cHDx6UJNWuXVsdOnTQsGHD1K9fv7Afu0WLFvruu+/06quv6vPPP9fu3btVtWpVtWzZUjfddJOuvvrqkBeHRFqbNm303Xff6ZVXXtGXX37pt69vvPGGZ/9q1aqF9fh9+vTRihUrNHnyZH311VfKzs5Wbm6uKleurMaNG6t79+665ppr/L73kksu0bJly/TPf/5T8+fP1y+//CKHw6GsrCx169ZNt9xyi7p16xbW/oZDv3799PXXX2vixIn67rvvtG/fPmVkZOjCCy/Uvffe63VnlrLsdrveeecdvfvuu5oxY4a2bNkiqeQONoMHD9bdd9+tSpUqlduH0aNHq3Hjxpo5c6a2bNmivLw8FRcX++zXp08fff3113rllVe0ZMkSHTp0SBkZGWrevLmGDh2qG264Qb/99lu5x5s0aZLat2+v2bNna/v27Tp+/LicTme57/PnkUceUb9+/fT2229ryZIl2rdvn2w2mxo0aKCLL75Yd911V8iLcBCYzeVyuWLdCSQu9wU33JKSkpSZmel5fuTIEb+TF6yBvM1C3uYga7OQt1niIe9atWpF9XhIDJGqT6T4OO8RPeRtDrI2C3mbhbzNEuu8qU8QCDUKwoGszULeZiFvs5C3OeIha2oUBMLvvBAO5G2WUPLet2+fnE6n7Ha76tSpE+0uIsySk/93L4aioqIY9iSyHn74YU2dOlVnn3221qxZE+vuxMSZZj148GB9//336tGjhz799NNwdg0REI6xfSbzfTzUKPZYdwAAAAAAAAAAAAAAAAAAAAAAgEjKz8/Xl19+KUnq1KlTjHsDIFqSy98FCCwpKSki7drt9qDPYS3kbRbyNgdZm4W8zULeiFeRqk8kznvTkLc5yNos5G0W8jYLeSNeUaMgHMjaLORtFvI2C3mbg6wRz/idF8KBvM0SSt42my1a3UGElc3SZrPJ5XLFqDenb+fOnWrUqJHfc7O4uFhPPPGEDh06JEm67rrrot29uGCVrBGacOdts9ki+t++I8Xm4iwHAAAAAAAAAAAAAAAAAAAAUAHbtm2Tw+GQ3W5XvXr1Yt0dQPfee69WrVqlq6++Wp06dVJWVpby8/O1YcMGvffee1qzZo0k6eKLL9bHH3/Mwq/TNGjQIC1dulQ9e/bUnDlzYt0dRMHevXvldDqVmpqq8847L9bdqTDuNAMAAAAAAAAAAAAAAAAAAAAASHhbtmzRuHHjAm6/8MIL9fbbb3stmNmzZ4+OHj1a4WNVqVJF55577ul0E0AUsWgGAAAAAAAAAAAAAAAAAAAAAJDQHnnkETVt2lSLFi3Srl27dOjQIRUWFqpGjRpq3769rrrqKl1zzTWy2+1e7xs7dqymT59e4eNxpxUgMbBoBmfkyJEjEWnXbrcrIyPD8zw3N1dOpzMix0LskbdZyNscZG0W8jZLPOSdmZkZ1eMhMUSqPpHi47xH9JC3OcjaLORtFvI2S6zzpj5BINQoCAeyNgt5m4W8zULe5oiHrKlREAi/80I4kLdZQsm7sLDQ81pRUVFU+4fwstlsSkpK8jwvLi6Wy+WKYY9OT+PGjfXQQw/poYceCriP0+n0OZdPdy5zuVwJd+6HI+tPPvnE8zjR/n7ThGtsu8dNYWFhhb9XxkONwqIZnJHi4uKoHMfpdEbtWIg98jYLeZuDrM1C3mYhb8SLaJ6HnPdmIW9zkLVZyNss5G0W8ka8oEZBJJC1WcjbLORtFvI2B1kjnvA7L0QCeZvFX96JuKgC/pXN0rRsJ06cqIkTJ8a6G1FhetamCXfeLpcrIa/99vJ3AQAAAAAAAAAAAAAAAAAAAAAAABILi2YAAAAAAAAAAAAAAAAAAAAAAABgOSyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWA6LZgAAAAAAAAAAAAAAAAAAAABUiN1e8jNkl8sll8sV494AACKh9BzvnvcTTWL2GgAAAAAAAAAAAAAAAAAAAEDMJCUlSSr5QXVRUVGMewMAiASHw+FZNJOcnBzj3pweFs0AAAAAAAAAAAAAAAAAAAAAqJC0tDTP4/z8/Bj2BAAQCS6XSydOnPA8T09Pj2FvTl9iLvUBAAAAAAAAAAAAAAAAAAAAEDOlF82cOHFCdrtdlStXlt3Ov+kPAInM5XLJ4XDoxIkTOnXqlCTJZrN5zfuJhEUzAAAAAAAAAAAAAAAAAAAAACokOTlZVatW1fHjxyVJx44d07Fjx1g0k6BK5+Z0OmPYE0QaWZvldPJ2uVxyuVxer1WvXj1h53cWzQAAAAAAAAAAAAAAAAAAAACosKpVq6q4uFj5+fme1/gRfuIjQ3OQtVlOJ2+bzabq1asrPT09Aj2KDhbNAAAAAAAAAAAAAAAAAAAAAKgw94+pq1SpopMnT8rhcPi9QwHim81mU0pKiud5YWEhGVoUWZvldPO22+1KTk5Wenq60tLSEvYOM24smgEAAAAAAAAAAAAAAAAAAABw2lJSUpSRkRHrbuA0JSUlKTMz0/P8yJEjKi4ujmGPEClkbRbyLpHYS34AAAAAAAAAAAAAAAAAAAAAAAAAP7jTDM5IUlJSRNotewunRL+lE4Ijb7OQtznI2izkbRbyRryKVH0icd6bhrzNQdZmIW+zkLdZyBvxihoF4UDWZiFvs5C3WcjbHGSNeMbvvBAO5G0W8jYLeZuDrM1C3iVsLpfLFetOAAAAAAAAAAAAAAAAAAAAAAAAAOFk5lIhAAAAAAAAAAAAAAAAAAAAAAAAWBqLZgAAAAAAAAAAAAAAAAAAAAAAAGA5ybHuABLbkSNHItKu3W5XRkaG53lubq6cTmdEjoXYI2+zkLc5yNos5G2WeMg7MzMzqsdDYohUfSLFx3mP6CFvc5C1WcjbLORtlljnTX2CQKhREA5kbRbyNgt5m4W8zREPWVOjIBB+54VwIG+zkLdZyNscZG2WeMg7HmoUFs3gjBQXF0flOE6nM2rHQuyRt1nI2xxkbRbyNgt5I15E8zzkvDcLeZuDrM1C3mYhb7OQN+IFNQoigazNQt5mIW+zkLc5yBrxhN95IRLI2yzkbRbyNgdZm8XUvO2x7gAAAAAAAAAAAAAAAAAAAAAAAAAQbiyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWkxzrDiCx1apVKyLtHjp0SMOGDZMkTZo0STVr1ozIcRAfyNss5G0OsjYLeZuFvBGvIlWfSJz3piFvc5C1WcjbLORtFvJGvKJGQTiQtVnI2yzkbRbyNgdZI57xOy+EA3mbhbzNQt7mIGuzkHcJ7jQDAAAAAAAAAAAAAAAAAAAAAAAAy2HRDAAAAAAAAAAAAAAAAAAAAAAAACyHRTMAAAAAAAAAAAAAAAAAAAAAAACwHBbNAAAAAAAAAAAAAAAAAAAAAAAAwHJYNAMAAAAAAAAAAAAAAAAAAAAAAADLYdEMAAAAAAAAAAAAAAAAAAAAAAAALIdFMwAAAAAAAAAAAAAAAAAAAAAAALAcFs0AAAAAAAAAAAAAAAAAAAAAAADAclg0AwAAAAAAAAAAAAAAAAAAAAAAAMuxuVwuV6w7AQAAAAAAAAAAAAAAAAAAAAAAAIQTd5oBAAAAAAAAAAAAAAAAAAAAAACA5bBoBgAAAAAAAAAAAAAAAAAAAAAAAJbDohkAAAAAAAAAAAAAAAAAAAAAAABYDotmAAAAAAAAAAAAAAAAAAAAAAAAYDksmgEAAAAAAAAAAAAAAAAAAAAAAIDlsGgGAAAAAAAAAAAAAAAAAAAAAAAAlsOiGQAAAAAAAAAAAAAAAAAAAAAAAFgOi2YAAAAAAAAAAAAAAAAAAAAAAABgOSyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWkxzrDgBlHThwQF988YVWrVqlQ4cOKTk5WXXr1lX37t31+9//XmlpabHuYkLKzc3V9u3btX37dmVnZys7O1vHjh2TJPXu3Vv33XdfhdpbvXq15s+fr+zsbOXl5alatWpq2rSpLr30UnXo0CGkNoqLi7VgwQJ999132r17twoKClSjRg21bdtWAwYM0DnnnBNSO3l5efriiy+0fPlyHThwQJKUlZWlLl26aODAgTrrrLNCamfXrl368ssvtW7dOh0+fFjp6emqX7++evXqpb59+yopKSmkdmItOztbq1ev1ubNm/Xbb78pLy9PSUlJqlGjhs4//3z16dNHLVq0CLk9so5fJ0+e1OrVqz1j+vDhw8rLy5PD4VCVKlXUoEEDdejQQX369Anps9myZYvmzZunzZs3Kzc3V5UrV1ajRo3Uu3dv9erVK+R+fffdd1q4cKF++eUXnTx5UhkZGWrRooX69++v5s2bh9TGqVOn9OWXX+rHH39UTk6OioqKVLNmTXXs2FEDBgxQVlZWSO2Yck354IMP9Nlnn3mejxkzRq1btw76HsZ2/Bs2bFhI+7Vq1UpPP/100H3IGzgzplxPoon6pHxWmueoUcpnlbypUcpnyjWFGqWEVca2GzVKcFbLG/HNlOtJNFGjlM9K8xw1Svmskjc1SvlMuaZQo5SwytiWqE/KY6WsEf9MuZZEGzVK+awy11GflM8qWVOflM+Uawr1SQmrjG03apTg4iFvm8vlckX8KECIVqxYoVdffVX5+fl+t9erV09PPvmk6tatG+WeJb5gE3JFiimn06k333xT33zzTcB9+vTpozvvvFN2e+CbWeXl5WncuHHKzs72uz0lJUUjRoxQ3759g/Zn27ZtGj9+vI4ePep3e2Zmpp544gk1a9YsaDvz58/XO++8o6KiIr/bmzVrplGjRqlatWpB24m1MWPGaNOmTeXud9FFF+nuu+9WcnLgtZNkHd9ZS9LatWs1duzYcvc766yz9MADD6h9+/YB95k5c6b+85//KNDXgo4dO+rRRx9VampqwDYcDocmTJig1atX+91us9k0dOhQXXvttUH7m5OTo3Hjxmnv3r1+t1eqVEkPPvigOnXqFLQdU64pP//8s5588kkVFxd7XgtWTDG2439su4WjmCLvxMkb8cuU60m0UZ+YM89Ro5iVNzUKNYpEjeJmpbHtRo0SmBXzRvwy5XoSbdQo5sxz1Chm5U2NQo0iUaO4WWlsS9QnwVgta8Q3U64lsUCNYsZcR31iTtYS9Qn1SQnqkxJWGttu1CiBxUveLJpB3Ni5c6dGjx4th8Oh9PR0DRkyRG3atJHD4dDSpUu1YMECSSUXv+eff16VKlWKcY8TS+kJuVatWqpfv77WrFkjqWLF1LRp0/TJJ59Ikho3bqwrr7xSderU0b59+/TZZ59p586dkqQhQ4bo+uuv99uG0+nU008/rc2bN0uSunbtqksvvVRVq1bVtm3b9PHHHys3N1c2m02jRo0KuDLy4MGDGjVqlGeF/eWXX+75crVy5Up9/vnnKi4uVkZGhp5//nnVrFnTbzurVq3SCy+8IJfLpYyMDF199dU677zzdPz4cc2fP1/Lli2TJLVo0UJPP/100ItNrD3wwAPat2+fMjMz1b17d7Vo0UK1atWS0+nU1q1bNWfOHB0+fFiS1LNnTz300EMB2yLr+M5aKimmJk2apNatW6tJkyaqVauWqlevLpfLpUOHDunHH3/UsmXL5HQ6lZycrOeee06NGjXyaefrr7/WW2+9JUmqU6eOrrrqKjVs2FBHjhzR3LlztWHDBknlnzMvv/yyvv/+e0lS69atNXDgQGVmZmrXrl2aNWuW9u3bJ0m68847demll/ptIz8/X6NGjfIUUn379lXPnj2Vmpqq9evX65NPPlFBQYHS0tL07LPP+v17JHOuKU6nU3/5y1+UnZ2tjIwM5ebmSgpeTDG2439su7mv3f369VO/fv0C7peenq7atWv73UbeiZM34pMp15NYoD4xZ56jRjErb2oUahRqlBJWG9tu1Chm5Y34ZMr1JBaoUcyZ56hRzMqbGoUahRqlhNXGtkR9YlLWiF+mXEtihRrFjLmO+sScrCXqE+oT6hM3q41tN2qU+M878NJTIMqmTJkih8OhpKQkPfXUU163dmvTpo3q1aunDz74QHv37tXs2bNDXpWHEkOHDlXTpk3VtGlTVa9eXfv379f9999foTb27Nmj2bNnS5KaNm2qZ555xrMauVmzZurcubOefvppZWdna/bs2erTp4/flb0LFy70TMj9+vXTyJEjPduaNWumDh066E9/+pPy8/M1efJktWvXzu+tt2bMmKG8vDxJ0oMPPqju3bt7trVs2VJNmjTRyy+/rNzcXM2YMcNvwVhUVKTJkyfL5XKpUqVKevbZZ7363L59e/3rX//SV199pc2bN2vx4sW6+OKLK/S5RVP9+vU1fPhwdevWzefi0bx5c1100UUaPXq09u7dq6VLl+qyyy5Tq1atfNoh6/jPWiqZGydNmhRwe48ePbRs2TK99NJLKioq0kcffaTHH3/ca5/jx49r6tSpkkr+Q8vf/vY3rxW7nTp10vjx47Vy5UotXbpUl156qd8v6evXr/cUUp06ddITTzzhOQfd58yoUaN08OBBTZ06Vd26dVPVqlV92vnss888hdSNN96oK6+80rOtefPmat26tZ5++mmdOnVKU6ZMCbjq2pRryhdffKHs7GzVr19fXbp08XxpDoSxnRhju6xq1aqpYcOGFX4feSdm3ogvplxPYoH6xJx5jhrFrLypUahRqFGsObbLokb5HxPyRnwx5XoSC9Qo5sxz1Chm5U2NQo1CjWLNsV0a9cn/WD1rxB9TriWxQo1ixlxHfWJO1hL1CfUJ9YlkzbFdFjXK/8Rb3omx/AqWt337ds+tBi+55BKvi57boEGDVL9+fUklF49At2mCf8OGDVOnTp1UvXr1025j7ty5ntvC3XbbbT6370tLS9Ntt90mSSouLtacOXP8tuOe2KtWraqbbrrJZ3vdunV11VVXSSq5fZ97JWFpR48e1ZIlSyRJF1xwgdeE7NajRw9dcMEFkqTFixf7vUXYsmXLPKuir7rqKr8XkZtuuklVqlSRVPJFL56NGjVKPXr0CLjaslq1arr55ps9z3/88Ue/+5F1/GctKaRVtV27dtXZZ58tSX5v6bpgwQKdPHlSknTDDTf43OLObrdr5MiRnmMF+lzcWSclJXnt71atWjXdcMMNkqQTJ074vYVgUVGRvvjiC0kl/2Fg0KBBPvucf/75uuSSSyRJGzdu1Pbt2332MeWacvDgQX344YeSpDvuuCPobXjdGNuJMbbDhbzNyhvhZ8r1JFaoT8yZ56hRzMqbGoUahRrFmmM7XMjbrLwRfqZcT2KFGsWceY4axay8qVGoUahRrDm2w4GszckakWHKtSSWqFHMmOuoT8zJWqI+oT6hPpGsObbDhbwjnzeLZhAXSg8690WyLLvdrt69e0squRC7byOH6HC5XFq+fLmkki85/r6cSCUrhN1f3FasWCGXy+W1fc+ePdq9e7ckqXv37kpLS/PbTunVgv4m5dJtBzpnSrfjcrm0YsUKn+3uv6nsMUtLS0vzTPq//fab9uzZE/B4iaD06nH3Bak0srZO1m7uW1IWFhb6bHN/LpUqVdKFF17o9/01a9ZU27ZtJZX8SwP5+fle2/Pz87Vu3TpJUtu2bQPeau/CCy/09MVf1hs2bPAUdr179w5YLJZ3zphyTfnXv/6lgoIC9e7d2++/JFIWY9t6YzsY8jYrb0SGKdeTRMU8Z615jhrFrLwlahR/rHBNoUYpYfLYDoa8zcobkWHK9SRRMc9Za56jRjErb4kaxR8rXFOoUUqYPLYDIWtzskbkmHItSWTMddaZ66hPzMnajfrElxWuKdQnJUwe28GQd3TyZtEM4sKWLVsklZz8TZo0Cbhf6YuF+z2Ijv379+vIkSOSSm6tFYw7p8OHD+vAgQNe29y3/Sq9nz/Vq1dXvXr1JPnPOtR2Sm8r/Z6yr5199tlB/3UGK517pVda+/uyStbWyVoq+SL0888/S5Jnxb1bUVGRZwV/8+bNg65gd38uhYWFys7O9tqWnZ3tOa+CZZScnOz5Qlf6PW6hZt20aVPPFzp/GZlwTfn++++1atWqgCvC/WFsJ27ep4O8zcobkWHC9SSRMc9Z67yjRjErb2oUa15TqFF82zFtbJeHvM3KG5FhwvUkkTHPWeu8o0YxK29qFGteU6hRfNsxbWwHQ9bmZI3IMeFakuiY66xz7lGfmJO1RH1i1WsK9YlvO6aN7fKQd3TyZtEM4sJvv/0mqeS2T0lJSQH3c6+QK/0eREfpz7vsF7KyguVUkXbc2w8dOqSCggK/7VSuXDnoZJqZmelZ8exeQelWUFCgQ4cO+fQ5WF/8tZNoNm7c6HnsLwOyTvysT506pb1792rOnDkaM2aM57Z9AwcO9Npvz549cjqdkkLPSPL9XEpnXd7n695eXFysnJycgO0E609SUpLnVn3+MrL6NeXEiROaMmWKJP+3Wg2EsZ24Y/vHH3/UI488ohtvvFE333yzHnzwQU2cOFHr168P+B7yTty8ET+sfj1JdMxz1prnqFGsnzc1irWvKdQo/2PK2KZGKWFK3ogfVr+eJDrmOWvNc9Qo1s+bGsXa1xRqlP8xYWxTn5QwIWvEF6tfS6yAuc46cx31ifWzpj6x9jWF+uR/TBnb1Cgl4jHvwEsNgShxOBw6duyYJAW81Ztb1apVlZaWplOnTnkGE6Kj9OddXk61atXy+z6pZHWjW40aNYK24z6Oy+XS4cOHvSZOd7vl9cXdn19//dWnLxX5m0pvP3jwYLnHjFdOp1OffPKJ53mPHj189iHrxMx64cKFev311wNuHzJkiHr16uX12ulkJPlmfSafb4MGDXz6k5aWpipVqpTbzi+//KK8vDwVFhYqJSVFkhnXlA8++EBHjx7V+eefrz59+oT8PsZ2Yo5tybfAycnJUU5OjhYvXqwuXbrovvvuU+XKlb32Ie/EzRvxwYTrSaJjnrPOPEeNYt28qVGoUcrD2E7MsS1Ro/jrm5XzRnww4XqS6JjnrDPPUaNYN29qFGqU8jC2E3NsU5/49s2qWSN+mHAtsQLmOmvMddQn1s2a+oT6pDyM7cQc2xI1ir++xUveLJpBzJVeoZaenl7u/unp6Tp16pTPyjZEVkVyct9Or+z7JCk/Pz8s7bifh3LOuNs5k76U3p7I597nn3/uuU1j165d/d7SkKytkbVbo0aNdOedd6pZs2Y+28KVUbg+X3c7Fcna3Y67mLL6NWXTpk365ptvlJSUpDvuuEM2my3k9zK2E29sp6WlqVOnTmrbtq3q16+v9PR05eXlaePGjfr666917NgxLV++XC+++KKeeuopr1vvknfi5Y34YvXriRUwz1lnnqNGMStviRqlPIl2TaFGMWtsU6OYlTfii9WvJ1bAPGedeY4axay8JWqU8iTaNYUaxZyxTX1iTtaIP1a/llgFc5015jrqE3OydqM+CS7RrinUJ2aNbWqU+M+bRTOIOYfD4XlcehIIxL1P6fch8iqSk/tLTdn3SVJhYWFY2nE/D+WcKb0y+XT7Unp76fclko0bN2ratGmSpIyMDN1xxx1+9yPrxMy6S5cueumllySV/P379u3TDz/8oGXLlukf//iHbr31VnXq1MnrPeHK6HQ/30DtVCTrsu1Y+ZpSVFSkN998Uy6XS5dffrkaNmxYofczthNvbL/xxht+/zWOdu3aqX///ho3bpx27typjRs36quvvvK6NS95J17eiC9Wvp5YBfOcNeY5apTQ+pKoeVOj+D622jWFGsW8sU2NYlbeiC9Wvp5YBfOcNeY5apTQ+pKoeVOj+D622jWFGsWssU19Yk7WiD9WvpZYCXNd4s911Ceh9SVRs6Y+8X1stWsK9Yl5Y5saJf7ztkesZSBEqampnsdFRUXl7u/ep/T7EHkVyan0pFU2p9IT7Zm0434eyjnjbudM+lJ6e+n3JYpff/1V48ePV3FxsVJSUvTII48oIyPD775knZhZV6lSRQ0bNlTDhg3VrFkz9ezZU48//rjuv/9+7d+/Xy+++KIWLlzo9Z5wZXS6n2+gdiqSddl2rHxN+fjjj7V7927VqlVLQ4cOrfD7GduJN7aD3b62evXqevTRR5WUlCRJ+vLLL722k3fi5Y34YuXriVUwzyX+PEeNYv28qVF8H1vtmkKNYt7YpkYxK2/EFytfT6yCeS7x5zlqFOvnTY3i+9hq1xRqFLPGNvWJOVkj/lj5WmIlzHWJPddRn1g/a+oT38dWu6ZQn5g3tqlR4j9vFs0g5ip6W6WK3PYJ4VORnE6dOuX3fZJUqVKlsLTjfh7KOeNu50z6UtFbAcaT/fv3a+zYsTpx4oTsdrsefvhhtWrVKuD+ZJ24Wftz0UUXqVu3bnK5XHr77bd1/Phxz7ZwZRSuz9fdTkWyLtuOVa8pu3fv1ieffCJJGjFixGn1l7FtrbEtSXXq1FG7du0kSTk5OTp8+LBnG3lbL29El1WvJ1bCPJfY8xw1ill5l0WNElyiXFOoURjb/lCjBGbFvBFdVr2eWAnzXGLPc9QoZuVdFjVKcIlyTaFGYWyXRX0SmNWyRvRZ9VpiNcx1iTvXUZ+Yk7U/1CfBJco1hfqEse0PNUpg0cqbRTOIudTUVJ111lmSpEOHDgXd9/jx454BVrNmzYj3Df9T+vMuL6eDBw/6fZ8k1ahRw/O49KTvj/s4NpvN632l2y2vL6X7E6wv5bVTenutWrXKPWa8OHz4sJ599lkdOXJENptN99xzj7p06RL0PWSdmFkH48781KlT+u9//+t5/XQyknw/34qcM8E+X3d/Tp06pRMnToTUTrVq1bxWF1v1mvL555+rqKhIderU0alTp7R06VKf//3666+e/devX+953f2lkrFtvbEtSQ0aNPA8Lp0HeVszb0SPVa8nVsI8l7jzHDWKb1+snHcg1Cj+JdI1hRqFsR0INUrwvkjWyhvRY9XriZUwzyXuPEeN4tsXK+cdCDWKf4l0TaFGYWz7Q30SvC+SdbJGdFn1WmI1zHWJOddRn/j2xapZB0N94l8iXVOoTxjbgVCjBO+LFNm8kyPWMlABDRo00KZNm5STk6Pi4mLPLajK2rNnj9d7ED2lP+/du3cH3TdYTmXbadSoUcB23MepWbOmz+rBBg0aaMeOHTp58qSOHj2q6tWr+23jyJEjys/PlyTVr1/fa1ulSpVUs2ZNHTp0yKvPwfrir514lZeXp7Fjx2rfvn2SpNtuu029e/cu931knXhZl6datWqexwcOHPA8Pvvss2W32+V0OsvNOtjnUjrr8j5f9/akpCTVrVvXp52ffvrJc7zmzZv7baO4uFg5OTl+++Jux2rXFPdtDPft26d//OMf5e7/n//8x/N44sSJSk9PZ2xbcGxLJYWLP+RtzbwRXVa8nlgJ81xiznPUKP9jQt7BUKMk/jWFGoWxHQg1SvC++GsHCJUVrydWwjyXmPMcNcr/mJB3MNQoiX9NoUZhbPtDfRK8L/7aAUJlxWuJ1TDXJd5cR33yP1bPujzUJ4l/TaE+YWwHQo0SvC/+2gkn7jSDuHD++edLKll1umPHjoD7bdy40ec9iI7atWsrMzNTkrRp06ag+7q316hRQ1lZWV7bWrRo4XlcOs+yjh49qr1790ryn3Wo7ZTeVvo9ZV/bs2ePjh49GlI7iXDunTx5Un/729/022+/SZKuv/569e/fP6T3knViZR2KQLfyS05OVrNmzSRJW7duVVFRUcA23J9LSkqKmjZt6rWtadOmSk5O9trPn6KiIm3dutXnPW6hZp2dne35lwP8ZcQ1xT/GtjXzds/zkvcKffK2Zt6ILq4n8Y15LvHOO2oUs/IuDzVK8L8pUDtWw9i2Zt7UKOW3Y6W8EV1cT+Ib81zinXfUKGblXR5qlOB/U6B2rIaxbb28qU/Kb8cqWSP6uJbEP+a6xDr3qE/MyToU1CfB/6ZA7VgNY9uaeVOjlN9OJPNm0QziQteuXT2Pv/32W7/7OJ1OLVq0SJJUpUoVtW7dOip9Qwmbzea59d/u3bs9X4jK2rp1q2fVX+fOnX1WRp599tmelYA//PCD5wtRWQsXLvQ8Ln1+uJVuO9A5U7odm82mzp07+2wvfQvL0scs7dSpU/rhhx8klaygPPvsswMeLx6cOnVK48aN086dOyVJV199tYYMGRLy+8k6cbIOlftvkqSGDRt6bXN/Lvn5+Z7V/2UdOnRI69atkyS1adNGlSpV8tpeqVIltW3bVpK0bt26gLfT++mnnzwri/1l3bp1a1WuXFmStGjRIrlcLr/tlHfOWPGact9992nmzJlB/zd06FDP/mPGjPG8Xrt2bUmMbSuO7f3792vt2rWSpDp16ngVU+RtvbwRfVa8nlgJ81xizXPUKGblHQpqFF+Jdk2hRmFs+0ONstBnu2TdvBF9VryeWAnzXGLNc9QoZuUdCmoUX4l2TaFGYWyXRX2y0Ge7ZM2sERtWvJZYDXNd4sx11CfmZB0q6hNfiXZNoT5hbPtDjbLQZ7sU3bxZNIO40KxZM7Vs2VJSyQDzN+DnzJnjGewDBgzwWbmKyBs4cKDs9pJpY/LkyXI4HF7bHQ6HJk+eLKnklnyXX36533auuOIKSdLx48f1wQcf+GzPycnRrFmzJEl169b1OylXr15dv/vd7yRJa9as0Y8//uizzw8//KA1a9ZIki666CK/twjr2rWr6tSpI0maNWuW51aApb3//vs6ceKEJOnKK6/0+zfFi6KiIr300kvasmWLpJLMrrvuugq3Q9bxn7VU8kWibDZlzZkzR6tXr5ZUsiLZPde69e3b11PATJs2TceOHfPa7nQ69a9//UtOp1NS4M/FnXVxcbHefvttz/5ueXl5mjp1qqSS4qVPnz4+bSQnJ2vAgAGSSr78zZ4922efrVu3er6ItWrVyvMvKJTGNSUwxnZijG1JWrFihYqLiwNuP3r0qCZMmOD5l0N+//vf++xD3omTN+IT15P4xzyXGPMcNYpZeVOjUKNUFGM7Mca2RI1iWt6IT1xP4h/zXGLMc9QoZuVNjUKNUlGM7cQY29Qn5mSN+MW1JDEw18X/XEd9Yk7WEvUJ9UnFMbYTY2xL1CiJkrfNFWh5HxBlO3fu1OjRo+VwOJSenq6rrrpKrVu3lsPh0Pfff6/58+dLkurVq6fnn3/eZwUsgtu8ebPXhJOXl+eZEM8//3z17dvXa/+LL77YbzvTpk3TJ598Iklq3LixBg8erDp16mjfvn369NNPPavehwwZouuvv95vG06nU2PGjPF84b/wwgvVt29fVa1aVdu3b9d//vMf5ebmymazadSoUerQoYPfdg4ePKhRo0YpLy9PSUlJGjRokDp16iRJWrlypebMmaPi4mJVq1ZNL7zwgmrWrOm3nVWrVumFF16Qy+VSRkaGrrnmGjVr1kzHjx/XggULPKuyW7RooaefftpzYYpHL730kpYtWyapZKX4rbfeGnT/5OTkgCszyTq+s5ZKVqXn5+frwgsvVIsWLVSnTh2lp6eroKBAu3bt0pIlSzyffXJyskaNGqV27dr5tPP111/rrbfeklSyivnqq69Ww4YNdeTIEX3++efasGGDJKlnz5566KGHAvbn5Zdf1vfffy+p5F8TuPzyy5WZmaldu3bp448/1r59+yRJd955py699FK/beTn52vUqFGe2/9deuml6tGjh1JTU7VhwwbNmjVLBQUFSk1N1dixY9WoUSO/7Zh4TZk5c6Y++ugjSSX/AkGgf1WBsR3/Y1sqGd9FRUW68MIL1bx5c9WuXVupqanKy8vTxo0b9fXXX3v+40eLFi00evRopaSk+LRD3omRN+KXideTaKE+MWeeo0YxK29qFGqU0qhRrDO2JWoU0/JG/DLxehIt1CjmzHPUKGblTY1CjVIaNYq1xjb1iRlZI76ZeC2JJmoUM+Y66hNzspaoT6hPvFGfWGdsS9QoiZI3i2YQV1asWKFXX33Vc1u3surVq6cnn3xSdevWjXLPEt9rr73muUVdKGbOnOn3dafTqX/+859Bb7nVp08f3XnnnUEnr7y8PI0bN07Z2dl+t6ekpGjEiBE+RV5Z27Zt0/jx43X06FG/26tXr64nnnhC5513XtB25s+fr3feecezkrOsZs2aadSoUapWrVrQdmJt2LBhFdo/KytLr732mt9tZB3fWUslX7YOHDhQ7n41a9bUPffc47eQcps5c6b+85//BLxVZocOHfTYY48pNTU1YBsOh0MTJkzw/IsHZdlsNl1zzTXlnqc5OTkaN26cp6Aqq1KlSnrwwQc9X8ICMe2aEmoxxdiO/7EthT6+L7zwQt19992qUqWK3+3knRh5I76Zdj2JFuoTc+Y5ahSz8qZGoUYpjRrFOmNbokYxLW/EN9OuJ9FCjWLOPEeNYlbe1CjUKKVRo5g3tqlPEj9rxD/TriXRRI1ixlxHfWJO1hL1CfWJN+oT64xtiRolUfJm0QzizoEDBzR37lytWrVKhw8fVnJysurWratu3bqpf//+SktLi3UXE1K4iim3VatWaf78+crOztaxY8d01llnqWnTprrssssCrjwsq7i4WAsWLNB3332n3bt3q6CgQDVq1FCbNm00cOBAnXPOOSG1k5eXp7lz52r58uWeC0/t2rXVuXNnXX755TrrrLNCamfXrl364osvtH79eh0+fFjp6emqX7++evXqpb59+yopKSmkdmIpnMWUG1nHrz179mjVqlXavHmz9u3bp6NHj+r48eNKTU1VtWrV1KhRI3Xq1Endu3cPae7csmWL5s2bp02bNik3N1dVqlTRueeeq4svvli9evUKuV/fffedFi5cqF9++UUnTpxQRkaGWrZsqf79+6t58+YhtVFQUKB58+bpxx9/VE5OjoqKilSzZk116NBBAwcOVFZWVkjtmHRNCbWYcmNsx7eNGzdq48aN2rp1q/bt26djx44pPz9f6enpqlmzppo3b66LL7445DFF3sCZMel6Ei3UJ+WzyjxHjWJW3tQo5TPpmkKNYp2xLVGjhMJKeSP+mXQ9iRZqlPJZZZ6jRjErb2qU8pl0TaFGsc7Ypj4pn1WyRmIw6VoSTdQo5bPCXEd9Yk7WEvVJKEy6plCfWGdsS9QooYiHvFk0AwAAAAAAAAAAAAAAAAAAAAAAAMsJfG8eAAAAAAAAAAAAAAAAAAAAAAAAIEGxaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWA6LZgAAAAAAAAAAAAAAAAAAAAAAAGA5LJoBAAAAAAAAAAAAAAAAAAAAAACA5bBoBgAAAAAAAAAAAAAAAAAAAAAAAJbDohkAAAAAAAAAAAAAAAAAAAAAAABYDotmAAAAAAAAAAAAAAAAAAAAAAAAYDksmgEAAAAAAAAAAAAAAAAAAAAAAIDlsGgGAAAAAAAAAAAAAAAAAAAAAAAAlsOiGQAAAAAAAAAAAAAAAAAAAAAAAFgOi2YAAAAAAAAAAAAAAAAAAAAAAABgOSyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWA6LZgAAAAAAAAAAAAAAAAAAAAAAAGA5LJoBACCMGjVqJJvNpltvvTXWXQEAAAAAahQAAAAAcYUaBQAAAEC8oD4BAHOwaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWI7N5XK5Yt0JAAAAAAAAAAAAAAAAAAAAAAAAIJy40wwAAAAAAAAAAAAAAAAAAAAAAAAsh0UzAAAAAAAAAAAAAAAAAAAAAAAAsBwWzQAAEMCePXs0atQodezYURkZGUpJSVGdOnXUtm1bDR8+XFOmTFFeXp7Xexo1aiSbzaZbb73V6/Wff/5ZNpst5P9dfPHFAfv17bff6pZbblGTJk1UuXJlVatWTW3bttUTTzyhPXv2ROCTAAAAABAPqFEAAAAAxBNqFAAAAADxgvoEABBMcqw7AABAPFqyZIkGDRrkUyzt379f+/fv1/r16zVjxgzVqlVLgwYNikqfCgoKdNttt2nGjBk+29avX6/169dr0qRJmj59uq644oqo9AkAAABAdFCjAAAAAIgn1CgAAAAA4gX1CQCgPCyaAQCgjFOnTum6665TXl6ezjrrLN1zzz265JJLVLt2bTkcDu3cuVPff/+9Zs2aFXKb9evX17p164LuM3PmTD377LOSpHPPPddrm8vl0tChQ/X5559Lkq644goNGzZMTZo0kd1u17JlyzRhwgTt2rVLQ4cO1dKlS9W5c+cK/uUAAAAA4hE1CgAAAIB4Qo0CAAAAIF5QnwAAQmFzuVyuWHcCAIB48s0336hv376SpNmzZwf8FwaKiop08uRJVatWzfNao0aN9Msvv+iWW27RlClTQj7mihUrdNFFFyk/P18tW7bUjz/+6NXuW2+9pTvvvFMpKSn67LPP1L9/f582jhw5ot/97nfasGGDevbsqe+++y7k4wMAAACIX9QoAAAAAOIJNQoAAACAeEF9AgAIhT3WHQAAIN7k5OR4Hl900UUB90tOTvYqeE7Xnj17NHjwYOXn56tGjRqaPXu2V7sul0svvPCCJOnBBx/0W0hJUmZmpsaPHy9JWrp0qbZt23bGfQMAAAAQe9QoAAAAAOIJNQoAAACAeEF9AgAIBYtmAAAoo169ep7HkydPjuix8vPzNWTIEO3Zs0fJycn66KOP1LRpU699Nm7cqOzsbEnS0KFDg7ZXuvj74Ycfwt9hAAAAAFFHjQIAAAAgnlCjAAAAAIgX1CcAgFCwaAYAgDJ69eqlJk2aSJIefvhhde3aVePGjdPSpUvlcDjCeqwRI0Zo+fLlkqRXXnlFl1xyic8+K1as8Dzu3r27bDZbwP9VrVrVs2/pf0kBAAAAQOKiRgEAAAAQT6hRAAAAAMQL6hMAQChYNAMAQBkpKSmaPXu2WrZsKUlavny5/vznP6tXr16qXr26+vfvr2nTpqm4uPiMjvPss89qxowZkqR7771X99xzj9/99u/ff1rtnzx58rT7BgAAACB+UKMAAAAAiCfUKAAAAADiBfUJACAUybHuAAAA8ahVq1Zat26dZs+erdmzZ2vx4sXavn278vPzNW/ePM2bN09///vfNXfuXNWuXbvC7f/nP//RmDFjJEl9+/bVP/7xj4D7li7aZs+erUaNGoV0jNPpFwAAAID4RI0CAAAAIJ5QowAAAACIF9QnAIDysGgGAIAAkpKSNGTIEA0ZMkSStHfvXn355Zd67bXXtHLlSq1cuVJ33XWXZs2aVaF2V69erZtvvlkul0vNmjXTzJkzlZwc+JJcs2ZNz+Pq1aurTZs2p/X3AAAAAEhs1CgAAAAA4gk1CgAAAIB4QX0CAAjGHusOAACQKOrVq6fbbrtNP/zwgzp27ChJmjNnjvLz80NuIycnR4MHD9bJkyeVkZGh2bNnq0aNGkHf06FDB8/jpUuXnl7nAQAAAFgONQoAAACAeEKNAgAAACBeUJ8AAEpj0QwAABWUkpKi3r17S5KKiop09OjRkN5XUFCgIUOG6Ndff1VSUpJmzJihFi1alPu+jh07qkGDBpKkN998UwUFBafddwAAAADWQ40CAAAAIJ5QowAAAACIF9QnAACJRTMAAPhYsmSJtm/fHnC7w+HQokWLJElVq1ZVVlZWSO2OHDlSP/30kyRp/Pjx6t+/f0jvs9vt+vOf/yxJ2rFjh26++WadOnUq4P55eXmaOHFiSG0DAAAAiH/UKAAAAADiCTUKAAAAgHhBfQIACEVyrDsAAEC8WbBggZ599ln97ne/0+WXX6527dopKytL+fn52rp1q9544w2tWrVKknT77bcrObn8y+k777yjqVOnSpL69Omjyy67TOvXrw+4f5UqVdS4cWPP87vvvltff/21Zs2apX//+99atWqV7rrrLnXt2lUZGRnKy8vT5s2btXDhQn322WdKT0/X/ffff4afBAAAAIB4QI0CAAAAIJ5QowAAAACIF9QnAIBQsGgGAAA/nE6nFi1a5PmXBvwZPHiwxo0bF1J7u3bt8jz+5ptv1LZt26D79+7dWwsXLvQ8t9ls+vDDD/XQQw/pjTfeUHZ2tv74xz8GfH/t2rVD6hcAAACAxECNAgAAACCeUKMAAAAAiBfUJwCA8rBoBgCAMh5//HG1a9dO8+fP1+rVq7Vnzx7t379fklS3bl117dpVN998sy6//PKo9islJUWvv/667rnnHr311ltauHChdu3apePHj6tq1apq3LixOnXqpAEDBmjQoEFR7RsAAACAyKFGAQAAABBPqFEAAAAAxAvqEwBAKGwul8sV604AAAAAAAAAAAAAAAAAAAAAAAAA4WSPdQcAAAAAAAAAAAAAAAAAAAAAAACAcGPRDAAAAAAAAAAAAAAAAAAAAAAAACyHRTMAAAAAAAAAAAAAAAAAAAAAAACwHBbNAAAAAAAAAAAAAAAAAAAAAAAAwHJYNAMAAAAAAAAAAAAAAAAAAAAAAADLYdEMAAAAAAAAAAAAAAAAAAAAAAAALIdFMwAAAAAAAAAAAAAAAAAAAAAAALAcFs0AAAAAAAAAAAAAAAAAAAAAAADAclg0AwAAAAAAAAAAAAAAAAAAAAAAAMth0QwAAAAAAAAAAAAAAAAAAAAAAAAsh0UzAAAAAAAAAAAAAAAAAAAAAAAAsBwWzQAAAAAAAAAAAAAAAAAAAAAAAMByWDQDAAAAAAAAAAAAAAAAAAAAAAAAy2HRDAAAAAAAAAAAAAAAAAAAAAAAACyHRTMAAAAAAAAAAAAAAAAAAAAAAACwHBbNAAAAAAAAAAAAAAAAAAAAAAAAwHJYNAMAAAAAAAAAAAAAAAAAAAAAAADLYdEMAAAAAAAAAAAAAAAAAAAAAAAALIdFMwAAAAAAAAAAAAAAAAAAAAAAALAcFs0AAAAAAAAAAAAAAAAAAAAAAADAclg0AwAAAAAAAAAAAAAAAAAAAAAAAMth0QwAAAAAAAAAAAAAAAAAAAAAAAAsh0UzAAAAAAAAAAAAAAAAAAAAAAAAsBwWzQAAAAAAAAAAAAAAAAAAAAAAAMByWDQDAAAAAAAAAAAAAAAAAAAAAAAAy/n/AFla1NLBSW8eAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOcCAYAAADnnKdhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3xUVf7/8fdMeiMJJITQIRB6Eem6ggULS7EirAUsLC429mdf29pWxbJ+EXV1VxGkCLgqdgWkLDZQkCa9d5IQQvokmfv7I2bIkMlkksxkkrmv5+PBg5m55557Zj53Judz7z33WAzDMAQAAAAAAAAAAAAAAAAAAAAAAAAEEKu/GwAAAAAAAAAAAAAAAAAAAAAAAAB4G4NmAAAAAAAAAAAAAAAAAAAAAAAAEHAYNAMAAAAAAAAAAAAAAAAAAAAAAICAw6AZAAAAAAAAAAAAAAAAAAAAAAAABBwGzQAAAAAAAAAAAAAAAAAAAAAAACDgMGgGAAAAAAAAAAAAAAAAAAAAAAAAAYdBMwAAAAAAAAAAAAAAAAAAAAAAAAg4DJoBAAAAAAAAAAAAAAAAAAAAAABAwGHQDAAAAAAAAAAAAAAAAAAAAAAAAAIOg2YAAAAAAAAAAAAAAAAAAAAAAAAQcBg0AwAAAAAAAAAAAAAAAAAAAAAAgIDDoBkAAAAAAAAAAAAAAAAAAAAAAAAEHAbNAAAAAAAAAAAAAAAAAAAAAAAAIOAwaAYAAAAAAAAAAAAAAAAAAAAAAAABh0EzAAAAAAAAAAAAAAAAAAAAAAAACDgMmgEAAAAAAAAAAAAAAAAAAAAAAEDAYdAMAAAAAAAAAAAAAAAAAAAAAAAAAg6DZgAAAAAAAAAAAAAAAAAAAAAAABBwGDQDAAAAAAAAAAAAAAAAAAAAAACAgMOgGQAA3Gjbtq0sFossFov27t3r7+YEBD5TAAAAwBl9ZO/jMwUAAABqhr609/GZAgAAADVHf9r7+EwBmBGDZgAAgKn8/e9/dyR+nv57+umnPa7fMAx99NFHuvrqq5WSkqKIiAglJiaqb9++euKJJ7R//34fvjsAAAAA9YXNZtOaNWv0xhtv6Oabb1aPHj0UHBzsyDMmTJhQ47p9lXesWbNGkydPVteuXdWoUSM1atRIXbt21eTJk7VmzZoatxcAAACAf23ZskXTpk3TmDFj1LVrV8XGxiokJEQJCQnq27ev7r77bq1bt87j+vbu3Vvtcy0dOnSodpvvu+8+9ezZU40bN1ZUVJRSU1M1fvx4LV26tLofAQAAAIB6oqFeu8U5FKBhC/Z3AwAAQMM1dOhQrVixQpK0bNkyDR061L8N8rPDhw/rhhtu0Lfffuv0ekFBgdLT0/XLL7/oxRdf1KuvvlqrC+QAAAAAM2mIecf06dN1zz33yGazeb1uX+QdNptN9913n1599VUZhuG0bMuWLdqyZYv+9a9/6e6779bUqVMVEhLirbcDAAAANCgNLT9ZvHix/vrXv2rz5s0ul2dkZCgjI0O//PKLpk2bpmuuuUb/+te/1Lhx4zpuqbNnnnlGTzzxhIqKipxe37Fjh3bs2KFZs2Zp3LhxevPNNxUTE+OnVgIAAAD+19ByFF/jHAqAyjBoBgAAmFa/fv3Uv39/j8pV5dSpU7rkkku0adMmx2v9+/dXt27dlJWVpW+//VYnT55UTk6ObrrpJlmtVt144421aj8AAACA+ik9Pd0nA2Z8lXdMnDhRs2bNcjxv3769Bg4cKEn68ccftXv3bhmGoVdeeUWnTp3S22+/7fX3BgAAAMD7fvnlF6cBMxaLRT179lRqaqri4+OVlpamVatWKS0tTZK0cOFC/fbbb1qxYoWaNGni0TZiYmI8yjsSExM9qu+xxx7TU0895XienJysP/zhDwoPD3d6P/PmzVNGRoY+//xzBQdz6QsAAADQEDWEa7c4hwIEBo4cAAAA0xo+fLj+/ve/e6WuO+64w5F0NW7cWAsXLtQFF1zgWJ6bm6tJkyZpzpw5kkoTqsGDB6tDhw5e2T4AAACA+qdVq1bq16+f46TPG2+8oQ8++KDG9fki73jnnXccJ3usVqteeukl3XXXXbJarZIku92uadOm6Z577pHdbtc777yjIUOGcBMAAAAAoAHp3bu3Jk6cqGuvvbbCYBibzaZ//vOfevjhh1VSUqLNmzdr8uTJmj9/vkd1N27cWNOnT/dKO5cuXeo0YOa+++7T008/rdDQUMdr8+bN080336yCggJ98803+sc//qHHHnvMK9sHAAAAULfq+7VbnEMBAofV3w0AAABo6DZt2uRIqCRp7ty5TkmXJEVFRWnWrFkaPHiwpNKTUJzEAQAAAALTTTfdpKNHj2r//v3673//qwcffFAXXHCBoqKialynL/KOwsJCp5NR999/v6ZMmeI42SOVngSaMmWK7rvvPsdrjz32mE9m0gEAAADgXampqfr444+1bt06TZ482eXsMaGhoXrggQf0wgsvOF5bsGCBtm7dWpdNlSQ99NBDjsdjx47V1KlTnQbMSNK4ceP0z3/+0/H8xRdfVHp6ep21EQAAAED9wzkUAFVh0AwAAEAtvfHGG7Lb7ZKkYcOG6ZJLLnFZzmq1aurUqY7nCxYs4EQOAAAAEIDatGmjpKQkr9bpi7zjk08+0YEDByRJsbGxevTRRyvd/mOPPaZGjRpJkvbt26fPP/+8Ru8DAAAAQN258sorNXr0aI/K3nXXXWrevLnj+RdffOGrZrm0Zs0arVmzRlLFvOZMkyZNUseOHSVJ2dnZeu+99+qkjQAAAADqJ86hAKgKg2YAwI/sdrtmzpypYcOGqVmzZgoPD1fbtm01evRoffzxx45yQ4cOlcVikcVi0fLly13W1bZtW0eZvXv3VrntCRMmOMq/++67VZY3DEMfffSRxo8fr9TUVMXGxio8PFytWrXS5ZdfrpkzZ6q4uNhtHXv37nVss23bto7XV61apVtvvVWdO3dWbGysLBaLpkyZonXr1jnKx8fHq6CgoMp2SqUHx6Ojox3rbtiwwaP1vKGoqEjvvfeexowZo/bt2ysmJkZRUVFq166dxo0bp48++kiGYbitY/ny5Y62Dx061PH6t99+q7Fjx6p9+/YKDw9XkyZNdN5552n69OkqKiryuI35+fn65z//qXPOOUcJCQmKiIhQSkqKxo0bp6VLlzrKudunyl5fsWKF47Xzzz/f8Xr5f57sXwcPHtSjjz6qXr16KS4uTlFRUercubPuvPNO7du3z+P35g+GYeiTTz5xPL/pppvclj/nnHMc03qWlJQ4rQsAAOAL5B2lyDuckXeQd0hy+g249tprFRkZWWmdkZGRGjNmjOP5Rx995EnTAQAAnJCflCI/cUZ+Uj/yk6CgIA0YMMDx3JPvlTeV/w246KKL1KpVq0rLWiwWjR8/3vGc/AQAANQUOUopchRn5Cj1I0fxFOdQAHjEAAD4xZEjR4wBAwYYkir9d8UVVxinTp0yhgwZ4nht2bJlLutr06aNo8yePXuq3P748eMd5WfMmOG27Pr1643evXu7basko1OnTsbmzZsrrWfPnj2Osm3atDEKCwuNSZMmuazr7rvvNgzDMM4++2zHa7Nnz67yfRmGYfz73/92rNOvXz+P1qlMdT7XZcuWGSkpKVV+TgMHDjQOHjzotp6yskOGDDEKCwuNiRMnuq2zT58+RlpaWpXvZ8OGDVW2cdKkSYbNZnP73qt6j+X/nbl/nVnvRx99ZMTGxla6fkREhPHZZ59V+d489fjjjzvqfvzxx2td37Zt25zae/jw4SrXKR/P6667rtZtAAAAqAx5B3mHu3rIO3yXd1Sm/Hdi/PjxHq/nq7wjOTnZUWbu3LlV1jlnzhxH+RYtWnjcfgAAAMMgPyE/IT+pb/mJK1deeaWjHZMnT6603Jn7tjcMGjTIUec//vGPKst/9913jvJBQUFGQUGBV9oBAADMgxyFHMVdPeQovstRGsq1W5xDAQJLsAAAde7kyZO64IILtGXLFsdr7dq106BBgxQWFqbNmzdr9erV+uijj2S1+ndSsJUrV2rkyJE6deqUJCkkJET9+vVTx44dFRISor1792rVqlUqKCjQtm3bNHjwYP3www/q0qVLlXX/9a9/1ZtvvilJ6tGjh3r16qWQkBBt377d8b7//Oc/a9KkSZKkt99+W9ddd12V9b799tuOx7feemu133NNLFy4UNddd53jrgEREREaOHCg2rZtK6vVqu3bt+uHH35QcXGxfvzxRw0aNEhr1qxRUlJSlXX/+c9/1syZM2W1WjVgwAB17txZdrtdP/74o7Zt2yZJWrt2rW688UZ98cUXldazc+dOXXjhhUpLS3O81qNHD/Xu3VtWq1W//vqr1q9frzfffFMxMTFu23T77bdLKh0Vf/jwYUnS5ZdfrhYtWlQo625fWLJkiW677TaVlJSodevWGjRokBo1aqQ9e/Zo+fLlKi4uVn5+vsaMGaNNmzapXbt2bttVXceOHdPs2bO1fft25eTkKC4uTi1bttS5556r1NRUj+oo/z1u1qyZkpOTq1ynT58+LtcHAADwJvKOUuQd5B3+zju8wRd5R1ZWlo4cOeKyvCd1Hjp0SKdOnVKjRo2qXA8AAID8pBT5CflJfc9PNm7c6HjsbqaX8oqLi7V48WL9/PPPSk9PV3h4uBISEtS3b1/1799fYWFhHtVT/vfBk/zkrLPOcjwuKSnR9u3b1aNHD4+2BQAAQI5SihyFHMXfOUp9vXaLcyhAAPL3qB0AMKObb77ZMao4NDTUePvttyuU+emnnxyjukNDQ/1yt4IjR44YTZs2dZS78cYbXY7EPnr0qHHFFVc4yvXo0cMoLi6uUK783QqCgoIMSUarVq2MlStXVihbdjeo7OxsIzo62pBkWCwWY9euXW7f1+bNmx3biIqKMk6dOlXlZ+GOJ5/rpk2bjIiICEcb7733XiMzM7NCuV27dhnnnnuuo77LLrvMZX3l71YQFhbmuOvCli1bnMrZ7XbjlVdecRopv2LFCpd12u1247zzznOUa9KkifHVV19VKLd06VKjadOmhsVicdrvKnvvntxJ40zlP9OwsDAjKirKeO+99wy73e5UbtOmTUaLFi0cZW+66SaP6q9K+bsVuPvXp08f46OPPqqyvueff96xzoABAzxqw+eff+5YJzIyspbvCAAAwDXyDvIO8g7/5R2VqelMM77IO3766SenuObl5VVZZ25urtM6q1ev9vg9AAAAcyM/IT8hP6l/+cmZys/cIslYs2ZNpWXL79vu/sXHxxsPP/ywkZ2d7Xbbx44dc1rvzNhXJjEx0bHOggULqvV+AQCAuZGjkKOQo3DtFudQAHPx7xBYADCh7du3a8aMGY7nb731lm6++eYK5fr3769vvvlGkZGRstlsddlEh4cffljHjx+XJN11112aOXOmy5HYSUlJWrhwoS644AJJpXeh+uCDD9zWXVJSosjISC1ZskR/+MMfKiwvu+tUdHS0xo0bJ0kyDEPvvPOO23rL36lgzJgxVY6694a77rpL+fn5kqSXXnpJL7zwguLi4iqUa9++vb766it17dpVkvTll1/qp59+clt3YWGhOnbsqG+//VadO3d2WmaxWHT33Xfr6quvdrw2b948l/V8/fXXWrlypSTJarVq0aJFuuSSSyqUu+CCC/T555/LarXWyX5ns9n0wQcf6Prrr5fFYnFa1q1bN8fdLKTSO0IUFxf7vE1l1q5dqyuuuEITJ05USUlJpeUyMjIcjz25+4RUeleDMnl5eSosLKx5QwEAAFwg7yhF3kHeIdXvvMNTvsg7ytfZqFEjRUREVFlnZGSk0/5+4sQJj9oCAADMjfykFPkJ+YlUf/MTu92uKVOmOJ4PGDBAffv2rXW9mZmZeuaZZ9S3b19t37690nLl8xOpZnkP+QkAAPAUOUopchRyFKn+5iiSf6/d4hwKEHgYNAMAdeztt9+WYRiSSpOr8ePHV1o2NTXV6QB1XUpLS9Ps2bMllXYSn3/+ebflg4KC9Mwzzziez5kzp8pt3HHHHR5Nozhx4kTH43fffbfSTnBRUZHee+89x/O6mN5z/fr1+vbbbyWVTgNfVbyioqL06KOPOp578jk999xzio6OrnR5+cR99erVLsuUT0jHjh2rc845p9L6+vbtqxtvvLHKdnnDiBEjdOmll1a6fPjw4Y4kJScnx+V0mDXRuXNnPfLII1q6dKmOHDkim82m7Oxsbdy4US+88IJatmzpKPuf//xHd999d6V15eTkOB57kiC5Kle+DgAAAG8g7ziNvIO8w195hzf5Iu+oSZ1nliWXAQAAniA/OY38hPykvuYnTz31lNasWSOp9AK+F198scp1YmJiNGHCBL3//vvatm2bcnJyVFhYqAMHDmjhwoW66KKLHGW3bdumSy+9VGlpaS7rOjO3qEneQ34CAAA8RY5yGjkKOQrXblWso6Z1nlmWHAWoXxg0AwB1bNmyZY7HN9xwQ5Xl3SVmvrRkyRLHaPUrr7xS4eHhVa4zYMAARUVFSZJWrVpVZfmxY8d61JZ+/fqpd+/ekqRDhw7p66+/dlnuk08+cRxs79q1qwYPHuxR/bXxxRdfOB6PGzeuwoh7V8ru6iBV/TmFh4dr5MiRbsucddZZjsd79+51WWbFihWOx9dff32VbfSkjDdcc801bpdbLBb16tXL8byy91cdd955p7Zs2aKnnnpKF1xwgZo1a6aQkBBFR0ere/fuuvfee7V582ZddtlljnVee+21SmNVUFDgeBwaGupRG8ruxlGm7G4XAAAA3kLecRp5B3mHP/IOb/NF3lGTOs+sl1wGAAB4gvzkNPIT8pP6mJ98+umneuKJJxzPH3jgAZ177rlu10lOTtbhw4c1Y8YMXXvttUpNTVVUVJRCQ0PVsmVLXX311Vq8eLHefPNNxz6yZ88ePfTQQy7rK5+fSDXLe8hPAACAp8hRTiNHIUfh2q1SnEMBAl+wvxsAAGZiGIbWr1/veD5o0KAq10lNTVXjxo3rfLq+H374wfF4w4YNuuOOO6q1fmZmpnJzcx2J2JlCQkLUo0cPj+v785//rMmTJ0sqHXk/fPjwCmXKj8i/5ZZbqtXemir/OS1btkz79u2rcp2yu1VI0oEDB9yW7dSpk0JCQtyWadKkiePxqVOnKiw/dOiQ0527BgwYUGUb+/XrJ4vF4tRWX/BkH6jq/VVX+foq06hRI33wwQfq3bu3duzYIUl6/vnnXZ4kKn9QwtNpUc+c0rM6dyQAAACoCnnHaeQdpcg76j7v8DZf5B01qfPMesllAABAVchPTiM/KUV+Ur/ykzVr1mjcuHGO933RRRfpySefrHK9sLCwCheZufLnP/9Z+/bt0z/+8Q9JpXclf+aZZ5SUlORU7swLQG02m0cXhZKfAACA6iJHOY0cpRQ5CtduSZxDAcyAQTMAUIeysrKcOlGtW7f2aL3WrVvXeeJ1+PBhx+NVq1Z5dPeBM2VmZlaaeMXHxys42PM/Q9ddd53uu+8+5ebm6tNPP1VaWpoSExMdyw8ePOi4i0FoaGidTVFZ/nP68ssvq71+Zmam2+WxsbFV1lE+MSsuLq6wvHzSFRkZqcaNG1dZZ0xMjGJjY3Xy5Mkqy9ZGdd9fUVGRL5vjJDIyUg888IBjqthvv/1WNputwt0Dyk+/6ukdAs4s524KVwAAgOoi7ziNvKMUeUf9zTs85Yu8oyZ1nlmWXAYAAFSF/OQ08pNS5Cf1Jz/57bffdNlllyk3N1dS6UV5H330UbX2U0889NBD+uc//6n8/HyVlJRo8eLFFe6afWZukZ+f79GgGfITAABQXeQop5GjlCJHqT85ypn8ee0W51CAwGP1dwMAwExycnKcnkdGRnq0XmXJiy9lZWXVug5XSUCZ6o6kbtSoka699lpJpZ3vWbNmOS1/9913ZbfbJUmjR49WQkJCNVtbM7X9nEpKStwu92TK0KqU3+883eekuum4e+P9+dJFF13keJyXl+fybhTl735w7Ngxj+o9evSo43FkZKRHd2MDAADwFHnHaeQdpcg76nfe4Qlf5B1n3hmuoKCgyjrz8vKUnZ3teO7JiT0AAGBu5CenkZ+UIj+pH/nJnj17NGzYMGVkZEiSunXrpq+++sonn0F0dLTTnbS3bNlSocyZd5quSd5DfgIAADxBjnIaOUopcpT6kaNUxl/XbnEOBQg8DJoBgDp0Zkc2Ly/Po/XK7vDkTWVJSmXKJ3svv/yyDMOo9r+2bdt6tc0TJ050PC4/nadhGJoxY4bjedno8rpQ/nP68MMPa/Q5+Vr5/c7TfU7yzX7X0CQnJzs9T09Pr1CmU6dOjseeTPEqSfv373c87ty5cw1bBwAA4Bp5R+2Qd9QMeYdv+SLvKF+np/WWr9NVHQAAAGciP6kd8pOaIT9x79ChQ7rwwgsdd+ROSUnR4sWLfXpBV/nzLa7OtTRt2lRxcXGO557kJwUFBU537OZ8CwAA8AQ5Su2Qo9QMOUrN+evaLc6hAIGHQTMAUIdiY2Odpgc8s6NUmQMHDlRZpqppHs9U1Sj7pKQkx+PyI6v9aeDAgerZs6ek0rtQ/fDDD5KkZcuWaffu3ZKkNm3aOI0w97X6+DmdqfydG/Ly8qqcVlQqvcOBr6f3bAjOTD5d3TmkS5cujsdHjx71aD9Yu3aty/UBAAC8gbyjdsg7aoa8w7d8kXfExsY6nWxat25dteps0aKFGjVqVOU6AADA3MhPaof8pGbITyp37NgxXXjhhdqzZ48kqWXLllqyZEmFC9G8rfz5lsru0l4+b6lufhIUFKTU1NRatBAAAJgFOUrtkKPUDDlKzfnr2i3OoQCBh0EzAFCHLBaLevXq5Xj+448/VrnOjh07HFOju1O+k+VJ+Y0bN7pdXn6a9O+++67K+uqKqzsWlL9zwU033SSrte7+vNXXz6m8li1bOiVfP/30U5Xr/Pzzzx7dSaG+T9FZW2cmPM2bN69QpmPHjmrZsqXj+fLly6usd8WKFY7HF1xwQc0bCAAA4AJ5R+2Rd1QfeYdv+SrvOP/8871eJwAAQHnkJ7VHflJ95CeuZWRkaNiwYdq2bZuk0tldlixZ4vW7j7tS/nyLq3MtUu3yk8GDByssLKzmDQQAAKZBjlJ75CjVR45Sc/68dotzKEBgYdAMANSx8p2p2bNnV1l+1qxZHtVb/oD2r7/+6rbszz//7LiDVGUuueQSBQcHS5K+//57rV+/3qN2+Nr111+viIgISdL8+fN18OBBffjhh5Ikq9Wqm2++uU7bM2LECMfjDz/8UMeOHavT7XtqyJAhjsdz5sypsrwn+6YkhYeHOx4XFRVVv2H13DvvvON43K1bN6cEtozFYtGoUaMcz9999123df7www/avn27pNI7n40cOdI7jQUAACiHvKN2yDtqhrzDd3yVd1x++eWOx/Pnz1d+fn6ldebn52vBggUu1wUAAHCH/KR2yE9qhvzE2alTp3TJJZc4LsyMj4/X4sWL1alTJ59ve8mSJU53Zh86dKjLcuVzjCVLlujgwYNu6y2fF5GfAACA6iBHqR1ylJohR6kZf167xTkUILAwaAYA6tgtt9ziePzjjz+67eDu3LlT//znPz2qt/yo+ZkzZ1Zarri4WHfffXeV9bVo0ULXX3+9JMkwDN144406deqUR22x2+1KS0vzqGx1xcXFacyYMZJKp6G8+uqrVVBQIEm6+OKL1apVK59stzL9+/d3HNzPz8/XDTfcIJvN5tG6NpvNo+k2vaF8Qjp37ly3d8pYu3at232ovCZNmjgeHzp0qOYNrCM5OTkel/3ggw80d+5cx/Oy74Mrt912m+MuGV9//bUWL17sspzdbtf999/veH7NNdcoMTHR4zYBAAB4iryjdsg7aoa8w7d8kXeMGjXKcfe1kydP6plnnql0+0899ZROnjwpSWrTpo3TiUgAAAB3yE9qh/ykZshPTsvLy9Mf//hH/fLLL5KkmJgYffXVV+rZs2eN6rPZbB7HPC0tTbfddpvjeZcuXdSnTx+XZfv166d+/fpJkkpKSvTggw9WWu9bb73luMgtJiZGN954o6fNBwAAIEepJXKUmiFHKdWQrt3iHAoQWBg0AwB1LDU1VRMmTHA8v/XWW112cn/++WcNGzZMubm5Cg0NrbLea6+91tHx++GHH/Tggw+qpKTEqczBgwc1YsQIff/99x5NUf7MM88oOTlZkrRhwwb1799f33zzTaXlDx48qH/+85/q1KmT5s+fX2X9NVV+ms/y01XeeuutPtumO6+++qqio6MlSYsXL9Z5553ndhrN7du366mnnlLbtm3rbFrQyy67TOeee66k0s7/yJEjtWTJkgrlli9fruHDh6ukpMSj/a579+6Oxx988IFH04L600svvaRhw4bpv//9b6Wj/7OysvT4449r7NixjvfTrl07twcsevTooeuuu87xfNy4cRWm5czNzdWECRO0atUqSVJoaKieeuqpWr4jAAAA18g7ao+8o/rIO3zLF3lHWFiYnnjiCcfzZ599VtOmTZPdbne8ZrfbNW3aND3//POO15588kmPYgcAACCRn3gD+Un1kZ+UKiws1OWXX+7IESIiIvTZZ5+pf//+Na7z8OHDSklJ0dSpU7Vv3z6XZQzD0Oeff65+/fpp165dkkrv/vziiy86vreuPPvss47Hc+bM0YMPPljhbtkLFizQlClTHM/vvfdel3ebBgAAqAw5Su2Ro1QfOUqphnTtFudQgMAS7O8GAIAZvfzyy/rhhx+0bds2FRYWasKECXryySc1aNAghYWFafPmzVq9erUMw9CVV16pjIwMrVixwm2dbdq00W233abXX39dkvT8889r3rx5Ou+88xQeHq5du3bpu+++k81m00UXXaRmzZpVOY1j8+bNtWjRIg0fPlzp6enatm2bLrnkErVo0UL9+/dXYmKiioqKlJ6erk2bNlU5bai3nHPOOerWrZs2b97seK1p06ZO0yzWpe7du2vevHm69tprlZeXp59++kkDBw5USkqK+vTpo8aNG6ugoEDHjx/Xhg0b/DKq32Kx6J133tGgQYOUkZGh9PR0DRs2TL169VLv3r0lSevXr3dMD3vvvfdq4cKFjpMdlZ3AuPLKK/W3v/3NcfKjZ8+eGjx4sGJiYhxlxo4dq759+/r0/XnKMAwtWbJES5YsUVhYmLp166YOHTooLi5ONptNe/fu1U8//eSUlCUkJOiLL75wTC1bmenTp2vt2rXavHmzMjIydP7552vAgAHq2rWrTp06pW+//dbp7hRvvfWWOnTo4LP3CgAAQN5RO+Qd1Ufe4azsPZe3f/9+x+NPPvnEZZmyz8cVX+QdN998s5YvX6733ntPdrtdd999t6ZNm6aBAwdKKr3TYtlFbpJ00003cRdnAABQbeQntUN+Un3kJ6UeffRRpzssd+nSRQsWLNCCBQuqXLdJkyZOF4iVd/DgQT3wwAN64IEH1LZtW/Xo0UMJCQkKCQlRWlqafvrpJx0+fNhpnalTp2r48OFut3nhhRfqkUce0dNPPy2p9Hv93nvv6Q9/+IPCw8P1yy+/aNOmTY7yw4YN09/+9rcq3wsAAMCZyFFqhxyl+shRSjW0a7c4hwIEEAMA4BeHDh0y+vbta0iq9N+oUaOMU6dOGUOGDHG8tmzZskrrzM/PN4YPH+62zhEjRhiZmZnG+PHjHa/NmDHDbVv37t1rXHjhhW7rLf8vKSnJ+OqrryrUs2fPHkeZNm3a1Orze+WVV5y2ee+999aqvsq0adPGsY09e/a4Lfvrr78aZ599tsefU9u2bY1169ZVqGfZsmWOMkOGDPGoneXrraqN7dq1c9uuP//5z4bNZjOaN2/ueC0zM7PSOh966CG39Z25f1XnMzUMo1r7alUef/xxj+Mjybj00kuNgwcPelz/oUOHjAsuuMBtndHR0cY777xTq/cBAADgKfKONrX6/Mg7nJF3VE91cg9PP1vD8E3eUVhYaNxxxx2GxWKptE6LxWLcddddhs1mq83HAgAATIz8pE2tPj/yE2fkJ54pX1d1/1W2z5bfrz3516JFC2PRokUet9lutxtPPfWUERIS4rbesWPHGllZWbX6fAAAgLmRo7Sp1edHjuKMHMUzDfHaLc6hAIGBmWYAwE+aN2+uH3/8UbNmzdKcOXO0YcMGZWVlKSkpSb169dL48eN11VVXyWKxeFxneHi4PvvsM82bN08zZ87U2rVrlZWVpaZNm6pXr16aMGGCrr766mrVKZXeCWHJkiX64YcftHDhQq1cuVIHDhxQZmamgoOD1aRJE3Xs2FF9+/bVxRdfrKFDhyo42Ld/Yq688kqnqdf9Nb1neb169dLPP/+sb775Rh9//LG+++47HT58WCdPnlRYWJgSExPVqVMnDRgwQJdccokGDRpU7Vh4o42bNm3Sv/71Ly1cuFDbt29XXl6ekpOT1b9/f02cOFEXXnihJDlG1lutVjVq1KjSOv/xj3/o3HPP1YwZM/TLL7/o2LFjysvLq5P3U1333XefhgwZou+//14//vij9u3bp4yMDGVkZMhisSguLk4dO3bU4MGDNW7cOPXq1ata9Tdv3lxLlizRRx99pDlz5mjt2rU6cuSIoqOj1bp1a40cOVK33HKLWrdu7aN3CAAA4Iy8o3bIO2reRjPnHb7mi7wjNDRUr776qm644Qa98847Wr58ueNOey1atNDQoUN1yy23qF+/fr56WwAAwATIT2qH/KTmbSQ/8a42bdpo48aN+uGHH/T9999r8+bNSk9PV0ZGhvLy8tSoUSMlJyerX79+uuyyy3TFFVcoJCTE4/otFoseeeQRXXXVVfrPf/6jb775RgcOHFBRUZGSk5M1aNAgjR8/XhdddJEP3yUAADADcpTaIUepeRvNnKM0xGu3OIcCBAaLYRiGvxsBAHBv6NChjik+ly1bpqFDh/q3QfXAzJkzNWHCBEnSueeeq//973/+bVCA2bFjh1JTUyVJnTt31pYtW/zcIgAAAPgaeUdF5B2+Rd4BAACAypCfVER+4lvkJwAAAHCHHKUichTfIkcBAO+y+rsBAADUxNtvv+14PHHiRD+2JDDNnz/f8ZhR8AAAADAr8g7fIu8AAAAAPEd+4lvkJwAAAED1kKP4FjkKAHgXg2YAAA3OunXrHHcnaNy4scaMGePnFgWWPXv26MUXX3Q8/9Of/uTH1gAAAAD+Qd7hW+QdAAAAgOfIT3yL/AQAAACoHnIU3yJHAQDvY9AMAKBBKSgo0J133ul4fttttyk8PNyPLWpYLr74Yn311VcqLi52ufzzzz/Xueeeq6ysLElS7969dfHFF9dlEwEAAAC/I++oHfIOAAAAwHvIT2qH/AQAAADwLnKU2iFHAQD/CPZ3AwAAqMr06dO1c+dOnTx5UkuXLtXBgwclSQkJCbrnnnv83LqGZfHixVq8eLHi4+PVp08ftWrVSqGhoUpPT9fq1asdn60kxcTEaNasWbJaGWMLAACAwEfe4T3kHQAAAEDtkJ94D/kJAAAAUHvkKN5DjgIA/sGgGQBAvffBBx9oxYoVTq8FBQXp7bffVuPGjf3UqoYtMzNTS5curXR5x44dtXDhQvXo0aMOWwUAAAD4D3mH95F3AAAAADVDfuJ95CcAAABAzZGjeB85CgDULQbNAAAalPj4eA0ePFgPPfSQzjnnHH83p8HZtGmTPv74Y33//ffat2+f0tPTdeLECYWHhysxMVH9+/fXiBEjNHbsWAUFBfm7uQAAAIBfkHfUDnkHAAAA4D3kJ7VDfgIAAAB4FzlK7ZCjAIB/WAzDMPzdCAAAAAAAAAAAAAAAAAAAAAAAAMCbrP5uAAAAAAAAAAAAAAAAAAAAAAAAAOBtDJoBAAAAAAAAAAAAAAAAAAAAAABAwGHQDAAAAAAAAAAAAAAAAAAAAAAAAAIOg2YAAAAAAAAAAAAAAAAAAAAAAAAQcBg0AwAAAAAAAAAAAAAAAAAAAAAAgIDDoBkAAAAAAAAAAAAAAAAAAAAAAAAEHAbNAAAAAAAAAAAAAAAAAAAAAAAAIOAwaAYAAAAAAAAAAAAAAAAAAAAAAAABJ9jfDUDDlpmZ6ZN6rVarYmNjHc+zsrJkt9t9si34H/E2F+JtHsTaXIi3udSHeMfHx9fp9tAw+Co/kerHfo+6Q7zNg1ibC/E2F+JtLv6ON/kJKkOOAm8g1uZCvM2FeJsL8TaP+hBrchRUhuu84A3E21yIt7kQb/Mg1uZSH+JdH3IUi2EYhr8bAQAAAAAAAAAAAAAAAAAAAAAAAHiT1d8NAAAAAAAAAAAAAAAAAAAAAAAAALyNQTMAAAAAAAAAAAAAAAAAAAAAAAAIOMH+bgAatszMTJ/Ua7VaFRsb63ielZUlu93uk23B/4i3uRBv8yDW5kK8zaU+xDs+Pr5Ot4eGwVf5iVQ/9nvUHeJtHsTaXIi3uRBvc/F3vMlPUBlyFHgDsTYX4m0uxNtciLd51IdYk6OgMlznBW8g3uZCvM2FeJsHsTaX+hDv+pCjMGgGtVJSUlIn27Hb7XW2Lfgf8TYX4m0exNpciLe5EG/UF3W5H7LfmwvxNg9ibS7E21yIt7kQb9QX5CjwBWJtLsTbXIi3uRBv8yDWqE+4zgu+QLzNhXibC/E2D2JtLmaNt9XfDQAAAAAAAAAAAAAAAAAAAAAAAAC8jUEzAAAAAAAAAAAAAAAAAAAAAAAACDgMmgEAAAAAAAAAAAAAAAAAAAAAAEDAYdAMAAAAAAAAAAAAAAAAAAAAAAAAAg6DZgAAAAAAAAAAAAAAAAAAAAAAABBwGDQDAAAAAAAAAAAAAAAAAAAAAACAgMOgGQAAAAAAAAAAAAAAAAAAAAAAAAScYH83AAAAd4qKipSXlyebzSbDMGQYhr+bBA9ZLBalp6c7nhcVFRG/AEa8zaWm8bZarQoODlZ4eLjCwsJktTKGHwDQsNjtdhUWFqqgoEDFxcWy2+3+bhKqgT6ruRBvc6lJvC0WiywWi0JDQxUZGamQkBBfNxOoNnd9D37nzINYmwvxDlwcGwUAAAAAAPAfBs0AAOolwzCUlZWl/Px8fzcFtVD+ZB4XFAY+4m0uNYm33W5XcXGxCgoKZLFYFBcXp/DwcF81EQAAryooKNDJkye5YK2Bo89qLsTbXGoa7+LiYuXl5SkiIkKxsbGyWCy+aB5QbZ70PfidMw9ibS7EOzC5OjYaFRXl72YBAAAAAACYAoNmAAD1Uk5OToUBM9x1q+EhZuZCvM2lJvEuP2OYYRjKzMxUfHw8A2cAAPVeQUGBMjMznV4rm6EADQt9VnMh3uZSk3iXvxA5Pz9fQUFBiomJ8WazgBrxtO/B75x5EGtzId6BydWxUavVqvj4eD+3DAAAAAAAIPAxaAYAUO8UFxcrJyfH8TwmJkaRkZGcKGqAgoNPdzWKi4v92BLUBeJtLjWJt2EYstlsys3NVWFhoSTp5MmTatq0Kb/xAIB6y2636+TJk47nYWFhioqKUmhoKINmGiD6rOZCvM2lJvG22+3Ky8tTdna2pNKbuERERDjVBdS16vQ9+J0zD2JtLsQ7MLk6NnrixAk1a9aMY6MAAAAAAAA+xtEXAEC9U3ayQJKioqIUHR3NCQMACAAWi0VhYWGKj49XWFiYpNKTxeV/9wEAqG8KCwsddwMu/3eMATMA0PBZrVZFR0crKirK8Rr5CfyNvgcABKbKjo2Wv4kcAAAAAAAAfIMrkAEA9U75ixMiIiL82BIAgC9YLBani9IKCgr82BoAANwr/3cqKiqKC1YBIACVP/7EoBn4G30PAAhsZx4bPXXqlB9bAwAAAAAAYA4MmgEA1DslJSWSSk8cBAcH+7k1AABfCA0NdVz4U1xc7OfWAABQubK/UxaLRaGhoX5uDQDAF4KDgx35SdlxKcBf6HsAQOArf2zUZrP5uTUAAAAAAACBj0EzAIB6x263Syo9McydFAEgMJX/jS/73QcAoD4iPwGAwEd+gvqEvgcABL7yv/EM2AUAAAAAAPA9Bs0AAAAAAAAAAAAAAAAAAAAAAAAg4DBoBgAAAAAAAAAAAAAAAAAAAAAAAAGHQTMAAAAAAAAAAAAAAAAAAAAAAAAIOAyaAQAAAAAAAAAAAAAAAAAAAAAAQMBh0AwAAAAAAAAAAAAAAAAAAAAAAAACDoNmAACAJOngwYO655571K9fP7Vs2VKJiYlKTEzUF1984dXtlNU7derUCsu+++47x/LvvvvOq9uFec2bN8+xX+3fv9/fzQEAAIAHyE8QqMhPAKB+ou+BQEXfAwAAAAAAAJCC/d0AAADgfwcPHtRFF12kjIwMfzcFAAAAgMmRnwAAgLpE3wMAAAAAAAAAAhszzQAAAL388svKyMhQcHCwHnvsMX355ZdauXKlVq5cqfPOO8/fzUMDsH//fsXHxys+Pl5z5871+fa48yYAAEDgIj9Bbe3fv1+JiYnkJwAAj9D3QG2V9T0SExM1b948n2+PvgcAAAAAAABQPcw0AwAAtHLlSknSZZddpjvvvNPPrQG8a9y4cRo3bpy/mwEAAAAPkZ8gkJGfAED9Q98DgYy+BwAAAAAAAMBMMwAAQNKRI0ckSSkpKX5uCQAAAACzIz8BAAB1ib4HAAAAAAAAAAQ2Bs0AAADZbDZJUkhIiJ9bAgAAAMDsyE8AAEBdou8BAAAAAAAAAIGNQTMAAJjUvHnzlJiYqMTERMdrL7zwguO1xMRE3XHHHY5lffr0qfCaK3fccYcSExPVp08fn7XdE3a7XR9++KEmTJig3r17q1WrVmrVqpUGDBig2267TZ988omKiopcrmuz2fTOO+/o8ssvV+fOndW8eXN17dpVY8eO1cKFC2W32yvd7pnv/9ixY3r88cc1YMAAtW7dWj169NAtt9yirVu3Oq23f/9+PfTQQxowYIBatWqlrl276rbbbtOePXsq3dbUqVOdYpiVlaXnn39e5557rtq0aaOOHTvq8ssv14cffuj2syqrY+rUqW7LjR49WomJiRo9enSF9c8++2zH89tvv91pP3JV9969e/X666/ruuuuU58+fRzxOeuss3Trrbdq6dKlLtuwf/9+JSYm6vLLL3e8dvnll1fY3rx58xzLy+/r+/fvr/T9paen6x//+IfOP/98paSkqGXLlurTp48mT56sH3/80e1nc+b3Y+fOnfrrX/+qPn36qEWLFuratavGjx+vn3/+2W09AAAAZkV+Qn5Sxhf5SXx8PPkJ+QkAOKHvQd+jjLf7HnfddVetj40uWbLEZRvoewAAAAAAAKC6MvOK9MOuDM36Ya9eWbLd383xm2B/NwAAAMDb9u/fr/Hjx2vTpk0Vlu3evVu7d+/Wf//7X3388cc655xzKqw7duxY7dixw+n1tLQ0LV26VEuXLtXMmTP13nvvKT4+3m07Nm3apGuvvVbHjx93vJafn69PPvlES5Ys0fz58zVw4ED973//04QJE3Tq1ClHuYKCAv33v//V0qVL9emnn6pz585ut7Vv3z5dffXV2rt3r+O1vLw8fffdd/ruu+/0xRdf6F//+peCg/3f/du3b5/69evnctnBgwd18OBBLVq0SNdcc42mTZtWJ21etmyZbrnlFmVnZzu9fuDAAR04cEALFy7UzTffrGeffVZWq/tx559//rkmT56svLw8x2tpaWn64osv9PXXX+uNN97QFVdc4ZP3AQAAgPqH/KQU+YnnyE8AALVB36NUQ+97jBkzRq+99lqdtIm+BwAAAAAAQMOXU1is3Rn52pWer93p+dqVnqdd6fnKyDt985xgq0V/6t3ElLOu+P/IIAAA8Ivhw4erd+/ekqTzzjtPknTTTTfppptucpSJi4vzQ8tq5/jx4/rjH/+oo0ePSpL+8Ic/6Nprr1XHjh1lsVi0b98+rVq1Sp988kmFdXNycnTVVVc5Tq4OHz5cf/rTn9SsWTPt27dPb7/9tr7//nv99NNPuu666/Tpp58qKCjIZTvy8/M1YcIEFRUV6eGHH9bgwYMVFBSkb7/9Vq+88ory8vJ0++23a+HChbrxxhvVqFEjPfDAAzr77LNVXFyszz77TG+++aZOnjypKVOm6KuvvnL7vidOnKj9+/drwoQJGjlypBo1aqTNmzfr1Vdf1a5du7Ro0SI1a9ZMTz/9dO0+YBdWrlypo0ePasyYMZKkhx9+WJdccolTmYSEBMfjkpIShYaG6vzzz9eQIUPUqVMnxcXF6eTJk9q1a5feeecdbd26VQsXLlSbNm30wAMPONZNTk7WypUrtW7dOt19992SpP/7v//TWWed5bS95s2be9z+jRs36vrrr5fNZlNISIhuueUWXXrppYqMjNTGjRs1bdo07du3T++8846ioqL02GOPVVrXli1btGjRIiUlJekvf/mLevfuLcMwtGzZMk2bNk0FBQW655579Ic//MHpMwEAADA78hPyE29xlZ8MHz5cJSUljjLkJ+QnAEDfg76Ht5zZ93jooYd02WWXOZWpSd9jwYIFatu2re677z7HuvQ9AAAAAAAAUFBk194T+dqZnvf74JjSATJHs21VrltsN7T/RIHaNg6rg5bWLwyaAQA0SHbDUFZ+sb+bUWdiI4JltVi8W2dsrGJjY51eS0hIUJcuXby6nbp2//33O04KP/bYY7rzzjudlp911lm6/PLL9fe//13Fxc770Isvvug4Kfz//t//00MPPeRY1qtXL40cOVKTJ0/WBx98oDVr1mjWrFlOJ9LLS09Pl2EY+vrrr9WuXTvH62effbYaN26sBx98UPv379cf//hHNW3aVJ9//rnTicIBAwYoODhY06dP1y+//KINGzaoZ8+elb7vdevW6c0339SVV17peK13794aPXq0RowYoc2bN+vf//63rrvuOq/HuEuXLoqKinI8b968udttJCUl6ZdfflGzZs0qLDvvvPM0YcIE3XXXXXr//ff1+uuv6y9/+YsaNWokSQoJCVGXLl104sQJxzpt2rSp1Xu65557ZLPZFBQUpDlz5uj88893LDvrrLM0atQojRgxQtu2bdNrr72mMWPGVHp3yw0bNqhXr1766KOPFBMT43i9b9++ateunf7yl78oOztbH3zwgW677bYatxkAANQ/5Ci1rI/8hPzES1zlJ127dq3w+ZYhPyE/ARqisn5HULDheK2kkt+5QEHfwzP0Pfzf90hOTq71sdEpU6Zo7ty5eu211zRp0iT6HgAAAAAAACZUXGLXvsyC0zPHZJTOHHPwZIHsRtXrV2Zneh6DZtBwrVy5Ulu3btXu3bu1f/9+FRcXa/LkyRo6dKi/mwYAPpGVX6xhr6/1dzPqzOLJfRQfGeLvZtR7O3fu1BdffCGp9E6IZ54ULi86OtrpeWFhoWbPni1J6ty5s+6///4K61gsFk2dOlXffvutTpw4obfffrvSE8OS9OCDDzqdFC7zpz/9SX//+99VUFCg9PR0TZ8+3eWd9SZMmKDp06dLkn788Ue3J4Yvvvhip5PC5d/nyy+/rEsuuUR2u13vvvuunn/++UrrqQtRUVFOJ5LPZLFY9OSTT2rhwoXKy8vTihUrNHLkSJ+0Ze3atVq3bp0k6YYbbnA6KVwmLi5OL730kkaMGCG73a533nlHU6dOrbTO//u//3M6KVzmqquu0hNPPKGjR4/qxx9/5MQwAAABhhwFZyI/IT+pLvITAJ4yW79Dou/hCfoegdP3ePrppzV//nzl5ubS9wAAAAAAAAhwJXZDh7MKtSs9T7syTs8cs+9EgYprMzqmnNBgqzokRqtTsxglRJvzOCuDZgLE/PnzlZaWppiYGMXHxystLc3fTQIAoM4tXrxYhlHaUZw0aVK11l2/fr2ysrIkSWPHjlVQUJDLcjExMRo9erRmzJihbdu26ejRoy7vCmixWDR69GiXdURERKh9+/b67bffFBcXpwsuuMBluTZt2ig6Olo5OTnat2+f2/aPGzeu0mV9+vRR586dtXXrVq1cudJtPf5QVFSktLQ05eTkqKSkxPF648aNlZaWps2bN/vsxPCKFSscj6+77rpKyw0YMECpqanavn2728+wa9eu6tatm8tlFotFPXr00NGjRx137QQAAEDgIj9xjfykcuQnAIDaoO/hWkPsewQFBdH3AAAAAAAACDCGYehYtq105piM0oExZY8Li+1e2UaQRWrTOELtm0QoJSFCKQmRSk2KVve2zRQcZJUkZWZmOp0DMwsGzQSISZMmKTk5WYmJifr44481d+5cfzcJAIA6t3HjRklSSEiI+vbtW611t27d6njcp08ft2X79OmjGTNmONZzdWK4SZMmio+Pr7SORo0aSZLatWsni8VSabnY2Fjl5OQoJyfHbZvOOuusKpdv3bpVu3btks1mU2hoqNvyvlZUVKRZs2Zp4cKF2rhxo2w2W6VlT5w44bN2lMU9NDRU3bt3d1u2T58+2r59u3bv3l3pZ9ihQwe3dZTtE7m5uTVsMQAAABoK8hP3y8lPKiI/AQDUBn0P98vpe1RE3wMAAAAAAMA3TuQWaVdG3u+zxpweIJNr885gFYukFnFhvw+OiVRKQoQ6JESqdXy4QoOtTmWDgoIcA2bMjEEzAcLdlOQAAJhFRkaGJCkuLq7aJz4zMzMdjxMTE92Wbdq0qcv1youIiHBbh9VqrVa5qkZ3JyQkuF1e9p4Mw9DJkyed3kNdy8zM1DXXXKP169d7VD4/P9+nbZFK95ngYPdd47LPzN1nWFU8yy4CMONofQAAALMhP6kc+UnlbZHITwAANUPfo3L0PSpvi0TfAwAAAAAAoKayC4q1KyNfu8sNjNmVnqfM/GKvbSMpJtRp5piUhAi1axyhiFDXs0XDNdMPmsnKytLOnTu1c+dO7dq1S7t27VJ2drYkaciQIbr99ts9ristLU1ffvml1q5dq4yMDAUHB6tZs2YaNGiQLrnkEoWFhfnqbQCA6cRGBGvxZPd3vAsksRGm/5Ndp9zd3bC+akhtfvjhhx0nhYcPH64//elP6tq1qxISEhQeHu54L71799ahQ4dkGIbP29SQPj8AAFA/kaPAVxpiX7UhtZn8BEBDVNbvCCp3kXtJsfdOwtZH9D3qTkP8O9SQ2uxJ3yM4OFjdu3en7wEAAAAAAFBPFBSVaLdjcMzvA2Qy8nUsu/IZhKsrLiLYaWBMSkKkUppEKCacY6PeYPpPceLEiV6p5+eff9arr77qdLefwsJCx0CcpUuX6qGHHnI5RTkAoPqsFoviI0P83QxTKburX1Un6fLy8uqiOS41adJEknTy5EnZbLZq3VExPj7e8fj48eNKSUmptOzx48ddrudPaWlpatGihdvlUukJ0Li4OKdlFotFhmHIbre73YY3Ypudna2PP/5YknT11VfrjTfeqLTsyZMna729qpTFLzMzU8XFxW7vqFgWd1efIQAAADlK3SI/kdNyV+v5E/lJzZCfAPBUWb+j/O9EcTEXvfsSfQ85LXe1nj8FYt8jKyur1turCn0PAAAAAAAAZ0Uldu07UaBdGc4zxxw6WShv3dokKtTqPDAmIUIpTSLVOIpzzb5k+kEz5SUkJKhFixYeT4ddZs+ePXrllVdks9kUHh6uyy+/XN27d5fNZtN3332npUuX6siRI3r22Wf13HPPVTk1NQAA9VF0dLSkqi8U2r17dx20xrWePXtq4cKFKioq0po1a3TOOed4vG7nzp0dj9euXatBgwZVWnbt2rUu1/OndevWuT0x/Ouvv0qS2rdvX+GEeXR0tLKzs93G1jAM7dmzp9Llnt6NcPfu3SoqKpIkXX755ZWW27Fjh3Jzcz2qszbK4mez2bRp0yb17t270rLr1q2T5PozBAAAQN0iP5HTclfr+RP5Sc2QnwBA/UXfQ07LXa3nT4HW99i+fbtycnI8qrM26HsAAAAAAACzKrEbOniyQLvS87W73ACZfZkFKrF7Z3hMWLBF7ZqUDogpP0AmKSaUmX/9wPSDZq6++mqlpKQoJSVFcXFxOn78uO64445q1fHuu+/KZrMpKChIjzzyiFJTUx3LunfvruTkZM2ePVtHjhzRp59+qjFjxlSoY9asWY6DpJ4YPny4kpOTq9VOAABqo3Xr1tq8ebM2bNggwzBcdty2bt2qzZs3+6F1pYYNG6bHHntMhmHorbfeqtaJ4V69eik2NlZZWVmaP3++/vKXvzjuIFleTk6OPvnkE0lSp06d6s0scvPnz9eIESNcLlu3bp22bNkiSTrvvPMqLC+LrbuBw0uWLHF7d8OwsDDH48LCwkrLFRcXOx67uzvju+++W+kySQoPD/doe1UZMmSI/vGPf0iS5s6dW+mJ4TVr1mjbtm2SXH+GAAAAqFvkJ6XIT1wjPwEAeBt9j1L0PVwr3/ew2WyVlvO07zFjxoxKl0n0PQAAAAAAADxlGIaOnrKVDorJyHfMHLP3RL4Ki70zOCbIalGb+HDHwJgOv//fPDZMQVYGx9QXFY92msyYMWN09tln13ga6Z07dzoOtJ5//vlOA2bKjBgxwnF3oy+//NLpgGiZxYsX6+uvv/b434kTJ2rUXgAAamrw4MGSpKNHj+rDDz+ssDwnJ0dTpkyp41Y5S0lJ0fDhwyVJX3zxhaZPn15p2dzcXKe7B4aFhen666+XJG3ZskUvvfRShXUMw9ADDzygjIwMSdItt9zixdbXzldffaWPP/64wus5OTm65557JElWq1Xjx4+vUKYstr/88ot++umnCsuPHTumv/3tb26337hxY8cdBt3ddbFdu3aOiwref/99GUbF5OPrr7/W22+/7XZ7SUlJjsd79+51W9adPn36OE4Gv/fee1q5cmWFMqdOndK9994rqfQzvOmmm2q8PQAAAHgH+Qn5iTvkJwAAb6PvQd/DnfJ9D3d9AU/7Hv/+97/dbo++BwAAAAAAgDPDMJSea9NP+7I075ejevrr3bppzmYNffVnjfz3r5ry0Xa9uvKAvvgtXduO59VowIxFUqu4MA3tEK9bBjbXP0Z00PwJPbTq7r5acFNPPTuyo24d1EJDOzZWq/hwBszUM6afaaa2Vq9e7Xh8/vnnuyxjtVo1ZMgQzZ07V7m5udq8ebN69erlVOa9997zaTsBAKitq6++WlOnTlV2dramTJmiPXv26Pzzz5fFYtH69ev1xhtv6MiRI+rRo4c2btzot3ZOnTpVv/zyi44ePaonnnhC3377rcaOHauOHTvKYrFo//79WrVqlT7++GPNmDHD6Y6L9957rz7//HPt3btXU6dO1W+//aZx48YpKSlJ+/fv19tvv63vvvtOktSvXz/deOON/nqbFfTu3Vu33Xabvv/+e40aNUoxMTHavHmzXn31Ve3cuVOSdPPNN6tbt24V1r3xxhs1Y8YMFRcX6/rrr9c999yjgQMHymazafXq1XrjjTdUXFys9u3ba/fu3S63HxwcrLPOOks//fST5syZo+7du6t79+4KDi7tbsbHxys+Pl6NGzfWRRddpMWLF+vbb7/VNddcowkTJqhVq1ZKS0vTZ599pvfff19t2rTRqVOnlJ6e7nJ7LVu2VPPmzXX48GG9/vrrat68uTp06OC4A2bTpk0VHR3t0Wf38ssv69JLL5XNZtO4ceN066236uKLL1ZUVJQ2btyoadOmOU4+33777erSpYtH9QIAAMB3yE/IT6rKT3r37q3Vq1drzpw56tmzp7p27Up+AgCoMfoe9D087XvMnTtXPXr0qNWx0bZt2yorK4u+BwAAAAAAgAunCopLZ45JPz1zzK6MfGXlV5zUoqaSYkIdM8ekJESoQ0Kk2jYOV3hIkNe2gbrFoJlaKpuKOiwsTO3bt6+0XNeuXZ3WOXPQDAAA9V1CQoL++c9/atKkSSooKNDzzz+v559/3rE8IiJCr732mr755hu/nhhu2rSpPv30U914443asmWL/ve//+l///ufR+tGR0frv//9r8aOHasdO3bos88+02effVahXP/+/TV79mwFBdWfTvB//vMfXXXVVZoxY4ZmzJhRYfmIESP01FNPuVy3c+fOevzxx/Xoo4/q5MmTevTRR52Wx8fHa+bMmXruuecqPTEsSX/96181btw4nThxQpMmTXJadt999+n++++XJL3wwgsaMWKEDh48qBUrVmjFihVOZVu2bKlZs2Zp3Lhxbt/zlClTdP/992vfvn264YYbnJZNmzatyvXL9OjRQ7Nnz9Ytt9yi7Oxsvf7663r99dcrlLv55pv1yCOPeFQnAAAAfIv85DTyE9fuvvtuXX/99Tpx4oQmTpzotIz8BABQXfQ9TqPv4Vr5vkdtj43Onj1bY8aMcfue6XsAAAAAAIBAl28r0e4M54Exu9LzlJZT5LVtNI4MdgyMKfu/fZMIRYcxxCLQENFaOnjwoCSpWbNmbg8ON2/evMI69VnZ1OpV8dUB8bI7IVX2HIGFeJuLJ/G2WJiWrr4aPXq0WrVqpWnTpumnn37SqVOnlJiYqHPPPVd33HGHOnfurG+++cbluhaLRYZR/WkNa6Jt27ZatmyZFi5cqE8++UQbNmzQiRMnFBwcrObNm+vss8/WyJEjNXDgwArrtm7dWsuXL9d7772nTz75RFu3blV2drbi4uLUo0cPXX311brqqqvq3W9VmzZttGTJEr322mv64osvdPDgQQUHB6tbt2668cYbdfXVV7td/7bbblNqaqr+9a9/ad26dcrPz1ezZs104YUX6s4771TLli3drm+xWHTJJZdo0aJF+te//qW1a9cqIyNDRUUVk5QWLVpo6dKlevXVV/Xll1/q4MGDCgsLU6tWrTR8+HD9+c9/VlxcXJXv+aabblJiYqJmzpypzZs3KzMzU8XFNbtjwPnnn6/Vq1frzTff1JIlS7Rv3z7ZbDYlJiZq4MCBGj9+vMv9xazO/J2u7ffbYrHUqwstUP/4Oz+R6LOaDfE2D/KThq26+YmrPkxdID+p+/xEklN+sm7dOqWnp5OfBDBv5ijkJ/CEL3MUT/8+eTs3R9Vqc2y0Nqoba/oe/ul7XHzxxfrwww/11ltvad26dTU+Njpp0iQ1adLEUb6y3wT6HoGpvn234F0cbzIPYg1/8Pd5FPZ7cyHe5kK8zYV4m0d9i7Wt2K49J/K1Oz1PO9PytDM9T7vS8nQoq9Br24gOC1KHhEilJEaqQ0KkOiRGqn1CpBpHhnhtG/VVfYu3v1gMjqA7OX78uO644w5J0pAhQ3T77bdXWtZms+n666+XJPXp00cPPvig27pvuOEGFRYWqmPHjnrmmWe812hJS5cu1datWyVJ+/fv1549e9SpUyc1a9ZMUuldki688EKP66vq7kVlFixYUP3GAkAVduzYIZvNJqvVquTkZH83B6i3nnvuOccdLTMzM/3cGqD6jhw5IrvdrtDQUHXs2NHfzUE9Rn4CwJ/ITwDPkJ+goSM/QXX4Mkeh7wF4hr4HGjr6HgAAb+I8CgAAaAiKS+zam5GnHceyte1YtrYfy9a2o9nam5GnErt3hjOEh1iVmhSj1KQYdUqKUWqz0v+TGoVxs0STY6aZWigoKHA8Dg8Pr7J8eHi4CgsLndbzlq1bt1aYvnvbtm3atm2b43l1Bs0AAAAAAAAAAAAAAAAAAAAAAOApu93QoZP5pYNijmVr+9FsbTuWo13Hc2QrsXtlGyFBFqUkRpcOjmkW8/tAmWi1io+U1crgGFTEoJlasNlsjsfBwVV/lGVlyq/nLbfffrvbWXGq64033vBaXQAAAABQG+QnAAAAAOoTchQAAAAA9Qk5CgAA8AfDMHQ8u9AxY0zpIJkc7TiWrTxbiVe2YbVIbZtElQ6K+X3WmNSkaLVNiFJIkNUr24A5MGimFkJDQx2Pi4uLqyxfVqb8evVVkyZNPCrnq+nOrVarYmNjHc+zsrJkt3tndCHqH+JtLp7Eu6ioyPGaJ7+vqJ8sFouCgoIcz0tKSmQY3plGEaXKf3f8/V0h3ubirXjb7XbZ7XYVFRVVu18ZHx9f7e2h4fJ3fiLRZzUb4m0e5CfmQp/Vt+pTfiIRb7PxRrzJT1AdvsxRPO178DtnHsTatfrW9/AW4m0eZX2P8jj+ENg43mQe9SHW5Cjm4+/zKPVhv0fdId7mQrzNhXibR01ifTK/SLvS87QrLU870/O0My1fu9LzdKrAe8dlkhuFqUNipFISIn//P0JtG0coPCTojJLFyjmV5bXtBrr68N2uDzkKg2ZqITw83PG4oKCgyvJlZcqv19CVlHhnJGBV7HZ7nW0L/ke8zcVVvDkBFBjOjCNxDWzE21y8HW/DMPjbD6+oy/2IPqu5EG/zID8JbPRZzYV4m4s3401+Am+qyb7k6f7L75x5EGtzId7mxvEHcyHe5kGsUZ9wnRd8gXibC/E2F+JtHuVjnWsr0e70PO3KyNeu9NKBMbvS85WRW+S17TWJClFKQoRSEkoHxqQ0iVC7JhGKDnM9rIH90LvM+t1m0EwthIaGKiYmRtnZ2crIyHBbNicnR4WFhZI8H90PAAAAAAAAAAAAAAAAAAAAAIC3FBSVaOfxHO04nq31e9O1My1Xu9LzdOSUzWvbaBQeVDowpknpAJn2vw+QiYsM8do2AE8xaKaWWrZsqS1btujo0aMqKSlxmi67vMOHDzutAwAAUFv333+/7r//fn83AwAAAADITwAAQJ2i7wEAAAAAAFC14hK79mcWaPfvM8fsTM/T7ox8HcgskN1LE9xGhFjVvkm5mWN+n0UmISpEFovFOxsBaolBM7XUqVMnbdmyRYWFhdq9e7c6duzostxvv/3mtE6gqGyQUG1ZrVa3zxFYiLe5eBJvOkqB4cw4WiwWGYaXetqod4i3uXg73haLxWf9SpiLL/cj+qzmQrzNg/zEXOizmgvxNhdvxpv8BN5Uk33J074Hv3PmQazNhXibG8cfAhvHm8yDWKM+4zoveAPxNhfibS7Eu2GzG4YOZxVqZ1qedqXnOf7fk5GvYi+NjgkJsqhdkwh1SIhUSmKkUhIi1SEhUsmxYbJyTrXe4rtdikEztdS/f399/PHHkqRly5a5HDRjt9u1YsUKSVJUVJS6detWl030qfj4+DrZTmxsbJ1sB/UD8TYXV/FOT0+XYRiyWq0KDuZPVaDgghNzId7mUtN4lyVhISEhddavRGCry/2IPqu5EG/zID8xF/qs5kK8zaUm8SY/gS/UZF+qad+D3znzINbmQrwDl6sLVDj+YC7E2zyINeoTrvOCLxBvcyHe5kK86yfDMHT0VIG2H8vR9qPZ2nYsW9uPZWvHsRzlF5V4ZRtBVovaNolUp2YxSk06/a9tk0gFB5lzwEUgMet3mzP9tdShQwd16dJFW7Zs0bJlyzR06FClpqY6lfnss8906NAhSdJll13GBRYAAAAAAAAAAAAAAAAAAAAAAJcycgpLB8cc+31wzO+DZLILir22jVaNI9QpyXlwTPvEKIWHcCMPBBbTj97YunWrjh496nh+6tQpx+OjR49q+fLlTuWHDh1aoY4JEybo0Ucflc1m09NPP60rrrhC3bp1k81m0/fff68lS5ZIkpKTkzVy5EifvA8AAAAAAAAAAAAAAAAAAAAAQMORXVB0enDM0dKZY7Yfy1Z6js1r20hqFKbUpJjTA2Saxahj02hFhZl+KAFMwvR7+tKlS7VixQqXy7Zt26Zt27Y5veZq0Ey7du00ZcoUvfrqq8rPz9e8efMqlElOTtZDDz2kiIgIr7S7vsjMzPRJvVar1Wn6p6ysLNntdp9sC/5HvM3Fk3gXFRU5Xisu9t6oaNQti8WioKDTI85LSkpkGIYfWwRfIt7m4q142+122e12FRUVVbtfWVfTx6Nh8VV+ItFnNRvibR7kJ+ZCn9VciLe5eCPe5CfwhZrkKJ72PfidMw9ibS7E2zzK+h7lcfwhsHG8yTzqQ6zJUVAZrvOCNxBvcyHe5kK8fa+gqER7MvK1Mz1Pu9LyHP8fzfbe4JjY8GB1SIxUh8RItU+IVIeESKUkRCg2IsRRhlibS32Id33IUUw/aMZb+vbtqxdffFFffPGF1q5dqxMnTig4OFjNmjXTwIEDdemllyosLMzfzfS6kpKSOtmO3W6vs23B/4i3ubiKNyeAAsOZcSSugY14m4u3420YBn/74RV1uR/RZzUX4m0e5CeBjT6ruRBvc/FmvMlP4E012Zc83X/5nTMPYm0uxNvcOP5gLsTbPIg16hOu84IvEG9zId7mQrxrrqjErv2ZBdqVnq9d6XmO/w+eLJS3Mv3IEKtSfh8Q0z4hwvG4SWSILBZLhfLuYkmszcWs8Tb9oJnbb79dt99+u1fqSkxM1Pjx4zV+/Hiv1AcAAAAAAAAAAAAAAAAAAAAAqF9K7IYOZRVqd3qedpYbILMvs0Aldu8MjwkNsqhdk9JBMe2bRKjD7wNkmjUKdTk4BoBrph80AwAAAAAAAAAAAAAAAAAAAADAmQzD0LFsm/PMMRl52pORr8Ji7wyOCbJIbRpHlM4c0+T0zDEt48IVZGVwDFBbDJpBrQQFBfmkXqvV6vY5AgvxNhdP4s0I6MBwZhwtFosMw1sTTKK+Id7m4u14WywWn/UrYS6+3I/os5oL8TYP8hNzoc9qLsTbXLwZb/ITeFNN9iVP+x78zpkHsTYX4m1uHH8IbBxvMg9ijfqM67zgDcTbXIi3uRDvUidybdqZnq+daXnalZ6nnWl52p2epxxbiVfqt0hqGReulMTSQTEpCZHqkBipNvERCg2um8+cWJsL8S5lMTjKBgCoZ3bs2CGbzSar1ark5GR/NwcA4CNHjhyR3W5XaGioOnbs6O/mAADgEvkJAJgD+QnqC/oeAGAO9D0AAAAAwL+y8ou041i2th3L1vajv/9/LEcncm1e20ZybLhSk2KUmhSt1KQYdWoWow5NoxUZypwXQF3jWwcAAAAAAAAAAAAAAAAAAAAACCh5tmLtPJ6jbUeztf1YtrYdy9H2o9k6eqrAa9toHBWq1KRodUqKUWqzGHVKilHHpBjFRoR4bRsAaodBMwAAAAAAAAAAAAAAAAAAAACABqmwuER70nNPD445mqPtx7J1IDNPhuGdbcSEBSu1WbmZY34fJJMQHeadDQDwGQbNoFYyMzN9Uq/ValVsbKzjeVZWlux2u0+2Bf8j3ubiSbyLioocrxUXF9dp++A9FotFQUFBjuclJSUyvJWBoN4h3ubirXjb7XbZ7XYVFRVVu18ZHx9f7e0h8PkqP5Hos5oN8TYP8hNzoc9qLsTbXLwRb/IT+EJNchRP+x78zpkHsTYX4m0eZX2P8jj+ENg43mQe9SHW5CioDNd5wRuIt7kQb3NpKPEusRs6eLJAO9PytDM9T7t+/3//iXyVeCmFDg+2ql1ChFISItUhIbL0/8RIJcWEymKxOBcuylNmZp53NlxHGkqs4R31Id71IUdh0AxqpaSkpE62Y7fb62xb8D/ibS6u4s0JoIahT58+OnDggK699lpNnz7dadn+/ft19tlnS5Jee+01/elPf6pRXOfNm6e77rpLkvTLL7+odevWTstHjx6t77//XoMHD9aiRYtq+E7gDWfGl++x79xxxx2aP3++WrVqpbVr1/qlDd6Ot2EY/O2HV9TlfkSf1VyIt3mQnzRs5Cgojxyl7gRajkJ+Am+qyb7k6f7L75x/edrvmDZtmsaNG1ejbZTvd6xfv97R7yiLNf2OwMR327360O/wJY4/mAvxNg9ijfqE67zgC8TbXIi3ufg73oZh6Ogpm3al52lner52ZeRpV3q+9mbky+al0TFBVovaNg5X+yZlA2RK/28eG6Ygq6VC+UAdWOLvWKNumTXeDJoBAAAAAAAAAAAAAAAAAAAAANQpwzCUkVekXen52pWe5/h/d3q+8oq8M0jFIqlVfNngmNKBMSkJEWodH66QIKtXtgGgfmPQDAAAAHCGqu4g7m1Tp07VCy+8IElKS0vz6bYAAAAANDzkKAAAoK7Q7wAAAAAA+EpWfrF2Z+SdMUAmX1kFxV7bRrOYULUvNzCmQ0Kk2jYOV3hIkNe2AaDhYdAMAADwutatWystLU3Bwb7taixatMin9QP10fTp0zV9+nR/NwMAAKBBIUcBfIccBQCclfU7fI1+B8yIfgcAAAAANAx5thLtznCeOWZXer7Sc4u8to0mkSG/D445PUCmfZMIRYdxaTyAivhlQK0EBflm5KXVanX7HIGFeJuLJ/G2WCx11Rz40JlxtFgsMgzDT62BrxFvc/F2vC0Wi8/6lTAXX+5H9FnNhXibB/mJudBnNRfibS7ejDf5CbypJvuSp30PfufMi1gHNr7b5sbxh8DG8SbzINaoz7jOC95AvM2FeJtLTeJdWGzX3hP52pWWp53peY7/D2cVeq1d0WFB6pAQqZTESHVIiFSHxEi1T4hU48gQr23DbPhumwvxLsWgGdRKfHx8nWwnNja2TraD+oF4m4ureKenp8swDFmtVp/fBRi152mcanIArvw6wcHB7A8NSEO/wKiu973yyUhD3M9rGu+y9x0SElJn/UoEtrrcj+izmgvxNg/yk8BAjgJXyFGqx4w5CvkJfKEm+1JN+x4N/XeuofJlH7GymBJrc/FHvOl31A1XF6hw/MFciLd5EGvUJ1znBV8g3uZCvM2lfLyLS+zam5Gn7ceyte1odun/x7K1LyNPJXbv3OwhPMSq1KQYpSbFqFNSjFKblf6f1CiMm9z5GN9tczFrvM05VAgAADg5cuSI/v73v2vIkCFq3bq1EhMTlZqaqsGDB+uWW27R3LlzderUKY/r279/v+Lj4xUfH6+5c+dWWu7kyZP6+9//rv79+ys5OVkdO3bU5Zdfro8//tij7YwYMULx8fEaMWKER21YtmyZxo4dq06dOikpKUm9evXS//t//0+HDh2qclsnTpzQY489pn79+ik5OVmpqam64oor9Nlnn0mS5s6d69je/v37PWp/dWRnZ2v69OkaNWqUOnXqpKZNm6p169Y677zzdP/99+vHH3+sdN309HQ9/fTTOu+889SmTRs1a9ZMPXv21KRJk/TDDz+43W7Pnj0VHx+vyZMnS5LWr1+viRMnqlu3bkpOTlafPn308MMPKyMjw2m9n376SRMmTFD37t3VrFkznXXWWXr88ceVnZ1d6bbOjOeOHTs0ZcoU9erVS82aNVPnzp110003ac2aNZXWsWrVKkccVq1a5fa9lZV77rnnKqx/++23O17r1auXo2xlda9Zs0ZPP/20RowY4RSfgQMH6v/9v/+nrVu3umxD2X7z/PPPV2hX+X/l96nJkycrPj5ePXv2dPv+Nm/erClTpujss89W8+bN1apVKw0aNEh/+9vf3O6j3v7uAAAA1AQ5CjlKZchRyFEkchQA3kW/g35HZeh30O+Q6HcAAAAAMBe73dCBE3la8tsxvbZsp+5+f50ufWWluj72tS56eYUmz1mr/1u6Q19uOqrdabk1GjATEmRR52YxGtWrue67pJP+fWNfrbzvfP32xKX65I5z9eI1vTTxvPYakpqoZrHhDJgB4BXmuVULAABw6fvvv9fYsWMrnLBLS0tTWlqatmzZog8//FCNGzfWpZde6rXtbtu2TVdccYWOHDnieK2goEArVqzQihUrtGTJEg0ePNhr23viiSf0yiuvOL22f/9+zZgxQ59++qk+++wzderUyeW6mzdv1pVXXqnjx487tXX58uVavny5xo8fr/79+3utrWdavny5br311gonX4uKirRx40Zt3LhR//73v5WZmVlh3W+//VYTJkyoEN8DBw7owIEDWrBggW699VY9//zzVU69+P777+vuu++WzWZzvLZnzx69/vrr+uabb/TZZ58pKSlJr776qh5//HEZxunEeO/evZo2bZpWrFihzz77TNHR0W63tXjxYt10003Kzc11vHbs2DF9/PHH+uSTT/T000/rL3/5i9s66srcuXOdTiSXKSoq0rZt27Rt2zbNmjVLzz33nG699dY6adPLL7+sZ555Rna73en1rVu3auvWrXrnnXf0yiuvaOzYsVXWVZvvDgAAQE2Qo5CjkKPUDjkKOQoAz9HvoN9Bv6N26HfQ7wAAAADQMBmGoePZhadnjfn9/x3Hc5RnK/HKNqwWqW2TqNLZY36fNaZTs2i1aRKlkCDmfABQtxg0g1pxdQDaG6xWq9P0T1lZWRUObCJwEG9z8STeRUVFjteKi4vrtH1mU1hYqFtuuUXZ2dmKjo7WTTfdpHPOOUcJCQkqKirS/v37tXr1an3xxRey2+0u4+HqdVflSkpKHCcKs7OzddVVVzlOCl9++eW69tprlZiYqF27dumNN97QnDlz9NtvvznVeWa9ZfUZhuG2De+++67WrFmjwYMHa/z48UpJSVFWVpbmz5+vBQsWKD09XXfccYe+/PLLCu3OysrS1Vdf7TgpPGbMGF155ZVKSEjQ7t279e9//1szZ87Upk2b3La1platWqVrrrlGxcXFCgoK0jXXXKPLLrtMLVq0UGFhobZt26alS5fqm2++qbDNjRs3aty4cbLZbAoJCdEtt9yiSy+9VJGRkdq4caOmTZumffv26T//+Y8iIiL02GOPVdqOjRs36r///a/atWunyZMnq2vXrsrJydHcuXO1cOFC7dy5U48++qhGjhypxx57TH379tWtt96qDh06KCMjQ//+97+1ZMkSrV+/XlOnTnW5rbJ4HjlyRBMnTlRQUJAefvhhnXPOOY7P4tVXX1V2drb+9re/qUWLFho+fLhTHSUlJU6PPYlD+X24R48eWrlypb788ks9++yzkqQFCxaoWbNmTuu0bt3asU5hYaHi4uJ06aWXatCgQWrfvr0iIyN19OhRx0n7jIwM3X///UpJSdEf/vAHRz2XXHKJVq5cqRkzZmjGjBmSpJUrV1ZoY2JiomN75X8zXb2/d955R0899ZQkKSEhQXfeeaf69++vkpISrVy5UtOnT1deXp4mT56s2NhYDRs2zGl9T747CxYs0Pz585Wenq4777xTX375pdOFAJ6y2+2y2+0qKiqqdr+yrqaPR8Piq/xEos9qNsTbPMhP6h9yFHIUchRyFH/lKOQn8IWa5Cie9j0sFouCgoIcz8v/XYNn6qLf4eq3vyb9jvLKYk2/o371Ox555BH98Y9/9Gq/49FHH9XgwYNlGAb9jnrU7/Dku+OJsr5HeRx/CGwcbzKP+hBrchRUhuu84A3E21yId2DIzCvSrvQ87UrP08600/9nF3pncIwkJTcKU4fESKUkRKpDYqQ6JESqbZMIhQWfOTimWDmnsry2XdQM321zqQ/xrg85CoNmUCvlD776kt1ur7Ntwf+It7m4irdHJ3cNuywFvrswtr4xwuMli/dH2K9evVpHjx6VJL355pu6+OKLnZb37dtXV155pZ5++mnl5+fXalvl4/rSSy/p0KFDkqSHH35YU6ZMcSzr1auXRo4cqT/96U9avnx5rbZZZs2aNbrhhhv00ksvOU3Zed555yk0NFSzZ8/Wzz//rA0bNqhnz55O677wwguOz+jpp5/WpEmTnNo6atQo3XTTTTU+MeZOQUGB/vKXv6i4uFiRkZGaO3eu4+KsMv3799cNN9zg+DzLu+eee2Sz2RQUFKQ5c+bo/PPPdyw766yzNGrUKI0YMULbtm3Ta6+9pjFjxqhz584u27Jp0yb169dPH3zwgSIjIx2vn3vuuSooKNCnn36qDz/8UEuWLNGoUaP01ltvOV24MWTIEI0YMUI///yz5syZo7/97W8KDnbdFd29e7caNWqkL7/8UqmpqY7X+/Xrp8suu0zDhw9Xdna2HnzwQQ0bNkwhISGefaAeiIqKUpcuXfTrr786XktJSVHr1q0rXeeiiy7SVVdd5fS5SFLPnj118cUXa+LEiRo1apQ2b96s559/3unEcGxsrGJjY5WQkOB4rUuXLjVuf3p6up544glJUrNmzfTVV1+pRYsWjuUDBgzQJZdcopEjRyovL0/33HOPfvnll0o/Q3ffnbCwMM2aNUtr1qzR+vXrK3x3qsMwDP72wyvqcj+iz2ouxNs8apyfSOQoXkKOQo5CjuKMHMVZXeQo5CfwpprsS54eG1V+pixB5X63SoplqXyNBs8XfY+67HeUV9t+R3UHR9HvqJt+x0cffaSlS5dqxIgR+s9//lPrfsc333yjTp06OQZx0O+oWl32O6r67tQUxx/MhXibB7FGfcJ1XvAF4m0uxLt+yyks1p6MfO1KL/uXp13p+crIK/LaNppEhSglIUIpCZFKSYhQh4RItWsSoajQIBelOdbaUPDdNhezxptBMwCABslSkKkmb/f3dzPqTMYtq2VENPF6vWV3CJSkQYMGVVouODhYMTExXtmmzWbTnDlzJEndunXT3XffXaFMSEiI/u///k99+/ZVUVHtE7ekpCQ9++yzTie2ytx+++2aPXu2JOnHH390OrlVWFio999/X1LpidTyJ4XLBAUF6cUXX9SyZctUUFBQ67aWt2DBAsdJ6b/97W8VTgqXV/7knyStXbtW69atkyTdcMMNTieFy8TFxemll17SiBEjZLfb9c4772jq1Kku67dYLHrllVcqnPyUpJtvvlmffvqpSkpKVFhYqFdeecXppLBU+jndcMMN+vnnn3XixAlt27ZN3bp1q/T93HPPPU4Xo5Xp3Lmz/vrXv+rJJ5/UkSNH9OWXX2rUqFGV1lMXkpOT3S5v1KiRHnjgAd1444366aefdOLECTVu3NgnbZk3b57y8vIkSU8++WSF/UIqPWF9991369lnn9WRI0f0xRdfaPTo0S7rc/fdueOOOzRr1ixJFb87AACYETmKd5CjkKOQo9QeOQo5CgKf2fodkm/6HvQ76Hf4ot/x8ssv17rfcd9996lTp04VXqff4V5d9jvcfXcAAAAAwNcKiuzae+L0oJiyATJHs21e20ZsRIjaN4lQSpNwxwCZ9gkRiovw3s0bAKAuef92kAAAoMFISkpyPJ47d26dbHP9+vU6efKkJOnaa691ecJJkpo3b66hQ4d6ZZsjR45UWFiYy2UdOnRQVFSUJGnfvn1Oy3799VdlZZVOCXr11VdXWn/Tpk1dnnitrW+++UaSFBkZqRtuuKFa665YscLx+Lrrrqu03IABAxwXfq1cubLScl27dnV5gZgkpxO8Q4cOrXQ6xfLlzvysy7NYLLr22msrXT5u3DjHfuOuzf6Sm5ur/fv3a+vWrdqyZYu2bNnidOfIzZs3+2zbZZ9HbGysRowYUWm566+/vsI6rrj77nTs2FHR0dGS3McTAACgOshRyFHIUbyPHAUAXKPfQb/D2/2OIUOGeKXfMW7cuEqX0++oXF32O9x9dwAAAADAW4pL7NqdnqfFWzP0r1UHdd+i7bry7fU6b9oaXf/eJj3+5W7NWnNE3+05WeMBMxEhVnVrFqVR3RN1zwVt9d4t/bX6bxfq18eG6Z3ruuvBYe10zVlJ6tOqEQNmADRozDQDAICJDRgwQG3bttXevXv1yCOP6L///a+GDx+uQYMG6ayzzlJoaKjXt7llyxbH4969e7st26dPHy1evLjW2+zYsaPb5XFxccrNzVVOTo7T61u3bnU87tWrl9s6evXqpS+//LLmjXRh48aNjrpd3cXQnbK2h4aGqnv37m7L9unTR9u3b9fu3btls9lcxj0lJaXS9WNjY6td7szPurw2bdqoSZPK7xyakJCg1q1ba9++ffrtt98qLVeXMjIy9MYbb+izzz7T7t27ZRiG27K+Uvb96tmzp0JCKj9Y0bRpU7Vu3Vr79+93+k6eqarvTmxsrHJyctzGEwAAoDrIUUqRo5Cj1BY5CjkKgKrR7yhFv4N+R22Ztd9R2XcHAAAAAKrLbhg6nFWonWfMHLPvRIGK7ZXnWNUREmRRu8YRSkmIcMwck5IQqWaNQmX9/eYMQUFBld4MAgAaOgbNAABgYiEhIZo9e7Zuvvlmbd++XevWrdO6deskSRERERo4cKCuvfZaXX755QoKCvLKNjMzMx2PExMT3ZatarmnIiIi3C63Wksn3yspKXF6veyuj1LpyUh3qlpeEydOnJDkfNdLT5V9znFxcU538nOladOmkiTDMHTy5EnH8/LcfYZln58ktyewy5c787Muz5PPMjExUfv27XOKkb+sX79eY8aMccSrKgUFBT5rS9nn4cln2LRpU+3fv9/tZ1jT7w4AAEBNkaOUIkchR6kNchRyFACeod9Rin6H9/odnpaj3+Eb9DsAAAAA1HeGYeh4js1pYMyu9HztzshXYbHdK9sIskit4sOdBsakJESoZVy4gq2uZ7wFADNg0AxqxVsnCc5U/sCxq+cILMTbXDyJt8VSdQfdCI9Xxi2rvdau+s4I990o/k6dOmnlypX6+uuv9fXXX+uHH37Qnj17lJ+fr2XLlmnZsmV64403NG/evFqdqLVYLBXuMOdJrFE7/vqMXcW7Ous2FDabTbfeeqtOnDihkJAQ3Xrrrbr00kuVkpKiuLg4hYWFSZL27t2rfv36SVKNP5fq8PVneGb9td2exWLxWb8S5uLL/Yg+q7kQb/PwVn4ikaN4EzlKYCNH8S1ylNpvj/wE3lSTfcnTY6Mnbl2jIOvp+kvsJXXyffYXX/U96qrf4UpNf6tq8zfNbBrS3/Ayrv6m1dd4m7Xf4UscfwhsHG8KfCV2QwdPFmhHWr72ZR3XliOntOXIKU27potSmrgfiAfUFa7zgjcQb3Mh3jV3Iq9Iu9LySmePKfs/PU85hd4beN8iNkwpiZHqkBCpDomRap8QqbaNIxQWXLM4EW/zINbmQrxLMWgGtVJXU7GVn7IcgY94m4ureKenp8swDFmtVvd3gQup/h3m4FpwcLBGjRqlUaNGSZKOHj2qpUuX6j//+Y9+/fVXrV+/Xvfdd59mz55dYV1XcXIVt7IDcI0bN3a8lpGRoU6dOlXaroyMDKc6z6y37OSXxWJx24agoKAq7ygoVXwv5duamZnpto7yd4l01daaaNy4sQ4fPqzjx49Xu76ytpe1y9366enpkko/x4SEBJdlq/w+nsHVAdeqYlIWz7S0tCq3lZaWJqm0L1K+bPnHrvaLMrm5uY7Hrt5b+fa7i+fy5cu1d+9eSdKLL76oG2+80WW57Oxsp7rPrK98MlLVe3dXNj4+XkePHlV6enqV9Rw/ftyxTmWfoaffHXeftTtl7yUkJIQpfuEVdbkf0Wc1F+JtHrXKTyRyFC8iRylFjkKO4qr95Ci+yVHIT+ALNdmXPD822lTlLz0352lO7/Blv+PM362a9jvKK/ubQL/D/brl21VX/Q535arT7yjPVR+Gfofrsv7qd1S3X1p+vTNx/MFciHfDll1QpK1Hsx0DY347kq3tR7OVX1TxIthDOYb6diDHQP3AdV7wBeJtLsS7olMFRdpxLFvbjuZo+7FsbTuarR3Hs5WeY/PaNpIahSk1KUadkmKU2ixGqUkx6tg0WlFhvr0EnHibB7E2F7PGm0EzAACggmbNmum6667TmDFjNGzYMK1fv15ff/218vPzFRFRuzshde3a1fF43bp1Gjx4cKVl165dW6tt1Vbnzp0dj9evX6+BAwdWWnbdunVe336vXr10+PBh/frrr8rLy1NkZKTH63bp0kVS6d3+Nm7cqLPOOqvSsmWfc0pKikJDQ2vXaC/Yt2+fTpw44XRivrz09HTt379f0un3WSYmJsbx+OTJk5VuY9euXW7b4OndCLdu3ep4fMUVV1Rarqr9w1t3P+zSpYuOHj2q9evXq7i4uNKTtWlpaTpw4IBjHQAAgPqOHKUUOYp/kKPUHDkKgIaIfkcp+h3+Qb+j5uh3APAFu93Qgcw8x8CYrUdOacvRUzpwIt/jOn47ckqje7fwYSsBAEBdyLeVaOfxHG07ln16cMyxbB3OKvDaNuIiQ9QpKUadfh8YU/ovWnGR/s9XAaCh48ZTAACgUiEhITrnnHMkScXFxcrKyqp1nb1791ZcXJwkaf78+TIMw2W5w4cPa9myZbXeXm2cddZZatSokSRpwYIFlZY7fvy4vv32W69v/9JLL5Uk5eXlaebMmdVad+jQoY7Hru6CWWb16tWOk5tDhgypfiN9wDAMvf/++5Uunzt3rmO/Kf8+Jal169aOx+5Oxn7wwQdu2xAWFuZ4XFhYWGm54uJix+O8vDyXZex2u2bNmuWV7VWlLIZZWVn69NNPKy333nvvVfoZAgAA1GfkKOQo/kCOQo4CwJzod9Dv8Af6HfQ7APhPbmGxftmXqTk/7dMjH2/UVW98rx5//1pDXliu22av1bSlO/TNb8eqNWBGkrYcya66EAAAqFdO5tn06frDevHrbZo462cNeWGZuj7+lUZOX6V7F67XWyt3a8X2tBoPmIkKDdJZreM0tl8rPTaiq2bfMkCrH75Q6x4dpvmTBunJ0d11/cA26t+uMQNmAMBLmGkGtVJ+unVvslqtTtM/ZWVlyW63+2Rb8D/ibS6exLuoqMjxWvmTLvC+H374QUlJSWrfvr3L5TabTatWrZIkRUVFKS4urkJM7HZ7hddcxa2kpESGYSgoKEjjxo3TG2+8oY0bN+qVV17RnXfeWWH9u+66Szabzem1M+stO7FlGIbbNpSUlHi0L535XoKDgzVmzBj95z//0dq1a/Xaa69p0qRJFdaZMmWKCgpOJ8Ku2loTV155pZ577jkdOXJETz/9tLp27eo4UX+mw4cPq3nz5o7nvXr1Uu/evfXrr79q1qxZ+uMf/6jzzjvPaZ1Tp07pr3/9q6TS7+b48eMrbberOLtTFu/yqopJ+fIvvPCCLrjgAnXo0MGpzPbt2/XSSy9JkpKSknTxxRc71RMdHa1u3bpp8+bNmjNnjiZPnlxhmvEff/xRb775ptv3lpCQ4Hi8c+dOtWvXzuX7bNu2rePx7Nmzdffdd1co8+STT2r9+vVu33tiYqLT9jp16uRye2XtLXNmPddee62mTp2qvLw8PfLII+rbt6+Sk5OdymzatEkvv/yyJCk5OVmXXHKJUz2efHcsFouCgoIcz119Bz1ht9tlt9tVVFRU7X5lXU0fj4bFV/mJRJ/VbIi3eZCf1D/kKM7IUchRypCjVN5WyTs5CvkJfKEmOYqnfY8z93tXv3Nwry76HWf+btW031FeWazpd5xWX/od7spVt98xbNgwdezY0em7Tb+jfvQ7XLWpNsdGy+P4Q2DjeFP9YRiGjpwq1Pbjedp+PLf0X1qeDmYWyBu9qSZRIeraPFZdkxupS3IjtY21+vTYtSvkKKgM13nBG4i3uZgp3nbD0Oq9Wfp443Et254hW0ntewahQRa1T4hUSkKkOiRGKiUhQikJkUpuFFZx1s3ifJ08Wb3Bud5mpnibHbE2l/oQ7/qQozBoBrVSUlJSJ9ux2+11ti34H/E2F1fx5uRu3fnf//6nl156SQMHDtSwYcPUtWtXNWnSRAUFBdq1a5dmzpypDRs2SJKuu+46BQfXvOtQPq733nuvFi1apMOHD+vJJ5/Upk2bNGbMGCUkJGj37t164403tG7dOseJTX+6//779cknn+j48eN65JFHtGHDBl111VVq0qSJ9uzZo7feektr1qxRnz59tHbtWkmqmNjWUHh4uF5//XVdc801ysvL09VXX61rrrlGw4cPV3Jysmw2m3bs2KElS5bo66+/1qFDh5zWf/nll3XppZfKZrNp3LhxuvXWW3XxxRcrKipKGzdu1LRp07R3715J0u23364uXbp4pd1S7b7H7dq1U0ZGhi699FLdeeedjpPh3333naZNm6ZTp05Jkp599lmFhla8o8bNN9+se+65R2lpaRo5cqTuuecepaSk6OTJk1q8eLFmzJihXr16ac2aNZW2oWfPngoPD1dBQYGee+45hYSEqFWrVo7YJicnKyIiQueff74SExOVlpamZ599VgcOHNDw4cPVpEkT7d69W7Nnz9bKlSvVv39/rV69utLt9evXz/H4kUce0V//+lclJSU5tte6dWuPvn8JCQl6/PHH9cADD+jw4cO68MILddddd6l///4qLi7WypUrNX36dOXm5spiseill15SSEhIlfWe6cz41vZ32zAM/vbDK+pyP6LPai7E2zzIT/yPHKVq5Cg1Q45CjlKduvi7D2+pyb7k6f7r7dzcjOqy31FebfsddRlr+h11r6zfMWzYMN19990aNGiQJPod9anf4UscfzAX4l03Cors2pWepx1pedqeVvr/jrQ85RTW/rMPslrUrnG4OjaNVGpilDomRqhjYpSaNgp3uiAsMzOTWKPe4Dov+ALxNpdAjPeRrEJ9ujlNn25K05FTrm9gUZUgi9SmcYRjUEz7JqWPW8aFK8haMU9uKIMTAjHecI1Ym4tZ482gGQAATM5ut+v777/X999/X2mZyy67TI888ojXttmoUSPNnz9fV111lY4fP64PP/xQH374oVOZsWPHavDgwbrrrru8tt2aiI+P1/z583XNNdcoPT1dCxYs0IIFC5zKjB07VgMHDnScGA4LC/Pa9s8991zNmTNHkyZN0smTJzVv3jzNmzfPo3V79Oih2bNn65ZbblF2drZef/11vf766xXK3XzzzV6Nb20lJyfr6aef1sSJE/X0009XWG61WvX4449r5MiRLte//vrrtXTpUn3xxRfatm2b/vznPzst79q1q2bMmKHu3btX2obo6GhNnDhRr776qjZs2KBrrrnGafnHH3+sc845R1FRUZo+fbrGjx+vgoICzZw5UzNnznQqe8455+i5557TH/7wh0q31759e40ePVqLFi3S8uXLtXz5cqflv/zyi1q3bl3p+uXdfPPNysrK0nPPPae0tDQ9+uijFcqEhYXppZde0rBhwzyqEwAAoC6Ro7hHjlL3yFHIUQAELvod7tHvqHvJycl69tlndfPNN+vJJ5+ssJx+h3v0OwDzMgxDx3Ns2nH89OCY7Wl5OpBZILsXxpvGRQQrNbH0DvGpiZHq2DRS7RpHKDTYWvvKAQBAnbMV27V8Z6YWbTyu1ftOeTzbnEVSi7gwpSScnjUmpUmEWseH0y8AgHqOQTMAAJjY5MmT1bVrV61cuVIbN27U0aNHlZ6eLklq2rSpzjrrLI0ZM0YXX3yx17fduXNnrVq1Sq+++qo+//xzHTp0SNHR0erSpYtuuOEGXXnllR6fAPW17t27a9WqVZo2bZq++uorl23917/+5SjfqFEjr27/ggsu0M8//6wZM2bom2++0a5du5SVlaXIyEi1a9dOgwYN0lVXXeVy3fPPP1+rV6/Wm2++qSVLlmjfvn2y2WxKTEzUwIEDNX78eA0cONCr7fWGiy++WIsXL9b06dO1atUqHTt2TLGxsRowYIAmT57sdPfBM1mtVr3zzjuaOXOm3n//fW3btk1S6V0aR48erdtuu00RERFVtuHRRx9Vu3bttGDBAm3btk2nTp1yOcr+ggsu0OLFizVt2jT973//U0ZGhmJjY5Wamqqrr75a1113nQ4ePFjl9t544w317t1bn376qXbu3KmcnJwa313kr3/9qy6++GK9/fbb+t///qdjx47JYrGoZcuWGjp0qCZNmuTxiWYAAIC6RI7iGXKUukeOQo4CIPDQ7/AM/Y66d8kll+jbb7/Vq6++qpUrV9LvqCb6HUDgKyy2a09GvrYfz9OO9DztOF46SCaroLjWdZfdJd4xOCYxUqlNI5UQFeK12dQAAID/bD+eq082penL3zKq7DuEBFl0dqtG6pgQqfYJpTPHtGscoYjQoDpqLQDAmywG87WjFspOHnhbUFAQ09WaCPE2F0/ifezYMdntdlmtViUlJdV1E+FFwcGnx+cWF9f+QHV9NmXKFM2ZM0fNmzfX+vXr/d0cv6htvEePHq3vv/9egwcP1qJFi7zZNPiAN77ftfm9T0hIqNE2Edh8lZ9I9FnNhnibB/mJ+ZCjmAs5irnUNt7kJ/CFmuQo1dkXzfR3zezqe6zpd9Re+X7H559/7ni9PsYb3lH2ex8eHq6OHTtK4vhDoON4U/UZhqGM3CLHzDE70vK0/Xie9p3IV4kXrnSKCQtyDIrpmBip1MQotWsSofCQ2t0lvj7EmhwFleE6L3gD8TaXQIh3dkGxvt6aoUUb07TlWG6V5TskRGh0j6a6rGsTxUWE1EEL649AiDc8Q6zNpT7Euz7kKMw0AwAAUEv5+fn66quvJElnn322n1sDAAAAwOzIUQAAQF2h3wEA8IaiErv2nijQ9uO5pYNj0kpnkMnMr/3gQYukVvHhpTPHND09g0xSTCizxwAAEKDshqG1B05p0cY0fbvjhAqL3Y+4jQoN0qVdmmh0j0R1SYqijwAAAYhBMwAAAFXYs2eP2rZt6zIpLikp0X333aeMjAxJ0tixY+u6eQAAAABMhhwFAADUFfodAABvy8wrcgyKKZtFZk9GvorttZ8+Jiq0dPaY8jPIpDSJUERokBdaDgAA6rtj2YX6dFO6Pt2UpkNZhVWWP7tVjEb3aKoLOsYrPIT+AgAEMgbNAAAAVOGll17SunXrdMUVV6hPnz5KSEhQQUGBfvvtN7333nvasGGDJGnIkCEaNmyYn1sLAAAAINCRowAAgLpCvwMAUFPFdkP7TuSXzhxzvHRwzI60PKXnFnml/pZxYacHyPz+f/PYMO4MDwCAyRSV2LVy10kt2nhcP+7NUlXjcJtGh2hE90SN7JaoVvHhddNIAIDfMWgGAADAA9u3b9fzzz9f6fL+/fvrrbfecjoQf+TIEZ08ebLa24qMjFSbNm1q0kwAAAAAJkGOAgAA6gr9DgBAVbLyi7UjLff3mWPytSMtV7vT82Urqf3sMREhVnVIiFTHpqcHx3RIjFQUs8cAAGBqu9LztGhjmr74LV0n84vdlg2yWnReSpxG92iqQW1jFWRlkC0AmA2DZlArQUG+OQhhtVrdPkdgId7m4km8uftPYDgzjhaLRYZR+wPj/jBlyhSlpKRo5cqVOnDggNLT01VcXKz4+Hj17t1bl19+ua644ooK+/Mzzzyj+fPnV3t7gwcP1qJFi7zV/DoRSPFG1bwdb4vF4rN+JczFl/sRfVZzId7mQX5iLoHUZyVHqVogxRtV82a8yU/gTTXZlzzte/A7Zx7+jjX9Dv/iu20uHH8IbIFyvKnEbmh/Zr52HM/T9rRcbT+ep+3Hc3Us2+aV+pMbhSm1aaRSm0b9/i9SLePCZW1Ax2cCJdYITFznBW8g3uZS3+KdU1isr7ek6+MNx7XpSE6V5ds3idDlPZP0x+6JahwZUgctbNjqW7zhO8TaXIh3KQbNoFbi4+PrZDuxsbF1sh3UD8TbXFzFOz09XYZhyGq1KjiYP1WBoiFfcNK5c2d17txZ9913X7XWq2kH02KxNPh9vybx/vzzz33QEtSFmn6/y74jISEhddavRGCry/2IPqu5EG/zID8xF3IUz5GjoKGpSbzJT+ALNdmXatr3aMh/11A9dR1r+h11o7J+B9/twOXqO8LxB3NpCPE+VVCkrUeyteXIKce/bceyVVBkr3Xd4SFWdUqKUZfkRo5/nZrFKDYi8C5mbQixhnlwnRd8gXibiz/ibRiGVu85oQU/H9QXG48ov6jEbfmo0CCN6t1c1/RtpbNaxXFztFrg+20exNpczBpvi8GtaQAA9cyOHTtks9lktVqVnJzs7+YAAHzkyJEjstvtCg0NVceOHf3dHAAAXCI/AQBzID9BfUHfAwDMgb4H6hO73dD+E3mOgTG//T5Q5tDJfK/Unxwb/vvAmBh1blY6QKZdQpSCrFzACgAAKnf8VIE+WHtQC38+qD3puVWW79c2XmP6ttIfeyYrMtR8N2MAALjHXwYAAAAAAAAAAAAAAAAgwOUUFmvb0dMDY7YcOaVtR7OVZ3N/x3ZPhAZblZoU7RgY0yU5Rl2aNVJ8VKgXWg4AAMygqMSub7ce14I1B7R8e5pK7O7nBEiMCdNVfVpqTN+Wap8YXUetBAA0RAyaQa1kZmb6pF6r1eo0/VNWVpbs9tpP8Yv6iXibiyfxLioqcrxWXFxcp+2D91gsFgUFBTmel5SUiAnuAhfxNhdvxdtut8tut6uoqKja/cq6mj4eDYuv8hOJPqvZEG/zID8xF/qs5kK8zcUb8SY/gS/UJEfxtO/B75x5EGtzId7mUdb3KI/jD4Gtro83GYahw1mF2n48V9vT8rT9eK52HM/TgZMFXqk/ITpEqYlRSm0aqdSmUUpNjFLrxuEKCbI6F7TlKtNW9Z3hA0l9OLZIjoLKcJ0XvIF4m0tdxXtPRp4WbTiuzzanKSO3yG3ZIIv0hw6NdXnPpjqnfbyCrRZJ1T+mh4r4fpsHsTaX+hDv+pCjMGgGtVJSUvu7jXjCbrfX2bbgf8TbXFzFmxNAgeHMOBLXwEa8zcXb8TYMg7/98Iq63I/os5oL8TYP8pPARp/VXIi3uXgz3uQn8Kaa7Eue7r/8zpkHsTYX4m1uHH8wF2/Gu6CoRDvT87UjLU/bj+dpR1rpv1wvzB4TbLWoXZMIdUyMVGpipDo2jVTHhEg1jgpxUZq+tCt8t1GfcJ0XfIF4m4s3451nK9HibRlatDFNGw7nVFm+dXy4RvdI1B+7JSihbCY7wy52P9/h+20exNpczBpvBs0AAAAAAAAAAAAAAAAA9ZhhGDqWbSsdHJOWpx3HS/8/kFkgbwyxi48IVsemvw+OSSydQaatq9ljAAAAasgwDG04nKNFG9O0eFuG8ovcz3QQEWLVRZ2aaHSPRPVqHi2LxVJHLQUABBoGzQAAAADwKw5sAQDqM/5OAQCAukTfAwAASFJhsV270/O1PS3XMYPMzvQ8nSqo/d2AgyxSm8YRSm1aOjimbBaZJlEh9EUAAIBPZOQW6fPNafpkU5r2niiosnzP5tEa1SNRwzo1UVRoUB20EAAQ6Bg0AwCod6xWq+x2u+x2uwzD4OAsAASgst95iQuCAAD1W9nfqbK/XVYrd1cFgEBjGIYjP+F3Hv5G3wMAAl/5Y6NBQVwAaHaGYSg9t0jbj+c5ZpDZmZanfSfyVeKF6WNiw4MdA2NKZ4+JVLsmEQoLpo8BAAB8q9hu6Ic9J7VoY5r+t/ukSuzuOzeNI4P1x66JGtk9Qe0TIuuolQAAs2DQDACg3gkJCVFxcbEkqaCgQBEREX5uEQDA2/Ly8hyPQ0ND/dgSAADcCw0NdeQneXl5io6O9nOLAADeVlBw+u6WISEhfmwJQN8DAMyg/LHRyEguBjQTW7FdO45na8uRbP2697i2H8vV9rQ8ncwvrnXdVovUKj5cqeVmjunYNFJNo0O5cRUAAKhT+zML9MnG4/psc7rSc4vclrVapMHt4jS6R6L+0D5OwUEM7AUA+AaDZgAA9U54eLjy8/MlSVlZWY7XOKALAA2bYRgqLi5Wfn6+cnNzHa9zYhgAUJ9FRkY6LmjKzs6W3W5XRESEgoODyVEAoIEzDEMFBQWO40+SuHkL/I6+BwAEpsqOjcbHx/uxVfCljNwi7Ugrmz0mVzvT8rUnI1/FVdxh3RPRYUGnZ475/f+UhAiFhzBzEQAA8I98W4mWbj+hTzalae3B7CrLt4oL06geifpj10Q1jeEmmwAA32PQDACg3gkLC1NoaKhsNpsMw9DJkyclSVYrdxNoaMrHzG63+7ElqAvE21xqEm/DMGQYzicEIyIiuJMzAKBeCwkJUUREhGNgf25urnJzc2WxWLhwtQGiz2ouxNtcahLvM8uFhoYyEyb8rjp9D37nzINYmwvxDkyujo1GRkYqLCzMTy2CtxSX2LX3RMHvg2NKB8nsOJ6njDz3d1X3hEVSy7iw0sExTaMcA2WSGzF7DAAA8D/DMLT5aK4WbUzTN1vTlWtzn7+EBVt1UWpjjeqRqD4tY+jPAADqFINmAAD1jsViUXx8vDIzM2Wz2Ryvc3KoYSN+5kK8zaWm8Y6OjlZ0dLSXWwMAgPfFxsYqKChIOTk5jtdcXfCEhoU+q7kQb3OpSbxDQ0MVHx/PyXrUCzXpe/A7Zx7E2lyId+CKjo5WbGysv5uBajqZXzp7zPbjeY5BMnsy8lVUUvvjA5EhVnX4feaYDomRSm0aqQ4JkYoMZfYYAABQv5zMK9Lnv6Xrk01p2pWeX2X5bs2iNKpHoi7p3ETRYVyyDADwD/4CAQDqJavVqsaNG8tmsyk/P19FRUWcHGpgLBaL0+wRRUVFXFQYwIi3udQ03larVUFBQQoLC1NYWJiCg0lHAAANg8ViUUxMjCIiIlRYWKjCwkKVlJSQozQw9FnNhXibS21ylLJZPUJDuVs36g9P+h78zpkHsTYX4h24XB0bpe9Rf5XYDe3PLCidOeZ4rnak5WtHWq6O59R+9hhJatU4QilNItQxIeL3WWQi1Tw2TFb2CQAAUE+V2A2t3JGmOd/v1vIdJ1Rsd5+nxEYEa3jXBI3unqgOiZF11EoAACrHVWoAgHrLYrE4Th6g4QkKClJ8fLzjeWZmpkpKSvzYIvgS8TYX4g0AMKvg4GAFBwcrKirK301BDdCHMRfibS7EG4HKXd+D/d48iLW5EG+g7mUXFJcOjin7dzxPuzLyVFhc+wFrYcFWdUiIUGrTSHVKitbZKc3UqVmMGoWH8P0GAAANwsGTBXpnzTZ98MtBHckqcFvWImlQ21iN6pGo81LiFRpsrZtGAgDgAQbNoFaCgnwzFbDVanX7HIGFeJsL8TYPYm0uxNtciDfqK1/lJxL7vdkQb/Mg1uZCvM2FeJsL8UZ9RY4CbyDW5kK8zYV41y27YehAZoG2H8/V9uN52p6Wq+3Hc3X0lM0r9TeLCVVq06jf/0UqtWmUWsaFK8haOnuM1WpVbGysozzxDlx8t1GfcZ0XvIF4B76CohJ9u/2EPt5wTGv2n6qyfPPYMI3u0VSjejRVs0bcGLkh4/ttHsTaXIh3KYvBfM4AAAAAAAAAAAAAAAAIADmFxdp65JS2HDml345ka8uRU9p2NFv5RbWf2SU02KpOSTHqkhyjLsmN1CW5kTo3i1FcZKgXWg4AAOAfhmFo06FTWvDzAS369ZBOFRS7LR8abNVl3Zvp2r6tNLB9E1l/HygMAEB9xUwzAAAAAP4/e38e30Z+33n+b1Th4AUS4CWSkkiJl46W1G61u912227fbvUlX3HszO4kmZ3M7KxzzOzOld3JbiaTycxks5NJPFnvb+c3SZxkYsdXrL7Ubp9tt9tHd6vdoloHT1EHSYkkABIgiauq9g9AlNiUCIoCQZD1ej4efIAEq/D9Sh9AqgLq/f0AAAAAAAAAALCp2LajS9EFnc4HZM6Mz+rsRFwXIvNFefxttYF8KKZW+1qD2t9aq92N1fKa7lyVFwAAbD2x+bS+/tpl/c0rl3RmvHBXmQPba/Xzb92pJ+7erroqXwlmCABAcRCaAQAAAAAAAAAAAAAAQNmaT2d1diJ+PRwzHtfZibgSqZVXQV8Nn+lRT3NQe/PBmGsdZOqr6R4DAAC2Htt29MOhKf3Nyxf1/BtXlLbsFbevq/TpI29p0yfv26m72upKNEsAAIrL4ziOs9GTwOYVjUbX5XENw1Bd3fUDrJmZGdn2ygdn2Lyot7tQb/eg1u5Cvd2lHOodDodLOh42h/U6P5HK43mP0qHe7kGt3YV6uwv1dpeNrjfnJ7gVzlFQDNTaXai3u1Dvm3McR+OzKQ1Mzqv/6pz6r+ZuL0aTKsbFLfVVPvU2V6m3uTr/VaVd9ZXyrXP3GOrtHuVQa85RcCtc54VioN6b19hMUk/1TepY31WNz6YKbv+2jjp99C0t+shbd6vCZ0qi3lsdr2/3oNbuUg71LodzFDrN4I5YllWScWzbLtlY2HjU212ot3tQa3eh3u5CvVEuSvk85HnvLtTbPai1u1Bvd6He7kK9US44R8F6oNbuQr3dxY31TmZsDU/Pq39yXgNX5zUwmfuKp+7878E0PNpVX6Hepir1NFWpt7lK3U1Varxp9xin5H/3bqy3W1FrlBOu88J6oN7lLZW19cJgVMf6ruqno7MFQ8gtQb8eP9Ckxw80qa0uINM0FwMzEvV2G+rtHtTaXdxab0IzAAAAAAAAAAAAAAAAWBeO42gykcmFYyZz3WMGJud1IZqUXYT2MXWV3uvhmKZcOKazoVJ+7/p2jwEAAChX/VfndKxvUs+dmdZMMrvitj7To/d0h3X0YJPua6+TaXhKNEsAAEqH0AwAAAAAAAAAAAAAAADuWDpra3h6QQOTN3SQmZrXzMLKF2uuhuGROsIV6mmuVk9TpXqaqtXbVKWmGp88Hi7uBAAA7hZPZvXcmWk9eWpSZ67MFdy+p6lKRw826eF9DQpV+kowQwAANg6hGQAAAAAAAAAAAAAAANyWqbl0LhQzOb8YkjkfScoqQvuYYMBUT757TE9zroNMZ0OVKnx0jwEAALjGdhyduDirY32T+s5ARKnsysdhNQFTD+9t0NGDzdq7rYrgMQDANQjNAAAAAAAAAAAAAAAA4Kaylq2RSDIXjrk6r/7JOQ1Mzisyf+fdYzySdoYrFgMyvfmAzLagn4s4AQAAbuFKPKWnTk3pqVOTujyTKrj9W3fW6omDTXpfT1gVPrMEMwQAoLwQmgEAAAAAAAAAAAAAAIBi8xn157vGXOsiMzy9oGwRusdU+w11N+VCMT1N1eptrlJXQ6Uq/Vy4CQAAUEjGsvXCYFRPnprUj8/PqNDhWXONT48daNITB5q0I1RRmkkCAFCmCM0AAAAAAAAAAAAAAAC4SNZ2dCGykAvHXAvITM1rMpEpyuNvrwuot7lqsYNMT1OV2uoCMugeAwAAcFuGpuZ1rG9Sz56eUmxh5U5/XsOjd3eFdPRgsx7YVSfT4NgLAACJ0AwAAAAAAAAAAAAAAMCWNZvMqj/fNaZ/cl6Dk/Manp5XKnvn3WMqfYa6G6uud5BprlJ3Y6VqAlyOAgAAsFaJVFbPn43oWN9VvTExV3D7zoZKHT3YpEf2Nypc5SvBDAEA2Fx4lwIAAAAAAAAAAAAAAGCTs2xHF2PJxa4xA1dzIZkr8XRRHr+11n89HNNUpd7mau0I0T0GAACgGBzH0WuX4nry1KS+dS6iZNZecftqv6EP7W3Q0YPNuqulWh6OyQAAuCVCMwAAAAAAAAAAAAAAAJtIIpXV4OSC+ifnch1krs5raGqh4MWVqxHwetTVkOsa03NDSCZYwSUmAAAAxTaVSOvpN6b05KlJXYgmC25/z46gjh5o0vt761XpN0swQwAANj/e0QAAAAAAAAAAAAAAAChDtuNobCal/qvzuXDMZK6DzNhsqiiP31zjU09TtXrzAZmepirtDFfIa7BSOQAAwHrJWrZeHI7pWN+kXhqJyXJW3r6x2qfH7mrU4wea1FFfWZpJAgCwhRCaAQAAAAAAAAAAAAAA2GDzaUuDU/OLAZmByXkNTs5rPnPn3WN8pkedDZW5rjE3BGRClb4izBwAAACrcX56QcdOTerZN6Y0PZ9ZcVvT8OhdnSE9cbBJ79gdItQMAMAdIDQDAAAAAAAAAAAAAABQIo7jaGwmqZfHJnRmPK6zE7M6dTmmS9GkCiwyvioN1b7FUExv/nZXfYW8plGERwcAAMDtmE9b+ua5aR3rm9TJsUTB7TvqK3T0QJMevatJDdUEnAEAKAZCMwAAAAAAAAAAAAAAAOsgmbE0OLWgwcl59U9e7yCTSFl3/Nim4dHu+gr1NFept6l6MSRTz8WVAAAAG8pxHJ0cS+hY36S+eW5aCwU6B1b6DH1wT4OOHmzSobYaeTx0lQEAoJgIzeCOmKa5Lo9rGMaKP2Nrod7uQr3dg1q7C/V2F+qNcrVe5ycSz3u3od7uQa3dhXq7C/V2F+qNcsU5CoqBWrsL9d7cHMfRlXhaA5Nz6r86r/6rudsL0QXZRWgfE6r0qre5Wr3NVfnbanU2VMpH95hNgde3e1BrlDOu80IxUO+VTc+l9fSpSR07eVUjkYWC29+9PaijB5v1ob2Nqg6s3/sIa0W93YV6uwe1dhfqneNxHKcY3X0BAAAAAAAAAAAAAAC2vGTG0uDVhE6Pz+pM/uvsRFyx+cwdP7ZpeNTZWK19rbX5r6D2tdaqORhgxXEAAIAylLVsvdA/qb95+aK+c/aqsgUS0401fn3s8A598q071N0cLNEsAQBwNzrNAAAAAAAAAAAAAAAAvInjOJqMp/LhmHg+HDOrock5WUVoH1NX6VsMxexryYVkerbVqMJXfquMAwAAYKmRqTl96ZWL+uqrl3Q1nlpxW8MjvXdPsz553069b28z3QIBACgxQjMAAAAAAAAAAAAAAMDV0llbg1cTSzrHnBmf1fRc+o4f2+ORdjdW54MxwcUuMq11FXSPAQAA2ETm01k92zehL71yUT8diRTcfldDlT553059/PAObautKMEMAQDIy6ak6UFp8pw01S9NnpUWotLfPbbRM9sQhGZwR6LR6Lo8rmEYqqurW/x5ZmZGtm2vy1jYeNTbXai3e1Brd6He7lIO9Q6HwyUdD5vDep2fSOXxvEfpUG/3oNbuQr3dhXq7y0bXm/MT3ArnKCgGau0u1Lt0InNp9V+dV//kXO726pxGpheULUL3mBq/qZ7mKvU2V6u3qVq9zVXqaqpS5Zu6xxietDyeysWfqffWxuvbPcqh1pyj4Fa4zgvF4MZ6O46jN8YT+vrJq3ruzJTm0taK21d4DX1gb4M+cqhZh3fU5kLS1oKi0YUSzbh43FhvN6Pe7kGtt5j0nMzokMzIgIzIoMz8lzEzKo+zvK4zVy/J9lWXdIrlcI5CaAZ3xLJWPgAsFtu2SzYWNh71dhfq7R7U2l2ot7tQb5SLUj4Ped67C/V2D2rtLtTbXai3u1BvlAvOUbAeqLW7UO87l7VsjUaTGpicV//V+dzt5Lym5zJFefwdoYB6mqrU21SVC8o0Vau11n/T7jGFakm93YV6uwe1RjnhOi+sh61c7+h8Rs+entKxvkkNTxcOvNzVUq2jB5v1ob31qgnkLs3dahehb+V6Yznq7R7UenPwLERz4ZjooLyRQZnRwdzP8bHbe5zpAVlNB9dpluWL0AwAAAAAAAAAAAAAANjUZhayGpicU//kvAau5sIxI9MLSlt33j2m0meop6lqyVd3U5Wq/WbhnQEAALBpWLajH5+f0bG+q/r+UKxgJ8JQpVeP7G/UEwea1N1UVaJZAgC2LMeRMXc1F4iJ5EIx1wIyxsJ0UYYwI4MSoRkAAAAAAAAAAAAAAIDyZNmOLkaTuXBMvoPM4NS8rsTTRXn8ttpAvmtMLhjT21Sl7aGAjJt0jwEAAMDWcCmW1FOnJvX0G1MFjysNj/TArjo9caBJD3WH5TONEs0SALBlOLaM2UtLQjFmJNdFxkjHizqUXdMqo3mv1LRXaupVtuFwUR9/syA0AwAAAAAAAAAAAAAAyk48mc0FYybnNZi/HZpaUCpr3/FjB7yGuhor1ZvvHNPbnLutCXAZBQAAgBskM7a+OxDRsb5JvXJxtuD22+sCevxAkx4/0KhtwUAJZggA2PSsjMyZ0XzXmBs6x8SG5ckmizaM4zFk1+5UNtwtq75LVrhbVn23rHCnjMqQwuHw4rZ2NCpZVtHG3ix4twcAAAAAAAAAAAAAAGwY23F0KZbSwOS8Bq7Oq39yTgOT8xqfLU73mG1Bv3quhWOaqtTTXKWdoQqZBt1jAAAA3MRxHJ29Mq9jfVf13NlpJVIrXzQc8Hr0vp56HT3YpMM7a+k+CAC4ucyCzNiwvJEhmdGBxa4x5syoPHa2aMM4hk9WaJes+h5Z4S5lw12570O7JS+BzpUQmgEAAAAAAAAAAAAAACVlO45OXJzVs6en9d2BiOIFLlhcDb/pUWdjpXqaqhc7yPQ0VamukksjAAAA3GxmIavjZ6b0ZN+k+ifnC26/b1u1jh5s0of3NihYwbEkACDHk5rNd43JhWK8+e+N2UvyyCnaOI63Mh+I6c53jcl3j6lrlwz+X1oL/tYAAAAAAAAAAAAAAEBJDE7O69nTU/rG2Wldia+9k0xjtW+xa8y1cExHfaW8dI8BAACAciHtn47O6ljfVX1vMKqMtfLFzLUVpo7sa9TRg03qba4u0SwBAGXHceRZmM4HYgavh2QigzLnrxZ1KDtQJysfjsmGuxdDMnawVfIYRR3L7QjNAAAAAAAAAAAAAACAdXMlntI3zkzr+JlpDaxiZe8beQ2POhsq1d1UtRiS6W2qUrjKt06zBQAAwGY2PpPSk6cm9dSpSU0UCGl7JN3fUaujB5v1UHdYAS8XKAOAaziOjMS4zMiAzOiQvPlbMzIkIxUr6lBWVfP1bjH13bLCXcrW98ipbJA8LP5RCoRmAAAAAAAAAAAAAABAUSVSWX27P6Ljp6f16sVZrbyud0640rsYiulpqlJvc7V21VfIZ3LxIgAAAG4tlbX1wmBUx/qu6qejhY89W2v9evxAkx6/q0mtdYGSzBEAsEHsrIyZi/Iudo3J3Xpjw/Jkbm9hj0Ks4I5815iuxa4xVn23nEBtUcfB7SM0AwAAAAAAAAAAAAAA7ljGsvXSyIyOn57S94eiSluFozI9TVU6sq9BH9zTwAWLAAAAuC39V+d0rG9Sz52Z1kwyu+K2PtOj93SHdfRgs+7vqJXByv4AsLVkUzJjIzKjg/JGhhbDMWbsvDz2yp3HbodjeGXVdci6IRiTre+WFeqUfJVFGwfFRWgGAAAAAAAAAAAAAACsieM4OjmW0PHTU/rmuUjBixUlqbnGp4f3NerI/kb1NFWVYJYAAADYKuLJrJ47M60nT03qzJW5gtv3NlXpiYNNOrKvUXWVXDILAJudJ52QGR2WGRmQGR2SGR2SNzIgY/aiPI5dtHEcMyAr3JXvGtMlK9yTu63rkEx/0cZBaXAEAAAAAAAAAAAAAAAAbsv56QUdPzOl585M6/JMquD21X5TH9hTryP7GnR4Jyt7AwAAYPVsx9GrF2f1ZN+kvjMQUSq7ckfDmoCpI/sadPRgs/Y0V8nDsScAbDqehehitxhvdFDmte4xifGijmP7a2SFu/NdY7qUzX9vB7dLhlnUsbBxCM0AAAAAAAAAAAAAAICCpucyev7stI6fntLpVazq7TU8erAzpCP7GvTOzrAqfEYJZgkAAICt4ko8padOTempU5OrCmq/dWetjh5s0nt76jn2BIDNwHFkzF3JdYzJd47xRgZlRgdlLESKOpRdWS8r3KNsfdeSkIxdvU0iXLnlEZoBAAAAAAAAAAAAAAA3tZC29L3BqI6fntJPRmdkrbyotyTp7u01OrKvUR/YU69QpW/9JwkAAIAtI2PZemEwqidPTerH52dkFzj+3Bb067G7GvX4gSbtCFWUZpIAgNtjWzLil2RGhvJdYwZzQZnooIx0oqhDWTWti6GYbLhLVn2PrHCXnMpwUcfB5kJoBgAAAAAAAAAAAAAALMrajn46OqPjp6f03YGoklm74D4d9RV6ZH+jHt7boO1crAgAAIDbNDg5rydPTerZ01OKLWRX3NZrePRQd1hHDzbpbR11Mg06BABAWbDSMmdG86GYweshmeiwPFbhjmGr5XgM2bXtyua7xeS6xnTLCnfK8dcUbRxsHYRmAAAAAAAAAAAAAABwOcdxdObKnI6fntY3zk4pMr/yhYqS1FDl04f2NeiRfY3au61KHg8XKwIAAGD1Eqmsnj8b0bG+q3pjYq7g9l2NlTp6sElH9jUqXEVHQwDYMJkFmdEheaNDMiMD+a4xQzJnRuWxC7+fsFqO4ZcV2rUYisnWd8kK98gK7ZK8gaKNg62P0AwAAAAAAAAAAAAAAC51KZbUc2emdfzMlEYjyYLbV/oMvacnrEf2Neq+jjp5WdUbAAAAt8FxHL12Ka4nT03qW+ciBbsaVvsNfWhvo44ebNJdLdUEtQGghDyp2Ru6xgzmusZEhmTEL8sjp2jjOL4qZcNd+a4xPbLCXcqGu2XX7ZQM4g64czyLAAAAAAAAAAAAAABwkdhCRt86F9Gzp6d0cixRcHvTI71tV50e2d+oh7rCqvSbJZglAAAAtpLJRFrPvDGlJ09N6kK0cFj78I6gnjjYpA/01qvCx/EnAKwbx5FnbjIXiIkOLYZkvJFBGfOTRR3KDoRk1Xflu8bkusdY9d2ya1okj1HUsYAbEZoBAAAAAAAAAAAAAGCLS2ZsvTgc1bOnp/TSyIyyduEVYfe3VOuR/Y364J4GNVT7SjBLAAAAbCVZy9aLwzEd65vUSyMxWQUOQRurfXr8QJMeP9Ck9nBFaSYJAG7h2DLi4/LODElnxqSpc9LkOdVdPSsjNVPUoazqbbmuMTd2jqnvllPZINExDBuA0AwAAAAAAAAAAAAAAFuQZTs6cWlWx09P69v9Ec2lrYL7bK8L6Mi+Rj28v0G76itLMEsAAABsNeenF3Ssb1LPnJ5UZD674ram4dG7OkM6erBJb98dktfgYmoAuCN2VubMBZnRwXzXmFz3GG90SJ7swrLN19rfxZFHdu2OfNeYrsWuMVa4S06g9s7+DECREZoBAAAAAAAAAAAAAGALGZic17Onp/SNM1O6msgU3L6u0qsP7anXkf2NOthaIw+rvgIAAOA2zactffPctI71TerkWKLg9rvqK3T0YLMe2d9IV0MAWItsSmZsRGZkQN58MMaMDsqMnZfHLvxewGo5hldW3a5815ju6yGZUKfkY7ENbA6EZgAAAAAAAAAAAAAA2OQmZlP6xtlpHT89pcGp5SvHvlnA69G7u8I6sr9Rb99VJ5+51rVlAQAA4FaO4+j1y3Ed65vUN89NayFjr7h9pc/Qh/Y26OjBJsLaALBKnnRisVtMrnvMkLzRARmzl+RxVv5393Y4ZkBWuEvZfLcYq74nd1vXIZmEG7G5EZoBAAAAAAAAAAAAAGATiiez+vZARM+dntarF2flFNjeI+mt7bU6sq9R7+sNqybAJQMAAAC4fZPxlL524pK++JNRjUQKB7bv3l6jJw406YN7GlTlN0swQwDYfDwLEZmRQXmjg0tDMomJoo5j+4MymvdKjXukpj2KV25XJtQpO7hd8rCgBrYm3gHDHTHN9TmANQxjxZ+xtVBvd6He7kGt3YV6uwv1Rrlar/MTiee921Bv96DW7kK93YV6u8tCxtbFSzENT85pR7hSPWEuvEB54BwFxUCt3WW19c5Ytl4cjunZNyb1/cGI0lahqIzU21ylR/c36eH9jWoOBooyX9wZXt/uQr3dg1qjnHGdF4rhUiyl33z6VX3rzBVl7ZWPQ+urfHr8QJOOHmrW7oaqEs0QxcTr212od4k4jjyJiVwgJjIgMzIoIzqYu12IFHUou7JRVkO3rHC37PruXOeY+m55gi2qC4WubzczI49ti3fWtyZe2zkex3EKv4MGAAAAAAAAAACwQSzb0aXovIYn5zQ0mdDw1JyGJxManpzT1Xhqcbuff+tO/YdPHNrAmQIAsD4cx9Gro1H97WuX9UzfuGLzmYL7tNZV6Ohbtusj97Rpb0ttCWYJAACAreyV8xH9D59/RTMLtz4WNQ2P3runSZ986069d2+zfKY7L8wFANmWFBuVJs9d/5o6J032S+l4cceq2yk19kpNe6Wm3sUOMqqqL+44wCZGpxkAAAAAAAAAAFAWonNpDU8lNDQ5p+HJXDBmZGpOo9PzSlt2wf2HpxIlmCUAAKUzeDWhr792WV//2WVdii4U3D5Y4dUjB1r1kXu2622762UYnhLMEgAAAFvdc6fG9etf/JnS2Zu/P7O7sVqffOtOffzwdjXXVpR4dgCwgbJpKTL0pmDMOWlqQLJShfdfLY8hhXdfD8Y07c0FZRp7pUBN8cYBtihCMwAAAAAAAAAAoGTSWVsXInNLgjHXOsdEV7Fq/kqGJ+eKNEsAADbO1XhST70+rq+/dll9l2cKbu8zPXrvnmZ99J7teu/eZlX4zBLMEgAAAG7x5z8c0b9++rQcZ+n9lT5Tjxxs1c/ft1P37QrL4yGwDWALS89JU/25TjFTN3SPiQxLjlW8cUy/1NCT6xTTtOd6B5mGLskbKN44gMsQmsEdiUaj6/K4hmGorq5u8eeZmRnZduFVBLE5UW93od7uQa3dhXq7SznUOxwOl3Q8bA7rdX4ilcfzHqVDvd2DWrsL9XYX6r3xHMfR1FxGo5EFnY8saDSyoNFIUucjCxqLJWU5hR/jdhgeaUe4Sp1N1ZqcjsprFPfxV8L5CW6FcxQUA7V2j/m0pe8NRvWNc1G9ODApexX/V96zI6hH7mrSB/c0qK7SJ0laSMyqcD8alANe3+5Cvd2jHGrNOQpuheu8cLtsx9Eff29Un//p2LLfvX9vs/7wU2+Rk5qXbduKxWKlnyDWHa9vd6HeOZ7kjIzIoMzIgMzIoMzIoIzIgMz45aKO4/iqZdV3y6rvklXfI7u+W1a4W3bdTsm4yeX98XlJ80UZm1q7SznUuxzOUQjN4I5YVhHTkSuwbbtkY2HjUW93od7uQa3dhXq7C/VGuSjl85DnvbtQb/eg1u5Cvd2Feq+fZMbShWhSo5GkRqPJxXDMaDSpuXTx/87rKrzqqK9QR7hCHfWVag9XqLOxWgc7WxTw5lbVj0aj1BtlgXMUrAdqvbVkbUc/OT+j42em9L2BqJLZwhcs7Kqv0JH9jXp4b4O2hyoW7+d5sfnx+nYX6u0e1BrlhOu8cDvSWVu/841hPXdmetnvPn1/u/7N0bvkNQ1FF6i3m/D6dpctXW/HkWd+St7ogMzIkMxoLhzjjQ7JmJ8s6lB2RVhWuEvZfCjGqu+WFe6SXdMq3axDlyOpxH/vW7rWWMat9SY0AwAAAAAAAAAAbsl2HF2Np3U+kg/F3BCOmYiniz6e1/BoRyigjvrKfDgmF5DZFa5QqMq3bHvTNBcDMwAAlDvHcXR6Yk7Hz0zp+bPTisxnC+7TUOXTh/c16JH9jdrTXCXPzS6qAQAAAIokkcrqn359QK9cnF32u//pXTv1zx45wDEpgM3BsWXEx2RGB+WNDMqMDuU6yESHZKSW/xt3J6zqllzXmHCuc0w23CWrvltOZUNRxwGwNoRmAAAAAAAAAACAEqnsTTvGXIgmlVrFyve3q6Hat9gx5sZwTFtdQF6DCy8AAFvLpVhSz52Z1rOnp3Qhmiy4fZXf1Ht76nVkX73e2l7H/40AAAAoiavxtH79q2c1OLWw5H7TI/1vH+rUR9/SQmAGQPmxMjJnL8hcDMYMyhsdlBkdlie7UHj/VXLkkV27U1Z9dy4Uc0PnGCcQLNo4AIqP0AwAAAAAAAAAAC6RtR2Nz6Q0GlnQ+WgyF4zJd4+ZnssUfbyA16P28NJQzLXvawJ8RAEA2Npi8xl981xEx89M6eRYouD2pkd6d2+TPnLPdn1w/zal5uKyLKsEMwUAAACkoal5/fpXz+nKmzoLV/oM/f4TPXr77tDGTAwArskmZcZGZEYG5I0OyYwMyYwOyoydl8cu3vvbjuGVFdqd7xpzQ0Am3Cl5K4o2DoDS4RMpAAAAAAAAAAC2mNh8Jh+KWVjSPeZSLKWs7RR9vG1Bfy4UE65UR32FduW/31brl8HqowAAF0lmbP1gKKpnz0zppZEZWav4f/eulmod2d+oI/ub1LVj2+L9qbn1nCkAAABw3asXZ/W/fL1fidTS0HZDlU//6WN7tK+leoNmBsCNPOn49UBMZDAXkIkOypi5KI+K9/62462QFe5SNtwtq/6GzjG17ZLpK9o4ADYeoRkAAAAAAAAAADahdNbWpdi1QMz1jjGjkaRmktmij1ftNxZDMTd2jGkPV6jCZxZ9PAAANgvLdnTi0qyePT2t7/RPay5tF9xne11Aj+xv1MP7GtRRXylJMk3+PwUAAEDpffPstP7340PKWEsvRG8PV+izH9+j7SG6KgBYH56FaZmRIXnz4ZhcSGZI5txEUcex/cFcGCYfismGu2TV98gOtkkeo6hjAShPhGYAAAAAAAAAAChTjuNoai6zJBCT6xyzoLGZlIrdNMbwSG11gRvCMbmOMbvqK9RQ7ZOHrjEAAEjK/R89MDmv46en9Y2zU7qayBTcp67Sqw/tadCR/Q062FrD/6sAAADYcP/tlXH94fcuLLv/UFuN/uNHehWqotMCgDvkODIS4zKjb+ocExmUkYwWdSi7qjHfNaZbVrgrH5DpllPVJHEODrgaoRkAAAAAAAAAADZYMmPdtGPMhejCqlarv111ld58p5hcx5hd+e4x2+sC8ntZWQ8AgFuZmE3puTPTOn5mSkNTCwW3D3g9endXWI/sb9Tbd9XJa/L/LAAAADae7Tj6w+9d0BdeXd7N4T3dYf3uo92q8HHsCuA22JaM2Yv5rjHXAzJmdFhGJlHUoazg9nwopiffNaZLVrhbTkWoqOMA2DoIzQAAAAAAAAAAUAK242hiNq0L0QWdv6FjzGgkqSvxdNHH8xoe7QwFcsGYfMeYa91jQpWsEgoAwGrFk1l9eyCi46endOJiXIUavXkk3ddeqyP7G/XenrBqAnwsDwAAgPKRytr67eND+ua5yLLf/dxbmvVP37dLpkFHBgC3YKVkxs7nOsdEBq+HZGLD8ljFe5/b8Ziy6trzXWO6811jumSFOiV/ddHGAeAOvDsHAAAAAAAAAEARJVLZfChmYUn3mIuxpFLZQpfZ3r7Gap866ivUng/F7Mp3kGmtC8jLBQ4AAKxJOmvrpZGYnj09pReHY0pbhf8P722u0pF9jfrw3gY1B/0lmCUAoKzNTUvZtORh0QIA5WM2mdU//Xq/TlyKL/vdr75rp37x/lZ5PLyfBEBSZl7mVL+8kcF8QGYgdztzQR7HKtowjumXFeqUVd+lbLhnsWuMFeqQzEDRxgHgboRmAAAAAAAAAAC4TVnb0dhMKheMuaFjzGgkqen5TNHHC3gNdYQrlnWMaQ9XsHo9AABFYjuOTl5O6NkzU/rWuWnNJgtfBLQt6NeRfQ16eF+jupuqSjBLAEBZsVIyZy7IjA7LjI3IGxuR4hek6QFpISrvx/5aVtvbNnqWACBJmphN6de/ek7D0wtL7jcNj/6Phzv1yP7GDZoZgI3kScZkRgfli41IcxelqXPS5DmFZy4WdRzbV53vGtO1pHOMXbtTMsyijgUAb8YnaQAAAAAAAAAA3ITjOIotZDUaSer8YihmQReiSV2KpZS1i9s1xiOppdav9nynmI787a76CjUH/TJY5RMAgHUxMr2g42em9NzpaY3NpgpuXxMw9YHeeh3Z36h7dgT5PxoAtjrHkWd+SmZsWGZ0WN7YSG6V9diwjNlL8jj2LXc1osMSoRkAZWBgcl6//tWzmkwsXeyl2m/o94/26m0ddRs0MwAl4TjyzE/Ke61bTL5zjDc6JGN+qqhD2RXhfCCm+3rXmPpu2dUtEufPADYIoRkAAAAAAAAAgKuls7YuxpLLOsaMRhdWtcL87ar2m4udYjrCuVBMR32ldoYqVOEzij4eAABYbiqR1jfOTuv4mSmdvTJfcHuv4dG7ukI6sq9RD3aGFPDyfzYAbDnZlMzYeZmxocXOMbnbYRnpxJoe0owOFXmSAHD7Xr4wo3/69QHNpZe+z9VY7dMffXyP9jRXb9DMABSdY8uIX5YZGZQ3MpgPyAzKjAzKSMeLOpRV3XK9c8wNIRmnsqGo4wBAMRCaAQAAAAAAAABseY7jaDKRuR6Kiea6xoxGkhqfTanITWNkeqS2usCSjjHXgjINVT55WFEPAICSm09b+u5ARMfPTOunozOr+v//nh1BHdnXqPf31quuko/XAWDTcxwZcxPLQjFmdERG/LI8Ku7JoREbLerjAcDteu7MlH77+PCyjsm76yv0xx/fq9a6wAbNDMAdsTIyZy/IjAwuhmK8+Q4ynmyyaMM48siu2ykr3K3sYkCmR1a4U44/WLRxAGC98a4eAAAAAAAAAGDLWEhbujS7oMkLCxqeTGh4ck4DEzMajSxoPmMXfbxQpXexY8yN3WN2hALymaxADwDARsvajn5yfkbHz0zpewNRJbOFjwd211foyP5GPbyvUW1cRAgAm1Nm/oZQTO7WG8t978kU7jB2u+yqJmXDnXLCXQpsPyA19EiN3ZpzalXkHA4ArIrjOPqLl8f12e9fXPa7e3YE9QdHewmFA5tBNpk7none0DkmMihz5rw8drZowziGT3Z4t8xt+6SmvVJjr2YDrUrXdkjeiqKNAwAbhaMeAAAAAAAAAMCmYtmOJmZTGo0mdeGGjjGj0aSuxNNFH89nerQzdC0Qc0PXmHAlFxcAAFCGHMfRGxNzOn56Ss+fnVZ0ofCFRA3VPj28t0FH9jdqT3MVXeEAYDNwbBnx8XynmKGlnWMSE8UfzgzICu2WFe684Tb3vRPIrbRumqYC4fD1naJRybKKPhcAWIllO/q/vjuqL712Zdnv3t9br995pEsBL4u9AOXEk4rnO8YMLQnIGLMXi9oJz/FWygp3Klvfk+8a0y0r3C2rdqdMf4XCNxzHWBzHANhC+DQPAAAAAAAAAFCW4smsRqNJnb8WioksaDSa1MVoUmmr+Ev1NtX4FjvGtOfDMbvqK9RaG5BpcOEsAADl7lIsqeOnp3T8zLQuRJMFt6/yGXpvT72O7G/Ufe21/H8PAGXKk47LjI7kwzHXO8eYM+flyRb+9/52WTUtuTDMtXBMqFNWuEt2sFXycJE5gPKWzNj6rWcH9d2B6LLfffpwi/7Je9tlEBAHNobjyLMwLTM6lA/F3NA5Zm55yO1O2IHaXBimvlvZcLes+i5Z4R6OZwC4FqEZAAAAAAAAAMCGyVq2Ls/kusbcGIwZjSwoMl94VfjbVeE11J7vGLPrho4x7fUVqvabRR8PAACsr9h8Rt88F9HxM1M6OZYouL3pkR7YFdKR/Q16qCusSv7/B4DyYFsy4peWhmJiw7mwzPzVog/n+KpkhXYre2M4Jn8rX1XRxwOAUogtZPQ//23/TY+L//FD7fo7b22hoyJQCo4jIzGeC8NEh+SNDOTCMdEhGcnlgbY7YVc1KXutW0y+c0w23C2nqlHi9Q4AiwjNAAAAAAAAAADWleM4is5nNRq91jEmqfP57y/PpGTZxe0a45HUFqpUZ1O1uppq1FLt0c5QQB3hCjUH/aymCQDAJpfM2Pr+UFTHT0/ppfMzqzqWONBarSP7GvXBPQ2qr/aVYJYAgJvxJGfe1DFmKHcbG5XHThd1LEce2cHtssK7l3aOCXfKrm7hQlIAW8rYTEq/9tWzGo0s7cDlMz367SNd+vDehg2aGbCF2ZaM2QvyXusWs9g9ZlhGZq6oQ1nBHbLqu/JdY/IBmXC3nIq6oo4DAFsVoRkAAAAAAAAAQFGksrYuRpOLnWJGI8nFoEw8ZRV9vJqAqY5whToWO8bku8c0VKm1uXFxu2g0Kssq/vgAAKB0LNvRqxdndfz0lL4zENFc2i64z45QQEf2NerI/ka1hytKMEsAgCTJysicvfimcEyuc4yxECn6cLa/Zlkoxgp1yQp1SF7+/Qew9Z29Mqff+No5Tc9lltxfEzD1B0d79db22g2aGbBFWCmZ0fP5QMyNnWNGihr6dTymrLqO66GY+h5lw12ywp10wgOAO0RoBgAAAAAAAACwao7j6Goivdgx5loo5kI0qbGZlIrbM0YyPdL2UEU+HJMPyOSDMvVVXnlusjKwaZpFngUAANgIjuOof3Jez52e1nNnpzSZyBTcJ1Tp1Yf2NujIvgYdaK256bECAKAIHEeeZERmdGR5OGb2gjx2trjDeQzZtTty4ZhQp7LhayGZTjlVjXSNAeBaPz4f0z8/NqD5zNJQeXONT3/88b3qbuJCe+C2OLa846/KP/qCzMiAvJFBGbMX5HEKL9yw6iHMQO44JtylbH23rGvdY+o6JNNftHEAANcRmgEAAAAAAAAALDOftnQhmtT5xY4xue4xF6JJLWSK9wHhNeFK75KOMdfCMdtDAflMo+jjAQCA8jUxm9JzZ6b17OkpDU8vFNw+4PXooe56PbKvQQ/sqpOXYwcAKB4rJXPmwtJQzLWuMamZog9nB+oWwzBLOsfUtUtmoOjjAcBm9vSpSf2b50dk2UuXselqrNQff3yPtgX5dxNYFceROX1Wgf4nFeh/SmZivCgPa/tqbuga06VsuEdWfZfs4A7JYOEnACglQjMAAAAAAAAA4FKW7Wh8NrXYKWY0srAYjrm6ipXcb5fP9GhnKNcxZtdix5hcQKa2grerAQBws3gyq2/3R/Ts6SmduBQvuL1H0n0dtXpkX6Pe0xNWTYBjCQBYM8eRZ35KZmxY3ujQ9e4xsWEZs5eKurK6JDmGV1Zt+9JQTKhTVni3nIp6usYAQAGO4+hPfzKmz714adnv7t0Z1B8c7VWQ99qAgoyZCwoMPKVA/1PyRgbW/Dh2Zb2scHe+a0zXYucYu3obxzUAUCY4MgIAAACwJgtpS1OJlGp4jwcAAKDszSazuUBMvmPMte4xl2JJpS2n8APcpuYanzrqK9V+LRQTznWQaa0NyDQ4gAQAADnprK0fjsT07OkpvTgcU2YVxyV7mqt0ZH+jPry3QU01/hLMEgC2kGxSZux8LhBzY+eY2LCMdKLow9mV9W/qGNOlbKhTdu0OyfQVfTwAcIOs7ej3v31eX3v96rLffWhvg3774U75vXReBG7FMz+lwOCzCvQ/Kd/Ea7e1r1XTIivfLSabD8ZY4S45lfXrNFsAQLEQmgEAAABQkOM4GptJqW88ob7xOZ2+sqDT47M63B7S//vz+zZ6egAAAJCUtWxdmsl1jbneMSb3fXQhW/TxKn1GPhRzvWPMrnxQpspvFn08AACwNdiOo9cvx/Xs6Wl969y04imr4D4tQb+O7G/Uw/sa1NVYVYJZAsAm5jgy5iaWhWLM6IiM+GV5VNyFExzDLyvU8aZwTK5zjFNRV9SxAMDtkhlLv/n0oH4wFFv2u//+ra36tYd2yqCrBbCMJx2Xf/ibuaDMxZfkcQqfh2bre5TueI+s+p58OKZTjj9YgtkCANYDoRkAAAAAyyQzts5emdPJsbhOjiXUN5bQ9Hxm2XavX5pRxrLFWkUAAACl4TiOIvPZG0Ix17vHXI4lVeymMR5JrbWBXLeYGzrGdNRXqLnGLw8fwgMAgFUanprX8TPTeu7MlMZn0wW3rwmY+uCeeh3Z16i37Ahy8R8AvFlmfjEU470WjImNyIyNyJOZL/pwVlWzrPDuZeEYO7hDMlg4AQDWW3Q+o3/yt+d0anxuyf0eSf/zezv06XtbNmZiQLmyUvKPfl+B/iflH/m2PFaq8C7BNqV6Hleq9wlZDXskzkMBYMsgNAMAAAC4nOM4mphN6+R4Qn35kMy5q/Oy7MJXXKazts5dmdO+bazwCQAAUEzJjK1LsaTOv6ljzGg0qcQqVmO/XcGA+aZQTK57zM5whQJeItIAAGBtphJpPXd2WsdPT+nc1cIXcPtMj97ZGdKRfY16sDPEcQgAOLaM+Nj1bjE3do5JTBR/ODNwQ6eY6x1jrPBuVlYHgA10KZbUr33lrC7Gll707zc9+p1HuvSBPQ0bNDOgzNiWfGM/zQVlhp6TkZotvEtFWKnuR5TqfULZ1sOSh/NQANiKCM0AAAAALpPK5rrI9I0ldHIsrr7xhCYTy7vIrIZpeDQaTRKaAQAAWAPHcXQlnl7WMWY0sqCJ2bSK3DRGpuHR9rpc15hdN3SM6QhXKlzlpWsMAAAoirm0pe8ORHT89JRevjCrVazLosM7gjqyv1Hv761XbQUfYQNwH086LjM6kgvDRG8Mx4ysalX022XVtOTDMF1LwjF2sJULRQGgzLwxntA/+dtzisxnl9wfDJj6jx/t1T07ajdoZkCZcByZk6dU0f+U/ANPy5y7UngXb6VSnR9UqvcJZXa+UzJ9JZgoAGAj8Y4jAAAAsMVdiad08nJisZPMuavzylhruwSzrtKru9uCelt3sw63h3VoR53S83FZVvFXOwcAANgq5tKWLkSSGo3mgjHXusdciCSVzNpFH6++yrvYKaajPheOaQ9XaEddQF6Ti58AAEDxZS1bPx6d1fHTU/reYFSpVRzj7K6v0CN3NerhvY1qrQuUYJYAsMFsS4qNSlODClx8XZ7IkLz5rjHG/GTRh3N8VbJCu5UNdb6pc8xuycdCWACwGbw4HNO/fHJg2XuILUG//vjje9TZyL/ncC8jNqJA/9MK9D8pb2y44PaO4VWm/d1K9j6u9O4PcDwEAC5DaAYAAADYQtJZW+euzunkWEJ9Ywn1jSd0JZ5e02MZHqm7sUoH22p0sK1Gh9qC2hkKyOv1KhwOXx9zvlizBwAA2Lws29H4bErnI0ldyIdjRvNBmbV29VuJ3/RoZ7hiSTBmVz4oE2R1dgAAUAKO4+iNiTk9e3pKz5+dVmwhW3CfxmqfPry3QUf2N2pPcxWd7gBsSZ5kLN8lZnixe4w3NiLNjEpW7v36Yl2i6cgjO7hdVnh3vnPM9XCMXd0i8e8sAGxaX++7qn/3/IjevBZib1OV/ujje9RU49+YiQEbyDN3VYGBZxTof1K+qydXtU+m7T6lep9QquuInMpw4R0AAFsSn55uAZFIRD/60Y/02muv6fLly4rFYqqpqdGePXt09OhR9fT0bPQUAQAAsE4mE+l8QCauk2MJnb0yp/Rau8hUeHWg9VpApkZ3tdao2m8WecYAAACb28xCdrFjzGi+Y8xoJKmLseSau/mtZFvQnw/GVKg9nAvHdIQr1FIbkGlw8RMAACi9i9Gkjp+Z0vHTU7oYSxXcvspn6H299Tqyv1Fv3VnLMQyArcHKyJy9mA/GDMuMjSwGZYyFSNGHs/01bwrFdOV+DnVI3oqijwcA2DiO4+j/femy/suPLi/73f3ttfr9oz2qCXDZJ9zDk4rLP/QNBfqPyXf5x/I4hTubZhv3KdX7uFI9j8sOtpVglgCAcsfR0xZw/PhxHTt2TNu2bdPdd9+t2tpajY+P6+WXX9bLL7+s3/iN39A73vGOjZ4mAAAA7lDGstV/dV4nxxI6ORZX31hCE2vsIuOR1NlYqUNtQR3Kd5LpCFewuicAAIByx12XYqkbwjHJxe9Xs4L67ar0GfkwTD4Uk+8Y0x6uUBUhZgAAUAai8xl989y0jp+eVt94ouD2pkd6++6Qjuxv1ENdIVX4OKYBsAk5jjzJyGK3GDM6fL2DzOxFeezinh86HkN27c7FcEw23zHGCnXKqWqkawwAuEDWsvXvvnVex/oml/3uyP4G/e8f7pTPNDZgZkCJZVPyn/+uAv1Pyj/6XXmswtdFWLU7F4MyVkNvCSYJANhMCM1sAd3d3frt3/5t7d+/f8n9Z86c0e/8zu/ov/yX/6L77rtPPp9vg2YIAACAtZiaS6tvLJHvJJPQmSsJpbJrW708GDB1MN9F5mBbUAdaq1mBCAAAuJrjOJqaS18PxSx2jVnQ2ExKxW4a45HUVhfId425Fo7JBWWaanyElwEAQNlJZiy9MBTT8dNT+tH5GVl24QOkg601enhfgz60t0HhKj6bBLBJWCmZMxeWhmLyQRkjNVP88SrDyoZ2K1u3+4bOMZ2y6tolM1D88QAAm8J82tK/fGpAL40s/7/nl+5v1WfetZP3ELG12ZZ8l36UC8oMf0NGuvCCDXZlvVLdjyrV+4SyLfcQMgYA3BJXyW0Bb3vb2256/759+3TgwAG9/vrrunDhgrq6uko8MwAAAKxW1rI1MLmQ6yAzntDJywmNzabW/HidDZX5gEyN7m4LqqO+QgZvEAEAABdKZmxdjCV1MZbSlfkpDU/NaXgyoaGrCSXSVtHHq60wb+gYc717zI5QhQJeVoEEAADlzbIdvXJxVsdPT+k7/RHNZ+yC++wMBXRkf6OO7GvUznBFCWYJAGvgOPLMT8r7plCMGRuWMXtJHqfwv3e3NZzhlVXbvhiKceq7Vd1+t9TYK1U3KB6NyrKKf04KANicpucy+idfO6fTV+aW3O+R9M/fv0s/d8+2jZkYsN4cR96rJxXof1KBgadlzE8V3MX2VSvd+SGlep9QZuc7JIPLoAEAhbn+f4uZmRkNDg5qcHBQQ0NDGhoaUjwelyQ99NBD+sxnPrPqx5qcnNTx48d14sQJTU9Py+v1qqWlRW9/+9v14Q9/WIFA6VcEMU1zyS0AAADKQ2Quo5PjcfXlu8i8MTGnVHZtH8pV+00daK3WobagDrXV6EBrjYIVrj/UBwAALmI7jq7G0zr/po4xo5GkJuLpoo9nGh7tCC3tGrMrH44JVXpZ8REAAGwqjuOof3Jex09P6bkz05qayxTcJ1Tp1Yf2NuiR/Y26q6Wa4x8A5SOblBk7nw/GDMuMjSx2j1nNauW3y66slxXqzIdjcrfZUKfs2h2Seb3jlmmaqg6Hiz4+AGDzG40s6Ne/ek6XZ5YuqBjwevRvH+3We3rqN2hmwPoxo0O5oEz/kzJnLhTc3jF8Snc8pNSeo0p3vFfyVZZglgCArcT1V9L9yq/8SlEe55VXXtFnP/tZLSwsLN6XSqUWgzjf/va39Zu/+ZtqaWkpynirMTU1pb6+PoXDYbW3t5dsXAAAACyVtR0NTs6rbyyxGJS5FFt7F5ld9RU6mA/IHGyt0e6GSpkGFyYAAICtL5HK6kI0qdFI/iu6kL9NrjmAvJKGKt+yjjHt4QptrwvIa9I1BgAAbG7jMyk9d3ZKx09Pa3h6oeD2Aa+h93SHdWRfgx7YVcfxEICN4zgy5iZuCMUMLXaOMeJj8sgp7nCGX1ao44ZwzO7FkIxTUVfUsQAA7tI3Ftc//tt+zSxkl9xfV+HVf/xor+7eHtygmQHFZyTGFRh4RoH+J+WdfKPg9o48ymx/m1K9Tyjd9TDHXQCAO+L60MyNGhsbtX37dr3++uu3td/IyIj+03/6T0qn06qoqNBHPvIRHThwQOl0Wj/84Q/17W9/W+Pj4/p3/+7f6d//+3+vysr1T7lms1l99rOfVSaT0d/5O39HhsGb1gAAAKUSm8+obzyhk2MJnRyL6/TEnBYya7uIs8pn6EBrjQ621ehgW1AHW2tUV8lhPAAA2LqytqPxmZRGIws6H03mQzK5cMxqVj2/XQGvRztD1zvGLHaPCVfQvQ8AAGw5s8msvt0f0fHTUzpxKV5we8Mj3ddeqyP7G/XennpV+80SzBIA8tJzuVBMbFjefCgm9/OIPJn5og9nVTXLCu9+UzimS3Zwu2Tw7x8AoLheGIzqf316cNliQG21Af3xJ/ZoVz2dNLD5eZIx+YeeU6D/Sfku/3RV4eZs011K9h5VuudR2TWlW6QeALC1uf5T30984hPq6upSV1eXQqGQrl69ql/91V+9rcf48z//c6XTaZmmqX/1r/6Vent7F3934MABtba26q/+6q80Pj6up556Sp/85CeXPcZf/MVfKJNZ/Yf+jzzyiFpbW2/6O9u29X//3/+3zpw5o/e///1697vffVt/HgAAAKyeZTsanl7Q65dzHWT6xhO6EE2u+fHawxW5DjJtNTrUFlQnXWQAAMAWFVvILO8YE1nQpZmUMlZxVwWWpJagX13bgupsrFFnU7WaKxztDAXUUuuX4eF4CwAAbF3prK0fjsT07OkpvTgcW9Wx1p7mKh3Z36gP721QU42/BLME4FqOLSM+lu8ac61zTP77xETxhzMD1zvF5LvF5H7eLcfPav4AgNL4ys+u6Pe/fV72mw7N926r0n/62B41VnMMjk0ssyD/+e8o0P+k/KMvyGMXvi7WqutQqvcJpXoflxXuKsEkAQBu4/rQzM0CLLdjcHBQZ86ckSS9973vXRKYueaxxx7Td7/7XV2+fFnHjx/Xxz72MXm9S//qv/nNbyqVSq163AceeOCmoRnbtvW5z31OL774ot71rnfpV37lV27zTwQAAICVzCxk1TeeUN9YLiTzxkRCc+m1dZGp9Bm6q+VaQKZGB1trFKryFXnGAAAAGydj2boYTWo0ei0ck+8aE01qZiFb9PGqfMbyjjH1FWoPVaim0q9wOLy4bTQalWVZRZ8DAABAObAdRz+7FNfxM1P61rmI4qnCxz0tQb+O7G/UkX0N6mysKsEsAbiJJx2Xea1bTPRaOGZIZuy8PNbqr5VYLaum9U2hmNz3drBV8hhFHw8AgNVwHEef++El/emPx5b97u276vTvn+ihuyM2Jzsr38Uf5oIyw9+UkZkrvEtVk1I9jynV+4SyzQclFrcCAKwj14dm7tRPf/rTxe/f+9733nQbwzD00EMP6a//+q81NzenN954Q3ffffeSbf7yL//yjudyrcPM97//fT344IP6zGc+I8PgzR4AAIC1sh1Hw1ML6htP6OTluE6OJzQaWXsXmR2hQC4g0xrUoe016mqskpcuMgAAYJNzHEfTcxmdX9IxJvf92Exq2WqJd8rwSK21gVwwpr5SHeEK7cp/31jtk4cP1gAAgIsNT83r+JlpHT89pYl4uuD2wYCpD+xp0CP7G3T39iAd+ADcGduSEb+UC8Xku8V480EZY36y6MM5vipZod3Khq51jdm9eCsf4T8AQHnJWrZ+9/kRPf3G1LLfPX5Xo/63D+2W1+RaP2wijiPvxGsK9D+pwOAzMhYiBXex/TVKdx1RqvdxZbY/IBmExAAApUFo5g6dO3dOkhQIBNTZ2XnL7fbv379knzeHZu7UjYGZd7zjHfq1X/s1AjMAAAC3KZ681kUmoZNjcZ0an9Ncem2rjwe8hu5qqc51kGkL6mBrjeqr6SIDAAA2r2TG0oU3d4zJf7/WY6aV1FV4l3WM6QhXaEeoQn4v73sBAABcM5lI6xtnc0GZc1fnC27vMz16Z2dIj+xv1IO7QxxbAbhtnmRsMRSz2D0mNiIzNiqPXTiwdzsceWQHt8sK7851jQl3LX5vV29jRXIAwKYwl7b0z4/16yejs8t+9/cf2K5/+OB2FgPCpmFO9+eCMv1PyYxfKri9Y/qV3vU+pXqfULrjPZI3sP6TBADgTQjN3KFLl3L/6be0tMg0b516bWtrW7ZPsdi2rc997nP6/ve/rwceeIDADAAAwCrYjqPz0ws6mQ/J9I0lNDy9sObH216X6yJzsLVGh9qC6mmqZCUgAACw6diOoyuzaY1GF3KdY/IdYy5Ekqtaqfx2eQ2PdoQCix1jrnWP2RWuUKiKwDEAAMCtzKUtfbc/omfPTOmVC7Or6u53eEdQj+xv1Pt661VbwcfEAAqwMjJnL+aDMflQTHRIZnRERrLwKuK3y/bX5EMx17rGXPvqkLwVRR8PAIBSmUqk9RtfO7cs4G54pH/5gd362N3NGzQz4DbELkqnvqLgz74o79TZgps7HkOZHe9QqvdxpTs/LCcQLMEkAQC4Nd4NvQPpdFrxeFyS1NDQsOK2NTU1CgQCSqVSmp6eLuo8vvKVr+iFF15QRUWF2tra9NWvfnXZNvfff7927dq16sdc7RxXCgrdiTeHfggBbW3U212ot3tQa3fZDPVOpLI6NZbQ62NxnbwcV99YXPHU2rvI7G+p1qG2oA5tD+pQW1CNNf4iz7h8bYZ6Y2vZ6PMTiee921Bv93BzrVNZW4OTczofSer89IJGIws6H1nQxWhSyaxd9PEaq325MEx95fWuMfWV2h6qkNcozQqKbq63G1Fvd6HeKDXOUVBKN9Y2Y9l6cTimp09d1QsDkVUdt3U2VOrRA016eF+j2uq46Lzc8dp2l7Kot+PIsxCRER3OB2KG898Py5i9II+dLe5wHkN2bbuscKfsfDjm2q1T1XTTrjHr979paZVFvVES1BobYaPPUXje39rI9Lw+86UzGp9NLbm/wmvoPxzt1bu76zdoZmtHvd3DsxBRYPC4NPiMdOElSYUvOM5uu1vpvR9RuudROdW5QBjPkM2D17d7UGt3od45hGbuQDKZXPy+oqLwm8wVFRVKpVJL9iuGycnJxfl87Wtfu+k2zc3NtxWa+Uf/6B+tarsvfelLq37MO1FXV1eScVAeqLe7UG/3oNbustH1dhxHQ5NzOnEhqtcuRHViNKb+q3E5q1hx82a2hyp1uCOsw+0hHW4Pa19rrfxed55A3MxG1xtbX7mdn0g8792GeruHG2o9Oj2nP3/pvL78yiUlUsW9+CngNbS7sVpdTTXqbKrOfTXWaHdTtWoryq9rjBvqjeuot7tQb6w3zlFQaucm4vrrn4zqqZPjiswV7v63rTagJ+5u00fu2a79rbXy3OQidGwOvLbdZV3rnU1JkWFpakCaHpCmBvO3A1IyVvzxKsNSQ4/U2CM1dOduG3vlCe+W6fVvmSDMneD17R7UGqVQbucoPO9zXjkf0d//6zcUm88sub++2q8//aX79JadoY2ZWJFR7y0mPSedfVbq+7I09G1pNSHqhh7p0CelAx+Xt6FLXklV6z5RlAKvb/eg1u7i1noTmrkD6fT1N6W93sJ/lde2uXG/YvjMZz6jz3zmM0V9TAAAgM0kkcrq9YsxnRiN5oIyF2PL3nxcLb/X0MHtdYsBmcMdYW2rZRVOAACweTmOo5eGpvVnPxzRt89eXXOQ+JrtoUp1NlVrd2O1Ohur1ZkPybTVVcooUdcYAAAAt/jSyxf1m3/bJ8te+SCu2m/qyMFWffSe7Xqgs0Emx2WA+ziOlLhy82BMbFRyitxV1PBK4d35QEzPDSGZHqm6obhjAQCwyTx3akK/8cXXlHpTd8iOhip9/pfv167G6g2aGXATVkYa+k4uKHP2GSkzX3ifYJt08OPSwZ+TWg7dtGMgAADlhNDMHfD7/YvfZ7OFE7XXtrlxv3L1uc99bqOnAAAAcFOO4+j89LxOjEb16oWoToxG1X8lrgLXDdxSa13FYjjmcHtI+9tqFfCyzh1QTjg/AYC1WUhb+vrPLuvPf3he567Eb2vfmoA33ynmeiims7FGuxurVennWAkA4G6co6BUvvHGhP7l107e8n0vr+HRQ71N+sg92/WBfds4TgPcIrMgTQ9dD8RcC8lMD0mp2eKPV92UD8R0Lw3GhDsks/y6igKAG3GOUl4+/9J5/fZTbyxbvOjuHXX6r790nxprAhszMeBGti1d/HEuKPPG16WFSOF9Kuqk/R/JBWU63iEZnIMCADYPQjN3oKLi+orjyWSy4PbXtrlxv3LV0LC6lV+i0ei6jG8YxpL2TzMzM7LtIq98g7JBvd2FersHtXaX9az3fNrSG+MJnRyL6+TluE6OxRVbWEUL4JvwGh7ta6nWobag7t4e1KG2oLbVLn1Tcj4+q1Wsm+Jq5fD6DofDJR0PG2ujz0+k8njeo3Sot3ts1VpPzKb0pdcm9LWfXdFM8tbHTR5JO0IV6qivUEd9pXY1VGpXfaU66ivVWO2TZ9nKcJaSc7NKzq3r9NfNVq03bo56u8tG15vzE/fhHAWl8OrFGf3a35y+aWDmUFtQj9zVqA/ubVR9Ve6C9c18nIbreG27y4r1dhx5EuMyo8Myo8MyosMyo0MyosMy4mPy6A5biL6JY/plh3bJCnXKCnfKDl+77ZJTUXfznWYTRZ3DVsfr2z3Kodaco7jPRp+jlMPzvhzYjqPPvjCqP//J2LLfvasrrP/wRK/MzLyi0c39aTT13sQcR+bUWfnPHZOv/ymZ8cuFd/FWyLPnkVxQpvv9mplL5uo9sw5hbWw4Xt/uQa3dpRzqXQ7nKIRm7oDf71cwGFQ8Htf09PSK2yYSCaVSKUmrP1HZDCzLKsk4tm2XbCxsPOrtLtTbPai1u6y13o7j6PJMSifHEuobi+vkWEKDk/Oy1vj5X1ONTwdba3SoLaiDbTXau61aAa+xZBuel3eO1zfKRSmfhzzv3YV6u8dmrrXjODo5ltAXT0zoO/2RFY+fagKmPnKwST/3lm3aHrr54i5ueGN8M9cbt496uwv1RrngHAVrNTA5r3/81bNKv+mg7tP3t+tTb2nQ9lr/4n3UfWvjte0CqYQ0PShND8p/6aSMyJDM2IjM2Ig8meJfUGtVNcsK714Mx1jhTlmhTtnB7bdeKZzn4Lrg9e0e1BrlhOu81k/GsvWvnxvWc2eWX0P40UNN+hcf2C2vsTWP391Y783GmL2oQP9TCvQ/KW9koOD2jsdUZueDSvU+oWzPwwpv27n4O9uep94uwuvbPai1u7i13oRm7tCOHTt05swZTUxMyLIsmebN30gaGxtbsg8AAACkZMbS6Yk5nRzLdZI5NZ5QZH5tXWRMw6M9zVU61JYLyRxqq9G2oP8mK6QDAABsHRnL1jfPRfTFVyd0+srKS4t31FfoU/e06NG7GlXlv8XFUAAAANhQYzMp/dpXziqRWvrB9afu26nf++gBxWIxV36oDWxqji0jPpbrGhMbzoViokPyxkakxMTiZpXFGs5bISu0O/eVD8Xkvt8txx8s0igAAOCaRCqrf3ZsQC9fWN554x++Y7v+/tu385k1Ss4zP6XA4LMK9D8p38Rrq9on03JYqd4nlOo+IqeqUZJueT0sAACbDaGZO7Rnzx6dOXNGqVRKw8PD6unpuel2p0+fXrLPVrFeB0WGYaz4M7YW6u0u1Ns9qLW7rKbejuNobCalk2NxvX45rpNjcQ1cnVfWXlsbmcZqnw5tD+YCMtuD2retWhU+3rApBV7fKFfr+aYtz3t3od7usZlrPT2X1ld+dkVfeW1CU3OZFbd9x+6QfuGtrXr77pAMF384u5nrjdtHvd2FeqNccY6C2xWZz+jXvnp22fHdh/Zv0+9+5IA8Hg+13uJ4bW9yqXguGBMdkhEdlhkdzt3GRuSxUkUfzq5pW+wWY99wawfbJM/y5w7Ppo3F69s9qDXKGdd5Fd/VeEq/+uUzGphc2iHO9Ei/9XCXjh7atkEzWz9urnfZSyfkH3pe/nPH5L3wojxO4QUXrIZepfccVbr3Cdl1uY4yN1aUersL9XYPau0u1DuH0Mwduv/++/X1r39dkvTd7373pqEZ27b1wgsvSJKqq6t11113lXKK6yocDpdknLq6upKMg/JAvd2FersHtXaXuro6JTOW+i7P6MRoVCcuRHXiQkyT8bV9MGgaHu1vrdXh9pAOd4R1uD2sHeFKVuQpE7y+US5KdX4i8bx3G+rtHpuh1qcuz+jPfnheT70+prRl33K7Sp+pT9y7Q7/4jl3qbq4p4Qw3j81QbxQP9XYX6o1ywTkKbkcildU/+W8/1mgkueT++3fV648/fY+8Zu7DbGrtLtS7DFlZKTYqTQ9KUwPS9IA0NZi7TVwp/ni+aqmxW2rokRp7pIZuqbFXauiS4a+WIclX/FFRAry+3YNao5xwnVdxnZ+a0y//txMam1l6DF/lN/Unf+ew3runeYNmVlpuqXfZyqakwW9JfV+Wzh2XssnC+9TtlA58XDr4czK33aVKj2fVXQ+pt7tQb/eg1u7i1noTmrlD3d3d2rdvn86cOaPvfve7es973qPe3t4l2zz99NO6fPmyJOnIkSPyevlrBwAAW0uui0xSr45GdWI0qtcuRHV6fFYZa21dZBqq/YvhmMPtIR3aEVKlny4yAADAnbKWrW+evqI/++F5/fR8ZMVtd4Qr9Ytv36VP3rdTdZVcOgUAALAZpLO2/tFfvaqTl2aW3L+3Jaj/8otvpbsysBHmI28KxuS/oiOSlS7yYB4ptDMfjOldGpIJtkosHgUAQFn6za/1LQvMNNb49ae/dJ8O7QhtzKTgDrYtjf4wF5Q5fUxKxgrvU1kv3fVR6eDPSTvfJrm0ywAAwL1cn944e/asJiYmFn+enZ1d/H5iYkLf+973lmz/nve8Z9lj/NIv/ZJ+67d+S+l0Wr/7u7+rj370o7rrrruUTqf10ksv6Vvf+pYkqbW1VY8//vi6/DkAAABKKZmx9MbYjE6MxvJdZKK6Mrv2LjJ7W4K5gExHSIfbw2qvr6KLDAAAcL2Z+Yy++PIF/cWPRnU5trDitm/bXa9ffnC3Prh/m0yD4ygAAIDNwrYd/dMvv64fDEwtuX97qFKf/3v3E4QG1pOVkaLnpan+5V1j5qeLP16g7oZAzA3BmPpOybfatb0BAEA5GJ9Z0I+Glx4v7G6s1ud/+X61N1Rt0KywpTmONP56Lihz6mtSfKzwPr4qae+juaBM1/skk/NLAIB7eRzHWdvy31vEn/zJn+iFF15Y9fZf+tKXbnr/K6+8os9+9rNaWLj5BQytra36zd/8TbW0tKxpnuUqGo2uy+MahrGk/dPMzIxs216XsbDxqLe7UG/3oNZby5XZlE6OxfX65bhOjsV19srcmrvIhCq9OtQW1KHtQd29Paj9LTWqoovMplIOr+9StY/H5rJe5ydSeTzvUTrU2z3KtdbDU/P6wqvjevqNSSUzt56P3/ToyP4mffreVu3ZVl3CGW5O5VpvrA/q7S4bXW/OT3ArnKOgEMdx9H9++7y+8Or4kvtDlV79+X93UB31ldTaZaj3OnAceRamZUaHZUSHl97OXpDHzhZ3OI8pu3anrHCn7HDnDbddcqoal3SNod7uQr3doxxqzTkKboXrvIrnKz+b0L/9xvDiz7UVXn39V+5RuGrrhxLcWO+NZMTOy3/umPznjsmMDhfc3jG8ynQ8pPSeJ5Tp/GAuOHMn41NvV6He7kGt3aUc6l0O5yiu7zRTLG9961v1B3/wB3r22Wd14sQJRSIReb1etbS06IEHHtDDDz+sQCCw0dMsOsuySjKObdslGwsbj3q7C/V2D2q9eWQsW+euzuv1y3H1jSXUN57QlXh6TY9leKSuxiodaqvRwbYaHWoLamcosKyLDM+NzY3XN8pFKZ+HPO/dhXq7x0bW2nYcvTQyoy+emNCPz8+suG1jtU+feMs2ffzu5sUPYXmO3j5e2+5Cvd2FeqNccI6CQv7sJ5eXBWYqfYb+6GN7tKPOf9OaUmt3od63wUrJjI3KjI3IjA7LjA3LjI7IjA3LSK18jrUWdiAkK7xbVrhLVqgz932oU1Zdu2T6b7HTyhekUG93od7uQa1RTrjOq3i+PxBZ8vM7dtepNmBs+T/3zbih3qXmmZtUYPBpBfqfku/K66vaJ9N2n1K9TyjVdURO5Q0XJhe5NtTbXai3e1Brd3FrvV0fmvnMZz6jz3zmM0V5rKamJv3iL/6ifvEXf7EojwcAAFAKk4m0To4l1DcW18mxhM5emVN6rV1kqny6Z2dI+5ordKClWne11qiaLjIAAAC3NJe29PSpSf3Na1d0IZpccdu7Wqr16Xtb9P7eevlMo0QzBAAAwHr4et9V/ckPLi25z2t49H8e7dFdrTUbNCugzDmOPPOT8i6GYq6HY4z4JXmc4q6S6hheWXUdskK7ZYU7l4RjnMr6oo4FAAA2j2TG0k8vLA3lvrMztDGTwZbhScXlH/qGAgNPynfpR6s6ts027lOq93Gleh6XHWwrwSwBANi8XB+aAQAAcJNsvotM33hCJ8cSOnk5rok1dpHxSOpsrNShthrdvb1W79q/Q52N1fJ4PIpGo65MpAMAAKzWpVhSX3rtio71TWoufevjJtPw6P299fr04W062BYs4QwBAACwXl4YjOr3nh9Zdv9vH+nUA7tCpZ8QUG4yCzJnzi/rGGNGR2RkEkUfzq5syIdi8t1iwp3Khjpl1+6QTF/RxwMAAJvbyxdmlcpeX4TS9Ehv5zgea5FNyT/6PQX6n5T//HfksQpfu2HV7lwMylgNvSWYJAAAWwOhGdwR01yfleMNw1jxZ2wt1NtdqLd7UOvyMJVI6+RYXCcvx3VyLK7TE3NKZde22l5NwNShtqAObQ/q7rag7mqrUTCQO5w0DEN1dddXwKTeWxuvb5Sr9To/kXjeuw31do9S19pxHL1yYVZ//eq4XhiIaKXefqFKrz7+lm365D0tag4G1nVebsFr212ot7tQb5QrzlFwMycuzup/fXpQ9psOBv/Z+3fp0QPblm1Prd3FlfV2bJljr8o//LzMqbMyosMy4mPyrHjGtIZhTL/s0K7FUIxd35W7DXXKqahbtr1H0nr3UHdlvV2MersHtUY54zqv4nhxZGmXmbt31Kq+xj3v4bqt3kVnW/Je+pH8547JP/icPOl44V0qG5TufUzpPU/IajkseTyS1v94VaLebkO93YNauwv1zvE4jlPcd5sAAACwITKWrbPjcZ24EF38uhhZWPPj9TTX6HB7WIc7QjrcHlZXU40Mw1PEGQMAALhDMmPp2M8u689+eF5nJ1b+AGxvS1C//OAuHX3LdlX4SvGRFwAAAErl7MSsPvn//EizyeyS+/+n93Tpnz+8d4NmBWwAx5HGTkinvia98bfS7OXiPXZNi9TYk/tquHbbLYXaJYNzLAAAcGccx9Hb/913NDGbXLzvN4/s1T98qGsDZ4Wyd+349+SXpTe+JiWuFN7HXyPte1w6+Alp93skk/XxAQC4E/xPCgAAsElNJ1I6cSGWC8iMRnXy0owWMtaaHisY8Oot7SHd0x7WvR1hvWVnSHWVviLPGAAAwF3GZxb0Vz8e1V//5IKi85lbbufxSB/Yt02//OAuvb2zQR4PQWUAAICt5lJ0Xr/4pz9dFpj55Ft36J99eM8GzQooIceRrryRu0jw1Fel6Pm1P5a3MheEaexeGoxp6JYqaos2ZQAAgDc7PT67JDAjSe/f17xBs0HZmxqQ+r6c+4oMF97e8Ek9H5IO/ZzU82HJX7X+cwQAwCUIzQAAAGwCWcvWuStxnRiNLgZlRqfn1/x4nU3Vurc9rMMdYR1uD6u7uUYmXWQAAACK4sSFqP70xRE9d2pCWfvWTZ6DAa8+ed9O/eLbd6m9gQ+/AAAAtqrIXFp/97/+VFdmU0vu/8C+bfq9jx4kNI2tbWog11Hm1FelqXO3t2/tjuXBmMZeqXa7ZBjrM18AAIAVfOfM1SU/t9dXqaupZoNmg7I0O5Y79u37sjT++ip28Ei73ikd/Dlp/xNSZXjdpwgAgBsRmsEdiUaj6/K4hmGorq5u8eeZmRnZtr0uY2HjUW93od7uQa3vTHQ+o76xuE6OxXXyclynxhNayKzt76/Kb+hAa1CH2oI6tD2oQ201b+oik9XsTOyO5ku93aUc6h0O82Yhlluv8xOpPJ73KB3q7R7FrHXGsvXNs9P6wqvjOjWeWHHb9nCFPn1vqx4/0KzqgCkppWg0teI+uHO8tt2FeruDJxmTER2SNzaiqrlLuYtyu96rmT2fLGm9OT/BrXCOAkmaT1v6B198Q8NTc0vuv2dHUP/myC7FZ2dW3J9au8tWqbcxe1G+/qfl739K3snTq9rHqu9WuuthWY17ZIc7ZYV2S76bLC7gSJpZ+XWzWWyVemN1qLd7lEOtOUfBrXCd1517/tTYkp8f3F2nWCy2MZPZIG6q92p5kjPyDR6X/9wxeS/9WB7dejGta7LNB5Te8xGlex+TU9OSuzMpKbl+7yWsBfV2F+rtHtTaXcqh3uVwjkJoBnfEsqySjGPbdsnGwsaj3u5Cvd2DWt+aZTsanl7IB2QS6htP6EI0WXjHW2gPV+hga40Oba/RobagOhsql3WRWe9aUG93od4oF6V8HvK8dxfq7R5rqXVkLqOvnbyqr/zsiqbmMitu+8CuOn3qcIvesbtORn41cZ5bG4fXtrtQ703MtmTEL8mMDssbHZIZHZYZG5YZHZKxEFm+vTcgu+cT1BtlgXMUZCxb/8vf9uuNN4Wquxor9X99pFc+4/afJ9TaXTZTvY3EhPyDxxUYeFq+Kz9b1T5WXbtSPY8p1f2YrIZe6c1dlzbJn71YNlO9ceeot3tQa5QTrvO6M9NzmWULJj24u25L/llvx1atd0GZBfnPf0eB/iflH31BHnvlzwckyarrUKr3CaV6H5cV7rrhF5vn78+19XYp6u0e1Npd3FpvQjMAAAAlNrOQVd94Qn1jcfWNJfTGREJz6bWltyt9hu5qqdHBthodaqvRwdYahap8hXcEAADAHTl3dU5ffHVC3zg7rbR161XjKryGHr2rUZ863KLdDZUlnCEAbC6edFxmdERmdCj3Fct/HxuVx06v/oGmB9ZvkgBwG2zH0b9+blg/Pr+0I0ZL0K/Pfnyvaiv4mBabn2d+SoGhbygw8LS8Yy+vakVtq6ZVqZ5Hle5+VNnmg8uDMgAAAGXqpZHYkqOdKp+hwzuCGzYfbAA7K9/Fl3JBmeHnZWTmCu9S1ZQLivc+wfEvAAAbiHdjAQAA1pHtOBqeWlDfeEInx3JBmfORtXeR2REK5AIyrUEdbKtRd1OVvAZvqgAAAJSCZTt6YTCqL56Y0IlL8RW3bQn69cl7tukjh5q5IBIArnFsGfHxfBhm6IaQzLDM+avFGWNqUHLWtjAFABSL4zj6w+9d0HNnppfcX1fp1X/+xF41B/0bNDPgznmSM/IPP5/rKHPpR/I4hVcmtasaleo6olTvY8q2HJY8RglmCgAAUFw/GIou+fltu+rk93Jcs+U5jrwTrynQ/6QCg8/cvPPxm9j+GqW7Hlaq9wlltj8gGWYJJgoAAFbCJ/YAAABFFE9mdSofkDk5Ftep8TnNpdfWzjDgNXRXS3W+i0xQB1trVF9NFxkAAIBSm01mdaxvUl96bULjsyt3O7hnR1CfOtyih7rDhJsBuFdmfrFTjDc6LDM2nAvGxEbkya59IYmbcQyv7LoOmdv2SQ3dUmOvZFuSuGgFwMb5/E/H9YVXJ5bcV+kz9Ecf26NddB/EJuRJJ+Qf+XYuKHPhB/LYmYL72IGQ0l0fVqr3MWXa3saFggAAYFPLWPayLpLv6gxv0GxQCmZkQIFzxxQYeFrm7MWC2zumX+ld71Oq9wmlO94jeQPrP0kAALBqhGYAAADWyHYcnZ9e0MnxhPrGcl8j0wtLWjLfju11uS4yB1tzIZmepkp5TS7yAQAA2Cjnpxf0xRMTevqNKSWzt+5a4DM9+vDeBn3qcIv2bqsu4QwBYAM5joy5K9c7xUSHFoMyZmK86MPZgZCscKescJes8G5Z4S5lQ12ya3fI9FcoHL7hQpVoVLLWtoAFANypJ/sm9Z9/sPSCKtPw6Pef6NGB1poNmhWwBpkF+Ue/p8DA0/Kf/648VqrgLra/RundH8wFZXY8KJksAgUAALaGE5fims8sfY/4wc7QxkwG68aIjykw8JQC/U/JO3Wm4PaOx1Bmx9tzQZnOD8sJBEswSwAAsBaEZnBHTHN9VgQyDGPFn7G1UG93od7usRVrnUhldWosodfH4jp5Oa6+sbjiqbV3kdnfUq1DbUEd2h7UobagGmv8RZ5x6WzFeuPWqDfK1Xqdn0g8792GervHzWptO45eGo7pC6+O66WR2Ir7N1b79Il7WvSJt2xTQ/XmPZZzC17b7kK9iyiblBE7nwvDRIZkXAvIRIflycwVdSjHY8iubZdV3yV7MSDTJbu+S05l/bLtPZJMUW+UL85R3OeFwYj+7fPDy+7/nUe69c7uhjU9JrV2lw2vdzYl34UfyNf/lPzD35QnM19wF8dbqUznB5TufUyZjockb4Wk3P/RWNmG1xslRb3dg1qjnHGd19r9cHhpl5kDrTVqrq3YoNlsrK1Wb89CRL6BZ+U/96R8Yz9d1T7ZbXcrveeo0r2PyalulrR1ex5vtXpjZdTbPai1u1DvHI/jOGtdDB0AAGDLchxHw1NzOjEa1YkLUZ0Yjan/alxrPXLaHqrUPe0h3dsR1uH2sPa11srvdecBKAAAQDmaS2X11ROX9Ocvndfw5MoXgR/aUadffnCXHj3YxjEdgK3BcaTEVWl6QJrql6YG8l/9UuyCtOaeqrcQqJUae6TGXqmhO3fb2CvV75a8geKOBQAl8sr5iP7O//8nSr2pQ+FvPbZf/8M7d2/QrIBVsLLSyAvSqa9JZ5+SkjOF9zEDUs8HpQMfk3oflvx03AQAAFuX4zh66P/8ni5ErgeK/+cP9urX39+zgbPCHUnPSeeOS31flga/JdnZwvs09EiHPikd+LjU0LX+cwQAAEVFpxkAAADlusi8fjG2GJJ57WJMsfnMmh7L7zV0cHudDreHdLg9rMMdYW1z6SozAAAA5e5iZF6ff+m8/uaVi4onb/3BmGl49PCBFv29B3fpcHtYHo+nhLMEgCLJpqXI8E3CMQNSahUXyN4WjxTaeT0Qc2M4pqZZ4t9RAFtI/5W4/t6fv7wsMPM/PtRFYAblybakCz+STn1VOn1Mmp8uvI/hlbreJ931MWnvI1JF3frPEwAAoAwMTc4tCcxI0vv2Nm/QbLBmVkYa+k4uKHP2GWkVXRUVbM2FZA7+nNR6N+9nAQCwiRGaAQAAruM4js5Pz1/vInMhpnMTs7LXuHBua12FDreHdU97SIc7wrqrrVYB7/q0tgYAAMCdcxxHPx6O6M9+OKJvnbmy4nFgqMqnT9/frv/+gQ61hSpLN0kAuBNz0zcEY24Ix0TPS45V3LF81VJj9/JwTEOX5OPfTQBb3+XYgv7uf/2pZt8UwP65e3foXzy8Z4NmBdyE40iXXskHZb4uxccL7+MxpF3vynWU2feEVFW/7tMEAAAoN985e2XJz9tqA7qrrXaDZoPbYtvSxZ9IfV+S3vi6tBApvE9FnbT/I7mgTMc7JINrPwAA2AoIzeCORKPRdXlcwzBUV3d9daKZmRnZtr3CHtjMqLe7UG/3KKdaL6QtvTGR0OuX4zp5Oa6TY3HFFlbRXvcmvIZH+1qqdagtqLu3B3WoLahttYEl28zHZ7WKNUm2lHKqN9ZfOdQ7HA6XdDxsDut1fiKVx/MepUO9t65U1tbx05P6wqvj6r+68hFbV2OlfuHeNh25q1GVPlNykopGkyWaKdYDr213cUW97ayMmQsyo8MyokMyI0OL3xvJ4h8X2TWtssJdsuq7ZIc7c9+Hu+TUtNx8lc1EUlJp/t3c6HpzfoJb4Rxl64vOZ/T3/tspTcwu/ffu3V1h/fP37VQsFrvjMai1uxS93o4jc/IN+fufkq//aZnxy6vaLdN2nzK9jyndfUROdX4V9ZSk1Pr9u+ZGvL7dhXq7RznUmnMU3ArXea3NN/rGlvz8zt2hohzrb1ZlX2/HkTl1Vv5zx+Trf2pVx8COGVCm8wNK7/2IMu3vlrz5a0BmZtd5suWv7OuNoqLe7kGt3aUc6l0O5yiEZnBHLKvIqxLegm3bJRsLG496uwv1do9S1dpxHF2eSenkWEJ9Y3GdHEtocHJe1hq7yDTV+HSwtUaH2oI62FajvduqFfAaS7bhObwcr213od4oF6V8HvK8dxfqvflNJtL68s+u6GuvX10xPO2R9M6ukD59uEX3tdfKk78InPpvTby23WUz19uTmpUZzQVizOiwzNiQzOiIzJlReexMUcdyzICs0G5Z10IxoU5lw52yQrslf/XNdyrDD9I2c72xtXCOsrUtpC392pfP6HxkYcn9d2+v0e891iWPY2s9SkKt3WWt9TYjAwoMPC3/wDPyxkZWtU+m+aDSPY8p1f2I7GDb9V/wfCsZXt/uQr3dg1qjnHCd1+2bTWb1s0tLgxMPdtZtmT9fMZRLvY3Ziwr0P6VA/5PyRgYKbu94TGV2PqhU7xNKd35Qjr/m+i/L4M9Trsql3igN6u0e1Npd3FpvQjMAAGBTS2YsnZ6Yy4VkxnNBmcj82rrImIZHe5qrdKitRgfbgjrUWqOWWv/ixZIAAADYXE6NJ/SFVyf0rf6ILPvWKeqagFc/99Yd+uhd9Wqr9ZVwhgCQZ1sy4pdlxvLBmOiQvNFhmbFhGfNTxR+uqikXhgl35QIyodz3drBN8hiFHwAAXC5r2foXTw7ojYm5Jfd3NlTqP35kjyp85gbNDG5mxM4rMPiMAgPPyDt9blX7ZBv2KtXzqFI9j8qu61jnGQIAAGw+Pzo/s2SBzoDXo/vbazduQljCMz+lwOBxBfqflG/ixKr2ybQcVqr3CaW6j8ipalznGQIAgHJBaAYAAGwajuNofDatk/kOMn1jCfVPzq94AeRKGqp8OrS9ZrGTzN5t1arwcXEQAADAZpa1bH2rP6IvnpjQqfG5FbfdGa7Q33tnpz5x7w4FK3yKRqOuXFUHQOl40ol8t5iR691jYrmfPVa6qGM5hl9WqCMfiOlc0j3GCQSLOhYAuIntOPrX3xjWS+dnlty/LejXZz+xR3WVfPyK0jHiYwoMPCP/4DPyXe1b1T7Z0O5cR5meR2XV96zzDAEAADa3F4eiS35+6846QvIbzJNOyD/8zVxQ5uIP5XEKv6efre/JBWV6H5ddu7MEswQAAOWGd20BAEDZSmZsnb0yp5NjcfWNJ3RyLKHpucyaHsv0SL3N1TrYVpPrJNNao7a6AF1kAAAAtojofEZfO3lVX/nZFU0mVj5mvL+jVr9wuEXv6mlQQ319iWYIwDUcW0ZiYmkoJjokMzoic26i6MPZlfU3BGO6lM1/b9fukAw+AgCAYnIcR3/0vQs6fnp6yf11FV79ySf2alswsEEzg5t45iYVGHxWgcFn5Bt/dVX7WMEd+Y4yj8lq3CfxvjgAAEBBWdvRSyNLw/Lv6gptzGTczkrLf+H7Cpw7Jv/578iTTRbepaY1H5R5QlbDHo6BAQBwOT4xAwAAZcFxHF2Jpxc7yJwci+vc1Xll19hFJlzpzQdkgjrUVqP9LdWs+AIAALAFDUzO6wuvTui5M1NKW7c+dgx4DT16V6N+/p5t6mqskiQZfEgG4E5kFq53jImNyLsYkhmRJ7tQ1KEcjymrruN6x5hQl6zw7lzXmMpwUccCANzaX748rv/26tIAZIXX0B99fI92NVRu0KzgBp6FqPxDz+WCMpd/Io9jF9zHqt6mdPcjSvU8puy2u7lIEAAA4DadGktoJpldct87O0MbMxk3cmz5Lv9Ugf4n5R96TkZqpuAudiCkVM8jSvUeVbb1sOQxSjBRAACwGRCawR0xzfW5+NgwjBV/xtZCvd2FertHoVqns7bOXJnT65dndfJyXCfHEppMpNc2Vr6LzKG2oA5tD+pQW1A7QnSRKSVe2+5CvVGu1uv8ROJ57zbUu/xZtqPvD0b016+O65ULsytu2xL06+fvbdVHDzWrrtK35HfU2l2ot7sUrd6OI8/cVZnRIRnRoVxAJjIkIzosM365CDNdyg7Uyg53yQp3yarvkp3vHmPXtUumf9n2PItzeH2jXHGOsrU82XdVf/z9i0vu8xoe/cFH9+juHXXrNi61dpcl9U3OKHDmq/Kde0reiy/KY2dvvWOeXdmgdPcRZfY8rmzbfYsXCbKcVHni9e0u1Ns9qDXKGdd53Z4X39RlpqepStvDVRs0m/KxrvV2HJmTb8h/7pj8/U/JSBTu2ux4K5Xu+pDSe44q2/7OxffQOAYujq36+sbNUW/3oNbuQr1zPI7jrG35dgAAgNswPrOgE6MxnbgQ1YkLUb1xeVZpq/BqeDcTrvLpcHtYhzvCuqc9pLt3hFQdIAsMAACw1c0sZPTlVy7q8z86r4uRlbs43LcrrF9+cLc+tH+bvKY73/gDcBsySSkyLE31S9MD0tRA7vupQSkdL+5YHkMKdUiNPVJjb+62If99dSOrwANAGfr2mSv6B3/5qqw3dcX+w5+/Wx+9Z8cGzQpbUnpOOndceuNvpYHnJWsVC01V1En7HpcOfFza9W7J5L1yAACAYvjQH76g/iuJxZ8/894u/bMP793AGW1h00PSqa9KfV/OvSdXiOGVut4vHfqktOeI5K9e/zkCAIBNjXfMAABA0aWztt4Ym9GJC/mQzGhU4zPJNT2W4ZF6twV1uCOsw+1h3dsR1q6GKrrIAAAAuMjQZEKff+m8vvLqJc2nrVtu5zcNPXZ3q375Hbt1cB1X+wawSTmONDeVD8P0S9OD17+PXZCctS3scEv+YD4Y03M9INPQI9V3Sr6K4o4FAFg3r45G9Jm/PrEsMPOvHt1HYAbFkUlKg9+UTn1N6n9OyswX3sdfI+15JBeU6Xqf5F3ekQ4AAABrdzEyvyQwI0nv27ttg2azRcWvSG98LReUufzq6vZpf4d08BPS/o9I1Q3rOj0AALC1EJoBAAB37OpsUicuRPXqaFQnLsTUd3lG6ezaLjaqq/TpcHtosZPM3TtDqqGLDAAAgOs4jqPvD0zpz344ou+dm1xx28aagP67B9r1C29rV3OQC9EB17MyUmTk5uGY5Ezxx6trlxq7l3eNCbbQNQYANrn+K3H9vT9/RcnM0vc6/+G7O/X339W5QbPClmBlpKHv5i4SPPP06jrbeSuk3g/ngjI9H5J8les/TwAAAJf6ztmrS36ur/brLTtDGzOZrSQ5kzv+7fuyNPLC6hax2XYwF5Q58HEptHP95wgAALYkrkDFHYlGo+vyuIZhqK7u+oqwMzMzsu0ir/SIskG93YV6b34Zy1b/1Tm9fjmhk2Nxnbwc1/hsak2P5ZHU1VilQ9uDOtRWo0Pbg+qor5Rxw0VFmfm4oqtYWA8bi9e2u5RDvcPhcEnHw+awXucnUnk871E61HtjLaQtPfXGpL74yrhGIgsrbruvpVq/cG+rPrS3UX6vIWUXFI2uvM+NqLW7UO+tx5OMyYgMyYzmvozokMzIsIzZC/LY2aKO5XgrZYU7ZYc7ZYW7ZNV35b4Pdd78glVLUixW1Dng1jb69c35CW6Fc5TNbWI2pV/6qz7NLGSW3P/4gSb9wwe2rWt9b0SttxDbkvfSj+UfeFq+weMykrGCuziGT5mOh5TufVyZzvfnOsxIUiIpaW3d3VE+eH27C/V2j3KoNecouBWu81q9b/RdXvLzg7vrNDsT25jJlJnbrnc2Kd/578l/7ph8I9+Wx0oXHMOq3aH0nqNK7zkqu6E3d6cjqUTnYbhuK76+cWvU2z2otbuUQ73L4RyF0AzuiGVZJRnHtu2SjYWNR73dhXqXv+m5jPrG4jo5llDfeEKnJxJKZZ01PVZNwNTB1hodaqvRwbagDrRWL+si49i2eEZsfry23YV6o1yU8nnI895dqHdpjM+k9KXXrujrfVcVT93679v0SO/tqden7m3R3W018ng8kpyi1Ihauwv13iTsrIzZSzKjw/JGh2TGhmVGc19GMlL04azqFlnhztxXKB+QCXfKrmmRPMYtduJ5VG54faNccI6yecUWMvpHf3NaV+JLL+Z6Z2dI/9sHd23oRQTUepNxbHnHTygw8LQCQ8dlzE8V3sdjSp0PSQc+rpmWdyrrq7n+O2q/pfH6dhfq7R7UGuWE67xWZz5t6eULS7sVP7i7blP/mdbTTettW/Jd/rEC/U/KP/ScjHSi8ONU1ivV/ahSvU8o23LP9Q7O/L2Xlc3++sbtod7uQa3dxa31JjQDAAAWZW1Hg5Pzev1yXH3jCfWNJXR5Zm1dZCSpp7lGh9vDOtwRUlfIVHvIv6SLDAAAANzNcRy9dimuL5yY0AuDUdkrZLNrK0x99FCzfu4t29RSGyjdJAGUhCcVzwdihhZDMWZsWGbsvDx2pvAD3AbH9MsK7c6HYnLBmGy4U3Zotxx/TeEHAABsaQtpS//4a+d0PrK0i8ehthr9+8e75TVvEaIErnEcea/2yT/wtAKDz8hMTBTeRR5l2+5Xes/jqn7rp6Xqxtz90SgXCQIAAJTYT0dnlLGuv1ltGh49sKtuhT0gafE4OND/pAIDT8uYnyy4i+2rVrrzg0r1HlVm5zskg8tZAQDA+uAoAwAAF4vOZ3IdZPKdZE5PzCmZXdsqidV+Uwdaq3WoLaiDbTW6e0edOlqbro8VjboyoQwAAIDlUllbz5+d1hdOTKj/6vyK23Y2VOpTh1v0yP4GVfjMEs0QwLpwbBnxsevBmHxIxhsdXtWH6Letullq7JUauzVftUOZfFDGDm6XDP49AQAsl7Vs/YunBnRqfG7J/bvrK/SHH93D8ShuzXFkTp/LdZQZeEbm7IVV7ZbZdo9SvY8q3fWI7JptMk1T1dXhdZ4sAAAAVvKD4diSn+/dEVRNgMssb8WIDilw5usK9D8pc2a04PaO4VO64yGlep9Qetf7JF9lCWYJAADcjqM5AABcIms7GpqaV99YQq+PxdU3ltCl2Nq7yHTUV+hQa40ObQ/qYGuNdjdUyjSud5ExTT5ABgAAwFJTibS+8rOr+urrVxRdyN5yO4+kd3aG9Kl7W3R/e608dCsENpf0nMzYiLzRYZmxGzvHjMhjrf089GYcwyerriPXMeaGzjFq7FaoZdfidikWcgAAFGA7jn7nGyN6aWRmyf3bgn599hN7VVfJx6pYzowOyz/wjAIDT8sbHVzVPtmmu5TqeVSp7kdl1+5Y5xkCAADgdtiOoxffFJp5Z1doQ+ZS1mbHpFNfk/q+rLrxnxXc3JFHme1vywVluh6WU0HnHgAAUFq8uwsAwBYVW8iobyyR7yST0BsTCS1k1tZFpspn6EBrjQ621ehgWy4kw4fEAAAAWK03xhP64okJffNcRFnbueV21X5Djx9o0s/f06Kd4YoSzhDAbXMcGYlxmbGRZZ1jzMRE0YezK8KLgRgrtFtWuEvZcKfs2p2Ssfz8lIUcAAC367MvXNSzp6eW3FdX4dV//sRetdQGNmhWKEfG7CUFrgVlpk6vap9suFup3seU6n5Mdnj3Os8QAAAAa3X2ypym5zJL7ntXJ50AFzm2Kn78x9LLfyLZt14Y65ps011K9T6hVM+jsmtaSzBBAACAm+NqVwAAtgDLdjQ8vaCT+Q4yJ8cSuhBNrvnx2sMVOpgPyRxqq1FXY9WSLjIAAABAIVnL1ncGovriiQmdHEusuO2OUEA/f0+LHj/QqJoAb1cBZSWblBk7vyQY440O5brGZOaLOpTjMWXX7lQ23CUrnAvGXOsg41TWF3UsAABu9Jcvj+svXxlfcl/Aa+gPP9ar3Q2VGzQrlBMjMSH/4HEFBp6W78rPVrWPVdeuVE8uKGM19Ep00AQAACh7PxiKLfm5o76CBZ6uSc8p+K1/qsDw8ytuZtW1K9V7VKnex3MdoQEAAMoAVyEAALAJzSaz6st3kDk5FtcbEwnNpdfWRabCa+iu1modagvqUFuNDrbWKFTlK/KMAQAA4Bax+Yz+tu+qvvzaFV1NZFbc9v72Wn3q3hY9uDtESBvYSI4jz/ykvDd2i4kOy4wOy4hflke37hC1FrY/uCQQs9hBpq5dMv1FHQsAgEKefmNSf/TChSX3mR7pPzzRo0NtwQ2aFcqBZ35KgaFv5DrKjL28qmMiq6ZVqZ5Hlep5TFbTAYIyAAAAm8yLw7ElP7+rM7Qh8yg3xuxl1T7zD+SdPnvT39tVjbnAeO9RZZsPchwMAADKDqEZAADKnO04Gp5aUN94roNM31hc5yNr7yKzIxTIdZBpDepgW426m6rk5QJFALcrk5Qiw9JCVKrbv9GzAQCUgcHJeX3xxISOn5lSKnvri8kCXo8e2d+on7+nRd1NVSWcIQBZKZmxUZmxkXwwZmjxeyO9ckeo2+XII7t2Rz4Yk+sck+sg0yWnsoEPzgEAZeHF4Zj+zXPDy+7/rYc79U4ujnMlT3JG/uHncx1lLv1IHscquI9d1ahU9yNK9TyqbMthyWOUYKYAAAAotslEWmeuzC25752d4Q2aTfnwjr2i2uP/SMZCZOkvPKZ096cU331Eqdb7JcPcmAkCAACsAqEZ3BHTXJ+DXcMwVvwZWwv1dhfqXVg8mVXfWFwnx+I6eTmhvvG4EqnCH8zdTIXX0P7WGh1qC+ru7blOMvXVpVm1l1q7C/Xeohxbnvh4/kLKYRmLK4+PSLOXJDlSsFXG3//JRs8UkLR+5ycS/865DfVePct29IOhqL7w6rh+Ojqz4rbbgn598nCLPnb3NoUqy6OzIbV2F9fU23HkWYjkgjDRXNcYI5LrHGPMXpDHWVuX0lsO56vKd43pkh3ulFWf/z60S/JWLNu+VH/rrqk3JFFvlC/OUcrbyctx/csnB2S9Ke/9T97ToaOHWjZmUjdBrUsgnZB/+Fvy9T8l3+j35bFX7pgpSXZFSJnuI0r3Pq7s9rctXiB4p6966u0u1NtdqLd7UGuUM67zWtlL52eX/FwTMHW4vU6muTn/PMXgP/U3qvruv1p+jFwRkj75eanzPbJnSf/T0AABAABJREFUZmTaxX3PEeVjq7y+sTrU2z2otbtQ7xyP4ziF+0gDAIB1YduOhqcSOjEa06ujUZ24ENXgZEJr/d95R7hS93aEdbg997W3NSifi9/AAbBKyRlpalCaHpCmB6Wp/O30kJRdKLz/b16SAsH1nycAoGzMJjP68iuX9PmXzutCZH7Fbe/tCOuXH9ylD9/VwrEpUExWRoqezx27TfXnj+Hy3y9Eiz9e7Q6psUdq7M3f5r8PttI1BgCw6QxejesT/8+PFJtfeuHXP3h3p/7XR/Zt0KxQUul5aeB56dRXc7fZVXR3D9RKex+TDnxM6nyPZJbHYgAAAAAojl/5i1f0zdNXFn9+7FCr/vMvHN7AGW0gKys9/6+kn3xu+e8ae6VPf1Fq6Cr9vAAAANaITjMAAJRQPJnRzy7GdGI0phMXonrtQlSzyeyaHivgNXRoR50Ot4d1T3tYhztCag4uX8UXACRJ2XTuosrpfDhmaiAXipkekOYm7+yxp4ektrcUY5YAgDI3MjWnz790Xl9+5aLm0rfuhugzPXrsUJt++cFdOrQjVLoJAlvRQjQfjHlTOCYyLNlrO5+8JW+l1NC9PBzT0C35q4s7FgAAG2QstqD//r/+dFlg5mP3bNe/fHjvBs0KJZFNSUPfyQVlzj4rZeYK7+OrkvYckQ58XOp6v+TjPXgAAICtKJmx9OLA1JL73r+veYNms8EWYtJXfjl37Pxm3R+UPvFfpYq6kk8LAADgThCaAQBgHTmOo7MTcR372Zi+d+6qzl2Jr7mLzPZQpe5pD+lwe1j3doS1r7VWfi8rdQO4geNI8YnrwZjpoesXVUZHJefWFzevWbBVSsaK/7gAgLLhOI5+MDClP/vhiL57buWgZWONX7/wtg79d29rV3MtF5MBq2ZbUmz05uGYOw0430xNy827xtTukFzakh0A4A6x+bT+7p/+VOMzS7uKvGdPk/7DJw7JMOietuVYWWnkBenU16SzT+U6LhdiBqSeD+aCMr0fJjwMAADgAj8entZC5vpnqYZHeqjXhaGZqUHpCz+f+7z5zd7xa9IH/rVkmKWfFwAAwB0iNIM7Eo1G1+VxDcNQXd31RPrMzIxs216XsbDxqLe7uKXeYzNJHT89peOnJzU0tXDb+/tMj/a31OhQW1CHtgd1qC2o5qD/hi0czcVntIp18DaMW2qNHOpdYuk5mbERGdFhmfkvIzYiMzYiTzpR9OEcX7Ws8G7ZoU5Z4U459V2q2nko13I7EMzVe52OC28lHA6XdDxsDut1fiLx75zbUO+chbSlp9+Y1BdeHdfI9MrHtHu3VevT97bq4X2NuWC3taBo9PaPg0uNWrtLWdQ7Fc8dv8WGZUSGZEZzX0bsvDxWuqhDOaZfdmiXrHCXrHCX7HBn/vtOKRC8yQ6SZlZxEekmURb1RslsdL05P8GtcI5SXhYylv7HL57W4NWl750cbKvR7z3SqcRsef4/SK3XwLbkHXtZ/v6n5Bs8LmMhUnAXx/Aq2/4upXsfV7rzg9ePl+bSua8Sod7uQr3dhXq7RznUmnMU3ArXed3asz+7uOTnQ21BedJziqbL+aqM4vKOfl/Vx39VRmp2yf2O6df8+35P6f2fkGZmt0S9sXrU212ot3tQa3cph3qXwzkKoRncEctah9XKb8K27ZKNhY1Hvd1lK9U7Op/Rt85FdPzMlE6O3d5F69uCfh1srdHBthodaqvRnubqZV1kNvvf01aqNQqj3kVgZ2XMXpKZD8OYsZH8BZYjMueuFH04x2PKrt0hK9QpK7RbVnj34vd2dbPkub7SqmmaqrrhZIZ6o1yU8nnI895d3FbvidmU/ua1KzrWd1WzyVv/uQ2P9J7usD59b4vesj0oj8cjydnUf1duq7XbrVu9HVtGfDwXiIldCzkPrdtxnF3ZICvcKSvUqWw+FGOFO2UHd9x61UcXPs95fbsL9Ua54BylfGQtW//82IBOjsWX3L+rvkJ/+NFe+c3N8/4rtb4Fx5H3ys8UGHha/sHjqzrucjyGMtsfUKrnMaU7PySn8oYP78vk75h6uwv1dhfq7R7UGuWE67xuznEcfX9wadD6nZ2hTfVnuCOOo4qTf67qF39PHmfpBbR2ZYNmH/mcsq333vIYebPVG3eGersL9XYPau0ubq03oRkAAO7AfNrSC4NRPXdmWj8enZFlOwX38Roe7d1WpYNtQd3dlgvKbAsGSjBbAGXHceRJRmRGrwVj8hdVxs7LnBmVx84UfUi7siEfismHY659X7tTMv2FHwAAsCU5jqOfXY7rC69O6HuDUa10WBsMmPrIoWZ98i3b1FrHcSxcLDOfDzYPyRsdkRkbWgw5e7LJog7lGF5Zte35QExXLtycD8c4FaGijgUAwFbjOI5+9/kRvTgcW3L/tqBf//kTexWq9G3MxHDnHEfm1GkFBp5WYOAZmfHLq9ot0/pWpXoeVarriJzqpnWeJAAAAMrd0NSCJuJLuwu+szO0MZMpNSutmhf+D1Wc/tKyX2Ub92v20f+f7GDbBkwMAACguAjNAABwm7KWrR+dn9FzZ6b1wmBUyWzhVnXbgn59eG+D3t0d1r5t1Qq8qYsMgC0um8wFYRaDMddDMm9ub10MjrdCVt2ufDBm1/WLKkO75QRqiz4eAGDzSmdtPX92Wl84MaFzV+dX3HZ3fYV+/nCLHt3fqEr/LbpXAFuN48iYu5LrFBMdXto5JjFe9OHsQN31YEy+e4wV7soHnLmgFwCAtfjs9y/q6TemltxXW2Hqsx/fo5ZaQuCbkRkZyHWUGXhG3tjIqvbJNB/KdZTpPsJFfwAAAFjiB8PRJT+31vrV1Vi5QbMpHc/CtGqPf0a+sZeX/S7VdUTxD/y+5KvagJkBAAAUH6EZAABWwXYcnbyc0PEzU/pWf0QzC9mC+9RWmHp/b4OO7GvQW3YEZXg8JZgpgA3j2DLi4zd0ixlZ/DLiY/KocCeq2xpOHtnB7bLC+W4xoc7FrjF2TYvkIZwHALi1qbm0vvqzq/rq61cUmV/52PbB3SF9+t5teltHnTwc02KryqbyIed8OOZaMCY2IiMzV9ShHI8hu3anrFCnsjcGZMKdcirqJV5nAAAUzV+9Mq6/eHlp0DXgNfSfPrZHnY1c/LWZGLHzCgw+o8DAM/JOn1vVPtmGvbmOMj2Pyq7rWOcZAgAAYLP6wVBsyc/v7Axv+ffCzamzqn3mH9y0W+Pc/b+hhft+lc+bAQDAlkJoBgCAFQxOzuv4mSl948z0sna8NxPwGnp3V0hH9jfq7bvq5DN5EwHYajzJmVwwJjaSD8ecz/98Xh4rVfTx7EBdfoXxG8Ix4d2y6jokb0XRxwMAbG2nJxL6/9i77/A4qnN/4N+Z2aK26tWWZVXbcsUG01xwAUu2DAYTSCCV3F8KIQRSCSSkEpJckhsSSChppNyQSzHEWLbkBsYNMBhXybaqi2RZddW1ZWZ+f6ywPV7bkq3Z2V3N9/M8PNGcs2fmtd7VZmf3vOe8uLsJGw61w6tcuKAzyipi+dQUfHxmGsYnjv4V9cgkVBXoaQZajwCtRxDZcABiezWkjlqIXSd0L3JWbDG+gpj4nMHCmMGf48cDEle1JyIiCrTSgy148q1jmjZJAH55cz6mj3EEKSq6FGJ3I+xVpbBVl8LavH9YY7zxuXAXLIeroARyYn6AIyQiIiKicOfs82B/Y4+mbV5efHCCMYitdgMcG74BwaPdfV61RKD7xl/Bnb80SJERERERBQ6LZoiIiM5xstOF8kNtWFfZiprW/iEfLwnANePjUFSYhAUFiYi2SQZESUQBJbsgdR4f3DXmox1jfIUyYn+77pdTRRvk+PGDkyg/KozJhhyfCzUyUffrERGRuXgVFW8eaceLu5uw75wv/841Ns6OO2emYcW0FMTY+bERhSnZDanzmG+nmI7aMzsBdtQA7u7TD9Oj/Fiz+9/pwhjfDjJqVAp3jSEiIgqS7bVO/KS8zq/90aJczM1LCEJENFxCbwvs1Wthry6F9eQHwxojOzLh+qhQJrmQ78GIiIiIaNi21zk1S+lEWERcOS42aPEElKoi8oNnEP3Or/265JgMdJU8BzllShACIyIiIgo8zn4gIiKCb/WQjUfasa6yFXsbLj6R8CPTx8SgaFISbpqYhMRoa4AjJCLdqSrE3lOnd4k5PaHSWedbaVxVdL+kHJN+pigmPmdw95hcKI6xgMiCOyIi0pez34PX97Xg5T2ncGqIXROvGheLu65Mx9zceEgiJ5hReBD6OyA5BwtjBv+zdNRA7DoOQZV1vZZqiYSckAtvfO5gcUyu77+4bMDK3ZiIiIhCyYGTPXhodRXkc3ZWvH/+OCyfmhKkqOhihP4O2GrKfIUyDe8O63M5OToN7vwSuApK4E2bwUIZIiIiIros22qdmuNrsuNgt4jBCSaQvAOI2fRdRFS94dflSZ+JrqXPQI3m/RIRERGNXiyaISIi0+p3y9hS04GyyjbsrO/0+xL1fHISI1A8ORlFk5KQGa/HusREFGiCuweisw6WjjO7xXz037lbTutBscacLoY5UxiT45tQaYvW/XpERETnqm7pw/992IS1FW1weS882cxuEbC0MBkfn5WOgpQoAyMkugSKF2LXcVgGd4qRnHWnd5ARBzp0v5wck356txhfYUwe5PgcKDHpgDAKvywnIiIaZera+vHAq4cxcM774E9emY7PzM4IUlR0PoKrG7ba9b5CmePbISjeIccokYlw5S+DK78E3jFX8f0ZEREREY2IV1awo65T0zYvNz44wQSQ2NMEx9ovw9q8369vYNJK9Cx8DJDsQYiMiIiIyDgsmiEiIlPxygreqe9E2aE2vFXV4ffl6fmkOWxYMikJxYVJmJASBYEr1hGFnsHJlFLHRwUxg8UxHXWQ+pp1v5wqSJDjsqDE58Abn+ObUDm4g4walcyVLYmIyHCKqmJbrRP//qAJ7x3ruuhjU2OsuGNmGm6blor4KO6YSKFBcHUN7hZTc2YHwI5aSJ1HISgefS9miQCS8uGOHe97LxefB+/g+zkWORMREYWvU90ufPWVQ+gc0BZfLJ2chAcWZPFz3VDg6YOtbhPs1aWw1W+BoFx8R0wAUOyxcOcVw5VfAk/mtYDIr7eJiIiISB97GrrR69buWD1nlBXNWE7thaP0y37fmasQ0Dfnu+i/4r/43TYRERGZAj9VJCKiUU9RVexr6EFZZSs2HGlHZ//QK9bFRkhYPMFXKDMz0wGRHxIQBZ+qQuhvGyyGGZxI6az3/dx1bFirUV4qJSr5zI4xZxfHxI4DJE4yJiKi4OtxefHGgVb834dNOOF0XfSx08fE4BOz0rGoIAEWiSsyUxAoMsSexjOFMR21vh1knDUQ+1r1v1xUymAxjG/HGDUpH47smUDcOECU0NvRAVmWhz4RERERhbzOfi/uf+UwTnVrizCuz47DD4ty+fluMHldsB19y1coU7cZgrd/yCGKNRru3Jt8hTJZcwHJZkCgRERERGQ2W2ucmuPCtGikxIye9572w6sRs/khCLL2PkmxxaB7yZPwZC8MUmRERERExmPRDI2IJEkBOa8oihc9ptGF+TYXI/Nd3dKLtRWtKKtoxcmui08gBAC7RcQN+QlYOjkF1+fEw2bhc3Ek+LdtLrrm29MPyVkHsaP2zP921ELsqIXo7h5hpP5USyTkhBwo8TmQE/KgfFQYk5AD2GPPOyYw74DCB/++KVQF6v4E4PPebMIh38c6+vHvD5qwen+z30p4Z7OIApZMSsLdV2VgSobDwAjDQzjkOiy5e3w7/nXUQBwskBHbayA5a/2+oB0pVbRCic+GnJAHOSEXSmLe6Z/PfS8niiIQF6c9plGLf9/mwnxTqOI9ijH6PTK+8foR1LZpizGmZsTgV7dNgt0W3p/khGWuZQ8sx7bBVvUGbDXrIbh7hhyiSnZ4cm+Eu2A5PDkLfbsDwnyfw4VlvumyMd/mwnybB3NNoYzzvLS21Tk1x/PzEwJ6H2cYVUHEjicQ+f4zfl1y3Hj03PwnKEkFl/1eO1zzTZeH+TYX5ts8mGtzYb59BFVV1WAHQUREpJcTHX1YvbcRq/c04lDT0JPrJVHAnPxk3HrFGCyZko4YO+tJiQyhyEDncaCtGmitBtqqzvzcdSIAFxSA+CwguQBIKgCS8s787MgATHozQERE4UVVVWyvbsNft9dh8+FmXOwTnaRoGz55TRY+ee14pMVGGBckmYeiAF0NvvdxrVVA65HB/60Cuhv1v15UEpA84cx7uI9+jh8PSLyPIyIiMiuPrODL//gAmw41a9pzU6LxypevR2L06FklOuQpMlC/FTiwCqhcDfR3DD1GtAIFNwFTVgITiwE7C/2JiIiIyBi1LT1Y9OstmrbVX52D6ZnxwQlIL65uYNUXgcNr/fty5gN3/A2ISjQ+LiIiIqIg4zfKREQU9tp73SjdfxKr9zRgV/0wvogDMDMrHrdeMRbLpmUgxWEPcIREJtbXPlgMM1gU01blK4xprwXkoXeAumSRiYMTKfN9/330c0IOYOWEYSIiCk/9bhmvfdiAF3bU4cipi6/QPDkjFvfMycbNM8YgwjoKVsSj4HP3Ae01ZxXFHDnz3s7Tp++1BAlIzPEVxCTlDxbGDBbH8ItcIiIiOoeqqnh41X6/gpn02Aj847+uYcGMERQFOP4ucHAVcPB1oLd5yCEQJCD3BmDq7cCkEiAyIeBhEhERERGda/M59xEpDjumjom7wKPDREc98OJdQHOFf9/sLwDFPwckq+FhEREREYUCFs0QEVFY6nN7saHiFP6zpxFvH2mBVxl647S8lGjcesVYrLhiLLKSogyIksgkvC5fEYymOGbw5/52/a8n2X07xSTlDe4ac1ZxDCdTEhHRKNLo7Mffdx7Fv3cdg7PPc8HHiQKwZHI67pmTjatzEiEIgoFR0qigqkB302CB81k7xrRWAZ3H9L9eRNyZgpizi2MSsgELJ7cSERHR8Pyy7DBe+UC7Y3FshAV/+/zVGBsfGaSoTEBVgcbdvh1lDr7m231wSAKQPReYchsweQUQnRzwMImIiIiILubcoplFE1MhimH82Xr9NuD/Pu3//bxoAZY9AVz1+eDERURERBQiDCua6evzrTwZFXX+ScpPPfUUXnrpJbS2tiInJwf33nsvbr75ZqPCo8vU0TG8HR0ulSiKiIs7U73f2dkJRVECci0KPubbXEaSb4+s4J36TqyraMGbVe0Y8Aw9LjXGhuLJyVg2OQUTUqMGJxC60NERgB0uSIN/26OMqkLoOQmpow5SRy1EZ63vfztqIXY3QFD1z60SMwZyQi7khBwoCbmQE3KhxOdCcYwBxPOsnO8C4ArMexPSCoW/74QErkJK/gJ1fwKExvOejBPMfKuqir0N3fjX+yex+Ugb5IvUhjvsEm6bkYaPz0rHmDjfjmpOp9OQOEcLs/5tC73NsFWXQWr6EFJHLaSOGgjui+9idKlUQYQSmwklIQ9yQp7vvVyi72c1Mgk4X3FXdy+AXl3jOJtZ821WzLe5BDvfvD+hC+E9SuD8c1cjnt1Sr2mzW0T89vZJSLV7A/q7N1pI5FpVIbUegrVqDWxH3oA0zMJqb8YsuAuWw11QAjUmzdfoBuAePfnRW0jkmwzDfJsL820eoZBr3qPQhXCel0+3y4v36rTFJdeMiwrb+wjb/n8h6q0fQFC8mnYlIh69Jc/Am3kdoOO/LdzyTSPDfJsL820ezLW5hEK+Q+EexZCimTfeeAO33norYmJicOLECTgcDk3/5z//efztb38D4JsccuTIEZSXl+Oxxx7Dww8/bESIdJlkWTbkOoqiGHYtCj7m21yGyreiqtjX2IPyylZsONwOZ7/3go/9iMMu4caJiSialIxZ4xwQBydj8Y1dcPFvOzwI7m5fYYyzDtJgYYzkrIfkrIPg7df9eorN4SuMic85819CLuS4bMB6gRVBVQB8LoUU/n1TqDDyecjnvbkYkW+3V8GGw2349+5TqDx18aKB7MQIfGJWOpZNTkaUzVdIyuejPkbz37bQ3wZ7TTlsVWtgbXgPAoberXM4FGv0YKFz3uB7ubwz7+cs9gsMCo17s9Gcb/LHfJsL802hgvcogbGuohW/3lyvaZME4Oc352NaRvSo/z0YmWupoxa2qlLYq9bA0lE9rDHelClwFZTAlV8CJTbzTMcoz0ugmOlvm5hvs2G+zYO5plDCeV4+O2ra4VXOfD5qlQRcNc4R0jGfl+JF9LafIXLf3/26vIkF6Cp5HkpcVsDfi4d6vklfzLe5MN/mwVybi1nzbUjRTHl5OVRVxS233OJXMLNt2za88MILEAQBUVFRmDBhAg4dOoT+/n784Ac/wM0334ypU6caESYREYWQ6pY+lB9qQ1llK052uYd8vN0iYH5eAooKk3B9djxsFtGAKInClOyB1HXcVxjTUTtYIOMrkhH7WnW/nCpaIMdmaYtjBn++4CrjREREJtHW68Gre0/h1T3NaOvzXPSx1+fE4a5Z6bgmO+50YTjRxQgDTthq18NeVQrriZ0Q1Mv/8FN2jIEcP1gQ89F/8XlQolP5fo6IiIgMs7POiR+V1fq1f29JLubnBX+1wtFA7DoB+0eFMq0VwxrjTSwYLJRZDiUhJ8AREhERERGNzNYap+b4qnGxpxeoChfCQCcc5ffDdny7X587exG6l/wPVJvjPCOJiIiIzMmQopl33nkHgiBg4cKFfn3PP/88AGDMmDHYuXMnMjMzcfz4ccydOxcnTpzAc889h6eeesqIMImIKMiaulwoq2xD+aE2VLX0Dfl4UQCuHh+H4sIkLMhPQIzdkP9bIwoPqgqhr/Ws3WLqYHHWQXTWQeo67rc1sy5i0oHkAiApD31RmfDEjoeckAMldhwg8u+TiIjobIdO9eLFD5qw/nAbPPKFd/yItIpYPiUFH5+VhuzEC+zCRnQWwd0NW+1GX6HM8W0QlIsXY51NtURAjvcVxHjP3jkmPhuwRgUuaCIiIqJhqG3tw3dWV0FWtO+fvzpvHG6ZlhKkqEYHsacJtup1sFetgfXUnmGNkePG+wplCpZDTpoY2ACJiIiIiHQiKyq21zk1bXNz44MSy+WSOmoQu+aLkDrr/fr6Zn0Jfdd+ExDDqwiIiIiIKNAMmb3Y3NwMAJg40f8D07KyMgiCgPvvvx+Zmb4tuseNG4f7778f3/nOd7BlyxYjQiQioiBx9nuwvrIFZZVt+PBE97DGTM2IRnFhMm6amISkaGuAIyQKcZ6+MzvFdJzZMUZy1kF09+h+OdUadWa3mHjfbjHehBwgMQ8J6VmnH+fq6DDlNo5EREQX41VUvFXVjn/vPoU9DRd/7zsm1o47Z6VhxdQUOCJYfEpD8PTBVrcJ9upS2I5ugSAPvVunYo2GO2cxvGkzfIUxCXlQYtIBgbt2EhERUWh6fkcD+j2Kpu2uK9Px2aszghRReBP6WmGvKfftKNO4CwIuXMz/ETkm40yhTMpU7jhIRERERGHnYFMPnP3aBSbDqWjGenQLHOUPQHRrv2NQJRt6Fv0crom3BicwIiIiohBnyKyLlpYWAIDDod3y7+DBg2htbYUgCFixYoWm76qrrgIAHD161IgQiYjIQH1uLzZWNuM/HzZgy5EWeJWhv4wbnxiBpYXJKC5MQmZ8hAFREoUQRYbY3TC4a4y2MEbqadL9cqogQonNPF0UIyfkni6UUaLTzvtluCRxpRoiIqIL6ez34vX9zXj5w1No6r54McOV4xy4a1Y65uUlQBI5AY0uwjsA29EtsFetga1+MwTvwJBDVEsk3NkL4SpYDvf4GwAL762IiIgoPLT1evBmdYemrbgwCV9fkAWBhRvDJgx0wla73rejzImdENShF71RolLgyl8KV8FyeNNnssiaiIiIiMLa1hqn5jg3KRJjw2EOiqoiYs9fEL3jFxBU7WICSlQKupY9C2/6FcGJjYiIiCgMGFI089Ekyvb2dk37tm3bAAApKSl+u9AkJCQAAAYGhv7Cn4iIQp9XVvDu0S6sP9yON6va0ece+su4lBgriiYlobgwGRNTo/jlJ416Qn/7YGFM/ZmiGGcdJOdRCMrQq4VfKiUy8cyOMQln7R4TNw6Q7Lpfj4iIyGxqW/vw7w9PofRgK1xe5YKPs0kCiguT8YlZaZiQGm1ghBR2ZDesx7b5CmXqNkL09A45RJVscI9fAFdBCdzZiwBrlAGBEhEREenrjQMtkM9afMluEfHQ4myI/Mx4SIK7x7crYdUaWI9thaB4hhyjRCTAlVcEd8FyeMZcDYhcMIeIiIiIRodttU7N8by8+KDEcUlkF2LefBQRh1716/KmTEFXyXNQYrgDJxEREdHFGFI0M3bsWFRXV2PPnj1YsGDB6fbS0lIIgoB58+b5jens7AQAJCcnGxEiEREFgKqq2NfYg7LKNmw83IaOc7a4PR+HXcLiCYkoLkzCzMxYrq5No4/XBamzfnDHmMHCmMHdY0SXU/fLqZIdcnz24K4x2YO7xvh2jlEj4nS/HhERkdkpqoodtU68uLsJ7x7tuuhjU2Ks+NgVaVg5PRUJUVaDIqSwI3tgPbET9upS2GrXQ3Rd/HkFAKpohWfcXF+hTO6NUG2OIccQERERhSpFVfHavmZN25JJSXBEGPI1Z3jy9MN29K3BXQnfhCC7hhyi2GLgzl0CV8FyeDKvByTeoxARERHR6NLU5UJVS5+mbV5uQpCiGR6hrxWxa++FtWm3X58rfxm6F/83YI0MQmRERERE4cWQT5PnzZuHqqoqPP300/jUpz6F5ORk7Nq1C2VlZQCAoqIivzGVlZUAgPT0dCNCJCIiHdW09qGssg3llW1o7Br6yzi7RcC83AQUFybh+px42CyiAVESBZCqQOxpgtTx0W4xtWcKY7obIEAd+hyXcjkIUBxjBneKyRksjPHtGqM4MgCBf1NERESB1uuW8caBFrz04Skc67j4rrlTM6LxiVnpuHFCIiwS/3+azkORYW18F7aqUthryiEOdAw5RBUkeDKvHyyUWcICaSIiIho13q3vREOn9nPm22ekBimaECa7YDu2DbaqNbDXbYTg6RtyiGqJhDtnMVwFy+HOmg9YuPs0EREREY1e5+4yExdhwdQxMcEJZhiklgrEln4RUs9Jv77ea76O/qvuA7j7JhEREdGwGFI085WvfAUvvPAC6urqkJubiwkTJqCiogJerxeJiYn4+Mc/7jdm8+bNEAQBkydPNiJEIiIaoaYuF8oP+QpljrQM/WWcKABz8pNxY0E8bsiLQ4ydqwJS+BFcXYM7xdQO7hpT7/u5sx6C9+KTZS+HYo89vUuMnJAz+HMu5PjxgCVC9+sRERHR0E44B/B/H57C6v0t6HXLF3ycJAq4cUIi7royHVMzQvdLOAoiVYHl5G7Yq9bAXlMGsa9l6CEQ4Bl7NdwFy+HKK4IamWRAoERERETGWnXOLjMTUqIwJT06SNGEGMXr25Wwas3wdyWUbHCPX+ArlMleCFijDAiUiIiIiCj4ttY4NcfX58TBIoZm0YmtphyODd+E4O3XtKuWSHTf9Gu48/wXKSciIiKiCzNkhvKsWbPwxBNP4Nvf/jZ6enqwe7dvu0Cr1Yo//vGPcDgcmsd3dnaitLQUALBgwQIjQiQiosvQ2e/FxiO+QpndJ7qHNWZqRgxuvyoLJdMzkOqIQEdHB2T5wpMLiYJOdkPqOn7WrjF1p38W+9t0v5wqWiHHjR8sisnRFMmoEYlcKYaIiCgEqKqK94934cUPmrC1xnnRPeTiIy1YOSMVH5uRhlSHzbAYKUyoKiyn9sJeVQpbzVpIPU3DGubJuBKu/BK48pdCjeYq60RERDR6tfS48Xa1dte9lTNSIZj5MzJFhqXhXV+xdXUZxIH2IYeoogWecXN9hTK5N0K1OYYcQ0REREQ0mvS7Zew61qlpm5uXEKRoLkJVEfn+04h+90m/LtkxBl0lz0NOLjQ+LiIiIqIwZ9iy/l//+tdx44034pVXXkFTUxMyMjJw1113YeLEiX6PfeuttzB79mwAwPLly40KkYiIhmHAI2NLjRNlla3YWdcJr3KxKYI+4xMjsLQwGUWTkpCdHI2EhBD84IHMTVUh9jYPFsXUQuqoO/2z2HUCgqp/YZccnQ45Phtywke7xfh+VhxjAZE7LxEREYWiAY+CsspWvLi7CTWt/Rd9bEFKFD4xKw1Fk5IRYRUNipDCgqpCaq2AvaoU9qpSSN0nhjXMkzod7oISuPKXQXGMCXCQRERERKHhP/tbIJ/1EXSkVURxoQl311NV4MT7wIFXEXdgFcTeU0MPEUR4xl47WCizBGokP5cnIiIiIvPadbwL7rNuLiQBuD47LogRnYenH45N34G9eq1/V8ZV6Fr6e6hRyUEIjIiIiCj8GTojc9q0aZg2bdqQj1uxYgVWrFhhQERERDQcXkXFe0c7sa6yFW9VdaDfoww5JiXGiiUTk7B0cjImpkaZe+U/ChmCuweis95XGOOsh9RRC4uzFqKzHqKnV/frKdbowV1iBneLOes/2KJ1vx4REREFxqkuF/5v90ms2teMzn7vBR8nALghPwGfmJWOK8c5+B6YNKS2w2cKZTrrhzXGmzwZro8KZeKyAhsgERERUYiRFRWv7WvWtBVNSkKM3VwLzkhNHwL/ehhoOQQAGKok35NxFVwFy327EnJCHRERERERAGBrjVNzfEWmA46I0Lm3EHtOIrb0S7C0HPTrGyi8Az0LfgxI9iBERkRERDQ6hM47PyIiCimqqmL/yR6sq2jDxsNt6LjI5MCPxNglLJ6QiKWFSZiZGQtJ5CRBCgLFC7HrxOBOMXWQOmrP/DyMFRgvlSpIUGLHnS6O8cbnQInPgTchF2pUCsDJskRERGFJVVXsPubEX7fXYd3+k5rVrc8VY5ewYmoK7pyZhrHxEcYFSSFP7KiDvXoN7FWlsLRXDWuMN7EArvwSuAtKICfkBjhCIiIiotC1s86JU91uTdvtM9KCFE0QqCoi9/wZUTufAJSLfz7vSZ3u21Emfyl3JSQiIiIiOoeqqthW26Fpm5cbOjsxWpo+ROzaeyH2tWjaVUFE75xHMDDjc5x3QERERDRCLJohIiKN2tY+lB1qQ3llGxo6XUM+3iYJmJeXgOLCJMzJiYfNMtQ6d0Q6UFUI/W2+3WKctdrimM5jEBSP7pdUIpO0O8Yk5EKOz4UcmwlINt2vR0RERMHzdnU7/vLuQew90XnRx2UlROATs9KwfEoKomySQdFRqBO7jp/eUcbSWjGsMXJctm9HmYISyEkTAxwhERERUXh49ZxdZgrTolGYbo7dm4X+Djg2fQe2+s0XfIw3aZJvR5mCZVDixhsYHRERERFReDnc3IeWHu0cgrl58cEJ5hz2Q68h5s1HIMjaBQMUmwPdRb+DZ/z8IEVGRERENLroWjTz9ttv63m60+bP55u/UCVJgZkUJIriRY9pdGG+g6+py4XyylasrWjBkea+IR8vCsDV4+OwdHIKFk5IhMM+/P87Yb7NQ5dcewcgddRBdNb6/rejFpKzFmJHLURXl06RnqFaIiDH50BJyIWckOv73/gcKAk5UO1x5x3D6bE+/Ns2F+abQlWg7k8APu/Not8t44lNdXjtnMl557o+Jx53XZmB63PjIXJ1t7Cm19+20N0IW9Va2I68AcupvcMaI8dmwlOwHO4JyyGnTDm9UiDfXwYOX8vNhfk2F+abQhXvUS5fU5cL22udmraPXZEe0N9pqJAadiGm7GsQe076dybmYWDCzXAVLIeSmA8AEMD3kKPJaP/bJi3m21yYb/NgrimUmXWe1/Y67QJZ4xIikJscDSGYn+8rMiJ3/DciPnjOr0uOz0HPLX+CkpAXku/1Qz3fpC/m21yYb/Ngrs2F+fYRVFVV9TqZKIq6v5kUBAFe78W3HCciokvn7HNj7f4m/GdPA96rb8dw/t9gxrh4rJgxBsunZyA1NiLwQZI5KArQeRxoqz7zX2uV7387jwfgggIQnwUk5QPJBb7//ehnxxjApG8KiYiIzK6isQv3v7gbNS295+2PtEq4/cqx+Nz1OchPjTE4OgpJ3aeAiteBA6uA4+8Mb4xjDDDlNmDqSmDslacLZYiIiIhI6zcbjuC3m6pOH8fYLXj3kcWIvoQFnMKOogDbfwNs/hmgyud0CsD8bwE3fBeQRvHvgIiIiIgoAFb8fjv2HneePv78nBz84ObJwQtooAt49f8BVeX+fbkLgDteACITjI6KiIiIaFTT/VNVHWtwiIhIZ/1uGRsrT+E/exqx5UgzPPLQr9m5ydFYccVY3HLFGOQkRxsQJY1a/R1AazXQVnVWYUwN0F4DeAf0v15kApA0WBSTnH/m58RcwMqiLyIiIvJRVRUv7KjHz9cegltW/PrHxkfis9ePx8evykJclDUIEVJI6W0DKv/jK5Sp3wZgGJ+DRacCU24FpqwExl3DIm0iIiKiIXhlBf/edUzTtuKKMaO7YKanGVj1RaD2Tf++6BRg5fNA3iLj4yIiIiIiCnMt3S5NwQwALC5MDU4wANBeC7x4F9ByyL/vmi8DS37GQnkiIiKiAND1Hdabb57ng9xBbrcb3//+97Fr1y6kpKTgzjvvxNVXX420tDQAwKlTp7Br1y689NJLaG5uxuzZs/Gzn/0MVisnpBARjYRXVrCtuhWr9zSi/GATet3nrlDnL9Vhx80zxuDWK8Zi6tjY4G5JS+HF6wLa6wZ3jKkaLJIZ/LmvTf/rSTZfEYxm15gC389Rifpfj4iIiEaVth4Xvv3KPmw+1OzXF2WT8MObJ+P2WZmwSCxyMLX+DqByDXBwFVC75Tyrfp9HZCIw+RZfoUz2XECUAh8nERER0Six+VAzTnW5NG2fvGZ8kKIxQO0WYNUXgJ5T/n0584GVfwIcacbHRUREREQ0Crx5WPv5f4zdgtnZQZpLUPc28NJnfJ85n020ACW/Bq78XFDCIiIiIjIDQTVgaxhVVbFs2TKsX78en//85/Hkk08iOvr8uxX09fXhwQcfxJ/+9CcUFxdj7dq1gQ6PRqCjo2PoB10GURQRFxd3+rizsxOK4r/iL40OzLf+VFXF/sYerK1owfpDrejo8w45JsYuYfGEJCybkoIrx8VCEgNTKMN8jwKqCqH3FKSOWogdNZA66nw/O+sgdh2HoOqfTyUmA3JCLuT4HCgJuZATcqEk5EJxjOUExBDBv21zCYV8JyRwS3LyF6j7EyA0nvekr3fqnXh0TRVaez1+fZPTY/D0J69EbkoMAOZ7NLvg37arG7a6jbAefgPWY1shKP7Pk3MpNgc8eUVwT7wZ3szrAYkLwYQavpabC/NtLsHON+9P6EJ4j3J5vvpyBbbXOk8fT8uIwd8/Mz14AQWKIiPivd8h4t3fQThnB0NVEDFwzYMYmH0fRIt11Oaa/I3mv23yx3ybC/NtHqGQa96j0IWYcZ7XN187hM1H2k8f3zgxCU/cOtHwOGz7/oGoLT+GoGjn7yiRiegteQbesdcYHtPlCuV8k/6Yb3Nhvs2DuTaXUMh3KNyjGLKX35///GeUl5fjpptuwh//+MeLPjYqKgrPP/88jh49ivLycjz//PP44he/aESYdBlkeRirq+pAURTDrkXBx3xfvrq2fpRVtqKssg0Nna4hH2+TBMzNjUdxYTLm5MbDbhlcQVtVYFQKmO/QJbi7fQUxznpIztrB/+ohOesgePp0v55ii4Ec7yuMkRNyfP8bnws5PhuwRp1/kAoY9mSlS8K/bXNhvilUGPk85PM+fHllBc9sP4G/v3cS51tF5NNXZeD+BeORmhxzuo35Ngl3L6RD/0HE4TdgO/oWBNk95BDFGg13zo1wF5TAnTUXkOxnOvmcCXn82zYX5ttcmG8KFbxHuXSNnS7sOKtgBgBum546Kv5tZxN7TiFmw9dha3jXr0+OTkP3kt/4Js2pAM75Anu05JqGh/k2F+bbXJhv82CuKZSYbZ6X26vgnTqnpm1uTpyxsckeRG97DJH7/+nX5U2aiK6S56DEjgvrz5NDJd9kDObbXJhv82CuzcWs+TakaOaFF16AIAj4yle+Muwx9913HzZs2IC//e1vLJohIrqIU90urD/UjnWVrTjSPHQhgygAV2XFonhSMhZNSECM3ZD/K6BQJXsgdp+A1FEHi9O3W4ylow6SsxZiX4vul1NFC+TYcaeLYXy7x/gKZdSoZEAIzA5HRERERABwwjmAR9ZUo6Kp168vKcqKHy3NxXU58ZAkMQjRUVB4B4DKN4ADrwJHyhEzjOJw1RIBd/YiuAqWwz3+BsASYUCgRERERObw+v5mTXF7jF3CkkmJQYsnEKxH34Zj4zch9rf79bmz5qP7pl9BjUwKQmRERERERKPL7hPd6POcKUIXAFyfE2/Y9YX+DjjKvgpbwzt+fa6cG9Fz06+h2mLOM5KIiIiI9GbITOlDhw4BALKysoY9Zty4cZqxRER0Rme/F5ur2lFW2Yrdx7vPu0L2uSanR6O4MAlLJiYhOcYW8BgphKgqhP42SB21kJy+ghjfDjJ1kLqO+W3/qwclKgVyQi6saZOA5AIgKR+d1lR4oscAklX36xERERENZW1FK36xoU7zBdlHrs+Oww+X5iEpmu9TTEF2w3psG+zVpbDXbQTcPUMOUSUb3ONvgCu/BO7sRYAt2oBAiYiIiMzFKyv4z37tQj7LJicjwioFKSKdyR5EvfskonY/69elChL6rvsm+md+ARBYxE9EREREpIdttR2a46kZMUg06HsAqb0KsaVfhNR5zK+v78p70XftN/jen4iIiMhAhhTNDAwMAACOHz+OmTNnDmvM8ePHAQAulytgcRERhZMBj4KtNR0oO9SG7bVOeJWhS2WyEiJQXJiEoklJGJ8YaUCUFFSefkid9YPFMbWQnPWnC2VEd7ful1MtkZDjcyAn5JzeLeaj/1S7A5IkISEh4fTjlY6OsN5SmIiIiMJTr1vGLzfWY21Fq1+fRRRw//xxuOvKdIjc8W50U7ywntgJe9Ua2GrXQ3R1DTlEFS3wjJsHV0EJ3Lk3QrU5DAiUiIiIyLy21DjR1uvRtK2cnhqkaPQldjfCUf4ArE27/fpkxxh0L3kS3owrgxAZEREREdHopKoqttY4NW1z8+INuba1/k04yh+E6NEu2KRKdvQs+gVcE28xJA4iIiIiOsOQopn8/Hzs378fzz77LG65ZXhv+p591rfKUl5eXiBDIyIKaV5Fxa6jnSirbMObVe3nXRX7XMnRViyZlITiwiQUpkVD4OS/0UWRIfY0nrVrTN2Zn3tO6n45VRChODIHC2MGi2MGf1ai0wE+v4iIiCiEHTzZg++VVuOE039BjqyECDy+PB+T0rhjyKilyLA2vgdbVSnsNeUQB9qHHKIKEjyZ1w0WyiyBGhEf+DiJiIiICACwau8pzfGMsTHIT4kKUjT6sdVtQszG70B0Of36XDk3omfxL/m+k4iIiIhIZ3Vt/Wjo1H43MC83PrAXVVVEfvgnRO34JQRoF8KVo1LRXfIcvGnTAxsDEREREZ2XIUUzd955J/bt24fy8nJ85Stfwf/8z/8gIiLivI91uVz45je/ibKyMgiCgE984hNGhEhEFDJUVcXBpl6sq2jFhsNtaO/zDjkm2iZh0YRELC1MwpXjYiGJLGQId0J/x+BuMXWQOgaLY5y1kDqPQpDdul9PiUiEHJ8NOSF3cNeYwZ/jsgDJrvv1iIiIiAJJUVX8Y9dJ/GHbCcjn2aHx5qkp+Pai8YiySUGIjgJKVWBp2g37kTWw15RB7GsZxiAByJ4LTLkNnWNugNceH+goiYiIiOgcJ5wDePeodjfAsN9lRnYjescTiNz7F78uVbSid85DGJj+OS5MREREREQUAFtrnZrjNIcNBYEsyve6EPPm9xBx+DW/Lk/qdHQvexZKTFrgrk9EREREF2VI0cw3vvEN/POf/8ShQ4fw3HPP4fXXX8edd96J2bNnIzU1FYIg4NSpU9i1axdefvllNDU1AQAmTpyIb3zjG0aESEQUdPVt/VhX2Yqyyja/1S7OxyoJmJsbj6WFyZiTGw+7RTQgStKV1wWp8+g5O8bUQnLWQxzo0P1yqmSDHPdRYczgzjGDP3MlQyIiIhotWnvc+MG6Grx3zoQ7wFds/siSHBRNSgpCZBQwqgpL8z7Yq0phqy6F1NM0rGGe9FnwTLwZUVfeBcRm+E7V0QHIciCjJSIiIqLzeG1fs+Y4NkLC4gnh+75d7DoOR9nXYG3e59cnx2ahu+i3XGGaiIiIiCiAtp1TNDM3Nx5CgArWhd4WxK69F9ZTH/r1DRTcjJ7FvwAs519gnIiIiIiMYUjRTEREBN58802UlJRg9+7daGpqwlNPPXXex6qqbwXYmTNnYs2aNbDbubo9EY1ezd1urD/UhnWVrTjc3Dfk4wUAs7NiUVSYhEUFiXBEGPIyTjqQOmpgPfEOpI6a00UyYncDBFXR/VqyY8xgUYy2OEaJyQBErqZOREREo9e2mg78qKwWzn7/3RqnZcTgsZI8jI3nF1OjgqpCaq2AvaoU9uq1kLqOD2uYJ3U63AUlcOUvg+IYA0mSEBWbEOBgiYiIiOhiPLKC1fu1OwSWTElBhDU8F4qyVa9DzOaHIbq7/fpceUvRs+jnUO2OIERGRERERGQOnf1e7G3Qvh+flxsfkGtJLQcRW/rF8y7m1Hvtt9B/5Ze5uyQRERFRCDBstnVaWhreffddPPvss3jmmWdQUVFx3scVFhbi3nvvxb333gtJ4sReIhp9uga82HykHesqW7H7eDfUYYyZnBaNosIkLJmUhJQYW8BjJB2oKqTWSthry2GrKYelvUrX0ys2x3l2jMmFHDcesEbqei0iIiKiUOf2Knjq7eN4cbf/l1ICgHuuHYMvXjcWFik8J93RGVLbEdirS2GrKoXFWTesMd7kQrjyS+AqWAYlbnyAIyQiIiKiS/VmVQc6zil8Xzk9NUjRjIDXhejtjyNy/z/9ulTJht6538fA1Ls5YY6IiIiIKMB21juhnDUZx24RcVVWnO7XsTTuQtzqz0HwDmjaVWsUum/6H7hzb9L9mkRERER0eQzdokCSJNx3332477770NTUhP3796O9vR0AkJCQgGnTpiEjI8PIkIiIDDHgUbCttgNllW3YXueERx66VGZcvB3FhckoLkzC+EQWQYQFVYXl1F7Yaspgry2H1HlsZKcTrZDjss4pjPH9rEYm8ctVIiIiIgD1bf14ZE01jrT479yYGmPFT5blBeTLMDKO2FEHe/Ua2KtKh12M7k3Ih6tgOdwFJZATcgMcIRERERGNxKq9zZrjWZkO5CSF12fiorMOsWVfg6XVf9FAb3wOuot+BzllchAiIyIiIiIyn601Ts3x1Vmx+u9kqapwbHrIr2BGdmSiq+R5yMkT9b0eEREREY2IoUUzZ0tPT0d6enqwLk9EFHBeRcX7xzpRVtmGN6va0etWhhyTFG3FkklJKJ6UhMnp0RBYFBH6FBmWkx/AXlMGW235ebfcHYocnQY5Ptu3U8xZxTFKbCYgBu3/qomIiIhCmqqq+M/+Fvxq81EMeP3fa9+Qn4BHi3IQH2kNQnQ0UmLXcdir1sJeXQpLy8FhjZHjxsNVUAJX/nLISRNYZE5EREQUBo629+P9412atpUzwmuXGfvh1Yh+6/sQPb1+fQMTVqB3wU+g2mKCEBkRERERkfl4FRU76pyatrl58bpfx3JqL6TOo5o2z5jZ6Fr6e98iqEREREQUUjgTl4hIR6qq4mBTL8oqW7HhUDva+jxDjom2SVg0IRHFhUm4alwsJJETu0Ke7IG14d3BHWXWQ+xvG96wqFR4x14NOT4X3gTfjjFKfA6/MCUiIiK6RN0DXvxsfR02Hmn367NJAr6+YDw+dkUqi9DDjNhzErbBQhnrqb3DGiM7xg4WypRATpnCQhkiIiKiMPPaPu0uM/GRFiwqSAxSNJfI04+YrT9BRMVLfl2qJQI9838EV+HH+B6ViIiIiMhA+xq60e2SNW1zc+N1v46teq3mWI4bj84Vfwckm+7XIiIiIqKRY9EMEZEO6tv6UVbZhrJDrTjhdA35eKskYG5uPIoLkzEnJ17/bWBJf14XbMe3wVZTBlvdJoiuzmENkx1j4c4rhiuvCN70mYDAXBMRERGNxJ6Gbnx/TTWaut1+fblJkXh8eT7yU6KCEBldDqG3BfaadbBXlcJ68v1hjZGj0+HOXwpXwXJ402ZwEiIRERFRmHJ5FbxxoFXTdvOUFNgsof8ZqtReBUfZ/bC0V/n1eRML0F30O9/uh0REREREZKittU7N8YTUKKQ57PpeRFVhr1mnaXIVlLBghoiIiCiEGVo04/V6UVpaiq1bt6K2thbd3d2QZfmiYwRBwKZNmwyKkIho+Jq73Vh/yFcoc+hU35CPFwBclRWLosIkLC5IhCOCdYshz9MH29EtsNeUwVr/FkRPz7CGeeNz4c4rgiuvmKtdExEREelEVlT85Z0G/HFnAxTVv/9jM1Lx4ILxLEgPA0J/O+w1ZbBVlcLa+B4EVRlyjBKZBFf+MrgKSuDNuJLF6ERERESjwOYj7egc8GrabpuRGqRohklVYT/0KmK2/AiCt9+ve6DwDvTM/yFgjQxCcEREREREtK2mQ3M8LwC7zFhO7YXU3ahpc+Uv0/06RERERKQfw2Zsb9u2DZ/+9Kdx7Nix022qep5ZLoMEQYCqqhA40ZiIQkjXgBebj7SjrLINHxzvwoVfxc4oTItGUWESiiYlISWGq0qEOsHVDVv9Zt+OMsfehuAdGNY4b9IkuPKK4c4rgpxYwEIZIiIiIh01dbnwg7U12H2i268vNkLCD4pysaAgMQiR0XAJA52w1W6AvXoNrMd3QFAvvogKACj2eLjyi+EuKIFnzDWAKBkQKREREREZZdW+Zs3x1VmxyEqICFI0w+DuRcyWHyDi8Ot+Xao1Cj0LfgrXxFsND4uIiIiIiHxOOAdQ166d4zEvL0H369ir12qOvfE5kJMm6X4dIiIiItKPIUUzhw4dQnFxMfr7+6GqKmw2GwoKCpCYmAhR5MqgRBTaBjwKttV2oKyyDdvrnPDIQ5fKZMbbsbQwGUWTkpCdxBXlQp3Q3w5b3UbYa8phPb4dguIZ1jhP6nS484rhyiuCEp8d2CCJiIiITGrzkXY8tr4WXQP+RRazMh34aUke0hz2IERGQxHc3bDVbYK9qhTWY1uH9T5bsTngzl0CV0EJPJnXA5LVgEiJiIiIyGi1rX348Jyi+JUhvMuM1HoIjrL7YXHW+vV5kwvRVfQUlIScIERGREREREQf2Vbr1BwnRFowOT1a34uoKmznFM2485dyYVUiIiKiEGdI0czjjz+Ovr4+SJKEH//4x/ja176GmJgYIy5NRHRZZEXFrmNdKK9sxeaqDvS6h14FOSnKiiWTklBUmIQp6dHcKSvECb3NsNeuh62mDNaG94a10rUKAd4xV8GVVwR3bhEUxxgDIiUiIiIypwGPjP956xhW7W3265ME4AvXZ+Kea8ZAEvm+O6R4+mCrfxP2qjWwHX0LguwecohijYY7ZzHcBSVwZ80DJBZBEREREY12r+1r0RwnRllwQ77+K0CPmKoi4uCLiN760/O+t+2f+kn0zv0eYOF7WCIiIiKiYNta06E5npsbD1HnuTuWU3sg9ZzUtLnyS3S9BhERERHpz5Cimc2bN0MQBDzwwAN45JFHjLgkEdElU1UVB5t6UV7ZhvWH2tDWN/QqyNE2EYsKElFUmIyrsmJh4YS9kCZ2NcBWWw57TRksJ3dDwNC7BqmCBE/mtb4dZXJughqdYkCkREREROZW1dKH762pRm1bv19fRqwNj5XkY8ZYRxAio/PyumA7+hbs1aWw1W2G4PXP27lUSwTc2Yvgyi+BO3sBYIkIfJxEREREFBIGPArWHNQWzdwyNQVWSQxSROcnuLsRs/kR2M9ZRRoAFFsMehb9HO78ZUGIjIiIiIiIztXrlvHBce1ulnPz9C/Mt1ev0xx743MgJ03U/TpEREREpC9DimZaW1sBALfddpsRlyMiuiT17f0or2xDWWUrjjtdQz7eKgmYmxuPoklJmJubgAhraH2RR1qisw72mnLfjjLN+4c1RhVt8IybA1deMdw5i6FGhuAKh0RERESjkKqqeHnPKTz51jG4Zf8C55smJuKRm3LgiDDk4wy6GNkN6/Htvh1lajdC9PQMOUQVbXCPnw9XwXK4sxcBtmgDAiUiIiKiULPxcBu6Xdqdv2+dnhqkaM5Pat6P2PKvQeo85tfnSZ2G7qLfQYnLCkJkRERERER0Pu/Wd8KrnPlewSIKuGZ8rL4XURXYzimqd+cvA3TezYaIiIiI9GfILJOUlBQ0NjYiMjLSiMsREQ2ppceN8kNtKK9sQ+Wp3iEfLwC4clwsiicnYVFBImI5SS90qSqktiNndpRpOzy8YZYIuMcvgDu3CO6chVBtXLmciIiIyEjOPg9+Ul6Lt2ucfn0RFhHfXjwet0xNgcAvn4JH8cJ6YifsVaWw1a6H6OoccogqWuAZNxeughK4c26Cauf7bCIiIiKzW7WvWXN8XXYcMuNDZOdBVUXEvr8hevsvICj+u9H3z7gHvdd/G5DsQQiOiIiIiIguZGutU3M8a5wDMXZ95/ZYTu2F1HNS0+bi7pNEREREYcGQWd9z587FSy+9hAMHDmDWrFlGXJKIyE/3gBebqtpRXtmG9491wX/dan+T0qJQXJiMJROTkOqwBTxGukyqCkvzfthqfIUyUmf9sIYp1hi4cxbBnVcMd9Z8wMriTiIiIqJg2HWsEz9YW4OWHv9JaRNSo/D48nxkJ/K9WlAoMqyNu2CrLoW9ugziQPuQQ1RBhCfzel+hTO4SqBHxgY+TiIiIiMJCdUsf9jVqdylcOSM0dpkRBjoRs/kh2Gs3+PUp9jj0LP4l3Lk3BSEyIiIiIiK6GEVVsb22Q9M2LzdB9+vYq7S7zHjjcyEnTdT9OkRERESkP0OKZr7xjW/g1VdfxW9/+1vcfffdsFi4QwMRGcPlVbCt1omyylZsq3XCIw9dKpMZb0fxpGQUFyYhO4kT80KWqsDStBv26nLYasshdTcMa5hij4c790a48orhGXc9VwQkIiIiCiKvrOC5HQ144d3G8xa1331lOr46bxxsFtHw2Ezto/faVaWwV6+D2Ncy9BAI8I65Gq6CErjyiqBGJRsQKBERERGFm1f3aneZSY62Yl5ufHCCOYul6UM4yh847+fMnvSZ6F7yWyixY4MQGRERERERDaWiqRftfV5N27y8eH0voiqw1azTNLnzlwKCoO91iIiIiCggDKlemT17Np588kl87Wtfw8qVK/GXv/wFycmcPEFEgSErKt4/3oWyilZsrupAr1seckxilAVLJiWhuDAZU9KjIfCmNjQpXlgb34Otphy2mvWQ+pqHHgNAiUqGK3cJ3HnF8Iy5GpCsAQ6UiIiIiIZywjmA75dW48DJXr++hEgLfrQ0D3NCYPKcaXy0e2PVGtir10LqOTmsYZ70Wb4dZfKWQolJC3CQRERERBTO+t0y1la0atpWTEuBRQpikbyqIPLDPyHqnV9DULx+3X2zvoi+a77Bz5SJiIiIiELYthqn5jg7MQKZ8RG6XsPStMfvc3NXfomu1yAiIiKiwDGkaOYnP/kJAODqq6/GmjVrMH78eNx0002YNGkSoqKihhz/gx/8INAh0mWSJCkg5xVF8aLHNLrokW9VVVHR1IN1Fa0or2xFa69nyDHRNgmLJiRi6eQUzB4fB4vIQhkjXHK+vS5Yju+ArXodrLUbIA50XPzxg5SYMXDnF8OdvxRyxixA9L1eBeZVi86Hr+XmwnybC/NNoSpQ9ycAn/d6W1fRgp+V1563wP3a7Dj8tKQAyTG2IETmY5p8qyqk1gpYj6yBraoUUuexYQ3zpk6He8JyuAtKoA6uti0gPN9rmybXBID5Nhvm21yYbwpVvEfR2nCkVXMPIABYeUV6QH9PFyP0tyN6/TdhrX/Tr0+JTETvkl/Dm70w6O9zwzHXdPmYb3Nhvs2F+TYP5ppC2Wid57Wtzqk5np+fqPu/NaK2THMsJ+QCqYWQTLgob7DzTcZivs2F+TYP5tpcmG8fQVVVNdAXEUVRs2uDqqqXtIuDLA+9SwQRmVNtSw/+s6cRq/c2oq7Vf4Xqc9kkEQsmpmDFFWOxuDAVEdZgf91F5+XuA2o2ARWrgSNlgKtreOMSc4HCW4DJtwBjZnEbXCIiIqIQ0+vy4oerD+KVD0749VklAd8umoj/NzcXIgvaA6v5EHDgVeDgKqCtenhj0qYBU28Dptzme99NRERERHSJVjy9DXtPdJ4+XjQpFX/53OzgBFO/HXj1/wHdjf594+cAt/8JiB1jfFxERERERHRJmjoHcO3PN2na/v3Fa3FtbpJ+F1EU4MmpQFfDmbb53wEWfU+/axARERFRQBmy0wzgK5S52DER0XCd6hrAG3t9hTL7zvqC7UIEAbg2JwkrrhiDpVMzEBdlNSBKumSubuBIOVC5GqjaAHj6hjcupdBXJFN4C5A2hYUyRERERCFq/4lOfO3fH5632D07KQq/u2smpmfGGx+YWbTVAAdW+QplmiuGNyZ5IjB1JTBlJZAyIbDxEREREdGodqChU1MwAwB3X51lfCCKDGz9H+CtxwFVOadTAOZ/G7jhIUAy7CtUIiIiIiIagc2HmjXHsREWXDk+Qd+LNLyvLZgBgCm36nsNIiIiIgooQz7xVZRzP3QmIro0XQMelO1vwn/2NmBHTRuGU3c3ZUwsbr1iLJbPyEBGXGTgg6RL19cOHF7nK5SpeROQXcMbl3EFUHgzMHkFkFwQ0BCJiIiIaGQURcWft9Xhv8sPwSP7v5FfOWssfrJiKmLsnJSmu46jwMHXfLvKNO0b3piEHGDq7b5imdTJLEonIiIiIl38671jmuOMuAgsmJhibBA9zcCqLwC1b/n3RacCt/8RyF1gbExERERERDQimw+d0hzfMDEVVknU9yIHX9ceJ0/wfX5ORERERGGDM1JoRDo6OgJyXlEUERcXd/q4s7OTxVej2IXy7fIq2FrTgXUVLdhW0wH3eSbYnSsz3o7iwhQsnZyM3OQoX6MygI6OgUCFT5dI6m9DbOPbQMVqoH4roHiHNc6bcSXc+UvhyS+CEjvuTEeAXodo5Phabi7Mt7mEQr4TEnReIYpGhUDdnwCh8bwPR609bvygtBo7651+fdE2Cd8rysXSySnw9HWjY5gbDRohnPMtdJ+EraoUtqo1sDTtGdYY2TEWngnL4S5YDjl16plCGaczYHGGinDONV065ttcmG9zCXa+eX9CF8J7FJ9el4zXPzyhaVsxNQXdXUPvJK8Xy7HtiC5/AGJfq1+fZ9xc9Bb9Bmp0Skh+3hxOuaaRY77Nhfk2F+bbPEIh17xHoQsZbfO8BjwytlVp3+NfOy5a33+nqiDuwCqcXYbTn1uMARN8fn4hofA6R8Zhvs2F+TYP5tpcQiHfoXCPwqIZGhFZlg25jqIohl2LgktWVOysbUfpwRZsPtKOXvfQeU+MsuCmiUlYOjkZU9KjIQxO8OJzJnSIPSdhqymHvaYclsZdAIYugFIFEZ4xV8OdVwx37hIoMWlnOpnbsMTXcnNhvs2F+aZQYeTzkM/7oe2oc+JH62rQ3udfJD0lPRo/W56PzPiIsPg9hnq+hb5W2KvXwV61BtaT7w9rjBydBnf+MrgKSuBNu+JMoYzJPwwN9VyTvphvc2G+zYX5plDBexSf0oOn0Oc+8z5TFICbpyYZE6/iRdSupxC56/cQzvlcWhVE9F3zIPpnfRkQpbD53DmUc036Y77Nhfk2F+bbPJhrCiWjbZ7Xu/VODHi19xrXjHfoem3Lyd0Qe05q2gbyivl3fRa+zpkL820uzLd5MNfmYtZ8s2iGiELC/hOdeO3DBryxrxEt3a4hHx9lFbGwIBHFhUmYPT4OFlEwIEq6FGLnUdhrymGrKYf11J5hjVFFKzyZ18GVVwx37o1QI5MCGyQRERER6c7tVfD7rcfxvx80+fUJAD57dQa+PCcTFkn0H0zDJvS3+wrTq0thbXgXgjp0sYsSmQRX/lK48kvgHXMVIDAHRERERBRYqqpi1d5mTdvc3HikOewBv7bY0wTH+q/D2vieX58cnY7uJb+Bd+zVAY+DiIiIiIgCY1uNdkeZ6WMciI+06noNe/VazbE3IQ9y4gRdr0FEREREgWd40Ux7ezv++te/YuPGjThw4ADa29sBAImJiZg6dSpuvPFG3HPPPUhMTDQ6NCIKgh6XF49vqMb6Q21DPtYiCpiTG4/iSUmYlxePCKtkQIR0KaT2Kthqynw7yrRWDmuMKtnhHj/ft6NM9iKo9tgAR0lEREREgXK0vR+PrKnG4eY+v77kaCt+siwPV4+PO89IGg7B1QVbzXrYq9fAenwHBHXo1V8UezzceUVwFZTAM/YaQOT6KURERERknIqmXr/7g9tnpF3g0fqxHn0Ljg3fhjjQ7tfnHn8Dum/8FdRIfhdJRERERBSuVFXF1lqnpm1ubrzOF1Fgq1mnaXLnLzuzczsRERERhQ1DZ0o899xz+Na3voW+Pt+H46p6Zhv0hoYGNDY2Yv369fjRj36EX//61/jiF79oZHhEZLAjzb14aHUVjjsvvLOMAGDWOAeKC5OxqCARcZGc4BVSVBVSawXsNWWw1ZTD0lEzvHG2GKBgCTD5FjiTZ0OWIgIbJxEREREFlKqqeONAK57YXI9+j/+OJ/Ny4/GD4lwkROm7wpsZCO4e2Oo2wVZVCtuxrRAU95BjFJsD7tyb4CpYDk/m9YDE3zsRERERBceqfdpdZjJibbg2O4CF9LIHUe/+D6J2P+/XpYoW9F37LfTP/C/uukhEREREFOaqW/txqlv7efn8vHhdr2Fp+hBST5OmzZW/VNdrEBEREZExDJt9/otf/ALf+973ThfKxMXFYebMmUhPTwcANDU14cMPP0RnZyd6e3tx7733wul04jvf+Y5RIRKRQVRVxX/2t+CJzfVwedXzPmZCahSWFibjpomJSI+1GxwhXZSqwHJq7+kdZaSu48Mapthj4c5eDO+EZYiZfgtgHSyU6egA5KFXyCYiIiKi0OTbPbL+vLtH2iQBD9yQhTtnpkHgymvD5+mHrX4z7FWlsB19C4J84YUGPqJao+DKuRHughK4s+YBEu+jiIiIiCi4elxelFdq7xNunZ4KSQzMvYHY1QDH+gdgbfrQr092jEV30W/hTZ8ZkGsTEREREZGxttZ0aI7HxtmRkxSp6zXs1dpdZrwJ+ZATJ+h6DSIiIiIyhiFFMwcOHMCjjz4KVVWRkZGBJ554AnfccQesVu1Kp16vFy+//DK+/e1vo7GxEd///vdRUlKCKVOmGBEmERmg3y3j5xvrsbai1a8vLtKKT187HgtyY5CdwAleIUWRYW3cBVttOWw16yH1Ng09BoASmQh3zk1w5RXDk3ktINkgSdKZghkiIiIiCmv7Grvx/TU1aOzyL+rITozA48vzMSE1OgiRhSGvC7ZjW3yFMnWbIHj7hxyiWiLgHr8QroISuMcvAKz6fiFIRERERDQSaytaMeA9sxOlJApYMTUlINey1W5AzKaHILo6/fpcuTehZ9EvoUYEcIcbIiIiIiIy1LZap+Z4bm68vot3qQps5xTNuPOXAlwgjIiIiCgsGVI08/TTT0OWZaSkpGDnzp3Iyso6fzAWC+666y7MnTsXs2fPRktLC55++mk888wzRoRJRAFW19aPh1ZXobbNf/LXjHHx+P3dM5GZEIWOjg7I3Hkk+GQPrCd2wl5TBlvdBoj97cMbFp0Od94SuPKK4c24ChClAAdKREREREaTFRUvvNeI57efgHyezSNvm56Kby7MQoSV7wUvSnbDenw77FVrYKvbCNHdM+QQVbTBPX6+r1AmezFgY1ESEREREYUeVVWxam+zpm1+XjySY2z6Xkh2I3rHLxG59wX/GEQbeud8FwPTP8OJbUREREREo0hHnwf7G7Wfp8/Li9f1GpamD/0WlHXlL9P1GkRERERkHEOKZjZv3gxBEPDwww9fsGDmbOPGjcNDDz2Eb37zm9i0aZMBERJRoK2raMXjG+rQ71H8+u6+MgM/uu0K2CxiECIjDa8LtuNbYasug61+E0RX17CGybHj4MorgjuvGN60GYDAXBIRERGNVqe6XfjB2hp8cLzbr89hl/D9olwsnpAYhMjChOKF9cQ7sFeXwlZTft6VsM+lihZ4xs2BK78E7twlUO0OAwIlIiIiIrp8+0/2oLpVu4DW7TPSdL2G2HkUjvIHYG3e79cnx2ahq/h3kFOn6XpNIiIiIiIKvu11Tpy9nlekVcSszFhdr2GvXqs59ibkQ06aoOs1iIiIiMg4hhTNNDQ0AACuv/76YY+ZM2cOAKCxsTEgMRGRMVxeBb/afBSv7Wv264u2iXi0KBdFk1NZMBNM7l7Yjm2BvaYM1vq3IHp6hzXMm5AHd14RXHnFkJMnc6U+IiIiIhN4q7odPy2rQ+eA16/virEOPFaSh/RYexAiC3GKDGvjLtiqS2GvKRvWLo6qIMKTed2ZQpnIBAMCJSIiIiLSx7m7zIyNs+Pq8fpNYrNVr0XM5ofPu1ujK38ZehY+zmJzIiIiIqJRaluNU3N8bXacvvOOVAW26jJNk5u7zBARERGFNUOKZiRJAgB4vf6Tai5ElmUAgChyIj1RuDreMYCH3qjCkeY+v74JqVH45c0FGJcQEYTISHB1wVa3CbaaMtiObYUgu4Y1zps8+fSOMnJifoCjJCIiIqJQMeBR8NstR/HyHv9ieFEA/t91Y/H5a8fCIrKQ+jRVgaXpQ9irSmGrXgepz/935zcEArxjZsNVsByuvCKoUckGBEpEREREpK+uAS82HG7TtN02PRWiHgsveV2I3vYzRB74X78uVbKhd96jGJhyFxd5IiIiIiIapTyygp312h3c5+bG63oNS9NuSL1NmjZX/lJdr0FERERExjKkaCYrKwuVlZXYtGnTsHeb2bRp0+mxRBR+Nh1px0/KatHrlv36bpueim8uHI8IK4vijCT0t8FWu9G3o8yJnRAUz7DGedKuGNxRpghK3PgAR0lEREREoaa6pQ/fK61GTWu/X1+aw4afleTjikyu4AwAUFVYmvfDVrUG9uq1kHpODmuYJ30mXAUlcOctgxKTFuAgiYiIiIgCq/RgK1xe9fSxRRRwy9SUEZ9XcPcg7rW7YWk56Nfnjc9Fd/FTkJMnjfg6REREREQUuvY0dPvNRZqjc9GMvXqd5tibWAA5aYKu1yAiIiIiYxlSNHPTTTehoqICv/rVr3Drrbdi2rRpF338gQMH8MQTT0AQBCxZssSIEIlIJx5Zwe+2HMeLu5v8+iIsIh5ZkoNlk7laslHEnlOw1a6HraYM1sb3IKjKkGNOr26dVwR37hIojjEGREpEREREoaisshU/La/VTHj7yKKCBHy/KBexEYZ8tBC6VBVS2yHYq0phryqF1HVsWMM8KVPhLlgOV/4yKLFjAxwkEREREZExVFXFqr2nNG0LCxKQGG0d8bmj3n3yvAUzAxNvRc8NPwFs0SO+BhERERERhbatNU7N8eT0aCRH2/S7gKrAdk7RjDuPu8wQERERhTtDZrY8+OCDePbZZ9HT04O5c+fi0UcfxT333IOkpCTN49ra2vDXv/4VP/vZz9Dd3Y2IiAg8+OCDRoRIRDpo6nLhu29U4cDJXr++nMQI/PKWAuQmRwUhMnMRu07AXlMGW005rE27hzVGFS3wjL3Wt6NM7hKoUSxsIiIiIjK7+rZ+/LisFh5ZWzBjt4j41qLxuHVaCgRBCFJ0wSe1V8FeVQpbVSksztphjfEmTYKroMRXKBOfHdgAiYiIiIiCYE9DN+raBzRtt89IHfmJvS7YD63SNKmWSPTc8CO4Jt0OmPjehIiIiIjITLbVOjXH83TeZcbStBtSr3YhAFc+i2aIiIiIwp0hRTPjx4/Hc889h3vuuQc9PT146KGH8N3vfhc5OTlITU2FIAg4deoU6urqoKoqVFWFIAh47rnnkJWVZUSIRDRC22o68MN1tegc8Pr1LZ2chEduzEGkTQpCZOYgddTCVlMGe03ZeVfaOx9VssE9bh7ceUVw5yyGGhEf2CCJiIiIKKy8vr/Zr2CmICUKjy/PR05SZJCiCi7RWQ97dSnsR9bA0n5kWGO8CXlwFSyHu6AEckJegCMkIiIiIgquVXubNcdZCRG4clzsiM9rq10P0dWpaXOu/Dfk1KkjPjcREREREYWHo+39ONahLdKfl5eg6zXsVWs1x97EAshJE3S9BhEREREZz5CiGQD4zGc+g6SkJHzpS19CY2MjVFVFTU0Namt9q7Gq6pmJOGPGjMHzzz+PZcuWGRUeEV0mr6Liue0n8Nd3G/36bJKAby/ONv0K1AGhqpDaDg/uKFMGS3vV8IZZIuEevwCuvCJ4shdCtcUEOFAiIiIiCkeyoqKssk3TduOERPx4WR7sFjFIUQVJx1HY3/8XbEfeGHaBuhyXBVd+CVwFyyEnTeSq10RERERkCs4+DzYdade0rZyeqsv3AxGVr2iO3ZnXsWCGiIiIiMhktp6zy0xKjBUTU6P0u4CqwFZTpmly5XP+IhEREdFoYFjRDACUlJSgvr4er732GjZu3IgDBw6gvd334XliYiKmTp2KG2+8EbfeeiusVquRoRHRZWjpceN7a6qx+0S3X9+4eDt+cUsBJqZGByGyUUpVYWnef3pHGanz6LCGKbYYuLMX+3aUyZoPWM25KjgRERERDd/7x7vQ2uvRtH3x+rGmKZgRBpzAzheBA68CDe9jOF+5yY4xg4UyJZBTprJQhoiIiIhMZ83BVrjP2q3SKglYPiV5xOcVuxpgPb5d0+YqvGPE5yUiIiIiovCytaZDczw3N17XRXwtJ3dD6j2laXPnL9Xt/EREREQUPIYWzQCAxWLBHXfcgTvu4IfZROHsvaOd+H5pNdr7vH59iwoS8IPiXMTYDX+JGX0UGZam3YM7ypRD6jk5vGERCXDn3gRX7hJ4xl0PSPYAB0pEREREo8nag62a40lpUchN1nG1thBmPbYVjvVfBwY6hnysHJ0Gd/5SuPJL4E2fyUIZIiIiIjItVVWxal+zpm3xhETER418kTz7oVch4EwxjmJzwJVXNOLzEhERERFR+Oge8GLPOYv6zs1N0PUa9uq1mmNvYgHkxAJdr0FEREREwcEZ7UR0SWRFxV/eacDzOxrO+orKxyIKeHBBFj4+M03XlRxMR/bA2vieb0eZ2vUQ+1qHHgNAjkqFO28J3HlF8Iy5GhD5Ek9EREREl67fLePNqnZN29LCka8OHfJUBZHv/x5R7/5WMyHvXEpkIlz5y3yFMmOuAgRz7L5DRERERHQxHxzvwrGOAU3byumpIz+xqiCi8hVNk2vCLYAlYuTnJiIiIiKisLGzvhNnbWwJmyTg6qxY/S6gKrDVlGmaXPnL9Ds/EREREQUVZ1QT0bB19Hnw6NoavFPf6deX7rDhF7cUYGpGTBAiGwVkF6zHd/h2lKndCNHlHN4wxxi4c4vhyi+CN30WJ+wRERER0YhtqelAn0c5fSwKQFFhUhAjCjxhwAnHhm/CdvSt8/YrEfFw5y6Bq2A5PGOvYYE6EREREdE5Xt2r3WUmJzECMzMdIz6v9cROSN0NmraByXeM+LxERERERBRettZqd4e/KisWkTZJt/NbTu6G1HtK0+bOX6rb+YmIiIgouAyZ5bF//36sWLECkiThrbfewtixYy/6+IaGBtxwww1QVRXr1q3DhAkTjAiTiC5iz4luPLKmCs09Hr++ubnx+PHSPMRFcuLYJfH0w3Z0C2w1ZbDVvwnR0zOsYXJcNlx5xXDnFcGbOg3grj5EREREpKO1FdqdDq8ZH4fkaFuQogk8qfkAYtfdB6n7hH9n/o3ANV9GZ8IMyGCBOhERERHR+bT3evBmlXYC28oZ+uxIH1HxkubYmzQJcsrUEZ+XiIiIiIjCh6yo2FGrXeB3Xm6CrtewV5dqjr2JBZATC3S9BhEREREFjyEz3P/5z3+ivr4eRUVFQxbMAMDYsWMxYcIElJeX45///Cd+8pOfGBAlEZ2Pqqr45/tNePrtY5ptTgFAEoCvzBuHT8/OgMjCjWER3N2w1b3pK5Q5tgWCd2BY47xJE08XysiJE1goQ0REREQB0dbrwbvn7Cy5bHJykKIJPHvFS4jZ8kMIslvTrgoihMU/BOY84Hvv3dEByHKQoiQiIiIiCm2rD7TAq5z5AsFuEVAyZeT3EcKAE7ba9Zq2gckf4+fjREREREQms/9kDzoHvJq2ubnx+l1AVWCrLtM0ufJL9Ds/EREREQWdIUUzW7ZsgSAIuOWWW4Y9ZsWKFSgrK8OmTZtYNEMUJF0DXvxwXQ221jj9+pKjrXh8eT5mjYs1PrAwI/R3wFa3CfaaMliPb4eguIceBMCTOg3uvGK4cougJOQEOEoiIiIiImD9oTZNsXykVcSCfH1XawsJXhdi3v6R36rVAKBEJqF36VNwTOcXYkREREREQ1FUFa/ta9a03TghCbERI/8K0n7kDU2Buyra4Jpw64jPS0RERERE4WVbjXZny/zkSGTE2XU7v+XkB5D6tPc17vylup2fiIiIiILPkKKZI0eOAACmT58+7DFTp/q2Vj98+HBAYiKiizt4sgcPv1GNxi6XX9/VWbF4rCQfidHWIEQWHoTeFtjrNsBWUwbriXcgqEOvSq1CgDdjlm9HmdwiKLFD78xFRERERKSntRWtmuOFBYmItElBiiYwxK7jiF13HywtB/36POkz0V38NIQ4vhcnIiIiIhqO9452oaFT+z3Cyhmpupw7ovJlzbE790aokaOwqJ+IiIiIiC5qa61TczwvT9/7Anv1Ws2xN3EC5MR8Xa9BRERERMFlSNFMT08PACAmJmbYYz56bFdXV0BiIqLzU1UVL+85hd+8dQyes5eYBiAA+H/XjcX/u24sJFEIToAhTOxuhK2mHPbaclga34cAdcgxqiDBM/aawR1lboIarc+XiUREREREl6qurR+Vp3o1bcsmJwUpmsCw1r8Jx4ZvQnR1+vX1T/8seud8F5BsGF1lQkREREREgbNq7ynNcX5yJKaPGf73gRcitRz0K3QfKLxjxOclIiIiIqLw0tjpQk1rv6Ztbm68fhdQFdiqyzRNrvxl+p2fiIiIiEKCIUUzCQkJaG1tRVNTE2bMmDGsMU1NTQAAh8MRyNCI6Cw9Li9+tr4OGw63+/UlRFrw05J8XJsdF4TIQpforIe9pty3o0zzvmGNUUUrPOPm+HaUyVkMNTIxwFESEREREQ3t3F1mkqKtmJ01St7/KzKidv0OUbue9utSrVHoXvg43BNuDkJgREREREThq7XXjS01Tk3byhmpEISRL7oVUaHdZUaOyYBn3JwRn5eIiIiIiMLLttoOzXFcpAVTM0ZeqP8Ry8kPIPU1a9rc+Ut1Oz8RERERhQZDimYKCgrQ2tqKsrIyFBUVDWvMunXrAAB5eXmBDI2IBh1p7sV336jGsY4Bv74rxjrw+PJ8pDpsQYgsxKgqpPYq344yNWWwtB0a3jBLBNxZ8+HOK4Y7exFUOwsCiYiIiCh0KKqKskpt0UzxpKRRscOk0N8Ox/pvwHZ8q1+fNz4X3Ut/DzlpQhAiIyIiIiIKb6v3t0BWzuy4HmERsWxy8shP7HXBfmS1pslVeDsgck9IIiIiIiKz2XZOof6cnHhdv7uwV5Vqjr2JEyAn5ut2fiIiIiIKDYYUzRQVFWHHjh14/vnn8cUvfhGFhYUXffzBgwfxxz/+EYIgoLi42IgQiUxLVVX850ALnthUD5dX9ev/7NUZuHfuOFhGwWS5y6aqkFoODO4oUw6Ls3ZYwxRrNDzZC307yoy/AbBGBThQIiIiIqLLs+dEN052uTVty6boMNktyCyn9sFRdh+k7ka/PlfeUvQs/jlUGwvaiYiIiIgulayoeG2fdjXmJZOSEGMf+VePttr1EF2dmraBSbeP+LxERERERBRe+twydh3v0rTNy43X7wKKDFtNuabJVbBMv/MTERERUcgwpGjm3nvvxX//93+jr68PixYtwh//+EcsX778vI9dvXo1vvSlL6G/vx9RUVG47777jAiRyJT63TJ+uakeaw62+vXFRkj40dI8zM9LCEJkIUBVYGn68HShjNR9YljDFHsc3Dk3wpVXDM+4OYDFHuBAiYiIiIhGbt05u8zkJkViQkoYF32rKiIOvojot38KQdEWA6mChN7rH8LAFZ8HBBMvDkBERERENALv1Hf6Fd6vnJGqy7kjKl/RHLszr4MSl6XLuYmIiIiIKHy8d6wTHvnMAsCSKODa7Djdzm85+QGkPu1iAO58Fs0QERERjUaGFM0kJyfj2Wefxac//Wk0NzdjxYoVyM3Nxdy5c5GRkQEAOHnyJLZu3Yq6ujqoqgpBEPDMM88gLS3NiBCJTKeurR8Pra5CbVu/X9/k9Gj84uYCjIkzWcGH4oW1cRdsNeWw1a6H1HtqeMMik+DKXQJ3XjE8Y68BJGuAAyUiIiIi0o/Lq2DD4XZN27LJyRDCtaDE04+Ytx5FxOHX/LqUqBR0FT8F75jZQQiMiIiIiGj0WHXOLjMTU6MwJT16xOcVuxpgPb5d0+YqvGPE5yUiIiIiovCzrcapOZ451gFHhH7THe3VazXH3qSJkBPydDs/EREREYUOQ4pmAOCTn/wkFEXBvffei76+PtTU1KC2tlbzGFX1VYZHR0fjmWeewac+9SmjwiMylbLKVvxsfR36PYpf38dnpuHBBVmwSmIQIgsC2Q3riZ2w15TBVrsR4kD70GMAyDHpcOcWwZVXDG/GlYAoBThQIiIiIqLA2FbrRI9LPn0sACguTApeQCMgOusRu+4+WNoO+fV5xsxGV9HvoEbrs/o1EREREZFZNXe7sa2mQ9O2ckaqLoX39kOvQsCZlaQVmwOuvKIRn5eIiIiIiMKLoqrYVuvUtM3Ni9fxAjLsNWWaJlf+Uv3OT0REREQhxbCiGQD49Kc/jZtuugm/+93vUFpaigMHDpwulBFFEdOmTcPNN9+Mr371q9xh5hK43W68+OKLqK2tRVNTE3p6ehAVFYX09HQsWrQI8+bNg8ViaKopRLm8Cv7nzaN4dW+zX1+0TcSjRbm4cWJ4To67JN4B2I697dtRpm4TRHf3sIbJcVlw5RXDnVsEb9p0QDBJYRERERERjWprK1o1x1eOi0V6bPjtOmmr24iYDd867/v7viv+C33XfZu7QhIRERER6eA/+5shn6lrQZRVRHFh8shPrCqIqHxF0+SacAtgiRj5uYmIiIiIKKwcPtWH1l6Ppm1ebrxu57ec/ABiX4umzZ2/TLfzExEREVFoMbySIj09HY8//jgef/xxeL1etLf7dnVITExkYcdlGhgYwPr165Gfn4+ZM2ciNjYWvb292LNnD5555hns2LEDDz/8MESRE/zN7IRzAA+trsLh5j6/vgkpUfjFLQXIShi9XzwJ7h5Yj74Fe005bEffguDx/z2cjzexAO48344yctIkQIeV8oiIiIiIQoWz34Pt56zUtnRymBXSK15Evfskoj54xr/LGo2exb+Em6vDERERERHpwquoeH2/dmJZUWEyom0j343demInpO4GTdvA5DtGfF4iIiIiIgo/W2u1u1tmJURgfGKkbue3V6/VHHuTJkJOyNPt/EREREQUWoJapWKxWJCamhrMEEaFmJgY/O1vf/MrOpJlGY899hj27t2LPXv2YNasWUGKkILtzap2/LisFj0u2a/v1mkp+NaibERYR19RlTDQCVv9Jt+OMsfehiC7hzXOmzIFrrwiuPOKeUNMRERERKPaxsPt8Cpnloi2WwQsnpAYxIgujdDXCsf6B2E7sdOvz5tYgO6lf4CckBuEyIiIiIiIRqcddU6c6tZ+1n77DH2+64uoeElz7E2aBDllqi7nJiIiIiKi8LKtxqk5nqvjLjNQZNhryjRNLu4yQ0RERDSqcWuXUUAUxfPuIiNJEmbPno2DBw+iqakpCJFRsHlkBU+9fRz/+sA//xEWEd+9KRvLp6QEIbLAEfpaYavdAHttOawndkJQvMMa50mbObijTBGUuKwAR0lEREREFBrWVrRqjufnJSDGHh4fFViaPoRj3Vch9frf77gKlqN74eOALToIkRERERERjV6r9jZrjienR2NS2sjfdwsDTthq12vaBibfwd3fiYiIiIhMqLXHjYpTvZq2eXnxup3fcvJ9iH3aHTTdLJohIiIiGtUMnwlTVVWFv//979i5cyeamprQ39+P8vJy5Ofnn37MgQMHcOzYMURHR+OGG24IaDydnZ2orq5GdXU1ampqUFNTg+7ubgDADTfcgPvuu2/Y52ppacG6deuwe/dutLW1wWKxID09Hddddx2Kiopgt9sD9c84L0VRsHfvXgDAuHHjDL02BV9TlwsPv1GN/Sd7/PpyEiPwi1sKkJccFYTI9Cf2NMFWUw57TTksJ3dBUJUhx6iCCM+Y2XDnFcOduwRKTLoBkRIRERERhY4TzgHsa9TeLyydnBykaC6BqiJi/z8Qve1xCIpH2yVa0DvnEQxM/wwn1xERERER6aypy4UddU5N20qddpmxH1mt2S1eFW1wTVihy7mJiIiIiCi8bDvnviPaJuGKsQ7dzm+vXqc59iZN4q71RERERKOcYUUziqLgO9/5Dn77299CURSoqgoAEAQBbrd2G/djx45h+fLlsFgsqKurw9ixYwMW1xe+8AVdzvP+++/jqaeeQn9//+k2l8t1uhBn06ZNePjhh5GeHriJ+V6vF6tWrQIAdHd348CBA2hoaMCCBQswbdq0gF2XQs/2Wid+sLYGnQP+u6wsLUzCwzflIMomBSEy/Yhdx2GvLoOtphzWUx8Oa4wqWuDJvA6uvGK4c26EGhUGEwKJiIiIiAJk3Tm7zMRFWnB9dlyQohkmTx9i3vweIo6s9uuSo9PQXfwUvBlXBiEwIiIiIqLR7/V9LVDUM8fRNglFE5N0OXdE5SuaY3fujVAjE3Q5NxERERERhZdtNU7N8XXZcbBKoj4nV2TYa7RFM678pfqcm4iIiIhClmFFM1/60pfwl7/8BaqqYuzYsbjuuuvwyiuvnPexy5YtQ05ODurr6/HKK6/ggQceMCTG5ORkjB079vTuLMNVV1eHJ598Em63GxEREbj11lsxdepUuN1ubN++HZs2bcLJkyfx85//HL/4xS8QGRkZkPi9Xq/mdyoIAm6++WbcfffdAbkehR6vouK57Sfw13cb/fpskoBvLcrGbdNTIITpistSezVstYM7yrQcHNYYVbLBnTUf7rwiuLMXQ40I8UmAREREREQGUFUVa88pmlkyMQkWvb50CgCxow6x6+6Fpb3Kr8899lp0F/2WhfFERERERAHilRW8vr9Z07ZschIidVigS2o56PeZ/0DhHSM+LxERERERhR+XV8G7Rzs1bXPz4nU7v+Xk+xD7tN+PuPOX6XZ+IiIiIgpNhhTNbNq0CX/+858hCAIeeeQR/PjHP4YkSRDFC0/GueOOO/Df//3f2Lx5c0CLZj72sY8hLy8PeXl5iI+PR3NzM7761a9e0jleeOEFuN1uSJKE73//+5gwYcLpvqlTpyIjIwP//Oc/cfLkSbzxxhu48847/c7x97//HR6PZ9jXXLZsGTIyMjRtEREReOmll6AoCjo6OvDBBx/gxRdfxJEjR/Dwww8jKirqkv5dFF5ae9x4ZE01dp/o9uvLjLfjFzcXYFJadBAiGwFVhdRaCXuNb0cZS0f18IZZo+AevwCuvCJ4xi+AaosJcKBEREREROHlYFMvjjtdmraSKaFbcGKrKUfMxu9A9PT49fXN+hL6rv0GIBq2LggRERERkelsrXWitVf7PdbKGWm6nDui4mXNsRyTAc+4Obqcm4iIiIiIwsvu413o9yinjwUAc3LidTu/vXqt5tibNAlyQq5u5yciIiKi0GTIjJLnn38egK/Q47HHHhvWmKuvvhoAcPDg8HaTuFznK2C5FNXV1aisrAQALFy4UFMw85Hly5fjzTffRENDA9atW4eVK1fCYtH+6jds2ACXy+U39kKuvfZav6KZj4iiiKSkJCxZsgQOhwO/+c1vsGrVKnzqU5+6hH8ZhZP3j3Xie2tq0NbnX3i1sCABPyzORYw9TCaQqSqkpg9hP7IW9ppySF3HhjVMsTngzlkMd14x3FnzAEtEgAMlIiIiIgpfpQe1q6hlJURgSnoIFtkrXkTtfAJRH/7Jv8sWg54bn4A7d0kQAiMiIiIiMpdVe7W7zEzLiEFBig6LtXldsB9ZrWlyFd4OiCPfwYaIiIiIiMLP1lqn5njamBgkRFn1Obkiw15TpmlyFXCXGSIiIiIzMGQW/c6dOyEIAv7rv/5r2GMyMzMBAE1NTYEKSxfvvffe6Z8XLlx43seIoogbbrgB//rXv9Db24uDBw9ixowZmsf84x//CEh8H12noqIiIOen4FJUFX95pxHP7zgBRdX2SaKAB2/IwidmpUEQhOAEOFyqChx7Bzj4GlD5BmK7GoY1TIlIhDv3RrjyiuHJvA6QbAEOlIiIiIgo/HllBesPt2nalhYmhdx9g9Dbgtjyr8Ha+J5fnzdpIrqW/h5KfE4QIiMiIiIiMpcG5wDeqe/UtN0+I1WXc9tq10N0ac89UPgxXc5NREREREThRVVVbKtxatrm5sbrdn5r4y6IfdpFxVx5LJohIiIiMgNDimaam32rT2VnZw97jNXqqxD3er2BCEk3hw8fBgDY7Xbk5l54q8bJkydrxpxbNBMo7e3tAABJ4opco01Hnwc/WFuDned8UQUAaQ4bfnFzPqaNcQQhsksjuLoRvenbQO2GYT1ejk6DO3cJ3HlF8IyZDYhhsoMOEREREVGI2FHfic5+7b320snJQYrm/CyN78NRdj+kvma/voGJt6JnwWOANTIIkRERERERmc/r+1tw9rpdDruEGycm6XLuiMqXNcfuzOugxI7T5dxERERERBReatv60djl0rTNy0vQ7fy2mnWaY29yIZQELs5FREREZAaGzDaPjo6G0+lES0vLsMecOHECAJCYmBiosHTxUZzp6ekXLUwZM2aM3xg9Y0hJSYHdbte0u1wu/P3vfwcAzJw5U9drUnDtbejGw29UobnH49c3JyceP16Wi/hInbYmDSCxow6xa78ES0fNRR8nOzLhyiuCO68Y3vQrAEE0JkAiIiIiolFoXYV2FbXpY2KQGR8RpGjOoaqI2PtXRG//BQRV1naJVvTOexQDU+8GQmxXHCIiIiKi0cojK/jPfm0xe8mUZERYR/45vdh1AtbjOzRtrsI7R3xeIiIiIiIKT1vP2WUmzWFDfrJOC2gpMuw1ZZomV/5Sfc5NRERERCHPkKKZ3Nxc7N69GxUVFbjpppuGNWbdOl9l95QpUwIZ2oi43W50d3cDAJKSLr6iVkxMDOx2O1wuF9ra2nSNY8eOHSgtLcWkSZOQkpKCyMhItLe3Y8+ePeju7kZhYSGWL19+SeccboyB2sFGFMWLHpuVqqr4x65GPLXlGLyKqukTBeC++Vn43DVjIYbBBDJL3ZuILvsaRHf3efvlhFy485fCk78UcsqU05PiuGdS+OPft3kw1+bCfJsL801GC/b9CTB6nvfdLi+2VHdo2kqmpobG7qTuHkRvfAi2qlK/LiVmDHpK/gA5/QpD7glGS75paMy1uTDf5sJ8mwvzTUYz0z3K5qoOtPdpd6r82MwMXf5tEYdfg3DWHjaKzQHvhKWhcX8SQvgaZy7Mt7kw3+bCfJsHc03BEOx7FL2e99vrnJrjG/ITYbHoM73RcvI9iH3aRcW8E5bz/uMy8HXOXJhvc2G+zYO5Nhfm28eQopklS5bggw8+wO9//3vcf//9Q/6yKyoq8MILL0AQBCxbtsyIEC/LwMDA6Z8jIoZelTciIgIul0szTg9XXnklOjo6cOTIERw5cgQDAwOIiopCVlYW5syZg4ULF17yG/x77713WI976aWXLifkSxYXF2fIdUJZZ58H33plLzZUnPLrS3XY8bu7ZuLa3IsXb4UEVQW2/QbY9BMA2sIfRCUBV38JmHwLpJRJiBQE6LReBIUw/n2bB3NtLsy3uTDfFGihdn8ChO/zfsOu43DLZ96HWyUBd16Th4RoWxCjAtByGHj5U0DrEf++3IUQb/8zYqODd78TrvmmS8dcmwvzbS7Mt7kw3xRoZrpH+c/Bw5rj2dkJuKpg7MhPrCjAoVWaJnHGx5GQkjHyc49yfI0zF+bbXJhvc2G+zYO5JiOE2j3K5TzvO3rd2NugXXh36RXjkJCQoE9Q2zdqj9OmIS73Sn3ObXJ8nTMX5ttcmG/zYK7Nxaz5NqRo5mtf+xp+97vfoaamBl/+8pfxhz/84YJV4Bs2bMA999yDgYEBJCUl4Qtf+IIRIV4Wt9t9+ufhVLV/9Jizx+khLy8PeXl5up6TQsu+E07c96/dON7e79c3Jz8JT358JlIc9iBEdoncfcB/7gMOrvLvS58GfOJfQHyW8XEREREREZnEax82aI4XTEwNfsHMgVXAf74KeHr9++Z/G1jwMCBypTciIiIiIqPVt/Zie7V2xepPXjNen5PXbQE6j2nbZn5Kn3MTEREREVHY2XKkBcpZa+9GWiVcp9fiwYoMVK7Wtk25VZ9zExEREVFYMKRoJi0tDc8++yw+85nP4M9//jPKy8tRUlJyuv+3v/0tVFXF9u3bcejQIaiqClEU8cILLyAmJsaIEC+LzXZmYpHX673II7WPOXtcqHrmmWeCHQIBUFUV/3znKH66phJuWdH0CQJw/6ICPLC4AJIoBCnCS+A8Bvz7bqBpv3/flJXAit8Dtijj4yIiIiKikMf7E300OvvxTp12wtvKmTqsEH25ZA+w/lHg3fPkNyIOWPlHYEKR8XEREREREQ3BLPcoL76nLWpJiLKieGq6Pif/8B/a47RpQMYV+pybiIiIiMhkRsM9yqZDzZrjOfnJiLDqtKDW0e1Ab4u2bcpt+pybiIiIiMKCIUUzAPDJT34SVqsVX/rSl3D8+HE899xzEATfRP8//elPAHwFAgAQExODv/3tb5rCmlAUERFx+ueBgYEhH//RY84eF6qSkoZXqd/R0RGQ64uiqNn+qbOzE4qiXGTE6NPrkvHT8hqUV7b69cVHWvD4zRNwXU48ujqdxgd3iSwn3kH02q9A7G/XtKsQ0D/nO/DM/griziqYMWO+zYR/3+bBXJsL820uoZBv3bZip7AQ7PsTIDSe9yP173dOQD1rlbYYu4SZ6baA/t4uROg5hZi198Fy8n2/Pm/KZPSWPAslLgsIQmzA6Mg3DQ9zbS7Mt7kw3+YS7Hzz/sR8zHCP4vYq+L9d2qKZkinJ6O/pQv8Izy0MOBFX+QbOXg6sb9JKuJzOEZ55dAr2axwZi/k2F+bbXJhv8wiFXPMexXyCfY8y0ue9R1bw1qFTmrbrsmJ0izdy9//h7Nl63pTJ6BYTg/YdRLgLhdc5Mg7zbS7Mt3kw1+YSCvkOhXsUw4pmAODOO+/E4sWL8Yc//AFvvPEG9uzZo9mhZcqUKbjlllvwwAMPIDU11cjQLovNZoPD4UB3dzfa2tou+tienh64XC4Aw79RCQeyLBtyHUVRDLtWKKhu6cN3VlfhWId/MdaMsTF4fHk+0hz20P+dqCoi9v8T0dseg6Bod2NSbA50L/kNPNkLIZ09cw/my7fZMd/mwVybC/NtLsw3hQojn4fh9rxXVRVrDmhXUbtpYiIsgmr4v8N64h04yr8Gsd//Pnqg8GPoueHHgCUCCKHfb7jlmy4fc20uzLe5MN/mwnxTqAjne5QNh1rh7Nd+rn/rtBRdrhFR+RoE2X36WBVt6M+/GSr/boeFr3HmwnybC/NtLsy3eTDXFEpCdZ7Xh8e70O3SPv667Fh94lVk2KrXaZpceUv5d6kjvs6ZC/NtLsy3eTDX5mLWfBtaNAP4CkYeffRRPProo1AUBe3t7ZBlGYmJibBarUaHM2KZmZmorKxEU1MTZFmGJJ1/W8jGxkbNGKILWb2/Bb/cVAeXV/Xr+/TsDNw3NxMWSQxCZJdIdiFmy48QUfGSX5c3IQ9dy56DkpAThMCIiIiIiMznSEsfatu060EvLUw2NghVReSHf0TUzl9BULUfwKiSDT3zfwTXlI8bGxMREREREZ3Xqr3NmuMrxzmQnRipy7kjKl/RHLtzb4QaGfyVBomIiIiIKDi21Tg1x5PSopDqsOlybmvje36LeLnyl+pybiIiIiIKH4YXzZxNFEUkJxs8SUdnEydORGVlJVwuF2pra1FQUHDex1VUVGjGjBYXKhIaKVEUL3o8Wr3wbgN++9ZRv3aHXcJPSgqwoCAxCFFdOqG3GTGlX4bl5G6/PnfOYvQW/QaCPRYfPXvMmm+zYr7Ng7k2F+bbXJhvClWBuj8Bwv95v65S+4VQRqwdV46PhygIxgTg6kL0hm/DVlPu1yXHZqJ32TOQ06YhcBm8NOGebxo+5tpcmG9zYb7NhfmmUBWu9yh1bX3YfaJb03bHzAxd/j1S8wFYWg5q2txTPx7Q31W442ucuTDf5sJ8mwvzbR7MNYWyUJ3nta3WqTmen5eoW6wRNdpdZrwpkyEk5YfM9xHhiK9z5sJ8mwvzbR7Mtbkw3z5BLZoZDa6++mq8/vrrAIA333zzvEUziqJgy5YtAIDo6GhMmTLFyBADKiHBmJW/4uLiDLlOMLV0u/CHrcf82qdnxuH3d8/CuMSoIER1GU58APzfJ4Huk/59874F28LvwTbEC64Z8k1nMN/mwVybC/NtLsw3hQqj7k+A8Hrey4qK8kPtmraVV2YiKdGgovxTFcBLnwLaa/z78m+CtPJ5xEaF9gIB4ZRvGhnm2lyYb3Nhvs2F+aZQEa73KE9v136+nxRtw8qr82Cz6PBl6s7V2uPYTDim3wyInLI2XHyNMxfm21yYb3Nhvs2DuaZQEorzvOpbe1HX3q9pK5k5HgkJ8SMPRPYCtes1TZbpHzP0Xs0M+DpnLsy3uTDf5sFcm4tZ821IqZDH40FFRQUqKirgcrn8+gcGBvDNb34T48aNQ2RkJCZPnoynnnrKiNBGLD8/H4WFhQB8RTNHjhzxe8yaNWvQ0NAAAFi6dCksFtYqkb+XPzgOj6xq2j573Xi8/OXrwqdgZs+LwF+X+hfMWKOAO14AFj8KmLRCkYiIiIgoWLZXt6KlW3svftvMscZcfN9LwJ8Wn6dgRgAWPALc/RIQ4gUzRERERERmMuCR8coHJzRtH7sqU5+CGc+A7x7hbFfczYIZIiIiIiIT23yoWXOcHGPHtLE6TeQ8uh3obdG2Tb5Vn3MTERERUVgxpHrjtddew1133YXExEScOHHCr/+2227D+vXroaq+goFDhw7hwQcfxOHDh/H0008HNLZDhw6hqanp9HFXV9fpn5uamvDWW29pHr9gwQK/c3zuc5/Do48+Crfbjcceewy33XYbpkyZArfbjR07dmDjxo0AgIyMDNx8880B+XdQeJMVFf96V7vLzMqZY/HjFVODFNElkr3AhkeBd/7g3xefBXziX0D6NOPjIiIiIiIivP5hg+Z42tg45Kc6AntRrxsofwTY9Uf/vsgEYOWfgIIbAxsDERERERFdsrX7T6Kz36Npu2t2lj4nP7QGGHBq22Z+Up9zExERERFRWDq3aGbRpBSIoqDPySte1x6nTweS8vQ5NxERERGFFUOKZsrLy6GqKm699VbY7XZNX2lpKcrLyyEIAjIzMzF79my89957aGhowDPPPIO7774b119/fcBi27RpE7Zs2XLevsOHD+Pw4cOatvMVzeTk5ODBBx/EU089hf7+frz44ot+j8nIyMDDDz+MyMhIXeIOFR0dHQE5ryiKmu2fOjs7oShKQK4VCrbVdOBEh3ar0VunJgbs96snob8D0eu+Cuvx7X59nszr0Lvs91DticBF/i1my7fZMd/mwVybC/NtLqGQb26bTucTyPfPofC8vxz9bhnrDmh3giyelBDQ35XQ3YiYtV+BpWmPX583dTp6S/4AJTbzovcIwRau+aZLx1ybC/NtLsy3uQQ737w/oQsJx3uUv2+v1RxfMz4OcZIbHR3uEZ875r2/wnrWsSfzevQgLqTvDUJBsF/jyFjMt7kw3+bCfJtHKOSa9yh0IaE2z6vH5cU7tW2atmvGResTp+JF3MH/4Ow9M/tzizDA+48RC4XXOTIO820uzLd5MNfmEgr5DoV7FEOKZnbv3g1BEHDDDTf49f3lL38BAEyYMAHvvfceHA4HOjs7cf311+PQoUP405/+FNCiGb1cddVV+NWvfoW1a9di9+7daG9vh8ViQXp6Oq699loUFxf7FQyNBrIsG3IdRVEMu1YwvPyhdhLbhNQoFKZGhvy/WWo9DMfaL0HqOu7X1z/9s+id8zAgWYFL/HeM9nyTFvNtHsy1uTDf5sJ8U6gw8nkYLs/7TYdb0e8582GHJAA3TkgMWOzW49vhKH8Q4kC7X1//lE+gd94PAIv9ku8Rgi1c8k0jx1ybC/NtLsy3uTDfFCrC7R6lprUPexq6NW23TU/R5d8hdp2A5ZzFtwYK7+Df6mXga5y5MN/mwnybC/NtHsw1hZJQm+e1vaYdXkU9fWyVBFw1zqFLnNYTOyH2awty+nOLofDvUXd8nTMX5ttcmG/zYK7Nxaz5NqRoprnZt41ifn6+pl1RFGzatAmCIOD++++Hw+EAAMTFxeGrX/0q7rvvPuzcuTOgsd1333247777dDlXSkoKPvvZz+Kzn/2sLucjc2jqcmFbrVPTdvuMVAiCTluNBoitugyOTd+G4OnTtKuiDT0LfgrX5I8FKTIiIiIiIvrI2opWzfE12XFIirZe4NEjoCqI/OBZRL37GwiqdkUSVbKjZ8FP4CrkPQIRERERUShbtbdZc5wUbcWCfH1WAIyofBUCzkyGU2wOuPKW6HJuIiIiIiIKT+fOl7pyXCyibZIu57ZVrdUce1OmQInP1uXcRERERBR+DCmaaW31TdKJjIzUtO/ZswddXV0QBAElJSWavqlTpwIAjh/338GCaDT5z/4WnLVoAqKsIooLk4MX0FBUBVHv/RZRu57265KjUtG97A/wps8MQmBERERERHS21l433j3aqWlbNln/ew3B1YWYDd+CvX6TX58cm4Wupb+HnDJZ9+sSEREREZF+BjwySs8pur9lagoskjjyk6sK7Ide0TS5Jq4ALBEjPzcREREREYUlWVGx/Zyimbm58fqcXPHCXluuaXLlL9Pn3EREREQUlgwpmrHb7fB6vaeLZz7y9ttvAwAyMzMxfvx4Td9Hu86YcfufcCJJ+lT3n0sUxYsejxYeWcFr+7Urty2bkoLYSFuQIhqCqxvR678OW+1Gvy5v+kz0lDwLNSYNl/qsMEu+yYf5Ng/m2lyYb3NhvilUBer+BAjP5/2Gwx3aAn2biEUTk3X9PUktBxFdei+kzmN+fe6cG9FX9GvAHnfJ9wjBFo75psvDXJsL820uzLe5MN8UqsLpHmXjwVb0uM58JycA+NjMdF3+DZajOyB1N2raPFM+HtDfz2jC1zhzYb7Nhfk2F+bbPJhrCmWhNM/rYFM3Ovq9mrYbCpL0uQdpeAdif7umzTthOe9BdMLXOXNhvs2F+TYP5tpcmG8fQ4pmxo8fj4qKCrz77rtYvHjx6fY33ngDgiBg/vz5fmPa231vXFNSUowIkS5TQkKCIdeJi4sz5DpGKztwEq09Hk3b5+dPQEJCbJAiuoi2GuCVu4DWw/59Mz8FS8n/IN5i1+VSozXfdH7Mt3kw1+bCfJsL802hwqj7EyA8nvflhw9ojounZmBMqo47zez5F7Dm64B3QNsuiMDC78E29xuwjZIPW8Ih36QP5tpcmG9zYb7NhfmmUBFO9yivH6jQHM+fkIIp2RkjOudpm17XHqdNQ+zEeYAg6HN+k+FrnLkw3+bCfJsL820ezDWFklCa57XrPe0iwwWpMZiWo9M9yLZzFgPOmIG4nCv0OTf54eucuTDf5sJ8mwdzbS5mzbchs1cWLlwIVVXx1FNPobKyEgCwevVqvPXWWwCAZcv8tz88cMA3uScjQ6c3w0Qh6H/f1a7GPCsrHpPHhGDBTNVG4I8L/QtmBAlY+gRwy9OATgUzREREREQ0clWnunGgoUvTtnJmpj4n9wwAbzwAvH6vf8FMVBLwqVXA/G8Bo6RghoiIiIhotKto7MKe405N293XZOlz8r52oHKNtm3mp1gwQ0RERERkcpsOaYtmFhWm6nNi2QtUrta2Tb5Vn3MTERERUdgyZKeZ+++/H88//zyam5sxdepUJCQkoKOjA6qqIjMzE7fffrvfmPXr10MQBEyfPt2IEIkMV9/ai61VrZq2T14zPkjRXICqAjt+B2z8EaAq2r7IRODOvwE5/jtFERERERFRcL32YYPmOC3WjuvykkZ+Yucx4KXPAI0f+veNvcp3jxCnU3EOEREREREZ4l/vHdUcp8XasXiSThPW9r8CyK4zx5INmH6nPucmIiIiIqKw1OjsR+VJ7cJfiyel6XPyo9uAvjZt25Rb9Tk3EREREYUtQ4pmCgoK8I9//AOf//zn0dvbi/b2dgBAfHw8XnzxRdhsNs3jm5qasGHDBgDAokWLjAiRLlNHR0dAziuKomb7p87OTiiKcpER4eevb9drjmMjLLh+XETAfqeXzNOP6I0PwXZktV+XN3kSem/+I5TYcYAO8Zoh33QG820ezLW5MN/mEgr5Nmr7eAovgXwvHQrP++FSVBWrdh/XtBVNSkJXp3NE57Uc3YLosgcgDvifZ2D6Z9A///uAYtPlHiHYwinfNDLMtbkw3+bCfJtLsPPN+xO6kHC4R+lzy3htt7bofsXUFHR3dY44RgBwvP9XzZeR7tyb0OsSAFf43zcYJdivcWQs5ttcmG9zYb7NIxRyzXsUupBQmee1Yb92l5nYCAtyYvWJL2r3v2E/69ibOhXdQsKo+O4iVITC6xwZh/k2F+bbPJhrcwmFfIfCPYohRTMAcMcdd+CGG25AaWkpmpqakJGRgVtuuQWJiYl+j923bx/uvvtuAMCyZcuMCpEugyzLhlxHURTDrmUEt1fB6+fcAC6fkgyraNzv9GLE7kbErv0yLC0H/fpc+cvQvfiXgDUKCFCsoy3fdHHMt3kw1+bCfJsL802hwsjnYSg/7z843oWmLremrXhS4uXHqyqI3PV7RL33WwhQtV2WCPQsfByuiSt8DSH6OxmpUM436Yu5Nhfm21yYb3NhvilUhMM9ytqDzeh1nxknCsAtU5N1iV1qOQhLS4Wmrb/wDv59jhBf48yF+TYX5ttcmG/zYK4plITKPK+WbpfmeEp6NARVGflXDIoX1upyTZMrbxn/BgOMr3PmwnybC/NtHsy1uZg134YVzQBAamoq7rnnniEft2TJEixZssSAiIiCY3NVOzr7vZq2lTNSgxSNlqVxF2LXfQVif7umXYWAvmu/if4rvwwIQpCiIyIiIiKioaytaNUc5ydHYkJq9GWdSxhwwrHhG7Ad3eLXJ8dlo2vpHyAnT7yscxMRERERUfCt2qtd4GtOTjzSY+0XePSliah4WXMsx2TAk3m9LucmIiIiIqLw5fJqVzaPtIq6nNfa8C7EAe18J1f+Ul3OTUREREThzdCiGSLyeWWP9kuo2VmxyE6MDFI0g1QVEQf+heitP4GgaAt6FFsMupc8CU/2wiAFR0REREREw+HyKth4WPuF0NLJyZd3Mu8A4l7/FCytlf7XyV2CnsX/DdXuuLxzExERERFR0FU29aLyVK+mTbcFvrwu2I+s1jS5Cj8GiJI+5yciIiIiorB1btGM3aJP0Yyteq3m2JMyFUpcli7nJiIiIqLwxqIZIoNVt/RhT0O3pu32YO8yI7sRs+VHiKj4P78ub3wOukueg5yQF4TAiIiIiIjoUmyt6UCv+8w2ugKA4sKkyzpXRMXLfgUzqiCi77pvo3/mF7gDJRERERFRmFu175TmOM1hw/U58bqc21a7HqKrU9M2UHi7LucmIiIiIqLw5pYDUDSjeGGvWa+9Tv6ykZ+XiIiIiEYFFs3QiEhSYFYEE0Xxosfh7LX9LZrjpGgrFk1MhiQF598o9DYjpvReWE5+4NfnyV6I3uInAXscArn222jON/ljvs2DuTYX5ttcmG8KVYG6PwHC53m/rrJNczx7fBzGxEdd+olUBZH7/qZpUiKT0bvsKXgzrwvo/UEoCJd808gx1+bCfJsL820uzDeFqlC+R+lxeVF2zv3DyhlpsFn1+eowsvIVzbFn3BwICdmj/l4iEPgaZy7Mt7kw3+bCfJsHc02hLFTmeZ219hcAIMImjTg2S8NOiAPtmjbvxOUBvS8zK77OmQvzbS7Mt3kw1+bCfPuwaIZGJCEhwZDrxMXFGXKdQOtze7H2YKum7RNXZyE1+fJWfh6xht3A/30S6G7075v7DVgXfR/xovE3j6Ml3zQ8zLd5MNfmwnybC/NNocKo+xMgNJ/37b1ubK91ato+Nnv85f1eDpcBzjpNk3jHX+DIvWEEEYavUMw3BQZzbS7Mt7kw3+bCfFOoCOV7lDXvHEW/58zqzpIo4HPzJyAhNmLkwXQcBY5v1zRZZ99j6O9jNONrnLkw3+bCfJsL820ezDWFkpCZ5yVqpyzGRUeNPLatG7THGVcgLnvGyM5Jw8LXOXNhvs2F+TYP5tpczJpvFs0QGeiNvY3odnlPHwsC8InZWcEJZu+/gdVfA2SXtt0SCdz6e2Dq7cGJi4iIiIiILkvpvkZ4FfX0sd0iYunU9Ms72Tt/0B6nTQVy5o8gOiIiIiIiChWqquJf7x7TtC2elIo0PQpmAGDPvwCcuTdBRBxQuFyfcxMRERERUdgb8Gq3mrFbR7igr+wFDq3Rtk25bWTnJCIiIqJRhUUzRAb633O+hFowIQXjEqOMDUL2Aht/COx82r8vLgv4xP8CGdONjYmIiIiIiEZs1YcNmuObJqfBEWG99BOdOgjUbdG2XfsVX9U/ERERERGFvT3Hnag82aVpu/sanRb4UhRgz//+f/b+O07O8r4X/r8zs1111ZDoWICRKAJs4xIbGx83MA7YYFywMbaTE9s47XF+SfxLOXlO8qT45JzHiUuae02MewE3jI2DWxxAFIkmAUIgUEFaraSd2d2Z+/mDsNK9K61W0rTd6/1+vfJ66bpm7nu+u5/ZO1ye+ztXfu7M10Z09tbn/AAAwLRX3mfXy4iIns7ikZ3wwR9H7NmWnzv90iM7JwAAM4qmGY7I9u3bG3LeYrGY2/5pYGAgarXaJEe0v7s27YrbNw7k5i49Y2HDfof7UyjviFnX/2Z0bvjxhMdGjn1O7L7wQ5H1LIxoYk0RMzNvDkze6ZB1WuSdlnbIu1nbxzO9NPK/rdvhfT+ZDduH4tYNO3JzLzt13mH9Tvpu+rvo3mdc610UA8e+uOnrhFZq97ypH1mnRd5pkXdaWp239QkH0q5rlE/8+P7c+Oh53XHm4o661Nvx0I9jzsDDubmdJ18a1YTWE/XW6msczSXvtMg7LfJORztkbY3CgbTLfV67hiq5cW24ckS19d36b7nPNUaXnBWDMS+pzzWaqR2uczSPvNMi73TIOi3tkHc7rFE0zXBEqtXqwZ9UB7VarWmv1SjX3ropNz5qTlc854S5Tfu5StvuiTnfekeUdm6Y8NjQWVfF7l/5/0eUOiPa4Pc8E/Jm6uSdDlmnRd5pkTftopnvw3Z733/rzs25cX9vR5x33JxDrrGwZ2t03f2V3Fz5jDdGtdAea4VWabe8aRxZp0XeaZF3WuRNu2jHNcpgeTS+vXZrbu7VZy2OrFaLelTbd9e/5caji1bE8ILTkl5P1JtrXFrknRZ5p0Xe6ZA17aRd7vMqj+Qf6ywdQW210ei8/9u5qcrJr/B310Suc2mRd1rknQ5ZpyXVvDXNQBMMlkfjO2vz24C++qwlUSoWmvL6Xeu+E3O+/3tRGNmTm8+KXbHrRf8zKitf25Q6AACA+suyLK5bk7/p7WWnLYyOUvGQz9Vz1+ejUB3ee+5iVwyd8cYjrhEAAGgP31qzNSqje79FsFQsxKvOWFyXcxfKO6Jr/Xdzc+UVr40oNOezEAAAYHrYd00SEdF9GJ9nPKVz48+iWM7vKFM5+aLDPh8AADOTphloguvWbI3yvh9CFSIuPbM+H0JNKqtF3y8+EH3/8fcTHqr1LY6dF344Rped2/g6AACAhrlz067YuKOSm7tw5aJDP1G1Er13fDY3VTn14shmNWHtAgAANFyWZfHl1fldKl90cn8smtVVl/N33/v1CU34lVN/tS7nBgAAZo7h8U0zHYffNNN9/3W58ciSM6M297jDPh8AADOTphlosCzL4kvjPoR64cn9sWh2fT6EOpDC8K6Y/f3fi+7135vw2MhRq2Lwwg9HbfbShtYAAAA03vhdZo7v74nTl8465PN033ddFPdsyc0NrXrrEdUGAAC0j9WP7or124Zyc69ZtaRu5+9Zc21uPPy0l0TW21+38wMAADNDZTTLjbs7D7NppjoyYbfLYbvMAACwH01vmlm9enX8+Mc/jvXr18fg4GBUq9VJn18oFOKjH/1ok6qD+lv9yMQPoS47+6iGvmZxx4Mx97p3RMcT9014rHzaa2LXi/4ioqO7oTUAAACNN1KtxXfveSI3d9HKRVEoFA7tRFkWvas/npsaPubZUV288khLBAAA2sT4XWaOnd8dzzp+bl3OXdpyV3RsXZObK6+8oi7nBgAAZpZKNb/TTFfp8JpmOh/5eRTL2/PnPvnCw64LAICZq2lNM/fcc0+87W1vi5/97GdTPibLMk0zTHtfXP14bnx8f0/dPoTan86Hboo53/3tKFZ25uazQil2P/+9UT7r6ohDvYEOAABoSz95YCAGhkZzc69YsfCQz9Px6H9Ex5a7cnNlu8wAAMCMMTA0Gt+/Z1tu7jVnLYlinT4vGL/LTHX2shg59nl1OTcAADCzVEbzTTM9HYfXNNN9/7dy45ElZ0Vt7nGHXRcAADNXU5pmHnnkkTj//PNj69atkWVPbq84e/bs6O/vj2LxMLdXpC2USqWGnHf8+2K6vk+e2DMSN9yb/9bny84+Kjo7GvCnl2XRfcu/RO/Nfx2FLL+4rPXMj90XfihGj/+VaExiR2am5M3UyDsdsk6LvNMib9pVo9YnEe37vv/22vxNb2cfMydOWDjrkM/Td/sncuPqvOOjuvylUSq24wqi8do1b+pP1mmRd1rknRZ5067aaY1y3drHY7iajY07S4W4ZNXS+tQ4Wo7ue7+Wmxpe+doodXYd+blxjUuMvNMi77TIOx2ypp21y31e45tmers7Dr226kh0rf9ebmrk1Fc2dB3Gk1zn0iLvtMg7HbJOi7yf1JSmmf/n//l/YsuWLVEoFOLXfu3X4vd+7/fi1FNPbcZL02D9/f1NeZ158+Y15XXq7Qu3r4uRfT6E6uooxpuff2r0z6rzB0UjQxFf/62IO74w8bElp0fx9Z+NOQtOqu9rNtB0zZvDI+90yDot8k6LvGkXzVqfRLTH+35gaCR+tG57bu61551w6L+HJx6IWPfd3FTpue+K/oWLjrTEGaMd8qY5ZJ0WeadF3mmRN+2iXdYoWZbFV+9YnZt7xRnLYvkxS+rz4nd8MaKyMzfV+9y3R28Tf/6UuMalRd5pkXda5J0OWdNO2uE+r1oty91LFRGxeMH86O+fc2gvcv8NEeX8ZyR9z3hD9FmHNJ3rXFrknRZ5p0PWaUk176Y0zXz729+OQqEQV111VfzzP/9zM14SWq5Wy+Jzv9iQm3vlmctiQb0bZgY2RvzrlRGbbpv42Ipfjbj0HyK6Z9f3NQEAgJb79p2bYnifb2PrKhXjlWcuO/QT/eJfImKfD6i650ac86YjLxAAAGgLmwbKsW7L7tzcG887vn4vcOun8+OTXhjRf2L9zg8AAMwY43eZiYjo6TiM3WHWfDU/PvrciP4TDq8oAABmvKY0zTz66KMREXHVVVc14+WgLdy8bms8tG1Pbu7KZ9fxQ6iIiId+GvGFN0fs3jLxsQv+OOL834soFOr7mgAAQFv48i2P5MYXnLY45vcdYpN+eWfELZ/Kz53z5ojuQ/xGNwAAoG1t2zWcG3cUC/Gcpy2oz8m3PxSx/of5uXPeXJ9zAwAAM055pDphrruzeGgnqY5ErP1Gfu70Vx9BVQAAzHRNaZrp7++PzZs3x/z585vxcjTR9u3bD/6kw1AsFnPbPw0MDEStNvGbBtrZx398f2588qK+eNrc+v3Ouu74bPT98M+iUBvJzWdds2P3y98fI097ScSOHXV5rUabCXkzdfJOh6zTIu+0tEPezdo+numlUeuTiPZ43+9r085K/PyBJ3JzLz1l/iH/Drpv/Vj0DQ+OjbNCMXae9vqoNfB3OR20W940jqzTIu+0yDstrc7b+oQDaZc1ysYtO3LjOT2l2FGnzw96fvbR6N1nXOueGwPLnh+R+Jqinlp9jaO55J0WeadF3uloh6ytUTiQdrjPa/NgZcJcefdgbK8OTfn1Oh66KeYM5X+WgWNflPxnG83SDtc5mkfeaZF3OmSdlnbIux3WKE1pmnnmM58Z1113Xdx7771xzjnnNOMlaZJqdWL3fyPUarWmvVY9bNk1HD+6L38D22WrltTnIlMdjlk//vPovfNzEx+ad2LsfOU/RXXByRHT6Pc13nTLmyMj73TIOi3yTou8aRfNfB+2+n3/rTsfz43ndJfieSfOPbSaatXovu0Tuanhk14SI7OPntbriUZodd40j6zTIu+0yDst8qZdtMsaZWBPfqeZOd0d9amtVo2uNdfmpiqn/mpUC53WFA3kGpcWeadF3mmRdzpkTTtph/u89lRGJ8x1FLJDqq333m/mxiNHrYqRWT7baBXXubTIOy3yToes05Jq3oe4t+Hh+a3f+q3Isiz++Z//uRkvBy331ds3RzXbO+7tLMaFKxce8XkLe7bGvK++eb8NM8PHnx87rvjKkw0zAADAjJVlWVx319bc3EuevjC6Og5tid/14A+itHNDbm7o7LcdcX0AAEB72VXJfwA6p7tUl/N2bvxplAYfzc2VV7y2LucGAABmpsroxC8c7ioVpn6C6kh0rftubmp4+YVHWhYAADNcU5pmXvrSl8Yf/MEfxI033hjvfOc7Y2RkpBkvCy0xWsviq3dsyc29YsXCmN19ZBs7lTbfEfO/cEl0bvrlhMf2nPsbsfPij0TWPfeIXgMAAGh/92zeEw88Uc7NvXLlokM+T8/qj+fGo4tPj9Flzzyi2gAAgPazs5z/Jue5PUf2ecVTetbmd5kZXbQiqotPr8u5AQCAmWl800x3RyEKhak3zXRu/GkUKzvy5zz5onqUBgDADFaf/1X8ID71qU/FihUr4nnPe1788z//c3zjG9+Iyy+/PE477bTo6+s76PFXXXVVE6qE+rh5/Y54fHA4N/eas446onN23/O1mP2D90ahWsnNZx09Mfjiv4rhU3/1iM4PAABMH9etye8yc/Tc7jjrmNmHdI7SljXR9cjPc3NDq94acQgfTAEAANPD4LidZmbXYaeZQnlHdK3Pf7tzecVrrSkAAIBJTWyaObTv/O5ed31uPHLUqqjNPeaI6wIAYGZrStPM1VdfnesI37RpU3zgAx+Y0rGFQkHTDNPKl1Y/nhuvXDorViyddXgnq1Wj76fvi75bPzLhoeqco2PnRf/oW9sAACAho7UsvrN2W27uwpULo3iIN6b1jttlpta3OCqn+CY2AACYiQbH7TQzpw47zXTf+/UoVPd+gVhW7IqKL/gCAAAOYriab5rpKh1C00x1JLrW5Zv3h+0yAwDAFDSlaSYiIsuyZr0UtMwjO8rx0wcGcnOXrVpyWOcqlAdiznd+O7oe/vGEx0aOPi92vuIDkfUtOqxzAwAA09N/PDQQ2/aM5OYuXHlo64LC7i3Rfe83c3NDZ14ZUeo+4voAAID2M36nmbl12GmmZ821ufHw8pdG1tt/xOcFAABmtvIR7DTTufGnUazsyM1Vll9Yj7IAAJjhmtI088ADDzTjZaDlvnrHlti3PWx2dyleftrCQz5Padu9Mfe634jSwIYJjw2d+abY/fw/jih1HkGlAADAdHTdmq258cqls+LEBb2HdI7eOz8Xhdo+3whd6oryGW+sS30AAED7Gb/TzOzuI/t4sLTlrujYuiY3V17x2iM6JwAAkIbKaP6Ltw+laab7/uty45Gjzo7a3GPqUhcAADNbU5pmTjjhhGa8DC1QKh35t5HtT7FYnHTcjkaqtfjaHVtyc686Y0nM6uk6pPN0rvtuzPrO70ZhZHduPit2xp4L/mcMn/GGaMxvvXWmY94cPnmnQ9ZpkXda5E27atT6JKI93vd7hqtx4/3bc3OvPH3Jof3co+XoufNzuanh014dxdmHt0PmTNUOedMcsk6LvNMi77TIm3bVLmuUweH8TjPz+zqPqLbetV/MjatzjonaCS+IUnGmfXrRHlzj0iLvtMg7LfJOh6xpZ+1wn9e4jWaiu7M4tbqqI9G1/ru5qZFTX9nQdRf75zqXFnmnRd7pkHVa5P2kpjTNMHP19/c35XXmzZvXlNc5Et9Y/Wg8sWckN/e280+J/v45Uz/JLZ+O+Oa7J87PWhKF1306Zh3/nJh1hHVOB9Mhb+pH3umQdVrknRZ50y6atT6JaM37/sZbNkZ5ZO+nSaViIV733OXRP7t76ie59TMRQ/ndarrP/+3obuLvbjpynUuHrNMi77TIOy3ypl20yxpl90j+m5yXLpx3+LWNlCPu/VpuqnTum6J/4aLDOx+HzDUuLfJOi7zTIu90yJp20g73eRW7dubGs3u6plbXfd+PqAzkpvqe8from+/zjVZznUuLvNMi73TIOi2p5q1pBurksz9/KDc+76QFccpRh9Aws+eJiOt/f+L80edEvO6zEfNsJwoAACn7yq2P5Mbnn7IoFh1Kw0yWRfzsH/JzJ70w4qjT61AdAADQrnYOjebG83o7D/9kd38zopy/US3OvvLwzwcAACSlMpLfCbO7Y4o7xaz5Sn58zDMj5h9fp6oAAJjpNM1AHdy/eVf8bP0Tubkrn32IC7NffjRiZE9+7qzXR7zq/RGdvUdWIAAAMK1t3lmOm+/P7xDz6nOPPbSTPPjjiMfvzM89511HWBkAANDOsiyLnUMjubm5PUfQNHPrp/Pjk14Y0X/C4Z8PAABISmW0lhv3dBYPflB1JGLtN/Nzp7+6jlUBADDT1bVp5sUvfnFERBQKhbjhhhsmzB+O8eeivWzfvr0h5y0Wi7ntnwYGBqJWq01yRGt9/KYHcuP+vo54zjE9U//9jJZj3s/+MfZdBg6f8srY/aK/ithVjohy3WptR9Mtb46MvNMh67TIOy3tkHezto9nemnU+iSi9e/7f/3Fo1HL9o5ndZXimcu6DulnnvXjv4uufcbV+SfFzsXPimjg7226anXeNI+s0yLvtMg7La3O2/qEA2mHNUp5pBrD1XHzI3ti+/ZswnMP+po7H45563+Ym9v19NfEiDVFQ7X6GkdzyTst8k6LvNPRDllbo3Ag7XCf1/adu/PHZtWD1tXx4A9jTnlHbm7HMS+KzFqkJdrhOkfzyDst8k6HrNPSDnm3wxqlrk0zP/zhDyPiyUaX8fOFQiGybOr/A/xTzx9/LtpLtVo9+JPqoFarNe21DlV5pBZfv2Nzbu5Xz1gcpUI25Zq71341invy3xq9+9x3RDXR/yfUznlTf/JOh6zTIu+0yJt20cz3YbPf99+8K7/mePEp/dFVnPrPXNzxYHSuz38hxdBZb4lqLYsIf78H4zqXDlmnRd5pkXda5E27aIc1yo49wxPmZnUUDqu27juvzb9m99won/iSCH9vTeUalxZ5p0XeaZF3OmRNO2mH+7wqI/n5zuLB1ye99+Z3mRk56pwYnbXUWqRNuM6lRd5pkXc6ZJ2WVPOua9PM+eefv98mlwPNw0zwvXu2xWAlf/F49VlLpn6CLIve2z6amxo+9rlRXbyyHuUBAADT3P1b9sS9m/fk5i5cueiQztF7+yejEHu/yKLWNSfKp72mLvUBAADta7A8OmFuds9hfDxYq0b33V/MTVVOvSSio+dwSwMAABJUHs1/gXB3Z3HyA6rD0bX+e7mpyskX1rssAABmuIbsNDPVeZgJvrT68dz4uSfOi2PnT/1Dos4NP4qOJ+7LzQ2d82t1qQ0AAJj+rl+b35Vy8ezOeMZxc6d8fKGyM3rW5m9uK5/+uoiuWXWpDwAAaF/jv/Srr7MYHcVD/6K7zo0/jdLgo7m58orLj6g2AAAgPZXxTTOlyZtmOjf+JIqVgdzcsKYZAAAO0UFatYHJ3P347rhz0+7c3GWrDmGXmYjovTW/y8zoglNi5PgXHnFtAADA9FfLsvj22m25uVesWBSlQ7jJrXvNtVEY2btTTVYoRvnMq+pWIwAA0L7G7zQz53B2mYmInrVfyI1HF62M6pIzDrsuAAAgTcPVcU0zHZN/3tF9//W58chR50RtztF1rwsAgJlN0wwcgS/fvjk3Xjy7M56/vH/Kx5e2rImujT/JzQ2d/baIwqF/yxsAADDz3PLwYDw+OJybu2jloqmfoDYavbd/Mjc1vPwVUZt7TD3KAwAA2tz4nWbmdJcO+RyF8o7oWve93JxdZgAAgMMxYaeZjkluX6wOR9f67+aPP+WiRpQFAMAMp2kGDtPu4Wp8e83W3NylZy6JjkP4xufe2/K7zNT6FkXl1EvqUh8AADD9XTduzXHK4r44ZXHflI/vWv/9KA0+kpsbWnV1PUoDAACmgZ112Gmm+56vRaG2t5k/K3ZF5ek+ywAAAA7d+KaZrkmaZjo3/iSKlZ25ueHlr2hIXQAAzGyaZuAwXb9ma+wZ2buQKxUiXn3WkikfX9y1Kbrv+2ZubujMN0d0dNetRgAAYPoqj9TihnufyM1duGLhIZ2jd/XHc+ORJWfF6NJzj7g2AABgeqjHTjM9a7+YGw8vf2lkPfOPpCwAACBRh7LTTPd91+XGI0vPidqcoxtSFwAAM5umGTgMWZbFl1Zvzs29YHl/LJnTNeVz9Nz+qSjU9n7DW9bRE+UzrqxbjQAAwPT243XbY/fw3hvcChHxihWLpnx8x+O3R+emX+bmyqveGlGY+u6YAADA9DY4fqeZ7kPbaaa0+c7o2LomN1de8dojrgsAAEjT+KaZngM1zVSHo+uB7+WPPfmiRpUFAMAMp2kGDsMdm3bFfVv25OYuWzX1XWYKw7ui587P5+bKKy6PrLe/LvUBAADT33Vrt+bGzzp+7iE26n8yN67OOioqJ7+iLrUBAADTw/idZub2HFrTzPhdZqpzjo6RY593xHUBAABpGh7NcuOuAzTNdD58cxQrO/PHLvcZBwAAh0fTDByGL92W32XmmHnd8ewT5035+O4110ZxeHBsnEUhhla9tW71AQAA09v2PSPxkwcGcnMXrZz6LjPFXY9H933fys2Vz3xzRGnqTTcAAMD0N1jJ7zQzu7s09YNHy9F979dyU5XTLosoHsI5AAAA9lEet9NM9wGaZrrvvz43Hll6TtTmHN2wugAAmNk0zcAhGhgaje/dsy039+qzlkSxUJjaCWqj0bv647mp4ae9JGrzT6xThQAAwHT3vXu2RbW299vWujuKccGpC6Z8fM+dn4lCbWRsnJW6o3z66+taIwAA0P4Gy4e/00zX+u9O+Gbn8orL61IXAACQpsr4ppnSfu63qg5H1wPfyx938isbWRYAADPcoe3BDuOUSo35NrFisTjpuJWuW/t4DFf33rzWUSzEq89eOuXfRee666M0+EhurnLuf2/Y73I6aOe8qT95p0PWaZF3WuRNu2rkf1M3+31//Zp8o/4FpyyIub1T3CVmtBw9d34+NzW84jVRnD31nWpS5zqXDlmnRd5pkXda5E27aoc1ymBlXNNMb+eU6+pd+6XceOS4X4lC/wmR7qcZreEalxZ5p0XeaZF3OmRNO2uH+7yGq/mmmd7uiWuUjg0/m9DAP3rqK5O+t6qduM6lRd5pkXc6ZJ0WeT9J0wxHpL+/vymvM2/evKa8zsFkWRZfuX11bu6iM5fF8mOWTPUEEas/lp875pkx9/SXRkx1p5oEtEveNIe80yHrtMg7LfKmXTRrfRLR2Pf9A1t3xx2bduXmXvfsk6b+8/3nJyPK23NT3ef/TnQ38fcz07jOpUPWaZF3WuSdFnnTLtphjbJ7JH9D2tGL5k+tru0PRTz877mpzvPe1tSfif1zjUuLvNMi77TIOx2ypp20w31ew6NZbryof97Eun6Y32Umjnt2zD9+Zb3Ko85c59Ii77TIOx2yTkuqeafZKgSH6afrtsX6rbtzc1c++/ipn2DDTyMevSU/97x3a5gBAADGfOXW/M6UC2d1xQtOmeIuMVkW8bN/yM8tf3HEktPqVB0AADCd7BwayY3n9kzx+/Ru+1x+3DMv4rRX1qkqAAAgVZXRfGN/d8e42xdHhyPu/lZ+buWljS0KAIAZr2U7zWzcuDEee+yx2LNnTzzrWc+K3t7eVpUCU/bZn2/IjU9eMjvOO2nB1E/wkw/mx/OPjzjtVXWoDAAAmAmyLIuvjmuaedWqo6OjNMXvvFj/w4gta/Nzz7mmPsUBAADTSq2WxWBlNDc3r69zCgdWI277bH7uzCsiOn2WBwAAHL7Rai1Ga/mdZno6S/knrb8xojKQn1t5SYMrAwBgpmtq08zg4GC8733vi0984hPx6KOPjs3fcccdsXLl3i0U//Vf/zW+/OUvx7x58+Jf/uVfmlkih2j79u0NOW+xWMxt/zQwMBC1Wm2SIxpv667h+M5dj+XmXn3m4tixY8eUji9uXx9z77ku9t1TZs+qt0Zl52D9ipym2jFvGkfe6ZB1WuSdlnbIu1nbxzO9NGp9EtG89/1tG3fGhif25OZecvLcKf9ss3/8d7HvLXDV/uWxc+E5EQ383cxE7XCdozlknRZ5p0XeaWl13tYnHEir1yiD5dHI8vejRVbZE9u3Vyc9d8dDP445Aw/n5naefElUrStaotXXOJpL3mmRd1rknY52yNoahQNp9X1euysT1yKVPYOxffveHTL7bv236N7n8dFlz4jBWp/POdpIO1znaB55p0Xe6ZB1Wtoh73ZYozStaea+++6Liy66KNavXx/ZPv8LfaFQmPDc5zznOfGmN70psiyLt7zlLfH85z+/WWVyiKrVyT9YqZdarda01zqQr6x+LPdtB90dxbhoxYIp19Vzy0eiEHuPr3XPjT1PvyyixT9XO2qHvGkeeadD1mmRd1rkTbto5vuwUe/7b925OTc+YUFPPH1xz5Req7R9fXQ+eGNubmjV1VGtZRHhb/RIuM6lQ9ZpkXda5J0WedMuWr1G2b67MuF5szoLB62r765/zY1HF62M4YUrfJ7RJlzj0iLvtMg7LfJOh6xpJ62+z2toeGTCXEdhn7qqlehc993c4+WTL/Q31OZc59Ii77TIOx2yTkuqeReb8SLlcjle+cpXxrp166Kvry9+//d/P775zW8e8PknnnhiXHDBBRER8fWvf70ZJcKkqrUsvnJ7/ua1l5+2MOb0TK3vrDC0LXrWfik3Vz79DRFds+pWIwAAML2NVGvxvXueyM1dtHLRfr9sYn96bv9kblzrnhflp19ar/IAAIBpZnDctziXChG9nZN/NFgo74iudd/LzZVXXF732gAAgPRURid+o3l3x97PQDof/kkUhwdzjw8vf0XD6wIAYOZryk4z//AP/xD3339/zJo1K3784x/H2WeffdBjLrzwwrjhhhvipz/9aeMLhIP46YMDsWnncG7uslVLpnx8zx2fi0J17ze6ZcXOKJ91Vd3qAwAApr+bH9gRA+XR3NyFKxZN6dhCeWA/jfqvj+jsq1t9AADA9DJYya8v5vR0HLQpv/uer0WhtvfzkKzYFZWnX9KQ+gAAgLSU99M009Oxt7G/+75v5R4bWfaMqM1e1vC6AACY+Zqy08yXv/zlKBQK8du//dtTapiJiFi1alVERNx3330NrAym5ku3PZ4bn3ZUX6xcOsVdYkYr0XvHp3NTlVMujtrspfUqDwAAmAGuu2trbnzOsXPi6HndUzq2Z82/RWF0aGycFUpRPuvNda0PAACYXgbL+Z1m5nSXDnpMz9ov5sbDy18aWc/8epYFAAAkanhc00yxEFEq/ldjf7USXQ98P/d45eQLm1UaAAAzXFOaZtauXRsRES972cumfMzChQsjImLHjh2NKAmmbNNAJf59/Y7c3GWrjjrot7E9pfuer0ZxaFtubuict9erPAAAYAYYLI/Gj8etO6a6y0zURqPn9k/lpoZPvtC3rwEAQOJ2jt9pprtj0ueXNt8ZHVvX5ObKK66oe10AAECaKuOaZro7imP3X3VuuDmKw4O5x4eXa5oBAKA+mtI0s2vXroiImD179pSPqVQqERHR2dnZkJpgqr56x+bI9hnP6irGy09bOLWDs1r03vax3NTwcc+P6qIV9SsQAACY9r5/7xMxUt278ugsFeIlT18wpWO71n0nSrs25eaGVr21rvUBAADTz67xO830TL7TzPhdZqpzjo6R455X97oAAIA0VUaz3LirY++ti933X5d7bGTZM6I2e2lT6gIAYOZrStPMU7vGPPjgg1M+5q677oqIiKVL/ccvrTNarcVX79iSm7to5aLo65r8g6WndD70o+jYfn9ubuhsu8wAAAB516/Zmhs//2nzY27P5N8C/ZTe1R/PjUeOOidGl55dr9IAAIBp6pB2mhktR/e9X8tNVU67PKLQlI8SAQCABIzfaabnqaaZaiW6Hvhe/rknX9SssgAASEBT/pfuc889NyIibrrppikf86lPfSoKhUI897nPbVRZcFA/Wrcjtu0eyc1dtuqoKR/fe+tHcuPRBafGyPEvqEttAADAzPDoQCVu2TiYm3vlykVTOrbjsdui87Fbc3NDZ19dr9IAAIBpbHDCTjMHbprpWv/dKFZ2jo2zKER5xWUNqw0AAEjP+KaZ7v9qmunccHMUh3flHhte/oqm1QUAwMzXlKaZyy+/PLIsi3/+53+ODRs2HPT573//+8cabN7whjc0ujw4oC+tfjw3XnXM7Dh5cd+Uji1tvjO6HvlZbm7onLdHFAp1qw8AAJj+vr02v8vM3J5SPO+k+VM6dvwuM9XZy3yQBAAARETErgk7zZQO+NyeNdfmxiPHPS9qc49tSF0AAECahqv5ppmu0pP3UHXf/63c/MiyZ0Zt9tKm1QUAwMzXlKaZN7/5zXHWWWdFuVyOF73oRXH99ddHlmVjjxcKhciyLP7jP/4jrrzyynjPe94ThUIhXvCCF8SFF17YjBJhgg3by/GLh3bm5g5pl5nbPpob1/oWR+XUV9WlNgAAYGbIsiyuW5Nvmnnp0xdGV8fBl+vFXZui6/7rc3Pls94cUTzwt0cDAADp2Dlup5m5B9hpprhzY3Rt/Elurrzi8obVBQAApKm8v51mqpXoeuD7ufnKye4XBACgvppyJ02xWIyvf/3r8fznPz8efPDBuPjii6Ovry8K/7Xjxote9KIYHByMSqUSEU/eNLR8+fL4whe+0IzyYL++PG6XmXk9HfHfTl0wpWOLg49G9335b0EYOuuqiFJ33eoDAACmv7sf3xMPPlHOzV24ctGUju25/TNRyPbeBJd19EZ55evqWh8AADB9DY7baWb2AXaa6Vn7xdy41j03hp/28obVBQAApKkyMrFppmvDv0dxeNfYXBaFGF7+imaXBgDADNeUnWYiIo4//vi47bbb4g1veEMUi8XYvXt3ZFkWWZbFli1bolwuj+0+c8UVV8QvfvGLWLJkSbPKg5zKaC2+cWf+255fdcaiJ7/hYAp6bv/kxJvXznhjXWsEAACmv/G7zBwzrztWHT374AeODEXPXZ/PTZVPe01kPfPrWB0AADCdDZbzTTP73WmmVo3ucU0zlVMviejwJWAAAEB9DVez3Li7oxhd91+Xmxtd9oyozV7azLIAAEhAU3aaecqCBQvis5/9bPzlX/5lfOtb34pf/vKXsXnz5qhWq7Fw4cI455xz4lWvelWceuqpzSwLJrjh3idiYNyHSa9ZddSUji0MD0bPXf+amyuvuNzNawAAQM5oLYvv3J1vmrlwxaKxXVkn03PPV6JYGcjNlVddXc/yAACAaW6wUs2N5+xnp5nOjT+J0q5Nubnyytc2tC4AACBNldH8TjOzSqPR9cD38885+aJmlgQAQCKa2jTzlBNOOCHe9a53teKlYUq+tPrx3Pi8E+bG8f09Uzq2+64vTNg2dOjst9a1PgAAYPr7+YMD8cSefLP+hSsXHvzArBY9qz+Rmxo+4UVR7X9aHasDAACmu8FKfr0xZz87zfSsvTY3Hl20MqqLT29oXQAAQJrGN82cPXLbhHushpe/otllAQCQgJY0zTBzlEoTv5WsHorF4qTjRrpvy+5Y/ciu3Nxrz1k2tZ+1OhK9t38yNzWy/OVRWPC0aMxvamZoZd40n7zTIeu0yDst8qZdNWp9EtGY9/23796WG5+xbHY8bfHsgx7X8eCPo2P7utxc5Zy3N/TnT43rXDpknRZ5p0XeaZE37aqVa5TKaC0qo1lubn5fV66mwtD26Fr/vdxzhs94nbVFm3GNS4u80yLvtMg7HbKmnbX6Pq/han6N8uyhH+fGo0c/KwrzjnaPVZtznUuLvNMi73TIOi3yfpKmGY5If39/U15n3rx5TXmdiIhv/OiR3HjxnO649FlPi87SFC4Sd3wxYjB/fNeL3hNdTfo9zRTNzJvWk3c6ZJ0WeadF3rSLZq1PIo78fb+rMho33vdEbu61zzphaj/DNz+dHy8+LeaselVEoXBENXFgrnPpkHVa5J0WeadF3rSLVq5RNg+WJzznuKMWRv/s7r0T934hojq8d1zqjr7zroq+Pp9ptDPXuLTIOy3yTou80yFr2knL7/MqbRz7Z3cMx5m7f5p7uHPV5U1dR1EfrnNpkXda5J0OWacl1byb3jRTq9VizZo1sX79+hgcHIxqtXrQY6666qomVAYRuyuj8ZVb800vr3/WcVNrmMmyiJ98ID937HkRx51XxwoBAICZ4Dt3PhblkdrYuKNYiIvPWnbwAzffHbHuhvzcc96pYQYAAMjZOTQ6YW5OT2d+4tZxDfkrLo7oW9DAqgAAgJRVRvd+LvKC4h3RU9u9z6OFiBW/2vyiAABIQtOaZvbs2RN/8Rd/ER/5yEdi27ZtUz6uUChomqFpvr760dhV2ftBUrEQ8frzjp/awQ/dHLHptvzc895dv+IAAIAZ46u35Zv1X3jq4li47zc+H8jP/zE/7l0Qcdbr6lgZAAAwEwwMjeTGvZ2l6OrY5wvCHr0t4rE78ged86bGFwYAACSrPLL3y7UvKv08/+Dxz42YO4UvFwMAgMPQlKaZXbt2xQUXXBC33HJLZFnWjJekSbZv396Q8xaLxdz2TwMDA1Gr1SY54shlWRafvHl9bu75T+uPvqwc27eXD3r8rB/9v9G1z7g67/jYedSvRDTodzSTtCJvWkfe6ZB1WuSdlnbI29bs7E+j1icR9X3fbx4cjpvv35qbe+mp8w9af2Foe8xb/fnYd0+ZoTPeGOVd5Yg4+JqFqWuH6xzNIeu0yDst8k5Lq/O2PuFAWrlGeXRL/rXndJdy9fT+7KPRs8/j1TnHxM7+VT7TaEOtvsbRXPJOi7zTIu90tEPW1igcSKvv8xrc8+RnGd0xHC8t/mfusT1Pe3lUrEemhXa4ztE88k6LvNMh67S0Q97tsEZpStPMX/zFX8R//ueT/6H7nOc8J/77f//vsWrVqpg/f34Ui8WDHE07q1arB39SHdRqtYa/1l2bdsXdj+/Ozb1m1ZIpvW5p+7roeuD7ubmhVW+NahYRTfodzSTNyJv2Ie90yDot8k6LvGkXzXwfHsn7/vq7Nkdtn++TmNVVjOefNO+g5+u9/bNRGN3bHJMVO2Lo9DdGzd9fw7nOpUPWaZF3WuSdFnnTLlq5RhkYGs49Pru7tPfx0XJ03fPV3OOV0y6Lai2LCH877c41Li3yTou80yLvdMiadtLq+7wqo0/enPm84l0xpzA0Np9FIYZOellk/lamJde5tMg7LfJOh6zTkmreTWma+eIXvxiFQiEuuuii+NrXvqZRhrb0pdWbc+Nlc7viuSfOO8Cz83pu+1huXOueF+UVl9etNgAAYOa4bk1+l5kXn7owejoPsk6ujkTPHZ/OTVVOfmXUZh9V7/IAAIAZYLCc/9Bzbs/ejwS71n83ipWdY+MsClFecVnTagMAANL0VNPM8sKjufnRo1ZFNmtJK0oCACARTeleeeSRRyIi4rd+67c0zNCWdpZH4zt3b8vNvfqsJVEqFg56bGHP1ui5+yu5ufIZb4zo7KtrjQAAwPR3/5Y9ce+WPbm5i1YuPOhxXeuuj9Lux3Nz5VVX17M0AABgBhmsjObGc7pLY//uWXNt7rGR454XtbnHNqUuAAAgXU81zXRFfr1S6z345yQAAHAkmtLBsmTJk53gixYtasbLwSG7bs3WsYVZRESpWIhfPXPxlI7tveOzUahWxsZZsSuGzrqq7jUCAADT3/hdZo6a0xXPOG7u5AdlWfTe9vHc1MiyZ8ToUWfVuzwAAGCGGL/TzJz/2mmmuHNjdG38Se6x8orLm1YXAACQrqfuzeoc1zQTxY79PBsAAOqnKU0z5513XkRE3HPPPc14OTgkWZbFl27Lf2PzBSf3x6JZXQc/eLQcPXd8JjdVOfVVtgwFAAAmqGVZfHttvmnm5actjGJh8h0uOx67JTo3356bG1r1trrXBwAAzBwH2mmmZ+0Xc/O17rkx/LSXN60uAAAgXWNNM4VxTTOlzhZUAwBASprSNPO7v/u7ERHxwQ9+MLIsa8ZLwpTdunEwHniinJu77OypNb103/2VKJafyM0Nnf32utUGAADMHP/58M7YvGskN3fRyoPvyNq7+hO5cXXOMTH8tJfUszQAAGCG2VnO34Q2t6cjolaN7nFNM5VTL4no6G5maQAAQKKGD7DTTFbUNAMAQGM1pWnmec97XvzN3/xN/OQnP4nXv/71sWPHjma8LEzJl1Zvzo2P7++JZx439+AHZrXove2juanh418Q1UVPr2d5AADADHHdmm258amL++LkxX2THlPc+Uh0rft2bq581lURxY661wcAAMwcuyrV3Hh2dyk6N/4kSrs25ebLK1/bzLIAAICEVUaf/LLtzsivV+w0AwBAozXtLpvf+73fi+XLl8ev//qvx3HHHRcvfelL49RTT42+vslvEIqI+NM//dMmVEiKntg9Ejfcm98p5rJVS6JQKBz02K4Hb4yOHQ/k5obO/rW61gcAAMwM5ZFq/ODefNPMVHaZ6bnj01HIamPjrLMvyiuvqHt9AADAzLKzMnGnmZ611+bmRhetjOri05tZFgAAkLDygXaaKXW1ohwAABLStKaZzZs3x1e+8pUYGBiIWq0WX/va16Z8rKYZGuXrd26J0Vo2Nu4qFeLi0xdP6djeW/O7zIwuPC1GjvuVutYHAADMDDet2xG7h/c2vxQLES9fsXDyg4Z3R89d/5qbKq+4PLLuKeyMCQAAJG2wnP/m5oWFweha973cnF1mAACAZsmyLIYP0DQTRTvNAADQWE1pmtm2bVucf/75cd9990WWZQc/AJqglmXxlds35+Ze+vSFMa/34H8WHY/fHp2P/jw3N3TO2yOmsEMNAACQnuvWbM2Nn3X83Fg8e/JvTuu5+8tRHB4cG2dRiKGzrmpIfQAAwMwyOG6nmVO2fi8KteGxcVbqisqpv9rssgAAgESNVLN46q7BzsK4nWaKTfvebwAAElVsxov85V/+Zdx7772RZVlcfvnl8YMf/CC2bdsW1Wo1arXaQf8PGuHnDw7EIwOV3NxlZy+Z0rG9t+V3manOOioqp1xct9oAAICZY/uekfjpAztycxeuXDT5QVkteld/Ijc1fOKLozb/pPoWBwAAzDi1LItdlfxOM8c//LXcePhpL4usZ34TqwIAAFI2XN17D2DX+J1mSnaaAQCgsZrSpv31r389CoVCvOlNb4pPfvKTzXhJOKgvrc7vMnPK4r44c9nsgx5X3PlIdN1/fW6ufNZVEaXJvyUaAABI03fu3hbVfTZd7ekoxotPWTDpMZ0P/ShKAw/m5spnX13/4gAAgBlnz3A1avusQZbE9pi1457cc8orXtvkqgAAgJSVR/c2zXRGvsk/K7rnCgCAxmrKTjOPPPJIRES87W1va8bLwUE9PliJH6/bnpu7bNWSKBQKBz22d/UnopDtXbxlnX1RPv0Nda8RAACYGa5fszU3ftEp/dHXVZr0mN7VH8+NRxeeFiPHPLfutQEAADPPYDl/A9qywrbcOCt2xchxz2tmSQAAQOIqI3ubZjrsNAMAQJM1pWlm0aJFERExZ86cZrwcHNTX7tiS+6bnvs5iXLhy0UGPK1QGo3vNF3Jz5RWvjaxnXr1LBAAAZoAHnxiKux7bnZu76CBrj9LWe6Lr4Ztzc0Or3hoxhSZ/AACAwUr+BrTFxZ25ca1vYUShKR8RAgAARETE8D43anWNa5rJippmAABorKb8L+IveMELIiLizjvvbMbLwaRGa1l89fbNublXrFwUsw7yTc8RET13/WsUR3aNjbNCMYbOfmvdawQAAGaGb6/Jf6Pzwr7OOO+EyZvue2//RG5c610QlVNfVe/SAACAGWrnuJ1mjunclRtnvQuaWQ4AAEBURvfuNNMZ+TWLnWYAAGi0pjTNvOc974nOzs7427/92yiXy814STigf1+3PTbvGsnNveasJQc/sDoSPeNuXhte/oqozT2ujtUBAAAzRZZlcf3arbm5l61YGB3FA+8YUxjaFt33fDU3Vz7jyoiO7kaUCAAAzEC7xu00s7Q0mBvXehc2sxwAAIAo79s0U8ivWaLY0eRqAABITVOaZs4999z4yEc+Evfee2+87GUvi3vvvbcZLwv79aXV+V1mzlg2K047atZBj+u+/7oo7XosNzd09tvrWhsAADBzrH50VzwyUMnNXbRi0aTH9Nz5+ShUh8fGWbEzhs64siH1AQAAM9P4nWaWlPI7zWiaAQAAmm04t9NMvmkmK3Y1uxwAABLTlDbtt73tbRERsXLlyvj3f//3WLlyZZx11llx6qmnRl9f36THFgqF+OhHP9qMMknAxh3l+OmDA7m5y1cddfADsyx6b8u/D0eWPSNGl55dx+oAAICZ5Lo1+V1mTlrQE6cdNckauDocvXd8JjdVOeXiyGYtbkR5AADADDU4bqeZxYWduXGtT9MMAADQXJV9mma6xjXNRKmzydUAAJCapjTNfOITn4hCoRARTzbB1Gq1WL16daxevXrS47Is0zRDXX3l9vwuM3O6S/GSpx/8w6HOR34WHVvuys3ZZQYAADiQ4dFafP+ebbm5C1cuGlsb70/3fd+K4p4tubmhs9/akPoAAICZa3DcTjMLCvkvE8vsNAMAADTZvk0zHZFfs2SaZgAAaLCmNM0cf/zxk94YBM0wPFqLr9+RvwHt4jMWR09n8aDH9t76kdy4Ou+EGD7pJXWtDwAAmDlufmBH7Bx3o9qFKxYd+IAsi97VH89NjRz97KguPr0R5QEAADPY+J1m5mf5ppla74JmlgMAAJBrmukcv9NMUdMMAACN1ZSmmQcffLAZLwOT+sF9T8T2ofyi67Kzlhz0uNIT90fXQz/MzQ2d/baIYqme5QEAADPIt9fmd5k599g5sWxe9wGf37Hpl/vZ3fLqRpQGAADMcDvHNc3MrY5vmrHTDAAA0FyV0Wzs352F/JolKzblFkYAABJ28C02YIb48urNufEzjpsTJy7sPehxvbd9NDeudc+P8mmX1bU2AABg5siyLG55eGdu7sKVk+wyExG9t+V3manOPS6GT/xvda8NAACY+Xbldr3MYlZ1R+7xTNMMAADQZMPVvTvNdI3faabU1eRqAABIjaYZkrB+6564ZeNgbu6yVUcd9LjCnq3RffdXc3PlM6+M6Dx4sw0AAJCmxweHJ+xy+azj5x7w+cWdD0fXA9/LzQ2d9Ra7WwIAAIdl351m5saeKGX59Umtb/KmfgAAgHorj+xtmumM8TvNdDa7HAAAEmNvQ45IqdSYm7iKxeKk40P1lTu25sYL+jrjJactilJp8vP23PnZKNSGx8ZZqSuGz35Lw37uVNU7b9qbvNMh67TIOy3ypl018r/TD+V9f/fmodx4bk9HHL+gLwqFwn6f33vHp6OQ7f2wKOuaHSNnvM66o4Vc59Ih67TIOy3yTou8aVetWqPsquzdaWZhIb8LZkREYfZi641pxDUuLfJOi7zTIu90yJp21sr7vEZq2di/O6Kae6zY2W2NMo24zqVF3mmRdzpknRZ5P0nTDEekv7+/Ka8zb968wz52aLga37xrS27u9ecdH0sWLZz8wOE9EXd8JjdVOOuKmH/s0w+7FqbmSPJm+pF3OmSdFnmnRd60i2atTyImf9+v3/F4brzquPmxYMGC/T+5vDPiri/kpgrnXhX9S48/4hqpH9e5dMg6LfJOi7zTIm/aRavWKLuH996MtjAG8k/smhP9i5c1qywawDUuLfJOi7zTIu90yJp20sr7vAodez87Gb/TzNz5CyOauH6ivlzn0iLvtMg7HbJOS6p517Vp5qmO70KhEKOjoxPmD8f4c8Gh+sbtj8Zgee97qFCIeMN5U7gBbfXnIoaeyM899911rg4AAJhp7ngkf1PamcdM8j843Pa5iOHBfSYKEef998YUBgAAJGFgaGTs3xN2mpl1kC8UAwAAaIDyyFO7y2TRXRh3L2Cpq+n1AACQlro2zWRZdkjz0Ayf/dlDufELT10cxy3om/ygWi3ipx/Oz5380oglK+pcHQAAMJNkWTb1pplaNeLn/5ifO+2VEQtOalB1AADATDc8WouhsZvRIhZNaJpZ3OSKAAAAIiqjtYiI6IjqxAdLnU2uBgCA1NS1aeZ//I//cUjzTH/bt29vyHmLxWJu+6eBgYGo1WqHfJ41j+2K1RvzN6xdcvrCg9bdue67MfuJdbm5wTOvjtEG/bypq1feTA/yToes0yLvtLRD3s3aPp7ppVHrk4ipv+8f2VGOHXtGcnPHz9l/bZ3rvhuztz+Qmxs8/U3WHW2gHa5zNIes0yLvtMg7La3O2/qEA2nFGuWJ3cO55y2IfNPMcNe82G3NMa20+hpHc8k7LfJOi7zT0Q5ZW6NwIK28z2vn7qGIiOiMcbvMRMTArqGolaxTpot2uM7RPPJOi7zTIeu0tEPe7bBG0TTDEalW99P93wC1Wu2wXuuLt27KjY+a0xXPPXHuQc81+z//OTceXbQyKkc/O6JJP2/qDjdvpid5p0PWaZF3WuRNu2jm+/BA7/s7H83fkDa/tyOWzOrY73Nn3frR3Hh08elRWfpM64425DqXDlmnRd5pkXda5E27aMUaZceefNPMwnE7zdR6Fvj7mOZc49Ii77TIOy3yToesaSetvM+r/F87Yu6vaaYaxaj5O5m2XOfSIu+0yDsdsk5LqnkXW10ANMquymh8e+223Nyrz1oSHcXCpMd1PL46Ojf9Mjc3dM7bIwqTHwcAALDmsd258cqjZkVhP2uJ0pY10fXIz3NzQ6uutu4AAACOyGAl/2HnkuK4ppnehc0sBwAAICIihkef/Dbzzph4g2ZW6mx2OQAAJKauO80cyE033RQREc961rOit7d3SseUy+X4xS9+ERER559/fsNqY+a6fs22GBrZu31UqRBxyZmLD3pc760fyY2rs5ZG5eRX1r0+AABg5rn78XzTzIqls/b7vN7Vn8iNa32LonKKdQcAAHBkBsv5b21eUhzMjTXNAAAArVAZa5qZuNNMFLuaXA0AAKlpStPMi170oigWi3H77bfHypUrp3TMI488Mnbc6Oh+/mMZJpFlWXxp9eO5ufNP7o/FsydfZBV3boyudd/OzZVXvSXCNxoAAAAHkWVZrBnfNHPUxKaZwp6t0X3vN3JzQ2e8KaLU3dD6AACAmW/nuJ1mFhV2RmR7x5mmGQAAoAXKTzXNFCbeB2inGQAAGq3YrBfKsuzgT6rjcaRt9aO74v6tQ7m5y1YdddDjeld/PArZ3t1pap2zonz66+teHwAAMPNs3FGJXeNuUNvfTjO9d3w2CrXhsXFW6oryGW9oeH0AAMDMN36nmf4YyI1rfZpmAACA5huuPnk/Vtd+d5ppyvd+AwCQsKY1zRyqWu3J/1AulUotroTpaPwuM8fO747zTpg76TGFys7oXnNtbq6y8orIuic/DgAAICIm7DKzsK8zlozf7XK0Ej13fjY3VTn1ksj6FjW6PAAAIAGDlb03oBWjFnOywdzjNTvNAAAALVAZ+a+dZiL/5WNZFCIK7g8EAKCx2rZp5qGHHoqIiHnz5rW4EqabHXtG4oZ7nsjNveasJVEsFCY9rueuz0dxZO9NblmhGEOrrm5EiQAAwAy09rFdufGKpbOiMG4d0n3fN6I4tC03Z90BAADUy2B57w1o/TEYxchyj2uaAQAAWmG4+uTapHP8TjOlzoiD3NMFAABHqiF7G27YsGG/85s2bYrZs2dPemylUol169bFn/zJn0ShUIjTTz+9ESUyg33zrq1jC62IiM5SIX71jMWTH1Qdjp7Vn8xNDZ98YdTmHtuIEgEAgBlo7bidZlYcNSv/hCyL3tWfyE0NH/vcqC46rcGVAQAAqdh3p5mFhZ0THs96+5tZDgAAQERElEef2mkm3zSTFbtaUQ4AAIlpSNPMSSedNGEuy7J42ctedsjnuuqqq+pREomoZVl8+fbNubmXnLog5vd1Tnpc933fitLux3NzQ2f/Wt3rAwAAZqZalsXd45tmluabZjof+Xl0bF2bmyuvemvDawMAANKx704z45tmat3zI4oN+WgQAABgUpWxpplq/oHS5Pd0AQBAPTTkfxnPsuyQ5venp6cnfuu3five9ra31assEvDLDTtjw/Zybu6yVUdNflCWRe9tH81NjRz9rBg96qx6lwcAAMxQG7aXY/dwLTc3fqeZntUfz42r806I4RMvaHhtAABAOvbdaWZRDOQeq/UtbHY5AAAAEREx/FTTTGH8TjOaZgAAaLyGNM18/OP5G4He+ta3RqFQiD//8z+PY4455oDHFQqF6OnpiWXLlsU555wTs2fPbkR5zGBfvC2/W8zTFvbGqmMmfx91bvzJhG97HjrHLjMAAMDUrX0sv8vM4tmdsXh219i4uOPB6HrghtxzhlZdHVEoNqM8AAAgEZPtNJP1apoBAACar5ZlMVx98su2OyPfNBMlu2ECANB4Dfmvzre85S258Vvf+taIiLj00ktj5cqVjXhJiC27huNH92/PzV22akkUCoVJj+u99SO58ej8k2L4xBfXvT4AAGDmWvN4vmlm/C4zvbd/Kgqxd/fVWtecKJ92WVNqAwAA0rHvTjMLxjXN1DTNAAAALfDULjMREV3jm2bsNAMAQBM0pVX7xhtvjIiIk046qRkvR6K+dseWqO69By16OorxytMXTXpMads90bXhptxc+ey3+bZnAADgkNw9SdNMoTIY3Wu/mHu8vPKKiK58Yw0AAMCR2lnZu9PMohjXNNOnaQYAAGi+yujeG7rG7zSTlbqaXQ4AAAlqStPMC1/4wma8DAmr1rL4yu2bc3OvWLEwZndP/hbvve1juXGtZ0GUn/7qutcHAADMXNVaNrFpZunssX93r702iiN7H88KxSifdVXT6gMAANKQZVnsKu+9AW2hnWYAAIA2UNlnp5mOqOYftNMMAABNYDsNZoSfPLAjHh8czs1dtuqoSY8p7N4S3fd8PTdXPvPKiM7eutcHAADMXA89MRRDI7Xc3NhOM7Vq9K7+ZO6x4ae9LGpzj21WeQAAQCL2jNSiuvcLnCc0zWS9C5pcEQAAQMRwde9nKJ2F8TvNaJoBAKDxNM0wI3zrrq258cqjZsWKpbMmPab3jk9Foba30SYrdcXQmW9qSH0AAMDMtWbcLjNHzemKhbOe/JCn64HvR2lwY+7xobPf2rTaAACAdAyW8zefLYyB3NhOMwAAQCuU9/nisa7Ir1vsNAMAQDNommHa21UZjR+v356b+9UzF09+0Mie6Lnjs7mpytNfHVnfonqXBwAAzHB3j2uaGdtlJiJ6V38899jIkjNjdOkzmlIXAACQlsFKNTcev9OMphkAAKAVKqP77DQzrmkmK3Y0uxwAABKkaYZp78b7tkdlNBsbdxQL8ZKnL5j0mJ61X4piJf8Na0PnvL0h9QEAADPbmsfGNc38166Xpc13ROej/5F7rLzqrRGFQtNqAwAA0rHvTjNdMRJzC0O5x7M+TTMAAEDzDVcP3DQTJTvNAADQeJpmmPa+vXZrbvzck+bF/N5JFlS1avSu/lhuaviEC6Lav7wR5QEAADPYaC2Lezbvyc2t/K+dZnpXfyI3X+1bEpWTL2xWaQAAQGJ2VvbefLYgdk543E4zAABAK+R3msnvkJkVu5pdDgAACdI0w7S2dfdw/MeG/Ac/F65YNOkxXQ98P0oDG3JzdpkBAAAOx4PbhnIf9kRErDhqVhR2b47u+76Vmy+f9aaIkg9/AACAxthV3nvz2cJC/rOTrFCKrHtus0sCAACI8qidZgAAaC1NM0xr3717W9SyveO+zmKcv3z+pMf03vqR3Hh08ekxcsxzGlAdAAAw0615bHdufPTc7pjf1xm9d3wmCrWRsfms1B3l09/Q7PIAAICEFIuFWDqnK2Z1FWPR+KaZ3gURBR8LAgAAzTc8uvfmrs5CvmkmK2qaAQCg8TpaXQAciW+v3ZYbv+iUBdHTWTrg8zseuzU6H7slNzd09q9FFAoNqQ8AAJjZ1j6eb5o57ai+iIjoevAHufnK0y998iY1AACABrlo5aK4aOWiiIjoWPNwxD7LklrvwhZVBQAApK5ipxkAAFrMV0oxbW3YXp7wrc4Xrpj8Q5/eWz+aG1dnL43KyRfWvTYAACANax/flRuvXDo7IiKKOx/OzVdOeWXTagIAAOgs5790rNanaQYAAGiNfZtmusY3zRR95zcAAI2naYZp6/o1W3PjBX0d8awT5h3w+cWBDdG1/ju5ufKqt/rGAgAA4LCMVmtx7+Y9ubkVS2dFoTIYxeF8M0117rHNLA0AAEhcofxEbmynGQAAoFUm22kmK3U1uxwAABKkaYZpKcuy+M7d+W9Je+nTF0ZHsXDAY3pXfzwK2d5FWK1zdpRXvq5hNQIAADPbum1DMVzNcnMrjpoVxcFHJzy3Nntps8oCAACI4p78ZyiZphkAAKBF9m2a6Yhq/sGiLzsGAKDxNM0wLa15bHds2F7OzV24ctEBn18o74ietV/MzVVOf11k3XMaUh8AADDzZVnEC542Pxb2PfmBzjHzumNuT0cUd+WbZmp9iyNK3a0oEQAASFRxKN80U+td0KJKAACA1A2P7v0Css7C+J1mNM0AANB4Ha0uAA7Ht9fmP+w5dn53nL501gGf33Pn56MwsmdsnBVKMbTq6kaVBwAAJOC0o2bF//uap0eWZbFl10hs2TUcERGlcTvNVOcc3YryAACAhBUmNM3YaQYAAGiNfXea6Yp804ydZgAAaAZNM0w7o7Usvnt3/sOeV5y2KAqFwv4PqA5Hz+2fyk1VTr4oam5cAwAA6qBQKMSSOV2xZE5XREQUxzXN1GZbewAAAM01fqeZrE/TDAAA0BrlfZpmOqOae8xOMwAANEOx1QXAofrlhp2xbc9Ibu4VKw78YU/3vd+I0p7Nubmhc97ekNoAAACKuzblxhr2AQCApsqyKA49kZuy0wwAANAqw9V9m2bsNAMAQPNpmmHa+fbarbnxaUf1xYkLe/f/5CyL3ts+mpsaPubZUV1yZqPKAwAAElfald9ppjp7WYsqAQAAkjSyJwqj5dyUphkAAKBVKqMHbprJNM0AANAEmmZmoK9+9atxxRVXxBVXXBH33ntvq8upq/JILW68L//taK9YseiAz+98+N+jY9s9ubmhs3+tIbUBAABERBQH800zdpoBAACaqTi0bcJc1rugBZUAAACMb5qp5h8saZoBAKDxNM3MMBs2bIhrr702uru7W11KQ/z7+u2xe3jvQqoQES97+oG/Ha331vwuM6PznxYjJ76oQdUBAADJq1WjuOux/JSdZgAAgCYa3zSTlboj65zVomoAAIDU5ZpmCnaaAQCg+TTNzCCjo6PxoQ99KE488cQ477zzWl1OQ1y/Nv9BzzOPnxtL5nTt97mlrXdH18M/zs0Nnf22iIK3PQAA0BjFPZujkOW/Ja1qpxkAAKCJxjfN1PoWRhQKLaoGAABIXX6nmXzTjJ1mAABoBt0DM8iXv/zl2LhxY7zzne+MYnHmRTswNBo3r9+Rm3vFikl2mbktv8tMrXdBVE57dSNKAwAAiIiI4uCjuXFW6oqs98DrFgAAgHor7BnXNGNNAgAAtNDwaDb2767xTTN2mgEAoAk6Wl1AKw0MDMT9998f999/f6xbty7WrVsXg4ODERHxwhe+MK655popn2vLli1x/fXXxy233BLbtm2Ljo6OWLp0aTz3uc+Nl7/85dHd3d2oHyMiItavXx9f+cpX4oorrohjjz22oa/VKllk8dZnHx3fXrs1Ht5Ric5SIV58yoL9Pre46/HovvcbubmhM98c0dHTjFIBAIBEFXdtyo1rs4/2jc4AAEBTFYeeyI018gMAAK002U4zmZ1mAABogqSbZn7913+9Luf55S9/GR/4wAdiaGhobK5SqYw14txwww3x3ve+N5YuXVqX1xtvZGQkPvShD8WJJ54Yl1xySUNeox3M7+2M3/iVY+O/P++YuOux3XH/1j0xp2f/b+GeOz4dhdrI2DgrdUf5zCubVSoAAJCo0ridZqpzlrWoEgAAIFXFITvNAAAA7aM8SdOMnWYAAGiGpJtm9rVo0aI45phjYvXq1Yd03AMPPBDvf//7Y3h4OHp6euLSSy+NM844I4aHh+Pmm2+OG264ITZt2hR/9Vd/FX/9138dvb29da/93/7t32LTpk3x13/911EsFut+/nZTKBTijGWz44xls/f/hOHd0XPnZ3NT5dNe45vUAACAhiuOa5qpzT66RZUAAACpKkxomlnQokoAAAAihvdpmukoVHOP2WkGAIBmSLpp5vLLL4/ly5fH8uXLY/78+bF58+Z497vffUjn+MQnPhHDw8NRKpXij//4j+PUU08de+yMM86IZcuWxWc+85nYtGlTfOMb34grrrhiwjk+9alPxcjIyIT5A7noooti2bInv6343nvvjW984xvx2te+No4//vhDqn2m6ln7xShWdubmyme/rUXVAAAAKSnu2pQb1+ZomgEAAJpr/E4zvlQMAABopco+TTNddpoBAKAFkm6a2V8Dy6G4//77Y+3atRERccEFF+QaZp5y8cUXx4033hiPPPJIXH/99fGa17wmOjryv/bvfe97UalUpvy6z3nOc2LZsmVRrVbjQx/6UJxwwglx6aWXHtHPMmPUqtG7+uO5qcqJ/y2q/U9rUUEAAEBKSuN2mqlqmgEAAJqsuGfcTjN9mmYAAIDWGa7ubZrpHNc0k5W6ml0OAAAJSrpp5kj94he/GPv3BRdcsN/nFIvFeOELXxif+9znYvfu3XHXXXfFqlWrcs/59Kc/fVivXy6XY9OmJ7/F+I1vfON+n/PHf/zHERHxe7/3e3Heeecd1utMJ13rvxulnQ/n5obO+bUWVQMAAKSmOK5ppjZb0wwAANBc43eaqdlpBgAAaKHyaDb27/FNM1F0+yIAAI3nvzqPwD333BMREd3d3fG0px14J5OVK1fmjhnfNHO4Ojs748UvfvF+H1u7dm1s2rQpnvnMZ8bcuXNjyZIldXnNdtd760dz45ElZ8bo0c9qUTUAAEBSRvZEsbIjN1Wz0wwAANBMWS0K5e25KU0zAABAq4zWsqjWDtw0kxU7m10SAAAJ0jRzBDZu3BgREUuXLo1SqXTA5x199N6bpJ46ph66urriHe94x34f+9CHPhSbNm2KSy+9NE499dS6vWY769j0n9H5+K25uaGz3x5RKLSoIgAAICWlXZsmzFVnL2tBJQAAQKoKlZ1RqI27Ca13QYuqAQAAUjc8WttnlEVXoZp/QknTDAAAjadp5jANDw/H4OBgREQsXDj5N3TNnj07uru7o1KpxLZt25pR3hGbap2TNQsdiWKxOOl4f/puy+8yU51zTFSffnGUio2pkfo5nLyZvuSdDlmnRd5pkTfN1ur1ScTU3vcdux/LjWs9/VHqmd2wmmgc17l0yDot8k6LvNMib5qtndcoxcr2Cc8tzF7c0FpoLNe4tMg7LfJOi7zTIWtaodVrlMne9yPZ3qaZjhjXMBMRxc6eCOuVacV1Li3yTou80yHrtMj7SZpmDlO5XB77d09Pz0Gf39PTE5VKJXdcO3vnO985ped94QtfaHAlT5o3b97kT9i2LmLdd3NTpeddE/0LFzewKhrloHkzo8g7HbJOi7zTIm8ard3WJxEHeN+v35EbFucfF/39/c0piIZynUuHrNMi77TIOy3yptHaeo0yMJx/oHtu9C+2A+ZM4hqXFnmnRd5pkXc6ZE0ztNsaZd/3/Z7C0Ni/O2N04nP7F0X4LGVac51Li7zTIu90yDotqeataeYwDQ/v/dCho+Pgv8annrPvcY10zTXXxDXXXNOU12oLd305IrK94+65Eee8uWXlAAAACRrYmB/PO641dQAAAOnavSU/nrWoNXUAAABERGVk7+4y+2uaiVJXE6sBACBVmmYOU1fX3v9gHx3dz3/Qj/PUc/Y9rp39wz/8Q6tLODRb78+Pz3hNRM/c1tQCAADU1bRZn0xomjm2NXUAAAAN1dZrlAlNM4tbUwcAANA07bxGKY/Uxv7dFdWJTyh1NrEaAABSpWnmMPX09Iz9u1wuH/T5Tz1n3+Pa2cKFC6f0vO3btzfk9YvFYm77p4GBgajVagd8/uyt62LfJdSevmOj0qDaqL9DzZvpTd7pkHVa5J2Wdsi73zbtSWn1+iRiau/72dsezK9LuhZal0xT7XCdozlknRZ5p0XeaWl13tYn6WnnNUrPto3Ru8/zhrvmxW7rkmmt1dc4mkveaZF3WuSdjnbI2holPa1eo0z2vt+6fXBsfn87zWwf3B0xXGpIXTRGO1znaB55p0Xe6ZB1Wtoh73ZYo2iaOUxdXV0xZ86cGBwcjG3btk363F27dkWlUomIqS9SpotqdT/fANAAtVpt0tcqDjycG4/OOaZptVF/B8ubmUXe6ZB1WuSdFnnTLpr5Ptzf+744+EhuPDprqb+NGcJ1Lh2yTou80yLvtMibdtGSNcqerfn57n5/DzOMa1xa5J0WeadF3umQNe2kFfd57ansbZTpKExsmqlGKcLfyLTmOpcWeadF3umQdVpSzbvY6gKms2OPPTYiIh577LFJ3zyPPvrohGOoo2olirsfz0/NPa5FxQAAAEnKalHctSk3VZu9rEXFAAAAqSruyX/RW61vZn2ZGwAAML1URvd+i3nXfnaaiWJnE6sBACBVdpo5Ak9/+tNj7dq1UalUYv369XHKKafs93lr1qzJHTOTlEqN2R6zWCxOOs49tvOxKESWn5x/fMNqo/4OJW+mP3mnQ9ZpkXda5E27auQa4GDv+8LuJ6JQHc4fNP8465JpynUuHbJOi7zTIu+0yJt21Yo1SrGcb5qJWYutS6Y517i0yDst8k6LvNMha9pZK+7zGt3nlq7OyH8pdVYoRqmzqyE10Tiuc2mRd1rknQ5Zp0XeT9I0cwTOO++8+OpXvxoRETfeeON+m2ZqtVr86Ec/ioiIWbNmxemnn97MEhuuv7+/Ka8zb968Az+4bUd+3DM/+pee0NB6aKxJ82bGkXc6ZJ0WeadF3rSLZq1PIvbzvt+zPj8udsT8Y06NKLo5bSZwnUuHrNMi77TIOy3ypl20ZI1S2ZGb71t0fPQ1sQ4azzUuLfJOi7zTIu90yJp20or7vDq694z9u3PcTjOFUldT1000hutcWuSdFnmnQ9ZpSTXvNFuF6uTkk0+OFStWRMSTTTP33nvvhOd885vfjEceeSQiIi688MLo6NCnVHc7HsqP+zXMAAAATTawMT+ee7SGGQAAoPl2b8mPZy1uTR0AAAARUR7Zu7vM+KaZKHY2uRoAAFKVdAfH3XffHY899tjYeOfOnWP/fuyxx+KHP/xh7vkvetGLJpzj6quvjj/5kz+J4eHh+Iu/+It49atfHaeffnoMDw/HT37yk/j+978fERHLli2LV73qVQ35OZK3fVzTzHxNMwAAQJMNPJIfzzuuNXUAAADpqo5GDG3Pz2maAQAAWqgyWhv7d1dhXNNMSdMMAADNkXTTzA033BA/+tGP9vvYPffcE/fcc09ubn9NMyeddFL8zu/8TnzgAx+IoaGh+PznPz/hOcuWLYv3vve90dvbW5e628n27dsP/qTDUCwWc9s/DQwMRK1W2+9zZ22+L7r2GZd7l8ZQg+qiMQ4lb6Y/eadD1mmRd1raIW9btbM/jVqfRBz8fd+7+f7o2ef5ld4lsce6ZNpqh+sczSHrtMg7LfJOS6vztj7hQJq9RskGH4v54563Y6QjMmuTaa3V1ziaS95pkXda5J2OdsjaGoUDacV9XtsHdo3Nd0Q1d1yt2BED1ivTTjtc52geeadF3umQdVraIe92WKMk3TRTL8985jPjb//2b+O6666LW265JZ544ono6OiIpUuXxnOe85x4xSteEd3d3a0usyGq1erBn1QHtVrtgK9VGHg4Nx6dfXTT6qIxJsubmUfe6ZB1WuSdFnnTLpr5Phz/vi/szO80U5211N/FDOI6lw5Zp0XeaZF3WuRNu2j2GiV2bcnNZVGI0a65Ef4eZhTXuLTIOy3yTou80yFr2kkr7vMaGtn7mp2R32kmK3b6+5gBXOfSIu+0yDsdsk5Lqnkn3TRzzTXXxDXXXFOXcy1evDje8pa3xFve8pa6nI+pK+3cmBtX5x7bokoAAIBUFQcfzY1rc45uUSUAAECqikPbcuOspz+imPRHgQAAQItVRvd+i3nXuKaZKHY2uRoAAFJVbHUBcESGd0ex/ERuqjb3uBYVAwAApKq0K980U529rEWVAAAAqSruyTfN1PoWtqgSAACAJ+3bNDNhp5mSphkAAJrD10txREqlUkPOWywWJx2Pze/eNHGy/4SG1UVjTDVvZgZ5p0PWaZF3WuRNu2rkOmDS9/1oJYp7tuYPmHecdck05jqXDlmnRd5pkXda5E27avYapVTZnpvL+hZal8wArnFpkXda5J0WeadD1rSzVtznNVLLxv49vmkmSp3WLNOQ61xa5J0WeadD1mmR95M0zXBE+vv7m/I68+bN2/8Dm/MfAMXso6J/sW90nu4OmDczkrzTIeu0yDst8qZdNGt9EjHuff/E+omPH7cyomdu0+qhsVzn0iHrtMg7LfJOi7xpF01fo5xzWcTSUyJ2b4nYvTU65x7d1BpoDte4tMg7LfJOi7zTIWvaSSvu88qKe3eT6Szkm2Y6unqtWWYA17m0yDst8k6HrNOSat6aZpjetj+UH88/oTV1AAAA6RrYmB93z9MwAwAANF//iU/+HwAAQJsoj1TH/t0Z1fyDpa4mVwMAQKrS3F+HmWPH+KaZ41tTBwAAkK7xTTPzjmlNHQAAAAAAAG2kMlob+3dn5HeaiVJnAABAM9hphiOyffv2hpy3WCzmtn8aGBiIWq024Xmzttwf+37nwFDvUVFuUE00zlTzZmaQdzpknRZ5p6Ud8rZVO/vTqPVJxOTv+57H7ovefZ470ndU7LIumdba4TpHc8g6LfJOi7zT0uq8rU84kFatUZhZZJ0WeadF3mmRdzraIWtrFA6kFfd57dpTGZsf3zQzUiv4PGUaaofrHM0j77TIOx2yTks75N0OaxRNMxyRarV68CfVQa1W2+9rFQcezo1HZx/TtJponAPlzcwk73TIOi3yTou8aRfNfB/u+74v7MzvNDM6e5m/iRnGdS4dsk6LvNMi77TIm3bRqjUKM5us0yLvtMg7LfJOh6xpJ624z6syuvc1xzfN1Iqd/j5mANe5tMg7LfJOh6zTkmrexVYXAIcty6K4M980U5t7bIuKAQAAUlUc3JQb12Yf3aJKAAAAAAAA2kd5dO+3mHcV8k0zUfR93wAANIemGaatQmUgisO7cnPVuce1qBoAACBVxV3jmmbmaJoBAAAAAACo7NM00xH5bzTPip3NLgcAgERpmmHaGr/LTFYoRm32shZVAwAAJCnLorTr0dxUVdMMAAAAAABADO/TNNMZ43aaKWmaAQCgOexxyBEplUoNOW+xWJx0HBHROe7GtNrsZVHq6mlIPTTWVPJm5pB3OmSdFnmnRd60q0atTyIO/L4vlHdEYWRP7rHCvGMaWguN5zqXDlmnRd5pkXda5E27asUahZlH1mmRd1rknRZ5p0PWtLNW3OdVGc3G/t01rmmm0NHt85RpyHUuLfJOi7zTIeu0yPtJmmY4Iv39/U15nXnz5k2cHNmWG5YWnNS0emis/ebNjCXvdMg6LfJOi7xpF81cD4y97zc9PO6RQsw7doVvR5thXOfSIeu0yDst8k6LvGkXLVmjMOPJOi3yTou80yLvdMiadtKK+7yGa3ubZsbvNNPdOzu63es17bnOpUXeaZF3OmSdllTzTrNViJlhx0P5cf8JrakDAABI18DG/HjOMg0zAAAAAAAAEVEZqY39uzOq+Qd9ngIAQJNommH62j6uaWa+phkAAKDJdj6SH887tjV1AAAAAAAAtJEsy6I8urdRprOQ32lG0wwAAM3S0eoCmN62b9/ekPMWi8Xc9k8DAwNRq9Vyz5m7bX2U9hnv7loUww2qh8aaSt7MHPJOh6zTIu+0tEPezdo+numlUeuTiAO/73sfvy969nnecN+S2G1dMu21w3WO5pB1WuSdFnmnpdV5W59wIK1YozDzyDot8k6LvNMi73S0Q9bWKBxIs+/zGqnWIsv2Pq8z8k0zQyO1KPtMZdpph+sczSPvtMg7HbJOSzvk3Q5rFE0zHJFqtXrwJ9VBrVbLv1aWRXHnxtxzRmYf3bR6aKwJeTOjyTsdsk6LvNMib9pFM9+HT73vC+N2mhmdtczfwwzkOpcOWadF3mmRd1rkTbtoxRqFmU/WaZF3WuSdFnmnQ9a0k2bf57Wnkm+S6Yz869cKJX8fM4DrXFrknRZ5p0PWaUk172KrC4DDUdizJQrVSm6uNvfYFlUDAACkqjj4aG5cm72sRZUAAAAAAAC0j/Jo/hvMx+80E8WuJlYDAEDKNM0wLZXG7TKTFbuiNuuoFlUDAACkqrhrXNPMnKNbVAkAAAAAAED7GB7NcuPxTTNZqbOZ5QAAkDBNM0xL45tmanOOjih4OwMAAE1UG43i7s25qaqmGQAAAAAAgKiM22mmqzB+p5mOJlYDAEDKdBkwLRUHH86Nq3OPa1ElAABAqoq7N0chy3/gU5utaQYAAAAAAGBC08z4nWaKdpoBAKA5tGszLY3faaY699gWVQIAACSrNhqVE/9blHY9GsXBTVGoViLrmd/qqgAAAAAAAFpu4k4z1fwTSppmAABoDk0zHJFSqdSQ8xaLxUnH45tmsnnHNawWGu9geTOzyDsdsk6LvNMib9pVI9cE+3vf1xacFHsu+ejeyZGhKHVYZs8ErnPpkHVa5J0WeadF3rSrZq9RmJlknRZ5p0XeaZF3OmRNO2v2fV4j+Z6ZCU0zhY4e93tNQ65zaZF3WuSdDlmnRd5PKmRZlrW6CDhk7z8rYsdDe8eXfyzijMtaVw8AAAAAAAAAAAAREfGDux+Pt33il2PjH/b+/+LE7JG9T3jtJyNOv7T5hQEAkJw0W4WY3qqjETsfyc/NP7ElpQAAAAAAAAAAAJBXHrfVTFfkd5qJUlcTqwEAIGWaZph+Bh+NqI3m5/pPaE0tAAAAAAAAAAAA5JRH8k0ynTHufq9SZxOrAQAgZR2tLoDpbfv27Q05b7FYjHnz5o2NBwYGolZ78tsHOjbeGXP2eW7W2Rc7KsWI4cbUQuNNljczj7zTIeu0yDst7ZB3f39/U1+P6aFR65OI9njf0zzyToes0yLvtMg7La3O2/qEA7FGoR5knRZ5p0XeaZF3Otoha2sUDqTZ93ltH9iVe17HuKaZwT2VGG3guonGaIfrHM0j77TIOx2yTks75N0OaxRNMxyRarV68CfVQa1WG3utju0b8jXMOTaqLtYzyr55M/PJOx2yTou80yJv2kUz34fe92mRdzpknRZ5p0XeaZE37cIahUaQdVrknRZ5p0Xe6ZA17aTZ93kNjeSbZMY3zVQLJX8fM4DrXFrknRZ5p0PWaUk172KrC4BDVRp8ODeuzT22RZUAAAAAAAAAAAAwXnkk/yXIneOaZqLY2cRqAABImaYZpp3izo25cVXTDAAAAAAAAAAAQNsYruabZjqyfNNMVtI0AwBAc2iaYdopTWiaOa5FlQAAAAAAAAAAADBeZXTfppksOuw0AwBAi2iaYdoZv9NMzU4zAAAAAAAAAAAAbWN4NBv7d2dUJzyeaZoBAKBJNM0wvVQrUdz9eH7KTjMAAAAAAAAAAABto7zPTjMTdpmJiChpmgEAoDk0zTCtFHc+GoXIcnO1OXaaAQAAAAAAAAAAaBeVfZpmOvfXNGOnGQAAmqSj1QUwvZVKpYact1gs7nfcsfuR3Hyte14U++Y3pAaa50B5MzPJOx2yTou80yJv2lWj1icR3vepkXc6ZJ0WeadF3mmRN+3KGoV6kHVa5J0WeadF3umQNe2s2fd5jVT3fjFyV1QnHtfVE4UGrptoDNe5tMg7LfJOh6zTIu8nFbIsyw7+NGgTv/xYxDd/d+942aqI37ipdfUAAAAAAAAAAACQ88mfPBi3PbwjyiPV6Cs/Fv974xvzT/jDhyN65ramOAAAkmKnGaaX7Q/lx/NPaE0dAAAAAAAAAAAA7NdbnndivOWpwRPrI/5+3BNKXU2uCACAVKW5vw7T145xTTP9mmYAAAAAAAAAAADaVnVk4lyps/l1AACQJDvNcES2b9/ekPMWi8WYN2/e2HhgYCBqtVrM2bo+96bd07UkKg2qgeY5UN7MTPJOh6zTIu+0tEPe/f39TX09podGrU8i2uN9T/PIOx2yTou80yLvtLQ6b+sTDsQahXqQdVrknRZ5p0Xe6WiHrK1ROJBm3+e1r9L2bTF3n3FWKMaOgZ0NqYfGaofrHM0j77TIOx2yTks75N0OaxRNMxyRarXalNep1WpRrVajsGdLbn5k9rKm1UDzPJU3aZB3OmSdFnmnRd60i2a+D73v0yLvdMg6LfJOi7zTIm/ahTUKjSDrtMg7LfJOi7zTIWvaSbPv89pXYaScf1Kx09/GDOE6lxZ5p0Xe6ZB1WlLNW9MM08r2q26KwtC2KO18OIo7H47RJWe2uiQAAAAAAAAAAAAOpDaSG2alzhYVAgBAijTNML0UCpH1LYrRvkURS89pdTUAAAAAAAAAAABMolDNN81Esas1hQAAkKRiqwsAAAAAAAAAAAAAZig7zQAA0EKaZgAAAAAAAAAAAIDGmLDTTEdr6gAAIEmaZgAAAAAAAAAAAICGKNTGN83YaQYAgObRNAMAAAAAAAAAAAA0xrimmaykaQYAgObRNAMAAAAAAAAAAAA0RKE6bqeZUldrCgEAIEmaZgAAAAAAAAAAAIDGGL/TTNFOMwAANI+mGQAAAAAAAAAAAKAhJuw0U+xoTSEAACTJf31yREqlUkPOWywWJx0zs8g7LfJOh6zTIu+0yJt21aj1SYT3fWrknQ5Zp0XeaZF3WuRNu7JGoR5knRZ5p0XeaZF3OmRNO2vlfV7FqI4rpquhayYax3UuLfJOi7zTIeu0yPtJhSzLslYXAQAAAAAAAAAAAMxAN/99xPf+ZO/45JdEvOlLrasHAICkpNkqBAAAAAAAAAAAADRedTg/LnW1pg4AAJKkaQYAAAAAAAAAAABojOpIflzqbE0dAAAkqaPVBTC9bd++vSHnLRaLMW/evLHxwMBA1Gq1hrwWrSfvtMg7HbJOi7zT0g559/f3N/X1mB4atT6JaI/3Pc0j73TIOi3yTou809LqvK1POBBrFOpB1mmRd1rknRZ5p6MdsrZG4UBaeZ9Xz+6d0bvPuFKN2NPANRON0w7XOZpH3mmRdzpknZZ2yLsd1iiaZjgi1Wq1Ka9Tq9Wa9lq0nrzTIu90yDot8k6LvGkXzXwfet+nRd7pkHVa5J0WeadF3rQLaxQaQdZpkXda5J0WeadD1rSTVt7nlY1W8uNCyd/GDOE6lxZ5p0Xe6ZB1WlLNu9jqAgAAAAAAAAAAAICZqVAbzU8UO1tTCAAASdI0AwAAAAAAAAAAADRGbSQ3zEpdLSoEAIAUaZoBAAAAAAAAAAAAGqJQzTfN2GkGAIBm0jQDAAAAAAAAAAAANMaEnWY0zQAA0DyaZgAAAAAAAAAAAICGKFSH8xOaZgAAaCJNMwAAAAAAAAAAAEBjjN9pptjRokIAAEiRphkAAAAAAAAAAACgIQrV0fxEsas1hQAAkCRNMwAAAAAAAAAAAEBjjN9pptTZokIAAEiRphkAAAAAAAAAAACgIQrVfNNMFDXNAADQPJpmAAAAAAAAAAAAgMaoDeeGdpoBAKCZNM0AAAAAAAAAAAAAjWGnGQAAWkjTDAAAAAAAAAAAANAQhZqmGQAAWkfTDAAAAAAAAAAAANAYtdHcMCtpmgEAoHk0zQAAAAAAAAAAAAANUaiO22lG0wwAAE3U0eoCmN5KpVJDzlssFicdM7PIOy3yToes0yLvtMibdtWo9UmE931q5J0OWadF3mmRd1rkTbuyRqEeZJ0WeadF3mmRdzpkTTtr5X1ehVq+aabQ0d3QNRON4zqXFnmnRd7pkHVa5P2kQpZlWauLAAAAAAAAAAAAAGag/3VyxO4te8dXfT3iaS9sXT0AACQlzVYhAAAAAAAAAAAAoPGqw/lxqas1dQAAkCRNMwAAAAAAAAAAAEBjVEfz41Jna+oAACBJHa0ugOlt+/btDTlvsViMefPmjY0HBgaiVqs15LVoPXmnRd7pkHVa5J2Wdsi7v7+/qa/H9NCo9UlEe7zvaR55p0PWaZF3WuSdllbnbX3CgVijUA+yTou80yLvtMg7He2QtTUKB9LK+7zmV4ejsM945+6hqDZwzUTjtMN1juaRd1rknQ5Zp6Ud8m6HNYqmGY5ItVptyuvUarWmvRatJ++0yDsdsk6LvNMib9pFM9+H3vdpkXc6ZJ0WeadF3mmRN+3CGoVGkHVa5J0WeadF3umQNe2kZfd5ZVkUaiP5WqLkb2OGcJ1Li7zTIu90yDotqeZdbHUBAAAAAAAAAAAAwAw0rmEmIiIrdbagEAAAUqVpBgAAAAAAAAAAAKi/6sSmmSh2Nb8OAACSpWkGAAAAAAAAAAAAqLuCnWYAAGgxTTMAAAAAAAAAAABA/dVGJ84VO5pfBwAAydI0AwAAAAAAAAAAANRdoTo8cdJOMwAANJGmGQAAAAAAAAAAAKD+aiMTprJiVwsKAQAgVZpmAAAAAAAAAAAAgLorVCc2zUSxo/mFAACQLE0zAAAAAAAAAAAAQP2N22kmK5QiiqUWFQMAQIo0zQAAAAAAAAAAAAB1N2GnGbvMAADQZJpmAAAAAAAAAAAAgPobv9NMqbNFhQAAkCpNMwAAAAAAAAAAAEDdTdxppqs1hQAAkCxNMwAAAAAAAAAAAED92WkGAIAW0zQDAAAAAAAAAAAA1N+EnWY0zQAA0FyaZgAAAAAAAAAAAIC6K9hpBgCAFtM0AwAAAAAAAAAAANRfdTg/Lna0pg4AAJKlaQYAAAAAAAAAAACou0JtND9R6mpNIQAAJEvTDAAAAAAAAAAAAFB/tZHcMCt2tqgQAABSpWkGAAAAAAAAAAAAqLtCNd80EyVNMwAANJemGQAAAAAAAAAAAKD+asO5oZ1mAABoNk0zAAAAAAAAAAAAQN3ZaQYAgFbTNAMAAAAAAAAAAADUX200N7TTDAAAzaZpBgAAAAAAAAAAAKi7CTvNaJoBAKDJOlpdANNbqVRqyHmLxeKkY2YWeadF3umQdVrknRZ5064atT6J8L5PjbzTIeu0yDst8k6LvGlX1ijUg6zTIu+0yDst8k6HrGlnrbrPq5Dld5qJjq6GrpdoLNe5tMg7LfJOh6zTIu8nFbIsy1pdBAAAAAAAAAAAADDDfOePIn76wb3js6+MuPTDrasHAIDkpNkqBAAAAAAAAAAAADRWdSQ/LnW2pg4AAJKlaQYAAAAAAAAAAACov+pwflzqak0dAAAkq6PVBTC9bd++vSHnLRaLMW/evLHxwMBA1Gq1hrwWrSfvtMg7HbJOi7zT0g559/f3N/X1mB4atT6JaI/3Pc0j73TIOi3yTou809LqvK1POBBrFOpB1mmRd1rknRZ5p6MdsrZG4UBadZ9X39Du6N7n+eWRagw1cL1EY7XDdY7mkXda5J0OWaelHfJuhzWKphmOSLVabcrr1Gq1pr0WrSfvtMg7HbJOi7zTIm/aRTPfh973aZF3OmSdFnmnRd5pkTftwhqFRpB1WuSdFnmnRd7pkDXtpFX3eWXjdpqpFTr8XcwgrnNpkXda5J0OWacl1byLrS4AAAAAAAAAAAAAmHkK45pmotTZmkIAAEiWphkAAAAAAAAAAACg/mojuWFW1DQDAEBzaZoBAAAAAAAAAAAA6q5QzTfN2GkGAIBm0zQDAAAAAAAAAAAA1N+EnWa6WlQIAACp0jQDAAAAAAAAAAAA1F2hOpqfKHa0phAAAJKlaQYAAAAAAAAAAACov9pwbpiVOltUCAAAqdI0AwAAAAAAAAAAANRfdSQ/LmqaAQCguTTNAAAAAAAAAAAAAHVXqOWbZuw0AwBAs2maAQAAAAAAAAAAAOpvwk4zXa2pAwCAZGmaAQAAAAAAAAAAAOpu/E4zYacZAACaTNMMAAAAAAAAAAAAUH/jmmayYkeLCgEAIFWaZgAAAAAAAAAAAIC6K1TtNAMAQGtpmgEAAAAAAAAAAADqb8JOM10tKgQAgFTZ6xAAAAAAAAAAAACoOzvNQDpGRkZiz549MTw8HFmWRZZlrS6JQ1AoFGLr1q1j45GRERnOULJOy+HmXSwWo6OjI3p6eqK7uzuKxem9V4umGQAAAAAAAAAAAKD+Juw0o2kGZposy2JgYCCGhoZaXQpHaN8b6Wu1WgsrodFknZbDybtWq8Xo6GiUy+UoFAoxf/786OnpaVSJDadpBgAAAAAAAAAAAKivLItCbTQ/Z6cZmHF27do1oWFmuu9IkCq5pUPWaTmcvPfdMSzLsti+fXv09/dP28YZTTMAAAAAAAAAAABAfY3bZSYiIiu6ZRFmktHR0di1a9fYeM6cOdHX1+eG/Gmqo2PvNXp0dHSSZzLdyToth5N3lmUxPDwcu3fvjkqlEhERO3bsiCVLlkzLa/z0qxgAAAAAAAAAAABob9WJTTNR7Gp+HYXsJZMAAHPkSURBVEDDPHUjdUTErFmzYvbs2dPyZmoA8gqFQnR3d0d/f390d3dHxJONNPte96cT/58JAAAAAAAAAAAAqKvC/naaKXW2oBKgUfa9ebq3t7eFlQDQCIVCIWbNmjU2LpfLLazm8GmaAQAAAAAAAAAAAOprvzvNaJqBmaRarUbEkzdVd3R0tLgaABqhq6srCoVCRESMjo62uJrDo2kGAAAAAAAAAAAAqKv97TQTdpqBGaVWq0XEk00zT91QDcDMsu81/qnr/nSjaQYAAAAAAAAAAACor/00zWR2mgEAoMk0zQAAAAAAAAAAAAB1VajuZ6eZYkfzCwEAIGmaZgAAAAAAAAAAAID6GrfTTFYoRRRLLSoGAIBUaZoBAAAAAAAAAAAA6mrCTjOlztYUAgBA0jTNAAAAAAAAAAAAAPVVG84Ns6KmGQAAmk/TDAAAAAAAAAAAAFBXdpoBaIyNGzfGe97znnjWs54Vxx57bCxevDgWL14c1113XV1f56nzvu9975vw2M033zz2+M0331zX1yVdn//858feVxs2bGh1OcwgHa0uAAAAAAAAAAAAAJhhaqO5oZ1mAI7cxo0b4yUveUls27at1aUATBt2mgEAAAAAAAAAAADqa/xOM5pmAI7Y//k//ye2bdsWHR0d8ad/+qdx/fXXx0033RQ33XRTnH/++a0uj2lgw4YN0d/fH/39/fG5z32u4a9nVyLagZ1mZohrrrkmtmzZst/HVq5cGX/2Z3/W3IIAAAAAAAAAAABIVqGWb5rJSppmAI7UTTfdFBERF154Yfzmb/5mi6uB+nrDG94Qb3jDG1pdBjOQppkZpK+vLy666KIJ80uWLGlBNQAAAAAAAAAAACSrOpwf22kG4Iht2rQpIiKWL1/e4koApg9NMzPIrFmz4oorrmh1GQAAAAAAAAAAACRu/E4zYacZgCM2PPxkQ2Jnp2sqwFQVW10AAAAAAAAAAAAAMMNU800zWbGrRYUATG+f//znY/HixbF48eKxuf/1v/7X2NzixYvj3e9+99hj55577oS5/Xn3u98dixcvjnPPPbdhtU9FrVaLL3/5y3H11VfH2WefHccdd1wcd9xx8exnPzve8Y53xNe//vUYGRnZ77HDw8PxsY99LC699NI47bTT4uijj46VK1fG61//+rj22mujVqsd8HXH//yPP/54/I//8T/i2c9+dhx//PFx5plnxtvf/va4++67c8dt2LAh3vve98azn/3sOO6442LlypXxjne8Ix544IEDvtb73ve+XIYDAwPxN3/zN/H85z8/TjjhhDjllFPi0ksvjS9/+cuT/q6eOsf73ve+SZ93ySWXxOLFi+OSSy6ZcPwznvGMsfE111yTex/t79wPPvhgfPjDH44rr7wyzj333LF8zjnnnPi1X/u1uOGGG/Zbw4YNG2Lx4sVx6aWXjs1deumlE17v85///Njj+77XN2zYcMCfb+vWrfGXf/mXccEFF8Ty5cvj2GOPjXPPPTfe9a53xc9+9rNJfzfj/z7uv//++N3f/d0499xz45hjjomVK1fGW97ylvjlL3856XmYXpLfaWZgYCDuv//+uP/++2PdunWxbt26GBwcjIiIF77whXHNNddM+VxbtmyJ66+/Pm655ZbYtm1bdHR0xNKlS+O5z31uvPzlL4/u7u5G/RgRETEyMhI//OEP44knnoi+vr5Yvnx5nHLKKQ19TQAAAAAAAAAAABivUBvNT5SSv10RgHE2bNgQb3nLW+LOO++c8Nj69etj/fr18aUvfSm++tWvxq/8yq9MOPb1r3993Hfffbn5LVu2xA033BA33HBDfPKTn4xPf/rT0d/fP2kdd955Z7zuda+LzZs3j80NDQ3F17/+9fj+978f//Zv/xbPec5z4sc//nFcffXVsXPnzrHnlcvl+NKXvhQ33HBDfOMb34jTTjtt0td66KGH4vLLL48HH3xwbG7Pnj1x8803x8033xzXXXdd/OM//mN0dLT+/28+9NBD8axnPWu/j23cuDE2btwYX/va1+K1r31t/P3f/31Tar7xxhvj7W9/+9j9/k95+OGH4+GHH45rr7023va2t8Vf/dVfRbE4+f4i3/rWt+Jd73pX7NmzZ2xuy5Ytcd1118V3vvOd+Id/+Id49atf3ZCfg+Zq/V9Ti/36r/96Xc7zy1/+Mj7wgQ/E0NDQ2FylUhlrxLnhhhvive99byxdurQur7c/O3bsiA9/+MO5ueXLl8dv//ZvN/R1AQAAAAAAAAAAIKc2nBtmxc4WFQIwvV100UVx9tlnR0TE+eefHxERb33rW+Otb33r2HPmz5/fgsqOzObNm+OVr3xlPPbYYxER8YIXvCBe97rXxSmnnBKFQiEeeuih+Pd///f4+te/PuHYXbt2xWWXXTbWeHLRRRfFG9/4xli6dGk89NBD8dGPfjR+8pOfxM9//vO48sor4xvf+EaUSqX91jE0NBRXX311jIyMxB/90R/F8573vCiVSvGDH/wg3v/+98eePXvimmuuiWuvvTauuuqqmDt3bvzBH/xBPOMZz4jR0dH45je/Gf/0T/8UO3bsiN/5nd+Jb3/725P+3L/+678eGzZsiKuvvjpe9apXxdy5c+Ouu+6KD3zgA7Fu3br42te+FkuXLo2/+Iu/OLJf8H7cdNNN8dhjj8UVV1wRERF/9Ed/FC9/+ctzz1m0aNHYv6vVanR1dcUFF1wQL3zhC+PpT396zJ8/P3bs2BHr1q2Lj33sY3H33XfHtddeGyeccEL8wR/8wdixy5Yti5tuuiluvfXW+O3f/u2IiPi7v/u7OOecc3Kvd/TRR0+5/jvuuCPe9KY3xfDwcHR2dsbb3/72eMUrXhF9fX1xxx13xN///d/HQw89FB/72Mdi1qxZ8ad/+qcHPNfatWvja1/7Whx11FHxzne+M84+++zIsixuvPHG+Pu///sol8vxnve8J17wghfkfidMT8k3zexr0aJFccwxx8Tq1asP6bgHHngg3v/+98fw8HD09PTEpZdeGmeccUYMDw/HzTffHDfccENs2rQp/uqv/ir++q//Onp7e+te+4te9KJYsWJFHHfccdHT0xObNm2Kb37zm3HTTTfFn//5n8ff/u3fNuR1AQAAAAAAAAAAYLxCdSQ/UdI0AymqZVkMDI0e/IkzyLzejigWCvU737x5MW/evNzcokWLYsWKFXV7jVb4/d///bGGmT/90z+N3/zN38w9fs4558Sll14af/Znfxajo/n30N/+7d+ONcz8X//X/xXvfe97xx5btWpVvOpVr4p3vetd8cUvfjH+4z/+Iz71qU/lmoz2tXXr1siyLL7zne/ESSedNDb/jGc8IxYsWBB/+Id/GBs2bIhXvvKVsWTJkvjWt76Va6J49rOfHR0dHfHBD34w/vM//zNuv/32OOussw74c996663xT//0T/Ga17xmbO7ss8+OSy65JC6++OK466674l/+5V/iyiuvrHvGK1asiFmzZo2Njz766Elf46ijjor//M//3O/mDeeff35cffXV8Vu/9Vvxr//6r/HhD3843vnOd8bcuXMjIqKzszNWrFgRTzzxxNgxJ5xwwhH9TO95z3tieHg4SqVSfPazn40LLrhg7LFzzjknfvVXfzUuvvjiuOeee+JDH/pQXHHFFQfc+ef222+PVatWxVe+8pWYM2fO2Pwzn/nMOOmkk+Kd73xnDA4Oxhe/+MV4xzvecdg10x6Sb5q5/PLLY/ny5bF8+fKYP39+bN68Od797ncf0jk+8YlPjP0B/vEf/3GceuqpY4+dccYZsWzZsvjMZz4TmzZtim984xtj3Xn7+tSnPhUjIyMT5g/koosuimXLlo2NX/va1+YeP/HEE8d+jptuuiluuOGGuPjiiw/p5wIAAAAAAAAAAIDDUsvfD2enGUjTwNBovPTDt7S6jKb63rvOjf4+17zJ3H///XHddddFxJP3RI9vmNnX7Nmzc+NKpRKf+cxnIiLitNNOi9///d+fcEyhUIj3ve998YMf/CCeeOKJ+OhHP3rAppmIiD/8wz/MNcw85Y1vfGP82Z/9WZTL5di6dWt88IMf3O+uI1dffXV88IMfjIiIn/3sZ5M2zbzsZS/LNczs+3P+n//zf+LlL3951Gq1+MQnPhF/8zd/c8DzNMOsWbNyTTbjFQqF+J//83/GtddeG3v27Ikf/ehH8apXvaohtdxyyy1x6623RkTEm9/85lzDzFPmz58f//t//++4+OKLo1arxcc+9rF43/ved8Bz/t3f/V2uYeYpl112Wfzf//f/HY899lj87Gc/0zQzAyTfNLO/BpZDcf/998fatWsjIuKCCy7INcw85eKLL44bb7wxHnnkkbj++uvjNa95TXR05H/13/ve96JSqUz5dZ/znOfkmmYO5CUveUncdNNNcffdd2uaAQAAAAAAAAAAoCkm7jTT1ZpCAGg73/ve9yLLsoiI+I3f+I1DOnb16tUxMDAQERGvf/3ro1Qq7fd5c+bMiUsuuSQ+/vGPxz333BOPPfbYfndMKRQKcckll+z3HL29vfG0pz0t1qxZE/Pnz48Xv/jF+33eCSecELNnz45du3bFQw89NGn9b3jDGw742LnnnhunnXZa3H333XHTTTdNep5WGBkZiS1btsSuXbuiWq2OzS9YsCC2bNkSd911V8OaZn70ox+N/fvKK6884POe/exnx6mnnhr33nvvpL/DlStXxumnn77fxwqFQpx55pnx2GOPje1oxPSWfNPMkfrFL34x9u/9daxFRBSLxXjhC18Yn/vc52L37t1x1113xapVq3LP+fSnP92Q+p7a4upQGnIAAAAAAAAAAADgiNRGc0M7zQDwlDvuuCMiIjo7O+OZz3zmIR37/7V35/FRVff/x98z2djMwo4gIkF2kEWQRUXABRAVFFGqouK+UXErtlJs1YIirVUq/WoVFwSkKiJbVVBAUQoIsq9hUyBAWBKWJJNk5vdHfjPNJDOTCUxmuef1fDz66CT33nNP5n3vOfPxMYe7ZcsWz+tOnToF3LdTp06aMmWK5zhfi2Zq1aqltLQ0v224v4t9wQUXyGaz+d0vJSVFJ0+e1MmTJwP2qWPHjuVu37JlizIyMuRwOJSYGNlFpwUFBfrggw/073//W+vXr5fD4fC779GjRyutH+7cExMT1bZt24D7durUSdu2bdPOnTv9vofNmjUL2Ib7mjh16tQZ9hjRhEUzZ2nr1q2SpKSkJDVt2tTvfq1bt/Y6pvSimcqyfft2SVKdOnXCcj4AAAAAAAAAAAAAAAAAAFRU6ku1dr6uCAAoduTIEUlSampqhReFHDt2zPO6vO9H161b1+dxJVWtWjVgG3a7vUL7lXwCiy+1a9cOuN39N7lcLh0/ftzrbwi3Y8eO6eabb9batWuD2j83N7dS+yIVXzPx8YE/U7jfs0DvYXl5uhdIlZcnYgOfQs/Sr7/+KkmqX7++38d7SdK5555b5phQ2bdvn2rXrq2kpKQyv//oo48kSZdeemlIzwkAAAAAAAAAAAAAAAAAgD82Z4HXz644njQDmCilary+fjjw00CsJqUqX88Ol0BPfolWsdTnP/zhD54FMwMGDNBvfvMbtW7dWrVr11aVKlU8f0uHDh20b98+uVyuSu9TLL1/iB6MymfB4XDoxIkTkoofzRVIjRo1lJSUpPz8fM/qyFBZtmyZ5s2bp1atWnkGof3792vNmjUqKirSoEGDvJ50E4xg+xhoodDZcK+29PczrIW8zULe5iBrs5C3Wcgb4Rbp+kTiujcNeZuDrM1C3mYhb7OQN8KNGgXhRNZmIW+zkLdZyNscZI1IiHSNEui6tzsLvbbZ4pMqtVZC5WOcM0sweQfz5XW7zaa0aiyaCyd3VuUtYDh9+rTndeksK3thgvt718ePH5fD4ajQ02bS0tI8rw8dOqT09HS/+x46dMjncZF0+PBhNWzYMOB2qTiD1NRUr202m00ul0tOpzPgOUpmW5qvrH1dKydOnNDnn38uSRoyZIgmT57st83jx48H7E8ouPM7duyYCgsLAz5txp27r/fQNMHmXZH2YvHzHItmzkJeXp7ndZUqVcrdv0qVKsrPz/c6LhTatm2rffv2affu3dq8ebMcDofOOeccdezYUddcc40uuuiiCrf50EMPBbXfzJkzK9z2mUhJSQnLeRAdyNss5G0OsjYLeZuFvFHZoq0+kbjuTUPe5iBrs5C3WcjbLOSNykaNgkgia7OQt1nI2yzkbQ6yRjhEW43idd3He3/Bvkq1c1QlSr6wjNBgnDOLr7yzsrLkcrlkt9sDfoEdoRfoPa9Ro4YkKTs7O2AuO3fu9Lwu/SX4kj/7OlfJ7XFxcRXOv0OHDvr3v/+tgoICrVmzRj179gz62DZt2nhe//zzz7rsssv87vvzzz97Xrdt29arnyUXggXqv3vRgc1mC+rv9PV+lTzXunXrdP7555fb5/T0dFWrVs1rW40aNXTixAnl5OT47YvL5dKuXbv89jlQ1iXt2bNHBQXFT4278cYb/Z5v27ZtOnXqlCTff3vJn8u7Vkr2JT4+3mvf1q1b67PPPpPD4dDmzZvVsWNHv+0Eeg/dyhu3gr0+Ys2ZLnhxvx8JCQlRswCtIljmexYcDofndTA3g3ufkseFQuvWrTVq1Cj9/e9/1/vvv6/p06frrbfe0jPPPHNGC2YAAAAAAAAAAAAAAAAAADgrRaW+JxfHkyYAIBzcCzLWrVvn94kSmzdv1saNG8PZLS9XX321ZzFKoCeY+NKhQwfPIq7p06f7fepKySeltGzZUvXr1z/zDofQ9OnT/W5bvXq1Nm/eLEnq1atXme3ubEsuBirt66+/VnZ2tt/tJR8UkZ+f73e/wsL/PTEu0JNrpkyZ4nebJCUlJQV1vvJcccUVntdTp071u9+KFSu0ZcsWSb7fQ5jJOsueIqDko8BKDgz+uPepyCPEIqWiExAAAAAAVBbqEwAAAADRhBoFAAAAQDSJ6hrFWeD9c1z0f28OAKygZ8+emj9/vg4cOKBPPvlEN998s9f2EydOaOTIkRHqXbFmzZpp4MCBmjNnjubNm6fXX3/db59OnTqlgoICpaamSipehHHHHXdo0qRJ2rx5syZMmKDf/e53Xse4XC4988wzOnLkiCTp3nvvrdS/pyIWLFigWbNmafDgwV6/P3nypEaNGiWp+Kked911V5lje/bsqQ0bNmjVqlVavny5unXr5rX94MGDZd6L0mrWrKnExEQ5HA7PE2l8adq0qWw2m1wul6ZPn64bb7zRs9Cp5N/y9ttvBzxfvXr1PK8Dna88nTt3VseOHbVmzRp98MEHuv7668ssisnOzvZ6D0eMGHHG54O1sGjmLJRcaZeXl1fu/u59Sh4XrWrVqhXUfseOHauU89vtdq9H+WVnZ/tdCYrYR95mIW9zkLVZyNss0ZB3LD7mE2cu0vWJFB3XPcKHvM1B1mYhb7OQt1kinTf1iXmoURBOZG0W8jYLeZuFvM0RDVlTo5gn0jVKoOu+et4plVwmk+soVF4l1kqofNEwziF8gsm7oKDA87tg/vF5hI7T6fT7nt94440aP368Z3FMRkaGevfuLZvNprVr12ry5Mk6cOCA2rVrp/Xr10uSioqKFBcX52mjqKgo4LlKbi8qKjqj/MePH6+VK1cqMzNTY8eO1cKFC3XrrbfqwgsvlM1m0969e/X999/r888/15QpU9SzZ0/PsU8++aTmzp2r3bt3a/z48dqwYYOGDRumevXqae/evXrnnXe0bNkySVKXLl10++23l+ljyes5UP/dT+txuVxB/Z2+3q+S5+rQoYPuu+8+fffdd7r++ut1zjnnaOPGjXrjjTe0Y8cOSdKIESPUsmXLMu3cfvvteuedd1RYWKhhw4bpySefVLdu3eRwOLRixQpNnjxZhYWFatq0qXbu3OmzzzabTR07dtR///tfffTRR2rbtq3atm2r+PjiZQVpaWlKS0tTcnKyrrzySn399ddatGiRBg8erLvuukvnnXeeDh8+rLlz52rGjBk6//zzlZOTo6ysLJ9/e4MGDXTuuedq//79mjRpkurXr69mzZrJbrdLkurWrasaNWpI8r6uCgsLy7Q1ceJE9evXTw6HQ0OHDtW9996rq6++WtWrV9f69ev1+uuva/fu3ZKkRx55RM2bN/ebWaB7qHRmsTy+2Wy2Mve2vydQBeJ0OuV0OlVQUFDhz5XRUKOwaOYsJCYm6pxzztGJEyc8KxH9OXnypOeRUsEWKrGg5OBUmZxOZ9jOhcgjb7OQtznI2izkbRbyRrQI53XIdW8W8jYHWZuFvM1C3mYhb0QLahRUBrI2C3mbhbzNQt7mIGtEk4h8z6vQ4b3NFsc9YTGMc2bxlfeZfPEala927dr629/+pgceeEB5eXl6+eWX9fLLL3u2V61aVf/4xz/01VdfeRbNlM4yHNnWrVtXc+bM0fDhw7V582Z99913+u6774I6tkaNGvr000916623avv27Zo7d67mzp1bZr+uXbtq6tSpXosGIu1f//qXbrrpJk2ZMkVTpkwps33gwIF64YUXfB7bsmVLjR07VmPGjNHx48c1ZswYr+1paWl6//33NX78eO3cudNnGy6XS6NGjdKwYcN09OhRPfDAA17bn376aT3zzDOSpAkTJmjgwIH69ddftWTJEi1ZssRr30aNGumDDz7QsGHDAv7Njz/+uJ555hnt2bNHd9xxh9e2119/vdzj3dq1a6epU6fqnnvu0YkTJ/Tmm2/qzTffLLPfiBEj9NxzzwXVptWF+t52uVwxOffbI92BWNeoUSNJUmZmZsALYP/+/WWOAQAAAAAAAAAAAAAAAADAkpwFXj+67Il+dgQAhNoNN9yg+fPn69prr1Xt2rWVmJiohg0b6pZbbtFXX32l66+/PtJdlCQ1adJE3377rd544w1dddVVqlevnhISElS1alWlp6dr6NCh+vDDD9WtW7cyxzZu3FiLFy/W+PHj1aNHD9WsWVMJCQmqU6eO+vTpozfffFNz5syJiqdclHT++edr4cKFevzxx9W8eXNVq1ZNycnJ6t69uyZPnqwpU6Z4nvriy4MPPqiPP/5YvXv3VmpqqpKSknT++edrxIgR+uabb9S9e/dy+3DNNddo9uzZGjBggOrXr6+EhASf+zVs2FCLFi3So48+qvT0dCUlJSk5OVlt2rTR008/rW+//VYtWrQo93x33323pkyZoiuuuEJ16tQJ+PeVp3fv3lqxYoUef/xxtW3bVuecc46SkpLUqFEjDRkyRHPmzNHLL7/seZINIEk2F8s8vRw6dEiPPvqoJKlXr1565JFHAu4/bdo0ff7555Kkl156SRdeeKHP/T7//HNNmzZNkvSHP/xBF110Ueg6HUGReGwnrIe8zULe5iBrs5C3WaIh72j7DxqIDpVVn0jRcd0jfMjbHGRtFvI2C3mbJdJ5U5/AH2oUhAJZm4W8zULeZiFvc0RD1tQo8CcS3/Oq8clQJexb4dl2+ooXlH/RHWXaQOyIhnEO4RNM3gcOHFBRUZHsdrvq1asX7i4ihGw2m9fTWIqKiniSUAi98sormjBhgiTp8OHDEe0LWZslVHkfPHhQTqdTcXFxatCgQYWOjYYa5cyXaUFS8WO73Itmvv32W5+LZpxOp+dxVNWrV1ebNm3C2cVKFa6LuOQHL1gfeZuFvM1B1mYhb7OQN6JFOItsrnuzkLc5yNos5G0W8jYLeSNaUKOgMpC1WcjbLORtFvI2B1kjmkTke1427y9kVjsnRdWi4EuTCB3GObP4yjsrK0sul0t2u/2snhyB6FPyS/Y4eyWfehJt9wpZm+VM83ZfwwkJCVGxCKaieO7QWWrWrJlatWolqXjRzLZt28rsM3fuXO3bt0+S1L9//6gb7AAAAAAAAAAAAAAAAAAACKmiAu+f4xIj0w8AAAAYzfjVG1u2bFFmZqbn55ycHM/rzMxMLV682Gv/K664okwbd911l8aMGSOHw6EXX3xRgwcPVps2beRwOPTDDz9o4cKFkqQGDRrouuuuq5S/AwAAAAAAAAAAAAAAAACAqFFm0UxCZPoBAAAAoxm/aGbRokVasmSJz21bt27V1q1bvX7na9HMBRdcoMcff1xvvPGGcnNzNX369DL7NGjQQM8++6yqVq0akn5Hi2PHjlVKu3a73etRftnZ2XI6nZVyLkQeeZuFvM1B1mYhb7NEQ96x+JhPVL7Kqk+k6LjuET7kbQ6yNgt5m4W8zRLpvKlP4A81CkKBrM1C3mYhb7OQtzmiIWtqFPgTie95JRfkKq7EvidzHSqoxFoJlS8axjmETzB5FxQUeH5XWFgY1v4htGw2m+Li/jdqFxUVyeVyRbBH1lLy3on0vULWZglV3k6nU06nUwUFBRX+XBkNNYrxi2ZC5eKLL9arr76q+fPna/Xq1Tp69Kji4+NVv359devWTf369VNSUlKkuxlyRUVFYTmP0+kM27kQeeRtFvI2B1mbhbzNQt6IFuG8DrnuzULe5iBrs5C3WcjbLOSNaEGNgspA1mYhb7OQt1nI2xxkjWgSke95lXrSjNMWxz1hMYxzZvGVN1+0t47SWZKtdZG1WUKdt8vlism53/hFM4888ogeeeSRkLRVp04d3XnnnbrzzjtD0h4AAAAAAAAAAAAAAAAAADGp1KIZlz0hQh0BACCynnnmGT3zzDOR7gZgLHukOwAAAAAAAAAAAAAAAAAAAKzF5vReNKM4Fs0AAAAg/Ix/0gzOTlxcXKW0a7fbA/4MayFvs5C3OcjaLORtFvJGtKqs+kTiujcNeZuDrM1C3mYhb7OQN6IVNQpCgazNQt5mIW+zkLc5yBrRLCLf8yq1aMYWn1SptRIqH+OcWYLJ22azhas7qGSls7TZbHK5XBHqDSoTWZsl1HnbbLaY/Dxnc3GVAwAAAAAAAAAAAAAAAACAUHqpgVRw+n8/3/uN1Khz5PoDIOS2b98uh8Mhu92uBg0aRLo7AIBKcuDAATmdTiUmJurCCy+MdHcqjGW+AAAAAAAAAAAAAAAAAAAgtIoc3j/HJUSmHwAAADAai2YAAAAAAAAAAAAAAAAAAEDoOJ2Ss9D7d3GJkekLAAAAjBYf6Q4gth07dqxS2rXb7UpJSfH8nJ2dLafTWSnnQuSRt1nI2xxkbRbyNks05J2WlhbW8yE2VFZ9IkXHdY/wIW9zkLVZyNss5G2WSOdNfQJ/qFEQCmRtFvI2C3mbhbzNEQ1ZU6PAn7B/z6swX6WvxuxTuXJWYq2EyhcN4xzCJ5i8CwoKPL8rLCy1UA4xxWazKS4uzvNzUVGRXC5XBHuEykLWZglV3k6nU06nUwUFBRX+XBkNNQqLZnBWioqKwnIep9MZtnMh8sjbLORtDrI2C3mbhbwRLcJ5HXLdm4W8zUHWZiFvs5C3Wcgb0YIaBZWBrM1C3mYhb7OQtznIGtEk7N/zKsgv2wfFyck9YSmMc2bxlTdftLeO0lmSrXWRtVlCnbfL5YrJud8e6Q4AAAAAAAAAAAAAAAAAAADrsDkLyvzOZeff+AYAAED4sWgGAAAAAAAAAAAAAAAAAACETlHZRTOyJ4S/HwAAADAei2YAAAAAAAAAAAAAAAAAAEDI+HrSjOJYNAMAAIDw43mHOCtxcXGV0q7dbg/4M6yFvM1C3uYga7OQt1nIG9GqsuoTieveNORtDrI2C3mbhbzNQt6IVtQoCAWyNgt5m4W8zULe5iBrRLNwf8/LrqKy+yZUkSqxVkLlY5wzSzB522y2cHUHlax0ljabTS6XK0K9QWUia7OEOm+bzVap/+27sthcXOUAAAAAAAAAAAAAAAAAACBUDm2R3rzE+3d/PCaxyAKwlO3bt8vhcMhut6tBgwaR7g4AoJIcOHBATqdTiYmJuvDCCyPdnQrjEygAAAAAAAAAAAAAAAAAAAgdZ4H3z/Z4FswAAAAgIvgUCgAAAAAAAAAAAAAAAAAAQqfI4f2zPSEy/QAAqH379kpLS9PDDz9cZtvevXuVlpamtLQ0TZs27YzPMW3aNE87e/fuLbN94MCBSktL08CBA8/4HECsefjhh5WWlqb27dtHuivGi490BxDbjh07Vint2u12paSkeH7Ozs6W0+mslHMh8sjbLORtDrI2C3mbJRryTktLC+v5EBsqqz6RouO6R/iQtznI2izkbRbyNkuk86Y+gT/UKAgFsjYLeZuFvM1C3uaIhqypUeBPuL/nFXf8qJJL7Oe0xyu7EuskhEc0jHMIn2DyLigo8PyusLAwrP1DxTmdzjI5+cutqKhILpcr6LaLioq82izdrrstl8vFtRJhNptNcXFxnp8rmjWCV3LMjNR1H6q8nU6nnE6nCgoKKvy5MhpqFBbN4KyUnOQqk9PpDNu5EHnkbRbyNgdZm4W8zULeiBbhvA657s1C3uYga7OQt1nI2yzkjWhBjYLKQNZmIW+zkLdZyNscZI1oEu7vedkL8rw3xCVwP1gQ45xZfOXNF+2ti2ytq3S2sZ719OnTNXLkSEnSTz/9pMaNG1fq+V555RVNmDBBknT48OFKPVcohDpvl8sVk3M/i2YAAAAAAAAAAAAAAAAAAEDoFBV4/eiyJ0aoIwCAQBo3buz54n98fOV9rXz27NmV1jYQrSZNmqRJkyZFuhuQZI90BwAAAAAAAAAAAAAAAAAAgHXYnN6LZhSXEJmOAAAAwHgsmgEAAAAAAAAAAAAAAAAAAKHjLPT60WVn0QwAAAAig0UzAAAAAAAAAAAAAAAAAAAgdIoc3j/b4yPTDwCwmMzMTP35z39Wnz591LRpUzVo0ECtW7fW5Zdfrvvvv1/Tp0/XiRMngm5v7969qlOnjurUqaNp06b53e/48eP685//rO7du+u8885Tq1atdNNNN2n27NlBneeGG25QnTp1dMMNNwTsw/Tp0yVJixcv1m233abWrVurYcOG6ty5s55++mnt37+/3HMdPXpUf/rTn9StWzedd955at26tYYMGaJ58+ZJkqZPn+453969e4Pqf0WcPHlSb775pgYPHqzWrVvr3HPP1QUXXKDevXtr9OjR+u9//+v32KysLP3lL39R7969lZ6erkaNGqlTp056+OGHtXz58oDn7dSpk+rUqaNHH31UkrR27Vo9+OCDuuiii3TeeeepS5cuGjNmjI4cOeJ13IoVKzRixAh16NBBjRo1UpcuXfTnP/9ZJ0+e9Huu0nnu2LFDTzzxhDp37qxGjRqpTZs2uueee7Rq1Sq/bSxbtsyTw7JlywL+be79XnnllTLHjxw50vO7zp07e/b11/aqVav0l7/8RTfccINXPj179tTTTz+trVu3+uyD+7qZMGFCmX6V/F/Ja+rRRx9VnTp11KlTp4B/36ZNm/TEE0+oa9euaty4sZo0aaJLL71Uzz33XMBrNNh754knntC+ffsC9sHq+CQKAAAAAAAAAAAAAAAAAABCxuYs8P5FHE+aAYCz9eOPP+q2224rsyjm8OHDOnz4sDZv3qxZs2apVq1auvrqq0N23m3btummm25SZmam53d5eXlaunSpli5dqkWLFql79+4hO98LL7yg119/3et3e/fu1Xvvvae5c+dq9uzZat68uc9jN23apCFDhujw4cNefV2yZImWLFmi4cOH6+KLLw5ZX0tbsmSJHnjggTILUwoKCrRhwwZt2LBB77zzjlf/3L799lvdc889ZfL95Zdf9Msvv+jf//63RowYoXHjxsluD/zcjJkzZ2rUqFFyOP63iHX37t365z//qa+//lrz5s1TvXr19MYbb2js2LFyuVxe+73xxhtasmSJZs+erRo1agQ818KFC3XPPffo9OnTnt8dOnRIX3zxhebOnas//elPevDBBwO2ES7Tp0/3WmTjVlBQoG3btmnbtm368MMP9Ze//EUjRowIS59ee+01jRs3Tk6n0+v3W7du1datW/Xee+9p4sSJuuWWW8pty9+9M2XKFM2ZM0dz585Venp6SPsfK1g0g7MSFxdXKe2WHszLG9wR28jbLORtDrI2C3mbhbwRrSqrPpG47k1D3uYga7OQt1nI2yzkjWhFjYJQIGuzkLdZyNss5G0OskY0C/f3vOyuolIdSKzUOgnhwThnlmDyttls4eqO8fLz83X//ffrxIkTqlGjhu6++2717NlTtWvXVkFBgfbu3asVK1Zo/vz5ITmfzWaTy+XSiRMnNHToUM+CmUGDBumWW25RnTp1lJGRocmTJ2v69OnasmVLSM774YcfauXKlerRo4fuvPNOpaenKzs7Wx9//LFmzpyprKws/fa3v9WCBQvKHJudna1bbrnFsyBl6NChuvHGG1W7dm3t3LlTb7/9tj744ANt3LgxJH0t7fvvv9ett96qwsJCxcXF6eabb1b//v3VsGFD5efna+vWrVq0aJG++uqrMseuX79et99+uxwOhxISEnTPPfeoX79+qlatmtavX6/XX39de/bs0bvvvqvq1avrj3/8o99+bNy4UbNmzdIFF1yghx9+WK1bt9bJkyc1bdo0/fvf/1ZGRobGjBmj6667Tn/84x918cUX695771WzZs105MgRvf3221q4cKHWrVunv/71rwHPlZmZqQcffFDx8fH6wx/+oJ49e3reizfeeEMnTpzQmDFj1LhxYw0YMODs3+QSOnTooKVLl2rBggUaN26cpOLFQvXr1/far3Hjxp7XhYWFSk1NVb9+/dS9e3c1bdpU1apVU2ZmptavX6+3335bR44c0ejRo3XhhRfqsssu8xw7YMAAdejQQVOmTNGUKVMkSUuXLi3TrwYNGgT9N7z77rt66aWXJEm1a9fWY489pq5du6qoqEhLly7VpEmTdPr0aT322GOqWbOmrrrqKr9t+bt3Zs6cqY8//lhZWVl67LHHtGDBAq9FUhVls9li8jMdi2ZwVtLS0sJynpSUlLCcB9GBvM1C3uYga7OQt1nIG9EiXPWJxHVvGvI2B1mbhbzNQt5mIW9EC2oUVAayNgt5m4W8zULe5iBrRJOwf88ryfurifFJ1cJaJyE8GOfM4ivvrKwsuVwu2e12xcf7+Uqyyylb7rFK7l10cVVNk2yhXVT2ww8/eBauvP322+rXr5/X9m7dumno0KEaP368Tp8+7TMPXzn5y839pfi//vWv2rdvnyRpzJgxeuKJJzz7dO7cWYMHD9att96qb775xqvN0u26F1jZbLaAfVi5cqXuvPNO/e1vf/NalNWnTx9VqVJFH3zwgVatWqVNmzapffv2Xu1MnDjR8x6NGzfO6+kmnTt31o033qjhw4d7LSzy1dczkZeXp4cffliFhYWqVq2aPv74Y1166aVe+/To0UN33323fv311zLnfOqpp+RwOBQXF6cZM2aoT58+nm1dunTRjTfeqP79+2vLli36xz/+oWHDhqlVq1Y++7JhwwZ17dpVs2bNUrVq1Ty/v+KKK+RwODR79mx99tlnWrhwoa6//nq9++67Xosg+vbtq/79+2vlypX66KOP9Mc//tFvnjt37lRycrK++uortWjRwrO9e/fuGjhwoK655hqdOHFCzz77rPr376+EhP89ea7kOePi4oLKoeQ1nJKSonbt2mn9+vWe7S1atPBaJFPaNddco1tuucXrfXEbMGCAHnzwQV177bXauHGjXnnlFfXu3duzvVatWqpVq5bq1q3r+V27du3K7a9b6b8vKytLf/rTnyQVL7T56quv1KhRI8/2nj176tprr9WAAQN06tQpPfXUU/r555+93sNg752kpCR98MEHWrlypTZu3Fjm3gmG+29JSEiIyc90LJoBAAAAAAAAAAAAAAAAAACh4yz0/jkuwfd+ACzPlntMKW91inQ3wir7/tVyVasV0jYPHjzoed2jRw+/+8XHxys5OTkk53Q4HJo6daokqU2bNho1alSZfRISEvT666+rY8eOKigoOOtz1q9fXy+//LLPpxg9+uij+uCDDyRJP/74o9cX//Pz8zVt2jRJUqdOnbwWzLjFxcXpb3/7m7755hvl5eWddV9LmjFjhg4cOCCpeHFR6QUzJZVcGCFJP/30k1avXi1JGj58uNeCGbfU1FT97W9/U//+/eV0OvXOO+/o1Vdf9dm+zWbT66+/7nNhyD333KPZs2erqKhI+fn5eu2118o8NSQuLk533nmnVq5cqaNHj2rLli1q27at37/n6aef9low49aqVSs9+eSTev7557V//37Nnz9fN9xwg992wuHcc88NuD0lJUW///3vddttt2n58uU6evSoatasWSl9+eijj3T69GlJ0osvvljmupCk9u3b6/HHH9dLL72k/fv3a968eRo0aJDP9s703jEFz8YDAAAAAAAAAAAAAAAAAAChU+Tw/jkuMTL9AACLqF+/vue1e3FIZfv55591/PhxSdKwYcN8fhlfkho2bOj1RI6zcf311yspKcnntgsvvFA1atSQJO3evdtr25o1a5SdnS1JGjp0qN/269at63NRytn68ssvJUnVq1fX8OHDK3Ts4sWLPa/vuOMOv/t169bNszhlyZIlfvdr06aNz0UskrwWv1xxxRV+nxhScr89e/b4PZfNZtOwYcP8br/ttts8103JvzNanDp1Snv37tXmzZu1adMmbdq0yevpLRs2bKi0c7szTElJ0XXXXed3v5LXU6D38EzvHVPwpBmclWPHKueReXa73etRftnZ2XI6nZVyLkQeeZuFvM1B1mYhb7NEQ96x+JhPVL7Kqk+k6LjuET7kbQ6yNgt5m4W8zRLpvKlP4A81CkKBrM1C3mYhb7OQtzmiIWtqFPgT7u95VTmZo6ol9nMUuXSqEuskhEc0jHMIn2DyLigo8PyusLDUE6b+P1uR799bWWFRoVx+3o8zdfHFF6tJkybavXu3nn32Wc2cOVMDBgxQ9+7d1bFjRyUmlr840el0lsnJX25FRUVeCwbat2/vd19J6tixo7766itPm6X3dblcnv8P1If09PSA50lJSdHJkyeVk5Pjtd/GjRs9r9u2bRuwjfbt22v+/Pl++3om1q1b52k7MTGxQm1u2rRJkpSYmKhWrVqV+z5v3bpVGRkZOn36tM/cmzZt6reN6tWre16np6dLKs7anY+v/bKzs/3mef755yslJcXv+VJTU9W4cWPt2bNHGzdu9NqvqKjI63Uw75mva7hkO8HkeeTIEU2ePFlz587Vzp07y/ztJR06dKhMeyXHwfLOFWhfd+7t27eXzWbz21bNmjXVuHFj7d27V5s2bfLaL5h7x2azKS4uznPvnDhx4oyueafTKafTqYKCggp/royGGoVFMzgrJQeayuR0OsN2LkQeeZuFvM1B1mYhb7OQN6JFOK9DrnuzkLc5yNos5G0W8jYLeSNaUKOgMpC1WcjbLORtFvI2B1kjmoT7e16uwnyv37vsCdwPFsQ4ZxZfeQf6sjlCKyEhQVOnTtWIESO0bds2rVmzRmvWrJEkVa1aVd26ddMtt9yiQYMGKS4u7qzP53K5vL4YX6dOnYD7l7c9WFWrVg243W63Syo7r7mfiCNJtWvXDthGedvPxNGjRyVJ9erVq/Cx7vc5NTXV6yknvtStW1dScT7Hjx/3/FxSoPfQ/f5JUrVq1TxtBdov0DgfzHtZp04d7dmzxyujSFm7dq2GDh3qyas8eXl5ldYX9/sRzHtYt25d7d27N+B76C93d77uTM92kZjL5YrJuZ9FMwAAAAAAAAAAAAAAAAAAIHSKCrx+dNkTItQRAJHmqpKmI/esiHQ3wspVpXKeqtCiRQstXbpUX375pb788kv9+OOP2rVrl3Jzc/Xtt9/q22+/1eTJkzV9+vSQLWJxs9lsIW0PZcXiexxLfXY4HLr33nt19OhRJSQk6N5771W/fv2Unp6u1NRUJSUlSZJ2796tLl26SArPwsBYeg9jGYtmAAAAAAAAAAAAAAAAAABAyNic3otmFMeiGcBYNrtcVWtFuheWERcXpwEDBmjAgAGSpMzMTH3zzTd69913tXbtWq1du1ZPPfWU3n///bM+V2pqquf1oUOHlJ6e7nffw4cPn/X5zkbJvmZlZQXsa1ZWVsjPX7NmTe3fv18HDx6s8LFpacWLrI4dO6bCwsKAT5s5dOiQpOKFFiX/5kgJJnf3PqX7W3KxiNPp9Hv8qVOnzqxzpXz33XfavXu3JOnll1/WHXfc4XO/cD0RJzU1VQcPHgzqPXTnHg2Zxyp7+bsAAAAAAAAAAAAAAAAAAAAEycmTZgAgHOrXr6/f/OY3WrBggdq3by9J+uqrr5Sbm3vWbbdq1crz+ueffw6475o1a876fGejRYsWntdr164NuG9528+E+71fu3atTp8+XaFjW7ZsKan4SSgbNmwIuK/7fW7atKkSExPPoKehtWfPHh09etTv9qysLO3du1eS9/UkSTVq1PC8DrRQJSMjI2Afgn1Sy9atWz2vBw8e7He/8q71UD0Zxv1+rFu3ToWFhX73O3z4sH755RevY1BxLJoBAAAAAAAAAAAAAAAAAAChU8STZgAgnBISEtSjRw9JUmFhobKzs8+6zYsuusjzZIuZM2fK5XL53O/AgQNavHjxWZ/vbHTo0EHJycmSpE8++cTvfocOHdK3334b8vNfffXVkqTTp0/rgw8+qNCxvXr18ryeNm2a3/1WrlzpWfhx+eWXn0EvQ8/lcmnmzJl+t8+YMcNz3ZTuc+PGjT2vAy1UmTVrVsA+JCUleV47HA6/+5VcmOLv6TVOp1Mffvhh0OfLz88PuG8g7vcjOztbc+fO9bvfRx995Pc9RPBYNAMAAAAAAAAAAAAAAAAAAELGVupJM+JJMwBwVn788Uft3LnT73aHw6EffvhBklS9enXVrl37rM+ZlJSkYcOGSZI2bNigSZMmldmnsLBQo0aNCrhYIRyqVKmioUOHSip+Gsv//d//ldnH6XTqqaeeUl5eXsjPf/PNN6tBgwaSpHHjxmnZsmV+992/f7/Xz506dVKHDh0kSR9++KGWLl1a5picnBw99dRTkiS73a677747RD0/exMnTtSOHTvK/H7btm3629/+JkmqV6+e+vfv77U9NTVVbdq0kSRNnz5dx44dK9PG8uXL9dZbbwU8f7169Tyvd+3a5Xe/pk2bel7PmDHD5z4vvvii1q1bF/T5du/eHXDfQIYNG6Zq1apJksaOHasDBw6U2WfDhg167bXXJEkNGjTQgAEDzvh8pouPdAcAAAAAAAAAAAAAAAAAAICFlHrSjItFMwBwVr777jtNnDhR3bp101VXXaXWrVurVq1aysvLU0ZGht5//33Pl/1vu+02xceH5iviTz31lGbPnq39+/frz3/+szZs2KChQ4eqdu3a2rlzpyZPnqw1a9aoQ4cOAZ8WEg7PPPOMvvjiCx06dEjPPfec1q1bp5tuukm1atXSrl279NZbb2nlypXq1KmTVq9eLUmy2WwhOXeVKlX05ptv6uabb9bp06c1ZMgQ3XzzzRowYIAaNGggh8Oh7du3a+HChfryyy+1b98+r+P/+te/ql+/fnI4HBo2bJjuvfdeXX311apevbrWr1+v119/3bNA45FHHlGrVq1C0u+zdcEFF+jIkSPq16+fHnvsMfXs2VOStGzZMr3++uvKycmRVLyQKDExsczxI0aM0JNPPqnDhw/ruuuu05NPPqn09HQdP35cX3/9taZMmaKLLrpIK1eu9NuH9u3bq0qVKsrLy9P48eOVkJCg8847z5NtgwYNVLVqVfXu3Vt16tTR4cOHNW7cOP3yyy8aMGCAatWqpZ07d2rq1KlaunSpunbtqhUrVvg9X5cuXTyvn3vuOY0aNUr16tXznK9x48ZB3X+1a9fW2LFj9bvf/U779+9X3759NXLkSHXt2lWFhYVaunSpJk2apFOnTslms2nixIlKSODz1Jli0QzOSlxcXKW0a7fbA/4MayFvs5C3OcjaLORtFvJGtKqs+kTiujcNeZuDrM1C3mYhb7OQN6IVNQpCgazNQt5mIW+zkLc5yBrRLNzf87K7Cr1+b4tPrNQ6CeHBOGeWYPIO1YIDBMfpdOqHH37wPFHGl/79++u5554763PZbDa5XC4lJyfr448/1k033aRDhw7ps88+02effea176233qoePXpo5MiRZ33es5GWlqaPP/5YN998s7KysjRz5kzNnDnTa59bb71V3bp18yyaSUpKCtn5L730Un300Ud64IEHdPz4cU2fPl3Tp08P6th27dpp6tSpuueee3TixAm9+eabevPNN8vsN2LEiJDkW5I76zPRoEEDvfjii7rvvvv04osvltlut9s1duxYXXfddT6Pv/3227Vo0SLNnz9fW7du1f333++1vXXr1poyZYratm3rtw81atTQfffdpzfeeEPr1q3TzTff7LX9888/V8+ePVW9enVNmjRJd955p/Ly8vT+++/r/fff99q3Z8+eGj9+vC677DK/52vatKluuOEGzZ49W4sXL9bixYu9tv/0009q3Lix3+NLGjFihLKzszV+/HgdPnxYY8aMKbNPUlKSJk6cqKuuuiqoNksrPU6f7bhts9li8jMdi2ZwVtLS0sJynpSUlLCcB9GBvM1C3uYga7OQt1nIG9EiXPWJxHVvGvI2B1mbhbzNQt5mIW9EC2oUVAayNgt5m4W8zULe5iBrRJOwf8/r2pel3NHFT5wpcqhq8rmqGsY6CeHBOGcWX3lnZWXJ5XLJbreH7Mkm8G3kyJFq166dFi9erPXr1+vAgQPKysqSJNWtW1edO3fWLbfcomuuucZvG75y8pdbyS/Ft23bVsuXL9drr72mefPm6ddff1WNGjXUunVrDR8+XEOGDNG0adO82izdrvuL+jabLWAf4uLigrqW/F1zHTp08PR1wYIFPvs6efJkz/41a9YM6bV79dVX6+eff9Y777yjL7/8Ujt27FB2draqVaumpk2bqkePHhoyZIjPc1511VVavXq1Jk+erK+//lq7d++Ww+FQnTp11L17d919993q3r17uX2o6P3oawFEeZmUzHPAgAH65ptv9MYbb2jp0qU6ePCgUlJS1L17dz3yyCPq2rVrwPN/8MEHmjJliqZPn66tW7dKkpo0aaLBgwfr4YcfVtWqVcv92/70pz+pWbNmmjFjhrZs2aKcnBwVFRWV6f/VV1+tb775Rq+99pq+++47ZWVlKSUlRS1atNDNN9+sO+64Q7/++mvAv12S3n77bXXq1ElffPGFtm/frpMnT8rpdHreO/cxJRcb+svk6aefVv/+/fWvf/1LS5cuVWZmpux2uxo1aqTevXvroYce8rsI50zuHV/3YDDcf0tCQkJY/9t3qNhcZ7o0DAAAAAAAAAAAAAAAAAAAAICRtm/fLofDIbvdrgYNGkS6O0BQRo4cqQ8//FDnnnuuNm7cGOnuxKSBAwdq2bJl6tmzp+bOnRvp7iAMDhw4IKfTqcTERF144YWR7k6F8Ww8AAAAAAAAAAAAAAAAAAAAAICl5ebmav78+ZKkLl26RLg3AMKFZ6HhrBw7dqxS2rXb7V6P8svOzvY8tgrWQ95mIW9zkLVZyNss0ZB3LD7mE5WvsuoTKTque4QPeZuDrM1C3mYhb7NEOm/qE/hDjYJQIGuzkLdZyNss5G2OaMiaGgX+8D0vhAJ5myWYvAsKCjy/KywsDGv/EFo2m01xcXGen4uKiuRyuSLYozOza9cuNWnSRDabrcy2oqIijRo1SkeOHJEkDR061MjrNhRZu/d3uVxGvoexJFT3ttPplNPpVEFBQYU/V0ZDjcKiGZyVoqKisJzH6XSG7VyIPPI2C3mbg6zNQt5mIW9Ei3Beh1z3ZiFvc5C1WcjbLORtFvJGtKBGQWUga7OQt1nI2yzkbQ6yRjThe16oDORtFl95x+KiCvhWOstYzXbixIlas2aNBg8erE6dOql27drKy8vTpk2b9OGHH2rdunWSpF69eumqq66KcG8jwypZIzihztvlcsXk3M+iGQAAAAAAAAAAAAAAAAAAAABAzNu2bZtefvllv9u7du2qt956y+tpNAcOHNDx48crfK5q1arp/PPPP5NuAggjFs0AAAAAAAAAAAAAAAAAAAAAAGLa448/rvT0dC1dulS//PKLsrKyVFhYqLS0NHXo0EGDBg3S4MGDZbfbvY576aWX9PHHH1f4fD169NDs2bND1X0AlYRFMwAAAAAAAAAAAAAAAAAAAACAmNasWTONGjVKo0aNinRXLI2FQog1LJoBAAAAAAAAAAAAAAAAAAAAABhp0qRJmjRpUqS7AaCS2MvfBQAAAAAAAAAAAAAAAAAAAAAAAIgtLJoBAAAAAAAAAAAAAAAAAAAAAACA5bBoBgAAAAAAAAAAAAAAAAAAAAAAAJbDohkAAAAAAAAAAAAAAAAAAAAAAABYDotmAAAAAAAAAAAAAAAAAAAAAAAAYDnxke4AYltcXFyltGu32wP+DGshb7OQtznI2izkbRbyRrSqrPpE4ro3DXmbg6zNQt5mIW+zkDeiFTUKQoGszULeZiFvs5C3Ocga0YzveSEUyNssweQdFxcnp9Mpl8sll8slm80Wru4hxEpnZ7PZ5HK5ItQbVCayNkso8naP8VLxuF+Z/+27sthcXOUAAAAAAAAAAAAAAAAAAAAAKuCXX37RiRMn5HQ6VbduXSUmJka6SwCAEMvLy1NWVpbsdruSk5PVqFGjSHepwljmCwAAAAAAAAAAAAAAAAAAAKBCqlev7nmKwenTpyPcGwBAqLlcLp08eVJS8VNqkpOTI9yjM8OiGQAAAAAAAAAAAAAAAAAAAAAVUqNGDUnFX6Q+efKk56kzAIDY5nK5lJeXpyNHjigvL092u102m80z7scam8vlckW6E4hdx44dq5R27Xa7UlJSPD9nZ2fzQcrCyNss5G0OsjYLeZslGvJOS0sL6/kQGyqrPpGi47pH+JC3OcjaLORtFvI2S6Tzpj6BP9QoCAWyNgt5m4W8zULe5oiGrKlR4A/f80IokLdZgs07JydHOTk5ZY5FbLHZbJ6nBknFX5jnK+bWRNZmOdO8S+9ns9lUs2ZNVa1atcJ9iIYaJT7SHUBsKyoqCst5nE5n2M6FyCNvs5C3OcjaLORtFvJGtAjndch1bxbyNgdZm4W8zULeZiFvRAtqFFQGsjYLeZuFvM1C3uYga0QTvueFykDeZvGXd7Vq1VRQUKDc3FyvfRF7Si52IkNrI2uznG3eNptNqampSkxMjNl5n0UzAAAAAAAAAAAAAAAAAAAAACrM/WXq6tWr6/Tp03I4HDy5IgbZbDYlJCR4fi4oKCBDiyJrs5xp3na7XfHx8apSpYqSkpJi/gliLJoBAAAAAAAAAAAAAAAAAAAAcMYSEhKUkpIS6W7gDMXFxSktLc3z87Fjx2L2iRIIjKzNQt7FYnvJDwAAAAAAAAAAAAAAAAAAAAAAAOADi2YAAAAAAAAAAAAAAAAAAAAAAABgOSyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWA6LZgAAAAAAAAAAAAAAAAAAAAAAAGA5LJoBAAAAAAAAAAAAAAAAAAAAAACA5bBoBgAAAAAAAAAAAAAAAAAAAAAAAJbDohkAAAAAAAAAAAAAAAAAAAAAAABYDotmAAAAAAAAAAAAAAAAAAAAAAAAYDnxke4AYlvt2rUrpd0jR45o6NChkqTJkyerVq1alXIeRAfyNgt5m4OszULeZiFvRKvKqk8krnvTkLc5yNos5G0W8jYLeSNaUaMgFMjaLORtFvI2C3mbg6wRzfieF0KBvM1C3mYhb3OQtVnIuxhPmgEAAAAAAAAAAAAAAAAAAAAAAIDlsGgGAAAAAAAAAAAAAAAAAAAAAAAAlsOiGQAAAAAAAAAAAAAAAAAAAAAAAFgOi2YAAAAAAAAAAAAAAAAAAAAAAABgOSyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWA6LZgAAAAAAAAAAAAAAAAAAAAAAAGA5LJoBAAAAAAAAAAAAAAAAAAAAAACA5dhcLpcr0p0AAAAAAAAAAAAAAAAAAAAAAAAAQoknzQAAAAAAAAAAAAAAAAAAAAAAAMByWDQDAAAAAAAAAAAAAAAAAAAAAAAAy2HRDAAAAAAAAAAAAAAAAAAAAAAAACyHRTMAAAAAAAAAAAAAAAAAAAAAAACwHBbNAAAAAAAAAAAAAAAAAAAAAAAAwHJYNAMAAAAAAAAAAAAAAAAAAAAAAADLYdEMAAAAAAAAAAAAAAAAAAAAAAAALIdFMwAAAAAAAAAAAAAAAAAAAAAAALAcFs0AAAAAAAAAAAAAAAAAAAAAAADAclg0AwAAAAAAAAAAAAAAAAAAAAAAAMuJj3QHgNIOHz6sBQsWaPXq1Tpy5Iji4+NVv359de/eXddcc42SkpIi3cWYlJ2drR07dmjHjh3KyMhQRkaGTpw4IUnq1auXHnnkkQq1t2bNGi1cuFAZGRnKyclRcnKy0tPTdeWVV6pjx45BtVFUVKRFixbp+++/1759+5SXl6eaNWuqXbt26t+/v84777yg2snJydGCBQu0cuVKHT58WJJUp04ddenSRQMGDNA555wTVDt79+7Vf/7zH61fv15Hjx5VlSpV1LBhQ1166aXq27ev4uLigmon0jIyMrRmzRpt2bJFv/76q3JychQXF6eaNWuqRYsW6tOnj1q2bBl0e2QdvU6fPq01a9Z47umjR48qJydHDodD1atXV6NGjdSxY0f16dMnqPdm69at+vLLL7VlyxZlZ2erWrVqatKkiXr16qVLL7006H59//33Wrx4sfbs2aPTp08rJSVFLVu2VL9+/dS8efOg2sjPz9d//vMfLV++XJmZmSosLFStWrXUqVMn9e/fX3Xq1AmqHVPmlKlTp+qLL77w/Dx27Fi1adMm4DHc29Fv6NChQe3XunVrPf/88wH3IW/g7Jgyn4QT9Un5rDTOUaOUzyp5U6OUz5Q5hRqlmFXubTdqlMCsljeimynzSThRo5TPSuMcNUr5rJI3NUr5TJlTqFGKWeXelqhPymOlrBH9TJlLwo0apXxWGeuoT8pnlaypT8pnypxCfVLMKve2GzVKYNGQt83lcrkq/SxAkFatWqU33nhDubm5Prc3aNBAzz77rOrXrx/mnsW+QANyRYopp9Opt956S998843fffr06aP7779fdrv/h1nl5ORo3LhxysjI8Lk9ISFBI0aMUN++fQP2Z/v27ZowYYKOHz/uc3taWpqefvppNWvWLGA7Cxcu1LvvvqvCwkKf25s1a6bRo0crOTk5YDuRNnbsWG3evLnc/S6//HI9+OCDio/3v3aSrKM7a0lat26dXnzxxXL3O+ecc/TYY4+pQ4cOfveZOXOmPv30U/n7WNCpUyc98cQTSkxM9NuGw+HQxIkTtWbNGp/bbTabhgwZoptvvjlgfzMzMzVu3DgdOHDA5/aqVatq5MiR6ty5c8B2TJlTdu/erWeffVZFRUWe3wUqpri3o//edgtFMUXesZM3opcp80m4UZ+YM85Ro5iVNzUKNYpEjeJmpXvbjRrFPyvmjehlynwSbtQo5oxz1Chm5U2NQo0iUaO4WenelqhPArFa1ohupswlkUCNYsZYR31iTtYS9Qn1STHqk2JWurfdqFH8i5a8WTSDqLFr1y6NGTNGDodDVapU0aBBg9S2bVs5HA4tW7ZMixYtklQ8+Y0fP15Vq1aNcI9jS8kBuXbt2mrYsKHWrl0rqWLF1LRp0/T5559Lki644AJdf/31qlevng4ePKgvvvhCu3btkiQNGjRIv/nNb3y24XQ69fzzz2vLli2SpK5du+rKK69UjRo1tH37dn322WfKzs6WzWbT6NGj/a6MzMrK0ujRoz0r7K+99lrPh6uffvpJ8+bNU1FRkVJSUjR+/HjVqlXLZzurV6/Wyy+/LJfLpZSUFN1444268MILdfLkSS1cuFArVqyQJLVs2VLPP/98wMkm0h577DEdPHhQaWlp6t69u1q2bKnatWvL6XRq27Ztmjt3ro4ePSpJ6tmzp37729/6bYusoztrqbiYmjx5stq0aaOmTZuqdu3aSk1Nlcvl0pEjR7R8+XKtWLFCTqdT8fHx+stf/qImTZqUaefrr7/W22+/LUmqV6+eBg8erMaNG+vYsWOaP3++Nm7cKKn8a+a1117TDz/8IElq06aNBgwYoLS0NO3du1ezZs3SwYMHJUn333+/rrzySp9t5ObmavTo0Z5Cqm/fvurZs6cSExO1YcMGff7558rLy1NSUpJeeOEFn3+PZM6c4nQ69Yc//EEZGRlKSUlRdna2pMDFFPd29N/bbu65++qrr9bVV1/td78qVaqobt26PreRd+zkjehkynwSCdQn5oxz1Chm5U2NQo1CjVLMave2GzWKWXkjOpkyn0QCNYo54xw1ill5U6NQo1CjFLPavS1Rn5iUNaKXKXNJpFCjmDHWUZ+Yk7VEfUJ9Qn3iZrV7240aJfrz9r/0FAiz9957Tw6HQ3FxcXruuee8Hu3Wtm1bNWjQQFOnTtWBAwc0Z86coFflodiQIUOUnp6u9PR0paam6tChQ3r00Ucr1Mb+/fs1Z84cSVJ6err+9Kc/eVYjN2vWTBdffLGef/55ZWRkaM6cOerTp4/Plb2LFy/2DMhXX3217r33Xs+2Zs2aqWPHjvrd736n3NxcTZkyRe3bt/f56K0ZM2YoJydHkjRy5Eh1797ds61Vq1Zq2rSpXnvtNWVnZ2vGjBk+C8bCwkJNmTJFLpdLVatW1QsvvODV5w4dOuhf//qXvvrqK23ZskVLly7VFVdcUaH3LZwaNmyoYcOGqVu3bmUmj+bNm+vyyy/XmDFjdODAAS1btkxXXXWVWrduXaYdso7+rKXisXHy5Ml+t/fo0UMrVqzQq6++qsLCQn3yySd66qmnvPY5efKkPvroI0nF/6HlpZde8lqx27lzZ02YMEE//fSTli1bpiuvvNLnh/QNGzZ4CqnOnTvr6aef9lyD7mtm9OjRysrK0kcffaRu3bqpRo0aZdr54osvPIXU7bffruuvv96zrXnz5mrTpo2ef/555efn67333vO76tqUOWXBggXKyMhQw4YN1aVLF8+HZn+4t2Pj3i4tOTlZjRs3rvBx5B2beSO6mDKfRAL1iTnjHDWKWXlTo1CjUKNY894ujRrlf0zIG9HFlPkkEqhRzBnnqFHMypsahRqFGsWa93ZJ1Cf/Y/WsEX1MmUsihRrFjLGO+sScrCXqE+oT6hPJmvd2adQo/xNtecfG8itY3o4dOzyPGuzdu7fXpOc2cOBANWzYUFLx5OHvMU3wbejQoercubNSU1PPuI358+d7Hgt39913l3l8X1JSku6++25JUlFRkebOneuzHffAXqNGDd1xxx1lttevX1+DBw+WVPz4PvdKwpKOHz+u7777TpJ00UUXeQ3Ibj169NBFF10kSVq6dKnPR4StWLHCsyp68ODBPieRO+64Q9WrV5dU/EEvmo0ePVo9evTwu9oyOTlZw4cP9/y8fPlyn/uRdfRnLSmoVbVdu3bVueeeK0k+H+m6aNEinT59WpJ02223lXnEnd1u17333us5l7/3xZ11XFyc1/5uycnJuu222yRJp06d8vkIwcLCQi1YsEBS8X8YGDhwYJl9WrRood69e0uSNm3apB07dpTZx5Q5JSsrSx9//LEk6b777gv4GF437u3YuLdDhbzNyhuhZ8p8EinUJ+aMc9QoZuVNjUKNQo1izXs7VMjbrLwReqbMJ5FCjWLOOEeNYlbe1CjUKNQo1ry3Q4GszckalcOUuSSSqFHMGOuoT8zJWqI+oT6hPpGseW+HCnlXft4smkFUKHnTuSfJ0ux2u3r16iWpeCJ2P0YO4eFyubRy5UpJxR9yfH04kYpXCLs/uK1atUoul8tr+/79+7Vv3z5JUvfu3ZWUlOSznZKrBX0NyiXb9nfNlGzH5XJp1apVZba7/6bS5ywpKSnJM+j/+uuv2r9/v9/zxYKSq8fdE1JJZG2drN3cj6QsKCgos839vlStWlWXXHKJz+Nr1aqldu3aSSr+lwZyc3O9tufm5mr9+vWSpHbt2vl91N4ll1zi6YuvrDdu3Ogp7Hr16uW3WCzvmjFlTvnXv/6lvLw89erVy+e/JFIa97b17u1AyNusvFE5TJlPYhXjnLXGOWoUs/KWqFF8scKcQo1SzOR7OxDyNitvVA5T5pNYxThnrXGOGsWsvCVqFF+sMKdQoxQz+d72h6zNyRqVx5S5JJYx1llnrKM+MSdrN+qTsqwwp1CfFDP53g6EvMOTN4tmEBW2bt0qqfjib9q0qd/9Sk4W7mMQHocOHdKxY8ckFT9aKxB3TkePHtXhw4e9trkf+1VyP19SU1PVoEEDSb6zDradkttKHlP6d+eee27Af53BStdeyZXWvj6skrV1spaKPwjt3r1bkjwr7t0KCws9K/ibN28ecAW7+30pKChQRkaG17aMjAzPdRUoo/j4eM8HupLHuAWbdXp6uucDna+MTJhTfvjhB61evdrvinBfuLdjN+8zQd5m5Y3KYcJ8EssY56x13VGjmJU3NYo15xRqlLLtmHZvl4e8zcoblcOE+SSWMc5Z67qjRjErb2oUa84p1Chl2zHt3g6ErM3JGpXHhLkk1jHWWefaoz4xJ2uJ+sSqcwr1Sdl2TLu3y0Pe4cmbRTOICr/++quk4sc+xcXF+d3PvUKu5DEIj5Lvd+kPZKUFyqki7bi3HzlyRHl5eT7bqVatWsDBNC0tzbPi2b2C0i0vL09Hjhwp0+dAffHVTqzZtGmT57WvDMg69rPOz8/XgQMHNHfuXI0dO9bz2L4BAwZ47bd//345nU5JwWcklX1fSmZd3vvr3l5UVKTMzEy/7QTqT1xcnOdRfb4ysvqccurUKb333nuSfD9q1R/u7di9t5cvX65Ro0bp9ttv1/DhwzVy5EhNmjRJGzZs8HsMecdu3ogeVp9PYh3jnLXGOWoU6+dNjWLtOYUa5X9MubepUYqZkjeih9Xnk1jHOGetcY4axfp5U6NYe06hRvkfE+5t6pNiJmSN6GL1ucQKGOusM9ZRn1g/a+oTa88p1Cf/Y8q9TY1SLBrz9r/UEAgTh8OhEydOSJLfR7251ahRQ0lJScrPz/fcTAiPku93eTnVrl3b53FS8epGt5o1awZsx30el8ulo0ePeg2c7nbL64u7P7/88kuZvlTkbyq5PSsrq9xzRiun06nPP//c83OPHj3K7EPWsZn14sWL9eabb/rdPmjQIF166aVevzuTjKSyWZ/N+9uoUaMy/UlKSlL16tXLbWfPnj3KyclRQUGBEhISJJkxp0ydOlXHjx9XixYt1KdPn6CP496OzXtbKlvgZGZmKjMzU0uXLlWXLl30yCOPqFq1al77kHfs5o3oYMJ8EusY56wzzlGjWDdvahRqlPJwb8fmvS1Ro/jqm5XzRnQwYT6JdYxz1hnnqFGsmzc1CjVKebi3Y/Pepj4p2zerZo3oYcJcYgWMddYY66hPrJs19Qn1SXm4t2Pz3paoUXz1LVryZtEMIq7kCrUqVaqUu3+VKlWUn59fZmUbKldFcnI/Tq/0cZKUm5sbknbcPwdzzbjbOZu+lNwey9fevHnzPI9p7Nq1q89HGpK1NbJ2a9Kkie6//341a9aszLZQZRSq99fdTkWydrfjLqasPqds3rxZ33zzjeLi4nTffffJZrMFfSz3duzd20lJSercubPatWunhg0bqkqVKsrJydGmTZv09ddf68SJE1q5cqVeeeUVPffcc16P3iXv2Msb0cXq84kVMM5ZZ5yjRjErb4kapTyxNqdQo5h1b1OjmJU3oovV5xMrYJyzzjhHjWJW3hI1SnlibU6hRjHn3qY+MSdrRB+rzyVWwVhnjbGO+sScrN2oTwKLtTmF+sSse5saJfrzZtEMIs7hcHhelxwE/HHvU/I4VL6K5OT+UFP6OEkqKCgISTvun4O5ZkquTD7TvpTcXvK4WLJp0yZNmzZNkpSSkqL77rvP535kHZtZd+nSRa+++qqk4r//4MGD+vHHH7VixQr9/e9/11133aXOnTt7HROqjM70/fXXTkWyLt2OleeUwsJCvfXWW3K5XLr22mvVuHHjCh3PvR179/Y///lPn/8aR/v27dWvXz+NGzdOu3bt0qZNm/TVV195PZqXvGMvb0QXK88nVsE4Z41xjholuL7Eat7UKGVfW21OoUYx796mRjErb0QXK88nVsE4Z41xjholuL7Eat7UKGVfW21OoUYx696mPjEna0QfK88lVsJYF/tjHfVJcH2J1aypT8q+ttqcQn1i3r1NjRL9edsrrWUgSImJiZ7XhYWF5e7v3qfkcah8Fcmp5KBVOqeSA+3ZtOP+OZhrxt3O2fSl5PaSx8WKX375RRMmTFBRUZESEhI0atQopaSk+NyXrGMz6+rVq6tx48Zq3LixmjVrpp49e+qpp57So48+qkOHDumVV17R4sWLvY4JVUZn+v76a6ciWZdux8pzymeffaZ9+/apdu3aGjJkSIWP596OvXs70ONrU1NT9cQTTyguLk6S9J///MdrO3nHXt6ILlaeT6yCcS72xzlqFOvnTY1S9rXV5hRqFPPubWoUs/JGdLHyfGIVjHOxP85Ro1g/b2qUsq+tNqdQo5h1b1OfmJM1oo+V5xIrYayL7bGO+sT6WVOflH1ttTmF+sS8e5saJfrzZtEMIq6ij1WqyGOfEDoVySk/P9/ncZJUtWrVkLTj/jmYa8bdztn0paKPAowmhw4d0osvvqhTp07Jbrfr8ccfV+vWrf3uT9axm7Uvl19+ubp16yaXy6V33nlHJ0+e9GwLVUahen/d7VQk69LtWHVO2bdvnz7//HNJ0ogRI86ov9zb1rq3JalevXpq3769JCkzM1NHjx71bCNv6+WN8LLqfGIljHOxPc5Ro5iVd2nUKIHFypxCjcK97Qs1in9WzBvhZdX5xEoY52J7nKNGMSvv0qhRAouVOYUahXu7NOoT/6yWNcLPqnOJ1TDWxe5YR31iTta+UJ8EFitzCvUJ97Yv1Cj+hStvFs0g4hITE3XOOedIko4cORJw35MnT3pusFq1alV63/A/Jd/v8nLKysryeZwk1axZ0/O65KDvi/s8NpvN67iS7ZbXl5L9CdSX8topub127drlnjNaHD16VC+88IKOHTsmm82mhx56SF26dAl4DFnHZtaBuDPPz8/Xzz//7Pn9mWQklX1/K3LNBHp/3f3Jz8/XqVOngmonOTnZa3WxVeeUefPmqbCwUPXq1VN+fr6WLVtW5n+//PKLZ/8NGzZ4fu/+UMm9bb17W5IaNWrkeV0yD/K2Zt4IH6vOJ1bCOBe74xw1Stm+WDlvf6hRfIulOYUahXvbH2qUwH2RrJU3wseq84mVMM7F7jhHjVK2L1bO2x9qFN9iaU6hRuHe9oX6JHBfJOtkjfCy6lxiNYx1sTnWUZ+U7YtVsw6E+sS3WJpTqE+4t/2hRgncF6ly846vtJaBCmjUqJE2b96szMxMFRUVeR5BVdr+/fu9jkH4lHy/9+3bF3DfQDmVbqdJkyZ+23Gfp1atWmVWDzZq1Eg7d+7U6dOndfz4caWmpvps49ixY8rNzZUkNWzY0Gtb1apVVatWLR05csSrz4H64qudaJWTk6MXX3xRBw8elCTdfffd6tWrV7nHkXXsZV2e5ORkz+vDhw97Xp977rmy2+1yOp3lZh3ofSmZdXnvr3t7XFyc6tevX6ad//73v57zNW/e3GcbRUVFyszM9NkXdztWm1PcjzE8ePCg/v73v5e7/6effup5PWnSJFWpUoV724L3tlRcuPhC3tbMG+FlxfnEShjnYnOco0b5HxPyDoQaJfbnFGoU7m1/qFEC98VXO0CwrDifWAnjXGyOc9Qo/2NC3oFQo8T+nEKNwr3tC/VJ4L74agcIlhXnEqthrIu9sY765H+snnV5qE9if06hPuHe9ocaJXBffLUTSjxpBlGhRYsWkopXne7cudPvfps2bSpzDMKjbt26SktLkyRt3rw54L7u7TVr1lSdOnW8trVs2dLzumSepR0/flwHDhyQ5DvrYNspua3kMaV/t3//fh0/fjyodmLh2jt9+rReeukl/frrr5Kk3/zmN+rXr19Qx5J1bGUdDH+P8ouPj1ezZs0kSdu2bVNhYaHfNtzvS0JCgtLT0722paenKz4+3ms/XwoLC7Vt27Yyx7gFm3VGRobnXw7wlRFzim/c29bM2z3OS94r9MnbmnkjvJhPohvjXOxdd9QoZuVdHmqUwH+Tv3ashnvbmnlTo5TfjpXyRngxn0Q3xrnYu+6oUczKuzzUKIH/Jn/tWA33tvXypj4pvx2rZI3wYy6Jfox1sXXtUZ+Yk3UwqE8C/03+2rEa7m1r5k2NUn47lZk3i2YQFbp27ep5/e233/rcx+l0asmSJZKk6tWrq02bNmHpG4rZbDbPo//27dvn+UBU2rZt2zyr/i6++OIyKyPPPfdcz0rAH3/80fOBqLTFixd7Xpe8PtxKtu3vminZjs1m08UXX1xme8lHWJY8Z0n5+fn68ccfJRWvoDz33HP9ni8a5Ofna9y4cdq1a5ck6cYbb9SgQYOCPp6sYyfrYLn/Jklq3Lix1zb3+5Kbm+tZ/V/akSNHtH79eklS27ZtVbVqVa/tVatWVbt27SRJ69ev9/s4vf/+97+elcW+sm7Tpo2qVasmSVqyZIlcLpfPdsq7Zqw4pzzyyCOaOXNmwP8NGTLEs//YsWM9v69bt64k7m0r3tuHDh3SunXrJEn16tXzKqbI23p5I/ysOJ9YCeNcbI1z1Chm5R0MapSyYm1OoUbh3vaFGmVxme2SdfNG+FlxPrESxrnYGueoUczKOxjUKGXF2pxCjcK9XRr1yeIy2yVrZo3IsOJcYjWMdbEz1lGfmJN1sKhPyoq1OYX6hHvbF2qUxWW2S+HNm0UziArNmjVTq1atJBXfYL5u+Llz53pu9v79+5dZuYrKN2DAANntxcPGlClT5HA4vLY7HA5NmTJFUvEj+a699lqf7Vx33XWSpJMnT2rq1KlltmdmZmrWrFmSpPr16/sclFNTU3XZZZdJktauXavly5eX2efHH3/U2rVrJUmXX365z0eEde3aVfXq1ZMkzZo1y/MowJI+/PBDnTp1SpJ0/fXX+/ybokVhYaFeffVVbd26VVJxZrfeemuF2yHr6M9aKv4gUTqb0ubOnas1a9ZIKl6R7B5r3fr27espYKZNm6YTJ054bXc6nfrXv/4lp9Mpyf/74s66qKhI77zzjmd/t5ycHH300UeSiouXPn36lGkjPj5e/fv3l1T84W/OnDll9tm2bZvng1jr1q09/4JCScwp/nFvx8a9LUmrVq1SUVGR3+3Hjx/XxIkTPf9yyDXXXFNmH/KOnbwRnZhPoh/jXGyMc9QoZuVNjUKNUlHc27Fxb0vUKKbljejEfBL9GOdiY5yjRjErb2oUapSK4t6OjXub+sScrBG9mEtiA2Nd9I911CfmZC1Rn1CfVBz3dmzc2xI1SqzkbXP5W94HhNmuXbs0ZswYORwOValSRYMHD1abNm3kcDj0ww8/aOHChZKkBg0aaPz48WVWwCKwLVu2eA04OTk5ngGxRYsW6tu3r9f+V1xxhc92pk2bps8//1ySdMEFF+iGG25QvXr1dPDgQc2ePduz6n3QoEH6zW9+47MNp9OpsWPHej7wX3LJJerbt69q1KihHTt26NNPP1V2drZsNptGjx6tjh07+mwnKytLo0ePVk5OjuLi4jRw4EB17txZkvTTTz9p7ty5KioqUnJysl5++WXVqlXLZzurV6/Wyy+/LJfLpZSUFN10001q1qyZTp48qUWLFnlWZbds2VLPP/+8Z2KKRq+++qpWrFghqXil+F133RVw//j4eL8rM8k6urOWilel5+bm6pJLLlHLli1Vr149ValSRXl5edq7d6++++47z3sfHx+v0aNHq3379mXa+frrr/X2229LKl7FfOONN6px48Y6duyY5s2bp40bN0qSevbsqd/+9rd++/Paa6/phx9+kFT8rwlce+21SktL0969e/XZZ5/p4MGDkqT7779fV155pc82cnNzNXr0aM/j/6688kr16NFDiYmJ2rhxo2bNmqW8vDwlJibqxRdfVJMmTXy2Y+KcMnPmTH3yySeSiv8FAn//qgL3dvTf21Lx/V1YWKhLLrlEzZs3V926dZWYmKicnBxt2rRJX3/9tec/frRs2VJjxoxRQkJCmXbIOzbyRvQycT4JF+oTc8Y5ahSz8qZGoUYpiRrFOve2RI1iWt6IXibOJ+FCjWLOOEeNYlbe1CjUKCVRo1jr3qY+MSNrRDcT55JwokYxY6yjPjEna4n6hPrEG/WJde5tiRolVvJm0QyiyqpVq/TGG294HutWWoMGDfTss8+qfv36Ye5Z7PvHP/7heURdMGbOnOnz906nU//3f/8X8JFbffr00f333x9w8MrJydG4ceOUkZHhc3tCQoJGjBhRpsgrbfv27ZowYYKOHz/uc3tqaqqefvppXXjhhQHbWbhwod59913PSs7SmjVrptGjRys5OTlgO5E2dOjQCu1fp04d/eMf//C5jayjO2up+MPW4cOHy92vVq1aeuihh3wWUm4zZ87Up59+6vdRmR07dtSTTz6pxMREv204HA5NnDjR8y8elGaz2XTTTTeVe51mZmZq3LhxnoKqtKpVq2rkyJGeD2H+mDanBFtMcW9H/70tBX9/X3LJJXrwwQdVvXp1n9vJOzbyRnQzbT4JF+oTc8Y5ahSz8qZGoUYpiRrFOve2RI1iWt6IbqbNJ+FCjWLOOEeNYlbe1CjUKCVRo5h3b1OfxH7WiH6mzSXhRI1ixlhHfWJO1hL1CfWJN+oT69zbEjVKrOTNohlEncOHD2v+/PlavXq1jh49qvj4eNWvX1/dunVTv379lJSUFOkuxqRQFVNuq1ev1sKFC5WRkaETJ07onHPOUXp6uq666iq/Kw9LKyoq0qJFi/T9999r3759ysvLU82aNdW2bVsNGDBA5513XlDt5OTkaP78+Vq5cqVn4qlbt64uvvhiXXvttTrnnHOCamfv3r1asGCBNmzYoKNHj6pKlSpq2LChLr30UvXt21dxcXFBtRNJoSym3Mg6eu3fv1+rV6/Wli1bdPDgQR0/flwnT55UYmKikpOT1aRJE3Xu3Fndu3cPauzcunWrvvzyS23evFnZ2dmqXr26zj//fF1xxRW69NJLg+7X999/r8WLF2vPnj06deqUUlJS1KpVK/Xr10/NmzcPqo28vDx9+eWXWr58uTIzM1VYWKhatWqpY8eOGjBggOrUqRNUOybNKcEWU27c29Ft06ZN2rRpk7Zt26aDBw/qxIkTys3NVZUqVVSrVi01b95cV1xxRdD3FHkDZ8ek+SRcqE/KZ5VxjhrFrLypUcpn0pxCjWKde1uiRgmGlfJG9DNpPgkXapTyWWWco0YxK29qlPKZNKdQo1jn3qY+KZ9VskZsMGkuCSdqlPJZYayjPjEna4n6JBgmzSnUJ9a5tyVqlGBEQ94smgEAAAAAAAAAAAAAAAAAAAAAAIDl+H82DwAAAAAAAAAAAAAAAAAAAAAAABCjWDQDAAAAAAAAAAAAAAAAAAAAAAAAy2HRDAAAAAAAAAAAAAAAAAAAAAAAACyHRTMAAAAAAAAAAAAAAAAAAAAAAACwHBbNAAAAAAAAAAAAAAAAAAAAAAAAwHJYNAMAAAAAAAAAAAAAAAAAAAAAAADLYdEMAAAAAAAAAAAAAAAAAAAAAAAALIdFMwAAAAAAAAAAAAAAAAAAAAAAALAcFs0AAAAAAAAAAAAAAAAAAAAAAADAclg0AwAAAAAAAAAAAAAAAAAAAAAAAMth0QwAAAAAAAAAAAAAAAAAAAAAAAAsh0UzAAAAAAAAAAAAAAAAAAAAAAAAsBwWzQAAAAAAAAAAAAAAAAAAAAAAAMByWDQDAAAAAAAAAAAAAAAAAAAAAAAAy2HRDAAAAAAAAAAAAAAAAAAAAAAAACyHRTMAAAAAAAAAAAAAAAAAAAAAAACwHBbNAAAQQk2aNJHNZtNdd90V6a4AAAAAADUKAAAAgKhCjQIAAAAgWlCfAIA5WDQDAAAAAAAAAAAAAAAAAAAAAAAAy2HRDAAAAAAAAAAAAAAAAAAAAAAAACzH5nK5XJHuBAAAAAAAAAAAAAAAAAAAAAAAABBKPGkGAAAAAAAAAAAAAAAAAAAAAAAAlsOiGQAAAAAAAAAAAAAAAAAAAAAAAFgOi2YAAPBj//79Gj16tDp16qSUlBQlJCSoXr16ateunYYNG6b33ntPOTk5Xsc0adJENptNd911l9fvd+/eLZvNFvT/rrjiCr/9+vbbb3XnnXeqadOmqlatmpKTk9WuXTs9/fTT2r9/fyW8EwAAAACiATUKAAAAgGhCjQIAAAAgWlCfAAACiY90BwAAiEbfffedBg4cWKZYOnTokA4dOqQNGzZoxowZql27tgYOHBiWPuXl5enuu+/WjBkzymzbsGGDNmzYoMmTJ2v69Om67rrrwtInAAAAAOFBjQIAAAAgmlCjAAAAAIgW1CcAgPKwaAYAgFLy8/N16623KicnR+ecc44eeugh9e7dW3Xr1pXD4dCuXbv0ww8/aNasWUG32bBhQ61fvz7gPjNnztQLL7wgSTr//PO9trlcLg0ZMkTz5s2TJF133XUaOnSomjZtKrvdrhUrVmjixInau3evhgwZomXLluniiy+u4F8OAAAAIBpRowAAAACIJtQoAAAAAKIF9QkAIBg2l8vlinQnAACIJt9884369u0rSZozZ47ff2GgsLBQp0+fVnJysud3TZo00Z49e3TnnXfqvffeC/qcq1at0uWXX67c3Fy1atVKy5cv92r37bff1v3336+EhAR98cUX6tevX5k2jh07pssuu0wbN25Uz5499f333wd9fgAAAADRixoFAAAAQDShRgEAAAAQLahPAADBsEe6AwAARJvMzEzP68svv9zvfvHx8V4Fz5nav3+/brjhBuXm5qpmzZqaM2eOV7sul0svv/yyJGnkyJE+CylJSktL04QJEyRJy5Yt0/bt28+6bwAAAAAijxoFAAAAQDShRgEAAAAQLahPAADBYNEMAAClNGjQwPN6ypQplXqu3NxcDRo0SPv371d8fLw++eQTpaene+2zadMmZWRkSJKGDBkSsL2Sxd+PP/4Y+g4DAAAACDtqFAAAAADRhBoFAAAAQLSgPgEABINFMwAAlHLppZeqadOmkqTHH39cXbt21bhx47Rs2TI5HI6QnmvEiBFauXKlJOn1119X7969y+yzatUqz+vu3bvLZrP5/V+NGjU8+5b8lxQAAAAAxC5qFAAAAADRhBoFAAAAQLSgPgEABINFMwAAlJKQkKA5c+aoVatWkqSVK1fq97//vS699FKlpqaqX79+mjZtmoqKis7qPC+88IJmzJghSXr44Yf10EMP+dzv0KFDZ9T+6dOnz7hvAAAAAKIHNQoAAACAaEKNAgAAACBaUJ8AAIIRH+kOAAAQjVq3bq3169drzpw5mjNnjpYuXaodO3YoNzdXX375pb788kv99a9/1fz581W3bt0Kt//pp59q7NixkqS+ffvq73//u999SxZtc+bMUZMmTYI6x5n0CwAAAEB0okYBAAAAEE2oUQAAAABEC+oTAEB5WDQDAIAfcXFxGjRokAYNGiRJOnDggP7zn//oH//4h3766Sf99NNPeuCBBzRr1qwKtbtmzRoNHz5cLpdLzZo108yZMxUf739KrlWrlud1amqq2rZte0Z/DwAAAIDYRo0CAAAAIJpQowAAAACIFtQnAIBA7JHuAAAAsaJBgwa6++679eOPP6pTp06SpLlz5yo3NzfoNjIzM3XDDTfo9OnTSklJ0Zw5c1SzZs2Ax3Ts2NHzetmyZWfWeQAAAACWQ40CAAAAIJpQowAAAACIFtQnAICSWDQDAEAFJSQkqFevXpKkwsJCHT9+PKjj8vLyNGjQIP3yyy+Ki4vTjBkz1LJly3KP69Spkxo1aiRJeuutt5SXl3fGfQcAAABgPdQoAAAAAKIJNQoAAACAaEF9AgCQWDQDAEAZ3333nXbs2OF3u8Ph0JIlSyRJNWrUUJ06dYJq995779V///tfSdKECRPUr1+/oI6z2+36/e9/L0nauXOnhg8frvz8fL/75+TkaNKkSUG1DQAAACD6UaMAAAAAiCbUKAAAAACiBfUJACAY8ZHuAAAA0WbRokV64YUXdNlll+naa69V+/btVadOHeXm5mrbtm365z//qdWrV0uS7rnnHsXHlz+dvvvuu/roo48kSX369NFVV12lDRs2+N2/evXquuCCCzw/P/jgg/r66681a9Ys/fvf/9bq1av1wAMPqGvXrkpJSVFOTo62bNmixYsX64svvlCVKlX06KOPnuU7AQAAACAaUKMAAAAAiCbUKAAAAACiBfUJACAYLJoBAMAHp9OpJUuWeP6lAV9uuOEGjRs3Lqj29u7d63n9zTffqF27dgH379WrlxYvXuz52Waz6eOPP9Zvf/tb/fOf/1RGRoaeeeYZv8fXrVs3qH4BAAAAiA3UKAAAAACiCTUKAAAAgGhBfQIAKA+LZgAAKOWpp55S+/bttXDhQq1Zs0b79+/XoUOHJEn169dX165dNXz4cF177bVh7VdCQoLefPNNPfTQQ3r77be1ePFi7d27VydPnlSNGjV0wQUXqHPnzurfv78GDhwY1r4BAAAAqDzUKAAAAACiCTUKAAAAgGhBfQIACIbN5XK5It0JAAAAAAAAAAAAAAAAAAAAAAAAIJTske4AAAAAAAAAAAAAAAAAAAAAAAAAEGosmgEAAAAAAAAAAAAAAAAAAAAAAIDlsGgGAAAAAAAAAAAAAAAAAAAAAAAAlsOiGQAAAAAAAAAAAAAAAAAAAAAAAFgOi2YAAAAAAAAAAAAAAAAAAAAAAABgOSyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWA6LZgAAAAAAAAAAAAAAAAAAAAAAAGA5LJoBAAAAAAAAAAAAAAAAAAAAAACA5bBoBgAAAAAAAAAAAAAAAAAAAAAAAJbDohkAAAAAAAAAAAAAAAAAAAAAAABYDotmAAAAAAAAAAAAAAAAAAAAAAAAYDksmgEAAAAAAAAAAAAAAAAAAAAAAIDlsGgGAAAAAAAAAAAAAAAAAAAAAAAAlsOiGQAAAAAAAAAAAAAAAAAAAAAAAFgOi2YAAAAAAAAAAAAAAAAAAAAAAABgOSyaAQAAAAAAAAAAAAAAAAAAAAAAgOWwaAYAAAAAAAAAAAAAAAAAAAAAAACWw6IZAAAAAAAAAAAAAAAAAAAAAAAAWA6LZgAAAAAAAAAAAAAAAAAAAAAAAGA5LJoBAAAAAAAAAAAAAAAAAAAAAACA5bBoBgAAAAAAAAAAAAAAAAAAAAAAAJbDohkAAAAAAAAAAAAAAAAAAAAAAABYDotmAAAAAAAAAAAAAAAAAAAAAAAAYDn/D0Xpkk/71JEkAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -219,7 +211,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 8, "id": "56c34efd-2927-4a6f-9f3c-bc723e5229c2", "metadata": {}, "outputs": [], @@ -233,30 +225,33 @@ "for size in sizes:\n", " for _query_length in query_lengths:\n", " query_length = int(_query_length * size)\n", - " X = rng.random((1, 1, size))\n", + " X = rng.random((1, size))\n", " q = rng.random((1, query_length))\n", " mask = np.ones((1, size - query_length + 1), dtype=bool)\n", " # Used for numba compilation before timings\n", - " naive_squared_distance_profile(X, q, mask)\n", - " _times = %timeit -r 3 -n 7 -q -o naive_squared_distance_profile(X, q, mask)\n", + " mass = MassSNN(length=query_length).fit(X)\n", + " mass.compute_distance_profile(q)\n", + " dummy = DummySNN(length=query_length).fit(X)\n", + " dummy.compute_distance_profile(q)\n", + "\n", + " _times = %timeit -r 3 -n 3 -q -o dummy.compute_distance_profile(q)\n", " times.loc[(size, _query_length), \"Naive Euclidean distance\"] = _times.average\n", - " # Used for numba compilation before timings\n", - " squared_distance_profile(X, q, mask)\n", - " _times = %timeit -r 3 -n 7 -q -o squared_distance_profile(X, q, mask)\n", - " times.loc[(size, _query_length), \"Euclidean distance as dot product\"] = (\n", + "\n", + " _times = %timeit -r 3 -n 3 -q -o mass.compute_distance_profile(q)\n", + " times.loc[(size, _query_length), \"Euclidean distance with MASS\"] = (\n", " _times.average\n", " )" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "id": "a082b60c-b6ec-41a7-8566-2c6deca59860", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOcCAYAAADnnKdhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOz9eXSc5X3//79mRqu1jGYk25J3a/eCzeIdY0k2toFCQ2hKkk/SQNKQpJg26a/pafg0OefTtP0kPUmbfEta0qYkYQn5BEhCC4nBixbjDWMMNjbW7lW2bGlmNNo10sz9+0MwlrEs3bI0WuZ+Ps7xydwz13Vf18xbE/TWfb+vy2YYhiEAAAAAAAAAAAAAAAAAAAAAAAAgitgnegIAAAAAAAAAAAAAAAAAAAAAAADAWKNoBgAAAAAAAAAAAAAAAAAAAAAAAFGHohkAAAAAAAAAAAAAAAAAAAAAAABEHYpmAAAAAAAAAAAAAAAAAAAAAAAAEHUomgEAAAAAAAAAAAAAAAAAAAAAAEDUoWgGAAAAAAAAAAAAAAAAAAAAAAAAUYeiGQAAAAAAAAAAAAAAAAAAAAAAAEQdimYAAAAAAAAAAAAAAAAAAAAAAAAQdSiaAQAAAAAAAAAAAAAAAAAAAAAAQNShaAYAAAAAAAAAAAAAAAAAAAAAAABRh6IZAAAAAAAAAAAAAAAAAAAAAAAARB2KZgAAAAAAAAAAAAAAAAAAAAAAABB1KJoBAAAAAAAAAAAAAAAAAAAAAABA1KFoBgAAAAAAAAAAAAAAAAAAAAAAAFGHohkAAAAAAAAAAAAAAAAAAAAAAABEHYpmAAAAAAAAAAAAAAAAAAAAAAAAEHUomgEAAAAAAAAAAAAAAAAAAAAAAEDUoWgGAAAAAAAAAAAAAAAAAAAAAAAAUYeiGQAAAAAAAAAAAAAAAAAAAAAAAEQdimYAAFFtwYIFstlsstlsOn369ERPJyrwmQIAAAA3ht+lxx6fKQAAADA++N177PGZAgAAADeG36XHHp8pgGhH0QwAAJiy2tvb9eSTT6qkpERz5sxRfHy85syZo40bN+rHP/6x2tvbp8z4hmGoqqpKzz33nL761a9q3bp1mjZtWjghXbBgQeTeCAAAAIBRi5b8pLy8PJyHmP135513RvS9AQAAAIisicpnAoGA3nrrLT355JP6whe+oJtuukkxMTHhXOPhhx+OyLgAAAAAJq+Jyk9Onjypf/3Xf9WDDz6oxYsXy+l0KjY2VhkZGVqxYoW++tWv6p133onI2AAiL2aiJwAAACZOcXGxKioqJEllZWUqLi6e2AmNwIEDB/SZz3xGp06duur5hoYGNTQ0qKysTN/73vf0/PPPa/Xq1ZN6/MOHD2vTpk1qbW0d83kCAAAAUwX5ydQdHwAAALA68pmR+9GPfqS/+qu/UiAQGLNzAgAAACA/GamdO3fqL//yL3XixIlBX/d4PPJ4PHr77bf1r//6r/rjP/5j/fjHP5bb7R6T8QGMD4pmAADAlHP06FFt2bIlvHJAbGysNm7cqDlz5ujcuXMqLS1VX1+f6uvrtWXLFu3bt09Lly6dtOO3t7dTMAMAAABMUdGWnww0a9YsffzjHx+2XWFh4ajeAwAAAICJMZH5THNzMwUzAAAAAMImKj95++23ryqYsdlsWrZsmfLz8+VyudTU1KS9e/eqqalJkvTiiy/q/fffV0VFhdLT00c9PoDxQdEMAACYUnp7e/VHf/RH4QRp+fLlevnll7VgwYJwm9OnT+v+++/X0aNH1draqj/6oz/SiRMnFBMz+l99Ijm+y+XSihUrtHLlSq1cuVJVVVX6xje+Meo5AwAAAIiMaM5PJCkvL08/+tGPRj1PAAAAAJPPROczH5o7d274usiqVav05JNP6qWXXhqz8wMAAACY/CZDfnLzzTfrkUce0Sc/+clrimECgYB+8IMf6G//9m8VDAZ14sQJPfroo/rVr341JmMDiDz7RE8AAABgJH7yk5+orq5OUn+RyWuvvXZVgiRJCxYs0Pbt2+VyuSRJ1dXV+ulPfzppx1++fLlqamrk9Xq1Y8cO/eM//qPuv/9+zZw5c0zmDAAAACAyojE/AQAAAGANE51PfP7zn1djY6POnj2rX//61/rGN76hjRs3KikpaUzODwAAAGDqmMj8JD8/Xy+//LLeeecdPfroo4PuHhMXF6e/+Zu/0fe+973wcy+88IIqKytHPT6A8UHRDAAAmFL+7d/+Lfz461//ujIzMwdtl5WVpb/6q78atN9kG9/lcik3N3dM5gcAAABg/ERjfgIAAADAGiY6n5g/fz6LhwEAAACQNLH5yQMPPKCPfexjptr+xV/8hWbNmhU+/v3vfz/q8QGMD4pmAGAUQqGQnn76aW3evFmZmZlKSEjQggUL9LGPfUwvv/xyuF1xcbFsNptsNpvKy8sHPdeCBQvCbU6fPj3s2A8//HC4/c9//vNh2xuGod/+9rd66KGHlJ+fL6fTqYSEBM2dO1f333+/nn76afX19Q15jtOnT4fHHFjJvXfvXn3xi19UYWGhnE6nbDabvva1r+mdd94Jt3e5XOru7h52npLU1tam5OTkcN9jx46Z6jcWent79eyzz+rBBx9Udna2UlJSlJSUpIULF+rTn/60fvvb38owjCHPUV5eHp57cXFx+PnS0lJ96lOfUnZ2thISEpSenq4NGzboRz/6kXp7e03PsaurSz/4wQ90++23KyMjQ4mJicrJydGnP/1p7d69O9xuqJ+pD5+vqKgIP1dSUhJ+fuA/Mz9f58+f17e+9S0tX75caWlpSkpKUmFhof78z/9cZ86cMf3ehlNbW6v3338/fPzwww8P2X7g68eOHVN9ff2UHh8AAGAo5Cf9yE+uRn5CfhKp8QEAAMYS+Uw/8pmrkc9Ebz4DAAAwmZGf9CM/uRr5CfmJJDkcDq1evTp8bOZ7DWCSMAAAN+TixYvG6tWrDUnX/ffxj3/caG1tNYqKisLPlZWVDXq++fPnh9ucOnVq2PEfeuihcPuf/exnQ7Y9evSocfPNNw85V0lGQUGBceLEieue59SpU+G28+fPN3p6eowvf/nLg57rq1/9qmEYhnHbbbeFn3vuueeGfV+GYRg/+clPwn1Wrlxpqs/1jORzLSsrM3Jycob9nNasWWOcP39+yPN82LaoqMjo6ekxHnnkkSHPeeuttxpNTU3Dvp9jx44NO8cvf/nLRiAQGPK9D/ceB/776M/XR8/729/+1nA6ndftn5iYaLz66qvDvjcz/uM//iN83vz8fFN98vLywn1+8pOfTKnxf/azn131nQMAALge8hPyk6HOQ35CfjKS8T/6MwMAABBp5DPkM0Odh3wmOvOZoQz8Tj700EMRGwcAAGAw5CfkJ0Odh/zEevnJYB544IHw2I8++ui4jg3gxsUIADBiLS0t2rhxo06ePBl+buHChVq7dq3i4+N14sQJHTp0SL/97W9lt0/spl579uzRfffdp9bWVklSbGysVq5cqby8PMXGxur06dPau3evuru7VVVVpXXr1unAgQNatGjRsOf+y7/8S/3Hf/yHJOmmm27S8uXLFRsbq+rq6vD7/tKXvqQvf/nLkqSnnnpKn/nMZ4Y971NPPRV+/MUvfnHE7/lGvPjii/rMZz4TrvBPTEzUmjVrtGDBAtntdlVXV+vAgQPq6+vTwYMHtXbtWr311lumto3/0pe+pKefflp2u12rV69WYWGhQqGQDh48qKqqKknSkSNH9LnPfW7ILRtra2u1adMmNTU1hZ+76aabdPPNN8tut+vdd9/V0aNH9R//8R9KSUkZck7btm2TJP32t7/VhQsXJEn333+/Zs+efU3boX4Wdu3apa985SsKBoOaN2+e1q5dq9TUVJ06dUrl5eXq6+tTV1eXHnzwQR0/flwLFy4ccl7DGfidu/XWW031ufXWW1VTU3NN/6k4PgAAwGDIT/qRn5CfkJ+M/fhdXV165ZVXdPToUXm9XiUlJWnmzJlavXq1brnlFsXE8OdlAAAwOuQz/chnyGesls8AAABMRuQn/chPyE/IT4b23nvvhR/PnTt3XMcGMAoTXbUDAFPRF77whXC1cFxcnPHUU09d0+bNN98MV2DHxcVNyMoCFy9eNGbMmBFu97nPfc64cOHCNe0aGxuNj3/84+F2N910k9HX13dNu4ErCzgcDkOSMXfuXGPPnj3XtO3u7jYMwzDa2tqM5ORkQ5Jhs9mMurq6Id/XiRMnwmMkJSUZra2tw34WQzHzuR4/ftxITEwMz/HrX/+64fP5rmlXV1dnrF+/Pny+u+++e9DzDVxZID4+PrxCwsmTJ69qFwqFjB/+8IdXVeFXVFQMes5QKGRs2LAh3C49Pd147bXXrmm3e/duY8aMGYbNZrvq5+56793MqhcfNfAzjY+PN5KSkoxnn33WCIVCV7U7fvy4MXv27HDbz3/+86bOP5S77747fL6/+Zu/MdXnr//6r8N97rnnnik1PjvNAAAAM8hPyE/IT8hPxnL8gT8zQ/2bNWuW8b3vfc8IBAKjeh8AAMDayGfIZ8hnrJnPDIWdZgAAwEQhPyE/IT8hPxnOvn37rortW2+9NW5jAxidiS13BYApqLq6Wj/72c/Cx//5n/+pL3zhC9e0W7VqlXbs2KFp06YpEAiM5xTD/vZv/1aXL1+WJP3FX/yFnn76aWVlZV3TbubMmXrxxRe1ceNGSf3V0C+99NKQ5w4Gg5o2bZp27dqlO+6445rX4+PjJUnJycn69Kc/LUkyDEM//elPhzzvwFUFHnzwwWEr5MfCX/zFX6irq0uS9M///M/63ve+p7S0tGvaZWdn67XXXtPixYslSdu3b9ebb7455Ll7enqUl5en0tJSFRYWXvWazWbTV7/6VX3iE58IP/fLX/5y0PO8/vrr2rNnjyTJbrfrv//7v7V169Zr2m3cuFG/+93vZLfbx+XnLhAI6KWXXtJnP/tZ2Wy2q15bsmRJeOUJqX/1hr6+vlGN5/F4wo/NrOogSZmZmeHHXq93So8PAADwUeQn/chPyE8k8pPxHv/ChQv667/+a23YsEGXLl0a1bkAAIA1kc/0I58hn5Gsl88AAABMNuQn/chPyE8k8pPrCYVC+trXvhY+Xr16tVasWDEuYwMYPYpmAGCEnnrqKRmGIak/EXrooYeu2zY/P/+qX5TGU1NTk5577jlJ/b8k/tM//dOQ7R0Oh/7xH/8xfPyLX/xi2DEee+wx5efnD9vukUceCT/++c9/rmAwOGi73t5ePfvss+Hj8diK8+jRoyotLZUk3XLLLcPGKykpSd/61rfCx2Y+p+9+97tKTk6+7usDk+xDhw4N2mZg8vipT31Kt99++3XPt2LFCn3uc58bdl5j4d5779Vdd9113dfvueeecJLS3t4+6u0w29vbw48TExNN9RnYbmD/qTg+AADAR5GfXEF+Qn5CfjJ240+fPl2PPvqofvvb36q+vl6dnZ3q7u5WfX29nn76aa1cuTLc9uDBg7rvvvvCFx8BAADMIp+5gnyGfMZq+QwAAMBkQ35yBfkJ+Qn5yeD+/u//Xm+99Zak/iKn73//++MyLoCxQdEMAIxQWVlZ+PGf/MmfDNt+qCQqknbt2hWuLH/ggQeUkJAwbJ/Vq1crKSlJkrR3795h23/qU58yNZeVK1fq5ptvliQ1NDTo9ddfH7Td//zP/6ipqUmStHjxYq1bt87U+Ufj97//ffjxpz/96Wuq4wfz4QoM0vCfU0JCgu67774h29xyyy3hx6dPnx60TUVFRfjxZz/72WHnaKbNWPjjP/7jIV+32Wxavnx5+Ph678+s7u7u8OO4uDhTfT5c5ULSqG/imujxAQAAPor85AryE/IT8pOxGX/FihU6f/68/u3f/k3333+/Fi5cqMTERMXHx2vhwoX63Oc+pzfffPOqC4hvvfWW/vmf//kG3wkAALAq8pkryGfIZ6yWzwAAAEw25CdXkJ+Qn5CfXOuVV17R3/3d34WP/+Zv/kbr16+P+LgAxk7MRE8AAKYSwzB09OjR8PHatWuH7ZOfny+32z3u25QfOHAg/PjYsWN67LHHRtTf5/Opo6MjnDR9VGxsrG666SbT5/vSl76kRx99VFJ/lfw999xzTZuB1fN/+qd/OqL53qiBn1NZWZnOnDkzbJ8PV5aQpHPnzg3ZtqCgQLGxsUO2SU9PDz9ubW295vWGhoZw8ij1J7PDWblypWw221VzjQQzPwPDvb+RGJjsm91utKenJ/zY7GoEk3V8AACAgchPriA/6Ud+Qn4yFuMPtTLeh2w2m7797W+rrq5Ozz//vCTpX/7lX/SNb3xDMTH8yRkAAAyPfOYK8pl+5DPWymcAAAAmE/KTK8hP+pGfkJ8M9NZbb+nTn/50+HO/88479e1vfzuiYwIYe1zBBIAR8Pv9V/1iNm/ePFP95s2bN+5J0oULF8KP9+7da2qlgI/y+XzXTZJcLteIboT5zGc+o7/+679WR0eHXnnlFTU1NWn69Onh18+fPx9ecSAuLm7ctpMc+Dlt3759xP19Pt+QrzudzmHPMTCJ6uvru+b1gQnStGnT5Ha7hz1nSkqKnE6nWlpahm07GiN9f729vaMab+DNW2ZXCRjYzszNX5N5fAAAgIHIT64gP+lHfkJ+Mp7jS9K3v/3tcNGMz+fTwYMHWVkNAACYQj5zBflMP/IZa+UzAAAAkwn5yRXkJ/3IT8hPPvT+++/r7rvvVkdHh6T+wqXf/va3LCAGTEH2iZ4AAEwl7e3tVx1PmzbNVL/rJRqR5Pf7R32OwX5h/9BIK7RTU1P1yU9+UlL/L8rPPPPMVa///Oc/VygUkiR97GMfU0ZGxghne2NG+zkFg8EhXzezvedwBv7cmf2Zk8bngsVYvL+RGLhKwaVLl0z1aWxsDD82k2BO5vEBAAAGIj+5gvykH/kJ+cl4ji9JOTk5WrBgQfj45MmToz4nAACwBvKZK8hn+pHPWCufAQAAmEzIT64gP+lHfkJ+IkmnTp3S5s2b5fF4JElLlizRa6+9xiICwBRF0QwAjMBHf+Hp7Ow01e/DSuOx9GFCcT0DE7N/+Zd/kWEYI/438MaXsfDII4+EHw/cetMwDP3sZz8LH3/xi18c03GHMvBz+s1vfnNDn1OkDfy5M/szJ0Xm526iFRQUhB+b2TpVks6ePRt+XFhYOKXHBwAAGIj8ZHTIT24M+ckVE50fTPT4H8rKygo/bm5uHpNzAgCA6Ec+MzrkMzeGfOaKyZJPAAAATAbkJ6NDfnJjyE+umIz5SUNDgzZt2hTetSgnJ0c7d+5kAQFgCqNoBgBGwOl0Ki4uLnw88JevoZw7d27YNsNtyfhRw1XEz5w5M/x4YGX1RFqzZo2WLVsmqX/12QMHDkiSysrKVF9fL0maP3++7rzzznGb02T8nD5q4CoLnZ2dw24BKvWvRhDprTgnwqJFi8KP33nnHVN9jhw5Mmj/qTg+AADAQOQno0N+cmPIT66Y6Pxgosf/0MALdBOxsiIAAJiayGdGh3zmxpDPXDFZ8gkAAIDJgPxkdMhPbgz5yRWTLT+5dOmSNm3apFOnTkmS5syZo127dl21iBiAqYeiGQAYAZvNpuXLl4ePDx48OGyfmpqa8BZ9Q0lNTQ0/NtP+vffeG/L11atXhx/v27dv2PONl8FWFxi4ysDnP/952e3j95+nyfo5DTRnzpyrEqU333xz2D6HDx82terBeG+nOVolJSXhx1VVVbp48eKQ7S9cuKCamprw8caNG6f0+AAAAAORn4we+cnIkZ9cMdH5wUSPL/VfyKuqqgofz5o1a9TnBAAA1kA+M3rkMyNHPnPFZMgnAAAAJgvyk9EjPxk58pMrJlN+4vF4tHnz5vC1jxkzZmjXrl1jvkMTgPFH0QwAjNDAX9Kee+65Yds/88wzps478Berd999d8i2hw8fDlcyX8/WrVsVExMjSdq/f7+OHj1qah6R9tnPflaJiYmSpF/96lc6f/68fvOb30iS7Ha7vvCFL4zrfO69997w49/85je6dOnSuI5vVlFRUfjxL37xi2Hbm/nZlKSEhITw497e3pFPbJzl5eVp8eLF4eOnn356yPYDX7/pppuUnZ09pccHAAD4KPKT0SE/uTHkJ/0mOj+Y6PEl6fnnn1dPT4+k/otwGzZsGPU5AQCAdZDPjA75zI0hn+k3GfIJAACAyYT8ZHTIT24M+Um/yZKftLa2auvWreHiNZfLpZ07d6qgoGBMzg9gYlE0AwAj9Kd/+qfhxwcPHhzyl9Ha2lr94Ac/MHXegRXuQ/3i19fXp69+9avDnm/27Nn67Gc/K0kyDEOf+9zn1NraamouoVBITU1NptqOVFpamh588EFJ/VtGfuITn1B3d7ckacuWLZo7d25Exr2eVatWqbi4WJLU1dWlP/mTP1EgEDDVNxAImNoacywMTB6ff/75IVe1OHLkyLDJw4fS09PDjxsaGm58guPo0UcfDT/+/ve/f93EtrGxUd///vfDx9u2bYuK8QEAAAYiPxkd8pMbQ35yxUTnB2M9fmdnp0KhkKmxa2pq9I1vfCN8vGXLFs2YMcNUXwAAAIl8ZrTIZ24M+cwVE53PAAAATCbkJ6NDfnJjyE+umOj8pLOzU3/wB3+gt99+W5KUkpKi1157TcuWLRuT8wOYeBTNAMAI5efn6+GHHw4ff/GLXxz0F9LDhw9r8+bN6ujoUFxc3LDn/eQnPxnehvLAgQP6xje+oWAweFWb8+fP695779X+/fsVHx8/7Dn/8R//UVlZWZKkY8eOadWqVdqxY8d1258/f14/+MEPVFBQoF/96lfDnv9GDdySc+DWkl/84hcjNuZQnnjiCSUnJ0uSdu7cqQ0bNgy55WV1dbX+/u//XgsWLBi3LTzvvvturV+/XlJ/Envfffdp165d17QrLy/XPffco2AwaOrnbunSpeHHL730kqktPCfal770JeXk5Ejq3xLz7rvv1pkzZ65qc+bMGd1zzz3yer2S+r+3A//A8VHl5eWy2Wzhf+Xl5eM6PgAAwI0iPxk98pORIz+5Itryk0OHDmnJkiV68skndfny5UHbBINBPffcc1q7dq08Ho8kKS4uTv/0T/903XkCAAAMhnxm9MhnRo585oqJzmcAAAAmE/KT0SM/GTnykysmMj/p6enR/fffr71790qSEhMT9eqrr2rVqlVj8M4ATBYxEz0BAJiK/uVf/kUHDhxQVVWVenp69PDDD+vb3/621q5dq/j4eJ04cUKHDh2SYRh64IEH5PF4VFFRMeQ558+fr6985Sv693//d0nSP/3TP+mXv/ylNmzYoISEBNXV1Wnfvn0KBAK68847lZmZOeyWi7NmzdJ///d/65577lFzc7Oqqqq0detWzZ49W6tWrdL06dPV29ur5uZmHT9+fNgtPsfK7bffriVLlujEiRPh52bMmKE//MM/HJfxP2rp0qX65S9/qU9+8pPq7OzUm2++qTVr1ignJ0e33nqr3G63uru7dfnyZR07dmxCKvBtNpt++tOfhm9Kam5u1ubNm7V8+XLdfPPNkqSjR4+Gt3L9+te/rhdffDGcPHyYgH/UAw88oP/9v/+3DMPQ7373Oy1btkzr1q1TSkpKuM2nPvUprVixIqLvbyRiY2P161//WuvXr1d7e7veeecd5eXladOmTZo9e7bOnz+v0tLS8Paiqamp+vWvfx3ennayjv/FL35Rhw8fvuq5D5M8Sbpw4UI41gP913/916SKDwAAGH/kJ6NDfjJy5CdXRGN+UllZqUcffVSPPfaYcnNztWTJErndbtntdjU2NurAgQNqbm4Ot3c4HHrmmWe0fPnyMXlPAADAWshnRod8ZuTIZ66Y6HxG0qDXPc6ePRt+/D//8z+DtvkwPgAAAGOJ/GR0yE9GjvzkionMT771rW9p586d4eNFixbphRde0AsvvDBs3/T0dP3d3/3dqOcAYBwYAIAb0tDQYKxYscKQdN1/f/iHf2i0trYaRUVF4efKysque86uri7jnnvuGfKc9957r+Hz+YyHHnoo/NzPfvazIed6+vRpY9OmTUOed+C/mTNnGq+99to15zl16lS4zfz580f1+f3whz+8asyvf/3rozrf9cyfPz88xqlTp4Zs++677xq33Xab6c9pwYIFxjvvvHPNecrKysJtioqKTM1z4HmHm+PChQuHnNeXvvQlIxAIGLNmzQo/5/P5rnvOxx9/fMjzffTnaySfqWEYI/pZHYn9+/cP+1lkZ2cbBw4cGPZcA2M23Pc0EuMbhnHV/0+M5J+ZuQIAgOhHfjJ/VJ8f+cnVyE9GLlryk4+OPdy/goICY9++fWY/JgAAgEGRz8wf1edHPnM18pmRm8h8ZiT5h9nYAgAAjAb5yfxRfX7kJ1cjPxm5ichPBr6Xkf4b7XcGwPhhpxkAuEGzZs3SwYMH9cwzz+gXv/iFjh07Jr/fr5kzZ2r58uV66KGH9Ed/9Eey2Wymz5mQkKBXX31Vv/zlL/X000/ryJEj8vv9mjFjhpYvX66HH35Yn/jEJ0Z0Tql/1YJdu3bpwIEDevHFF7Vnzx6dO3dOPp9PMTExSk9PV15enlasWKEtW7aouLh4TFeJGswDDzygr33ta+HjidqKc6Dly5fr8OHD2rFjh15++WXt27dPFy5cUEtLi+Lj4zV9+nQVFBRo9erV2rp1q9auXTviWIzFHI8fP64f//jHevHFF1VdXa3Ozk5lZWVp1apVeuSRR7Rp0yZJks/nk9S/qkBqaup1z/l//+//1fr16/Wzn/1Mb7/9ti5duqTOzs5xeT+jsXbtWh07dkzPPPOMXnjhBVVXV8vj8Sg9PV35+fl68MEH9bnPfS681Wq0jQ8AADAQ+cnokJ/c+BzJT/pNdH4wVuPfcccdOnz4sA4cOKD9+/erqqpKHo9HHo9HPT09cjqdmjt3rlavXq0//MM/1F133TXuP3cAACD6kM+MDvnMjc+RfKbfROczAAAAkwn5yeiQn9z4HMlP+pGfAIgUm2EYxkRPAgCiXXFxcXg7zrKyMhUXF0/shCaBp59+Wg8//LAkaf369XrjjTcmdkJRpqamRvn5+ZKkwsJCnTx5coJnBAAAgMmC/ORa5CeRRX4CAACAsUI+cy3ymcginwEAAMD1kJ9ci/wksshPAODG2Sd6AgAAa3rqqafCjx955JEJnEl0+tWvfhV+vHLlygmcCQAAADD5kZ9EFvkJAAAAEDnkM5FFPgMAAACYR34SWeQnAHDjKJoBAIy7d955J7ySgNvt1oMPPjjBM4oup06d0ve///3w8f/6X/9rAmcDAAAATG7kJ5FFfgIAAABEDvlMZJHPAAAAAOaRn0QW+QkAjA5FMwCAcdXd3a0///M/Dx9/5StfUUJCwgTOaGrZsmWLXnvtNfX19Q36+u9+9zutX79efr9fknTzzTdry5Yt4zlFAAAAYMogPxkd8hMAAABg4pDPjA75DAAAADB2yE9Gh/wEACIvZqInAACIfj/60Y9UW1urlpYW7d69W+fPn5ckZWRk6K/+6q8meHZTy86dO7Vz5065XC7deuutmjt3ruLi4tTc3KxDhw6FP1tJSklJ0TPPPCO7nRpZAAAA4EPkJ2OH/AQAAAAYX+QzY4d8BgAAABgd8pOxQ34CAJFH0QwAIOJeeuklVVRUXPWcw+HQU089JbfbPUGzmtp8Pp9279593dfz8vL04osv6qabbhrHWQEAAACTH/nJ2CM/AQAAAMYH+czYI58BAAAAbgz5ydgjPwGAyKFoBgAwrlwul9atW6fHH39ct99++0RPZ8o5fvy4Xn75Ze3fv19nzpxRc3OzvF6vEhISNH36dK1atUr33nuvPvWpT8nhcEz0dAEAAIBJjfxkdMhPAAAAgIlDPjM65DMAAADA2CE/GR3yEwCIPJthGMZETwIAAAAAAAAAAAAAAAAAAAAAAAAYS/aJngAAAAAAAAAAAAAAAAAAAAAAAAAw1iiaAQAAAAAAAAAAAAAAAAAAAAAAQNShaAYAAAAAAAAAAAAAAAAAAAAAAABRh6IZAAAAAAAAAAAAAAAAAAAAAAAARB2KZgAAAAAAAAAAAAAAAAAAAAAAABB1KJoBAAAAAAAAAAAAAAAAAAAAAABA1KFoBgAAAAAAAAAAAAAAAAAAAAAAAFGHohkAAAAAAAAAAAAAAAAAAAAAAABEnZiJngCmtubm5oic1+FwyOVyhY99Pp+CwWBExsLEI97WQrytg1hbC/G2lskQ74yMjHEdD1NDpPITaXL83GP8EG/rINbWQrythXhby0THm/wE10OOgrFArK2FeFsL8bYW4m0dkyHW5Ci4Hu7zwlgg3tZCvK2FeFsHsbaWyRDvyZCjsNMMAAAAAAAAAAAAAAAAAAAAAAAAog5FMwAAAAAAAAAAAAAAAAAAAAAAAIg6FM0AAAAAAAAAAAAAAAAAAAAAAAAg6lA0AwAAAAAAAAAAAAAAAAAAAAAAgKhD0QwAAAAAAAAAAAAAAAAAAAAAAACiDkUzAAAAAAAAAAAAAAAAAAAAAAAAiDoxEz0BAAAAAAAAAAAAINo4HI6Indtutw95jOhBrK2FeFsL8bYW4m0dxBoAAAAAJh+KZgAAAAAAAAAAAIAx5nK5xm0sp9M5bmNhYhFrayHe1kK8rYV4WwexBgAAAICJx3IGAAAAAAAAAAAAAAAAAAAAAAAAiDoUzQAAAAAAAAAAAAAAAAAAAAAAACDqxEz0BAAAAAAAAAAAAIBo4/P5InZuu90up9MZPvb7/QqFQhEbDxOHWFsL8bYW4m0txNs6JkOsXS7XuI4HAAAAAJMdRTMYFYfDEZHz2u32IY8RXYi3tRBv6yDW1kK8rYV4AwAAAAAwvGAwOG5jhUKhcR0PE4dYWwvxthbibS3E2zqINSYT7vPCWCDe1kK8rYV4Wwexthbi3Y+iGYzKeK1OMXAVDkQ/4m0txNs6iLW1EG9rId4AAAAAAAAAAADA5MZ9XogE4m0txNtaiLd1EGtrsWq8rVkqBAAAAAAAAAAAAAAAAAAAAAAAgKhG0QwAAAAAAAAAAAAAAAAAAAAAAACiTsxETwBTm8/ni8h57Xb7Vds/+f1+hUKhiIyFiUe8rYV4WwexthbibS2TId7jtX08AAAAAAAAAAAAEA24zwtjgXhbC/G2FuJtHcTaWiZDvCfDfV4UzWBUgsHguIwTCoXGbSxMPOJtLcTbOoi1tRBvayHeAAAAAAAAAAAAwOTGfV6IBOJtLcTbWoi3dRBra7FqvO0TPQEAAAAAAAAAAAAAAAAAAAAAAABgrFE0AwAAAAAAAAAAAAAAAAAAAAAAgKhD0QwAAAAAAAAAAAAAAAAAAAAAAACiDkUzAAAAAAAAAAAAAAAAAAAAAAAAiDoUzQAAAAAAAAAAAAAAAAAAAAAAACDqUDQDAAAAAAAAAAAAAAAAAAAAAACAqEPRDAAAAAAAAAAAAAAAAAAAAAAAAKIORTMAAAAAAAAAAAAAAAAAAAAAAACIOhTNAAAAAAAAAAAAAAAAAAAAAAAAIOpQNAMAAAAAAAAAAAAAAAAAAAAAAICoQ9EMAAAAAAAAAAAAAAAAAAAAAAAAok7MRE8AAAAAAAAAAAAAAAAAAABEjsPhiMh57Xb7kMeILsTbWoi3tRBv6yDW1kK8+1E0AwAAAAAYU3v27FFlZaXq6+t19uxZ9fX16dFHH1VxcfFETw0AAAAAAAAAAMCSXC7XuIzjdDrHZRxMDsTbWoi3tRBv6yDW1mLVeFM0AwAAAAAYU7/61a/U1NSklJQUuVwuNTU1TfSUAAAAAAAAAAAAAAAAAFgQRTMAAAAARqQvZGhvTbNeOXpBN89L0115KRM9JUwyX/7yl5WVlaXp06fr5Zdf1vPPPz/RUwIAAEAUa+vuU/k757X9vUb99dYCZcRN9IwAAAAAWNnp5g69fqJR75xt0f/9g4UTPR0AAAAAFhYMGTpy1qed71+SMzFW20pyJ3pKE4KiGQAAAADDChmG3j3fpp1VHu2q9srX2SdJqrzUprvyFk/w7DDZLFu2bKKnAAAAgCjn6+xVRa1PpdVeHTrbqr6QIUlaMsupz92WMcGzAwAAAGAlhmGopqlTZTU+ldf6VNPUGX7t4ZUzlZuRMIGzA67w+XwROa/dbpfT6Qwf+/1+hUKhiIyFiUe8rYV4Wwvxtg5iHf26e4N684xfZdVe7anzydfZK0nKciboM7dkyDCMcZ2Py+Ua1/EGQ9EMAAAAgEEZhqETjR16vdKj3VUeXW7vvabN0XMtamjpVmZK7ATMMPr4/X7V1taqtrZWdXV1qqurU1tbmySpqKhI27ZtM32upqYmbd++XUeOHJHH41FMTIwyMzO1du1abd26VfHx8ZF6GwAAAEBEXG4LqKzGq9Iar94536bQINd0th+/SNEMAAAAgIgLGYaOXWhXeY1XZTU+Nfh7Bm23u9qj3IzZ4zw7YHDBYHBcxgmFQuM2FiYe8bYW4m0txNs6iHV0aOnq1d66FlXU+XTglF/dfdcWQl30d+vExTYVTE+cgBlOLIpmAAAAAIQZhqGqy53aWeXRzkqvLrQOfpFnoNcrm/XQyqxxmF30e+SRR8bkPIcPH9YTTzyhrq6u8HM9PT3hQpzdu3fr8ccfV2Zm5piMBwAAAERKQ0u3ymp8Kq3x6tiF9mHbVza26ayvS7NT48ZhdgAAAACspDcY0tvnWlVa41NFrU+ejmsXG/uosmqvvryOohkAAAAAY6+hpVsVdT6V1/j0bsPgi419VFm1VwXTrZejUDQDAAAAQPXNndpR6dWOKo/O+rpN9blptlP3Lc/SHfOTIjw7a8rIyNDs2bN19OjREfU7deqUfvjDHyoQCCghIUH333+/li5dqkAgoH379mn37t26ePGivvOd7+i73/2uEhOtt3oEAAAAJrfTni7trvGqrMarykudpvrExdi1IS9Ddy3NUvo0CmYAAAAAjI3u3qAOnPartMarN+pa1N5jbgXujOQ4bV48U7fPT5ZhGLLZbBGeKQAAAIBo9+FiyOU1PlXU+VTTZO4aiiQVZqZoy+KZumOBNe/zomgGAAAAsKhzvm7tqPJoR6VHdc1dw3eQlJuRqK2LpuuPV2drQUZ/EuXz+dimdYx84hOfUE5OjnJycpSWlqbLly/rscceG9E5fv7znysQCMjhcOib3/ym8vPzw68tXbpUWVlZeu6553Tx4kW98sorevDBB685xzPPPKPe3uFXyPvQPffco6wsdhsCAADAjTEMQzVNnSqt7t9Rpt5jLj9JiLFrfXaaNhVk6L4VC5Uc33/JgxwFAAAAwGi0dvfpjTqfymt92n/Kr56+kKl+Walx2pifro/dtkC3zXfJYbeRnwAAAAAYlb5gSG+fb1NFbf+Ol5faAqb62W3SzbNTVJKfro/dtlDz0qdJsu41FIpmAAAAAAu56O/RziqPdlZ5dfJSh6k+81wJ2lqYrs0FbmVnTJPD4ZDLZc1VByJtsAKWkaitrdXJkyclSSUlJVcVzHzo3nvvVVlZmRoaGrR9+3Y98MADiom5OjXcuXOnenp6TI+7Zs0aimYAAAAwIoZh6ERjh3ZX9+8oc77F3O+fyfEO3ZGTpk15bq1ZkKaEWLscDke4YAaYTBwOR8TObbfbhzxG9CDW1kK8rYV4Wwvxnvya2gMqr/GqtNqjw2db1RcyTPXLyUhUSV66NhW4VTAjSQ6HQ06nM/w6sQYAAAAwUh2BoA6calFFrU9761vUZnLHy/gYu9YucKo416X12WlKmxb7wX1e0yI848mPq0gAAABAlGtuD2hXtVc7Kj06dqHdVJ9ZqfHaXOjWlsJ05U+fJpvNFuFZYiwcOnQo/LikpGTQNna7XUVFRXr++efV0dGhEydOaPny5Ve1efbZZyM6TwAAAFhTMGToaEObSmu8KqsxvxpaWmKMinNd2pjv1sp5qYp1cNMZpgaXyzVuYw28MRPRjVhbC/G2FuJtLcR7cjjj6dDrJxr1+olLOnLWJ8NcnYyWz03TXUsytXXJTGVPTx6yLbEGAAAAYEZze0B76lpUXuvVW2db1Rs0l6CkJcZoQ45LRbkurZ6fqoTYyC3mNJVRNAMAAABEoZbOXu2u6S+UOXKuTWbSqOnJsdpckK4thelakplEocwUVFVVJUmKj49Xdnb2ddstXrz4qj4fLZoBAAAAxkpfMKTD51pVWuNTeY1X3s4+U/0ykmJVkufWpnyXbp6Tqhg7+QkAAACA0TEMQ5WNbXr9RKNeO96oysY2U/0cdptWLXDrrqWZ2rJkprKciRGeKQAAAAArOO3pUnmtTxW1Pr130dxCyJI0Jy1exbkuFee6ddOsZDm4hjIsimYAAACAKNHW3aeyGp92Vnl06IxfZhYccE+L0ab8/h1lls9OkZ1CmSnt/PnzkqTMzEw5HNdfOWLWrFnX9AEAAADGSk9fSG+e8au02qs9dT61dgdN9ZuVGq+N+S6V5PVf5CE/AQAAADBaoZChd861aMeJRr12olFnPJ2m+sXF2LUhL0NblmTqzkUz5U6Ki/BMAQAAAES7kGHovQvtqqj1qbzWp7O+btN9F2cmqTi3f0eZ7PREFkMeIYpmAAAAgCmsIxDUG3U+vV7p0cHTflNbc6YmOLQxz63Nhem6bS4rNkeLQCCgtrb+VfHS09OHbJucnKz4+Hj19PTI4/GM+Vx2796tyspKSdLZs2fDz504cUKSVFhYqE2bNpk+n9k5DlUoNFp2u33IY0QX4m0dxNpaiLe1EO/x1xkIal+9T7uqPNpb71NnIGSq3wJ3ojYVuLUpP12FM29sx0vijcnK5/NF7Nx2u11OpzN87Pf7FQqZ+95haiHW1kK8rYV4WwvxHl+9wZDePteq0mqPymq8am7vNdUvKc6h9Tkubcp3a91Cl5LiP/ibc6BDvkCHqXNMhli7XK5xHQ8AAADA9fX0hfTWGb/Ka316o65Fnk5z+UmM3aaV81JVlOvShhyXZqRQyD8aFM0AAAAAU0x3b0h7633aWeXV3nqfevqGL5RJirOrKNetLQVurV7gVKyDm8iiTXf3ldUnEhIShm2fkJCgnp6eq/qNlcrKSlVUVFz1XFVVlaqqqsLHIyma+bM/+zNT7V544QXT5xytgRc9Ef2It3UQa2sh3tZCvCPD39Wr0spL2v5eoyqqm9TTZ+5GsEVZqbp7aabuWpqpvBnJY74aGvHGZBEMmttlaSyEQqFxHQ8Th1hbC/G2FuJtLcR77HX3BnXwtF9lNT69UW9+x8u0xBgV57pUnOfWqnmpiou5cv1kLGJErAEAAADr8Xf1aW+9TxW1Ph047VdXr7nrJ0lxDt2enabiXJfWLXQqOZ5Sj7HCJwkAAABMAYG+kA6e8WtHpUd7an3qNJFMxcfYtSEnTVsK07VuYZriYyiUiWaBQCD8OCZm+FTvwzYD+42Vbdu2adu2bWN+XgAAAEw8T3uPdr5/Sa+daNS+2mZTu11K0vK5af2FMksytSAjKcKzBAAAAGAFbd192lvfotIarw6c8qvbZCF/ZkqcSvLcKslzafnsFDnsY1vIDwAAAMB6Lvp7VFHnU3mNT++cb5XJyyeakRyrolyXinJdum1uKgshRwhFMwAAAMAk1RcM6a2zrdpR5VVZjVftPcOvRBbrsOn2hWnaXJiuO7LTNC3OMQ4zxWQQF3dlG9a+vr5h23/YZmC/yerJJ5+c6CkAAABY2qXWbr1+olHb32vUm6c8Cpm40GOzSSsXuHXXkv4dZWalJUZ+ogAAAACiXnNHQBW1/TeivXW2VX1mEhRJC90JKs5za2OeW4Uzp435jpcAAAAArMUwDFU3dfbnJ7U+VV/uNN03Oz1RxXkuFeW4tCgzSXbyk4ijaAaj4nBE5iZMu90+5DGiC/G2FuJtHcTaWoj32AmGDL1zvlWvn2zWriqPWrqGL36Isdu0eoFTWxdlqDjPrZQIb81JvCenhISE8OPu7u5h23/YZmC/ySo9Pd1UO5/PF7E52O12OZ3O8LHf71coZG7VQkw9xNs6iLW1EG9rId6jd8HfrV1VHpVWe3W0oc1Unxi7TSvmpWpTQbpK8txKT/qgQNvols83/O+oN2qi4+1yucZtLAAAAMCKGlq6VfZBoczRhjaZXLBZi2cmqSTfpZJctxakU8gPAAAAYHT6QobePd+q8lqfKmp9utgaMNXPbpOWz05RUU7/jjJzXZP/Xp1oQ9EMRmW8LgYOvOCJ6Ee8rYV4WwexthbiPTKGYejI2Ra9cvSCfv/eRV1u6xm2j90mrc1J173LZumuJZlyJU3cbiHEe3KIi4tTSkqK2tra5PF4hmzb3t6unp7+nzOzBSlTQTA4/G5MYyUUCo3reJhYxNs6iLW1EG9rId7mnPZ2qbTaq9IaryovmVsRLc7RX8S/Kc+tO3JcciZeuewwUZ858QYAAACmNsMwVNfcpfJan0prvKZXbLbbpFvmpKgkz63iXJcyU+MjPFMAAAAA0a4zENSB035V1Pq0t96n1m5z1x/iY2xaPd+p4ly37shJk2tabIRniqFQNAMAAABMAMMwdLyhVa8eu6BXj11UQ0uXqX4rF7h03/JZuntplqancLEHV5szZ45OnjypxsZGBYPB6+4MeeHChav6AAAAwJoMw1BNU6dKq/tvRKv3mMtLEmLsuj07TRvz3VqfnaakuMjsSA4AAADAOkKGofcbO1Ra7VV5rU9nTe5WGevovxGtJM+lDTkubkQDAAAAMGqejl69UedTea1Ph874FQia2+/SmRijDdlpKsp1afV8pxK5fjJpUDQDAAAAjKOqxja9cvSCXj12Qac95lZGWz43Tfcty9I9N2VpVlpihGeIqaygoEAnT55UT0+P6uvrlZeXN2i7999//6o+AAAAsA7DMHTigxvRSmu8Ot8y/E6XkpQc79AdOWnamOfW2gVOJcRyoQcAAADA6PQFQzpyvk1lNT6V13rV1N5rqt+02P5C/pI8t9YtdCo5ntufAAAAAIzOGW//bpcVtT69d6Fd5spkpNnOeBXlulSc69Ky2SmKsdsiOk/cGLJGjIrP54vIee12u5xOZ/jY7/crFApFZCxMPOJtLcTbOoi1tRDvoZ3xdum1k83acbLZ9MrN+TOmaeuiDG0pzNCctIT+J41u+UyurBZJkyHeLpdrXMebKlatWqWXX35ZklRWVjZo0UwoFFJFRYUkKSkpSUuWLBnPKUbU9XbWGQt2u33IY0QX4m0dxNpaiLe1EO+rBUOG3m1o1e4qr0qrPbrUFjDVLy0xRsV5bm3KT9fqBU7FOibn50i8AQAAgKmjuzekN8/4VVbj1Rt1LfJ395nq50yMUVGOSyV5Lq2a71R8DL/3AwAAALhxH+52WV7jVUWtT6e85u/JWjQzKVwok5ORKJuNQpnJjqIZjEowGByXcUKh0LiNhYlHvK2FeFsHsbYW4i1d8PdoR6VHO6s8qrpsbkeZBe4EbSlM15aCdC1Iv7KjzGT/LIn35JGbm6tFixbp5MmTKisrU3FxsfLz869q8+qrr6qhoUGSdPfddysmJnrSwvEsphpYOIboR7ytg1hbC/G2FivGuzcY0sF6j7Yfb9SOE5fU3G5uR5kZKfG6a2mm7lqSqVUL3YqZpIUyQ7FivAEAAIDJrL2nT3vrW1RW49P+Uy3q6jW3ENfMlDgV57pUkufWzXNYsRkYrUgtPsZiFtZCvK2FeFsL8bYOK8c60BfSoTN+ldd6VVHrVbPJ3S5j7DbdNjdVJfluFeW6lZkaH+GZjh0rx3ug6Lk7CgAAAJhgl9sC2lXt0Y5Kj45f7DDVZ7Yzvr9QpjBduaw8YHmVlZVqbGwMH7e2toYfNzY2qry8/Kr2xcXF15zj4Ycf1re+9S0FAgH9wz/8gz7+8Y9ryZIlCgQC2r9/v3bt2iVJysrK0n333ReR9wEAAICJ0d0b1N6aZm0/3qhdJy/J32XuYs/stETdvTRTd9+UqVvmumTnRjQAAAAAo+Tt6FVFnU9lNV4dOtOqvpBhqt98d4I25rlVnOvS4swkrpsAY2i8Fh9jMQtrId7WQrythXhbR7TH2t/Vq/Kqy9px4pLKqy6rI2BuYeCkOIeKC2doy+KZKi6YIWdibIRnOj6iPd7XQ9EMAAAAMArejl7trvZqZ5VH75xvk5lLPjNT4rS5wK0thelaNJMLPrhi9+7dqqioGPS1qqoqVVVVXfXcYEUzCxcu1Ne+9jU98cQT6urq0i9/+ctr2mRlZenxxx9XYmLiNa8BAABgaukM9Km8qknbjzeqrPKy2nv6TPXLzkjSXUszdffSLC2dnUpeAgAAAGDULvp7VFbrVVmNT0cb2mSyTkaLZiapOM+ljXluLUzn79YAAAAARudCS5d2vn9JO9+/pIP1HtNF/NNT4rV58UxtWTxTa3PSFR8TmZ36MP4omgEAAABGyN/Vp7Jar3ZUenT4bKupiz7p02K16YNCmWWzkmXnhjRE0IoVK/T9739fv//973XkyBF5vV7FxMQoMzNTa9as0V133aX4+KmzVaxZPp8vYue22+1Xrbbh9/sVCoUiNh4mFvG2DmJtLcTbWqI93m09fdpT69PuKo/2n2pRT5+595Y3fZo2FaTrzvx0ZYd3ugyppaUlovONtImO93it1AsAAABMNoZh6JSnS6U1PpXXelV5qdNUP5ukW+akqDjPpZJct7Kc0ff3agAAAADjxzAMVV1q044Tl7Tj/UYdb2g13Td3RrK2LJ6pzYtnavmcNNnt3NMVjSiaAQAAAExo7+lTRa1PO6u8Onjab2oFAmdCjDbmu7Wl0K1b56TKQVKFYWzbtk3btm0bk3NNnz5dDz30kB566KExOd9UEAya20J3LIRCoXEdDxOLeFsHsbYW4m0t0RDvls5eldf5VFrt1aEzraZXRVuSmaSN+W5tzHNrrish/Hw0FRF9VDTEGwAAAJisDMPQicYOldd4VVrj01lft6l+MXabVs1P1cY8tzbkuOROio3wTAF8VKQWH5voxSwwvoi3tRBvayHe1hEtse4LGXr3fKvKa7wqr/Gqwd9jqp9N0vLZKSrOc6s4z6357iu7Xfr9LZGZ7ASaDPGeDIuPUTQDAAAAXEdXIKi99S3aUeXRvvoWBYLD35SWFOdQSZ5LWwrTtWpeqmIc9nGYKQAAAIBo1NQeUFmNV6XVPh05b26XS5ukm+ekaGOeWyV5LmWmsmIzAAAAgNH58Ga0shqfymt9utQWMNUvMdau2xemqTjPpfXZaUqO5zYlYCKN1wITLGZhLcTbWoi3tRBv65hKse7uDergab/Ka316o75F/q4+U/3iHDatnu9UUZ5Ld2S7lD6giH+qvPexMpXiPZbIRgEAAIABAn0h7T/doh2VXu2p9am7b/jK+sRYuzbkuLS50K21C9IUH0OhDAAAAIAbc8Hfo9Iar0qrvXrvQrvM7CfjsEkr5qVqY75bRbkuZSTFRXyeAAAAAKJbT19Ih874VVrj0546n+mb0ZwJMdqQk6aSfLdWzXMqIZZrJgAAAABunK+zV3vqfKqo9enNM3719Jm5ciKlJji0Ptul4lyX1ixwalqcI8IzxWRG0QwAAAAsry8Y0ptnWrWzyqOyGp86AsNX08c5bLo9O01bC9O1PjtNCbEkVgAAAABuzGlvl0qrvSqr8enkpQ5TfWIdNq2Z79TGfLc25LjkTOTP/QAAAABGp72nT/tO+VVe49W++hZ19g6/sJgkzUiOVfEHu13eMidVMXZbhGcKAAAAIJqd83WrorZ/p8tjF9oUMlcno6zUOBXnulWUm6abyU0wAFfRAAAAYEnBkKEj51u1o9Kj0mqf/N3Dr5AWY7dp7QKnNhema0NOmpLj+XUaAAAAwMgZhqHa5v5Cmd3VXtV7ukz1S4ix6/bsNJXkubQ+m5wEAAAAwOj5OntVUedTWbVPh8761Rs0dzfaPFeCSvJcKslza3Fmkuw2bkYDAAAAcGNChqGTjR0qr+3fUcbsdRNJKpgxTUW5/TvK5E2fJhu5CQbBFTUAAABYRsgwdKyhXTuqPNpd5ZWns3fYPg6btGJeqrYUpqskz63UBH6FBiYrhyNyOz7Z7fYhjxFdiLd1EGtrId7WMhnjbRiGTlxs1+5qj3ZXe3XO122qX3KcQxtyXdpUkK61C9OUyC6X15iM8QYAAAAms8bWHpXV+FRW49W7DeZXbS6YMU0lH+wok52eyM1oAAAAAG5YbzCkw2dbVVHrU0WdT03tw9/HJfXfy3Xr3FQV5bpUlONSljM+wjNFNOCOPwAAAEQ1wzD0fmOHdlR6tKvaq0ttgWH72CTdMidFWwrTtTHPLXdSbOQnCmDUXC7XuI3ldDrHbSxMPOJtHcTaWoi3tUxUvIMhQ2+f8Wn78Yt6/XijLvjNFcq4psVq8+KZuntpltblpis+hkKZkeD7DQAAAFzrtKdLpTVeldf49P6lDlN9bJKWz05RSV7/qs2z0xIiO0kAAAAAUa29p0/7TvlVXuPV/lN+dQSCpvolxtq1doFTxXlu3b4wTc5ESiAwMvzEAAAAIOoYhqGapk7trPJqR6VHDf4eU/1uykrW5kK37sxP14yUuAjPEgAAAEA06g2GdLDeo+3HG7XjxCU1t5vLR2akxGvrkkzdvTRTqxa6FeNgtxQAAAAAN84wDJ281BHeUea011wRf4zdplXzUlWc51ZRrkvpLCwGAAAAYBQutwW0p86n8lqfDp9tVZ/JrS7Tp8VqQ26ainJcWjnfqfgYrpvgxlE0AwAAgKhx2tOl1ys92lnlMX3xp2DGNG0pTNfmgnTNYrtOAAAAADegpy+ovTXN2n68UbtOXlJLZ6+pfrPTEnX30kzdtTRTt85zyW63RXimAAAAAKJZMGTo3YY2lX2wo0xjW8BUv4QYu9YtdGpjfv+qzSkJ3E4EAAAA4MYYhqF6T5fKa32qqPXp/UZzO11K0jxXgopzXSrOc2lpVrLsNq6bYGyQ5QIAAGBKO9/SrZ1VHu2o9KqmqdNUn+z0xA8KZdya706M8AwBjBefzxexc9vtdjmdzvCx3+9XKBSK2HiYWMTbOoi1tRBvaxmPeHcFgtpb79Puaq/21vnUEQia6jffnaBN+enaVJCuRTOTZPvggo/f3zKm87OSif5+u1yucRsLAAAA+KhAX0iHzvhV9sENaS1dfab6pSY4dEe2SyX5Lq2Zn6aEWFZtBgAAAHBjgiFDxy60qaK2f0eZ8y09pvvelJWsolyXinNdWpDOfVyIDIpmAAAAMOU0tvZoV5VXO6o8plcjmJsWH95RJnf6tAjPEMBECAbN3ag6FkKh0LiOh4lFvK2DWFsL8baWsYp3e0+f3qhrUWmNV/tP+dXTZ64wI2/6NG3Mc6kkz62cjMRwoQyFW5HB9xsAAADRriMQ1P76D3OTFnUEzOUWGUmxKslzqTjPrdvmpCjGQaEMAAAAgBvT3RvSm2f8Kq/1aW+dTz6TBfyxDptWzXOqKNelDTlpykiOi/BMAYpmAAAAMEU0dwS0+4NCmaMN7ab6ZKbEaXNhurYWpqtgxrTwjWkAAAAAYFZLZ6/K63wqrfbq0JlW9YUMU/0WZyZpY55bG/PdmudKiPAsAQAAAES7ls5e7alrUVmNV2+e8SsQNJebzEmLV0meWxvzXFqSlSw710oAAAAA3KCWzl7trW9Rea1PB06bX1wsOd6hO7LTVJTr0tqFaUqKc0R4psDVKJoBAADApNXS1avSap92Vnn09rlWmbk3LSMpVpsL0rW50K2bspIplAEAAAAwYs3tAZXV+FRa49WRc60ycy+aTdLNc1JUkufSxjy3MlPjIz5PAAAAANGtsbVH5bU+ldf4dOS8ueskkpQ/fZpKBtntEgAAAABG6nxLtypqfaqo9endhjbTecnMlDgV5bpUnOvSrex0iQlG0QwAAAAmlfaePpXX+LSj0qM3z7YqaCLTSkuM0aZ8t7YUpuvm2Sly2Ln4AwAAAGBkLvh7VFrjVWm1V+9daJeZaz4Om3TbvFRtzHOrOM+ljKS4iM8TAAAAQHQ77e1S+QdF/O83dpjqY5N006zkcG4yJ43dLgEAAADcGMMwVHmpUxW1PpXXelXb3GW6b970aSrOdako16WCGdMo4MekQdEMAAAAJlxXIKg99S3aUenR/lMt6jWxjHNKvEMleW5tKXRrxTynYiiUAQAAADBCZ7xdHxTK+HTykrmb0WIdNq2e79TGPLc25KYpLTE2wrMEAAAAEM0Mw1DV5U6V1nhVXuNTvcfcDWkOu00r56Wq+IOVmzOSKeIHAAAAcGP6giG9fb5N5TU+7anz6VJbwFQ/u026ZU6KinJdKspxaTYF/JikKJoBAADAhOjuDWn/qRbtrPJoT12LevpCw/aZFmtXUa5LWwrTtWaBU7Fs2wlgAIfDEbFz2+32IY8RXYi3dRBrayHe1nK9eBuGoZqmTu2u8mh3tUd1JldHS4i16/aFadpUkK47clxKjudP65MJ328AAABMNcGQoSPnWlVW61N5jVcXW83dkBYfY9e6hU6V5Lm1PjtNqQnkJgAAAABuTFt3ryqqm/S7d8/pjTqf2nuCpvolxNi1dqFTRbkurc9mcTFMDWTPAAAAGDe9wZDePO3X61Ue7an1qSMwfKFMfIxdd2SnaXNhum5fmKaEWG5+AjA4l8s1bmM5nc5xGwsTj3hbB7G2FuJtHYZh6HSroe3HL+m14xd12tNpql9KfIw2LZqhu5ZmqSh/uhLjIlegi7HF9xsAAACTUU9fUPvrPNpxolGvHb8oX2efqX4p8Q7dkeNSSZ5Laxc4lRBLbgIAAADgxjS3B/TGKb/2na7R/lqPAsHh792SJFdijDbkulSU69KqeU7u38KUQ9EMAAAAIqovZOjw2VbtrPKorMar1u7hVyWIsdu0bqFTWwrTtSHHpWncnAYAAABgBIIhQ2+f8Wn78Yt6/XijLvi7TfVzTYvV5sUzdffSLK3LTVd8DLkIAAAAgBvXGQhq/6kWlde2aF99i9p6zBXKpCfFqjjXpZI8t1bMTVGMgxvSAAAAAIycYRg67e1WRa1P5bVeHb/YYbrv3LR4Fee6VZTn0k1ZyXLYbRGcKRBZFM0AAABgzIUMQ0fOtWpHpUe7q73ydQ1/Echhk1bN7y+UKc51KSWBX1UBAAAAmNcbDOnNem9/ocyJS2pu7zHVb3pKvO5akqm7lmZq9UI3N6MBAAAAGJWWrl69Udeishqv3jzjV0+fYarfbGe8SvL6C2VumpUsu40b0gAAAACMXDBk6PjFdpXX+lRR69NZn7mFxSRpSWaSinJdKs51aWF6omzkJYgS3IkIAACAMWEYht4516JXj17UK0cb1NQeGLaPTdJtc1O1udCtTXlupU2LjfxEAUQtn88XsXPb7XY5nc7wsd/vVyhkbptiTD3E2zqItbUQ7+gU6Avp4OkW7a7yqKLWJ3+3uVWbM1PjtCk/XXcWpGvZ7JTwzWhtrf5IThcRMtHfb5fLNW5jAQAAYHK63BZQea1XZTU+HTnXqqC5OhnlZiSqJM+tkjyX8qZP44Y0AAAAADekuzekt876VVHr0546n7yd5q6XxDpsWjnPqQ05aSrKdWl6clyEZwpMDIpmAAAAcMMMw1DV5U7tqvZqV7VP531dpvotm5WsLYXpujPfrQySLQBjJBgMjttYoVBoXMfDxCLe1kGsrYV4T11dgaD2n/artNqrvfU+dQTMFUfMcyVoY55LG/PdWjQzKXwzmhEKiZ+E6ML3GwAAAOPhrK9bpdVeldd6dfxih+l+t85L04Zsp4py0jTXlRDBGQIAAACIZv6uPu2t96m81qeDp/3q6jV3vSQ5zqGNi2Zq8+KZKi6Yrr6udv6mjqhH0QwAAABGrL65UzsqvdpR5TG9hefimUnaXJiuzQVuZabGR3iGAAAAAKJJe0+f3qhrUWmNV/tP+dXTZ+7CT2Fmiu5amqnb503TAlc8qzYDAAAAuGGGYai6qVNl1T6V1XpV12xuITGH3aYVc1N17y1ztWXxTM1MTZDP5+OmNAAAAAAjdsHfo4panypqfXrnvPldLmckx6oo16WiXLdWLUjTjIz08Gsm10gGpjSKZgAAAGDKOV+3dlR5tKPSY/pCUG5GorYUpmtzQTqrpQEAAAAYkZauXlXU+lRa7dOhs371mrzys3hmkjYVpuuBldlamJEkSdyQBgAAAOCGBEOG3rvQrrIar8pqfLrQ2mOqX3yMTWsXpKk4z6U7sl1yJ8fL5XJFeLYAAAAAoo1hGKq63BkulKlu6jTdNycjUcW5LhXlurRoZlJ4YTGHwx6p6QKTFkUzAAAAuK6L/h7trPJoZ5VXJy91mOqTnZGkO/NdujPfpeyMaRGeIQAAAIBo0tweUFmNT6U1Xh05Z26FNJuk5bNTtDHfpY15/TtbOhwOuVxJEZ8vAAAAgOjTGwzp8NlWldb4tKfWJ09nr6l+SXEObchJU3GeW+sWOJUY54jwTAEAAABEo75gSO80tKm8pr9QprEtYKqf3dZ/vaQo16XiXJfmpLHAMfAhimYAAABwleb2gHZVe7Wj0qNjF9pN9ZnljNfHbpmje5dlaXFWqlpaWljFGQAAAIApF/09Kq3xqrTGq2MN7TKzn4zDJt02L1Ub89wqznMpIyku4vMEMHXt2bNHlZWVqq+v19mzZ9XX16dHH31UxcXFEz01AAAwSXQFgtp/2q/yGq/eqG9Re4+5axzp02K1IdeljXkurZiXqlhWbAYAAABwAzoDQR047Vd5rVf76lvU2m0uJ4mPsWvNAqeKcly6IydNrmmxEZ4pMDVRNAMAAAD5Onu1u9qrnVUeHTnXZuomtRnJsbqzIF1bCtO1bHaq3G53xOcJAAAAIDqc8Xb1F8pU+0zvahnrsGn1fKc25rm1ITdNaYlc+AFgzq9+9Ss1NTUpJSVFLpdLTU1NEz0lAAAwCfi7+vRGvU9lNT4dPN2inj4zV0ekWanxKslzqSTPrZtmJctht0V4pgAAAACiUXNHQG/Utaii1qdDZ/wKBM3lJM7EGG3ITlNRnktr5juVEMsul8BwKJoBAACwqLbuPpXV+LSjyqO3zvhlJu9yT4vRpvx0bSl0a/nsFNlt/ReCbDYuCAEAAAC4PsMwVNvcpdLq/h1l6pq7TPWLj7Hr9oVObcx3a312mpLj+ZM2gJH78pe/rKysLE2fPl0vv/yynn/++YmeEgAAmCDN7QGV1/pUWuPV2+faFAyZuyktJyNRJbluleS7lD99GtdFAExJDkdkbqi12+1DHiO6EG9rId7WQrzHx2lPl8prvSqr9uq9C+YWNpakOWnxKs5zqzjPreWzUxUziuJ9Ym0txLsfVxgBAAAspCMQ1J7a/kKZA6f86jNxMSg1waGNeW5tKUzXrXNHl3QBQCRF6mKPxB8RrIZ4WwexthbiPf4Mw9D7je3aVeXV7mqPzvm6TfVLinNoQ65Lm/LTtS47TYk3sEIa8bYW4o3hLFu2bKKnAAAAJtA5X7fKarwqr/Xp2IV20/2WZiWpJM+tkjy35rkSIjhDABgfLpdrXMZxOp3jMg4mB+JtLcTbWoj32AiFDL17vkU7TlzSzvcbVdfUYbrvsjlObV40U1uWZCp/ZnLEiveJtbVYNd4UzQAAAES57t6g9ta3aEelR/tOtainb/hCmaQ4u4pz3dpcmK7V81MV6+CGIwCT33hd7JGs+0cEqyLe1kGsrYV4R0YwZOjIWZ+2v9eo1080qqHF3I4yadNitXnRTN19U6Zuz81QfMzYFsMSb2sh3mPH7/ertrZWtbW1qqurU11dndra2iRJRUVF2rZtm+lzNTU1afv27Tpy5Ig8Ho9iYmKUmZmptWvXauvWrYqPj4/U2wAAABZjGIZqmjpVVuNTWY1XtSZ3unTYpFvnpqokz6XiXLdmpMRFeKYAAAAAolFPX1D76zzaceKSdp28pKa2HlP9Yuw2rc1J15bFM3Xn4pnKciZGeKaAdVA0AwAAEIUCfSEdOO3XziqPKmp96uoNDdsnIcauO3LStLUwXWsXpik+hkIZAAAAAMPrDYb0Zr1X249f1I73zV/8mZ4Sr61LZurupVlavdCtGIr1gUnnkUceGZPzHD58WE888YS6uq7csNrT0xMuxNm9e7cef/xxZWZmjsl4AADAekKGofcutKusxquyGp8a/ObykjiHTWsWOFWS59YdOWlKS4yN8EwBAAAARCN/Z6/Kqi5r5/uXVF51WR2BoKl+yfExKi6Yrs2LZ6q4YIac5CRARFA0AwAAECX6giG9dbZVOyo9Kqv1qb1n+OQrzmHTuoVp2lKYrjuy05QYN7arOQMAAACITj19Qe2rbdb29xq18+QltXT2muo3Oy1RW5dk6u6bMnXrPJccdluEZwpgrGRkZGj27Nk6evToiPqdOnVKP/zhDxUIBJSQkKD7779fS5cuVSAQ0L59+7R7925dvHhR3/nOd/Td735XiYmsnggAAMzpC4Z0+Fyrymp8Kq/1ydNhLi9JinNofXaaSvJcWrcwTdO4NgLAInw+X0TOa7fbr9r11e/3KxQaflFHTE3E21qIt7UQ75FrbO1ReY1XZTVeHTnXqr6QYapfRnKsinPdKs5za+U8p+I+WNg41N0uX3ckZ9yPWFvLZIi3y+Ua1/EGQ9EMAADAFBYMGXrnfJt2VHm0u9orf1ffsH0cdpvWzHdqc6FbxbkuJcfzKyGA6BCpiz3S5PgjAsYP8bYOYm0txHv0ugJB7TvVot1VHr1R5zO9Sto8V4I2FaRrU366FmcmyWbrL5Rp9bdEbK7E21omOt6T4WJPpHziE59QTk6OcnJylJaWpsuXL+uxxx4b0Tl+/vOfKxAIyOFw6Jvf/Kby8/PDry1dulRZWVl67rnndPHiRb3yyit68MEHrznHM888o95eczfBStI999yjrKysEc0TAABMDd29QR047VdZjU9v1PnUZmIBMUlyJcaoOM+l4ly3Vs5LDd+UBgBWEgya+//M0QqFQuM2FiYe8bYW4m0txPtahmGotrlL5TVeVdT5VHmp03Tf7PREFeW6VJTr0uLMJNltHy4qZkz450ysrcWq8eYOSQAAgCkmZBh670K7dlZ5tLPKa2rlNLtNWjE3VVsK01Wc51IaW3kCiELjmdRb9Y8IVkW8rYNYWwvxNqe9p09761u0u9qr/af86ukzV4iQm5GojflubcxzKycjMVwoM1GFK8TbWoj32BmsgGUkamtrdfLkSUlSSUnJVQUzH7r33ntVVlamhoYGbd++XQ888IBiYq6+fLVz50719PSYHnfNmjUUzQAAEEXauvv0Rn2LympGlpdkpcapOM+tjXkuLZuVwk6XAAAAAEasL2ToaEObymt9qqjx6UKrub9T2iQtm52s4ly3inJdmudKiOxEAQyJohkAAIApwDAMVV7q1I5Kj3ZWedTYFjDV75Y5Kdpc4Nam/HSlJ1EoAwAAAGB4LV29qqj1qbTap0Nn/eoNGqb6LZ6ZpI35bpXkuTTfnRjhWQKYCg4dOhR+XFJSMmgbu92uoqIiPf/88+ro6NCJEye0fPnyq9o8++yzEZ0nAACYfJo7Aiqv8am81qe3zrYqGDKXl2SnJ6o4z6WNeW4VzJgWLuAHAAAAALO6AkEdPONXeY1Pe+tb5O/uM9UvzmHT6gVOFeW6dEe2i3u1gEmEohkAAIBJyjAM1TV3aUeVRzsqPTrfYm6lgiWZSdpSmK47C9yamRIf4VkCAAAAiAbN7QGV1/pUWu3V2+daZaZOxiZp+ewUlXxwQ1qWk/wDwNWqqqokSfHx8crOzr5uu8WLF1/V56NFMwAAwBrOt3SrvMan0hqv3rvQLnNlMtLizCRtzHOrOM+lBRTwAwAAALgB3o5e7an3qaLWp0Nn/OrpM5eROBNitD47TcV5Lq2Z71RinCPCMwVwIyiaAQAAmGROe7u0s9KjnVVe1Xu6TPXJnzFNWwr6C2XmpLGdJwAAAIDhXfT3qLTGq9Iar441mLshzWGTbpubqo35bhXnupSRHBfxeQKYus6fPy9JyszMlMNx/YvFs2bNuqYPAACIfh8uHlZa41V5jU/VTZ2m+tlt0q1zUlWc51JxrkuZqRTwAwAAABi5s75uVdT6VF5r/jqJJM1KjVdRrktFuS7dPCdFMXZ2uAQmO4pmAAAAJoGGlm7trPJqR5VH1ZfNXRRa4E7QlsJ0bSlI14J0Vk4DAAAAMLyzvm6VVntVWu3V+5c6TPWJsdu0er5TG/NdKspxKW1abIRnCSAaBAIBtbW1SZLS09OHbJucnKz4+Hj19PTI4/GM+Vx2796tyspKSdLZs2fDz504cUKSVFhYqE2bNpk+n9k5DlUoNFp2u33IY0QPYm0txNtarBrvkGHo+IV2lVZ7VFrj1Tlft6l+cQ6b1ixI08Z8tzbkuuWaYnmJVeNtRcQaAABg8goZht5v7FBFbf+OMmYXM5akghnTVPxBoUze9Gmy2SiUAaYSimaigNfr1YEDB/TOO++ooaFBLS0tSk5OVkFBgT72sY8pLy9voqcIAAAGcbktoJ1VHu2s8uj4RXM3q812xvcXyhSmKzcjkQQMAAAAwJA+XLl5d3X/jjJ1zeYuAMXH2LVuoVOb8t1an52m5Hj+lAxgZLq7r9wAm5Aw/K64CQkJ6unpuarfWKmsrFRFRcVVz1VVVamqqip8PJKimT/7sz8z1e6FF14wfc7Rcjqd4zYWJhaxthbibS3RHO/eYEhv1nv1+olG7Xi/UZdae0z1S46PUUnhDG1dMlPFBTOiKi+J5njjasQaAABgYvUGQzp8tlXltT7tqfOpqb3XVD+HTbptbqo25PYvKJblZIdLYCqLnr8oWNj27dv13//935o5c6aWL1+u1NRUXbx4UW+99ZbeeustffWrX9W6desmepoAAECSt6NXu6v7d5R593ybqW09Z6bEaXOBW1sK07VoZhKFMgAAAACGZBiGTl7q6N9RpsansyZXbk6Ks2t9tksb891at8CpxLjI7ZAAIPoFAoHw45iY4S9HfdhmYL+xsm3bNm3btm3MzwsAAK6vuzeoPdVNeu1Eo3afvCx/l7kb09xJcdq8aKbuWpqpdbnpio8hLwEAAAAwMu09fdpb36KKWp/2n2pRRyBkqt+0WLvWLkxTca5Lt2enKTWB2+yBaMG3OQrk5ubq//yf/6PFixdf9fzJkyf17W9/Wz/5yU+0cuVKxcZOre2JAQCIFv6uPpXV9BfKHD7bqpCJSpn0abG6s8CtzYXpWjYrWXYKZQAAAAAMIWQYOtbQrt01XpVVe9XYZu6mc2dCjDbkurQpz6VV852Ki7FHeKYArCIuLi78uK+vb9j2H7YZ2G+yevLJJyd6CgAATEr+rl6VVV7W6ycaVV7VpK7eoKl+s5wJ2rIkU3ctzdSK+S7FOMhLAAAAAIzMpbYe7altUXmtV2+fa1OfmRu01H+P1oZcl4pyXVo5L1XxXCcBohJFM1Fg9erVgz6/aNEiLV26VEePHtXZs2eVk5MzzjMDAMC62nv6VFHr045Krw6e8StoIhFzJsZoY55bWwvdumVOqhx2CmUAAAAAXF9fyNDb51pVVu1VWa1Png5zKzenJ8WqJNelkny3bpuTwg1pACIiISEh/Li7e/gdrz5sM7DfZJWenm6qnc/ni9gc7Ha7nE5n+Njv9ysUMrdiJqYWYm0txNtaoiXeno6Aymu8Kq326tAZv+kb0xa6E7WxwK2SvHQtzkyS7YPFw9pa/ZGc7oSJlnhjeJMh1i6Xa1zHAwAAmAiGYaiuuUsVdT5V1Pj0/qUO030XuBNUlOtSca5LS7JYzBiwAssXzfj9ftXW1qq2tlZ1dXWqq6tTW1ubJKmoqEjbtm0zfa6mpiZt375dR44ckcfjUUxMjDIzM7V27Vpt3bpV8fHxkXob1+VwOK76XwAAEDldgaDeqG/RziqP9tW3KBAc/sJQUpxDG/Nc2lyYrlXzUrlZDQBGIZJ5j91uH/IY0YV4WwextpZoiXegL6Q3z7Rod5VX5TVe+buH371BkjJT47QpP12bCtK1bFZK1BfpR0u8YQ7xnpzi4uKUkpKitrY2eTyeIdu2t7erp6dHkvmClKkgGDS3uv5YCIVC4zoeJg6xthbibS1TKd4X/D0qq/GqrManow1tMlcmIy2emaTiPJdK8txamJ4Yft6KxSNTKd4YHWINAAAwdoIhQ8cutKm8xqeKOp/Ot/SY6meTdNOsZBV9sKPMAnfisH0ARBfLF8088sgjY3Kew4cP64knnlBXV1f4uZ6ennAhzu7du/X4448rMzNzTMYzo7m5We+9955cLpfmzZs3buMCAGAlPX0hHTjVotcrPXqjrkXdfcNf2EmMtWtDjktbCtO1doFTcWzrCQBjYjxXzxu4UiCiH/G2DmJtLVMp3l2BoCqqL2v78UaVnrysth5zhTIL0qfprqVZuntpppbNcYZXbraiqRRvjB7xnjzmzJmjkydPqrGxUcFg8LqF7hcuXLiqDwAAmFwMw1C9p0tlNT6V1XhVdbnTVD+7Tbp5doo25rtVnOtSZur4LzQKAAAAYGrr7g3q4Bm/Kmpb9EadTy1d5q6RxDlsWjnPqeI8l+7ISVNGUlyEZwpgMrN80cxAGRkZmj17to4ePTqifqdOndIPf/hDBQIBJSQk6P7779fSpUsVCAS0b98+7d69WxcvXtR3vvMdffe731ViYuQrFPv6+vTEE0+ot7dXn/nMZ1hZDwCAMdQXDOnNM63aUelRea1PHYHhV4eKj7Hp9oVp2lKYrvXZaUqIZRc4AAAAANfX1t2r0srL2v5eo8qrL6u719zKywUzU3TX0kzdfVOmCmamWLpQBsDEKygo0MmTJ9XT06P6+nrl5eUN2u7999+/qg8AAJh4IcPQ+40d4R1lzvq6TfWLddi0en7/jWlFOS65psVGeKYAAAAAok1LZ6/eqG9Rea1PB0/71WNiEWNJSol3aH1OmopyXFq7ME1JcdyfBaCf5YtmPvGJTygnJ0c5OTlKS0vT5cuX9dhjj43oHD//+c8VCATkcDj0zW9+U/n5+eHXli5dqqysLD333HO6ePGiXnnlFT344IPXnOOZZ55Rb2+v6THvueceZWVlDfpaKBTSv//7v+vkyZPatGmTNmzYMKL3AwAArhUMGXr7XKt2VnlUWu2Tv3v4VQti7DatXeDUlsJ0bch1kYgBAAAAGJKvI6CdJy/pteON2lvTrEDQ3EWgZXOc2rokU3cvzVT29OQIzxIAzFu1apVefvllSVJZWdmgRTOhUEgVFRWSpKSkJC1ZsmQ8pxhR19tZZyx8dLE0Fk+LXsTaWoi3tUzGePeFDB0516rSao/Kqr263B4w1S8x1q47clwqyUvX+pw0Jcdb/laUa0zGeCMyiDUAAMCNOd/SrfJan/bU+vRuQ5tChrl+mSlxKsp1qTjPpVtmpyjGwe9fAK5l+b9UDFbAMhK1tbU6efKkJKmkpOSqgpkP3XvvvSorK1NDQ4O2b9+uBx54QDExV3/0O3fuVE9Pj+lx16xZM2jRTCgU0pNPPqm9e/fqjjvu0COPPDLCdwQAAD4UMgwda2jX65UelVZ75ekcvsDVYZNWzndqc4FbJXlupSZY/tctABg3Pp8vYue22+1yOp3hY7/fr1DI3I3MmHqIt3UQa2uZrPFubg+otMar3VUevX3Wr6CJi0A2Sctnp2hTQbo25rs1y5nwwSu9Ef3v4VQyWeONyJjoeLtcrnEba6rJzc3VokWLdPLkSZWVlam4uPia6yivvvqqGhoaJEl33333NddPprLx/NkY+B1AdCPW1kK8rWWi4t3dG9Temma9dqJRu05eUouJayGS5JoWqzsXzdRdSzN1e26GEmJZOGwk+H5bB7EGAAAYnGEYqrzUqfJarypqfapt7jLdN3/6NBXlulSU61LBjGmy2WwRnCmAaBA9Vx4myKFDh8KPS0pKBm1jt9tVVFSk559/Xh0dHTpx4oSWL19+VZtnn3121HP5cIeZPXv26Pbbb9e2bdtYsQIAgBEyDEMnGju0s9KjXdVeXWobfhU1m6Rb5qRoS2G6NuW75ZoWG/mJAgCuEQwGx22sUCg0ruNhYhFv6yDW1jKR8b7o71FpjVdlNT4dbWiTmcXSHDbp1rmp2pjnVkmeSxnJceHX+LkdHt9vayHeY6eyslKNjY3h49bW1vDjxsZGlZeXX9W+uLj4mnM8/PDD+ta3vqVAIKB/+Id/0Mc//nEtWbJEgUBA+/fv165duyRJWVlZuu+++yLyPgAAwNXauntVWnlZO05cUlnVZXUGzP3ulOVM0NYlmdqyZKZWLXCzgjMAAACAEekNhvT2uTZV1Pq0p85n6r4sqf8ayS1zUsOFMrOc8RGeKYBoQ9HMKFVVVUmS4uPjlZ2dfd12ixcvvqrPR4tmRmtgwcy6dev053/+5xTMAABgkmEYqmnq1I5Kj3ZWedXgN7f7201ZydpSmK47C9yaPuCGNQAAAAD4qLO+bpVWe1Va7dX7lzpM9Ymx27R6vlMb810qynEpjQJ9AONs9+7dqqioGPS1qqqq8DWSDw1WNLNw4UJ97Wtf0xNPPKGuri798pe/vKZNVlaWHn/8cSUmJo7JvAEAwLWa23u06/1Leu1Eo/bXehQImtuZLzsjSVuXZuquJZlaNsfJCs4AAAAARqS9p08HTvlVXuvTvlMtau8xV7SfEGPX2oVOFeW6tD47TWmJXCMBcOMomhml8+fPS5IyMzPlcFx/u+FZs2Zd02eshEIhPfnkk9qzZ4/WrFlDwQwAACad8nRpR6VHO6o8OuPtNtWncOY0bS5I1+aCdFYtAAAAAHBdhmGorrlLpTX9hTK1zV2m+sXH2LVuoVMb89y6IydNyfH8CRfA1LdixQp9//vf1+9//3sdOXJEXq9XMTExyszM1Jo1a3TXXXcpPj76/s7i8/kidm673S6n0xk+9vv9CoXM3fyMqYVYWwvxtpbxiPcFf7fKqr0qrfHq3fOtCpnZ5lLSoplJ2pifrpJ8t7LTEz8olDHU0tIypvOzEr7f1jEZYu1yucZ1PAAAgI9qag/07yZT69Nb51rVGzSXjLinxeiOHJeKc11aOc+phFjuhQYwNrjiOgqBQEBtbW2SpPT09CHbJicnKz4+Xj09PfJ4PGM6j5deekkVFRVKSEjQrFmz9Otf//qaNqtWrdKCBQtMn9PsHIcqFBqNjxb9UAQU3Yi3tRBv65issT7n69aOyma9frJZNU2dpvrkZCRq66IMbSnM0Hw3K54OZrLGG5FBvAEAAAZnGIZOXuro31GmxqezPnPF+Ulxdq3PdmljvlvrFjiVGBeZv7kBwEht27ZN27ZtG5NzTZ8+XQ899JAeeuihMTnfVBAMmls1cyyEQqFxHQ8Th1hbC/G2lrGK9ylPf/F+WY1XlZfMXQexSbp5TopK8lwqznVftWgYhR2RwffbOog1AACwAsMwdMrTpYo6n8prfDrR2GG67zxXgopyXSrKdemmrGQ57OxuCWDsUTQzCt3dVy56JyQkDNs+ISFBPT09V/UbC01NTeH5/OY3vxm0zYwZM0ZUNPNnf/Znptq98MILps85GgNX4UD0I97WQrytYyJjfaGlS787dlGvHrugo+f9pvoszEjSvcuydO+yWSrITInwDKMP321rId4AAMDKQoahYw3t4ZvSLrYGTPVLTXCoKKe/UGbVfKfiYyhEBgAAADByhmHo/cYOldf6VFrj1RmvufsRYuw2rZqfqpI8tzbkuJSeFBvhmQIAAACIJsGQofcutquixqeKOvMLiUnS0qwkFeX2F+0vcCd8sLslAEQORTOjEAhcuQAeEzP8R/lhm4H9xsJYrvQGAEC0uNzWre3vNeqVoxd0+IzPVJ/ZaYm6d3mW7ls2S0tmpZKQAQAAABhUX8jQkXOtKq32qqzWJ09Hr6l+6dNiVZzXXyhz25wUxTgolAEAAAAwcn0hQ++eb1NZjVfltT5dajN3D0JirF3rFqapJM+l9dlpSo7nlhEAAAAA5nX3hnTorF8VtT7tqfXJ19Vnql+sw6aVc1NVlOfShhyXpifHRXimAHA1/gIyCnFxV/5Pu69v+P/j/7DNwH6T1ZNPPjnRUwAAYMS8HQG9drxRrx67oIP1HoWM4fvMSInXHyzL0n3LZ+mWuWkUygAAAAAYVKAvpENn/Cr9YMU0v8kLQTNT4rQxz62N+S4tm5Uih52cAwAAAMDI9XyQk5SNMCdxJsRoQ06aivPcWj3fqYRYivcBAAAAmNfS1au99S2qqPXpwCm/uvtCpvolxzu0PjtNRTkurV3opGgfwITi/4FGISEhIfy4u3v4bcU+bDOw32SVnp5uqp3PZ27l/pGy2+1yOp3hY7/fr1DI3H9oMfUQb2sh3tYxXrFu6+lTWbVXr59s1qEzfvWZqJRJS4zR5sJ0bSnM0C1zUsM3rbW0tIz5/KyC77a1TIZ4u1yucR0PAABYU3dvUPtP+VVa49UbdS3qCARN9ZubFq+N+W5tzHNrcWYSxfkAYFEOhyNi57bb7UMeI3oQa2sh3tZiJt4dPUHtrfeptNqjvfU+dQbM/R12enJcf06Sn65b56YqhuL9Ccf32zqINQAAiAbnvJ36n7cvqLTao3fPtyloYuFiqX8hsQ05LhXnuXTrnBTFOvhdCMDkQNHMKMTFxSklJUVtbW3yeDxDtm1vb1dPT48k8wUpU0EwaO5GgdEKhULjNhYmHvG2FuJtHWMZ685AUHvqfNpZ5dX+Uy3qNZGZpcQ7VJLn1pbCdK2YN+ACkRESP4Jjj++2tRBvAAAQTdp7+rS3vkWl1V7tH8GKadnpidqU79bGfLdyMxIplAEAjOuCDwMXt0B0I9bWQryt5cN4ezsC2vX+Jb12olF7a5oVCJrLSRakT9PWpZm6a0mmls9Jk51CmUmN77d1EGsAADBVnPF26WeHm7Tz/Us6ebHVdL/cjEQV5bpUnOtW4cxpXB8BMClRNDNKc+bM0cmTJ9XY2KhgMHjdVcMuXLhwVR8AADAy3b0h7T/Voh2VHr1R36IeEzeuTYu1qyjPpS0F6VqzwMnqBQAAAAAG1dLVqz21LSqt8erNM35ThfmStGhmkjbmu1SS59YCd2KEZwkAAAAgWl1o6dLrJxr1+olGHTrlVcjkKs6Ls1J119JMbV2SqfyZydycBgAAAGDETnu79NTBBr1+0mMqF7HbpJtnp6go16WiXJfmpCVEfpIAMEoUzYxSQUGBTp48qZ6eHtXX1ysvL2/Qdu+///5VfQAAwPB6gyEdPO3XjiqPKmp86uwdvlAmPsauO7LTtKUwXesWpikhlkIZAAAAANdqbg9od1WzSmu8evtsq8zUydgkLZudrJI8tzbmuTXLGR/xeQIAAACITk1tPXrh8Dm9fqJRx877TfWx2aQV813auqS/UGaue1qEZwkAAAAgWp3xdum/TBbLxMfYtXaBU0W5Lt2Rnaa0abHjM0kAGCMUzYzSqlWr9PLLL0uSysrKBi2aCYVCqqiokCQlJSVpyZIl4zlFAACmlL6QocNnW7Wj0qPyWq9au4PD9ol12LRuYZo2F7i1IcelaXGD7/wGAAAAwNoutHRp+/FGvXb8og6f9snM4s0Om3Tr3FRtzHOrJM+ljOS4iM8TABAdfD5fxM5tt9vldDrDx36/X6HQ8AvOYOoh1tZCvK3B0xHQ029e0IvvNKq7b/j4xthtWjXfqY35bhXlugfkJD3y+XoiO1mMGb7f1jEZYu1yucZ1PAAAMLWc8XbpqYMX9NrJ5iGLZdISY3RHjkvFuS6tnp+qhFjuxwIwdVE0M0q5ublatGiRTp48qbKyMhUXFys/P/+qNq+++qoaGhokSXfffbdiYqLnY3c4IvMfQbvdPuQxogvxthbibR0jiXXIMHTkXKt2VDZrV5VHvs6+Yc/vsEmrF6Rp66IMleS5lZIQPf99nYr4blsL8QYAAFPN+ZZu/dfBC/r9iaZhV0uT+m9KWz3fqZJ8l4pzXKyYBgC4IcHg8IvBjJVQKDSu42HiEGtrId7RxdPRq2ffuqAX372snmGKZRJi7Fq30KmSPLfWZ6dddQ2En4nowPfbOog1AACYLMwUyyTFOfTgyrm6e2mWslMlGRR6A4gOlr+7tLKyUo2NjeHj1tbW8OPGxkaVl5df1b64uPiaczz88MP61re+pUAgoH/4h3/Qxz/+cS1ZskSBQED79+/Xrl27JElZWVm67777IvI+Jsp4rU4xcBUORD/ibS3E2zo+GmvDMPTOuRa9cvSCfv/eRV1qHX41NJtNWrMwXfctn6W7lmbKncQKz5MV321rId6YLCJV1C9RLGY1xNs6iHX0u+Dv1k/2n9cr711WcJhimYQYu9Zlp2lTfrruyHUpJd7yfzqd0vh+WwvxBgAAk1lzR0DPHrqol44OXSyTEu/QhhyXSvJdWjPfySrOAAAAAMaEmWKZabF2fXpFlh67c7FcH9yP5fP5RO0vgGhh+Su/u3fvVkVFxaCvVVVVqaqq6qrnBiuaWbhwob72ta/piSeeUFdXl375y19e0yYrK0uPP/64EhMTx2TeAABMRYZh6MSFVr1y7IJePXpRDS1dpvqtmO/SvcuydM9NWZqRmhDhWQIApqrxKuqXKBazGuJtHcQ6elxo6dKPymr1wlvn1DfE1jJJcQ5tXDRTdy/NVHHBdE2Ls/yfS6MW329rId4AAGAyMFMs47DbdP/Ns/XxW2Yr32WTXSa2xgQAAAAAE8wWy3zy1kx9ZkWm0pMTwgUzABBtuAo8RlasWKHvf//7+v3vf68jR47I6/UqJiZGmZmZWrNmje666y7Fx8dP9DQBAJgQ1Zfa9OrRC3rl2EWdau4w1WfZHKfuWzZL9yzL0uw0ik4BAAAADO9Sa7f+vaxWvzx0ToHg4DelTYtz6J6bsnT30kzdnpvB6s0AAAAAxpSpYhmbdO/SGfqru5ZoXvo0SR+u4swyzgAAAABG56yvW08daNB2M8Uyt2UqbVrs+E4QACaA5Ytmtm3bpm3bto3JuaZPn66HHnpIDz300Jicbyrw+XwROa/dbr9qNUC/369Q6PpbVWNqI97WQrytoydo6NWTLXrx8HlVXWoz1Sdv+jRtXZShLYUZmuv6YEcZo1s+X3cEZ4qxwHfbWiZDvMdzRxEAADD5XW7r1o/L6/WLN89c96a0hFi7Hlq7QF/akK30ZBa3AQAAADC2zBbL/MGS6frCmlman54kl2vaOM8SAAAAQLSiWAYArs/yRTMYnfFa6SYUCrGqjoUQb2sh3tGnNxjSf7/XpP862KDm9t5h2893J2hLQbq2FKZrYfqVHWX4uZja+G5bC/HGZBGpon5pchSLYfwQb+sg1lOft7NXT7/ZoBeONKr7OjelxTls+uNbMvWFtXOVM3t6+HniHd34flvLRMebon4AAKzN/M4y0/X51bM0Jy1hnGcIAAAAIJpRLAMAw6NoBgAAjIlgyNBrJ5v1n/sb1ODvGbLtbGe8Nhe4taUwXXnTp8lms43TLAEA0Ww8i7coFrMW4m0dxHrqaOnq1S8ON+r/HWlUV+/gN6XFOmz6+LIZ+vzqWZqeHCeHw3HV68TbWoi3tRBvTBYf/W/PWLLb7UMeI3oQa2sh3lNLc3tATx9q0EvvXLpuEb/DJt130wz96do51xTLEG9rId7WQawBAMB4MVMskxhr16colgEAimYAAMDoGIahshqffrzvvOo9XddtNyM5TpsL3NpcmK4lmUkUygAAAAAYsbbuPj3/dqOef/uiOgKD35QWY7fpYzf1r+CcmRo/zjMEAOCK8dyFaOBuS4huxNpaiPfkdLmtW/9RUa/nDp65/s4ydps+cescbSvJ1bz0aabOS7ythXhbB7EGAABj7ZyvW08dbND295sVHKJY5pO3zNRnV2RRLAMAomgGAADcIMMw9OYZv/79jfN6/1LHddvdkZehbSW5ykuzyQgNfvEIAAAAAIbS3tOn/3fkkp47fFHtPYPvHuGwSfcuna4/XTNbs5wUywAAAAAYW2aKZWLsNv3RCItlAAAAAMAMimUA4MZRNAMAAEbs3YY2/fsb53TkfNt12yyfnaJv3LNEa3PSJUk+n0+D39oGAAAAAIPrDAT1q3ca9dxbjfJ39w3axm6T7lmcoS+una05aQnjPEMAAAAA0Y5iGQDAWNuzZ48qKytVX1+vs2fPqq+vT48++qiKi4snemoAgEmIYhkAGD2KZjAqDocjIue12+1DHiO6EG9rId5TW9WlDv3bG2f1Rp3vum3yZ0zTYxvmaUNuutLS0sLPE+voxnfbWog3AACItO7eoF5897KePnRBLV2DF8vYJG1dlK4vrp2tBe7E8Z0gAAAm+HzX/xvaaNntdjmdzvCx3+9XiF2eoxKxthbiPbk0twf08zcb9NK7l4Yslrl36XT96do5HxTx98jn6zF1fuJtLcTbOiZDrF0u17iOh5H71a9+paamJqWkpMjlcqmpqWmipwQAmIQolgGAsUPRDEZlvBLtgX9QQPQj3tZCvKeGuqZ2/WBntV49dvG6bbIzkvT/25Kve5ZmyW63XfM6sbYW4m0txBsAAIyV7t6QfnPskp5+86I8nb3XbXdnvltfWjdb2Rms4AwAmLyCwfHbdzkUCo3reJg4xNpaiPfEaO4I6JlDF/Xro5fU0zf4nWkOu033LcnQ51fP0uwPdrwcbayIt7UQb+sg1hjMl7/8ZWVlZWn69Ol6+eWX9fzzz0/0lAAAk8g5X7d+erBBvx+mWObBD4plXBTLAMCwKJoBAADX1dDSpf9vV7Veevu8QtdJwmY5E/S1O/P1wK2zFeNgtwkAAAAAIxfoC+nl9y7rZ29eUFP79YtlSvJc+tK6OcqbTrEMAAAAgLF1o8UyAACM1LJlyyZ6CgCASYhiGQCIHIpmAADANZraevRvZbV6/s2zCgQH3y48IzlO20py9b9Wz1N8jGOcZwgAAAAgGvQGQ/qf40366cELutQWuG67O3LS9OV1c1Q4M2kcZwcAAADACprbA3r6rYv6DcUyADDp+f1+1dbWqra2VnV1daqrq1NbW5skqaioSNu2bTN9rqamJm3fvl1HjhyRx+NRTEyMMjMztXbtWm3dulXx8fGRehsAAFyFYhkAiDyKZjAqPp8vIue12+1yOp3hY7/fr1Bo8Ju2MfURb2sh3pNba3efnjnUoF8cvqju3sHjkhzv0MOrZ+vTt2VpWpxDnW2t6hykHbG2FuJtLZMh3i6Xa1zHAwAAY6svGNLv3m/WUwcu6EJrz3XbrVvg1Jdun6OlWcnjODsAAAAAVkCxDABMPY888siYnOfw4cN64okn1NXVFX6up6cnXIize/duPf7448rMzByT8QAAGMz5lm49dYBiGQAYDxTNYFSCweC4jBMKhcZtLEw84m0txHty6AoE9f/eadQzhy6qrWfweCTE2PXp2zL1JyuzlJrQ/yvESGJHrK2FeFsL8QYAAGb1hQy9drJZ/3WgQedbrl8ss2p+qr68bo6Wz04Zx9kBAAAAsAKKZQAgOmRkZGj27Nk6evToiPqdOnVKP/zhDxUIBJSQkKD7779fS5cuVSAQ0L59+7R7925dvHhR3/nOd/Td735XiYmJEXoHAACrOt/SracOXtDvTzRdt1gmIaa/WOZPVlIsAwBjgaIZAAAsLNAX0m+OXdZPDzbI29k3aJtYh01/tHyGHl49SxlJceM8QwAAAADRIBgytLPKo58caNAZb/d12906J0VfuX2Obp2bOo6zAwAAAGAFFMsAwNT3iU98Qjk5OcrJyVFaWpouX76sxx57bETn+PnPf65AICCHw6FvfvObys/PD7+2dOlSZWVl6bnnntPFixf1yiuv6MEHH7zmHM8884x6e3tNj3nPPfcoKytrRPMEAEQfimUAYOJQNAMAgAX1hQz97kSTfrK/QY1tgUHb2G3SvUum65G1s5XljB/nGQIAAACIBiHDUGm1V/+5v0H1nq7rtls2K1l/tn6OVsxNlc1mG8cZAgAQOQ6HI2LnttvtQx4jehBrayHekdHUHtDTbzbopXcvqacvNGibGLtNf3jTDP3p2tma5RyfYhnibS3E2zqIdWQNVsAyErW1tTp58qQkqaSk5KqCmQ/de++9KisrU0NDg7Zv364HHnhAMTFX32K3c+dO9fRcfxflj1qzZg1FMwBgYRTLAMDEo2gGAAALCRmGdld59eS+8zrru/7qzpsL3PryujlakM5W0wAAAABGzjAMldf69B/7zqu2+frFMksyk/Rn6+do9XwnxTIAgKjjcrnGbSyn0zluY2FiEWtrId6jc7m1Wz+uqNcv3jwzZLHMH6+Yo0eLczXXPW2cZ3g14m0txNs6iPXkcujQofDjkpKSQdvY7XYVFRXp+eefV0dHh06cOKHly5df1ebZZ5+N6DwBANGBYhkAmDwomgEAwAIMw9C+U379+95zqr7ced1267PT9JXb56hwZtI4zg4AAABAtDAMQ3vrW/TjfedVNUTuUThzmr6ybo5uz06jWAYAAADAmLrc2q0nK+r0/Jtnp0SxDABg/FRVVUmS4uPjlZ2dfd12ixcvvqrPR4tmAAAYyvmWbv304AX9bphimT++Zab+ZEWW3EkUywBApFE0AwBAlDtyrlX/tvecjja0X7fNrXNS9Ogdc3Xz/5+9+46vurr/OP6+I8nNIoQQsthZLMXBEkTAURfIkFpt6+jQVtE6qra0apdWW2eLFVtr6/ppa1VQUFzIEEEBEWQkhLCzGNnz3tx7v78/EORykxAk997kfl/Px6OPknPOvd8PvnOBm/v9nJMRH8TKAAAAAIQLwzD06a5qPf1JkTaX1be6Ljs5Rj8Zm6EJWYk0ywAAAADoUDTLAACOp6ioSJKUmpoqm83W6rr09HS/xwAAcDw0ywBA50XTDE5KW28gT4bVam3za4QX8jYX8g6ezaV1+tvyPVq1q6rVNYNTY3XLOf00pn9Ch9+wRtbmQt7mQt4AAOAwwzC0Zk+Nnv6kSF+WtN6oPzApWjeMzdC5OT1kpVkGAGASlZWVAXtuq9WqhISEI19XV1fL6235BnF0bWRtLuT9zRyoc+m5T4v1+oZ9bTbLXHZKL/3orAylJzgkOVVZ6Qxuoccgb3Mhb/PoDFknJiYG9XpdhcvlUm1trSQpKSmpzbVxcXGKioqS0+lUeXl5h9eyePFi5efnS5L27NlzZGzz5s2SpEGDBum8885r9/O1t0bu80JHIG9zIe/2Kapq0j9XFmnhpv2tN8tEWPWd01N1zah09YiNDG6B7UTe5kHW5kLeh9A0g5MSrDfaR/9AAeGPvM2FvDvetn21evT9Ar27uazVNVm94nTnt3J04dDUoO3uTNbmQt7mQt4AAJjT53tr9PdPirSuqLbVNf16OHTD2N46P6eHbFaaZQAA5uLxeIJ2La/XG9TrIXTI2lzIu20H61x6fnWp3vhyn5zulu9Ms1ktumxYT/1gdIbSE6IkBffP5xNB3uZC3uZB1p1HU1PTkV87HI7jrnc4HHI6nT6P6yj5+flatmyZz9jWrVu1devWI1+fSNPMjTfe2K51r776aruf82Tw2aG5kLe5kLevPeUNenLJNr2+rlgeb8vvSaIjbLrmrH66/pyB6hkXFeQKTw55mwdZm4tZ86ZpBgCAMLG3okGPf1ig+V8Uq5X3YerTI1q3nZejaadncMMaACDsBGqHNImdN8yGvM2DrL+Z9UU1mrtir1bvrm51TZ/uDt0wrrcuHpLcad57kLe5kLe5kDcAAObS/maZZP1gdPqRZhkAgLm5XK4jv7bbj3/L3OE1Rz+uo8yaNUuzZs3q8OcFAATHnvIG/W1JoV5fVyR3KzdpOSKsuuas/rqhCzbLAEA4omkGAIAubn9Nk+Z8VKj/rNmj5lbO+OwVH6VbzsvWd0b0UaSdG0cAAOEpWCdhSubdecOsyNs8yLpt6/dW6bEPCrS84ECra3onRutn52VrxukZsts693sP8jYX8jYX8gYAIDzRLAMAOBmRkZFHfu12u4+7/vCaox/XWc2dOzfUJQCAKeytaNCTH9EsAwBdEU0zOCmVlZUBeV6r1erzwWZ1dbW8Xm9AroXQI29zIe+OU9XYrOc+LdZ/15Wpyd3yf8MEh10/GJOhK85IVXSETfW11aoPUn1kbS7kbS6dIe9gNkcAAGB2m4qr9fgHBVqcv7/VNekJDt18brZmntmbRn0AAAAAHepAnUvPry7RGxv2y9XK5mE0ywAAjsfhcBz5dVNT03HXH15z9OM6q6SkpHat4z4vdATyNhfyPqS4qkn/XFWkhZsOtN4sY7fqijNSdc2odCXFRkrNDaqsbAhypSeHvM2DrM2lM+TdGe7zomkGJ8Xj8QTlOl6vN2jXQuiRt7mQ94mrd3n08tpSvbS2TPWulv/bxURY9b0RafreiFTFRR366z7U/53J2lzI21zIGwCA8LSlpEZPfFig97fsa3VNSrco3TwpS1eM7KMouy2I1QEAAAAIdzTLAAA6UmRkpOLj41VbW6vy8vI219bV1cnpdEpqf0NKV8B9XggE8jYXs+VdXNWkf31WooWbD8rTSrNMlN2qK05L0fdHpikpNkJS6O/R6ihmy9vMyNpczJo3TTMAAHQRTc1evbZhn577rERVjS0fFx1ps+jbp6XoutHpSoyJCHKFAACEVqB2SJM6x84bCB7yNg+ybtn2Aw16+pO9+nBr6zcPJMVG6IdjMnT5aamKslvVUFujzr5fGnmbC3mbS6jz7gw7pAEAEE5OpFnmh6PTlUazDACgnXr37q28vDyVlZXJ4/HIZmt5E5iSkhKfxwAAzKW4qkn//qxEC47TLPPt03rp6pHpR5plAACdF00zAAB0cm6PV29tOqh/rirS/rrmFtfYLNLUU3vpR2PSlRLPh0MAAHMK5k4YZt15w6zI2zzMnvWuikY9s7JY7+eXq+WPgKTu0XZdNypdM0/rJUeETZLRZf+bmT1vsyFvcyFvAAC6pvY0y9itFl12SrJ+MIpmGQDAicvNzVVeXp6cTqd27Nih7OzsFtdt2bLF5zEAAHOgWQYAwhdNMwAAdFJew9D7+eV6+pMiFVU5W1xjkXTR4CTdMLa3+iQ6glsgAAAAgLCwt7JJz6wq1rt5B9XKZ0BKcNh19cg0XXF6imIiW96BEwAAAAC+CZplAADBMmrUKM2fP1+StGTJkhabZrxer5YtWyZJio2N1dChQ4NZYkC1drLOybJarW1+jfBC3uZilryLq5r07KoiLdh0QO5WPihx2K369umpunZ0upJiI4NcYXCYJW+QtdmQ9yE0zQAA0MkYhqFl2ys1d0WRth9sbHXdhKxE3Tiut7KSY4JYHQAAAIBwUVzVpGc/LdHbmw+olfvSFB9l0/dGpOnKM1IUF8WPEgEAAAB0HJplAADBlpWVpcGDBysvL09LlizRxIkTlZOT47Nm4cKFKi4uliRdfPHFstvD52diiYmJQblOQkJCUK6DzoG8zSXc8t5b0aC/LSnUa58Xtd4sE2HV1WP66YZzMpUcb673JOGWN1pH1uZi1rzD51/1AACEgdW7q/W3j/dqc1l9q2tG9e2mm8b30bC0uCBWBgAAACBclNU49eynJXpr0wF5WvkQKDbSpu+emarvnpmqeAc/QgQA4JsI1C7OErsDmglZm4tZ8t5f69S/PyvWG+v3tdksM/XUXvrhmAylJziCXGFwmCVvHELe5kHWgZWfn6+ysrIjX9fU1Bz5dVlZmZYuXeqzfuLEiX7Pcd111+nee++Vy+XS/fffr+nTp2vo0KFyuVxauXKlPvzwQ0lSWlqapkyZEpDfBwAgtPZWNOippYX639q2m2W+P7qfbpgwUL3iw/M9CQCYCZ94AwDQCWwsqdVTK4q0Zk9Nq2uGpcVq1vg+GtnXnJ2+AAAAAE7O/lqX/v1ZieZv3K/mVm5Mi46w6sozUvX9EWlKiOZHhwAAnIxg7eIsmXd3QDMia3MJt7zLqpv09LLtenn1Hrnc3hbXRNgs+vaIPrppYqZ6J8YEucLQCre80TbyNg+y7liLFy/WsmXLWpzbunWrtm7d6jPWUtPMgAEDdNttt2nOnDlqbGzUK6+84rcmLS1Ns2fPVnR0dIfUDQDoHGiWAQDz4pNvAABCaNuBBs1dsVfLt1e1uiarZ7RuGt9H4wd2l8ViCV5xAAAAAMLCwXqXnv+sVK9vaH0X5yi7VVecnqJrRqYpMSYiyBUCAAAACGc0ywAAOpsRI0bokUce0TvvvKN169apoqJCdrtdqampGjNmjC666CJFRUWFuswOV1lZGZDntVqtPg1i1dXV8npb/jsfXR95m0u45F1S3aRnVxXrrY37W2+WsVs18/QUXTsqQz3jIiV3oyorG4NcaWiFS944PrI2l86QdzA3mGoNTTM4KTabLSDPy3G15kLe5kLeh+ypbNTTK/bq3S0H1fJbMalPokM3nt1HFw7uKWsXbJYha3Mhb3MhbwAAuobKhma9sLpUr67fJ2crN6ZF2S26fHiKrh2VrqRYmmUAAAAAdJz2NstcMaKPbpqUpYzu7OYPAGjbrFmzNGvWrA55ruTkZF177bW69tprO+T5ugKPxxOU63i93qBdC6FH3ubS1fIuqXbq358V661NB+VppVkmym7RzOEpunpUmnrGRkoK3p+XnV1XyxvfHFmbi1nzpmkGJyVYnV8cV2su5G0uZsu7pKpRcz7aplfXFrX6Ziy1m0O3np+tmWf2VoQtfG5EN1vWZkfe5kLeAAB0LlWNzXppTan++8U+NTa3fmPajFN76brR6UqOiwxyhQAAmEOgdnGWOsfugAgOsjaXcMl7f+2hG9PeWN/6aZd2q0XTTu2lH57VW2ndoiSjSZWVTUGuNLTCJW+0D3mbR2fIujPs4gwAQCiVVjv1r89K9NamA202y1w+PEXXHNUsAwAIXzTNAAAQBOV1Tj21dLte/HR3q7up9YiN1E0TM/X9Mf3kiAjMSV4AAAAAwldNk1svry3TK+tKVe9q+X2H3WrR1FOS9YPR6UrtFhXkCgEAMJdg7tZn1t0BzYiszaWr5b2/1qXnV5do3pf722yWOfY9SVf6PQZSV8sbJ4e8zYOsAQAIHpplAACtoWkGAIAAqmlq1j+X79CzK3aq3tXyD0Pjo+y64ZyB+sHZAxQXxV/NAAAAAE5MndOtVz4v0/99XqY6Z8vvO2wWacqwZP1wTIbSE2iWAQAAANBx9te69NzqEs0/wWYZAAAAAOgIh5tlFmw6IDfNMgCAFnBnLk5KZWVlQJ63MxxXi+Ahb3MxS96NzR79d12Z/v1psWqa3C2ucdituvLMNF03Ol0J0RFqbqhVZUOQCw0gs2SNQ8jbXDpD3omJiUG9HgAAnVG9y6NXvyjTi2tKVdPUcrOM1SJdMqSnfnxWhnp3dwS5QgAAAADh7HCzzLwv96uZZhkAADo9m80WkOe1Wq1tfo3wQt7m0tnzLqlu0r9WFevNjfvbaJaxauZpKbpudIZ6xtEs05bOnjc6DlmbC3kfQtMMTkqwjpDluFpzIW9zCbe8mz1ezftyv579tETl9c0trrFbLZp+ai/9aEz6kTdj4fTfoDXhljXaRt7mQt4AAARXo8uj/63fpxfWlKqqseUmfYukiwYn6cdnZahfj+jgFggAAAAgrNEsAwBA1xSsTemO3nwP4Y+8zaWz5F1U2aCnlm7X/9bubfU9SZTdqu+N7qefThioXt3YVOyb6Cx5I/DI2lzMmjdNMwAAdACP19CiLQf1j5XFKqlxtrjm8A7P15+VoQx2eAYAAABwgpqavXp9wz49v7pEFQ0tN8tI0gW5PXT9WRka2DMmiNUBAAAACHftbZaZdkqyrqNZBgAAAEAHo1kGAPBN0TQDAMBJMAxDH22r1NMr9mpnRVOr687NTtRPx/XmpjUAAAAAJ8zlPnSi5b8/K9HBVk60lKRJ2Yn6ydjeykrmfQcAAACAjkOzDAAAAIBQolkGAHCyaJoBAOAbMAxDn+6q1lMripS3r77VdWP7J+jGs/tocGpsEKsDAAAAEA6aPV69ufGA/v1ZifbVulpdNz6zu34ytrcGpfC+AwAAAEDH2Vfr1HOflWr+RpplAAAIB5WVlQF5XqvVqoSEhCNfV1dXy+v1BuRaCD3yNpdQ511a49Szq4r05pf75fa23iwz87QUXTs6Q8lxkZKnUZWVjUGrMZyEOm8ED1mbS2fIOzExMajXawlNMwAAnKD1RbV6asVerSuqbXXNaRnxuuns3jqjT7cgVgYAAAAgHLg9Xi3cclDPripWaU3rzTJjByToJ2N7a2haXBCrAwAAABDuaJYBACA8eTyeoFzH6/UG7VoIPfI2l2DlXVbj1L8/K9GbGw+00Sxj0YxTU3TtqDT1jIuUFLw/58yC17d5kLW5mDVvmmYAAGin/H31emrFXq3cWd3qmtxeMbrp7D4aOyBBFosliNUBAAAA6OrcXkPvbjmoZ1YVq7ja2eq60f266SfjeuvU9PggVgcAAAAg3NEsAwAAACCU2tMsE2mz6PLhvs0yAAAcD00zAAAcx67yRj39SZE+LKhodU2/Hg7dOK63zs3pISvNMgAAAABOgMdr6IOt5frHymLtqWxqdd0ZveP103GcaAkAAACgY9EsAwAAACCUTqRZ5ppRaUqmWQYAcIJomgEAoBWl1U79Y1Wx3t58QK28H1NqfKR+Mq63Lh7SU3YrzTIAAAAA2s9rGFq8tUL/WFmknRWtN8sMz4jTjeN6a0TfhCBWBwAAACDctadZJsJ2qFnm2lE0ywAAAADoWDTLAACChaYZAACOcbDepX9/WqLXN+xv9Q1ZUkyEfjgmXdNP7aVIuzXIFQIAAADoygzD0NLCSv39kyIVHmxsdd2wtFj9dFxvje6XIAsnWgIAAADoIDTLAAAAAAilshqnnvusRPOP0ywzY3gvXTsqnWYZAMBJo2kGAICv1DS59cLqEv1n3T41ub0tromPsunaUen6zukpio60BblCAAAAAF2ZYRj6eEeV/v5Jkbbub2h13eCUWP1kXG+NG0CzDAAAXZnNFrifH1qt1ja/Rvgga3MJdN5lNU79+9NizftyX5vNMtNPTdEPxmTQLBNgvL7NhbzNg6zRmQXqPQrf9+ZC3ubS0XmX1Tj1r0+LNK+NjYwjbRZdflqqrhudoV7xNMsEE69v8yBrcyHvQ2iawUnhzRQ6AnmbS2fMu8Hl0ctrS/X86mLVOT0tromOsOp7I9J1zah0xTv467M9OmPWCBzyNhfyBgDgxBiGoVW7qvX0J0XaUlbf6rqc5BjdMC5DEzITaZYBACAMJCYmBu1aCQkJQbsWQouszaWj8i6patTcpdv13zV75fK0vGlYpM2q74zsoxsnZiq9e3SHXBcnhte3uZC3eZA1OpNgvUfh+95cyNtcvmneJVWNemppof67Zm+rDfyRdqu+O6qvbpyYqZRujpMpEx2E17d5kLW5mDVv7vrFSeHNFAKBvM0llHk3NXv08md79LclhSqvd7W4JtJm1ffH9NNNkzLVM44d1U4Gr21zIW9zIW8AAFpmGIZW76nR3z8p0pclda2uG5gUrZ+M661J2Ymy0iwDAAAAoIPQLAMAAAAglGiWAQB0FjTNAABMx+3x6vV1RfrLh9tUUt3U4hqb1aJvn9lbt5yXrQw+JAIAAABwgj7fe6hZZl1Rbatr+vVw6IaxvXVBbg+aZQAAAAB0GJplAAAAAIRSu96TfNUs89MJmUpNoFkGABBYNM0AAEzD6zX09sZSPfZBgXYerG913ZTh6br9/GwNTI4LYnUAAAAAwsH64lr9/ZMirdlT0+qaPt2jdP3Y3rpwUJJsVpplAAAIV5WVlQF7bqvV6nPya3V1tbzelm9CQddG1uZysnmX1Tj170+LNe/Lfa3u4hxhs2jG8BT9YHSGUrpFSUaTKitb3mAMgcXr21zI2zw6Q9aJiYlBvR66jkC9R+kM3/cIHvI2lxPNuz3vSSJtFs047dB7kl7xUZK3UZWVjR1eO04cr2/zIGtz6Qx5d4b3KDTN4KTwZgodgbzNJRR5G4ahj7dX6m8f71HB/oZW152TmaibxvdVbkqspOaAfqhtBry2zYW8zaUz5N0Z3kwBAHC0TaV1evqTIn26q7rVNRkJUfrxWRm6eEhP2WmWAQAg7Hk8nqBdy+v1BvV6CB2yNpf25l1W49Tzq0s0f+OBNptlpp3SS9eNTlNKfJSk4P45hePj9W0u5G0eZI3OJFjfi3zfmwt5m0trebfnPUmkzaLpp/bStaPS1Ss+UhLvSTo7Xt/mQdbmYta8aZrBSeHNFAKBvM0l0Hmv3VOjp1bs1Zclda2uOaN3vGaN76PhGfGSeEMWKLy2zYW8zYW8AQBmlldWr7+vLNKKHVWtrkmJj9SPz8rQlKE9ZbdZg1ccAAAAgLBWVuPUc5+V6M1NJ9YsAwAAAAAdYV/tofckJ9osAwBAsNE0AwAIS5tL6/TUir36bHdNq2uGpMbqprP7aHS/brJY2OUZAICuzmazBey5rVZrm18jvJC3eZxM1lv31evpT/Zq6baKVtckxx1qlpl2aooi7XwfhRqvbXMhb3MhbwCA2Rxulpm/8YDcXpplAAAAAATXoWaZUs3fuL/NBv7pp/bSdTTLAAA6AZpmAABhZfvBBj39SZGWbKtsdc3ApGjddHZvTchKpFkGAIAwkpiYGLRrJSQkBO1aCD3yNo/2ZL21rFZPfFigRZvKWl3TMy5KsyZl6qpRfeWICFxDH04Or21zIW9zIW8AQLiiWQYAAABAKO2rcerZVUU0ywAAuhyaZgAAYaGoqkl/X1mkd7eUq+W3ZFJGQpR+Mq63LhyUJJuVZhkAAAAA7Ve4v05/WbxNC78skdHKm46k2EjdODFT3xvdT9GRNMsAAAAA6Bg0ywAAAAAIpdLqRs1dul2vrN5z3GaZa0fxngQA0PnQNAMA6NL217r07KfFmr/xgDytfFCUHBehH43J0NRTkhVhswa5QgAAAABd2a6D9frr4m2av75YrbzlUPeYCP3knExdO7afYiL5cRsAAACAjlFW49SzK/cet1mGG9MAAAAABEJ5vUuPL9+k/6zeK5fH2+Ia3pMAALoCPsUHAHRJVQ3Nen51qV5dXyanu+UPihKi7frBqHTNPC1FjgiaZQAACHeVlZUBe26r1aqEhIQjX1dXV8vrbfkHw+j6yNs82sq6uKpJz6ws0sJN+9XKpmmKj7LpmlEZuvLMVMVF2eWsr5WzPhiV45vgtW0u5G0uoc47MTExaNcCAJhDSVWjnlpaqP+s3kuzDAAAAICQ2FhSq5/P36aKhuYW5zntEgDQldA0AwDoUuqcbr38eZn+b22p6l0t3/wQG2nV90ak6btf3bgGAADMwePxBO1aXq83qNdDaJG3eXi9XhVXNujZT0v01qbWT7OMjbTpu2em6rtnpireceg9B98jXQ+vbXMhb3MhbwBAV1Xd2KxHl23Uf9fsVXMr3fs0ywAAgG/KZrMF5HmtVmubXyO8kLc5LNpyQL99p1CuFt6XRNgsmjE8RT8YnaGUbrwnCSe8vs2DrM2FvA/hTmIAQJfQ1OzV/9bv03OrS1Td6G5xTZTdoitOS9W1o9LUPSYiyBUCAAAA6MrKqpv02Ps79MaGfa3u5BwTYdWVZ6bqe2emKSGaH6sBAAAA6Dg7yxt1+7ytKqpytjhPswwAADhZwTop9ejTYBH+yDu8GIahJz7cpr8s3uY3F2mz6spRfXTjxEylJUSHoDoEG69v8yBrczFr3ny6DwDo1Nwer+ZvPKBnPy3WgbqWj/u0WS2adkqyfjQmQ73iI4NcIQAAAICubH9tk55asl0vr94jl7vl0ywddquuOD1F14ykQR8AAABAx/t0V7V+uWCb6pz+J6Udbpa5blQ6n4EAAAAACJimZo/ueu1LLdhQ4jc3Prun/jzzVJplAABdFk0zAIBOyeM19F5+uf7+SZGKq1veVc0i6eIhPXXD2Az17u4IboEAAAAAuryl2yp079uFqnO2fprlzOEpumZUupJiaZYBAAAA0PFeW79PDy/eJc8xB15G2qyaPryXrh2ZRrMMAAAAgIDaX9ukG174XOv3VvnNXXNWP903eYjsNmvwCwMAoIPQNAMA6FQMw9Cywko9taJIO8obW103KTtRPxnbW1nJMUGsDgAAAEA4MAxDL60t01+X7ZHRwnyEzaIZp/bSD0anq2ccN6cBAAAA6Hhur6HHl+zWf7/Y5zd3SkaCnr76TMUYTfJ4/E+fAQAA+CYqKysD8rxWq1UJCQlHvq6urpbX2/Kp3uj6yDv8FOyv162v5ams1uUzbrVId58/UD89b/CRMfIOb7y+zYOszaUz5J2YmBjU67WEphkAQKdgGIY+212jp1bs1Zay+lbXje7XTTed3UdD0+KCWB0AAACAcNHs8eqhD3fpzY0H/ObsVoumnZKsH4xJV0p8VAiqAwAAAGAGdU63frWgUCt3VfvNXXJKqh799mmKjrSpsrIpBNUBAIBwFaxmXK/XS+OviZB31/bx9kr9emGhGpp9b56OjbTpwSlZGp+V5DNO3uZC3uZB1uZi1rxpmgEAhNyXJbX628d79fne2lbXnJoep5vO7q0RfRNaXQMAAAAAbaludOvutwpafO9x6alpumlsmlLiIkJQGQAAAACzKK5q0u3zCrSjvNFv7sdn9davppwqq9USgsoAAAAAmIVhGPq/z8v0l6V7ZBwzl94tSo/PyFFmz5iQ1AYAQCDQNAMACJktJTV66O08Ld/e+hHAOckxuuns3ho3sLssFj4kAgAAAPDN7K5o1O3zCrSnhZ2a774oVzdOyFRVVZUpd9UBAAAAEBzri2p155sFqmp0+4xH2Cy698KBmnJKCg0zAAAAAALK7fHqT4t3ad6XB/zmhmfE6ZGpOUqMYYMxAEB4oWkGJ8VmswXkea1Wa5tfI7yQt7lYrVbtOFCnxz/cpgUbSlpd1zfRoZvG99UFg5JkpVmmS+K1bS7kbS7kDQDoatbuqdbdb21TTZNvQ4zDbtXj3zlNF5+SFqLKAAAAAJjF25sP6P73d6rZ47uPc2K0XQ9Py9FpGfEhqgwAAACAWdQ0ufWLt7ZpzZ4av7lLhvTUPd8aoEg7n/8DAMIPTTM4KYmJiUG5TkJCQlCug86BvMOX2+PVn97N178+2SWP99jDPQ9JT3Do1vOzdfkZvWW38SYsnPDaNhfyNhfyBgB0ZvO/3K8HP/R/D9IzNkJ/mTlY4wbTMAMAAAAgcLyGobkrivTvz/w3EhuYFK0nZuQqPSEqBJUBAAAAMJM9lU267Y2t2lPZ5Dd309m99YPR6bKwsTEAIEzRNAMACIqmZo9+9soXen/Lvhbnk2IjNWtSlr47uq8cEYE5xQoAAACAeXi8huYs36OX1pb5zeX2itFj03OU3j0mBJUBAACzsNkC93NOToE1D7Lu2hqbPbp3YaEWF1T4zY0b2F0PXZajuKivP7Inb3Mhb3Mhb/MgawBAZ7R2T43ufqtANU0en/Eou1W/u3igzs9NClFlAAAEB00zAICAq2lq1vXPr9VnO/0/FIp32PWTcwbqB+MGKDaKv5YAAAAAnLwGl0f3vF2o5dur/OYmZiXqD5dkKjqSZn0AABBYiYmJQbsWp8CaB1l3HftqmvSTl9ZqY3G139x1Y/vrnksHy25r+0Zq8jYX8jYX8jYPsgYAhNr8L/frwQ93yeM1fMZ7xkbosek5GpIaF6LKAAAIHu5OxkmprKwMyPNarVafHxxUV1fL6/UG5FoIPfIObwfrXJr1vy0q2N/gMx5pt+pHZw/QVaf1VHyUTa6GWrkaWnkSdEm8ts2FvM2lM+QdzBuPAABdS1mNU3fMK1DBAf83GNeMTNPN5/SR1WIJQWUAAAAAzGJTcbV+/PxaldU0+YzbrBb99rKhunpMvxBVBgAAAMAsPF5DTy7fqxfXlvrN5fSK0ePTc5QSHxWCygAACD6aZnBSPB7P8Rd1AK/XG7RrIfTIO3wUVTVp1v/yVVzt9BmPj7LrmWtHaMzAJFVWVpK3SfDaNhfyNhfyBgB0FptK6/Tz+QUqr2/2GbdbLfrVBQN02SnJIaoMAAAAgFm8u6lMt/93vRqbfX9eFu+w66nvnaHx2bwvAQAAoWGzBeb0bavV2ubXCC/k3TU0uDz61YJtWlbovyn6pOweun9ytmIij/9nAnmbC3mbB1mbC3kfQtMMACAg8vfV69bXt6q8wfdmtaTYCL3wo9Eams4x1AAAAAA6zgf55frtu9vldBs+4wkOu/48NVtn9ukWosoAAIBZVVb635jSUTrDKbAIDrLuOgzD0HOfFeuvy/b4zfXp7tBfZg7SgCR7m382kLe5kLe5kLd5dIasExMTg3o9dB3B+t44+jWA8EfenU9JVaN+/J+1yiut8Zv7yYSB+sWFg2S1Wr7Rc5O3uZC3eZC1uZg1b5pmAAAdbu2eGv18/lbVu3x/+Ne7e5TmfmcoDTMAAAAAOoxhGHr20xI9/UmR31y/Hg49MT1XfRIdIagMAACYXTBPZeUUWPMg687J5fbqjx/s1MLNB/3mzugdrz9PzVb36IgTzo68zYW8zYW8zYOsAQDBtH5vla5/Ya0O1Dp9xiNsFj0w/RRdMaJPiCoDACC0aJoBAHSojwoq9Ou3C9Xs8d3dOadXjOZcPki9unGzGgAAAICO4XJ79Yf3d2jRlnK/uVF9u+mhy7LVzcGPvwAAAAAETlVDs+58c5vWF9f6zV02LFmzL+ivCJs1BJUBAAAAMJOFX5bo569ukNPtu8lx95gIPf39MzVmYFKIKgMAIPS4awAA0GHmfblfD36wU17ffhmd2Sdej07LUVwUf+0AAAAA6BgV9c26880CfVlS5zc3/dRe+sV5/WTnxjQAAAAAAbTjYINun1eg4mrfXZwtkm45p4+uHpkmi8USmuIAAACOUVlZGZDntVqtSkhIOPJ1dXW1vF5vG49AV0benY9hGPrnqiI99fFev7n+PaL1l5mD1DfR+o3+DCBvcyFv8yBrc+kMeScmJgb1ei3h7mUAwEkzDEPPflqipz8p8publJ2o+y/NUpSdm9UAAAAAdIztBxt0+xsFKqnxvzHt9kl9ddUZqdyYBgAAACCgVu2s0i8XFKre5fEZd9itun9ypiZm9QhRZQAAAC3zeDzHX9QBvF5v0K6F0CPv0HK6vbr/vR1alFfuNzeqbzc9dFm2ujnsHZYReZsLeZsHWZuLWfOmaQYAcFK8hqFHP9qt/36xz29u+qm99Mvz+8tm5WY1AAAAAB1j5c4qzW7hxrSYCKsemJyl8Zmh36UGAAAAQHh79YsyPfrRbnkM3/GU+Eg9Oi1Hg1JiQ1MYAAAAANOoqG/WnW8W6MuSOr+5GcN76e5z+8luY5NjAAAkmmYAACeh2ePVbxbt0Pv5/rsV/HhMhn4yLoPdnQEAAAB0mP+uK9OjS3bLe8yNaanxkXp8Rq6yk2NCUxgAAAAAU3B7DT22ZLdebWEjsSGpsXpsWo56xkWGoDIAAAAAZlJ4oEG3z9uq0hqXz7jVIt0+sZ+uPCOFe7YAADgKTTMAgG+kweXR3W9t06e7qn3GLZLuPLefvnNGamgKAwAAABB23N5DJ1z+b73/jWnD0mL1yLQc9YzlxjQAAAAAgVPndGv2gkKtOuZzEUk6P6eHfnvxQDkibCGoDAAAAICZfLKjSr9auE31Lq/PeGykVQ9MztbZA7uHpjAAADoxmmYAACesqqFZP3tjq7aU1fuM260W/e6STF04KClElQEAAAAIN3VOt365oNCvYV+SLsjtod9clClHhDUElQEAAAAwi6KqJt0xr0A7yhv95n48JkM3jMuQlV2cAQAAAASQYRj67xf79NiS3fIavnNp3SL1+PRcZSXHhKY4AAA6OZpmAAAnpLTaqZtfz9fuiiaf8egIqx6emqMx/RNCVBkAAACAcNPWjWnXn5WhG8ZmyMKNaQAAAAAC6IuiGt315jZVNbp9xiNtFt174UBdPKRniCoDAAAAYBZuj1cPf7Rbr2/Y7zd3SlqcHpmWo6TYiBBUBgBA10DTDACg3bYfbNAtr+Vrf12zz3hCtF1/nZGroWlxIaoMAAAAQLhZX1SrO98saPHGtPsuGqiLBnNjGgAAAIDAWrjpgO5/f6fcx2zj3CPGrkem5ejU9PgQVQYAAADALGqb3PrFgm1avbvGb+7CQUm676KBirJbQ1AZAABdB00zAIB22VBcq9vnbVVNk8dnPDU+Uk9+e5D694gOUWUAAAAAws3bmw/dmNbs4cY0AAAAAMHnNQw99fFePbe61G8us2e0Hp+eq/SEqBBUBgAAAMBMiqqadNsbW7Wroslv7qfjeutHY9JlsVhCUBkAAF0LTTMAgONasb1Sv1hQKKfb6zM+MClaT84cpF7xkSGqDAAAAEA48RqGnv6kSP/6tMRvjhvTAAAAAARDo8uj+xZt15JtlX5z4wZ01wOTMxUXxcfsAAAAAAJr3d4a3fXWNlU3un3Go+wW/eaiTH1rUFKIKgMAoOvhp3kAgDYt3HxAf3h3h47Z4Fmnpsfp8em5SojmrxIAAAAAJ6+p2aPfLNqhxQUVfnNjByToj5OzuDENAAAAQEDtr3Xpjvlblb+vwW/uqjNTdduEvrJZ2cUZAAAAQGAt2HRAD7y/U26v7w1bSTERenR6joalxYWoMgAAuibuNAAAtOqlNaV6Ytkev/GzB3bXQ1Oy5IiwhaAqAAAAAOHmYJ1Ld8wr0JZ99X5zV52Rqlsn9pWdG9MAAAAABFBeWb3umL9VB+qafcZtFunu8/vr8uEpIaoMAAAAgFl4DUN/+3ivnl9d6jeXnRyjx6fnKLVbVAgqAwCga6NpBgDgxzAM/XX5Xr24xv8N2KVDeureCwfIbrOGoDIAAAAA4Wbr/nrdMa9A+2pdPuM2i3TXef018zRuTAMAAAAQWB8VVOjed7bL6fb6jMdH2fTQZdka3S8hRJUBAAAAMItGl0f3vrNdSwsr/ebGZ3bX/ZdmKTaSDY4BAPgmaJoBAPhwew098N4OLdh80G/u6hFpumVCH1kt7PAMAAAA4OQtK6zUPW8XqrHZ98a0uCibHpqSrTH9uTENAAAAQOAYhqHnVpfobx8X+c316R6lx2fkqn+P6BBUBgAA0PFstsDcbG+1Wtv8GuGFvANjf61Tt76er/x99X5zV49M160T+8lmDf79WuRtLuRtHmRtLuR9CE0zAIAjmpo9mr2wUB9vr/Kb+9k5fXTNqPTgFwUAAAAg7BiGoZfWlumvy/bIOGYuIyFKT8zI1YAkbkwDAAAAEDgut1cPvL9Tb2/x30TszD7x+tNl2eoeHRGCygAAAAIjMTExKNdJSGAzJDMh75P3ZVGVfvziJu2vdfqM260W/WHaMF01qm+IKvNH3uZC3uZB1uZi1rxpmsFJYQcCdATy7hxqmty69bWtWl9c6zNus0j3XZyly07p1SHXIW/zIGtzIW9zIW8AwMlo9nj10Ie79ObGA35zp/eO18OXZat7DDemAQAAAAicyoZm3flmgTYU1/nNTT0lWb88v78ibPzMCwAAAEBgLdpYqttfXa+mZq/PeEJ0hOZ+/wyNzewZosoAAAgvNM3gpLADAQKBvINvX02TbvjPam3d59swE2W36m/fPUPnD0kJ2LXJ2zzI2lzI21zIGwDQXtWNbt39VoE+31vrNzd5aE/96oIBirRzYxoAAACAwNl+sEF3zCtQcbXvLs4WSbdO6KvvjUiVxWIJTXEAAAAATMEwDD21dLsefm+r39yAnrF69toRGpgcF4LKAAAITzTNAIDJ7ThQp6ufXa3iqkaf8W4Ou/513UiN6N8jRJUBAAAACCe7Kxp1+7wC7als8pu7eXwfXTsqjRvTAAAAAATUyp1Vmr2gUPUuj894dIRV91+apQlZwdkwEAAAIBQqKysD8rxWq9Vnk73q6mp5vd42HoGujLxPnsvt1R/e266Fmw74zY3s200PT8tVgr05YK/ZE0He5kLe5kHW5tIZ8g7WIR1toWkGAEzsy6IqXffvNaqod/mMp3SL0gs/HK3c1PgQVQYAAAAgnKzdU62739qmmibfG9Oi7Fb94ZJMnZtDsz4AAACAwPrvujI9umS3vIbveEp8pB6fnqOcXrGhKQwAACBIPB7P8Rd1AK/XG7RrIfTI+8RUNjTrrje3aX1xrd/ctFOS9Yvz+yvCZu20/03J21zI2zzI2lzMmjdNMzgp7ECAjkDeofHprir9fF6+Gly+/6379XDoqSuGqFeUOyCvcfI2D7I2F/I2l86Qd2fYgQAA0D7zv9yvBz/cJc8xd6Ylx0XosWm5GpzKjWkAAAAAAsftNfToR7v0v/X7/eaGpsbq0ek56hkbGYLKAAAAAJjJjoMNun1egYqrnT7jFkm3Tuyr752ZKovFEpriAAAIczTN4KSwAwECgbwD74P8ct37zna5j7lpbUhKrP5yea4SYyJ4faPDkbW5kLe5kDeOVVFRoVWrVumLL75QcXGxqqqqFBcXp9zcXE2dOlXZ2dmhLhFAEHi8huYs36OX1pb5zeX2itHj03PVK54b0wAAAAAETm2TW7MXFurTXdV+cxfk9tBvLsqUI8IagsoAAAAAmMmqnVX65YJC1bt8P1ePjrDqgclZOieTTSMBAAgkmmYAwGT+98U+/XnxLhnHjI/q100PT81RbKQtJHUBAIDwsWjRIr355ptKSUnR8OHD1a1bN5WWlmrNmjVas2aNbr31Vo0dOzbUZQIIoAaXR79+u1Afb6/ym5uYlag/XJKpaN57AAAAAAigoqom3fbGVu2qaPKbu/6sDF0/NkNWdnEGAAAAEGCvflGmRz/aLc8xN2ulxEfq8ek5yukVG5rCAAAwEZpmAMAkDMPQP1YW65lVxX5zF+T20O8uzlSknd3UAADAycvKytJvf/tbDRkyxGc8Ly9Pv//97/XMM89o5MiRioiICFGFAAKprMapO+YVqOBAg9/ctaPSNGt8H25MAwAAABBQXxTV6M43t6m60e0zHmmz6L6LBuqiwT1DVBkAAAAAs3B7DT22ZLde/WKf39zQ1Fg9Oj1HPWMjQ1AZAADmQ9MMAJiAx2voz4t36fUN+/3mvn1aiu48t59sVm5aAwAAHWP06NEtjg8ePFjDhg3Thg0btGfPHmVmZga5MgCBtqm0Tj+fX6Dy+mafcbvVol9dMECXnZIcosoAAAAAmMWCTQf0wPs75fb6buPcI8auR6fl6JT0+BBVBgAAAMAs6pxuzV5QqFW7qv3mLsjtod9clClHBJsbAwAQLDTNAECYc7m9uved7VpcUOE395OxGfrxWRmysMszAACdRnV1tQoLC1VYWKjt27dr+/btqq2tlSRNmDBBs2bNavdzHThwQIsWLdK6detUXl4uu92u1NRUnXXWWbrwwgsVFRUVqN9Gq2w2m8//AwgfH+SX67fvbpfT7XtjWoLDrj9PzdaZfbqFqDIAAIDQCOT7HqvV2ubXCB9k3X5ew9CcZXv03GfFfnPZyTF64vJBSk9whKCy9iNvcyFvcyFv8yBrAEBRVZPumFegHeWNfnPXn5Wh68dmyMq9WgAABBVNMwAQxuqcbt315jat2VPjM26R9Ivz+2vmaSmhKQwAALTq+uuv75DnWbt2rebMmaPGxq9/GOt0Oo804ixevFizZ89Wampqh1yvPQ4ePKiNGzcqMTFRffv2Ddp1AQSWYRh69tMSPf1Jkd9cvx4OPTE9V30SO/eNaQAAAIGQmJgYtGslJCQE7VoILbJuWYPLrdv+s17vb9nnN3fuoF7661WnKy6q6300Tt7mQt7mQt7mQdYAYC7ri2p155sFqmp0+4xH2iy676KBumhwzxBVBgCAuXW9nwwCANqlor5ZP3sjX/n7GnzGI2wW/eGSTJ2fmxSiygAAQHv17NlTGRkZ2rBhwwk9bufOnXriiSfkcrnkcDg0bdo0DRs2TC6XS5988okWL16s0tJSPfjgg3rooYcUHR0doN/B19xut+bMmaPm5mZ973vfY3c9IEw43V7d/94OLcor95sb1bebHrosW90c/PgJAAAAQOCUVjfqx8+v1eaSGr+5H589QLMvGSyblV2cAQAAAATW25sP6P73d6rZY/iM94ix65FpOTo1PT5ElQEAAO5aAIAwVFzVpJtfy9feKqfPeGykVY9My9HIvuxmAwBAZzVz5kxlZmYqMzNT3bt31/79+3XzzTef0HM899xzcrlcstlsuueee5STk3NkbtiwYUpLS9NLL72k0tJSLViwQFdccYXfc7zwwgtqbm5u9zUvueQSpaWltTjn9Xr11FNPKS8vT+edd57OOeecE/r9AOicKuqbdeebBfqypM5vbsbwXrr73H6y22iQAwAAABA4XxZV6cfPr9X+Wt/PQ+xWi/4wbZiuGsVJtwAAAAACy2sYmruiSP/+rMRvLrNntB6fnqv0hKgQVAYAAA6jaQYAwsy2Aw26+bV8ldf73uTaI8auv14+SINSYkNUGQAAaI+WGlhORGFhofLy8iRJkyZN8mmYOWzy5MlasmSJiouLtWjRIs2YMUN2u+/bww8++EBOp9Pvsa0ZM2ZMi00zXq9Xc+fO1YoVKzR+/Hhdf/31J/g7AtAZbT/YoNvfKFBJje+fE1aLdNvEvrrqjFRZLOzkDAAAzK2ysjJgz221WpWQ8PXmSNXV1fJ6vQG7HkKHrFv3Qf5B3fd2oZrcvv894qNsemT6II3qFx/Q12EgkLe5kLe5kLd5dIasExMTg3o9ADCzpmaP7ntnuz7a5v/eY9yA7npgcqbiorhNFwCAUONvYwAII18U1ej2eQWqc3p8xjMSovTkzEHqk+gIUWUAACBYVq9efeTXkyZNanGN1WrVhAkT9PLLL6u+vl6bN2/W8OHDfda8+OKLJ13L4RNmli9frnHjxmnWrFmyWjl1AujqVu6s0uwF21Tv8v2wPybCqj9OztLZmXwoDwAAIEkej+f4izqI1+sN6vUQOmQtGYahf31Workrivzm+iY69Pj0HPXrER0W/53I21zI21zI2zzIGgDC14E6l34+r0Bb9tX7zV11Zqpum9BXNisbjAEA0BnQNAMAYWJZYaV+tXCbnG7DZzw7OUZzLs9Vz7jIEFUGAACCaevWrZKkqKgoDRw4sNV1Q4YM8XnMsU0zJ+vohpmxY8fqlltuoWEGCAP/XVemR5fsltf3bYdS4yP1+IxcZSfHhKYwAAAAAKbgcnv1h/d3aNGWcr+5EX266U+XZSshmo/AAQAAAARW/r563TFvq/bXNfuM2yzSXef118zTUkJUGQAAaAk/MQSAMPDmxv164P2dfjeund47Xo9Ny1G8gz/uAQAwi6KiQ7uspqamymaztbouPT3d7zEdxev1au7cuVq+fLnGjBlDwwwQBtxeQ49+tFv/W7/Pb25YWqwenZarpNiIEFQGAAAAwCwq6pt155sF+rKkzm9u+qnJ+sV5/WW38fMHAAAAAIG1dFuF7nl7u5rcXp/xuCib/nRZtkb3SwhRZQAAoDXcRQ0AXZhhGHp+dame/Hiv39yErEQ9cGmWHBF8QAQAgFm4XC7V1tZKkpKSktpcGxcXp6ioKDmdTpWX++/OejJee+01LVu2TA6HQ+np6Xr99df91owaNUr9+/dv1/O1t762moRO1rFNPzQBhTfy9lXrdOsX8wu0aleV39yFg3vqtxdnyhERuNdfIJG1uZC3uZC3uZA3AIS/wgMNumNegUpqnD7jFkm3Teyr756ZKovFEpriAAAAAJiCYRh6YU2pnly+V8fsa6ze3aP0xPRc9U+KDkltAACgbTTNAEAX5TUMPbF0j17+vMxv7rJhyfrVtwbIbuUDIgAAzKSpqenIrx0Ox3HXOxwOOZ1On8d1hAMHDhyp54033mhxTa9evdrdNHPjjTe2a92rr77arnUdISGBHaLMxMx57ylv0I9e/lLb9vvv5Hzredm67fzssLoxzcxZmxF5mwt5mwt5A0B4+WRHlX61cJvqXb67OMdEWHX/5Cydk5kYosoAAAAAmEWzx6s/frBLCzYd8Js7o3e8/jw1W92jI0JQGQAAaA+aZgCgC3J7vPrdezu0aIv/rus/GJ2um87uHVY3rgEAgPZxuVxHfm23H//t3uE1Rz+uI8yaNUuzZs3q0OcEEHxrdlXoJy9+rop63z8jIu1WPTzzVE09LSNElQEAAAAwA8Mw9N8v9umxJbvlPWYb59T4SD0+I1fZyTGhKQ4AAACAaVQ1NOvut7ZpXVGt39yUYcn61QX9FWHj5GMAADozmmYAoItpdHn0iwXbtHJntd/cHZP66rtnpoWgKgAA0BlERkYe+bXb7T7u+sNrjn5cZzR37txQlwCYzhvrivTL1zfK5fHdyblnXKT+fvUIndmPnZwBAAAABI7b49XDH+3W6xv2+80NS4vVI9Ny1DO2c/88AwAAoLOx2WwBeV6r1drm1wgvZst7Z3mDbn0tX3urmnzGLZJ+NrGfrh2VHtYbG5stb7Mjb/Mga3Mh70NomgGALqSqsVm3v1GgjaV1PuM2q0W/vWigLh7SM0SVAQCAzsDhcBz5dVNTUxsrfdcc/bjOKCkpqV3rKisrA1aD1WpVQkLCka+rq6vl9XrbeAS6MjPn7TUMzf14r/65qshvLqtnjP4yc5DSuwX29RZMZs7ajMjbXMjbXEKdd2IizaQA0JFqm9z6xYJtWr27xm/uW4OSdN+FA+WIMOeH+wAAACcjWO9fj36PjvAXznmv2HZQN/7fJtU2+W5WGB1h0xNXnqYLh6aGqLLQCee84Y+8zYOszcWsedM0AwBdRFmNU7e8lq+dFb43wDrsVv15arbGDugemsIAAECnERkZqfj4eNXW1qq8vLzNtXV1dXI6nZLa35TS2Xk8nqBdy+v1BvV6CC2z5N3U7NFvFu3Q4oIKv7lxA7rrgcmZiouyh/V/C7NkjUPI21zI21zIGwC6rr2VTbp93lbtqvDfDOSGsRm6/qyMsN7FGQAAAEDn8NKnu/WbtzbL4zV8xlO7OfTPa0doWIY5bzgGAKCromkGALqAneWNuvm1fO2rdfmMJzjsemJGjk5Jjw9RZQAAoLPp3bu38vLyVFZWJo/HI5vN1uK6kpISn8cAMLeDdS7dMa9AW/bV+81ddWaqbpvQVzYrN6YBAAAACJzP99bo7je3qfqYXZyj7Bbdd1GmLhwUHpt+AAAAAOi8PF5D97+9Rf/+ZJff3Km9E/TMNSOU0s0R/MIAAMBJoWkGADq5TaV1uvX1rX4fEqXER+rJmYM0ICk6RJUBAIDOKDc3V3l5eXI6ndqxY4eys7NbXLdlyxafxwAwr63763XHvAK/Jn2bRbrrvP6aeVpKiCoDAAAAYBZvbTygP36wU+5jdnFOionQo9NzNCwtLkSVAQAAhI/KysqAPK/ValVCwtenblRXV8vr9QbkWgi9cM67zunW7LcKtGJHld/c+blJ+v2lWYr0NKqysjH4xYVIOOcNf+RtHmRtLp0h78TExKBeryU0zQBAJ7ZqZ5XuenObmty+f0H17+HQkzMHKbVbVIgqAwAAndWoUaM0f/58SdKSJUtabJrxer1atmyZJCk2NlZDhw4NZokB09qpOh3BarW2+TXCi5nyXrKtQr9eUKDGZt/3HHFRNj08NVdjBnQPTWFBYqasQd5mQ97mQt4A0HV5DUNPLt+rF9aU+s1lJ8fo8ek5fBYCAADQQTweT1Cu4/V6g3YthF645F1S7dTt87Zq+0H/hpgfjknXT8f1ltUSvNdRZxUueaN9yNs8yNpczJo3TTMA0Em9m3dQv1m0Q55jdlUblharJ2bkqnt0RIgqAwAAnVlWVpYGDx6svLw8LVmyRBMnTlROTo7PmoULF6q4uFiSdPHFF8tuD4+3hsHcmeLoXTgQ/sIxb8Mw9MzHO/TgonwZvm851LdHjP513Uhl9TLfTs7hmDVaR97mQt7mQt4A0DU0uDy6953tWlbov+P5+Mzuuv/SLMVGBm6DDAAAAACQpC9LanXn/AJVNLh9xiNsFt3zrQG6dGhyiCoDAAAdJTzujAKAMPPK52V6dMluv/Gz+ifoz5dlK5oPiQAACFv5+fkqKys78nVNTc2RX5eVlWnp0qU+6ydOnOj3HNddd53uvfdeuVwu3X///Zo+fbqGDh0ql8ullStX6sMPP5QkpaWlacqUKQH5fQDovFxur+6dv0n/XbvXb25U/x56+uoz1SM2MgSVAQAAADCLshqn7phXoIIDDX5z3x+RqlvO6Sub1RKCygAAAACYybt5B/X7d3fI5fHdYax7tF2PTMvRaRnxIaoMAAB0JJpmAKATMQxDT60o0r8/K/Gbu2hwkn5z0UBF2KwhqAwAAATL4sWLtWzZshbntm7dqq1bt/qMtdQ0M2DAAN12222aM2eOGhsb9corr/itSUtL0+zZsxUdHd0hdQPoGqoaXPrpS5/r0x0VfnOXn9Fbf5wxTFF2mvQBAAAABM7m0jrdMb9A5fXNPuM2q0Wzz++vaaf2ClFlAAAAAMzCaxj6xyfF+uenxX5zA5Oi9dj0HPXu7ghBZQAAIBBomgGATsLtNfTQBzs1f+MBv7mrzkzV7RP7ymphVzUAANA+I0aM0COPPKJ33nlH69atU0VFhex2u1JTUzVmzBhddNFFioqKCnWZHaqysjJgz221WpWQkHDk6+rqanm93oBdD6EVrnnvrmjUz17L057KJr+5n03oq+tGZ6ihtkb++zyHr3DNGi0jb3Mhb3MJdd6JiYlBuxYAdHUf5Jfrt+9ul9Ptu4tzN4dNf74sWyP6JrTySAAAAADoGE3NXv3u3e36YKv/BmNn9U/Qg1OyFBfFrbUAAIQT/mYHgE7A6fbq1wsLtbTQ/0bPm8f30bWj0mShYQYAAFOYNWuWZs2a1SHPlZycrGuvvVbXXntthzxfZ+fxeIJ2La/XG9TrIbTCIe81e6r1i7e2qabJ9/cRZbfqD5dk6tycHtxMrvDIGu1H3uZC3uZC3gDQ+RiGoWc/LdHTnxT5zfVNdOiJGbnqm8guzgAAAAAC62C9Sz+fV6DNZfV+c985PUW3T+onu5V7tAAACDc0zQBAiNU53bpjXoHWFdX6jFst0q8uGKBpp/YKUWUAAAAAwsH8L/frwQ93yeP13ck5OS5Cj03L1eDU2BBVBgAAAMAMnG6v7n9vhxbllfvNjezbTX+6LFvdHHxsDQAAACCwCvbX6/Z5BdpX6/IZt1mkn5/bT1ecnhqiygAAQKDx00cACKGDdS797PWtKjjQ4DMeabPoj5OzNDG7R4gqAwAAANDVebyG5izfo5fWlvnNDUqJ0WPTctUrPjIElQEAAAAwi4r6Zt35ZoG+LKnzm5t+ai/94rx+stusIagMAAAAgJks316pXy8sVGOz12c8NtKmh6Zk6awB3UNTGAAACAqaZgAgRIqqmjTrf/kqrnb6jMdG2vT49Byd0adbiCoDAAAA0NU1uDz69duF+nh7ld/cpOxE/f7iTEVH2oJfGAAAAADTKDzQoNvnbVVpje8uzlaLdNvEvrrqjFRZLJYQVQcAAADADAzD0P+tLdNflu2RccxcRkKUHp+eo4E9Y0JSGwAACB6aZnBSbLbA3GBjtVrb/BrhxYx55++r06xX81TR0Owz3jM2Qk9eMUS5vWJDVFngmTFvsyJrcyFvcyFvAOjcymqcumNegd+JlpJ03ag03TS+j6zcmAYAAAAggFbsqNKvF25Tvct3F+eYCKv+ODlLZ2cmhqgyAAAAAGbR7PHqTx/u0vyNB/zmTsuI18NTs5UYExGCygAAQLDRNIOTkpgYnB9oJyQkBOU66BzCPe+V2w/qhle2qM7p9hnvlxSjF384Wn2TzLV7Qbjnja+RtbmQt7mQNzqLQDX1SzSLmU1XzntTSa1ueyNf5fW+Dfp2q0X3XpSpy07pFaLKOqeunDVOHHmbC3mbC3kDQOdhGIZeWVemJ5bukfeYbZzTukXq8em5yko21+cgAAAAAIKvutGtX7y1TWv31vjNXTqkp379rQGKtPMzJAAAzIKmGQAIonc3lepnr6yXy+O7s9rQ9G567gejlBwfFaLKgADxuKXqPZJhSFa7ZIuUbBFf/TpCskYc+n92OgcAdIBgNfVLNIuZTVfJe+GXJfr5q5vldPu+3+geE6G/f/9MjR6YFKLKuo6ukjU6BnmbC3mbC3kDQGi4PV79+aPdemPDfr+5U9Li9Mi0HCXFsoszAAAAgMDaXdGo2+cVaE9lk9/crPG9dd2odFm4TwUAAFOhaQYAguTlz/bonvkb/XZWO2tgkv5xzZmKd/BBEcJIxQ7p8+el9f8n1fsfc+vHav+6gebYhpojvz68JvKoXx+13hZ5zLqItht1jv61z3PYW5hrz3ME7nQDAACAthiGoSc/KtSjHxT4zQ1MjtW/rh2p/j1jQ1AZAAAAALOoaXLrl29t0+o9/rs4XzgoSfddNFBR7OIMAAAAIMDW7qnW3W9tU02Tx2c8ym7V7y/J1Hk5PUJUGQAACCWaZnBSKisrA/K8VqvVZzfA6upqeb3eNh6Brizc8zYMQ8+sLNLcFXv95s7L6aEHpmTL3VinysYQFBcC4Z63qXlcitjxoaI2vqyIvStO7LFe96H/ubvuC8GQ5UgTjXGkCch+1K+PGre2MW6zS9bIQ2NfNQCd0HMcuWak7/WtdhlHNQIZ1sNNQId//dXX33A3FV7b5tIZ8g7miSIA0Jk1NXv0y9e/1Pz1JX5z47KS9NR3z1RCDA36AAAAAAJnT2WTbntja4u7OP90XG/9aAy7OAMAAAAIvPlf7teDH+6S55gdjZPjIvTYtFwNTmWDMQAAzIqmGZwUj8dz/EUdwOv1Bu1aCL1wyttrGHrko9169Yt9fnMzhvfSL87rL5vFCJvf7zcRTnmblbV6jxyb/ytH/muyNhwMdTkhY5EheVySx6Wu/PHvoSabrxtvvm7e+brR5kiTzZGmnK9O43HEHGnicbi98lpsXzXjRHzVDHRUs86RsYivn8MaIePYpp6jmn181n116o/fOqudU39CgD/L0VkEqqlf6hzNYgierpJ3Rb1Ld8zbqg3FtX5zl5+Wol+cP0BeZ50qnSEorovoKlmjY5C3uZC3uYQ6b5r6AZjZ2j01uvutghZ2cbbotxdl6oJBSSGqDAAAAIBZeLyG5izfo5fWlvnN5faK0ePTc9UrPjIElQEAgM6CphkACJBmj1e/WbRD7+eX+81df1aGbhibwc5q6Lo8zYrcuViOzf9R5N6PQ10NOpDlq1N/TvZPp6gOqeabMSzWE2y88T+953Dzjm+z0FfNQUev++o5/NYdcz2fWo55jkNjR59SZD+pU38AMwtm8xbNYubSGfMuPNCgO+YVqKTGtyPGapFun9hPV56RIovM3aD/TXTGrBE45G0u5G0u5A0AwTF/4349+IH/Ls5JsRF6dFqOhqXFhagyAAAAAGZR7/LonoWF+nhHld/cxKxE/eGSTEVHsvEmAABmR9MMAARAg8uju94s0Ge7a3zGLZLuPLefvnNGamgKA06StWbvoVNl8l6TteFAm2u9UQmynvZd6czrpB4DVFl+QN7mpkMNGd5myeuWPId/3fxVs0azLJ5DTRuHxg6tOzTWfNRjj1537NjhdUc9h8ftc92vx5q/bhL56jkO1eT2rcnrDs5/YHQIi+E9dOKPxxXqUk6KT2POkQadw004xzTe2I49Cch+1Nixp/n4Psehph3fa/mfDhThs85qj5RcSYeaiGx2yRMjyRrq/2QAYBord1Zp9oJtqnf57qAfE2HVHydn6exMdrsHAAAAEDger6Enl+/Vi2tL/eZykmP02PQcpXYL5bY6AAAAAMygrMap2+cVaNuBBr+560al6abxfWRls0oAACCaZgCgw1U2NOvWN7ZqS1m9z7jdatHvL8nUtwYlhagy4BvyNCty10dybH5FEXtWyCKjzeXNaWeqaehVcudOVmJy2tcTkbEybA5JOs4zdEKGcVSDzuHmnuajmnuOavTxNB/ToOOWPM0tNOgcGre04zkONQ41+6875jlaru9wk1DzcbND59JRp/4Eg/W6j+WJSw91GQBgCv9dV6ZHl+zWMRs5KzU+Uk/MyFVWckxoCgMAAABgCg0uj+55u1DLt1f5zZ2T2V33X5qlGHZxBgAAABBgm0rr9PN5BSpvaPYZt1st+vW3BmjKsOQQVQYAADojmmYAoAOVVjs167V87als8hmPjrDq4ak5GtM/IUSVASfOWlMsx5b/KGrLa7I17G9zrTeqm5y509U09Ep5knIkSTZbGH0warFItgjJFnGk7aRLtp94Pf7NOIcbatrTeHNU847vOreshkfRUfYjDUJNDXUy3C7/ZqGjThf6uqnomJOFfE4ickte11HPwak/nZFhiwh1CQAQ9txeQ49+tFv/W7/Pb+6UtDg9Mi1HSbH8eQwAAAAgcMpqnLpjXoEKWtjF+eqRabp5fB/ZrF1hCxgAAAAAXdn7+eX63bvb5XT73rmR4LDr4anZOqNPtxBVBgAAOiuaZgCgg2w/2KCbX8vXgTrfHQy6R9v1lxm5GpoWF6LKgBPgdX91qsx/FLF7+fFPlUk9Q01Dr5Qz6xIpIjpIReIbs9okq02Goo4MdVTzj81mU3Ri4pGvGysr5fF4OujZj3Lk1J9mn6adr8eObu45uuGn+ZgGHd/TenyagL5q7vFv+Dl23dHXb0fD0dHP2zXbrlpn5W0FAARSndOtXy4o1Ke7qv3mvjUoSfddOFCOCGsIKgMAAABgFq3t4myzWvSrC/pr6im9QlQZAAAAALMwDEP/XFWsv68s9pvr38OhJ2bkqnd3RwgqAwAAnR13twFAB9hQXKvb521VTZPvDeJp3SI1Z+Yg9e9BMwE6N2ttiRxb/quoLf+Trd5/9/KjeSPj5cydpqahV8nTMzdIFQJfCcdTfzzNxzTXfNWE4zmmaeerBh+/dUc1CbV+ipBvk1CHPIdx1N95Vk42QOcQyFPOrFZrm18jvHSmvIuqmvSz1/K0s7zRb+6n4/rohnG9ZbGwk/M31ZmyRuCRt7mQt7mQNwAEVlu7OP/psmyN6MsuzgAAAAACy+n26vfv7tB7+eV+c6P7ddNDU7IV7+B2WAAA0DL+lQAAJ2nF9kr9YkGhnG6vz/jApGg9OXOQesVHhqgy4Di8bkXuXirHplcUsXvZ8U+VSTldTcOulDPrUk6VAU5WAE/9CQabzabE7t2/avhpllHnlLze4z4OCLTEo068CrSEhISgXQuhF6q81+yq0E9e2qSKepfPeKTdqodnnqqpp2WEpK5wxmvbXMjbXMjbXMgbADpGW7s49+vh0BPTc9UnkV2cAQAAAARWeX2z7nqzQF+W1PnNzRzeS3ee2092G5uoAACA1tE0AwAnYeHmA/rDuzvkOeZO51PT4/T49FwlRPPHLDqfQ6fK/E9RW16Vrb6szbXeyDg5c6eraeiV8vQcFKQKAXQJFotkj5QUKVlcx10OADgxr39epNlvbJTL49uU2DMuUv+4ZoTO6Bu8JjEAAAAA5tPWLs6jvtrFuRu7OAMAAAAIsMIDDbrtja0qq/X9TNpqke6Y1E/fOT1FFoslRNUBAICugp9kAsA39OKaUv1l2R6/8fEDu+vBKVlyRNhCUBXQCq9HEbuXKXrzK4rYvVQWo+0TIZpTTlPT0CvlzL5UiogJUpEAAADweg099kGBnlxS6DeXmxKvZ68bod6J/PsMAAAAQOCU1zfrzvkF2ljqv4vz5cN76S52cQYAAAAQBCu2V+pXCwvV0Ox7j0tspFV/nJytcQO7h6YwAADQ5dA0AwAnyDAM/XX5Xr24ptRvbvLQnrrnWwP4sAidhrWuVFFb/ifHlv/KVnecU2Ui4uTMnXroVJnkIUGqEACAjlNZWRmw57ZarUpISDjydXV1tbzetptQ0XWFKu/GZo/ue7tQH27138n57IHd9eBlOYqVU5WVzoDXYha8ts2FvM2FvM0l1HknJnICHIDwwS7OAAAAAELNMAz9Z90+Pb50t7yG71xat0g9Pj1XWclsMAYAANqPphkAOAFur6EH3tuhBZsP+s1dPTJNPzunDx8WIfS8HkXsWS7H5v8octdHxz9Vptepahp2lZxZl0qRsUEqEgCAjufxeIJ2La/XG9TrIbSCkffBOpfumFegLfvq/eauOjNVt03oK5vVwvddgPHaNhfyNhfyNhfyBoBvhl2cAQAAAISa2+PVwx/t1usb9vvNnZoep0em5qhHbEQIKgMAAF0ZTTMA0E5NzR7NXlCoj3dU+c3dOqGvrh6ZFvyigKNY6/YpKu9VOba8KlttSZtrvRGxcuZcpqZhV8mTPDRIFQIAAKAl+fvq9fP5Bdp3zE7ONot013n9NfO0lBBVBgAA0PVVVFRo1apV+uKLL1RcXKyqqirFxcUpNzdXU6dOVXZ2dqhLBELOMAy9/HmZ/rJsD7s4AwAAhDGbzRaQ57VarW1+jfASyLxrmty6a36BVu+u9pu7ZEhP3XdxlqLsfH8FE69vcyFv8yBrcyHvQ2iaAYB2qGly6/Z5W7WhuM5n3GaR7r1woCYPSw5RZTA9r0cRez8+dKrMzo9kMdreRbU5edihU2Wyp3CqDAAAQCewtLBC9yzcria3707OcVE2/emybI3ulxCiygAAAMLDokWL9OabbyolJUXDhw9Xt27dVFpaqjVr1mjNmjW69dZbNXbs2FCXCYSM2+PVnxbv0rwvD/jNsYszAABAeElMTAzKdRIS+Lm2mXRU3rsO1uuHL2/QjgP1fnM/vyBHN5+bJYvF0iHXwjfH69tcyNs8yNpczJo3TTMAcBz7a1265fV8bT/Y6DMeZbfqoSlZGp8ZnB8qAEez1O+XI+9/cmz+r2y1xW2uPXSqzBQ1Db1Snl6nBKlCAAAAtMUwDL24plRzlu/VMRs5q3f3KD0xPVf9k6JDUhsAAEA4ycrK0m9/+1sNGTLEZzwvL0+///3v9cwzz2jkyJGKiKApAOZT3ejWLxds05o9NX5zFw9O0j0XDmQXZwAAAAAB9+mOcv30pc9V1dDsMx5lt+rRK4Zr8qnpIaoMAACEC5pmAKANuyoadctr+SqtcfmMx0fZ9MSMXA3PiA9RZTAlw6uIPSvk2PyKIncuPu6pMu7koWoaeqWcOZfJiIwLUpEAAAA4nmaPVw9+sEtvbfLfyfn03vF6+LJsdY/hpk0AAICOMHr06BbHBw8erGHDhmnDhg3as2ePMjMzg1wZEFq7Kxp1+7wC7als8pv76bje+tGYdHZxBgAAABBwr67dq1/P26hmj+8WY8nxUXrmmhE6rU/30BQGAADCCk0zANCKLWV1+tnrW1XV6PYZT46L0JzLBykrOSZElcFsLPUHjjpVpqjNtUZEjJzZk9U09Cq5U04NUoUAAABor+pGt+5+q0Cf7631m5sytKdmXzBAkezkDAAAOonq6moVFhaqsLBQ27dv1/bt21Vbe+jfMRMmTNCsWbPa/VwHDhzQokWLtG7dOpWXl8tutys1NVVnnXWWLrzwQkVFRQXqt9Eqm83m8/+AWazdU62739qmmibfjZmi7Fb97uKBOj83KUSVAQAAIJAqKysD8rxWq1UJCQlHvq6urpbX6w3ItRB6HZW31zA0Z9luPfdZid9cTq8Y/eXywUqNMwL2fYv24fVtLuRtHmRtLp0h78TExKBeryU0zQBACz7bXa275heoodn3L4a+iQ79beYgpSUE/wNcmIzhVcTelV+dKvOhLF53m8vdPYeoadhVcuZMkRHJCUgAAACdUVs7Od88vo+uHZXGTs4AAKBTuf766zvkedauXas5c+aosbHxyJjT6TzSiLN48WLNnj1bqampHXK99jh48KA2btyoxMRE9e3bN2jXBUJt/pf79eCHu+Tx+u7i3DM2Qo9Nz9GQVE4tBwAACFcej+f4izqA1+sN2rUQet8k7waXR/e+s13LCv0bYs7J7K77L81STKSN76NOiNe3uZC3eZC1uZg1b5pmAOAY7+eX6753tst9zAdGQ1Ji9ZfLc5UYExGiymAGloaDcuS9duhUmZo9ba417NFy5kxR09Ar5e51qsQNlgAAkwvk7tBWq7XNrxFeApH36t3VunNevmqdvj98ckRY9cDkbJ2bw07OocBr21zI21zI21zIOzh69uypjIwMbdiw4YQet3PnTj3xxBNyuVxyOByaNm2ahg0bJpfLpU8++USLFy9WaWmpHnzwQT300EOKjo4O0O/ga263W3PmzFFzc7O+973v8T0DU/B4Dc1ZvkcvrS3zm8vpFaPHp+coJZ4NwwAAAAAE1r5ap26fV6CC/Q1+c1ePSNPN5/SRzcr9LwAAoGPRNAMAR3n1izI9vHi3jGPGR/Xrpoen5ig2MnA3YsLEDK8iilbJsekVRe784PinyiQN+upUmakyojhVBgCAw4J5nOvRR9ci/J1s3q+s3qN752/xa8xP6RalZ68dqWEZfD91Fry2zYW8zYW8zYW8O87MmTOVmZmpzMxMde/eXfv379fNN998Qs/x3HPPyeVyyWaz6Z577lFOTs6RuWHDhiktLU0vvfSSSktLtWDBAl1xxRV+z/HCCy+oubm53de85JJLlJaW1uKc1+vVU089pby8PJ133nk655xzTuj3A3RF9S6P7llYqI93VPnNTcxK1O8vyVQMn38AAAAACLAtZXW6Y16BDtb7vse3WS2afUF/TTulV4gqAwAA4Y6mGQCQZBiG/rGyWM+sKvabuyC3h35/SaYibOw2iI5laTgoR/7rcmz+j2zVxztVxiFn9mQ1Db1K7pThnCoDAADQBXi8hh58J0//XLHTb25YRjf985qRSk1whKAyAACA9mmpgeVEFBYWKi8vT5I0adIkn4aZwyZPnqwlS5aouLhYixYt0owZM2S3+3589cEHH8jpdLb7umPGjGmxacbr9Wru3LlasWKFxo8fr+uvv/4Ef0dA11NWc2gX520H/HdxvnZUmmaN7yMrP28GAAAAEGAfbi3XbxbtkNPt9Rnv5rDpz5flaETfbiGqDAAAmAFNMwBMz+M19OfFu/T6hv1+c1ecnqI7z+3HB0boOIZXEcWfHjpVZscHsnjb3iHTnZSrpqFXyZk7VUYUPyAAAADoKuqdbt36ny/0YZ7/+4wLh6bo8e+cpphIfiwDAADC2+rVq4/8etKkSS2usVqtmjBhgl5++WXV19dr8+bNGj58uM+aF1988aRrOXzCzPLlyzVu3DjNmjVLVisbJSG8bSyp1Z3zt6m8wffn0HarRb/+1gBNGZYcosoAAAAAmIVhGPrXZyWau6LIb65vokNPzMhV30Q2GAMAAIHF3RkATM3l9ured7ZrcUGF39xPx/XWj8aky0LDDDqApbFcjrzDp8rsbnOtYYuSM/vSQ6fKpJ7OqTIAALRTZWVlwJ7barUqISHhyNfV1dXyer1tPAJd2cnmXVrj1G2v56lgv/9Ozj8Yk6Gbz+krZ32tnPUdUi5OAq9tcyFvcyFvcwl13omJiUG7VlezdetWSVJUVJQGDhzY6rohQ4b4PObYppmTdXTDzNixY3XLLbfQMIOw915+uX63aLtcHsNnPMFh18NTs3VGHzZpAgAAABBYLrdXf3h/hxZtKfebG9m3m/50Wba6ObiFFQAABB7/4gBgWnVOt+6cv01r99b4jFst0i/O76/Lh6eEqDKEDcM4dKrM5v8ocvv7snhdbS5398j+6lSZaTIcCW2uBQAA/jweT9Cu5fV6g3o9hNaJ5L2ptE4/n1fQ5k7Ohtcrvns6J17b5kLe5kLe5kLenUdR0aFdZFNTU2Wz2Vpdl56e7veYjuL1ejV37lwtX75cY8aM6ZCGmfJy/5t9WtLW7/lkHft7oAkofJ1o1oZh6O+f7NXfP/F/LQ3oEa2/zBysPuzi3Gnx2jYX8jYX8jYPsgaAQyobmnXnmwXaUFznNzf91F76xXn9ZLfxZyQAAAgOmmYAmFJ5fbN+9nq+th6z83OEzaL7L83SeTk9QlQZwoGlsUKO/DcUtfk/slftbHOtYYuSM+sSNQ27Su7UMzhVBgAAoAv7IL9cv313u5xudnIGAABwuVyqra2VJCUlJbW5Ni4uTlFRUXI6ne1uSGmv1157TcuWLZPD4VB6erpef/11vzWjRo1S//792/2cN954Y7vWvfrqq+1+zpN19GlLCG9tZd3U7NFdr32pBRtK/ObGZ/fUk989QwnREYEsDx2M17a5kLe5kLd5kDUAM9p+sEF3zCtQcbXTZ9wi6baJffXdM1Nl4f4YAAAQRDTNADCd4qom3fxavvZW+b4xi4206tFpORrRlx9a4RswDNlLVsux6RVFbX/v+KfKJGapadiVcuZOl+HoHpwaAQAAEBCGYejZT0v0dAs7Offv4dATM3LVuzs7OQMAAHNpamo68muH4/j/FnI4HHI6nT6P6wgHDhw4Us8bb7zR4ppevXqdUNMM0Bntr23SDS98rvV7q/zmrh7TT7+ZMoRdnAEAAAAE3MqdVZq9oFD1Lt9TgGMirHpgcpbGZyaGqDIAAGBmNM0AMJWC/fW65fWtKq9v9hnvEWPXXy8fpEEpsSGqDF2VpbFSUflvyLH5P7JX7WhzrWGLPHSqzNCr5E47k1NlAAAAwoDT7dX97+3Qojz/HdFH9eumP03JVryDH78AAADzcbm+3lTGbj/+v4cOrzn6cR1h1qxZmjVrVoc+59y5czv0+YCTlVdaox89t0Yl1b5NZ1aL9JspQ3Xt2P6hKQwAAACAqfx3XZkeXbJbXsN3PDU+Uo/PyFV2ckxoCgMAAKYXtLs2GhoaJEkxMS3/w2fOnDl69dVXdfDgQQ0YMEA33nijpkyZEqzyAJjAur01un1egd9OBhkJUXpy5iD1SWTnZ7STYcheuvarU2UWyeI53qkymWoaepWcgzhVBgAAIJxU1DfrzjcL9GVJnd/cjOG9dPe5/djJGQAAmFZkZOSRX7vd7uOuP7zm6Md1VklJSe1aV1lZGbAarFarEhK+PjW9urpaXq83YNdD6Bwv62WFFZr9VoEam33zj4206U9TczRuYEJAvxfRsXhtmwt5mwt5m0dnyDoxkVMcAASX22vo0Y9263/r9/nNDUuL1SPTctQztvO/3wcAAOErKE0zCxYs0LRp0xQXF6eioiLFx8f7zP/whz/U888/L0kyDEMFBQV67733dP/992v27NnBKBFAmFtaWKFfLSiUy+O7lUFOcoz+enmuesbxxgzHZ2mqUlT+vEOnylQWtrnWsEXKmXmxmoZeKXf6SE6VAQAACDOFBxp0x7wCldQ4fcatFun2if105RkpsvBvQAAAYGIOx9ebFDU1NbWx0nfN0Y/r6jwez/EXdRCv1xvU6yF0DmdtGIb+7/My/WXpHh2zibPSu0Xp8Rk5yuwZw/dFF8dr21zI21zI2zzIGkC4q3W6dff8rfp0V7Xf3LcGJem+CwfKEcEGYwAAILSC0jTz3nvvyTAMXXbZZX4NMytWrNBzzz0ni8WimJgY5eTkKD8/X42Njbrvvvs0ZcoUDRs2LBhlAghTb27crwfe3+l39OcZveP16LQcxTuCdugWuiLDkL30czk2v6KowneOf6pM94FqGnqlnINmyIhmBx8AAIBwtHJnlWYv2KZ6l+8OkTERVv1xcpbOzuTfgQAAAJGRkYqPj1dtba3Ky8vbXFtXVyen81AzcntPcQHMrNnj1Z8+3KX5Gw/4zQ3PiNMjU3OUGBMRgsoAAAAAmMme8gZd++JG7Sxv9Ju7YWyGrj8rgw3GAABApxCUO8U//fRTWSwWTZo0yW/uH//4hyQpPT1dq1atUu/evbV3716dffbZKioq0t///nfNmTMnGGUCCDOGYej51aV68uO9fnMTsxJ1/6VZ7GSAVlmaqhW19atTZSq2tbnWsEbKmXmhmoZdJXf6KE6VAQAACGP/WVemx5bs9mvKT+sWqcen5yorOSY0hQEAAHRCvXv3Vl5ensrKyuTxeGSz2VpcV1JS4vMYAK2rbmzWz+fl6/O9tX5zlwzpqXu+NUCRdj77AAAAABBYa3ZV6IYX1qqyodlnPNJm0X0XDdRFg3uGqDIAAAB/QWma2b9/vyQpNzfXb+7dd9+VxWLRLbfccuSDkD59+uiWW27R3XffrWXLlgWjRABhxmsYenzpHr3yeZnf3NRTkjX7ggGyW2lswDEMQ/aydXJsOnyqjLPN5e7uA+QceqWaBs2QEd0jSEUCAAAgFNxeQ49+tEv/W7/fb+6UtDg9Mi1HSbHs5AwAAHC03Nxc5eXlyel0aseOHcrOzm5x3ZYtW3weA6BlOw7U6boXN2pPZZPf3E1n99YPRqezizMAAACAgHv98yLNfmOjXB6vz3iPGLsenZajU9LjQ1QZAABAy4LSNHPgwKGjwePjff8xtHnzZh08eFAWi0VTp071mRsxYoQkaffu3cEoEUAYcXu8+t27O7Qor9xv7gej03XT2b350Ag+LM4aReUfPlWmoM21hjVCrsxvqWnoVWrOGMOpMgAAdCKt7VrdEaxWa5tfI7wcm2+dy6u75xVo1a4qv7UXDe6p316SpSh2cu6SeG2bC3mbC3mbC3l3XqNGjdL8+fMlSUuWLGmxacbr9R7ZQC02NlZDhw4NZokBxXsUdITD2X5SeFA3vvS5aprcPvMOu1V/mJyt83OTQlEeOhivbXMhb3Mhb/MgawDh7sXVJXpsyS6/8aye0Xp8eq7SEqKCXxQAAMBxBKVp5vCHAhUVFT7jK1askCQlJyf77RyWmJgoSWpq8t8pCQBa0+jy6BdvbdPKXdV+cz+f1E9XnZkagqrQKRmG7GVfyLH5P4oqfFsWd9t/33gS+qlp6JVqGny5jGg+fAQAoDM6/D4yGBISEoJ2LYTWnvIG/fD/Nqlwf53f3O3n5+hn52XRlB9GeG2bC3mbC3mbC3l3HllZWRo8eLDy8vK0ZMkSTZw4UTk5OT5rFi5cqOLiYknSxRdfLLs9KB9dBQXvUdBRXv5sj+57c5PcXsNnPKVblP55zUid0pv8wxWvbXMhb3Mhb/MgawDhpPBAg/6ydJff+NkDu+uByVmKjQzc5hEAAAAnIyifPGRkZKiwsFDr16/XxIkTj4y//fbbslgsGj9+vN9jqqsP3fDes2fPYJQIIAxUNTbrtje2alNpvc+4zWrR7y4eqIsG8+cJJIuzVlFb58ux+RXZy7e2udawRsg18AI1DTt8qgy7AAEAAJjJml0VuuGFtapsaPYZj7Rb9ci3h+uy4ekhqgwAACA48vPzVVZWduTrmpqaI78uKyvT0qVLfdYf/RnQYdddd53uvfdeuVwu3X///Zo+fbqGDh0ql8ullStX6sMPP5QkpaWlacqUKQH5fQBd2atr9+pX8zb6jQ/L6KZ/XjNSqQmOEFQFAAAAwGwMw9CfF++Sx7eXX98bkaafndNHNisbjAEAgM4rKE0z48eP17Zt2/Tkk0/q+9//vnr27Kk1a9bo3XfflSRdeOGFfo/Jy8uTJKWmcioEgOMrq3HqltfytbPC97QQh92qP0/N1tgB3UNTGDoHw5B93wY5Nr+iqG0Lj3+qTLe+X58qE0OzFQAAgBm9/nmRZr+xUS6P12e8Z1yk/nHNCJ3RN3i7hgMAAITK4sWLtWzZshbntm7dqq1bfTelaalpZsCAAbrttts0Z84cNTY26pVXXvFbk5aWptmzZys6OrpD6gbCRUW9Sw+8nec3fuHQFD3+ndMUExk+JzMBAAAA6Nzeyy/XuqJan7GfTBion45JlcfjCVFVAAAA7ROUn6TedNNNeu6557Rz504NHDhQOTk52rJli9xut3r06KHvfOc7fo/56KOPZLFYNGTIkGCUCKAL21neqJtfy9e+WpfPeILDrr9cnqthaXEhqgyhZnHWKqrgTTk2/0f2g/4fLB7NsNrlGvgtNQ29Us29z+JUGQAAuqDKysqAPbfValVCQsKRr6urq+X1ett4BLqyv3+yV0+v2Os3np0coycuH6T0+MB+vyF4eG2bC3mbC3mbS6jzTkykmfZ4RowYoUceeUTvvPOO1q1bp4qKCtntdqWmpmrMmDG66KKLFBUVFeoyOxzvUXCyHnhvu6obfU++/NFZvXXT+D5y1tfKWR+iwhAwvLbNhbzNhbzNozNkzXsUAB2tzunWE0v3+IxldI/WbeflqKm+ppVHAQAAdB5BaZo544wz9PDDD+uuu+5SXV2d1q1bJ0mKiIjQM888o/j4eJ/11dXVevvttyW1vCsZABy2saRWt71RoOomt894Snyknpw5SAOS2JnQdAxD9v0bD50qU7BAFndjm8sPnSrzHTUNnsmpMgAAdHHB3MXK6/Wya1aYWlxQ0WLDzNkDu+uByVmKjbSRfRjjtW0u5G0u5G0u5N1xZs2apVmzZnXIcyUnJ+vaa6/Vtdde2yHP1xXwHgUnI39fvd5Yv89nbMrwdN18Tl95PB6Rtjnw2jYX8jYX8jYPsgYQDv65qlgH630b+n8zZYiiI21qopkfAAB0AUE7s/v222/X+eefr9dee01lZWVKS0vTVVddpdzcXL+1S5cu1ciRIyVJkydPDlaJALqYlTurdPeb29Tk9t2VZUAPh+bMHKTUbuG3MyFaZ3HVKqpggRybXpH94JY21xpWu1wDzlfT0KvU3Gcsp8oAAABAkuR0e/WXY3ZKk6TvjUjTz87pI5vVEoKqAAAAAJiNYRh6+KNdMo4ai46w6VeXDJK8TSGrCwAAAID5bD/YoFc+L/MZm5ibrAuGpISoIgAAgBMXtKYZSTrllFN0yimnHHfd1KlTNXXq1CBUBKCrWrTloH777g55vIbP+ClpcXp8Ro66R0eEqDIEm33fl4dOldm2UJbmhjbXeuJ7q2nolYdOlYlNDlKFAAAA6Cpe+bxMJTVOn7F7Jw/RjKHd2Q0SAAAAQNC8l1+uDcV1PmM3n5ultIRoVVbSNAMAAAAgOAzD0J8X75LnqNuzImwW/XbKUFksbDQGAAC6jqA2zQBAR3jl8zI9umS33/jY/gn602XZio60haAqBJPFVafIggWK3vyK7Ac2t7nWsNjkGnDeoVNl+p7NqTIAAABoUXl9s/79WbHP2KgBPfTDcf1VVVUVmqIAAAAAmE6Dy6O/LPM9AbNvjxj96OwBIaoIAAAAgFm9l1+uz/fW+oxdOypD/XvGhqgiAACAb4ammTDgcrn0yiuvaMeOHSorK1NdXZ1iYmKUmpqqc889V+PHj5fdTtTo+gzD0FMrivTvz0r85i4enKTfXDRQdhsNEeHMtn/ToVNlChbI2lzf5lpPfIaahn5HTYO/LSO2V5AqBAAAQFf19CdFqnd5j3xtsUj3XjqEndIAAADwjdlsgdvgyWq1tvk1uq7nVhfpQF2zz9i9k4fIEXHo+4mswxuvbXMhb3Mhb/MgawDhor6Fhv60bpH64VkZIaoIAADgm+vQTorly5d35NMdcc455wTkecNFU1OT3n//fWVlZen0009Xt27dVF9fr/Xr12vu3LlauXKlZs+ezRtxdGlur6EHP9ipNzce8Jv77pmpum1iX1m5mS08ueoVtW2hHJtfUcT+jW0uPXSqzLmHTpXpc7Zk5dQhAAAAHF/hgQa9uXG/z9iM03vrlN4JIaoIAAAA4SAxMTFo10pI4N+u4WDXwXq9tKbUZ+ycnGSdP/jrjaHI2lzI21zI21zI2zzIGkBX9c+VxX4N/T+f1E/REdyLAwAAup4ObZqZOHFih+/AarFY5Ha7O/Q5w01cXJyef/55v9NkPB6P7r//fm3YsEHr16/XGWecEaIKgZPT1OzVr98u1LLCSr+5m8f30bWj0tj9OQzZDmw5dKrM1rdkba5rc60nPl1NQ66Qc/C35Y1LDVKFAAAACAeGYeixpbvlNb4ec0RYdfdFuaErCgAAAIAp/WHhFrk8X5+AabdadN9kTsAEAAAAEFw7Djbo5XVlPmNj+ydoQlbwNocAAADoSB3aNCMdutkEwWW1Wls8RcZms2nkyJHavHmzysrKWngk0PnVNrn18/kFWldU6zNutUi/+tYATTulVyuPRJfU3PDVqTL/UcS+DW0uNSxWufqfq6ahV6q57zmcKgMAAIBvZMWOKq3eXeMzdt3oDKV0c4SoIgAAAABmtCR/vxbn+56A+YNx/ZXVKy5EFQEAAAAwI8Mw9OfFu+U5arexCJtFd57Xn4Z+AADQZXVo08ySJUtanXO5XLrnnnu0Zs0aJScn64orrtCoUaOUkpIiSdq3b5/WrFmjV199Vfv379fIkSP1wAMPKCIioiNL9FNdXa3CwkIVFhZq+/bt2r59u2prD92cP2HCBM2aNavdz3XgwAEtWrRI69atU3l5uex2u1JTU3XWWWfpwgsvVFRUVKB+Gy3yer3asOHQTed9+vQJ6rWBjnCwzqVbXt+qbQcafMaj7BY9MDlLE7N6hKgydDTbwTw5Nv9HUVvny+o6zqkycWlqGvIdOYfMlDcuLUgVAgAAIBy5PV49sWyPz1ivuAhdMzI9RBUBAAAgnFRW+p+e3lGsVqsSEhKOfF1dXS2v19vGI9CZNXu8+s2bG33GkmIjdM2ZyaquriZrE+G1bS7kbS7kbR6dIevERE6CAPDNvb+1Qmv3+m42dvXINPVNZLMxAADQdXVo08yECRNaHDcMQ5dcconWrl2rH/3oR3riiScUGxvrt+7qq6/WQw89pNtuu03//Oc/9dhjj+mdd97pyBL9XH/99R3yPGvXrtWcOXPU2Nh4ZMzpdB5pxFm8eLFmz56t1NTUDrleS9xut9544w1JUm1trTZt2qTi4mJNnDhRp5xySsCuCwTC3som3fxavoqrnT7jcVE2PTYtR2f06RaiytBhXA3S5jcU/9kzspetb3OpYbHK1W/SoVNl+k3gVBkAAAB0iNc27NfuiiafsVnj+yg6kn9vAgAA4OR5PJ6gXcvr9Qb1euhYL60u0Z5K3/cmN4/vo2i7xe8mW7I2F/I2F/I2F/I2D7IG0JXUuzx6Yulun7HU+Ej9cDSbjQEAgK6tQ5tmWvPss8/qvffe0wUXXKBnnnmmzbUxMTH6xz/+od27d+u9997TP/7xD91www3BKFM9e/ZURkbGkdNZ2mvnzp164okn5HK55HA4NG3aNA0bNkwul0uffPKJFi9erNLSUj344IN66KGHFB0dHZD63W63XnvttSNfWywWTZkyRd/97ncDcj0gUPLK6nTz/7aoosHtM54UG6EnZw5SdnJMiCpDR7BW7ZJWPiB9+arkrG7zLyJPbKqcQ65Q05BvyxvPG3AAAAB0nOpGt/6xsshnbEhKrC4e0jNEFQEAAAAwo4N1Lv1zVbHP2LC0WF06lPcmAAAAAILrnyuLdaCu2Wfs5+f2kyOCzcYAAEDXFpSmmeeee04Wi0U33XRTux8za9YsffDBB3r++ecD2jQzc+ZMZWZmKjMzU927d9f+/ft18803n9BzPPfcc3K5XLLZbLrnnnuUk5NzZG7YsGFKS0vTSy+9pNLSUi1YsEBXXHGF33O88MILam5u9htvzSWXXKK0tDSfMYfDoVdffVVer1eVlZX6/PPP9corr6igoECzZ89WTAyNBuj8Vm4/qOtf2ax6l+9OK326R+nJmYOU0Z2jPrus5gbFrH1K0euflTyuVpcZsqi530Q1DbtKrn4TJGtQ/qoCAACAyfxzVbFqmnzfd9wxqZ+sFkuIKgIAAABgRnOW71VDs+9pMned25/3JgAAAACCasfBBr28rsxn7Kz+CZqYlRiiigAAADpOUO5Ezs/PlyT17du33Y/p06ePz2MDpaUGlhNRWFiovLw8SdKkSZN8GmYOmzx5spYsWaLi4mItWrRIM2bMkN3u+5/+gw8+kNPpbPd1x4wZ49c0c5jValVSUpK+9a1vKT4+Xo8//rjeeOMNff/73z+B3xkQfIs2lurW/6yXy+P74VBurxj99fJBSoqNCFFlOCmGocjt7yl2xf2y1ZW2uswTm/LVqTJXcKoMAAAAAmpXRaNeXb/PZ+z8nB46rXd8iCoCAAAAYEZfltTq7S0HfcYuG5asoWlxIaoIAAAAgBkZhqE/L94tj9c4MhZhs+iu8/rLQkM/AAAIA0FpmmlqapIk7d27V6effnq7HrN3715JOqFGklBYvXr1kV9PmjSpxTVWq1UTJkzQyy+/rPr6em3evFnDhw/3WfPiiy8GpL7D19myZUtAnh/oKP/32W7dM3+TDMN3fGTfbnp4arbiojhtpCuyVe5Q7PLfKXLvilZWWNTcb4Iah14pV/9JnCoDAABOis0WuKPhrVZrm1+ja5mzfK/fBz+3Tep/5HuIvM2DrM2FvM2FvM2FvAF0RV7D0MOLd/uMxUbaNGt8nxBVBAAAAMCsPthaobV7a3zGvj8iTX0THSGqCAAAoGMF5e7krKwsbdy4UU8//bQuu+yydj3m6aefliRlZmYGsrSTtnXrVklSVFSUBg4c2Oq6IUOG+Dzm2KaZQKmoqJAU2JvHgJP14uoSPbZkl9/4eTk99IdLMhVp50PuLqe5QTFr/qbo9c/K4m32n7fapVE/kUb/RHXqJo/HE/waAQBA2ElMDN7x8AkJCUG7FjrWysKDWlZY6TP2o7MHatiAlk9zlcjbTMjaXMjbXMjbXMgbnQWN/WjLmxv2KW9fvc/YT8/uo17dfG9KI2tzIW9zIW9zIW/zIGsAXU29y6PHl/o29KfGR+qHo9NDVBEAAEDHC0rTzBVXXKEvv/xS7733nm666SY99thjcjha7kJ2Op36+c9/rnfffVcWi0VXXnllMEr8xoqKiiRJqampbX74kZ7+9T8iDz+mI2tITk5WVFSUz7jT6dQLL7wgSe0+4QcIth0HG/TE0l1+45cP76W7z+svm5UjPrsUw1Dk9ncVu+J+2erKWlzS3HusIqY+ISXnHhqorGxxHQAAANDRPF5Dv1/oexJrz7hIzZrUuTfsAAAAQNdEYz9aU93YrL99vNZnLKtXnH563mBF2Nq+sZaszYW8zYW8zYW8zYOsAXR2/1xVrAN1vhvi3jGpn6Ij2aQbAACEj6A0zdxxxx166aWXlJ+fr7///e+aP3++rrjiCo0cOVK9evWSxWLRvn37tGbNGv3vf/9TWdmhG61zc3N1xx13BKPEb8Tlcqm2tlaSlJSU1ObauLg4RUVFyel0qry8vEPrWLlypd5++20NGjRIycnJio6OVkVFhdavX6/a2loNHjxYkydPPqHnbG+NgdoljZ03zOPJFUXyGr5jPz27j24Y21sWCw0zXYm1olAxS3+riL0rWpz3xqWqYfw98uROUUL37l8/jtd32OLPcnMhb3MhbwBd1f/W7lV+Wa3P2B0X5CreERGiigAAAACY0RMfFqii3uUz9pspQ47bMAMAAICur6KiQqtWrdIXX3yh4uJiVVVVKS4uTrm5uZo6daqys7NDXSJMZGd5o17+3HdT3LP6J2hSdvA2gQAAAAiGoDTNOBwOLVmyRJdeeqnWrVunsrIyzZkzp8W1hnHo7vnTTz9dCxcu9Ds9pTNpamo68uvWTs45msPhkNPp9HlcRzjzzDNVWVmpgoICFRQUqKmpSTExMerbt6/GjRunSZMmnXBzy4033tiuda+++uo3KfmEsfNGePp0R7mWF/qeMvKTCQP1y4sHh6gifCPOOmn5w9Kqv0neZv95q106a5as59ytuKg4v2le3+ZB1uZC3uZC3ugsKgN4gp3VavX5Xq+urpbX6w3Y9dDx6p0ePfxevs9YdnKMvpUV5/e9Q97mQdbmQt7mQt7mEuq8g3maCICur2BfrV5Ytdtn7FtDUjQ+OzlEFQEAACCYFi1apDfffFMpKSkaPny4unXrptLSUq1Zs0Zr1qzRrbfeqrFjx4a6TJiAYRj68+Jd8hy127HdatGd5/Zjo2MAABB2gtI0I0kpKSn67LPP9PTTT2vu3LnasmVLi+sGDx6sG2+8UTfeeGPATjHpKC7X1ztA2e3H/095eM3Rj+sImZmZyszM7NDnBALNMAw9+E6ez1jPuEjdci47ZnQZhiFtnie9f49UU9zymoETpYsflpJzgloaAAAwJ4/HE7Rreb3eoF4PJ+/ZVXtVXu/b5H3bxL6S4dXxoiRv8yBrcyFvcyFvcyFvdBY09uNYhmHonje2+NyUFmmz6JbxGa1+v5C1uZC3uZC3uZC3eXSGrGns79yysrL029/+VkOGDPEZz8vL0+9//3s988wzGjlypCIiOCEdgfXh1gqt2VPjM3b1yDT16xEdoooAAAACJ2hNM5Jks9k0a9YszZo1S2VlZdq4caMqKiokHXrDdsoppygtLS2YJZ2UyMjII792u93HXX94zdGP66zmzp0b6hIQ5t7eWKoNRdU+Y7een6O4qKD+sYRv6sBW6Z27pJ3LWp7vliFd+IA0ZJrE7hMAAAAIsZJqp/5vbanP2PiB3TW6HydlAQAAIHBo7MexPiqo0Ordvp+NXDMyXWnxEe3Oj6zNhbzNhbzNhbzNg6xxrNGjR7c4PnjwYA0bNkwbNmzQnj172EAZAdXg8ujxpb4nYKbER+qHo9NDVBEAAEBghezu9NTUVKWmpobq8h3C4XAc+XVTU9Nx1x9ec/TjOqukpKR2rQvULmmdYecNBE6zx6uH3vE9bWpgz1hdObKPJPLu1Fx1il49R1FfPCuL179Z0LBGqOmMH6tp5M1SZKxUVeW3hte3eZC1uZC3uXSGvNklDcCJmLN8j1yer3dytlktunVi3xBWBAAAAMBsmpq9Ld6Udt3orrOhIAAAQKhVV1ersLBQhYWF2r59u7Zv367a2lpJ0oQJEzRr1qx2P9eBAwe0aNEirVu3TuXl5bLb7UpNTdVZZ52lCy+8UFFRUYH6bbTKZrP5/D8QKP9cVaz9dc0+Y3dM6qfoSL73AABAeOJIh5MQGRmp+Ph41dbWqry8vM21dXV1cjqdktrfkNIVBGs3DHbeCC+vritTUZXTZ+zui3IVYbNKIu9OyTAUWfi2Ylf8Ubb6fS0ucfU5W/Xn/EaexIGHBtgVD8cga3Mhb3MhbwCd2YbiWn2wtcJn7Nun9VL/HtEhqggAAACAGb24pkSlNS6fsdsm9JUjgpvSAAAA2uv666/vkOdZu3at5syZo8bGxiNjTqfzSCPO4sWLNXv27KBuCH3w4EFt3LhRiYmJ6tuXTZ8QODvLG/V/n5f5jI3pn6Bzs9m0EAAAhC+aZk5S7969lZeXp7KyMnk8nlY7/UtKSnweA5hVndOtZ1YV+4ydmh6vC4d27ZOnwpmtYptil/9OkUWrWpz3xKWp/uxfy5V5kWSxBLk6AAAAoHVew9BjS3x3cu7msOn6s3hfDgAAACB4Squdem51ic/YGb3jdX5ujxBVBAAA0PX17NlTGRkZ2rBhwwk9bufOnXriiSfkcrnkcDg0bdo0DRs2TC6XS5988okWL16s0tJSPfjgg3rooYcUHR34DZjcbrfmzJmj5uZmfe9735PVag34NWFOhmHo4cW75PEaR8bsVovuOrefLNzzAwAAwlhQm2bcbrfefvttffzxx9qxY4dqa2uPuyO1xWLR4sWLg1ThicvNzVVeXp6cTqd27Nih7OzsFtdt2bLF5zGAWT2/ulTVjW6fsdsn8carM7K46hS9Zo6iNzwni9ftN29YI9R4+o/VMOImKSImBBUCAAAAbXsvr1yby+p9xn58VoYSotlDBAAAAEDwPLFsj5zur29Ks1qku87rz2cjAAAAJ2jmzJnKzMxUZmamunfvrv379+vmm28+oed47rnn5HK5ZLPZdM899ygnJ+fI3LBhw5SWlqaXXnpJpaWlWrBgga644gq/53jhhRfU3Nzc7mtecsklSktLa3HO6/XqqaeeUl5ens477zydc845J/T7AU7E4oIKrd5T4zN29cg09esR+OYwAACAUAraXSIrVqzQ1VdfrT179hwZMwyj1fUWi0WGYXT6HxaPGjVK8+fPlyQtWbKkxaYZr9erZcuWSZJiY2M1dOjQYJYIdBr7ap16+fNSn7FJ2Yk6rXe3EFWEFhmGIrctVOwnD8pWv6/FJa4+41V/zn3yJA4McnEAAABA+zQ1e/Tkx3t9xvomOvTt01JCVBEAAAAAM1qzp1qLCyp8xi4fnqLsZDajAgAAOFEtNbCciMLCQuXl5UmSJk2a5NMwc9jkyZO1ZMkSFRcXa9GiRZoxY4bsdt9b7D744AM5nc52X3fMmDEtNs14vV7NnTtXK1as0Pjx43X99def4O8IaL8Gl0ePLdntM5YSH6kfjk4PUUUAAADBE5Smmfz8fF100UVqbGyUYRiKjIxUdna2evTo0eWPk8zKytLgwYOVl5enJUuWaOLEiX5vqBYuXKji4mJJ0sUXX+z3Rqors9lsAXneY78vuvr3CQ75x8oSn53UbBbpZxP6k3cnYi0vUMzS3yiiaFWL8574DDWec6+aMy+ULBZ9kz8ByNs8yNpcyNtcyBtAV/DS2jLtq3X5jN06oa8ibPyZBQAAACA43F5DDy/2vSktwWHXT8f1DlFFAAAA5rZ69eojv540aVKLa6xWqyZMmKCXX35Z9fX12rx5s4YPH+6z5sUXXzzpWg6fMLN8+XKNGzdOs2bN4jM3BNSznxZrf53vCUm3T+yr6MjA3P8HAADQmQSle+OPf/yjGhoaZLPZ9Lvf/U4/+9nPFBcXF4xLH1d+fr7KysqOfF1T8/Xxg2VlZVq6dKnP+okTJ/o9x3XXXad7771XLpdL999/v6ZPn66hQ4fK5XJp5cqV+vDDDyVJaWlpmjJlSkB+H6GSmJgYlOskJCQE5ToInPyyGr21ab/P2FWj++r0LP/dCsg7BJy10tKHpM+elrxu/3lbpDT2FtnG/1xxkbEdemnyNg+yNhfyNhfyBtDZHKhz6bnPSnzGRvbtpnMyu4emIAAAAJhSoDYek9jQoqt4dX2pdpQ3+ozNOqevesRFtfs5yNpcyNtcyNtcyNs8yLpz27p1qyQpKipKAwcObHXdkCFDfB5zbNPMyTq6YWbs2LG65ZZb+F5BQO0qb9RLa8t8xkb366bzcnqEqCIAAIDgCkrTzEcffSSLxaJbb71Vv/rVr4JxyXZbvHixli1b1uLc1q1bj7xZOqylppkBAwbotttu05w5c9TY2KhXXnnFb01aWppmz56t6OjoDqkb6GoeWpQv4+tDZhQTadOt5/kfc4sgMwxp42vS+/dIdWUtr8k8T7r4z1LPrODWBgAAAHxDT328V01u75GvLTq0W5rFYgldUQAAADCdYG08JrGhRWdUXufU0yv2+owNSeumH00cJJv1m783IWtzIW9zIW9zIW/zIOvOpaioSJKUmpraZpN7evrXG8AefkxH8Xq9mjt3rpYvX64xY8Z0SMNMeXl5u9YFqrGfZrHOzTAMPfzRbnm8X9+4Zbda9MsLMmW3n/jto+RtLuRtLuRtHmRtLuR9SFCaZg4ePChJmj59ejAuFxIjRozQI488onfeeUfr1q1TRUWF7Ha7UlNTNWbMGF100UWKimr/rlFAOPmk8KCWbj3gM/aTczKVHM9rIqT2bZHeuUvavaLl+YQ+0kUPSoMmS9xcCAAAgC4if1+9Fm4+6DM29ZRk5fTq2BMTAQAAAPw/e3ceX0V973/8PTMn+54QkkAgEBBkUcBdXABbd+12rffWtlrb28VSrbXb9bb2eu/P29W2Vtta7W4Xe729tnVtrYhoxV1B2ZcQloQQyL6fnJn5/ZGQZJIAAc6Zc07m9Xw8eCTzPTPz/SQfApkz8/l+cDh3PrVFrd3ezu7/+e55x1UwAwAAgGMXDofV1tYmSSoqKjrsvtnZ2UpLS1NPT8+YC1LG6o9//KNWrVql9PR0TZo0Sf/3f/83Yp8zzjhD06ZNG/M5b7jhhjHt99BDD435nMeDYrHE8vhbe/XyzhbP2MfPr9SimZMOccTRWlpt+wABAABJREFUId/BQr6DhXwHB7kOlqDm25eimeLiYtXW1iZkl5Xly5dr+fLlUTlXcXGxrrvuOl133XVROV8yaGpqisl5TdP0/FC2tLTIcZzDHIFE5biu7nh0nWdsQlaKrjqpYODvD/n2WU+bMl6+S2lrfiXDtUe87Fqp6j7lE+o+fbmUkiE1N0d1evIdHOQ6WMh3sCRCvv1crRdA8nBdV99buVNDmlwqM8XUp84tj1tMAAAAAILn7T0t+sOruzxj7144SadPK4xTRAAAAOju7h74PD09/Yj7p6enq6enx3NcNOzfv38gnocffnjUfSZOnHhURTPAoXT0RHTH4xs8Y2V56brxgplxiggAACA+fCmaOffcc/XQQw9p3bp1OuWUU/yYEj6x7ZEP3MeC4zi+zYXo+uvGA9q4r8Mz9onF5UqzDv33h3zHiOsqbcsjynrhGzI794+6S7hiidrPu01O/vS+AR/yQL6Dg1wHC/kOFvINIFGs3NqkN/a0ecauP2uSJmSlxikiAAAABFmsFh6TEmNBC4zOdV195eF1codU82ekmPr04rJj+jtBroOFfAcL+Q4W8h0ciZBrFh4bXTgcHvg8FDryI3MH9xl6XDREc4Hng+69996ong/jxw9XbtPeFm/h121XzFVmqi+PjQIAACQMX377ueWWW/R///d/+sEPfqBrrrlmTBceAJJfOOLoR8/v9oxNK0zXu04qjlNEwWUd2Kzs525XSu0ro75u50xWx3m3KTz9nZJh+BscAAAAEAXhiKO7n/Ou5FyWm6prTi2LU0QAAAAIOj8XmGBBi8TxxIYDeqvWW8z/0bMmqSgzFJUcketgId/BQr6DhXwHB7lOHKmpg4srRSKRI+5/cJ+hxyWqoqKiMe0Xq8L+RCgWw0jVDV366XNVnrEzK/J01uS04/q7QL6DhXwHC/kODnIdLImQ70Qo7PeleuX000/XXXfdpZtuuknve9/79Itf/EITJkzwY2oAcfTQmn3a2+pdcePG86cqZFKU4Rejp02Zr/xA6W89IMMd+Uaca6Wq65RPqPOUT0kpGXGIEAAAAIiOh97cpz3NPZ6xG8+fqrSQGaeIAAAAAARNR9jW3au8xfzl+WkU8wMAACSA9PT0gc+7u7sPs6d3n6HHJTu/CrgoFos/13X1zb9vV8QZbIEZMg198YKKqD8kS76DhXwHC/kODnIdLEHNty9FM//1X/8lSTrjjDP02GOPqaKiQhdeeKFOPPFEZWZmHvH4r33ta7EOEUCUtXZH9IuXajxji8pzdP6M/PgEFDSuq7Qtf1HWC9+Q2Xlg1F3CFUvVft5tcvKn+RsbAAAAEGVNnb362bDrj5MnZevC2YVxiggAAABAEP3ipRod6Oj1jN2yrIJifgAAgASQmpqqnJwctbW1qaGh4bD7tre3q6enb5GmsXZxARLJii2Nenlnq2fsg6eValoRC+oCAIBg8qVo5vbbb5dh9HWWMAxDXV1devTRR/Xoo4+O6XiKZoDk88uXa9Xa7a1E/OySqQP/FiB2rAOblP3c7UqpfXXU1+2ccnWcf5vC094hkQ8AAACMA/ev3qP2Hu/1xy3LKrj+AAAAAOCbXU3d+t1rdZ6xxdPydF5lfnwCAgAAwAjl5eXauHGj6urqZNu2LMsadb/a2lrPMUAy6Qrb+v6z3g6YJTmp+thZk+MUEQAAQPz5UjQj9bX8O9w2ktOhLh6Pl2mah91GYqtt6db/vOG9MXTh7CItKM8bdX/yHSU9rcp46XtKW/sbGe7I1mmularuUz+l7tM/LYXSFZuf3iMj38FBroOFfAcL+UaiitX1icTf+0S2/UCnHl5b7xm7bO6EQ15/jAX5Dg5yHSzkO1jId7CQbwCJ4HsrdyriDN7/DJmGbrmAYn4AAIBEMnv2bG3cuFE9PT2qqqrSCSecMOp+GzZs8BwzXvCcVzD84pU92tcW9ox9/oJpyslIjcr5yXewkO9gId/BQa6DhXz38aVoxnEcP6ZBHBQUFPgyT17esT/sBP/9v6fWKGx7bwx95cqTVFCQNabjyfdRcl1p7R+kv39N6qgffZ9Zl8i45BvKKKxUojVaJd/BQa6DhXwHC/lGovDr+kTi730iuedPWzXk8kPpKaa++q6TVZAfvd98yXdwkOtgId/BQr6DhXwD8Ns/tjfpH1XNnrEPnFqqaYWJ9o48AABAsJ1xxhn685//LElauXLlqEUzjuNo1apVkqSsrCzNmzfPzxBjiue8xr/t+9v121drPWPnzCzS+8+aGbOCfvIdLOQ7WMh3cJDrYAlqvoNZKgQgZtbVtOhPa2o8Yx86q0LTJoytYAZHqe5t6ReXSH/+1OgFM/kV0gf+IF3zP1Jhpf/xAQAAADH07OZ6rdqy3zP2ifMqNSmKBTMAAAAAcDjhiKPvrtzpGSvKStHHzpoUp4gAAABwKDNnztScOXMk9RXNbNmyZcQ+jz32mGpq+p57ufTSSxUK+bImNXDcXNfV7Y+sV++QlcZSLEP/+a75dMAEAACBx2/1AKLqW3/dJHfIKs/ZaSHdeMHM+AU0XnU1Syu/Lr36U8kdpZuXlSadd4t0zmelFB4YBAAAwPgTsR399+MbPWMTc9L0ySUz4hQRAAAAgCD6/et12t3c4xm78fwpyk7jNiwAAEC0bdq0SXV1dQPbra2tA5/X1dXp2Wef9ey/dOnSEef4yEc+ottuu03hcFh33HGH3vve92revHkKh8NavXq1nn76aUlSWVmZrrzyyph8HUAs/HVdnZ7fesAz9tFzp2vmxOw4RQQAAJA4eLcWx6WpqSkm5zVN09P+qaWlRY4zSmEAEsqLO5pHXHx95MxJMns71dTUecjjyPdRcB2lbnxYGf/4psyuA6PuEp7+TnUt+ZqcvKlSe7ekbn9jPALyHRzkOljId7AkQr79ah+P5BKr6xMpMf7ew+uhN/Zqa327Z+zT55Yr3Nmm8KEvP8aEfAcHuQ4W8h0s5DtY4p1vrk+A4NrfHtbPX6rxjJ1Ulq3L5k6IU0QAAADj24oVK7Rq1apRX9u8ebM2b97sGRutaGb69Om6+eabdc8996irq0sPPvjgiH3Kysp06623KiNjfC1SynNe41dX2NZ/PrLOMzYxO1XXnlIc9byT72Ah38FCvoODXAdLIuQ7Ee6j+F4009jYqF/+8pd6+umntW7dOjU2NkqSCgsLNX/+fL3zne/U9ddfr8LCQr9DwzGwbduXeRzH8W0uHBvbcXXXymrPWHF2iv5l0cSjzh35Hp21f4OyV/2HUureGPV1O3eq2s+7Tb3TL+gfSI7vIfkODnIdLOQ7WMg3EoWffw/5ex9fbd0R/fgfuz1jsydm6rK5RTHJC/kODnIdLOQ7WMh3sJBvJArLsmJ2btM0D7sNf/zw+T3q6h28wWxI+vKF05USit4tWHIdLOQ7WMh3sJDv4CDXyeG0007TnXfeqSeeeEJvvPGGGhsbFQqFVFpaqrPOOkuXXHKJ0tLS4h1m1PGc1/j109W7VdcW9ox9bulUpVmxzzv5DhbyHSzkOzjIdbAENd++Fs3cd999+sIXvqDOzr4lX13XHXitpqZGtbW1euqpp3T77bfru9/9rj7xiU/4GR6A4/DkxgPast+7nPOnzilXekrsbgoGhdHTqsyXvqf0db+T4Y6s7nStNHWeeoO6TvmEFBp/b9oAAAAAw/38pRq1dEU8Y7csq5BpGHGKCAAAABjJz9Xzhq4UCH+8Vt2ox9fv94xdfdoUnTt3akznJdfBQr6DhXwHC/kODnIdXcuXL9fy5cujcq7i4mJdd911uu6666JyPiBedjZ26Tev7vWMnT41V++czaLlAAAAB/lWNPPNb35TX/nKVwYKZfLy8rRo0SKVlpZKkurq6vTmm2+qpaVFHR0duuGGG9Tc3KwvfelLfoUI4Bh19zq69x97PGOVRRm6Yl5xnCIaJ1xHaRsfVtaL35LZ1TjqLj3T36mO874qJ3eKz8EBAAAA8bG7qVt/eGOfZ2zZCQU6dUpunCICAAAAEDS24+r2R9d7xnLSQvriJbPjFBEAAACAIHJdV995ZqcizuDi5ZZp6EvvmCaDhcYAAAAG+FI0s27dOt12221yXVdlZWX6zne+o/e///1KSUnx7BeJRPS///u/+uIXv6ja2lp99atf1eWXX6558+b5ESaAY/Q/b9Zp37AWnzctmSrL5OLrWFn165T93O1KqXtz1Nft3KlqP/9r6p22zN/AAAAAgDi7+7ldnps/IdPQTefHdiVnAAAAABjqodd2a11Nq2fs5gtnaUI23eABAAAA+Gfl1ia9VN3iGbvm1FJNL8qIU0QAAACJyZeimR/+8IeybVvFxcV68cUXNXXq6A+zhEIhfeADH9C5556r008/Xfv379cPf/hD3XvvvX6ECeAYNHf16pcv13rGTpuSq3Om02L4WBjdLcp8+XtKX/d7Ga4z4nXXSlPnaTeoa9EnpBA33wAAABAsr+1q1cqtTZ6xfzmlRFMK0uMUEQAAAHBoTU1NR97pGJmmqby8wffhW1pa5Dgj31NG9LV2R/StJzd6xiqLMnTlibkxyTm5DhbyHSzkO1jId3AkQq4LCgp8nQ/Jw7KsmJzXNM3DbiM2usK2vrdyp2dsYnaqPnnO1JjlWiLfQUO+g4V8Bwe5Dhby3ceXoplnnnlGhmHo1ltvPWTBzFBTpkzRl7/8ZX3+85/XihUrfIgQwLH65Uu1au+xPWM3LZlCi8+j5TpK2/h/ylr9bZndjaPu0lN5oTrO/aqc3HKfgwMAAADiz3Zcff9Z782f/IyQPnbW5DhFBAAAAByebdtH3ilKHMfxdb4g+/FzO9XcFfGMff6CCplyfckBuQ4W8h0s5DtYyHdwkGskEr8KqoYWjiF2fva3TaprC3vGbrtynspLJ/gaB/kOFvIdLOQ7OMh1sAQ1374UzdTU1EiSFi9ePOZjzjnnHElSbW3tEfZEPLECQbDVNHfroTX7PGOXzJmgkyYf3T+oQc+3Vb9OmStvU6juzVFft/OmqXPpfygybZkMSbFbC8IfQc93kJDrYCHfwUK+AcTD4+sPaHN9p2fsk4vLlZPuy1sbAAAAAKBt+zv1x2H3RZadUKAzK4J5oxkAAABAfFTtb9dPn9vhGVs8o0hXnFwWp4gAAAASmy9PlhwsrIhEIkfYc9DBVRZ4AC+xsQJBsN3+tzfVa7sD2ymWoa9ceZIKCjKP67yByXdno/TMHdJrv5Dkjnw9lCGd/3lZZ9+onJR038PzS2DyDXIdMOQ7WMg3gFjrDNv60T92e8YqizL03gUT4xQRAAAAgKBxXVd3PrNTQ26LKC1k6HNLK+IXFAAAAIDAcV1Xtz+6QWHbGRgLmYb+693zZBhGHCMDAABIXL4UzUydOlUbN27UihUrxtxtZsWKFQPHAkg8b+9p0V/WeDtBXXv2NE0pPL6CmUBwHOnN30gr/lPqbBh9nxOvkC75hpTPv4EAAADAr1+pVUNHr2fs5qVTFTK5+QMAAADAHyu2NOq13a2esWtPn6RJeWlxiggAAAA4Ok1NTTE5r2mankX2Wlpa5DjOYY7A8XhmS4Oe27LfM3bNaWUqSonELMdDke9gId/BQr6Dg1wHSyLk268mHYfjS9HMhRdeqA0bNujOO+/Ue97zHp100kmH3X/dunX6zne+I8MwdNFFF/kRIoCj4Lquvv7ERs9YTnpIn1k2M04RJZHaN6XHvyDVvDb664WV0qXfkU54p79xAQAAAAmqrrVHv31tr2ds8bQ8LZ6eH5+AAAAAAAROd6+tu57d5RkryUnVdWeUxSkiAAAA4OjZtu3LPI7j+DZX0HT32vrO0zs8Y8XZKfrYWZPi9j0n38FCvoOFfAcHuQ6WoObbl6KZm2++WT/5yU/U3t6uc889V7fddpuuv/56FRUVefZraGjQL3/5S/33f/+32tralJ6erptvvtmPEHGMWIEgmP6xvUkvVnk7pFx/5iQp3KGmcMdRny8I+Ta6mpSx+jtKXfegDLkjXndD6eo+/UZ1n/KvUihN8mHlh3gJQr7Rh1wHC/kOlkTIdyKsQADAHz96frd6IoO/Q1tGX5cZAAAAAPDLr1/Zq7q2sGfsc0unKj3FilNEAAAAAILoFy/Xjrg2uXlphbJSuTYBAAA4HF+KZioqKnTffffp+uuvV3t7u7785S/r3/7t3zR9+nRNnDhRhmFo37592rFjh1zXleu6MgxD9913n6ZO5UGYRMYKBMFjO67uerbaM1aSk6qrF5ZELUfjKt+uo7QNDynrxTtldo9eCNNTebE6zv2KnNzJfQPj5Wsfo3GVbxwWuQ4W8h0s5BtArKzb264nN3oL9t+3YKIqJ2TGKSIAAAAAQVPb0qMHXq31jJ02JVfvmFUYp4gAAAAABNGupm795tW9nrHTpuTqotlcmwAAAByJL0UzknTttdeqqKhIn/zkJ1VbWyvXdbV9+3ZVVVVJklx3cNXYSZMm6f7779dll13mV3gAxujx9Qe0/UCXZ+yGc8qVnmLGKaLEFdr3lrKeu10p+9aO+nokf7o6zv8P9U49z9/AAAAAgCTguq6+t3KnZyw7zdInFpfHKSIAAAAAQXTXsztHdL/8wgUVMgwjjlEBAAAACBLXdfWdFdXqtYdcm5iGvvQOrk0AAADGwreiGUm6/PLLVV1drT/96U96+umntW7dOjU2NkqSCgsLNX/+fL3zne/Ue97zHqWkpPgZGoAx6O619ZMXdnvGTijO1KVzJ8QposRkdDUp86U7lb7+f2TIHfG6G8pQ52nL1bXoo5KVFocIAQAAgMT3982Nequ23TP2sbMmqyCT9wsAAAAA+OOVnS16Zqu3i/xVC0s0s5julwAAAAD88+y2Jr1Y3eIZu+aUUlVO4NoEAABgLHwtmpGkUCik97///Xr/+9/v99QAjtODb9Spvr3XM3bT+VNkmaxYIElybKVteEhZL94ps6d51F16ZlyqjnP/XU7OJH9jAwAAAJJIT8TRPc/t8oyV56fpnxeVxCkiAAAAAEETsR3d+Yy3+2VeRkifPIfulwAAAEhOlmXF5LymaR52G8enq9fWd1d6r02Ks1P1yXOnxiynh0O+g4V8Bwv5Dg5yHSzku4/vRTMAklNTZ69+9XKtZ+yMilydNS0vThElltC+tcpa9R9KqX971Ncj+dPVcf7t6p16rs+RAQAAAMnn96/v1d7WsGfspvOnKjUUzDdvAAAAAPjvf9fUq6qhyzO2/Nwpyk3n9ioAAACSU0FBgS/z5OXxLFE0/eKpzaobds/kq1fMVXnphDhF5EW+g4V8Bwv5Dg5yHSxBzTfv6gIYk5+/VKOOsOMZu+n8qTKMYHeZMboalfXinUrb8JAMuSNed0MZ6jz9M+paeL1kpcUhQgAAACC5HOgI65cveQv2TynP0bIT/LmZBwAAAACNHb26b/Uez9jsiZl690nFcYoIAAAAQBDtONCh+1ZVecbOqizUuxZMilNEAAAAycmXopm3335b7373u2VZlp599llNnjz5sPvX1NRoyZIlcl1XTz75pGbNmuVHmAAOYXdTt/53Tb1n7NK5RTqxJCtOESUAx1b6hv9R5ovfldnTPOouPTMvU8c5t8rJ4UIVAAAAGKuf/GOPOnsHC/YNSbcsqwh8wT4AAACSj2VZMTu3aZqH3cbxufeFHWrvsT1j/3ZhpVJT/F+PkFwHC/kOFvIdLOQ7OMg1gGhxXVf/+eh6he3BeyYh09B/vXs+90wAAACOki/v7P72t79VdXW1Lr744iMWzEjS5MmTNWvWLP3tb3/Tb3/7W/3Xf/2XD1ECOJQf/2O3bGewi0qKZejT50yJY0TxFapbo6xV/6GU/etGfT2SX6mOJberd8o5PkcGAAAAJLct9R36y9v7PWNXzJsQ7IJ9AAAAJK2CAv+6Jebl5fk213j31p5m/flt70Ji71k4SctOqohTRF7kOljId7CQ72Ah38FBrpFImpqaYnJe0zQ9f9dbWlrkOM5hjsBYrNzSoGc3e++ZfODUMhWnRmKWy7Eg38FCvoOFfAcHuQ6WRMi3n++VH4ovRTOrVq2SYRh617veNeZj3v3ud+uvf/2rVqxYQdFMAovVKmmsvJE43q5t0983N3rGPnBqmcoLM6M2R7Lk2+hqVMYL31ba+j+M+rqbkqmuM25Sz6KPSlaqYreGYHJLlnzj+JHrYCHfwUK+AcSC67r6/rO75A4Zy0gx9enzgluwDwAAAMBfjuPq9kfWyx1yYZKZaunfLp0Tv6AAAACAKLFt+8g7RYHjOL7NNV5199r6zoodnrEJWSn617MnJdz3lnwHC/kOFvIdHOQ6WIKab1+KZrZs2SJJOvnkk8d8zPz58yVJmzdvjklMiA6/Kr9YeSM+XNfVDx/a5BnLy0jR5y+Zr7zMlJjNm3D5dmzp9V9KK/6f1N08+j7z3ivjov9WZt5kRa+cKBgSLt+IGXIdLOQ7WMg3gGh4bnuzXt3V6hm77oxJKs5OjVNEAAAAAILmz2tq9MauZs/YjRecoNK89PgEBAAAACCQfvlyrfa2hj1jNy+dqqxUlvAFAAA4Fr4UzbS3t0uSsrOzx3zMwX1bW1uPsCeAWFmxsV6v7PB2mfnMspkxLZhJOLtflZ74vLR37eivT5gtXfZtqXKpr2EBAAAA40mv7egHq3Z5xkpyUvWh00rjFBEAAABw/JqammJ2btM0PYtYtLS0yHGcmM0XBO09EX398Q2esSkF6XrfvPyY5vJIyHWwkO9gId/BQr6DIxFy7dcCuABiY3dTtx54da9n7JTyHF18YlGcIgIAAEh+vhTNFBQU6MCBA6qrq9OCBQvGdExdXZ0kKScnJ5ahATiEiO3om3/1dpmZnJ+hD59dEaeIfNZxQHr6P6Q3fzv66ylZ0tIvS2feIIVY+RoAAAA4Hv+7Zp92NXV7xj5z3hSlp7BiGgAAAJKXbdu+zeU4jq/zjUf3v7BbBzp6PWOfXzpVluEm1PeWXAcL+Q4W8h0s5Ds4yDWAo+G6rr7zTLV6bXdgzDKkL71jmgzDiGNkAAAAyc2XopkTTjhBBw4c0F//+lddfPHFYzrmySeflCTNmDEjlqHhOMVqZa1EWHkj6B5es0/b6ts9Y58+t1xd7a3qivJcCZVvx1ba279X+ovfkdkzeqer8Kwr1XneV+Rml0ptHZI6/I0xySVUvhFT5DpYyHewJEK+WSUNGD+au3r109U1nrF5pVm6eA4rpgEAAADwR3Vjlx58vc4zds70fJ07g/cfAAAAAPhn1fYmrd7R4hn7l1NKNbM4M04RAQAAjA++FM1cfPHFWr16te6//3594hOf0Jw5cw67//r16/XTn/5UhmHokksu8SNEHCO/VsNg5Q1/dYVt/fgfuzxjsydm6sLZBb7kIV75Du19Q9nP3a7Q/vWjvh4pmKmOJbert/zsvgH+TkYFP9/BQa6DhXwHC/kGcDx+urpGbT3ef0NuWVYhkxXTAAAAAPjAdV1975mdijiDKzmHTEO3LJsax6gAAAAABE13r63vPrPTM1aUlaKPL54cp4gAAADGD9OPSW644QZlZWWpu7tbF1xwgR577LFD7vvII4/one98p7q6upSRkaHly5f7ESKAIX73ep0aOno9Y59dMnXcPrRmdB5Q9oovK///3j9qwYyTkqWOc25V8788NlgwAwAAAOC4VTd06Y9r9nnGLpxdqAWTc+IUEQAAAICg+UdVs1ZXe1dyvubUUlUUZsQpIgAAAABB9KuX92pva9gz9rmlU5Wd5su66AAAAOOaL79RTZgwQT/5yU/04Q9/WPX19Xr3u9+tyspKnXvuuSorK5Mk7d27V88//7x27Ngh13VlGIbuvfdelZSU+BEigH4NHb164JVaz9jiaXk6oyIvThHFkGMrfd3vlfny92T2tI66S/cJV6rznH+Tk13qc3AAAADA+HfXql2yBxdzVqpl6KbzWc0ZAAAAgD/CEUffXTlyJeePnc1KzgAAABh/LMuKyXlN0zzsNo5sV1OXHnjV+7zWqVNyddm8iTISbJFj8h0s5DtYyHdwkOtgId99fCtD/uAHPyjHcXTDDTeos7NT27dvV1VVlWcf1+17UiYrK0v33nuvPvShD/kVHoB+P3txjzp7nYFtQ9KNS8bfQ2uhva8re9XtCh3YMOrrkcIT1HH+7eotP8vnyAAAAHCsYnWzR+JNhFh4aUez/lHV7Bn70OmTVF6YGZ+AhiDfwUGug4V8Bwv5DhbyDeBY/f71Ou1p7vGM3XT+FGWlxu76EgAAAIiXgoICX+bJyxuHC/PGkOu6uuXPWxUessqYZRr6+j8tVGFhThwjGxvyHSzkO1jId3CQ62AJar597d334Q9/WBdeeKHuvvtuPf7441q3bt1AoYxpmjrppJN05ZVX6jOf+QwdZoA4qG7s0sNr6z1jV8yboBOK4//QWrQYnQeUtfpbSt/08KivOynZ6jzjJnWffK1kpfgcHQAAAI6HXzd7pOC+iRAttuPqB8+97RmbkJ2qz10yTznpifd7OPkODnIdLOQ7WMh3sJBvAGNR3xbWz1+q8YydPClbl82dEKeIAAAAAATR0xvrtXLzfs/YRxZP0+zSxC+YAQAASBa+Fs1IUmlpqb7+9a/r61//uiKRiBobGyVJhYWFCoV8DwfAED96freGLFqgtJChT55THr+AosmJKP3t3ynz5e/LDLeNukv3rHepc/G/ycmmaA8AAACIpf95dbc21Xl/L//8RbMTsmAGAAAAwPh093O71NXrDGwbkr54wTQZhhG/oAAAAAAESnevrf98dL1nrDgnTTe/84Q4RQQAADA+xbVKJRQKaeLEifEMAUC/tTVtWrm1yTP2gVNKVZqbFqeIoidU+5qyV/2HQg2bRn09UjhL7UtuV2TymT5HBgAAAARPW3evvvf3zZ6xE0tzdPVpU+IUEQAAAICgWbOnTX/d2OAZe8/JxZpTmhWniAAAAIDYa2pqOvJOx8A0TU/X15aWFjmOc5gjcNC9z+/SnqYuz9jNS6Yq0tWuYcMJg3wHC/kOFvIdHOQ6WBIh3wUFBb7ONxpauwCQ67r6wapdnrG8jJA+cuakOEUUHUbnAWW98E2lb/7TqK87KdnqPPNmdZ/0IcliRWsAAIBkF6ubPVJivIkwXvzg2Z060B72jN28ZIpaW5rjE9AoyHdwkOtgId/BQr6DJd75ToSbPQDGznZcffuZas9YdpqlT59LIT8AAADGN9u2fZnHcRzf5kpme5q79auXazxjp5Tn6KLZBUn1/SPfwUK+g4V8Bwe5Dpag5tv3opmtW7fqgQce0Isvvqi6ujp1dXXpb3/7m2bOnDmwz7p167Rr1y5lZWVpyZIlfocIBM6z25r0Vm27Z+xfz5qs7LQkratzIkp/+7fKfPn7MsPto+7SPfs96lj8ZblZdLsCAAAYL/y8qA/qmwjHq6a5W797rdYzdt6MfJ02JSehv5/kOzjIdbCQ72Ah38FCvgEczp/frteW+k7P2KfOKVdBJotrAQAAAPDPnc/sVNh2B7YtQ/rSO6bJMIw4RgUAADA++fZEvOM4+tKXvqQf/OAHchxHrtv3C59hGAqHvSvM7tq1S1dccYVCoZB27NihyZMn+xUmEDgR29E9z+32jE3OS9NVC5OzmCRU+6qyV92uUMOmUV+PFM1W+/m3KzL5DJ8jAwAAAHDPc7vVO/QGkGno5iVT4xgRAAAAgCBp6Yrox//Y4xmrLMrQVQuS854IAAAAgOT03PYm/aOq2TN29SmlmlmcGZ+AAAAAxjnfimY++clP6he/+IVc19XkyZN19tln649//OOo+1522WWaPn26qqur9cc//lGf/exn/QoTR8myrJic1zTNw24jev7vrf3a1dTtGbtxSYXSU/1bUS0a+TY66pXxj28qbdPDo77upuao66zPqWfBtZIZUmz+5mIs+PkODnIdLOQ7WMg3gGOxZk+bnt7S6Bm7emGJKgoz4hQRAAAYd1xXssNH3g9AYN23eo9auiKesS9cUKGQxXsbAAAAAPzR3evozhU7PWNFWSn65GIWFgcAAIgVX4pmVqxYoZ///OcyDEP//u//rv/8z/+UZVmHfbju/e9/v7797W/rmWeeoWgmgRUUFPgyT15eni/zBE17T0Q/Xf2aZ2xBeZ6uPmumTDN+rT6PKt92RHrlfunZb0g9raPvc/K/yLjwv5SZUyLWY0g8/HwHB7kOFvIdLOQbwJE4rqvvrfTeAMpNt/SvZ3MDCAAAHIPeTlnN1bKaq2Q171CouVpq2yk1bJdOuVY64wvxjhBAAtq2v1N/XLPPM3bBCQU6o4L3NQAAAAD459ev1Kq2tccz9tklU5Wd5tv65wAAAIHjy29a999/v6S+DjJ33HHHmI4544wzJEnr16+PWVxA0N3/XJUOtHtXXvy3S+fEtWDmqFS/ID3xRan+EP9OTJwnXX6nVLHY37gAAAAAeDy54YA27OvwjH1icbnyMrgBBAAADsGxZbbXymrqK4yxmncMft6+99DHNWzzL0YAScN1XX17RbUcd3AsLWTo5qUV8QsKAAAAQODsae7Wr1+p9YwtKs/RpXOK4hQRAABAMPjydMqLL74owzD0sY99bMzHlJeXS5Lq6upiFRYQaPWt3frpc1WesXecOFFnz0iCi7C2Oump26S3Hxr99bRcadlXpNP/VbJ4CA8AAACIp66wrR89v9szVlGYrqsWTIxTRAAAIJEY3c3egpiDH1uqZdjhI59guANbox8kgKT39OZGvbGnzTN23RmTNCkvLU4RAQAAAAii7z6zU2F7sJrfMqQvv2OaDCNJFjgGAABIUr48TV5fXy9JmjZt2piPSUlJkSRFIpFYhIQoaWpqisl5TdNUXl7ewHZLS4scx4nJXEH1rb9uV1evPbBtGtINiyfFLKeHM+Z8271KW/trZbx8l4xw+6jn6pnzPnWd829ysyZKrW2j7oP44uc7OMh1sJDvYEmEfBcUFPg6H4Bj95vX9qq+vdczdvOSqQpZZpwiAgAAvrPDslp2yWquktXU3zWm/3OzuzG6czVVS3avJH7XANCnK2zrrlW7PGNluam69vRJcYoIAAAAQBA9t71Jz1c1e8auXlSqmcWZ8QkIAAAgQHwpmsnKylJzc7P2798/5mP27NkjSSosLIxVWIgC27aPvFMUOI7j21xBsKOhS396a59n7Mr5xZpWmJYQ3+fR8h2qeVnZq/5DocbRV4qMTJij9iW3K1J2Wt9AAnwdGBt+voODXAcL+Q4W8g3gUOrbwnrglb2esTMqcnVuZX58AgIAALHjujI76vuKYZp39BfHVMlqrpLZukeGG/1Ceztnkuz8SjkFlUqfPF8qmilNOEFyQhILOSABWJYVs3ObpnnYbQx64LUa7Wvzdq665YLpykpPiVNER4dcBwv5DhbyHSzkOzjINYDRdPc6+u4zOz1jRZkp+uQ5k+MUEQAAQLD4UjRTWVmpN954Qxs2bNCFF144pmOefPJJSdK8efNiGRoQSPc8t0vOYKdPpYVMfXJxefwCOgyzfZ8yV39T6VseGfV1JzVHnWd+Tt0nfVAyffknDQAAAMAY/ej53eqODD6wahrSLUsrZBhGHKMCAADHJdwhq6VaVtPB4pj+j83VMntH7w59PJzUbNn5lbILKmXnTx/8mDdNSsmQ1FeYkD60G2UcumkDo/GzS+rQjrAYtLuxU79+pdYztnhGka46c0bSXpeQ62Ah38FCvoOFfAcHuUYiiVVhP8ViR/bbF2tV09LjGbt5WYXyMtPiFNGxI9/BQr6DhXwHB7kOFvLdx5cnzC+66CK9/vrr+tGPfqQbb7zxiN/sDRs26Fe/+pUMw9Bll13mR4hAYLy5p1XPbW/2jH3wtFJNzEmNT0CHYvcq461fK+OVu2X2doy6S/eJ/6SOxV+SmznB5+AAAAAAHMmGunY9vuGAZ+zdJ03UzOLMOEUEAADGzLFlttX0dYoZ6BjT3z2moy7q07lmSHbulP7imOl9H/sLZNyMIilJH2wHEH93PL5B4SGF/JZp6D+unJe0BTMAAADA8fCrsJ9iMa9dDZ36xcs1nrHTpxXoQ+fOGhfXJuQ7WMh3sJDv4CDXwRLUfPtSNHPTTTfp7rvv1vbt2/WpT31KP/7xjxUKjT713//+d11//fXq7u5WUVGRPv7xj/sRIhAIruvqB6t2ecbyM0K69vSyOEU0utCeF5Wz8msKNW4d9fXIhLlqX3K7ImWn+hwZAAAAgLFwXVffW+m99shKNfWpcxKzwyUAAEFldDUNKYwZUhzTvFOGE476fE7mhMGCmP6imEh+pZzccslKifp8AILt+a379bf1+zxjHz6rQrNLc+IUEQAAAIAg+q/H1o8o5v+vd88fFwUzAAAAycKXopmSkhL95Cc/0bXXXquf//zn+tvf/qbLL7984PUf/OAHcl1XL7zwgjZt2iTXdWWapn71q18pOzvbjxCBQFixpVHr9nq7tnz87MnKTvPln4Ija62Vnvqqctb936gvO6k56jzrFnXPv0YyEyRmAAAAACOs2NKoNTVtnrHrz5ysoiwehgUAwHd2j6zmnf3FMDtkNVX1F8dUy+xuivp0bih9sCimvzCmr1Bmmty03KjPBySypqbo/4wdZJqmZ0XAlpYWOY5zmCOCpdd29LU/v+0Zy88I6frTJ8Y0L7FAroOFfAcL+Q4W8h0ciZBrv7qJADiyFRv36emN9Z6xa8+u0Jwy3iMBAADwk29PnX/wgx9USkqKPvnJT2r37t267777Bqqlf/azn0nqW4lWkrKzs/XrX//aU1gD4Pj02o5+9Pxuz9iU/DS9b8HEOEU0hN0rvXC3tOpbUrh91F2651yljrO/KDdzgs/BAQAAADgaPRFH9zznvfaYlJumD5xaGqeIAAAIANeV2bFvSNeY/o4xTTtktu2R4Ub3AS1Xhpycyf1FMdMHu8cUVMrJLpUMM6rzAcnKtm3f5nIcx9f5Et2Dr+3VjoYuz9jy86YoK8VI+u8TuQ4W8h0s5DtYyHdwkGskklgVkCdCsVgi6u61RxTzF2WlJGUx/1DkO1jId7CQ7+Ag18GSCPlOhMJ+X1s1XH311XrHO96hH//4x3r00Ue1Zs0aRSKRgdfnzZund73rXfrsZz+riRMT4EF+YBx5eG29djf3eMaWnzdFKVZ8b2AbXQ3KeeLT0t7XRn09UjxP7effrkjZKT5HBgAAAOBY/M8bdapp8V573Hj+FKWFeHgWAIDjZYTbZTbvUKipv2vMweKY5h0yejujPp+TljukIOZgcUyl7PwKKZQe9fkAIBoaOnp1/+oaz9ickiy9a35xnCICAAAAEoNfBVwUi/X55Ut7Rr1fkhlK/mL+och3sJDvYCHfwUGugyWo+fa1aEaSioqKdNttt+m2226T4zhqbGyUbdsqLCxUSkqK3+EAgdDeE9FPX/TeIJpflqV3zCqMU0R9rMZtyn3sX2W17h7xmpOWq86zPq/ueR+QTCsO0QEAAAA4Wo0dvfr5S7WesQWTs/XO2fG99gAAIKk4EZmtewaKYaymqv7imGpZHfuiPp1rpsjOm9pXGNPfLaavMGaa3Iwiqb9jPAAkix89v1sdYe9N3y9cUCHL5N8zAAAAAP6oae7Wr1/x3i9ZODlHl8+dEKeIAAAAgs33opmhTNPUhAn8IgjE2gOv7lVzV8Qz9tklU2XE8YZ3yu4XlPPkcpnhthGv9cy9Wu1nf6HvpjwAAACApHHf6j0jHk67ZWlFXK89AABISK4ro7uxvyhmSMeYph2yWnbKcHqjPqWdOVFO/nRFDnaMKegrjHFyp0hmXG8VAEDUrNvbrkfW7feMXTZ3ghZMzolTRAAAAACC6Lsrd6on4g5sm4b0pXdwvwQAACBeuBMGjHP1bWH97rU6z9iSmQVaVJ4bp4iktHUPKnvVf8hwh7X3yi2X3v9LdWafIDeArb8AAACAZLZtf6f+9Fa9Z+zSuUWaV5Ydp4gAAEgAkR5ZLdUjC2Oaq2T2tER9OjeU0d8tpr8wZqB7zHS5qTwwDmB8c1xXdz5T7RnLTDF14/lT4hMQAAAAgED6x/YmPbe92TN29aISzZqYFZ+AAAAA4E/RTG9vr7Zu3SpJmjFjhtLS0jyvd3d36ytf+YoeeughHThwQNOnT9cNN9ygG2+80Y/wgHHtvtV71BNxBrYtQ7rxvDjdIHJsZa7+ljLX/Hzka5NOkT7woJRTKjU1+R8bAAAAgGPmuq7uWrVLzuCiaUoLmfpMvK49AADwk+vIbK/rK4hp3iGrqaqvQKZph8y2Ghlyj3yOo5lOhpzc8iEFMZUDH52sEskwozofACSLJ9Yf0Lq9HZ6xj509WcXZqXGKCAAAAEDQ9EQcfeeZnZ6xwsyQPrm4PE4RAQAAQPKpaOZPf/qTPvCBD6iwsFB79uwZ8fp73/tePfXUU3LdvpuHmzZt0s0336zNmzfrhz/8oR8hAuPStv2denTdfs/Yu0+eqGlFGf4H09upnKc+p7QdT494KTzzUqVe/QspNdP/uAAAAAActxd2tOilau9q+deeXqaSnLRDHAEAQPIxwm39XWL6u8Y0VclqrpbVvENGpCvq8zlpeX3dYg52jTlYHJNXIYX4PxYAhmrvieie53Z7xqYWpOsDp5TGKSIAAAAAQfTAK7WqaenxjN20ZKpy0n15TBMAAACH4MtvY3/729/kuq7e8573jOgy8/jjj+tvf/ubDMNQeXm5Tj/9dL3yyiuqqanRvffeq2uuuUaLFy/2I0xg3Pnh87s9Kz1npJj6xOLJvsdhttcp9/FPKLR//YjXOk+9QT3nfFGpFMwAAAAASSliO7rrWe+qacXZKbr29LI4RQQAwHFwIjJbd8tq2qFQc5XM5h0KNfUVyZid+498/FFyzRTZeRWDhTH5lbILpsnOr5SbURj1+QBgvPr5i7Vq6Oz1jN2yrEKpIbpvAQAAAPBHTXO3fvVKrWdsweRsXT53QpwiAgAAwEG+FM288cYbMgxDS5YsGfHaL37xC0nSrFmz9MorrygnJ0ctLS1avHixNm3apJ/97GcUzQDH4LVdLfpHVbNn7EOnlWlCVqqvcVj165T7+CdkdezzjLtmitqX3qGeuVfJMrhpBQAAACSr/1tbr+rGbs/Y8nOnKCPVilNEAAAcgevK6Gro7xizo79jTP/H1l0ynEjUp7SzSvq6xBzsFtP/uZMzWTJZaRQAjkd1Q5d+/0adZ+zcynydW5kfn4AAAAAABNJ3V+5UT2RwdWPTkL78jmkyDCOOUQEAAEDyqWimvr5ekjRz5kzPuOM4WrFihQzD0I033qicnBxJUl5enj7zmc9o+fLlevHFF/0IEcfIsmLzEJRpmofdxuE5rqu7n9vtGSvKStF1Z5bHLGejSdn+lLL++lkZkS5vfGl56rjiJ4qUny1L5DtoyHdwkOtgId/BQr4BHNTaHdH9q2s8Y3NKsnTZPFZNAwAkgN4uqbFKOrBV6XveltG4TVZzdV/XmJ7WqE/npmQOFsTkVyrS3z3GyZ8mNzU76vMBACTXdXXnyp2yncEH01IsQ59fVhHHqAAAAAAEzT+2N+m57c2esfcvLNGsiVnxCQgAAAAevhTNHDhwQJKUkZHhGV+zZo1aW1tlGIYuv/xyz2vz58+XJO3e7X3wH4mloKDAl3ny8vJ8mWe8eGRtrTbUdXjGPnfhbJWX+vTgmutKL/5Qeuo2Sa73tcJKmdf8r3ImzBz1UIl8Bw35Dg5yHSzkO1jINxBcP3uxRi3d3tX4b1k2VSarpgEA/OI6Mtvr+rvFVPV/7CuMUVutDr43lXH4s4x9OsOUk1Muu78gpq9zzLS+4pisEon/AwHAV89tb9ZL1S2esQ+eWqopBelxiggAAABA0PREHH3nmZ2escLMkD51TnmcIgIAAMBwvhTNpKWlKRKJDBTPHPTcc89JksrLy1VR4V3x6WDXGdu2/QgRGDd6Ira+87dNnrHK4iz98+lT/AnA7pWe+IL0+q9GvlZxjvTPv5UyC/2JBQAAAEDM7Grq1kNv7vOMXXBCgRaV58YpIgDAeGb0tA0pitnR96epSlZLtYxId9Tnc9IL+jrGFFQOdo8pqJSdN1Wy0qI+HwDg6PVEHH1vpffBtOLsFH30rMlxiggAAABAEP3m1b2qaenxjN10/lTlpPvyaCYAAADGwJffzCoqKrRhwwa9/PLLesc73jEw/uijj8owDJ1//vkjjmlsbJQkFRcX+xEiMG789qVd2t3Y5Rn78iUnKsUyYz95V7P00LXSjlUjX1twjXTlD6RQauzjAAAAABBzP1i1SxFnsLNkimXopiVT4xgRACDp2b2yWncPFsQ0DxbImJ0Hjnz8UXLNVNn5FX0dY/KnD3aPyZ8uN8OfDtsAgGP3u9dGfzAtM9WKU0QAAAAAgqa2pUe/fLnGM3bypGxdNm9CnCICAADAaHwpmlm2bJnWr1+ve+65R+9973s1Z84cPfLII3r22WclSZdddtmIY9atWydJKisr8yNEHKOmpqaYnNc0TeXl5Q1st7S0yHGcmMw1nrR1R3T301s8Ywsn5+j0stSY5eogs2WXsv9yvaym7SNe61r8RXWf9mmprUNSx8hjyXegkO/gINfBQr6DJRHyXVDAQ4xAPL22q0WrtnmvMf7llFKV56fHKSIAQNJwXRldDYNFMU1Vspqr+z5v3S3DiUR/ztzJ6s2tUGRYYYyTM1kyebAaAJLRvrYe/eKlWs/YyZOydcmcojhFBAAAACQ+y4rN+yCmaR52ezz73rO71BMZXGDMNKR/v2iGUkLjt8tMkPMdROQ7WMh3cJDrYCHffXz57ezGG2/U/fffr/r6es2fP18FBQVqamqS67oqLy/XP/3TP4045qmnnpJhGDr55JP9CBHHyLZtX+ZxHMe3uZLZz1/crZZu74MFNy2ZEvOHWEN7X1PO4zfI7G70jLtWmtou/K7CMy+VjiIG8h0s5Ds4yHWwkO9gId9AsNiOq++t3OUZy88I6WNnTYpTRACAhNTbJaulur8oZseQ7jE7ZIbboj6dk5LV3y2mUnZ+pdzCSmVXLJQKZ0hp2WpvauJ3VgAYR+5etVvdkcH7DoakL71jmgzDiF9QAAAAQILza1G6oYvvjWcrN9Xr2a3eZ6U+fFaFzjqxPE4RxUdQ8o0+5DtYyHdwkOtgCWq+fSmaOeGEE/Sb3/xGH/3oR9XR0aHGxr5fFvPz8/Xggw8qNTXVs39dXZ3+/ve/S5IuuOACP0IEkl5da48efL3OM3bBCQU6eVJOTOdN2/wXZa/4NxlO2DPuZE5Q6+X3K1KyIKbzAwAAAPDXo+v3a8v+Ts/Yp84pV3ba+F01DQBwCK4js63WWxhzsHtM+97oT2dYcnLLBzrFHOwaEymolJtZLA15UNqyLInuhAAwLr25p1V/29TgGXvPyRN1YklWnCICAAAAEETff3qLZ7soK1W3XDQ7TtEAAADgcHx7ouX973+/lixZoscff1x1dXUqKyvTu971LhUWFo7Y96233tI111wjSbrsssv8ChFIaj95YY/C9mC7T8s0tPy8KbGb0HWV+crdynz17hEvRYpmq/Xyn8rJnRy7+QEAAAD4riNs697n93jGKosy9J6TJ8YpIgCAH4zuFm9BzECBTLUMuyfq8zkZhSMKY+z86bLzpkpW6pFPAAAYt2zH1XdW7PSM5aRZ+vS5wVrJGQAAAEB8tXX36q09LZ6xL196ovIyUuIUEQAAAA7H12VgJ06cqOuvv/6I+1100UW66KKLfIgIGB+21Hfo8fUHPGPvO3miKgozYjNhpEfZK76s9K2PjngpXLFEbRf/QG5qbDvcAAAAAPDfr16uVUNnr2fsc0unKmQahzgCAJA07LCs1t39RTFVspqrBz43uxqjPp1rpcrOmya74GBxTP/H/Eq56cFsCw8AOLI/vVU/aufLgkweTAMAAACOpKmpKSbnNU1TeXmD7+e0tLTIcZyYzJUoXt3pLZgJmYaWVGTG7HucSIKY7yAj38FCvoODXAdLIuS7oKDA1/lG42vRDIDYuOe53XKHbGemmPr42bHp8mJ0HlDuEzcope6NEa91nXytOs79imTyTwsAAAAw3uxt6dHvXtvrGVs8PU9nT8+PT0AAgKPnujI69yvUVCWzeYdCzTsGC2Na98hw7ahPaWeX9RfEVMrOn9b3saBSTs4kyTCjPh8AYPxq7urVvf/wdr6cMSFD/7SwJE4RAQAAAMnFtqP/3s9oHMfxba54WVfb6tk+oThTluGO+697NEHINwaR72Ah38FBroMlqPnmyXYgyb1U3aIXq72rF1x7xiQVZkV/VTWrcatyH/1XWW3em1KuYarjvNvUffK1UZ8TAAAAQGL44fO7FbYHy/UtQ/rc0oo4RgQAOKTezr5OMc1Vspp29HeO2SGraYfM3vaoT+ekZvcXxUyXXTB9oDDGzquQUjKjPh8AIJj+9819aumOeMa+eEEFnS8BAAAA+G5DXYdne05pVpwiAQAAwFhQNAMkMcd1dfdzuzxjE7JS9MFTS6M+V8qufyjnr8tlhr0PVjgp2Wq7+C71TlsW9TkBAAAAJIa3a9v0t00NnrH3LSjR9KKMOEUEAJBjy2yvHegUYzVXD37eXhf16VzDkpM7RXZBpSL50/u7x/QVyLiZEySDB5YBALH12m7vSs7vmFWo06bmxSkaAAAAAEG2cZ+3aGYuRTMAAAAJjaIZIIn9dWODttR3esY+dU65MlKtqM6Tvu73ylp1uwzX247Lzpmk1st/JnvC7KjOBwAAACBxuK6r7630Futnp1n65OLJcYoIAILF6G7uL4bZ0d8tpr8wpmWnDDsc9fmcjKIhBTEHi2MqZedOkazodzYGAGAsHNfVpmEPpV02d0KcogEAAAAQZM2dvapp6fGMzS2haAYAACCRUTQDJKmeiKMfP7/bM1ZZlKEr5hdHbxLHVtYL31TG2l+MeKm3ZIFaL7tPblYU5wMAAACQcP62qUFv7/V2nPzXsycrP5MHpwEgauweWS27+otidvR3jun73OxujPp0rpU2pCBmWl9RTH+hjJuWG/X5AAA4Xrsau9URdjxjrOQMAAAAIB6Gd5lJCxmqnJAZp2gAAAAwFhTNAEnqoTf3qa7Nu5roZ86fopBpRGeCcIdynvqc0qpXjHipZ+Zlanvnd6RQenTmAgAAAJCQunsd3fOct1h/Sn6a/nlRSZwiAoAk5royO+qHFMQc7B5TJbN1jwzXOfI5jmY6GXJyJo3sGJM/XU5OmWSYUZ0PAIBYWl/nLeQvzk5RcXZqnKIBAAAAEGQbhhXNzJ6YFb3ntQAAABATFM0ASailK6JfvFTjGTulPEfnVeZH5fxm+17lPvYJhQ5sGPFa52mfVueZn+PBCgAAACAAfvf6Xu0bVqz/2SVTlWJxPQAAhxTuGCiGsZqrZTVVKdRcJbO5WmZvx5GPP0pOas5Al5iBj/l9HWRY8AQAMF4MX8l5bml2nCIBAAAAEHQb6rzXJ3NK6IIJAACQ6CiaAZLQL1+uUVuP7Rm7aclUGcbxr1pg1b+t3Mc/Katjn2fcNVPUvuy/1TPnn457DgAAAIxf4XBYDz74oKqqqlRXV6f29nZlZmaqtLRUF1xwgc477zyFQlyKJoPmrl796uVaz9ipU3K0ZGZBnCICgATi2DLb9vR3jOkvkGnqL5LpqIv6dK4Zkp07tb8oZlpfUUx/gYybUSRF4T0hAAASGQ+lAQAAAEgUG4d1wpxbyvUJAABAouNJJSDJ1Lb06H/e9Ba0XDi7UPPLjn9VtdSqp5Tz1C0yIl2ecSctX62X/ViRyWce9xwAAAAY37q7u/XUU09p5syZWrRokXJzc9XR0aE1a9bo3nvv1erVq3XrrbfKNOlUkuhW72hRV68zsG1IumVZRVSK9QEgWRhdTf0FMQc7x+zo/7NThhM+8gmOkpNZPNAlxi6oVCS/rzDGyS2XrJSozwcAiC3LsmJ27uHXVOP5GiviuNpc3+kZO2lSTky/v4kkSLkG+Q4a8h0s5Ds4TKdXqt8oHdgiHdgiq/JKKask3mEBiJID7WHVt/d6xuiECQAAkPgomgGSzL3/2K1e2x3YDpmGlp835fhO6rrKePNnylz9LRlyPS/ZedPUcuXP5ORPP745AAAAEAjZ2dn69a9/PaKbjG3buuOOO7R27VqtWbNGp5xySpwixFhtGLZS2uLp+Zo9kdXSAIxDdo+s5p2DBTFNVQOFMmZPc9Snc0PpsvOn9/0pqOwvkunbdtNyoj4fACB+Cgr869KYl5fn21x+21Dbqp6I4xlbfGK5CrJS4xRRfI3nXGMk8h0s5DtYyPc40NkoHdg6UBwz8HlTteTaA7vlTpwrlZ8YvzgBRNWGfd4umJkppioK0+MUDQAAAMaKohkgiWza16EnNzZ4xq5aOFHl+cdx8WX3KnvV15S+4aERL4Unn6m2S38sNz3/2M8PAACAQDFNc9RVEi3L0umnn67169errq4uDpHhaG2o8974OWkSK6UBSHI9bVL1Bmn/RunANmXXbZDZtENm2x4ZrnPk44+CK0NOzmTZBdMHi2IK+rvGZJdKBisKAwAwVm/XNHu2pxRmBLZgBgAA+MyxpZbdfQUx+zd7i2M6D4ztHAe2SLo8pmEC8M+Gvd57JyeWZMk0jDhFAwAAgLHyvWhm7dq1ev7551VVVaW2tjbZtn3Y/Q3D0M9//nOfogMSl+u6+sGqXZ6xrFRLHztr8jGf0+huUc5fP6PUPatHvNY95yq1L/1/ksWNJwAAAL+0tLRo27Zt2rZtm7Zv367t27erra1NkrRkyRItX758zOfav3+/nnzySb3xxhtqaGhQKBRSaWmpzj77bF188cVKS0uL1ZcxKsdxtHbtWknSlCnH2SkRMRdxXG2u9974mVdKlxkAycPoblFo/zqF9q/v+1O/TlZLtWeflCjM46Tl9RfFTBvsGlMwXXZehRRihUkAAKJh7Z4Wz/bJ5fnxCQQAAIxf4Q6pYdvIzjEN26RI9/Gde/+W6MQIICFs2Nfu2Z5XyoJjAAAAycC3opnNmzfrox/9qF566aUxH+O6LkUzQL8Xq1v06q5Wz9hHzixTQeaxPeJhtuxU7mMfV6hp+4jXOs7+orpO+aTESggAAAC++vjHPx6V87z22mu655571NXVNTDW09MzUIizYsUK3XrrrSotLY3KfKOJRCJ6+OGHJUltbW1at26dampqtHTpUp100kkxmxfRUXWgUz0R1zM2p4SiGQCJyehqVKh+SIHM/nWyWndH7fyumSI7b+qQbjEHO8dMl5teyPsnAIBDampqitm5TdNUXl7ewHZLS4scJ7qd0xLFm9UNnu0TClNj+r1NNEHKNch30JDvYCHfCcB1ZXTul9W0XWbjdllN2wc/b6uJ/nw5ZdKEE9SVO13dPv/uUlBQ4Ot8QFC4rquNdd4Fx+aw4BgAAEBS8KVopqamRueff74OHDgg1+176CY7O1sFBQUyTdOPEICkZjuu7h7WZWZidoo+cMqxPeQYqn1NuU98Sma3940ZN5Sutnd+V+GZlxxzrAAAAIiOCRMmaPLkyQPdWcZqx44duuuuuxQOh5Wenq73vOc9mj9/vsLhsF544QWtWLFCe/fu1Te+8Q1985vfVEZGRkzij0Qi+uMf/ziwbRiGrrzySl1zzTUxmQ/RtWHYTZ/JeWnKP8aCfQCIJqNjf38HmXWDHWTa90bl3HbmxL4uMfmV/cUx02XnT5eTWy6ZvjfsBgCMA7Zt+zaX4zi+zueXnoijrfs7PWMnTswcl1/rWI3XXGN05DtYyHewkO8Ysntlte7uL4qpGiiOsZq2ywy3RXUq1wzJzuvvPlswQ3ZBpdyiWcqdfoqUnitJ6m5qItfAOFHXGlZTV8QzNpeiGQAAgKTgy93e//7v/9b+/ftlGIb+9V//VV/4whc0a9YsP6YGxoUnNxzQtgNdnrFPnTNF6SnWUZ8rbfOflb3iVhlO2DPuZBar9fL7FSk5+bhiBQAAwLG76qqrNGPGDM2YMUP5+fmqr6/XZz7zmaM6x69+9SuFw2FZlqWvfvWrnmuv+fPnq6ysTL/97W+1d+9ePfroo7r66qtHnOOBBx5Qb2/vmOe87LLLVFZW5hlLT0/XQw89JMdx1NTUpNdff10PPvigtmzZoltvvVWZmZlH9XXBXxv2DVspjS4zAPzmujI76jwdZKz6dbI664/vvGaKVHyiVDxLXZmTFcmbrkjBdDn50+WmZkcndgAAEDVb93cq4gx2wTQknVjC9SQAAJCMnjZZzVWyGrf1Fcc09xfJtOyU4USOfIKj4KTmyC6Y2VccUzhDdsEMRfJn9C20YXkXG7Isa6BgBsD4MvzeSW66pcl5aXGKBgAAAEfDl6KZv/71rzIMQ9dee63uv/9+P6aETyzr6Is2xmJ4B6IgdyTq7rV17wt7PGMzJ2TqXSeXyDKNsZ/IdZX+0veV8crdI16KFJ2o9nf9XG7uZMUmo4dHvoOFfAcHuQ4W8h0s5Dt2RitgORrbtm3Txo0bJUnLli0bdbGCK664QitXrlRNTY2efPJJve9971Mo5L00/Pvf/66enp4xz3vWWWeNKJo5yDRNFRUV6aKLLlJOTo6+//3v6+GHH9aHPvSho/jK4LcNde2ebVZKAxBTriuzraa/QOZgkcw6mV2Nx3daK1WRohMVKZ6nSPE8uaULlDvzTCnUdyOblV4BAEh8G4d1wawoTFd2Gh3gAAAIDNeR2V43pFtM1eDH411YYxR2Trmna0ykoK9Axs0okoyjeD4DwLg0/N7JnJIsGfzbAAAAkBR8eVe5trZWknTttdf6MR18VFBQ4Ms8eXl5vsyTiO59drv2tXm7wnzlynmaUFQ49pP0dkt/+bS07v9GvnbCxQpd9XPlp+UcZ6TRE+R8BxH5Dg5yHSzkO1jId+J45ZVXBj5ftmzZqPuYpqklS5bo97//vTo6OrR+/XotWLDAs89vfvObmMR3cJ4NGzbE5PyIjp6Io237vZ0u55bSfQFAlLiOzJZdQ4pj1itUv15mT/PxnTaUrsiEOYoUz+8rkpk4X3bBTM9qr5ZlDRTMAACA5DDioTQK+gEAGJ8iPbKaq/u7xfQVxYT6PxqRriMffxRcK62/MKZSdv4MRQ4WyeRPl1IyojoXgPFleFE/904AAACShy9FMwUFBaqvr1d+fr4f0wHjRmNHWD9euc0ztnhGkZbOKh77Sdr3S3+4RtrzysjXzrxBuvi/JTMe/WUAAAAQbZs3b5YkpaWlqbKy8pD7zZ0713PM8KKZWGls7OsYEKuOlYiOrfs7FXHcgW1D0oklmfELCEDycmxZLdX9HWTWy+ovlDHD7Uc+9nCnTcmSXTx3oINMpHi+7IJKyWTVeQAAxpsN+7wPpc3joTQAAJKa0dXY3y1mm0JDusaYrbtlyD3yCY6Ck1Eku2BIUUz/HydnkmSYUZ0LSBaxuj9jmuZht8cDx3VHXJ/Mn5QTyHteQcg3BpHvYCHfwUGug4V89/HlTvJpp52mJ554Qlu2bNGiRYv8mBIYF374zDa19UQ8Y7deOmfsrT3rN0q/v1pq3uUdN0zp0m9LZ3w8SpECAAAgEezZs0eSVFpaetg36SdNmjTimGjGUFxcrLQ070r+PT09euCBBySJ68IEN3wl54rCdGWn8SA6gCNwIrKatg8UyIT2r1fowAYZvZ3Hd9rU7MHCmOL5fR1k8qfxcAsAAAHQFba1o2F4F0w6zQAAkPAcW2br7sFuMc1DimO6m6I6lWtYsvOm9hfE9HWOOdhFxk3Pj+pcwHhQUFDgyzx5eXm+zOOnHQc61N5je8YWnzhZBXl0qBqP+cahke9gId/BQa6DJaj59uWpl5tuukmPP/647r//fv3zP/+zH1PCJ01N0X1D4yDTND0/lC0tLXIcJyZzJao9zd164MVqz9ilcyeoPMsZ0/c9tPM5ZT+xXEa4zTPupmar/dIfKjJtqRSj/B0t8h0s5Ds4yHWwkO9gSYR8+/WmfjIJh8Nqa+v73a+oqOiw+2ZnZystLU09PT1qaGiIahyrV6/W448/rhNPPFHFxcXKyMhQY2Oj1qxZo7a2Ns2ZM0dXXHHFUZ1zrDHGcjWvIK28sWmf9wH3eWXBWyktSPkOOnJ9jOywrMatsvat6+seU79O1oGNMiLdx3VaJz1f9sSTZBfP6yuOmXiSnLwpIwpkjvVfJPIdLOQ7WMg3MD5tru/UkCaYsgxpVjFdMAEASBjhDlnNVZ6OMVbTdlnN1TKccFSnclKyB4phBrvGVMrOmypZaUc+AQAcp7f2NHu2J2SnqTQ3PT7BAAAA4Kj5UjRz4YUX6stf/rK+9a1v6YYbbtDdd9+tlJQUP6ZGjNm2feSdosBxHN/mShT3rNqpyJC7QSmWoU8tnjym70P6ut8ra9XtMlzvvnbOZLVe8VPZRbOlBP5+BjHfQUa+g4NcBwv5DhbynRi6uwcfVE5PP/Kb9Onp6erp6fEcFw2nnnqqmpqatGXLFm3ZskXd3d3KzMzU1KlTdc4552jZsmVHXYBxww03jGm/hx566FhCPibjeeWNTfu9KzmfVlkc+EK18ZxveJHrUfR2S/UbpL1rpL1r+/7sWy/Zx/nwS1axVLZQKlvQ92fSQpl5U2Qahvx615B8Bwv5DhbyDYwP64d1wZwxIVPpKcEq6AcAIO5cV2ZHvazmIUUxB/+010V9Oju7tK8gJr+/OKZwhuz8GXKyJkqGEfX5AGCs3trT4tleUJ4ng3+XAAAAkoYvRTMPPPCA5syZo8WLF+v+++/Xo48+qquuukonnniiMjOPvCLUtdde60OUQOJYv7ddT23yrqZ99cISTc4/wsOPjq2sF76hjLW/HPFSb8lCtV5+n9zMCdEMFQAAAAkiHB58eDkUOvKl3sF9hh4XDTNmzNCMGTOiek74p6Mnom313gfTTi7Pj08wAPwX7uwriNm7ZrBIpn6j5ESO77w5Zf3FMQsHCmSUU8bDLgAA4LA21HV4tueUZsUpEgAAAsAOy2rZ5S2KaaqS1VQls7f9yMcfBddMlZ1fIbtg5kDnmEhBpZz86XJTs6M6FwCvpqammJzXNE3PAhYtLS1yHCcmc8XLG9Xe57hOKEqL2fcz0QUh3xhEvoOFfAcHuQ6WRMh3IizU6kvRzEc+8hFPZfXevXt1zz33jOlYwzAomkGguK6rH6za5RnLSbP00bMmH/7AcIdyn7pZqdXPjHipZ+Zlanvnd6QQbUEBAADGq9TU1IHPI5EjP9x8cJ+hxyWqe++9N94hBMb62lYNaXgpyzQ0b1Ju/AICEDs97VLd294OMvs3Se5xvkGaN8VbIFO2QMopiUbEAAAgYDbu8xbNzKVoBgCA42Z0twwWxAztHtOyS4Yb3Y7yTlp+X6eY/s4xkYIZsgsq5eSWS6YvjysBGMa2o/tzfiiO4/g2lx9sx9Wmfd4CwhMnZoyrr/F4jLd84/DId7CQ7+Ag18ES1Hz7dhXquu6RdwKgF6qa9caeNs/Y9WdOUl7GoX9czfa9yn3sEwod2DDitc7TlqvzzJslw4x2qAAAAEgg6emDBdLd3d1H3P/gPkOPS1RFRUVj2i+WK3olwsobfnhpy17P9owJGepqb1VXnOKJl6DkGwHKdU+rQvvXy6pfJ6t+nUL162Q2VcnQ8b1fZ+dNlT3xJEWK58meOF/2xPlyMwq9O0UkJciKi4HJNySR76CJd74TYYU0YLxp645oV5P32nZuCSvPAwAwJq4js612SLeY7Qo1Vclq2iazq+HIxx/NVDLk5E7xdIyx+4tj3Iyxva8LAImuurFLXb3e9xnmlHJ9AgAAkEx8KZrZsWOHH9MASS/iuLr7ud2esdKcVP3zKaWHPMaqf1u5j31CVme9Z9w1U9R+wdfVc+L7YhIrAAAAEktqaqpycnLU1tamhobD3/hsb29XT0+PpLEXpCQDP1fCGK8rb6zb6y3gn1uSNS6/zqM1XvONkcZDro3uZoX2r1dof19xTGj/elktO4/7vJH86bKL5ylSPF+RifMUmTBPbnreyB2T6Ps3HvKNsSPfwUK+geQ3vMtMimVoZnFGnKIBACBBRbplNe/oK4pp3D7YOaZ5h4zIkRdWOhpuKEN2QaUi+f1FMYUzZOfPkJ1fIYUSf2EmADgeG+q81yclOakqykqJUzQAAAA4Fr4UzVRUVPgxDZD0Hlu/X1UN3jWcbzi3XGmh0bvEpG7/m3L+fsuIN7yctHy1XnavIpPPiFmsAAAASDzl5eXauHGj6urqZNu2LMsadb/a2lrPMcBBG+vaPdtzWSkNSGhG54H+Apn1gwUybXuO65yuYfatDHuwQKZ4nuziOXJTc6IUNQAAwJENfyjthOJMpVij3ysBAGBcc10ZXQ393WIGO8dYTVUy22qOu4vscHbmxIGuMYMfZ8jJLpUM/i8GEEzDr0/mlmbFKRIAAAAcK1+KZgAcmeu6+sWLtZ6xWcWZunTuhNF2VsabP1Xm6m+PeBMskj9drVf8TE7+tBhGCwAAgEQ0e/Zsbdy4UT09PaqqqtIJJ5ww6n4bNmzwHANIUmt3RLubezxj3PgBEofZvk/WwQ4y/R+t9rrjOqdrWLILT+grkJnYVyATmTBHSsmMUtQAAADHZsOwgv55XJsAAMY7JyKzZbdCzdsHimIGimN6WqI6lWuGZOdV9BXF5M/wFMm4ablRnQsAxoPh1yfcOwEAAEg+FM0ACWJ3c49qW70PqN20ZIpMw/DuaIeVveo/lL7hoRHnCE8+S22X/lhuel4sQwUAAECCOuOMM/TnP/9ZkrRy5cpRi2Ycx9GqVaskSVlZWZo3b56fIcbUoTrrRINpmofdHg8217d5tlMtQ7NKsmUFcDXnIOQbfRIy164ro622ryimfr1C9W/Lql8ns3P/8Z3WTJE9Ybbs4vmKTJwve+J82RNOlELpnv1i9y9p/CVkvhEz5DtYyDcw/oxcyZkumACAcaK7VWrYqtSda2Q0bB0skGnZKcPpjepUTmrOiI4xdsEM2blTJCslqnMBwHjVazvaur/TM8b1CQAAQPKhaAZIEG/VeB9QK8pK0ZkV3uIXo7tFOU9+Wqk1L404vnvu1Wpf8p+SlRrTOAEAAJC4Zs6cqTlz5mjjxo1auXKlli5dqlmzZnn2eeyxx1RTUyNJuvTSSxUKjZ/LwoKCAt/myssbf4XqVWsaPNtzJuVp4oSiOEWTWMZjvjE633PtulJTtbR3bf+fNX0fOxuOdOThWWlS6XypbIFUtlAqWyBj4lyFQqkKSUo7/sjHBX62g4V8Bwv5BpJbY0ev6trCnrE5JazkDABIIq4rs6NOVmN/15jmKoWaqqSWHVLbXklSNP9ns3MmeYti8isVKZghN3OCNHyRTgDAUdl+oEth2/WMcX0CAACQfKL6dNQFF1wgSTIMQytWrBgxfiyGnwsYr9bWelt5njwpW8aQN7DM5mrlPvZxhZqrPPu5MtS5+IvqWvQJ3vACAABIcps2bVJdXd3Admtr68DndXV1evbZZz37L126dMQ5PvKRj+i2225TOBzWHXfcofe+972aN2+ewuGwVq9eraefflqSVFZWpiuvvDImXweS01t7mj3bC8p52BSIKseRGqsGC2MOfuxuOb7zpmRKpSd5CmRUPJsVYwEAQNLasM/bZSY9ZGp6UUacogEA4DDsHlnN1X2dYg52jGnarlBzlYzeziMffxRcK1V2fuVA15jIwe4x+dP73hsAAMTE8C6Y5flpyk0fPwvSAQAABEVUf4M7+ACXMezB/WeffVaGYch13VGOGt3B/YefCxiv3qr1dppZMCln4PNQ7avKfeIGmd1Nnn3cULraLvyewjMu9iVGAAAAxNaKFSu0atWqUV/bvHmzNm/e7BkbrWhm+vTpuvnmm3XPPfeoq6tLDz744Ih9ysrKdOuttyojg4eOMOjtPd4H908uz49PIMB44NjSga3DOsi8JYXbjnjoYaXmSGUnewtkJpwgmVY0ogYAAEgIG+q8i4ydWJIly+R+IQAgfoyuJlnNQ4pimqpkNW2T2bpHhutEdS4no9DTLcYuqJRdOFNO9iSu/wEgDjbu816fzC3NjlMkAAAAOB5RLZo5//zzRy1yOdQ4gD5t3RFVHejyjJ08ue8iK23Tn5T9zL/LcMKe1+3MiWq7/D5FSk72LU4AAAAkh9NOO0133nmnnnjiCb3xxhtqbGxUKBRSaWmpzjrrLF1yySVKS0uLd5hR19TUdOSdjpFpmsrLG+y80tLSIseJ7g3xeGroCKu2pdszNi3HiOn3NJGN93xjUFRy7URkNWyVtX+drPr1CtW/LWv/BhmRriMfe7jTpuXKLp4ve+J8RSb2fXTyp0mG6d2xpXXU4zESP9vBQr6DJd75Ligo8G0uIAg2DlvJeW5pVpwiAQAEimPLbKsZ6BgTatrWXyRTJbO7MbpzGabs3KmyCw4WxvQXx+RXys3gd0sASCTrh1+flHB9AgAAkIxi0mlmrOMA+ry9t11D+zClWIZOLM5Q5kvfU+ZrPxqxf2TCHLVefr+cnEn+BQkAAICYW758uZYvXx6VcxUXF+u6667TddddF5XzJQPbtn2by3EcX+eLtbdrvA/dZ6SYmpKfOq6+xuMx3vKNQztiru2wrIYtCu1f3/9nnUIHNsmwe45v3vQCRYrnK1I8T5GJfR+d3CnS8EVoHFcSfxejhZ/tYCHfwUK+geTluq42UDQDAIil3s7+opgqT/cYq3mHDDt85OOPgpOS1VcMUzBDbuFMZUw5WZowSyqsVGtbJ7+zAkCC6+51tH3YIshcnwAAACSnqBbNADg2b9V4W3kumBhS0TO3KG3r4yP2DU+7QG0XfV9uKu0+AQAAAETH8IfS5pRkyTLpGIuAi/Qo1LCprzimfp1C+9fJatgiw+k9rtM6mROGFcjMl5NdNrJABgAAIIDq28Nq6PT+vjW3lPshAICj5LoyOvcr1DSkKOZgkUxbbdSns7NKB4pjhn50skoHrvcty1KGp0NhZ9TjAABE19b9HbKdwWWQDUmz6TQDAACQlCiaARLAW7VtA59PUIu+132P0rZuGLFf14Lr1XHOrZJp+RkeAAAAgHFutKKZwHJdpb3xM2nbo1Jvl2SYynXcvu6ghikZplwZ/Z8bkvo/HnzNMCQNbg+81j/mjnqcIVdD9h92vDvk+NHPeXD74GuD2wPzDcw5eLzn6xg4t9n3bRj4fLRzHu7r7zvec77+r8n1bHu/Dtczv6HDf08Pd87BeAe/p2bf3UwNP36IcIdUt05pVS/K3Pe2QvXrZDVuleEe34qvdlbpQOeYSPF82cXz5GSXHNc5AQAAxrPh1ybZaZbK89PiFA0AIOHZvbJadw0WxTRuk9XcVyRjhtuPfPxRcM0U2fnTZOdX9hXGFM7s/3y63NScqM4FAEgMw69PphdlKCuVZ7YAAACSEUUzQJxFHFfr9va9YVdp1OqB1G+qvOuAZx/XsNRx/n+o+6QPxiNEAAAAAOOY67raUOd9iGBuWUBXcnZdZb74HWW+cZ9nmFtg45M7tBDHiUhylXkc57Nzyvu7x8wb6CTjZk6IVrgAAACBMPyhtLklWTLpyAcAgWf0tPYXxgzrHNO6S4YTiepcTlpef6eYwa4xkYJKOblTJJNHbAAgSDbuY8ExAACA8YIreiDOth/oVGevo5Ai+mnKd1VueAtmnNRstV18j3orzo9ThAAAAADGs31tYTV1eR8umFcazBs/Ga//eETBDMYvQ67k2n1/jpKdVzHQPSYycb4iE+bKzSiIQZQAAADBMqKgP6DXJgAQSK4js21vX0FM82BxTKipSmbn/uhOJUNObnlfUUx+X1HMwSIZN6NoZIdaAEAgDS/qn8P1CQAAQNKiaAaIs7dq+m4AfcB6RjPMvZ7X7JxytV7xU9lFs+IRGgAAAJBULCt2/UBM0zzsdjLbWN/l2c5ND2lqYaaMgD0ckPbmz5X50vfiHQYSjCtDTsF0RSaeJHvi/L4/xXPlpuV59hs//yKMb+P533KMRL6DhXwD44PruiNXci4NaBdMABjPIt2ymqs9XWNCzVWymqpkRLqOfPxRcEPpsvMrZRdUKjLQOWam7PxpUig9qnMBAMaXzrCtHQ3e/5eCuuAYAADAeEDRDBBnb9W2KUtduin0sGc8UjRbLe9+QG7mhDhFBgAAACSXggL/ujzk5eUdeacksb1pn2d7wZR8FRYWximaOHn919Jz/2/k+AW3SUUzJNeRXLf/4/DPh/yRO8pro+w76n6j7ev27zvKXAP7usPOO4b9Rt33UDEN3/cQ5/Psd6TvwRi+Lrm+pX+AYUoTZkuTFkplC6SyhTJK58tKy1HsSvIQT+Pp33IcGfkOFvINJKealh61dnu7APJQGgAkKdeV0d04WBTTONg9xmzd09f9NYqczAn9RTEzBrrH2AUz5OSU9V3vAwBwlDbt6/D8b2WZhk4o5voEAAAgWVE0A8TZW7Xt+njocRUbrZ7x9iX/ScEMAAAAgJh7u6bZs31yecAeMn37j9Kjnx05ftmd0hkf9z8e9BlaxHPYYqAoFQ4ZllRYKaVmxvkLBwAACK71dd4uMwUZIZXkpMYpGgDAmDgRma27FeovjrGGfDR7mqM6lWtYsvMq+rvFzBj8mF8pNz1g72cBAGJuw7AumDMmZCg9hUJMAACAZEXRDBBHB9rDCrfs08fTHveM90x7hyKTTo9TVAAAAACCwnFcvbWnxTN20uT8+AQTD5uekB7+hEZ0NXnn7RTMxJth9P0RNyEBAACCYmNdu2d7bmm2DMOIUzQAgKGMcHtfQUzzsOKY5p0ynHBU53JSsweKYTzFMXlTJYtiSgCAPzYMK+qfW0KXGQAAgGRG0QwQR2tr23Vj6E/KMnoGxlzDVOfZX4hjVAAAAEByampqitm5TdNUXt7gipUtLS1yHCdm8/llZ2OX2rojnrFpObH9XiaK0K5/KPuRj8pwbc941+mfUfikj2ro+qTjJd8Yabz+bGN05DtYyHewxDvfBQUFvs0FjGcjHkor5aE0APCV68rs2DesY0z/5x11UZ/Ozi4bUhQzU3ZBpSIFM+RmFvcvpAEAQPyMVtQPAACA5EXRDBBHNVUbdaP1jGes58R/kl00K04RAQAAAMnLtu0j7xQljuP4Ol+srKtt9WwXZaaoKNMaF1/b4YRqX1P2ox+XYXtXQu1a8BF1nHGzrGEP2Y6XfOPIyHWwkO9gId/BQr6B5GM7rjbto2gGAHxhh2W17JTVuF1W89ACmSqZvR1HPv4ouFaq7Pzpg8Ux+TMUKaiUnT9dSuXfeQBAYmrtjmh3c49njOsTAACA5EbRDBBHZ+y8TynG4M3bXiNVnWd+No4RAQAAAAiS9aOs5GyM85U8rfq3lfvYx2REujzj3XOvVse5X2UlUwAAACAOdjZ2qbPXW7w+h4fSAOC4GN3Nw7rGVCnUtF1m6+4RnXePl5Ne2N8xplJ2wQxF+otknJxyybSiOhcAALG2cVhBf6plaMaEjDhFAwAAgGiIW9HMnj17VFdXp87OTp1++unKyOAXSwSLU/Omzu19wTO2s/Ia5WeXxSkiAAAAAEGzcZSimfHMatiivEeulxlu94z3nHCF2pfeQcEMAAAAECcbhj2UVpKTqglZqXGKBgCSiGPLbK/1FMeEmqpkNW2T2dUY1alcw5STWz7YLaZghuzCGbLzK+VmFEZ1LgAA4mn4vZMTijOVYplxigYAAADR4GvRTFtbm7797W/rV7/6lWprawfG3377bc2dO3dg+w9/+IMefvhh5eXl6ac//amfIQL+cF2lPP8Nz1Czm6XUc5bHKSAAAAAAQRNxXG0a9mDanNLsOEUTe2ZztfL+cq3M7ibPeM+0d6jtnXey6ikAAAAQRxsCVtAPAEett0tW847+opjtg0UyzTtk2D1RncpNyVQkv78opmDIx7xpUigtqnMBAJCI1td5F97i+gQAACQ1JyI1bJcaq6T2fdK0y+MdUVz4VjSzdetWXXbZZaqqqpLrugPjxiiruJ511ln60Ic+JNd1dd111+ncc8/1K0zAFyk7n1Xegdc9Y/+T/n79Uy4r8AAAAADwR3VDl7ojjmds3ji98WO21SrvLx+W2bnfMx4uX6y2S+6RrJQ4RQYAAABAGrmS85yS8XltAgCH5boyOvb3FcU0V/UXxvQXx7TVRH06O6tksChmSJGMk10qGaymDwAIruHXJ3PH8YJjAABgnHBsme17ZTVXy2qp7lt4o7laVnO1zLY9fYUzkmRY0vILJQVvUVFfima6u7t1+eWXa/v27crKytLy5ct1/vnn64orrhh1/2nTpmnZsmV65pln9Mgjj1A0g/HFsZW1+tueoT3uBFVNvTpOAQEAAADjg2XF7qLeNM3DbiejTfWdnu2y3DRNyEmPUzSxY3TUK+cv18pqq/WMR8pOU8e7fiYrJXPEMeMx3xgduQ4W8h0s5DtYyDeQ3CK2oy37eSgNQMCEOxRqWC9t2Crt3ywd2KK8/Ztl9rRGdRrXDMnOm+btGFMwU3bBdLmpOVGdCwCQ+GJ1H2U8XZc3doRV1xb2jM2flBPTe1DJZjzlG0dGvoOFfAcHuU5SriOjfZ+s5h0yDxbENO/o227ZJcMOj+EctkJtNVL+9NjHm2B8KZq59957tW3bNmVlZen555/XwoULj3jMpZdeqhUrVujFF1+MfYCAj9I2/1mhxi2ese/1XqUF5XSZAQAAAI5HQUGBb3Pl5eX5NlesbGva49leOLXA1++hLzobpQc/IjXv8I6XLVDouodVkD62PI6HfGNsyHWwkO9gId/BQr6B5LLtQJd6Iq5njE4zAMYV15HVtF2hurUK7XtTKfvWymrYLMP1dgA+nkeUnNSc/mKYStmFM2QXzFAkf4ac3HI67AIABvh1DyCZr8vX7Kv3bGekWDpl5mRZphGniBJfMucbR498Bwv5Dg5ynUBcV2qvlxq3Sw3bh3ys6vsY6TruKXLC9VLBKVEINrn4UjTz8MMPyzAMffaznx1TwYwkLViwQJK0devWGEaG48UKBEcp0q2sl+/yDG10purPzrn6yJT8wK5KMG7zjVGR7+Ag18FCvoOFfAPjw1t7WjzbJ5fnxyeQWOlulX77Pql+g3e8+ETpQ3+SxlgwAwAAgOQWDof14IMPqqqqSnV1dWpvb1dmZqZKS0t1wQUX6LzzzlMo5MvtMhzCxn3eLjPl+WnKyyAnAJKX0dWo0L61Sql7U6F9axXat1ZmuC0q57Zzyj1dYyIFfQUybkaRZPAwLwAAx2v4vZP5k3MpmAEAANHX2Sg1bBtWGLNdaqiSovQewggZBVLhDMkM5rPqvrzjvHHjRknSRRddNOZjioqKJEnNzc2xCAlRwgoER+mFu6X2Ws/QNyMfUGF2uk6aXiqDNzIljaN8Y0zId3CQ62Ah38FCvoHk0xOxtXFvq2dsQfk4+lkOd0q//2ep9k3veMF06cN/lrKK4hIWAAAA/Nfd3a2nnnpKM2fO1KJFi5Sbm6uOjg6tWbNG9957r1avXq1bb72VBSHiaENdu2ebLjMAkoodVujAJoX2rVGobo1S9r0pq2XXcZ3StdL6C2MqZefPUORgkUz+dCklI0qBAwCA0by1p9mzPe4WHAMAAP7pbukrhhlRGLNd6m6OzZxpuVJhpVQ0o69Apmhm/+eVUmZhbOZMEr4UzbS3973ZnZ2dPeZjenp6JEkpKbQKxjjR1SQ9/13P0Gp7rlY5J+viigIKZgAAAIDj1NTUFLNzm6bpKRBraWmR4zgxmy/W1u9tV6/tesbKs9yYfg99E+lR9mMfV8qu1Z5hJ7tMbe/5jRw7XTrC1zne8o1DI9fBQr6DhXwHS7zz7dfiUjg22dnZ+vWvfz2im4xt27rjjju0du1arVmzRqecckqcIsSGOm+nmXmlY7+fCAC+cl2Z7XsVqntTKXVr+gpl9q+TYYeP7XRmSEbJPKlsoVQ8W23pk9SbN11OziTJoJgTABB9sboHEO/r8mhxXVdrd3u/RzMKQuPj3kkUjZd8Y2zId7CQ7+Ag11EU7pDVUi2zuVpW0w6ZzTtkNfdtm10NMZnSDWXIzp8mJ396/8dpsgsq5eRPG7UTrWmaysuMb74T4T6KL0UzRUVFqqurU3V19ZhvOqxfv16SVFpaGsvQAP88/70RlYHfjHxAkqFTK+L/jwEAAACQ7Gzb9m0ux3F8nS/a1tV6u8xMLUhXZoqR1F+TJMmJKOevNypl53Pe4cwJan73b+RklUnH8DUme74xduQ6WMh3sJDvYCHfGMo0zVG7yFiWpdNPP13r169XXV1dHCKDJPVEHG070OUZm1tKpxkACSLcoZT6txXat1ahfX2FMmbn/mM+nZ1dqkjJIkVKFqi3dJHc0pNVMHHSwOuRpiY5/A4DAIghv66Vk/W6fF9bjw509HrGZhdnJOXX4qdkzTeODfkOFvIdHOT6CCLdslp2ymqultVS3fexvzDG6qyPyZSulSo7r0J2/jTZedP6imPypsnOny4na+KIwpgBYyiGCWq+fSmaOeWUU/TEE0/oueee0/ve974xHfPAAw/IMAydffbZMY4Ox4MVCMbGaKtV3ss/0dB/oh6zz9Jb7gxJ0gkBX5VgvOUbh0e+g4NcBwv5DpZEyHcirEAAJLORKzmPg4fSXEfZT39JaVVPeYadtDy1vOsBOQXT4xQYAABA8mppadG2bdu0bds2bd++Xdu3b1dbW5skacmSJVq+fPmYz7V//349+eSTeuONN9TQ0KBQKKTS0lKdffbZuvjii5WWlharL2NUjuNo7dq1kqQpU6b4OjcGbd3fKdsZ7IJpSJpdMg6uTwAkH9eR1VSlUN2avgKZfWtlNWyW4R7b+55uKF2RiSert2SBIqV9hTJOtnfBUMuyohE5AACIko3D7p1kp1maUpAep2gAAICv7LCs1t2DxTAt1bIOdo1pr5Mh98jnOEquGZKdO7WvU0x/YczBIhknp4wutFHmS9HMVVddpccff1z333+/brnlFk2dOvWw+99111167rnnZBiGPvCBD/gRIo4RKxCMTfbq73racve6lr4TuVqSlGIZmsWqBB7Jnm8cHfIdHOQ6WMh3sJBvIPlsqGv3bM9J9qIZ11XWs19T+pa/eIadlCy1vuuXsifMjlNgAAAAye3jH/94VM7z2muv6Z577lFX12BHkZ6enoFCnBUrVujWW29VaWnpYc5yfCKRiB5++GFJUltbm9atW6eamhotXbpUJ510UszmxeGt3+u9NplelKGsVB4iBxB7RlejQvvWKmXfmv5CmbUyw23HfL5IfqUipQsVKV2k3pIFsgtnSVZKFCMGAACxtn5Y0cyckiyZh1rFHQAAJB8nIrN1j6dbzMHPzbaaY14443Bcw5STU+4piDn4uZMzWTJ9KeWAfCqa+fCHP6zvf//7euutt7R06VL96Ec/0iWXXDLwumEYcl1Xr732mu666y794Q9/kGEYOu+883TppZf6ESIQM9aBzUrb9LBn7Pf2Bdrp9t38m1OSpbQQ1YAAAAAA/NEVtlXV0OUZm1uaHadoosB1lfnCN5Sx/kHvcChdrVf8TJGSBXEKDAAAYHyZMGGCJk+ePNCdZax27Nihu+66S+FwWOnp6XrPe96j+fPnKxwO64UXXtCKFSu0d+9efeMb39A3v/lNZWRkxCT+SCSiP/7xjwPbhmHoyiuv1DXXXBOT+TA2G/eNfCgNAKLODit0YJNC/QUyKfvWyGrZecync9LyFCldqN6ShYqULFSkZIHc9LwjHwgAABLa8OuTucm+4BgAAEHk2DLb93oKYqzmapkt1bJad8twIlGf0pUhJ6esvyBm+mC3mPxpsnPLJSs16nPi6PlSNGOaph555BGde+65qq6u1hVXXKHMzEwZ/ZXYS5cuVVtbm3p6eiRJrutqxowZeuihh/wID4iprBe/42nL1WVk6O7I+wa2T56UxA+nAQAAAEg6m/d3yhnSOdg0pNnFmfEL6DhlvHqPMtf83DPmmilqvfReRSafEaeoAAAAxoerrrpKM2bM0IwZM5Sfn6/6+np95jOfOapz/OpXv1I4HJZlWfrqV7+qWbNmDbw2f/58lZWV6be//a327t2rRx99VFdfffWIczzwwAPq7e0d85yXXXaZysrKPGPp6el66KGH5DiOmpqa9Prrr+vBBx/Uli1bdOuttyozM3l/J05mG+p4KA1AlLmuzPa9CtW9qZR9axWqe1Oh/etk2OFjO51hyZ5wonpLFylS0lco4+RPk1h1HgCAccV1XW0cpdMMAABIQK4rs2OfrOYdMocWx7TslNWy85jfAzgSO6tETt402fkVnuIYO69CCqXFZE5Ej289faZOnao1a9boxhtv1EMPPaSOjsFfMvfv3z/wuWEYuvrqq3XvvfeqoKDAr/CAmAjVvKzUnSs9Yz+3r1CDBlcaOnlSjt9hAQAAAAiwDXXtnu3KogxlpFpxiub4ZLz5M2W98gPPmGtYarv4B+qtOD9OUQEAAIwfoxWwHI1t27Zp48aNkqRly5Z5CmYOuuKKK7Ry5UrV1NToySef1Pve9z6FQt7bV3//+98HFl4bi7POOmtE0cxBpmmqqKhIF110kXJycvT9739fDz/8sD70oQ8dxVeGaOgI29oxogsmD6UBOErhDoX2r1NK3RqF9r2pUN1aWZ31x3w6O7tUkZJFipQs6CuUKZ4npcSmCxoAAEgcNS09aun2rjw/r5SFkAEAiBvXldHV0N8pZoe3c0zLThmRriOf4xg4GUWDxTD5QzvHVEgpLLyUzHwrmpGkwsJC/e53v9PXv/51Pf7443rttddUX18v27ZVVFSkRYsW6corrxz1pgmQdFxXWau/7RkKpxfpx82XesboNAMAAADAT8NXSpubpDd90tf9XlkvfMMz5spQ+zu/rfCMi+MUFQAAAIZ65ZVXBj5ftmzZqPuYpqklS5bo97//vTo6OrR+/XotWLDAs89vfvObmMR3cJ4NGzbE5Pw4vM37OjSkCaYs09AJxRTNADgM15HVVKVQ3RqF9q1Ryr41sho2y3CdYztdKF2RiSept2ShIqV9hTJOdmmUgwYAAMlg+L2T/IyQSnNT4xQNAADBYXQ1DRbDNO8Y+Nxs3imzt/3IJzgGTlp+f0HMweKYvs4xTt40uWk0QhivfC2aOaiiokKf/vSn4zE14JvU7X9Vyr41nrGXJl+vzub0ge3JeWmakM0FFgAAABANlhW7bimmaR52O5ls2Oe98TNvUk5Mv3exkLrpT8p89msjxjsvuEORuf+k4/1qxlO+cXjkOljId7CQ72Ah34lr8+bNkqS0tDRVVlYecr+5c+d6jhleNBMrjY2NkmJ7LYFD2zDsobQZEzKUnsLPL4BBRlfTQHFMX6HMWpnhtmM+XyS/UpHShYqULFRv6ULZhbMkKyWKEQMAgGQ1/PpkbkmWDMOIUzQAAIwvRk+brOYdMluqZTXv9BbH9LTEZE4nJVt2/jQ5nuKYvo9uRkFM5kRii0vRDDDu2b3KevFO71DeNP2Ps0zS4D/wJ09OzhWdAQAAgERUUODfGxt5eXm+zRVNLV292tnY7Rk7e1aZCgry4xPQsdj4qPTUFyTPmtSSLrpDWYs/o1isS52s+cbRI9fBQr6DhXwHC/lOHHv27JEklZaWHrYwZdKkSSOOiWYMxcXFSktL84z39PTogQcekCQtWrQoqnNibEYU9JfSZQYINDus0IFNCu3rK45JqXtTVsvOYz6dk5anSMkC9ZYuUqRkoSIlC+Sm8zsCAAAY3YZ93pXs55byTBcAAEcl3CGrZeeQrjGDnWPMrsaYTOmGMmTn9XWJ8RTG5E+Tm1EkUQCLISiaAWIgfcNDslqqPWMdZ39Ba1Z6H05bMIk2XgAAAAD8s77Gu0pLqmVqdmkSXZdsfVr63+sl1/aOL/k3afGN8YkJAAAAowqHw2pr6+sGUFRUdNh9s7OzlZaWpp6eHjU0NEQ1jtWrV+vxxx/XiSeeqOLiYmVkZKixsVFr1qxRW1ub5syZoyuuuOKozjnWGOmGeXgbh63kPL8sl64/oxgPucbYBSbfriujrbavQGbvmwrVvSmr/m0ZdvjYTmdYsovnKFK6SHbpQkVKF8nJn+55OCYRv5OByTckke8gIddA8nFcV5uGFfXPoagfAICRIt19hTHN1UOKY3bKbN4hq7M+JlO6VmpfYcyQ4hinvzjGySqhMAZj5nvRjOM42rBhg6qqqtTW1ibbto94zLXXXutDZECUhDuU+erdnqHekgWqLb1ANS1rPOMnT2JVAgAAAAD+WbvHWzRzYlmO0kJJ8lBa9QvS/3xQcnq942d/Rlr6b/GJCQAAAIfU3T24iFR6evoR909PT1dPT4/nuGg49dRT1dTUpC1btmjLli3q7u5WZmampk6dqnPOOUfLli076kKNG264YUz7PfTQQ8cS8jFJtg5LLZ292t3szfWZs8pUUJBcX0c8JFuucXzGTb7DHVLtm9KeV6U9r/X9aa879vPlTpYmnyqVny6Vny6jbIFCqZlJv2LouMk3xoR8Bwe5BhLfrsZudYQdz9hcimYAAEFlh2W17pbVXC1zaHFMS7XMtr0y5EZ9StcMyc6dMlAMM7RzjJNdKplJ8kwDEppv7xt1dnbqjjvu0M9+9rOjWiXMMAyKZpBUMtb8QmbnAc9Yx+Iv6+293hUJMlNMzZiQ6WdoAAAAwLjW1NQUs3Obpum5udnS0iLHcQ5zRGJ6rcq7usvs4vSYft+ixapbo5w/fUhGxPtQXc/8a9R5+uel5uaozjde8o0jI9fBQr6DhXwHS7zzXVBQ4NtcySQcHuwWEAod+XbUwX2GHhcNM2bM0IwZM6J6Thy/t2qaPdupoSTrggng0BxHatjqLZCpXy+5x/h/cyhDmrRIKj+t78/k06S8ydGNGQAABNqGYV1mirNTVJydGqdoAADwgRORGqukhu1Sw3Zl7N0gs6mqr2tM2x4Zx3oNfxiuYcrJKZedXyF7WHGMkzNZMpN9KQwkOl/+hrW3t2vZsmV644035LrRrzADEoXReUAZb/7UMxauWKrI5DP11rO7POPzJ2XLMmkLBgAAAETLWDqZRovjOL7OFy0b6to923MmZiX812Ed2KTsP18nI+yNvXvWu9W+5D/7HsaJsWTNN44euQ4W8h0s5DtYyHdiSE0dfMAoEokccf+D+ww9LlHde++98Q4h6b01rAvm3LJcpVhmnKIBcFw6G/uLY17t+1PzhtTTcuTjDqXohMECmfLTpYlzJSslevECAAAMM/zeydzS7DhFAgBAFLmOzLa9/Z1idvR1i2multlSLat1d1/hTL8j9wkf45Qy5OSUDRbF5E2Tc7A4JrdcshL/vV+MX74Uzdxxxx16/fXXJUlnnXWWPvGJT2jBggXKz8+XafIGOMaPzFd/KLN3cPUBV4Y6zv6SJGltbZtn3wWTWDENAAAAgH+aOnu1t9W7avfc0qw4RTM2ZtMO5f3lWpnDHrbpqbxI7e/8tmTwngIAAECiSk8fvNXa3d19mD29+ww9LlEVFRWNaT+6YR7a6zv2e7aTpQtmPCR7rnF0Ej7fdljWgU0K1b0pq26NQnvflNVSfcync9LyZJcuVKR0kSKlC2WXLpSbnu/dqbV91GPHg4TPN6KKfAdHIuSabpjA0dlQ5+00M6ckse+dAAAwwHVlduwbLIY5WBzTslNWy04ZdnS7eh9kZ5XIyZvW1zWmvzim72OFFEr893cRTL4Uzfzxj3+UYRi67LLL9Je//IVCGYxLZnO10tc/6BnrOfF9sifMVk/E0cZhrTxPnsSqBAAAAAD8s37YTZ/0kKlpRRlxiubIzNY9yvvLh2R2NXjGw1PPU9vFd9GeGQAAIMGlpqYqJydHbW1tamhoOOy+7e3t6unpkTT2gpRkQDfMQ1u/d3gXzMykij+eki3XOD5xzbfrymzfq9C+NUqpW6NQ3ZsK7V8vw+45ttMZluwJJ6q3ZKEipQvVW7JITv40yTC8Owb47zc/38FCvoODXAOJLeK42lzf6Rmbl+ALjgEAAsZ1ZXQ1DHSKsYYVxxiRrphM62QU9nWIOVgQc7A4Jq9CSuX/SiQfX54wqampkSTddNNNFMxg3Mp6+XsyhrQrc61UdZ55syRp074O9druwGuGpPllFM0AAAAA8M/GOu9DaSeWZClkGofYO76Mjnrl/eXDstrrPOO9k05X66X3SlZanCIDAADA0SgvL9fGjRtVV1cn27ZlWdao+9XW1nqOwfh2oCOsfW3J1QUTCITeToXq3+4rkNm3RqG6NbI664/5dHZWqSKlCxUpWaje0oWKFM+XUhJ38Q4AABBMOxq61BPxdoOi0wwAIB6Mrqb+gpjqwY/NO2Q275TZG6MurOn5UtEM9eRMVSS3QnZ+RX8Hmely03JiMycQJ74UzUycOFF79uzRhAkT/JgO8F1o31tK2/q4Z6zr5Ovk5EySJL1V6/0Pq3JChnLSWRUZAAAAgH82DOs0MydBH0ozuhqV95drZbXs8oz3TjxZrVf8lAdsAAAAksjs2bO1ceNG9fT0qKqqSieccMKo+23YsMFzDMa3jcOuTTJSTFUU8ns+4CvXkdVUNVAck7JvjayGzTJc58jHjna6ULoiE09Sb8kCRUoWKVK6QE52WZSDBgAAiL71wxYcm5SbpvzMlDhFAwAY74yetr5CmJZqWc07vcUxPS0xmdNJyZaTX9HfLaavc4xbWKncaYukzEJJUmdTE90RMe758tT+GWecoT179mjz5s1atGiRH1MC/nFdZa7+lmfISctV16mfGth+q7bN8/qCyVRgAgAAAPCP67ojimbmJWDRjNHTprxHPqJQ41bPeKRwllqv/IXcVK6lAAAAkskZZ5yhP//5z5KklStXjlo04ziOVq1aJUnKysrSvHnz/Awxpg7VWScaTNM87HYi21Tf6dmeU5qt1BQWGjuUZM41jl6s8m10NcmqW6NQ3ZsK1b0pq26NzHDbkQ88BDu/UpGyhYqULpJdukh20WzJGny41JAUu38Bxw9+voOFfAcHuQaSy/CifrpgAgCOW2/nsG4xg5+bXQ0xmdINZcjO6y+M6e8U01ckM01uRpFkGJ79LcuSMgtiEguQqHx5B/pzn/ucHn74Yf3whz/UP//zP8sY9sMHJLOUXc8pteYlz1jXqTfITc+X1Pdw2ls13lUJTp6U7Vd4AAAAAKD69rAaOns9Y3NKEuzGT2+nch/7mEL713uG7bxpann3A3IzeNMOAAAg2cycOVNz5szRxo0btXLlSi1dulSzZs3y7PPYY4+ppqZGknTppZcqFBo/xRMFBf79DpuXl+fbXMdrywFvkfyp04p8/V4lu2TKNY7fMeU7Epb2rZNqXpf2vNr3p7Hq2INIz5fKT5MmnyaVny5NPkVWZqEsSWnHflaMgp/vYCHfwUGugcQ2vGhmDkUzAICxiPTIatkpq3nHkOKYnX0dZDr2xWRK10rtK4wZUhzj9HePcbJKRhTGAPDy5c7D4sWL9a1vfUtf+tKX9C//8i+67777lJ+f78fUQGy5jrJWf9szZGeXquvkawe2a1p6RjyctmASqyMDAAAA8M/wLjPZaZamFKTHKZpRRHqU+8SnlLL3dc+wnTNJLe/5jdys4jgFBgAAEGybNm1SXV3dwHZra+vA53V1dXr22Wc9+y9dunTEOT7ykY/otttuUzgc1h133KH3vve9mjdvnsLhsFavXq2nn35aklRWVqYrr7wyJl8HEofrunq7psUzdlJ5fnyCAcYD15Va9kg1r0l7+v/sXSNFuo/tfIYllc4fLJApP00qnCHRJQEAAIxD4YijLfu9nTDnUTQDADjIDstq3SOzudpbHNNSLbNtrwy5UZ/SNUOyc6fIyZs20CnmYOcYJ7tUMunrChwr35br+sIXvqAZM2bo4x//uKZMmaILL7xQs2bNUmZm5hGP/drXvuZDhMDRS9v8F4UaNnnGOs/8nBQafPjsrVpvl5mCjJDK81l3CQAAAIB/hhfNzC3JkpkoK83Yvcr5641K3f2CZ9jJLFbLu38jJ2dSnAIDAADAihUrtGrVqlFf27x5szZv3uwZG61oZvr06br55pt1zz33qKurSw8++OCIfcrKynTrrbcqIyMjKnEjcdW2dOtAe9gztqCc1deBMQt3SLVv9neQ6S+Saa878nGHkjOprzDmYIFM2UIp9cj37wEAAMaDbQc6FXG8DzyfWELRDAAEihOR2VbT3ylmaHHMTplte2S4TtSndA1TTk657PyK/oKYweIYJ7dcMsdPJ24gkfj2k1VfX68//elPamlpkeM4+stf/jLmYymaQUKK9Cjz5e95hwpnqWf2ez1jb9W0ebZPnpwjI1EeTgMAAADGEcuK3aoq5rAVVYdvJ7qN+4YVzZTlxPT7NWaOrawVX1Rq9QrvcHqB2t73OxlFMxSPKJM93xg7ch0s5DtYyHewkO/Ed9ppp+nOO+/UE088oTfeeEONjY0KhUIqLS3VWWedpUsuuURpaeNvsammpqaYnds0TeXlDRabHLz/luhe3Nzg2c5NDynH6FFTU/gQRyBZc41j48m346ht55sya19XaO+bsurelNWwRYZrH9O53VC6IhNPkl26SJHSRYqULpSbU+bdqaOn7w98wc93sJDv4EiEXBcUFPg6H5Cshi84VlGYruw0HlQGgHHHdWS27R3sFNNfHGO2VMtq3SPD6Y3JtHZ2WX9BzPS+gpiDxTG55ZI1/t4LBRKdL7/lNTQ06Pzzz9fWrVvlutFvRwXEQ/rbv5XVVusZ61j8pRHtz4Z3mjl5UnbMYwMAAACCyM8bgUNveiY613W1cV+nZ+zMmSXxv3HqONKjN0lbHvWOp+XKvPZPypu0KD5xjSKZ8o3jQ66DhXwHC/kOFvIdPcuXL9fy5cujcq7i4mJdd911uu6666JyvmRg28f2YPuxcBzH1/mO1braVs/2nJJMHhg+SsmSaxwD15F1YL305ivS7pekPa8rp6flmE8XyZ+uSMlCRUoXqrdkoeyi2ZKV4t2Jv0sJhZ/vYCHfwUGugcQ1vGhmLl1mACB5ua7Mjn2ymqv7imGaqweLZFp2yrBjs2CLnTlxsBimv1tM38cKKZQekzkBHBtfima+/vWva8uWLZKkq666Sp/+9Ke1YMEC5efn03EDScnoaVXmaz/2jPVOOlO9FUs9Y+09EW074H04bcGknFiHBwAAAAADdjV2qqXLuzrOyVPy4xPMQa4r/e3fpTd/4x1PyZSueUhKoIIZAAAAANEz4qG0UhYaQ7AZ3c1K2fW8Unc+q9Rdz8nsajym8zhpuX0FMiUL1Vu6UJGSBXLT86MbLAAAwDizoc67EPKcUopmACChua6MrobBbjHDimOMSFdMpnUyCgeLYYZ0jrHzKqRU/u8AkoUvRTOPPPKIDMPQhz70If3617/2Y0ogpjJev09mT7NnrGPxl6RhRWDr9nbIGdJcKWQaOpFVCQAAAAD4aO0e76q0RVmpmpQX51VtVv639PK93jErVfqX30sVZ8cnJgAAAAAx5bquNuwbXjTDPRMEjOvKOrCxr0hm57MK1b0pwz26bkuuYcmecKJ6+7vIREoWys6fJhlmbGIGAAAYh7p7bVU1eB+upqgfABKD0d0sq3mHpyDG7P/cDLcf+QTHwEnL83SKcYYUybhpuTGZE4C/fCmaqampkSR99KMf9WM6IKbM9r3KWPtLz1jPjEsVKV04Yt+3ats82yeWZCo9hTesAQAAgFhoamqK2blN01ReXt7AdktLixzn6B5qiZdXttV5tueUZKq5uTk+wUhKe+1eZb7wHc+Ya1jquOxH6i1cKMUwj2OVzPnG0SHXwUK+g4V8B0u8811QUODbXEAy293co/Ye2zM2h4XGEABGuE0pu1crdeezStm5SlbHvqM63s4qUaR0kSIlC9RbukiR4vlSSkaMogUAAAiGTfWdnoWQTUOaXZwZv4AAIGCMcFtfIUzzDlnNOwe7xjRXj1jQPlqclGw5+RWe4pi+j9PlZvAeLzDe+VI0M2HCBNXU1CgnJ8eP6YCYynzlbhl2z8C2a1jqOOvzo+77Vq23qnXBJH4GAAAAgFixbfvIO0WJ4zi+znc8Nuz1XpfMKcmKW+zpb/1GmS98yzPmylDbhXcqXHGBlKDf02TKN44PuQ4W8h0s5DtYyDcShWVZMTu3aZqH3U5Em+o7PdtFWSmalJ8hwzDiFFFySMZcB57rymzcppTqlUqpXqlQ7asynMjYj58wS5r5TmnqWWrNnS07q8Tzcuz+ZYHf+PkOFvIdHOQaSA4b67xdMCuLMpSRym9aABBVvZ2yWnb2F8MM6xzT1RCTKd1Q+rCCmMHP3cwJEu9DAYHlS9HMeeedpz/84Q9at26dTjnlFD+mBGLCatyqtI1/9Ix1z/sXOQXTR+xrO67eHlY0c/JkimYAAAAA+Md2/j97fx5d11Xn+d+fe+6sWZ40eh4lO3YSOyEJFHGoIpAwhVTi4kdVEcYu0qaq6afp7idrQdezVvNbUE/zdPPrtIuuKqBSQJEmKUJSgbgKCE4YEhJsJ3ZiyYM8W5NtSdZ8x3OeP+RI3leydCXdSfe8X2tllfe+5+z9lb5W4aOzv3s7au02X/w01+ZnJ+dg6z+p7Jf/n0n9Q3f934pt+GDO4wEAAACyLZenEF172lKhOtnXabRvXF6tRYsW5SmahWsh5NqVYsPS6V9KJ3429l//ufTv9YWk1e+U1t89ViyzaOK9Y0UWQkXh4ufbXci3e5BroDC1dKdsOFZblqdIAGCBS0THCmPGT4oZOznG6j8z65NW0+VYASUrVxgFMfbVP9ulNZKHomUAk+WkaOY//If/oB/+8If62te+pl27dikUCuViWiDjSl76b/I49njb8Zdo5JY/n/La0z2jGo6ZuxlurecBCwAAAEDunOkd1WjcNvqa8/DiJ9D2nMp+8cik/qF3fFHRzX+U83gAAAAA5N4bF/qN9g2NLCDFAtdzUjrx07H/zvxGSkbTv7dqpbThPWOFMqveIfnD2YsTAAAAk7SknDSzOU8bjgHAgpCMyTtwQdY1J8V4r5yWt/+MrMFOeeRkfErH8skub7xaGLPaODnGLquTLE4HAzA7OSmaufnmm/XNb35Tn/70p3X33Xfrm9/8pjZs2JCLqYGM8XX8TsEzzxt9ozd+Sk7p0imvP9QxaLTrK4JaWhbIWnwAAAAAkKo15aVPTXlAi0v9OY3Bf2afyn/6740NCCRp+G3/XpEbP5HTWAAAAADkR9J29GaHWTSzrbEqP8EAcxWPSGd/ffU0mZ9KvafSv9cbkFbeMVYks/5uafE6yePJXqwAAAC4rqFoQmd7I0ZfUw1FMwDgGe2Veg6MbRLRc1Jl3Udl9Z2WNdguj5OceYBZcjyW7PKG8WIY4+SY8gbJm9v32gCKW06KZj75yU9Kkpqbm/XrX/9azc3N2rp1qzZs2KCSkpJp7/V4PPrWt76VizCB63Mclf7mr4wuO7xIozd9+rq3HG43j/Hc2sApMwAAAABy60hK0UxzjndK8194WRV7/608dsLoH7n5zzS6Y3dOYwEAAAByra+vL2tjW5alysqJk1r6+/tl2/Y0d+TXyUsjGomZiytWlDlZ/R4Vi4WW62JjDVyQ78w++c+8IP/5l+RJjKZ9r11Wp/iquxRffZfijXdIgWueya9cmXo+8u0q5NtdyLd7FEKuq6urczofsNAc7Tbfnfgsj9YvnX4NIwAUHceR1X9G/s4D8ncekK9jv3xXzM0hMlWykiyrmyiGufbkmIpGyRvM0CwAML2cFM089thj8lzdKcfj8ci2bR06dEiHDh2a9j7HcSiaQUEInPqp/N2vGX0jt/y5nMD1C2EOp5w0s7WeohkAAAAAudXSZRbz57Joxtd5UBU/+TfyJGNG/+gNf6qR2/8jO+oCAACg6CWTmd+B83ps287pfLP1RseA0a4tD6gy5C3omAtVoed6wUvGxhYMnX1BgbMvytd7Iu1bHY9Xibodiq26U7GVO5VctMF89p1D3si3u5BvdyHf7kGugcLTkrLh2PqlJQr4rDxFAwA5kozLd7lFvo79Vwtl9ssa7cnc8CXLrhbErDJPjqlcKflCGZsHAOYqJ0UzK1asGC+aARYcO6GSl79mdCUrVyiy+SPXvaVnOK7zV6JG39b68qyEBwAAAABTiSdtnbg0YvQ11eSmmN97qUUVz35Snrg5f2TT/Rp+53+hYAYAAABwmdSC/qYcn4IJTMca6pb/3IsKnHlB/vO/kRUfmvmmq+ySJYqt3KnYyp2KL3+7nGBFFiMFAABAJqQWzfB8AqAYeWKD8nW+Jn/nfvk6D8jf/bo8ici8xrRDiyaKYa4pjrErV067AT0AFIKcFM2cOXMmF9MAWRFseXLSsXPDt/0HyRu47j1vpJwyE/ZbWscxngAAAABy6OTlUcWSjtGXi5NmvL1tqvznh2TFzOei6Np7NPSur0gedmsDAAAA3CZ1UdrmWhZSII/shHzdrytw5uppMpdb0r7VkUeJ2hvHC2WSS5t5zgUAAFhgWrvN55NcvDsBgGyzBjvGimOuniLj7Tkmj2PPfiB/ibR0k7R4nUZL6pWoWDleJMNGEQAWspwUzQALVnxEpa/+P2bXshsUW3fvtLcd6jB3oLqhrkw+i52UAQAAAORO6qK05VVBVYSy+2sAq/+cKp75mKzRXqM/tnKnBu/+75LFryEAAAAAt4knbR1PPQWTRWnIMc/IZQXO/UqBsy/If+5XsqL9ad9rh6oVW/FOxVfuVGzFO+SEF2UxUgAAAGTTldG42vujRl9zDc8nABYYOylv74mJU2Q698s72DG3oUqWKF63Q/G6HbIbb1XF+jskr1+SFOnrUzKZzGTkAJA3rFYBphF+/duyRi4ZfSN3/KcZd4w6nHLSzNb68ozHBgAAAADTaekyi/mbsryTszXUpcpnPibvcLfRH2t4mwbu2TPtaZ0AAAAAitfJy6OKp56CyaI0ZJtjy3fxTfnPvqDA2Rfk6z4sj5yZ77sqvnSL4qvGTpNJLNsqWd4sBgsAAIBcaU3ZcCzo82jNkpI8RQMAaYqPynfxsPyd++Xv2C9f12uyYoMz3zeFRPU6Jeq2K163XfH6HbIrVkiesQ3hvV7veMEMABQbimaA6/CM9ih88O+MvtiKdyreeMe098US9qQHrK0N2V2cBgAAAACpUk+aac7iTs6ekcuqeOZj8g6cN/rjNTdq8H1/K/lCWZsbAAAAKFReb/YW2VuWNW27kLReNE+ZWVEdUlVpME/RLDwLKdf55on0y3ful/Kf2Sf/mRdljfakfa8dKFdi5TsVX7VT8ZV3yildNv5ZLstlyLe7kG93Id/uQa4xk1gspscff1ynTp1SV1eXhoaGVFJSotraWr3rXe/S7/3e78nnY0lftrR0m+9ONi4rlc/y5CkaAJiaZ7RH/s4D8nXsH/u/l47IY8dnPY5jBZRYtkXx+h1K1O1QvPZmOeHqLEQMAIWPf2ED11Hyuz2y4hM7MzvyaPiO/zTjfccuDiuWsmPaDXUUzQAAAADInUjc1snL5sK0zVkqmvFE+lX5zx+Xr++k0Z9Y0qSBD3xbToDnIQAAALhTdXXuFiFUVlbmbK7ZOtlrFtffuGJRTr83xaaQc51zjiN1vSGd+Kl04mfShVclx07//mWbpfXvltbfLWv5rQp4/Sq0M1LJt7uQb3ch3+5BrpEqEonopz/9qdatW6ebbrpJFRUVGh4e1uuvv65vfOMbeumll/TII49QcJUlqRuONXEKJoB8cxxZV86MnSLTeUC+zv3yXTk9p6HsYOXEKTJ1O5RYdoPkY+MSAJAyXDTz1o5ZHo9HiURiUv9cpI4F5ILVf06hN79v9EU3fkjJJU0z3nuoY8hor1kcVnmI+jQAAAAAuXP80rCureW3PGO7pWWaJzakimc/Jd/lVqM/UbVG/R98TE6IF8IAAACA2x260G+0tzbynIB5iAxIp14YK5Rp+7k02Jn+vf5Sae1d0ro/GCuWqWzMWpgAAADXU1ZWpn/4h3+YdJpMMpnUl7/8ZR06dEivv/66br755jxFWNxau8x1Xc1Z2nAMAK4rGZPvUov8nfvlu1ooY432zm2oiuUTBTJ125VctE7yUHQJAFPJ6Ep+x3Fm1Q8UqpLf/nfjODvHCmjkbf+vtO493D5otLc1sKsyAAAAkAvz2bBhJqk7uhX6Dm+t3aNGe/XisMrDGd4vNxFR2XN/Jn/3a0Z3sqJRQ/f/o6zymszOl0MLLd+YO3LtLuTbXci3u5BvoHBF4kkd7zbfm2xtrMpPMFiYHEe6dOzqaTI/lc69LNmz2HBxyQZp/d1jRTIrbmeHXQAAkHeWZU353Or1enXLLbfoyJEj6urqykNkxe/yUEwXh+JGX3Mt67oAZJcnOihf18Gxk2Q6DsjX/bo8yeisx3E8lpJLmhSv26F4/Q4larfLLlu472MBINcyWjTzl3/5l7PqBwqR9+IbCp141uiLbP1T2RUNM97rOM6kk2a21pdnND4AAAAAU6uurs7ZXJWVhb0z8snes0b7ppWLM/v9ScSkH/wb6cJvzf7yOnk//mNVLVqdubkKQKHnG5lDrt2FfLsL+XYX8o1C0dfXl7WxLcsy/q739/fLtu2szTdXh9oHlbQnNtezPFJDiZ3V702xWSi5zqj4iPznX5bvzD75z+yTd7A97Vsdb1CJ5XcovuouxVftlF25YuLDwRFJI5mPN4NcmW8XI9/uQr7doxByncvfledaf3+/2tra1NbWppMnT+rkyZMaHBwr0r7zzju1e/futMe6dOmS9u7dq4MHD6qnp0c+n0+1tbW6/fbb9Z73vEfBYG6LbW3b1qFDhyRJy5cvz+ncbtHSPWy0S/yWVi4K5SkaAMXKGuyQv2O/fF0H5O/YL2/PMXk0+4MHHH+J4rU3KVG7faxIpmabnACFfgAwVxTNAClKX/5vRtsOlGtk+8Np3dvRH1XPsLkjwdZ6/qECAAAAILcOXbhitLc2ZnDhaDIhPfWZsR1+r1WyWPrYM1KRFcwAAAAAc5VMJnM2l23bOZ0vXW92DBjtVYvCCnpz+70pNoWa6/myrpxR4OwLCpx9Qf72V+RJxtK+N1mxXLGVOxVbtVPxhtsk3zULHxf496pY842pkW93Id/uQa4z6zOf+UxGxtm/f78effRRjY5OnNoejUbHC3Gef/55PfLII6qtrc3IfFNJJBJ66qmnJEmDg4N688031d7erp07d+qGG27I2rxu1tplFs1sqimV5fHkKRoARcFOytt7XP6O/fJ37pev84C8Q51zGipZskyJ+h2K121XvG67kkuaJCujS7wBwNX4/6jANfznfqXA+d8YfaPbPysnnN4uHIdTTpmpCvu0opodCQAAAADkzmAkrlOXzRc/WxurMjO4bUv//OdSy9Nmf7BS+tMfSUs3ZmYeAAAAAEWhJWVR2uba0jxFgoKTiMrf8epYocyZF+TtP5P2rY7lV7zhVsVW7lR85U4lq1ZLLHYEAMB1lixZooaGhvHTWdJ1+vRpff3rX1csFlMoFNJ9992nLVu2KBaL6Te/+Y2ef/55dXZ26itf+Yq++tWvKhwOZyX+RCKhf/qnfxpvezwefeADH9BHP/rRrMwH6UiXua5rcy0bIQOYpfio/N2vy9d5YKxIpus1WbGhme+bQmLResXrtitRt0Px+h2yyxt5tgWALMpJ0cwvf/lLSdItt9yS9oNEJBLRq6++Kkl65zvfmbXYitHTTz+t73//+5KkL3/5y9qwYUOeI1ogHFulL/1/ja5kaa1Gt3087SEOdwwa7a31ZfLwDxkAAAAgJ/r6+rI2tmVZqqycOK2lv79ftm1nbb752H+uX841J3z7LI/qQsn5f38cR+EX/lKhw983u/0lGvzQt5UMrZCymINcWkj5xvyQa3ch3+5Cvt0l3/murk5v0yXAjVpSFqU1UTTjatZA+8RpMhdelicxOvNNVyXLaseLZGKNd0gB/i4BAOBGDzzwgNauXau1a9eqqqpKFy9e1Oc+97lZjfHYY48pFovJ6/Xqi1/8orGuasuWLaqrq9P3vvc9dXZ26tlnn9WuXbsmjfGd73xH8Xg87Tnvvfde1dXVGX2hUEhPPPGEbNtWX1+fDhw4oMcff1zHjx/XI488opKSkll9XZie4ziTTprh+QTATDwjl+XvPCB/5wH5OvfLd+mIPHZi1uM4VkCJmq1XT5HZoUTdzXJCVZkPGABwXTkpmtm5c6csy9Lhw4fV3Nyc1j1vHTdpWZYSidn/j4xbnTt3Tk8++aSCwaCi0Wi+w1lQgsefle9yi9E38rZ/Zx7hPoNDKSfNbK0vz0hsAAAAAGaWTCZzNpdt2zmdbzbeaB8w2uuWhuX1OPOL13FU8vJ/U+jwd8xub0AD7/sbxZfdKBXo9yMTCjnfyCxy7S7k213It7uQb6AwDEUTOtsbMfqa2cnZXZKxscVFZ19Q4OyL8vWeSPtWx+NVom67Yit3KrZyp5KLN7DjLgAAmLKAZTba2trU2toqSbrrrrum3Ij4/e9/v/bt26f29nbt3btX999/v3w+c4ndz372s1mty7rtttsmFc28xbIsLV68WHfffbfKy8v1P/7H/9BTTz2lP/mTP5nFV4aZdA3E1DdqrkFspmgGwLUcR94rp+Xr3C9/x375Ow/M6lTUa9nBqrFTZOq3j/3fpTdIvmBm4wUAzEpOimaksWrtXN7nRolEQnv27NGqVatUW1urX/3qV/kOaeFIRlXy2/9udCUWrVd00/1pDzEcS6rt0ojRt62Blz8AAAAAcqslZae0TCxKCx/4a5Uc/Bujz7F8GrjnrxVvvGPe4wMAAAAoPke7R3TtWz6f5dGGpeyWXeysoW75z72owJkX5D//G1nxoZlvusouWTJeJBNf/nY5wYosRgoAANzo1VdfHf/zXXfdNeU1lmXpzjvv1Pe//30NDw/ryJEj2rZtm3HNd7/73azE99Y8LS0tM1yJ2WrpNt+dVIS8aqhkATvgasmYfBffHD9Fxt95UFakd25DVa5QvHa74vU7lKjboWT1GsljZThgAMB85KxoZrZs25Ykeb3ePEeycDz11FO6cOGC/uqv/krPPPNMvsNZUEJvfF/ewQtG38jt/1Gy0v8ROdI5JPuatz9ey6OmGopmAAAAAORWa8qLn+aa+e2UFjr09ypN2WTA8VgavPt/KL5q6peKAAAAAJD6bLJuaVgBHwtGio6dkK/7dQXOXD1N5nL6CzwdeZSovXHiNJmlzSwqAgAAWXXs2DFJUjAY1Jo1a657XXNzs3FPatFMtvT2ji3WZr1c5rV0mcXcTTWl8nCSIeAqnuiAfJ0Hxk5E7TwgX/cheZLpnxr2FsfjVWJpsxJ12xWv26F43XY5pcuyEDEAIJMKtmjm7NmzkqTKysqszdHf36+2tja1tbXp5MmTOnnypAYHByVJd955p3bv3p32WJcuXdLevXt18OBB9fT0yOfzqba2Vrfffrve8573KBjMbmX6qVOn9KMf/Ui7du1SY2NjVucqNp7ooEr27zH64nU7FFv1rlmNc7jDfLjatKxEIT+/2AcAAACQO1dG4mrvN3+521w796KZYMsTKvvVlyf1D73rK4qtu3fO4wIAAAAofqmL0jJxCiYKg2e0R4Gzv1Tg7Avyn/uVrGh/2vfaoWrFVrxT8ZU7FVvxDjnhRVmMFAAAwHThwtiGurW1tdMWptTX10+6J5MxLF26dNJasmg0qu985zuSpJtuuimjc0Jq7UrZcIznE6C4OY6swQ75O/dfPUXmgLw9x+UxzsRNj+0vVaL2JsXrdihRd7PiNTdKgfltWggAyL2sFM2cO3duyv7Ozk6VlU3/D85oNKqTJ0/qS1/6kjwejzZv3pyNECVJn/nMZzIyzv79+/Xoo49qdHR0vO+tr+PkyZN6/vnn9cgjj6i2tjYj86WKx+Pas2ePVq1apQ996ENZmaOYhQ/+jaxIn9E3fMd/lma5m8Dh9kGjvbWhfN6xAQAAAMBspO7kHPR5tGZJyZzG8vaeUNkLX5rUP/TOv1S06YE5jQkAAAC4STZ3h7Ysa9p2IWhJWZS2ua6cHbPnoCBy7djydr8h/5l98p/ZJ2/34VktNEosu0HxVXcpvmqnkjXbJGvs70Hh/a3Nv4LIN3KGfLsL+XYPcl24YrHY+GbKixcvnvbasrIyBYNBRaNR9fT0ZDSOl156ST/5yU+0adMmLV26VOFwWL29vXr99dc1ODiopqYmvf/975/VmOnGmK1/jxf633vHcdSS8v5kSz3PJ3NV6PlGZi2YfNtJeS+3ytd5QL6O38nXsV/WUNfchiqtUaJ+hxL1tyhRv0PJJZska2KpdTH/f44Fk2/MG7l2F/I9JitFM6tXr57U5ziO7r777lmP9bGPfSwTIc1oyZIlamho0KFDh2Z13+nTp/X1r39dsVhMoVBI9913n7Zs2aJYLKbf/OY3ev7559XZ2amvfOUr+upXv6pwOJzx2H/wgx+os7NTX/3qV137F3murKEuhQ/9vdEXXXO3EnU3z2oc23F0uNPcMW1bPTsSAAAAAMitIymL0jYuK5XPmt2GAG8J/26PPHbC6Bu+/T8qsjU3z+kAAADAQlddXZ2zuSorK3M2Vzr6hmOTTsG8fUO9qqsr8hRR8chZrkf7pJO/kE78bOy/kcvp3xuslNbeJa2/W1r3B/KV18gnKfNvSYtfof1sI7vIt7uQb/cg14UjEomM/zkUCs14fSgUUjQaNe7LhO3bt6uvr0/Hjx/X8ePHFYlEVFJSohUrVujtb3+77rrrrlkXczz88MNpXffEE0/MJeRZK7S/96cvD2somjT67tjUoOpK/oWaCYWWb2RXweQ7Nixd2C+d+610/rfS+d9JscGZ75vKsmZpxW3S8tukFbfJqlqhgMejQGYjXpAKJt/IOnLtLm7Nd1aKZhxn6p2Frtc/lVAopL/4i7/QJz/5yUyFNckDDzygtWvXau3ataqqqtLFixf1uc99blZjPPbYY4rFYvJ6vfriF7+oDRs2jH+2ZcsW1dXV6Xvf+546Ozv17LPPateuXZPG+M53vqN4PJ72nPfee6/q6uokScePH9ezzz6rBx98UCtWrJhV7JBKXv2f8iQmHm4dj1cjt//HWY9z6vLopIerGyiaAQAAAJBjLV1mMX9z7dyOBrf6TivY9hOjb3TrxzS6/bNzjg0AAACAexxu7zfaQZ+l9TW8NylojiN1vymd+OlYkcz5VyTHTv/+ZZul9e8eK5RZfqvk9WcvVgAAgDmIxWLjf/b5Zl4y99Y1196XCW+tVUPuHL5wxWgvKQuqtmLmwikABWSwe6w45txvpXMvS52HJSc5832pvEGpYftYkcyK26Xlt0jh3G16AgDIn6wUzfz935snd3ziE5+Qx+PRf/2v/1UNDQ3Xvc/j8SgUCqmurk433XSTysqy+8vzqQpYZqOtrU2tra2SpLvuussomHnL+9//fu3bt0/t7e3au3ev7r///kkPXj/72c8UjUYn3Xs9t912m+rq6pRMJrVnzx6tXLlS991337y+Fjfy9rYp2Pqk0RdpflDJ6jWzHutwh7kwrbY8oJry4LziAwAAAIDZau02T5pprp3bc3XJwf8tzzWLo2x/qUZu/Xfzig0AAACAe7yRsihtc32F/F4rP8Hg+iID0ukXJwplBjvTv9dfOnaazLo/GCuWqWzMXpwAAAAZEAhMnBmQSCSmudK85tr7CtU3vvGNfIdQ0A5fMIv6tzVWyuPx5CkaADNyHOny8bHimHOvjP3fvtNzGyu8aKw4ZsXbxv5v3TbJx7pOAHCjrBTNPPTQQ0b7E5/4hCTpvvvuU3NzczamzItXX311/M933XXXlNdYlqU777xT3//+9zU8PKwjR45o27ZtxjXf/e535zR/JBJRZ+fYL68/+tGPTnnNF7/4RUnSF77wBd16661zmqdYlfz2a8YiMMcXnvMisMMd5tF+2xrK5xUbAAAAAMzWpaGYLg2Zp5g218z+pBlr4IKCx542+iI3/ImcUNU8ogMAAADcp6+vL2tjW5alysrK8XZ/f79sexangmTZ/tOXjfaGpaGsfj+KWUZz7TiyetvkP7NP/jP75OvYL48dn/m+q5LVaxVfdZfiq+5Son7HxEIjWxL5zYhC/9lGZpFvdyHf7lEIua6uZsf8qYRCEyeLRCKRGa9/65pr7ytUixcvTuu6bP2bvBD+3k/n4Jkeo71+cZDnk3ko9Hwjs3KS70RU3otvytfxO/k69svXeUBWZG4/o8nKVUrU71Ci/hYl6rfLrl4rXVskNzgiaSQzcRchfr7dg1y7SyHkuxCeUbJSNJNq3759kqTVq1fnYrqcOXbsmCQpGAxqzZrrn05ybaHQsWPHJhXNzJXf79e73vWuKT9rbW1VZ2enduzYoYqKCi1btiwjcxYLX+d+BU/9zOgbvfGTckrn9n1KPWlma312T0kCAAAAgFRHusznktKAVysWzf5lXvjg38hjT+yy5/hCGr3xk/OODwAAAHCbZDKZs7ls287pfDNp6TQ3G2taVlJQ8S1ks851fET+C79V4OwLCpx9Qd7B9rRvdbxBxRtvV2zlTsVW3im7coV5ATnNukL72UZ2kW93Id/uQa4LRyAQUHl5uQYHB9XT0zPttUNDQ4pGo5LSL0hZCHL1d7GQ/t4nbUdHu833J5uWhQsmvmJQSPlG9mUi355Iv3xdB+Xv2C9/5375Lh6WJxmb9TiO5VNiSbMSdTsUr9+heN12OSVLUgOeV6xux8+3e5Brd3FrvnNSNHPnnXfmYpqcu3DhgiSptrZWXq/3utfV19dPuicTAoGAPvvZz0752Z49e9TZ2an77rtPGzZsyNicRcFxVPqbvzK67NAijd78mTkN1zcS17k+cwcKTpoBAAAAkGutXcNGu6mmVNa1OyelwRrqUqjln4y+yOaPTP4FMwAAAABcx+WhmC6mnIK5uZbNxnLJunJmvEjG3/7KrBYfJSuWjxXJrNqpeMNtkq/wd1YHAABIV2Njo1pbW9XV1aVkMnnd9V4dHR3GPVi4zvSOajRuLppv4vkEyB3HkTV4Qf6rJ8j4O/fL13tiTkPZ/jIl6m5SvG77WKFMzTbJX5LhgAEAxSonRTPFKBaLaXBwbJesmXYUKCsrUzAYVDQanXGngkKRbpzTFQvNh2VZ07bnw3/yp/J3HTT6Im/7c1nhqjmN92ZXv9EO+S1trC2X15rd4jQ3y2a+UXjIt3uQa3ch3+5CvoHC1JJaNFNbOusxwq99Ux57YjGVYwU0etPcNhgAAAAA4E4t3eazSWnAmtMpmJiFRFT+jlfHCmXOvCBv/5m0b3Usv+INtyq2cqfiK3cqWbVamuUGDAAAAAvFxo0b1draqmg0qlOnTmn9+vVTXtfS0mLcg4UrdcOxmvKAFpf68xQN4AJ2Qt7LR+Xv3C9/5wH5Og/IO9w9p6GSZbVjxTF1Y6fIJBdvlKzsrFcFABQ/imbmKBKZOFkkFJr5F/2hUEjRaNS4r5A9/PDDaV33xBNPZDmSMZWVlZkZKJmQfvs1s69qpUp+b7dKfME5DXmsx/xH3U3Lq7V08aK5RghlMN9YEMi3e5BrdyHf7kK+gfxzHGdS0czmWRbNeEYuK3TkcaMv0vyA7LLaeccHAAAAwD1aOs1nk01zOAUTM7MG2hU496L8Z15Q4MJL8iRG0743WVY7XiQTb7xdToCdtgEAgDvceuutevrppyVJ+/btm7JoxrZtvfjii5Kk0tJSbd68OZchZtVC3Bx5vlovjhjtzXVlWfs+uEUh5xuZN2O+Y8Pydb0mX8f+sf+6XpMnbv5eIB2OPEou2ahE3Q4l6m9Ron6HnIoG4xp+crOPn2/3INfuQr7HUDQzR7HYxM67Pt/M38a3rrn2vmzavXu3du/enZO5FpTX/1G6fNzs+/3/Is2xYEaSDp7tM9rbV1bPeSwAAAAAmIuO/qj6Iwmjr7l2douewq9/W57ExEYPjser0Zv/LCPxAQAAAHCPlq4ho91cQ0FGRiTj0rnfKvzms/Kd/oV8vSfSvtXxeJWo267Yyp2Krdyp5OINnCYDAABcad26dWpqalJra6v27dunnTt3asOGDcY1P/7xj9Xe3i5Juueee9JaF7ZQVFfnZk1TIW24d+ySucH19tVLc/Z9cItCyjeyr9IzInX8Vjp39b+uNyQnOfuBfCGpYYe04m3SitvlabxFvnAVC5oLDD/f7kGu3cWt+eZ/Y+YoEAiM/zmRSExzpXnNtfcVsm984xv5DiHzYiPSC18x++q2SZvvn/uQCVuHLlwx+iiaAQAAAJBrqafMVIZ9qqtI//nTE7mi0BvfM/qiG++TXdGYkfgAAAAAuIPjOGrpNp9Pmmd5CiauspPyXm5VsPN30sXXpNO/lGKDCqV7e8kSxVbcqdiqnYovf4ecYEVWwwUAAMiFo0ePqqura7w9MDAw/ueuri698MILxvU7d+6cNMbHP/5xfelLX1IsFtOXv/xlffjDH9bmzZsVi8X00ksv6ec//7kkqa6uTh/4wAey8nUgN2IJWy2dA0bftsaq/AQDLFQDndKJf5XOviyd/63Ud2Zu45QsllbcLq24TVp+29i6Td/CWEsLACgOFM3MUSg08SvpSCQyzZXmNdfeV8gWL16c1nV9fX0zXzQHlmUZlWz9/f2ybXteY4Z+t0fhwU6jb/C2/6hEf/+cx3yjY1DRhBnX6orsfV+KVTbyjcJFvt2DXLsL+XaXQsg3O0ABptRFaZtrSuWZxa7B4UOPybrmqHTHY2lk+8MZiw8AAACAO3QOxHRl1NxsromimfQk4/JdOiJ/xyvyt78qX+d+WbGhme+7ypFHiZobFVt159hpMks3Sx4riwEDAADk3vPPP68XX3xxys+OHTumY8eOGX1TFc2sXr1an//85/Xoo49qdHRUjz/++KRr6urq9MgjjygcDmckbuTH8e5BxVLWdd3Q4M6d1YFZGeiQWp6RjjwtnX9FkjP7MRavGyuOWXHbWLHM4rWceAoAyCuKZuYoEAiovLxcg4OD6unpmfbaoaEhRaNRSekXoywUyeQcjtabA9u25zWXZ7RXwf3m6Tmx5e9QtOF2aR7jvnbeLLhZvSiksoCVs+9LsZpvvrGwkG/3INfuQr7dhXwD+dfSZS6kms2iNE90UKHD/2D0Rde9T3b16ozEBgAAAMA9Up9NKkM+NVQG8xRNgUtG5et+Q/6OV+Vvf1X+rgPyxEdmNYQdqlZsxTsVX7lTsRXvkBNelKVgAQAAisuOHTv0ta99Tc8995wOHjyo3t5e+Xw+1dbW6rbbbtN73/teBYPF9+/YhbQ5cib89niX0V5eFZIdHVJfNE8BFYlCzTfmxzPYqUDbcwqceE6+zgOzutexfEou26JE/S1K1G1Xon6HnJIl5kVXrmQuWGQNP9/uQa7dpRDyXQibI1M0Mw+NjY1qbW1VV1eXksmkvF7vlNd1dHQY9yD3Svb/9aTduIbv+E/zHvdwhznmtobyeY8JAAAAYG6u90yWCZZlTdvOJ9txdLTbXFi1pb4i7e9H6Mg/yooOGH3RWz+X1e9noSvkfCOzyLW7kG93Id/uQr6BwtHSZZ6C2VQ7u1Mwi1oiIn/X6/J1vCp/+yvyd70mT3L2q/USy25QbOXYaTKJZVsly73PbgAAwH12796t3bt3Z2SspUuX6qGHHtJDDz2UkfEWgoWyOXKmHOkcNNpNtaUFEVexKZR8Y/aswQ4FTv6Lgm3Pyd/1Wtr32YEyJWpvVrx+hxK12xWv2Sb5U07m4u9EUeDn2z3Itbu4Nd8UzczDxo0b1draqmg0qlOnTmn9+vVTXtfS0mLcg9yyBs4r9Mb3jL7Ihg+NHUs/D47j6HCH+XC1tZ6iGQAAACBfcrkzxbW7cORb28UhDcfMX2jcsalB1RWhmW+ODUuvf9vsa/qAKtfflsEIF75Cyjeyi1y7C/l2F/LtLuQbhcKNhf1HL6YU9NeVu7cgPz4iX8cB+dpfGfuv+5A8ydish0lWrZZ3ze9JK98hrdmpYTs0vhOkS7+zRa1Qf7aRHeTbXci3e5BroHCkFvU315TmKRKgcFiDHQq07VWwba/83WkWygQrpHV/IK28QwNVmxWrWssGDgCABYeimXm49dZb9fTTT0uS9u3bN2XRjG3bevHFFyVJpaWl2rx5foUamL2S3/4Peez4eNuxAhq57d/Pe9yugZguDcWNvq0NZfMeFwAAAABm4/CFK0a7piKomnQKZiRp/99LIz1m3+99ITOBAQAAAC7ntsJ+23bUmrIo7dZ1NTn9PuRVZEA6/4p05tfS2d9IHa9JdmL24yzdJK28Q1r5dmnl2+WtqDM+zn+mkUuF8LON3CHf7kK+3YNcA/kRTdhquzxq9DXXUjQDd7IG2hU8uVeBtr3yd7+e1j12oFyx1X+gxIb3q2zbByRfUJKU7OvjFBkAwIJE0cw8rFu3Tk1NTWptbdW+ffu0c+dObdiwwbjmxz/+sdrb2yVJ99xzj3y+4vqWZ2t3sEztvOG9+KZCx58x+qJb/0Se6lXz3n3rjZQXP5Uhn9YsKZXH45nnyO7DTivuQr7dg1y7C/l2F/INFJbDF/qN9tbGqvRujEekl/6n2bf+bqn+xozEBQAAAMBdzvQMazBqFomk/XyyEI32SWdfHiuQOfNrqeuw5NizH6dmy1iBzKq3SyvukMqWZj5WAAAAwGVOXBpR0nbG2x5JGzlpBi5iDVxQsO25sUKZi4fTuscOlCu25t2KrrtX8eV3SN7g2PrQqwUzAAAsZMVVwTFLR48eVVdX13h7YGBg/M9dXV164YUXjOt37tw5aYyPf/zj+tKXvqRYLKYvf/nL+vCHP6zNmzcrFovppZde0s9//nNJUl1dnT7wgQ9k5evIp1ztDjbnnTd+/N/NdrBCoXd/UaHS+cd97HK70d6xapEWLVo073HBTituQ77dg1y7C/l2F/KNQtHX15e1sS3LMv6u9/f3y7bnsBgqCw6eMU+K2bA4mNb3InjouyoZ6jb6Bm76s7EdolyukPONzCLX7kK+3YV8u0u+8+2aUzSAGaQW9C8rD6q2Ms1TMBeC4ctjBTJnX5LO/EbqflOSM+NtBo8l1W69pkjmdqmEd0sAAADIjULfHDmTWrtHjPbqxWFVhAN5iqa4FGK+McbqPy//iZ8ocOI5+dItlAlWKL7mbsXWv0+JFW+XvGM/J2/9fwvy7S7k2z3ItbuQ7zGuLpp5/vnn9eKLL0752bFjx3Ts2DGjb6qimdWrV+vzn/+8Hn30UY2Ojurxxx+fdE1dXZ0eeeQRhcPhjMSNNJ3cJ538hdn39n8nlS7OyPAHzpkLyW5eyYtRAAAAIJ+SOTwK3LbtnM53PYmkrWMXh4y+TcvCM8eWjCm4/6+NrljjHYotu5Ej1adQKPlG9pFrdyHf7kK+3YV8o1C4rbD/1TazKH9TTUlWvwfZ5hm+KF/7K/JdeEX+9lfk7T0x6zEcj1fJmhuUaHib4g23KVG/XQpWTFwQlRSd/ntUiLlG9pBvdyHf7kK+3aMQck1hP66n4DdHzqC23nNG+8aVi/jZyJJCyLer9Z6WWp6Wjjwtdb6e3j2hKqnp/VLzfbJW36mgL6B0z5Ih3+5Cvt2DXLuLW/Pt6qKZTNmxY4e+9rWv6bnnntPBgwfV29srn8+n2tpa3XbbbXrve9+rYJAj6nLKtqWf/6XZV1Yr3fZwRoYfjibU2jlo9G2naAYAAABAjp3sGVU0Ye5s3FRbOuN9wWNPyzvUafSN7tid0dgAAAAAt3NbYf+RLvO9SXNNad5jmg1rsEP+jlflb39Fvo7fyXfl9KzHcCy/EjXbFG+4VfH6tylee5MUSHlGm+f3pBByjdwh3+5Cvt2FfLsHuQby4/CFK0Z7W2NVXuIAsqL31FiRTMvTUueh9O4JV0ub3i9tvk9afafk9WcxQAAACo+ri2Z2796t3bszsyho6dKleuihh/TQQw9lZLyFIls7hM135w3/sWdUlvIPwuG3/TvFhmPScGze8b16tl9Je2Jhms/yaEWZs6B3TMunQthpBblDvt2DXLsL+XaXQsg3O0EBY1q7ho12Q2VQVeEZfsltJ1Ry4BtGV7xuu+INb8t0eAAAAABcImE7Oto9YvQ11cxc0J83jiNr4PzVIplX5e94Vd6B87MfxhtUvPZGJerfNlYoU3uT5AtlIWAAAAAA6RqOJtR2acjou6HRnTuqo4j0nJSO/GisUKbrjfTuCS8aP1FGq99JoQwAwNVcXTSD+cvVbhiz2nkjGVPFS18zuhLVazW68f557971ltfO9xvtDctKFLByu2tcMWOnFXch3+5Brt2FfLsL+Qby50hK0UxzOqfMnPiJvP3njL6RHZ+TPJ6MxgYAAADAPc70jCqaMDfU2JzG80nOOI6sK2fk73jlapHMK/IOdc1+GF/46qYDYyfJJGpukLzBLAQMAAAAZF6hbo6caQfPD8iZ2AtZPsujulCSzZAzpNDyXcysvlMKnHhO/hM/ke9ya1r32OFFiq99j2Lr7lWi8baJQpmBoelvvF4M5NtVyLd7kGt3KYR8F8LmyBTNoOiE3vz+pN3ARm7/gmRl7q/74Y5Bo72tvjxjYwMAAABAulq6zF9wN9eWTX+DYyu8/6+NrviyGxRf8XuZDg0AAACAixxJeTaprwiqqiSPO9g6jry9J+Tv+N14oYw1cmnWw9j+MiXqtyt+9SSZxNIt7MwLAACABasgN0fOgjc6Boz2miVh+dkMOWvyne9i4+07pUDbcwq27ZWv52ha99jhRYqueY9i6+5RvOFt5jrJDOeGfLsL+XYPcu0ubs03RTMoKp7YoEp+t8foi9ferNjqd2dsDttx9EaH+fJna/0MC9MAAAAAIMOiCVttl0eNvplOmgmc/Ff5+tqMvtEduzllBgAAAMC8tKacgtmU61NmHFvenmPyt791kszvZEV6Zz2MHaxUvP4WxetvVbzhViWXNGV0UzYAAAAA2Zf6fNJcU0CnYAJT8PadvKZQ5lha99jhxYquvVooU38rz64AAMyA/6VEUQkf/LtJL0GG3/6fM7oA7EzPqAajZoXd1gaKZgAAAADk1olLI0raznjbI2nTdC9+HEcl+81NBhKLNyq2+vezFCEAAAAAt2hJXZSW7aIZOyHfpRb5O16Vr/1V+Tt/Jys6MPN9qcOEF40VyLxVJLN4o+SxshAwAAAAgFxpSTkJs7mWdV0oPN7eNgXa9irY9px8vcfTumesUOa91xTKeLMcJQAAxYOiGSwoVv9ZeaIDsssb5ISqjWIYz/BFhV//tnF9dPUfKFG3I6MxHE45ZaamPKCa8mBG5wAAAACAmaS+9Fm1KKTSwPV/OR448wv5LrcafSM7drMgDAAAAMC8xBK2jl8aMfqyVTQTOPFjhY4+JV/HAVnxoZlvSGGXLFW84VbF6982ViRTvY6TNwEAAIAiMhBJ6PyVqNGX9aJ+IE3enuMKtu1V4ORe+XpPpHWPXbJkrFBm7T2K199CoQwAAHNE0QzmxevNzj/CLMuash1+8/sKvfZNSZLjC8uuaJBdPvaf1X9WnsTo+D2Ox1Lk7f854zG+0WnulratoTxr3we3uF6+UZzIt3uQa3ch3+5CvoHCkLqTc9N0O6U5jsKpp8xUrVFs7XuzERoAAAAAF2m7PKLENadgSlLTdKdgzlHw2D+r/Gf/flb3JMvqFG942/hJMnblKopkAAAAgCLW2m2+Owl4PVq7JJynaOB6jiNv79VCmba98vW1pXWbXbJU0bXvVXTdPWMbhlMoAwDAvFE0g3mprq7OyTyVlZVjf4hcHO/zJEbl7W2Tt3fqf0x6bvoTVa67NeOxpBbN3L6+JmffB7cYzzdcgXy7B7l2F/LtLuQbyI/Uopnpdkrzn/+N/N2HjL7RHQ/zS3YAAAAA85b6bLKiOqSyYIZfQTq2Sl79f2a8LFmx4upJMrco3vA22eWNFMkAAAAAV+V6c+R8OHrRPAVzw7JShQL+PEVTnAop3wXJcWT1HFPgxHMKnPiJvH0n07rNLl2m2Lp7FF9/r1Eok+83eeTbXci3e5BrdyHfYyiawcJy5Vx61/nC0s5HMj5973BMpy6bL3+2r6RgBgAAAEBujcSSOt0zavRtnqZopmT//zLayYrlim74YFZiAwAAAOAuqUUz0z2bzFXgzD55+89M6k9UrVai/tarp8ncIru8PuNzAwAAAMUi55sj50FbzymjfdPKxWyGnGVssCjJcaTuI1LL09KRp6WeE+ndV14nNX9Iar5P1vK3KWRZCmUzzgwg3+5Cvt2DXLuLW/NN0QwWGEfyWJJjT3/ZHZ+TKjL/YuTg2T6jHfZ71VRXkfF5AAAAAGA6R7uH5VzT9loerV869cI0X/ur8nf8zugb2f5ZyeJXAgAAAADmr6VryGg3ZaFoJvzat4x2YtEG9X/oH+SULsv4XAAAAAAWrsMX+o321kZ3LgpFDjiO1P3mWJFMy9NST1t695XXjxXKbL5ParxVculu/wAA5BorZDAvfX19M180B5ZlGZVs/f39sm1b2vWMZCdkDXXJGmyXNXBB1kD71T+3yxMfUnz52xXZ9lkpC7H95nin0d5cV6qhgf7rXI10XTffKErk2z3ItbuQb3cphHyzIxTcLnUn57VLwgr5p/6lesn+PUY7WVar6KYPZy02AAAAAO4RiSd1KuUUzObasozO4b34hvwdrxh9ozd9moIZAAAAAIbLQ1G1XzGfT7Y2VuUnGBQnx5G6Dl8tlHlG6j2Z3n0VDeMnyqjxFgplAADIA4pmMC/JZDIn89i2fc1cHiVL66TSOql2x9Q3OJKyENuhCwNG+4a6spx9D9zEzDeKHfl2D3LtLuTbXcg3kHst3WbRzObr7OTs63pdgfO/NvpGb/4zyRvMWmwAAAAAxni93qyNbaUssElt58qJzmHZ1xyDaXmk5rryjH7tJYf+3mjbJUuV2PShrH5/C0mh5Bq5Qb7dhXy7C/l2D3KNQpbzzZFz7KWT5tcX8lta7I9n7et2q0LJd844jryXjsh/4icKnNgrb/+ZtG6zy+oVW3+PYuvvVbL2Jslz9X8P+hfWBt2uy7fLkW/3INfuUgj5LoTNkSmaAdKUSNo60jVk9G2rz+xuaQAAAACQjpaUZ5OmmqmfTVJPmbFLlijSvCtrcQEAAACYkMsXgde+9Myl00euGO0NNeWqX7YkcxP0X5BO/MTosm77M1Uvrc3cHAtMvnKN/CDf7kK+3YV8uwe5RiHJz+bIuXOkw9wMedOyUsmxs7HvMq5RlBssOo68l95UsG2vgm175R04l9ZtyfJ6Rdfeo9i6e5Wo2SZ5PGMf2I6k4vgeFWW+cV3k2z3Itbu4Nd8UzQBpOnZxRNGEY/RtoWgGAAAAQI71jyZ04UrU6Gue4qQZ76UjCpz5hdE3euOnJV8oq/EBAAAAcI/DF64Y7a2NGV4U+urfSnZiou0LSzs+ldk5AAAAABSFlq5hoz3VuxPguhxHvotvKHByr4Jt/zKLQpkGRdddLZRZtnWiUAYAABQUimaANB3uMHdyXrUopKqwP0/RAAAAAHCr1m7zpU/A69G6JeFJ15Xs/4bRtkPVGt3y0azGBgAAAMBdDrf3G+0bGqsyN3h0UNr/mNl340elkkWZmwMAAABAUXAcRy3dFM1glhxHvouHFWh7bqxQZvBCWrclyxuvKZS5gUIZAAAWAIpmgDQd7hg02lvry/MUCQAAAAA3a+kyC/o3LCuRz2sZfd7eEwqc/Bejb/TGT0gBXhABAAAAudLX15e1sS3LUmXlxKku/f39sm07a/NNZTCa0KlL5qK01RVWxr7u4Ot/r5LoRFGOI48Gmv9Ydha/r4WoEHKN3CHf7kK+3YV8u0ch5Lq6ujqn8wGF4OJQTD3DcaOvqYZ3IpiC48jXfWisUObkv8g72J7WbcmK5WOFMmvvoVAGAIAFiKIZIA2O4+hQe0rRTENZnqIBAAAA4GYtXak7pU1+Ngnv/4Y8csbbdqBckRs+lvXYAAAAAExIJpM5m8u27ZzOJ0lHOgaMts/yaM2iYGbisJMKvvZtoyu2+vcVr1gp5fjrLDT5yDXyh3y7C/l2F/LtHuQayI3WlHcnZUGvlleH8hQNCo7jyNf9uoJtexU4uVfewY60bktWrlB07b2KrrtHyaWbKZQBAGABo2gG8+L1erMyrmVZ07ZzrXMgqotD5m4ENzVWZu3rd5tCyzeyi3y7B7l2F/LtLuQbyK/W7tSiGXOnNOvKGQVPPGv0RbZ+TE6Q0zIBAAAAZE5qQf+GpSUK+DLzO4LAqZ/JO3De6Bu98VMZGRsAAABA8WlJeXfSVFMqiwIHd3Ns+bquKZQZ6kzrtmTlSkXXXS2UWdJMoQwAAEWCohnMS66OdL326Np8+NU5s7q8MuzXTWvrZVn8ozgb8p1v5Bb5dg9y7S7k213IN5A7l4dj6h6MGX3NNWbRTMnBv5HHscfbjr9Eo9s+kZP4AAAAALhHatFMU0pB/3yEX/+m0Y4v3aJE/S0ZGx8AAABwo2LeHLm1a8Rob64rZzPkLCmEfF+XY8vb+ZoCJ36iQNteWekWylStVmz9vYqvv9colOFvUIHnGxlHvt2DXLsL+R5D0QyQhoNn+4z29pXVFMwAAAAAyLnWlEVpJX5LKxeFx9vWQLuCR58yrhnd8sdywrnZ8AAAAACAe6Q+n6SegjlXvs6D8ne9ZvRFbvwUu/sCAAAA81SsmyM7jqPWi+bzya3ranL29bpd3jdYtG3p/CtSy9NSyz9Lgx0z3iJJWrxOar5P2nyfvDVbFPZ4FJ7xJuQ938gp8u0e5Npd3JpvimaANByYomgGAAAAAHItdSfnTTWl8l5T0B9+7W/lsRPjbccb1OiNn8pZfAAAAADcoW8kro6BqNG3ubYsI2OHD/290U6W1Sq67p6MjA0AAACg+JzvHdWVkbjRt7XRnYtBXcO2pfO/lY48LbX+szSY3okyWrJhvFBGy5rZnAEAABehaAbz0tfXN/NFc2BZllHJ1t/fL9u2szLXTEZjSbV09Bt9Gxb5sva1u1Eh5RvZR77dg1y7C/l2l0LINztDwa2OdA0Z7Wt3craGuhVqecL4PLL5I3JKl+YkNgAAAADu0dptFvQHfZZWLZ7/nrzWwHkFTv6L0RfZ+pDk9c97bAAAAADF6XD7FaO9qDSghqocnBniONKpF6SBdql6tbR0o1S6JPvzupWdlM79duJEmaGu9O5bsnGsSKb5PmlZE4UyAAC4FEUzmJdkMpmTeWzbztlcqQ63DyjpTLS9HmnT0nDe4nGDfOYbuUe+3YNcuwv5dhfyDeSG4zhqTTlppvmanZzDr31TnmRs4nrLr9GbP5Oz+AAAAAC4x+RTMEvks+a/8Ch86B/kcSY25rD9pYps/si8xwUAAABQvJsjv9rWbbSbakp05cqVrM8beulrCv/ufxl9dniRkovWyV60XslF65RctF7JRevllC4rmmKNnObbTsrX8Tv5TzynQNteWSOX0rotuWi9YuvvVWz9+2Qv3jDxQQ7+XhSbfP98I7fIt3uQa3cphHwXwubIFM0AMzjcMWi0NywrVTjgzVM0AAAAANyqayCmvtGE0ffWSTOe0R6Fjnzf+CzS9Ieyy+pyFh8AAAAA92hJPQWzpuw6V6bPEx1QMOX0zGjzg3KCFfMeGwAAAEDxbo58pNNc29W0rDTr83si/Qod/NtJ/dZor6z2V6X2V41+O1CmZPVbhTTrlKheq+Si9bLL6yWPldVYsy3j+baT8ne8qkDbXgVP/auskctp3ZZYtF7Rdfcqtu4eJRetn/iAzR8zig013YV8uwe5dhe35puiGWAGhzvMFz9b6+f/4gcAAAAAZutIyqK0ypBPDZVBSVL49b+XJxEZ/8zxeDV685/lND4AAAAA7pF60sxbBf3zETryA1nxiXEdj6XRbR+f97gAAAAAipftODrabT6fNGXg+WQmweP/LE8ylvb1VmxIVvdr8ne/ZvQ7vrCS1WuUWLReyeq3CmrWya5cLlkuWtppJyYKZU7+q6zRnrRuSyzeqOi6exRbe4+Si9ZlOUgAALCQuehfVsDs2Y4z6aSZrQ3leYoGAAAAwHS83uydCGlZ1rTtXDh6cdRoN9eWyefzyRO5ovAb3zU+i226T55Fq8UZmXNTCPlGbpBrdyHf7kK+3YV8A7l1cTCmy8Nxo2/ei9KScYUO/4PRFVvzHtkVy+c3LgAAAICidq43ouGYbfRloqh/JqGUUzLnypMYle/SEfkuHTH6HSugZPVqJavXjhXULFo3VlRTtUryBjIyd97ZCfnbX5k4UWa0N63bEos3jRXKrLtXyeo1WQ4SAAAUC4pmgGmc7Y1oIGIeQbWNk2YAAACAglRdXZ2zuSorK3M211uOXz5mtG9evXjsa37hb6TYtafQeBT8/UcUzOH3o9jlI9/ID3LtLuTbXci3u5BvILtaus1TMEsDXq2oDs1rzMDJvfIOdRp9ozd+cl5jAgAAACh+LSmnzCwt82tpWXaLSrwX35TvcovR1//+bypZtVq+vjZ5e6/+19cmX99JeeIjs57DY8fk6zkmX88xBa/pdzxeJStXXi2iWavkovVKLFqnZNUayR+e51eWA+OFMs8peOqn6RfKLGlSdN09iq69V3b16iwHCQAAihFFM8A0DqWcMrOszK+a8iKp1gcAAACwYNi2ozcu9Bt9WxurpMiA9NtvmBdv/rC0ZH3uggMAAADgKi1d5qK0pppSWR7P3Ad0HIVf/7bRFa+9SYm6m+c+JgAAAABXaOkyi/qba7O/GXLqKTPJ8nrFV7xTsryKVa2SVv/BxIeOLWuoS97eE/L2tk0U1fS1yYoOzHpuj5OU78op+a6cMvodeWRXNCpZvW6siKZ63VhhzaK1cgLlc/kyM8dOyH/htwq2PafAqZ/JiqRbKNM8Viiz7h7ZVRTKAACA+aFoBpjG4XbzwWpbQ7k883nxAwAAAABzcKZnWIPRhNG3rbFK2v8NKXLFvPidX8hZXAAAAADcpzWlaKa5tnRe4/k6fif/xTeMvtEbPzWvMQEAAAC4w1RF/VkVH1Xw+D8bXdFND0iWd+rrPZbs8nrZ5fWKr7xzot9x5Bm5NPlkmt42WaM9sw7LI0fegfPyDpxX4Ow+47Nkae3VApp1SrxVTFO9Tk64etbzpC0Zl//Cywqe3Hu1UKYvrdsSSzcruvatQplV2YsPAAC4DkUzwDQOp5w0s7U+z5X3AAAAAK6rry+9X7jPhWVZqqysHG/39/fLtu2szZfq5WOXjPaSUr8Ckcuyf/OorGv6Y2vv1nCgXsri98IN8p1v5A65dhfy7S7k213yne/q6iwuMgEKjOM4kxalzbdoJvz6t4x2smK5YmvunteYAAAAAIpfwnZ07OKI0bd5ns8nMwme/BdZsYn1ZI48ijQ9MPuBPB45pcsUL12meOMd5kejvfL2nZx0Mo13qGtOMXuHu+Qd7pLO/9rot8OLJ06muaaoxilZKs1lU+lkXP4LLynYdrVQJnolrdviS7cotu5eRde9V3blytnPCwAAkAaKZjAvXu91quTnybKsadu5cGU0rjO9EaPvpuUVWfua3awQ8o3cId/uQa7dhXy7C/lGoUomkzmby7btnM73ZkpBf1NtqQJvPD5pt7GRmx/OaVxuket8I3/ItbuQb3ch3+5CvoHs6eiPqj9inoLZXFs25/GsK6cVOP280Te67aHr79IMAAAAAFed7hlVNGFumpHtk2ZCLU8a7fjyd8iuaMjoHE54kRLhRUrU36LoNf2e2KC8vSfHCmh6x06l8fadlDVwXh45s57HGu2RNdojf8crRr8drFCyevLJNHZ5neRJeS+ciMl3Zp/Cx39ytVCmP62548tuUGzdPYquvUd25YpZxw4AADBbFM1gXnK1g961uwTmymvd3UY75Lf0to2N8ntZFJpt+cg38od8uwe5dhfy7S7kG8i+lu4ho33DUp/Cr/2d0Rdb8U4larbmMiwAAAAALpN6ykxV2Ke6isCcxwsfesxY3GUHyhVtenDO4wEAAABwj5Yu891JfUVQVSX+rM1nXTk9qcAksnlX1uZL5QTKlai9UYnaG80P4qPyXjl1tYjm6sk0vW3y9p+Vx5n9piJWdEBW10H5uw6a8/tLlKheK3vReqlhi9RzUjr6Y5VH0i2U2TpWKLPuHtkVy2cdFwAAwHxQNANcx4GzfUZ7a2MVBTMAAAAAci5hOzraPWL0vSf+C3mHzUL/kVs+l8uwAAAAALhQS7dZNNNcUyqPxzOnsTyRKwq1/pPRF9n8ETmBuZ9cAwAAAOD6vN7snOhoWda07WxpTXl3srmuLGtfoySFjv7QaNuhaiXX3p3VOdPiLZNqtypRu1XGuaDJmKwrZ+TtPSFvzwl5+9pk9bTJe+WUPMnYrKfxxEfkv/iGdPEN6ehTad2TqNmm2Pr3Kb5+olDGI4mzRReOfP18Iz/It3uQa3ch32MomgGuY/8Zs2hm+8rcnKoDAAAAANc60zOqaMIeb/uUUPOZ7xjXxBpuU6Jue65DAwAAADCNbC6cyt+iNLNoZnN9+Zy/ztCR/yNPIjLediyfYjd9Iv8LzgoML7XdhXy7C/l2F/LtHuQahay6OjdrnyorK3Myz/HLEaO9fc3S7H2NycSkQhHrxo+qemltdubLlCU1kt5m9iUT0pWz0qWjV/87PvZ/Lx+X4iNTDjMrjbdIzfdJzR+Ur2oFC1SLTK5+vlEYyLd7kGt3cWu++TcJ5qWvr2/mi+bAsizjh7K/v1+2bU9zR2bFk7YOnb9i9G1c7M/a1+t2+c43cot8uwe5dhfy7S6FkO9c/VIfKARHuoaM9sdLfyv/cIfRN3rL7lyGBAAAACANuXx2zcWLTnuKUzBvXVc7t68zEZXeMDcD8Gz+sKpWbJ5PiK7g1pfabkW+3YV8uwv5dg9yDWRHNJFUa+eA0be1MYs/byd+Kg11m303/2n25ssmr09avHbsv03vm+i3bWnggnTpWEpBzTEp2j/9mI23Spvvk5o+KFUtz2r4AAAAc0HRDOYlmUzmZB7btnM2lyQd7RpSJGEu/NxSU5LTGNws1/lGfpFv9yDX7kK+3YV8A9nV0jWxk7MlW5/xPG18Hq+9WfGG23McFQAAAAC3OXV5WEPRhNE350Vpb/5w8oKz29kMAAAAAEB6jnUNKp50jL4tDVksmjloFv2rYYe0rCl78+WDZUlVK8b+W//uiX7HkQa7pMvHJgpqLp+QfCFp7buk5g9KlY35ixsAACANFM0AUzjcYe7kvHJRSFUl/jxFAwAAAMDNWq8pmnm/9bJqEuYpMyO37JY8nlyHBQAAAMBlDl+4YrRrKoKqqQjNfiDHkV7eY/atfIdUf9PcgwMAAAAwo76+vqyMa1mWcapSf3+/bNue5o75e/l4l9FetSis5OiQ+kYzP5dn+KIqT/xU176JGd70gGJZ+n4WppBUvU2q3iZr0xT5dtX3wl3y8fON/CHf7kGu3aUQ8p3LU9mvh6IZYAqH2geN9tb68jxFAgAAAMDNYglbxy+NSJI8svU539PG5/GlWxRfcWceIgMAAAAwk2wtSJPy86LzdycvGu2mmtI5fY2+c79RefebRt/Q1ocUZ5HVlArhpTZyh3y7C/l2F/LtHoWQ60JYkIbClEwmczKPbdtZn+tIh7m2q6mmJGtzho88KY8zMbbjL1Fk7T1ycvT9LHS5yDcKB/l2F/LtHuTaXdyab4pmgCmknjSzrb4sT5EAAAAAcLMTl0aUsB1J0t3Wfm2w2o3PRzllBgAAAChYuXzxmJNFaZ2ZWZRWevBvjXaycpUiK3ZKLnxROxdufantVuTbXci3u5Bv9yDXQHa0dg8b7aba0uxM5DgKtTxhdEXXvU9OgLVkAAAAC4mV7wCAQtM1EFX3YMzo20rRDAAAAIA8mHjp4+jPU06ZSSzaoNjqP8h5TAAAAADcJ2E7OnbRXJTWXDP7RWne3hMKnH3R6Bu98ZOSh1eWAAAAANITiSd16vKI0ddcm521Xb6OV+XtP2vO3/xgVuYCAABA9vAbaCDFGymnzJQHvVq1OJynaAAAAAC42ZGusUVpd1mva4t1xvhsZMe/ZWEZAAAAgJw4dXlE0YRj9M1lJ+fw69822nawSpFN988rNgAAAADucuziiJLXPJ5YHmnj0pKszJV6ykyiep0StTdnZS4AAABkD6trgBSHU4pmbqgvk+Xx5CkaAAAAAG7W0jUkydFf+H5k9CeqViu27t78BAUAAADAdVq6zVNmGiqDqgr7ZzWGZ+SygseeNvoiN3xU8rNxGQAAAID0tXSZzydrFocVDngzPo8nOqBg216jL9r8oMQ6MgAAgAWHohkgxaH2QaO9tb48T5EAAAAAcLPRWFKne0b1dutN3WS1mZ9tf1iyMv8CCAAAAACmkroorXkup8y88Y/yJGPjbccKaPSGP513bAAAAADcpaXb3BC5qbYsK/MEj/+zPMnoeNux/IpsvC8rcwEAACC7KJoBrjEaS+rYRfPFz7aG7DxYAQAAAMB0jl0cke1If+572uhPljcquuGD+QkKAAAAgCuNnYI5oalmlkUziYhCb37P6Ipu+ICc0mXzDQ0AAACAy6QW9W+eQ1F/OkItTxjt2Orfl1OyJCtzAQAAILsomgGu0dI9rKQz0fZ6pM1Z2o0AAAAAAKZzpGtIt3iO6jar1egf3f5nktefp6gAAAAAuE00Yavt0qjR1zzLdyfBY8/IGu01+kZv/OS8YwMAAADgLkPRhM72Roy+WRf1p8F76Yh8l44YfZHmXRmfBwAAALnhy3cAWNi8Xm9WxrUsa9p2trzRae5EsGFZqcrDgZzM7Wb5yjfyg3y7B7l2F/LtLuQbyI3W7mF9LvWUmdJaRZr+MD8BAQAAAHClE5dGlLAndhzzSNpUU5L+AI6t8OvfNrpiy9+h5JJNGYoQAAAAgFsc7R4x2j7Lo/VLZ/F8kqZQy5NGO1lWp/jyd2R8HgAAAOQGRTOYl+rq6pzMU1lZmZN5Wi+2Ge1b1yzJ2deICbnKNwoD+XYPcu0u5NtdyDeQHU7H67rTe9joG735M5I3mKeIAAAAALhRa5e54djKRSGVBdN/xeg/90v5+sz3L5wyAwAAAGAuWrqGjPb6pSUK+DK8wV8iouCxp42uaNMDkpWdzaUBAACQfWwJDVzlOI4OnOsz+m5eScEMAAAAgNwbjCT0wMgTRl8suEiR5j/KU0QAAAAA3Cp1UVpzbdms7g+/9i2jnVi0XvEV75x3XAAAAADcp7XbLOpvqi3N+BzBk/8qKzY43nbkUaTpgYzPAwAAgNyhaAa46tTlYV0ZiRt92ymaAQAAAJAHF46/pnd7Dxh9kZs+LfnDeYoIAAAAgFu1pCxKa57FojTv5VYFLrxk9I3e+EnJ48lIbAAAAADcpaVr7s8n6Qq2/MBox5e/XXZFY8bnAQAAQO6kf3Y6MIW+vr6ZL5oDy7JUWVk53u7v75dt21mZ6y2/auk22kvLAipxIurri2Z1XuQn38gf8u0e5NpdyLe7FEK+q6spbkZxW/bG3xjtAU+54lv/OE/RAAAAAHCr0VhSp3tGjb7ZLEoLv/5to22HFyu64UMZiQ0AAADA7Hi93qyMa1nWtO1MuTIaV3u/uY5rS31FRr8u68oZBdpfMfpiW/4oa9+7hShX+UZhIN/uQr7dg1y7C/keQ9EM5iWZTOZkHtu2sz7X6xcGjPbW+jIW++ZJLvKNwkG+3YNcuwv5dhfyDWSWt7dN6/teMPpeXvyH2h4oy09AAAAAAFzr2MUR2c5E2+uRNiwtSetea6hbwePPGn2jN/yp5AtmMkQAAAAAacrVpnTXbr6XSYcvXTLaQZ+lHevq5fNmcOHngf9ptsPVKtv+RzzHTCNb+UZhIt/uQr7dg1y7i1vz7c5SIWAKh9oHjfbWehakAQAAAMi98IFvyNLEqrQBJ6xLGzllBgAAAEDuHekaMtprl5Qo5E9vh+XQG9+Vx46Ptx1vUJEbPprR+AAAAAC4xxsXrhjtzfUVmS2YSSak179v9m39CAUzAAAARYCiGUBS/2hCp3sjRt+2hvI8RQMAAADAraz+s5N2Yv6H5Hu0rrE2TxEBAAAAcLOWrmGj3VRbmt6N8RGF3jQXm0U2fVhOeHGmQgMAAADgMocv9BvtrY1VmZ2g7efSUJfZd/OfZnYOAAAA5IUv3wEAheCNTnOntKDPo43LSvIUDQAAAAC3Kjnwv+VxkuPtESeof9S92rU4nMeoAAAAALhVa7dZNNOcZtFM6OhTsqLmgrbItk9kLC4AAAAAs9fX15eVcS3LUmVl5Xi7v79ftm1nfJ7Xz5nxr632ZfRrKn3lmwpc007UbNNgoF7K0vdtocpVvlEYyLe7kG/3INfuUgj5rq6uzul8U6FoBpB0uGPQaDfXlsmfyeM7AQAAAGAG1mCHgkd/ZPR9L/kHqq2pk9fy5CkqAAAAAG41GEnoXF/E6GuuKZv5Rjup8OvfNrpiK3cquWhdJsMDAAAAMEvJZHLmizLAtu2Mz3V5KKaLQzGjb9OykozN4xm+JP/pXxh9o00P5ux7tpBlI98oXOTbXci3e5Brd3FrvqkKACQdbjdPmtlan8ZLHwAAAADIoPDBv5XHjo+3o45ff5d4X9o7OQMAAABAJqWeMuP3erRu6cynYAbO/ELe/rNG3+hNn8pobAAAAADcpSXl+aTEb2nlolDGxg8dfUoeZ2LxqOMLK7bh/RkbHwAAAPlF0QxcL2E7erMztWimPE/RAAAAAHAjz/BFhVp+YPQ9nrxLl1RF0QwAAACAvGjpMhelbVhaIr935leLqafMJJY0Kd5we0ZjAwAAAOAurSnPJ5tqSmV5PJkZ3HEUannC6Iquu1dOgPVjAAAAxYKiGbhe26URRRK20cdJMwAAAAByKfzaN+VJxsbbMcerv02M7WDWXMvzCQAAAIDca+kyNxxLp6Df131Y/o5Xjb7RGz8lZWoxGwAAAABXOpLyfLI5g+9OfB2/k7f/jNEX2bwrY+MDAAAg/yiagesdah802iuqQ6ou8ecpGgAAAABu4xntVfjN7xt9P0y+Ux1aorKgV8urgnmKDAAAAICbpZ40k05BfyjllJlkaY2i69+X0bgAAAAAuIvjOJNOmmlKo6g/XamnzCSq1ihRuz1j4wMAACD/KJqB6x3uMHci4JQZAAAAALkUfv3b8iRGx9sJx9JfJz8oSWquKZWHHZkBAAAA5FjvcFxdgzGjr6lm+kVp1mCHgm3PGX2RrR+TvIGMxwcAAADAPboHY+obTRh96ZyEmQ5PdFDBk3uNvmjzLk7LBAAAKDIUzcD1Uk+a2VpfnqdIAAAAALiNJ9Kv0OHvGn3P2HfovFMjKXMvfQAAAABgNlq6zV2cQz5LqxeHp70ndPgf5HGS423HF1Zk80eyEh8AAAAA9ziScspMRcirhspgRsYOnnhWnkRkvO1YPkU2fTgjYwMAAKBwUDQDV+sejE7aKY2TZgAAAADkSuiN78iKT5x+aTse/XXiQ+Pt5lqeTwAAAADkXkvXkNHeVFMqr3X9nZY9sSGFjvwfoy/S9ICcUFU2wgMAAADgIq0pzydNNaXyZOgkmOCRHxjt2Krfl1OyJCNjAwAAoHBQNANXe6PDfKgqC3q1Zsn0O6UBAAAAQCZ4YkMKv/6Y0fec/TaddBrG25w0AwAAACAfWlN2cp7p2STY8qSs2MQ7F0cejW77eDZCAwAAAOAyLZOeTzKz4Zj3Uov8l940+iLND2ZkbAAAABQWimbgaodSima21pXJytBOBAAAAAAwndCb/ygresXo+1+J+8b/vKjEp5ryQG6DAgAAAOB6juNMsShtmqIZO6HwoceMrtiaP5BdtSrzwQEAAABwFcdx1NI9u6L+dIVanjDaydJaxVe8MyNjAwAAoLD48h0AFjav15uVcS3LmradKaknzWxrrMja14Try1W+URjIt3uQa3ch3+5CvoEMiI8q/Nq3jK7W8jt0NLJivN1cWyYPRf0AAADAgpXN9w3ZfDbvHoiqZyRu9G2pv/77E/+pf5F38ILRF7353/C+JUP4PYy7kG93Id/uQr7dg1wDmXX+SlRD0aTRl5GimUREwePPGF3Rpj+ULJ5jAAAAihFFM5iX6urqnMxTWVmZ8TEj8aSOpuxE8I5N9Tn7mnB92cg3Chf5dg9y7S7k213INzB7oZYfyBrtMfq+bf2h0W6qycxOaQAAAADyI5fvGzL5bP5Ke5fRLg/5tG1N3fWL+g8/Zrbrb1bF5ndLbAKQFfwexl3It7uQb3ch3+5BroH5aekyN0ReXOLXsrLAvMcNnvyprOiA0RdpemDe4wIAAKAwsZ0BXOvwhX4lbGe8bXmkbcur8hcQAAAAAHdIRhU++HdGV3T57+nHvQ1G3+ZM7JQGAAAAALP0RvsVo721sfL6BTPnXpEu/M7su+NzFMwAAAAAyIiWLnND5Oba0us/n8xCsPUJox1rvEN25Yp5jwsAAIDCRNEMXOvA2T6jvam2QmVBDl8CAAAAMu3pp5/Wrl27tGvXLh0/fjzf4eRdqPWH8g6bOze3bfi0RuO20ddUW5bLsAAAAABA0timY9fa2lh1/Ytf/l9mu3K51PShzAcFAAAAwJVau82imaYMbDhm9Z9T4MLLRl+k+cF5jwsAAIDCRYUA5qWvr2/mi+bAsizjiNr+/n7Ztj3NHbP3clu30d5SW5K1rwfTy0W+UTjIt3uQa3ch3+5SCPmurq7O6XyYu3PnzunJJ59UMBhUNBrNdzj5l4wrfOBvjK54/dv0anKjpFPjfTXlAS0u9ec4OAAAAACZlM13Dtl6NnccR4fOXzH61lT5pvxarP5zqjj6Y127x/PI1o8pOjA47zgwoRB+D4PcId/uQr7dhXy7RyHkmncoKBZJ29HR7tSTZua/4Vio9UmjbQcrFVvznnmPCwAAgMJF0QzmJZlM5mQe27YzOpfjODrUbr60uaGuNGdfD6aX6XyjsJFv9yDX7kK+3YV843oSiYT27NmjVatWqba2Vr/61a/yHVLeBY//s7yDF4y+kVt2q+XYkNHXnIGd0gAAAADkVy6flTP1bH7hSkQDkYTR17QsPOXYoYPfkseZWABq+8s0uulBOfyOIKv4PYy7kG93Id/uQr7dg1wDc3emd1SjcbPorKlmnu9P7ISCrU8ZXdGNH5J8wfmNCwAAgIJm5TsAIB/O9UXUP2q+9NlaP/+dCAAAAABMeOqpp3ThwgU9/PDDsiweP2UnFT7wDaMrXnOT4o13qKXL3CltcwZ2SgMAAACA2TqS8mxSHfappjww6TpPdGDS7szR5l1yguVZjQ8AAACAe7SmPJ/UlAe0uNQ/rzH9534l73CX0Rdp/qN5jQkAAIDCx0kzcKXDHeYuzktK/aqvZMcAAAAA5Fd/f7/a2trU1tamkydP6uTJkxocHDsh8c4779Tu3bvTHuvSpUvau3evDh48qJ6eHvl8PtXW1ur222/Xe97zHgWD2f3376lTp/SjH/1Iu3btUmNjY1bnWigCbc/Jd+W00Tdyy27FbUfHL40Y/U2cNAMAAAAgD1q7Uk/BLJPH45l0XejI4/LEJ55jHI+l0W0fz3Z4AAAAAObB6/VmZdzUjdMytZFa60Xz3cnmurJ5fw3hlOL/xLKtUs1mZec7U5yylW8UJvLtLuTbPci1u5DvMRTNwJUOdwwa7a31U7/0AQAAAHLpM5/5TEbG2b9/vx599FGNjo6O90Wj0fFCnOeff16PPPKIamtrMzJfqng8rj179mjVqlX60Ic+lJU5FhzHVsn+vza6Eks3K75yp9q6RxRPOsZnTTUUzQAAAADIvdRTMJunKuhPxhU69B2jK7b2vbIrGrIZGgAAAIB5qq6uzsk8lZWVGRnn2KWI0d6+eun8voahi9Lp540u362fyNn3pVhlKt9YGMi3u5Bv9yDX7uLWfLuzVAiud6jd3Clta0N5niIBAAAAprZkyRJt27Zt1vedPn1aX//61zU6OqpQKKSPfOQj+vKXv6z/8l/+i37/939fktTZ2amvfOUrRlFNJv3gBz9QZ2enHn74YdfuUJEqcOpn8vUeN/pGduyWPB61dJvPJ8urgqoIsccFAAAAgNxK2o6Ods9cNBNs2yvvcJfRN3rTp7MaGwAAAAB3iSVstXQOGH3bGqvmN+ihxyU7MdH2haUtfzi/MQEAALAgsAoHrjMYSehUj7k4cFt9WZ6iAQAAACY88MADWrt2rdauXauqqipdvHhRn/vc52Y1xmOPPaZYLCav16svfvGL2rBhw/hnW7ZsUV1dnb73ve+ps7NTzz77rHbt2jVpjO985zuKx+Npz3nvvfeqrq5OknT8+HE9++yzevDBB7VixYpZxV60HEcl+/cYXYlF6xVb825JU+3kzPMJAAAAgNw72zuqkbht9DWlFs04jsKvf9PoitdtV6Jm9ps+AAAAAMD1HO8eVCxhPp/c0DCPXdEdRzponpipzR+WQu7caR0AAMBtKJqB67zRae7iHPB6tHHZ5J3SAAAAgFybqoBlNtra2tTa2ipJuuuuu4yCmbe8//3v1759+9Te3q69e/fq/vvvl89nPhr+7Gc/UzQaTXve2267TXV1dUomk9qzZ49Wrlyp++67b15fSzHxn3tRvktHjL7R7f9W8oydwtM6qWiG5xMAAAAAudeScspMTXlAS0oDRp+v49XJzzc3firrsQEAAACYv76+vqyMa1mWKisnik/6+/tl2/Y0d8zslePdRnt5dUh2dEh96b++Mnjbf6eKnjajb3D9fUpk6XtSzLKRbxQu8u0u5Ns9yLW7FEK+q6urczrfVCiagescbjeLZppqSxXwWXmKBgAAAMicV199dfzPd91115TXWJalO++8U9///vc1PDysI0eOaNs2c0fg7373u3OaPxKJqLOzU5L00Y9+dMprvvjFL0qSvvCFL+jWW2+d0zwLiuOo5Hf/y+hKVq5SdP37JEmReFInL48Yn1M0AwAAACAfJp+COfnZJPzat4x2smKFYqv/IKtxAQAAAMiMZDKZk3ls2573XG92DhjtpprSeY0ZfvNxo52oWq1ozc1Sjr4nxSwT+cbCQb7dhXy7B7l2F7fmm6IZuM6hjkGjvbW+PE+RAAAAAJl17NgxSVIwGNSaNWuue11zc7NxT2rRzFz5/X69613vmvKz1tZWdXZ2aseOHaqoqNCyZcsyMmeh87e/LH/Xa0bfyPaHJcsrSTp2cURJZ+IzyyNt4iRMAAAAAHmQegpmU435bGL1nVbwzPNG3+i2j48/3wAAAABApkwq6q+Z+7sTT3RQwba9Rl+0+UHJ45nzmAAAAFhYKJqBqyRsR292mifNbKsvy1M0AAAAQGZduHBBklRbWyuv9/qLlurr6yfdkwmBQECf/exnp/xsz5496uzs1H333acNGzZkbM5CF/7dHqOdLG9QdOOHxtut3eZLn9WLwwoHWHAGAAAAILcSSVvHL6WeNGO+Pwkf+rbRtoMVijQ9kPXYAAAAALhLNGGr7fKo0TfVSZjpCp54Vp7ExHiO5VNk4/1zHg8AAAALD0UzcJW2SyMajdtG3w2cNAMAAIAiEIvFNDg4dqri4sWLp722rKxMwWBQ0WhUPT09uQhvXtKNcbpCofmyLGva9lS8HfsVaP+t0RfZ8bC8gdB4u7V7xPh8c21ZVr8OpGcu+cbCRK7dhXy7C/l2F/INzF/b5VFFE47Rd+1JM57RXoWOPmV8Htn8f0kBTsoEAAAAkFknLo0oaU88n3gkbZzHSTPBlieNdmzVXXJKl855PAAAACw8FM3AVQ53DBrt5VVBLS715ykaAAAAIHMikcj4n0Oh0DRXTlwTjUaN+wrVww8/nNZ1TzzxRJYjmVBZWTnzRT/532a7vE6ld3xGpf5rimYumkUzt6xdpurq6kyEiAxKK98oCuTaXci3u5BvdyHfwOylnoLZWBVUZXjiNWLoyOPyJCaeHx3Lp8jWP81ZfAAAAADc40jnkNFevTis0sDcNhzzXj4q/8XDRl+kadecYwMAAMDCRNEMXOVwh/lQtZVTZgAAAFAkYrHY+J99vpkf9d665tr7smn37t3avXt3TuYqCO0Hpbafm313/IV0TcHMYCSuU5fMhWlbG6tyEBwAAAAAmFq6zPcnzbVlE41kVOHD3zU+j65/v+yyulyEBgAAAMBlUov6m+ZxykyoxdxwLVlao/jKd855PAAAACxMFM3AVQ63pxTNNJRd50oAAABgYQkEAuN/TiQSM17/1jXX3leovvGNb+Q7hNn71f/PbJcskbZ/3Oh6o73faPu9Hm2qo7AfAAAAQO61dJmL0pqvWZQWPP6srJFLxuejN34yJ3EBAAAAcJ9Jzye1cyyaSUQVPPaM0RXddL9ksWQSAADAbfgXIFzj0lBMHQNRo28bJ80AAACgSIRCEyeYRCKRGa9/65pr7ytUixcvTuu6vr6+rMVgWZYqKyvH2/39/bJte+pr+06q4uhP5Lmmb+SmTyk6HJWGJ55JXjnRZdy3bmmJRgYHNJLRyDEXs8k3FjZy7S7k213It7vkO9/V1dU5mwvIhmjCVtvlUaNvfFGa4yj8+reNz2INtym5dHOuwgMAAADgIiOxpM70Xuf5ZJYCp34qK3rF6Is0PzjX0AAAALCAUTQD1zjcYZ4yUxrwavXicJ6iAQAAADIrEAiovLxcg4OD6unpmfbaoaEhRaNjxRvpFqQsBMlkMmdz2bZ93fnC+/9WHjkT1wbKNbr5/5KTcv2RjkGj3VxTmtOvAembLt8oLuTaXci3u5BvdyHfwOycuDSipD3xDOORtPHqSTP+87+Rr+eYcf3ojZ/KZXgAAAAAXOTYxWFd83gir+XR+qVzK5oJtT5ptGMNt8muXDmf8AAAALBAWfkOAMiVw+3mgrQb6svktTzXuRoAAABYeBobGyVJXV1d0y4S7OjomHQPMsMzfEnBoz8y+iJb/lhOYPIply1dw0a7aY47pQEAAADAfBzpNDcdW704rNKAV5IUfv1bxmeJqjWKr9qZq9AAAAAAuMyRlHcna5eEFfLPfomjNXBegfO/MfqizX80r9gAAACwcFE0A9c4lLKL89b6sjxFAgAAAGTHxo0bJUnRaFSnTp267nUtLS2T7kFmhA//gzx2bLztWAGNbnto0nVXRuLqGIgafZtreUYBAAAAkHut3SkF/VdPmfH2HFfg3C+NzyI3fkLy8HoRAAAAQHa0phTNNNfM9ZSZfzLadrBC0bV3zzkuAAAALGy+fAcA5EIkbuto94jRt7V+8k7PAAAAwEJ266236umnn5Yk7du3T+vXr590jW3bevHFFyVJpaWl2rx5cy5DzCqv15u1sS3LmrYtSYoNKfTmP5pdTR+WVVE36dKjlwaMdshnad0yTsMsFGnlG0WBXLsL+XYX8u0u5BuYn9RTMJuvnoIZPvT3Rr8dqlZk44dzFhcAAAAA92npMk/CbJ7LhmN2UsGUopnohg9JvtB8QgMAAMACRtEM5iVbi9Iy/ZLzeOewErYzMZ5H2tZYkdVFdUgfL7XdhXy7B7l2F/LtLuS7cK1bt05NTU1qbW3Vvn37tHPnTm3YsMG45sc//rHa29slSffcc498vuJ5LKyurs7ZXJWVlZM7X/6+FDWLYYI7v6DgFHGdunLZaG9uqNTSxYsyGiMyZ8p8oyiRa3ch3+5Cvt2FfAPpG44ldbpn1Ohrri2VZ+SygkefNvojN/yx5A/nMDoAAAAAbjIQSej8lajR91ZR/2z4z/9K3qEuoy/SvGtesQEAAGBhK57VUciLXC1Km+9LzuOHe432xtoKLa9dOq8xkT281HYX8u0e5NpdyLe7kO/MOXr0qLq6Jn6JPzAwUYDR1dWlF154wbh+586dk8b4+Mc/ri996UuKxWL68pe/rA9/+MPavHmzYrGYXnrpJf385z+XJNXV1ekDH/hAVr4OV0rGpZf/2uzb+D5p6YYpLz98od9ob23k5wgAAABA7h3rHpZzTdtrebRhWanCB74ljx0b73esgEa3/EnuAwQAAADgGke7zVMwA16P1i6ZfeF+6MgTRju+dIuSS5vnFRsAAAAWNopm4AoHzvYZ7e0rq/ITCAAAADCN559/Xi+++OKUnx07dkzHjh0z+qYqmlm9erU+//nP69FHH9Xo6Kgef/zxSdfU1dXpkUceUTjMDsEZ8+ZT0sAFs+/tf3Hdyw9fuGK0KZoBAAAAkA8tXeaitHVLwgoqptAb/2j0Rzd+SE4pm5EBAAAAyJ7U55P1S0vk91qzGsMzclmBM88bfVFOmQEAAHA9imZQ9BzH0cFJRTO5OSEHAAAAyIcdO3boa1/7mp577jkdPHhQvb298vl8qq2t1W233ab3vve9CgaD+Q4z4/r6+ma+aI4syzJOVerv75dt22MNx1H5L/+78YCdqNuuwfKN0hQxXRyM6uJg1OhbVW5lNX7MzrT5RlEh1+5Cvt2FfLtLvvOdqxPZgWxoSdnJubm2VMGjP5IV6TX6R2/8RC7DAgAAAOBCLV1DRru5tmzWY4SO/kgeOzHednwhRTd8YN6xAQAAYGGjaAbzkq1FXZl8yXmub1Q9wzGjb12VlwVpBSTfL7WRW+TbPci1u5BvdymEfBfrorTdu3dr9+7dGRlr6dKleuihh/TQQw9lZLyFIJlM5mwu27bH5/Of/aV8PUeNz0du+sx143mjY8Bolwa8aqj05zR+zM61+UZxI9fuQr7dhXy7C/kG0jdpUVpNicKH/t7oi634PSUXb8xlWAAAAABcKPWkmeba0tkN4DgKtj5pdEXXvldOsGK+oQEAAGCBo2gG85KrF4/zecn52vl+o724xK/aMh8vTQsYL7XdhXy7B7l2F/LtLuQbbhd+7W+NdqJqjWKrf/+616e+9GmqKZXl8WQlNgAAAAC4noFIQheumKdg3uG8Jl/fSaNv9MZP5TIsAAAAAC7UOxxX16C5KXJTzeyKZnxdByY9z0Sa/2jesQEAAGDhs/IdAJBth9rNXdK2NpTJw4I0AAAAABng6z6swIWXjb7Rmz4tea7/uD3vndIAAAAAIANSn00CXo/Wnf5Hoy+xaIPiy9+Ry7AAAAAAuFBLt/l8EvJZWr04PKsxQi3mKTPJylVK1N8y79gAAACw8FE0g6J3uGPQaG+tL89TJAAAAACKTfi1vzPadslSRTfed93rHcdRK0UzAAAAAApAa7e56dh7FnUp2J6yKcCNn5LYiAwAAABAlrV2mc8nm2pK5bXSfxbxxAYVPPEToy/S/CDPMwAAAJAk+fIdAJBNg5GETl0eNfq21pflKRoAAAAA2eT1erM2tmVZk9pW/zkFTv6L0R+58RPyBkuuO86FKxH1RxJG3w0NFVmNHbM3Vb5RnMi1u5BvdyHf7kK+gblJPWnm49ZzRtsuWaLoxg/kMiQAAAAALpV60sxsNxwLnPiJPImJNWKOx6vIpvszEhsAAAAWPopmUNTe7BySc03b7/VoUw27OAMAAADFqLq6OmdzVVZWSgd+LDn2RGegTCW/t1sl4arr3vfrcx1Ge1FpQM0ra+Vhp7OCVllZme8QkCPk2l3It7uQb3ch30B6ri2aqVGvbhr4hfH56A1/KnmDuQ4LAAAAgMs4jjOpqH+2RTOhlieNdmzVXXJKl807NgAAABQHtltDUTvcYR7d2VRTqqCPv/YAAAAAMmDn/1va9V2pYftYe/vHpWkKZiTpjfZ+o721sZKCGQAAAAA5d3k4pu7B2Hj7Id9PZTnJ8bbjCymy5aP5CA0AAACAy1waiqtnOG70NdeWpX2/t+eY/N2vG33R5l2ZCA0AAABFgpNmUNQOdQwa7W315XmKBAAAAEDRsbxS8welpg9IZ1+SFq2e8ZZD568Y7a0N7IIOAAAAIPdar9nFuUQR/bH3eePzyKb75YQX5TosAAAAAC7U0mVuilwW9KqxKv1TL1NPmUmWLFNs5Z0ZiQ0AAADFgaIZFK2k7ejNlJNmtjakvwsBAAAAgIWlr68va2NblqXKyokCl/7+ftm2PXFBZbOUlDRNDLbj6I32K0bfmmpfVuPG3MyYbxQNcu0u5NtdyLe75Dvf1dXVOZsLyJSWa4pmHvC+qErPsPF5ZNsnch0SAAAAAJdq6TafR5pqSmV5POndnIwqePRHRle06Q8li2WRAAAAmMC/DlG0Tl4e0UjcfDF6Qz1FMwAAAECxSiaTOZvLtu1Zz3e6Z1QjMfMZZdPScE7jxtzMJd9YmMi1u5BvdyHf7kK+gZm9VTRjydYnvf9ifBZb9S4lq9fkIywAAAAALnRtUb8kNdeWpn1v4NTPZUWvGH2RpgcyERYAAACKCEUzKFqHU06ZaagMaklpIE/RAAAAAHC7I13mM8qyMr+WlPGMAgAAACC3HMdRa/fY88m7rQNaZXUbn4/e+Kl8hAUAAAAgy7xeb1bGtSxr2vZ0HMdRa0rRzOa68rRjDbc+abTjjbfJs3itsvOVQppfvrHwkG93Id/uQa7dhXyPoWgGRetQ+6DR3trAKTMAAAAA8if1pU9zLc8oAAAAAHKvezCm3pGEJOlTvueMzxJLNyve8LZ8hAUAAAAgy6qrq3MyT2VlZdrXnu8dUX8kYfTdsalB1dUlM9/cd1Y692ujy3/LJ3P2dWLMbPKNhY98uwv5dg9y7S5uzbc7S4XgCqknzWyrL89TJAAAAAAgtaQUzTTVluYpEgAAAABu9tazyTZPm261jhmfjd74KcnjyUdYAAAAAFzo0IUrRntRaUANVeH0bn79HyU5E+1gpdT8wYzFBgAAgOJB0QyK0uWhmNr7o0bf1np2cQYAAACQH4mkreOXzKKZzRTNAAAAAHnx9NNPa9euXdq1a5eOHz+e73ByrqVrbNOxT6ecMpMsrVV03b35CAkAAACAS71xod9ob22slCedQn47Kb32j2bf1gclf5oFNwAAAHAVX74DALIh9ZSZ0oCltUvSOLYTAAAAALLgZM+oognH6GuqobAfAAAAyLVz587pySefVDAYVDQanfmGItTSNawGXdI91qtGf2TbxySvP09RAQAAAMi2vr6+rIxrWZYqKyvH2/39/bJtO617D5y5bLTXLw6mFafvzAsqH7hg9A2su0/JLH2NmDCffGPhId/uQr7dg1y7SyHku7q6OqfzTYWiGRSlwx2DRntLXZm8Vhq7EAAAAABYsLxeb9bGtixr2vZMjnaPGu3GqqAWlQXnHReyY775xsJBrt2FfLsL+XYX8o10JRIJ7dmzR6tWrVJtba1+9atf5TuknHMcRy3dw/p3vn+VzzPxYtTxlyjS/JE8RgYAAAAg25LJZE7msW07rblsx1Frl7kx8qZlJWndW/LmD4x2YulmxRY3STn6GjEh3XyjOJBvdyHf7kGu3cWt+aZoBkUp9aSZrfXleYoEAAAAQK7kcmeKa3fhSEdb33mjfeOKRQWxkwbSM9t8Y+Ei1+5Cvt2FfLsL+cb1PPXUU7pw4YL+6q/+Ss8880y+w8mL81eiUnRQHwnuM/ojTQ/ICfGzAwAAACB3zvVGNBwzdzlvri2d8T7PaI8Cp39u9EWaHsxobAAAACguFM2g6EQTtlq7h42+bQ1leYoGAAAAAKTDF/qN9rbGqvwEAgAAAMxCf3+/2tra1NbWppMnT+rkyZMaHBw76f3OO+/U7t270x7r0qVL2rt3rw4ePKienh75fD7V1tbq9ttv13ve8x4Fg9k9ifHUqVP60Y9+pF27dqmxsTGrcxWylq4h/ZH3BZV7Jk7DdOTR6LZP5C8oAAAAAK7UkrK+a2mZX0vLAjPeFzz6tDx2fLzteIOKbvhgxuMDAABA8aBoBkXnaPew4klnvO2RtKWOohkAAAAA+RGJJ3Wsa9Dou6GRHZwBAABQ+D7zmc9kZJz9+/fr0Ucf1ejoRKFGNBodL8R5/vnn9cgjj6i2tjYj86WKx+Pas2ePVq1apQ996ENZmWOhONo5oM/6/sXoi625W3blijxFBAAAAMCtWrvMopnm2jTWdzmOQq1PGl3Rte/l5EwAAABMi6IZFJ3DHUNGe+2SsMqC/FUHAAAAil1fX1/WxrYsS5WVEy9c+vv7Zdt2Wvcebh9UwjYL+xtLnKzGi/mZT76xsJBrdyHf7kK+3SXf+a6urs7ZXPm0ZMkSNTQ06NChQ7O67/Tp0/r617+uWCymUCik++67T1u2bFEsFtNvfvMbPf/88+rs7NRXvvIVffWrX1U4HM547D/4wQ/U2dmpr371q7IsK+PjLySV53+mRs9lo2/0pk/lKRoAAAAAbnaky1zj1VRTOuM9vq7X5Os9YfRFm3dlNC4AAAAUHyoJUHQOtZs7OG9tKM9TJAAAAAByKZlM5mwu27bTnu/NjgGjvXpxWCFfbuPF/Mwm31jYyLW7kG93Id/uQr4z54EHHtDatWu1du1aVVVV6eLFi/rc5z43qzEee+wxxWIxeb1effGLX9SGDRvGP9uyZYvq6ur0ve99T52dnXr22We1a9fkxU7f+c53FI/H057z3nvvVV1dnSTp+PHjevbZZ/Xggw9qxQp3n6aSTNq6e+CHY5X8V/VWbZFde3P+ggIAAADgSgnb0bGLI0bf5tqZi2ZST5lJVq5QvOFtGY0NAAAAxYeiGRQVx3F0uCOlaKY+jaM7AQAAACBLWrqGjXY6O6UBAAAAhWCqApbZaGtrU2trqyTprrvuMgpm3vL+979f+/btU3t7u/bu3av7779fPp/5+upnP/uZotFo2vPedtttqqurUzKZ1J49e7Ry5Urdd9998/paisHl4y9rm+ek0Re58dMKeDzXuQMAAAAAsuN0z6iiCfOU2Jnen3hiQwqe+LHRF2naJfFMAwAAgBlQNIOi0t4fVe9IwujbVs9JMwAAAADyp7XbLJppTmOnNAAAAKAYvPrqq+N/vuuuu6a8xrIs3Xnnnfr+97+v4eFhHTlyRNu2bTOu+e53vzun+SORiDo7OyVJH/3oR6e85otf/KIk6Qtf+IJuvfXWOc2zUJQd+pbR7tRSBZrvyVM0AAAAANyspWvIaNdXBFVV4p/2nkDbc/LEJ06ncTyWopvuz0p8AAAAKC4UzaCoHGo3T5lZVOJTY1UwT9EAAAAAcLvhWFKne0aNPopmAAAA4BbHjh2TJAWDQa1Zs+a61zU3Nxv3pBbNzJXf79e73vWuKT9rbW1VZ2enduzYoYqKCi1btiwjcxYqq/+sll/+pdH3QtWH9W6LV4UAAAAAcq+la/YbjoWOPGG0Yyvvkl1Wk9G4AAAAUJz4TTiKyuEOcxeCrfXl8nAEJwAAAIA8Odo9LOeattfyaMMyimYAAADgDhcuXJAk1dbWyuv1Xve6+vr6SfdkQiAQ0Gc/+9kpP9uzZ486Ozt13333acOGDRmbs1CFDz0m65qnkwEnrEtr2JEZAAAAQH60phTNNM1QNOPtOS5/92tGX7T5wYzHBQAAgOJE0QyKyuSimbI8RQIAAAAAk1/6rFsSVtBn5SkaAAAAIHdisZgGB8dOh1+8ePG015aVlSkYDCoajaqnpycX4c1LujFOVyg0X5ZlTds2xIYUbP0no+v/JN+lDcunL2ZCYZhVrrHgkW93Id/uQr7dg1wDM4slbB2/NGL0bZ6haCbU8qTRtkuWKrZyZ6ZDAwAAQJGiaAZFYyiaUFvKA9XWhvI8RQMAAAAA0pEus7C/eYaXPgAAAECxiEQi438OhUIzXh8KhRSNRo37CtXDDyKOs90AANp3SURBVD+c1nVPPPFEliOZUFlZef0PD/1Uik+8P0k4lh5LvEd7NzWqMuzPQXTIpGlzjaJDvt2FfLsL+XYPcg1M1nZ5RAnbMfo21Uzz/iQZVfDY00ZXZNP9kpfnGQAAAKSHohkUjTc7h3Xt45TP8qhpugcqAAAAAEWlYHZxvkZrt3nSzJa6CnZyXgDYDdI9yLW7kG93Id/uQr4LUywWG/+zzzfz66i3rrn2vmzavXu3du/enZO58u7NHxrNF+1tCi5ZScEMAAAAgLw4dtHcFHnlopDKgtd/bgycfl5WpNfoizQ/mJXYAAAAUJwomkHRONwxaLSbakoV9PFyFAAAAHCL6urqnM2Vzu6AV0ZiunAlavTdtrFO1dXsLLjQsBuke5BrdyHf7kK+3YV8F4ZAIDD+50QiMeP1b11z7X2F6hvf+Ea+Q0jfSK908nmj69nk7bqhgZ8TAAAAAPnRMxw32iurpz+dNNRinuIZr79VdtXqjMcFAACA4kXRDIrGoXazaGZrfVmeIgEAAAAA6fCFfqMd9FnaUFOep2gAAACA3AqFJhY9RSKRGa9/65pr7ytUixcvTuu6vr6+rMVgWZZRINbf3y/btiddF3jz/6jUnihaijh+/dy+WX+2OJDV+JA56eYaxYF8uwv5dhfy7R6FkOtcbjAFzMVgxNxYoSJ0/SWM1kC7/Od+bfRFmndlJS4AAAAUL4pmMC9erzcr41qWNW07VdJ29GbnsNF34/LKrMWHzJptvrGwkW/3INfuQr7dhXwD6Tl84YrRbq6vkN/LzwsAAADcIRAIqLy8XIODg+rp6Zn22qGhIUWjY6c0pluQshAkk8mczWXb9pTz+Y/9s9H+hX2ThlSiTcvCOY0PmXO9XKM4kW93Id/uQr7dg1wDkw1GzZ+J8uD1lzAGj/5QHjnjbTtQpuja92YtNgAAABQnimYwL7naneLaXTim0to5oOGY+UB1Z3OjqisKf0c6TDZTvlFcyLd7kGt3Id/uQr5RKAphF+drHTh92WhvXBpiJ+cFohB2g0RukGt3Id/uQr7dJd/5Zhfn62tsbFRra6u6urqUTCavu9FVR0eHcQ8ywzN8Uf4LvzX6nk3eLknauKw0HyEBAAAAgAaj5kkzZcHrbIpsJxVqfdLoim74oOQPZys0AAAAFCmKZlAUDpw1F54tXxTWMgpmAAAAAFcphF2cr3Wkc9Bob1pWwo6CCxS7QboHuXYX8u0u5NtdyHfh2Lhxo1pbWxWNRnXq1CmtX79+yutaWlqMe5AZwba9xo7MQ05Iv7BvUshnqSRwnUVpAAAAAJBlQ6knzYSmfj7xX3hJ3sEOoy/SvCtrcQEAAKB4UTSDonDm8rDR3tZYlZ9AAAAAAEDS5aGYLg7Fjb7NtWV5igYAAADIj1tvvVVPP/20JGnfvn1TFs3Ytq0XX3xRklRaWqrNmzfnMsSsut7JOplgWda0bUkKtf3EaP/U3qGoAloW8mU1NmRWOrlG8SDf7kK+3YV8uwe5BmaWetJMRXDqJYyhlieMdmJJk5JLt2QtLgAAABQvimYwL319fTNfNAeWZamysnK83d/fL9u2r3v9pX6zaKbCn73YkHmzzTcWNvLtHuTaXci3uxRCvqurq3M6HzBbLd3mM0qJ39LKRZyGCQAAAHdZt26dmpqa1Nraqn379mnnzp3asGGDcc2Pf/xjtbe3S5Luuece+XzF8+oql8+u1z6nS5KunJM6DxhdzyZvlyRVlwZ5rl7AJuUaRY18uwv5dhfy7R7kGphsMGKeNFM2xUkzntFeBU79zOiLNO+SPJ6sxgYAAIDiVDxvHpAXyWRy5osywLbtaefqHzV3cC4LWjmLDZk3U75RXMi3e5BrdyHf7kK+gclaOs2imU01pbJ4kQMAAIAF5ujRo+rq6hpvDwwMjP+5q6tLL7zwgnH9zp07J43x8Y9/XF/60pcUi8X05S9/WR/+8Ie1efNmxWIxvfTSS/r5z38uSaqrq9MHPvCBrHwdrvTmU0bzilOqX9s3SJIqw/58RAQAAAAAkqShqPlesXyKk2aCx56Rx55YD+Z4A4pu+FDWYwMAAEBxomgGRWEgknJsZ4i/2gAAAADyp6V7yGhvri3LUyQAAADA3D3//PN68cUXp/zs2LFjOnbsmNE3VdHM6tWr9fnPf16PPvqoRkdH9fjjj0+6pq6uTo888ojC4XBG4oakN39oNPcmb1X86mvBijDvUAAAAADkh+04Goya67zKgyknzTiOQi0/MLqia98rJ8TJTQAAAJgbfiuOojA4aQeCycd2AgAAAECuXLgSNdoba0ryFAkAAACQfzt27NDXvvY1Pffcczp48KB6e3vl8/lUW1ur2267Te9973sVDAbzHWbG9fX1ZW1sy7JUWTmxYKy/v1+2bY991ndSlV2HjeuftW8f/3PI62Q1NmTWdLlG8SHf7kK+3YV8u0ch5Lq6ujqn8wGzMRJLynbMvtSTZnzdh+TrPWH0RZsfzHZoAAAAKGIUzaAocNIMAAAAgELSn/KMsqTUn6dIAAAAgLnbvXu3du/enZGxli5dqoceekgPPfRQRsZbCJLJ5MwXZYht2+PzBY4+a3w24K3Wb+3m8XZ5wJvT2JBZ1+YaxY98uwv5dhfy7R7kGjANRSf/PJSHzM2RU0+ZSVasULzhtqzGBQAAgOJm5TsAIBMGUxaklVM0AwAAACBPbMfhGQUAAABAfjiOgifMoplXwr8n+5pXgmVBb+pdAAAAAJATgylFMx5JJYFrnlFiwwqc+IlxTaT5AcnDMkcAAADMHf+axIKXSNoaiZtH2VbwwgcAAABAngxHk7Ids6+SohkAAAAAOeDtOSpf30mjb5/vHUa7gucTAAAAAHmSuulYWdAry+MZbwfbnpMVHx5vOx5L0U1/mLP4AAAAUJz4rTgWvIHI5GM7eeEDAAAAuI/Xm73iecuypm1faygen9RXXRrManzIrNnkGwsbuXYX8u0u5NtdyDcwIXj8x0Y7WV6vA8l1kiLjfeUhnk0AAAAA5EfqSTPlQXONV6jlCaMdX3Gn7LLarMcFAACA4kZlARa8gWhiUl85RTMAAACA61RXV+dsrsrKyut+dn74itH2ez2qX7ZYnmt2SsPCMl2+UVzItbuQb3ch3+5CvlEocl7Y7zgKtplFM/ENH9DAG+ZRmJXhAEX9CwiFge5Cvt2FfLsL+XYPcg1MbzBlnde1Rf3e3jb5uw4an0c278pJXAAAAChuVBZgwUs9tjPo8yjo45cOAAAAAPLjyoh50kxlOEDBDAAAAOBCOS/sv7BfGrhg9Id2/LGG9ncZfQ1Lq3MaGzKLwkB3Id/uQr7dhXy7B7kGTIOR6580E0w5ZcYuWaLYyrtyEhcAAACKG5UFWPAGpnmYAgAAAIBc6x81i2aqSvx5igQAAACAq7zxT2Z78Toll90waSfnyjDPKAAAAADy47onzSRjCh39kfFZZNP9kpfnFwAAAMwf1QVY8FIfpipC/LUGAAAA3Kivry9rY1uWZewI2N/fL9u2p7y2o6ffaJf5PVmNDZk3m3xjYSPX7kK+3YV8u0u+882JHSgYgVIpXC2NXn3+2PKHk96hSBTNAAAAAMifwai5OXLZ1c2RA6d/ISvSa3wWbXowZ3EBAACguFFdgAVvIHKdHQgAAAAAuEoymZz5ogyxbfu6810ZiRnt8qA3p7Eh86bLN4oLuXYX8u0u5NtdyDcKRc4L+2/+nLTtz+Q7/2sFjj+ryIp361xXz6R77ciQ+uzRrMWGzMp3YSByi3y7C/l2F/LtHoWQawr7UciGUtd5BcfWeYVanzD643U7lKxek7O4AAAAUNwomsGCNxAxX35y0gwAAACAfBoY5TRMAAAAAPkq7LeUXP5ORZe/U5J0pWvIuM5neeS3HArLFjAKA92FfLsL+XYX8u0e5BowpZ40Ux70yhrskP/sL43+SPOuXIYFAACAImflOwBgvgZTdiCoCLIgDQAAAED+pJ6GWRHmGQUAAABAfqQuSKsIeeXxePIUDQAAAAC3G4ymnDQT8il49IfyyBnvs/1liq67J9ehAQAAoIhRNIMFb2DSCx8WpAEAAADIn/6UoplKnlEAAAAA5EnqxmNlbDwGAAAAII9SC/vLAh6FWv7J6Itu+IDkL8llWAAAAChyFM1gwUt94VMe8uYpEgAAAACYeidnAAAAAMiHgQjPJwAAAEAhe/rpp7Vr1y7t2rVLx48fz3c4WTeU8oyydvg1eQcvGH3R5l25DAkAAAAuQNEMFryBlKIZTpoBAAAAkE/9ozyjAAAAACgMk96hcNIMAAAAUDDOnTunJ598UsFgMN+h5MxA1HxGWd/xjNFOLN6kxLIbchkSAAAAXIDfjGPBS93FuTzILmkAAAAA8ofCfgAAAACS5PVm732FZVnTtt8yHLeNdkXYn9W4kHnp5hrFgXy7C/l2F/LtHuQa6UokEtqzZ49WrVql2tpa/epXv8p3SFlnO46Gr1nnVaVBLevcZ1wTaX5Q8nhyHRoAAACKHCt3sOC5YUFaPB7XyMiIYrGYHMeR4zj5DimjPB6PLl++PN6Ox+NF9zViAvl2D3LtLuTbXeaab8uy5PP5FAqFFAwGeVGEouQ4TtE/o9i2rWg0qkgkokQiIdu2Z75pgeF/19yDXLsL+XYX8u0uc8m3x+ORx+NRIBBQSUmJ/H5/tsOEC1VXV+dsrsrKyin7o84Fo72ksiSnceWCbdsaGhrSwMCAYrGYksnkzDctMBcvXsx3CMgh8u0u5NtdyLd7zDXXXq9XJSUlqqqqUigUynBUKDRPPfWULly4oL/6q7/SM888M/MNRWA4mtS1T+sf9v5alh0fbzvegKIb78t5XJnGOi8UE/LtLuTbPci1u7DOa0xxrdyBKw2mLEgrL6IFaY7jqL+/X6Ojo/kOJeuu/X/AxbjoDiby7R7k2l3It7vMJd+2bSuRSCgSicjj8fDSB0UpmrAVS5q/XKgsomeUSCSiK1euuOIXZvzvmnuQa3ch3+5Cvt1lrvlOJBIaGRlROBxWZWWlPOxmiyLTPxo32pXh4ioQGxwcVHt7+/hCNDc8qwAAgOIW+f+zd9fhTV2P/8DfSd0oBYq7e/EVlwk+XIc7FDYYg8nnM/9sMLZ9t+Fj2LACQ4e7O8V1DCvSAnVv0iS/P/rLJTfWJE3SNvf9ep4+T5tcObknN73vnHvOychAfHw8AgMDUapUKWYUHYmJifj333/x77//4v79+7h//z6Sk5MBAG3btkVYWJjF23r16hX27NmDS5cuITY2Fu7u7ihZsiSaN2+Ojh07wsvLy1EvAwDw4MEDbN26Ff3790fZsmUduq/8JDlTt4O7BgPcjoqeV1R+Bxrvwk4skX3xPi9yVaxvaWF9SwfrWlp4nxc7zVABl6VSI00pPnkLebnlUWnsLyUlxSBIFfSeeqa46usi41jf0sG6lhbWt7TYUt+6N69oNBrEx8cjKCioQAcqIn2Jep36AdeZaUbbWKtLO0K7K+L/NelgXUsL61taWN/SYkt96zYMpaenw83NDQEBAfYsFlGeS3LhTjPaDjNqtVp0PsvlcpfNKUREROS6NBoN1Go1NBoNZDIZEhMT4enpiWLFiuV10fKNsWPH2mU7Fy9exLx580T342RmZgodcQ4dOoRPP/0UJUuWtMv+9CmVSixYsAAVK1ZEjx49HLKP/Co583UbSojsPmrKn4iez6jd39lFsive50WuivUtLaxv6WBdSwvv82KnGSrgkjJUBo+5yg1pWVlZSElJEf4OCAiAr6+vy/6jcnd/XW9ZWYY3GpJrYX1LB+taWljf0mJLfWs0GigUCqSmpiIzMxMAkJCQgOLFi7vsNQ5JT7JeRpEB8HeBjv1qtRoJCQnC315eXvDz84Onp6fL3ozG/2vSwbqWFta3tLC+pcWW+lar1UhLSxNGJk5JSYGPj49oW0S5od/p3J7kcjkCAwOFvxMTE42OEBiXkiH6202tdGi5nEWtViMqKkpotHXljCKTyeDm9jpXqlQqzqjjwljf0sL6lhbWt3Tkpq51M4ru9Y61GSUoKMiq5QuiYsWKoUyZMrh69apV6z18+BC//vorFAoFvL290bNnT9StWxcKhQKnTp3CoUOHEBUVhVmzZmH27Nnw8fGxe9k3bNiAqKgozJ49W3LtY7ptKPqzzKgKlYOybHPnFsiOeJ8XuTLWt7SwvqWDdS0tvM+LnWaogEvKNDxxA1yk04z2AwYA/Pz84O/vn4elISIiIso9mUwGLy8veHp6Ij4+HpmZmdBoNMjMzHRIowNRXtCfaSbA2w1u8oJ/w5b2fAWyb0YLCgpyuRvRiIiISHrkcjn8/f2hVquRmpoKIPu6h51myF5UKsOBvxxFrVYb3Z/+TDP+nnKnlstR0tPTJZNR9G+y5Q3Wro31LS2sb2lhfUtHburaWEZJS0uDn5+fXctYUPXt2xdVqlRBlSpVULhwYbx8+RKTJ0+2ahsrV66EQqGAm5sb/vvf/6J69erCc3Xr1kWpUqWwZs0aREVFYceOHejf33Dmk1WrVkGpVBo8bkqXLl1QqlQpAMA///yDHTt2oF+/fihfvrxVZXcFKf//Pi8fZKC72xnRcxm1+gKygnfzpRbv8yIiIiJX42r3ebHlhwq0ZL0b0rzcZfByL7gBSpdumCqIHy5EREREpshkMvj5+QnXOxkZGbzeIZeRpN9pxss1YndGxuvRqf38/Fz2ZjQiIiKSJh8fH1GnGd6QRq4kKVPcQaaQd8GfCRNgRiEiIiLXxoxinLEOLNb4999/cfv2bQBA+/btRR1mtLp164YjR47g2bNn2LNnD3r37m0wsMKBAwdE9/TkJDQ0FKVKlYJKpcKCBQtQoUIF9OzZM1evpaBK/v/55B35RQTI0oXHNTI5Mmv1yati2QXv8yIiIiJX5Sr3ebnG3TskWUkZ4sYeV7khDXg9Ap1MJuPIhkRERORyPD09IZPJoNFoOM0r2Y2bm+Nu/tKfWtbUVLPJmWrR34E+7g4tl7Po5hNPT888Lo3j6d9wp/28ItfDupYW1re0sL6lJbf17e7uLqyjVqtd4vqNCMge1TzFRTv2a79LkEpGISIiImnRzSiuMEtgfnH+/Hnh9/bt2xtdRi6Xo23btli3bh1SU1Nx8+ZNhISEiJZZvXq1TfvPyMhAVFQUAGDw4MFGl/nvf/8LAPjoo4/QrFkzm/aTn2kHHnvT7bLocWW5VlD7l8qLItkN7/MiIiIiV+YK93nxCo0KtORM8YlXyNt13tJqdfbNdjKZjCOkERERkcvRXuNob0ojsoegoCCn7SswMNDo40pZnOjvogE+Ti2Xo8TExEClUkEmk8HDwyOvi+N0vHFWOljX0sL6lhbWt7TYUt9yuRwajQZubm4ucf1GBABpSjVUev3HArxc4/OQbShERETkytiG4hh3794FAHh5eaFy5coml6tdu7ZoHf1OM7by8PBAhw4djD53+/ZtREVFoUmTJihUqBCKFy9ul33mNymZKrhBhTbya6LHM6t0zKMS2Q8zChEREbkyV8gortPDgCQpSX+ENG/XaOwhIiIiIqKCKSFdKfq7sK9rjXjMhh4iIiJyVZyNiFxRcobhiH+uNPgYEREREZE1nj59CgAoWbKk2cEWSpcubbCOPXh6emLChAlGn1uwYAGioqLQs2dPVK9e3W77zG+SM7PQQPYvCstSRY8rK7TNoxIRERERkVTwm3Eq0JIyxNPQFvLiW5qIiIiIiPJOon6nGR/pzcpCRERERET5Q3KmuA1FBsDPRWaaISIiIiKyhkKhQHJyMgCgaNGiZpf19/eHl5cXMjMzERsb64zi5Zql5XTUTLxyudzs31opCjXau10RPZZVrCZkgWVR0JOKlAYd03+tHIjEtbG+pYX1LR2sa2mxd33LZDKHXVc6EnsYUIGmP0oaR0gjIiIiIpKu+Ph4h21bLpcjMDBQ+DsxMdHolLOvEsSjo3nJVA4tl7MolUrh9WZlGY5W7Wr0v+RRqVT8ktBFsa6lhfUtLaxvabFHfavVaqjVaiiVSquv34KCgqxanshZkvTaUPy93CCX0I1cRERERERaGRkZwu/e3t45Lu/t7Y3MzEzRevnZxIkTLVpu48aNDi5JNt32FF0ZKjnay6+IHnOv2dklcnVMTAw0Gg3kcjnc3aV1/1pBvGmWbMf6lhbWt3SwrqXF1vrWdoz28PAokNdv0rpCI5eTpDdKGjvNEBERERFJl0qlynkhO1Gr1Ub3pz/TjL+X3KnlchSp3WSs/3ql9vqlhHUtLaxvaWF9S4s961uj0bjE9RvlD45sbLZkJOdUhbijfyFvd5dpAOcozvy/5qpY39LC+pYW1rd0cBTn/EmhUAi/W9KhQbuM7nqOFBYWhrCwMKfsKy+5pUahjvyx+MFq7+RNYYiIiIhIUtjDgAo0/ZlmArz5RQEREREREeWdRL2MEsiO/UREREREkuXM0faMjeSscksR/R3k71UgRwA0hqM4k1SwvqWF9S0trG/pkOoozvmNp6en8Lsls6lrl9FdLz9btGhRXhfBIjWTz4n+VrgHwLNsszwqDRERERFJibS+RSaXk6R3QxpnmiFXM3nyZGzYsAHlypXDpUuX8ro4khcZGYnGjRsDAObOnYtBgwaJng8PD8f7778PAIiIiED58uVt2g/r3TZz5szBjz/+CAB49eqVwfONGjXCkydPMGDAAMyfP9/ZxSMiIolgRiFXxuvU/IX5JH9jPiEiovxAfybMQt4eeVQSIseYNGkSwsPDUa5cOVy7di2viyN5kZGRCAkJAQAsWLAAgwcPFj2/bt06YQT9q1ev2pxRWO+2mT17Nn744QcAQHx8vMHz9evXx5MnTzBo0CAsXLjQ2cUjInI4b29v4feMjIwcl9cuo7tefla0aFGLljP2P8Ae5HK5qCN/YmIi1Gq1wXINMs6L/n4VHArfpGSHlMnZlEql8Jot6ZhVkOnPgKVSqTh72v/nit+nF+T6ZjuK9ZxZ32xHyVsF+dwm69mrvtVqNdRqNZRKpdXXlflhIADDudqJCpDkTJXo7wAvjsZCtjl16hSCg4OFnzFjxuS4zuTJk4Xlybw5c+aIjm9QUJDwo/u47s/u3bvzuthEREREVtPvNMOZZsgWzCeOxXxCREREUpGk12km0IedZsg2J0+eFF03jxo1Ksd1Jk2aJCxP5s2ePVt0fC352bVrV14Xm4iIqEDx9PREQEAAACA2NtbssikpKcjMzARgeWeUgkKlUjnkR7+DjFqtNlxOkY6manGH14RSrR1WJmf/SOlGY/3Xmhevne0ojqXbjlKsWDFRFilWrBjbUVxYfji/yTlY19Ji7/rWaDRWXyvlB7x7hwo0juJMjvL333/j1q1bqF27dl4XhYjyOVcaMYKIiHInS6VGqkLcMFTImx37KfeYT4jIUswnRET5i6NGcQYsG8n5RUKK6G9vudqhZXImjuLs3BsZ9Bu2t23bhqlTp5rNKLrvR0fVkTP24QzGRmHPiUqlynevWbc8xsqn+z7KysqyufyuUu+Ac89vS4+bWq2263FlRnktP3yek3NwFOf8q2zZsrh9+zaio6OhUqlE9aTr+fPnonXIPuTPLsJfli56LKN86zwqDbkatqMQkaWYUYikiz0MqEBL1us0E8BOM2QnGo0Gc+bMwcqVK/O0HPPnz3e56QV/++03NGnSRPjbVC/ScuXKOatIdjNo0CCDqTwp/2DQISIiR9OfCRMACvkwo1DuMZ84DvMJ5RXmEyIiaXDmCHrakZx1JWWIZ5rx93TLN6P65ZaUbjLOjyN/MqM4DjOKtOSn85sZxfHyU32TYzlqFGfKvRo1auD27dvIzMzEgwcPUK1aNaPL3bp1S7QO2Yf8wRHR31fUleETWDKPSkOuhhnFcZhRKK8woxCRvfHuHSqwslRqpCn1RnH24ijOlHtFixZFbGwsdu3ahWvXrqF+/fp5XSSXUqFCBdHIDgV9FDAiIiIircQMw+uaQl6M3ZQ7zCeOxXxCREREriw5Q3wjSwBnwiQ7YEZxLGYUIiIix2nWrBm2bdsGADhy5IjRTjNqtRrHjh0DAPj5+aFOnTrOLKLDmZpdJ7fkcrnZvwHA+8kx0d9H1Q3Q39fTYWVyNplMltdFcBr91yqTyfK0MygzimPpZxTOlufa8tv5TY7DupYWe9e3/uyaBQXv3qECKynDyCjOnGmG7GDs2LH45ZdfkJmZiR9++AFr167N6yIRERERUQGQpNdpxttdDk93w4YhImswnxARERGRrfQzCttQyB6YUYiIiKigqlq1KmrVqoXbt2/jyJEjaNeuHapXry5aZufOnXj27BkAoHPnznB3d61r6KCgIKfsJzAwUPxA/CMg8b7ooeOahvigeFGX6WwSExMDjUYDuVzucu+bnOTFTbO6+xw/fjx+/vlnZGZmYs6cOVi/fr3RdXQ7c0mtjqyle6z067cg3SStW89ubm4Oq3dXfm85sr7z6ri5cn3lRkE6tyn3bK1v7fnj4eHhtOtKe+LdO1RgJWUajqwUwAYfsoPSpUtj6NChAID9+/fbPNWfWq3GiRMn8OWXX6JLly6oUaMGSpUqhSpVqqBdu3b48ssv8fTpU7PbmDx5MoKDg9GoUSPR4z/99BOCg4MRHByM+/fvm1j7tX79+iE4OBh16tQxOU3m7t27MWrUKDRo0ABly5ZFlSpV8NZbb+HHH39EQkKCxa/bUU6dOiW85lOnTpldVrvcnDlzzC537tw5TJ06FaGhoahUqRJKly6N+vXrY/DgwVi2bBkSExOtKmN4eLiw78jISJPL/fPPP5g8eTJCQkJQtmxZhISEYPz48bh8+bJV+3vx4gW+++47vPXWW6hWrRrKlCmDkJAQjB49Whj9xpSEhASsW7cOEydORMuWLVGhQgWULl0atWvXRr9+/bBq1SooFAqT60dGRgqvNTw8HABw9OhRvPfee6hduzbKlCmDxo0b48MPPxS+VMyt58+fY+bMmWjSpAnKli2LunXrYsiQITm+Vq1GjRohODgYkydPNvp8RkYGlixZgh49eqBmzZooVaoUqlWrhtDQUAwYMACLFi0S1eucOXMQHByMDRs2AACePHkiHBPdH10KhQL79u3Dxx9/jLfffhtVq1ZFqVKlUL16dXTs2BFz5sxBbGysVa/j33//xbRp09CoUSOUKVMGtWvXxvDhw3Hx4kWLjktkZCS++eYbvPnmm6hevTpKlSqFGjVqoFu3bpgzZw4ePXpkct2kpCT8+uuv6NKlC2rWrInixYujZs2aGDhwIP7++2+OQEBEkpOULs4ogT7MJ5R7zCfMJ8wn9ssnM2bMYD7R4er5pHTp0kI+2b59O/MJEUlSSqb+TDPMKJR7zCjMKMwozCjMKMwoRHnlzp07OHr0qPBz9uxZ4bno6GjRc0ePHjW6jREjRsDT0xMqlQr/+9//sHXrVvzzzz+4ceMGlixZgjVr1gAASpUqhe7duzvjZUnDvQOiP2M0hfDYq4bLdJihvFWmTBkMHz4cALBv3z5ERETYtB21Wo3jx4/j888/R8eOHVGlShUEBwejQoUKaN26NT7//HM8efLE7DYmTZqEoKAgg9lu5syZg6CgIAQFBVmUUfr06YOgoCDUrFnTZEbZtWsXRowYgbp166JkyZKoUKEC2rdvjx9++CFfZJSTJ08Kr/nkyZNml9UuN3v2bLPLnT17Fu+//z6aNm2K8uXLo3jx4qhTpw4GDBiAP/74w+qMsm7dOmHf5jLK3bt3MWnSJNSpUwclS5ZEnTp1MGbMGKvz8IsXL/Dtt9+iffv2qFSpEkqUKIE6depg5MiRJv9vaSUkJGDt2rUYN24cQkNDUbZsWRQvXhw1atRAnz59sHLlyhwziva1rlu3DkD2rGsDBw5EjRo1UKJECYSEhNj1Pq9nz57ho48+QoMGDVCyZEnUqlULgwYNyvG1atWvXx9BQUGYNGmS0eczMjLw+++/o1u3bqhatSqCg4NRqVIlNG3aFH379sWCBQtE9Tp79mwEBQUJGe3JkyfCMdH90aVQKLBnzx7MmDEDHTp0QMWKFREcHIzKlSvjrbfewuzZs3PMKPqv4969e/jggw9Qv359lChRAtWrV8eQIUNw4cIFi45LZGQkvvzyS7Rr1w6VK1dGcHAwqlSpgs6dO2P27NlmM0piYiL+7//+Dx07dkTVqlVF93kxo5AU8NtxKrCS9UZI83KXwYujOJOdfPDBB1i7di3S09Mxa9Ys/PXXX1Zv46effsKPP/5o8HhSUhJu3ryJmzdvYuXKlVi4cCG6du1q1bZ79+6NH374AQCwZcsWzJgxw+SyL1++xIkTJwAAvXr1MuglmpCQgFGjRgnLaGVmZuLq1au4evUqVqxYgVWrVqFJkyZWlTO/Sk9Px9SpU7FlyxaD56KiohAVFYUDBw4gNjYWM2fOtOu+t23bhsmTJyMzM1N47Pnz59iyZQv+/vtvo+8ZYzZt2oTp06cjLS1N9Pjz58/x999/4++//8Z7772Hn376yWiv+A4dOhgN869evRK+RFy5ciXCw8NRokSJHMvz7bffYu7cuaLHIiMjsWLFCuzYsQM7d+5ElSpVLHptxpw5cwbvvfcekpOThcdevHiBffv2Yd++fbmup+joaPTt2xd3794VPZ6QkICEhATcv38fhw8fRnR0NL7++mub9/Phhx8KDUS64uPjER8fj0uXLmHZsmVYtWoV3njjjRy3t2vXLkyaNEn0Pnj16hV2796Nffv2YdGiRejVq5fJ9RcsWIDvvvsOSqVS9HhcXBzOnTuHc+fO4dSpU9i+fbvBusePH8fYsWMRFxcnely3Xt566y388ccf8Pf3z/G1EBG5gkSO4kwOwnzCfMJ8Yp98snLlSuzcuRM7d+5EjRo1LHptxjCfGMd8QkSU/+jPNBPgxREjyT6YUZhRmFGYUQBmFGYUIuc7dOiQyc6Ad+/eNficateuncFylSpVwtSpUzFv3jykp6cLN87qKlWqFD799FP4+PjYpdwEg04zx9T1EeDvmUeFIVc0bdo0rF69Gunp6fj++++xefNmq7cxZ84cIUfoSkpKwo0bN3Djxg0sX75cuEnfGn379sWsWbMAZF+rfvzxxyaXffnypfBZ17t3b6MZZfjw4Th+/Ljo8czMTFy5cgVXrlzBsmXLsHbtWjRt2tSqcuZX6enpmDJlitF6ff78OZ4/f479+/cjNjYWn3zyiV33vXXrVkycONEgo2zevBnbt2/H//3f/1m0nY0bN+LDDz9EamqqQfm3bduGbdu2YejQofi///s/oxmlTZs2RjPKy5cvcfjwYRw+fBgrVqzAxo0bLcooX3/9NX799VfRY/r3eeUmo5w+fRoDBw4UZZTo6Gjs3bsXe/fuzXU9RUdHo1evXrhz547ocW1G+ffff3Ho0CFER0fj22+/tXk/U6dONXqtEB8fj4iICEREROCPP/7A2rVrERoamuP2du7cifHjxxtklF27dmHv3r1YsmQJevfubXL9efPm4dtvvzWaUc6ePYuzZ8/i5MmT2Llzp8G6x44dw6hRo8xmlLfffhvLly9nRiGXxTt4qMBKytAbIc2Lb2eyn5IlS2LEiBFYtGiRMEKJJRc2urKyslCiRAl06dIFTZs2RYUKFeDl5YXnz5/jwoULWL58OVJTUzFhwgQcOnTIYNpfcypXrozGjRsjIiICmzdvNtvgs23bNmHUgb59+4qey8zMRJ8+fXDt2jW4ubmhT58+eOutt1C+fHkolUqcOXMGixcvxqtXrzBo0CAcPnwY5cqVs+o45DdqtRrDhg0Teq1XrlwZI0eORIMGDeDj44MXL17gwoULRr/gzq3Lly9j4sSJyMrKgpeXF8aPH4+33noLXl5eiIiIwK+//oqZM2fm+F7Ytm0bJk2aBI1Gg4oVK2L06NGoXr06ihYtiidPnmDt2rU4ePAg1q5di4CAAKMX/yqVCo0bN8bbb7+NevXqoXjx4lAoFIiMjMRff/2Fw4cP4/r16xg3blyOx2L16tW4cOECWrRogeHDh6NKlSpITEzEhg0bsHHjRsTExGDKlCnYvXu3Tcft6dOnQmOPXC7HsGHD0L17dxQqVAg3b97E3LlzMWfOHDRo0MCm7QPAp59+KnyJ2q9fP3Tt2hUlS5aEm5sbXrx4gStXrmDPnj2idUaOHInu3btj1qxZ2LNnD0qWLImNGzea3Y9KpULFihXRpUsXNGzYEGXLloW7uzuePHmC48ePY926dYiLi8OIESNw/Phxg1HWdN2+fRvbt29HiRIlMHHiRDRo0AAajQZHjhzB3LlzkZGRgenTp6N169YoVqyYwfo///yzMEpHYGAgRo4ciVatWiEoKAhJSUm4du0adu7caXR0n3PnzmHgwIFQKpUIDg7GmDFjULduXZQpUwZRUVHYunUrNm7ciIMHD2Ly5MlYuXJlTlVAROQSkvVGcS7kzRvSyD6YT5hPmE/sn0/2799v03FjPjEuP+aTEiVK4NWrV8wnRCRpyZns2E+OwYzCjMKMwozCjMKMQlSQNWnSBD/99BN2796NS5cuIS4uDu7u7ihZsiRCQ0PRqVMneHl55XUxHSI+Pt4h25XL5QgMDBT+TkxMhFqtzv4jKwOFHx6D7ifmUVUD+HnKHVaevKBUKoXXnJWVlcPSBZtMJhN15FCpVE6fnUB39hWVSoVixYoJGeXw4cM4efKkQUYR3pMwXkcKhcKijDJ27FiTGcXUPsqXLy9klL/++gvTp083+do2bdokvL7evXuLtpOZmYkePXpYlFH69+9vc0bRfR36M91YWt/6dWTJeaFWqw2WU6vVGDx4sEUZRX993d+NlUG3jFlZWQbPX758GePGjTObUaZPny56Lxh7ndu2bcOECRNyzCirV6+Gn5+fzRnl2rVrGDVqlNGMoluulStXWpxRbDm/nz59KnSYMZVRZs+eLcoo5t4fxt4XM2bMEDrMmMsouusOHz4cXbt2zTGj6O5LqVRalFGGDh2aY0a5efMmtm7dajajTJ06FS1atMhVRjF2PM+dO4d+/frleJ/XgQMHMGHCBGYUF2Sv/91qtRpqtRpKpdLq6zj9mZzyAr8dpwKLjT2AWqNBYrprBC0399cfwCoTF0GBPu6QO3Fq1ilTpuDPP/9EWloafvjhB2zdutWq9YcMGYIZM2bAw8ND9HhISAg6d+6MMWPGoFOnToiKisKvv/6KhQsXWrX9Pn36ICIiAvfv38eVK1dMftmtHQmsSpUqBsv89NNPuHbtGgIDA7F582aEhISIng8NDUXfvn3RuXNnYRr7xYsXW1VOfY8fP8atW7eEv41NI+rp6ZmrWUnMWbp0qRCkunbtit9//93gC6933nkHn376KV68eGHXfc+cORNZWVnw8PDAxo0b0aJFC+G5Ro0aoVu3bujUqRNu3rxpchuxsbGYPn06NBoNBg8ejJ9//lk0wkBISAi6deuG7777Dr/++iuWLFmC4cOHo2rVqqLtbNmyxegxbtasGfr27Yt169bhgw8+wOnTp3H8+HG0adPGZJkuXLiAoUOH4ueffxY1DrRp0wbe3t5YtWoVLly4gGvXrhlMQWuJL774Qhh5YNGiRaIe9Q0aNECPHj3QrVs3XLlyxeptA9nTde7btw9A9lS5xkZB69ixIz7++GPRxV5wcDCCg4NRqFAhAICHhwdq1apldl8zZ85ExYoVDRpRGjRogO7du2PkyJHo0qULYmJisHTpUnz66acmt3Xt2jWEhIRg69atCAgIEB5v0qQJKlWqhIkTJyI5ORmbNm3ChAkTDNadM2cOgOzPhi1btqB06dKiZVq1aoVJkyYZTLuqVCoxadIkKJVKdOjQAStWrICvry8AwN3dHSEhIejUqRNCQ0Px4YcfYteuXTh69KjRkZyIiFyN/rU5M0rBlt8yCvMJ8wnzSe7ziaenJ9asWSPkk9q1a1t0rHQxnxiXH/MJkJ1ROnXqhBYtWmDq1KnMJ0QkKZlZamRmiRs+pTbTjNTyCcCMoosZxTbMKNmYUV5jRmFGIcpPwsLCEBYWZpdtBQcHY/jw4Rg+fLhdtldQGLu2cAS1Wi3syyPyNGRZGa/LoJHhuLo+anrKnVYeZ7DkxlPXyiivr7GYUSzDjGIbZpRszCivMaPwPi+ynv51Sm47u2o0mgJ5HSe9O3jIZSRliC+4AyQ4inNiehbeXngpr4vhNAcmNUKQr0fOC9pJcHAwRo8ejXnz5uHkyZM4efIkWrVqZfH65cuXN/t86dKlERYWhv/+97/Yu3cvNBqN0dGITOnZsyc+//xzqFQqbNq0yWiYevjwISIiIgAYjpCWkpKC5cuXAwA++eQTgyClVa5cOUyfPh0zZ87E33//jZ9//hl+fn4Wl1PfBx98kOMy5cqVw6VL9n9vq9VqLFiwAED28Z8/f77JEWLkcjlKlSplt31fvnxZuNgfNmyYKEhplSpVCl9//TXGjh1rcjsrV65EUlISSpUqhTlz5hidkhMAPv74Y2zYsAFRUVHYsGED/vOf/4iezymsDh48GH/88Qdu3LiB3bt3mw1TJUqUwKxZs4y+fydPnoxVq1YBAM6ePWt1p5kXL14IM9S88847Rqeg9Pf3x//93/+hY8eOVm1bKyEhQZi2snnz5maXzW2P50qVKpl9vnbt2hgyZAh+//137Nmzx2yYAoDffvtNFKS0+vTpg6+//hrR0dE4e/asQZhasGAB1Go1ZDIZlixZYhCkdJUpU0b099atWxEZGQlvb28sWLBA1Nija+jQoVizZg0uXbqE9evXM0wRkSToZ5RACXaaYUZxHOaTbMwn9iHVfBIWFoY1a9YAAM6cOWN1Yw/zScHNJ8OHD8eqVauYT4hIUvQHHgOAAC9pZRSp5ROAGUUXM4r1mFFeY0Z5jRmFGYWIKLc8Hx8V/X1JUw2J8JdcPgGYURyNGSUbM4p9MKMwowDSyii8z4ukQJ7XBSD7CAsLQ//+/Y3+fPXVV3ldPIdIyhD3UiskwTBFjjd58mT4+/sDAGbNmpWrbSUnJ+Px48e4c+cObt++jdu3bwsXIdrnrBEcHIy2bdsCyJ7GUXdqTC3t6AMADC5CT58+jaSkJABA9+7dze5Le4GpVCpx9epVq8qZn1y/fh3Pnz8HkH2hp61bZzh27Jjw+6BBg0wu17VrV9G0xfr27t0LIDtYmJsS2t3dHU2aNAEAXLx40WzZNBoNXrx4gfv37wvvzdu3bwth0tyICED2+8dUWapVqyYcZ2vf4wBw6tQpoVeyuePWqFEj1KxZ0+rtA9kBydPTEwCwceNGp06VnJCQgIcPH4o+F7T1f/fuXSHkGVO7dm3UqVPH6HMymQz16tUDADx69Ej0nFqtxqFDhwAALVu2tLojk/Y92Lx5c6PTgerSfnbk9B4kInIVhh37mVHIvphPsjGf5J5U80nVqlWF46x/nWwJ5hPmEyKigiQ5w3Ckv0ISHHyMHIsZJRszSu4xozCjGMOMQkTkAjQaeD46KnroiKoBAGkOjkyOx4ySjRkl95hRmFGMYUYhKth4B48L8fX1RZcuXQweL168eB6UxvGS9W5IK8Qb0sgBihQpgvHjx+Pnn3/G+fPncfjwYXTo0MHi9Z88eYIFCxZg//79ePLkidll4+LiULFiRavK17dvXxw+fBgvXrzAiRMnhHCltXnzZgBA48aNUblyZdFzuqGobt26Fu/z5cuXVpVR37Zt20TldOaF6/Xr14XfQ0NDnbZfALh9+zaA7ClJzR1vDw8P1KtXDydPnjR4TqVS4caNGwCAP//8E3/++adF+zZVZ/v378fKlStx5swZpKSkmFw/Li7O7ParVatm9vnAwECkpKSY3YcpulO8NmzY0OyyDRs2xJ07d6zeh5eXF3r27ImNGzdix44daNasGXr06IEWLVqgWbNmZsOtLW7duoXFixfj0KFDZs8ntVqNhIQEBAcHG31efypWfdrRElJTU0WPP378GImJiQBsOw+0nx1HjhwxWTZ9uf3cICIqKBI50ww5GPOJIeYT2zCfMJ9oMZ8QETmWm5vjbgKTy+Vm/05RiG++8fGQw8vTeTO5O5o1o/mS4zCjGLJ3RlGpVNBoNLnapqWYUcSckVFkMpkoo8hkMqvqmxmFGYXyJ/3rFGvPbWPbc+R1JZEjyRMewS0pUvTYUXUDAIA/B0cmB2BGMcR2FNtINaMAbEfRx4xC5Dp49elC/Pz80L9//7wuhtMkZerNNMMb0shBJk6ciKVLlyIxMRFz5syxOEwdPHgQo0ePRlpamkXLp6enW122zp07w9fXF2lpadi0aZMopFy9ehX37t0DkD2Fn75Xr15ZvT9by5lf6IaCEiVKOHXf8fHxAIDChQvn+KWmqQvU+Ph4m8Knfp1pNBpMmzYNa9eutWj9jIwMs8/7+PiYfV7bYK8dScAaCQkJwu859Xa39MLemNmzZyMxMRH79u3DkydPMH/+fMyfPx9yuRz169dHjx49MGzYMBQqVMjmfQDAmjVrMGPGDIvr0dyxz+m4a7+Q1z/uuT0PYmJirF6nIH9uEBFZQ3+mGWYUcgTmk9yXM79gPsnGfGKI+cRyzCdElN9pG7udweCGgBfikS0DfTydWh5Hi4mJgUajgVwuh7u78ezl5u6cjgb5iZu7u8njkavt6lwzurm5ifYxZcoUIaP8+OOPeOeddwCIO3IZK9OBAwcwYsQIizOKUqk02E5O++jevTs++ugjpKWlYcuWLXjzzTeF53QzSv/+/Q3Wj42Ntahc+hQKhdV1oPs69K/PLb1J2lwdmduv7nK617ulS5e2+nXoLm+sDLpldNd7r2pvAAoKCjI7+jIgHjBSv/y2ZhTd7Wg0GnzwwQdYvXq1RetnZGQYvFbdv/39/c0eS92MYu1N8drjBgAlS5Y0ux/d6+2cyqP//I8//oikpCTs3bvXIKOEhISgZ8+eGD58uNGb03I6T3WtXr0aH374ocX1aOxzQcvPz8/s/rTHWqVSGX0vAkCpUqWsPg9szSiO+Oym/MPWDi/a88fDw8OlruMobzmqA5apTv1eT46JHn+hKYxbmgoAgEAfD5fqEMaO/fkH21FyX05zctsZ1BpsR8nmzHYUmUwmyijW1jfbUdiOQvkTO/ZnY/KmAkt/phkpTtsZ6OOOA5Ma5XUx7MJN54tAlYmLjECfvPnICgwMxMSJEzF79mxERERg//79QqOPKbGxsZgwYQLS0tLg5+eHsLAwtG/fHhUrVkShQoWEKQJPnDhhMJ2mNfz9/dGpUyds2bIFu3btwo8//ghvb28Ar6fsdHNzQ8+ePQ3W1Z3m89ChQ/DwsGyUwdKlS9tcXsrdFyW6F8VDhgzBuHHjLFpP+37TWrt2rRCk6tati/Hjx6Nx48YoVaoUfHx8hAuasLAwbNy40WlhNyeO/JIpICAAa9aswaVLl7B9+3acOnUKN27cgEqlwpUrV3DlyhUsXLgQf/75J5o2bWrTPu7duycEqeDgYISFhaFVq1YoX748/P39hXNw7dq1mDp1KgDkm2OvS/s+fPPNN/Hll1+KntO9GLblJkQiooIuKUO/Yz8zSkGWXzMK84kY80nuMJ/YjvkkfzCXTwBmFCKStsR0/U4zrjPLjKUK+7jj8PvN8roYTlU4jzJKWFgYvv/+e1y8eBF79+5Fp06dzK4TGxuLsWPHIi0tDf7+/pg8eTI6dOiASpUqiTLK8ePH0aNHDwC2XYv4+/ujc+fO2Lx5M3bs2IGff/5ZyCibNm0CkH290KtXL4N1da8djh07ZvEN7WXKlLG6nPSavTLKsGHDMH78eIvW088oa9asETrM1KtXDxMnThQyiq+vr3CNOWHCBGzYsCHfXCc7MqMUKlQI4eHhiIiIwLZt23Dy5Elcv34dKpUKly9fxuXLlzF//nysWbMGzZrZ9rn7zz//CB1mgoODMWXKFLRp08Ygo6xZswZTpkyx58uzK+378K233sLXX3+dx6UhIjLkrA5YQkfKp+KZF46oGgDI/p9VIijApTqEWdKxv2iAmyQzitwB1ynmOo0XLVpUyCgRERE4ePAgOnXqZLYzr247iqUZxVhH8Zw6DBcuXFjIKLt27cIvv/wiZJRt27YJ2+3bt6/B+rrXndZmlILasV+/HM7s2K/dt7lzWkv3Wlx3Wd3Hrc0outtZvXq10I5iaUYx17HfmmNp7U3xuq/Zw8PDogEE9MtnbDn954OCgrB+/XqjGUW3HcVYRrF0v//884+oHcWSjGLu2Ob0XjJVLt06sOT9qM/WjMKO/a5Nqh37Jf+uTkxMxL///ot///0X9+/fx/3795GcnAwAaNu2LcLCwize1qtXr7Bnzx5cunQJsbGxcHd3R8mSJdG8eXN07Ngxx1FxckupVOLo0aOIi4uDr68vqlSpkuNUagUZR3EG5DIZgnxdo6FL959sVlb+G31h/PjxWLJkCeLi4vDDDz/keFPajh07hJGI/vzzT4PpNLW0vdJzo0+fPtiyZQuSk5Oxf/9+vPvuu1Cr1di6dSuA7M8yYz2zdf9pFStWLN/fbKZ7Ua17Q50+/SkKdRUpUkT4/cWLF079jCxcuDCA7DrPabQwU6ND6NaZRqNBrVq1bCrLmjVrAACVKlXC7t27TfZkt8f7M7d0RyV79eqV2QZHW0fV0NWoUSM0apR9o29KSgpOnTqF8PBw7Nq1C69evcLIkSNx4cKFHHv/GxMeHo6srCy4ublh+/btJt9/uqMuOIL+eWCtoKAgREdHQ6lUGrwHxZ/lzpuSl4hIy5EjWZgaJU2XfkYJ8vMqkKNrGGPpjReuklH0R0ZRqeT55iYYgPnEkSwdVYf5pGDmk9yOosR8Yn+OzCeGn+WqfPVZTvZlz1HSCuoIaUT62GkmO58UcYF8UhBMmDABixcvRlxcHGbPnp1jp5nt27cLGWX16tVo166d0eXscQ3Yr18/bN68GcnJydi3bx969OgBtVotdOxv166d0Yyie51StGjRfN8Zxh4ZpWjRosLvL168QPXq1e1TOAtor7Xj4uLsllFq165tU1lWrVoFAKhcuTL27duXr9tQtNkOAF6+fImyZcuaXNYeGaVx48Zo3LgxACA5ORknT55EeHg4duzYgVevXmH48OG4dOmSTRll3bp1QkbZuXOnyfefo4+7/nlgrSJFiiAqKgpKpdLm9yARkctQZgCRZ0UPHVE3EH4vxIxCDsSMkveYUZhRmFHsgxmFyH6k18tAz9ixY+2ynYsXL2LevHmiaakyMzOFjjiHDh3Cp59+ipIlS9plf8YkJCRg4cKFoseqVKmCDz74wKH7zSvJmeLRIQO82JBJjuPv74+wsDB8++23uHbtGnbt2mV2+Tt37gDIvvg1dUMaAFy5ciXXZevQoQOKFi2K2NhYbNmyBe+++y5Onz6NqKgoAEDfvn2NrlevXj3h93PnzhkdSS0/8ff3F343d9PO/fv3TT5Xv3594fczZ86gVatWdimbJWrVqoWtW7dCoVDgxo0bCAkJMbpcVlYWbty4YfQ5T09P1KxZE3fu3MH58+dtLov2/dmpUyeToUCj0eDatWs278NedC/WL1++bDb02+N80uXv74+OHTuiY8eO+Oyzz/DHH3/gxYsXOHfunOgLEktvIr579y4AoE6dOmZviLT369BXoUIFBAYGIjExEWfOnLF6/Xr16iE6OhpXrlyBQqEwGIWPiCgvOXMkC90bpwFArdYYdJopWzwIQUHi5QoqS0ZIc2XOvnE2p9G3ChcujClTpuDrr7/GtWvXsHfvXrOjIv3zzz8Ass+RN9980+R+da//bBkhDQDeeecdIZ9s3boVvXv3xokTJ4R80r9/f6PrNmjQQPj94sWLuZrxJif2GCFN90v/5ORkk8fj8ePHov3qLqftDAHA4BrTErkZIa1OnTpCPrlz547F+UR3G+7u7kI+uXDhgs2fDdrr5C5duiAgIMDoMhqNBtevXzdaDv2/HTlCWt26dYXfr127hgoVKphcVve63toR0owpXLgwunbtiq5du+KTTz7B77//jhcvXuDixYto3769sJx+vZui/VyoW7eu2Q5PV69eFW3P3iOkValSRcgnZ8+etfp9VL9+fSGfqNVqs/mEnSCkxZb6LugjpFH+5MhGc7lcLsoliYmJoptQXsQniZb3cdfki5sn7EWpVAqv19UHb8kPHUF1Z/BQqVQGx9zHx0doQ7l69Sq2b98uej/qL3/r1i0A2RmlVatWJuswIiLC7H7N7UOrbdu2Qkb566+/0LVrV5w8eRLPnz8HkN3x39i6derUEX4/ffq0Q9tQdF+H/ux4lta37nf9sbGxJo+H9vpbu1/d5XRf88mTJ9G8efOcC69Dd1vG6kv3tWVlZYmer1mzJgBAoVDgypUrZjOKbjbQ3YZcLhcyytmzZ23+bLh9+zYAoGPHjvDw8DC6HY1GI7pW1l8mp2Ohpd++YO35rT1uQHaWNndPwKVLl0yWV5f++8IUHx8fvP3223j77beFNpTo6GicOnVKlG91X4+57WqPe506dVC5cmWTy+q/DlPL5fQ6TH1+lClTRsgop06dsvp9VLduXURFReHy5ctIS0sTZZT88HlOzmGvular1VCr1VAqlVZfxzHTUL7g4Q1MuwncPwzc249X1w/glPr192uFvNl5hBwnICBAaEe5evUqdu7caXZ53fu8zH1Xf/ny5VyX7c033xQyyqZNm9CjRw+cOnVKyCj9+vUzup7uPU/nzp1zaDuKPeh+32/rfV66ueD06dNo3bq1Xcpmidq1a2PLli0W3eelm1F06d7nde7cOZvLon1/du7cucDd52Wu04zutb09BAQEoHPnzujcubPQjhIdHY2zZ8+K2lEsvc9Le9zr1q1rtsOWPT4XzNG9z+v06dNWr1+vXj0ho/A+L5I6w6FxJaxYsWIm/7mZ8/DhQ/z6669IT0+Ht7c3Bg4ciP/973/44osvhJtRoqKiMGvWLFGnGntq164dvvjiC/zxxx9YvXo15syZgzZt2uD+/fv49ttvHbbfvMSZZsjZRo8eLfTknzNnjtkvtrRf/GdmZprsLZ+Wloa//vor1+Vyd3fHu+++CwA4ePAgEhMTsXnzZgCAr68vOnfubHS9tm3bwtfXFwDwxx9/5PsvZcuXLy/8bq5TgXYEa2Pq1q0rdLpYs2YNUlJS7Fa+nOh2ntqwYYPJ5Xbt2mU2LHbs2BEAcO/ePRw+fNimsmjfn2lpaSaX2bNnj0290+2tZcuWwpfK5o7b5cuXhQYVR2jTpo3we1xcnOg57VS5mZmZZrehbVgxd9yjo6Oxb98+W4tpEblcjrfffhtA9pcK1oZm7QgsSUlJCA8Pt3v5iIgKqhRFFtR6l1NSHMmZnGfs2LFCPpk1a5bZ63ntdUhO+WTjxo25Lpe7uzt69uwJADhw4AASExOxadMmANn5pGvXrkbXa9eunZBPfv/99wKVT8x9Ga597cbo5pNVq1Y5NZ/oNvqZu6bbuXOn2XyizZv//PMPDh06ZFNZtO9Pc6PJ7d69G9HR0TZt355at24t5BNzx+3SpUtOyyexsbGi57QzXSsUCrPbsDSf7N2719ZiWkQulwuzZZ06dcrqfKJ9DyYlJWHt2rV2Lx8RUW6pVCqH/ehf16nVatHziWnimWb8Pd0cWh5n/+T360V70n+t+fW1sw3FMSzdL9tQshW0NpTcnt9sQ7E/R7ahFJTPc8o9e9e1RqOx+lqJyJT4+HiH/Ghn6NBKTEzMfk4hR3y5txDfYQ7aqBYiBb7CMrKsDIeVJy9+tB37tR03XfnHWEfvvCyDqf2PHDlS1I5irBO39kepzM7QmZmZUCgURreXlJQkuuYytl/9jrnGfgAIGeXAgQOIjY0V2md8fX3RsWNHo+u1atVKyCiLFy+GUql02PHNqWO/JdsoXbq0sE5ERITJ5XRzn/75U7NmTVE7SkJCgtWvxVy5zb0ndDvorF271uT2t2/fLsoo+s9rM8o///yD/fv321wnQPaM9Kae37Fjh6gdxdpjYeyYWFPf2p/mzZsLGUU7U4uxnwsXLogyirny2vK5qjuQ9qtXr0TPaTuNZGZmmt2G9nMhNTXV5DJPnz4VtaPk5nWY+vxQq9VCRjl16hQuXbpk1bHQvgeTkpKwevVqu9U1fwrWj73qW79jvzU/+YHkO8307dsXH3/8MZYsWYKFCxfaNPPMypUroVAo4Obmhv/+97/o3bs3qlevjrp162L8+PEYMmQIgOyOMzt27DC6jVWrVmHZsmUW/2hHaNXq168f6tati8DAQHh5eaFixYqYPHky2rRpg1evXtl840J+lqzXaSaAnWbIwfz8/DBlyhQA2aOgmTuvKleuDCD7i93t27cbPK9SqTBt2jS73fSjnU0mMzMTmzdvFkZI6NSpk2iGFl2BgYEYPXo0AODChQv473//a3Y6zJcvX2L16tV2Ka8tChcuLIxyFh4ebvQf6dmzZ7FkyRKT25DL5QgLCwMAPH/+HJMnTzZ5I5FarbbrTVmNGjUSRn1YuXIlzp49a7BMdHQ0vvrqK7PbGTduHPz8/AAA77//vtCr3ZT9+/fj5s2bose07899+/YZPY4PHz7Exx9/bHa7zlKyZEmhgWHv3r3Ytm2bwTIpKSmYPn26zft49OgRTp06ZXaZI0eOCL/rNj4CQIkSJQBkj8BvrhFRe9wfPHhgdKagtLQ0TJgwwSkdXSdNmgS5XA6NRoNx48YJI5YYo//cgAEDhC8lvvzyyxxHMTh79myOx5eIyBXo35AGAIV9OUoLOY6fnx8++OADANn55MCBAyaXrVKlCoDs6w1jN0ipVCq8//77Bt812Eo7ClpmZib++usv/P333wCyb243l0/GjBkDADh//jw+++yzHPOJdjr6vKCbT9atW2f0uvrMmTP4/fffTW5DLpfj/fffB5B9zTVx4kSz+cRe9QNkT1evHThm+fLlRmcgjI6Oxueff252OxMmTBDqdPLkyTnehLVv3z6DmTUtySczZswwu11nKVmyJLp06QIg+yY5Y+dTSkoKpk2bZvM+rM0n+rPdaEeWfvXqFZKTk01uQ/u5cP/+faMj3KWlpWHs2LFOySdTpkwR8sno0aPx7Nkzk8vqPzdo0CAhn3zxxRc5HrszZ84wnxCRZCRlihtCOfAYORrbUNiGkhtsQ7EN21Acg20oROTK8qpTf6ZCiXSluAOZn4cszzvjs2O/bQpKR1BmFMdkFEvrmxklW0HLKLk9v5lRHMMRGcVUXTOjuCZ27M8m+W/I+/fvn6v1//33X+GGgPbt2xudhqtbt244cuQInj17hj179qB3795wdxcf+gMHDuQ4uoqu0NBQlCpVKsfl3nrrLRw/fhx37txBt27dLN5+fpelUiNNKb7oK+TlZmJpIvsZMWIEFixYgBcvXhiM5qqrR48e+O6775CZmYn3338f169fR7t27VCoUCHcuXMHS5cuxdWrV9GsWTOjF1XWatasGSpUqIDHjx/j+++/F0bx6NOnj9n1Pv74Y5w+fRoRERFYsmQJTp06haFDh6Ju3brw9fVFYmIi7ty5g+PHj+PQoUOoVasWhg4dmquyPn78GLdu3RL+NvUPsUiRIsJFqtaoUaMwffp0vHr1Ct27d8f06dNRpUoVJCQk4MCBA1ixYgVCQkJw4cIFk/sfPXo09u/fj6NHj2LXrl1o06YNRo4ciQYNGsDHxwcvX75EREQEtmzZgj59+mDmzJm5er265syZg27dukGpVKJfv34YP3483nrrLXh5eSEiIgK//vor4uLiUKdOHYMApFW8eHHMnz8fo0aNwosXL/D2229j4MCBePPNN1GqVClkZWXh+fPnuHz5Mnbs2IFHjx5h7dq1QhAFsv/3ffXVV4iOjkbnzp0xZcoU1KpVCxkZGTh58iR+//13KBQK1K9fP19M3fnNN9/g2LFjSElJwYQJE3D69Gm8++67CAgIwM2bNzF37lzcv38fDRo0MDuCninPnj1Dz549UaNGDXTp0gUNGjQQ/sc+e/YM27ZtE74UqVu3Lho3bixav2nTpgCyA/hHH32EMWPGoEiRIsLz2hDVv39/LF26FGq1GoMHD0ZYWBjeeOMNeHt74+rVq1i8eDEePHhgt88Fc+rVq4eZM2di9uzZuH//Ptq0aYNRo0ahVatWCAoKQlJSEq5fv45du3bBzc1NFGK9vLywdOlS9OzZE6mpqejduzd69eqFzp07o3LlysIXEZcvX8bu3btx69YtzJo1Cy1btnToayIiAuDQ0SnkcjkCAwOFvxMTE0VfREe+EH+h5i6XQZGahPg0y6Z3zu+0I6QBr0f+dGUymUwYBQmA0xu8jI2QZsywYcMwb948g3yiv3z37t3x7bffIjMzE5MnT8bVq1dzzCfG9qs/wpEpjRs3FvLJ//73PyGf9O7d2+x6M2fOxKlTpxAREYHFixfjxIkTOeaTwYMHm9yeKbqv4+HDh6JrN7VabbSuzeWTly9fonPnzjnmE+0IUrpGjBiBPXv24OjRo9i5cydatGhhcT7R3Zax+jI2QpquH374QcgnvXv3tiif6G+jSJEimDdvHkaNGoXo6Gh06NDBonxSs2ZNYRvafBIVFYW3337bonyiX46cjoWWTCb+TLbl3P7qq69w5MgRpKSkYOzYsThx4kSO+cTc+17/ffH48WOr8kmDBg1E62vzilqtxrRp00zmk759+2LJkiVQq9UYMGCARfnE2PvI1Osw9ryW/nK1atUS8sm///6Lli1bWpxP3NzchHySkpKCHj16CPmkQoUKkMlkiI6OxtWrV7Fz504hn7zxxhsmy0oFkz3+d+uPkGaNoKAgq5YncgbDgcfYhkKOxzYUtqHkBttQbMM2FPtzVBuKuYzCNhQicnUpmYbXNAG8z4ucgBmFGSU3mFFsw4xif7zPi8g+JN9pJrd0P+zat29vdBm5XI62bdti3bp1SE1Nxc2bN4XRPLUcNfJQoUKFAOQ83XFBk5RhePHFUdLIGXx8fDB16lR8+umnZpcrXbo05syZg2nTpiEjIwPz5s3DvHnzRMv07NkTQ4cOzTHwWKp379745ZdfhCBVtGhRdOjQwew6Xl5e2LRpEyZPnoxdu3bh5s2b+OSTT0wuHxAQkOtyakfDzsm4cePw3XffiR4bMmQIDh06hN27d+Pu3bsYN26c6PnatWtjxYoVqFu3rsntyuVy/Pnnn5g8eTJ27NiB+/fv47///a/1L8QGjRs3xoIFCzBlyhRkZGTgt99+w2+//SY87+7ujjlz5uDcuXMmwxSQ3Rlz9erVmDJlCuLj47Fy5UqsXLnS6LJyuVyYnlVr3LhxOHr0KI4ePYr79+9j6tSpoud9fHwwf/58HDhwIF+EqfLly2PNmjUYMmQIUlJSsGLFCqxYsUK0zEcffQSZTGZTmNK6e/cu7t69a/L5atWqYeXKlQY32rVu3RpNmjTBxYsXsXnzZmzevFn0/KtXrwAADRs2xMcff4wffvgBiYmJ+P777w32MWnSJNSsWdPhYQoApk+fDrlcjjlz5iAxMRG//PILfvnlF4PlWrRoYfBYkyZNsG3bNowZMwbPnj3Dpk2bsGnTJpP7ssdnBxGRJZw5OoV2lDSthDTxqEaFvN3Mju5U0OTXUcIcpaCMksZ8kvtrDO1MLzlhPnGNfGKPc5v5xDGYTyi37Pm/WztCGlFBl5yp12nGi20o5HjMKGxDyQ0pZhR7YEZxDGYUIiL7SjbSacafGYWcgBmFGSU3mFFsw4ziGMwoRLnHq89c0n7oenl5CT0Mjaldu7ZoHf1OM45y7949AEBwcLBT9ucsSZmGI1cGsNMMOcnQoUMxf/58PHv2zOxygwcPRtWqVbFgwQKcP38eiYmJKFKkCOrUqYNBgwahZ8+edp3Krm/fvqILoXfffddgVitj/P39hWkkN2zYgLNnzyI6OhoZGRkICAhAxYoV0bBhQ7z99tsmOwc6i1wux/Lly/Hnn39i/fr1wmdwpUqV0KNHD0yYMAE+Pj45bsfX1xfLly/HyZMnER4ejnPnzuHly5dQqVQIDg5G3bp18c4776B37952fw29e/dGnTp1MHfuXBw/fhxxcXEoWrQomjVrhokTJ6Jx48Y4d+5cjtvp2LEjIiIisHr1ahw8eBB37txBQkIC3N3dUbx4cdSoUQOtW7dG9+7dhSkWtTw8PBAeHo4VK1Zg48aN+Oeff6DRaFCyZEm0bdsW48aNQ7Vq1XDgwAG7v35btWzZEidPnsRvv/2GgwcP4sWLFwgMDESDBg0wZswYdOjQAXPmzLFp26Ghodi2bRuOHDmCiIgIPHv2DK9evUJmZqYwXWy3bt0wcOBAeHl5Gawvl8vx119/Yd68edi3bx8ePXqEtLQ0ozfofPTRRwgJCcGSJUtw5coVpKWloVixYmjYsCFGjBiBdu3aITw83KbXYYtp06bh3XffxYoVK3D8+HE8ffoU6enpKFy4MKpXr462bdtiwIABRtdt0qQJzp07h/Xr12Pfvn24fv064uLiIJfLUbRoUVSrVg0tWrRA9+7dUbVqVae9JiKivJKULs4o7NRPzsJ8kneYT15jPmE+sQdH5pMaNWogNDSU+YSIJCVZb/AxzjRDzsKMkneYUV5jRmFGsQdmFCIi+9Hv1O/hJoOXu8zE0kT2xYySd5hRXmNGYUaxB97nRZQ7Mk1+HS41j7x8+RKTJ08GALRt2xZhYWFmlx89ejSSk5NRoUIF/PjjjyaXS0lJwahRowBkf2h/+OGHdivzs2fPUKxYMYMP+GfPnuHrr79GQkICvvrqK1HHnZyYm45Ql1wut6qslpLL5QgMDBT+TkxMFI3SfO1ZMoavuS787eUux9npoQ4pS16JioqCSqWCXC43mLrQ1chkMri5vW6wU6lU+XYkZ8o91rd0sK6lhfUtLfaq7xcvXkCtVsPNzU2YLtdSQUFBVu+PXF9MTIzDtu3m5iZ638XHx4tGIN905QVmH3wk/F2/tD+WD64DV6E9X6WQT7R0GyaysgwHbiDXwbqWFta3tLC+pSW39Z2b651ixYpZvT+ShrzMKN1+v4zo5NczYv5fr+poU8V1srTUMgr/p0kL61taWN/SwvqWDnvUNTMKOYKjMkpO+eTc40SE/XVH+LuIrzv2T2rskLLkFWYUcmWsb2lhfUsH61pamFE400yuKBQKJCcnA8ieHs8cf39/eHl5ITMz0+IOKZY6deoUdu3ahVq1aqFYsWLw9vbG8+fPcfnyZahUKvTs2dOqDjMAMHHiRIuW27hxoy1FtppuBxoAUL9Uip/38XC5GydjYmKg0Wggl8st6kXuSnRvwiXXx/qWDta1tLC+pcXW+tZ2wPbwcL1rOZKepAzONENERERERPlHcqbeTDNe/K6GiIiIiEjqHNWGqz/osv7fqQq16O8Ab3eXa0+WyaQzc47+a5XJZBxQ04WxvqWF9S0drGtpsXd96w+2XFDwLp5cyMjIEH739vbOcXlvb29kZmaK1rOHunXr4tmzZ3j06BFu374NhUKBgIAANGzYEB07dkRISIhd95cfJKUbdpohIiIiIiLKK+w0Q0RERERE+YVKrUGqQr/TDDMKEREREZHUOWsQO/3BkVVuyaK/C/t5u9yAehwcmaSC9S0trG/pYF1Li1QHR5bWFZqdKRSvp7W35GJXu4zuevZQu3Ztq2eSycmiRYvsuj17S2SnGSIiIiIiykcSM8Q3pAWy0wwREREREeWR5Mwsg8fYsZ+IiIiIiPIKB0cmIiIiorzGb8hzwdPTU/g9K8uwAUKfdhnd9fKrokWLWrRcfHy8Q/Yvl8tFow4kJiZCrX49VWd0XJJoeV93x5UlryiVSuE1W/L+Ksj0p+pSqVSc6s2Fsb6lg3UtLaxvabFXfavVaqjVaiiVSquv5QriiAXk2pINZprhSCxERERERJQ3kvU69QPMKERERERElHeSMsSdZtipn4iIiIicjVegueDt7S38npGRkePy2mV01yvoVCrDhhdHUKvVon0lponDlL+Xm9PK4ixSutFY/7VK6bVLEetbOljX0sL6lhZ717dGo3G5azmSniSDTjOM20RERERElDf0Z5pxl8vg5S7Po9IQEREREVF+kVeDI79KSBUt7yVXc3DkAowDakoL61taWN/SwbqWFg6OnI138eSCp6cnAgICkJycjNjYWLPLpqSkIDMzE4Dls7iQaUmZ4psqA3lDGhERERER5aFEvU4zgT7MKERERERElDeS9GaaKeTtBplMlkelISIiIiKi/CKvBkfWn2nG31PucgPqSelGYw6oKS2sb2lhfUsH61paODhyNt7Fk0tly5bF7du3ER0dDZVKJeqJpev58+eidSh3kvVuSAvwNn7ciYiIiIiInEF/ppkAL8ZtIiIiIiKpM9VmZA9yudzk36kKtei5Qt4eDi1LXpBSJyD91yqTyXgjgwtjfUsL61taWN/SYe+61h8VmqggStbr2M82FCIiIiJyNl6B5lKNGjVw+/ZtZGZm4sGDB6hWrZrR5W7duiVah3JH/4a0QpxphoiIiIiI8pB+RuFMM0REREREFBQU5LR9BQYGCr+r3JJFzxX283JqWZwhJiYGGo0Gcrkc7u7Syl+8aVZaWN/SwvqWFta3dNha19pO0R4eHi53LUfSk5wpbkPx9+JnIBERERE5l7S+RXaAZs2aYdu2bQCAI0eOGO00o1arcezYMQCAn58f6tSp48wiOpSjvsgxN0IaACRnikcgCPThKGkFGUfVkRbWt3SwrqWF9S0tHCWNSCxDqUZmlvgcYMd+IiIiIiLKK4npStHfgT4eeVQSIiIiIiIiIEXvPq8AtqEQERERkZPxCjSXqlatilq1auH27ds4cuQI2rVrh+rVq4uW2blzJ549ewYA6Ny5s0uNeOWs0Sx0R0gDgFSFWvR36WKFXW5kDY6SRlLB+pYO1rW0sL6lhaOkkdTpj5AGAIW8+TlIRERERER5g51miIiIiIgoP0nKELejBHCmGSIiIiJyMmndiW/EnTt3EB0dLfydlJQk/B4dHY2jR4+Klm/Xrp3BNkaMGIHPP/8cCoUC//vf/9CrVy/UqVMHCoUCp0+fxsGDBwEApUqVQvfu3R3yOqSGDT5ERERERJRfJKYbdpoJ8JJ83CYiIiIikrz4+HiHbVsul4sGHEtMTIRanT3g2KuEFNGyXnKVQ8uSF5RKpfB6s7IMM5kr0Z+hV6VScYZnF8b6lhbWt7SwvqXDXnWtVquhVquhVCqtvpbjQGWU3yTrzTRTiDPNEBEREZGTSf4K9NChQzh27JjR5+7evYu7d++KHjPWaaZSpUqYOnUq5s2bh/T0dISHhxssU6pUKXz66afw8fGxS7mlTKlSI1UhDlPsNENERERERHnF2AhpbnJZHpWGiIiIiIjyC5VKlfNCdqJWq4X9JWWIBx7z93RzalmcQUo3Geu/Vim9dilifUsL61taWN/SYe+61mg0LnctR9KiyFIjM0stesyfM80QERERkZNJvtOMvTRp0gQ//fQTdu/ejUuXLiEuLg7u7u4oWbIkQkND0alTJ3h5eeV1Me3OUSOTmRshLS5VYbC8RpGG+HjXGkmMo6TxS0JXxfqWDta1tLC+pYWjpBGJ6Xea4QhpRERERESUl5hRiIiIiIjIGN32PXuSy+Um/07PMOz0VdjX02FlySsymXQGU9N/rTKZjPcGuDDWt7SwvqWDdS0t9q5v/fvGCgrJf0seFhaGsLAwu2wrODgYw4cPx/Dhw+2yvYLAWaNZ6I6QFp9m2GnGz0PmciNrSOkfEEfVkRbWt3SwrqWF9S0tHCWNSCyRN6QREREREVE+kqx3U1qAd8FrwCQiIiIiIvtz1qB0ugMlx2elGDxftkQxeHu4Vk6JiYmBRqOBXC6Hu7u02okK4k2zZDvWt7SwvqWDdS0ttta3tmO0h4dHgRzsWJ7zIkT5S7LeDWle7jJ4ufOtTEREREREeSNJ74a0QrwhjYiIiIiI8lByprgdJcBLWjdsERERERFR/qE/E6aXu9zlOswQERERUf7HngZU4OjfkMbGHiIiIiIiykv6DT6caYaIiIiIiPJSUiY79hMRERERUf6QlK4U/V3IxyOPSkJEREREUsY7eajA0R8hjTekERERERFRXtLvNBPIjEJERERERHlEo9EgJYMzzRARERERkaH4+HiHbFculyMwMFD4OzExEWq1GgAQFZMgWtbfQ+6wcuQlpVIpvOasrKwcli7YZDIZ3NxeD86gUqmg0WjysETkSKxvaWF9SwfrWlrsVd9qtRpqtRpKpdLq67mgoCCr92dv/JacChz9G9ICOEIaERERERHlIYOZZnwYtYmIiIiIKG+kKdVQ6bV3BnixHYWIiIiIiLJvkHQGtVot7CshXSF6zt/LzWnlcCYp3Wis/1ql9NqliPUtLaxv6WBdS4u961uj0RTI6zneyUO5otvzzJ7kcrnJv1MUatFzgd4eDitHXpLJZHldBKfRf60ymYz/hF0Y61s6WNfSwvqWFnvXt/6IBkQFTaJ+pxnONENERERERHkkOcNwRGNmFCIiIiIiyivJGeIbKjk4MhERERHlBX5LTrnirOmSdKfwVGiiRM8VK+SbL6ZtsreYmBhoNBrI5XK4u0vrVOVNs7lTv359PHnyBIMGDcLChQtFz0VGRiIkJAQAsGDBAgwePNimfaxbtw5hYWEAgKtXr6J8+fI2l1dK9X3y5El0794dALBjxw60atVK9PykSZMQHh6OcuXK4dq1a3lRRIeSUl0XNPY8p7VY37br1q0bTp06hZYtW2Lnzp15XRyL2Frf2o7RHh4eLnk9R9JhMNOMl7Su34nMadSoEZ48eYIBAwZg/vz5ouciIyPRuHFjAMDcuXMxaNAgm/YRHh6O999/HwAQERFhl2sZKTh16hR69uwJANi2bRtatmwpen7y5MnYsGEDypUrh0uXLuVBCUmqeE7nLz169MDp06fRokULbN++Pa+LQ0QW0M8nMgB+nGmGSMCMkn8xo1B+xXM6f2FGISp4UjLFGSWAbShEIswo+RczCuVXPKfzF2aUgoNXoVTgJKYrRX8X8vHIo5KQK9HtzGCpCRMmYNasWQ4qEREREREVFEnp4lHSCvnwhjTKHd0v4S01btw4fPfdd44pEBEREREVGEl6ozj7e7lBLqGZ7ckxmFGIiIiIyFbJmXozzbBTP9kBMwoRERFZS57XBSCyln6nmcK+7DRDRGTOunXrEBQUhKCgIERGRuZ1cUii6tevj6CgIEyaNCmvi0K5dPLkSeEz5eTJk3ldHKJ8IUlvlLRAb45PQURkSnh4OIKDgxEcHMx8QnmmUaNGCA4OxuTJk/O6KJRLp06dEj5TmE+IsumP4lyI+YSIyCxmFMoPmFFchzajsA2F6DWDTjPMKEREZjGjUH7AjOI6mFFe41Uo5Up8fLxDtiuXyxEYGCj8nZiYCLVaDQCITU4XLeuhyXJYOfKSUqkUXnNWVlYOSxdsMpkMbm6vR5JQqVTQaDROLYNK9Tqkjxw5EiNHjsxxnSJFiuTrulGr1QblK126NF69eiX8bWv5dY9XVlaWVdvJD/WdV3SPm0qlMjhuc+fOxdy5cwHY97zPTX3lhpTruqCxx3vE0vo29tlEYtrjptFo8uWx0n2/6D5my/mtVquhVquhVCqtvp4LCgqyen9EjpCl1iBFr8GHN6WRPVmTTwqa8uXLi/IJ5S/z58/H/Pnz87oYREREZCX9mWYCvDmKM9kXMwrlFWYUIiKigiklQ9ze6c+ZZsjOmFEorzCjEBEVLLyTh3LF2E2TjqBWq4V9JemHKU+Z08rhTFK6sVz/teb1ay9WrBhq1aqVp2VwZfmtvslxWNfSwvqWttzWt0ajccnrOZIG/cYegDPNkH0xnxARERGRNfRnwizkxXxC9sWMQkRERETWMJhphhmF7IwZhYiIiCzBq1AqcPQ7zXAUZyIiIiIiAiCa8cre5HK50b9TlAqDZQv7ecHNTW7weEEmk8nyughOpf96ZTIZO4S6KNa1tLC+pYX1LW25qW/9mVSJCpoUvZlmOIozERERERHlJf2O/QHMKERERESUB9jbgAqcZL1OMwHsNEP5SHBwMABgxowZmDlzpsnlevTogdOnT6NFixbYvn27yeUiIyOxcuVKHDt2DE+ePEFycjIKFSqEatWqoU2bNujfvz8qVqxocfkiIyPRuHFjAMDcuXMxaNAgo8slJCRg7ty52LNnD54+fQp/f3/Url0bw4YNQ48ePSzeX0ZGBtasWYPdu3fjzp07SEhIQGBgIOrUqYM+ffqY3D8AKBQKHDlyBIcPH8alS5fw8OFDpKamIiAgAJUqVcKbb76J0aNHo2jRoia30ahRIzx58gQDBgzA/Pnz8e+//2LBggU4duwYXrx4gcDAQDRt2hRTpkxBkyZNLH5dpqSnp2Px4sXYvn07Hj58CC8vL1StWhWDBg3Ce++9l+P6kydPxoYNG1CuXDlcunTJ6DK7du3Chg0bcOXKFcTGxsLDwwPFihVDyZIl0bJlS3Ts2BGNGjUCAJw6dQo9e/YUra+tf13btm1Dy5Ythb8vXryI/fv349y5c7h37x4SEhLg5eWF0qVLo0WLFhgzZgxq1Khh0eu4du0aEhMTsWDBAvz999948uQJ3N3dUbt2bQwfPhx9+/bN8bikpKRg1apVOHDgAO7evSuUp2LFinjjjTfQq1cvvPHGG0bXValU+Ouvv/D333/j2rVriI+Ph5+fH6pVq4Zu3bphxIgR8PHxybEMptjjfQoAJ06cwOrVqxEREYGXL19CJpOhaNGiKFGiBN544w289dZbaN26tc3ltNc5HRkZiSVLluDo0aN4+vQp1Go1SpYsidatW2P06NGoX7++wTrazzutDRs2YMOGDaJlcvos1Kf73t62bRuaN2+OtWvXIjw8HPfu3YNCoUClSpXQs2dPTJgwAd7e3ka3o3/ORUdHY8mSJdi/fz+ePn2K1NRUg/MjJiYGS5YswYEDBxAZGYnMzEwUL14coaGhGDZsGEJDQ3Ms/8WLF7Fw4UKcPXsWSUlJKFGiBNq2bYtJkyahatWqZtcNDw/H+++/DwCIiIhA+fLljS5n6ec9ABw4cABbtmzBhQsX8OrVK6hUKpQoUQL16tVDx44d0aNHD/j6+oq2qdW9e3eD7eW0PyJHCgoKctq+AgMDAQAPk8WPe3vIUTLY/Od+QRQTEwONRgO5XA53d+llMGffOKu7v9wcc+058fHHH+OTTz4xuVy3bt1w6tQptGzZEjt37jS5XGRkJJYtW4Zjx44hMjJSyCfVq1dH27ZtMXDgQJP5xNjriIyMREhICABgwYIFGDx4sNF1ExIS8Ouvv2L37t148uQJ/P39UadOHYwYMQI9e/YUHS93d3eTxysjIwOrVq3Crl27cOfOHcTHxxvkE1PrKhQKHDp0CIcPH0ZERAQePHggXPdVrlwZb731FsaOHWv2uq9+/fp48uQJBg0ahIULF+LevXuYP38+jhw5IuSTZs2a4YMPPkDTpk1NbsdS6enpWLhwIbZu3Srkk2rVqmHw4MEYOnSo6Li5ubkZvPZJkyYhPDxcuK43ZufOnQgPD8eVK1cQExMDT09PFC1aFKVKlUKrVq3QqVMn4frh5MmTBtcOxvLJjh070KpVK+HvCxcuYN++fTh79izu3buH+Ph4eHt7C/lk3LhxqFmzpsnjoP86tPlkx44diIyMhLu7u/B+6t+/f47HNTk5GX/++Sf279+Pu3fvCuWpWLEiQkND0bt3b5PXhCqVChs3bsS2bdtw7do1xMXFwc/PD9WrV0f37t0xatSoXOeT3L5PAeD48eP4888/cfHiRVE+KVmyJEJDQ/H222+jTZs2NpfTXud0ZGQkFi9ejCNHjuDp06dQqVQoVaoUWrdujbFjx6JOnTqi5d3c3ITPOy1j+SSnz0J9uu/tHTt2oEWLFli9ejXWrl0ryie9e/fGpEmTTOYT/fdqdHQ0Fi1aJOSTlJQUg/MjJiYGixcvxv79+/H48WMhnzRv3hwjRoxA8+bNcyz/hQsXsGDBApw5cwaJiYkoUaIE2rdvj7CwMFSrVk3ofCSTyQzqYt26dQgLCwMAXL161Ww+seTzHgD279+PTZs24fz586J8EhISgk6dOqFnz55CPtFuU8tYPslpf7q0naI9PDycel1JZG8GM82wDYXyEbahiLENhW0oly5dMppR2IYi5iptKLVr1zZYh20ohtiGQuR69Dv2B3iz0wzlH8woYswozCjMKNLKKLzPixnFkv25En5TTgVKlkqNNKVa9FghjkBALmrBggX47rvvoFQqRY/HxcXh3LlzOHfuHE6dOmXVBYgl/vnnH/Tp0wfR0dHCYxkZGTh+/DiOHz+OQ4cOWXTTxY0bNzBs2DA8efJE9HhMTAyOHTuGY8eOYeXKlVi9ejWKFy9usP6HH35ocMEFAPHx8YiPj8elS5ewbNkyrFq1yuSFtK5du3Zh0qRJSEtLEx579eoVdu/ejX379mHRokXo1atXjtsx5cWLF+jduzf++ecf4bG0tDRcuHABFy5cwI4dOzBx4kSbt69SqTBu3Dj8/fffoscVCgVSU1Px+PFjnDt3DocOHcLBgwdt3o/uhZoupVKJf/75B//88w9Wr16N77//HqNGjcpxe/fu3UPfvn0RGRkpevzs2bM4e/YsLly4gB9++MHk+seOHcP48eMRGxtrUJ4bN27gxo0bWLZsGV69emWw7tOnTzFkyBDcvHlT9LhCocD58+dx/vx5rFixAuHh4ahSpUqOr8UYe7xP//vf/+L33383Wv6nT58iIiIC69evx927d20qo73O6Q0bNmD69OnIzMwUPf7w4UM8fPgQa9euxWeffYYPP/zQpnLaSqFQYNCgQTh8+LDo8Zs3b+LmzZvYtGkTNm/ejBIlSpjdzsWLFzFkyBCD95quI0eOYPTo0UhOFt8h/+TJEzx58gR//fUXRo0ahVmzZhnMSKG1ePFifPnll1CrX1/PREZGYvXq1di8eTOWLl2a00u2m7i4OIwdOxbHjx83eC4yMhKRkZHYtWsXAEgmHBHZIjFNfK1W2Mczj0pC5Fjz5s3Dt99+azSfaK/tTp48adWN5pa4e/cuevXqhaioKOGxjIwMIVMcPHgQLVq0yHE7169fx3vvvZdjPgkPDzeaT6ZOnYrw8HCDx+Pj4xEREYGIiAj88ccfWLt2rUVfru7cuRPjx483yCe7du3C3r17sWTJEvTu3TvH7Zjy4sUL9OjRQ3QNmZaWJlwH79ixA5MmTbJ5+yqVCmPGjMG2bdtEjysUCqSkpODx48c4e/YsDh48iCNHjti8H90b8nUplUrcvXsXd+/exapVqzB79myMGTMmx+2ZyidnzpzBmTNncOHCBfz4448m1z969CjGjBljNJ9cv34d169fxx9//IH4+HiDdZ88eYLBgwfjxo0boscVCoWQ8ZcvX44NGzbk+AW7KfZ4n3722WdYtGiRwePafHLx4kWsW7cO9+/ft6mM9jqn169fj6lTpxrkkwcPHuDBgwdYs2ZNnuWT/v3749ChQ6LHtfnkr7/+wrZt23LMJxcuXMCgQYPM5pPDhw9jxIgRJvPJxo0bMWbMGPzwww8m88nChQvx+eefG+STP//8E5s2bcLy5ctzesl2ExcXh1GjRuHYsWMGz2nzyY4dOwDA4k4wRFLFgcdIKtiGwjYUXQW1DeXff//FgAED2IYikTaUTz75BB999JFN5bQV21BsxzYUclWOGiBK/7zW/TtZr2N/YV9Pl5zhVX/WY1fGGZ6Nk0pGWbNmjdDZSBczihgzCjNKQcgouu0ozvosZ0axXX7KKDKZrEBez/GbcipQkvRGHwA4Shq5pp9//hmzZ88GkD2K+ciRI9GqVSsEBQUhKSkJ165dw86dO+0eupOTk9G/f3/hoqtnz54YMGAAgoODcf/+fSxatAjh4eG4c+eO2e08ePAAPXr0QFJSEgICAjBq1Cg0atQIZcqUQVxcHPbv34+VK1fi0qVLGDZsGHbs2AEPDw/RNlQqFSpWrIguXbqgYcOGKFu2LNzd3fHkyRMcP34c69atQ1xcHEaMGIHjx48bDWRat2/fxvbt21GiRAlMnDgRDRo0gEajwZEjRzB37lxkZGRg+vTpaN26NYoVK2b1ccvKysJ7770nBKl27dph5MiRKFOmDJ4+fYoVK1bgyJEjSEhIsHrbWitWrBCC1BtvvIEhQ4agYsWK8PX1RXx8PG7duoXDhw8jKSlJWKdBgwY4fvw49uzZg1mzZgEANm7ciJIlS4q2rduDOSsrC4ULF0anTp3QvHlzVK5cGb6+voiOjhZuAIuNjcUnn3yCatWqme0Vn56ejkGDBiE+Ph4fffQRWrVqBX9/f1y7dg0//fQTnj9/juXLl6Njx47o0KGDwfonT57EwIEDkZWVBTc3N/Tr1w+dO3dGmTJlkJmZibt37+LQoUPYv3+/wbpxcXHo1q0bnj17Bi8vLwwZMgQtWrRA+fLlkZqaiiNHjuCPP/7Aw4cPMXDgQBw6dAiFChWyrlKQ+/fp/v37hSClHVm5WrVqKFSoEJKSknDnzh0cP37c5IgUObHXOb1//35MmTIFGo0Gfn5+mDRpEtq0aQN3d3dcuHABv/32G2JjY/Htt98iMDAQo0ePFtadO3cu0tLShHJ07twZn376qWj7vr6+Nr0+AJg1axYuX74sOu+ePXuGFStW4OjRo7h79y6GDBmCvXv3mrxYT01NxciRI5GRkYFp06ahbdu28PX1xa1bt4QQdv36dQwZMgQKhQIeHh4YPXo0OnXqBF9fX1y/fh1z587F48ePsXz5cvj5+eGLL74w2M+uXbvw+eefAwAKFSqEKVOmCKMbnDhxAvPnz8fEiRNzHLHCHtLS0tCrVy/cunULABASEoJhw4ahZs2a8PLywrNnz3DmzBnRjbClSpXC8ePHcfnyZXzwwQcAgPnz56Nhw4ZQqV5fo5UuXdrh5SfKTxLT9TrN+HqYWJKo4Prxxx/x/fffA4Dwv75169YoUqQIEhMTcfXqVezYscPu+SQpKQl9+vQRbq7v1asXBg0ahODgYPz7779YuHAh1q5di9u3b5vdzoMHD9CtWzchn4wZMwaNGzcW8smePXuEfPLee+9h9+7dBvkkKysLFStWRLdu3dCoUSPRdd/Ro0exdu1axMXFYejQoTh9+rTZfHLr1i1s3boVJUqUQFhYGBo2bAiNRoPDhw/j119/RUZGBqZOnYo2bdrYnE8GDhwofBnfoUMHjBo1Ssgny5Ytw6FDh4x27LDUsmXLhOsE7UhMFStWhJ+fH+Li4nDz5k0cOnRIlE8aNmyIU6dOYffu3fjuu+8AAJs3bzbIJxUqVBC9lsKFC6NLly5o0aIFKleuDD8/P0RFReHatWv4/fffERsbi5kzZ6J69epmZz/Rzyft2rWDn58frl27hh9++AHPnz/H0qVL0alTJ7z55psG6584cQL9+vUT8smAAQPQpUsXlC1bFhkZGbh79y4OHjyIvXv3GqwbFxeHzp07C/lk2LBhaNmypZBPDh8+jN9//x0PHjxAv379cPToUWFGM2vk9n26d+9eocNMnTp1MGrUKNSoUQOFChVCYmIibt++jWPHjtmcT+x1Tu/btw+TJk2CRqOBv78/wsLC0LZtW7i7u+P8+fP45ZdfTOaTBQsWIDU1FX379kVUVBS6dOmC//znP6Lt+/n52fT6AOC7777DpUuXROfds2fPsGzZMhw5cgR37tzBoEGDcODAAbP5ZPjw4cjMzMT06dPRvn17+Pj4GOSTQYMGCflk7Nix6Ny5M3x9fXHt2jX8+uuvePz4MZYuXQpfX198/fXXBvvZuXOn8NoLFSqEDz74QJjF5vjx45g7dy7GjRtn0+eQtdLS0tC9e3chnzRo0ADDhw9HrVq1hHxy+vRpbN26VVinVKlSOHXqFC5fvozJkycDeJ1PdJUpU8bh5SfKb/TbUQI48Bi5ILahsA1FX0FtQ3nvvfdEGcXb25ttKDpcrQ3lu+++Q1BQENtQ2Ibi8PITmeOsmVW1321lKFVQqMQ34JYpXhRBQbZ//5JfxcTEQKPR5Gr2+IIqL26a1d2nPY55TtswNxszYHk7irn9GHtO929jM8YnJSWJrmeMfecaHh4uunnf2Oze+hnFXDvKsGHDjLajqNVqi76fHjFiRI7tKHfu3BEyiql2FO13p7ZmlCFDhggZxVg7ypEjR5CYmGj2+OveZK//3PLly4WMklM7inbdJk2aWNyOol1Ho9FY1I7yySefoGbNmkbbUbSvIz09HUOGDDHbjrJ8+XJ06dLFZDuKbkYx146if7z0M4qpdhRtRrG1HSW379O9e/eKMoq5dhRbPpfsdU7v27dPyCiWtqNoP1cXLlxoUTuKNa9P9zN79uzZZttR7t69i6FDhxptR9G+V1NTUzFq1Cij7SilS5eGu7u7QUYx1Y6yfPly+Pv7m2xH0c0oxtpRJk6cKHwOGfsfofsajNWV7nO66+gvp59RzLWjaNcvV66cxe0oltantg48PDycdl1pT9K6QqMCL0lv9AFA4qOkadSQZdh+k0t+InN7XY8ylWE9A4DGOwiQGe/RaU8xMTE53qABAFWrVjUIAPZw7do1zJkzBwBQpUoVbNmyxeDLs1atWmHSpEl49uyZXff9888/C9v8z3/+g6lTpwrPhYSEoHv37hg8eDCOHj1qdjuTJ09GUlIS6tWrh7/++svgy8u3334bHTt2xIABA4Te1UOHDhUtM3PmTFSsWNGgUatBgwbo3r07Ro4ciS5duiAmJgZLly41+AJZ17Vr1xASEoKtW7ciICBAeLxJkyaoVKkSJk6ciOTkZGzatAkTJkww+9qM+fPPP3H16lUAwLBhw/Dzzz8Lz4WEhKBr16744IMPsG7dOqu3raUdaaJx48bYtm2bwYVK27ZtMXHiRNGNb35+fqhVqxauXLkiPFalShWT0/wBwFtvvYU+ffoYfAFfv359vPPOOxg7dizeffdd3Lx5Ez/88IPZBp+YmBgoFArs27cPtWrVQlZW9rkdEhKCli1bom3btsjIyMCKFSsMGnwyMjIwceJEZGVlwdfXF+vWrRNNnQgAzZo1w9ChQ42eB5999hmePXuGcuXKYevWraIb7wCgZcuWePfdd9G9e3c8evQI8+bNM7jAt0Ru36faei1Xrhx27twJf39/g3KOHj3a5hsa7XFOK5VKTJ8+XWjs2bFjB+rVqyc836RJE3Tr1g2dO3fGixcv8MUXX6Bnz55CONUee+3nZaFChVCrVi2bXo8xly9fNnredenSBVOnTsXatWtx5coV/PnnnyZHzYiLi4Ofnx927tyJunXrCo/rhoTp06dDoVDAzc0Na9euRfv27UXLvfvuu+jWrRvu3r2LBQsWoH///qhZs6awjEKhwCeffCIcgz179qB69erC802bNkXnzp3RtWtXPHjwIPcHJgezZs0SgtSoUaMwe/Zs0ftYeww///xzobHaw8MDtWrVQlxcnLBchQoVULt2beH8JsprubkBPCdyuVz0xVtiYiLUajWexyaKlvPzkDm0HHlFqVQKo6eYPeddJKPIZDK4yV9/gaVSq4yOrOOojKLbkP7y5Utcv349x3XM5RO1Wm223rSvTaPRGCx37do14WY0U/mkefPmmDBhAp49e2ZyP8bKoPu3SqUyeH7OnDkmr2Xq1q2Lrl27GlzLZGVlGWxnwoQJJvOJTCZDhw4dhHxy8eJFrFmzxiCfzJgxw+h1X7169dClSxeMGDFCuO5bvHix2Xxy9epVo/mkYcOGqFChgpBP1q9fb1M+WbZsmZAB9K+T6tati06dOhnkE2PHX3fEJP3ntDeuN27cGFu3bjXIJ61atcL48eMRHx8vrOvl5YXq1asjIiJCWK5ixYpG84l2nfbt26Nnz54G+aR27dp48803MXr0aCGffP/990ZnKNG+Dv18on3ddevWRWhoqJBPli5dirZt24q2kZGRgXHjxpnNJ40bN8bgwYONngczZ840m09CQ0PRrVs3IZ/8+uuvNuWT3L5PtfVqKp+EhoZi5MiRonq1hj3OaaVSialTpwr55O+//xblk4YNG6JLly4G+aRo0aJQqVRCBwrtezYgIEB0Xa67X0vpfmZrG431z7uOHTsK+eTy5ctYtmyZQT7RvldN5ZP69esLZfvggw9M5pP69eujW7duQj6ZP38++vXrZ5BPZsyYAcB4PmnUqBE6duyIrl27CrMKGfsfofvajX3+6j6nu47+ct9++63ZfKI9hv/5z3+QkJCArKwsyGQyVK9eXTQioTafaPej/f9maX2q1Wqo1WoolUqrr+cKYuMQOYcjbxwyNZJzikLcaSZQyqM4u1A+kenkE7mJfAI4px2FbSiObUORyWRsQ7GBK7ShANnXMGxDec2V21CKFi0KmUzGNpT/z9XbUHTziS0K6ijORACQlKE0eEzSgyNr1JClF/yMYg2Nj+MzyqtXr4TPbXOqVavmsIyibUepWrUqtm3bZjCQS+vWrTF58mQ8ffrUrvv+8ccfheuZzz//XDTzdoMGDdCjRw8MHDjQYEYHfRMnTkRSUhLq16+PLVu2GNznpd+Osm7dOgwfPly0zKeffmr02k97LaDtVBsTE4MlS5aYvb68evUqGjRogO3bt4s6bzdt2hSVKlXC+PHjkZycjI0bN2LSpEnmD5IRK1asEHLA8OHD8euvvwrPNWjQAN26dcOUKVOwZs0aq7etpe1c26RJE+zYscMgo7Rr1w5hYWEGGaV27dqijFK1atUcM0rfvn2NZpSOHTti3Lhx6Nq1K27evIlZs2aZHXzMWEYBso9Jq1at0LJlS2RkZGDZsmUGnWYyMjIwfvx4IaNs2LBB6Fyg9cYbb2DYsGFGz4OPP/5YyCg7duwwyCitWrVCz5490aVLFzx69Ahz584VOjNYI7fvU229litXDnv37jXIKK1atcLYsWNtzij2OKeVSiWmTZsmdJjZvXu3KKM0bdoU3bt3R8eOHREdHS3KKMDr+7y079nAwEDhe3d7uHTpktHzrmvXrnj//fexevVqXL58GStWrMCYMWOMbiMuLs7oa2vUqJHw+9SpU4WMsn79elGubtSoEXr27InOnTvjzp07mD9/PgYOHCh63ysUCsycORNAdkbZv38/atSoITzfrFkzdOnSBZ06dRLaURzpu+++E/7XjRkzBnPmzBG9j7XH8MsvvxRllNq1axvNKFIl4atQsgdnT9uZqhB/keDlLoevl2uO5GxJg48sIx5FlzVzQmnyh9jR56HxcfzIMStWrMCKFStyXC4iIsLsRamtFixYALVaDZlMhiVLlpgdbcaeo2UqFAqsXbsWQHZPaO0IOLo8PDzw22+/oUmTJgbTiWqdOXMGFy5cAJDdM1U/SGnf22+99RZ69OiBrVu3Ijw83KDBp1KlSmbLW7t2bQwZMgS///479uzZY7bBBwB+++03UWOPVp8+ffD1118jOjoaZ8+etanBR/t+CQ4Oxrfffmt0me+++w779+9HTEyM1dsHsm+WBLIvXM317M3tTRqlSpUy+3yhQoXw8ccfY9iwYTh37hzi4uJQpEgRk8v/5z//ES4odadxrFy5Mjp37oytW7fi3LlzButt3LhR6DX/2WefGTT26NI/DyIjI4WQMnv2bIMgpVW/fn2MHj0a8+bNw/r1621q8Mnt+1Rbr/Xr1zcIUrpsqVd7ndO7du0S6uLDDz8UhQ2tcuXK4auvvsLEiRORlpaGtWvXIiwszCnTdpo77/73v/9h3759iImJwYoVK8xONTtlyhRRY4+uS5cu4fLlywCAoUOHihp7tAoXLoyff/4Z3bp1g1qtxvLly4XGewDYs2ePcBynT59u9Ma8WrVqYdq0afjmm29Mv2A7SExMxKpVqwBkN+x8//33Jq87PD09Ubx48Ry3mdtpWtngQ/aie+Omo6nVaqhUKiSkKUSPF/J2c2o5nMXSc5wZxf6YTxybT7TvbeYT6xTUfPLJJ5+IvvBmPpFOPnn//feZTySUTwDLr11MreuK13OUN5zZoUrbyT9VKX7/lyoa6JIduywZxVmWFotACeUTAEgcdwkaX/tnFN3vbSzNKFevXjWZUXIzivPChQuFjLJ8+XKzOcjUtZepMpgb1VP/emb69OkG/7Pc3d2FETu11zP6o4iePn1ayCiLFi0SZmnQp5tR1q9fj5EjR4qer1atmsnXBmRf0w0bNgyLFi3Cnj17cryZaP78+UY/KwYMGIBvvvkGUVFROHfunDAyqTVWrlwJAChevDhmzZpltO5/+OEHUUaxdhRnbUfaN954A97e3ibLYmw0a0tHfQWyrzXNKVKkCD777DO89957OHfuHJKSkgwyiu7r0G1D0S1L9erV0aVLF2zZsgXnzp0zKNOmTZuE67nPP//coOO/Lv3zQDejzJkzB1WqVDG6XqNGjTBmzBjMnTsXGzZswJdffmn2tRuT2/eptl5DQkJQuHBhk9sxN0q5KfY6p3fs2CHUxUcffWQwYi+QndW++eYbjB8/XpRRjH0nbo+R8nW3a+68mz17tiijjBs3zqAsWh988AEaNGhgdH8RERFCRhk2bBjefvttg2WKFSuGX3/9FZ07d4ZarcbKlSvx008/Cc/v3LlTOI4zZswwehNXvXr1MH36dHz11VcAHDeKs25GadCgAebMmWOy/cLd3d3gBlVjy9ra/lHQR3EmAoCkdGODI7vmfV6WkKXHI3BJo5wXdCGOyii6li9fjuXLl+e4nLmMkhtz584VMsqyZcvMtpWULVvWbvtVKBRCp446depg2rRpBst4eHhg7ty5ousZfadPn8b58+cBZOctU7O66WYUY51mcvp+uk6dOhg6dCgWLVqEXbt25fgd+Lx584zOdtivXz989dVXiIqKwpkzZ2zqNKN9vxQvXlyYIUjfrFmzsHfv3ly3ozRr1syh7Sg5zWIXGBgoZJSzZ89adZ+XrsqVKwsZ5ezZswbPr1+/Xphl/vPPPzfoMKNL/zyIjIwUBvWaM2dOju0oc+fORXh4uE2dZnL7PtXWa0hIiEPaUexxTu/cuVOoi+nTpxttRylfvjy+/vprg4ziDObOu++//x579uxBTEwMli1bZrLTDAC8//77Rl8bkJ1RtDOSDhs2zOjsrYULF8Yvv/wiZJRly5aJMsru3buF4zhjxgxRhxmt2rVrizKKoyQmJgrfrTRo0MCgU78ua9pRpIidZihXnD1tp/ql+IM+0Md1vxywqMHHTVqnsLubOzQOmsLUli+qzH3RZmuDj1qtxqFDhwBk9zzW7f1qLWsbfC5duiT0Mh00aJDJ0RXKly+P9u3bC9O56x8H7ePVqlUTRkE1pXnz5ti6davQQ97cMUtISEB8fDwyMjKEGx+05//du3eh0WhMlrl27doICQkxue369esjOjoajx8/tvqL6OjoaGHKw169epmcnr5w4cLo2bMnli5dCsD6Bp+SJUviwYMH2L9/Pz766COrph63psFHX2pqKmJjY5Gamiocdy8vL+H5O3fuGIxCoH0dMpkMffv2NVoOILuX/tatWxEfH4/U1FTR6P0HDhwAkD2KwsiRI60q86FDh6BSqeDr64uOHTuaPb9btmyJefPmITo6GlFRUTk2eOXE2vepdgrVM2fO4MmTJzmGM2vY65w+efIkgOz6HDZsmMm66N27Nz7++GMkJSXh2LFjJsOUvRt8LD3v7ty5g9jYWFEjtO45N2DAAJPlOnHihPC7uWPQsmVL1KhRA3fv3sWJEydEy2m3IZPJ8N5775ncxtChQ/Htt99Co9E4rMHn9OnTSEtLA5A98r7uOW0JNvgQiSVliBt8JD1CGrkc3XzSsmXLHK/v7enq1avCtcyAAQNMfvFXunRptGvXTrh+1Ldv3z4A2SNx5TRqjm4+ycrKsiifZGZmCtd92uvZu3fvQqlUms0nderUMfqcTCZDvXr1EB0djUePHpktrzG6+aRHjx4GN25o+fv7491337WoIdGYEiVK4MGDB9i3bx+mTp1qVT7JDW0+SUtLE467bj3dvHnT5EjOMpkMffr0Mblt7cja8fHxSExMFOUT7bWyr6+vQYeqnBw4cEDIJ/ojr+kLDQ0V8snTp09z3YBq7ftU+yX6mTNn8PDhQ7vmE3ud08ePHweQXZ+DBw82ub93333Xonxib5aed3fu3MGLFy9M3iRr7r167Ngx4ff33nvP5HJvvPEGqlevjn/++Uc4blq6x3HAgAEmtzFo0CAhnzjKiRMnhHwyduxYdqYnsoPEdMN2FCJXoVarcfDgQQDZbSjOzChXrlwRfd9q6nqmTJkyou9b9e3ZswdAdhuKqVygpc0oly9ftjij6H43bU1GMdVhV5tRoqKibM4od+7cAQCjs0hq+fv7i9pQrFWiRAncv38fe/fuxYcffuj0jKLbhqJbTzdu3DA5krN+G4q+Bg0aYMuWLUYzijbr+vn5YdiwYVaVed++fUJGMda5QVeLFi0wd+5cREVF4cmTJw5pQzH3PtVeL58+fdruGcVe57T2+lwmk2HIkCEm99ezZ0/MmDHD6RnF0vMup4zSr18/k/vQnYnHXGYODQ0V2lB0c43uNmQyGQYNGmRyG++99x6+/vprh2aU48ePCxll/PjxzCjkcmwd+T4ncrlc9L8qMTERarUaz14mi5bz9pAjNTkRqQ4pRd5SKpXCTMKmZr2Vqayfvbmgy1JlQWPDrNU5sWXAE3MzJavVarOzFWv/9+jPxqybUVq2bInatWvbNEu3qTKYm8E5IiJC9J2rqWNSokQJ0Xeu+sdh9+7dALLbUWrUqGFQBt0BMHUzSkZGhtXtKNrBxO7evYv09HSzGaVmzZomj2XdunURFRWFhw8fWn28dTPKu+++C09PT6Pb8Pb2FrWjGJtBW3vOA4bnffHixXH//n3s2bMH77//vlUZxdIZvo0x1o6ie6179epVg3YU7euQyWTo1auXQVm029HORBQfH4/Y2FjR5/7evXsBZLejDB482Koy79mzR8go7du3N7vuG2+8AQBCRnVEO4q596m2w/7p06dx7949u2YUe53TR44cAZBdnwMHDjR5PLt37y7KKKYGR87p89ESuq/F0vPuzp07ePbsmSij6J5zvXr1Mlku3Zl4zL0fmzRpIrSjHD161ORx7Nevn8ltDBgwQMgo+v8j9F+7ufPZ3Of9kSNHhIwyZswYo/sxx9h7ydbZMNVqNdRqNZRKpdXXlfnhvjDezUMFShIbe8gJPv74Y2H6Z2d7/PgxEhMTAWQHDWfSnarU2ChIuho3bmzyy2FtB5h79+5Z/I9O+09UfySomzdvYtGiRTh48CBevHhhcn21Wo2EhASTI0kZGzFVl7acKSkpFpVXl7XHzdYGn0GDBuH06dN48OABGjVqhO7du6Ndu3Zo3ry5XUf0BoDY2FgsWLAAO3bswP37981eIMXGxpp8rmjRomZHJ9B9fyQnJ4vC1LVr1wBk37hm6st8U7TvwbS0NBQrVszi9V6+fGlTg09u3qcDBw7E+vXrERcXhxYtWqBz585488030bx5c1SuXNnqsuiy1zmt3U6FChXMHk9PT0/Ur18fJ0+exO3bt20osW2sOe9u3bpltMHH398fFStWNLkN7evx9PQ0OUqB7v7u3r2L+/fvQ6FQwNPTU9g3kH0czX0ZUqxYMZQvXx6PHz82u5/c0J5fgPP/1xC5okT9TjNejNlkXzNmzBCmfnY23XwSGhrq1H3rXk+YGslUq1GjRiZvsNdeG/77778WjzxrKp/cunULixcvxqFDh4SRpIzJKZ9UrVrV7P6118mpqdY3Heset5yukxo1amRzp5kBAwYIHSuaNWuGrl27ol27dggNDc1xVDNrxcbGYtGiRdi5cycePHjgsHyiO2pxSkqKKJ9cv34dQO7zibbTvCVevnxpU2NPbt6nAwYMwMaNGxEXF4c2bdqgU6dOaN++PUJDQ3OdT+x1TmsbMy3JJ/Xq1cOpU6fyVT7RPe9u375tNJ/4+fmZzSfaY+Dp6Wny5lbd/f3zzz948OCBKJ9oj0l+yCfa8wtw/v8aIlel347Cjv1kb2xDYRuKNdiGwjYUtqFkYxvK6/2xDYUobzlrZlW1Wg2VSoXEdIXo8QAvN5ed3dUZsxyTcWxHYTuKNdiOYj6j6OdU3W2xHcW12lE8PDxEGcVZ/8fYjmI9R7Sj5La+NRpNgbym4zflVKBwhDRydboXpqZG8nEU3Z6fOYUgc8/bOi1lenq66O/Vq1fjww8/tLhXrP76unx8fMyuq53pwJZ/5PY6bjkZMmQIHj58iLlz5yIpKQlr164Vpo2vVKkSunTpgjFjxpi9ILTElStX0KdPH8TFxVm0fEZGhsnnLD3ugLgnOABh/7acB69evbJ6HcD8e8iU3L5P27Ztizlz5uDLL79Eeno6tm7dKkw5Wrp0abzzzjsYNWpUjo0MxtjrvakdxcCS9692ZGpHjVBkjDWvzVS5TM1Uo6U9BkFBQTnOkqM9BhqNBgkJCcLf1h5HR4apvPxfQ+SKktLF1w+FfDjyILkO3WtCqeeTNWvWYMaMGRZf9+XmOlk74pct+UR7zQEgx5ufcpNP3nvvPTx69Ajz589HUlISwsPDER4eDgCoWLEiOnfujFGjRuU6n1y9ehX9+/d3ej7RP/a5ySf2eg9aIrfv0zZt2mD27Nn4+uuvkZ6ejm3btmHbtm0AgFKlSuGdd97BiBEjcmxgMMZe57R2O5bc3JcX+cSa885UuXQbGo3Rrle4cGGb84k1xzE4ONih+SQv/9cQOYMjP4OMjeScrshCZpb4ezaZMh1O/Ch0Go7ibJwzRnG2xwijto7irHszS3BwcK7KYe0ozrrfqRUpUsTsvnVvptAfRdTW76+Tk5NFNy9Ze+2XkpJispOOl5eXRdsxNrJyTqw5brodSKwdxXngwIG4f/++kFF021ByyijWjOJsbUZJTU01+Tp8fHygUqlEs1jojvSqewOLQqEQbUe7/+LFi1tdJ+ZuCjMnJSXF6n3l9n3asmVLUUbRbUPJbUax1zmte22d0+vU5gHtOsZG9rX3KM7WnHcxMTEGI+cD2W0o5rahfT9qb6I0t6w2g2g0GsTExBjNKJYcx8ePHztsFGfdHF+0aFGr64OjOBOJJekNPBbAgcfIxbAd5TW2o4ixHcVybEfJxnaUbGxHMcR2FPvhlSjlirOn7YyOSxIt5+vu3A9sZ7KkwQceAYgdfd6JpXIMmUwGN7nOF8Jq418aaTwCAAc09gD5p8HHnuWwtsFHt7Ehp33rN0zoLqv9vU6dOli0aJHBujKZzKCzhEajETVw3bt3T+iIEBwcjLCwMLRq1Qrly5eHv7+/MO3h2rVrMXXqVKPlyOlYmHs91rDmuOnWr7UNPgDw6aefYsiQIdi0aRNOnDiBiIgIpKWl4eHDh1iwYAGWLFmC77//HiNGjDC5X3PHSaFQYOTIkYiLi4OHhwfGjBmDTp06oUqVKihcuDC8vLwAAI8ePULTpk1Nbk+/A4xuOXTPbUvKZe10gtptAdlfZGsbTyxRvnx5q/Zlr/fpyJEj0a1bN2zevBnHjh3D+fPnkZSUhOfPn2PlypX4888/MXXqVHz22WcWlw2w3zmtW2fmtqE7nStgugHA3g0+uTnvtK/bzc3Nbp8Rpo6lpcdRd1lHNfjol4UNPkS5k5ypN9OMxEdx1ngHuURGAQB3t9d1mWXiZjuNNz+LnEH/OsMa2v9bpvIJAIMblIDsL7a17t27J3yBbul1X34YVTA3x80S//nPfzBs2DCDfPLo0SMsWrQIS5cuNZpPLKVQKDBmzBir8kl+OO76tO8pW/KJNez1Ph09ejTeffddg3wSFRWFP//8E6tWrbIpn+iyx3vT0e9vW9mjXLqfSY7eV349jkSuxJmj7anVaiSkZho87uchK5Cj/uXEkv/7UssnADOKszCj2IYZxZD+886oJ2YUQ3l1be2M+mZGyR+kOoozEQCkZIrfu/5e0h54jBmFHIUZxTbMKPkDM4ohV762ZkahvCTtu3ko15w+bWeaeKYZf6lP2ymTQ+NjeuqvgkIDQK7To1PtoI4xziCTyaDRaEx2GtBKS0sz+rjuaD7mpih3BN0pFF++fIkqVaqYXNbcSGi6U2DWqlXL6DK6PXiN3awdHh6OrKwsuLm5Yfv27ahWrZrR7ej2/s8ruh38chohztYR5HSVK1cO06ZNw7Rp06BUKnH58mVs374dq1atQkZGBmbOnIlGjRqhfv36Vm/7xIkTePToEQDghx9+wNChQ40uZ+txtyZ4FSlSBM+fP7fpPNCeRykpKahevbrFF8rWsuf7NDg4GBMmTMCECROgVqtx/fp17N69G8uWLUNiYiJ++eUXNGzYEJ07d7a4fPY+p3N6/2o0GmGEuqCgIKcFbWvOO1s7WWjXi4+PR1ZWltlRCLTHQCaTiepA+7slnwPmljE3Q5MuU/9nAMP/NRUqVMixTDlhgw9JWaLeKGmBEu804yoZBQA0Op/3jhip2RmYT5hPzJF6PrEG80nByyfa/eiu4wzMJ8Y5O58QSVlypmG2DpDyTWnMJ/kOMwozijnMKJZjRmFGsRQzinHMKETOoz/wmORnmmFGyXeYUZhRzGFGsRwzCjOKpZhRjGNGcQ55zosQ5R9Jeg0+hbwl3NhD+ZK/vz8A8xdPGo0GDx8+NPpchQoVhIvzM2fO2L185ugGnytXrphd9vLlyyafq1evHgDg8ePHNgfCu3fvAsgexcDUBSqQczmdoXbt2sLv5o6LJc9by8PDA82aNcN3332HxYsXA8h+f+3YsUO0nKU9nrXHHQB69eplcjlnHHdtGLx69arZi0JjtO/BzMxMh5bVUe9TuVyOkJAQfPrpp9i8ebPw+Pbt263ajr3O6Zo1awLIPqfNTYmqVCpx7do1g31rOarnvTXnnfa1WEu7nkKhwI0bNyzaX+XKleHp6Sk8rj0mjx8/NjstbkxMDCIjI00+r/0/A2TPxGfK/fv3TT6n+2WLs//XELmipHTONEP5F/MJ84k5zCeWYz4pmPnk+vXrBvvWYj5hPiFyVUl6nfp9PORwd2NTIOUfzCjMKOYwo1iOGYUZxVLMKMYxoxA5T3IG7/Oi/I0ZhRnFHGYUyzGjFMyMwvu8mFGkht+UU4GSnMEb0ih/0077d/XqVZPLHDx40OQ/QLlcjrfffhsAcPr0aeHCxBlCQkKEHrIbN240OWtAVFQUjh49anI7nTp1ApB9Ub9kyRKbyqIdlcDcRXR0dDT27dtn0/btqWTJkqhevToA4O+//0Z6errR5VJTU/H33387rBxt2rQRfte/UNNOtwlkXwyaojsaRGpqqtFl1Go1Vq9ebWsxLfbOO+8AyH4PrFq1yqp1O3bsKFy4//7773Yvm5Yz3qe652VsbKzN6+bmnNa+tzQaDcLDw00ut2PHDiQlJQEA2rZta/C89n1o7j1oC0vPuxo1aqBkyZI27UP39axbt87kchcuXBBCtu45qfu3RqPBxo0bTW5j/fr1Zmdt0Z1e1lxI3rJli8nnWrVqBV9fXwDA0qVLrZ7hxdvbW/g9MzPTqnWJXI1GozG4KY0ZhfIT5hPmE+YT+2A+ycZ8kjPmE+OYT4ich20olN8xozCjMKPYBzNKNmaUnDGjGMeMQuQ8+rNh+kt9phnKd5hRmFGYUeyDGSUbM0rOmFGMY0ZxDnaaoQKFN6RRfteiRQsAQEREBM6dO2fw/IsXL/DZZ5+Z3cakSZMgl8uh0Wgwbtw4PH/+3OSy5p6zlpeXFwYNGgQAuHHjBubPn2+wTFZWFqZNm2b2Yqh9+/Zo1KgRAGDBggXYtm2b2f3eunXL4GKzcuXKAIAHDx7g/PnzBuukpaVhwoQJJi+gnG3EiBEAsqfr+/LLL40u8/nnn+dq2s6//vrL6BSnWkeOHBF+173YAoASJUoIv5sa/QJ4fdyB7As6Y/73v/85JeT369cPpUqVAgDMmjULp06dMrms/nlQtWpVvPvuuwCArVu3YtGiRWb39fjxY7MXnqbY4326detWs89fuXJFGNHE2qkV7XVOd+nSRQghv/zyC27dumWwzLNnz4T3vq+vL9577z2DZbTvQ+3UsPZi7rz74osvhPNOe57aolGjRmjQoAEAYPXq1Th+/LjBMklJSfjoo48AZH8xNnLkSNHzXbp0EY7Bzz//jH///ddgG3fv3sUvv/xitiy1atUSphFdtmyZ0TCzbds2s1/eBAYGYvjw4QCyv/z7z3/+YzLAKZVKg88uSz9TiKQgVaGCSu/0YUah/IT5hPmE+cQ+mE+yMZ/kjPmE+YQoryUZ3JDGUZwpf2FGYUZhRrEPZpRszCg5Y0ZhRiHKaymZ4v/PAZxphvIZZhRmFGYU+2BGycaMkjNmFGaUvMS7eahA0R+BIIANPuQAMTExuH37do7LeXt7o1KlSqLHhg0bhhUrViArKwtDhgzB9OnTERoaCoVCgfPnz2PRokXIyspC5cqV8eDBA6PbrVevHmbOnInZs2fj/v37aNOmDUaNGoVWrVohKCgISUlJuH79Onbt2gU3N7ccw4o1PvroI2zfvh3Pnz/HN998gxs3bqB///4oVqwYHjx4gEWLFuHy5cto0KCB2Z6vixcvRseOHREfH4+xY8di06ZN6NmzJypXrgw3NzfExcXh2rVr2LdvHy5cuIBJkyahY8eOwvr9+/fH0qVLoVarMXjwYISFheGNN96At7c3rl69isWLF+PBgwdo1qyZ0YtYZxs5ciTCw8Nx/fp1rFixAo8fP8aIESNQunRpPH/+HMuXL8fRo0dzPG7mTJo0CV9++SW6deuGpk2bomLFivDy8sKrV69w7NgxrFy5EgDg5+eHvn37itatX78+vL29kZGRgdmzZ8PDwwPlypUTeumXKlUKPj4+aN++PYKDg/Hq1SvMmjULT548QZcuXVC0aFE8ePAAa9aswfHjx51y3L29vbFw4UL069cPaWlp6Nu3L/r164cuXbqgVKlSUCgUuHfvHg4ePIh9+/bh2bNnovV//PFHXL16FY8ePcIXX3yBPXv2oH///qhZsyY8PT0RHx+Pmzdv4vDhwzhx4gS6dOmC3r17W1VGe7xPv/32W8yYMQOdOnVC8+bNUaVKFfj6+iI+Ph7nzp3D0qVLAQBubm4YMmSI1cfRHue0p6cnfv75ZwwZMgTJycno2rUrJk+ejNatW8PNzQ0XLlzA3LlzhQvub775BkWLFjUI/02bNsXJkydx+fJl/Pbbb3jzzTeFXvA+Pj5CeLZWgwYNjJ53K1asEL5kqFevXq7CFAD83//9Hzp16gSFQoFBgwZhzJgxeOedd+Dn54fr169j7ty5QlAMCwszmLrU09MTs2bNwqhRo5CQkIBOnTphypQpaNmyJTQaDU6dOoV58+YBACpVqmQypLi7u2PYsGH47bffcPv2bfTq1QtTpkxBmTJl8OrVK/z9999Yv349mjZtigsXLph8PZ988gmOHTuGW7duYdmyZbh48SKGDx+OWrVqwcPDA1FRUTh79iy2bNmCTz/9VAjmAFC2bFnhOM+fPx+lS5dG5cqVIZdn98cvXry4aHpRIleWlGE4gkchNviQnTGfMJ9Yi/nE/phPCn4+0cd84tr5pFq1akKDEfMJSQ1nmiFnYEZhRrEWM4r9MaMwo1iKGSV/ZBS2oZCUGd7nxYxC9seMwoxiLWYU+2NGKfgZhfd5MaNIgUxjbl4gohzExMQ4ZLtubm5C7zoAiI+Ph0qlQnyaEonpWUjKzEJShgrVgn1QIsDLzJYKrhcvXkCtVkMul4t6+rkqd/fXwdhcL2tHOXXqFHr27GnVOnXq1DE61d3ixYvx+eefG10nKCgIf/75J2bPno3Tp0+jRYsW2L59u9Flf/nlF8yZM8fs8TC2fqNGjfDkyRMMGDDAoMdxZGQkGjduDACYO3eu6J+j1p07d9CnTx+8fPnS6D4HDhyIFi1a4P333weQPdqCfo93ALh//z5GjhxpUTD9+OOPhZ67Wj/99BN++OEHk+tMmjQJNWvWNFsOc8dC1+TJk7FhwwaUK1cOly5dyrG8xkRHR6NXr15GexUDQLt27TBp0iT0798fQHYP4ZYtW1pcjuDg4BzLUKhQISxZsgRvvvmmwXPffPONcKGmT7cshw8fxvDhw5GRkWF02ZYtW2L27Nlo3bo1AOPvI93XoTtagf57OTw8PMf30eHDhzF+/HihF74pxkZ3ePHiBcaMGYOzZ8+aXRcABg0ahLlz5+a4nL7cvk+171FzvLy88OOPPxo9Xy1hr3N6/fr1+Oijj0xO0+jm5obPPvsMH374IQDD+o6KikLbtm0RHx9vsK65z0JjdD+zN27ciIULF5qcerRatWrYsmWL0Sk7rT33jxw5gtGjRyM5OdnkMqNGjcKsWbOEYKFvwYIF+Prrr432+Pf19cUff/yBBQsWmP0fkZaWhj59+uDixYtG92HJeQpkTwU7cuRInDlzxuTrMbX+ihUrMHPmTIuXNyU31zvFihWzanmSBkflE8B4RlEosxCnzSgZWUjMyEK7qkHCF5auRGr5BMjbjMJ88hrzCfOJPfPJpUuXTJ7bzCeul08++eQT0bmsW9/MJ9mYT8SYT8gRnJ1RUjMUiElVIiVThaSMLHi5yxFSJsBhZchLUssobEMxxIzCjKKLGSXBzCtnRjGHGYUZhRmFpMbZ93klpCuRkJ6FlEwVkjOyUC7IG2ULezukDHmNGcW5mFFeY0ZhRmFGsRwzymu8zysbM4q0Mgq7b1OBEuTrgSBfj7wuBpFZEyZMQPXq1bF48WJcvnwZ6enpKFmyJN58801MmTIFZcuWtWg706ZNw7vvvosVK1bg+PHjePr0KdLT01G4cGFUr14dbdu2xYABA+xe/po1a+LkyZOYN28edu3ahWfPnsHf3x+1atXC0KFD0bt3b4SHh+e4nSpVquDIkSPYvn07duzYgStXriA2NhYqlQpFihRB1apVERoaik6dOiEkJMRg/Y8++gghISFYsmQJrly5grS0NBQrVgwNGzbEiBEj0K5dO4vK4SwlS5bE4cOHsWjRImzbtg2PHj2Cp6cnqlWrhv79+2P48OE5XrCYc+LECRw4cADnzp3Do0eP8OrVKyQmJsLf3x/VqlVD+/btMWLECBQvXtzo+p9//jkqVaqEjRs34u7du0hKSoJKZTg6focOHXDgwAHMnTsXJ06cQGxsLAIDA1G9enX07dsX7733Hp4+fWrz67BWhw4dcPHiRaxYsQL79+/H/fv3kZiYCF9fX1SqVAnNmzdHnz59jK5bokQJ7NixA/v378fWrVtx8eJFvHz5EkqlEoGBgahUqRKaNm2Kjh07ClPuWiu379OtW7di3759OHPmDB48eICXL18iISEBPj4+qFixItq0aYMRI0agYsWKNpUPsN85rQ1dv//+O44ePYqnT59Co9GgRIkSaN26NcaMGYP69eubXL9UqVLYt28ffvvtN5w+fRpRUVEmQ7s1PD09sX79eqxatQobN27EvXv3oFQqUbFiRfTo0QMTJ06Ej49PrvcDZE9LfP78efz+++84ePAgHj9+DIVCgeDgYISGhmL48OEIDQ01u42wsDA0bdoUCxcuxPnz55GUlITixYujdevWCAsLQ/Xq1bFgwQKz2/D19cWWLVuwePFibNu2DQ8fPoS7uzuqVq2KAQMGYMSIEQajchhTtGhR/P3339i1axc2b96MiIgIxMbGQiaToWTJkqhfvz66dOmCbt26Gaw7cuRIlCxZEitXrsT169cRHx+fJ1+GEuU1N7kMwf6eCPb3zOuiEJnEfJKN+YT5xB6YTwpWPqldu7bJ9ZlPsrlSPgkODsbq1auZT0jyvD3cULYwZ7+k/I0ZJRszCjOKPTCjMKPkhBmFbShEea2wjwcK+/A+L8rfmFGyMaMwo9gDM0rByii8z4sZRWo40wzlirNHIJASjkBAroz1LR2sa2lxVn3rjkBgbDQPcg571HdBH4GA8h9nj+IspYwitXwC8DpGSljX0sL6lhZn1DfzSf6R2/pmPiFHYEZxHKllFF7DSAvrW1pY39LCjCIdbEOh/Ir3eTkOMwq5Mta3tLC+pYP3eUkLMwpnmqFccnNzzIhl+lNdmZr6ypXJZLK8LoLT6L9WmUxmdDozcg2sb+lgXUsL61ta7F3fMpnMYdeVREREREREREREREREREREREREJF3sNEO5ojtKgCMFBgY6ZT/5SUxMDDQaDeRyuaiHnxTwpllpYX1LB+taWhxZ37rbdnNzk9z/yfzI1vrWdoz28PBw2nUlERERERERERERERERkRRxcGTH4eDIHFDTVbG+pYX1LR2sa2nh4MjZeIchERERERERERERERERERERERERkQvj4MiOw8GRSSpY39LC+pYODo4sLVIdHFl63bqJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI5bG7FuVKfHy8Q7Yrl8tFow4kJiZCrVY7ZF/5lVKpFF5zVlZWHpfGsfSn6lKpVJzqzYWxvqWDdS0tzqxvlUol+t3V/0/mR/aqb7VaDbVaDaVSafV1ZUEcsYCIiIiIiIiIiIiIiIiIiIiIiIici51mKFd0b1p1JLVa7bR95RdSurFc/7VK6bVLEetbOljX0uLM+m7ZsiVevXrlsO1Tzuxd3xqNRnLXekRERETkGphPiIiIiIgoP2FGISJzODiy43BwZN4P4qpY39LC+pYOZ9Z1aGioKKO4+v/J/IiDI2djpxkiIiIiIiIiIiIiIiIiIiIiIiIiF8bBkR1HSjeVcwBVaWF9SwvrWzpY19LCwZGzyfO6AERERERERERERERERERERERERERERERERET2xk4zRERERERERERERERERERERERERERERERE5HLYaYaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhcDjvNEBERERERERERERERERERERERERERERERkcthpxmifEouzz49NRoNNBpNHpeGiIiIyL50r3G01z1ElH8xnxAREZErYz4hKniYUYiIiMiVMaMQFTzMKEREROTKXCGjFMxSE0mAm5sbgOwPmqysrDwuDREREZF9KRQKIUy5u7vncWmIKCfa81Sj0UChUORxaYiIiIjsKysrS8gn2u9liSh/Y0YhIiIiV8aMQlTw8D4vIiIicmWucJ8XO80Q5VNeXl7C7+np6XlYEiIiIiL70mg0SE1NFf729vbOw9IQkSV0z9PU1FSOkkZEREQuRff7V93vZYko/2JGISIiIlfGjEJU8PA+LyIiInJVrnKfFzvNEOVTumEqNTUVKSkpUKvVeVgiIiIiotzRaDTIzMxEfHw8MjMzAQAymYwNPkQFgJeXF2QyGQCIzmPemEZEREQFmVqtRkpKiqixh/mEqGBgRiEiIiJXxIxCVHDxPi8iIiJyNa52n1fBnB+HSALc3d3h7++PlJQUAEBycjKSk5Mhl7tmXzfd18XQ6PpY39LBupYW1re02FLfGo3G4OaVwoULu+z1DZErkcvlKFy4MOLj4wFk35SWmZkJmUwm3Kjmavh/TTpY19LC+pYW1re02FLf+sv5+/vD3Z3NJkQFgdQyCv+nSQvrW1pY39LC+pYOW+uaGYWo4OJ9XuTKWN/SwvqWDta1tPA+L3aaoVxyc3NzyHb1T6iCeoLlVmBgINRqNdLS0oTHpPDPSQqvkV5jfUsH61paWN/SYkt9y2QyFClSBD4+Pg4oERE5gre3N4KCgpCQkCB8MWLsSxJXxP9r0sG6lhbWt7SwvqXFlvr28fGBv7+/A0pDRI4i1YzC/2nSwvqWFta3tLC+pcPWumZGISp4/P39oVKpkJ6eLjwmhc97KbxGeo31LS2sb+lgXUuLrfd5FS5cGN7e3g4okXOw0wzlSlBQkFP2ExgY6JT95EdFihRBRkYGEhISkJaWBpVKlddFIiIiIrKJm5sbPD09UahQIfj7+0u2YzRRQebt7Y3ixYsjMzMTGRkZyMrKcskv0GQyGTw8PIS/lUqly994J1Wsa2lhfUsL61tabKlv7WwUnp6e8PX1Fa1PZC+OGngM4OBjWn5+fvDx8UFGRgbS09NdMqPIZDLRCPNZWVn8n+bCWN/SwvqWFta3dOSmruVyOby8vODn58eMQlQAaW8m9fPzQ1paGhQKhUt27Of3btLC+pYW1rd0sK6lxdb6lsvlcHd3h7e3N7y8vAr8d9DsNENUAHh7e6NkyZJ5XQwiIiIiIiLI5XL4+Pi49ExRbm5uokEi4uPjOYCBi2JdSwvrW1pY39LC+qb8ylkDjwHSHnyMiIiIiIgoP/Hw8HDpjMbvYaSF9S0trG/pYF1LC+s7W8Hu8kNERERERERERERERERERERERERE9P/au/MgO6s6f8Cf7AmELAQIEMRAYghLUAg7yBbUsChBGcoVgVGUUXEZmYn+hoIpcCICUzouOKJC1QCDjAhDWGUx7MgSRglhjcgWkkBC0gQ6CZ3u3x9dfe2kby+BpHPv+z5PVapu9/u+556+33vOuR+Kc18AAKjCnWZ4V15//fUN0m7fvn3X2HG/bNmyNDc3b5DnYuNT73JR7/JQ63JR73KphXr35rf1AgAAAAAAAAAAUJ9smuFd6a3bMzU3N5fyVlBlpd7lot7lodblot7lot4AAADQ0Yb64rGkNr7Qgt6h1uWi3uWi3uWi3uVRC7X2xWMAAABrsmkGAAAAAAAA1rPe/IIJX2hRHmpdLupdLupdLupdHmpNLenXr98Gabdv375d/kyxqHe5qHe5qHd5qHW5qHcrm2YAAAAAAAAAAACgwHrrLkTt77ZE8al3uah3uah3eah1uZS13uXcKgQAAAAAAAAAAAAAAECh2TQDAAAAAAAAAAAAAABA4fTf2B0AAAAAAAAAAAAANpzXX399g7Tbt2/fDB8+vPLzsmXL0tzcvEGei41PvctFvctFvctDrculFuo9cuTIXn2+amyaAQAAAAAAAAAAgAJbvXp1rzxPc3Nzrz0XG596l4t6l4t6l4dal0tZ6913Y3cAAAAAAAAAAAAAAAAA1jd3muFd2WKLLTZIu4sXL84JJ5yQJLnooosyatSoDfI81Ab1Lhf1Lg+1Lhf1Lhf1plZtqHySeN+XjXqXh1qXi3qXi3qXi3pTq2QU1ge1Lhf1Lhf1Lhf1Lg+1ppb5/7xYH9S7XNS7XNS7PNS6XNS7lTvNAAAAAAAAAAAAAAAAUDg2zQAAAAAAAAAAAAAAAFA4Ns0AAAAAAAAAAAAAAABQODbNAAAAAAAAAAAAAAAAUDg2zQAAAAAAAAAAAAAAAFA4Ns0AAAAAAAAAAAAAAABQODbNAAAAAAAAAAAAAAAAUDg2zQAAAAAAAAAAAAAAAFA4Ns0AAAAAAAAAAAAAAABQOH1aWlpaNnYnAAAAAAAAAAAAAAAAYH1ypxkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKp//G7gCs7dVXX81NN92U2bNnZ/Hixenfv3+23nrr7L///vnIRz6SQYMGbewu1qVly5bl2WefzbPPPpt58+Zl3rx5eeONN5IkhxxySL7yla+sU3uPPvpobrvttsybNy8NDQ0ZNmxYxo0blyOOOCJ77LFHj9pYvXp1br/99txzzz15+eWXs2LFimy++eaZNGlSjjzyyLznPe/pUTsNDQ256aab8tBDD+XVV19Nkmy55ZbZe++9c9RRR2WzzTbrUTsvvPBCbr755jz22GNZsmRJBg8enDFjxuSggw7KlClT0q9fvx61s7HNmzcvjz76aJ588sm89NJLaWhoSL9+/bL55ptnp512yuGHH56JEyf2uD21rl1vvfVWHn300cqYXrJkSRoaGrJq1apsuumm2W677bLHHnvk8MMP79Fr89RTT+WWW27Jk08+mWXLlmWTTTbJ2LFjc8ghh+Sggw7qcb/uueeezJo1K88//3zeeuutDB8+PBMnTszUqVMzYcKEHrWxcuXK3HzzzXnggQeyYMGCNDU1ZdSoUdlzzz1z5JFHZsstt+xRO2VZUy677LJcd911lZ/POuus7Lrrrl1eY2zXvhNOOKFH5+2yyy45++yzuzxHveHdKct60pvkk+4VaZ6TUbpXlHrLKN0ry5oio7QqythuI6N0rWj1praVZT3pTTJK94o0z8ko3StKvWWU7pVlTZFRWhVlbCfySXeKVGtqX1nWkt4mo3SvKHOdfNK9otRaPuleWdYU+aRVUcZ2Gxmla7VQ7z4tLS0tG/xZoIcefvjh/PjHP05jY2PV49tss02+853vZOutt+7lntW/ribkdQlTzc3N+cUvfpE77rij03MOP/zwnHrqqenbt/ObWTU0NGTGjBmZN29e1eMDBgzIKaeckilTpnTZn2eeeSbnn39+li5dWvX4yJEjc8YZZ2T8+PFdtnPbbbfl17/+dZqamqoeHz9+fKZPn55hw4Z12c7GdtZZZ+WJJ57o9ryDDz44X/7yl9O/f+d7J9W6tmudJH/+859z7rnndnveZpttlq997Wv5wAc+0Ok5V111Va6++up09rFgzz33zLe+9a0MHDiw0zZWrVqVCy+8MI8++mjV43369Mnxxx+fv/u7v+uyvwsWLMiMGTPyyiuvVD0+ZMiQnH766Zk8eXKX7ZRlTfnrX/+a73znO1m9enXld12FKWO79sd2m/URptS7fupN7SrLetLb5JPyzHMySrnqLaPIKImM0qZIY7uNjNK5Itab2lWW9aS3ySjlmedklHLVW0aRURIZpU2RxnYin3SlaLWmtpVlLdkYZJRyzHXySXlqncgn8kkr+aRVkcZ2Gxmlc7VSb5tmqBnPPfdczjzzzKxatSqDBw/OtGnTsttuu2XVqlW59957c/vttydpXfy+//3vZ8iQIRu5x/Wl/YS8xRZbZMyYMfnTn/6UZN3C1BVXXJFrr702SbLDDjvkYx/7WEaPHp2FCxfmuuuuy3PPPZckmTZtWj796U9XbaO5uTlnn312nnzyySTJPvvskyOOOCJDhw7NM888k9/97ndZtmxZ+vTpk+nTp3e6M/K1117L9OnTKzvsjz766MqHq0ceeSQ33HBDVq9eneHDh+f73/9+Ro0aVbWd2bNn57zzzktLS0uGDx+ej3/843nf+96X5cuX57bbbsuDDz6YJJk4cWLOPvvsLhebje1rX/taFi5cmJEjR2b//ffPxIkTs8UWW6S5uTlPP/10rr/++ixZsiRJcuCBB+brX/96p22pdW3XOmkNUxdddFF23XXX7Ljjjtliiy0yYsSItLS0ZPHixXnggQfy4IMPprm5Of3798+//du/ZezYsR3aufXWW3PxxRcnSUaPHp3jjjsu22+/fV5//fXceOONefzxx5N0/5754Q9/mPvuuy9Jsuuuu+aoo47KyJEj88ILL+Saa67JwoULkySnnnpqjjjiiKptNDY2Zvr06ZUgNWXKlBx44IEZOHBg5syZk2uvvTYrVqzIoEGDcs4551T9e5LyrCnNzc35f//v/2XevHkZPnx4li1blqTrMGVs1/7YbtO2dn/4wx/Ohz/84U7PGzx4cLbaaquqx9S7fupNbSrLerIxyCflmedklHLVW0aRUWSUVkUb221klHLVm9pUlvVkY5BRyjPPySjlqreMIqPIKK2KNrYT+aRMtaZ2lWUt2VhklHLMdfJJeWqdyCfyiXzSpmhju42MUvv17nzrKfSySy+9NKtWrUq/fv3yL//yL2vc2m233XbLNttsk8suuyyvvPJKZs6c2eNdebQ6/vjjM27cuIwbNy4jRozIokWL8tWvfnWd2pg/f35mzpyZJBk3blz+9V//tbIbefz48dlrr71y9tlnZ968eZk5c2YOP/zwqjt7Z82aVZmQP/zhD+cLX/hC5dj48eOzxx575J//+Z/T2NiYSy65JLvvvnvVW29deeWVaWhoSJKcfvrp2X///SvHdt555+y444754Q9/mGXLluXKK6+sGhibmppyySWXpKWlJUOGDMk555yzRp8/8IEP5Je//GV+//vf58knn8xdd92VQw89dJ1et940ZsyYfOpTn8p+++3XYfGYMGFCDj744Jx55pl55ZVXcu+99+ZDH/pQdtlllw7tqHXt1zppnRsvuuiiTo8fcMABefDBB3PBBRekqakpv/3tb/Ptb397jXOWL1+eyy+/PEnrf2j53ve+t8aO3cmTJ+f888/PI488knvvvTdHHHFE1Q/pc+bMqQSpyZMn54wzzqi8B9veM9OnT89rr72Wyy+/PPvtt1+GDh3aoZ3rrruuEqQ++9nP5mMf+1jl2IQJE7Lrrrvm7LPPzsqVK3PppZd2uuu6LGvKTTfdlHnz5mXMmDHZe++9Kx+aO2Ns18fYXtuwYcOy/fbbr/N16l2f9aa2lGU92Rjkk/LMczJKueoto8goMkoxx/baZJS/KUO9qS1lWU82BhmlPPOcjFKuessoMoqMUsyx3Z588jdFrzW1pyxrycYio5RjrpNPylPrRD6RT+STpJhje20yyt/UWr3rY/sVhffss89WbjV42GGHrbHotTnmmGMyZsyYJK2LR2e3aaK6E044IZMnT86IESPecRs33nhj5bZwJ598cofb9w0aNCgnn3xykmT16tW5/vrrq7bTNrEPHTo0n/vc5zoc33rrrXPcccclab19X9tOwvaWLl2au+++O0ny/ve/f40Juc0BBxyQ97///UmSu+66q+otwh588MHKrujjjjuu6iLyuc99LptuummS1g96tWz69Ok54IADOt1tOWzYsJx44omVnx944IGq56l17dc6SY921e6zzz7Zdtttk6TqLV1vv/32vPXWW0mSz3zmMx1ucde3b9984QtfqDxXZ69LW6379eu3xvlthg0bls985jNJkjfffLPqLQSbmppy0003JWn9DwPHHHNMh3N22mmnHHbYYUmSuXPn5tlnn+1wTlnWlNdeey2/+c1vkiRf/OIXu7wNbxtjuz7G9vqi3uWqN+tfWdaTjUU+Kc88J6OUq94yiowioxRzbK8v6l2uerP+lWU92VhklPLMczJKueoto8goMkoxx/b6oNblqTUbRlnWko1JRinHXCeflKfWiXwin8gnSTHH9vqi3hu+3jbNUBPaD7q2RXJtffv2zSGHHJKkdSFuu40cvaOlpSUPPfRQktYPOdU+nCStO4TbPrg9/PDDaWlpWeP4/Pnz8/LLLydJ9t9//wwaNKhqO+13C1ablNu33dl7pn07LS0tefjhhzscb/ub1n7O9gYNGlSZ9F966aXMnz+/0+erB+13j7ctSO2pdXFq3abtlpRvv/12h2Ntr8uQIUOy7777Vr1+1KhRmTRpUpLWbxpobGxc43hjY2Mee+yxJMmkSZM6vdXevvvuW+lLtVo//vjjlWB3yCGHdBoWu3vPlGVN+eUvf5kVK1bkkEMOqfpNImsztos3trui3uWqNxtGWdaTemWeK9Y8J6OUq96JjFJNEdYUGaVVmcd2V9S7XPVmwyjLelKvzHPFmudklHLVO5FRqinCmiKjtCrz2O6MWpen1mw4ZVlL6pm5rjhznXxSnlq3kU86KsKaIp+0KvPY7op69069bZqhJjz11FNJWt/8O+64Y6fntV8s2q6hdyxatCivv/56ktZba3WlrU5LlizJq6++usaxttt+tT+vmhEjRmSbbbZJUr3WPW2n/bH216z9u2233bbLb2co0nuv/U7rah9W1bo4tU5aPwj99a9/TZLKjvs2TU1NlR38EyZM6HIHe9vr8vbbb2fevHlrHJs3b17lfdVVjfr371/5QNf+mjY9rfW4ceMqH+iq1agMa8p9992X2bNnd7ojvBpju37r/U6od7nqzYZRhvWknpnnivW+k1HKVW8ZpZhriozSsZ2yje3uqHe56s2GUYb1pJ6Z54r1vpNRylVvGaWYa4qM0rGdso3trqh1eWrNhlOGtaTemeuK896TT8pT60Q+KeqaIp90bKdsY7s76t079bZphprw0ksvJWm97VO/fv06Pa9th1z7a+gd7V/vtT+Qra2rOq1LO23HFy9enBUrVlRtZ5NNNulyMh05cmRlx3PbDso2K1asyOLFizv0uau+VGun3sydO7fyuFoN1Lr+a71y5cq88soruf7663PWWWdVbtt31FFHrXHe/Pnz09zcnKTnNUo6vi7ta93d69t2fPXq1VmwYEGn7XTVn379+lVu1VetRkVfU958881ceumlSarfarUzxnb9ju0HHngg3/zmN/PZz342J554Yk4//fT85Cc/yZw5czq9Rr3rt97UjqKvJ/XOPFeseU5GKX69ZZRirykyyt+UZWzLKK3KUm9qR9HXk3pnnivWPCejFL/eMkqx1xQZ5W/KMLblk1ZlqDW1pehrSRGY64oz18knxa+1fFLsNUU++ZuyjG0ZpVUt1rvzrYbQS1atWpU33ngjSTq91VuboUOHZtCgQVm5cmVlMNE72r/e3dVpiy22qHpd0rq7sc3mm2/eZTttz9PS0pIlS5asMXG2tdtdX9r68+KLL3boy7r8Te2Pv/baa90+Z61qbm7OtddeW/n5gAMO6HCOWtdnrWfNmpWf/exnnR6fNm1aDjrooDV+905qlHSs9bt5fbfbbrsO/Rk0aFA23XTTbtt5/vnn09DQkLfffjsDBgxIUo415bLLLsvSpUuz00475fDDD+/xdcZ2fY7tpGPAWbBgQRYsWJC77rore++9d77yla9kk002WeMc9a7felMbyrCe1DvzXHHmORmluPWWUWSU7hjb9Tm2ExmlWt+KXG9qQxnWk3pnnivOPCejFLfeMoqM0h1juz7HtnzSsW9FrTW1owxrSRGY64ox18knxa21fCKfdMfYrs+xncgo1fpWK/W2aYaNrv0OtcGDB3d7/uDBg7Ny5coOO9vYsNalTm2301v7uiRpbGxcL+20/dyT90xbO++mL+2P1/N774YbbqjcpnGfffapektDtS5GrduMHTs2p556asaPH9/h2Pqq0fp6fdvaWZdat7XTFqaKvqY88cQTueOOO9KvX7988YtfTJ8+fXp8rbFdf2N70KBBmTx5ciZNmpQxY8Zk8ODBaWhoyNy5c3PrrbfmjTfeyEMPPZQf/OAH+Zd/+Zc1br2r3vVXb2pL0deTIjDPFWeek1HKVe9ERulOva0pMkq5xraMUq56U1uKvp4UgXmuOPOcjFKueicySnfqbU2RUcoztuWT8tSa2lP0taQozHXFmOvkk/LUuo180rV6W1Pkk3KNbRml9utt0wwb3apVqyqP208CnWk7p/11bHjrUqe2DzVrX5ckb7/99nppp+3nnrxn2u9Mfqd9aX+8/XX1ZO7cubniiiuSJMOHD88Xv/jFquepdX3Weu+9984FF1yQpPXvX7hwYe6///48+OCD+dGPfpSTTjopkydPXuOa9VWjd/r6dtbOutR67XaKvKY0NTXlF7/4RVpaWnL00Udn++23X6frje36G9s///nPq34bx+67756pU6dmxowZee655zJ37tz8/ve/X+PWvOpdf/WmthR5PSkK81wx5jkZpWd9qdd6yygdHxdtTZFRyje2ZZRy1ZvaUuT1pCjMc8WY52SUnvWlXusto3R8XLQ1RUYp19iWT8pTa2pPkdeSIjHX1f9cJ5/0rC/1Wmv5pOPjoq0p8kn5xraMUvv17rvBWoYeGjhwYOVxU1NTt+e3ndP+Oja8dalT+0lr7Tq1n2jfTTttP/fkPdPWzrvpS/vj7a+rFy+++GLOP//8rF69OgMGDMg3v/nNDB8+vOq5al2ftd50002z/fbbZ/vtt8/48eNz4IEH5tvf/na++tWvZtGiRfnBD36QWbNmrXHN+qrRO319O2tnXWq9djtFXlN+97vf5eWXX84WW2yR448/fp2vN7brb2x3dfvaESNG5Fvf+lb69euXJLn55pvXOK7e9VdvakuR15OiMM/V/zwnoxS/3jJKx8dFW1NklPKNbRmlXPWmthR5PSkK81z9z3MySvHrLaN0fFy0NUVGKdfYlk/KU2tqT5HXkiIx19X3XCefFL/W8knHx0VbU+ST8o1tGaX2623TDBvdut5WaV1u+8T6sy51WrlyZdXrkmTIkCHrpZ22n3vynmlr5930ZV1vBVhLFi1alHPPPTdvvvlm+vbtm2984xvZZZddOj1freu31tUcfPDB2W+//dLS0pJf/epXWb58eeXY+qrR+np929pZl1qv3U5R15SXX3451157bZLklFNOeUf9NbaLNbaTZPTo0dl9992TJAsWLMiSJUsqx9S7ePWmdxV1PSkS81x9z3MySrnqvTYZpWv1sqbIKMZ2NTJK54pYb3pXUdeTIjHP1fc8J6OUq95rk1G6Vi9rioxibK9NPulc0WpN7yvqWlI05rr6nevkk/LUuhr5pGv1sqbIJ8Z2NTJK53qr3jbNsNENHDgwm222WZJk8eLFXZ67fPnyygAbNWrUBu8bf9P+9e6uTq+99lrV65Jk8803rzxuP+lX0/Y8ffr0WeO69u1215f2/emqL9210/74Flts0e1z1oolS5bknHPOyeuvv54+ffrktNNOy957793lNWpdn7XuSlvNV65cmf/7v/+r/P6d1Cjp+Pquy3umq9e3rT8rV67Mm2++2aN2hg0btsbu4qKuKTfccEOampoyevTorFy5Mvfee2+Hfy+++GLl/Dlz5lR+3/ah0tgu3thOku22267yuH091LuY9ab3FHU9KRLzXP3OczJKx74Uud6dkVGqq6c1RUYxtjsjo3Tdl6RY9ab3FHU9KRLzXP3OczJKx74Uud6dkVGqq6c1RUYxtquRT7ruS1KcWtO7irqWFI25rj7nOvmkY1+KWuuuyCfV1dOaIp8Y252RUbruS7Jh691/g7UM62C77bbLE088kQULFmT16tWVW1Ctbf78+WtcQ+9p/3q//PLLXZ7bVZ3Wbmfs2LGdttP2PKNGjeqwe3C77bbLX/7yl7z11ltZunRpRowYUbWN119/PY2NjUmSMWPGrHFsyJAhGTVqVBYvXrxGn7vqS7V2alVDQ0POPffcLFy4MEly8skn55BDDun2OrWuv1p3Z9iwYZXHr776auXxtttum759+6a5ubnbWnf1urSvdXevb9vxfv36Zeutt+7Qzh//+MfK802YMKFqG6tXr86CBQuq9qWtnaKtKW23MVy4cGF+9KMfdXv+1VdfXXn8k5/8JIMHDza2Czi2k9bgUo16F7Pe9K4iridFYp6rz3lORvmbMtS7KzJK/a8pMoqx3RkZpeu+VGsHeqqI60mRmOfqc56TUf6mDPXuioxS/2uKjGJsVyOfdN2Xau1ATxVxLSkac139zXXyyd8UvdbdkU/qf02RT4ztzsgoXfelWjvrkzvNUBN22mmnJK27Tv/yl790et7cuXM7XEPv2GqrrTJy5MgkyRNPPNHluW3HN99882y55ZZrHJs4cWLlcft6rm3p0qV55ZVXklSvdU/baX+s/TVr/27+/PlZunRpj9qph/feW2+9le9973t56aWXkiSf/vSnM3Xq1B5dq9b1Veue6OxWfv3798/48eOTJE8//XSampo6baPtdRkwYEDGjRu3xrFx48alf//+a5xXTVNTU55++ukO17Tpaa3nzZtX+eaAajWyplRnbBez3m3zfLLmDn31Lma96V3Wk9pmnqu/952MUq56d0dG6fpv6qydojG2i1lvGaX7dopUb3qX9aS2mefq730no5Sr3t2RUbr+mzprp2iM7eLVWz7pvp2i1JreZy2pfea6+nrvySflqXVPyCdd/02dtVM0xnYx6y2jdN/Ohqy3TTPUhH322afy+A9/+EPVc5qbm3PnnXcmSTbddNPsuuuuvdI3WvXp06dy67+XX3658oFobU8//XRl199ee+3VYWfktttuW9kJeP/991c+EK1t1qxZlcft3x9t2rfd2XumfTt9+vTJXnvt1eF4+1tYtn/O9lauXJn7778/SesOym233bbT56sFK1euzIwZM/Lcc88lST7+8Y9n2rRpPb5ereun1j3V9jclyfbbb7/GsbbXpbGxsbL7f22LFy/OY489liTZbbfdMmTIkDWODxkyJJMmTUqSPPbYY53eTu+Pf/xjZWdxtVrvuuuu2WSTTZIkd955Z1paWqq20917pohryle+8pVcddVVXf47/vjjK+efddZZld9vtdVWSYztIo7tRYsW5c9//nOSZPTo0WuEKfUuXr3pfUVcT4rEPFdf85yMUq5694SM0lG9rSkyirFdjYwyq8PxpLj1pvcVcT0pEvNcfc1zMkq56t0TMkpH9bamyCjG9trkk1kdjifFrDUbRxHXkqIx19XPXCeflKfWPSWfdFRva4p8YmxXI6PM6nA86d162zRDTRg/fnx23nnnJK0DrNqAv/766yuD/cgjj+ywc5UN76ijjkrfvq3TxiWXXJJVq1atcXzVqlW55JJLkrTeku/oo4+u2s5HP/rRJMny5ctz2WWXdTi+YMGCXHPNNUmSrbfeuuqkPGLEiHzwgx9MkvzpT3/KAw880OGc+++/P3/605+SJAcffHDVW4Tts88+GT16dJLkmmuuqdwKsL3/+q//yptvvpkk+djHPlb1b6oVTU1NueCCC/LUU08laa3ZJz/5yXVuR61rv9ZJ6weJtWuztuuvvz6PPvpoktYdyW1zbZspU6ZUAswVV1yRN954Y43jzc3N+eUvf5nm5uYknb8ubbVevXp1fvWrX1XOb9PQ0JDLL788SWt4Ofzwwzu00b9//xx55JFJWj/8zZw5s8M5Tz/9dOWD2C677FL5BoX2rCmdM7brY2wnycMPP5zVq1d3enzp0qW58MILK98c8pGPfKTDOepdP/WmNllPap95rj7mORmlXPWWUWSUdWVs18fYTmSUstWb2mQ9qX3mufqY52SUctVbRpFR1pWxXR9jWz4pT62pXdaS+mCuq/25Tj4pT60T+UQ+WXfGdn2M7URGqZd692npbHsf9LLnnnsuZ555ZlatWpXBgwfnuOOOy6677ppVq1blvvvuy2233ZYk2WabbfL973+/ww5Yuvbkk0+uMeE0NDRUJsSddtopU6ZMWeP8Qw89tGo7V1xxRa699tokyQ477JBjjz02o0ePzsKFC/O///u/lV3v06ZNy6c//emqbTQ3N+ess86qfODfd999M2XKlAwdOjTPPvtsrr766ixbtix9+vTJ9OnTs8cee1Rt57XXXsv06dPT0NCQfv365ZhjjsnkyZOTJI888kiuv/76rF69OsOGDct5552XUaNGVW1n9uzZOe+889LS0pLhw4fnE5/4RMaPH5/ly5fn9ttvr+zKnjhxYs4+++zKwlSLLrjggjz44INJWneKn3TSSV2e379//053Zqp1bdc6ad2V3tjYmH333TcTJ07M6NGjM3jw4KxYsSIvvPBC7r777spr379//0yfPj277757h3ZuvfXWXHzxxUladzF//OMfz/bbb5/XX389N9xwQx5//PEkyYEHHpivf/3rnfbnhz/8Ye67774krd8mcPTRR2fkyJF54YUX8rvf/S4LFy5Mkpx66qk54ogjqrbR2NiY6dOnV27/d8QRR+SAAw7IwIED8/jjj+eaa67JihUrMnDgwJx77rkZO3Zs1XbKuKZcddVV+e1vf5uk9RsIOvtWBWO79sd20jq+m5qasu+++2bChAnZaqutMnDgwDQ0NGTu3Lm59dZbK//xY+LEiTnzzDMzYMCADu2od33Um9pVxvWkt8gn5ZnnZJRy1VtGkVHak1GKM7YTGaVs9aZ2lXE96S0ySnnmORmlXPWWUWSU9mSUYo1t+aQctaa2lXEt6U0ySjnmOvmkPLVO5BP5ZE3ySXHGdiKj1Eu9bZqhpjz88MP58Y9/XLmt29q22WabfOc738nWW2/dyz2rfz/96U8rt6jriauuuqrq75ubm/Of//mfXd5y6/DDD8+pp57a5eTV0NCQGTNmZN68eVWPDxgwIKecckqHkLe2Z555Jueff36WLl1a9fiIESNyxhln5H3ve1+X7dx222359a9/XdnJubbx48dn+vTpGTZsWJftbGwnnHDCOp2/5ZZb5qc//WnVY2pd27VOWj9svfrqq92eN2rUqJx22mlVg1Sbq666KldffXWnt8rcY4898o//+I8ZOHBgp22sWrUqF154YeUbD9bWp0+ffOITn+j2fbpgwYLMmDGjEqjWNmTIkJx++umVD2GdKdua0tMwZWzX/thOej6+991333z5y1/OpptuWvW4etdHvaltZVtPeot8Up55TkYpV71lFBmlPRmlOGM7kVHKVm9qW9nWk94io5RnnpNRylVvGUVGaU9GKd/Ylk/qv9bUvrKtJb1JRinHXCeflKfWiXwin6xJPinO2E5klHqpt00z1JxXX301N954Y2bPnp0lS5akf//+2XrrrbPffvtl6tSpGTRo0MbuYl1aX2GqzezZs3Pbbbdl3rx5eeONN7LZZptl3Lhx+dCHPtTpzsO1rV69OrfffnvuueeevPzyy1mxYkU233zz7LbbbjnqqKPynve8p0ftNDQ05MYbb8xDDz1UWXi22mqr7LXXXjn66KOz2Wab9aidF154ITfddFPmzJmTJUuWZPDgwRkzZkwOOuigTJkyJf369etROxvT+gxTbdS6ds2fPz+zZ8/Ok08+mYULF2bp0qVZvnx5Bg4cmGHDhmXs2LGZPHly9t9//x7NnU899VRuueWWPPHEE1m2bFk23XTTvPe9782hhx6agw46qMf9uueeezJr1qw8//zzefPNNzN8+PDsvPPOmTp1aiZMmNCjNlasWJFbbrklDzzwQBYsWJCmpqaMGjUqe+yxR4466qhsueWWPWqnTGtKT8NUG2O7ts2dOzdz587N008/nYULF+aNN95IY2NjBg8enFGjRmXChAk59NBDezym1BvenTKtJ71FPuleUeY5GaVc9ZZRulemNUVGKc7YTmSUnihSval9ZVpPeouM0r2izHMySrnqLaN0r0xrioxSnLEtn3SvKLWmPpRpLelNMkr3ijDXySflqXUin/REmdYU+aQ4YzuRUXqiFupt0wwAAAAAAAAAAAAAAACF0/m9eQAAAAAAAAAAAAAAAKBO2TQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAOvR2LFj06dPn5x00kkbuysAAAAyCgAAUFNkFAAAoFbIJwDlYdMMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIXTp6WlpWVjdwIAAAAAAAAAAAAAAADWJ3eaAQAAAAAAAAAAAAAAoHBsmgEAAAAAAAAAAAAAAKBwbJoBgE7Mnz8/06dPz5577pnhw4dnwIABGT16dCZNmpRPfepTufTSS9PQ0LDGNWPHjk2fPn1y0kknrfH7v/71r+nTp0+P/x166KGd9usPf/hDPv/5z2fHHXfMJptskmHDhmXSpEk544wzMn/+/A3wSgAAALVARgEAAGqJjAIAANQK+QSArvTf2B0AgFp0991355hjjukQlhYtWpRFixZlzpw5ufLKK7PFFlvkmGOO6ZU+rVixIieffHKuvPLKDsfmzJmTOXPm5KKLLsp///d/56Mf/Wiv9AkAAOgdMgoAAFBLZBQAAKBWyCcAdMemGQBYy8qVK/PJT34yDQ0N2WyzzXLaaaflsMMOy1ZbbZVVq1blueeey3333Zdrrrmmx22OGTMmjz32WJfnXHXVVTnnnHOSJO9973vXONbS0pLjjz8+N9xwQ5Lkox/9aE444YTsuOOO6du3bx588MFceOGFeeGFF3L88cfn3nvvzV577bWOfzkAAFCLZBQAAKCWyCgAAECtkE8A6Ik+LS0tLRu7EwBQS+64445MmTIlSTJz5sxOv2Ggqakpb731VoYNG1b53dixY/P888/n85//fC699NIeP+fDDz+cgw8+OI2Njdl5553zwAMPrNHuxRdfnFNPPTUDBgzIddddl6lTp3Zo4/XXX88HP/jBPP744znwwANzzz339Pj5AQCA2iWjAAAAtURGAQAAaoV8AkBP9N3YHQCAWrNgwYLK44MPPrjT8/r3779G4Hmn5s+fn2OPPTaNjY3ZfPPNM3PmzDXabWlpyXnnnZckOf3006sGqSQZOXJkzj///CTJvffem2eeeeZd9w0AANj4ZBQAAKCWyCgAAECtkE8A6AmbZgBgLdtss03l8SWXXLJBn6uxsTHTpk3L/Pnz079///z2t7/NuHHj1jhn7ty5mTdvXpLk+OOP77K99uHv/vvvX/8dBgAAep2MAgAA1BIZBQAAqBXyCQA9YdMMAKzloIMOyo477pgk+cY3vpF99tknM2bMyL333ptVq1at1+c65ZRT8tBDDyVJ/uM//iOHHXZYh3MefvjhyuP9998/ffr06fTf0KFDK+e2/yYFAACgfskoAABALZFRAACAWiGfANATNs0AwFoGDBiQmTNnZuedd06SPPTQQ/nud7+bgw46KCNGjMjUqVNzxRVXZPXq1e/qec4555xceeWVSZJ/+Id/yGmnnVb1vEWLFr2j9t9666133DcAAKB2yCgAAEAtkVEAAIBaIZ8A0BP9N3YHAKAW7bLLLnnssccyc+bMzJw5M3fddVeeffbZNDY25pZbbsktt9ySf//3f8+NN96Yrbbaap3bv/rqq3PWWWclSaZMmZIf/ehHnZ7bPrTNnDkzY8eO7dFzvJN+AQAAtUlGAQAAaomMAgAA1Ar5BIDu2DQDAJ3o169fpk2blmnTpiVJXnnlldx888356U9/mkceeSSPPPJIvvSlL+Waa65Zp3YfffTRnHjiiWlpacn48eNz1VVXpX//zpfkUaNGVR6PGDEiu+222zv6ewAAgPomowAAALVERgEAAGqFfAJAV/pu7A4AQL3YZpttcvLJJ+f+++/PnnvumSS5/vrr09jY2OM2FixYkGOPPTZvvfVWhg8fnpkzZ2bzzTfv8po99tij8vjee+99Z50HAAAKR0YBAABqiYwCAADUCvkEgPZsmgGAdTRgwIAccsghSZKmpqYsXbq0R9etWLEi06ZNy4svvph+/frlyiuvzMSJE7u9bs8998x2222XJPnFL36RFStWvOO+AwAAxSOjAAAAtURGAQAAaoV8AkBi0wwAdHD33Xfn2Wef7fT4qlWrcueddyZJhg4dmi233LJH7X7hC1/IH//4xyTJ+eefn6lTp/bour59++a73/1ukuQvf/lLTjzxxKxcubLT8xsaGvKTn/ykR20DAAC1T0YBAABqiYwCAADUCvkEgJ7ov7E7AAC15vbbb88555yTD37wgzn66KOz++67Z8stt0xjY2Oefvrp/PznP8/s2bOTJH//93+f/v27X05//etf5/LLL0+SHH744fnQhz6UOXPmdHr+pptumh122KHy85e//OXceuutueaaa/I///M/mT17dr70pS9ln332yfDhw9PQ0JAnn3wys2bNynXXXZfBgwfnq1/96rt8JQAAgFogowAAALVERgEAAGqFfAJAT9g0AwBVNDc3584776x800A1xx57bGbMmNGj9l544YXK4zvuuCOTJk3q8vxDDjkks2bNqvzcp0+f/OY3v8nXv/71/PznP8+8efPyT//0T51ev9VWW/WoXwAAQH2QUQAAgFoiowAAALVCPgGgOzbNAMBavv3tb2f33XfPbbfdlkcffTTz58/PokWLkiRbb7119tlnn5x44ok5+uije7VfAwYMyM9+9rOcdtppufjiizNr1qy88MILWb58eYYOHZoddtghkydPzpFHHpljjjmmV/sGAABsODIKAABQS2QUAACgVsgnAPREn5aWlpaN3QkAAAAAAAAAAAAAAABYn/pu7A4AAAAAAAAAAAAAAADA+mbTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhWPTDAAAAAAAAAAAAAAAAIVj0wwAAAAAAAAAAAAAAACFY9MMAAAAAAAAAAAAAAAAhfP/Adhv3i4uo7qKAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOcCAYAAADnnKdhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOz9eXyT55n3f38led9kWV7ZV9tgwAQIS0ICYUsCpEkgzdpp0k7TdpLOtP1N5zXtPdPnuaez/7o+k85k5u7dpkkTaBZC2kBCWAIkELKwGTDG7Ls3yfK+yJau5w8XAcGWbGzLsq/P+/XiVck6rus8pcNOffi6jvO0GIZhCAAAAAAAAAAAAAAAAAAAAAAAABhCrAM9AQAAAAAAAAAAAAAAAAAAAAAAAKCv0TQDAAAAAAAAAAAAAAAAAAAAAACAIYemGQAAAAAAAAAAAAAAAAAAAAAAAAw5NM0AAAAAAAAAAAAAAAAAAAAAAABgyKFpBgAAAAAAAAAAAAAAAAAAAAAAAEMOTTMAAAAAAAAAAAAAAAAAAAAAAAAYcmiaAQAAAAAAAAAAAAAAAAAAAAAAwJBD0wwAAAAAAAAAAAAAAAAAAAAAAACGHJpmAAAAAAAAAAAAAAAAAAAAAAAAMOTQNAMAAAAAAAAAAAAAAAAAAAAAAIAhh6YZAAAAAAAAAAAAAAAAAAAAAAAADDk0zQAAAAAAAAAAAAAAAAAAAAAAAGDIoWkGAAAAAAAAAAAAAAAAAAAAAAAAQw5NMwAAAAAAAAAAAAAAAAAAAAAAABhyaJoBAAAAAAAAAAAAAAAAAAAAAADAkEPTDAAAAAAAAAAAAAAAAAAAAAAAAIYcmmYAAAAAAAAAAAAAAAAAAAAAAAAw5NA0AwAAAAAAAAAAAAAAAAAAAAAAgCGHphkAAAAAAAAAAAAAAAAAAAAAAAAMOTTNAACGtDFjxshischisejs2bMDPZ0hgc8UAAAAuDn8Lt33+EwBAACA8OB3777HZwoAAADcHH6X7nt8pgCGOppmAADAoNXQ0KDnn39ed911l0aMGKHY2FiNGDFCixYt0n//93+roaFh0IxvGIZKS0v18ssv69vf/rZuu+02JSQkBArSMWPG9N8bAQAAANBrQ6U+2bFjR6AO6e6/JUuW9Ot7AwAAANC/Bqqe8Xq9+uyzz/T888/rq1/9qqZOnaqoqKhArfHUU0/1y7gAAAAAItdA1SclJSX6j//4Dz388MOaPHmy7Ha7oqOjlZ6erlmzZunb3/62Dhw40C9jA+h/UQM9AQAAMHAWLlyonTt3SpK2b9+uhQsXDuyEemDPnj164okndObMmeu+funSJV26dEnbt2/Xj3/8Y61Zs0Zz5syJ6PH37t2rxYsXq66urs/nCQAAAAwW1CeDd3wAAADA7Khneu6Xv/yl/vqv/1per7fPzgkAAACA+qSntmzZou9+97sqLi7u9HW32y232619+/bpP/7jP/TFL35R//3f/620tLQ+GR9AeNA0AwAABp2ioiItW7YssHJAdHS0Fi1apBEjRujChQt6//331d7ertOnT2vZsmXavXu3pkyZErHjNzQ00DADAAAADFJDrT651rBhw/Tggw+GjMvPz+/VewAAAAAwMAaynnG5XDTMAAAAAAgYqPpk37591zXMWCwWTZs2Tbm5uXI4HKqqqtKuXbtUVVUlSXr99dd19OhR7dy5U06ns9fjAwgPmmYAAMCg0tbWptWrVwcKpMLCQr311lsaM2ZMIObs2bN64IEHVFRUpLq6Oq1evVrFxcWKiur9rz79Ob7D4dCsWbN066236tZbb1Vpaam+//3v93rOAAAAAPrHUK5PJGnixIn65S9/2et5AgAAAIg8A13PXDFy5MjAdZHZs2fr+eef1xtvvNFn5wcAAAAQ+SKhPpk+fbqefvppPfLIIzc0w3i9Xv385z/X3/3d38nn86m4uFjPPPOMXn311T4ZG0D/sw70BAAAAHriV7/6lU6dOiWpo8lk06ZN1xVIkjRmzBi9++67cjgckqTjx4/rN7/5TcSOX1hYqBMnTqi6ulqbN2/WP//zP+uBBx5QVlZWn8wZAAAAQP8YivUJAAAAAHMY6HriK1/5isrLy3X+/HmtW7dO3//+97Vo0SIlJib2yfkBAAAADB4DWZ/k5ubqrbfe0oEDB/TMM890untMTEyM/vZv/1Y//vGPA1977bXXdOzYsV6PDyA8aJoBAACDyn/+538GHn/ve99TdnZ2p3E5OTn667/+606Pi7TxHQ6HJkyY0CfzAwAAABA+Q7E+AQAAAGAOA11PjB49msXDAAAAAEga2Ppk1apVuv/++7sV+1d/9VcaNmxY4Pk777zT6/EBhAdNMwDQC36/Xy+++KKWLl2q7OxsxcXFacyYMbr//vv11ltvBeIWLlwoi8Uii8WiHTt2dHquMWPGBGLOnj0bcuynnnoqEP/b3/42ZLxhGFq/fr2efPJJ5ebmym63Ky4uTiNHjtQDDzygF198Ue3t7UHPcfbs2cCY13Zy79q1S1/72teUn58vu90ui8Wi73znOzpw4EAg3uFwqKWlJeQ8Jam+vl5JSUmBYw8dOtSt4/pCW1ubfve73+nhhx/WuHHjlJycrMTERI0dO1aPPfaY1q9fL8Mwgp5jx44dgbkvXLgw8PX3339fjz76qMaNG6e4uDg5nU7deeed+uUvf6m2trZuz7G5uVk///nPdfvttys9PV3x8fEaP368HnvsMW3bti0QF+x76srXd+7cGfjaXXfdFfj6tf+68/118eJF/fCHP1RhYaFSU1OVmJio/Px8/eVf/qXOnTvX7fcWysmTJ3X06NHA86eeeipo/LWvHzp0SKdPnx7U4wMAAARDfdKB+uR61CfUJ/01PgAAQF+inulAPXM96pmhW88AAABEMuqTDtQn16M+oT6RJJvNpjlz5gSed+fnGkCEMAAAN6WsrMyYM2eOIanLfw8++KBRV1dnLFiwIPC17du3d3q+0aNHB2LOnDkTcvwnn3wyEP/CCy8EjS0qKjKmT58edK6SjLy8PKO4uLjL85w5cyYQO3r0aKO1tdX4xje+0em5vv3tbxuGYRgzZ84MfO3ll18O+b4MwzB+9atfBY659dZbu3VMV3ryuW7fvt0YP358yM9p7ty5xsWLF4Oe50rsggULjNbWVuPpp58Oes4ZM2YYVVVVId/PoUOHQs7xG9/4huH1eoO+91Dv8dp/n//++vx5169fb9jt9i6Pj4+PNzZs2BDyvXXH//zP/wTOm5ub261jJk6cGDjmV7/61aAa/4UXXrjuZw4AAKAr1CfUJ8HOQ31CfdKT8T//PQMAANDfqGeoZ4Kdh3pmaNYzwVz7M/nkk0/22zgAAACdoT6hPgl2HuoT89UnnVm1alVg7GeeeSasYwO4eVECAPRYTU2NFi1apJKSksDXxo4dq3nz5ik2NlbFxcX69NNPtX79elmtA7up1wcffKD77rtPdXV1kqTo6GjdeuutmjhxoqKjo3X27Fnt2rVLLS0tKi0t1W233aY9e/Zo0qRJIc/93e9+V//zP/8jSZo6daoKCwsVHR2t48ePB97317/+dX3jG9+QJP3617/WE088EfK8v/71rwOPv/a1r/X4Pd+M119/XU888USgwz8+Pl5z587VmDFjZLVadfz4ce3Zs0ft7e36+OOPNW/ePH322Wfd2jb+61//ul588UVZrVbNmTNH+fn58vv9+vjjj1VaWipJ2r9/v7785S8H3bLx5MmTWrx4saqqqgJfmzp1qqZPny6r1aqDBw+qqKhI//M//6Pk5OSgc3r22WclSevXr9fly5clSQ888ICGDx9+Q2yw74WtW7fqm9/8pnw+n0aNGqV58+YpJSVFZ86c0Y4dO9Te3q7m5mY9/PDDOnLkiMaOHRt0XqFc+zM3Y8aMbh0zY8YMnThx4objB+P4AAAAnaE+6UB9Qn1CfdL34zc3N+vtt99WUVGRqqurlZiYqKysLM2ZM0e33HKLoqL48zIAAOgd6pkO1DPUM2arZwAAACIR9UkH6hPqE+qT4A4fPhx4PHLkyLCODaAXBrprBwAGo69+9auBbuGYmBjj17/+9Q0xn3zySaADOyYmZkBWFigrKzMyMzMDcV/+8peNy5cv3xBXXl5uPPjgg4G4qVOnGu3t7TfEXbuygM1mMyQZI0eOND744IMbYltaWgzDMIz6+nojKSnJkGRYLBbj1KlTQd9XcXFxYIzExESjrq4u5GcRTHc+1yNHjhjx8fGBOX7ve98zPB7PDXGnTp0y5s+fHzjfvffe2+n5rl1ZIDY2NrBCQklJyXVxfr/f+MUvfnFdF/7OnTs7Paff7zfuvPPOQJzT6TQ2bdp0Q9y2bduMzMxMw2KxXPd919V7786qF5937WcaGxtrJCYmGr/73e8Mv99/XdyRI0eM4cOHB2K/8pWvdOv8wdx7772B8/3t3/5tt475m7/5m8Axy5cvH1Tjs9MMAADoDuoT6hPqE+qTvhz/2u+ZYP+GDRtm/PjHPza8Xm+v3gcAADA36hnqGeoZc9YzwbDTDAAAGCjUJ9Qn1CfUJ6Hs3r37utx+9tlnYRsbQO8MbLsrAAxCx48f1wsvvBB4/n/+z//RV7/61RviZs+erc2bNyshIUFerzecUwz4u7/7O1VWVkqS/uqv/kovvviicnJybojLysrS66+/rkWLFknq6IZ+4403gp7b5/MpISFBW7du1R133HHD67GxsZKkpKQkPfbYY5IkwzD0m9/8Juh5r11V4OGHHw7ZId8X/uqv/krNzc2SpJ/+9Kf68Y9/rNTU1Bvixo0bp02bNmny5MmSpHfffVeffPJJ0HO3trZq4sSJev/995Wfn3/daxaLRd/+9rf10EMPBb62du3aTs/z3nvv6YMPPpAkWa1W/eEPf9Ddd999Q9yiRYu0ceNGWa3WsHzfeb1evfHGG/rSl74ki8Vy3WsFBQWBlSekjtUb2tvbezWe2+0OPO7Oqg6SlJ2dHXhcXV09qMcHAAD4POqTDtQn1CcS9Um4x798+bL+5m/+RnfeeacqKip6dS4AAGBO1DMdqGeoZyTz1TMAAACRhvqkA/UJ9YlEfdIVv9+v73znO4Hnc+bM0axZs8IyNoDeo2kGAHro17/+tQzDkNRRCD355JNdxubm5l73i1I4VVVV6eWXX5bU8Uviv//7vweNt9ls+ud//ufA81deeSXkGN/61reUm5sbMu7pp58OPP7tb38rn8/XaVxbW5t+97vfBZ6HYyvOoqIivf/++5KkW265JWS+EhMT9cMf/jDwvDuf07/9278pKSmpy9evLbI//fTTTmOuLR4fffRR3X777V2eb9asWfryl78ccl59YeXKlbrnnnu6fH358uWBIqWhoaHX22E2NDQEHsfHx3frmGvjrj1+MI4PAADwedQnV1GfUJ9Qn/Td+BkZGXrmmWe0fv16nT59Wk1NTWppadHp06f14osv6tZbbw3Efvzxx7rvvvsCFx8BAAC6i3rmKuoZ6hmz1TMAAACRhvrkKuoT6hPqk8794z/+oz777DNJHU1OP/nJT8IyLoC+QdMMAPTQ9u3bA4//7M/+LGR8sCKqP23dujXQWb5q1SrFxcWFPGbOnDlKTEyUJO3atStk/KOPPtqtudx6662aPn26JOnSpUt67733Oo374x//qKqqKknS5MmTddttt3Xr/L3xzjvvBB4/9thjN3THd+bKCgxS6M8pLi5O9913X9CYW265JfD47Nmzncbs3Lkz8PhLX/pSyDl2J6YvfPGLXwz6usViUWFhYeB5V++vu1paWgKPY2JiunXMlVUuJPX6Jq6BHh8AAODzqE+uoj6hPqE+6ZvxZ82apYsXL+o///M/9cADD2js2LGKj49XbGysxo4dqy9/+cv65JNPrruA+Nlnn+mnP/3pTb4TAABgVtQzV1HPUM+YrZ4BAACINNQnV1GfUJ9Qn9zo7bff1j/8wz8Env/t3/6t5s+f3+/jAug7UQM9AQAYTAzDUFFRUeD5vHnzQh6Tm5urtLS0sG9TvmfPnsDjQ4cO6Vvf+laPjvd4PGpsbAwUTZ8XHR2tqVOndvt8X//61/XMM89I6uiSX758+Q0x13bP//mf/3mP5nuzrv2ctm/frnPnzoU85srKEpJ04cKFoLF5eXmKjo4OGuN0OgOP6+rqbnj90qVLgeJR6ihmQ7n11ltlsVium2t/6M73QKj31xPXFvvd3W60tbU18Li7qxFE6vgAAADXoj65ivqkA/UJ9UlfjB9sZbwrLBaLfvSjH+nUqVNas2aNJOlnP/uZvv/97ysqij85AwCA0KhnrqKe6UA9Y656BgAAIJJQn1xFfdKB+oT65FqfffaZHnvsscDnvmTJEv3oRz/q1zEB9D2uYAJAD9TW1l73i9moUaO6ddyoUaPCXiRdvnw58HjXrl3dWing8zweT5dFksPh6NGNME888YT+5m/+Ro2NjXr77bdVVVWljIyMwOsXL14MrDgQExMTtu0kr/2c3n333R4f7/F4gr5ut9tDnuPaIqq9vf2G168tkBISEpSWlhbynMnJybLb7aqpqQkZ2xs9fX9tbW29Gu/am7e6u0rAtXHdufkrkscHAAC4FvXJVdQnHahPqE/COb4k/ehHPwo0zXg8Hn388cesrAYAALqFeuYq6pkO1DPmqmcAAAAiCfXJVdQnHahPqE+uOHr0qO699141NjZK6mhcWr9+PQuIAYOQdaAnAACDSUNDw3XPExISunVcV4VGf6qtre31OTr7hf2KnnZop6Sk6JFHHpHU8YvySy+9dN3rv/3tb+X3+yVJ999/v9LT03s425vT28/J5/MFfb0723uGcu33XXe/56TwXLDoi/fXE9euUlBRUdGtY8rLywOPu1NgRvL4AAAA16I+uYr6pAP1CfVJOMeXpPHjx2vMmDGB5yUlJb0+JwAAMAfqmauoZzpQz5irngEAAIgk1CdXUZ90oD6hPpGkM2fOaOnSpXK73ZKkgoICbdq0iUUEgEGKphkA6IHP/8LT1NTUreOudBr3pSsFRVeuLcx+9rOfyTCMHv+79saXvvD0008HHl+79aZhGHrhhRcCz7/2ta/16bjBXPs5vfnmmzf1OfW3a7/vuvs9J/XP991Ay8vLCzzuztapknT+/PnA4/z8/EE9PgAAwLWoT3qH+uTmUJ9cNdD1wUCPf0VOTk7gscvl6pNzAgCAoY96pneoZ24O9cxVkVJPAAAARALqk96hPrk51CdXRWJ9cunSJS1evDiwa9H48eO1ZcsWFhAABjGaZgCgB+x2u2JiYgLPr/3lK5gLFy6EjAm1JePnheqIz8rKCjy+trN6IM2dO1fTpk2T1LH67J49eyRJ27dv1+nTpyVJo0eP1pIlS8I2p0j8nD7v2lUWmpqaQm4BKnWsRtDfW3EOhEmTJgUeHzhwoFvH7N+/v9PjB+P4AAAA16I+6R3qk5tDfXLVQNcHAz3+FddeoBuIlRUBAMDgRD3TO9QzN4d65qpIqScAAAAiAfVJ71Cf3Bzqk6sirT6pqKjQ4sWLdebMGUnSiBEjtHXr1usWEQMw+NA0AwA9YLFYVFhYGHj+8ccfhzzmxIkTgS36gklJSQk87k784cOHg74+Z86cwOPdu3eHPF+4dLa6wLWrDHzlK1+R1Rq+/3uK1M/pWiNGjLiuUPrkk09CHrN3795urXoQ7u00e+uuu+4KPC4tLVVZWVnQ+MuXL+vEiROB54sWLRrU4wMAAFyL+qT3qE96jvrkqoGuDwZ6fKnjQl5paWng+bBhw3p9TgAAYA7UM71HPdNz1DNXRUI9AQAAECmoT3qP+qTnqE+uiqT6xO12a+nSpYFrH5mZmdq6dWuf79AEIPxomgGAHrr2l7SXX345ZPxLL73UrfNe+4vVwYMHg8bu3bs30MnclbvvvltRUVGSpI8++khFRUXdmkd/+9KXvqT4+HhJ0quvvqqLFy/qzTfflCRZrVZ99atfDet8Vq5cGXj85ptvqqKiIqzjd9eCBQsCj1955ZWQ8d353pSkuLi4wOO2traeTyzMJk6cqMmTJweev/jii0Hjr3196tSpGjdu3KAeHwAA4POoT3qH+uTmUJ90GOj6YKDHl6Q1a9aotbVVUsdFuDvvvLPX5wQAAOZBPdM71DM3h3qmQyTUEwAAAJGE+qR3qE9uDvVJh0ipT+rq6nT33XcHmtccDoe2bNmivLy8Pjk/gIFF0wwA9NCf//mfBx5//PHHQX8ZPXnypH7+859367zXdrgH+8Wvvb1d3/72t0Oeb/jw4frSl74kSTIMQ1/+8pdVV1fXrbn4/X5VVVV1K7anUlNT9fDDD0vq2DLyoYceUktLiyRp2bJlGjlyZL+M25XZs2dr4cKFkqTm5mb92Z/9mbxeb7eO9Xq93doasy9cWzyuWbMm6KoW+/fvD1k8XOF0OgOPL126dPMTDKNnnnkm8PgnP/lJl4VteXm5fvKTnwSeP/vss0NifAAAgGtRn/QO9cnNoT65aqDrg74ev6mpSX6/v1tjnzhxQt///vcDz5ctW6bMzMxuHQsAACBRz/QW9czNoZ65aqDrGQAAgEhCfdI71Cc3h/rkqoGuT5qamrRixQrt27dPkpScnKxNmzZp2rRpfXJ+AAOPphkA6KHc3Fw99dRTgedf+9rXOv2FdO/evVq6dKkaGxsVExMT8ryPPPJIYBvKPXv26Pvf/758Pt91MRcvXtTKlSv10UcfKTY2NuQ5//mf/1k5OTmSpEOHDmn27NnavHlzl/EXL17Uz3/+c+Xl5enVV18Nef6bde2WnNduLfm1r32t38YM5rnnnlNSUpIkacuWLbrzzjuDbnl5/Phx/eM//qPGjBkTti087733Xs2fP19SRxF73333aevWrTfE7dixQ8uXL5fP5+vW992UKVMCj994441ubeE50L7+9a9r/Pjxkjq2xLz33nt17ty562LOnTun5cuXq7q6WlLHz+21f+D4vB07dshisQT+7dixI6zjAwAA3Czqk96jPuk56pOrhlp98umnn6qgoEDPP/+8KisrO43x+Xx6+eWXNW/ePLndbklSTEyM/v3f/73LeQIAAHSGeqb3qGd6jnrmqoGuZwAAACIJ9UnvUZ/0HPXJVQNZn7S2tuqBBx7Qrl27JEnx8fHasGGDZs+e3QfvDECkiBroCQDAYPSzn/1Me/bsUWlpqVpbW/XUU0/pRz/6kebNm6fY2FgVFxfr008/lWEYWrVqldxut3bu3Bn0nKNHj9Y3v/lN/dd//Zck6d///d+1du1a3XnnnYqLi9OpU6e0e/dueb1eLVmyRNnZ2SG3XBw2bJj+8Ic/aPny5XK5XCotLdXdd9+t4cOHa/bs2crIyFBbW5tcLpeOHDkScovPvnL77beroKBAxcXFga9lZmbqC1/4QljG/7wpU6Zo7dq1euSRR9TU1KRPPvlEc+fO1fjx4zVjxgylpaWppaVFlZWVOnTo0IB04FssFv3mN78J3JTkcrm0dOlSFRYWavr06ZKkoqKiwFau3/ve9/T6668HiocrBfjnrVq1Sv/rf/0vGYahjRs3atq0abrtttuUnJwciHn00Uc1a9asfn1/PREdHa1169Zp/vz5amho0IEDBzRx4kQtXrxYw4cP18WLF/X+++8HthdNSUnRunXrAtvTRur4X/va17R3797rvnalyJOky5cvB3J9rf/7f/9vROUHAACEH/VJ71Cf9Bz1yVVDsT45duyYnnnmGX3rW9/ShAkTVFBQoLS0NFmtVpWXl2vPnj1yuVyBeJvNppdeekmFhYV98p4AAIC5UM/0DvVMz1HPXDXQ9YykTq97nD9/PvD4j3/8Y6cxV/IDAADQl6hPeof6pOeoT64ayPrkhz/8obZs2RJ4PmnSJL322mt67bXXQh7rdDr1D//wD72eA4AwMAAAN+XSpUvGrFmzDEld/vvCF75g1NXVGQsWLAh8bfv27V2es7m52Vi+fHnQc65cudLweDzGk08+GfjaCy+8EHSuZ8+eNRYvXhz0vNf+y8rKMjZt2nTDec6cOROIGT16dK8+v1/84hfXjfm9732vV+fryujRowNjnDlzJmjswYMHjZkzZ3b7cxozZoxx4MCBG86zffv2QMyCBQu6Nc9rzxtqjmPHjg06r69//euG1+s1hg0bFviax+Pp8pw/+MEPgp7v899fPflMDcPo0fdqT3z00UchP4tx48YZe/bsCXmua3MW6ue0P8Y3DOO6/0705F935goAAIY+6pPRvfr8qE+uR33Sc0OlPvn82KH+5eXlGbt37+7uxwQAANAp6pnRvfr8qGeuRz3TcwNZz/Sk/uhubgEAAHqD+mR0rz4/6pPrUZ/03EDUJ9e+l57+6+3PDIDwYacZALhJw4YN08cff6yXXnpJr7zyig4dOqTa2lplZWWpsLBQTz75pFavXi2LxdLtc8bFxWnDhg1au3atXnzxRe3fv1+1tbXKzMxUYWGhnnrqKT300EM9OqfUsWrB1q1btWfPHr3++uv64IMPdOHCBXk8HkVFRcnpdGrixImaNWuWli1bpoULF/bpKlGdWbVqlb7zne8Eng/UVpzXKiws1N69e7V582a99dZb2r17ty5fvqyamhrFxsYqIyNDeXl5mjNnju6++27Nmzevx7noizkeOXJE//3f/63XX39dx48fV1NTk3JycjR79mw9/fTTWrx4sSTJ4/FI6lhVICUlpctz/su//Ivmz5+vF154Qfv27VNFRYWamprC8n56Y968eTp06JBeeuklvfbaazp+/LjcbrecTqdyc3P18MMP68tf/nJgq9WhNj4AAMC1qE96h/rk5udIfdJhoOuDvhr/jjvu0N69e7Vnzx599NFHKi0tldvtltvtVmtrq+x2u0aOHKk5c+boC1/4gu65556wf98BAIChh3qmd6hnbn6O1DMdBrqeAQAAiCTUJ71DfXLzc6Q+6UB9AqC/WAzDMAZ6EgAw1C1cuDCwHef27du1cOHCgZ1QBHjxxRf11FNPSZLmz5+vDz/8cGAnNMScOHFCubm5kqT8/HyVlJQM8IwAAAAQKahPbkR90r+oTwAAANBXqGduRD3Tv6hnAAAA0BXqkxtRn/Qv6hMAuHnWgZ4AAMCcfv3rXwceP/300wM4k6Hp1VdfDTy+9dZbB3AmAAAAQOSjPulf1CcAAABA/6Ge6V/UMwAAAED3UZ/0L+oTALh5NM0AAMLuwIEDgZUE0tLS9PDDDw/wjIaWM2fO6Cc/+Ung+eOPPz6AswEAAAAiG/VJ/6I+AQAAAPoP9Uz/op4BAAAAuo/6pH9RnwBA79A0AwAIq5aWFv3lX/5l4Pk3v/lNxcXFDeCMBpdly5Zp06ZNam9v7/T1jRs3av78+aqtrZUkTZ8+XcuWLQvnFAEAAIBBg/qkd6hPAAAAgIFDPdM71DMAAABA36E+6R3qEwDof1EDPQEAwND3y1/+UidPnlRNTY22bdumixcvSpLS09P113/91wM8u8Fly5Yt2rJlixwOh2bMmKGRI0cqJiZGLpdLn376aeCzlaTk5GS99NJLslrpkQUAAACuoD7pO9QnAAAAQHhRz/Qd6hkAAACgd6hP+g71CQD0P5pmAAD97o033tDOnTuv+5rNZtOvf/1rpaWlDdCsBjePx6Nt27Z1+frEiRP1+uuva+rUqWGcFQAAABD5qE/6HvUJAAAAEB7UM32PegYAAAC4OdQnfY/6BAD6D00zAICwcjgcuu222/SDH/xAt99++0BPZ9A5cuSI3nrrLX300Uc6d+6cXC6XqqurFRcXp4yMDM2ePVsrV67Uo48+KpvNNtDTBQAAACIa9UnvUJ8AAAAAA4d6pneoZwAAAIC+Q33SO9QnAND/LIZhGAM9CQAAAAAAAAAAAAAAAAAAAAAAAKAvsdMMAAAAAAAAAAAAAAAAAABh8MEHH+jYsWM6ffq0zp8/r/b2dj3zzDNauHDhQE8NAAAAGJJomgEAAAAAAAAAAAAAAAAAIAxeffVVVVVVKTk5WQ6HQ1VVVQM9JQAAAGBIo2kGAAAAAAAAAAAAAAAAAIAw+MY3vqGcnBxlZGTorbfe0po1awZ6SgAAAMCQRtMMAAAAAAAAAAAAAAAAAABhMG3atIGeAgAAAGAqNM0AAAAAAAAAAAAAAAAAACJabW2tTp48qZMnT+rUqVM6deqU6uvrJUkLFizQs88+2+1zVVVV6d1339X+/fvldrsVFRWl7OxszZs3T3fffbdiY2P7620AAAAACDOaZgAAAAAAAAAAAAAAAAAAEe3pp5/uk/Ps3btXzz33nJqbmwNfa21tDTTibNu2TT/4wQ+UnZ3dJ+MBAAAAGFg0zQAAAAAAAAAAAAAAAAAABo309HQNHz5cRUVFPTruzJkz+sUvfiGv16u4uDg98MADmjJlirxer3bv3q1t27aprKxM//qv/6p/+7d/U3x8fD+9AwAAAADhQtMMAAAAAAAAAAAAAAAAACCiPfTQQxo/frzGjx+v1NRUVVZW6lvf+laPzvHb3/5WXq9XNptNf//3f6/c3NzAa1OmTFFOTo5efvlllZWV6e2339bDDz98wzleeukltbW1dXvM5cuXKycnp0fzBAAAANB3aJpBr7hcrn45r81mk8PhCDz3eDzy+Xz9MhYGHvk2F/JtHuTaXMi3uURCvtPT08M6HgaH/qpPpMj4vkf4kG/zINfmQr7NhXyby0Dnm/oEXfF4PP12bqvVKrvdHnheW1srv9/fb+Nh4JBrcyHf5kK+zYV8m0ck5Pra+mio6ayBpSdOnjypkpISSdJdd911XcPMFStXrtT27dt16dIlvfvuu1q1apWioq6/xW7Lli1qbW3t9rhz586NiKYZ7vNCXyDf5kK+zYV8mwe5NpdIyHckXEehaQYAAAAAAAAAAADoY+G8WfHaGzMxtJFrcyHf5kK+zYV8mwe5jiyffvpp4PFdd93VaYzVatWCBQu0Zs0aNTY2qri4WIWFhdfF/O53v+vXeQIAAADoW9aBngAAAAAAAAAAAAAAAAAAAP2ptLRUkhQbG6tx48Z1GTd58uQbjgEAAAAweNE0AwAAAAAAAAAAAAAAAAAY0i5evChJys7Ols1m6zJu2LBhNxwDAAAAYPCKGugJYHALVkD2htVqDfocQwv5NhfybR7k2lzIt7mQbwAAAAAAQvN4PP12bqvVKrvdHnheW1srv9/fb+Nh4JBrcyHf5kK+zYV8m0ck5NrhcIR1vMHC6/Wqvr5ekuR0OoPGJiUlKTY2Vq2trXK73X0+l23btunYsWOSpPPnzwe+VlxcLEnKz8/X4sWLu32+7s6R+7zQF8i3uZBvcyHf5kGuzYV8d6BpBr0SrkL72j8oYOgj3+ZCvs2DXJsL+TYX8o1I0V8XeyT+iGA25Ns8yLW5kG9zId/mQr4RqXw+X9jG8vv9YR0PA4dcmwv5NhfybS7k2zzIdeRoaWkJPI6LiwsZHxcXp9bW1uuO6yvHjh3Tzp07r/taaWmpSktLA8970jTzF3/xF92Ke+2117p9zt7g2qG5kG9zId/mQr7Ng1ybi1nzTdMMAAAAAGBICOfqeWb9I4JZkW/zINfmQr7NhXybC/kGAAAAAHye1+sNPI6KCn3L3JWYa4/rK88++6yeffbZPj8vAAAAgM7RNAMAAAAAAAAAAAAAAAAAGLJiYmICj9vb20PGX4m59rhI9fzzzw/0FAAAAICIRtMMesXj8fTLea1W63WrAdbW1srv9/fLWBh45NtcyLd5kGtzId/mEgn5DueOIgAAAAAAAAAAABjc4uLiAo9bWlpCxl+Jufa4SOV0OrsVx31e6Avk21zIt7mQb/Mg1+YSCfmOhPu8aJpBr/h8vrCM4/f7wzYWBh75NhfybR7k2lzIt7mQb0SK/rrYI0XGHxEQPuTbPMi1uZBvcyHf5jLQ+Y6Eiz0AAAAAgOBiYmKUnJys+vp6ud3uoLENDQ1qbW2V1P2GlMGA+7zQH8i3uZBvcyHf5kGuzcWs+aZpBgAAAAAwJISzqDfrHxHMinybB7k2F/JtLuTbXMg3AAAAAKAzI0aMUElJicrLy+Xz+WSz2TqNu3z58nXHAAAAABjcrAM9AQAAAAAAAAAAAAAAAAAA+lNeXp4kqbW1VadPn+4y7ujRozccAwAAAGDwomkGAAAAAAAAAAAAAAAAADCkzZ49O/B4+/btncb4/X7t3LlTkpSYmKiCgoKwzA0AAABA/4ka6AkAAAAAAAAAAAAAAAAAANCfJkyYoEmTJqmkpETbt2/XwoULlZube13Mhg0bdOnSJUnSvffeq6iooXN7nc1m65fzWq3WoM8xtJBvcyHf5kK+zYNcmwv57jB0fqsHAAAAAAAAAAAAAAAAAAxJx44dU3l5eeB5XV1d4HF5ebl27NhxXfzChQtvOMdTTz2lH/7wh/J6vfqnf/onPfjggyooKJDX69VHH32krVu3SpJycnJ033339cv7GCgOhyMs49jt9rCMg8hAvs2FfJsL+TYPcm0uZs03TTMAAAAAAAAAAAAAAAAAgIi2bds27dy5s9PXSktLVVpaet3XOmuaGTt2rL7zne/oueeeU3Nzs9auXXtDTE5Ojn7wgx8oPj6+T+YNAAAAYGDRNAMAAAAAAAAAAAAAAAAAMIVZs2bpJz/5id555x3t379f1dXVioqKUnZ2tubOnat77rlHsbGxAz1NAAAAAH2EphkAAAAAAAAAAACgj9lstn47t9VqDfocQwe5NhfybS7k21zIt3mQ6/717LPP6tlnn+2Tc2VkZOjJJ5/Uk08+2SfnGww8Hk+/nNdqtcputwee19bWyu/398tYGHjk21zIt7mQb/Mg1+YSCfl2OBxhHa8zNM0AAAAAAAAAAAAAfSycFwKvveiJoY1cmwv5NhfybS7k2zzINSKJz+cLyzh+vz9sY2HgkW9zId/mQr7Ng1ybi1nzzXIGAAAAAAAAAAAAAAAAAAAAAAAAGHJomgEAAAAAAAAAAAAAAAAAAAAAAMCQEzXQEwAAAAAAAAAAAACGGo/H02/ntlqtstvtgee1tbXy+/39Nh4GDrk2F/JtLuTbXMi3eURCrh0OR1jHAwAAAIBIR9MMAAAAAAAAAAAA0Md8Pl/YxvL7/WEdDwOHXJsL+TYX8m0u5Ns8yDUAAAAADDyaZgAAAAAAAAAAAAAAAAAAGMJsNlu/nNdqtQZ9jqGFfJsL+TYX8m0e5NpcyHcHmmYAAAAAAAAAAAAAAAAAABjCHA5HWMax2+1hGQeRgXybC/k2F/JtHuTaXMyab3O2CgEAAAAAAAAAAAAAAAAAAAAAAGBIY6cZ9ArbdqIvkG9zId/mQa7NhXybC/kGAAAAAAAAAAAAAAAAAAwGNM2gV9i2E/2BfJsL+TYPcm0u5NtcyDcAAAAAAAAAAAAQ2TweT7+c12q1Xne9sLa2Vn6/v1/GwsAj3+ZCvs2FfJsHuTaXSMh3uPoNgqFpBgAAAAAAAAAAAAAAAACAIczn84VlHL/fH7axMPDIt7mQb3Mh3+ZBrs3FrPm2DvQEAAAAAAAAAAAAAAAAAAAAAAAAgL7GTjPoFbbtRF8g3+ZCvs2DXJsL+TaXSMh3JGzbCQAAAAAAAAAAAAAAAACIbDTNoFfYthP9gXybC/k2D3JtLuTbXMg3AAAAAAAAAAAAAAAAACASWQd6AgAAAAAGF79haPuxSn3p/36ibSUVAz0dAAAAACbX2OrTmk/O68H/2i1Po3egpwMAAADA5M67m/SLrcf17Cv7B3oqAAAAAEzObxj69Ey1/r9/OKL/3nlqoKczYNhpBgAAAEC3NHt92njUpd/vr9DZ6mZJHYXVjIfyBnhmAAAAAMzoeGWj1hVV6t0Sl5q8fknSuv0XtXqKY4BnBgAAAMBsGlrbtfV4tTYWu3XgYl3g61+dnaXRjtgBnBkAAAAAszEMQ4fLGrSltFrbSqtV2dCx4NgIR7wenmrOayg0zQAAAAAIqryuVa8frND6Q5Wqa/Fd99pHp9w6Xtmo8c64AZodAAAAADNpafNra6lb64oqdbis4YbXX/nkvFYVpIZ/YgAAAABMx+c39Om5Wm0odmnHyWq1ths3xLx9pErfumPEAMwOuJHNZuuX81qt1qDPMbSQb3Mh3+ZCvs2DXA9NhmHoaHmDNh9za/Mxl8rrvDfEXPQ062hFkwqyEwdghgOLphkAAAAAnTpS1qBX9pbp/ePV8t14nSfgzaIK/c2i0eGbGAAAAADTOetu1rpDldpwpEr1rb4u4864GrXvQp1uGZ4UxtkBAAAAMJNTriZtKHbp3aMuuRrbgsa+U1ylv7h9uGxWS5hmB3TN4QjPquJ2uz0s4yAykG9zId/mQr7Ng1wPXoZhqPhynTYcKtPGw5d1obo55DE7TtVp/iTzNfbTNAMAAAAgoN1vaPvxaq3dX65Dl29ctflaeVnJ+ur8MVowJlFSkK4aAAAAALgJ3na/tp/0aN3BCu2/WB801mqRFk/K0uNzRmlqepRk+MM0SwAAAABm4Glq03vH3NpY7FJJRWPI+NSEaN1fOExLJ6aIfhkAAAAAfcUwDJVW1GtDUZk2Hi7TGVfo+kTquM9r5bQcrSwc1s8zjEw0zQAAAABQfUu71h+q1KsHKlRRf+P2nNe6Y7xD31iYq9snOGWxWOTxeOTzdb3SMwAAAAD0xMWaFq0/VKk/Hq6Sp7k9aGxGUrRWFWbpyTtyNSw1XpL+VKOEY6ZAcDabrd/ObbVagz7H0EGuzYV8mwv5NhfyPTh52/368JRHbx+p1O7TNWr3B19ALMpq0R3jHXpkzlgtys9UTJRVtbW18vtp6gcAAADQOycr67XhUJk2HCrTycrgCyFfMT4jUSunDdPKaTmamJXczzOMbDTNAAAAACZ23tOitfvKtaG4Ss1tXV+0iYuy6r4p6XpkRrbGZySFbft2AAAAAObQ7je065RH64oqtedsbcj4eWPsWl2YqfnjHYqNjpLjTw0zQCQJZ+1st9vDNhYGFrk2F/JtLuTbXMh35DIMQ0UXa/Xm/ov6Y9Fl1TS1hTxm6nC7Vs8Yri9MH660xJjrXiPXiCQej6dfzmu1Wq/7XqdZbGgj3+ZCvs2FfJsHuR48zlU3a8sxtzYfc+lEVVO3jhnpiNPd+elamu/UxIwE2Ww22e1XG2YGIt+RcJ8ZTTMAAACAyRiGob0X6rRmb7l2na5RsHXRspJj9PAtWXpgaqbs8ZQPAAAAAPpWeV2r/nC4Sm8drlRVQ/Cb0RzxUbp/aoYemJapEalxYZohAAAAADMoq23W+gOXtG7fRZ2qagwZn5USqwduGa7VM0Yo1+QrNmPw8IVpW1a/3x+2sTDwyLe5kG9zId/mQa4jy8WaFm0trdaWUrdKK7vXKDMsJVZL89O0NM+pvMwEWSwWSR25vfL4CrPmm7veAAAAAJNobffrvRK31u4vD7n6wJScRD0+M0eLJjoUZbOGaYYAAAAAzMDnN/Tx2VqtK6rQrtM18gfr5Jc0c2SyVhdmaeEEh2KiqE8AAAAA9I0mb7veKy7Xun2XtPuUS0aI2iQu2qq7C7K1asYIzZ+QLpvVEvwAAAAAAOiG8rpWbflTo8zR8tBN/FLHQshL89K0JM+pguzEG5pjcD2aZgAAAIAhzt3YpjcOVmhdUYWqm9q7jLNZpEW5aXp8ZramDmNVNAAAAAB9y93Ypj8eqdT6oipdrmsNGpsca9PKKRlaPS1TY5zxYZoh0Lc8Hk+/ndtqtcputwee19bWyu/399t4GDjk2lzIt7mQb3Mh35HDbxjaf6FObx+u1NbjbjV5Q+dhxsgUrSzI0NJ8p5JiO261qqut6TQ2EnLtcDjCOh4AAACAnqus92rrcbe2llbr0OWGbh2TkRStJblOLclL09RhSbLSKNNtNM0AAAAAQ9Txykat3VeuTcfcavN1vTxacqxND0zL1CO3ZCk7JTaMMwQAAAAw1BmGob0X6rTuYKW2n/TIF2JbmWnDkrRqWqaW5DkVF82uMhjcfD5f2Mby+/1hHQ8Dh1ybC/k2F/JtLuQ7/M57WrSxuErvHHWprM4bMn64PVYrC9J17+R0jUiNC3y9p3kj1wAAAACucDV6ta20WluPV+vgxXqF2OxSkuRMiNai3DQtzUvT9BHJNMrcJJpmAAAAgCHEbxj68FSN1u4r194LdUFjRzni9OiMLK0syFBCjC1MMwQAAABgBjXNbdpQ7NKbRZU672kJGpsQbdXyyelaVZip3MzEMM0QAAAAwFBX39KuzaVubSx2dWvl5sQYm5blp2nF5AwVDk+ShZvRAAAAAPSSp6lN245Xa2tptfZfrFOItcUkSanxUYFGmRkjUmSzUpv0Fk0zAAAAwBDQ5PXpj0eq9Or+cl2oaQ0aO3tUih6bma3bx6Wy+gAAAACAPmMYhoouN+jNokptLXXLG2THS0nKy0zQ6sIs3T3JqUQa+QEAAAD0gXa/oY/P1mpjcZV2nvSErEusFmnuaLtWTMnQgvEOdrwEAAAA0Gu1ze3afqJaW0rd2nu+TiHKEklSSpxNd03saJSZNcquKBpl+hRNMwAAAMAgVlbbqtcOVGj94Uo1tPq6jIuxWXTPpHQ9NjNbEzMSwjhDIHxstv670dJqtQZ9jqGFfJsHuTYX8m0u5Du86lvb9U5xld44UKGTrqagsXFRVt09KV0PTc9SQU7frNxMvgEAAAAcr2zUxmKXNpW45W5qCxk/Pj1eKwsydO8kp9KTYsIwQwAAAABDWX1Lu3ac9GhLqVufnKuTrxtbyiTG2HTXRIeW5Dk1Z3SKom1c3+gvNM0AAAAAg4xhGDp0uUFr9pVr+4nqoNt2piVE6YvTs7S6MEtpidHhmyQwABwOR9jGstvtYRsLA498mwe5NhfybS7ku38cvlirVz45pz8cvKzmtq6b+CVpYmaSnpgzSg/OGCF7fP/WJuQbAAAAMAd3Y5s2lbi0sdil41XBG/glyREfpXsmpWtFQbryMhP6pIkfAAAAgHk1tLbrg1M12lLq1sdna9XWjS1lEqKtWjCho1Fm3hi7YqJolAkHmmYAAACAQaLd59fW49Vau69cxeWNQWNzMxL0+MxsLct3UlwBAAAA6DNN3nb98eBlrfn0vA5drA0aG2Oz6t6p2XpizmjdOsbBDWkAAAAAeq213a8PT3m0odilPWdqFOqetGibRXeMS9WKggzdPtauKFZuhonZbLZ+OS87wJoL+TYX8m0u5Ns8yHXvNHt92nnSoy2lLu065ZG3G40ycdFW3TneoWX56bp9XKriovvn97LOkO8ONM0AAAAAEa62uV3rD1XqtQPlqmxo6zLOIumO8al6fGaOZo5M5oY0AAAAAH3mWHmd1nxyXuv3X1J9a3vQ2NHOBD0xZ5QemjlSaYkxYZohAAAAgKHKMAwdLmvQhmKXthxzq741+E6XkjQlJ1ErJmdoWb5T9nhujwIkyeFwhGUcdoA1F/JtLuTbXMi3eZDr0Jq9Pm0vrdTGQ2XadqxCLW3+kMfERlm1KD9TK6blaFF+phJiIqMuMWu+I+PTBwAAAHCDs+5mrd1frg3FLrW2d11sxUdb9YUpGXpkRrZGOeLCOEMgsng8nn47t9Vqve4PB7W1tfL7Q/8RBIMT+TYPcm0u5NtcyHffaG33a2upW28cKNfBS/VBY20WaeHEND10S7Zmj7bLarFI3kZ5vMF3yewLA53vcN10BAAAAJhNWW2rNh516Z2jLp33tISMz0qO0fLJ6VoxOV1jnPFhmCEAAACAoaqlzaedx6u08VCZtpZUqMkbunk/xmbVgrwMrZyWo8WTspQUS6tGpCATAAAAQAQxDEOfnKvTmn1l+uhMbdDY7OQYPTojW/dPzVByHL/aAz5f6D9Q9BW/3x/W8TCwyLd5kGtzId/mQr575lx1s94sqtSGYpdqW4LvKpOVHKMHp2Xq/qkZykjq2FXG8Ps1kJ82+QYAAAAGryavT9uOV2tjsUt7L9SFjI+LsmpRbppWFqRr5sgU2ayWMMwSAAAAwFDkbffrwxMdjTJbjlaovjX4NRJJirZZdMfEDK2YmqOlBVlKiYsOw0zRU9xZBwAAAESAlja/NpW4tGZfuU67m4PGFg5P0mMzsrVwYpqiuPgDAAAAoA+0+fzaedKjdUWV+ux88BvTLJLmj0vV6sJMzRubyk1pAAAAAHrF5ze070KdNhS79P7xarW0h945ctbIFK0sSNdduWlKjLGFYZbA4OfxePrlvAO9AyzCi3ybC/k2F/JtHuT6em0+vz49V6stx9x6/7hb9a2hF+WyWaQ5Y1K1NN+pRblOpfxpsWNfc4M8wW/7CrtIyLfD4QjreJ2haQYAAAAYQK4Gr14/WKF1RZWqae56dQKb1aIluWl6bGa2puQkhXGGAAAAAIayy7WtWn+oUn88XCV3U1vQWGditB6YmqEHpmYqxx4bphkCAAAAGKrOVjdrY7FL7xx1qaLeGzJ+lCNOKwrStXxSOjUJcBPCtSsrO8CaC/k2F/JtLuTbPMyY6/Y/Ne5vLXXr/RMe1Qa5Z+sKq6WjeX9JnlOLJjqUmnB1R5nB9PmZMd8STTPoJZutf1brsFqtQZ9jaCHf5kK+zYNcmwv57rmS8ga9srdM75W41O43uoxLiYvS6ulZeuSWbGWlRMYFIPINAAAADG7tfkO7T9doXVGF9pypVdcVSYfZo1O0ujBLC8anKsrG7/8AAAAAbl5tc7s2H3NrQ3GVissbQ8Ynx9q0LN+plQXpmpKTJIuFnS4BAAAA9JzPb+jAxXptKXXr/ePV8nSjUcYi6ZYRyVqW79RdE9PkTIwOeQwiE00z6JVwbZd07bZQGPrIt7mQb/Mg1+ZCvjvn8xvacrRCv9l9Rp+eqQ4aOy4jUV+9faxWzxih+Jj+aVTuK+QbAAAAGBwq6736w+FKvXW4KuQqzvb4KH2hIEMPFmZqlCMuTDMEAAAAMBS1+/zafaZWG4qrtOt0jdp8wVv3bRbptrGpWlGQrjvGOxQbRfM+AAAAgJ7zG4YOXWrQllK3th6vlruxrVvHFQ5P0tI8pxbnpikjKaafZ4lwoGkGAAAA6Gf1LW16be9F/fajM7pQ3Rw09o6J6frq/LFaMDFDViurpQEAAADoHb9h6NNztVpXVKkPTnoU4t403TIiWasLM3XXxDRuTAMAAABw0wzDUGllkzYUV2lTiVs13VjFOTczQSsmp+ueSems4AwAAADgphiGoSNlDdpSWq1tx6tDLiJ2xZScRC3Jc2pJbpqyU2L7eZYIN5pmAAAAgH5yobpJL+w+q9f2XlBDa9cXg2KjrFo1Y7i+cvtY5WYlh3GGAAAAAIaq6sY2/fFIldYfqtSl2tagsUmxNq2YnK5VhZkan54QphkCAAAAGIpcDV69c9SljUddOuUKvpCYJDkTonXPJKdWTsnQxAzqEQAAAAA9ZxiGSioataW0WltL3Sqr616jzKSsRC3JS9PSPKeG2WmUGcpomkGveDyefjmv1WqV3W4PPK+trZXf7++XsTDwyLe5kG/zINfmQr6vMgxDBy7W65W9l7XjRLX8QVZxTk+K1iO35GjV9CylJURLau+336/6UiTk2+FwhHU8AAAAYDAwDEP7L9ZrXVGl3j9erfZgBYmkydmJWl2YqWV5TsXH2MI0SwAAAABDTUubXztOVuudYpc+Plcb9NqIJMXYLFowwaEVBRmaO8auKKslPBMFAAAAMGQYhqHjVU3aWlqtLaVuXawJvoDYFbkZCYFGmZGOuH6eJSIFTTPoFZ/PF5Zx/H5/2MbCwCPf5kK+zYNcm4sZ893m82tLabXW7itXSUVj0Nj8rAQ9PjNHS/PSFG2zSgrf71X9wYz5BgAAACJJXUu7Nha7tK6oQmerW4LGxkdbdc+kdK0uzFR+VmKYZggAAABgqDEMQ0WXGrShuEpbSqvV6A19nWDasCStLMjQkrw0pcRxyxIAAACAnjtZ1aQtpW5tKa3WeU/wayJXjHPGa1m+U0vy0jQmLb6fZ4hIRAUKAAAA9EJNU5vWHarU6wcq5Gps6zLOImnhRIcen5mt6cOTZbGwahoAAACAm2cYhorLG7XuYIU2l7rV2h58KecJ6fF6aHqW7pnkVFIslwYAAAAA3JxLNS3aeNSljcUuXaoNvZJzTkqMVkzO0PKCdI1iFWcAAAAAN+GsuznQKHPa3dytY0Y54rQsz6ml+Wkan57QzzNEpOPKGAAAAHATTrma9Pv95XrnqCvozWmJMVZ9YWqmHrklSyNSuRgEAAAAoHcavT69e9SlNw9V6nhlU9DY2CiLluQ6tXp6pqbmJNG8DwAAAOCmNLS2a+vxam0sdunAxfqQ8QnRVi3OTdOKggzNGJksK7UIAAAAgB664GkJNMqcqAp+PeSK4fZYLct3amlemiZmJHBdBAE0zQAAAADd5DcMfXy2Vmv2levjs7VBY4fbY/XIjCx9YUoGqzgDAAAA6LXSykatK6rUpqMuNbX5g8aOTovT6sJMrZicIXs89QgAAACAnvP5DX16rlYbj7q0/YRHre3B6xCLpFtHp2hlQYbumuBQfIwtPBMFAAAAMGRcqmnR1uPV2lLq1rGK7jXK5KTEaEmeU8vynMrPolEGneNqGQAAABBCS5tPG4+6tHZfuc5WtwSNnTEiWY/NzNad4x2yWSnCAAAAANy8ljaftpRWa11RhY6UNQaNjbJadNdEh1YXZmnmyGQuCgEAAAC4KadcTdpY7NK7JS5VNbSFjB+TFqeVBRm6d7JTWcmxYZghAAAAgKGkvK5VW0s7GmWKy4NfC7kiKzlGS3LTtDTfqYLsRK6JICSaZgAAAIAuVNZ79dqBcq0/VKXalvYu46KsFi3NT9PjM3I0KTsxjDMEAAAAMBSddjXpzUOV2ljsUn2rL2jssJRYrSrM1H1TMuRMjA7TDAEAAAAMJZ6mNr13zK2NxS6VVIS+Sc0eF6Vl+U6tLEjXZG5QAwYNm61/doCyWq1Bn2NoId/mQr7NhXybRyTkurLeq62lLm0+5lbRpfpuHZOeFK2leelalu/UtOHJslKHdEsk5DsS0DQDAAAAfE5xWYPW7i/XltJq+fxGl3H2+Cg9VJiph6ZnKSMpJowzBAAAADDUeNv9ev9Etd4sqtT+i8EvEFkt0p3jHVpdmKk5Y+xcGAIiVH/dkCZxodNMyLW5kG9zId/mEon5bvP59eEpj94+UqVdpzxqD3I9ROpYQGz+eIfum5Kh+eMcioka+PcQiSIx18AVDocjLOPY7fawjIPIQL7NhXybC/k2j3Dluqq+VZuOlOntQ2X67Gy1jOAliCTJmRije6dma+W0Ybp1TJpsVq6H9JZZf7ZpmgEAAAAktfsN7ThRrTX7ynXockPQ2HHOeD02M1v3TkpXXDQXOwAAAADcvIs1LXqzqFJ/PFKlmuaud7iUpMykaD0wLVP3T81QVnJsmGYI4GaF64Y0ybwXOs2IXJsL+TYX8m0uA5VvwzB06GKt1u2/qD8WXVZNU1vIY6YOt2v1jOG6r3CYnEnUIT3FzzYAAADMrLrRq01HyrXh0GV9fNqtEL36kiRHQrTumdLRKDNnbJqibNybhd6jaQYAAACm1tDarrcOVenVA+Uqq/MGjb1trF2Pz8zWnNF2WVjJGQAAAMBNavf59cGpGq0rqtAn5+qCxlokzRtj16rpmZo/zqEoVlEDAAAA0ENltc1af+CS3tx/SScrgy8cJklZKbF64JbhWj1jhHKzksMwQwAAAABDRU2TV+8Vl2vDoTJ9dMotXzc6ZVLionR3QbZWFg7TbeOdiqZRBn2MphkAAACY0gVPi36/v1xvH6lSU5u/y7jYKKtWFqTr0RnZGuuMD+MMAQAAAAw15XWteutQld46XClXY/AVndMSonT/1Ew9MDVDw1PjwjRDAAAAAENFk7dd7xWXa92+S9p9yiUjxH1qsVFW3V2QrdUzR2j+hHTZaNgHhhyPx9Mv57VardftqlRbWyu/v+vrrxjcyLe5kG9zId/m0R+5rm9t1/bj1dpyzKWPz9aqvRuNMkkxNi3MTdOyfKfmjkkNNMo01NX2ai64XiT8bIdzV/au0DQDAAAA0zAMQ/su1GvNvjJ9eKpGwcqzzKRoPXxLth6YlqHU+OiwzREAAADA0OLzG9pztlbriiq0+3SNQl0nmjUyRasLM7VwooOV1IBBrr9uSJMi40InwoNcmwv5NhfybS7hyrffMLT/Qp02HKnSllKXmryhx7hlRIrum5KhpflOJcV23EZUV1vT53Mzi0j42Y6EG9IQmXw+X1jG8fv9YRsLA498mwv5NhfybR43m+tGr08fnPRoS6lbe87Wqs0XulEmIdqqOyc4tCQvTfPGpCo26sp1EIPvtzAx6882TTMAAAAY8rztfm0+5taa/eU6XtkUNHZydqIen5mtJblpiuIGNQAAAAA3ydXo1R8OV2l9UaXK671BY1PibFpZkKFV0zI1hh0ugSEjnBcezXqh04zItbmQb3Mh3+bS1/m+4GnRxmKX3jnq0uW61pDxw+2xWlGQruWT0zXimp0t+R7se/xsAwAAYChp9vr04ekabSl166MzNWptD90oExtl1Z3jU7Ukz6nbx6YqLpr7sRB+NM0AAABgyKpubNO6ogq9cbBS7qa2LuOsFumuiWl6fGa2pg1LksViCeMsAQAAAAwVfsPQ3vN1WldUqR0nPfKF2FZm2rAkrS7M1OJcJxeJAAAAAPRIfUu7tpRWa0NxlQ5dbggZnxhj09K8NK0oSNf04clcCwEAAADQLS1tfu0+U6OtpW59eKpGLe2hd1KMsVl0+7hULc1z6o5xqYqPsYVhpkDXaJoBAADAkHOyqklr9pVrU4lL3iBbfybG2PTgtAw9cku2cuyxYZwhAAAAgKGkpqlNG4pdevNQpc57WoLGJsZYtXxyulYVZmliRkKYZggAAABgKGj3G/r4bK02Fldp50lP0GsgUseiYXNH27W8IF0LJ6TRrA8AAACgW7ztfn10tkZbS6v1wUmPmtpCN8pE2yyaO8auZXlO3TnBoUQaZRBBaJoBAADAkOA3DO0+XaO1+8r16fm6oLEjUmP16Ixs3TclgwINAAAAwE0xDENFlxq0rqhCW49Xqy3EzWr5WQlaXZilu/OdSqAOAQAAANADJ6qatOFIlTaVuOVuagsZP84Zr5UF6bp3croykmLCMEMAAAAAg12bz69PztZqS2m1dpz0qNHrC3mMzWrR3NF2Lc1L04IJDiXH0ZqAyMR3JgAAAAa1Jq9PG4qr9Pv9FSFXdJ41MkWPzczW/HGpslktYZohAAAAgKGkobVdG4tdWldUqdPu5qCxsVFW3TPJqdWFmZqcnRSmGQIAAAAYCtyNbdpU4tLGYpeOVzWFjE+Nj9I9k5xaWZChvMwEWSxcBwEAAAAQXJvPr49Oe/ReiUs7TlarrqUbjTIW6dbRdi3JS9NdE9Jkj6cdAZGP71IAAAAMSuV1rXr1QIXeOlSp+tauC7Zom0X35Dv16Mxs5WUmhnGGAAAAAIaSo+UNWldUqfdK3Gpp9weNHeeM1+rCTC2fnM6qagAAAAC6rbXdrw9PebSh2KU9Z2oUYkNLRVktumN8qlYWZOj2sXZF2azhmSgAAACAQcvnN7T7pEsbDpVp05Eyebqxm6XVIs0cmaIleWlaNDFNjoToMMwU6DtcrQMAAMCgcvhyvdbsK9f7x6uDXixyxEfpoelZWj09U+mJMeGbIAAAAIAho8nr03vH3FpXVKFjFcFXdo62WbQkN02rC7NUODyJVZ0BAAAAdIthGDpc1qCNxS5tPuYOulDYFQXZiVpZkKGl+WlKjedmNQAAAADB+fyGDl6q19ZSt7Yd96i6G40yFknTRyRraV6aFuWmcf8VBjWaZgAAABDx2v2G3j9erTX7ynSkrDFo7IT0eD0+M0d3T3IqNooV1QAAAAD03ImqJr1ZVKF3jrrU6A2+q8zI1FitKszSfQXpSmVlNQAAAADdVFbbqndKXNpY7NJ5T0vI+KzkGC2fnK4Vk9M1xhkfhhkCAAAAGMz8hqFDlxu0tdStraXVcjWGbpSRpGnDkrQ0z6nFuWnKTKZRBkMDTTMAAACIWHUt7Vp/qFKvHahQRb03aOwd41L1+KxszRqZworOAAAAAHqspc2vbcfdWldUqUOXG4LG2qwWLZzg0OrCTM0alSIrNQgAAACAbmhsbde7R8r16idn9Nn5upDxcVFWLcpN04qCdM0amSKbldoDAAAAQNcMw1BxeaO2HHNr6/HqkPdbXVGQnaileU4tyUtTdkpsP88SCD+aZgAAABBxzlU36/f7y/X2EZda2rte1Tkuyqr7pmTo0RlZGp3GqmoAAAAAeu5sdbPeLKrUhuIq1bX4gsZmJ8fowcJM3T8lQ+lJrK4GAAAAIDS/YWjv2Rpt3nxO7x4pV3Nb8LpDkmaNTNGKgnQtyk1TYowtDLMEAAAAMFgZhqFjFU3a8qcdZS7XtXbruCnDU7Ri6jDdMTpB2cnR/TxLYGDRNAMAAICIYBiGPjtfpzX7yrXrdE3Q2KzkGD1yS5YemJaplDh+pQUAAADQM20+v3ac8GhdUaX2Xgi+urPVIt0+LlWrp2Vq3thUVnYGAAAA0C1nq5u1sdild466urW68yhHnJZPTteKyenKsbOyMwAAAICuGYahE1VN2lJara2lbl2o6V6jzMSMBC3LT9dDc8ZpbHqiJMnj8cjnC93cDwxm3GEIAACAAdXa7temEpfW7ivXSVdz0NipOUl6fGa27spNUxQ3qgEAAADooUs1LXrrcJX+cLhS1U3tQWPTE6P1wNRMPTAtQ9kp3LAGAAAAILTa5nZtPubWxqNVOlLWGDI+OdampflOrSxI19ScJFksXPsAAAAA0LVTriZtLa3W5lK3zlW3dOuYsWlxWprv1NI8p8Y642Wz2eRwJPbzTIHIQtMMAAAABoSr0at1Byv1xsEKeZq7vlnNZpEW5zn12IwsTR2WHMYZAgAAABgK2n1+bT9RrTf2l2nP2VoZIeLnjE7R6sIs3Tk+VVE2a1jmCAAAAGDwavf5tftMrTYUV2nX6Rq1+YJXHTarRbeNTdWKyU7dMd6h2CjqDgAAAABdO1vd3NEoc8yt0+7gCxJfMcoRp6V5aVqa59T49Hga9GF6NM0AAAAgrEorG7V2X7neO+YOeuEoOdamB6dl6uFbsljVGQAAAECPlde26PefndfvP72g8rrgq62lxkfpvikZWjUtUyMdcWGaIQAAAIDByjAMlVY2aWOxS5tKXEEXB7tiUk6KVs8Yri9MH6bo9mb5fL4wzBQArrLZbP1yXqvVGvQ5hhbybS7k21zId2S54GnR5mMubT7m0vHKpm4dMyI1Vkvz03V3frpyMxO6bJQh1+ZCvjvQNAMAAIB+5/Mb+vC0R2v3lWvfhfqgsaMccXpsRrZWFqQrPqZ//nALAAAAYGjyG4Y+Plur9Yeq9MEpj3z+4Cs8zxiRrFWFmVo0MU0xrO4MAAAAIARXg1fvlri1obhKp1yhV3hOS4jSPZPS9YVpWZqbNyLwdY+ne6tDA0BfcjgcYRnHbreHZRxEBvJtLuTbXMh3+F2obtI7h8u04VCZDl+q7dYxw1PjtWJajlZOy9HU4fab2lGGXJuLWfNN0wwAAAD6TaPXp7ePVOn3+8t1saY1aOzs0Sl6fEa2bhuXKitbggIAAADoAXdjm94+UqX1hyp1qTZ47ZEUa9PKgnStmpapcekJYZohAAAAgMGqpc2vnac82nikSh+fq1WI3nzF2CxaMMGhFZPTNXdsqqKsln7b3QEAAADA4Ha5pjnQKHPwQk23jslOidPyqTlaWZijW0am3lSjDGA2NM0AAACgz12ubdGazy7rrcNVavT6uoyLsVl07+R0PTYjWxMyuFkNAAAAQPcZhqF9F+q1rqhC20941B7izrUpOYlaNS1Ly/LTFBfNDWsAAAAAumYYhoouNWhDcZW2lFYHvdZxxbRhSVpRkK6leU6lxHE7DgAAAIDOVda1aOPhMm08VKa95zzdOiYjOVbLp2RrZeEwzRzlkNVKowzQE1TpAAAA6BOGYWjfOY9+veuM3isuD7rSmjMhWl+8JUurpmUqLTE6fJMEAAAAMOjVNrdrQ3GV3jxUqXPVLUFjE2JseuCW4bpvUqompseHaYYAAAAABqtLNS3aeNSljcWukLtYSlJ2coxWFKRrRUGGRjniwjBDALh5Hk/3bsrtKavVKrvdHnheW1srv9/fL2Nh4JFvcyHf5kK++1d1o1dbj1drc4lL+y/UKcQGlpIkR0KUFuc6dfekdN0yIkW2PzXK1NbW9Gou5NpcIiHfDocjrON1hqYZAAAA9Eq7z6/NpdX6/YFiHbpYGzQ2NzNBj8/M1rI8p2KirGGaIQAAAIDBzjAMHS5r0LqDldp63K3W9uCXk3IzE/Tl28bp/unDlBwXLY/HI58v9MrQAAAAAMynobVdW49X651il/ZfrA8ZnxBt1eLcNK0oyNCMkcmyWljhGcDgEK6/jfj9fv4OYyLk21zIt7mQ796raWrT9pMebTnm1t4LdUEXIL7CHheluyY6tDTfqZkjUxR1ZUcZw6/+Sge5Nhez5pumGfSKzWbrl/NardagzzG0kG9zId/mQa6HvprmNq07WKFX95erqsHbZZxF0oKJaXpiVo5mjkyRhYtHgx4/3wAAAAiXhtZ2bSpxa11RpU5UNQWNjY2yaFmeU6sKM1U4wq60tLQwzRIAAADAYOPzG/rsfK02FLu0/YRHre3BV9m1SLp1dIpWFmTorgkOxcf0z70SAAAAAAa3upZ27Tjh0ZZStz49VytfNxplkmJtumtCR6PM7FEpirJxHw7Q12iaQa+Ea7uka7eFwtBHvs2FfJsHuR46TlbW6ze7z+rN/RfV0tb1RaTEGJu+OGukvnL7GI12JoZxhgg3fr4BAADQ145VNGpdUaU2lbjUHKTukKQxaXFaXZilFQXpSonr+JM3zfoAAAAAOnPK1aSNxS69W+JSVUNbyPgxaXFaWZCheyY5lZ0SG4YZAgAAABhsGlrbtfOkR1tKq/Xx2Vq1d2NLmcQYq+6c4NCyPKfmjLYrJopGGaA/0TQDAACAkAzD0AcnXPrNrjPaebwqaOzw1Hh95fYxevjWkUqJiw7TDAEAAAAMdi1tPr13zK03iypVXN4YNDbKatGi3DStLszUjBHJNMkAAAAA6FJNU5s2HXNrY7FLJRXBaw1JSomz6e58p1YUZKggO5F6AwAAAMANGr0+fXiqo1HmozM1auvGljLx0VbdMd6hZXlpmjc2VbE0ygBhQ9MMAAAAutTS5tOb+y/phd1ndKKyIWjsrNEO/fn8sVo6OYttQgEAAAB02ylXk94sqtTGoy41tPqCxg63x2pVYabuK8hQWiJN+gAAAAA61+bza9fpGm0odmnX6Rr5Qqz0bLNadPtYu1YWZGj+uFRWeQYAAABwg2avT7vP1GjzMbd2n6lRa3voRpnYKKvmj0vV0rw0zR+XqrhoWxhmCuDzaJpBr3g8nn45r9Vqld1uDzyvra2V3+/vl7Ew8Mi3uZBv8yDXg1tlvVevHyjXGwfLVdPc3mVclNWiZflOPXHrcN0+aUTg6+R7aIuEn2+HwxHW8QAAANC3vO1+vX+iWuuKKnXgYn3QWJtFunOCQ6sLMzV7tF1WVnkGAAAA0AnDMHS0vFEbil3afMyt2paur29ckZ+VoJUFGbo73ylHAo35AAAAAK7X0ubXnrMdjTIfnqpRS3vo+2NibBbdNjZVS/OdumNcqhJiaJQBBhpNM+gVny/4yo99xe/3h20sDDzybS7k2zzI9eBQUt6oNfvKtLm0Ouiqa/a4KK0qzNQXp2cpMzlGNtv1xR35NhfyDQAAgO4672nR+qJKvV1cFbRBX5KykmP0wNQM3T81U5nJMWGaIQAAAIDBpqK+Ve8edWtjcZXOVLeEjE9PjNa9k9O1YnK6JmQkhGGGAAAAAAYTb7tfe87WamupWztPetTUFrpRJspq0bwxdi3Nd+rO8alKiuUWfSCS8BMJAABgcj6/oZ0nPVq7vzzkCs9j0+L02MwcLZ/sZLtQAAAAAN3S7vNr56karSuq0Kfn6oLGWiTdNjZVq6dn6raxqYqysqsMAAAAgBs1e33acdKjDcVV+vRcnbpeBqxDbJRFCyekaUVBumaPtlNrAAAAALhOm8+vT87VaWupWztOetTQGnrxWJvVojmjUrQ036mFExxKjuO2fCBS8dMJAABgUg2t7frD4Sq9ur9Cl+tag8bOG2PXYzOzNXeMXVYLF5IAAAAAhFZe16r1hyr11uEquRvbgsY6E6L1hakZenBapobZY8M0QwAAAACDid8wdOBivTYUu7St1N2t1Z5vGZGsFZPTtSQvjZWeAQAAAFyn3W9o7/labSmt1vYT1aprCd0oY7VIs0alaFmeUwsnOpQaHx2GmQLoLf4iAAAAYDIXa1r06v4K/fFIpRq9XV9Qio2yaPnkDD02I0vj0hPCOEMAAAAAg5XPb+ijMzV6s6hSu8/UyB9iuedbR6VodWGmFkxwKNpmDc8kAQAAAAwqFzwt2ljs0jtHXSEXAZOk4fZYrShI1/LJ6RqRGheGGQIAAAAYLHx+Q/sv1mlLabXeP16tmub2kMdYJM0YmayleU4tmpimtEQaZYDBhqYZAAAAEzD+tPramn3l2nnSo2D3raUnRuvhW7K0alqmUhMo8gAAAACE5mrw6q3DVXrrUKXK671BY+1xUbpvSroenJap0WnxYZohAAAAgMGkvqVdW0qrtaG4SocuN4SMT4yxakmeUysL0jV9eLIsFksYZgkAAABgMPAbhoou1WvzsY5GGXdTW7eOmz48WUvz0rQ4L03piTH9PEsA/YmmGQAAgCGszefX5mNurdlXrtLKpqCxk7IS9fjMbC3JS2OFZwAAAAAh+Q1Dn52v07qDFdp5qka+ENvKFA5P0urCLC3OTVNsFDUHAAAAgOu1+w19fLZWG4urtPOkR15f8BrDapHmjLZrRUG6Fk5wKC7aFqaZAgAAAIh0fsPQ4csN2lpara3H3apq6F6jzNScJC3NT9OSXKcyk2mUAYYKmmYAAACGIE9Tm9YVVer1gxVyN3Zd9Fkt0oIJDj0xM0eFw5NYeQ0AAABASJ6mNr19pErrD1XqQk1r0NjEGKuWT87Q6sJMTchICNMMAQAAAAwmJ6qatOFIlTaVuLu14vM4Z7xWFqTr3snpykjiJjYAAAAAHQzDUHF5o7aWurWltFoV9d5uHTc5K1FL851akpumHHtsP88SwECgaQYAAGAIOVnVpN/vL9e7JS61tne9AltijFX3T83UI7dkaXhqXBhnCAAAAGAwMgxDBy/Va11RpbYdr1ZbiBWfJ2UlanVhppblO5UQw2rPAAAAAK7nbmzTphKXNh516XhlU8j41Pgo3TPJqRWTM5SflcAiYAAAAAAkdVy/KK1s0pZSt7aWVutSbfDFvq7IzUzQsjynluSlaQT3TgFDHk0zAAAAg5zfMPTRmVqt3VemT87VBY0dbo/VozOydd+UdCXF8qsggP5RXV2tPXv26MCBA7p06ZJqamqUlJSkvLw83X///Zo4ceJATxEAAHRTfUu7Nh516c2iSp12NweNjYuy6p5JTq0qzNTk7KQwzRAAIpfN1n9Ng1arNehzDB3k2lzIt7mYMd+t7X59cLJaG45Uafdpj0L04ivKatGdExxaOSVT88elKto2eD8jM+bbrMg1AABA/zMMQyddzdpS6taWY25dqOleo8z49HgtzXNqaV6aRqfF9/MsAUQS7pQEAAAYpJq9Pm086tLa/eU6V90SNHbGiGQ9PjNbd4x3yGZl9TUA/evdd9/VH/7wB2VlZamwsFApKSkqKyvTZ599ps8++0zf/va3ddtttw30NAEAQBcMw1BxeaPWFVVq8zG3Wtv9QePHp8drdWGmlk+mOR8AruVwOMI2lt1uD9tYGFjk2lzIt7kM1XwbhqEDF2q0bt9FvV10WXUt7SGPKRyZqtUzhuu+acPkSIwJwyzDb6jmGzci1wAAAH3ntKtJW0qrtaXUrbMh7pW6YkxaXKBRZlx6Qj/PEECk4gomAADAIFNR36rXDlRo/aFK1bX4uoyLslp0d75Tj83MVn5WYhhnCMDsJkyYoP/9v/+3Jk+efN3XS0pK9KMf/Ui/+tWvdOuttyo6OnqAZggAADrT5PVpU4lb64oqVFrZFDQ2xmbR4rw0rS7MUuGwJFksNOcDAAAAuOpSTbPW77+oN/df0mlXY8j47JQ4PThjuFbPGK4JmclhmCEAAACAweBcdXOgUeaUq7lbx4xMjdXSfKeW5Tk1Pj2eaxgAaJoBAAAYLI6UNWjNvnJtK3XLZ3QdlxofpYcKs/TQ9EylJw3NFdgARLY5c+Z0+vVJkyZpypQpKioq0vnz5zV+/PgwzwwAAHTmeGWj3iyq1LslLjV6g+8qM8oRp1WFmVpZkK7UeBpgAQAAAFzV2Nqud4+Ua92+i/r4jFtGkGsZkhQfbdM9U7K1esYIzRvvlM3KjWwAAAAApIs1LdpaWq3NpW4dD7HI1xXDUmK1ND9NS/OcystMoFEGwHVomgEAAIhg7X5DO05Ua82+ch263BA0dpwzXo/PytY9+emKi7aGaYYA+lptba1OnjypkydP6tSpUzp16pTq6+slSQsWLNCzzz7b7XNVVVXp3Xff1f79++V2uxUVFaXs7GzNmzdPd999t2JjY/vrbXTJZrNd978AAGBgtLT5tbXUrXVFlTpcFrzWsFktumuCQ6unZ2rWyBQuNAFAN3k8nn47t9Vqld1uDzyvra2V3x+88RGDE7k2F/JtLkMl337D0GfnarWhuErbSt1qbgv9HmaNStF9UzK1ONepxNiOvxPW1db080wH1lDJN0KLhFw7HI6wjgcAANAXympbtfV4tbYcc+toRejdKiUpKzlGS/M6GmUmZydy/QJAl2iaAQAAiED1Le1663CVXt1frvJ6b9DY28em6vFZ2Zo9ipvXgKHg6aef7pPz7N27V88995yam69uT9za2hpoxNm2bZt+8IMfKDs7u0/G6w6Xy6XDhw/L4XBo1KhRYRsXAABcddbdrHWHKrWxuEp1Lb6gsTkpMXpwWqa+MDVD6YnsYgkAPeXzBf/vbF/y+/1hHQ8Dh1ybC/k2l8GW77PVzdpY7NI7R12qCHEdQ5JGpsZqRUGGVkxOV4796mI+g+k996XBlm/cPHINAADQtYr6Vm07Xq0tx6pDLvB1RUZStJbkOrU0P01TcpJk5V4pAN1A0wwAAEAEOe9p0e/3l+vtI1VBV2OLi7JqZUG6Hp2ZrTFp8WGcIYBwSk9P1/Dhw1VUVNSj486cOaNf/OIX8nq9iouL0wMPPKApU6bI6/Vq9+7d2rZtm8rKyvSv//qv+rd/+zfFx/f/f0fa29v13HPPqa2tTU888YSsVnbEAgAgXNp8fm0/4dG6ogrtu1AfNNZqkeaPS9XqwizNHWOXzcrFJgAAAAAdapvbtaXUrQ3FVTpSFnrl56RYm5blO7VicrqmDUti4S8AGGA2m61fzvv5az5cAxrayLe5kG9zCVe+qxq82lbq1uZjLh24GPyaxRXOxGgtyXNqWX66po9IplGml/jZNhfy3YGmGQAAgAFmGIb2XajTK/vKtetUjYwgsZlJ0Xr4lmw9OC1T9nh+lQOGooceekjjx4/X+PHjlZqaqsrKSn3rW9/q0Tl++9vfyuv1ymaz6e///u+Vm5sbeG3KlCnKycnRyy+/rLKyMr399tt6+OGHbzjHSy+9pLa2tm6PuXz5cuXk5HT6mt/v13/913+ppKREixcv1p133tmj9wMAAG7OxZoWrT9UqT8erpKnuT1obHpitB6clqn7p2YoOyU2aCwAAAAA82j3+fXR2VptOFKlD0/XqM0X7CqGZLNI88amasXkdN05waHYKHPejAMAkcjhcIRlHLvdHpZxEBnIt7mQb3Ppy3y7Glq16Ui5Nhy6rE/OVMsIXlZIktISY3TPlGytnJajOWOdLPLVj/jZNhez5ps7LQEAAAaIt92v9465tXZfuY5XNQWNLchO1OOzcrR4okNRNi4wAUNZZw0sPXHy5EmVlJRIku66667rGmauWLlypbZv365Lly7p3Xff1apVqxQVdX15uGXLFrW2tnZ73Llz53baNOP3+/X8889r165duuOOO/T000/38B0BAICeaPcb2nXKo3VFldpztjZk/Nwxdq0uzNQd41KpNQAAAABI6ljsq7SySRuLXdpU4grZhC9JEzMStKIgXfdMcio9MSYMswQAAAAQyTyNXr1XXK4Nh8r00SmX/N1olLHHR+uegmytLMzRvHFOrlsA6DM0zQAAAISZu7FN64oq9MbBClU3dX2hyWqRFk1M0+OzsjVtWHIYZwhgMPv0008Dj++6665OY6xWqxYsWKA1a9aosbFRxcXFKiwsvC7md7/7Xa/ncmWHmQ8++EC33367nn32WdNu8woAQH+rqG/VW4eq9NbhSlU1BN8tzhEfpS9MzdCD0zI1IjUuTDMEAAAAEOlcDV69W+LWhuIqnXI1h4xPS4jSPZPStbIgXbmZiWGYIQAAAIBIVtvcps1/apTZfdKl9m50yiTHRWnZ5I5GmdvHpyuG3SoB9AOaZgAAAMLkRFWT1uwr16YSl9p8XReFSbE2PTgtUw9Pz1KOPTaMMwQwFJSWlkqSYmNjNW7cuC7jJk+efN0xn2+a6a1rG2Zuu+02/eVf/iUNMwAA9DGf39DHZ2u1rqhCu07XhFylbcaIZK2enqW7Jji46AQAAABAktTS5tfOUx5tLK7Sx2drQ9YV0TaLFox3aGVBuuaOsbPyMwAMIh6Pp1/Oa7VaZbfbA89ra2vl9/v7ZSwMPPJtLuTbXG423w2t7dp50qPNJS59dKamW40yCTFWLZyQpmWT0jVvTGrgmkVjfa0ab/4toJv42TaXSMi3w+EI63idoWkGAACgH/kNQ7tO12jtvnJ9dr4uaOzI1Fg9OiNb903JUEKMLUwzBDDUXLx4UZKUnZ0tm63r/5YMGzbshmP6it/v1/PPP68PPvhAc+fOpWEGAIA+5m5s0x+PVGp9UZUu17UGjU2OtWllQYZWFWZqrDM+TDMEAAAAEMkMw1DRpQZtPFqlLaXVamj1hTxm2rAkrShI19I8p1LiuNUEAAYjny/0f+/7gt/vD9tYGHjk21zIt7kEy3eT16cPTnm0tbRaH52pkTfI4sFXxEVZdcf4VC3Ld2remFTFRV+5h8Dg+2qA8bNtLmbNN3/JAAAA6AdNXp/ePlKl3+8v14Wa4Dex3ToqRY/NzNb8camyWixhmiGAocjr9aq+vl6S5HQ6g8YmJSUpNjZWra2tcrvdfTqPN954Qzt37lRcXJyGDRumdevW3RAze/ZsjRkzplvn6+78gjUJ9dbnm35oAhrayLd5kGtzGez5NgxDe8/X6Y2D5Xr/eHXIldqmDkvSQ9OztTTfqfho8zXlD/Z8o2fINwAAQPdcqmnRO0dd2njUpYshrl1IUnZyjJYXpGvF5HSNTqMJHwAAADCzljafdp2u0ZbSau06XaPW9tA7VcRGWXT72I5GmfnjUhVnwusVACIDTTMAAAB9qLyuVa/ur9D6w5VBV2aLtll0z6R0PTYjS7mZiWGcIYChrKWlJfA4Li4uZHxcXJxaW1uvO64vVFVVBebz5ptvdhqTmZnZ7aaZv/iLv+hW3GuvvdatuL5w7da1GPrIt3mQa3MZLPn2NHq1bv9FrfnkvE67GoPGJsbY9MAtw/X4nFEqGDY43l+4DJZ8o2+QbwAAgKsaWtu17Xi1Nha7tP9ifcj4+GirFuemaWVBumaMTGGxLwAAAMDEWtv92nOmRptLq/XhKY+a20I3ykTbLLptbKqW5qXpjvEOJcbQKANg4NE0AwAA0AcOXa7Xmr3l2n6iWsF2HE1LiNJD07O0ujBLzsTo8E0QgCl4vd7A46io0OXelZhrj+sLzz77rJ599tk+PScAAGZiGIb2n/folY/Pa8PhMnlDrNY2OSdFT8wdpfunD1dSLH/yBQAAAMzO5zf02flabSh2afsJT8gVoC2Sbh2VohUF6Vo0MU3x3NQGAAAAmFZru0+7Trj05t5z2nHCrUZv6EaZKKtFc8fYtTQvTQsmOLhWASDi8F8lAACAm9Tu82vbCY/W7ivTkbLgKz5PzEjQ4zOztSzfqdgoa5hmCMBsYmJiAo/b29tDxl+Jufa4SPT8888P9BQAAAiL+pY2vXXgkl755LyOlQdfATou2qr7pg3TE3NHq3CEXRZWfwYAAABM77SrSRuKXXq3xKWqhraQ8aPT4rSyIF33TkpXdkpsGGYIAAAAIFIVXarXhq3n9V5xuepbQt9vYLNIs0fbtTTPqYUTHUqJ45Z0AJGL/0IBAAD0UG1zu9YfqtTrBytUUd/17gwWSfPHp+qJmdmaOTKFm9gA9Lu4uLjA45aWlpDxV2KuPS4SOZ3ObsV5PJ5+m4PVapXdbg88r62tld8fekUdDE7k2zzItblEcr6Pljdo3cEKvXu0Ss1twec01hmvh6Zna+WUjD9dgDJUU1MTlnkOJpGcb/S9gc63w+EI21gAAACfV9PUpk3H3NpY7FJJRfAFviQpJc6mu/OdWlGQoYLsRK5dAAAAACZ3ubZVz31wXltKq0PGWi3SrJEpWprv1F0THEpNiA7DDAGg92iaAQAA6Kaz1c36/b5ybSh2qaW965tv4qOtum9Khh6dka1Rjsi+ER3A0BITE6Pk5GTV19fL7XYHjW1oaFBra6uk7jelRDqfzxe2sfx+f1jHw8Ai3+ZBrs1loPPd7PXpvVK33jxYqaMhbmyLtlm0aGKaVhdm6pYRyYGb2vh+7b6BzjfCi3wDAIChrs3n167TNdpY7NKu0zVq9xtB421Wi24fa9fKggzNH5eqmChrmGYKAAAAIFI1eX164ZPLemVvmby+rmsKi6RbRiRrWb5TiyamKS2RRhkAgw9NMwAAAEEYhqFPztVp7b5y7T5TEzQ2OzlGj8zI1gNTM5TMlqMABsiIESNUUlKi8vJy+Xw+2Wy2TuMuX7583TEAACA8TlY16c1DldpY7FKjN/hN/SNSY7VqWqbum5IhB6u1AQAAAKZmGIaOljdq41GX3jvmVm1ze8hj8rMStLIgQ8vynNzYBgAAAECS5DcMvVPs0i8/vCBXY1uXcdOHJ2tJXpoW56YpIykmjDMEgL7H3ZwAAACdaGnza1OJS2v2leu0uzlo7LRhSXp8ZrYWTkxTlNUSphkCQOfy8vJUUlKi1tZWnT59WhMnTuw07ujRo9cdAwAA+k9ru1/vH6/WuqJKHbxUHzTWZpHunODQ6sIszR6dIquFGgMAAAAws8p6r9456tLG4iqdqW4JGe9MjNbySelaUZCuCRkJYZghAAAAgMHi4MV6/XT7OZVUNHb6uj0+Wt9cMF73Tx+meKOFHb0BDBk0zQAAAFzD1eDV6wcrtK6oUjVBVmmzWaTFeU49PjNbU3KSwjhDAAhu9uzZeuuttyRJ27dv77Rpxu/3a+fOnZKkxMREFRQUhHOKAACYxnlPi94sqtDbxa6Qq0BnJcfowWmZun9qBiu2AQAAACbX0ubT9hMebSiu0qfn6mSEiI+NsmjBhDStLEjX7NF2FvgCAAAAcJ2y2lb9xwfntaW0utPXbRbp4Rk5+tsVU5Sa0HGNwuMJ3bQPAIMFTTMAAACSjlU0au2+cr13zK12f9eXn1LibFo1LVNfvCVLWcmxYZwhAHTPhAkTNGnSJJWUlGj79u1auHChcnNzr4vZsGGDLl26JEm69957FRVFaQgAQF9p9/m146RHbxZV6tPzdUFjLZJuH5eq1YWZum1sqmzc2AYAAACYlt8wtO9CnTYUu7St1K2mNn/IY6YPT9bKgnQtyUtTUix/4wMAAABwvSavTy9+elkv7y1Ta3vn90PdNsau7941WhMykwINMwAw1PBXEwAAYFo+v6EPT3m0Zl+59l+sDxo7Oi1Oj83I1orJ6YqPsYVphgDM6NixYyovLw88r6u7erNteXm5duzYcV38woULbzjHU089pR/+8Ifyer36p3/6Jz344IMqKCiQ1+vVRx99pK1bt0qScnJydN999/XL+wAAwGzKalu1/nCl/nC4Su7GtqCxzoRo3T8tQw9OzVSOnWZ8AAAAwMzOuhr15v6LemPfBV2ubQ0ZP9weq+WT07WiIF0jUuPCMEMAAAAAg43fMPROsUu//PCCXF1csxiTFqfvLhyt28elhndyADAAaJoBAACm0+j16Y+Hq/T7/eW6FOIC1JzRKXp8Zo7mjbXLamHVZwD9b9u2bdq5c2enr5WWlqq0tPS6r3XWNDN27Fh95zvf0XPPPafm5matXbv2hpicnBz94Ac/UHx8fJ/MOxLYbP3X1Gi1WoM+x9BCvs2DXJtLf+Tb5ze067RHbxwo1+7TNep6z8oOs0fb9dD0LC2cmKZoG99v/Ymfb3Mh3wAAYDDac6ZGv/l9ifae84SMTYyxakmeUysmp2v6iGSuVwAAAADo0sFL9frZ++d0tKKx09dT4mz6+m0j9FBhpqK4VgHAJGiaAQAApnGppkWvHqjQHw5XqdHr6zIuxmbR8snpenRGtiZkJIRxhgDQd2bNmqWf/OQneuedd7R//35VV1crKipK2dnZmjt3ru655x7Fxg6tle0dDkfYxrLb7WEbCwOPfJsHuTaX3uS7oq5Fr352Qb//9Lwu17YEjXUkROuhmSP02OxRGpeRdNNjonf4+TYX8g0AACJZdWObfrbjnDaVuIPGWS3SnNF2rShI18IJDsVF99+CMQAAAAAGv/K6Vv3HBxe0+VjntYbNIq2enqWv3zZcqfHRYZ4dAAwsmmYAAMCQZhiGii416JV9Zdp50iN/kKWfnYnR+uL0LK0uzJQjgeIQwMB49tln9eyzz/bJuTIyMvTkk0/qySef7JPzAQBgZn6/oV0nXVrzyXltKamQL1hxIenWMQ49MWe07pmSzc1tAAAAAGQYhjYUu/SLHedV29LeZdw4Z7xWFKTr3knpykyOCeMMAQAAAAxGTV6fXvq0TL/be1mt7Z1fu5g3xq7vLhylceksHgzAnGiaAQAAQ1Kbz6+tpdVau6+8y+1Gr8jLTNDjM7O1LN+paLYdBQAAAHANd0OrXt93UWs+Oa/z1U1BY5Njo7RqxnA9Pme08rKTwzRDAAAAAJHugqdF/7LljD47X9fp646EaN09yakVk9KVn5Ugi8US5hkCAAAAGGz8hqF3jrr0nx9eUFVDW6cxo9Pi9N2Fo3X7WDt1BgBTo2kGAAAMKTVNbXrzUKVeP1jRZUEoSRZJCyc69NiMbN0yIpnCEACGAI/H02/ntlqtstvtgee1tbXy+/39Nh4GFvk2D3JtLj3Jt2EY2n+xTm8cqNC24261+YLvKlOQk6TVhVm6Z1K64mNsktr79f+XEBo/3+Yy0Pl2OBxhGwsAAAwu7T6/Xt5brl/tudjpis8pcVH6wfJJWj1jhBrra+Xz+QZglgAAAAAGm6JL9frp9nM6Wt75QsLJsTZ9/bYR+uL0TEWxgDAA0DQDAACGhtOuJq3dX6F3jlZ1udWoJCVEW3X/1Ew9MiNLI1LjwjhDAEB/C+dNBX6/n5sYTIR8mwe5NpfO8l3X0q6NxS69WVShM9UtQY+Pi7Lq3slOrZqWpUnZiYGv8z0Umfj5NhfyDQAAIsGRsgb903unddLV3Onry/Kd+qfV05WZ3HGtovNb3QAAAADgqvK6Vj33wQW9d8zd6es2i7SqMEvfuH24UuOjwzw7AIhcNM0AAIBByzAM7Tlbq7X7yrXnbG3Q2GEpsXpkRpbun5qhpFh+BQIAAADQwTAMFZc3at3BCm0udQdtwpekCenxWl2YpXsnO6ktAAAAANyg0evT87su6NX9FeqsushOjtH3l4zRgtx0OZJZ3AsAAABAaM1en178tEy/23u5y+sYc8fY9d2FozQ+PSHMswOAyMdVXQAAMOi0tPm08ahLv99XHnL151tGJOuxGdlaMMEhm9USphkCAAAAiHSNrT5tLK7QuqJKHa9sChobY7NoaZ5TqwozNW1YkiwWagsAAAAAN/rwlEf/tvWsKuq9N7xmtUiPzMjWX9w+QgkxtgGYHQAAAIDBxm8YeveoS7/88IKqGto6jRnliNP/s3CUbh+XyvULAOgCTTMAAGDQqKz36vWDFXqzqFK1Le1dxtmsFi3LT9PjM3I0KTsxjDMEAAAAEOmKL9dqzSfntf7ARTV5/UFjRznitLowUysK0pUaHx2mGQIAAAAYbFwNXv3k/XPaery609dzMxL0d8vGqiAnKcwzAwAAADBYHbpcr5++f07F5Y2dvp4ca9PTtw3XF6dnKdpmDfPsAGBwoWkGAABEvKPlDVq7r1ybS6vl83e+xagk2eOjtLowU1+cnqWMpJgwzhAAAABApDtyuV6/+H2J9p3zBI2zWS1aNNGh1YWZmjkyhVXZAAAAAHTJbxj6w+Eq/f92nldDq++G12OjLHp63gh9aVa2oriJDQAAAEA3lNe16pcfXtCmEnenr1st0urCTH3jthFKTWDBLwDoDppmAABARPL5De046dGafWUqutQQNHacM16PzczWvZOciou2hWmGAAAAAAaD1na//s9HF/W7z8oUpAdfw1JitaowU/dNyZAzkYtMAAAAAII7627Wv2w5o/0X6zt9ffboFP2vpWM1IjUuzDMDAAAAMBg1e3166bMyvfRZmVrb/Z3GzBmdou8uHK0JGQlhnh0ADG40zQAAgIjS0Nqutw5X6bX9Fbpc1xo09rYxdj0+K1tzRttZ/RkAIJut/xonrVZr0OcYWsi3eZDroe/w5Xr9f985qTPu5k5ft1qkOyek6aHpWZo3NlVW6oohg59vcyHfAAAgnNp8fv32k8v6zSeX1ea7sTPfHh+l7y4cpRWT07l2AQAAACAkv2HovRK3nvvgvCob2jqNGeWI03cXjtL8canUGQBwE2iaAQAAEeFiTYt+v79cfzxcpaa2zldLkKTYKKtWFKTrsRnZGuuMD+MMAQCRzuFwhG0su90etrEw8Mi3eZDroaOlzaefbz2uX31wutPdZbJSYvXoraP06OyRyrFTV5gBP9/mQr4BAEB/OXipXv+y+YxOd9GYv3xyur67cJQcCexeCQAAACC0w5fr9dPt53SkrLHT15NibXp63nA9fEuWom0sFgQAN4umGfRKf63kzMqA5kK+zYV8m0d3cm0YhvZdqNMre8u080S1OrmXLSAjKUaPzMjW6ulZSo3nYlOk4WfbXMg3AACIZAfOe/S914t0qurGC0zRNou+vXiivrFgPBeXAAAAAHRbQ2u7nvvggtYVVXb6+nB7rH6wdIzmjkkN78QAAAAADErlda36zw8v6N0Sd6evWy3SqmmZ+ubtI5RKUz4A9BpNM+iVcK3kzMqA5kK+zYV8m8e1uW5t92lDUZl+s/uMii/XBT1u2gi7/nz+WC2fmsNNbYMIP9vmQr4BAEAkaGnz6edbjutXH3a+u8yU4Sn6yRcLlZ+dEv7JAQAAABi03j9erf9321m5GttueM1mkR6flaOvzxuu+Jj+WXASAAAAwNDR0ubTS5+V6cVPy9Ta7u80ZvboFP0/C0drQkZCmGcHAEMXTTMAACBs3A2teuWT8/rdx+dUVd/aZZzVIt0zJVtfvX2sZo52yGKxhHGWAIDByuPx9Nu5rVbrdQ1itbW18vs7/yMmBj/ybR7keug4dKle//udkzpT3XzDa1FWi745f6SemjtC6WlXG2bI99DGz7e5DHS+w7W4FAAACK/Keq/+321nteNk539zmpSVqL9bNlb5WYlhnhkAAACAwcYwDL13zK3nPriginpvpzGjHHH6zsJRumNcKvdKAUAfo2kGAAD0u2PldXph11mtP3hJ3i5WSZCk5NgoPXLrSD152xiNTGO1BABAz/h8vrCN5ff7wzoeBhb5Ng9yPfi0tPn1P7sv6pV9ZZ3uLjM5K1H/n3vGaUJGgmyfu75Evs2FfJsL+QYAAL3hNwytO1ipX354Xo3eG69pxEVZ9c35I/TojGxFWbmRDQAAAEBwR8oa9NP3z+lwWUOnryfF2vS1ecP1yC1ZirZZwzw7ADAHmmbQK/21kvNArwyI8CLf/3/27js8qjJ///g9Jb0DgQQILY1mB8WCgAUVQVDRXX+uq1v87ip2XRXL6roW7AXb6hZXXd1FLIjYAClipYgiJEDoLZSUSZ/JzDm/P1DkMANSkik579d17bXkec7M+YSbMTkz5/M89kLe9uF0OrV0e7Oenb1K88p27PPYvMxEXTQgV+f076iUBJckr6qq9r4TDaIPr217iYa8WckZAAB8t7lWf/lwtdZVNgXNxbkc+r8TuuiSgZ25iQ0AAADAfivb3qD7p6/Rd5tD38x2Qo8M3Xp6T3XOSAhzZQAAHDqXy9Uqz+t0Ovf5NdoW8rYX8j40W2u8mjh3vaYt3R5y3umQzjuik64Y3E3tkuPCXF2IesjbNsjaXsh7J5pmcEjCtVofKwPaC3nbC3m3TX7D1DOfbtQr8zfv87hj8tJ00TE5GtwrS64fbmTj30PbwGvbXsgbAACEU1Ozoec/26D/LChXiM1l1DcnRXed2Uv5Hdi9EgAAAMD+8foN/fPLTfr311vkD7GNZVaSWzee0l1n9G4vh4PGfABAbArXonS7L76Hto+87YW890+jL6AX5q7W83NWqbE59L0UJxa0150j+6p3TnqYq9t/5G0fZG0vds2bphkAANCidtT7dNvUMi3aWBtyPs7l0Bm92+uXR+eod6eUMFcHAAAAIJYt3lSrez5crfVVoXeX+cMJXfWrgbnsLgMAAABgvy3cUKP7Pl4T8jpDks7pn61rh3RTRhK3VwAAAADYO9M09e63mzXhg1Jt8YS+vujRPlm3n91Xp/XpSEM+AIQR7+oAAIAWs3hTrW59d6V21DcHzWUluzX2iE46/8iO6pASH4HqAAAAAMSqpuaAnpu3Ua8t3PvuMnef2Uu92F0GAAAAwH7yNPr11Nz1mrJke8j5vMwE3T68pwZ0s+cKrAAAAAD23+IN1bpn6lItWl8dcj4twa1rTi3Ur0/orgS3K7zFAQBomgEAAIfONE3975utenz2egUM6y1s8S6nbjmrt84uTpfbEer2NgAAAADYO3aXAQAAANCSTNPU9OWVeuSTtaps8AfNu5wO/Xpgrn43qIsS45wRqBAAgNZRVVXVKs/rdDqVkfFTk6nH45FhGK1yLkQeedsLef+8bbVePTVnvaYtDd2M73RI5x7RSVeelKd2KfFqqK1RQ5hr3F/kbR9kbS/RkHdWVlZYzxcKTTMAAOCQNPoCuvfjNfqotCJornNGop791TE6Mi9TVVVVCgQCEagQAAAAQCxqag7o2Xkb9fpedpfpl5Oiu9hdBgAAAMAB2OLx6sGZazVvdXXI+f65KbpjeC8VZHOdAQBoe8L1eb1hGNwbYCPkbS/k/ZOm5oBeXVCul77arCZ/6JvPB+Sl68ZTuqvwh+uLWPu7I2/7IGt7sWveNM0AAICDtq6yUX+aslKrKxqD5o7rnqFnLxmo9qkJEagMAAAAQCxbvLFWf/lwlTZUe4Pm4l0O/fHErvp/A9hdBgAAAMD+CRim/vdNuZ6bt1GNzcE3tCXHOTVucJ7GHtlJLq4zAAAAAOyFaZr6eHmlnpqzXltrfSGP6ZqZoOuGdtOQ/Cw5HFxfAEA0oGkGAAAclFkrK3X3B6tU7wv+cOk3x3XWuJO70zADAAgrl8vVas/tdDr3+TXaFvK2D7KOPo3NAT09Z71eX7gl5O4yh+Wm6u4RBQe1uwx52wt52wt5AwCAfVm+rV73fbRGy7bWh5w/OT9TN5/aQznpfKYBAAAAYO+WbqnTo7PW6bvNdSHnU+Jd+v3xXfSLozop3s17lAAQTWiaAQAAB8RvmHpu3gb9++stQXMp8S79ZUQvDS1ox0psAICwy8rKCtu5MjIywnYuRB552wdZR9bXayr1p8lLtK6iIWgu3u3UTcOL9LuTerXYtQZ52wt52wt5AwAASWpqDuiFzzfpPwu2KBCiK799SpxuPrWHTilk9WcAAAAAe7et1qdnPt2gact2hJx3SBpzeEddcWJXtUuJC29xAID9QtMMAADYb5X1zbrtvTIt2FATNFfQIUkPjS5St6zECFQGAAAAIFY1+Px66MPl+vcXa2WGuJHtqG6ZenjsESromBr+4gAAAADEpC/XevTA9DXa5PGGnD/viI66enCe0hK5ZQIAAABAaE3Nhl5dsEUvfbVZTX4j5DHH5KXpxmHdVdQxJczVAQAOBO8AAQCA/bJkc61ueXelttU1B82d1be9bjutp5LiXRGoDAAAAECs+mp1hW5+87uQu8skuJ26aXixfntST3ayBAAAALBfqhua9djs9Xp/LytA92iXqNuH99RRXdPDXBkAAACAWGGapqYvr9RTc9arvNYX8piumQm6bkg3DSlg50oAiAU0zQAAgH0yTVOTF2/To7PWyW9Yl312Ox26YVg3XXBkJy4AAQARV1VV1WrP7XQ6lZGRsetrj8cjwwi9mhBiH3nbB1lHTqMvoKfmrtN/F5aHnD+8c5r+MqJAPdonqcZT3SLnJG97IW97iXTeWVlZYTsXAAAIzTRNfVBSocdmrVN1oz9o3u106LeDOuuyYzsr3u2MQIUAAAAAYsHSLXV6dNY6fbe5LuR8SrxTvxvURb88OodrCwCIITTNAACAvWpqDui+6Wv0wbKKoLmOqXGacE6hDu+cFoHKAAAIFggEwnYuwzDCej5EFnnbB1mHx8INNbrnw9Xa5PEGzSW4HbripDxddHSOXE5Hq+ZB3vZC3vZC3thdZWWlvvjiC33zzTfatGmTqqurlZqaquLiYo0ePVqFhYWRLhEAcIg2Vjfpgelr9NW6mpDzR3ZJ0+3De6pn+6QwVwYAAAAgVmyv8+mZTzfovaWhd610SBpzeLb+eGKe2qfEhbc4AMAho2kGAACEtKGqSTe/u1IrtzcEzQ3IS9f9IwvUjotAAAAAAPupwRfQ059u0KRvtoacP7xzqu46s5e6t+NGNgBAy/nggw80ZcoUderUSUcccYTS09O1ZcsWzZ8/X/Pnz9e1116rE044IdJlAgAOgt8w9dqCLfrb55vk9QfvMpcS79I1Q/J07uEd5XQ4IlAhAAAAgGjX1GzoPwu36KWvNquxOfTu1cfkpemGYd1V3DElzNUBAFoKTTMAACDInLIq3fXBKtV5g1dl/fXAXF05OE9uJx8wAQAAANg/C9bX6K8f7X13mStPytMvf9hdBgCAllRQUKC7775bffv2tYyXlJTonnvu0YsvvqiBAwcqLo7FYQAgliwrr9O9H6/Rim3BC39J0qlF7XTTKd2VnRof5soAAAAAxALTNDVjeaWemrteW2p8IY/pkpGg64Z209CCLDloxAeAmEbTDAAA2CVgmPrb5xv1zy83B82lxDt115n5OqWoXQQqAwAAABCLGnwBTZy7QW8sDr27zBFdUnXXmfnqlpUY5soAAHZx3HHHhRzv06eP+vfvr2+//Vbr169Xfn5+mCsDAByMBl9Az3+2Uf9dVC7DDJ7vmBqnW07rqSEFWeEvDgAAAEBMKCmv16Oz1mnxptqQ8ynxTv12UBdddHSO4t3OMFcHAGgNNM0AAABJUnVDs26fVqav1tUEzfVqn6SHRheqR7ukCFQGAAAAIBYtWO/RPR+u0eaaULvLODVucFf94ih2lwGAaObxeFRWVqaysjKtWrVKq1atUm3tzpsJhgwZonHjxu33c23fvl0ffPCBFi1apIqKCrndbuXk5Oj444/XGWecoYSEhNb6NvbK5XJZ/h8AEN0+W12tCTPWhFwF2iHpgqM66cqTuio1gdsgAAAAAATbXufTs59u0HtLdyhED74ckkYflq0/ntRVHVLYtRIA2hLeLQIAAPp+S51ueXelttYGf9A0vHd73TG8p5LjuXkAAAAAwM9r8AX01Jz1mvzttpDzR3ZJ05/P7MXuMgAQAy6//PIWeZ4FCxZo4sSJamxs3DXm9Xp3NeLMnDlT48ePV05OToucb3/s2LFDS5YsUVZWlrp16xa28wIADlxFfbMenbVOH5dWhJzP75CkO4b31GGd08JcGQAAAIBY0NRs6LWFW/SvrzarsdkIeczRXdN0w7Du6t0pJczVAQDCgaYZAABszDRNvfXdNj3yyTo1B6xrKLicDl0/tJt+cVQnORys/AwAAADg581f79Ff97G7zFWD8/SLozvJyTUGAMScDh06qEuXLvr2228P6HFr1qzRE088IZ/Pp8TERI0ZM0b9+/eXz+fTZ599ppkzZ2rLli164IEHNGHCBCUltf5Ox36/XxMnTlRzc7MuvvhiOZ3OVj8nAODAmaapd7/frifnrFdNUyBoPt7l0O+P76JLBuYqzsV/ywEAAABYmaapmSsq9eSc9SF3rJSkLhkJumZIN51SmMX9UQDQhtE0AwCATTU1G3pwxhpNXbojaK5DSpwmnFOoI7uwKhsAAACAn1fvC2jiPnaXOaprmv58Ri/lsbsMAMSUsWPHKj8/X/n5+crMzNS2bdt01VVXHdBzvPTSS/L5fHK5XLrjjjtUVFS0a65///7Kzc3Vq6++qi1btmjq1Km68MILg57j5ZdfVnNz836fc8SIEcrNzQ05ZxiGnn32WZWUlOjUU0/VySeffEDfDwAgPNZVNur+6Wu0cENtyPkBeem6bXhPdrAEAAAAEFLp1no9OmudvtkY+poiOc6p3w7qoouOyVGCmyZ8AGjraJoBAMCGNlY36eZ3V2rFtoaguaO7pun+UQXqkBIfgcoAAAAAxJqv13n0149Wh1ylLdHt1FUn5+nCo9hdBgBiUagGlgNRVlamkpISSdKwYcMsDTM/GjlypGbNmqVNmzbpgw8+0HnnnSe32/rx1fTp0+X1Bu9itjeDBg0K2TRjGIaee+45zZs3T4MHD9bll19+gN8RAKC1NQcMvTx/i/7xxSb5AmbQfHqiS9cN6a5R/TuwCjQAAACAIDvqfHpm3ka99/12BV9RSA5J5xyWrStO6sq9UQBgIzTNAABgM/NWV+vOaWWq9QaC5n41IEdXDc6T28UKCgAAAAD2rd4X0JNz1uutvewuc3TXNP35zF7qmsnKzwBgV19//fWuPw8bNizkMU6nU0OGDNFrr72m+vp6LV26VEcccYTlmFdeeeWQa/lxh5m5c+fqxBNP1Lhx4+R08h4YAESTJZtrde/Ha7RqR2PI+TN6t9cNw7qrfUpcmCsDAAAAEO28fkOvLdyif325WQ3NRshjjuqaphuHdVfvTilhrg4AEGk0zQAAYBMBw9Tfv9ikF7/YFDSXHOfUn8/spdOK20egMgAAAACx5qt1Hv31w9Uqrw29u8zVJ+fpAnaXAQDbW758uSQpISFBvXr12utxffv2tTxmz6aZQ7V7w8wJJ5ygq6++moYZAIgidV6/nvl0oyYv3hpyJejc9HjdelpPndgrM9ylAQAAAIhypmlq5opKPTVngzbXhN6puHN6gq4ZkqdTi9qxYyUA2BRNMwAA2EB1Y7PunLZKX6z1BM31aJeoh0cXqWf7pAhUBgBAy3G5XK323HveUMcNdm0bedsHWR+4Oq9fT8xapze/3Rpy/pi8dN09oiAqd5chb3shb3sh7+i1ceNGSVJOTs4+f1/v3Llz0GNaimEYeu655zR37lwNGjSIhhkAiDKzyyr10Iy12lbXHDTndEgXHZ2jP5zYVcnxrfe+DwAAAIDYVLq1Xo/NWqdFG2tDzifHOfWbQZ31/47JVYKb94MAwM5omgEAoI0rKa/Xze+u0Jaa4BWgTytqpzvP7KUUPmwCALQBWVlZYTtXRkZG2M6FyCNv+yDrfft05Xbd+uYSbapuDJpLinNp/Ije+tVx3eV0xsYqbeRtL+RtL+QdHXw+n2prd96w0L79vnc3Tk1NVUJCgrxeryoqKlq0jsmTJ2vOnDlKTExU586d9eabbwYdc+yxx6pHjx77/Zz7WyON/WgJZG0vdsp7W61PD81YrZkrKkPOF3dM0Z1n5qtfbmqYKwsfO+UN8rYTsgYAoPXtqPfp2U83aur320PuVumQNKp/tq48qas6pMaHuzwAQBSiaQYAgDbsnSXb9NCMtfIFrJeILod09ZBuuviYHLYdBQAAALBPtU3Nuv/9Er3+9YaQ84N6tdND5x+hbu2Tw1wZACCaNTU17fpzYuLP70CWmJgor9dreVxL2L59+6563nrrrZDHdOzY8YCaZq644or9Om7SpEn7/ZyHimYx+yBre2mLeRuGqdfnr9eED0pV2+QPmk+Mc+r604r0u5N6yu2y143mbTFv7B152wdZAwDQcrx+Q68vLNc/v9ykhmYj5DFHdknTjcO6q09OSpirAwBEM5pmAABog7x+Qw/NXKspS7YHzbVPjtMDowp0dF56BCoDAAAAEEvmrtiuW9/8Tps9wTcwJ8e7NP6s3ro4hnaXAQCEj8/3067HbvfPfxz14zG7P64ljBs3TuPGjWvR5wQAHJyybbUa/9YSzV9bFXJ+cGEH3TfmMBryAQAAAFiYpqlPVlbpqTnrtcnjDXlMbnq8rh3STacWtWMBYQBAEJpmAABoYzZ7vLrl3ZUq2VofNHdEl1RNGFWobLYeBQC0QVVVoW+4aAlOp9OyIqDH45FhhF69CLGPvO2DrPeu1uvX45+s1dvfbQs5P7Bbuu46q0BdMhPl8VSHt7iDRN72Qt72Eum8s7KywnauWBIf/9P7T35/8E4Ce/rxmN0fF62ee+65SJcAADHF6w/o2Vmr9OzsMjUHzKD5dinxunNkH405sgs3twEAAACwKN1ar8dmrdOijbUh55PinPrNcZ118YBcJbjttVslAGD/0TQDAEAb8sWaat0xbZU8TcE3Ilx0dI6uHZInt4sLRABA2xQIBMJ2LsMwwno+RBZ52wdZ7/TFmmrd+/Eaba0NXuk/Kc6pa4d003lHdJTT4Yjpvy/ythfythfyjg6JiYm7/tzUFLxj2Z5+PGb3x0Wr9u3b79dxNPajJZC1vbTFvBdtqNG9H67SmsrGkPMj+2frhmE9lJUcp+rq6vAWF2FtMW/sHXnbRzRkTWM/AKAtqKhv1rPzNujdJdsV3Hq/06h+HTRucJ46sHgwAOBn0DQDAEAbYJim/vnlZv3ts41BF4qJbqfuPLOXzui9fx/mAwAAALCnOq9fj89erylLtoecH9gtXXee0UudMxLCXBkAIBbFx8crLS1NtbW1qqio2OexdXV18nq9kva/ISUW0NiP1kDW9hLLedc2+fXU3A173b2yS0aCbhveU8d133ljeax+ny0plvPGgSNv+yBrAAAOjNdv6PWF5frXV5tU7wvdeHpklzTdOKy7+uSkhLk6AECsomkGAIAYV9Pk15/fX6V5q6uD5rplJerh0YXK75Ac/sIAAAAAxIzPVlfr/umhd5dJjnPq2qHddN7hHeVwOCJQHQAgVnXt2lUlJSUqLy9XIBCQy+UKedzmzZstjwEAxC7TNDVzRaUe/mSdKuqbg+ZdDulXA3N1+fFdlBgX+ucCAAAAAPsxTVOzVlbpyTnrtcnjDXlMbnq8rjm5m04rbsfnFQCAA0LTDAAAMWz5tnrdPGVlyIvFYYVZuuvMXkpN4Mc9AAAAgNBqm/x6bPZ6Tf0+9O4yx3ZL1x3sLgMAOEjFxcUqKSmR1+vV6tWrVVhYGPK4ZcuWWR4DAIhN5TVePTRzreauqg453zcnRXcM76mijqwGDQAAAOAny7fV69FP1mnRxtqQ80lxTl12XGddfEyuEuOcYa4OANAWcBctAAAx6r3vt+uBGWvk9ZuWcadDumpwni4ZmMuqCgAAAAD26rPV1brv49XaVhe8+jO7ywAAWsKxxx6rd955R5I0a9askE0zhmFozpw5kqSUlBT169cvnCUCAFpAwDD1xuKtevbTDWpoNoLmk+KcuvKkPF14VCe5nFxfAAAAANipor5Zz83boClLtsvcyzEj+3XQuMF5yk6ND2ttAIC2haYZAABijM9v6JFZ6/TWt9uC5rKS3HpgVIEGdMuIQGUAAAAAYsHP7i7TPV13Du+lXHaXAQAcooKCAvXp00clJSWaNWuWhg4dqqKiIssx7733njZt2iRJOuuss+R2t52PrlwuV6s9t9Pp3OfXaDvI2l5iMe+V2+v11w9WacmWupDzJ/XK1PjhvdQ5IzHMlUW/WMwbB4+87YOsAQD4eT6/odcXleufX25SvS+48V6SjuiSqhuHdVffnNQwVwcAaIvazicPAADYQHmNVze/u1LLyuuD5g7LTdWEcwrUKY0b2wAAAACENu+H3WW2h9hdJiXeqeuGdteYw7LZXQYAIEkqLS1VeXn5rq9ramp2/bm8vFyzZ8+2HD906NCg57jssst05513yufz6d5779W5556rfv36yefz6fPPP9eMGTMkSbm5uRo1alSrfB+RkpWVFbZzZWSwiI5dkLW9RHPeTc0BPTVzpV6Yu1p+I3hN6A6pCbr7nL46+7Bcri/2UzTnjZZH3vZB1gAA/MQ0Tc0uq9ITs9drk8cb8pictHhdM6SbTi9ux7UEAKDF0DQDAECM+GqdR7e9VyZPoz9o7sKjOun6od0U52KlIgAAAADBapr8emzWOr23dEfI+eO6p+vOM3opJ50mfADAT2bOnKk5c+aEnFu+fLmWL19uGQvVNNOzZ09dd911mjhxohobG/X6668HHZObm6vx48crKSmpReoGALSuz8t26La3l2htRUPI+V8OzNP4s/ooIzkuzJUBAAAAiFYrttXr0VnrtHBDbcj5RLdTlx3XWb8akKvEOO5/AgC0LJpmAACIcoZp6qWvNuv5zzZqz8XaEtxO3TG8p87q2yEyxQEAAACIevNWVem+6Wv2urvM9UO7azS7ywAAWtGAAQP0yCOP6P3339eiRYtUWVkpt9utnJwcDRo0SGeeeaYSEmjcBIBoV1Xv0/3vl+iNhRtDzvfqkKL7zj1Mx+e3D3NlAAAAAKJVZX2znvtsg975bruC96jc6ey+HXTVyXnKTo0Pa20AAPugaQYAgChW2+TXXR+s0txV1UFzeZkJemh0kQqzk8NfGAAAAICoV9Pk16OfrNO0ZaF3lzm+R4ZuH96T3WUAAHs1btw4jRs3rkWeKzs7W5deeqkuvfTSFnm+WFBVVdVqz+10OpWRkbHra4/HI8MwWu18iByytpdozds0TX1YskMPz1yjqgZ/0Lzb6dBlx3XR70/oqgS3s1X/+9eWRGveaB3kbR/RkHVWVlZYzwcAQCg+v6H/LirXP77cpHpf6J+Fh3dO1Y3DuqtfbmqYqwMA2A1NMwAARKmV2xv0pykrtLHaGzQ3pCBLd5/ZS2mJ/CgHAAAAEGzuqird//Ea7agPtbuMS9cP66bR/dldBgCA1hQIBMJ2LsMwwno+RA5Z20s05L3Z49WEGWv0+RpPyPnDO6fqttN7qiA7WZIZ8XpjWTTkjfAhb/sgawCA3ZimqTllVXpizvqQ9zxJUqe0eF0zpJuGF7fjcwoAQFhwpy0AAFHo/WU7dN/Ha+T1W1dacDqkK07qqkuP7SwnF40AAAAA9lDT5Ncjn6zT++wuAwAAAOAQ+A1T/11UrufnbVSTP3hV6JR4p64a3E3nH9mRzysAAAAASNq5QPCjn6zTgg01IecT3U5ddlxn/WpAjhLjXGGuDgBgZzTNAAAQRZoDhh6btV5vLN4aNJeZ5NZ9Iwt0XPeMEI8EAAAAYHc/t7vMDcO66Rx2lwEAAADwM0q31uu+j9eoZGt9yPkhBVm6+dTu6pRGMz4AAAAAqbK+Wc99tlFTlmyTYYY+ZkTfDrpqcJ46psWHtzgAAETTDAAAUWNrrVe3vlumJVvqgub65aTowXMKWQ0aAIB9cLlabzUip9O5z6/RtpC3fbSVrD2NzXp45lpNW7o95PwJPTP15zPz1cnm1xNtJW/sH/K2F/IGAKBlNDUH9LfPNum1hVsUCHGjW4eUON1yWg8NK2wX/uIAAAAARB2f39D/vtmqv3+xSfW+QMhjDu+cqhuGdVf/3NQwVwcAwE9omgEAIAosWO/R+Kllqmr0B82df0RH3Tisu+Ld3PABAMC+ZGVlhe1cGRns/GYn5G0fsZj19GVbddvbS7S91hs0l5bo1p0j++qCY7qyu0wIsZg3Dh552wt5AwBw4L5cW60Hpq/VJk/wtYUkjT2io646OU+pCdxiAAAAANidaZqas6pKT8xer43Voa8hOqXF6+qT83RG7/Z8RgEAiDje0QIAIIJM09TL87fomU83BG1PmuB2aPxpPTWyf3ZkigMAAAAQtarqffrL1KV6Z/HmkPPDirN1/3mHKTcjKcyVAQAAAIglVQ3Nemz2On2wrCLkfM92ibr9jF46sktamCsDAAAAEI1Wbm/Q47PW6ev1NSHnE91OXXpsri4ZmKvEOFeYqwMAIDSaZgAAiJA6r19/+XC1Zq2sCprrkpGgh0YXqrhjSgQqAwAAABDNPlpartvf/l476kLvLnPXqH46/+gurNwGAECEuVytd2OI0+nc59doO8jaXsKZt2maem/pdj32yVpVN/qD5uNcDv3u+K76zXFdFO/m311r4PVtL+RtH2QNAGirKuq8uv+jVXr7261BCwP/6Ky+7XXV4Dx1SksIb3EAAPwMmmYAAIiAVTsa9KcpK7W+qilo7qRembpnRL7SE/kxDQDAgaiqCm5EbSlOp1MZGRm7vvZ4PDIMo9XOh8gib/uItayrG5v14PQ1+rBkR8j5k3pl6s4z89UxLUHV1dXhLS4GxFreODTkbS+RzjsrKyts50JsCee/jd1fA2jbyNpeWivvdRX1uu3tJfqsLPTuMsf2aKf7zztMBR1TW+X8CI3Xt72Qt32QNQAg1vn8hv79+Vo9NXOlar3BDfeSdFhuqm48pbv653INAQCITtyNCwBAmH1YskP3frRGTX7rzRsOSX84sat+O6iznKwIDQDAAQsEAmE7l2EYYT0fIou87SOas561slIPTF+jyobgD6RSE1y6aVh3nd2vgxwOR9R+D9EmmvNGyyNveyFvAABCaw4Y+vuna/TEjBXy+oMbTNMS3bptRB/9YkCenE4+pwAAAADs7ut1Hj0wfbHWVjSEnO+UFq+rT87TGb3by8G9TgCAKEbTDAAAYdIcMPTknPX676KtQXMZiW7de3a+ju+ZGf7CAAAAAESt6oZmPfTJOn1cGnoF6JN6Zeq203uqY1p8mCsDAAAAEEu+3VCtW99aopItNSHnzz48V3eN7KuO6YlhrgwAAABANPq4tEJ3TitTwAyeS3A7demxubpkQK6S4l3hLw4AgANE0wwAAGGwvc6nW6eu1Leb6oLm+nRK0YPnFKpzRkIEKgMAAAAQrT5ZUakJM0LvLpOW4NJNp3TXiL4dWL0NAIAoVVVV1WrP7XQ6lZGRsetrj8cjwwjeNQKxj6ztpTXyrvcG9Oyn6/XfRVtkhLjZrVNavMYP76UhBe2kQKOqqhoP6XzYf7y+7YW87SMass7Kygrr+XBgKisr9cUXX+ibb77Rpk2bVF1drdTUVBUXF2v06NEqLCyMdIkAoHeXbNe9H68OeQ1xVp/2Gjc4Tznp3OcEAIgdNM0AANDKFm6o0W1Ty1TR0Bw0d+7h2brplB5KcDsjUBkAAACAaFTd0KwHZ67V9OWVIecH98rUbcN7KjuV3WUAAIhmgUAgbOcyDCOs50PkkLW9HGre81ZV6YEZa7W11hc055D0i6M76YqT8pQS7+LfVRTg9W0v5G0fZI09ffDBB5oyZYo6deqkI444Qunp6dqyZYvmz5+v+fPn69prr9UJJ5wQ6TIB2Nikb8r10Mx1QeNH5mXq+iF56peTHIGqAAA4NDTNAADQSkzT1H8WlGvi3PVBW5XGuxy65bQeGn1Yx8gUBwAAACAqzVxRqQnT16iqMXh3mfREl246pYfO6tOe3WUAAAAA7NWOep8e/WTdXhvxCzok6Y4zeql/bmqYKwMAAAUFBbr77rvVt29fy3hJSYnuuecevfjiixo4cKDi4uIiVCEAO3v56816au6GoPFLj++uu0b1k8dTTTMoACAm0TQDAEArqPcFdM+HqzVzRfAHUp3TE/TQ6EL17pQSgcoAAAAARKOqhmY9tI/dZU7Oz9Rtp/dUB3aXAQAAALAXpmlqypLtenLOetV6g29kS3A7dPnxXfWrATlyu5wRqBAAABx33HEhx/v06aP+/fvr22+/1fr165Wfnx/mygDYmWmaeuHzTXrxi01Bc38ckq9bzixmMS8AQEyjaQYAgBa2pqJRf5qyQmsrm4LmTuiRob+eXaCMJH4EAwAAANhpxvIKPThj7V53l/nTKT10JrvLAAAAANiHtZWNuv/jNVq0sTbk/MBu6brt9J7Ky0oMc2UAALQcj8ejsrIylZWVadWqVVq1apVqa3f+7BsyZIjGjRu338+1fft2ffDBB1q0aJEqKirkdruVk5Oj448/XmeccYYSEhJa69vYK5fLZfl/AAgH0zT11JwNemXBlqC5Kwfn6U80zAAA2gDu2AUAoAXNWF6hez5crYZmwzLukPT747vo8hO6yMmFJAAAAABJlfU7d5eZEWKHSondZQAAAAD8vOaAoX9/vUX/+HKTmgNm0HxGolvXD+2ms/t14EY3AEDMu/zyy1vkeRYsWKCJEyeqsbFx15jX693ViDNz5kyNHz9eOTk5LXK+/bFjxw4tWbJEWVlZ6tatW9jOC8DeDNPUwzPX6o3F24LmrhvaTZce15XrCABAm0DTDAAALcAfMDRx7gb9Z2F50Fx6okv3jCjQSb0yw18YAAAAgKg0Y3mFJsxYq+oQu8tkJLr1p1O764ze7C4DAAAAYO++3VSr+z5eo9UVjSHnz+rTXtcP7a52KXFhrgwAgNbXoUMHdenSRd9+++0BPW7NmjV64okn5PP5lJiYqDFjxqh///7y+Xz67LPPNHPmTG3ZskUPPPCAJkyYoKSkpFb6Dn7i9/s1ceJENTc36+KLL5bT6Wz1cwJAwDB170erNXXpjqC5W0/robFHdopAVQAAtA6aZgAAOEQ76n0aP7VM32ysDZor7pish84pVJfMxAhUBgAAACDaVNY368GZazVzL7vLDC3I0q2n91CHFHaXAQAAABBandevZz7doMmLtyl4bxmpc3qCbj29h07omRnu0gAAaFVjx45Vfn6+8vPzlZmZqW3btumqq646oOd46aWX5PP55HK5dMcdd6ioqGjXXP/+/ZWbm6tXX31VW7Zs0dSpU3XhhRcGPcfLL7+s5ubm/T7niBEjlJubG3LOMAw9++yzKikp0amnnqqTTz75gL4fADgY/oChO99fpenLrZ9VOB3Sn8/spZH9siNUGQAArYOmGQAADsHijbW6depK7agPfkNsVP9s3XJqDyXG2XMVGEf9NmnmTdKauZI7UWlxKTIS0mUmpMtMyJAZn77b1+kyEjJ++HOazIQMGQnpkjtJYmVtAAAAtAGmaWrG8ko9OJPdZQAAsAuXy9Vqz73nytOsRN12kbW97E/es1ZU6IHpa7S9zhf8eId08YDOuuKkPCXFt95/g9AyeH3bC3nbB1m3rlANLAeirKxMJSUlkqRhw4ZZGmZ+NHLkSM2aNUubNm3SBx98oPPOO09ut/UWu+nTp8vr9e73eQcNGhSyacYwDD333HOaN2+eBg8erMsvv/wAvyMAOHBev6HxU1dq7qpqy7jL6dB9Z+frtOL2kSkMAIBWRNMMAAAHwTRN/XfRVj0xZ70ChnUdtziXQzef2kNjDsu27c1u8aunK3XWbVLjTytSHMwvHaYzbmcTTXy6jMSdjTZmYrqM+B8ab35osvmp4SZDRkLazj/Hp0uuuJb7pgAAAICDVFHfrAdnrNEnK6tCzg8rzNKtp/VU+xR+fwUAoC3JysoK27kyMjLCdi5EFlnby+55l3uadNe73+ujpVtDHtu/S7omnHe4+nfh30is4vVtL+RtH2QdXb7++utdfx42bFjIY5xOp4YMGaLXXntN9fX1Wrp0qY444gjLMa+88soh1/LjDjNz587ViSeeqHHjxtFkBaDVNTUHdOM7K/TVuhrLeLzLoQfPKdTg/PC9lwEAQDjRNAMAwAFq8AX0149WB21RKkk5afF68JxC9ctNjUBlUcBXr9R59ypx2aQWeTqH0SxHY6XUWCmX58Afb8Yl79zNJn733WzSdjXchNzp5ofGHDMulV1uAAAAcEhM09THyyv10My18oTaXSbJrVtO7aHTi9vZtuEeAAAAwL4Zhqn/fL1eD31Qqlpv8HVFUpxLN5xepN+c2ENuFzfaAgCwL8uXL5ckJSQkqFevXns9rm/fvpbH7Nk0c6h2b5g54YQTdPXVV9MwA6DV1Xn9uv7tFfpmY61lPNHt1KPnFum47jR6AgDaLppmAAA4AGsrG3XzlJVaXdEYNHdc93Tdd3aBMpPtuTq0u/wbpU2/US7PukiXsoujuUGu5gZJ5Qf8WNPh3K3Z5qfmmp++/qnJxkj8sdkm44ddcNIld0LLf0MAAACIGRX1zZowY41msbsMAAAAgIO0Ymutxr+1RAvXhb6uOLkoW/eN6a+8dslhrgwAgNi0ceNGSVJOTo5cLtdej+vcuXPQY1qKYRh67rnnNHfuXA0aNIiGGQBh4Wn065o3S7W0vN4ynhLv1JPn9daRXdMiVBkAAOFB0wwAAPvpkxWV+suHq1TvM4Lmfjeos/7vhK5yOW24OrThV9KCZ5U8/2k5zEDwfO+R0pEXq75yi8zGajm8NXJ6a+TweuTw1cjZVCOHr0aOH8acvrrwfw8hOExDDm+15K3W3t8u3TvTlbDH7ja77Wazq9km44fGnLTd5jJkxqdKzoM5KwAAACLNNE19VFqhh2euk6eJ3WUAALCzqqrQN7m3BKfTqYyMn1aA9Xg8Mozg9y0R+8jaXn7Mu6k5oGdnlenZ2avkN8yg47KS3frTqT11Zp8Ocji8qqryRqBaHCpe3/ZC3vYRDVlnZWWF9XyxwufzqbZ25+4K7du33+exqampSkhIkNfrVUVFRYvWMXnyZM2ZM0eJiYnq3Lmz3nzzzaBjjj32WPXo0WO/n3N/a9xXo9Ch2LPphyagto28Y09lvU9XvFGiFdsaLOPpiW49e2Ef9cvde8MMedsLedsHWdsLee9E0wwAAD/Db5h65tMNemX+lqC51ASX7hmRr5Pz7fnGo7N6rdKm36i4rYuD5sy4FDlGPCQdebHkcMhXVaVAIERTzZ6MgBy+2h+aaGrk9Hrk8NbubKjx7t5g8+NcjRze2p/+HIiODwcdAa8cDdvlbNh+UI834lN37WZj7NZoYyZkhNj55sfGnJ1zcidJ3IAJAAAQdjvqfZowfa1ml4W+QfaUH3aXacfuMgAA2MJ+vRfWQgzDCOv5EDlk3fZ9tbpC499eotXb60POj+rXQdcO7abMpDhuuG9jeH3bC3nbB1lHj6ampl1/TkxM/NnjExMT5fV6LY9rCdu3b99Vz1tvvRXymI4dOx5Q08wVV1yxX8dNmjRpv5/zUOzeOIa2j7yjW7mnSf/3v2+1aru1YaZDarxe+d1x6pObfkDPR972Qt72Qdb2Yte8aZoBAGAfKuqbddt7K7VwQ23QXGF2sh46p1B5WT//hlqbY5pKWDZJqfPulaO5IWi6OecoNZzxhDJ6Hnngz+10yUzMlJmYKUk64LeQ/V5rQ41lNxvPbjvd7NmU88MxZnR8yOj01Um+Oql20wE/1nTG7Wyi2X03m8R0GfHpP+1mY9ndxtqYIxc3cQKITa21QprEyht2Q9720VJZm6apD0t26MHpa0LuLpOZ5NZtw3vp9N4dDur50TJ4bdsLedsLeQMA2oq/f75Rz3y6PuRc18wE3T68pwZ2s+eNDQAAHCqfz7frz273z98y9+Mxuz+uJYwbN07jxo1r0ecEgFA2VDbo4r9/pfWV1vt6OqUn6D+/H6SCjqkRqgwAgPCjaQYAgL34bnOtbnl3pbbXNQfNjejbQbed3kOJca13c260cjRWKPWT25SwZkbQnOlwqeHYq9V4zBVyxSVEoDpJ7gSZ7mwFUrIP/LGmIUdzvRxNP+1o89NuNj8224TY3cZbI6evJmQDUSQ4jGY5Giulxkq5PAf+eDMueWcTTXzwTjaWBptdc+lyJmVKSS4pIY1dbgBETFZW+HZ+s+vKG3ZF3vZxMFlvq23SHW9/r4+XbQ05f/ZhufrL6H7qkBqh34+xV7y27YW87YW8AQCx6J9fbtKz8zYGjbucDv16YK5+N6iLEuNoDAUA4GDFx8fv+rPfH7zwzZ5+PGb3x0Wr5557LtIlAIgya3bU6+IXv9Rmj3W3rK5ZSXrt94PUrX1yhCoDACAyaJoBAGAPpmlq0jdb9fjs9fIbpmXO7XToplO66/wjOsphw8aAuHWzlTbzFjkbdgTNBTK6q3b44/J3OiIClbUQh1NmfJrM+DRJXQ788YHm3ZptQu1m4/mpwabpx11wPLse4zB+/s3ZcHA0N8jV3CCp/CAe7JQSM5T+w99j8G42Gbt2tDESf2jMSczYtQuO3NxMCgAAYoNpmpqyeLPuenepPI3BjfbtU+J1z+j+Ovvw3AhUBwAAACCWvDp/S8iGmf65qbp9eE8VZnNDGwAAhyoxMXHXn5uamvZxpPWY3R8Xrdq3b79fx1VVVbXK+Z1Op2UBC4/HI8MwWuVciDzyjn5l2+v1x/8tU0W99bOL7u0S9fwv+irN6VVVlXe/nou87YW87YOs7SUa8g7nIrh7Q9MMAAC7afQFdP/0NfqgpCJorlNavB48p1D9c224PWlzo1I+f1BJS14JOd3Y75eqP/E2KT4lzIVFGVeczKT2MpPa64B/rTRNyd+422421p1sLDvdBDXmeOT01bXGd3TgTENqrJKr8eDecDVdCXvsbpNuabwx43dvvtm9KSdDZnyq5LTf7k8AACD8ttU06ba3v9eMkr3sLnN4ru45p5/as7sMAAAAgJ/x30XlemLO+qDxW87srQsOy9r5nisAADhk8fHxSktLU21trSoqgu8H2F1dXZ283p03lO9vQ0osCAQCYTmPYRhhOxcij7yjS+nWeo2bXCpPo3XR1vwOSXr2gj5qn+I+pLzI217I2z7I2l7smjdNMwAA/GB9VZP+NGWFVu1oDJob2C1d948sUFZyXAQqiyzXtu+VNv0GuatWBc0ZSe1Ud8oE+XqeGoHK2hiHQ4pLlhGXLKXmHPjjjYAcvtqQu9s4vTU/7Waza67G2pgT2L9VRFqbI+CVo2G7nA3bD+rxRnzqrt1sjN0abcyEjJ++3rXzzY+NOTvn5E7amQOAmNVaK6RJ0bHyBsKHvO3jQLM2TVPvL9uhh2asUU1T8C6BWclujT+9l07v3UFqblBVVUOr1I2Dw2vbXsjbXiKddzSskAYAiE2TF2/VI5+sCxq/a1Rf/ebEnqqqqpIN72EAAKDVdO3aVSUlJSovL1cgEJDLFXpBvs2bN1seAwCx4LvNtbrmzeWq81ovIvp0StHEscXKTLLfPU8AAPyIphkAACTNLqvUXe+vVr0v+NOny47N1R9PypPbabOb6Y2Akr55UclfPS6HEXxDoK/7MNWeOkFmcocIFIcgTpfMxEyZiZmSpAP+HNXv3dlQ46uRo2nnbjbOph+bbTx77Gyze1POD8dEyWqHTl+d5KuTajcd8GNNZ9zOJpr4dBmJGTubbRLTZcSn/7SbjWV3G2tjjly8wQREWjhXwrDryht2Rd72sa+st9f5dP/0Nfp0VXXI+dOL2+nmU3soKzmOfy8xgte2vZC3vZA3ACAWTFmyTRNmrA0av31EH/3mxJ7hLwgAABsoLi5WSUmJvF6vVq9ercLCwpDHLVu2zPIYAIh2C9Z7dP3bK9TYbL134/DOqXrq/GKlJnCrMADA3vhJCACwtYBh6vnPNupfX20OmkuJd+kvZ/XS0MJ2Eagsspw1G5U24ybFbZ4fNGe6E1V/0u1q6ncRu3K0Je4Eme5sBVKyD/yxpiFXoElZiZKaPFKTR3U7NspsrN6j2cZj3d3mxyad5uhYgd1hNMvRWCk1VsrlOfDHm3HJuzXYWHeysTTY7JpL39WYY8al8noCACBKmaapact26NFP1qnWG3wDdrtkt245radOLbLfdQMAAACAgzNt6Xbd+9GaoPGrTu6my0/uFYGKAACwh2OPPVbvvPOOJGnWrFkhm2YMw9CcOXMkSSkpKerXr184SwSAA/bZ6mrd/O4Kef2mZXxgt3Q9NqZISfGhd9UCAMBOaJppA3w+n15//XWtXr1a5eXlqqurU3JysnJycnTKKado8ODBcruJGgD2VNXQrNvfK9PX62uC5vI7JOnh0UXqlpUYgcoiyDSVsPwdpcy5W87muqDp5uz+qhv+uAJZfGiH3TicUkKalJm1a6g5o2r/V/UNNP+wo83edrPx7LYLTs0Pu+B4dj0m1E5IkeBobpCruUGqLz/gx5oO584GmoT0ve9mk5Dxwy446buO/fE4uRNa4TsCAADb63y6/+M1+nR1dcj54b3b6+ZTuiszmR3nAAAAAOyfj0sr9JcPV8vcY/z/Tuii3x3fNSI1AQBgFwUFBerTp49KSko0a9YsDR06VEVFRZZj3nvvPW3atEmSdNZZZ7Wpe65crta5cd7pdO7za7Qt5B1dZi6v0K3vrpDfsF5hnNQrUw+PKVZi3KG97snbXsjbPsjaXsh7p7bzW72NNTU16eOPP1ZBQYGOOuoopaenq76+XosXL9Zzzz2nzz//XOPHj7ftP3IACOX7LXW65d2V2lrrC5o7s0973X56T9uttOBoqlbq7DuVUPZ+0JzpcKrxmD+qYeA1kosbAtHCXHEyk9rLTGov4+ePtjJNyd/4Q7PNj002NdbdbH6cC2rM8cjpC24OiwSHacjhrZa81Qf1eNOVsMfuNumWxhsz/sfmm4ygphwzPk1y2uu/dwAA/Jz92V3m1tN66hR2lwEAAABwAD5ZUak7p5Vpj/vZ9JvjOuvy47tEpigAAGJIaWmpyst/WsCupuanBTLLy8s1e/Zsy/FDhw4Neo7LLrtMd955p3w+n+69916de+656tevn3w+nz7//HPNmDFDkpSbm6tRo0a1yvcRKVlZWT9/UAvIyMgIy3kQHcg7cqYs3qRb3l2hwB4XGGf1z9GTvzxK8e6Wv1+UvO2FvO2DrO3FrnnTNNMGpKam6t///nfQygaBQED33nuvvv32Wy1evFhHH310hCoEgOhhmqbe/HabHvlkXdAqCy6nQzcM7aYLj+okh8MRoQojI27DZ0qdcbNcIXbICKTnqfb0R+TPHRCByoCf4XBIccky4pKl1JwDf7wRkMNX99NuNj823uy5m42lEaf2pz8HvC3/PR0ER8ArR8N2ORu2H9TjjfjUHxpq0vfYzSZjt51uftrdxpGUKbm6SYkZUlxyy34zAABE2LZan+6fvkbz9rK7zJl92uumU7orM4lmcgAAsG+ttYqzxOqAdkLWbcecskrd9l6ZAns0zFwysLOuHtJdDoeDvG2GvO2FvO2DrFvXzJkzNWfOnJBzy5cv1/Llyy1joZpmevbsqeuuu04TJ05UY2OjXn/99aBjcnNzNX78eCUlJbVI3QDQ0v779XqNf3uJzD2uL847qoseGnu43C5+/gAAsDuaZtoAp9MZ8iLb5XJp4MCBWrp0qWWVBQCwq6bmgB6YvlbTlu0ImstOjdOEUYU6oktaBCqLIL9XKV8+qqTF/wg53dT7fNWffOfOnSiAtsjpkpmYITNxZwd98DryP8Pv3dlQ46uR44cmG2dTzW7NNp7ddrbZY6cbX40c5gHvrdMqnL46yVcn1W46iAfHyfXLKQq0K275wgAACCPTNPXukm16eOYa1YXYXaZ9cpzGn95DQwvZXQYAAOyfcK3iLNl3dUA7IuvYNGv5Nt38zoqgxbwuO6GH7hrVd68LeZG3vZC3vZC3fZB1dBowYIAeeeQRvf/++1q0aJEqKyvldruVk5OjQYMG6cwzz1RCQkKkywSAkP45b43ueW9Z0PhFx3bTfWP6y+m010LBAADsD9s3zXg8HpWVlamsrEyrVq3SqlWrVFtbK0kaMmSIxo0bt9/PtX37dn3wwQdatGiRKioqdl1MHX/88TrjjDPCfjFlGIa+/fZbSVJeXl5Yzw0A0WZjdZNunrJSK7Y3BM0d3TVND4wqVPsUe60U7dqxXGnTr5e7YnnQnJGQobph98lXcFYEKgNiiDtBpjtbgZTsA3+sacjRXC/Hbk02P+1ms1tzzQ+73+ya8/0w1xz837OIMJplxqdGugoAAA5JuadJ49/6TrOWh961jd1lAAAAAByseSt36A+vLJQvYF1A5+Ljuu2zYQYAAAQbN27cAd3LtS/Z2dm69NJLdemll7bI88WCqqqqVnlep9NpaRDzeDwyjOhYPBAtj7wj6x9fbNTTc9cHjV88IFc3Du0ij6e6Rc9H3vZC3vZB1vYSDXmHc4GpvbF908zll1/eIs+zYMGCXdt2/sjr9e5qxJk5c6bGjx+vnJycFjlfKH6/X2+99ZYkqba2Vt9//702bdqkoUOH6rDDDmu18wJAtPt0VZXufH9VyNWiLxmYq3GD8+S20yoLpqHExf9SyhePyGH4gqZ9eSeq7tSHZKS23s8sAJIcTpnxaT/s5NTlwB8faN6t2ab2h+aaHxtvdvvaV7OrMcf5w244Dm+NHIa/xb4VMyG9xZ4LAIBwm7xwo/4ydalqm4J/NrK7DAAAAIBD8cWqCv3+5fny+a03Ilw4oKv+Oro/DTMAACCsAoHgeyZag2EYYTsXIo+8w8M0TT3/2Ub948vNQXO/HdRZV5zYNSw3QJO3vZC3fZC1vdg1b9s3zeyuQ4cO6tKly67dWfbXmjVr9MQTT8jn8ykxMVFjxoxR//795fP59Nlnn2nmzJnasmWLHnjgAU2YMEFJSUmtUr/f79fkyZN3fe1wODRq1Cj9v//3/1rlfAAQ7QKGqRc+D33BmBzn1F1n5evUInvd/Oas26LUGX9S/MYvguZMV7zqT7hZTYdfKjmcEagOwAFxxclMai8zqb0O+K0v05T8jT/sZvNjk02InW58Nbs14/y0843TV2d9uvg0yWyx7wwAgLB58fMNevbTDSHnzurbXjcN66GMJN4+AwAAB6e1VnGWomN1QIQHWceuxRtrdOWkZWpqtuZ1dr9s3TwsL+QK0ORtL+RtL+RtH9GQdTSs4gwAaDmmaerx2ev12sLyoLlxg7vqN8cdxCKdAADYjO0/9R87dqzy8/OVn5+vzMxMbdu2TVddddUBPcdLL70kn88nl8ulO+64Q0VFRbvm+vfvr9zcXL366qvasmWLpk6dqgsvvDDoOV5++WU1Nzfv9zlHjBih3Nxcy1hiYqImTZokwzBUVVWlhQsX6vXXX9eKFSs0fvx4JScnH9D3BQCxrLqxWXdMW6Uv13qC5nq2S9TDo4vUo33rNDFGq/iV05Q6+w45vTVBc/72vVU7/DEF2hdHoDIAYedwSHHJMuKSpYPYVcrlkLKSXVJjteStkZwuyYYrEAAAYtvkxVtDNsy0T4nTbaf31JACbi4AAACHJpyr9dl1dUA7IuvY8P2WOl31Roka92iYOb24ne48o6dkGvv1dhp52wt52wt52wdZAwAOhWGamjBjrd76dlvQ3I3DuuuiYw78834AAOzI9k0zoRpYDkRZWZlKSkokScOGDbM0zPxo5MiRmjVrljZt2qQPPvhA5513ntxu61/99OnT5fV69/u8gwYNCmqa+ZHT6VT79u01fPhwpaWl6fHHH9dbb72lX/3qVwfwnQFA7FpWXqebp6xUea0vaG7nB1K9lBzvikBlkeHw1ipl7t1KXP5O0JwphxqP+p0aBt0guRLCXhuAGOV0SUlZO/8nSa24ci4AAK3hw5IdenDG2qDxs/tl64ah3dhdBgAAAMBBKymv11WTS1XvszbMDCvM0l9H5MvtdESoMgAAAACxxG+YuufD1Xp/2Q7LuEPSbcN76tzDO0amMAAAYhB3AByir7/+etefhw0bFvIYp9OpIUOG6LXXXlN9fb2WLl2qI444wnLMK6+80ir1/XieZcuWtcrzA0C0eee7bXpw5lo1B0zLuMvp0LVD8nTR0TlyOOzzgZR783ylTb9RrtpNQXOB1BzVnfaImrseH4HKAAAAgMj4fE217vpgtcw9xu8e1Vej+2ay8icAAACAg7ZiW73GTS5Rndd6XTE4P1P3jyyQ2+WMUGUAAAAAYklzwNAd01Zp5opKy7jLId19Vr7O6tshQpUBABCbaJo5RMuXL5ckJSQkqFevXns9rm/fvpbH7Nk001oqK3f+0uRy2WdHBQD21NRs6KGZa/Xu99uD5tqnxGnCqAId1TU9ApVFSMCn5K+fUtLC5+UIuh1Q8haOVN2Qe2QmZkSgOAAAACAyvt1Uqz9NWamAYf0d+brTCnXZiT1Vxe5pAAAAAA5S2fYGXflGqWqarA0zJ/TI0IOjChVHwwwAAIiw1rp/zOl07vNrtC3k3fq8fkM3v1umT1dZP7NwOx2acE6RTi1uH7ZayNteyNs+yNpeyHsnmmYO0caNGyVJOTk5+7yw6Ny5c9BjWrKG7OxsJSQkWMa9Xq9efvllSdJRRx3VoucEgGiyqbpJN7+7Usu3NQTNHdU1TQ+MLFCH1PgIVBYZrsoypU2/Qe7tS4PmjPhU1Q/5q7zF50SgMgAAACByyrY36Lq3lsvrNyzjl53QQ9eeWhihqgAAAAC0BWsrGnXlGyWqbvRbxo/tnq6HRhcp3m3PmxEAAEB0ycrKCst5MjJYvNNOyLtlNfj8uurlBfpsj4aZBLdTz//qGA3r3TFCle1E3vZC3vZB1vZi17xpmjkEPp9PtbW1kqT27ffdvZuamqqEhAR5vV5VVFS0aB2ff/65pk2bpt69eys7O1tJSUmqrKzU4sWLVVtbqz59+mjkyJEH9Jz7WyMrEKAlkLe9tHTe81ZV6fb3VqqmyR80d/GAXF07tLt9Vm8zTSV894qSPr1PjoA3aLq5y3FqGP6ojPSuCsf+Y7y27YW87YW8AQCxZmN1k8ZNLlWt17ri84i+HfTnkX3lcDgiVBkAAACAWLe+qkl/nFSiygbr5xTH5KXpsTFFSozjvTMAAAAAP6+mqVm//dd8LVhnbZhJjnfp75cO0An5HSJUGQAAsY+mmUPQ1NS068+JiYk/e3xiYqK8Xq/lcS3hmGOOUVVVlVasWKEVK1aoqalJycnJ6tatm0488UQNGzbsgJtbrrjiiv06btKkSQdT8gGza1ebXZG3vRxs3oZh6qlPVurJmStlmta55HiXHhp7uEYe3jn0g9ui2q3SlHFS2fTgOWecdModijvhamU4w9EuExqvbXshb3shbwBANNtR59O4N0pVUd9sGT+pV6buHlEgp5OGGQAAAAAHZ1N1k66YVKIde1xvHNElVY+fW6zEuMi9Jw8AAAAgdlTV+/Trf36tJZs8lvG0BLde+u1AHdO9XYQqAwCgbaBp5hD4fL5df3a7f/6v8sdjdn9cS8jPz1d+fn6LPicARLPqBp+u/99izVq+PWiuV3aK/varY1TYKS0ClUVIyXvS1GukhhC7hHUols5/Uco9Ivx1AQAAABFW0+TXVZNLtclj3YnxyC5pmjCqwD67UgIAAABoceU1Xv1xUom21lo/++2fm6InzytWcjwNMwAAILpUVVX9/EEHwel0WhbZ83g8MgyjVc6FyCPvlldR79Mf/7tMZTsaLOOZSW49e2Ff9Up3tNrr9+eQt72Qt32Qtb1EQ95ZWVlhPV8oNM0cgvj4+F1/9vv9+zjSeszuj4tWzz33XKRLAICQvt/k0R9fXaiNVY1Bc2f1z9FDYw9XWmJcBCqLAG+d9NF4adHLoeeP/YN0+l+kuKTw1gUAAABEgabmgK5/e7nKdlivHYqyk/X4uUWs+AwAAADgoG2r9ekP/yvRlhprw0zvTsmaeH5vpSbwMTwAAIg+gUAgLOcxDCNs50Lkkfeh2Vrr1RWTSrW+qsky3j45Ts9c0FsF2UlR9fdL3vZC3vZB1vZi17x5t+4QJCYm7vpzU1PTPo60HrP746JV+/bt9+s4ViBASyBvezmUvKd8t1UPTF8jr996vMshXTO0uy4Z2Fn+xjqF6Kdpc1xbFinlo+vl8qwLmjOSs1U//BH5uw+R6pok/fzPqNbAa9teyNteoiHvaFiBAAAQvZoDhm5+d6W+3VRnGe+amaCnxhYrLZG3xAAAAAAcnB11Pv1xUknQjpZF2cl6ZmwfrjcAAAAA7JeN1U26clKpNtdYry06pcXr2Qt6q3s7FskFAKCl8I7dIYiPj1daWppqa2tVUVGxz2Pr6urk9e785WZ/G1JiASsQoDWQt73sT95ev6FHPlmnt7/bFjTXLtmtB0YV6pi8dHvcoG/4lTz/GSUteEYOM/jvzdtruOqG3SczqZ0UZa8jXtv2Qt72Qt4AgGhimKbu/mC1Pl/jsYxnp8bpmbG91SEl+ncABgAAABCdKuubdcWkkqBVoHu1T9IzF/RWRhIfvwMAAAD4eWsrGnXlGyXaVtdsGe+SkaDnLuyjzhkJEaoMAIC2iXftDlHXrl1VUlKi8vJyBQIBuVyukMdt3rzZ8hgAwP7Z4vHqlndXatnW+qC5wzunasKoQnVMs8dNb87qtUqbfqPiti4OmjPiUlQ/+M/y9jlfcjjCXxwAAAAQBUzT1MMz1+mjUuviJumJLk08v7e6ZEb/7r8AAKDt2NtnRi3B6XTu82u0HWQdPaobmzVucqnWVFobZnq2S9ILF/VT+xZo0CdveyFveyFv+yBrAMDPWbm9QePeKFFlg98y3qNdop69oI9t7oMCACCcaJo5RMXFxSopKZHX69Xq1atVWFgY8rhly5ZZHgMA+Hlfrq3W7dNWydPoD5r75dGddO2Qbopz2eBNRtNUwrJJSp13rxzNDUHTzTlHqfb0R2VkdI9AcQAAAED0eOHzTXpj8VbLWKLbqSfOK1ZBdnKEqgIAAHaVlZUVtnNlZGSE7VyILLKODE9Ds6565Uut3G59j75H+2T99w/Hq1N66zTok7e9kLe9kLd9kDUAYHdLt9Tp6jdLVdMUsIwXZSfr6bG91S4lLkKVAQDQttngTuPWdeyxx+7686xZs0IeYxiG5syZI0lKSUlRv379wlIbAMQqwzT1jy836erJy4MaZhLdTt17dr5uOqWHLRpmHI0VSnv/j0qbdVtQw4zpcKn+uOvkOe+/NMwAAADA9v67qFwvfrHJMuZ2OvTImEId3jktQlUBAAAAiHU1Tc369T+/0tLNNZbxvHZJeu3yQa3WMAMAAACgbVm8sVZXvlES1DDTNydFz13Yh4YZAABaETvNHKKCggL16dNHJSUlmjVrloYOHaqioiLLMe+99542bdp508ZZZ50lt5u/dgDYm9omv/78wSp9uqo6aK5bVqIeOqfQNitEx62brbSZt8jZsCNoLpDRXbXDH5e/0xERqAwAAACILu8v26FHPllnGXNI+uuIfA3qkRmRmgAAAADEvjqvX5f982t9u9FjGe+ckajXfj9InTOTIlQZAADAgXO5XK3yvE6nc59fo20h74Pz5dpqXf9WqZqaDcv4UV3T9dTY3kpNiM57SsnbXsjbPsjaXsh7p+j8SRtGpaWlKi8v3/V1Tc1PKwSVl5dr9uzZluOHDh0a9ByXXXaZ7rzzTvl8Pt17770699xz1a9fP/l8Pn3++eeaMWOGJCk3N1ejRo1qle8DANqCFdvqdfO7K7Wx2hs0N7QgS3ef1StqLxJbVHOjUj5/UElLXgk53djvl6o/8TYpPiXMhQEAEN1a68MeiTcR7Ia8Y8vcskr95YNVQeO3ndFLZ/bruM/HkrW9kLe9kLe9kDeiVVVVVas9t9PpVEZGxq6vPR6PDMPYxyMQq8g6chp9AY17o0TfbLTuMJOdGq/nf9FXqQ6vqqqCP884FORtL+RtL+RtH9GQdVZWVljPh9gRrn8bu78G0PaR98+bWbJV175ZKp/f+vNgcGEHvXDJACXFt95nnC2NvO2FvO2DrO3Frnnb4M7jfZs5c6bmzJkTcm758uVavny5ZSxU00zPnj113XXXaeLEiWpsbNTrr78edExubq7Gjx+vpCRWGwKAUN5bul0PTF8r7x4XiE6HdOVJebr02Fw5HI4IVRc+rm3fK236DXJXBd/0ZyS1U90pE+TreWoEKgMAIPqF84NAu76JYFfkHb2+XlOpm6esUMC0jv/pjGJdPqzggJ+PrO2FvO2FvO2FvBEtAoFA2M5lGEZYz4fIIevwaGo2dP3by4MaZtqnxOm5C3urc3pcWHIgb3shb3shb/sgawCwt2nfbdG1//1GfsP6QcZpfTrq6f93tBLjYqdhBgCAWGb7ppmWMmDAAD3yyCN6//33tWjRIlVWVsrtdisnJ0eDBg3SmWeeqYSEhEiX2eLYthMtgbztZc98/Yb00My1euObrUHHZiW7NeGcYh3b3QY3OhgBJS58XolfPi6H4Q+a9vU4RQ2nPSgzJVuxcrnMa9teyNteyBsAEA2Wbvbody/ND2q8//1JPXXl0PwIVQUAAAAg1nn9hm6askLz11sbZrKS3Hrugt7q0Y5FEgEAAAD8vDcXbtSfJn+rPfplNPLwXD3+iyMV5+JzdgAAwsVhmqb584cBANDyNlc36sr/LNLiDdVBc0fmZeq5Xx2t3AwbfPhUtU56+w/S+i+C59xJ0hn3SQN+K9lgpx0AAABgf6zZUa8Lnv9cO+p8lvHzj+6qh8ceLqeT350BAEDk7dixo9We2+VyWXbbrKqqYgXzNoqsw6s5YOhPU1Zq3upqy3hGolvP/6KPCrOTW/X85G0v5G0v5G0f0ZB1hw4dwno+xI6qqqpWeV6n02nZ9dXj8cgwjH08ArGMvPfP5MXluu+j1UHj5/TP1p/PKpArRj7HIG97IW/7IGt7iYa8d79GihR2mgEARMRnZTt09evfqLLeFzR3yaDuumNkHyW4Y2VPlYNkmtJ3/5Om3ST5aoPnc4+Uzv+71KEw7KUBABCLWuvDHik63kRA+JB3dNtW69Vv/vN9UMPM0MJ2uvXUPHk81fv9XGRtL+RtL+RtL5HOOxo+7AEAHDp/wND4qWVBDTNpCS49c0HvVm+YAQAAaG3hauAyDIPGQBsh72D/WbBFj89eHzR+wZEd9adTe0imoVj9KyNveyFv+yBre7Fr3jTNAADCyjRNPTdnlR75aHnQ9qOJcU7df+5hOu/orpEpLpwaKqVpN0hL3w6eczilk26Qht4queLCXxsAADEqnBf1dn0Twa7IO3p4Gv264n/LtNnjtYwf3TVN952dL8chftBE1vZC3vZC3vZC3gCAA+U3TN0xbZVml1kX5EiJd+npsb3Vu1NKhCoDAAAAECtM09Q/vtys5z/bGDR3yYBcXTMkTw5HbOwwAwBAW0PTDA4J23aiJZC3ffgNU7dPXamPS3cEzeVlJuqRc4tV1DGlVVeJjwbu9Z8pZfqNctaVB80F0vNUf8bjCnQeINXURaC6lsNr217I216iIW9WcgYA+2nwBXTtW6VaXdFoGe/dKVmPnVukBLczQpUBAAAAiGUBw9TdH6zSjBWVlvHkOKeeOr9Y/XJTI1QZAAAAgFhhmqae+XSDXvp6S9Dc/53QRZcf34WGGQAAIoimGRwStu1EayDvtuuhGWtDNswMzs/UPWflKy3R3baz93uV8uWjSlr8j5DTTb3PV/3Jd8qMT1PM7sO6D7y27YW87YW8AQCtzec3dPO7K/X9lnrLeLesRD11Xm+lJvAWFwAAAIADZ5im7v1otT4sqbCMJ7qdeuK8Yh3RJS1ClQEAAACIFYZp6rFZ6/TfRVuD5q45OU+/PrZzBKoCAAC7444CAEBYTF68VW8stl4cOhzSuMHd9OuBOXK28dUUXDuWK2369XJXLA+aMxIyVDfsPvkKzopAZQAAAEB0Cxim/vz+Kn251mMZ75QWr2cv6K12KXERqgwAAABALDNMUw9MX6OpS62LfSW4HXr8vCIdnZceocoAAAAAxIqAYer+6Ws0Zcn2oLmbT+2uC4/KiUBVAABgTzTNAABa3dfrPHp45lrLWLzbqRd/PUCHZ7fx3WVMQ4mL/6WULx6Rw/AFTfvyTlTdqQ/JSOUiGQAAANiTaZp6cOZazVhRaRnPSHLr6bG9lZOeEKHKAAAAAMQy0zT18Mx1evs7641tcS6HHhldpIHdMiJUGQAAAIBY4Q8YuvvD4J0rnQ7pjuG9dM5h2RGqDAAA7ImmGQBAq1pf1aRbp65UwLSOPzz2cA0pylZVVVVkCgsDZ90Wpc74k+I3fhE0Z7riVX/CzWo6/FLJ4YxAdQAAAED0e3beRr317TbLWFKcU0+dV6ye7ZMiVBUAAACAWGaaph6bvV5vLN5qGXc7HXronEId3zMzMoUBAAAAiBk+v6Hbp5Vp1krrfU8uh3TP2QU6o3f7CFUGAABCoWkGANBqapv8uv7t5appsu4kM25YvkYf2SVCVYVH/MppSp19h5zemqA5f/veqh3+mALtiyNQGQAAABAbXl2wRf/6arNlLM7l0KNjitQvNzVCVQEAAACIZaZp6ulPN+j1heWWcZfToQmjCjQ4PytClQEAAACIFU3Nhm6eskKfr/VYxuNcDj0wqkBDC9pFqDIAALA3NM0AAFqF3zB169SVWlfZZBk/paidbjy97TaLOLy1Spl7txKXvxM0Z8qhxqN+p4ZBN0iuhLDXBgAAAMSKqd9v1xOz11vGnA7pvrMLdGz3jAhVBQAAACDWvfD5Jv376y2WsZ3XGvkaWsiNbQAAoG1zuVyt8rxOp3OfX6NtsXve9d6Arnt7uRasty6im+h26tFzi3VCr7bViG/3vO2GvO2DrO2FvHeiaQYA0Coem7VOX62zXiAWZSfrr2cXyul0RKiq1uXePF9p02+Uq3ZT0FwgNUd1pz2i5q7HR6AyAAAAIHbMLqvUvR+tDhq/bXhPnVLETWwAAAAADs7fv9ikF7+wvn/vkHTPiHydVtw+MkUBAACEUVZWeG7mz8hg4SM7sVPensZmXf361/pmj4aZlHiX/nnZQB3Xq+1fV9gpb5C3nZC1vdg1b5pmAAAtbvLirZr0zVbLWPvkOD12bpGS41tn5ZKICviU/NWTSlr0NzlkBk17C0eqbsg9MhPt+csGAAAAsL8WrK/RbVPLFNjj1+qrT87TmMM6RqYoAAAAADHv319v1vOfbQwa//OZvXRmnw4RqAgAAABALKms9+mSf3ylpZutDTPpiW79+7fH6qhubWuHGQAA2hqaZgAALWr+eo8enrnWMhbvcuiRMYXKSU+ITFGtyFVZprTpN8i9fWnQnBGfqvohf5W3+JwIVAYAAADElpLyet34znL59uiY+fXAXF16bOcIVQUAAAAg1r22cIsmzt0QNH7b6T01qn92BCoCAAAAEEu21TTp4r9/pZXb6izj7VLi9crvjlW/ziyiCwBAtKNpBgDQYtZXNemWd1cGrQp95xm9dFjntMgU1VpMU4lLXlXKZw/IEfAGTTd3Pk61pz0sI71LBIoDAAAAYsvaykZd/Wap6n2GZXz0Ydm6+uS8CFUFAAAAINZN+qZcj81aHzR+86nddd4R7GYJAADspaqqqlWe1+l0KiPjp6YBj8cjwzD28QjEMrvlvaXGqz/8d6k2VDVZxjukxulvv+irzklGq722ooHd8rY78rYPsraXaMg7KyvyO7LRNIND4nK5WuV5nU7nPr9G20LebUNtk183vL1CNU0By/hvB3XRyMM67fq6LeTtqN+mlOk3K27d7KA50xmnxuNvlPfoy+VwutQ6/5WMDW0ha+w/8rYX8gYAtKTyGq/GvVGq6ka/ZXxYYZbGn95TDocjQpUBAAAcmtb6DEXi2txOyPrgvbV4qx6auS5o/MZTeuiiAdG5myV52wt52wt52wdZI5oFAoGfP6gFGIYRtnMh8tpy3huqmnTFpBKV1/os4zlp8Xruwj7Ky0pos9/73rTlvBGMvO2DrO3FrnnTNINDEq7Or9073ND2kXfs8QcMXfPWfK2tbLSMD+/bSXecc4Sczr3f5BZzeZe8J029RmqoCJ7rUCzH+S8qOfcIJYe/sqgXc1njkJC3vZA3AOBgVTc066rJpdq6xwdOx3ZL131nF8i9j2sJAACAaBfO1fO4NrcPst4/kxdu1L0frwoav/Ws3vrjkPwIVHRwyNteyNteyNs+yBoAYtPqHQ268o1S7ahvtoznZSbouQv7KCc9IUKVAQCAg0HTDADgkN07rUSfrtxhGeuTm67Hf3HkPhtmYoq3TvpovLTo5dDzx/5BOv0vUlxSeOsCAAAAYlS9L6Br3lyutZVNlvG+OSl6eEyR4t2swgkAAADgwE1ZvEl/mvytTNM6fuPpRTHVMAMAAAAgMpZvq9e4N0pV3ei3jPdqn6RnL+itDqnxEaoMAAAcLJpmAACH5D9frdNLn6+1jHVIjdffLx2glIQ28mNmw3zprculqjXBc6mdpDHPSgWnhb8uAAAAIEb5/IZuemeFlm2tt4z3bJeop84rVkq8K0KVAQAAAIhl077bohsmBTfMXH1Kga4+tTAyRQEAAACIGd9vqdPVk0tV6w1Yxos7JuuZsb2VmRwXocoAAMChaCN3MyNSqqqqWuV5nU6nZYtaj8cjwzBa5VyIPPKOXfPXeXTXlGWWsTiXQ4+MKVay2aSqqqagx8RU3oZfiV9PVOLXT8thBoKmfflnqOHUB2QmtZNa6b+HsSymssYhI297iYa8s7Kywno+AEDL8Rumbp9WpvnrayzjOWnxevoCPnACAABtR2t9hiJFx7U5woOs99+sFRW6ecoKBQxrx8xlx3XWbwZkt+prsqWQt72Qt72Qt31EQ9Z8hgIAB2fRhhpd99ZyNTRb/7t9eOdUPXlesdISud0WAIBYxU9xHJJAIPgm8tZgGEbYzoXII+/YsKGqSTe9Uyr/Hh8+3XlGL/XPSd7vDKM1b2f1WqVNv1FxWxcHzRlxKaof/Gd5+5wvORxSFNYfjaI1a7QO8rYX8gYA7C/TNPXA9DWatdJ6s1pWklvPXNBbndISIlQZAABAywvntTLX5vZB1qHNW1Wlm6esDPrM4qJjcjTupK4xe2M6edsLedsLedsHWQNAbPhiTbVumrJSXr/12uGYvDQ9fm6xkuNdEaoMAAC0BJpmAAAHrLbJr+vfXq6aJuube5cdm6sRfTtEqKoWYppKWDZJqfPulaO5IWi6Oeco1Z7+qIyM7hEoDgAAAIhtE+du0JQl2y1jKfFOTRzbW93bJUWoKgAAAACx7Mu11br53eCGmQuO7KgbhnaTw+GIUGUAAAAAYsHsskqNn1qm5oD1muKEHhl6aHSREuOcEaoMAAC0FJpmAAAHxG+YGv9emdZWNlnGhxRk6crBeRGqqmU4GiuU+sltSlgzI2jOdLjUcOzVajzmCsnJj08AAADgQP376816ef4Wy1i8y6HHzi1W704pEaoKAAAAQCybv96jG99ZId8eN7ede3i2/nRqDxpmAAAAAOzTR6UV+vO0Mu1xSaFhhVm67+wCxbtpmAEAoC3grl8AwAF5YvY6fbnWYxkryk7WX0fkyxnDHz7FrZuttJm3yNmwI2gukNFdtcMfl7/TERGoDAAAAIh973y3TRPnbrCMuRzSA6MKdUxeeoSqAgAAABDLvtlYo+vfWiGv33p326h+HTT+9J4x/ZkFAAAAgNb37pLt+utHq7VHv4zO7NNed5+VL7eTawoAANoKmmYAAPvtrW+36b+LtlrG2iW79di5RUqOd0WoqkPU3KiUzycoacmrIacb+/1S9SfeJsWz8jUAAABwMGauqNT909cEjd95Ri8NKciKQEUAAAAAYt13m2t17ZvL1eQ3LONn9mmvO87oRcMMAAAAgH2a9E25Hpq5Lmh8zGHZGn96T7lomAEAoE2haQYAsF8WrPfowZlrLWNxLoceGVOknPSEyBR1iFzblijt4xvkrl4dNGcktVPdKRPk63lqBCoDAAAA2oav1nl0x7QyGXss03b90G4a2T87MkUBAAAAiGlLt9Tp6snL1dBsbZg5taid7j4rn5vbAAAAAOzTy19v1lNzNwSN/+KoTrrxlO404QMA0AbRNAMA+Fkbqpp0y7tlCuxxp9sdw3vq8M5pEarqEBgBJS16QclfPyGH4Q+a9nUfptpTJ8hM7hCB4gAAAIC24fstdbrpnRVqDlivI347qLMuHpAboaoAAAAAxLLSrfW6anKp6n0By/iQgizdd3a+3DTMAAAA7JXL5WqV53U6nfv8Gm1LLOdtmqb+9tkG/e2zjUFzvxnURVef3E0OGmYsYjlvHDjytg+ythfy3ommGQDAPtV5/br+7eXyNFmbSy49Nldn94u9laGdNRuVNv1GxW1ZEDRnuhNVf9Ltaup3kcRFMAAAAHDQ1lQ06tq3lqtxj5Wfzzuio644sWuEqgIAAAAQy8q2N2jc5FLVeq0NMyf1ytQDIwvkdtnzA38AAID9lZWVFZbzZGRkhOU8iA6xkrdpmnrgg1K9EKJh5qbhRbrqlMIIVBV7YiVvtAzytg+ythe75k3TDABgr/yGqfFTy7S2sskyfnJ+psYNzotQVQfJNJWw/B2lzLlbzua6oOnm7P6qG/64Alm9IlAcAAAA0HZs8Xg17o0SeRqtjfenF7fTLaf2YJU2AAAAAAds9Y4GXTEp+DpjUI8MPXhOoeLdNMwAAAAACM0wTN317lK98uW6oLk7zu6j3w/mXiEAANo6mmYAAHv15Oz1+mKtxzJWmJ2sv55dIGcM3ejmaKpW6uw7lVD2ftCc6XCq8Zg/qmHgNZIrLgLVAQAAAG1HZX2zxk0u1ba6Zsv4oB4ZumdEvlzO2LmOAAAAABAd1lU26oo3SlW1R8PMwG7pemR0kRJomAEAAACwFwHD1C1vfqfJC607zDgc0r1j+uvi47pHqDIAABBONM0AAEJ6+7tten1RuWWsXbJbj40pUkq8K0JVHbi4DZ8pdcbNctWXB80F0vNUe/oj8ucOiEBlAAAAQNtS5/XrmrdKtb7KulPlYbmpevicQsW5uJENAAAAwIHZWN2kKyaVqKLe2ph/VNc0PTamSIlxXGcAAADsr6qqqlZ5XqfTqYyMjF1fezweGYbRKudC5MVS3s0BQ3e8t1Ifl1ZYxp0O6S8jCjSiKL3VXhdtRSzljUNH3vZB1vYSDXlnZWWF9Xyh0DSDQ+Jytc6N806nc59fo20h7+izYL1HD85YaxmLczn06Lm91bVd8iE9d9jy9jcp6fOHlfjNP0JOe/uMVcOQu6SENMVOC1Bs4bVtL+RtL+QNANhTU7OhG95eodKtDZbxXu2T9MR5xUqKocZ7AAAAANFhi8erP/6vJGgny8M7p3KdAQAAcBACgUBYzmMYRtjOhciL1ry9fkPjp67U3FXVlnGX06H7zs7XacXto7LuaBeteaN1kLd9kLW92DVvmmZwSMLV+bV7hxvaPvKOrHUV9frTlBXyG6ZlfMJ5h2vYYV1b/Hytknf599Jbl0vblgXPJWZKo55UQr8xSmj5M2MfeG3bC3nbC3kDgL35DVO3vbdSizbWWsY7pyfomQt6KyOJt58AAAAAHJittV79cVKJymt9lvG+nVL01PnFSqFhBgAAAMBeNDUHdOM7K/TVuhrLeLzLoQfPKdTg/Mivdg8AAMKLuxYAALvUNDXrd/9eoOoG66ptfxjSS+cf0/INMy3OMKQvn5Vm/kUK+ILnew2VxjwnpXcOe2kAAABAW2SYpu79aHXQSm3tk+P0zAW9lZ0aH5nCAAAAAMSs7XU+XTGpVJs8Xst4UcdkPX1Bb6Um8BE3AAAAgNDqvH5d//YKfbPHQl+JbqceO7dIx3ZnQUgAAOyIdxQBAJIkf8DQ1a99o7JtdZbx0/p01M1n9I5QVQfAs0l654/SmrnBc64E6fS/SMf+QXI6w18bAAAA0AaZpqknZq/Xe0t3WMZTE1yaOLZYeVmJEaoMAAAAQKyqqG/WFZNKtL6qyTJe0CFJz47trfREPt4GAAAAEJqn0a9r3izV0vJ6y3hKvFNPntdbR3ZNi1BlAAAg0nhXEYekqqqqVZ7X6XQqI+Onrm6PxyPDMFrlXIg88o4Oj8xcozkrtlvGCrOTdfcZPVXjqW6x87RG3nEr3lPyJ7fJ6a0JmvN36K36M56U0aFY8ngO6Tw4MLy27YW87SUa8s7KYstsAIi0f321Wa8tLLeMJbgdevzcIhV1TIlQVQAAAABiVVXDzoaZtZXWhpme7RL17AV9lJkcF6HKAAAAAES7yvpmXTW5VCu2N1jGMxLdmji2WH1zUiNUGQAAiAY0zeCQBAKBsJzHMIywnQuRR97h98532/SfBVssY1lJbj02pkiJ7tZ9rR9K3g5vrVLm3q3E5e8EzZlyqPGo36lh0A07d5rh31TE8dq2F/K2F/IGAPuZvHirnp230TLmcjr04KhCHdU1PUJVAQAAAIhVnka/xr1RqtUVjZbxblmJeu7CPmqXQsMMAAAAgNC21fp05RvBDfjtkt169oI+KshOjlBlAAAgWjjDdaKGhgY1NDTsdX7ixIkaPHiw+vTpoxEjRmjq1KnhKg0AbG3hhho9MGOtZSzO5dDDY4qUm5EQmaL2g3vT18r874iQDTOB1BzVjHlFDSeO39kwAwAAAKDFfFxaoQf3uIaQpLvP7KWT8tkJDAAAAMCBqW3yh1wRuktGgp67sLc6pMZHqDIAAAAA0W6zx6vL/7ssqGGmY2qcXvhlXxpmAACApDDtNDN16lSNGTNGqamp2rhxo9LS0izzv/3tb/Xvf/9bkmSaplasWKGPPvpI9957r8aPHx+OEgHAljZWN+nmd1cqYJiW8dtP76kju6Tt5VERFvAp+asnlbTob3LIDJr2Fo5U3ZB7ZCZmRKA4AAAQSS6Xq9We2+l07vNrtC3kvXefr67Sn99fFfSb+M2n9dTIwzpFpKZDQdb2Qt72Qt72Qt4AELvqvH5d8+ZylWytt4znpsfr+Qv7qFMaC2MBAAAACG19VZOumFSirbU+y3jn9J0N+F0yEyNUGQAAiDZhaZr56KOPZJqmzjnnnKCGmXnz5umll16Sw+FQcnKyioqKVFpaqsbGRv35z3/WqFGj1L9//3CUCQC2Uuf16/q3lsvT6LeMXzIwVyP7Z0eoqn1zVZYpbfoNcm9fGjRnxKeqfshf5S0+JwKVAQCAaJCVFb4dLjIyaNC1E/LeaeG6Kt30zgr592i6v/bUQl15WlGEqmpZZG0v5G0v5G0v5A0AsaHBF9B1b63Qki11lvFOafF67sI+ys2gYQYAAABAaGXbGzTujVJVNDRbxrtlJeq5C3vTgA8AACzCstzal19+KYfDoWHDhgXNvfDCC5Kkzp07q6SkRAsXLlRpaany8vJkGIb+9re/haNEALCVgGHqtvfKtGaPrUkH98rUVYPzIlTVPpimEr97RZn/Oydkw0xz5+NU/cv3aZgBAAAAWsny8lr99qX5amwOWMYvPb67rjutMEJVAQAAAIhVTc0BXf/2ci3eVGsZ75ASp+cu7KOurAgNAAAAYC9Kt9brD5NKghpmCjok6cVf9qVhBgAABAnLTjPbtm2TJBUXFwfNffjhh3I4HLr66qvVtWtXSVJeXp6uvvpq3XzzzZozZ044SgQAW3lyznp9vsZjGcvvkKR7RxbI5XREqKrQHPXblTbzZsWvnxs0Zzrj1DDoejUe+XvJ6YpAdQAAAEDbt6GyQZf84yt5Gq0fPo0+srPuGtVPDkd0XUMAAABEC5er9d6zdDqd+/wabUdbzNrrN3TjOyu1cIO1YaZdcpxeuKiferZPjlBlkdcW88bekbe9kLd9kDUAtK7vNtfqmjeXq85rXeSrb6cUPTW2WJlJcRGqDAAARLOwNM1s375dkpSWlmYZX7p0qXbs2CGHw6HRo0db5gYMGCBJWrduXThKBADbeGfJNr22sNwylpXk1uPnFislProaT+JXfaTUWbfL2VQVNOfPKlDt8McUyO4XgcoAAEA0qqoK/p2hpTidTmVkZOz62uPxyDCMVjsfIou8f7Kjzqff/ud7bav1WsZP6pWp20/rJo+nOjKFtRCythfythfytpdI552VlRW2cyG2hPPfxu6vAbRtsZ611x/Q9a8s1FfrrAt7ZSXH6fX/O17FOWl7eaQ9xXreODDkbS/kbR9kDQAtZ8F6j65/e4Uam63v+xzRJVVPnles1ISw3A4LAABiUFh+S/hxJa3KykrL+Lx58yRJ2dnZQbvQ/PhBQlNTUxgqBAB7WLShRhOmr7WMuZ0OPTy6SJ0zomhrUl+9Uufdq8Rlk0JONx7+a9WfcIvkTgxzYQAAIJoFAoGfP6iFGIYR1vMhsuyad22TX+MmlWhDtfW9mSO6pGrCqAI5Zba5vxe7Zm1X5G0v5G0v5A0A0cnnNzTuP99o9vLtlvGMpDi9+vvjaJgBAAAAsFefra7Wze+ukNdvWsaP7ZauR8cUKSnKFgoGAADRJSx7gHbp0kWStHjxYsv4tGnT5HA4NHjw4KDHeDw7Vxfq0KFDq9cHAHawsbpJf3p3pfyG9eLx9uE9dWTX6Pkgyl3+jbL+NzJkw4yRnC3PqH+p/uS7aJgBAAAAWlFTc0DXv71CK7Y3WMYLs5P1xLnFSozjwycAAAAA+88fMHTtf7/RjJKtlvG0RLde/d1x6teZVfgBAAAAhPbJikrd+E5ww8xJvTL1+HnFNMwAAICfFZadZgYPHqyVK1fq6aef1q9+9St16NBB8+fP14cffihJOuOMM4IeU1JSIknKyckJR4kA0KbVef264e0V8jT6LeOXDMjVqP7ZEapqD4FmJS94VkkLnpHDDF4J1NtruOqG3SczqV0EigMAAADswx8wdOvUMi3eVGsZ75qZoIlji5WWGJa3kwAAAGJeVVVVqz230+lURsZPTQYej0eGYbTa+RA5bSHrgGHq9vdW6qOSHZbxlHiXnrmgj7qmGK36eoklbSFv7D/ythfyto9oyDorKyus50PscLlap7HA6XTu82u0LeHO+4Nl23XneysVsPbL6LTi9rp/VKHiXPx7a028vu2FvO2DrO2FvHcKy10OV155pV566SWtWbNGvXr1UlFRkZYtWya/36927drpF7/4RdBjPvnkEzkcDvXt2zccJQJAm7Xzw6hVWl3RaBkf3CtTV52cF6GqrJzVa5Q2/SbFbV0cNGfEpah+8J/l7XO+5HCEvzgAAADARgzT1F8+XK15q6st4x1S4vTM2N7qkBIfmcIAAABiUCAQvDhQazEMI6znQ+TEWtYBY+c1xp4NM0lxTj15XrH6dkqOqe8n3GItbxwa8rYX8rYPskY0CVdD1e6NY2j7WjPv/369Xre/t1LmHg0z5x3VRQ+NPVxuGmbCjte3vZC3fZC1vdg177D81nD00Ufr4YcflsPhUF1dnRYtWqSmpibFxcXpxRdfVFpamuV4j8ejadOmSZKGDh0ajhIBoM16as56fbam2jKW3yFJfz07Xy5nhJtQTFPx3/9XWf87J2TDTHPOUar+5VR5+46lYQYAAABoZaZp6tFP1umDkgrLeFqCS0+P7a0umYkRqgwAAABALDJMU/dPX6P3l1kbZhLcTj1+brGO7Jq2l0cCAAAAsLt/zlujW99aEtQw8/+O66ZHLjiChhkAAHBAwrLTjCRdf/31Ou200zR58mSVl5crNzdXF110kYqLi4OOnT17tgYOHChJGjlyZLhKBIA2550l2/SfheWWscwktx4/t1ipCWH7ERBa/Q7p3auVsvz9oCnT4VLDsVer8ZgrJGeE6wQAAABs4sUvNul/32y1jCW6nXry/GIVZCdHqCoAAAAAscg0TT00Y62mLNluGY93OfTYuUUa0C09QpUBAAAAiHbPzCrTwx8tDxr/3Uk9dcfZfeRg4V0AAHCAwnon8mGHHabDDjvsZ48bPXq0Ro8eHYaKAKDtWrShRhOmr7WMuZ0OPTK6SJ0zEiJT1I9WfCxNGSfVbwuaCmR0V+3wx+XvdEQECgMAAADs6X+LyvXC55ssY26nQw+PLtThnVn9GQAAAMD+M01Tj81ar8nfWj8DiHM59PDoIh3XPSNClQEAANhbVVVVqzyv0+lURsZPv+N5PB4ZhtEq50LktWbepmnq2U836O9fbAyau/yErrrihBxVV1e3yLmwf3h92wt52wdZ20s05J2VlRXW84XC8v04JC6Xq1We1+l07vNrtC3k3fI2Vjfp5ndXym9Y9yi944xeOqZ7ZmSKkiQjoOS590jf/DPktLf/RWoYfIcUn6LW+a8LwonXtr2Qt72QNwC0LR+W7NDDn6yzjDkk3TMiX8f3zIxITQAAAABik2maemrOBr2+qNwy7nI6NGFUoU7slRmZwgAAAKBAIBCW8xiGEbZzIfJaKm/TNPXY7PV6fWF50NxVg/N02XGduaE7CvD6thfytg+ythe75k3TDA5JuDq/du9wQ9tH3oemtqlZN/zrO1U3+i3jlw/uqcuG9I5QVZKaG6U3fy+Vvhc8l9xBGv20EorPUoT3wEEr4rVtL+RtL+QNALFr3upq3fXB6qDxW07roeG920egIgAAAACxyjRNPTtvo15ZsMUy7nJI948s0JCCyK8oCQAAACD6GKapCTPW6q09dquUpJtO6a5fHp0TgaoAAEBb0qJNM3Pnzm3Jp9vl5JNPbpXnBYC2JmCYuub1b7RyW51l/JTeHXXrWX0iVJWkxirp9Yuk9V8EzxWeIY1+WkrtGP66AAAAABtbvLFWt7y7UoE9dqi84qSuGntkpwhVBQAAACBW/f2LTfrXV5stY06HdM/ZBTq1qF2EqgIAAAAQzfyGqXs+XK33l+2wjDsk3X5GT405jPuJAADAoWvRppmhQ4fK4XC05FPK4XDI7/f//IEAAE34oESzlm+3jBV1StWTvzxSLmfL/vd5v3k2Sa+eL20vsY67EqQz75cG/E5q4Z8dAAAAAPZtxbZ6Xff2cnn9hmX8omNy9NvjOkeoKgAAAACx6qWvNutvn2+yjDkk3XVmL53BLpYAAAAAQmgOGLr9vTJ9srLKMu5ySH8Zka8z+3SIUGUAAKCtadGmGWnnttuwj6qqqp8/6CA4nU5lZGTs+trj8cgwjH08ArGMvFvGlO+26sVP11jGMpPcemxMkfyNdapqDH9NzoqVSnvnUjnrrCvLKSFDuug1qcdJ5N2G8dq2F/K2l2jIOysrK6znA4C2ZGN1k66evFx13oBlfGS/Drp+aLcWXxAFAAAAQNv26oItevrTDUHjd5zRU2f3y45ARQAAAACinddv6JZ3V2re6mrLuNvp0AOjCjSskN0qAQBAy2nRpplZs2btdc7n8+mOO+7Q/PnzlZ2drQsvvFDHHnusOnXqJEnaunWr5s+fr0mTJmnbtm0aOHCg7rvvPsXFxbVkiWhhgUDg5w9qAYZhhO1ciDzyPnDfbKzRvR+ttoy5nQ49PLpQOWlxEfn7dG9ZoLT3/k9Or8cybqR0kvPXb0ud+u38mrxtg6zthbzthbwBIHZsr/Np3BulqmhotoyfnJ+pO87oJScNMwAAAAAOwP8WleuJ2euDxm89rYdGH9YxAhUBAAAAiHaNvoBufGeFvl5fYxlPcDv00DlFOrFXZmQKAwAAbVaLNs0MGTIk5LhpmhoxYoQWLFig3/3ud3riiSeUkpISdNwll1yiCRMm6LrrrtPf//53PfbYY3r//fdbskQAaHM2VTfpT1NWym9Yd/oaf3oPHdU1PSI1xa+ZobQPr5Ej4LWM+zN7qf7cl5XxQ8MMAAAAgPDxNPp11eRSbfJYf08/umua7h9ZKLeThhkAAAAA++/Nb7fq4U/WBY3fdEp3jT2yUwQqAgAAABDt6rx+XfvWcn27qc4ynhTn1OPnFmtAt8jc6wQAANo2ZzhO8o9//EMfffSRTjvtNL344oshG2Z+lJycrBdeeEGnn366PvroI73wwgvhKBEAYlKd16/r316h6ka/ZfziY3IitoJbwtL/Ke39K4IaZpo7HSXP+ZNkpHeNSF0AAACAnTX6Arr+7eVataPRMl7cMVmPnVukxLiwvEUEAAAAoI2YsmSbHpi+Nmj8uiHd9Mujc8JfEAAAAICoV93YrCsmlQY1zKQmuPTMBb1pmAEAAK0mLHdEvPTSS3I4HLryyiv3+zHjxo2TaZr697//3YqVAUDsChim7pi2SqsrrDe9ndgzU9cM6Rb+gkxTSfMnKm3WbXKYhmXK132YPGNelpmUFf66AAAAAJtrDhi6+d2V+m6z9UOoblmJmnh+b6UmtOhGxAAAAADauPeX7dC9H60JGh83uKt+NTA3AhUBAAAAiHYV9c36w/9KVLK13jKekeTW8xf20eGd0yJUGQAAsIOw3BVRWloqSerWbf9v4s7Ly7M8FgBg9fTcDZq3utoy1qt9ku4bmS+X0xHeYoyAUub+RUnf/ydoqqnPWNUNvVdyxYW3JgAAAAAKGKb+/P4qfbHWYxnvmBqnZ8b2VrsUfk8HAAAAsP8+Lq3Q3R+skrnH+OXHd9FvjusSkZoAAAAARLettV5dMalU66uaLOPtU+L07AW9ld8hOUKVAQAAuwjLTjNNTTt/2dmwYcN+P+bHY71eb6vUBACxbOr32/XKgi2WsYwktx47tyj8q0T7vUr78OqQDTMNA65U3SkTaJgBAAAAIsA0TT00c62mL6+0jGckuvX02N7KzUiIUGUAAAAAYtGslZW6c1qZjD06Zn5zXGf93wk0zAAAAAAItrG6SZe/XhLUMNMpLV4v/rIvDTMAACAswtI0U1BQIEl6/vnn9/sxPx6bn5/fKjUBQKxavLFW9328xjLmdjr08DmF6pqZGNZaHN4aZbx7mRJWf2QZN+VQ3cl3qWHQjZIjzLveAAAAAJAkPf/ZRr357TbLWFKcU0+eX6xefAgFAAAA4ADMXVWl8VPLFNijYeZXA3J05Uld5eCzAAAAAAB7WFvRqP/77zJtrrEunN41M0F//2VfdcsK731OAADAvsLSNHPhhRfKNE199NFHuvLKK3ftPBOK1+vVVVddpQ8//FAOh0O//OUvw1EiAMSETdVNumnKCvn3WMbt1tN76Oi89LDW4qwrV8abv1Dc5q8t46YzXrVnPqWmw38d1noAAAAA/OS1hVv0jy83W8biXA49MqZI/XNTI1QVAAAAgFj0+Zpq3fLuyqDPJn5xVCddO6QbDTMAAAAAgqzc3qD/+98ybatrtoz3bJeoF3/ZV7kZCRGqDAAA2JE7HCe54YYb9Oqrr6q0tFR/+9vf9M477+jCCy/UwIED1bFjRzkcDm3dulXz58/XG2+8ofLycklScXGxbrjhhnCUCABRr94X0A3vrFB1o98y/v+OydGYwzqGtRZXZZnS371MrrotlnEjPlW1I55Xc9fjw1oPAAAAgJ+8t3S7Hpu13jLmdEj3nl2g47pnRKgqAAAAALHoq3Ue3fTOCjXvscXM+Ud01E2ndKdhBgAAAECQpVvqdPWbpappCljGi7KT9cwFvZWVHBehygAAgF2FpWkmMTFRs2bN0tlnn61FixapvLxcEydODHmsae58w/Woo47Se++9p4QEOooBIGCYuuO9Mq3a0WgZP7Fnpq4d0i2stbi3LFL6e5fL6a22jAeSO6rmnH8q0KFPWOsBAAAA8JM5ZVX664erg8bHn95Tpxa1i0BFAAAAAGLVwg01uuHtFfLt0TBzTv9s3XJaDxpmAAAAAARZvLFW175VqnqfYRnvn5uip87vrfTEsNyyCgAAYOEM14k6deqkr776ShMnTlTfvn1lmmbI//Xp00dPPfWUvv76a+Xm5oarPACIak9/ukGfrq62jPVqn6T7RubL5Qzfh1Jxaz5RxpRLghpm/Jk95Rn7Bg0zAAAAQAQt3FCj8VNXao/72XTV4Dyde3h4d6cEAAAAENsWb6rVdW8tl9dvvdFtRN8Oun14TzlpmAEAAACwh6/WeXTV5OCGmaO7pumZC/rQMAMAACImrL+FuFwujRs3TuPGjVN5ebmWLFmiyspKSVJWVpYOO+wwGmUAYA9Tv9+uV+ZvsYxlJLn12LlFSk0I33/GE5a9odRZt8thWrdObe50hGpG/l1mEqtWAwAAAJFSurU+5ArQlwzM1WXHdY5QVQAAAABi0fdb6nTtm6VqbLbe6HZ6cTv9+cxeYV3MCwAAAEBs+HRVlW55d2XQ5xSDemTokdGFSoxzRagyAACAMDfN7C4nJ0c5OTmROj0AxITFG2t138drLGMup0MPnVOorpmJ4SnCNJW08FmlfPlY0JSv+xDVnPm0FJccnloAAAAABFlX2airJ5eq3mdtcD+nf7auOTkvQlUBAAAAiEWlW+tDrgw9rDBLfx2RLzcNMwAAAAD2MGN5hW6ftkoBw9owc3J+piaMKlS82xmhygAAAHZivzsAiFKbPV7dNGWF/HtcUI4/rYeOyUsPTxFGQCmf/lVJS14JmmrqfZ7qht0vueLCUwsAAACAIFtrvRr3RqmqGv2W8WGFWbpteE85HNzQBgAAAGD/rNhWr3FvlKrOa23IH5yfqftHFsjt4kY3AAAAAFZTv9+mu98v0x63N+n04nY7G++5jgAAAFGAphkAiEL1voCuf3u5qve48e2iY3I05vCO4SnC71Xa9BuVsOqDoKmGo/+ohuNvkrgBDwAAAIiY6sZmXT15ucprfZbxgd3Sde/ZBawADQAAAGC/rdrRoCvfKJWnyfq5xAk9MvTgqELFcaMbAAAAgD28+uU6/XlaWdD4qP7ZumN4T7n4nAIAAESJsDbN+P1+TZs2TZ9++qlWr16t2tpaBQKBfT7G4XBo5syZYaoQACIvYJi6Y1qZVu1otIyf0DND1w7pFpYaHN5apU/7g+I2f2UZN+VQ/eA71HTEZWGpAwAAAEBo9b6Arn1zuVZXWK8b+nZK0SNjipTg5oY2AAAAAPtnbWWjrpxUGrSQ17Hd0/XQ6CLFc30BAADQJrhcrlZ5XqfTuc+v0bb8mO/fP12te6eVBM3/4ugc3XxaTzlZiLdN4PVtL+RtH2RtL+S9U9iaZubNm6dLLrlE69ev3zVmmuZej3c4HDJNUw5+eQJgM898ukGfrqq2jPVsl6j7R4ZnpWhn3ValT/2t3BWllnHTGa/a0x+Rr/DsVq8BAAAAwN75/Ib+NGWFlpbXW8Z7tEvUU+cXKyW+dT74BAAAAND2bKhq0hWTSlTR0GwZP7prmh4bU6TEOHt+iA4AANAWZWVlheU8GRkZYTkPIsM0TU2cuVKPTl8RNPeHk3vp1rN6c89nG8br217I2z7I2l7smndYmmZKS0t15plnqrGxUaZpKj4+XoWFhWrXrp1tu5XaClYgQEsg75+8u2SbXp6/xTKWkejWk2P7KiM5odXP76xapdS3fy1X7SbLuBmfqrqRLyiQd4IO9VVP3vZB1vZC3vZC3gAQOQHD1J3vr9LX62os453S4vX02N7KTI6LUGUAAAAAYs2m6ib9cVKJttdZG2aO6JKqJ84rVmIcDfkAAAAArJ6dvSpkw8z1pxXpmlMLaJgBAABRKSxNM/fff78aGhrkcrn0l7/8Rddcc41SU1PDcWq0MlYgQGuwa94L1lbqvo9WW8bcToeev2SADu/VvvUL2DBfeuNCqbHSOp7aSY6LJyst9/BWOa1d87YjsrYX8rYX8gaA8DBNUw9MX6OZK6y/s2cmufXMBb2Vk976jfYAAAAA2obyGq+umFSqrbU+y3j/3BQ9eV6xktnBEgAAAMAe1uyo12MhGmZuG9Fb/3dyfgQqAgAA2D9haZr55JNP5HA4dO211+q2224LxykBIKZsqGzQH15ZKF/AsIz/dUx/HZ8fhoaZFR9Jky6V/I3W8Xb50iVvSVk9Wr8GAAAAAPv0zKcb9M6S7ZaxlHinJp7fWz3aJUWoKgAAAACxZlutT3+cVKLNNV7LeO9OyZp4fm+lJoTlI2QAAACEWVVVVas8r9PptCyy5/F4ZBjGPh6BWDVh2goFDNMydtvwfF1wWLtW+/eFyOL1bS/kbR9kbS/RkHe4NunYl7C847ljxw5J0rnnnhuO0wFATKnz+nX5ywtUUW9dze03J/bQRcd2a/0CvnlVevcayQxYxzsfLV38hpTSofVrAAAAALBPr8zfope+3mIZi3c59OiYYvXJSYlQVQAAAABizY76nQ0zG6utDTNF2cl6ZmwfpSXSMAMAANBWBQKBnz+oBRiGEbZzIXxKt9bro5IdlrH/O7mXLjiqE3nbCK9veyFv+yBre7Fr3mF51zM7O1ubN29WUhKrnrY1rECAlmDnvA3T1A1vlaq0vNYyfkLPTF15Qm7rrsJgmkpc8KySPn84aKq5+xDVjXhW8rkkX8vWYOe87Yas7YW87SUa8o6GFQgAIFymLNmmJ+est4w5HdL9Iws0oFt6hKoCAAAAEGuqGpp15aRSra9qsoz3ap+kZy7orYwkGmYAAAAAhPbspxssX6clunXl0HyZ3voIVQQAALD/wvLO50knnaRJkybp+++/19FHHx2OUyJMWIEArcFOeU+cu15zyqxNKT3bJer+kflymIZa7a/BNJTy6V+V9N3LQVNN/5+9+w5vqzz7B/4950iWvC3Le2R5ZYdMMslgQ8KGllEotEBpaKGFjrwtbd/+aOGlfV9ogYYNBUpaykgJEFYIK04IJGQ7XpneQ7a8JZ3x+0OO7RM78dKyz/dzXblk3TrneZ7kthxLOvdz512OlhUPAJIZ/ltANyPl2+iYa2Nhvo2F+SYi8p/NxQ784YPDveL3nT8By3Lig7AiIiIiIiIaiRrbPfjhvw/iUH27Lj423oq110yCLcIcpJUREREREVGo23G8CflHnLrYD5ZmIS4iDA0smiEiIqIRICBFMz/96U/x+uuv4y9/+Quuu+46mEzcpYiI6O39tfj79kpdLNZqwsNX5CHK4sefk4oL0R/eC0vJu70eapt1G9oW/BwQBP/NT0REREREA/LVMSf+6+0SqJo+fveyMVg1NTE4iyIiIiKiAZMkyW9ji6J42vs0evgi100dMu58rRDFtW26eKbNiqe+PRVJ0WHDWiP5Dp/bxsJ8GwvzbRzMNRGNNpqm4fGTuswkRFlw86JxwVkQERER0RAEpHpl7ty5eOSRR/DjH/8YV1xxBZ577jkkJCQEYmoiopC0u7y5127Rkijgfy7JQUac1W/zCq5mRL97O8LKv+z1WMviX6PjjJv9NjcREREREQ3cgaoW3PNmETyKvmLm5jPTcMOc1CCtioiIiIgGw2azBWyu2NjYgM1FwTXYXDd1ePDjf3yJg9X63Z8z48Pxr9sWIC0u3JfLIx/jc9tYmG9jYb6Ng7kmopHus9JG7Klo0cXuOjsbEWHcOJ2IiIhGjoD85vL73/8eADBv3jy8/fbbGDt2LM4991xMnDgRERER/Z7/m9/8xt9LJCIKmEqnC/eu733x2y/OHoc5Y2L8Nq/QWoPYDbfAVFegi2uiGc3n/Anu3FV+m5uIiIiIiAbuSH07fvx6Ido8qi5++fQk/HBxRpBWRUREREREI02LS8bNz3+F3WVOXTwt1opXvj+fBTNERERERHRaitq7y0xGnAXfmjsmSCsiIiIiGpqAFM387ne/gyAIAABBENDe3o4NGzZgw4YNAzqfRTNENFq0uRX8dH0RGtplXfzaWSm4YkaS3+YVGw4j9q3vQmou08VVcySaL1oLT+Yiv81NREREREQDV9XkwurXDqLxpNcM5+TG45fnjOt6f4WIiIiIiOh02twybnnhK+w42qCLeZlD+wABAABJREFUJ8dYsO62+ciM739jQyIiIiIiMraNBXU4VN+ui/1wyRiEmcQgrYiIiIhoaALWI0/TtNPeJyIa7VRNw33vlqK4tk0XXzAuFnct898ODKbq3YjZ8H2IHQ79eiIS4Fz1HJTEKX6bm4iIiIiIBq6hzYPVrx1EdbNbFz9zbAx+f1EWJJEFM0REREQjSUNDQ/8HDZEoioiNje2673Q6oarqac6gkWooue7wKLjr9YPYflTfYSYh0ownrpmMGNGNhgb3Kc6mYOJz21iYb2Nhvo0jFHJts9kCOh8RjU5uWcWTW/Sb8+YkRuD8SQlBWhERERHR0AWkaIYv9ImIgL99fhyflug/JB0Xb8UDq7Jh8tPFb+ajnyBm450QZP2uD0rsWDgveQFqLNulEhERERGFghaXjB+/Xoijjg5dfGpqJP50aS53bSMiIiIagRRFCdhcqqoGdD4Knv5y7ZJV3Lu+qFfBjC3chL9dPRGZcWH8XhlB+Nw2FubbWJhv42CuiWikemNPDSqb9MX2q5dkQhS4wRcRERGNPAHrNENEZGRv76/FC9srdbFYqwkPX56HKIt/fhRbCl5H1MdrIGj6N+A8iVPRtOpZaBHc+YGIiIiIKBR4L2orRkF1qy4+wR6OR67IQ0SYFKSVERERERHRSOJRVPzyrWJsPaIvmIm1mvC3ayZhQkJEkFZGREREREQjSatbwbNby3WxM9KjsWh87CnOICIiIgptLJohIvKz3eXN+MMHh3UxSRTwP5dkI9Nm9f2EmobwnU8hcutDvR5yZy5B04WPA2GRvp+XiIiIiIgGTVY1/OrtEnx9vEkXT4ux4LGrJiIu3ByklRERERER0UgiKyr+6+0SfH6oURePtkh4/OqJyElkwQwREREREQ3Muh1VaGiXdbE7l2RCYJcZIiIiGqFYNENE5EeVThd+9p8ieBRNF//52WMxZ4wfdl/QVER+8QeE736h10MduZei5ewHASnM9/MSEREREdGgaZqGP3xwGJ+UNOji8REmPHb1RCRF83d3IiIiIiLqn6xquO/dUmwu1r+2iAyT8NhVEzExmRtpERERERHRwDS2efDSVxW62JIJcTgjIzpIKyIiIiIavoAXzTgcDjz//PP46KOPsG/fPjgcDgBAfHw8pk6dinPOOQc333wz4uPjA700IiKfanMr+On6Ijja9DsvfHtWMq6ckez7CRUXoj/6GSzF7/Rey8zvo23hLwBB9P28REREREQ0aJqm4S+fHsOGfbW6eGSYhL9eORFj/NGVkoiIiIiIRh1F1fDf75Xiw0KHLh5hFvHXK/MwJTUqSCsjIiIiIqKR6PkvK9DqVrvuCwB+uCQzeAsiIiIi8oGAFs08+eSTuPfee9HW1gbAe4HICeXl5aioqMAHH3yA3/3ud/jf//1f3HbbbYFcHhGRz6iaht+8W4ri2jZdfMG4WNy9bKzP5xPczYh+94cIK8vv9VjLov9Cx8zv+XxOIiIiIiIaur9vr8TLX1fpYhaTgEeuyOUu0ERERERENCCqpuH+Dw5j44F6XdxqEvHIFXmYkc6doImIiIiIaOCqmlz4965qXeyCyXbkJEYEaUVEREREvhGwopkHH3wQv/rVr7oKZWJjYzFz5kykpKQAAKqqqvDNN9/A6XSitbUVd9xxBxobG/Hzn/88UEskIvKZtV+U4ZOSBl1sbLwVf1yZDZMo+HQuobUWsRtuganugC6uiWa0nP0QXHmX+HQ+IiIiIiIanjd21+Cxz4/rYpIAPLgqBzMzYoK0KiIiIiIiGkk0TcMDHx7p1b3SYhLw8BW5mJXJ1xZERERERDQ4T28th1vp3ghdEgXcvjAjiCsiIiIi8o2AFM3s27cP9913HzRNQ2pqKv70pz/h6quvhtls1h0nyzL+/e9/42c/+xkqKirw61//GhdffDGmTJkSiGUSEfnEO/tr8fyXFbpYjFXCw5fnIdrq2x+7YuNhxL51M6Qm/QV3qjkSzRf+DZ4xi306HxERERERDc9HhfV44MPDveK/vTALS7JsQVgRERERERGNNJqm4U8fH8Wbe2p0cbMk4M+X5mLumNggrYyIiIiIiEaqI/XtvYryr5iehIw4a5BWREREROQ7YiAmeeyxx6AoChITE7F161Zcd911vQpmAMBkMuHaa6/F1q1bkZSUBEVR8NhjjwViiUREPrGnohn3f6C/AE4SBfzPJTkYY/Pti0hT9R7EvXZN74KZ8Hg4L/8HC2aIiIiIiELMtiNO/PqdUmgnxe9dMRYXTU4IypqIiIiIiGhk0TQND39yDK9+U62Lm0QBD12SgwXj44KzMCIiIiIiGtH+9sVxqD0+wLCaRHxvQVrwFkRERETkQwEpmvn4448hCALWrFmDMWPG9Ht8ZmYmfvGLX0DTNGzatCkAKyQiGr6qJhfuXV8Ej6K/BO5nK8b6fFc389HPELv+eogdDl1ciR2Dxiv/DSVpmk/nIyIiIiKi4dlX2YKf/acIsqp/vXDrgnR8e1ZKkFZFREREREQjiaZpePSzY3hlR5UuLokCHlyVze6VREREREQ0JPsrW/BxcYMudt2cFCREhgVpRURERES+ZQrEJOXl5QCAhQsXDvicRYsWAQAqKir8siYiIl9qcyv46ZtFcLTJuvi3ZibjqjOSfTqXpXA9ojb9AoKqn0tOnALnquegRXCHaiIiIiKiUFJa14a7Xi9Eu0fVxa8+Ixm3LUwP0qqIiIhGIU0DVCXYqyAi8ptHPirG89vKdTFRAP5wcRaW5cQHaVVERERERDTSPf7Fcd39WKsJN85NDdJqiIiIiHwvIEUzkiQBAGRZ7ufIbori/WBLFAPSDIeIaMhUTcNv3i1FUW2bLj5/XCx+snys7ybSNIR/8wwi8x/s9ZA7cxGaL/wbtLAo381HRERENARutxvr1q3DoUOHUFVVhZaWFkRERCAlJQUrVqzAkiVLYDIF5KUoUUiocLpw52sH4ezQvydy/kQ7fnb2WAiCEKSVERERjXxCuwOmmj0Iq90HOAqA8p3AoruASdcHe2lERD732MfF+MumYl1MAPD7i7JwTp49OIsiIiIiIqIR78ujTmw/2qSL3TQvFVEWfp5HREREo0dAfrMZM2YMCgoKsGnTpgF3m9m0aVPXuUREoWztF2X4pETfonRsvBUPrMyGSfTRBXCaisgvHkD47ud6PdSRswot5zwESGyJSkRERMHX0dGBDz74ANnZ2Zg5cyZiYmLQ2tqKXbt2Ye3atcjPz8eaNWu4QQIZQn2rB6v/XYDaFo8uvnB8LH534QSILJghIiIaOHcrTLX7YK7eA1PNHphq9kJqOt77uPIdLJoholHnyU9L8ecPinrFf3PBBFwwid3niYiIiIhoaDRNw+Of6d9fSYwy45qZKUFaEREREZF/BKRo5txzz8WBAwfw5z//GZdddhmmTZt22uP37duHP/3pTxAEAeedd14glkhENCTvHqjD819W6GIxVgkPX56HaKuPfsQqbkR99HNYizf0eqh9xi1oXbwGEHjRKREREYWGqKgo/P3vf+/VTUZRFNx///3YvXs3du3ahVmzZgVphUSB0eKS8aPXD+J4o0sXn54WhYcuyYFZ4u/wREREp6S4YKor9BbHdBbJSI4SCND6P7dip//XR0QUQO8dqMMDG3sXzPzXueOxampiEFZERERERESjxcfFDThQ3aqL3bYwA1YzP8MgIiKi0SUgRTN33303nnjiCbS0tGDx4sW47777cPPNN8Nu17cKr6+vx/PPP48//OEPaG5uhtVqxd133x2IJRIRDdreimbc//4hXUwSgP+5JAdjbFafzCG4WxC98YcIO76l12OtC3+J9lm3+mQeIiIiIl8RRbHPLjKSJGHu3LnYv38/qqqqgrAyosDp8Kj4yZtFKKpp08WzE8LxyBV5sJqlIK2MiIgoBKkKpIbSru4xpurdMNUVQlDdQxuv4QiE9gYgLMa36yQiCgK3rOKRT470iv/87LG4YkZS4BdERERERESjhqxq+NsX+i4zY2xWFucTERHRqBSQopmxY8fiySefxM0334yWlhb84he/wC9/+UuMHz8eSUlJEAQB1dXVOHz4MDRNg6ZpEAQBTz75JMaMGROIJRIRDUpVkwv3ri+GW9Hvbvmzs8dh7phYn8whtNUhdsMtMNXu18U10YSWs/8HrrzLfDIPERERhQ6n04mSkhKUlJSgtLQUpaWlaG5uBgAsXboUq1evHvBYtbW12LhxI3bu3In6+nqYTCakpKRgwYIFOP/882GxWPz11+iTqqrYvXs3ACAzMzOgcxMFkqyoWLOhGN+UNevi6bEWPHbVRMT4qiMlERHRSKRpEJvLvN1jqnfDXLMXUu1+iJ7W/s891ZCSBUrSVJjGzAPSZwFps6CJsYA6gK40REQhbv3eGlQ364sI71kxDtfMTA7SioiIiIiIaLR4e38tjjo6dLEfLs6ASRSCtCIiIiIi/wnYlRo33ngj7HY7br/9dlRUVEDTNJSWluLQIW+XBk3r/gArLS0NTz31FC666KJALY+GSJL8szvuyTtT97VTNY0eIy3f7W4F96wvRn2bRxf/1qwUfGt2mk/mEBuPIGr9jZCcx3RxzRyBlovXQh67FCN1b+qRlm8aOubaWJhvY2G+/efWW33TRe7rr7/Go48+ivb29q6Yy+XqKsTZtGkT1qxZg5SUFJ/M1xdZlvHGG28AAJqbm7Fv3z6Ul5dj2bJlmDZtmt/mJQomVdPw3+8fwueHGnVxe6QZj189EQlRYcFZGBERUZAIrbUw1+zxdpGp9naSETsahjyeJkhQ7HmQk6bBkzwdcvIMKPE5kMwW2Gy27gMbGgAow/8LEBEFUYdHxfNfVuhiCybYccPcNCgKf8YREREREdHQuWQVT+eX62KTkiOxIjc+SCsiIiIi8q+Abm968cUX48iRI3jzzTfx0UcfYd++fXA4HACA+Ph4TJ06Feeccw4uu+wymM3mQC6Nhkj3QaQfxcb6pnMHjQyhnG9V1fDLf+xAYY1+98slOQn4w5UzYZJ8cNFwxTfAa1cDrbX6eEQChOtfRXT67OHPEUJCOd/kW8y1sTDfxsJ8+0dCQgLS09O7urMM1OHDh/HII4/A7XbDarXisssuw9SpU+F2u7FlyxZs2rQJlZWVeOCBB/Dggw8iPDzcL+uXZRmvvfZa131BELBq1Spcd911fpmPKNg0TcPDm49h44F6XTzaIuHxqyYiI84apJUREREFhuBq9hbH1OztLJDZA6mlclhjynHjISdNh5w83XubOBkw8f9UIjKGN/fUoLZFv3nXT87NDdJqiIiIiIhoNPn3rupeXS1XL8mAKLDLDBEREY1OAS2aAQCTyYSrr74aV199daCnJiIatv/9sBDv76/WxSYkROKxa2f5pmCmZBPwr+8AHn1RDuLGAt95E7BnDX8OIiIiCllXXXUVsrKykJWVhbi4ONTU1ODOO+8c1BgvvPAC3G43JEnCr3/9a+Tmdl9QM3XqVKSmpuLll19GZWUlNmzYgGuuuabXGC+++CI8Hk+v+KlcdNFFSE1N1cWsViteffVVqKqKhoYG7NixA+vWrUNRURHWrFmDiIiIQf29iELds9sqsG5nlS5mMYl45Io8ZCfy+52IiEYZuQOm2gM9imR2w9R4eFhDKlEpkJNmdBbITIOcNA2aJcZHCyYiGlk6PApeOKnLzOLsBMwbH4+GhqF37CIiIiIiImpxyb26Ws7JjMGZY7lRIhEREY1eAS+aISIaqdZ/U47HN5fqYjFWE565aQ5iI3zQHWvPq8D6OwBV1sdTpgHXvw5EJw9/DiIiIgppfRWwDEZJSQkKCgoAAMuXL9cVzJywcuVKbN68GeXl5di4cSOuuOIKmEz6l4YffvghXC7XgOedP39+r6KZE0RRhN1ux3nnnYfo6Gg8/PDDeOONN3DDDTcM4m9GFNr+/U01nthSpotJooA/XZqDGenRQVoVERGRj6gyJEcxTNV7YK7eDVPNXkiOIggnv4c1mCGtNm9hTGcHGU/SdGiRiT5cNBHRyPbarhrUt53cZSYnSKshIiIiIqLR5OWvquBs17+vc+dZmRDYZYaIiIhGMRbN0LD4azcrURQRG9tdve50OqGqql/mouAbCfneW9GMn7+2TxeTBOB/Ls2FzeQZ9nPBsvMZRHx+f6+4J2MhWlY+CchhwCjZPW4k5Jt8g7k2FubbWEIh3zabLaDzjRTbt2/v+nr58uV9HiOKIpYuXYpXXnkFra2t2L9/P2bMmKE75qWXXvLL+k7Mc+DAAb+MTxQM7xXU4aFNR3QxAcB/XzgBC8fHBWNJREREQ6dpEJ1HYK7e4+0iU70HproDEOSOoQ9pjoCcOBWeHkUyakwmwAsxiIj61O5W8Pft+l2fl+YmYvbY+CCtiIiIiIiIRov6Vg/+saNSF1ueY8PU1KggrYiIiIgoMAJSNLN3715ceumlkCQJn3zyCdLT0097fHl5OZYuXQpN07Bx48Y+d0em0KAoSkDmUVU1YHNR8IVavquaXPjJ6wfhVjRd/N4V4zA3M3p4a9VURGx5EBG7nu31kCtnJZrPeQiQLEAI/Xv4Wqjlm/yHuTYW5ttYmO/QUVhYCACwWCyYMGHCKY+bPHmy7pyTi2b8xeFwAAAkSQrIfET+ln+4Eb/deAjaSfGfnz0OF0xKCMqaiIiIBkzTILZWeQtjavZ6i2Rq9kJ0NQ19SNEMOWEi5KTpXQUyii0LEPn7HxHRQL26qxoNJ+36/JNz+VkpEREREQ2fvz6fEUXxtPcpdLyw/RjaPd2bIYoCsPqssYP63mC+jYX5Nhbm2ziYa2Nhvr0CUjTz8ssv48iRIzj//PP7LZgBgPT0dOTm5uL999/Hyy+/jN///vcBWCURUW/tbgU/XV+E+jaPLn71Gcm4emby8AZX3Ija9EtYi/7Te94ZN6N18X8BgjH/cyIiIqKhKSsrAwCkpKSc9s3ttLS0Xuf4cg2JiYmwWCy6uMvlwosvvggAmDlzpk/nJAqG3eXN+Nl/iqGo+pKZHyzKGP5rBSIiIj8Q2ht0xTHm6t0Q22qHPJ4GAUp8tq5ARk7I824AQ0REQ9LqVvDiV/pdn5dk2XBGZlxwFkREREREo4rNZgvIPLGxsQGZhwbnuKMNr+2q0sWumJWBOTn9X895Osy3sTDfxsJ8GwdzbSxGzXdAimY+/fRTCIKASy65ZMDnXHrppXjvvfewadMmFs0QUVComobfbCxFUU2bLj5vbAzuWTF2WGML7hZEb7wTYcc/7/VY68Kfo33mbYAgDGsOIiIiMha3243m5mYAgN1uP+2xUVFRsFgscLlcqK+v9+k68vPz8c4772DixIlITExEeHg4HA4Hdu3ahebmZkyaNAkrV64c1JgDXaM/O9hw5w1j6S/fRTWtuPuNQrhkVRe/bnYqbluUCYG/y48YfG4bC/NtLIbPt6cNppp9kKr3wFS9C1L1HkjOY8MaUonJhJI8HXLyDO9t0lQgLEp3TLD6yRg+30Q0avxrZxWcJ3WZ+cHizCCthoiIiIiIRpOHPyqCR+neCCxMEnH3OTlBXBERERFR4ASkaKaoqAgAMH369AGfM3XqVABAYWGhX9ZERNSfJ7aUYXNxgy42xmbFg6tyYBKHfhGc0FaHmA3fg7l2ny6uCRJazn4QrolXDHlsIiIiMq6Ojo6ur61Wa7/HW61WuFwu3Xm+MHv2bDQ0NKCoqAhFRUXo6OhAREQExowZg0WLFmH58uWDLm654447BnTcq6++OpQlD4lRd94wqp75Plbfhjtf24Fml6I75vKZ6bj/yhkQh/FagYKPz21jYb6NZVTnW3YDNfuB8h1A+TdAxU6g9iCgqf2feyqRSUD6LCBtVtetFGmHBCDMZwv3n1GdbyIatVpcMl7+Wt9lZmm2DZNTok5xBhERERER0cAUVjXjzW/KdbEb5o9Fhi0iSCsiIiIiCqyAFM20tLQA8O5mPFAnjm1qavLLmoiITue9gjo8t61CF4u2SHj48lzEWIf+o1N0HkXsW9/ttbOnZgpH04WPwTN22ZDHJiIiImNzu91dX5tM/f++cuKYnuf5QlZWFrKysnw6JlGoqGnqwA3PfonaZpcufs6kJDx01XQWzBARkf+pKlBX5C2MKd/pva3aCyjD+J3OEgOkndFZIDPbWyQTk84uyEREAbZuRxWaOvTF+bctTA/SaoiIiIhoNGpoaOj/oCEQRVG3gYXT6YSqDmMzD/K5P75dAK27yQwiwkRcPythSN8TzLexMN/GwnwbB3NtLKGQb5vNFtD5+hKQohmbzYa6ujpUVVVhxowZAzqnqqoKABAdHe3PpRER9bKvsgW/f++QLiYJwIOX5GBsfPiQx5Vq9iF2wy0Q2+t1cdUaj6ZVz0BOHtjPRyIiIqK+hIV17/kty3K/x584pud5oWrt2rXBXgIRnG0e3PjcdhxztOni88bF47HrZsEsiUFaGRERjVqaBjQe61Eg8w1QsQtwNw99TMkCpE73Fsec6CITnwWI/H+MiCiYmjtk/GNHlS62IseGvKTIIK2IiIiIiEYjRVH6P8gHVFUN2FzUvz0Vzfi0RF8cc8OcVMRaRJ/kifk2FubbWJhv42CujcWo+Q5I0UxOTg7q6urw3nvv4fzzzx/QORs3bgQA7lBMRAFV1eTCPeuL4FY0XfzeFeNw5tjYU5zVP/PxLYh+9w6InlZdXInOgPOSF6Daxg95bCIiIiIAsFqtXV93dHT0e/yJY3qeF6rsdvuAjvPXDmlAaOy8QYFzcr6r6hy4fd0+HKzSX6SclxSJP1+WjfaWJrQHepHkE3xuGwvzbSwjMd9CWx2k6j0wVe+GqWo3pJq9vTZfGQxNkKDYc6Ekz4CcPB1K8nQo9jxAMusPdDqHufLgC3a+Q2GHNCIa2V7ZUYUWV/cH1QKA2xZmBG9BREREREQ0Kmiahsc+O66LxYWbcP2c1CCtiIiIiCg4AlI0c/755yM/Px9PPfUUbrvtNkyaNOm0x+/fvx9PP/00BEHABRdcEIglEhGh3a3gnvVFqG/16OJXn5GEq2cmD3ncsKK3EP3RzyGo+nHlhElwrnoOWmTSkMcmIiIiOiEsLAzR0dFobm5Gff3pL65saWmBy+UCMPCClJEgkDthGHXnDSNyyyrueaMAu8v1BTOZcRb89co8RJgEfi+MInxuGwvzbSyhlm/B3QxTzT6YqvfAVOP9IzVXDGtMJXYcPMnTISdNh5w8DXLCFMDcR9fkEPp38JdQyzcR0ek422W8sqNSFzsnLx7ZiRFBWhEREREREY0WW484sbNM//nGLfPTEBkmBWlFRERERMERkKKZO+64Aw899BDa2tqwYsUKPP3001i5cmWfx7711lu4/fbb0d7ejoiICKxevToQSyQig1M1Db/dWIrCmjZdfN6YGNyzfOyQx7Xueg5RX/yhV9ydPh/NFz0BzRI95LGJiIiITpaRkYGCggJUVVVBURRIUt9veFdUVOjOIaK+qaqGe/+9G1sONeriiVFmPH71JNgjzX2fSERE1JPsgqnuQI8Cmb2QGg5BgNb/uaegRKZ4C2OSpkNOngE5cSo069C7JBMRUfC8/HUlWt3d3bEEALcuSA/egoiIiIiIaFRQNQ2Pfa7vMpMSHYYrZwx942AiIiKikSogRTMJCQl44okn8J3vfAc1NTW49NJLMWHCBCxevBipqd5Wf5WVlfj8889x+PBhaJoGQRCwdu1aJCfzlzQi8r8nt5Th4+IGXWyMzYoHL8mBSRIHP6CmIiL/IUR883Svh1zZF6H53D8DkmWoyyUiIiLqU15eHgoKCuByuXDo0CHk5OT0edyBAwd05xBRb5qm4Xcb9uOt3fpd/2OtJjx21USkxfL3eSIi6oMqQ3KUeItjqvfAXLMHUn0hBFUe+pCW2M7iGO8fT9J0di4mIholGts8+OfOKl3s/El2TEhglxkiIiIiIhqeDwsdKDpp8+DbF2XAYhrCdVBEREREI1xAimYA4Prrr4eqqrjjjjvQ1taG0tJSHDp0SHeMpnl31ouMjMTatWtxww03BGp5RGRg7xXU4dlt+gvhoi0S/u/yXMRYh/BjUvEg6uNfwlq4vtdD7dNvROuS+wCBL0CJiIjI9+bNm4f169cDADZv3txn0Yyqqvj0008BeF97TZkyJZBLJBoxHv6oGC9uPaqLhZtF/OXKPGTxAjYiIgIATYPoPApTzR6Yq/d6C2Vq90OQ24c+pCkcctJUyEnT4UmaBjl5OtSYMYAg+HDhREQUKl78qhLtnu4uM6IAfJ9dZoiIiIiIaJhkRcXaL/RdZibYw3HR5IQgrYiIiIgouAJWNAMA3/nOd3Duuefir3/9K9555x3s27evq1BGFEVMmzYNq1atwp133skOM0QUEPsqW/D79/QFfJIAPLAqB+Piwwc/oLsVMe+tRtixz3s91LrgZ2ifdTsvciAiIiK/yc7OxqRJk1BQUIDNmzdj2bJlyM3N1R3z9ttvo7y8HABw4YUXwmQK6MtCohHhla8r8ddNh3UxkyjgT5fmYmpqVJBWRUREwSa2VHd2kNkNU81emGr2QnQ5hzyeJpoh2/O8HWSSvH+U+CxA5O9nRERG4Gj14NVvqnWxCyclDO2zCSIiIiIioh7+s68WZY0uXeyHizMgibxmiYiIiIwp4J++paSk4I9//CP++Mc/QpZlOBwOAEB8fDwv1iKigKpuduGe9UVwK5oufs+KsZg/LnbQ4wnt9YjZ8H2Ya/bo4pogoWXFH+GadNWw1ktERESj38GDB1FVVdV1v6mpqevrqqoqfPLJJ7rjly1b1muM7373u7jvvvvgdrtx//334/LLL8eUKVPgdruRn5+Pjz76CACQmpqKVatW+eXvQTSS7aloxp9PKpgRANx/cdaQXicQEdHIJHQ0dhbG7IGpeg9MNXshtVb3f+IpaBCg2LIgd3aPkZNnQLZPBEwWH66aiIhGkhe/qkCH3N1lRmKXGSIiIiIi8oEOj4Kn88t1sampkViabQvSioiIiIiCL6hVKiaTCUlJScFcAhEZVLtbwT3ri1Df6tHFr5qRhGtmpgx6PNF5DLFvfReS86gurpnC0XTBo/CMWz6s9RIREZExbNq0CZ9++mmfjxUWFqKwsFAX66toZvz48bj77rvx6KOPor29HevWret1TGpqKtasWYPw8NG1e60kSX4bWxTF096n0UHTNDz62XFoJ8XvuzAb50/m+xejEZ/bxsJ8G8ug8u1pg1Sz39tBpnoPpOo9kJxHhjW/Ep0OJXkG5JQZUJKnQ06cCliidcf47zcX4+Hzm4hGmroWN/69S1+MedGURGTarEFaERERERERjRb/3FmNupOuh7pzSSYEgV1miIiIyLjY2oWIDEfVNPx2YykOVrfp4vPGxODeFWMHPZ5Uux+xG26B2Fann8dqQ9PKZyCnnDGc5RIREREN2pw5c/DnP/8Z7777Lnbu3AmHwwGTyYSUlBTMnz8fF1xwASyW0beruc0WuB2yYmPZcWQ02nywBt+UNetid52dg1uW5gZpRRRofG4bC/NtLF35VjxA9X6gYidQ3vmntgDQ1NMPcDoRCUD6bCB9FpA2C0ibCSkqERKAMJ+sngaLz28iCnV/314Jl9xdri+JAr43Py2IKyIiIiIiotGgqUPG37dX6GLzx8Vizhi+V0JERETGFvCimeLiYrz44ovYunUrqqqq0N7ejvfffx/Z2dldx+zbtw/Hjh1DZGQkli5dGuglEtEo99SWcnxc3KCLZcZZ8MCqHJikwe1CaS7LR/Q7d0D0tOjiSnQ6mi55AYptwrDXS0RERMaxevVqrF692idjJSYm4qabbsJNN93kk/GIRjtV1fDQ+/puThm2cKxenn2KM4iIKOSpKlBf0qNAZgdQtRdQXEMfMywaSDuju0AmfRYQmwlwp04iIhqgmmY3Xt+t7zJzydQEZMSxywwREREREQ3Pi9sr0OxSdLHVizODtBoiIiKi0BGwohlVVfHzn/8cf/nLX6CqKjTNu3uSIAhwu926Y48dO4aVK1fCZDLh8OHDSE9PD9QyiWiUe/9gPZ7ZVq6LRVkkPHx5HmLDB/cjMaz4bUR/eC8EVd/SVLZPRNOq56BGJQ97vUREREREFBhv761EQWWTLvaTc3IRZhpcYT0REQWJpgHOMm9hzIkimcrdgKup/3NPRbIAKdN6FMjMBuzZgMj/G4iIaOie/7ICbqW7y4xJFHDLmfwslIiIiIiIhqeuxY11O/UF+ufmxWNSSmSQVkREREQUOgJWNHP77bfjueeeg6ZpSE9Px4IFC/Daa6/1eexFF12E8ePH48iRI3jttddw1113BWqZRDSK7atswe/fK9XFJAF4cFU2xtnDBzWWdfcLiPz8fgjQdHF3+plovuhJaJboYa+XiIiIiAanoaGh/4OGSBRFxMZ2t653Op1QVdVv81FgeRQVf3qvQBfLTY7CZTO9F64x36MXn9vGwnyPLkJbPaTqPTBV7+683QOxvW7I42mCCCU+F0rKDMjJ06Ekz4BizwWkMP2BTucwV07+EOznt81mC9hcRDSyVTW5sH5vjS522bREpMZagrQiIiIiIiIaLZ7ZWg6X3P1+iCQAP1iUEcQVEREREYWOgBTNbNq0Cc8++ywEQcB//dd/4b//+78hSRLE0+zId/XVV+Ohhx7Cxx9/zKIZIhq2mmY37l1fBJesL3L56fKxmD8ubuADaRoitv4ZETuf6PWQK+tCNJ/7v4CJH24RERERBYOiKP0f5COqqgZ0PvKv/+ypwfGGDl3snvPyIIkCAObbSJhrY2G+Rw7B3QJTzT6YavbAVLMXpuo9kJrLhjWmEjsWnqTpkJOnQ06aDjlxMmCO6ONAfo+MRHx+E1Goev7LCnh6dJkxSwJunp8WxBUREREREdFocLyhA2/urdXFLpmWiLHxg9tEmIiIiGi0CkjRzFNPPQXA20Hm/vvvH9A58+bNAwDs37/fb+siImPo8Cj46fpC1LV6dPErZyThmpnJAx9I8SDq4zWwFr7Z66H2ad9B65L7AFEa7nKJiIiIiCiAOjwqns7XX3g9LTUK500exGsFIiLyHcUFU91BmKr3eItkqvdAaijt1e13UKJT4U6cCk/SNG+BTNI0aNY4ny2ZiIhoICqcLvznpIvYLp+ehORobsRFRERERETD88SWMihq9/tnFpOA7y9ID+KKiIiIiEJLQIpmtm7dCkEQ8L3vfW/A52RkeFsDVlVV+WtZRGQAqqbhtxsP4WB1my4+d0wMfrZiLARBGNhAnjbEvHcnwo5+2uuh1vn3oH32HcBAxyIiIiIiopDx2q5q1LToC+zvXDqI1wpERDR0qgKpoQSm6r0w1ez2FsrUF0JQPf2fe6ohLTGQk6ZDSZmB8AkLgfRZQEwaWhsa2HmEiIiC6rlt5ZB7XMQWJgm4+Ux2mSEiIiIiouEprGnF+wfrdbFrZqawQJ+IiIioh4AUzdTU1AAAxo0bN+BzzGYzAECWZX8siYgM4un8cmwqcuhimXEWPLgqByZJHNAYQrsDMW9/H+bq3bq4JkhoWf4HuCZf7bP1EhERERFR4LS4ZDy/vUIXmzc2BvPGxgZpRUREo5imQWw6BlP1Hphr9nq7yNTuh+Bp6//cUw1pskJOnAI5aTo8ydMhJ02HGjsWEARIkoRwm82HfwEiIqKhK2vswIZ9+i4zV56RjMSosCCtiIiIiIiIRovHPz+uux9lkfDdeSzQJyIiIuopIEUzkZGRaGxsRG1tbf8HdyorKwMAxMfH+2tZRDTKfXCwHk9vLdfFoiwSHr48D7HhA/vxJzaVIeat78LUeFgX10xWNJ3/KDzjV/hsvUREREREFFj/+LoKznb9Zh2rF2cGaTVERKOL0FoDc80eb/eYmj0wVe+F6Goc8niaaIJiz4MnaTrkzgIZJT4bEAPyFjcREdGwPLu1HEp3kxlYTCJumpcavAUREREREdGosPN4E/IPO3Wx78xNHfB1UURERERGEZDfjiZMmICdO3fiwIEDOPfccwd0zsaNGwEAU6ZM8efSiGiU2l/Zgv9+r1QXEwXgwVXZGGcPH9AYUl0BYt+6GWKbvuBPtcShaeXTkFNn+Wy9REREREQUWA1tHvzj60pdbHmODVNSo4K0IiKikUtwNcFUs7dHgcweSK1VwxpTtmVBTpoG+USRTMJkwGTx0YqJiIgC51hDB949UKeLXXNGMhIi2WWGiIhotBHcLZCch4DD5UBNAVBbAHHRr6DEjAv20ohoFNI0DY+d1GXGHmHGtbNSgrQiIiIiotAVkKKZ8847Dzt27MDjjz+OH/3oRxBF8bTHHzhwAC+88AIEQcBFF10UiCUS0ShS0+zGPeuL4JI1Xfyny8di/ri4AY1hLtuK6Hd/ANHdoosr0WloWvW8dydTIiIiIgopkiT5beyTX8f297qWQt8L24+hzaN23RcFYPVZYyFJEvNtIMy1sTDfPiJ3QKrZD1P1bkjVu70FMid16B0sJTodSrK3OEZJngE5aSpgidEdM9j/5ZlvY2G+iSiUPXNSl5lws4gb2WWGiIhoZJM7IDlKYHIUQXIUw1TvvZWay3sdKuVeAQ+LZojIDz4/1Ig9Ffrrmr63IA0RYf77vIyIiIhopApI0cyPf/xj/PWvf0VpaSl+8IMf4G9/+xtMpr6n/vDDD3HzzTejo6MDdrsdt956ayCWSESjRIdHwT3ri1DX6tHFr5iRhG/NTB7QGGEl7yL6g3sgqG5dXI7PRdMlz0ON4o4MRERERKHIZrMFbK7Y2NiAzUW+V97Yjn9/U62LXT4zA3Ny0vs8nvk2DubaWJjvAVA83p1xy3cAFTuB8m+AmgOApgx9zAg7kDYLSJ8NpM8C0mZCikqCBMCf++0z38bCfBNRqDhS3473Ck7qMjMzGbYIc5BWRERERIOiuCA1HIbkKOoqjDE5iiE6j0GA1v/5AKT6IiDrQj8vlIiMRlE1PH5Sl5n0WAsun54UpBURERERhbaAFM0kJyfjiSeewI033ohnn30W77//Pi6++OKux//yl79A0zRs2bIFBw8ehKZpEEURL7zwAqKiogKxRCIaBVRNw+82HkJBdasuPiczBj9fMRaCIPQ7hnXPi4j87Pe93uDypM1D08VPQjtpl1MiIiIiIhp5/vJREdxKd5cZsyTg7nNygrgiIqIQoKqAoxQo39lZILMTqNoDyB1DHzMsCkib6f2TPstbLBM3BhjAezRERL7idruxbt06HDp0CFVVVWhpaUFERARSUlKwYsUKLFmy5JQbvREN19Nby6H2+LghwiziO3PYZYaIiCjkKB5IzqP6rjGOIkiNRyAMZ+MIdBbNEBH52HsFdSita9fFfrAoA2aJ3XeJiIiI+hKwTwGuv/56mM1m3H777Th+/DiefPLJrgvYn3nmGQCApnnfNY6KisLf//53XWENEVF/ns4vx0dFDl0sI86CBy/Jhqm/F4Wahoht/4uIHWt7PeSacD6az3sYMFl8uVwiIiIiIgqCkpoWvLajTBe7/syxyIyPCNKKiIiCQNOApnJ9gUzFLsDlHPqYUhiQMq2zi0xngUxCDiBKPls2EdFQdHR04IMPPkB2djZmzpyJmJgYtLa2YteuXVi7di3y8/OxZs0aiCIvLCLfKq1rwwcH63Wxb89OQRy7zBAREQWPqkBsOg6To0hfINNwCILq8ckUmiBCiM8CkiYCiZPgsk32ybhERCd4FBVPbinXxXISI3D+JHuQVkREREQU+gK6ddY111yDs88+G3/729+wYcMG7Nq1C7Isdz0+ZcoUXHLJJbjrrruQlMRWgUQ0cB8erMfTW/UvCCPDJDx8eR7iwvv5AEqVEbX5V7AWvNbrofap16P1rN/yAg8iIiKiEaChocFvY4uiiNjY2K77TqcTqqqe5gwKVQ++U6jb6TncLOKGWQm67x/m2ziYa2Mxcr6F9gZI1bthqt7TebsbYlvdkMfTBBFqfA7k5OmQk6dDSZ4BJWGit3CmJ2fTMFc+dEbOtxEFO982my1gc9Hgndio7eRuMoqi4P7778fu3buxa9cuzJo1K0grpNHq6fxyXU/7yDAJ189mlxkiIqKA0FSIzRU9CmOKYHIUQ3KUQFBcvpkCAtSYTMjxOVDsuVDicyDbcwF7NmyJ3f/nyw0NgDK8bjVERD29sbsGFU36n2U/XJwBkd2diYiIiE4p4P3m7XY77rvvPtx3331QVRUOhwOKoiA+Ph5mM3dWIqLBO1DVgt+9V6qLiQLw4KpsjLeHn/5kTxti3vsxwo5u7vVQ65k/Qfuc1QBfVBIRERGNCEoAP3hUVTWg85FvFFS14qNC/U7P185OQZxVOm0+mW/jYK6NZdTm290KU+0+mKv3wFSzB6aavZCajg9rSCVmDOTkaZCTpsOTPANywmQgLLKPA0P333PU5pv6xHxTT6Io9tlFRpIkzJ07F/v370dVVVUQVkajWUltGz4qcuhi181OQWx4wD+aJSIiGt00DWJrNaTOjjEnOshIjhKInlafTaNEpUKx53oLZOI7C2TiswFz7+7VksQNOYnIf9rcCp7dpt9UeEZ6FBZPiAvOgoiIiIhGiKC+MyuKIhISEoK5BBomf73YP/kDrL4+0KLRYzj5rml24Z71xXDJmi5+z4rxWJx9+rajQrsDUW/dAlPVLl1cE0S0rfgj3FO/Db6d5Xt8fhsHc20szLexMN9ENFI9/oX+ovEYq4TvzOFOz0Q0gikumOoKvcUxnUUyUkMpBG3oHTbUiERvYUySt0hGTpoGLZxdNIiMyul0oqSkBCUlJSgtLUVpaSmam5sBAEuXLsXq1asHPFZtbS02btyInTt3or6+HiaTCSkpKViwYAHOP/98WCwWf/01+qSqKnbv3g0AyMzMDOjcNPo9mV+mux9lkXDd7JQgrYaIiGgU0DQI7fXeopiuApliSPVFEN3NPptGiUiCYvcWxngLZLx/NEu0z+YgIhqOV3ZUwdEm62I/WjIGAjcEJiIiIjotbmdEw2KzBeYD89jY2IDMQ6FhoPludyu49+WtqG1x6+LXzhuDH54z6fQvCBuPAa9/C6gv1sdNVghXPY/IiRehj/1SyQ/4/DYO5tpYmG9jYb6JaCT4+lgTth1x6mI3zUtDtJVvjRDRCKEqkBpKu7rHmKr3wFR3EILq7v/cUw1pidEVx8jJ06FGprDrLhF1ufXWW30yztdff41HH30U7e3tXTGXy9VViLNp0yasWbMGKSn+KyqQZRlvvPEGAKC5uRn79u1DeXk5li1bhmnTpvltXjKeg9Wt2FzcoIvdMCeVrz2IiIgGSOho9BbFnCiO6bwVOxz9nzxAqjUesr1H1xi791azxvlsDiIiX2ts9+Clryp1scUT4nBGBgv7iIiIiPoTkHdnPR4Piou9F6ZnZWX12i2so6MDv/rVr/Dqq6+irq4O48ePxx133IEf/ehHgVgeEY1Amqbh3td2Y2+5/qK3+RPi8ftLp5y+YKZqH/DylUBLlT5ujQOu+xcwZr7vF0xEREREREGjaRoe/1zfZSYh0oxvzUwO0oqIiPqhaRCby7q6x5ir90Cq3Q/R0zr0IU1WyAmTISdPh5w0HZ6k6VDjxgICuwYS0cAkJCQgPT29qzvLQB0+fBiPPPII3G43rFYrLrvsMkydOhVutxtbtmzBpk2bUFlZiQceeAAPPvggwsPD/bJ+WZbx2muvdd0XBAGrVq3Cdddd55f5yLieOqnLTIxVwrdn8bUHERHRyQR3M6T64s6uMd7CGKm+GFJbjc/mUC0x3qKY+M4CGXsO5PhcaBEJPpuDiChQ/v5lJVrdStd9AcDqJeycSkRERDQQASmaefPNN3HttdciPj4eZWVlvR6//PLL8cEHH0DTNADAwYMHcffdd6OwsBCPPfZYIJZIRCPMXzYV4509+t0TxtojsPb62TBLp7nY48gXwLrrAJe+2AYxGcANrwNJE/2wWiIiIiIiCqbPShuxt7JFF/v+gnRYzVKQVkREpCe01cFUvQfmmt2dhTL7hrWDriZIUOx5kJOmwZM8A3LydCjxOYDIHe6JaHCuuuoqZGVlISsrC3FxcaipqcGdd945qDFeeOEFuN1uSJKEX//618jNze16bOrUqUhNTcXLL7+MyspKbNiwAddcc02vMV588UV4PJ4Bz3nRRRchNTVVF7NarXj11VehqioaGhqwY8cOrFu3DkVFRVizZg0iIiIG9fci6suBqhZ8Vtqoi31nbiqiLPw/mIiIDMzTBpOjBFJnYYzJUQypvghSS2X/5w6Qao6EEp8NJT7XWyDT2TlGjUxmN1UiGhWqm1341zf6zYHPn2RHTiJfyxIRERENREDeoX3//fehaRouu+yyXl1m3nnnHbz//vsQBAEZGRmYO3cutm/fjvLycqxduxbXXXcdFi5cGIhl0hA0NDT0f9AQiKKI2NjYrvtOpxOqqvplLgq+web7w4N1eOSjYl0sKkzC/12WC7hb0eDue9dVc/FGRL5/FwTFrYsr9lw0X/p3aOZkwE/f09SNz2/jYK6Nhfk2llDIt81mC+h8RDRyqZqGv32h7zKTEWfBZdMSg7QiIjI6wdUMU80emGr2dnWSGe6FQnLceMjJMyAnTYOcNB1y4mTAZPXRionIyPoqYBmMkpISFBQUAACWL1+uK5g5YeXKldi8eTPKy8uxceNGXHHFFTCZ9B9fffjhh3C5XAOed/78+b2KZk4QRRF2ux3nnXceoqOj8fDDD+ONN97ADTfcMIi/GVHfntxSrrsfF27CNTNTgrQaIiKiAJNdkBpKvUUxnYUxJkcxxKbjEKD5ZApNskCJz+7qHCOfKI6JTmMnVSIa1Z7OL4db6f5ZKokCfrAoI4grIiIiIhpZAlI0s3PnTgiCgKVLl/Z67LnnngMA5ObmYvv27YiOjobT6cTChQtx8OBBPPPMMyyaCWGKovR/kA+oqhqwuSj4TpfvgqpW3PdOiS4mCsAfV2VjrM1yyvOse19G5Ke/6/VmnCd1DpoufgqaNRbg91hQ8PltHMy1sTDfxsJ8E1Eoe7+gHqV17brYDxZlwHS6DpVERL4id8BUe0BfJNN4aFhDKlGp3sKY5OmdRTLToFlifLRgIiLf2r59e9fXy5cv7/MYURSxdOlSvPLKK2htbcX+/fsxY8YM3TEvvfSSX9Z3Yp4DBw74ZXwyln2VLdhyuFEXu3FuKiLD2OGSiIhGGcUDqfFwZ9eYIkj1xd4uMs6jEDTfbLCliWYotglQ4nO6CmPk+FyoMZmAyP9bichYjtS34619tbrYFdMTkRHHTXOIiIiIBiogRTM1NTUAgOzsbF1cVVVs2rQJgiDgRz/6EaKjowEAsbGxuPPOO7F69Wps3bo1EEskohGgtsWNn64vhEvWv9H2k2VjsXB8XN8naRoivvw/RHz9t14PuSaci+bzHuHOq0REREREo5RHUfHEljJdLDshHOdNtAdpRUQ0qqmy94Khzu4x5pq9kOoLIajy0Ie02ryFMcnTISdNhydpOrRIdsoiopGjsLAQAGCxWDBhwoRTHjd58mTdOScXzfiLw+EAAEgSL7yk4XvypNce8REmXH1GcpBWQ0RE5AOqAtF5zFsY4yiCqb7I20Gm8QgE1eOTKTRBghI3Dkp8rq5ARokdC0hmn8xBRDTSrd1SBrXHHsFWk4jvzU8P3oKIiIiIRqCAFM3U1dUBAMLDw3XxXbt2oampCYIg4OKLL9Y9NnXqVADA8ePHA7FEIgpxHR4F97xZhNoW/Ztvl09PxLdnneJDJ1VG1Cf3wXrg1V4PtU+5Fq1L/5u70BARERGNIv680E0UxdPep9D0+p5alDtdutidS8fCbDr92yHMt3Ew18bi03xrGsTGI5Cq98BUvQum6j2QavdDkDuGPqQ5AnLSVCjJMyAnT4eSfAbUmAxAELrXPPQVGw6f38bCfIeusjJvEUFKSsppf19PS0vrdY4v15CYmAiLxaKLu1wuvPjiiwCAmTNn+nROMp5d5c3YesSpi904Lw3h7DJDREQjgaZCbCqDyVEMqbMwxuQohtRQAkFx+2YKCFBjx0COz4Fiz/XexudCsY0HJEv/AxARGdSBqhZsKnLoYtfOTkFCVFiQVkREREQ0MgWkaMZisUCW5a7imRM+++wzAEBGRgbGjh2re+xE1xlFUQKxRCIKYZqm4b/fO4QD1a26+KyMaPz87HEQelw80sXTjuj374LlyKZeD7XOuwvtc3+ku+iEiIiIiEY+m80WsLliY2MDNhcNTbtbwbNbd+his8bE4dI5E/p+DXEazLdxMNfGMqh8N1UA5TuA8p1AxU6g4hugw9n/eacimoGUqUD6bCBtFpA+C0JCLsyiBO6j6x98fhsL8x0a3G43mpubAQB2++k7/UVFRcFiscDlcqG+vt6n68jPz8c777yDiRMnIjExEeHh4XA4HNi1axeam5sxadIkrFy5clBjDnSNLOw3jqfyy3X3EyLNuGZWqk++B5hrY2G+jYX5NpaQyLemQWiphFRfCKm+s0Cms0hGkNt9No0SnQ7FngfV7i2QUex5UGxZgDm817Gjsbw0JHJNRKPG45/rNxyPsUq4cW5qkFZDRERENHIFpGhm7NixOHDgAL788kucffbZXfENGzZAEAScddZZvc5xOLwV0omJiYFYIhGFsGe2luPDQv2uCemxFjx0aQ7MUu83mIT2BsS8cyvMVd/o4pogomXp7+Gaeq1f10tERERERMH3Qv4R1DTru8z8/IKJgy6YISIDanN4C2PKv+m83Qm0VA1jQAFInAikzwLSZnpvk6cCJu6kS0SjW0dHd/ctq9Xa7/FWqxUul0t3ni/Mnj0bDQ0NKCoqQlFRETo6OhAREYExY8Zg0aJFWL58+aALG+64444BHffqq727oPsLi8WCZ9uhemw/qi+mXb0iB2lJCX6Zj7k2FubbWJhvY/FrvjUNaKkGagqA2oNAzQGg5qD3a1eT7+aJTgOSJgKJk4Ckzj+JeZAs0aOyGGao+NwmoqHaftSJL4/qf27fNC8N0daAXPJJRERENKoE5Deo5cuXY//+/Xj00Udx+eWXY9KkSXjrrbfwySefAAAuuuiiXufs27cPAJCayspoIiP7qLAeT560Q1tkmISHL89FXHjvvVfF5grEvHUzTA0lurgmWdB8/iNwTzjPr+slIiIiIqLgc7Z78MSnpbrYWbmJmD/h9DucE5EBuVuByt3dHWTKdwANR4Y3ZtzYzgIZbwcZpM4ALNE+WS4R0Ujidru7vjaZ+v846sQxPc/zhaysLGRlZfl0TKKeHv6wSHc/OcaCa+eNCdJqiIjIcFrrgdoCb4HMiT+1BUB7g+/miEz0bgaRNNlbJJM0GUjMA8ID1/mbiMhoNE3DYyd1mUmMMuNbM5ODtCIiIiKikS0gRTM/+tGP8NRTT6GmpgZTp06FzWZDQ0MDNE1DRkYGrrzyyl7nfPDBBxAEAdOnTw/EEokoBBVUteK3Gw/pYqIA/HFlNiYkRPQ6XqorRMyGmyG1VuviqiUGTRc/DTltjl/XS0RERETB1dDgww+CTyKKom5HQKfTCVVV/TYfDc9jnx2Fs92ji/1gQeqAv0eYb+Ngro1FFIDY9uNA2VdAxU4ox76C6CiGoA0952pEAuTkGVCSp3fdauHx+oPaZKDNf/9HUd/4/DaWYOfbZuPFgn0JCwvr+lqW5X6PP3FMz/NC1dq1a4O9BAoR+aV1+PKwQxe7c3k2rGbur09ERD7W3tjZNeak7jGtNb6bwxrXXRjTs3tMpH+6pxER0altLm7AgapWXezWBRl8rUFEREQ0RAEpmsnJycFLL72EW265Ba2trXA4vG8ex8XFYd26db0+AKmqqsKHH34IAFixYkUglkhEIaa2xY171hfCJes/3L572RgsmhDX63hT+XbEvHMbRHezLq5EpaBp1fNQ7Ln+XC4RERERhQBFUQI2l6qqAZ2PBq6u1Y1/fFWpi52TG4/cxPAh54z5Ng7mepTRNIjOIwgr2wrz8XyYy7cBHd3FK4P9eFkNi4KcNA1y0gzIydMhJ02DGpUKCIL+QH4PhSQ+v42F+Q4NVqu16+uOjo5+jz9xTM/zQpXdPrAOhizsH900TcOfNh7QxVKiw3BedrRPc89cGwvzbSzMt7EMON/uVkiOYkj1Rd4/Du+t2FLls7VoYVFQ4nOg2HO9f+JzoSTkQYtI7P0a1w3AzY0gBiMUntss7Cca2WRVw9++0HeZGWOz4pKpLGIkIiIiGqqAFM0AwNVXX42lS5finXfeQVVVFVJTU3HJJZcgPj6+17F79uzBddddBwC46KKLArVEIgoRHR4F96wvQk2Lfmfoy6Yl4tpZKb2ODyt9H9Ef3A1Bcevisi0bTZc8DzU6za/rJSIiIiKi0PHctgp09Ci+lwTgB4szgrgiIgoksaUa5rJ8mMu2wlyWD6mlsv+T+qBJFsiJkyEnTe8skJkOJW4cIIi+XTAR0SgWFhaG6OhoNDc3o76+/rTHtrS0wOVyARh4QcpIwML+0W3bESe+KdNv5HXz/DRIgubXXDDXxsJ8GwvzbSyquw2oK4KpvgiSo7jrVmou89kcmskK2ZbdWRiTA7mzQKbPDSAAgEVbfsHnNhEN1rv763DEod984o5FGTBJfG+SiIiIaKgCVjQDAElJSbj55pv7Pe68887DeeedF4AVEVGo0TQNv9tY2qvF6KyMaPzinHEQTnrzzrrvFUR++lsImv4NPE/qbDRd/BQ0a5y/l0xERERERCGivLEDb+yu0cVWTk3EuPjwIK2IiPxN6HDCXL6tq0jG1FA66DE0QYJiz4WcNA2eziIZJT4XkMx+WDERkbFkZGSgoKAAVVVVUBQFktR3n6+KigrdOUShTtM0PLlFf1FzakwYLpmaGKQVERFRyFLckBoOw9xYArQeA2oPAjUHENdwpNdn3EOliWFQ4rMgx+d4u8bYcyDH50CNyeTmD0REI4xLVvFkvv61Rl5SBM7O670xORERERENXECLZoiI+vPoxyV4v6BOF0uPteChS3Jg7rljgqYhYvtfEPHVo73GcI0/B83n/wUwWf29XCIiIiIiCiFP5ZdDVrWu+2GSgFsXpAdxRUTkc552mCu/9naTOZ4PU+1+CND6P68n2zggYy7abBPhTpwGOWEyYGZxHRGRP+Tl5aGgoAAulwuHDh1CTk5On8cdOHBAdw5RqMs/7MTeyhZd7HsL0vWfYxARkbGoMiTnUUgnd45xHoGgyr0O76PPS7800QQlbry3a0y8t3uMYs+FEjsGEHn5DxHRaPDarmpUN7t1sTuXZELsq0MYERER0WBpg/xcdRThq2YiChkb91bi/z4s0sUiw0T83+W5iIvosburKiPqk9/AeuBfvcbomPwttCz7Pd8UJCIiIiIymNK6Nrx7QF+Af9UZyUiJsQRpRUTkE4oHpprdMB/firCyrTBVfQNBdfd/Xg9qRCLcGQugjFmMyKkXAnFjAACuhgYoiuKPVRMRUad58+Zh/fr1AIDNmzf3WTSjqio+/fRTAEBkZCSmTJkSyCUSDVpfXWbSYy1YOTkhSCsiIqKAUhWITcdhchR7i2Lqi7xfNxwa9OvVU9EEEUrsWG9RTHwOZHtngUzceEAK88kcREQUelpcMp77skIXm50ZjfnjYoO0IiIiIhqxNA1CWy1M9UUwNxQDLUeBmgLA1QRc/0GwVxcUvKqciELCvnInfvLqLl1MFIA/rsxBVkJEd1DuQPT7d8Fy+KNeY7TN/RHa5t0FcHcFIiIiIiLDWftFma7XRIRZxM1npgVtPUQ0RJoKqb4Q5uP5CCvLh6niK4ie1kENoYZFw5N+JjwZC+HJXAjFlg0IAiRJQmSczU8LJyKivmRnZ2PSpEkoKCjA5s2bsWzZMuTm5uqOefvtt1FeXg4AuPDCC2Ey8aMrCm1fHGrEgWr97ye3LkiHiV1miIhGF02D2FwByVEEk6MIUn2x97ahFILc4bNplJjM7s4x9s5b2wTAZPXZHERENDL84+sqONv13cnuXJIJgddBERER0WkIHY2dGzr06HxaXwTR1dj38S4nYIoK7CJDAD95IKKgq21x4/sv7UOHR9XF71o6BosmxHXdFzoaEfP2rTBX7dQdp0FA67Lfo2PqdYFYLhERERERhZh9lS34pKRBF7t+TipsPTtWElFo0jSIzqMIK8uHuWwrzGXbIHY4BjeEZIEnbY63SCZjIeTEyexAS0TkIwcPHkRVVVXX/aampq6vq6qq8Mknn+iOX7ZsWa8xvvvd7+K+++6D2+3G/fffj8svvxxTpkyB2+1Gfn4+PvrIu0FSamoqVq1a5Ze/R7BIkuS3sUVRPO198g9N0/BkfrkuNsZmxcXTkiGJ/rmQjbk2FubbWJjvEKFpEFprINUXQuq8sEjqLJIRBrmJw+moUakQU6YAiROBpMloiciEJ24CEBbZ61j//QZBgcDnNvXH7XZj3bp1OHToEKqqqtDS0oKIiAikpKRgxYoVWLJkCTcTMCBHqwcvf12piy3LtmFaWnSQVkREREShRnC3QHKUdBfGODpfw7bVDGocsb4YSJ7pp1WGLv6GTURBpWkafvGfQlQ16XfjuXRaIq6bndJ1X2yuQMyGW2ByFOvPl8LQfN4jcGedH5D1EhERERFR6Hn88+O6+7HhJlw/J+UURxNRsAmtNQgr2wpzWT7MZfmQmisGdb4mSJCTp8OTscBbKJMyCzBZ/LRaIiJj27RpEz799NM+HyssLERhYaEu1lfRzPjx43H33Xfj0UcfRXt7O9atW9frmNTUVKxZswbh4eE+WXeosNkC1+EsNjY2YHMZ2fv7q3DwpC4zPzkvD4n2+ICtgbk2FubbWJjvAGipBWoLgJrOP7UHgZoDQIfTd3NEJXcVxiBpIpA4CUiaCNGqz6/x9vQ1Lj636WQdHR344IMPkJ2djZkzZyImJgatra3YtWsX1q5di/z8fKxZs4YFVwbz/JcVaO+x2bAA4I7FGcFbEBEREQWP7ILUeKirY4zpRHFMc5lPhpfqC1k0Q0QUaJ+VNuKbsmZdbFZmDH55zriu9qJSfRFiNtwMqaVKd5xqiUHTxU9BTpsbsPUSEREREVFo2X7Uia+ONeliN89LQ5SFb3kQhQrB1QRz+TaYj3u7yZgaSgY9hmzPgydjIdwZCyGnz4UWxh0WiYhGkjlz5uDPf/4z3n33XezcuRMOhwMmkwkpKSmYP38+LrjgAlgsLICk0KaqGh7+sEgXm5AYiUtmpAdpRUREdEptjs6CmILu25oCoK3Od3OExwNJk7x/uopkJgERgSukJKKRKSoqCn//+997dZNRFAX3338/du/ejV27dmHWrFlBWiEFWoXThdd2V+tiF09JQFZCRJBWRERERAGhypCcR72FMT07xziPQtAUn0yhmcKh2HNhSp3m3dghaRI8EeN9MvZIwytIiChoNE3DM1vLdbH0uHD8+bI8mCXvjhmmiq8R886tEF36i+CUyBQ0XfIcFHtewNZLREREREShRdO0Xl1mkqLMuOqM5CCtiIgAAJ52mCt3dHWSMdXuh6Cp/Z/XgxIzBp6MBXBnLoQnfT60iAQ/LZaIiE5n9erVWL16tU/GSkxMxE033YSbbrrJJ+MRBdp7+6twsEq/Cdjd5+RCEoUgrYiIiNDRBNQW6rvH1BQAJ23GOCyWmJMKYzpvIxMBgf8HENHgiaLYZxcZSZIwd+5c7N+/H1VVPvw5RiHvqfwyeBSt675ZEnDbQnaZISIiGjU0FWJzeVfnGMlRBJOjGJKjFILq9s0UohmKLQtyfA4Uey4Uey7k+FyoMRmQTGZdV3StoQFQfFOUM5KwaIaIgmbLYScKqlt1sZ+dnwdbhBmKoiDs0AeIfv9uCIpLd4xsy0LTJS9AjU4L5HKJiIiIiCjEfFLSgP1V+tcUty7MgNXc+wNHIvIjxQNTzR6Yy7Z6C2Uqvxn0G7xqRALc6QvgyVwIT8ZCqDH8UJiIiEa+hoYGv40tiiJiY2O77judTqjq4IpUaeBUTcP/vl+gi2UlhGNhhtWveQaYa6Nhvo2F+R4ETzskRwmk+kJIjmJIdYUQHcWQmsv7P3eANHMElB4XF3m/zoMWldK7OMYDoLFxUOMz38YRCrnueUHcaON0OlFSUoKSkhKUlpaitLQUzc3ewualS5cOqui/trYWGzduxM6dO1FfX9/VDXPBggU4//zzA94NU1VV7N69GwCQmZkZ0LkpeEpq2/DOfn0ntKtmJCMtlt1YiYiIRhxNg9ha4+0Y4yju6h5jchRD8LT5ZgpBhBI7Fkp8Z2GMPdf7dexYQDL7ZI7RikUzRBQU3i4zZbrY+IRIrJyeiuYmJyz71iHq09/02onWkzITTRc/DS189L7JQ0RERERDI0mS38Y+ede3vnaBo8BSVA1rv9C/phhjs+KyGSnD3umZ+TYO5nqINBVSXSFMx7fAdDwf5ortENwtgxsiLBqejDMhZy6CJ3MR1PicrouQBAD++InOfBsL820szDeFKiWAu/WpqhrQ+Yzmg4P1KK1r18VuXZAOaGrAN2Vkro2F+TYW5huA4oLUcAim+uLui4wcRRCdxyFA6//8AdCkMCjxOd7dd+NzIMfnQrHnQI1OB4Q+fo/0U7ED820czLVv3XrrrT4Z5+uvv8ajjz6K9vbu3/FcLldXIc6mTZuwZs0apKSk+GS+vsiyjDfeeAMA0NzcjH379qG8vBzLli3DtGnT/DYvhZa1W8p0/8NFmEXcfCY3ESYiIgp1QntD12tWqb6o61Z0OX02hxKdDiW+szCms3OMYssCTCyuHQoWzRBRUHx5tAn7KvU7Qq9eng2TKMC67RGEf/lIr3Pc41ag6fy/AubwAK2SiIiIiEaSQO6e13OnQAqO13aU4VC9/qK1n10wCYn2eJ/PxXwbB3N9CpoGNBwGDn0KHP4UOPw50FbX/3k9maxA5pnAhKXA+GUQUmcgTDIhzC8LHhjm21iYb2NhvonIlxRVw1P5+oL97IRwrMj1/WsPIiLDUDyQnEd67LxbDKm+CJLzKATNN8UFmmiGEjceir2zMCY+B7I9F2rMGED03+Y7RBQ4CQkJSE9P7+rOMlCHDx/GI488ArfbDavVissuuwxTp06F2+3Gli1bsGnTJlRWVuKBBx7Agw8+iPBw/1yjIssyXnvtta77giBg1apVuO666/wyH4WevRXN+LRE37ny+jmpiI/kLvFEREShQnC3eDufOoq6O8fUF0Fsq/XZHGpEYlfHmK7OMfHZ0MKifDYHsWiGiIJA0zQ8fVKXmTHxEbh0ejLw9k8QvuP5Xud0TLoaLcvvB0T+2CIiIiIiMjqXrODhD4t0scmpMbh4WmqQVkQ0CjVXA4c/Aw5/Ahz6DHAeG9z5ggikzeosklnqLZgxW/2yVCIiIiJ/+uBgPY44OnSx2xdlQBSG1+GSiMgQVAVi07GuwhjvzrvFkBoPQ1A9PplCEyQosWOh2LsLY5T4HCix4wCJFx0TjTZXXXUVsrKykJWVhbi4ONTU1ODOO+8c1BgvvPAC3G43JEnCr3/9a+Tm5nY9NnXqVKSmpuLll19GZWUlNmzYgGuuuabXGC+++CI8noH/HLvooouQmqp//9pqteLVV1+FqqpoaGjAjh07sG7dOhQVFWHNmjWIiIgY1N+LRhZN0/DoZ8d1sdhwE66f47/uRkRERHQasgtSQ2l355gTGzw0l/V/7gCplhgo9rzOjqe5XR1QtXBuzhMIAb/6fPfu3fj8889x6NAhNDc399uCVBAEPPvsswFaHREFwo7jTdhd3qKL/WhJOsyvfxc4+Hav49vmrEbbmT8B+AEUEREREREBWPflMZQ3ntxlJg+iyNcMREPW3ggc3dLdTab24ODHSJrsLZCZsBQYuxCwstMDERERjWyyquHpreW6WF5SBJZlB67TKRHRiKCpEJvLIdV3Fsac6CDTUApBcflmCghQYzO7usZ4d+DNgRI3ATBZfDIHEYW+vgpYBqOkpAQFBQUAgOXLl+sKZk5YuXIlNm/ejPLycmzcuBFXXHEFTCb9JXYffvghXK6B/3ybP39+r6KZE0RRhN1ux3nnnYfo6Gg8/PDDeOONN3DDDTcM4m9GI822I07sLGvWxW45Mw1RFm4mTERE5FeqDKnxSI/OMSc6nx6BoKk+mUIzR3QVxJwokFHic6FGJvE66CAK2G9ZhYWFuOWWW7Bt27YBn6NpGotmiEahkz9gyol248oDPwKO638+aBDQuvR36JjGNwKIiIiIqH8NDQ39HzREoigiNrb74m+n0wlV9c0bJjQ4bW4Ff91UrIvNzIjBjESTz74HmG/jMHSu5Q6YKr6G6fgWmI/nQ6rZO+g3gpWYTMiZi+DJXAg5YwG0yMTuB9tVoN1/P5eHwtD5NiDm21iCnW+bjRfPE41W7x2ow7GG3l1mBH64TURGpWkQW6u8u+6euLDIUQxTQwkET5vPplGi07xFMScuMrLnQrFlA+Zwn81BRMa0ffv2rq+XL1/e5zGiKGLp0qV45ZVX0Nraiv3792PGjBm6Y1566SW/rO/EPAcOHPDL+BQaVE3DY5/ru8wkR4fhqjOSg7QiIiKiUUhTITaVdXc8PVEk03AIgur2zRRiGBTbhM6Op53dY+y5UKPTAUH0yRzkOwEpmikvL8dZZ52Furo6aJoGAIiKioLNZoMo8puCyEi+KWvCjuPdOyVIUPCy9c8Qj+/THaeJYWg+72G4sy8I9BKJiIiIaITqr5OpL6mqGtD5qNvLX5XD0ebRxVYvyfDrhbHMt3GM6lyrMkw1e2Euy4f5eD7MVTshKIN7Q1gNt8OTsQDujIXwZC6EGpOpP2CE/duN6nxTL8y3sTDfROQLsqL22gRscnIklkyIC86CiIgCSdMgtNXpu8Y4iiE5iiG6m/s/f4CUiKTOHXc7C2Pic6DEZ0MLi/bZHEREPRUWFgIALBYLJkyYcMrjJk+erDvn5KIZf3E4HAAASZICMh8Fx0eFDhTW6ItNb1+YAYuJ11ESERENmqZBbK3u6hjjLZLxbvQgyO2+mUIQocSO6+oYI9s7u8fEjgVEdokbKQKSqT/84Q+ora2FIAj4/ve/j3vvvbfP9pZENPo9c9IHTD+K+BDJzScVzIRFw3nxk5DTzwzk0oiIiIiIKMQ522W89FWlLrZ4QhzOSOeFFES9aBqk+iKYy/IRVpYPU/l2iJ6WQQ2hhkXBk3YmPJkL4MlYCCU+ly3DiYiIBsGfF7qdvCkdN6nzvQ3761DudOliP1gyBiZTYD8IZ66Nhfk2llDJt9DeAMlRBKmuCKKjCFJ9IaT6YogdvuseqobHey8osudBic+B2nmBkWaN63XsaP2uD5V8k/8x16GtrKwMAJCSknLa39fT0tJ6nePLNSQmJsJisejiLpcLL774IgBg5syZPp2TQoesqHhii/57any8FRdNSQjSioiIiEYOod3RY2OHoq5b0dXkszmU6Axvx5gTnWPic6DYsgCTpf+TKaQF5F3d9957D4Ig4MYbb8RTTz0ViCmJKATtqWjGl0e7/3PKEGqwGq/qD4pKQfMlz0OOZ2EdERERERHp/X17BVpc+l3jf7g4I0irIQo9ovNYZ5HMVpjLtkJsrx/U+ZoUBk/qbHgyFsKTsQBy0jTujkRERDQMNpstYHPFxsYGbC4jcMsqnt32jS52RmYcVs0eDyHIRcTMtbEw38bi93x3OIGag0BtAVDT409rje/msMYCSZOBxIlA0iTvn8RJEKMSIQIw+26mEY/Pb+NgrkOH2+1Gc7O3W5bdbj/tsVFRUbBYLHC5XKivH9x7bP3Jz8/HO++8g4kTJyIxMRHh4eFwOBzYtWsXmpubMWnSJKxcuXJQYw50jf4q7Gex2MCt31uLYw0dutjqs8bCYh4578My38bCfBsL820cIZ9rV3NX5xjvxg7eW7GtzmdTqJFJ3o0dTmzwYM+BEp8DhEX1Onak9wAM+XwHSEB+26qoqAAA3HjjjYGYjohClL7LjIb/sbwAs6p/IYhrXoQSnQso+gvhiIiIiIjI2Gpb3PjXN1W62PkT7chNigzSioiCT2ir6y6SOZ4PqXlwu15qggg5aVpXkYwndTZgsvpptUREREQjx2s7ylDW0K6L/fTc3KAXzBARDYi7Fag92F0Uc+LrpvL+zx2osKjOwpiJPYpkJgPRKexQSkQhq6Oj+/oUq7X/98CsVitcLpfuPF+YPXs2GhoaUFRUhKKiInR0dCAiIgJjxozBokWLsHz58kEXt9xxxx0DOu7VV1/t/yAfYLFY39rdCp7eukMXm5ERiyvPzBrRrzWYb2Nhvo2F+TaOoOXa0w7UFXW+fj3g3eihpgBwHvPdHNY4IHlKj80dJgNJkyBGxBt2cwejPrcDUjRjs9lQU1ODuLi4QExHRCFof2UL8g87u+6vErdiEXbpD5rzPWDMmUCD71p9ExERERHR6PDM1nK4ZK3rviQAP1jELjNkLIKrGeaKL2E+ng9z2VaYHEWDHkOOz/EWyWQuhCftTGiWaD+slIiIiGjkcskKHvu4WBebM9aGJTkJQVoREdEpdF1cdFL3mMajvpvDFA4k5uoLY5ImArGZLI4hohHH7XZ3fW0y9X/J3Iljep7nC1lZWcjKyvLpmDQy/H3rEVQ3uXSxX1wwcUQXzBAREQ2I4gHqS72FMbUHOwtkCgDHIUBTfTOHObJzY4fuwhgkTQaikvn6lQAEqGhmzpw5ePfdd1FUVISZM2cGYkoiCjHPbuveuSgWLfhd2Ev6A6JSgHN+G+BVERERERHRSFDW2IH1e2t1sUumJSHTxo4YNMrJLpgrv4a5bKu3SKZmD4RBvnGsRGd4C2TSF8CdsQBaZKKfFktEREQna/DjBlGiKOp2BHQ6nVBVH33AbHCv7qxEhVO/m/itC9LQ2NgYlPUw18bCfBvLgPOtuCE2HIbkKIJU3/1HdB4d9GvEU9GkMCi2CVDjc6HY86DYc6DYc6HGZALiSd0ONABB+pk4kvH5bRyhkGubzRbQ+UaKsLCwrq9lWe73+BPH9DwvVK1duzbYS6B+ONs8+NvmEl1sSU4CFmazOJ+IiEYRVfVu5NDVOaZzc4e6IkD1+GYOKQxIyOssiulRIBObCYiib+agUSkgRTM//vGP8c477+Cpp57Ct771rUBMSUQh5GB1Kz4rbey6/0vTOtjh1B900UOA1Zgtv4iIiIiI6PSe2FIGRe3uMmMxCbh1QXoQV0TkJ6oMU80+mMvyvX8qd0BQBreTpRoeD0/GArgzFsKTsRBq7Bg/LZaIiIj6oyhKwOZSVTWg841WLlnFM1vLdLFZGdGYlR4ZMv++zLWxMN/GospuwHHYWxTjKIbJ4b2VGg9DUPu/uHsgNEGCEjceij0XcnwOlHhvcYwSOxYQ+7h8RAPA70G/4PPbOJjr0GG1dm/C1NHRcZoj9cf0PC9U2e32AR3nr8L+UCgWC3WPfnoUTR36/89vX5Dm180W/IX5Nhbm21iYb+MYdq41DUJrNaT6Qu9r2LrCrteygtzukzVqggQ1blznxg6dGzwk5EI91etXp7N3jACExnM7FAr7A1I0c+655+IXv/gF/ud//gd33HEH/vrXv8JsNgdiaiIKAT27zJwpFOBa02bd4+4J5yBs0iWBXhYREREREY0AxbVteL+gXhe75owUJEWH/u5+RP3SNEiOIm+BzPGtMFd8CdHdMqghVHMU5PR5XUUyij0HELiLEhEREdFQvLmnBrUt+l0vb1+UAUEQgrQiIhq1FA+kml3A/r1A9X6g5iDi6goHvXHCqWgQoMaOgWzPhRKfAzk+F0p8LhTbOECy+GQOIqKRJiwsDNHR0WhubkZ9ff1pj21paYHL5QIw8IKUkSBQBVwsFtOra3Hjla8rdbGzc+MxMSl8VPw7Md/GwnwbC/NtHKfLtdDugKm+qKv76YkNHkRXk8/mV2Iyva9bT7yGtedCiZsAmPp4/crNHYbNqM/tgBTNvPjii5g0aRIWLlyIp556Chs2bMBVV12FiRMnIiIiot/zb7zxxgCskoj8oaS2DZuLvbsihMGDP5qf0T2umiPRtuz3COMHTkRERERE1Ie/fXEcWo/7kWESbjozNWjrIRousek4zMfzYS7birDyrRDb6gZ1viaGwZM6C57MhfCkL4CcPL3v3ZSIiIiIaFA6PCqe/7JCF5s7JgazM2OCtCIiGlVUBVLdAYSVbYW5fBtMFV9D9LTqDhnqp6VKdEb3RUUnbm1ZgCn0OyMQEQVaRkYGCgoKUFVVBUVRIElSn8dVVFToziEajme3laND7t7NXRKAOxbz+4qIiEKL4G6GVF8MyVHUWSTj7YA62M8yT0eJTPZu6HCi+6k9F7ItGwiL9NkcRKcSkE/Uv/vd7+p2YKqsrMSjjz46oHMFQWDRDNEI1rPLzA9N/0GWqN85oW3+T6FFpwV6WURERERENALsLm/G56WNuth35qYiLpzda2nkENrqvAUyZd5CGanp+KDO1wQRcuJUeDIWegtlUmfzwiciIiIiP3h9dzXqW0/qMrOQF7IR0RBpKqT6YpjL82Eu2wZzxfZh78KrRKZAsedAiefFRUREQ5WXl4eCggK4XC4cOnQIOTk5fR534MAB3TlEQ1XW2IE39tTqYqumJmJcfHiQVkRERIYnd0CqPwwcKwdqDgA1BYip2g+pubz/cwdItcR5X7PavV1PT2zyoFnjfDYH0WAFbBtKTdP6P4iIRpXD9e34qNABAMgSyvFD6T+6xz1J09Ex7Tvoe98OIiIiIiIyMk3T8Pjn+uICW7gJ185OCdKKiAZGcDfDXL4d5s4iGVN94aDHkONz4MlY4C2UST8TmoW7mxMRERH5U7tbwd+367vMzB8XizMyooO0IiIacTQNUuNhmDs7yZjLtkHscAxpKDXc3t01Jj63q1CGrw2JiIZv3rx5WL9+PQBg8+bNfRbNqKqKTz/9FAAQGRmJKVOmBHKJNMo8saUMitp93WSYJODWhelBXBERERmG4oHUeLirY4xU7+0gIzYdg6CpukOHeg2vao6EcmJTh64OMrnQIhIAYaj9VIn8IyBFM4cPHw7ENEQUYp7bVg4NgAAVfzQ/izBB6XpMEyS0LP8DILJkhoiIiIiIett2xImdZc262C3z0xEZ5ufXEKqM8C/+H1DwJqC4AHMEYiUrVJMVMIdDM4VDO3Hb+TVM4dBMVmjmiFPHTFbAHOGNmcKhmSMAKYxvFo4Gsgvmqp3eIpnjW2Gq2QNBU/o/rwclOt1bIJOxAO6MBdAik/y0WCIiIiLqy793VcPRJutit/NCNiLqh9h03FskU7bN21m0rWbwgyRNBjLPBJKnoDk8A+64LGjh8b5fLBERAQCys7MxadIkFBQUYPPmzVi2bBlyc3N1x7z99tsoL/futH7hhRfCZArYntR+J0n+eX9dFMXT3jeqwppWvFdQr4t9e3Yq0uIigrQi32C+jYX5Nhbme4TSVIjO45DqCyHVF3Xdig2HIKie/s8fyBRSGJT4bCj2PCj2XCj2PKj2XKjRaYBw0veNT2YkX+Jz2ysgv9WPHTs2ENMQUQg56mjH+we9L/y+JX2CM8WDusfbZ34PSuLkIKyMiIiIiIhCnappePwLfZeZlOgwXDnD/4UE4TufhHXXC90BuQMi/PPmniaI0EzhQFchTXjn/R6FOV0FOieKbnoW4/Qo5OksxNFM1s7zO7+WzH5YucGpCky1+2A+nu8tlKncAUFxDW4Iazw8GfPhzlgIT+ZCqDFjWEBFREREFCRtbgUvflWpiy0aH4dpaewyQ0R6YktVZxcZb6GM1Fw26DHkuPHwpM+HJ2MB1DELEZfe3eFAbmiApgxuEwYiIqM5ePAgqqqquu43NTV1fV1VVYVPPvlEd/yyZct6jfHd734X9913H9xuN+6//35cfvnlmDJlCtxuN/Lz8/HRRx8BAFJTU7Fq1Sq//D2CxWazBWSe2NjYgMwT6p76T4nufrTFhJ+cPwW2yLAgrcg/mG9jYb6NhfkOMZoGNFUANQVAzYHu29pCQG73zRyCBNizgaRJ3k0ekiYCSZMh2MbDJJkCU3RAfmfU5za/f4nIL57/sgKqBiSiEf9lekX3mBKTiba5Pw7SyoiIiIhotPLXDmkAd94ItI8P1uFgdZsu9oPFmQi3+LcARKrdj4jtj/p1jp4ETYXgaQU8rX6bQxNN3kIc80mdcToLcGC2QjNFdMb76JZjDodmiug8rrNDTo/CHZisI7qD6ICe25oG0VEM8/EtMB3fAlPZlxDdzb2POw3NHAlP+pmQMxdCzlwEJSGva9clAUNveU6Dw5/lxsJ8GwvzTaGKr1FGhn/vrkRju77LzB1LMv2av8Fgro2F+Q4tQlsdTGXbYD6eD1PZNkiNhwY9hhKd3vla0NtdVItK6XqM+TYW5ts4mGv/2rRpEz799NM+HyssLERhYaEu1lfRzPjx43H33Xfj0UcfRXt7O9atW9frmNTUVKxZswbh4eE+WTcZz/bDDnx8UN+F7razJoy6ghkiIvKT1jp9YUzNQe/XLqfv5rCN6yyMmQQkTvLeJuQAJovv5iAKISyaISKfK2vswMYDdQCA35hfRIygv9itZenvATPfWCAiIiIi3wrUDmmAcXfeCARZUfFE/m5dLCsxEjcszoVJ8uMHzLILWPczwEctqkOFoMoQ3M3AIIs8BqWz4w3MEZ1/Or8OizhFrOexnfd1x56IRXpvTdaAdWHpem43HgMOfQoc/hQ4/BnQUj24gaQwIPNMYPxZwPilENJnIUwygx+Hhhb+LDcW5ttYmG8KFXyNEvqaOzx46aQuM+dMSsLiyWOCtKL+MdfGwnwHWHsDcGSL93Xgkc+9FyYNVlRK52vBJcD4syDZxkECMJBLjphvY2G+jYO5Dk1z5szBn//8Z7z77rvYuXMnHA4HTCYTUlJSMH/+fFxwwQWwWHjBKA2Npml46L2DulhCVBhuWTw+SCsiIqKQ1eH0FsTUFug7yLTW+m6O6LTOzjE9/iTkAZYo381BNAKwaIaIfO6FLyugaMAy8RuskrbpHuvIvQSesWcFaWVERERERBTqXt9ZhkO1+s4r956X59+CGQD45IHeF8Oc+QNg4krA0+7tBuNpBzxtgLut++sTf3rF+jh2lBXkdJE7vH/aG/w0gdBHcU04YO4squlZYNNX0c1AinlcTd4CmROFMg1HBr/GtDOA8UuBCUuBzPneeYiIiIgopL2w5Qga2/S/p999Tm6QVkNEAedqBo5uBY585i2UqdwDQBvcGBF2YNySziKZpYA9O2AbPxARGdHq1auxevVqn4yVmJiIm266CTfddJNPxhsJGhr88x6uKIq6AjGn0wlVVf0y10jwWYkDXx/V/1t/b3463G3NcLed4qQRhPk2FubbWJhvP5I7IDlKINUXQqovglTnvRVbKnw2hWq1QbHnQrHndd2q9lxo1t5F3GKHgtge9cHM9egWCs/tQG4wdSo+LZpZsWIFAEAQBGzatKlXfChOHouIQlul04UN++sQgQ7cb35e95hqiUXr4l8FaWVERERERBTqOjwKHvmoWBebnhGLC6am+HfiY18CW/6ijyVPA879f4DJh71BFE+PQpo+imzcJwpzehTp9BXTxU+KDfbinhFB6/x7tgKh9IFiQp63QGb8UmDcIiA8+G/0EREREdHAOds9ePrzQ7rY+VOSMTWdu8ETjVruNuD4l94uMoc/A8p3ApoyuDEsscC4xV2dZJA4CRD9vNEHERGRjyjKIP/fGyJVVQM2V6hRNQ2PfnpUF0uLseCyaQmj9t/EyPk2IubbWJjvIVA8kBoPQ3IUwVRf1HUrOo9B8NHnuKo5Ekp8LhR7DmR7LpT4XMj2PGjh9r43cRhADplrYzFqvn1aNPPJJ58A8Ba6nBwXBAGaNvAn/InjTx6LiELbC9sroKgafmJ6DRlCne6x1kX/BS0iIUgrIyIiIqLRzl87pAGhsfOGEbz8VQUqnR262B0L09HY2Oi/ST1tiHn9Nkhadz410Qzh8ie6CmZ8n28rIFoBC7x/fEXTAMUFQe4APG0Q5HYInQU13q/bvI+d+NrT42u5HZA7ur/uOqdzDLnzvtzR/zpGKTUqDZ7MhZDHLIInYyG0qOTuBzsAdPjvZxD5Bn+WGwvzbSzBznco7JBGoYmvUULbE18cQ1OHrIvdMi/Fr3kbCubaWJhvH5NdMFXvgun4VpjK8mGq2gVBcQ9qCM0cATltrvf1YMZCKImTAVHqPsDpHPLymG9jYb6NIxRyzdcoRMHzfkE9SuradbEfLM6AWWKRLRHRqKIqEJuOw+QoglRf1HUrNR6BoHr6P38ANCkMSnwO5PgcKPZcyPHeAhk1Oo0dTomGwKdFM2eddVafRS6nihPR6FLd7MJb+2oxVTiEW6SNusfc6WfCNenKIK2MiIiIiIwgkDthGHXnDX9qdSt4dmuZLjY7MxpzMqP8+m8d+fkDkJxHdLGO+XcjPGVq1/0RlW/BDJjNgDnaP+Nrao/imo7uwhy5R5FNZ3GN4GnrLMo5OdahK+Lpdb6P3kgeLtVqgydjATwZC+DOWAg1dqz+DeiR8j1BpzSints0bMy3sTDfFCr4GiV0NXXIePmrSl3snNx4ZNmtIf/vyFwbC/M9SKoMU81emMu2wVy+FebKHYPe/EGTLPCkzvK+HkyfDzlpOiCZexwAv70eZL6Nhfk2DuaayDg8ioontug/58hKCMf5E+1BWhEREQ2bpkFsqezROabYWyTTUOKzzQY1QYJim9BZIJPbVSCjxo7Rb9pARMPil04zA40T0ejy4vZKqIqMB8KegSR0d5bSpDC0LPsDq1uJiIiIiOiU/vF1JRrb9bs837kk06+bcJiPb0H43pd0MU/yTHTMvh3hfpt1hBNEwBwBzRzhowbifVA8EJSOHt1uOiDIJzrgdH7dI+btmNNdgHPqQp4e52t97O4ZFgVP2ly40hfAk7kQij3P+/clIiIiolHnH19XotXdffGqAODWhenBWxARDY2mQqorQFjZVpjLtsFU8RVET8vghhDNkJNndG6YsABy8hmAyZdtYYmIiMgo3txTg3KnSxdbvSQTksjrpYiIRgKhra6zY0xxjyKZIojuwb3OPBUNAtTYzM6OMTmQ7blQ4vOg2MYBEl+HEvmbT4tmiMi46lrceHNPDb4rvYdp4hHdY21zfgjVNj44CyMiIiIiopDX2ObBP77W7/J8VlYcpqX5qVsKAMHVjKhNv9DFNJMVzef+CYLIt0uCSjJDk8xAWLR/CnM0DVDdEDwdkFQX4iLCvB104sejpamFO38SERERjXKN7R6s21Gli5070Y6shIggrYiIBkzTIDmKYS7bCnP5NpjLv4Tocg5uCEGEnDQNnvQF8GTMhyd1NmDm85+IiIiGp82t4NmtFbrY9LQoLJkQF5wFERHRKQmuZkiOIm/HmB63YrvDZ3MoUSm6zjFKfC7k+Gy+/iQKIl4FQsMiSf5p/SWK4mnvU+h56esqJKk1uCfsNV1cic+Be+4PT/u9wnwbC/NtHMy1sTDfxsJ8E5GvPf9lBVrd3Z0/BAA/XJzp1zkjP/89pBZ9oU7rwl9AjRsPNrke5QQBkCzQJAs0SQJstmCviIiIiIgC6OWvKtHm6X79IQrAbQvYZYYoJGkaROcRbyeZ8m0wl22D2F4/uCEgQEmY5O0kkz4fctpcaBb/bdJBREQUynidl//865tK1Ld5dLG7lo2DyTT6Ls9kvo2F+TaWUZdvTzskRwmk+kJI9UVdt+JJnxEPh2q1QUnIg2LP8xbH2POg2nOgWWJ7HRtKn0GPulzTaTHfXqPvtzIKKFuALiyJje39HwiFjroWF17fXYW1pucQIejbjEqXPQZbQvKgxmO+jYX5Ng7m2liYb2NhvoloOKqaXPj3rmpd7ILJdmQn+m+XnbBDH8J68A1dzJ2xAB3TbvDbnEREREREFHyOVg/+9Y3+9cf5k+wYZw8P0oqI6GRiUznM5Vu93WTKtkFqrer/pJPI8TnwpM+HJ2MBPGnzoIVzswQiIiKA13n5S0OrGy9u13eZWZ6XiLOnjw3SigLLaPk2OubbWEZMvmU3UF8C1BwAago6/xwAGo4A0HwzR1g0kDSp88/krq/FyESIggCzb2YJmhGTa/IJo+abRTNENGxPf34I5yj5WB62W//A7JuBMfODsygiIiIiIhoRntlaDrfS/WalJAq4fWGG3+YT2usRtflXupgaFoWWsx8CBGPuqEJEREREZBQvfVWJ9h5dZiQBuHWB/15/EFH/hNYahJVt6yyU2Qap6digx1Bix8KTPh/ujAXwpM+HFpnoh5USERER9e2JT0vR7JJ1sXvPzwvSaoiIRjFV8RbC6IpjCoD6YkCV+z19QExWIDGvuzAmsbNQJjYDEATfzEFEQcGiGSIaFkerG//Zuh8bzC/qH4hKBs75XVDWREREREREI8NRRzs27KvVxa6YnoiMOKt/JtQ0RH3yG4jt9bpw65L7oEan+WdOIiIiIiIKCXWtbrx6UpfLCycnYIzNT68/iKhPQrsD5vIvvZ1kyrfB1FA66DGU6LTuTjLp8/manoiIiIKm0tmOF/KP6GKXzEjDlDRj7uBOROQTmgY4y7wFMbU9OsfUFgJyh2/mEE2APQdImtijc8xkwDYOECXfzEFEIYVFMzQsDQ0NfhlXFEVd+yen0wlVVU9zBgXL458dxY/Vl5FocuriLWf9Bp4ODejo/3uE+TYW5ts4mGtjYb6NJRTyHaj28UTkX09sKUOPJjOwmER8b3663+azFG2ApfQ9Xcw17my4Jl7ptzmJiIiIiCg0vLi9Ei5Z32Xm+wv89/qDiLwEVxPMFdu9RTJl22CqPzjoMdSIRLhPFMlkzIcaM4Y7/BIREQ0Br/PyvT+9V6p7nWESBXzvzGS//VuHAiPn24iYb2MJRr6FtjpI9UWQ6gt73BZDcDf7ZHwNAtTYMVDsuVDseV23qm08IIX1PsHZ5JN5Qx2f28YSCvkOheu8WDRDw6IoSkDmUVU1YHPRwDnbZRTt+Bj3mTbr4u5xK9Ax/nxgiDljvo2F+TYO5tpYmG9jYb6JaCgOVrfiw0KHLnbtrGQkRPXx5qQPiC1ViPzst7qYarWhZfkfeKENEREREdEoV9vixuu79V1mVk71Y5dLIiNzt8Jc+XV3J5na/RC0wV2IoVpt8KSf2dVJRrFl8bU7ERGRD/A6L9864mjHf/boX2dcNi0R6TFhhvj7n2CUfJMX820svsy34GqC5CiCqb7IWxzjKIKpvhhih6P/kwdIiUqBEp8L2Z7bfWvLBszhpziB38sn8LltLEbNN4tmiGjI/v31MfwWT+tiiikcLUv/m29cExERERHRaf3ti+O6+9EWCTfOS/PPZJqGqI/XQHTpdwZqWfb/oEUm+mdOIiIiIjI8SZL8NrYoiqe9T3p//6oSLrm7zaVJFHDboky/5shXmGtjGZH5ljtgqtwJ0/F8mMu2QqreDUGVBzWEFhYNT/qZkDMXQM5YACVhIiB0/91D/5k6NCMy3zRkzLdxMNdExvF0fjmU7pcZsJhEdrMkIvK0weQogeTwFseYHEWQHMWQWqp8NoVqjfcWxNhzIcd7b5X4HGiWGJ/NQUSjD4tmiGhIWlwyonc9iWyxQhdvn38P1Gg/XehGRERERESjwjdlTcg/7NTFbpyXihirf96msOz/J8KOfaaLdeSsgjv7Qr/MR0REREQEADabLWBzxcbGBmyukabS2Y43dtXoYtfMzcSUcalBWtHwMNfGEpL5lt1A+Q7gyOfA4c+A49sBxTW4McwRwJgFwPglwPizIKTMQJhkgn96z44cIZlv8hvm2ziYa6LRSVZUfFLSoItdOysZCVFG/42GiAxDcUNqOAzJUejtHuMohslRBNF5HAK0/s8fADUsStc5RrHnQI7PhRaR4JPxichYWDRDREPyQf52fB/rdbGW+CnomH5jcBZEREREREQjgqZpeOxzfZcZe4QZ356Z4pf5ROcxRG35oy6mRCShdenv/DIfERERERGFlsc3l8CtqF33wyQRq5dnB3FFRCOMIgOVu4Ejn3mLZI5tAzxtgxtDsgCZ84DxZ3n/pM0CTLyglIiIiEaukrp2uGRVF7tu9sgszCciOi1Vgeg81tkxpqirQEZqPDzoLqOnopmskG3ZXR1jThTJqFGpgCD4ZA4iIhbNENGgtbo8mLX/j7AI3b/0KBDhOfcBQBytDdKJiIiIiMgXthxqxO7yFl3sewvSEB7mh9cSqoLoTT+HcNLFPC1nPwDNGuf7+YiIiIiIKKSUNbThX1/pi/a/NTcT6XHhQVoR0QigqkD1vu5OMkfzAVfT4MYQTUD6nK5OMsiYB5it/lkvERERURDsrdB/zjHGZkV8pDlIqyEi8gFNg9BUDtR+BdQcAGoKEF25F5KjBMJgu4ueagrRBCVuPBR7LuT43K5bNSaT150Skd8FrWimrKwMVVVVaGtrw9y5cxEezjeniUaKgg+fxwUo0MWq8r4DS+KUIK2IiIiIiIhGAlXT8LcvynSxtBgLLp+e5Jf5wnc/D3PFV7pY+5RvwzN2mV/mIyIiIiLqqaGhwW9ji6KI2NjYrvtOpxOqqp7mDGN6+L1SeBSt636YJOD6mQl+zY2vMdfGEpR8axrEhlKYj+fDdDwfpvIvIXYM7jmiCSKUpGmQM+bDk7kQcuocICyy+4CWdgDtvl33KMDnt7Ew38YRCrm22WwBnY/IiPZW6otmpqZGBWklRESDJ7ibIdUXwVRfCKm+EKa6g5DqCyG6m3XHDfUCcw0C1NgxXR1jTtwqceMAiV1HiSg4Alo009zcjIceeggvvPACKioquuJ79+7F5MmTu+7/85//xBtvvIHY2Fg8/fTTgVwiEfXD1ViNhUce08VqpWRYlt0bpBUREREREdFI8cHBehTV6ru+3LYoHWZJ9PlckqMYEdv+VxdTYjLRtmiNz+ciIiIiIuqLoigBm0tV1YDONxKUN3Zg/d4aXeyKGUlIiDSN6H8r5tpY/JJvTYPYdAzmsq0wl21DWPk2iG21gx5GTpgET/p8eDIWwJM2F5olRn8Av08Hjc9vY2G+jYO5plAiSf7ZxV8UxdPeH432nVQ0Mz092m//vqHGiPk2MuZ7hFNliA2HIdUfhFR3EFJdIaS6AkjN5b6bIioNij0XSkKe99aeB8WWBZh7N1Iwxk/JkYHPbWNhvr0CVjRTXFyMiy66CIcOHYKmde/oJAhCr2Pnz5+PG264AZqm4aabbsLixYsDtUwi6kfLxvuQjlZdrHrBb5FijgjSioiIiIiIaCSQFRVPbNF3mZlgD8eFkxJ8P5niQdSH90JQ3F0hDQKaz34IWhh3eyMiIiIiMoJnt1VAUbs/k7SYBHx3XloQV0QUPGJzhbdIpnwbzGVbIbVUDnoM2ZblLZBJXwBP+jxo4fF+WCkRERH5U6C6EPXstjQaNbS6cayhQxdblJcOm210/71PZbTnm/SY7xClaUBLNVC9D6g+AFTvB2r2A7WFQI/PS4clMhFImgQkTe6+TcyDaI2FCMDsm1koSPjcNhaj5jsgRTMdHR24+OKLUVpaisjISKxevRpnnXUWVq5c2efx48aNw/Lly/Hxxx/jrbfeYtEMUago/Rh59Zt0ofzwpcg94/wgLYiIiIiIiEaK/+yrRVmjSxf74eIMSGLvzTSGK3zHWphr9+liHWfcAjl9ns/nIiIiIiKi0HO8oQPv7Nd3zrhqRjISosKCtCKiwBJaa2Eu34qwsm0wl2+F5Dw26DGUmDHwZMyHJ30B3BnzoUUm+WGlRERERCPPrrJG3X2LScTE1OjgLIaIjMfdCtQc9BbI1HQWyFTvB9odvhnfEtOjMKbzT+IkICrRN+MTEQVJQIpm1q5di5KSEkRGRuLzzz/HGWec0e85F154ITZt2oStW7f6f4FE1D9PG8I+vk8XcmoR0Fb8NkgLIiIiIiLS82fbe7arHZ4Oj4JntlboYtNSo7AiL6HPDrTDIVXvRcTXj+tiSnw2Ohb9bMDfI8y3cTDXxsJ8GwvzbSzMNxGd7Jmt5VC6m8zAahJxI7vM0CgmtDfAXLG9q5uMyVE86DGUqBRvF5nOQhk1Jt0PKyUiIiIa+b451qi7Pz0jFmaJ70UQkY+pCuA47O0Yc6IwpuaANwat39P7JUhAQi6QPBlIngIkTfHexmYAPv78logoFASkaOaNN96AIAi46667BlQwAwAzZswAABQXD/4NPSLyPcu2RxDtqtLF/hn7fVw5fmyQVkREREREpGez2QI2l1Hb1Q7Vk5+WorZF3/p7zcVTEB8f79uJPB3AKz8DVLk7JkiQrnwatsTUIQ/LfBsHc20szLexMN/GwnwTGdtRRzs2FtTpYlfPTIY90hykFRH5nuBqhqniK4R1FslIdQUQBnnRlBpuhydjAdzp8+HJWAA1diwvjCIiIhrlGhoa/DKuKIq61+JOpxOqqvplrlDwVam+q+WkpHC//duGIqPl2+iY78AQ2uoh1R2EVH8QUl2h92tHEQS5wyfjq5HJUBImdv+x50GxZQEmi+44URAR2+N1IfM9evG5bSyhkO9AXs9zKgEpmikoKAAAnHfeeQM+x263AwAaGxv9sSQiGgSpZh8idz+vi21TJyF7xc1BWhEREREREY0UTR0erP20VBdbnJ2AhdkJvp9s8/1A7UF97Kx7gfRZvp+LiIiIiIhC0jNby6H2qB0IN4u4ce7Qi+iJQoKnDebKHd2dZGr2QtAGd3GDaomFJ32+t5NMxgIotmwWyRARERmMoigBmUdV1YDNFWiqpmFvZbMuNjk5YtT+fQdiNOebemO+h0l2QXIUw1R/EKb6Ikj1hTDVH4TYVtf/uQOgmSMgx+dCsedBtudBTpgIJT4XWvgpLlbvJ5fMt3Ew18Zi1HwHpGimpaUFABAVFTXgc1wuFwDAbOauT0RBpcqI3PwriOh+492lmbAu4S7clxETxIUREREREdFI8PRnh9DY5tHFfnZ+nu8nOroVyH9MH0uZDpz1M9/PRUREREREIelwfTveK6jXxb49KwW2CH7eSCOMpwMo+wrWgg9gOp4PU/VuCKqn//N6UM1RkNPndXWSURImAoLopwUTERERGcNRRwdaXPqLTKelDfyaSCIyCE2F2FQGU31hZ2GM91ZqPDzoDRD6HF4QocSO8xbHJOR1FcmoMZl83UdEdAoBKZqx2+2oqqrCkSNHMGvWwHZ33b9/PwAgJSXFn0sjon5Y97yEsNp9utjj8mW4aMmZQVoREREREVHfGhoa/DZ2KLSrHYnqW9145vNDutiK3HiMidJ8my93K2LeuA0SureT1qQwNJ39J6hNLYMejvk2DubaWJhvY2G+jSXY+bbZTrFTIxEF3FP5ZT1eFQCRYSKun8PPGmmEUFwwl3wIFP8HOJoPyB0IH8TpmskKT+oceDIWwJM+H3LSVEAMyOUARERERIaxr1L/mUNSlBnJ0ZYgrYaIQoHQ0agrjDHVFUJyFEH0tPpkfDXc3tkx5kT3mDwo8TmAyeqT8YmIjCIg75LNmjUL7777Lj777DNcccUVAzrnxRdfhCAIWLBggZ9XR0SnIjZXIGLb/+lixWo6tqVchxsz2WWGiIiIiEJLINvHGrVd7WA9m1+Gdk/3BauiANyxKMPn/3aRn/8BkvOYLtZ25k/gsWX321Z8IJhv42CujYX5Nhbm21iYbyJjKqltw0eFDl3s2lmpiAtnlxkKbZKjBNb9/4Kl8E2IHQPfYEITwyCnzIQ7YwE8GfMhJ08HJF6wSURERORPe08qmpmayi4zRIahuCE1HOosjjnova0rhNRa5ZPhNckCOT6ns3vMxK7uMVpEgk/GJyIyuoAUzVx11VV455138NRTT+GnP/0pxowZc9rjH3nkEXz22WcQBAHXXnttIJZIRCfTNER98huIcpsuvMbzPdyycFxw1kRERERERCNGpdOF13ZX62IXT07AePtg9sntn/noZwjf94ou5kmdjfYzvufTeYiIiIiIKLSd3GUmyiLhOnaZoVAld8BSshHWA/+CueKrAZ2iCRLk5OldnWQ8qbO5szARERFRgO2r0BfNTEuLDtJKiMhvNA1iS2V395i6zgKZxkMQVNknUyixYyDb8zoLY7wFMkrsWECUfDI+ERH1FpCime985zt4+OGHsWfPHixbtgyPP/44Lrjggq7HBUGApmn4+uuv8cgjj+Cf//wnBEHAkiVLcOGFFwZiiUR0krDSjQg7ulkXe0VeAXfqHMwdwy4zRERERER0ek9tLYdH6b5kzSwJuG1hhk/nEDqciPp4jS6mmcLRfPZDfFOZiIiIiMhAimpa8XGxvkPHdbNTEGMNyEehRAMm1RfCuv+fsBSuh+hq6udoAXLSVLjT53s7yaTOgRbGncyJiIiIgqXNraCkTr/58NTUyCCthoh8QXA3Q6ov6uweUwhT3UFI9YUQ3c0+GV+1xHV2jsnrLJKZCDk+Bwjjzw4iokALyDvFoijirbfewuLFi3HkyBGsXLkSEREREAQBALBs2TI0NzfD5XIBADRNQ1ZWFl599dVALI+ITiK4mhD12e91sVotFg/K38b9C9K7nrtERERERER9Ofz/2fvz+KjOM8/7/9apVRtCrJIQArEjgTFeMHZsMHhLHDvBiYPdmZ44ySTzJE2mn/Rv0j3tGae7Z8bdSaYzv8k8biZPT6dnsk0SO4ntxImdxMYYYzuOF7ANAoRZhYTEIoTQVnWq6pznD9mCuyTEoqqjUp3P+/XqV+u+zl3nXKrL5MXhnOu+O/r168YTRuzjy6apqjya1euUbP1PQ7Y87/3Ag3Imzs7qdQAAAADkt//5SqsxLosG9cmr2WUGeSLZp+i7Tyu26ycKt2+/8PzZN0lXPSDNv1XdcSmdTuc+RwAAAFzQrvZeOedsbxkMSIun8+I7MC44KQVPHzynMea9Rpnulqyc3rUiSk+ae87uMQMNMk7JNIl3LQEgL3i2vFJtba3eeust/Zt/82/02GOPqbe3d/DYiRNnX6QJBAJav369vv3tb6uiosKr9ACco/iV/yKrz3zB7W+SD6imcrqun10+RlkBAAAAGC++/dIR48FRUdjSZ66bkdVrRPb/VrGmJ42YPfNGxZd8MqvXAQAAAC5XMJi73Q8tyxpx7Ce72nv0wj5zl5lPrZih8uLsNu2PFWo9fgVPNCqy48eKNv1CgQusUuwUTZFd/3Ell35SZbOvHIxbdleOs8RY4s+3v1Bv/6DWQOHa2dZjjOdPK1YszK73QF5xXQX6Tih0cs97u8fsUahjr4Kd+xRI21m5RLqsemDHmMHmmIVKT6yTguGsnB8AkBue7kk+adIk/Z//83/0d3/3d/r1r3+tN954Q8ePH1c6ndbkyZO1fPly3X333VqwYIGXaQE4R+joGypq/LER25Rerl871+m/scsMAAAAgAvY1d6j5981X1j7o6srNbkke/9QHOg7qdLNDxkxJ1Kmnlu+zmpNAAAAyBteLg5XXu7fBa/+1y/2GeOJxWF98dbFKo16+hjUM36u9biQ6JZ2/lx683vS0W0Xnj93rXTVA7IW3qlYKKJYxmHq7S/U21+ot39Qa+STXDX2+6VZrLG91xhfUT0hp4sl5Cu/1BsD8rreyT4FO/YqeHKPgh17FDzZpODJPbLinRf+7EVwI2UDu8ZMWaT0lIVKT1ms9OQFUnTCkLmF8r8EeV1vZBW19hfqPWBM/rV41qxZ+pM/+ZOxuDSAkaQTKt38H4xQnxvVXyU/rYXTSnTjnIljkxcAAACAcWPj1iPGeEIsqH95TVX2LuC6Kn3hIVnxU0a4d9VfyynN4nUAAAAA5L23jpzWpj3Hjdj/tWpuwTbMIE+5rnR0u/TmdwcaZuyekeeXTpeW/7G0/F9Kk+o8SREAAEDyrrG/EJvFXNfVzoymmZXzp3u6WEK+KsR64/zGpN5OWjp1UDreKB177/+O7xqIyR39+QNBacoCaXq9NL1BmtYgTa9XoHymQoHA2LxknSf48+0f1Npf/FpvP//vOYAMRdv+p0Kd5ops/zX1CbVqqv6eXWYAAAAAXMAbzV36w+EzRuyBFdUqi2Xvnx+iTU8oeuBZI5aYc7sSC9dl7RoAAAAAxof/9uxeYzy5JKJPXT9rjLKB78S7pB0/HdhVpv2dC0wOSPNvk656QFpwhxTM3m6sAAAAyL3W0/060Z0wYstraZgBsq735DmNMe///z1Sqj875y+req8x5r0GmekNAw0zoWh2zg8AyFs0zQCQJAU7D6j49f9hxHY4s/Xd9B2aN6VIq+dxowcAAADg/FzX1T9k7DIzpSSs+5ZPz9o1rO6jKnnxPxoxp2iSem7+zxJN/gAAAMgznZ2dOTu3ZVnGioBdXV1yHCdn18tHb7d2a8veE0bsU9dWye7rlt03RknlALXOM66rYPt2RXf+RJG9TylwgRe3nNJKJerXy25YL2dCzUDwzPl3oqHe/kK9/YV6+0c+1JqdL4Ds29582hhPLA5r9uTisUkGKATJuHRiz8COMcfO2UGm9/iFP3sxwiXStMVnG2Peb5IpnpSd8wMAxh3Pm2Ycx9GuXbt04MABdXd3K51OX/Azn/rUpzzIDPAx11Xp5ocUcOzBUNoN6C+Tn1daQX3u+hmyeAENAAAAwAi27O/UzrZeI/a562coFg5m5wKuq9Ln/1KWbb5c1HPzw3KLp2TnGgAAAEAWXcwzsGxxHMfT6+WDb289bIwnF4f18WVTC/578GOt80Eg3qVo05OK7XpUoY6mEee6AUv2rDWKN9yv5KxVkvXeI/nLqBv19hfq7S/U2z+oNfJJrhr786FZLNdefbfdGDdUluj06dNjk8wY80O9cdao6+06ss60Knhyt4IdTQqe3KPgyT2yTh9UwB39fzduwJIzcbbSkxcpPWWh0lMWKT15kZzymVLAMicnJCVyt8BJIeDPt39Qa3/Jh3rnQ2O/Z00zfX19evjhh/Wd73xHHR0dF/25QCBA0wyQY9HdP1P46B+M2D+n71SjW6c5k4u0dgEd1gAAAADOL+24+h9bW4xYzcSo1i2dmrVrxHb+H0WOvGzE4gvXyZ57R9auAQAAAGB82N5yRn84fMaIPXBdVfaa9gFJcl2F2t9UbOdPFN33tALpxIjT02XVitevV2LxvXJKqzxKEgAA4OJ51cBViM1iO452G+MllSUF9zterkKsN85vpHoH4l0KdjQp1LFn4P+fbFLw1F5Zyd5h51/ytYsmKzVlkdKTFio1eaFSUxYqPWm+FIoNM9mVxH+Xo8Wfb/+g1v7i13p70jTT09OjNWvWaNu2bXJd14tLArhIgb6TKnn5a0asxZ2i/5b6uCTpsyur2WUGAAAAwIh+s/ukDnT0G7EvfKBGoaB1nk9cGuv0IZW8/HUjli6pVO+qv87K+QEAAACML//4cqsxnlIS1seumD5G2aDQBPo7B3aVafyJQp37RpzrBoKy624Z2FVm5o2SReMWAABAobFTjvYcM1/6X1pdOkbZAHkgbSvYeUChjiYFO/YM/P+TTQr2tl/4sxfBDUaVmjRf6ckLB5pkJg80ybjFU7JyfgCAP3nSNPPwww/rzTfflCStXLlS//pf/2stW7ZMEydOlGVl5wUaAJen5KW/lZXoMmIPJT+jfsVUWxHTbQsnj1FmAAAAAMaDZNrR/3zFfGFt/tRi3b4oS/cSTlplz/25AimzKafnlq/LjU7IzjUAAAAAjBtvNHfpjSPmLjOfua5asTDPHDEKrqvQ0dcUa/yJovt/o0DaHnF6esJMxevvU3zxx+WWTPMoSQAAAIyFvSf6ZKfNhcIbKmmagU+k4tK7z0nt70jHGjWhbYeszv0KOKmsnD49oXZgx5jJC5WaPNAgky6fxYIEAICs86Rp5mc/+5kCgYDuvPNO/eIXv6BRBsgT4cNbFNv7SyP2VHqlXnCWSxrYZSZoscsMAAAAgPN74p3jau1KGLE/ubEmaztWFr31HYXbtxmx/iX/Qsnam7JyfgAAAADjh+u6+seMpv1ppWGtu4KmBVyeQH+HYrsfV3TXowqdPjjiXNcKy55z28CuMjXXSwGeeQMAAPjBzrYeYzx7UkxlMU9euwTGTLBjr2K7HlW06Ukpfvps/DLP50QnvrdzzMCuMenJi5SaNF+KlGQjXQAALsiTv721tg784/Wf/umf0jAD5Itkn0pf+Csj1OUW6z8lPyVJmlEe1QcXs6UhAAAAgPPrt9P6598fNWJXVJfqxjkTs3L+4MkmFb/6LSOWLq9V7wf+MivnBwAAADC+vN58Rttbuo3YZ1fOUDTE80dcAtdRuOX3ijX+RJEDzyrgJEecni6fpXjD/Yov+pjcYp6dAQAA+M2Oo2bTzNIqdplBgUr2KfrurxVrfFThY9sv6xSuFVZ60rz3GmMWDv5/p2S6lKUF9wAAuByeNM1MmzZNLS0tmjKFf0QE8kXxa/+Pgt0tRuzvUv9CJzRRkvSZldUKscsMAAAAgBH8ZHu7OvrMl4u+dNNMBbLxj95pW2Wb/lwBxx4MuQqo+9a/l8LFoz8/AAAAgHHFdV39vy+bzzUqyyL6yJKpY5QRxptA7wnF9vxcscZHFTzTPOJc14ooMfcOJRruV3LGdbzcBQAA4GOZO80sqaZpBoUleHyHYo2PKrr3KVnJngt/4D3psuqBHWPOaY5JT6yTguEcZgsAwOXxpGlmxYoVamlpUVNTk5YvX+7FJQGMIHhil4re+l9G7A/OIj2WXi1JqpoQ0YfraXIDAAAAcH5n4il9/7U2I3bD7HJdNXNCVs5f/MZGhU40GrH+5Z9TquqarJwfAAAAwPjyh8Ndeidjhed/df0MRdhlBiNxHYWbXxrYVebQJgWc1IjTUxVzFW+4X4mF6+QWTfIoSQAAAOSrU71JtXYljBg7zaAQBBLdiu79pWK7Hh3yPG5YM66Rqpapt2y2khULlJ68QG40O88EAQDwgidNM3/2Z3+mxx9/XP/wD/+g++67LzsrzgK4PE5apZv/vQJuejCUcEP698l/JVcDD5Y+fV21wkEeMgEAAAA4vx+83qbuRNqI/clNM7Ny7tCxd1T0xreNWGrSfPVd92dZOT8AAACA8efpXR3GeEZ5VHc3sAAYhmf1tCu6+2eK7XpMwe7WEee6wagS8z6keMMfKVV1NbvKAAAAYNDOdrNxvyhsac6U4jHKBhgl11Wo/c2BXWX2Pa1AKj7idKd4qhL1n1DRDZ+XJs2RJNmdnUqn0yN+DgCAfORJ08wNN9ygb3zjG/qLv/gL3X///frHf/xHTZw40YtLA8gQ2/F9hY/vMGLfTn9E+90ZkqTpZRHd3TB1LFIDAAAAME6c7LX14zfbjditCyZp0fSS0Z88FVfpc18xGv1dK6TuW78phaKjPz8AAACAcWlnm/my2n1XTVeIBcBwLietcPOL7+0q87wCrjPi9NSkBWd3lYmVe5QkAAAAxpMdGbtdLp5eopBFkzXGl0D/KUWbnlRs12MKnXp3xLluwFKydpXiDffJnrVGwUhMRRUVHmUKAEDueNI0I0lf+cpXNHfuXH3+85/XzJkzddttt2nBggUqLr5w5/Vf/dVfeZAhUPis7qMqefX/b8T2O1X6H6mPDo4fWFGlSIiHTAAAAADO759/f1Tx1NmXj4IB6Qs31mTl3CW//68Kde43Yn3XfEnpaUuycn4AAAAA48+ZeErNneYKuFfOKBujbJBvrO6jiu36qaK7H1Owp33EuW4opsT8uxRvuF+p6VeyqwwAAABGlNm8v7S6dIwyAS6R6yjc+qpijY8qsv93Cjj2iNPTpVWK169XYvG9csqqPUoSAADveNY0c/z4cT3xxBPq6uqS4zj6xS9+cdGfpWkGyALXVcmWv1Eg2WeEH0x+TrbCkqQpJWF9dOm0scgOAAAAwDjRejquJ945bsTuWjJVsycVjfrcodY/KPb2/zZiyWlL1X/1F0Z9bgAAAADj1672XmMcDgY0f+qFF+ZDAXNSihzarFjjTxRufvHCu8pMqR/YVWbBR+RGabgCAADAhaUdV7vaM5pmqmiaQX4L9B5XbPfPFdv9mIJdzSPOda2Q7Nm3KN5wn5Izb5SsoEdZAgDgPU+aZjo6OrRq1Sq9++67cl3Xi0sCyBDZ/1tFD20yYj9OrdFr7uLB8adWVCnKLjMAAAAARvCPr7Qq5Zy9t48EA/r89TNGfd6A3aOy5/5CAZ09txuMqOfWb0rB8KjPDwAAAGD8ynxRbeG0YoWDPM/wI+vMEcV2Paborp8p2Hd8xLluuFiJ+XcP7CozbSm7ygAAAN8LBnPzQrxlWSOOx6uDp3rVa5vN2VfUlOfsexwvCrXe45qTVujwi4o2/ljhA5sUcNMjTk+Xz1ZiyX2yF39cbsnAAtvn+6+aevsL9fYPau0v1HuAJ00zf/d3f6e9e/dKku699179yZ/8iZYtW6aJEycqwD9OAjkXSJxRyYv/0Yidtir0tdQfDY4nFYf0sSvYZQYAAADA+e070adndp00YvdeOV2VE6KjPnfJS3+nYHeLEetd+RWlJ80b9bkBAAAAjG+NGTvN1FeyurOvpJOKHNw0sKvMkZeMxRaGk5y2VPGG+2XPv0tuhP9WAAAA3ldRUeHJdcrLyz25Tq7tf7fbGM+YWKQFM6ePUTb5q1DqPS6dPiJt/4G0/YfSmdaR5wYj0uKPSFc/oOCsG1VsWbqc/Vupt79Qb/+g1v7i13p70jTzy1/+UoFAQH/8x3+s733ve15cEsA5in//90NW2/pq/F/ojM4+KPiX11YrFvb3SggAAAAY33K5shcrbwz4f19pNV5NKo5Y+lc3zBz1dx86uFmxXY8aseSMFUpe/TkFA95/19TbP6i1v1Bvf6He/kK9gcLmuq52tpk7zTRUloxRNvCSdfqQYrseU2zPz2X1nRxxrhMuVWLhRxVvuE/pqQ0eZQgAAIBCtr35tDG+snbimOQBGNJJqekZadv3pH2bpAssKqCpi6WrH5CuuE8qnuRJigAA5CNPmmZaWwe6WD/72c96cTkA5wi1vaGinT8yYu/ErtFT8esHx+VFIX18GbvMAAAAYHzzaoU0yZ8rb2xr7tQL754yYp+/aa7mzhjlvUTfKen5B81YpFThe/9JFRWTR3fuLPFjvf2KWvsL9fYX6u0v1Bv5gsb+7Dh2JqGO3qQRu2JGeU6/33zip1pLklIJhQ/8TtGdP1H4yMsXnl65XIklfyR7wV1SeGCd5PH8X4bv6u1z1NtfqLd/UGugcGw/0mmMl8+cODaJAJLUsV/a9n3prR9JvcdHnhsulho+NtAsU3OtFAh4kyMAAHnMk6aZKVOmqLW1VWVlZV5cDsD70rZKNz9khoJF+pOufynp7F+G//iaShVHxvMjBAAAAAC55Lqu/v43TUasojisz91UN/qTP/3nUk+7Gbvjb6WK2aM/NwAAADCGaOzPjj+0mvcLZbGQls2pkmX586Wfgq31yXelN78rvf1jqa9j5LmxcumK+6WrH1BoeoNCkgp176GCrTeGRb39hXr7B7VGPuns7LzwpMtgWZbx33pXV5ccx8nJtbzSk0jp3WPmjpfzKkI5+w7Hk0Ksd95KxRXe91tFG3+icMvvLzx92hIlGu6XvfCjUvS9d3VPnx5VCtTbX6i3f1Brf8mHenv5b+Xn40nTzE033aSf/OQn2rlzp6666iovLglAUtH2f1Lo1LtG7Odlf6yW3qmD4wmxoD5x5XSvUwMAAAAwjry076R+f8B8aWnDmnkqi4VHd+LGJ6SdPzNj826TrnpgdOcFAAAAUDDebjltjK+oKfdtw0zBScal3b+U3vyedPilC8+vvV66+tNS/UelcFHO0wMAACg06XTak+s4juPZtXJlR+sZueeMQ1ZA86fExv3vlQuFUO98E+zYq9iuRxXd86SsxOkR5zqRUiUWfFTx+vVKT1ty9kCOakK9/YV6+we19he/1tuTppl/+2//rX7+85/rm9/8ptavX69YLObFZQFfszoPqvj1fzBivRWL9e/bVhmxT15dpdKoJ/9TAAAAAORULlf3yoeVN8aK67r62q8bjdj0sojuWlQ+qu880HtcE576M1nnxJxouc6sfljuKFe9Gi0/19tvqLW/UG9/od7+Mtb1zocV0oBC9vaR08Z4Wc3EMckDWXR890CjzDs/kfovcF9ZVCEt+6R01aekaYu8yQ8AAAC+t6PN3GVm4bRiRUPWeWYDWZDsU/TdpxXb9ROF27dfeHrlVYo33KfEvDulcLEHCQIAML558qb8VVddpe985zv63Oc+p9tvv13f+c53tGDBAi8uDfiT66r0hYcUSNtnQwFL/71og1IKDsZKo0Hdt5xdZgAAAFAYvFwJw08rb2zae0q72nuN2Oevn6FQwL3878B1NeG5v5QVN1+O6ln9N0oVTcnZ6leXy0/19jtq7S/U21+ot79Qb+QLGvtHz3FdvZPRNDOvIpTT7zbfFEytk/2KvPtrRXf+RKG2Ny48vWalEkv+SMm5d0ih9xZk9EHdC6beuCjU21+ot3/kQ61p7AdGb+dRs2lmaXXpGGWCQhc8vkOxxkcV3fuUrGTPiHOdWIUSC+9RvP4TSk/m/VsAAC6FJ00zn/3sZyVJ9fX1eumll1RfX68rrrhCCxYsUHHxyF2ugUBA//zP/+xFmkDBiO75uSKtrxqxYwv+WN95Z5IRu395pcpi7DIDAAAAYHgpx9W3XzpixGorYrprydRRnTe6++eKHHreiCXmfkj2/LtHdV4AAAAgn9DYP3qHOvrVY5u/1+LpxQX5u16s8Vbr4Mk9ijX+RNGmJ2XZ3SPOdWKTFF/8ccXr75NTUXf2wDj6fbNtvNUbo0O9/YV6+we1BsYf13WH7DSzpIqmGWRPINGt6N5fKrbrUYVONF5wvl1zveL198mee7sUjHqQIQAAhceTt+W/+93vKhAISBpognEcR2+//bbefvvtET/nui5NM8AlCvR3qOSlrxmxdFm1/kvi43Lcs6tDF4ct/dHVlV6nBwAAAGAcebrxpA6dihuxL3ygRiErcNnntM60qmTrfzZiTvEU9dz8n6TA5Z8XAAAAQOHZ2W6+qDa1NKyppZExygYXze5VdN+vFWt8VOFjb114+swPDLwANudWXgADAADAmGvtSuh0f8qI0TSDUXNdhdq3Dewqs+9pBVL9I053iqcovuhexes/IWfibG9yBACggHnSNFNbWzvYNAMgt0pe+jtZidNG7NDVD+kXv+01YvddVanyInaZAQAAADA8O+Xof77SYsQWTCvWrQsnnecTF8F1VLrpL4ZsL9+z5m/lFo3ivAAAAAAKUmOb+WyjoZIX1fJZ8PjOgV1l9j415L4v0+ALYA3r5ZTP8ihDAAAA4MJ2ZuwyU1EU0oxymrtxeQL9nYo2PaHYrscUOvXuiHNdBZSctVrx+vWyZ6+VgmGPsgQAoPB58sb8oUOHvLgM4Hvh5q2KNT1pxBLz7tR/b5mvtHtiMFYUtvQv2GUGAAAAwAj+cLhL7d22Edtw40xZo1gUI/bODxRpfdWIxRd9XHbdrZd9TgAAAACFqzFjp5mGqpIxygTnE7C7Fd37lKKNjyp8YueIc10FlKy9SfGG+3kBDAAAAHlrx1HzPmRJdSkLhuPSuI7Cra8q1vioIvt/p4Bjjzg9XVqleP16JRbfK6es2qMkAQDwF7aZAApFsl+lL3zVCDmRMu2/8t/p1z86asTvXTZdE4t5EAEAAADg/N7JeChUX1miG+rKL/t8VudBlfz+vxixdFm1em/66nk+AQAAAMDP7JSjd0/0GTF2mskTrqvQ8XcGdpV591cKJPtGnJ4uma7E4nsVr18vZ0KNR0kCAAAAl2dHxk4zS6u4D8HFCfSeUGzPzxXb9aiCXc0jznWtkOzZaxVvuE/JmTdJVtCjLAEA8CeaZoACUfz6IwqeOWLEem/4d/rOjqTSjjsYi4YC+uNrq7xODwAAAMA4k7mS2nWzyi9/JTUnpbLnvqJAKm6Ee275htxo2eWmCAAAAKCAvXuiT8m0a8TqK9lpZiwFEmcUbfqFYrseVejk7hHnugFLyVk3K95wn+xZN0sWj6UBAACQ/+JJR03HzabwJTTNYCROWuHmFxXb9agiB59XwE2POD1dXqt4/X2KL/q43JKpHiUJAAD410mgAARP7lbR9u8YsWTVNTo8c51++bsdRvxjy6Zrcgm7zAAAAAA4v7Tjale72TTTUHX5L6cVbfsnhY+9ZcT6r/iUkjU3XPY5AQAAABS2xox7klmTYiqN8mjTc66rUPv2gV1l9v16yGIImdKlVYrXr1di8b1yyqo9ShIAAADIjqbjvcbixAHRvI/hWd1HFdv1U0V3/1TBnrYR57pWRIm5dyjRcJ+SM66TApZHWQIAgPfxL8vAeOekVbr5Pxhd6q4VVs+av9X3Xj+m1Dk3cpFgQJ9ilxkAAAAAF3Cwo199SceIXe5KasGTu1X82n83Yuny2eq9/i8uOz8AAAAAha+xrdcYN1SyurOXAvHTijY9qVjjTxQ69e6Ic91AUPbsNYo33K9k7SrJCnqUJQAAAJBdO9vM5v05U4po3sdZ6aQih55XbNejCh9+UQG5I05PTZqveP19SixcJ7eowqMkAQDAcLL6N7pgcOAfQAOBgFKp1JD45cg8FwBTbMcPFT72thHrv/oLao/U6hc73jLiH106TVNLIx5mBwAAAGA82pHxUKh6QlRTSi7jXiKdUNmzX1HASQ6G3ICl7tu+KYWLRpsmAAAAgAI2ZPdLVnfOPddVqO2N93aVeVqBtD3i9HRZjeIN65VYdK+c0ukeJQkAAADkTmbTzNLLXFAMhcU6fUixXY8ptufnsvpOjjjXDcWUmPdhxRvuU6ryKikQ8ChLAAAwkqw2zbju8J2z54sDGB2r+6iKX/2vRiw1sU59V39R39/aJjt99s9eyArogRXsMgMAAADgwnYcNR8KLam+vIdCxa89olDHHiPWf9X/pVTl8svODQAAAEDh60mkdOhU3Ig18LJazgT6Tym65wnFdj2qUOf+Eee6Vkh23a0Du8rM/IAUsDzKEgAAAMi9S34+kuxXwE3LjXC/UnBSCUUO/FaxxkcVaX31wtOnNijecL8S8++WGy3zIEEAAHApsto089d//deXFAcwCq6rkhf/o6xkrxHuWfO3OpkI6PG3jxnxjyydqsoJUS8zBAAAADBOZWMltVD7dhVt+0cjlpq8SH0r/s2ocgMAAABQ+HYf69W5S/KFrIAWTC0es3wKkusq3PqqYo0/UWT/7xRwLrCrTHmt4vX3K77443KLp3iUJAAAAOCdEz222rvNvxcvqTz/85Hw4RdU9rv/n6xEl5LTliqxcJ0SC+6WWzQ516kih4IdexXb9Ziie56QlTg94lwnXKrEwo8oXn+f0tOWeJMgAAC4LDTNAONU5MDvFD34nBGL169XasZ1+j8vNCuROvs4KWgF9OkV1V6nCAAAAGAc6kmkdLCj34gtqSq5tJMk+1X63J8r4DqDIdcKq/u2b0pBmvkBAAAAjKyxzVwwbMHUYkVC7GiSDYG+k4rt+blijY8q2HV4xLmuFZY99/aBXWVmrGRXGQAAgHEuGAzm5LyWZY04Hi92HeszxiWRoOZNK1XQCgyd7Loq3fI3shJdkqTw8R0KH9+hkpe/puSs1bIXf0zJulukUMyL1D1VKPU2JPsU2fsrRRt/olDbtgtOT1VdrcSS+2XP/7AUHljgITd/usZeQdYb50W9/YNa+wv1HpDVphkA3ggkulXy4n80Yk7RZPXe8O/U2ZfUT98yd5m5q2GKqst5MQ0AAADAhTW2mys6h4MBLZx2aU0zJb//LwqdPmjE+lb8qdJTFmchQwAAAACFrrHd3P2y4VIb+WFyHYWPvDKwq8zBZxVwUiNOT02co0TDfYovuodVsgEAAApIRUWFJ9cpLy/35DrZtvdUuzG+snaipkyeNPzk47ulM0eGhANOSpGDmxQ5uEmKlksN66Rl90u110uBYZpvCsB4rbck6ehb0rbvSTt+JiXOjDy3qEJa9kfSVZ9SaNpihST58U51XNcbl4x6+we19he/1tuTppkXX3xRknTttdeqqKjooj4Tj8f12muvSZJWrVqVs9yA8aj41W8q2Gs2xvTc9JDc2ET9aOsRxVNnV3MOBqTPXMcuMwAAAAAuzo6j5stpC6dd2orO4ZZXVPTO941YcvqV6r/qX2clPwAAAACFb1e7udNMQ2XpGGUyvgV6jyu2+2eK7XpMwWFe6DuXG4woMfdDijfcr1T1tQX7Qh8AAABwPm81nzbGy2eO0GS0b9OFT5joGmjI2PY9aeKsgeaZK+6TJs8dXaIYnXjXQJPMtu9JbW9feP7sm6SrPy0tuksKF97OQQAA+IUnTTM333yzLMvSO++8o/r6+ov6TGtr6+DnUqmRVzsC/CTUtk2xHf/HiNm1q2TPv1td/Sk9us1c9eCDi6eoZiJ/YQcAAABwcXa2mU0zS6vKLvqzgUS3Sjf9OyPmhmLqufXvJYvNbgEAAABc2IkeW8e6bSNWX+nH9Xsvk5NW+MjW93aVeV4BNz3i9NSk+Yo33KfEwnvkxiZ6kyMAAACQZ1JpR++0dBmx5bUTz/+B/c+b4/JaqfeElOoffv7pw9KWbwz8X80Kadl9UsPHpOLz7GSD7HJd6chrA40yjU9Iyb6R55dMk5b/C2n5v6TJCQCAAuHZGyuu63r6OaAgpW2Vbv4PCujsnws3FFPPzf9JCgT04zfb1Zc8u8uMFZA+s5JdZgAAAABcHNd1hzTNNFRd/MtpJS89rGD3USPWe/2fK10xJyv5AQAAACh8je3mPUlJxNKsSUVjlM34YfW0KbrrZ4rtfmzIfVkmNxRTYt6dA7vKVF7FrjIAAAA+0dnZmZPzWpal8vLywXFXV5ccxxnhE/mn6Viv+pNmw/nsCYHhv7NUXBMPvaRz/xbd84G/VLL2JkX2PaPInicUbvn9+S/W8prU8prcZ/5Sybq1shd/TMnZa6RgJDu/TI6Np3oH+jsV2fO4ojt/ouCpd0ec6yqg1KzVSiy5X8m6W6RgeOBAjv7cjBfjqd4YPertH9TaX/Kh3hUVI+zg55G8Xeb1/WIEg8ExzgTIH0Xbv6PQqb1GrG/Fl+VMmKnueEo/zthl5vZFkzWbB0kAAAAALlJrV0Kn+83dXpdWlV7UZyMHNym2+2dGzJ6xUvErPpW1/AAAAAAUvsa2XmO8eHqpghZNHcNyUooc3qJY408UPvyCAu7ID7tTkxcp3nC/Egs/Kjc6waMkAQAAkC/S6ZF3IcwWx3E8u1a2vJWxy8yM8qjKo9awv0f4yB8USCcGx27AUqJ6pdxQsfoXfVz9iz4uq/uook2/ULTpCYU69w97zYCTVGT/bxXZ/1s50YlKLLhLiYXrlJp+5bhqbM+7eruOwq2vKtb4qCL7f6eAY484PV1apcTiTyhe/wk5ZecsTp1Pv1Meybt6I6eot39Qa3/xa73ztmnm8OHDkmR0NgF+Zp0+qOLXHzFiqSn16r/yM5KkR7cfU6999n/EApI+ex27zAAAAAC4eDuOmis6TyoOqbo8esHPBfpPqXTzvzdiTrhUPbf8FylgZTVHAAAAAIVtV/vl737pF9aZVsV2P6borp8q2HtsxLluuFiJ+XcN7Coz7Ypx9fIdAAAA4JWdbeZ9yNLq8y8oFj6y1Rinpi2TGzPfcXTKqtV/zRfVf/UXFDq+Q9GmJxXd+5Ss+Klhz2klTqtoxw9VtOOHSpfPVnzROiUWrpMzYeZl/kb+E+g9odienyu261EFu5pHnOsGgrLrblG8fr2Staski4XdAQAodDlpmmluHv4vHW1tbSotHXmF2kQiof379+urX/2qAoGAGhoacpEiML64rkpf+KoC6bOd727AUs+av5WskHoSKf3ozTbjI7csmKQ5U4q9zhQAAADAOLYj46HQkqpSBS70QpXrqnTLX8vqO2mEe296SM6EGdlOEQAAAEABc1xXu9rNnWYaKi9u98uCl05Ke3+j0lf/SaHDLyogd8TpyalLlGi4T4kFd8uNlHmUJAAAADA+ZTbNLKk6/31IpPklY5ysvfH8Jw4ElJp+hVLTr1DvBx5UuHmrYk1PKHLwOeM9sHMFuw6p5A/fUskfvqVk9bWKL7xH9rwPsVvkcJy0wke2Duwqc+h5BZzUiNPT5bWK19+n+KKPyy2Z6lGSAAAgH+Skaaaurm5IzHVd3X777Zd8rk996lPZSAkY16J7Hlek5fdGLH7FA0pNv0KS9NO3julM3Nwq619dz8tpAAAAAC7NpTwUel/k3acU3fe0EbNnr1Vi8b1ZzQ0AAABA4TvSGVd3wnzeUV/p451m0gmFjr4lvfaKtOOnUs8xhUeY7oRLlVhwt+IN9yk9balXWQIAAADj2pl4SodOxY3Y0vM8Hwn0HleoY48Rs0dqmjlXMKxk3Vol69YqkDijyL6nFWt6UuGjr5/3I+Gjryt89HW5L/6N7LpbFV94j5K1N0nBke4MCp/VfVSxXT9VdPdPFexpG3Gua0Vkz71d8Yb7lJyxUgpYHmUJAADySU6aZlx3+JWNzhcfTiwW05/+6Z/qs5/9bLbSAsalQH+HSl7+mhFLl1ap97o/kyT12Wn98I124/ia+RWaP5VdZgAAAABcvHjSUdPxPiO2tHrkphmr55hKt/yNEXOiE9W95m+lC+1QAwAAAAAZGjN2mZlcEtb0ssgYZTM2rDMtihzeonDzi4q0vKJAsu+Cn0lOX6Z4w/1KzPuwFPFxkxEAAABwGRozFhSLBANaMG34964iR8xdZpxIqVLTr7zka7rRCUo03K9Ew/2yzhxRtOlJxfY8oWDX4WHnB9K2ovueVnTf03KKJikx/24lFq5TatpS/zyPSScVOfS8YrseVfgidt9MTZqveP19SixcJ7eowqMkAQBAvspJ08z//t//2xh/5jOfUSAQ0H/+z/9ZM2acf/eLQCCgWCymqqoqLV++XKWlbLcOlLz0d7LinUasd/V/HHzo8bO3jqmr39xa8l+tZJcZAAAAAJem6Xiv0s7ZBwwBSfWVI9yXu65KNz8oK9FlhHtu/k9yS6blKEsAAAAAhWxXu/myWkNliQKF/gJYKq5w62uKNG9R+PCLCp0+cFEfcyKlSiy8Z2BXmSmLc5wkAAAAULh2ZDTNLJpeonBw+N1Iws1m00yy5gbJGt0rmM6Emeq/9t+o/5ovKXTsLUX3PKHou78a8vzlfVb/KRW98z0VvfM9pSrmKbHoHiUWfEROWfWo8shX1ulDiu36qWJ7fiar7+SIc91QTIl5H1a84T6lKq/yT0MRAAC4oJw0zTzwwAPG+DOf+Ywkad26daqvr8/FJYGCFD7ysmJNTxqxxNwPya67RZIUT6b1wzfMLSZvmjNRi6azihgAAACAS5P5UGjulCKVRILnnR/d9agih7cYscT8u2TP/3BO8gMAAADGm2Dw/H+fHi3LskYcj1eZO80srZ6Q0+9xTLiurNOHFD78gsKHtijU+qoCqfhFfzxVdbUSS/5o4N4rXCRJKrBvyNcK9c82hke9/YV6+we1BsafnUfN5yNLqs6zoJjrKHJkqxFK1t6UvUQCAaUqlytVuVy9N/0HRQ69oGjTE4ocekEBJznsR0Kd+xT6/d+r+PffVLJmpRIL18me+0G5kXG+WHkqociB3yrW+Kgira9eePrUhoFdZRZ8RG60zIMEAQDAeJOTpplMmzdvliTV1dV5cTmgMCT7Vbr5ISPkRMrUs+qvBsePv3Ncp/oydpm5nl1mAAAAAFy6xraLfCgkyTpzRCUv/Z0Rc4qnqmf1f8xJbgAAAMB4VFFR4dm1ysvLPbtWrtgpR03H+4zYdfMrPf0ec8bulQ5ulfY9K+17Tuo8dGmfr14uzbtVaviYQtPrFZLE8mn+UAh/tnHxqLe/UG//oNZAfnNdVzszdrxcep7nI8GTu2X1nzJidjabZoyLRWXPvUP23DsU6O9UdN+vFd3zpMLHtg87PSBXkZbfK9Lye7lb/lqJObcrsfAeJWeOficcLwVPvatY46OK7nlCVuL0iHOdcKkSCz+ieP19Sk9b4k2CAABg3PLkb0SrV6/24jJ4z5NPPqkf/ehHkqSHH35YCxYsGOOMcDmKX/8HBc80G7G+G/5Cbsk0SVI86eh7r5m7zNwwu3zEF9sAAAAA4Hx2ZK6kVn3+ldTKnvt3spLmCtDda78mNzYxR9kBAAAAKHRN7d2yU44Ru6JmnL5k6rrSiT0DDTL7npMOvyKl7Yv/fPFkae4t0vzbpDlrpNKpucsVAAAA8LHmzrjOxNNGbOl5no9Ems1dZtLls+RMmJmz3N7nFlUovvSPFV/6x7I6Dyq290lF9zypYHfLsPMDqbhie3+p2N5fyimeqviCjyix6B6lpyzOea6XJdmn6LtPK7brUYXbt114euVyxevvV2L+nVK42IMEAQBAIRg/bcS4KM3NzfrpT3+qaDSqRCIx1ungMgVP7lHRW98xYsmqqxVvuH9w/Isdx9XRa269+bkb2GUGAAAAwKU70WOrvdt8get8K6nF3v6uwkf/YMTi9euVnL0mZ/kBAAAAKHxvt5w2xnVTSjSxODI2yVyO+Bnp4Bbp3WelfZukM8O/wDasgCXVXDuwm8y8W6Sq5ZJl5S5XAAAAAJKkHW3mgmJTSsKaXjb8fUg4o2kmZ7vMjMCpqFPfdX+mvhX/t0Jtbyq253FF9j0jy+4edr7Vd0LFb/2zit/6Z6UmL1Ji4TolFnxETul0jzMfKnh8p2K7HlV07y9l2T0jznWiE5VYtG5gV5nJLCAOAAAuHU0zBSSVSmnjxo2aPXu2KisrtXXr1gt/CPnHSat0839QwEkNhlwrrJ6bHx54aCLJTjn6/uvmLjMraifoiuoyT1MFAAAAUBh2ZjwUKokEVTe5aMi84Kl9Kvn93xuxdFmNem/8DznNDwAAABiPOjs7c3Zuy7JUXn52F5auri45jjPCJ/Lf6/uPG+PF04py+h2OmusqeHK3QodeUPjwFoXa3jSe7VyIUzxVyVmrlZx9s1K1N5o7d3Z1Df5YiLXG+VFvf6He/kK9/SMfal1RUeHp9YDxbOdR8/nIkqpSBQKBoROTfQq3vWmGxqBpZlDAUqr6WvVUXyut+mtFDm5SrOlJhQ9vUcBND/uRUMcehV75uop//1+UrPmAEovuUWLObZ7u1hKwuxXd+5RijT9R6ETjBefbM1Yq3nCf7Dl3SKGoBxkCAIBCRdNMAXn88cfV0tKib3zjG/rFL34x1ungMsV2/kjhY28Zsf6r/rXRJf9U4wkdy1gF+nPXs8sMAAAAgMuT2TTTUFkiK/OhkJNS6XNfUSBt3ov03PINuZHhd6UBAAAA/CydHv5FpVxwHMfT6+XCjqPmysiLp5fk3e8UiHcpfOQlRQ5vUbh5q4J9xy/8ofe4Vkipyqtlz1olu3aV0lMWS+fed13k71oItcbFo97+Qr39hXr7B7UG8lvmTjNLqoZ/3hFu/YMCTnJw7FohJWdcl9PcLlooJnv+h2XP/7ACfScVffdXiu55QuETO4edHnAdRY5sVeTIVpWES2TPvUOJheuUnLFSsoLZz891FWrfptiuxxR999cKpPpHnO4UT1F80ccVr/+EnIl12c8HAAD4kq+bZrq6urRv3z7t27dP+/fv1/79+9XdPfAP8qtXr9aGDRsu+lwnTpzQM888o23btqmjo0OhUEiVlZW6/vrrdccddygazW2n84EDB/TEE09o/fr1qqmpyem1kDtWT5uKf/9NI5Yun62+a87+t5hMO/rfrx415lxVU6arZk7wJEcAAAAAhWdH5kpq1UMfChW9+W2Fj+8wYv3LPqNkzcqc5gYAAACg8PXaaR3sMF+caqgqGaNszuE6Ch3fqXDzFkUOv6jQsbcUcC9+pfh0aZWStatkz1qtZM0NcqNlOUwWAAAAwKWIJ9Pad6LPiC0d5vmIJEWatxrjVOVyuZH8+/u9WzxF8WWfVnzZpxU89a6ie55UdO+TCva0DzvfSvYqtudxxfY8rnRppRILPqrEwnXG4s6XK9DfqWjTk4rtelShU++OnLcCSs5apXj9fbJnr5WC4VFfHwAA4Fy+bpr5/Oc/n5XzvPHGG3rkkUfU33/2H/MTicRgI86mTZv04IMPqrKyMivXy5RMJrVx40bNnj1bH/3oR3NyDXij5KW/k5U0X1brWfO3xvaSv951Uu0Zu8x8/gZ2mQEAAABweVKOq13tvUZsacZKasHjO1X8+j+Yn6uYq97rv5Lz/AAAAAAUvt3tvXLPGQetgBZMHZummUB/hyLNLyl8eIsizVtlxU9d9GddK6LkjGsHG2XSFfPM3WQAAAAA5I3dx3qVPudGxApI9dOHvw8JH3nJGNu1N+UytaxIT5qvvhv+XH3X/1uFW19VdM+Tiuz/jaxk77Dzgz3tKt72jyre9o9KTW1QfNE9Ssy/W27xlIu/qOsOXKvxUUX3/1YBxx5xerq0UonF6wd2lSmrvpRfDwAA4JL4umnmXFOmTNGMGTP09ttvX9LnDh48qG9961uybVuxWEzr1q3TkiVLZNu2Xn75ZW3atEltbW362te+pq9//esqKirKeu6PPvqo2tra9PWvf12WZWX9/PBGoL9DkX3PGLH44nuNVZtTjjtkl5llM0p1DbvMAAAAALhM+0/2KZ4yV0pecm7TTDqhsue+ooCTGgy5gaB6bv17KRTzKk0AAAAABWxXu7mg2PypRYqFPXrm5aQVOva2Is1bFD78okLHdyhgtPCMLD2hVvas1bJrVyk54zopkgc75AAAAAC4oB1HzfuQeVOLVRQJDplndR9VqHO/EUvOzP+mmUEBS8maG5SsuUFa/TeKHnhO0abHFT7y8nl30gydaFTpiUaVvPQ1JWtXKb5oney6W8/7XCjQe2Jgx5pdjyrYdXjEdNxAUHbdWsXr71OydpVkDf3OAQAAss3XTTP33nuv5s6dq7lz52rixIk6fvy4vvSlL13SOb773e/Ktm0Fg0E99NBDWrDg7NaES5YsUVVVlX74wx+qra1NTz31lNavXz/kHN///veVTCYv+pp33nmnqqqqJEl79+7VU089pU984hOqra29pNyRXyKHNhsPYdxwsXpv+Etjzm92n1RrV8KIfW7lDAVYpQwAAADAZcp8KDSjPKqK4rPb3hf/4VsKnXrXmNN/9ReUmr7Mk/wAAAAAFL7GjN0vGypLzzMzOwK9xxVpflGR5hcVbn5JVqLroj/rBqNK1qyU/d5uMk75bHaTAQAAAMahHW3m85GlVcPfh4SbtxpjJ1ah1NSGnOWVU+FiJRZ+RImFH1Gg97hie3+paNOTCp3cPez0gJtW5PBmRQ5vlhMplT3vTiXrPy6V3y7JlfY/r5JX/0nhg5uMxdeGky6vVbz+PsUXfUxuybQc/HIAAADn5+ummeEaWC7Fvn37tHv3wF8Y16xZYzTMvO+uu+7S5s2b1draqmeeeUYf+9jHFAqZX/uzzz6rRCIx5LPns3LlSlVVVSmdTmvjxo2aNWuW1q1bN6rfBWMvcvB5Y2zPvEluUcXgOO24+l8Zu8w0VJZo5exyT/IDAAAAUJgaMx8KVZ99KBRqe0NF2/7JOJ6a2qC+ay9twQkAAAAAGEnmfUl9ZZZ3a0knFWrfrsjhLYo0v6jQyV2X9PHUxDlKDu4ms4JdNwEAAIBxznXdIYuKLTlP00zkyEvGODnzhoLYHcUtmab+5Z9T//LPKXhyj6JNTyja9EsF+44PO9+yexTb9Zhiux6TymsluVLXEUVGuoYVkT33dsUb7lNyxkop4NGOogAAABl83TQzWq+99trgz2vWrBl2jmVZWr16tX70ox+pt7dXjY2NWrbMXI33Bz/4wWVdPx6Pq62tTZL0yU9+ctg5Dz30kCTpK1/5ilasWHFZ14EHUglFjpirEth1a43xs00dau6MG7HPX88uMwAAAABGJ3MltcGHQumEyp77c3NHTCui7lv+XgqO9AgEAAAAAC5eR29S7d22EcvGTjNW91GFm19U5PAWhY+8IivZc+EPvccNF8uuuUHJ2lWyZ62SM2HmqPMBAAAAkD+Odds62Zs0YsPuNOOkFT7yshGyZ96Uy9TGRHrKIvVNeVB91/+Fwi2vKLrnCUUP/E6BVP/wH+hqHvF8qYp5ijfcp8TCdXKLJuUgYwAAgEtD08woNDU1SZKi0ajmzJlz3nn19fXGZzKbZi5XOBzW2rVrhz22e/dutbW16ZprrtGECRM0bRpbGuazcOurCiT7BseuArJn3Tw4dlxX//z7VuMzi6YX6wNzJnqUIQAAAJD/gsHcreplWdaI4/HqTDylQ6fM5vwrayYoGAwqvH+TghkPPfqv/zNper3G//ppIyvUemMoau0v1NtfqLe/UG9gfNvVbjazFIUt1U0uuvQTpRMKH31D4fd3kzn17iV9PDVpgexZq5WctUrJqqulYPTScwAAAAAwLuzMWFCsLBpU7aShO0qGju+QlegyYsnaG3Oa25iygkrW3qRk7U3qtXsU2f9bRZueVLjl98Yia8NxQzEl5n1Y8Yb1SlVeLbEQNAAAyCM0zYxCS0uLJKmysnLEl7Oqq6uHfCYbIpGIvvCFLwx7bOPGjWpra9O6deu0YMGCrF0TuRE5uMkYpyqXyy2eMjh+fu8pHcx4ke1zK9llBgAAADhXRUWFZ9cqLy/37Fq59M7eE8Y4ErK0YkGNIiFLOvKCObn6KhXf8u9UbBV6y8xQhVJvXBi19hfq7S/U21+oNzC+NLb1GuPF00sUtC7u+YfV1axI84sKH35RkdbfGwuUXYgTKVVy5o2ya1cpOWuVnNKqS8obAAAAwPiV2TSzpKpU1jDvYYWPbDXGqUnzfXPv4EZKlVj8cSUWf1xWT5uiTb9UtOmJIQsUpKY2KF5/nxILPiI3WjZG2QIAAIyMppnLZNu2uru7JUmTJ08ecW5paami0agSiYQ6Ojq8SG/ULjbPXK3k7KuVAV1X0UPPG6HknFsHv1vHdfXPrx41js+fWqw1C6cMe7M2Hvmq3qDePkKt/YV6+wv1BgrHW82njfGS6gkDDTMpW3r3OXPy8j+WfNgwAwAAACC3GjN2mmmoLD3/5HRC4ZZXFTm8ReHmFxU6ffCSrpWa2iC7dpXsWauVmn6lFAxfRsYAAADA+MR7XmftzGjev2JG2bDfT7T5JWOcqr0pZ99jXiuvkb3iT2Rf+0WFTu5S2ZHnJSctNaxTb8kcOY6j/K86Lsd4/PONy0e9/YNa+wv1HkDTzGWKx8/u+hGLDd2aMVMsFlMikTA+l8+++MUvXtS8xx57LMeZDCjolQHb3pZ62oxQ8ZUfV/F7q2T/Zme73j1hroz2Z7cv0uRJkzxL0WsFXW8MQb39g1r7C/X2F+oNjF/bj3Qa4+W17+3Wc/hlKdFlTl54p0dZAQAAAPAL13W1q918Wa2hqmTYuVZPm8qf+KSCXc0XfX4nOlHJ2oHdZOzaVXJLpo4qXwAAAGA8q3jvXaRcy/dnh3bK0e5j5n3IygVVQ7+feJfUvt0IxRo+rJhH32PemnSjtODGwWF+VxvZlu9/vpFd1Ns/qLW/+LXeNM1cJtu2B38OhS78Nb4/59zP5dKGDRu0YcMGT66FUWr6jTmumC1NXShp4GHR/7PJ3NJy/rRSfbCh0qPkAAAAgPGjs7PzwpMuk2VZxj8cdHV1yXGcnF3PC67ratth8ztbMCmszs5OFb3zhM5dHiI1fZm60zEph99xPinEemN41NpfqLe/UG9/Get6e/XSEVCIWrsS6oqnjNj5dpopen3jBRtmXAWUmn6FkrWrZc9apdS0K9gxEwAAAIBhT/sZJVLmvxtcWTNx6MSDL0pu+uw4GJFm3ZDb5AAAAJATNM1cpkgkMvhzKpUaYaY559zP5bNvf/vbY52CfzQ9bY4X3ikFApKkTbuPa1fbGePwl9bOk2UFvMoOAAAAGDfS6fSFJ2WJ4zieXi8XDp/q15mMl9PqpxcrnUopfOBZI56YvXbc/76jUQj1xsWh1v5Cvf2FevsL9QbGj51tPcZ4UnFIlROGeZbmpBU98Lthz+EUTZJdu2qgUab2RrlFk3KRKgAAAIAC8daR08Z4zpQSVZQMcx+y/3lzXHu9FCnOXWIAAADIGZpmLlMsdnbN3Xg8fsH5788593P5bPLkyRc1L1crOY/1yoBeCfS0a2LbW0asu/pGpTo75bqu/tuze4xjsybF9IGZRTldQXss+KXeGEC9/YNa+wv19pd8qDcrOQOjl/ly2uSSsConRBQ8uVvB7qPGMbvuNi9TAwAAAOATje29xri+slSBwNCFw0LHtsvq7zBifdf+qRJ1a5We2iAFrJzmCQAAABQC3vMa8Id9x41xfWXxsN/NhHef07n7VvbNuEGJAntn63KMt3pjdKi3v1Bv/6DW/pIP9c6H97xomrlMkUhEZWVl6u7uVkdHx4hze3p6lEgkJF18M8p44dVqfYW6MmBsv7l6sxMpU2L6VVI6rVcOnlZjxktsn72uWnIdFeBXYSjUemN41Ns/qLW/UG9/od7A+JTZNLO0auDltMjB54x4esJMpScv8DI1AAAAAD6R+RykobJk2HmRA+Z9SmrSfPVd93/nLC8AAACgEPGe14B3Ws8Y4yWVJUPytU4fUrCr2Yglaj6Q17/XWMn3eiO7qLe/UG//oNb+4td6s+zSKNTU1EiS2tvbR/yP5+jRsyv0vv8ZQJIiB81tPJOzVkvBsFzX1T+90mocq5kY1R2Lp3iZHgAAAIACtiPj5bQlVaWSpGhG04xdd6s0zErPAAAAADAaqbSjpuN9RqzhvfsSg+sqeuB3Rsiew26YAAAAAC7d6b6kjpxOGLElw9yHRI68ZIyd4ilKT16Y09wAAACQOzTNjMLChQN/EU4kEjpw4MB55+3atWvIZwAl+xRuedkIJepukSS91nxmyAtsn71uhkIWL6oBAAAAGL14Mq13M15OW1JVKqv7qEInGo24/d59CgAAAABk0/6OfiVSjhGrH2anmWDnPgW7Dhsxu46mGQAAAACXbmfG+1jRkKV5U4qGzAs3bzXG9swbpQCvWgIAAIxX/E1uFFasWDH48+bNm4ed4ziOtmzZIkkqKSlRQ0ODJ7kh/0WOvKxA2h4cu4GgkrWrJUn//Htzl5nqCVHdWT/Z0/wAAAAAFK49x/qUds+OrcDAy2mRg5uMeU60XMnqaz3ODgAAAIAfNLb1GuOaiVFNLAoPmRc5YO6GmS6pVGra0pzmBgAAAKAwZS5iXF9ZolAw4xXKdFLhlleNULL2plynBgAAgByiaWYU5s2bp8WLF0saaJrZu3fvkDm/+tWv1No60ADxoQ99SKFQyNMckb8yX0ZLVl8rN1auN4+c0baWbuPYp6+rHnqDBgAAAACXKfOh0LwpxSqOBIfcp9iz10gW97EAAAAAsq+xPfNltdJh50UOPmuM7Tm3SoFAzvICAAAAULgyd5pZUjX0PiR07C1ZSXOePfPGnOYFAACA3PL1my979uxRe3v74PjMmTODP7e3t+uFF14w5t98881DzvHpT39aX/3qV2Xbth5++GHdc889amhokG3beuWVV/TccwOrX1VVVenuu+/Oye+Bcch1FDn0vBGy626RJH0nY5eZ6WUR3dUwxbPUAAAAABS+HUfNRv0l1aUKJLoVbjVXTnv/PgUAAAAAsq0x42W1hsqSIXOsnmMKH3vbiNl1t+U0LwAAAACFyXFd7czY8XLpME0zkeatxjg1pV5uMe9uAQAAjGe+bprZtGmTtmzZMuyxpqYmNTU1GbHhmmbq6ur05S9/WY888oj6+/v14x//eMicqqoqPfjggyoqKspK3hj/QsfeltXfYcTsulv0Vku3Xm8+Y8Q/vaJakRC7zAAAAADIniErqVWWKty8RQEnORhzrYiStau8Tg0AAACAD/TbaR3o6DdiDcO9rHbI3A3TiZQqOWNFTnMDAAAAUJgOdfSr104bseF2mglnNM3YtewyAwAAMN75umkmW6655hp985vf1NNPP61t27bp1KlTCoVCqqys1MqVK/XBD35Q0Wh0rNNEHokcNB/ypCrmySmfpf/17B4jPqUkrI8sneplagAAAAAK3LHuhI73JI3Y0upSRd4071OSNSvlRoY+LAIAAACA0dpzvFeOe3YcDEiLphUPmRc58DtjbM9aIwUjuU4PAAAAQAHakbGg2PSyiKaVmfcXgf5OhY7vMGLJ2ptynhsAAAByy9dNMxs2bNCGDRuycq6pU6fqgQce0AMPPJCV840XwWAwJ+e1LGvE8XgXPfS8MU7NuVU9tqPfH+oy4p9ZOUPF0bCXqY2JQq83TNTbP6i1v1Bvf6HewPi2s63XGJdGg5pVHlTk8AtG3K671cOsAAAAAPhJY8Z9ydwpxYqFzWdOgUS3wi2vGjF7zm05zw0AAABAYdqZ0TQz7C4zLa8ooLMd/m4opmTV1TnPDQAAALnl66YZjF5FRYUn1ykvL/fkOp7oPCR1NBmh2LJ7tO+0e84tlxQNWfrs6kUqiuSmMSmfFVS9cUHU2z+otb9Qb3+h3sD4svPo0IdC0bbXZSXOGHG77hYv0wIAAADgI43t5n1JQ1XJkDnh5i0KOGd3yXStsJKzVuU8NwAAAACFKXNRsaXDNM1Emrca4+SM66RgNKd5AQAAIPdYEhrwWtNvzHHxZKnmWr1+6JQRvnLmRF82zAAAAADIrR2ZK6lVlipy8Dkjlpy2VE5ppZdpAQAAAPCRXe3my2oNlUNfVoseeNYYJ2uulxspy2leAAAAAApTr53W/pN9RmxJdcZ9iOsqfMRsmrFrb8p1agAAAPAATTOA1/Y+Y47n3yFZQb2W0TSzom6Sh0kBAAAA8INU2tHuY+bLaUuqShQ5uMmIscsMAAAAgFzp7EuqtSthxBoyV3hO2woffsEI2XNuy3FmAAAAAArV7vYeOe7ZcdAKaNE0c8fLYOd+BXvajVhyJk0zAAAAhSA01glgfOvs7MzJeS3LUnl5+eC4q6tLjuPk5FqeSpzRxEMvKXBOqKdmlc4cO6kdLV3G1PopkZx9v/mmYOuNYVFv/6DW/kK9/SUf6l1RUeHp9YBCse9kvxIp88/rVdEWBbtbjZhdx8toAAAAAHKjMWOXmWjIUt3kIiMWbv2DLNvcJdOeTXM/AAAAgMuzo828v1gwtVixsLneeLjZ3GUmXVqpdMXcnOcGAACA3KNpBqOSTqc9uY7jOJ5dK5ciB19QwEkNjl0roviMG/R2a5dS5yxnEAxIDZXFBfE7X45CqTcuDvX2D2rtL9TbX6g3MH7sOGo+FKqtiGny0ReMWLqsRunJCz3MCgAAAICfNGa8rLZ4eolCVsCIRQ48a4yT06+UUzo957kBAAAAKEyZz0eWZO52KSlyxGyaSdaukgKBIfMAAAAw/lgXngIgWyIHNxnjZM1KKVKibUe6jfjC6SUqjgS9TA0AAACAD2SupLakqlSRg88ZMbvuFh4CAQAAAMiZXRk7zTRUlpgTXGfI8xR7DrthAgAAALg8ruuqsc28D1landE0k0oo3PoHI2TPvDHXqQEAAMAjNM0AXnFSihx+wQjZdbdIkt5qNZtmls8o8yorAAAAAD6yM6Np5rpJvQqf2GnE7Dm3epkSAAAAAB9xXVeN7eZ9SUPGCs+h4zsV7G03YnYd9ykAAAAALk/bGVsdfUkjtjTjPiTc9oYCqfjg2FVAyZobPMkPAAAAuUfTDOCRUNubshJdRsyevVbJtKN3MrYAXV5D0wwAAACA7Drdn1RzZ9yIfSD9ujF2ohOUrLrWy7QAAAAA+MjRroRO96eMWH3GTjORA78zxqmJdUpXzM15bgAAAAAK046MBcXKi0KqmRg1YuEjLxnj1PQr5BZV5Dw3AAAAeIOmGcAjkYObjHFqSr2csmrtOdarRMoxjl3JTjMAAAAAsqyxrdcYR0MBzTy51YjZs26WgmEPswIAAADgJ43t5n1JeVFIM8rNl9UiB58zxnbdrVIgkPPcAAAAABSmnRmLGS+pLFUg4x4j0mw+L0nOvDHneQEAAMA7obFOAPCLaEbTjF23VpK0vaXbiM+ZXKSJxbykBgAAACC7dmaspHbVVEuR1leNmF13q5cpAQAAAAUtGAzm7NyWZY04zle7j/UZ4yVVpQqFzj6utDoPKnTqXWNOat4Hc/pd5rvxWmtcHurtL9TbX6i3f1BrIP/saDPfzVpaXWqMA70nFDq524jZtTflPC8AAAB4h6YZwAPBzgMKdh0yYvbsWyRJ21vNG7Mra9hlBgAAAED2ZTbNfLS0UYHO5ODYtcJKzlrldVoAAABAwaqoqPDsWuXl5Z5dazSaTuwxxtfUTTW/p10/MD9QMk0TFq+RLP82zWQaL7VGdlBvf6He/kK9/YNaA2PLTjlqOj60ef9ckZaXjbETLlVq+pW5Tg0AAAAeYjkDwAORg88Z43TxNKWmLZHjuno7o2nmKppmAAAAAGSZ47pDmmZWJl8zxsmalXIj3I8AAAAAyI1U2tGO1i4jduXMieakpqfN8cIP0jADAAAA4LLtPdGnZNodHAckLakqMeaEm7ca42TNSikY9iI9AAAAeISmGcADkUPPG2O7bq0UsHTgZL/OxNPGsStn8JIaAAAAgOxqPhVXd+LsvUdIKc089Yoxx6671eu0AAAAAPjIu8d71J80n4lcUXPOyus9J6TmV80PLbrLg8wAAAAAFKodR80FxeomF6k0GjobcB1FjrxkzEnWrvIiNQAAAHgodOEpwPkFg7lZ3cuyrBHH40mgv1OhtjeNWHrObQoGg3o748asakJUMyqKvUwvLxRSvXFh1Ns/qLW/UG9/od7A+LMjY5eZ24v3KWifMWJ23S1epgQAAAAUvM7Ozpyd27IslZefbTjp6uqS4zg5u142vNJ0zBhXl0dlJfvU2dknSYrs/LlKdHYFaDdcrNMVV0g5/B7Hg/FYa1w+6u0v1NtfqLd/5EOtKyoqPL0ekM8yn480VJUa42BHk6y+k0bMrr0x53kBAADAWzTNYFS8utE+9x8Uxp3m30ruOf8AEipS6RUflsJF2nHsoDH1+rlT+McLjfN645JRb/+g1v5Cvf2FegP5b2fGQ6F1xW9L54SSU5fIKa3yOCsAAACgsKXT6QtPyhLHcTy93uXYebTbGDdUlhg5h/b/zjhu165SOhCW8vz38tp4qDWyh3r7C/X2F+rtH9QaGFs7MxY0XprRNBNpftEYpyfUyimflfO8AAAA4C2WhAZyrelpczx3jRQukuu6ev3QKePQtXWTPEwMAAAAgF+YK6m5us5+zThu193qbUIAAAAAfKexPWOF58pzXlazexU5stU4bs+5zYu0AAAAABSojt6kjp5JGLGl1WbTTLj5JWNs196U87wAAADgPZpmgFxKJaR9z5uxhR+SJDWf6tOxjBuzFTTNAAAAAMiyfjutfSf6BseLAkdUbrcZc+w5NM0AAAAAyJ14Mq3959yXSFJ9Zcngz5EjLymQtgfHbiAoe9Yaz/IDAAAAUHh2tpmN+0VhS3MmF50NJPsVPvqGMSdZe6MXqQEAAMBjobFOAONbZ2dnTs5rWZbKy8sHx11dXXIcJyfXyqXQ4RdVZncbsdPTrpPb2akXGo8b8UnFYVUE7Zx9p/msUOqNi0O9/YNa+wv19pd8qHdFRYWn1wPGs13HeuW4Z8e3B980jqfLZig9eZHHWQEAAADwkz3H+5Q+577ECkiLpp/TNHPgWWN+csYKubFyAQAAAMDlymyaaagsVdAKDI7DR/+ggGM27ydnXO9ZfgAAAPAOTTMYlXQ67cl1HMfx7FrZFNuf8ZBn+pVKxSZL6bTebO4yji2bUcrLxe8Zr/XG5aHe/kGt/YV6+wv1BvJb5kOhD0e2S+fceth1t0iBgAAAAAAgV3a1m/clcyYXqTgSHBg4KUUObTaO23W3eZUaAAAAgAK146h5H7K0utQYR5pfMsapyuVyo2U5zwsAAADes8Y6AaBgua4ih543Qnbd2sGft7ecMY5dVTPBk7QAAAAA+Mu5TTPTdUoLnX3GcbvuVq9TAgAAAOAzjW29xrih6uzLauGjb8hKnDaO23NomgEAAABw+dKOq8aM5v2GqhJjHG7eaozt2htznhcAAADGBjvNADkS7GhSsLvViNmzB15GO9lr68jphHFseQ0rFQAAAADILtd19c45K6ndFnzTOO5EypSsXuF1WgAAAAB8JvNltfrKsy+rRQ4+axxLTW2QU1btSV4AAACAnwSDwZyc17KsEcdjYX9Hr/qTjhFbNqN88DsIdB9VqNNcZCw9e3XOvqNCko/1Ru5Qb3+h3v5Brf2Feg+gaQbIkcihTcY4XTZD6ckLJElvtXQbx0oiluZPLfYsNwAAAAD+cKzbVkdvcnB8q7XNOG7PulkKhj3OCgAAAICfnO5PqiVjIbGGyvd2mnFdRQ6YTTOJOnaZAQAAAHKhoqLCk+uUl5d7cp2RHHjXfDerpqJI82dOPxs4+CvzA7GJmrBwtWTRNHOp8qHe8A719hfq7R/U2l/8Wm9/tgoBHogcNJtm7LpbpEBAkrQto2lmWXWZglbAs9wAAAAA+MPOtrOrOZeoXzcEG43j9pxbvU4JAAAAgM/sbu81xtFQQPOmFEmSgh17FOxuNY5znwIAAABgtLY3dxrj5bUZDUP7zfe6NOdmGmYAAAAKGE0zQA4Eek8ofOxtI2bPvmXw58ydZq6sKfMkLwAAAAD+suPo2aaZ1dbbiig1OHatsJK1q8ciLQAAAAA+0pjRNLNwWolCwYFHlJm7zKTLapSevMiz3AAAAAAUpu3Np43x8pkTzw6ctHTgBfMDc9fmOiUAAACModBYJwAUosih542xEy5VcsYKSVJ3PKV3T/QZx5fTNAMAAAAgB3acs9PMrcFtxrHkjOvkRrkXAQAAAJBbjefcl0hSQ1Xp4M/RjKYZe85tUiDgSV4AAACA33R2dl540mWwLEvl5eWD466uLjmOk5NrXYzueErvHjfvQ+ZODA7+/sH2tzWh3/wuTk+5Wm6Ovp9Ck2/1Rm5Rb3+h3v5Brf0lH+pdUVFx4Uk5RtMMkAOZTTPJWaukYESS9HZrt9xz5wYDqq8sFQAAAABkUzLtaM+xgRWdQ0pprbXdOG7X3ToWaQEAAADwEdd11die0TRTWSJJss60KnRyl3GM+xQAAAAgd9LptCfXcRzHs2sN553WM8Y4HAxo/pTYYE6RQy8Yx1MVc5UqqZTGMOfxbKzrDW9Rb3+h3v5Brf3Fr/W2xjoBoOCk4ooceckI2XW3DP68vbXbONZQVapoiD+KAAAAALLr3RN9stMDLfvXWk2aGOg1jp97nwIAAAAAuXCs29apvpQRa3hvIbHIQXOXGSc6UcnqazzLDQAAAEBh2pmx2+XCacWKnPNuVuZ7XcnamzzJCwAAAGOHN/WBLAsfeUWBVHxw7AYs2bWrB8fbW8ymmeU1ZZ7lBgAAAMA/dhw9+1DoVmubcSw1tUFOWbXXKQEAAADwmcyX1SbEgqqZGJUkRQ6YTTN23VrJCnmWGwAAAIDClHkfsrTq7LtZAbtbofbtxnF75o2e5AUAAICxQ9MMkGXRg88Z41TVNXKLKiRJ8aSjXe3m6s7LZ9A0AwAAACD7zj4UcnWb9YZxLFF3q/cJAQAAAPCdxoxnIg2VpQoEAgrETyt89HXjmM19CgAAAIBRcl1XOzKaZpZUlw7+HG55VQHn7G6YrhVRcsZ1nuUHAACAsUHTDJBNrqPwoc1GyJ69dvDnnW09Sjnu4NgKSEvPuTEDAAAAgGx5/6HQwsAR1VonjGO8jAYAAADAC40ZL6vVV5ZIkiKHNivgpgfjbjAqu/YmT3MDAAAAUHhaTifU1Z8yYkveuw+RpPCRl4xjyeqrpXCxJ7kBAABg7LDHOUYlGAzm5LyWZY04zlfB9p0K9h03Yql5tw9+T28dNR8OLZxeovLiqGf55avxWm9cHurtH9TaX6i3v1BvIP+d7kuq5XRCknSrtc04li6rVnrK4rFICwAAAICPpB1Xe45l7DRTNbCQWOTAs0bcrr2JF9UAAAAAjFrmLjOTikOqLj/7blakeatxPDmT5n0AAAA/oGkGo1JRUeHJdcrLyz25zqhtf9kcT56n8jlXDw53tu81Dl8/d5pn3+F4Mm7qjayg3v5Brf2FevsL9Qbyz85zHgrdFnzDOGbPvkUKBLxOCQAAAIDPHDrVr76kY8TqK0ukVFyRI+aLauyGCQAAACAbdmQsaLykqlSB956JWF3NCnYdNo7btTd6lhsAAADGDktCA9nU9Iw5XvihwR+TaUfbmjuNwyvqaJgBAAAAkH3vr6Q2TZ260jpgHLPn3DYWKQEAAADwmcY2c5eZyrKIppREFD7yigLJvsG4G7Bk1631Oj0AAAAABagxY6eZpdWlgz9HjrxkHHOKJis9ZbEneQEAAGBs0TQDZMvpI9KxHWZswdmmmcajZ9Rnp43D186e5EVmAAAAAHzm/aaZW4PbjLgTKVOyesVYpAQAAADAZxrbzZfV6itLJEnRg88a8VTV1XKLJnuWFwAAAIDCFE86ajrRZ8SWVp1tmgk3Z+x4OfNGKcDrkwAAAH4QGusEML51dnZeeNJlsCxL5eXlg+Ouri45jpOTa2VL9O3HVXzO2IlNVFfZAum972jLrlZjft2kIlnJPnV2mjdrfjQe643LR739g1r7C/X2l3yod0UFO/YB5+O47uCKzrdZbxjHkrNWS8HwWKQFAAAAwGcym2YaqkolJ63IwU1G3K671cu0AAAAABSoPcd7lXbcwXFA0uLK95pm0kmFW14x5idrb/QwOwAAAIwlmmYwKul0+sKTssBxHM+udblCB8yV0exZNyvtBqT38n6zucs4fmVNWd7/TmNlPNQb2UO9/YNa+wv19hfqDeSXQx396rXTKlG/brAajWMJXkYDAAAA4IFEytG7J/qNWENlqULHtsvq7zDncp8CAAAAIAt2HjUb9+dOKVJJJChJCh1/W5ZtHrdn0jQDAADgF+wvCGRBwO5RuOUPRsyevXbwZ8d19XareeO1vKbMk9wAAAAA+MuOtoF7j1XWO4oGUoNx1wopOevmMcoKAAAAgJ/sHXaF5xJFDjxnzEtNmi9n4mxvkwMAAABQkN5/PvK+pdWlgz9Hmrcax1KTF8ktmeZJXgAAABh7NM0AWRBufkkBxx4cu1ZYydpVg+ODHf3qiqeMzyyfQdMMAAAAgOzb+d5DoVuDbxrx5Izr5Ea5DwEAAACQe43tvca4bnKRSsKWogd+Z8TtObd5mRYAAACAArYzo2lmSdXZpplw80vGMbuWXWYAAAD8hKYZIAsiB82V0ZIzVhgvo21v6TaOV5ZFVFUe9SQ3AAAAAP6y42iPgkprrfWWEbfrbh2bhAAAAAD4TmPGy2oNlSUKdu5TsOuwEbfraJoBAAAAMHrHu20d67aN2NL3mmYC8dMKHX/HOHbuYsgAAAAofDTNAKPlpBU5/IIRsmffYowzm2aW17C6MwAAAIDs67XTOtDRr2utJlUEzJfUaJoBAAAA4JXMnWYaqkoVOWAuQJYuqVRq2lIv0wIAAABQoDJ3mSmJBDV7cpEkKdzyigKuM3jMDcWUrLrG0/wAAAAwtmiaAUYp1L5dVrzTiNl1Z5tmXNfV9pYzxvEraZoBAACAjzz55JNav3691q9fr7179451OgVtd3uPHFe61XrTiKem1Mspqx6jrAAAAAD4yZl4Ss2dcSPWUFmqyMFnjZg951YpEPAyNQAAAAAFakfmbpdVJbLeu9+ING81jiWrV0ihqGe5AQAAYOzRNAOMUuTQJmOcmrxQzoSawfHRroSO9ySNOVfVTPAkNwAAAGCsNTc366c//amiUR4+eGHgoZCr2zKaZthlBgAAAIBXdmXsMhMJBrSg+IzCx9424nbdbV6mBQAAAKCAZe40s7SqdOAH11X4yEvGMbv2Jq/SAgAAQJ6gaQYYpchBs2nGnr3WGG9v7TbGE4tCmj0plvO8AAAAgLGWSqW0ceNGzZ49WytWrBjrdHxhx9EeLQi0aJZ13Ign5tA0AwAAAMAbje3my2oLphWrpHmzEXMipUrO4D4RAAAAwOil0s6Q5v33m2aCpw8o2H3UOJaceaNnuQEAACA/0DQDjIJ1+qBCnfuNWOYKzm+1mE0zV84oU+C97T8BAACAQvb444+rpaVFX/ziF2VZ3H7mmuu6amzr1a0Zu8ykS6uUnlI/RlkBAAAA8JvMl9UaKksVOfA7I2bPWiMFI16mBQAAAKBA7TvZr0TKMWJL3muaCTdvNeLpkkqlJ833LDcAAADkh9BYJwCMZ5GDzxtjp3iKUtOvMGLbMppmlteU5TwvAAAAjE9dXV3at2+f9u3bp/3792v//v3q7h74++Tq1au1YcOGiz7XiRMn9Mwzz2jbtm3q6OhQKBRSZWWlrr/+et1xxx2KRqO5+jUkSQcOHNATTzyh9evXq6amJqfXwoC2M7Y6+pK6PWI2zdh1t0o07gMAAADwgOu62tlm7jRz5VQp3PSqEbPn3OZlWgAAAAAKWOY9yMyJUU0sDkuSIs0vGceStTfyzAQAAMCHaJoBRiFyaJMxtmevlQJnV9Du6E2quTNuzKFpBgAAAOfz+c9/PivneeONN/TII4+ov79/MJZIJAYbcTZt2qQHH3xQlZWVWblepmQyqY0bN2r27Nn66Ec/mpNrYKgdbT2apk5daY28GyYAAAAA5MrxHlsdvUkjdl16mwLO2ZhrhZWctcrr1AAAAAAUqB1HzaaZ93eZUTqhcGtGA//MG71KCwAAAHnEuvAUAMMJxLsUPvqGEbNnrzXG21vOGOPisKUF00pynhsAAADGvylTpmjZsmWX/LmDBw/qW9/6lvr7+xWLxXT//ffr4Ycf1l/91V/plltukSS1tbXpa1/7mtFUk02PPvqo2tra9MUvflGWxW2nV3Ye7dEtwW1GzImUKjljxRhlBAAAAMBvGtt6jXFpNKjq41uMWLLmerkRFhgDAAAAkB072oZvmgm3bVMgdfZZmKuAkjM/4GluAAAAyA/sNANcpsjhLQq46cGxG4zKzrixequ12xhfMaNMIYstPgEAADC8e++9V3PnztXcuXM1ceJEHT9+XF/60pcu6Rzf/e53Zdu2gsGgHnroIS1YsGDw2JIlS1RVVaUf/vCHamtr01NPPaX169cPOcf3v/99JZPJIfHzufPOO1VVVSVJ2rt3r5566il94hOfUG1t7SXljtHZ2dajP7PeNGLJWaulYGSMMgIAAADgN7vazZfVlk6PKHL4BSNmz7nNw4wAAAAAFLKu/pSaO+NGbGn1e00zzS8Z8dS0JXKLJnmWGwAAAPIHTTMYlWAwmJPzZq5GnY+rU0cPbzLGyZkfUDBmroz2Vqv5cOiqmRNy9p2NZ+Oh3sge6u0f1NpfqLe/UO/cGa6B5VLs27dPu3fvliStWbPGaJh531133aXNmzertbVVzzzzjD72sY8pFDJvDZ999lklEomLvu7KlStVVVWldDqtjRs3atasWVq3bt2ofhdcGjvlqPl4hz4QajTiibpbxygjAAAAAH7U2G7uNHNn6T5Zx81nJfbsW7xMCQAAAEABa8xo3I+GApo/tViSFDmy1TiWnHmjZ3kBAAAgv9A0g1GpqKjw5Drl5eWeXOeipWzpsHljFVnyEUXO+T7OxJNqOm4+HFq9eIZn39l4lnf1Rk5Rb/+g1v5Cvf2FeueP1157bfDnNWvWDDvHsiytXr1aP/rRj9Tb26vGxkYtW7bMmPODH/zgsq4fj8fV1tYmSfrkJz857JyHHnpIkvSVr3xFK1asuKzrYKi9J/q00n1b0cDZHYLcQEjJWTePXVIAAAAAfMVx3SE7zdyQfNUYJ6dfKad0updpAQAAAChgO46a9yCLppcoHLQU6Dup0AlzoTG7dpWXqQEAACCP0DQDXI7mV6RElxlb8EFj+ObhTrnu2XEkaGnZzIm5zw0AAAC+1dTUJEmKRqOaM2fOeefV19cbn8lsmrlc4XBYa9euHfbY7t271dbWpmuuuUYTJkzQtGnTsnJNDNhxtEe3B980YskZK+RGJ4xRRgAAAAD85vCpuHptZ3AckKPajpeMOTa7YQIAAADIop1tZtPMkspSSVLkyMtG3AmXKFV5pVdpAQAAIM/QNANcjqbfmOPq5dKEKiP0+sFTxviKmnLFwsFcZwYAAAAfa2lpkSRVVlYqGDz/3z2rq6uHfCYbIpGIvvCFLwx7bOPGjWpra9O6deu0YMGCrF0TA3Yd7dIfW9uNGC+jAQAAAPBSY8bLaqtKjijcd8yI2XNu8zIlAAAAAAXMcd0hTTNLqweaZsLNW414csZKKRjxLDcAAADkF5pmMCqdnZ05Oa9lWSovLx8cd3V1yXGcET7hIdfVhN2/0rmvIPbX3qx4xnfxyrvHjfEVVcU5+77Gu7yuN7KOevsHtfYX6u0v+VDviooKT683Hti2re7ubknS5MmTR5xbWlqqaDSqRCKhjo4OL9IblYvNcaRGodGyLGvE8VgLHH1DFQHzwVB63u05/U4KWb7XG9lDrf2FevsL9fYX6g3kh8b2XmN8b/FbUvfZcWpindIVc71NCgAAAEDBaj4VV3cibcSWVJVKrqvIEXPXy2TtTV6mBgAAgDxD0wxGJZ1OX3hSFjiO49m1LiTYsVfBM0eMWHzWWiO/RMpRY7v5wtqy6tK8+R3yXT7VG7lHvf2DWvsL9fYX6p0f4vH44M+xWOyC82OxmBKJhPG5fPXFL37xouY99thjOc7krHMbx8baie6Elve/atzhxyfXq3zW0rFLqsDkU72RW9TaX6i3v1Bvf6HewNjIfC5yfeo1Y2zX3SoFAl6mBAAAAKCAZe4yM7U0rOllEQU7mmT1nTCO2bU3epkaAAAA8gxNM8AlihzcZIzTpVVKT1lsxBrbepRMu4PjgKRlM0q9SA8AAAA+Zdv24M+h0IVv9d6fc+7ncmnDhg3asGGDJ9fym7eaO3Wb9aYRizTcNUbZAAAAAPAjO+Vo7/G+wfHsQJum9B8058y5zeu0AAAAABSwHRlNM0uqShUIBBRp3mrE02U1cspne5gZAAAA8g1NM8Alihwym2bsuluGrIy2raXbGC+YVqzSKH/cAAAAkDuRSGTw51QqdcH5788593P56tvf/vZYp5DXjuzdptusY0bMWvThMcoGAAAAgB/tPdGnlHN2MbHMxn6neIpS06/0OCsAAAAAhSyzaWZp1cCCxuEjLxlxu/Ymdr0EAADwOd7iBy5BoO+kQu1vGTF79toh895qNZtmlteU5TItAAAAQLFYbPDneDx+wfnvzzn3c/lq8uTJFzWvs7MzZzlYlqXy8vLBcVdXlxzHydn1LkVs/2+McVd4qpxYrZTD76PQ5XO9kV3U2l+ot79Qb38Z63pXVFR4di0gX+1qN19Wuzu6XTrnj6E9e61kBT3OCgAAAECh6rfT2neiz4gtqSqVkv0KH33NiCdrb/IyNQAAAOQhmmaASxA59IICOrtSmhMuUbJmpTEn5bh6Z0jTzARP8gMAAIB/RSIRlZWVqbu7Wx0dHSPO7enpUSKRkHTxDSnjQTqd9uxajuN4er3zSTuuGrpfls5ZIO1E1WpN5KXgrMqXeiP3qLW/UG9/od7+Qr0B7zW29Q7+PFldWuLsMY4n5tzudUoAAAAACtiuY706Z7NLBQPS4uklCh99WYG0PRh3A0Ela64fgwwBAACQT6yxTgAYTyKHNhnj5MwbpWDUiO093qu+pPmC2pUz2GkGAAAAuVdTUyNJam9vH/ElwaNHjw75DManlpZmLQvsM2KRRR8co2wAAAAA+FXjOTvN3BLcJuucBcjccLGSNTeMRVoAAAAACtSOo+Zul/OmFqsoElTkyEtGPDV9mdwoix0DAAD4HU0zwMVKJRRp3mqE7Lpbhkzb3mLuMlNbEdPkknBOUwMAAAAkaeHChZKkRCKhAwcOnHferl27hnwG41Pf7t8Z414VqXguL6MBAAAA8E5PIqVDp+KD49usN43jdu0qKRTN/BgAAAAAXLZzG/claWlVqSQp3PyiEbdrb/IsJwAAAOQvmmaAixRu/b0Cqf7BsauA7Nk3D5mX2TRzVQ27zAAAAMAbK1asGPx58+bNw85xHEdbtmyRJJWUlKihocGT3JAbk1rNOu8qvnbIbpgAAAAAkEu7j/UO/lysuFZZO4zj9pzbvE4JAAAAQAFzXVfvZOw0s6S6VFZPu0Kn3jXiSZpmAAAAIJpmgIsWObjJGKeqrpJbNNmIua6rt1rNppkraZoBAACAR+bNm6fFixdLGmia2bt375A5v/rVr9Ta2ipJ+tCHPqRQKORpjsgiu1fz+7YZoY7qm8cmFwAAAGAcefLJJ7V+/XqtX79+2PsmXJrGtrNNMzdZ7ygaSA6O3UBQ9qw1Y5EWAAAAgAJ1rNtWR2/SiC2pKlX4yEtGzIlOUGraUi9TAwAAQJ7i7SjgYriuIgefN0L27FuGTDt0Kq7T/SkjtnwGTTMAAAC4OHv27FF7e/vg+MyZM4M/t7e364UXXjDm33zzzUPO8elPf1pf/epXZdu2Hn74Yd1zzz1qaGiQbdt65ZVX9Nxzz0mSqqqqdPfdd+fk94A3nAMvKqKzD4WSblAli24dw4wAAACA/Nfc3Kyf/vSnikajSiQSY51OQWhsP7vC8+3BN41jyRkr5MbKvU4JAAAAQAHbkbHLzIRYULUVMUVe32rEkzU3SBavRwIAAICmGeCiBE80KtjbbsTsurVD5m1rOWOMp5dFVF0ezWluAAAAKBybNm3Sli1bhj3W1NSkpqYmIzZc00xdXZ2+/OUv65FHHlF/f79+/OMfD5lTVVWlBx98UEVFRVnJO18Eg8GcnduyrBHHYyHR9Ftj/Lq7SPNn1SgYHPvcxrt8rDdyg1r7C/X2F+rtL9QbFyuVSmnjxo2aPXu2KisrtXXr1gt/CBfU2DbwwlpQad1imbth2nW3jUVKAAAAAArYjjazaWZJZaksuQofedmI27U3eZkWAAAA8hhNM8BFiBwyd5lJl9cqXTFvyLy3WrqN8ZUzyhQIBHKaGwAAAJDpmmuu0Te/+U09/fTT2rZtm06dOqVQKKTKykqtXLlSH/zgBxWNFl5zd0VFhWfXKi8f45WS0ynF2l40Qo1lN+qGqZPHKKHCNub1hmeotb9Qb3+h3v5CvXE+jz/+uFpaWvSNb3xDv/jFL8Y6nYJwosfW8Z6BHTBXWHs0MdBrHLfr2A0TAAAAQHbtzGyaqS5V8ESjrHinEU/OvNHLtAAAAJDHaJoBLkL04HPG2J59izRMM8y2jKaZ5TVlOc0LAAAAhWXDhg3asGFDVs41depUPfDAA3rggQeycj7kmZbXVJTqMkK9s28fo2QAAABQqLq6urRv3z7t27dP+/fv1/79+9XdPfDv4KtXr76k+5cTJ07omWee0bZt29TR0THY2H/99dfrjjvuyHlj/4EDB/TEE09o/fr1qqmpyem1/KSx/ezLardZbxrHUlMb5EyY4XVKAAAAAApYMu1ozzGzWX9pVakizb80YqmJdXImcO8HAACAATTNABdg9bQpdKLRiNl1twyZ19aV0LFu24jRNAMAAAAgF9w9v9a5bfy7nVrVzV88ZvkAAACgMH3+85/PynneeOMNPfLII+rv7x+MJRKJwUacTZs26cEHH1RlZWVWrpcpmUxq48aNmj17tj760Y/m5Bp+1dj2/stqrm4PvmEcS9Td5n1CAAAAAAra3uN9stOuEWuoKlVk+0tGLFl7k5dpAQAAIM/RNANcQOTQZmPsRMqUrLpmyLztreYuM+WxkOomF+U0NwAAAABndXZ25uzclmWpvLx8cNzV1SXHcXJ2vRG5rop3PqVz1+H+nXO11pZbOf0O/CSv6o2cotb+Qr39hXr7y1jXu6KiwrNrjaUpU6ZoxowZevvtty/pcwcPHtS3vvUt2batWCymdevWacmSJbJtWy+//LI2bdqktrY2fe1rX9PXv/51FRVl/9/VH330UbW1tenrX/+6LMvK+vn97P2dZhYHmlUTOGkcs+fcOhYpAQAAAChgO9p6jPGsSTGVW3GF2s2dL+2ZNM0AAADgLJpmgAuIHNxkjO1ZN0vB8JB521vOGOMra8pkBQJD5gEAAADIjXQ67dm1HMfx9HrnCp7ap2j3YSP2h9B1+mRpaMxyKnRjWW94i1r7C/X2F+rtL9Q7e+69917NnTtXc+fO1cSJE3X8+HF96UtfuqRzfPe735Vt2woGg3rooYe0YMGCwWNLlixRVVWVfvjDH6qtrU1PPfWU1q9fP+Qc3//+95VMJi/6mnfeeaeqqqokSXv37tVTTz2lT3ziE6qtrb2k3DEyx3W1q31gp5nbLXOXmXRZjdKTF41FWgAAAMC48uSTT+pHP/qRJOnhhx827pkw1M6MppmlVaUKt/5BASc1GHOtsJIzrvM6NQAAAOQxmmaAkST7FG55xQjZdWuHnbq9xdxpZvmMspylBQAAAMC/IgefM8Zt7iQFZyxVgKZ9AAAAZNlwDSyXYt++fdq9e7ckac2aNcO+/HXXXXdp8+bNam1t1TPPPKOPfexjCoXMx1fPPvusEonERV935cqVqqqqUjqd1saNGzVr1iytW7duVL8LhjrSGVdPYqBB7fag2TRjz7lN4h4FAAAAGFFzc7N++tOfKhqNXtI9j59lNs0sqSpVuHmrEUtWXSVFSrxMCwAAAHmOphlgBJEjLymQtgfHrhVSsnb1kHmnepM6dCpuxK6soWkGAAAAQPZFDphNM8+lr9LSau4/AAAAkH9ee+21wZ/XrFkz7BzLsrR69Wr96Ec/Um9vrxobG7Vs2TJjzg9+8IPLun48HldbW5sk6ZOf/OSwcx566CFJ0le+8hWtWLHisq7jV43v7TIzQyfUYJm7Ydp1t45FSgAAAMC4kUqltHHjRs2ePVuVlZXaunXrhT/kc519SbWcNpuLllaXKrIjo2lm5k1epgUAAIBxgKYZjEowGMzJeS3LGnHsleih541xqvpaWSWThsx7p+20MS4KW6qvKlMwODZ5jzf5Um94g3r7B7X2F+rtL9QbGDuB3hMKHXvLiD3rXK37q0rHJiEAAABgBE1NTZKkaDSqOXPmnHdefX298ZnMppnLFQ6HtXbt8LvH7969W21tbbrmmms0YcIETZs2LSvX9JPG91Z4vi34phF3ohOVrL5mLFICAAAAxo3HH39cLS0t+sY3vqFf/OIXY53OuJC5y0wsZGlBpEPBrkNG3K6laQYAAAAmmmYwKhUVFZ5cp7y83JPrGJy0dGizEQo3fGTY33nXiTZjfPWsSZo2ZXJO0ytkY1JvjBnq7R/U2l+ot79Qb8A7kUPPKyB3cNztFukPTr3+U2XJGGYFAAAADK+lpUWSVFlZOeIiXNXV1UM+kw2RSERf+MIXhj22ceNGtbW1ad26dVqwYEHWruknje0DL6zdbr1hxO26tZLFI0gAAABkV1dXl/bt26d9+/Zp//792r9/v7q7uyVJq1ev1oYNGy76XCdOnNAzzzyjbdu2qaOjQ6FQSJWVlbr++ut1xx13KBqN5urXkCQdOHBATzzxhNavX6+ampqcXquQ7MhomqmvLFGs5WUj5sQmKT21XgAAAMC5+Bdr4Hxa35T6TpqxhR8cdurrh04Z42tnD92NBgAAAABGK3rwOWO8xblCNVMmqDTK7T0AAADyi23bgy+wTZ488iJTpaWlikajSiQS6ujo8CK9UbnYHEdqFBqtsd4FNpl2tPd4n8rVoxXWHuNYau7tOf3d/Wasaw1vUW9/od7+Qr39g1rnzuc///msnOeNN97QI488ov7+/sFYIpEYbMTZtGmTHnzwQVVWVmblepmSyaQ2btyo2bNn66Mf/WhOrlGodh41m2aWVJUq0rzViNkzPyAF+HMHAAAAE2/VAOfT9Iw5nrpImjRnyLTueFKNR7uM2Io6mmYAAAAArxXyC2mSpGSfwkfMFdOeTV+tK6rLeCEty/Ki3vAEtfYX6u0v1NtfqHd+isfjgz/HYrELzo/FYkokEsbn8tUXv/jFi5r32GOP5TiTs7zeBXZHS5fstKsPW9sVCjhnD4RiKl32ESnCbpi5wo6//kK9/YV6+wv19g9qnRtTpkzRjBkz9Pbbb1/S5w4ePKhvfetbsm1bsVhM69at05IlS2Tbtl5++WVt2rRJbW1t+trXvqavf/3rKioqynrujz76qNra2vT1r3+d+9dLkHbcwd0u33dFZUzhLa8YsWTtTV6mBQAAgHGCphmMSmdnZ07Oa1mW8Q8HXV1dchxnhE9k34Tdv9K5r53Fa29W/zC/7ysHOuW4Z8chK6DZZW7OvptClA/1hneot39Qa3+h3v6SD/WuqKjw9HoYH7z872JMHnTufllKJwaHKdfSC86VenDedP5M5BgPtv2DWvsL9fYX6u0v1Ds/2LY9+HModOHHUe/POfdzubRhwwZt2LDBk2sVordaTkuSbg++YR6Yu5aGGQAAAOTEvffeq7lz52ru3LmaOHGijh8/ri996UuXdI7vfve7sm1bwWBQDz30kBYsWDB4bMmSJaqqqtIPf/hDtbW16amnntL69euHnOP73/++ksnkRV/zzjvvVFVVlSRp7969euqpp/SJT3xCtbW1l5S73x061a9e23weeU34oCy724glZ97oZVoAAAAYJ2iawaik02lPruM4jmfXkiSrq1nBjr1GLD577bA5vNFs7jJTX1misOXdd1OIvK43xhb19g9q7S/U21+oN+CRpqeN4WvOInWpVMtraZgBAABA/olEIoM/p1KpC85/f865n8tX3/72t8c6hTH39pHTisrWKusd88DCO8cmIQAAABS84RpYLsW+ffu0e/duSdKaNWuMhpn33XXXXdq8ebNaW1v1zDPP6GMf+9iQRQCeffZZJRKJIZ89n5UrV6qqqkrpdFobN27UrFmztG7dulH9Ln60o83cZaayLKJpJ140YqlJC+SUTvcyLQAAAIwTNM0Aw4gc2mSMndgkpaZfOezct1rNFQuW15TlKi0AAAAAfuWkpb2/MULPOlerNBrSvGmlY5QUAAAAcH6xWGzw53g8fsH5788593P5avLkyRc1L5c70o/1LrDbD3foA9ZOlQTOvizoBix1Tb9ebg5/bz8a61rDW9TbX6i3v1Bv/8iHWrMz+fBee+21wZ/XrFkz7BzLsrR69Wr96Ec/Um9vrxobG7Vs2TJjzg9+8IPLun48HldbW5sk6ZOf/OSwcx566CFJ0le+8hWtWLHisq5TqHYeNZtmllSVKnxkqxGza2/yMiUAAACMIzTNAMOIHHzeGNuz10hWcMi8RMpRY8ZKBstn0DQDAAAAjIVCfiEt2Pq6JvR1GLFnnatVX1miM12nPcvDL8a63vAOtfYX6u0v1NtfxrrevJA2vEgkorKyMnV3d6ujo2PEuT09PYMrNV9sQ8p44OWurF7uAttrp3XgZL8+H3rDiKcqr1IqOlFiN9qcYsdff6He/kK9/YV6+we1zh9NTU2SpGg0qjlz5px3Xn19vfGZzKaZyxUOh7V27dphj+3evVttbW265pprNGHCBE2bNi0r1ywkmTvNXD3NVejNt41YkqYZAAAAnAdNM0CGQKJb4aOvGTG77pZh5+5q75Gdds9+VtIymmYAAACAMVGoL6RJUnT/b43xbmemWtxpuq2yhAeuHuDBtn9Qa3+h3v5Cvf2FeuePmpoa7d69W+3t7Uqn0woGhy5OJUlHjx41PoP8tru9VwE5uiW4zYjbc24bo4wAAACAC2tpaZEkVVZWnvfeRJKqq6uHfCYbIpGIvvCFLwx7bOPGjWpra9O6deu0YMGCrF2zUPQkUjpwst+IfcBqVMA9u2CGG4wqWX2t16kBAABgnKBpBsgQbt6igJMaHLtWRPbMG4edu72l2xjPn1qsshh/rAAAAABkkesqeuA5I/Ssc7UkaWl16VhkBAAAAFyUhQsXavfu3UokEjpw4IDmz58/7Lxdu3YZn0F+a2zv0fLAu5oaOGPEE3W3jlFGAAAAwMhs21Z398A7Phfa3bK0tFTRaFSJROKCu2bmi4vNc6RmodGwLGvE8Wg1neiRe844ZAU0tydj58sZKxSMlmT1uhheruuN/EK9/YV6+we19hfqPYC3+4EMkYObjHGyZqUUGf6m6q2Mppkra9hlBgAAAEB2BU8fULDrkBF7Nn2NJGlJJU0zAAAAyF8rVqzQk08+KUnavHnzsE0zjuNoy5YtkqSSkhI1NDR4mSIuw672Xt0WfNOIpSbNlzNx9tgkBAAAAFxAPB4f/DkWi11wfiwWUyKRMD6Xz774xS9e1LzHHnssx5kMKC8vz+r59r1lNgU1VJWppPUVIxZedIcqKiqyel1cnGzXG/mNevsL9fYPau0vfq03TTPAudJJRQ6/YITs86yMlnZcvX3UbJq5iqYZAAAAAFkWydhlpt2t0E53tmaURzWpJDxGWQEAAAAXNm/ePC1evFi7d+/W5s2bdfPNN2vBggXGnF/96ldqbW2VJH3oQx9SKFQ4j65ytYqzNLarAza2desh63Ujlpx7R05/Xz9jJUh/od7+Qr39hXr7B7XOT7ZtD/58Mfcc788593O5tGHDBm3YsMGTa41H25s7jfEt07ql3c3mpLlrPcwIAAAA403hPHkAsiDc9qasxBkjZs9eM+zcd0/0qdd2jBg7zQAAAADItsjBZ43xc+mr5MrSkip2mQEAAEBu7dmzR+3t7YPjM2fO/vt5e3u7XnjhBWP+zTffPOQcn/70p/XVr35Vtm3r4Ycf1j333KOGhgbZtq1XXnlFzz030CReVVWlu+++Oye/x1jxcpVjr1YHPN4dV2nPQdVFjxnxois/riJWdfaEX1eC9Cvq7S/U21+ot39Q6/wQiUQGf06lUhec//6ccz+Xz7797W+PdQo547qutjefNmKrQzvNSaWV0rR675ICAADAuEPTDHCOyKHnjXFqaoOcsuph525rMZtrZk6MakrJ+LhZBgAAADA+BPpOKtT+lhF71rlGkrS0mqYZAAAA5NamTZu0ZcuWYY81NTWpqanJiA3XNFNXV6cvf/nLeuSRR9Tf368f//jHQ+ZUVVXpwQcfVFFRUVbyRu68c6RLt1tvGjG3rFqB6uVjlBEAAABwYbFYbPDneDx+wfnvzzn3c/ls8uTJFzWvs7PzwpMug2VZRoNYV1eXHMcZ4RMXr+V0XB295o4/dZ0vG+PEzA+o7/TprFwPF5bLeiP/UG9/od7+Qa39JR/q7eUCU+dD0wzwPtdV5OBzRsieff6tO7e3dBvj5TUTcpIWAAAAAP+KHHpeAbmD4x43pt87A6ulsdMMAAAAxotrrrlG3/zmN/X0009r27ZtOnXqlEKhkCorK7Vy5Up98IMfVDQaHes0cRHebjmt24NvGLHAojulQGCMMgIAAAAuLBKJqKysTN3d3ero6Bhxbk9PjxKJhKSLb0YZL9LptCfXcRwna9d6u6XLGE+JSWXtrxkxu+ZGz343DJXNeiP/UW9/od7+Qa39xa/1pmkGeE/w9AEFuw4bsUTdLcPOdV1Xbw1pminLWW4AAAAA/ClywGzs3+JcIVthRYIBLZxWPEZZAQAAwC82bNigDRs2ZOVcU6dO1QMPPKAHHnggK+cbD3K1irM0dqsD7t/XpH9r7Tdi3TNWK5XD39Xv8mElSHiHevsL9fYX6u0f+VDrfG6BBK8AAMRESURBVFjFOR/V1NRo9+7dam9vVzqdVjAYHHbe0aNHjc9gbO1s6zHG90w+okBHnxGzaz/gZUoAAAAYh2iaAd6TuctMumS60lOXDDv38Km4OvtTRoymGQAAAGBsne8BVzZYljXiOCeS/YoceckIPZu+RpK0cHqJYpFw7nPwqTGpN8YEtfYX6u0v1NtfqDfylZer9XmxOqDruqo6vsWI2aESJaqukXy4MuFY8etKkH5Fvf2FevsL9fYPap0/Fi5cqN27dyuRSOjAgQOaP3/+sPN27dplfAZja8dRs2lmTXiHMU5NbZBbVFg7AgEAACD7aJoB3hM5+LwxtmevkQKBYedubzV3mZlaGtaM8mjOcgMAAABwYV6unnfuSoE5s+cVKZ0YHKZcS5udKyVJ19ZNZbVAD3lSb+QFau0v1NtfqLe/UG8gN1pOJ7Qq/Zp0znoFfTU3S8HImOUEAAAAXKwVK1boySeflCRt3rx52KYZx3G0ZctAo3hJSYkaGhq8TBEZEilHTcfNXWXq+980xnbtKi9TAgAAwDhF0wwgKdB/SqH2bUbMrrv1vPO3t5hNM1fOKFPgPA02AAAAAHBZ9jxtDF93FqlLpZKk5bUTxyAhAAAAAH62t6Vd91iNRsxacPsYZQMAAABcmnnz5mnx4sXavXu3Nm/erJtvvlkLFiww5vzqV79Sa2urJOlDH/qQQqHCerUuGAxeeNJlyNUOsO+29ynluIPjyTqj8q49xpz07FU5+70wPHb89Rfq7S/U2z+otb9Q7wGF9Td74DJFDr+ggOsMjt1QTMma6887f3vLGWN8Vc2EnOUGAAAAwIectLT3N0boWefqwZ9pmgEAAADgtfT+FxQJpAfHKYWUnL16DDMCAACAn+zZs0ft7e2D4zNnzr67097erhdeeMGYf/PNNw85x6c//Wl99atflW3bevjhh3XPPfeooaFBtm3rlVde0XPPPSdJqqqq0t13352T32MsebWDfbZ2gN23s9MYf7ziXQX6zzbRKFyissW3SiF2vxxL7PjrL9TbX6i3f1Brf/FrvWmaASRFDm4yxvbMG6VQbNi57WcSajtjG7HlNWU5yw0AAADAxens7LzwpMtkWZbxDwddXV1yHGeET4xO8OgbmtB30og961wlSZpcElaxG1dnZyJn1/c7r+uNsUOt/YV6+wv19pexrrdXLx0BY63m+AvG+PCEq1Ue4fkIAAAAvLFp0yZt2bJl2GNNTU1qamoyYsM1zdTV1enLX/6yHnnkEfX39+vHP/7xkDlVVVV68MEHVVRUlJW8cfneOnLaGN8e3SX1nxOou4mGGQAAAFwUmmaAdELh5q1GyK675bzT32rtNsYTYkHNmcKNMgAAADDW0un0hSdlieM4Ob1edN9vjfEeZ6aOuNMlSUuqSnnp12O5rjfyB7X2F+rtL9TbX6g3kH0pO67liTekwNlYb+1a+XNNQgAAAIxn11xzjb75zW/q6aef1rZt23Tq1CmFQiFVVlZq5cqV+uAHP6hoNDrWaULS9ubT54xc1fe/aU6Yu9bLdAAAADCO0TQD3wu3/EFWsndw7Coge/b5b6q2tZhNM8tmlMkKBM4zGwAAAAAuXeTgc8b4WefqwZ+XVpV6nQ4AAACAyxAMBnN2bsuyRhxn2/Gml1QZ6DdiFcs+nNPfEQO8rjXGFvX2F+rtL9TbP6h17mzYsEEbNmzIyrmmTp2qBx54QA888EBWzjdedHZ25uS8udgB9kSPrdbTZ+9BFgRaVJw4bszpmnq1nBz9Tji/sd7x9/9j777Doyrz/o9/ZiY9gRAgkNB7rwERKYpYWFEE+669F9S167r77LM/d9eVxXVd+666YkERbKCigoCIIk2kV6XXkB7SMzPn90eeGXJSJnVmkjnv13V5mVPmnHvmm4TzyTn3fSOwqLe1UG/roNbW0hTqnZCQENDzVYVOM7C8iP3LTMvO9kNlxLStdv+NFTrNDO/Ywi/tAgAAAGBNjqy9CsveZ1q3xJXi/XoQnWYAAACAZiGQNwLL3/T0h7R95nsp2+x9NLD3YL+eE1Xzd63RtFBva6He1kK9rYNaoykJ1KysjTED7ObDOablc8K3mpZdLTqqtEVXiZlmg44Zf62FelsL9bYOam0tVq03wxnA2gyj0gjOJd3PqXb37IJS7c0wj6SW0rmlX5oGAAAAwJoi9n1tWk41Wmmz0UOSZLdJA5Jig9EsAAAAAFbldqv90aWmVXtbnxWkxgAAAACwgi3H8kzLk6K2mZZLO4+TbLZANgkAAADNGJ1mYGmOjJ1y5B0zrSvpVn2nmY1HzLPMRIXZ1a9djF/aBgAAAMCaIvaaO/YvcY2Q8X/xvWfbGMVEOILRLAAAAABWdWyD4p3pplXFvS8IUmMAAAAAWMHWcp1mIlWigaXmmWZKuowPdJMAAADQjIUFuwFAMEXsM4+M5mrRSa42fardf8Nhc6eZwR3iFOag7xkAAACAxmErSFfY8Q2mdV+7R3i/HpQcF+gmAQAAAKinrKwsvx3bbrcrPj7eu5yTkyO32+2Xc4Wt/0Atyi3vcSerTXJPv74/nBLIWiP4qLe1UG9rod7W0RRqnZCQENDzAY3N6Ta0/Xi+d/k0+y6FGyXeZcNmV2mnMcFoGgAAAJopOs2gQRwO/4xwbLfbfS43lsj9y0zLpT3OlSOs+h+LDRVmmhnROd5vn4GVBKreaBqot3VQa2uh3tZCvQH/idj/jWwyvMsFitIq9wDv8mA6zQAAAADNhsvlCti53G63384X/vNi0/JS9whNTowO6PvDKf6sNZoe6m0t1NtaqLd1UGug7vamF6iw9FRnszPtm03bne2GyoiKr/gyAAAAoFp0mkGDBGp0ivKjcDSak8el1E2mVVFDpimqmveUX+zUrhMFpnVn9u/ACB1+4Jd6o8mi3tZBra2FelsL9QYaT8S+Jabl5a4hKlaEd3lwBzrNAAAAAAgce/Y+xZ3cY1q3veU4XRrOgGIAAABAc9NcBkfelmp+Pmti+BaVG29Mzq7jGeQ4iBhg0Vqot7VQb+ug1tZCvcvQaQbWtfsr83JkS6nr2Gp3/+lgllzuUwkszG7T8C50mAEAAADQSEoLFXHoe9Oqr10jvF/HRTrUtXVUoFsFAAAAwMIi95o79qcZ8bJ3HB6k1gAAAABoiOYyOPKu9IPerxOVpV7GQdP26EEXKZpBjpsMBli0FuptLdTbOqi1tVi13tbsKgRI0q4KnWZ6nSOFRVS9r6S1+zJNy4M7xSs6glELAAAAADSOiMMrZXMWeZddsusb9zDv8sCkWNlttiC0DAAAAIBVVZwNc4krRQM6tAxSawAAAABYwcZD2d6vz7RvMW+MjJc6jhAAAABQF8w0gwbJysryy3HtdrupJ1tOTo7cbnfjnaC0UK32LFP5x83yO52pEh/v54efT5iWhyTF+O39W43f640mhXpbB7W2FuptLU2h3oEaCQsIpIgKIzjvCBugbLXwLg9OblHxJQAAAADgN7aCdIUdW29at9g9UrcnxQWpRQAAAABCXU5hqX45keddHu/YbN6hx5mSg0ceAQAAUDdcQaJBXC5XQM7jdrsb9VwRB76TzVXsXTZsDhV1PlNGNecocbq19dhJ07qhHeMC9v6tprHrjaaNelsHtbYW6m0t1BtNhcPhv5kg7Xa7z+UGc7sUsX+ZadVnxcNNy0M6tfTre8Qpfq83mgxqbS3U21qot7VQb8A/IvYvk02GdznfiNR6+2B1bxMdxFYBAAAAqK/mMDjyqn3Z3q9tcmu8fatpe37yaJ+DIsP/msIAiwgc6m0t1Ns6qLW1NIV6N4XBkek0A0uK2GcewdmZPEJGVKtq99+emq9i56kbQzZJwzoyyjMAAADQlAQyZJf/g0KjOLhGKswwrfrSmWJaHte/kxJiIxr3vKiVRq83mixqbS3U21qot7VQb6BxVJwN81v3UPVMSlCY3RakFgEAAABoiOYwOPKmwznerwfYDqiNLde0vbjTWLkZzK9JYYBFa6He1kK9rYNaW4tV602nGViP4VbE/m9Mq0q6n+PzJRsPm2eZ6dk2Wi2j+PEBAAAA0Eh2LTQtZsf11MGi9t7lbm1i1JoOMwAAAECz0qxnwyzJV8Sh70yrFrtGalByC2bADDBm07IW6m0t1NtaqLd1UGugYbYcy/N+faZ9i2mbK76b3C07B7pJAAAACAE89Q/LCTuxRfaCNNO64m6+O838dNg8asHwTi0bvV0AAAAALGzXl6bFdVFnmJaHdwn+VLUAAAAA6qZZz4a5/TvJVeJddBp2feMepid7tw/o+0JlzKZlLdTbWqi3tVBv66DWQO0ZhqFtx/K9y+Ptm03bS7qMD3STAAAAECLoNAPLidi31LTsbNVD7oTu1e7vchvadCTPtG54pxZ+aRsAAACA+svKyvLbse12u+nmZk5Ojtxud+McO2uv4tN3m9Z9dHKQablv2wi/vj+Y+bPeaFqotbVQb2uh3tYS7HrTgQAhadcXpsU17v7KUZyGdmoVnPYAAAAACHmHsouVU+SUJMWoSCPtu0zbS7uMC0azAAAAEALoNAPLqdhppqT7RJ/7/5JeoPwSl2kdnWYAAACApsflctW8UyNxu92Ndr6IXxaZlp0xiVqU2cm0bkD7mIC+P5g1Zr3RtFFra6He1kK9rYV6Aw3kclaaDXOxe6Rax0aoU0J0kBoFAAAAINRtOXrS+/Xp9h2KsJ3K9oY9TKUdRwejWQAAAAgBdJqBpdhzjygsY6dpXUn3c32+ZsPhk6blTq0ilRgX0ehtAwAAAGBNEfuWmJYPtx0vI9PuXY4Ms6l3YkygmwUAAACggZrrbJhhh35Qi6Js07olrhQNaB+j7OzsKl8D/wn2bFoILOptLdTbWqi3dTSFWjMbJpqrrcfyvF+fad9s2uZMSpERERfoJgEAACBE0GkGlhKx3zzLjDuylZxJw32+pmKnmeEdmWUGAAAAQOOwFWYo7NhPpnVrwkaZlvu1j1W4wy4AAAAAzUtznQ0zas9i0/JWdzcdUaIuTIplFqcmgNm0rIV6Wwv1thbqbR3UGk2Jw+Hwy3HtdrvP5draeizf+3WlTjNdz/Rb+1E3jVVvNA/U21qot3VQa2uh3mXoNANLidi3zLRc0m2CZK/+x8AwDG2s0GlmWCc6zQAAAABoHBH7vpFNhnfZCI/Rwvy+kgq96wYnM3IaAAAAgAAxDEXs/dq0arFrpCRpQBLZBAAAAGjOAjULUfnZlmqrsMSl3WkFkqSOSlNP+zHT9uhBFyqaWZSapPrUG80X9bYW6m0d1NparFpva3YVgiXZSk4q/Mhq07qS7uf4fM3BrCJlFJSa1qV0atnobQMAAABgTRH7zA+jFXcer42pJaZ1g+g0AwAAACBAHOk75Dh5xLTua/cISdLApNhgNAkAAACABWw9miOXu2yQsfGOLeaN0a2l5KFBaBUAAABCBZ1mYBnhB7+XzX2qA4xhD1dpl/E+X7PhiHmWmTax4erUKtIv7QMAAABgMc4iRRz63rTqWLszlVvkMq2j0wwAAACAQInYt8S0fMidqB1GF3WMj1RCTHiQWgUAAAAg1G04mOX9erx9s3ljjwmS3RHYBgEAACCkhAW7AUCgVLzRU9rxdBkRLXy+ZsMhc6eZ4R1byGazNXrbAAAAAFhPxKGVsjmLvMuGza7V9hGSMr3rEuPC1b5FRBBaBwAAAMCKIveaZ8Nc7B4pyaYBzDIDAAAANHtZWVk171QPdrtd8fHx3uWcnBy53e46HWPNLyfKjiW3xtm3mrblJ49WiZ/ajrprjHqj+aDe1kK9rYNaW0tTqHdCQkJAz1cVOs3AGtxORRz41rSqpNvEGl+2scJMM8M7+e5kAwAAAAC1VbFjvzN5pH7MMMf0QclxdNwHAAAAEBD23CMKS99uWve1e4QkaWASM2ACAAAAzZ3L5ap5p0bgdrvrfK4tR8ue0Rpq26N4W4FpW3GnMXIHqO2ou/rUG80X9bYW6m0d1NparFpve7AbAARC2PENsheZRxwo6X6Oz9eknizWkZxi0zo6zQAAAABoFIZbEfuWmlYVdz9XW4/lmdYNSubBNAAAAACBEbHPPMtMlhGnde6+kqSBycw0AwAAAMA/Uk8W60ReqSRpvH2LaZuzdW+545KD0SwAAACEEDrNwBIqPozmbNNX7padfL5mw2HzLDMtIh3q2Tam0dsGAAAAwHrCjm+UvTDDtO5kp7P1S5p59LTBdJoBAAAAECARe82dZpa6U+SSQ3ab1K8dnWYAAAAA+MfWY/ner8c7Npu2lXYeH+jmAAAAIATRaQaWULHTTE2zzEjSxgqdZoZ2bCGH3dao7QIAAABgTRH7lpiWna17a0tRW7mMU+scNql/ex5MAwAAAOB/tqJshR9dZ1r3tWuEJKln2xhFRziC0SwAAAAAFrD1aJ4kqYUKNNz2i2lbSZdxwWgSAAAAQgydZhDy7Fn7FJa917SupFvNnWY2HDF3mhnWsUWjtgsAAACAdVXu2H+uthzLM63rlciDaQAAAAACI2L/N7IZLu9ykRGuFe7BkqSBSXTmBwAAAOA/nvsjY+zbFGZze9cbjgiVdhgVrGYBAAAghIQFuwGAv0XuNz+M5o5pK2f7IT5fk11Yqj3phaZ1KZ3pNAMAAACg4ezZ+xSWVWGktO7naOsac6eZQclxgWwWAAAAgEbmcPivE7zdbve5XFeRFWbD/M49RIWKkiQN6tDCr+8FvjV2rdG0UW9rod7WQr2tg1oDdeN0ubUjtez+yHj7ZtO20g6nSeHRwWgWAAAAQgydZhDyIvYtMy2XdJso2Xz/UWLTEfPDapFhdvVvz0hqAAAAQFPWXB5Ii9xvzijumES5k4dry7GfTOuHdGzJg2lBwo1t66DW1kK9rYV6Wwv1RlOVkJAQsHPFx8fX/8WlhdLB70yrFrtHeL8+o28HJSQ04PhoVA2qNZod6m0t1NtaqLd1UGvAt5/TClXsNCQZOrNip5nO44LTKAAAAIQcOs2g2bFn7VPk3sVypO9Q3qR/+dzXVpStsGM/mtaVdD+nxnNsPHzStDwoOVbhDm60AgAAAE1Zs3kg7eBy06K932QVOWKVnldqWj+uf0clJDDbTFPAjW3roNbWQr2thXpbC/UG6mjvt1JpvnfRZdi01JUiSYoKt6tP+xbBahkAAACAELflWNkzWl1tqepiTzNtK+lyZjCaBAAAgBBEpxk0G/a842r56Y0Ky/zZu65w1G/lSuhR7WsiDnwrm+HyLhuOSJV0GlvjuX46nGtaTunUsh4tBgAAAIAK8jOkQ6vN6/pO1oaD2aZV8dHh6t6G2S4BAAAABMDOz02L640+ylTZfZFBHeIZVAwAAAAIEf6a3b4hM8BuO14gSRpv32Ja745pK7UbIIfN1vAGolEx46+1UG9rod7WQa2thXqXodMMmg13bDvZi7JN6yL2LlbhiDurfU3EviWm5dLOY6XwaJ/nKShxaeeJAtO6YZ0YRQ0AAABAI9j9lWS4Ty2Hx0g9ztLGxftMuw3t3Ep2OzeCAAAAgOYsKyvLb8e22+2mWZVycnLkdrt9vKIabpfid36p8rdJF7tGer/umxjl1/eBmjVardEsUG9rod7WQr2toynUOpCzsqN5CdT3Rl1mgN2eWvaM1ln2zab19l7nKqF160ZtF/yDGX+thXpbC/W2DmptLVatN51m0HzY7CrucZ6it77nXeWz04yrROEHV5hWFXebWONpthzLk8tteJcddpuGJMfVr80AAAAAAqY5PJAWu3WBIsotl3QZr/y8Iq3bm27ar39iJA+mBVFTuLGNwKDW1kK9rYV6W0uw680DaaiOy+UK2Lncbne9zhd27EfZC8155Gv3CO/X/dvHBPR9oGb1rTWaJ+ptLdTbWqi3dVBroHpZ+SXal56vMDl1hn2beWOvc4LTKAAAAIQkOs2gWSnpMcnUaSY8dZPsecfkjkuutG/40XWyl+SZ1pXWotPMxsMnTcv92sUoOsI/05MCAAAAaDxN/oE0Z5HCD1Tu2F9UUqodqebsMjAplhupTQg3tq2DWlsL9bYW6m0t1BuovYi9X5uWd7k76YCR5F0exKBiAAAAAPxk46FsSdJw2y+KsxWZN/aYEPD2AAAAIHTRaQbNSmnH0+WObCl7ca53XcTer1U05PpK+0bsW2p+bbvBcse1r/EcGyp0mhneqUU9WwsAAAAAp4Qf+kE2Z6F32bDZVdJton5OK1Cx0zDtOzCJB9MAAAAA+JlhKLJCp5nF7pHer+OjwtQxPjLQrQIAAADgJ/6a4b6+M8D+sPuYJOlMx2bTemfiAJ0sDZf81F40TLBn/EVgUW9rod7WQa2tpSnUOyEhIaDnqwqdZtC8OMJV0m2ionbN966K2LOocqcZw6jUaaake83Tdpa63NpyrGKnmZb1bi4AAAAAeETuMz+M5kweISO6tbbuPG5a3yUhSvHRxHUAAAAA/uXI+kWOnAOmdYtdpzrNDEiKlc1mC3SzAAAAAPhJoGZlre0MsFuOlj2jNd5u7jRT0nk8M8g2I8z4ay3U21qot3VQa2uxar3twW4AUFclPc43LYcfXSdboXlkAUfmbjlOHja/rlvNnWZ2pOZXGuF5aEdGeAYAAADQQIZbEfuXmVZ5MsqWY3mm9YOTySAAAAAA/C+iwiwzGfY22mJ09y4zAyYAAAAAf3EbhrYey1OCcjXEts+0rbTLuCC1CgAAAKGKTjNodkq6nCkjLMq7bDNcithvnlWm4iwzrrhkudr2r/HYGw6bZ5np0SZaraLDG9BaAAAAAJDCUjfJXpBuWlfc41xJ0tajFTrNdODBNAAAAAD+F7FviWl5kXOEpFMzywxMjg1wiwAAAABYxYHMIuUVuzTWvk1226kBjo2waJUmjwhiywAAABCK6DSD5ic8WiVdzjStitiz2Ly8r8IIzt3PkWw21aRip5mUTi3q2UgAAAAAOCVir/lhNGdCL7lbdVd2QakOZRebtg1iphkAAAAAfmbPS1V46ibTui+c5gfTBjDTDAAAAAA/2fJ/A4qNt28xrS/teLrkiAxGkwAAABDC6DSDZqmkx/mm5YhD30kl+ZIkW0G6wlI3mvfvdk6Nx3QbhjYdMXeaGUanGQAAAACNoOLsmCXd/2+WmeP5pvWRYXb1SowJWLsAAAAAWFOljOKI1Rp3f+9yUosItYkND3SzAAAAAFjElmN5kgyd6dhsWl/SZVxwGgQAAICQFhbsBqB5czgcfjmu3W73uezqeZ6MZWGyuZ2SJJurRFGHv1Np7wsVcfBb2VRu2s7wWLm7jKmxrXtO5Otkscu0bmSXVn57jyjjdrtVVFSkw4cPq6SkRC6XS06nU4Zh1PxiNEs2m03p6eneZeoduqi1tVBva6lvve12u8LCwhQdHa2oqKhK13hAqLJn71dY5s+mdSXdyzr2b/2/kdQ8BiTFKsxe8yyZ8J/S0lKdPHlSWVlZcrlc3nX8uxaaKv6bRq1DG/W2FuptLfWpt81mk81mU0REhGJiYhQeTucAWEvE3sWm5a0xo1Saf+q24UBmwGwS3G63iouLlZ+f772Hwr9poY1rGGuh3tZCva2jvrUmo8Bqth3LUy/bESXbMk3rS7ucGaQWoTbIKNbDNYy1UG/roNbWUt96e57zioqKUmRkZLN/zotOM2iQhISEgJwnPj6+4pmlbuOlvd9418Qd/EYada106FvTnrZe5yghManGc+zckWNa7tw6Wv261vw61N/Jkyd15MgRGYbh/Q+hzzAMlZSUBLsZCABqbS3U21rqW2+XyyW32+19IL1jx45q0YKZ/RD6IvctMS27Y9rKmTRMkrTlmHm2y0E8mBY0hmEoJydHhYWFksyDN7jd7mA1CwFQPotS69BHva2FeltLfevtdDpVUFCg6OhoxcfHy2ajAzNCn634pMIPrzat+9I5wrQ8MCk2kE1CFYqKipSdnS3DMORwOLy/5/g3LfRxDWMt1NtaqLd1NKTWZBRYQUGJS7+kF+hG+xbTeldcslytegSpVagJGcW6uIaxFuptHdTaWupTb7fbLafTqaKiItlsNrVq1UpRUVH+aqLf0WkGzVf/KaZOM/p5sVSUY14nSX0vqNXh1u43j1xwWrfWDW0hfPB0mHG73aZfwHa7nT/6AAAQggzDkNvt9oYwu92uI0eO0HEGlhCxb6lpuaTbRMlml9swtPVYvmnbYDrNBE1eXp63w4xU9nuLfGINzX1EHNQN9bYW6m0t9al3+b9LFhYWyuFwkE9gCeEHv5XNXepdNuzhmpfT37QPM80EV1FRkbKysrzLnt9Xdrudf98sgBpbC/W2FuptHfWtNRkFVrH9eL7chnSmfbNpfWmX8RJ/k2+SyCjWRo2thXpbB7W2lvrUu/xkCIZhKCsrSwkJCc224wydZtB89btQWviQpP/r/VacKy37q1RacGofm13qfX6NhzIMQ2v3mTvNnN6dTjP+4na7TR1moqKiFBcXp8jISB5IAwAghBmGoeLiYuXl5amoqEiSdOTIEfXp04cwjpBlK8xU2LEfTetKup8rSTqQWaT8EpdpGzPNBIfT6VReXp53uUWLFmrZsqX3d5PT6QxW0xAAYWGn/jxGrUMf9bYW6m0t9am32+1WQUGBTp4sm/0vLy9P0dHRpmMBDeFwOPx27Io5ui65OqrCbJhZiaOUcyD61LFs0qAOLf3aflTP7XYrOzvbuxwVFaUWLVp476G4XC7TyJAILTabzfSzR71DG/W2FuptHQ2pdVUZJS4ujoyCkPNzWoEiVaLT7TtM60u6jA9Si+BLxYwSGRmpli1bejMKf3cLffyd1Vqot3VQa2upT70Nw1BJSYny8/NVXFwsScrOzla7du2a5XNepCo0SPke5I3JbrcrPj7eu5yTk1PFdFCRapGcorBj671rjLWvqXyXC2dSik6WOKQS3+08mFWotJPFpnV9W4f57f1ZXUFBgUpLy0axi4yMVKtWrUy/kPkDYWjjD8LWQa2thXpbS0PqHRYWpvj4eLndbhUXF8vlcunYsWOKiYmpUxsSEhLqtD8QLBH7v5HNOJVljLBolXQeK0nacjTPtG/7FhFq1yIioO1DGc8feCQpNjZWcXFxzfKPPAAAoG7sdrvi4uLkdruVn182A2BxcTEPpKHRBDK7lr+n4pOzRDrwrWnVzoQJ0oFTy73axalj+7aN1jbUTW5urhwOh1wul6KiotSmTRvTgGN0ZrIW6m0t1NtaqLd11LXWERFlfyPOy8uTw+GQw+HgnghCTnp+iUbYdyvaVuJdZ8im0k5jgtgqVKe4uNh7LzgyMlIJCQkKDw8PcqsAAIC/2Ww2RUZGKiIiQllZWd5rguLiYkVHR9d8gCaGOz9oEJfLVfNOjcDtdld5ruLu55k6zdhkVNg+sVZtXH8gx7TcOiZMHVuGB+z9WU1BwanZgGJjYytt5yHr0FaxvtQ7dFFra6He1tLQettsNsXGxnofUi8oKFBkZGSjtQ9oSiL2LTUtl3QZJ4WVTVW75Zi50wyzzARP+U4zzfGPOwAAoGGio6NNnWaq+pslEDL2fycV55pWfVU6XNKph9WGdmoV2DbBJDc31/u3lri4OFOHGQAAYA0xMTHKy8uTYRjKz89X69atg90koFFl5pfqTPtm0zpn+yEyoloFp0HwqaioyPt1bGwsGQUAAIup+JxXUVFRs3yugk4zaNaKe56v2B9mVLu9pNs5tTrOhsPmG0TDO7XkAt+PPFN72Ww27ygpAADAWiIiImSz2WQYBtO8InQ5ixVx6DvTqpJu53q/3lqh08xgOs0EjWfABJvNxsjyAABYUFhYmDefMJASQt7OhebljiP1XWq4TJ1mOrcKaJNgVlJSYhrFGQAAWE94eLg3o5SUlNT8AqCW/DXLVcWZ22uayT2z0Kkz7VtM65xdz2IWriaq/D0Uzz3e8jy/rxCaqLe1UG/roNbW0hj1Lv+cl8vlapbXbTwJgmbNHd9Vzjb9FJaxs9I2V3wXuRJ61uo4G46cNC0P79SiUdqHqrndbkllv3jpnAQAgDV5rgMMw/BeGwChJvzwD7KVnppl0bDZVdL9bElSQYlLe9ILTPsP6kCnmWAhowAAYG3kE/hLVlaW345tt9sVHx/vXc7Jyan5+9dwK37H5yr/+FpWx7O0b0++abce8Xa/th2+FRUVye12y263y+VyyWazmW5Cu1wuHmIIYdTbWqi3tVBv62jMWrvdbhUXF9f52iwhIaFe50PoC9T3RvmsUhVbYYYG2A+Y1kUPnKxovnebpPT0dG82CQ8Pr7S9OT40i/qj3tZCva2DWltLfettt9tlGIYcDkezzBx0mkGzV9xzUpWdZkq6nSvV4mGntLwSHc4uNq0b1pFOMwAAAAAaJmLfEtOyMylFRnQbSdL24/lyl7tP6rDb1K9dbCCbBwAAAMDPAjlzkdvtrvF8YambZc9PNa3bFH2Gys8yE+GwqUfrSGZdCqKKD9XWtIzQQr2thXpbC/W2jsauNTNiIhT1PPmjadkZFquwTiOD1BrUFoOOAQBgbc19RiLfcyECzUBJj/OrXt99Yq1ev+GweZaZ2AiHeifGNLhdAAAAACzMcCty31LTqpLu53i/3nosz7StT2KMosKJ6AAAAAD8J2LvYtOys1V3rclLNK3r2y5WYQ6yCQAAAAD/MAxDPYp3mdbldzhDclSewQQAAABoLMw0g2bP1aavXC27yJF70LvOHdlSpcm1G4GgYqeZoR3j5LDTMx4AAABobvw5ZbDdbve5XKktxzfLXpBmWufsNcnbxq3H803bhnRswZTHQVRxdLSqlpvziCmoHrW2FuptLdTbWhqz3jabjesyhKyKs2GWdD9X2ypkk4HJzIAJAAAAhKqsrCy/HNdutys+Pt67nJOTI7fbXeW+uUVO9bftM60rajNQbj+1DQ1XWlrqrafT6az0txOXy8Xf3UIY9bYW6m0d1NpaGqvebrdbbrdbpaWldb6uTEhIqPP5GhudZtD82Wwq7jlJMRte864q6Xp2rUcg2HA417Q8vFOLRm0eAAAAgMAIZMguf/NHkmQYUtZ+af/30oGV0p5vzNvb9lF8jxH/t6uhrcfMD6aN7t2+SfyRwKrS09NlGIbsdrvCwir/qYQHZ62DWlsL9bYW6m0t9am3p1N0eHg412UISfbsfQrL/Nm0rrj7edq2uUKnmaS4QDYLAAAAQAC5XK6AnMftdld7rrScAg2wHTCtcyQNCljbUHcVH6qtaRmhhXpbC/W2DmptLY1db8MwmuW1G51mEBIKU+5Q5C8L5Th5VO7IeBWMfqBWr8stcmpPeqFp3fBOLf3RRAAAAACh5mSq9POiso4y+1dKuYer37fvBd4vj2QXKj2v2LR5WGcezAQAAADgP5F7zbPMuGPa6mhsf2XkbzGtH5DETDMAAAAA/Kcoba/ibEWmdbakweJRXQAAAPiTPdgNABqDEZ2grGuXKvvyj5R50w9yt+xcq9dtOnLSFLoiHDYNaM8NISAQpk+froSEBKWkpAS7KZB08OBBJSYmKjExUXPmzKm0fc6cOd7tBw8erPd57rnnHiUmJlL3Opo5c6b3869KSkqKEhMTdc899wS4ZQBgcUfWS5/eK22e67vDjGzSoMu9SxsOZpu2tooJV7c2Mf5pI4Ba82SUIUOGBLspUFlGSUhIUEJCgt57771K29977z3v9oZkFOpePzNmzPB+/lUZMmSIEhISNH369AC3DABQnYh95k4zJd0maluq+UG1FpEOdU6ICmSzAFSDeyhNC/dQmjbuoQBA82I/sdW0nK4EGbFV/w4H0HSQUZoWMkrTRkYBmiZmmkHocETImTSsTi/56fBJ0/Kg5DhFhNGXDKFl5cqVmjZtmnd56tSpev31132+5p577tHcuXMlSWlpaf5sXrM3c+ZMPf3003V6zVtvvaXJkyf7qUUAAFhXVlaW345tt9sVHx/vXc7JyZERP0DxssnmY/wzd0xbFY5+QCVRnaX/a9/qn4+b9hmUFKvs7Gy/tBu1U1paKrfbLUlyOp2y2WxyOBze7S6XiympG1FTyigVa+3hdDob7RyBFioZpXwNXC5XpZqUn/Lb6XTWqmZV/Wx7fvYrnhO+1fZzc7vdQftc+V1uLY1Rb7fbLbfbrdLS0jpfV1bXgQxoKmxF2Qo7tt60rrjH+dp2MM+0bkBSrOw2WyCbBgRdU8onoShU8gkAAGg8URnbTcv7wnuqe5DaAjRFZBT/IqMAgHXROwCWtrFCp5nhnVoEqSVA4Hz66afavn17zTsCsDxGjADQ3LhcLr/9V/7hYOn/HgIOj5OrbX/z+ujWKu41WXlnPaGsq79S5k2rVTjg16ZjbT5SufO+P9vOfzX/V/Gh2pqW0biCmVGorbXws9381SWjUG9racx6G4ZR52sJoKkLS9tm6uxvOCJU2mmMth3LN+03MDku0E0DmhzuoQCoLe6hAED9tMrdaVo+Ft07SC0BmgcyCoDaIqMAvjHTDCyrqNSl7anmG0J0moEVGIahmTNn6s033wxqO15++WW9/PLLITWS73PPPafhw4fXuF/nzp0D0JrG9Zvf/Ea/+c1vgt0MVOOnn34KdhMAwLKKe54vV6tuKu04WqUdT5croafkY2TmEqdbu06Yc8ig5Fh/NxNo0ppSRnn++eeD2obGRkZBsJBRAKBpCUvbZlp2tukntyNCO1LNM80MTKLTDNCU8gn3UJoP8knTRj4BgCbEMNS+4GfTqsy4vkFqDNA8kFH8h4yCYCGjAMFBpxlY1pZjeXK5T42s5rBJgzvQaQahrU2bNsrIyNDChQu1efNmDRkyJNhNCildu3ZV//79a94RAACEjMLT7q3T/rvTClTiMo98zoNpsDIyin+RUQAAgCQ50swj0joTB+hAZpHyS8wzag5MokM/rI184l/kEwAAYD95RLHuk6Z1JxO4PgCqQ0bxLzIKAFiLPdgNAIJlw2FzCOvbLlaxEY4gtQYIjNtuu02RkZGSpL///e9Bbg0AAID1bD1mHsm5e+sotYhiPAtYFxkFAADA/8LSzZ1mXIkDta1CNmnfIkJt4yIC2SygySGfAAAA+FfFWTCzjDiFt+oUpNYATR8ZBQCAxkOnGVjWxgqdZoZ1YpYZhL4OHTrouuuukyQtXry43lP9ud1ufffdd/rTn/6kyZMnq2/fvkpOTlbPnj01YcIE/elPf9Lhw4d9HmP69OlKSEhQSkqKaf0//vEPJSYmKjExUXv27KmxLVdccYUSExM1cOBAuVyuKvf54osvdPPNN2vYsGHq1KmTevbsqXPPPVdPP/20srOza/2+/WXlypXe97xy5Uqf+3r2mzlzps/91qxZo/vvv1+jR49W9+7d1aFDBw0ZMkRXX321/vvf/yonJ6dObZwzZ4733AcPHqx2v927d+uee+7R0KFD1alTJw0cOFC33nprnb/XUlNT9eSTT+rcc89V79691bFjRw0dOlS33HKLvv32W5+vzc7O1nvvvae77rpLY8eOVdeuXdWhQwcNGDBAV1xxhd5++22VlJRU+/qDBw963+ucOXMkScuXL9c111yjAQMGqGPHjhoxYoQeeeQRHT16tE7vqzpHjx7Vo48+qpEjR6pTp04aNGiQrr322hrfq0dKSooSExN1zz33VLm9qKhIr776qqZOnap+/fopOTlZvXv31ujRo3XVVVfplVdeMdV15syZSkxM1Ny5cyVJhw4d8n4m5f8rr6SkRF9++aUeeeQRTZw4Ub169VJycrL69OmjSZMmaebMmcrIyKjT+/jll1/0wAMPKCUlRR07dtSAAQN0ww036Mcff6zV53Lw4EH9+c9/1jnnnKM+ffooOTlZffv21UUXXaSZM2dq//791b42NzdX//rXvzR58mT169dPHTp00MCBA3XNNdfo008/lWEY1b4WAHzZctT8YNogZruExTW1jJKYmEhGERmlKmQUMopERgHQTJUWyJG117TK2XaAth03Z5MBzDIDNLl8wj2UMqGcT4YOHUo+qYVQySeLFi3y5pNu3bqRTwBYUljaVtPyVnc3tY6l8z5QHTIKGYWMQkbhHgoZBY2H4WxhSU6XW5srPKyWQqcZWMR9992nd999V4WFhXrqqaf0wQcf1PkY//jHP/T0009XWp+bm6tt27Zp27ZtevPNN/Xyyy/rwgsvrNOxL730Uu/oCB9//LEeeeSRavc9ceKEvvvuO0nSJZdcIofDPFtUdna2br75Zu8+HsXFxdq0aZM2bdqkWbNm6e2339bIkSPr1M6mqrCwUPfff78+/vjjStuOHTumY8eO6euvv1ZGRoYeffTRRj33/Pnzdc8996i4uNi77ujRo/roo4+0YMGCKr9nqvLhhx/qoYceUkFBgWn90aNH9emnn+rTTz/VNddco3/84x8KC6t8KTNx4kQdOnSo0vq0tDQtX75cy5cv15tvvqk5c+aoffv2NbbnL3/5i55//nnTuoMHD+rNN9/U559/rgULFqhPnz61em9VWbVqla655hqdPHmqM2dqaqoWLVqkRYsWNbhOx48f1+WXX65du3aZ1mdnZys7O1t79uzRsmXLdPz4cT3xxBP1Ps+DDz7oDV/lZWVlKSsrSz/99JP++9//6u2339bpp59e4/EWLlyo6dOnm74P0tLS9MUXX2jRokV65ZVXdMkll1T7+pdeeklPPvmkSktLTeszMzO1Zs0arVmzRitXrtSCBQsqvXbFihW67bbblJmZaVp/4sQJLV68WIsXL9a5556r1157TXFxcTW+FwAor+JMM4OSeTANIKOQUcgoZBSJjEJGAeAvYek7ZdOpm8KGzS5nm77adtz8IMvAJH5/ABL5RCKfBCuf/POf/6zVccgn5BOJfAKg+ao408w2o7t6xYYHqTVA80BGIaOQUcgoEhmFjILGQKcZWNLOEwUqcrpN64Z1pNMMrCEpKUk33nijXnnlFS1fvlyrV6/W6NGj63QMp9Op9u3ba/LkyTrttNPUtWtXRUZG6ujRo1q3bp3eeOMN5efn684779TSpUvrdKHZo0cPjRgxQuvXr9dHH33kM0zNnz/fO+rA5ZdfbtpWXFysyy67TJs3b5bD4dBll12mc889V126dFFpaalWrVqlf//730pLS9NvfvMbLVu2TJ07d67T59DUuN1uXX/99Vq+fLmkss/ypptu0rBhwxQdHa3U1FStW7euyovHhtqwYYPuuusuOZ1ORUZG6o477tC5556rmJgYrV+/Xv/85z/16KOP1vi9MH/+fE2fPl2GYahbt2665ZZb1KdPH7Vp00aHDh3Su+++qyVLlujdd99VixYt9Je//KXSMVwul0aMGKHzzjtPgwcPVrt27VRSUqKDBw/qgw8+0LJly7RlyxbdfvvtNX4W77zzjtatW6cxY8bohhtuUM+ePZWTk6O5c+dq3rx5Sk9P13333acvv/yyXp/b4cOHvUHKbrfr+uuv15QpU9SyZUtt27ZNzz//vGbOnKlhw4bV6/iS9Pjjj3uD1BVXXKELL7xQSUlJcjgcSk1N1caNGyu1/6abbtKUKVP01FNP6csvv1RSUpLmzZvn8zwul0vdunXTRRddpJSUFCUnJyssLEyHDh3SihUr9N577ykzM1M33nijVqxYUWkEg/J27NihBQsWqH379rrrrrs0bNgwGYahb775Rs8//7yKior00EMPafz48Wrbtm2l1z/zzDOaMWOGJCk+Pl433XSTxo0bp4SEBOXm5mrz5s36/PPPZbPZKr12zZo1+vWvf63S0lIlJibq1ltv1aBBg9S+fXulpqZq/vz5+uCDD7RkyRLdc889evPNN2sqAQB4ZeaX6khOsWnd4GT+KAOQUcgoZBQyChmFjALAf8LSt5uWXQk9VWKL1O4T5gcZBtKhH5BEPiGfBDafREZGauPGjfrnP/+phx56iHxSQSjnk06dOslms5FPAFiLYchxovJMM6fH0GkG8IWMQkYho5BRuIdCRkHjoNMMLOmnQ7mm5R5totWKENakuA1DOYXOYDcjoOKjw2Sv4h92f7j33nv11ltvqaCgQH//+9/1ySef1On11157rR555BGFh5t/boYOHaoLLrhAt956q371q1/p2LFj+te//qWXX365Tse/7LLLtH79eu3Zs0cbN26s9kLS08u+Z8+elfb5xz/+oc2bNys+Pl4fffSRhg4dato+evRoXX755brgggu8U0T++9//rlM7Kzpw4IBat27tc5+IiAj17NmzQeepzuuvv+4NUhdeeKH+85//KDIy0rTP+eefr8cff1ypqamNeu5HH31UTqdT4eHhmjdvnsaMGSNJCgsL04gRI3TRRRfpvPPO07Zt26o9RkZGhh566CEZhqGrr75azzzzjGmEgaFDh+qiiy7Sk08+qX/961969dVXdcMNN6hXr16m43z88cdVfsajRo3S5Zdfrvfee0/33XeffvjhB61YsUJnnnlmtW1at26drrvuOj3zzDOmC+8zzzxTERERmj17tn788Udt3rxZQ4YMqfXn5fG///u/3pEHXnnlFV166aXebcOGDdPUqVN10UUXaePGjXU+tlQ2XeeiRYsklU2VW9UIA5MmTdJjjz2mrKws7zrPtJwtW7aUJIWHh6t///4+z/Xoo4+qV69e3s/J6XR638eUKVN00003afLkyUpPT9frr7+uxx9/vNpjbd68WUOHDtUnn3yiFi1OdWodOXKkunfvrrvuuksnT57Uhx9+qDvvvLPSaz3T2vbs2VMff/yxOnToYNpn3Lhxmj59uo4cOWJaX1paqunTp6u0tFQTJ07UrFmzFBMTY9rn/PPP1xlnnKEHH3xQCxcu1PLlyzVhwgSfnw0AeGw9bp5lJjrcrh5tY6rZG02N1TJKIPOJREaRyChkFDKKBxnlFDIKgMZQcSRnZ9sB2p1WIKf71OwzNkn929Npprkho/gP+YR8Eqh8IpXlAvJJ1UItn3Tr1s30e8HpdJJPAFiKPf+EHIUZpnVbjW5KiOHxxVBgtXwikVHKI6PUDxmlDBnlFO6hkFHgX1x1wpI2HDlpWh7WiVlmmpqcQqfOe/mnYDcjoL6enqKEAHXeSkxM1C233KIXXnhB33//vb7//nuNGzeu1q/v0qWLz+0dOnTQ3Xffrf/5n//RV199JcMwquzpW51p06bpj3/8o1wulz788MMqw9S+ffu0fv16SZVHH8jLy9Mbb7whSfrd735XKUh5dO7cWQ899JAeffRRffrpp3rmmWcUG1v/m8P33Xdfjft07txZP/3U+N/bbrdbL730kqSyz//FF1+sFKQ87Ha7kpOTG+3cGzZs8F7sX3/99aYg5dGhQwc98cQTuu2226o9zptvvqnc3FwlJydr5syZVU7JKUmPPfaY5s6dq2PHjmnu3Ln6wx/+YNpeU1i9+uqr9dprr2nr1q364osvfIap9u3b66mnnqry+/fuu+/W7NmzJUmrV6+uc5hKTU3VF198IansAr18kPKIi4vTP//5T02aNKlOx/bIzs72Tlt5xhln+Nw3ISGhXufw6N69u8+f8wEDBujaa6/Vf/7zH3355Zc+w5QkPffcc6Yg5XHZZZfpiSee0PHjx7V69epKYeqll16S2+2WzWbTq6++WilIldexY0fT8ieffKKDBw8qKipKL730UqUg5XHddddp9uzZ+umnn/T+++8TpgDU2paj5k4zA5JiFWYPXKcENIzVMkog84lERvEgozQOMgoZRSKjAICHI63CTDOJA7TtmDmbdGsdpbhIbhk2N2QU/yGflCGfNI7a5pO//vWvuvnmm6s9Dvmk+ecTX8gnAKzAUaFD/0kjWscdSYqNcASpRWhMVssnEhmlPDJK3ZFRTiGjnMI9FDIK/Mse7AYAgeY2DG2q0GlmeEc6zcB67rnnHsXFxUmSnnrqqQYd6+TJkzpw4IB27typHTt2aMeOHd6LEM+2ukhMTNRZZ50lqWwaR7fbXWkfz+gDkipdhP7www/KzS2bUWrKlCk+z+W5wCwtLdWmTZvq1M6mZMuWLTp69Kiksgs9T20D4dtvv/V+/Zvf/Kba/S688ELFx8dXu/2rr76SVBYsqguCUtnI0CNHjpQk/fjjjz7bZhiGUlNTtWfPHu/35o4dO7xh0teICFLZ9091benVq5c3fNf1e1ySVq5c6Z121tfnlpKSon79+tX5+FJZQIqIiJAkzZs3zzsqQCBkZ2dr3759pt8Lnvrv2rXLG/KqMmDAAA0cOLDKbTabTYMHD5Yk7d+/37TN7XZr6dKlkqSxY8fWOeB6vgfPOOOMKqcDLc/zu6Om70EAKK/ig2mDkgP37zXQHJBRypBRGo6MQkapChkFQDA4HA6//We3m2/x2e32yvvJrbDM3ab93O0Ha3tqgWndoA4t/NpW/qvbfxUfWKhpGf4RrHxSm/qST+quqeaT8vW+6KKLyCflhGI+KV/v7Oxs7d+/n3wSohr7326bzVbn6wmgKao4C+Z2o6sSYiK5vgVqiXsoZcgoDVfbeyhkFLNQzCjlcQ8FVsCwUbCcvemFyi1ymdYNZ6YZWFDr1q11xx136JlnntHatWu1bNkyTZw4sdavP3TokF566SUtXrxYhw4d8rlvZmamunXrVqf2XX755Vq2bJlSU1P13XffecOVx0cffSRJGjFihHr06GHaVj4UDRo0qNbnPHHiRJ3aWNH8+fM1duzYBh2jvrZs2eL9evTo0QE9944dOySVTUnq6/MODw/X4MGD9f3331fa5nK5tHXrVknSW2+9pbfeeqtW566uZosXL9abb76pVatWKS8vr8p9pLLvTV969+7tc3urVq2Un5/v8xzV2b791Cifw4cP97nv8OHDtXPnzjqfIzIyUtOmTdO8efP02WefadSoUZo6darGjBmjUaNG+Qy39bFt2za98sorWrJkic+pYd1ut7Kzs5WYmFjl9opTsVbkGS0hPz/ftP7AgQPKycmRVL+fA8/vjm+++abatlXU0N8bAKzD5Ta07bj534vBdJoBTMgolZFR6oeMQkbxIKMACLaGjvhYF1X+Dj2+VXKVmFa16HWGdn692bTutJ7tAtpW+Jaeni7DMGS326scpdXzIKwjzAh004LKERZW7ai1DTpuuQeLHQ6H9xzt2rXTXXfdpaefflpr167Vt99+q3POOUeSTJ3WqmvTwYMH9eKLL+qrr76qMZ/k5OT4fG9Vbbvyyiu9+eSHH36oNEqq54G0kSNHqk+fPqZt5a/V65JPMjIy6lyD8p/VZ599VqfRsD2qq1FN5y2/X/lr3bFjx9b5fZTfv6o2lG9jWIXvVc91c0REhIYNG1btw+zh4eEaMmSIvvvuu0rnrG8+SUtLq/K9Llq0SG+88YZWrVqlkydPVvHKMllZWZVeX365b9++Pj9LTz4pKCio82dePm+MHDnS5+tHjBjh3d/XfhW/L8LCwnTJJZdo7ty53nwybdo0jRs3TqeffnqN+aQ2vwvKq0s+ycvLqzYD9OnTx+f5WrduLaksn5Tfb9++fd58MmbMmDrXpL75xB+/u5ub+nZi8XyPhYeHc62GRuOvTlVVdeqvKDzDPAvmVnd3tYmNoKNXM0DH/qYhWPdQaltf7qHUTVO9h1K+3txDMQu1eyg2m417KBZS1b/dhlH/vy16OvY3N6RTWM6Gw+Y//CW3jFBSy+p7ugKh7K677tLrr7+unJwczZw5s9ZhasmSJbrllltUUFBQ886SCgsL69y2Cy64QDExMSooKNCHH35oClObNm3Szz//LKlsCr+K0tLS6ny++razqSgfCtq3bx/Qc2dlZUkqCxY1XQxVd4GalZVVr97xFWtmGIYeeOABvfvuu7V6fVFRkc/t0dHRPrd7/tjnGUmgLrKzs71f19TbvbYX9lWZMWOGcnJytGjRIh06dEgvvviiXnzxRdntdg0ZMkRTp07V9ddfr5YtW9b7HJI0e/ZsPfLII7Wuo6/PvqbP3XMhX/Fzb+jPQXp6ep1f05x/bwAIrH0ZhcovMY+qxEwzQGVklIa3s6kgo5Qho1RGRqk9MgqABjtu7hyj+C7KtbfQnjTzDeqhnVoFrk1AM3L33Xfr1VdfVU5OjmbMmOHtNFOTr7/+WjfeeGOt80lN14BVufDCC7355IMPPjB1mtm0aZN27y6bZeqKK66o9For5pOMjAzv14HOJ57r7ISEhIDnk4rfg4Zh6L777tM777xTq9fXVHPPaOTVaUg+8eQ6qeb80ZB8MnPmTOXk5Hg7uL3wwgt64YUXZLfbNXToUE2bNk033HBDgx9Oe+edd/Tggw/Wuo6+Pvv65sKG/hyQT4DQEKgOWFX+3kzfYVrc6u6mpFYxdAprBmrTsd9hwU6Sge7YL0n33nuv9x7K008/rfPPP19SzZ1565pRSktL69yxf8qUKXr44YdVUFCgjz/+2JSfyt9DufLKKyu9vvx1Sl2UlJQ0qGN/bTvlV9QYHfvL/z2+Q4cOAe3Y7+mkkJCQ4HOGGKlsQImqzpmdnV3veyjlj1PXjFJUVOSzY39cXFyNHek9563rZ+753CQpKSnJ5+vLX2/XpWO/JD399NPKzc31ZpTy91Bqyih16dhf14zi6/dCbGysz/N5vh9dLleV34uSlJycXOea1Dej0LHfuh37qTwsZ8MRc6eZYcwy0yTFR4fp6+kpwW5GQMVHB/5Xcnx8vO666y7NmDFD69ev1+LFi72BqjoZGRm68847VVBQoNjYWN199906++yz1a1bN7Vs2dI7ReB3331XaTrNuoiLi9OvfvUrffzxx1q4cKGefvppRUVFSTo1QprD4dC0adMqvbb8NJ9Lly5VeHh4rc7ZoUOHercXDRs9pPwf7q+99lrdfvvttXqd5/vN49133/U+jDZo0CDdcccdGjFihJKTkxUdHe294Lv77rs1b968BvWYbkz+HHmlRYsWmj17tn766SctWLBAK1eu1NatW+VyubRx40Zt3LhRL7/8st566y2ddtpp9TrHzz//7H0YLTExUffee6/GjBmjLl26KC4uzvsz+O677+r++++XpCbz2Zfn+T4855xz9Kc//SnIrQEQarYeM49Wk9wyQm3jIqrZG02R1TJKMPKJREapiIzSMGSU+iOjNA1kFAANdqxCp5nkIdpyOMe0KsJhV79k7pM0R62iw7Tst6OC3YyAaRWkeyh33323/va3v+nHH3/UV199pV/96lc+X5ORkaHbbrtNBQUFiouL0z333KOJEyeqe/fupnyyYsUKTZ06VVL9rkPi4uJ0wQUX6KOPPtJnn32mZ555xptPPvzwQ0ll+eSSSy6p9Nry17rffvttrR8W6dixY53biVMaK59cf/31uuOOO2r1uor5ZPbs2d6H0QYPHqy77rrLm09iYmK8+eTOO+/U3Llzm8w1sj/zScuWLTVnzhytX79e8+fP1/fff68tW7bI5XJpw4YN2rBhg1588UXNnj1bo0bV73fu7t27vQ+jefLJmWeeWSmfzJ49W/fee29jvr1G5fk+PPfcc/XEE08EuTUAmp38DCnHPLPFVqO7UmIZ5DhUWC2fSGSUisgozQ8Zpf7IKE0DGQV1RacZWIphGNpwONe0LqVTw0athH/YbTYlxNTuISI0zB133KFXX31VmZmZ+vvf/17jA2mfffaZt5fvW2+9VWk6TY/yI0DV12WXXaaPP/5YJ0+e1OLFi3XxxRfL7Xbrk08+kSSdddZZVY4eVb4Xa9u2bZv8g2blL6TLP0xXUcUpCsvzTLUuSampqTVON9mYWrVqJams5i6Xy2dP5OpGsCtfM8Mw1L9//3q1Zfbs2ZKk7t2764svvqh2tK3G+P5sqPI9/tPS0nyG+fqO/FdeSkqKUlLKHvTNy8vTypUrNWfOHC1cuFBpaWm66aabtG7duhpHKKvKnDlz5HQ65XA49Pnnn6tPnz5VjkRQfqQMf6j4c1BXCQkJOn78uEpLS+v9PQgA1anYaYZZZpofMkrgkFGCj4xCRiGjNA4yCgB//n632+2m3905OTmV/t2OO7xe5a9gC1v11qrdx0z79GkXo4KTuardWLMIhNLSUm8tnU6nbDab6XrG5XJ5HxJpGeG/hzSaGrfLpeqvTOuv/IM+Lper0jXDbbfdpn//+9/KzMzUU089pXPPPdf0s1Zx/08++cSbT958881K+cSzf/nRUMuft2K9qzqHx6WXXqqPPvpIJ0+e1BdffOHNJx999JGksnySkJBQ6fWe62XP13XJJ3UdSbj8Z1XV51vXY5SWllZ7jPL5xO12m/Yr/56PHj2qHj161KkN5Y9V1fso/33kdDpN2z0zKGZmZqq4uNhU34r1PnHiRJXnbNHiVOdGl8ulPn361Kvtb731lqSyfLJw4ULTtbZhGN59y8+YWPG91vRZVKViPWqj/MyTx44d85lPyl9r+zqPr3YMHTpUQ4cOlVR1Prn++usr5RNfvwvKmz17dqV8Ip36fe55bfkR1it+H9X2ffhqV/nrhmPHjtW5Jp58UlJSUu/vQavw9W93XbjdbrndbpWWltb5urI5jvqMEHd8k2mxyAjXXiNZ57dgcLFQYbfZ1Jp7KAFx5513ejPKjBkzauw0s2DBAm9Geeedd0yzVJbXGH/DuOKKK7wZZdGiRZo6darcbrd34LEJEyZUeQ+l/N9R27Rp0+Q7wzTGPZQ2bdp4v05NTa3T9VVDea4LMzMzG+0eyoABA+rVlrfffluS1KNHDy1atKhJ30MpnytPnDihTp06VbtvY9xDGTFihEaMGCFJOnnypL7//nvNmTNHn332mdLS0nTDDTfop59+qtc9lPfee6/KjFKRvz/3ij8HddW6dWsdO3ZMpaWl9f4ehLXQaQaWciSnWGl5paZ1wzsyghqsLS4uTnfffbf+8pe/aPPmzVq4cKHP/Xfu3Cmp7OK3uofRJGnjxo0NbtvEiRPVpk0bZWRk6OOPP9bFF1+sH374QceOld3Yvfzyy6t83eDBg71fr1mzpspRCpqSuLhTD836emBnz5491W4bMmSI9+tVq1Zp3LhxjdK22ujfv78++eQTlZSUaOvWrd6bChU5nU5t3bq1ym0RERHq16+fdu7cqbVr19a7LZ7vz1/96lfVhgLDMLR58+YqtwVS+Yv1DRs2+Az9jfHzVF5cXJwmTZqkSZMm6fe//71ee+01paamas2aNaY/kNR2ZIRdu3ZJKhs521eQb+z3UVHXrl0VHx+vnJwcrVq1qs6vHzx4sI4fP66NGzeqpKSk0ggXANAQW+g0A9QaGSX4yChkFDJK4yCjACj/ELW/ud1u8/kMtxxp2037lLbpr22bT5rWDUiKDWg7UbOKD9XWtAz/CnQ+qUt9ySdmzTGflK83+cQsFPPJwIEDTfmk4s87+SR0NPa/3YZhcL2GRuOvh19r6tQfuXe1Ysrtv8PoKpccirG7m8SD0PCtLh370XA1deyPjo72ZpRNmzZpwYIFPjvzbt9e9reBhIQEjRs3rtoOrevXr6/yvHXp2H/WWWd5M8oHH3ygCy+8UN9//72OHj0qqWxgsqpeO3DgQO/XP/zwg18zSmN07C9/LZ2RkVHtMTzXgZ7zlt+v/Hv+/vvvdcYZZ9SpDQ3p2N+vXz9JUklJiTZu3GjKKOXr7XQ6tWXLlirPabfbvRll9erV9e4ovWPHDknSpEmTFB4eXuVxDMPQpk2nOl8Gq2O/53OTpB9//FFJSUnV7vvTTz9V2b76tiM6OlrnnXeezjvvPG9GOX78uFauXGnKKBUzZnU8n3v5eyhV/S6v+D4au2N/x44dvRll5cqVda7JoEGDdOzYMW3YsEEFBQVkFB/o2F/GHuwGAIG08bD5ZlBCdJi6to4KUmuApuOWW27x9uSfOXOmz38QPRfVxcXF1faWLygo0AcffNDgdoWFheniiy+WJC1ZskQ5OTneEdJiYmJ0wQUXVPm6s846SzExZX9yee2115p8OO/SpYv3a19/EPeMXl2VQYMGeW8YzJ49W3l5edXu29jK3/ibO3dutfstXLjQ5w2tSZMmSZJ+/vlnLVu2rF5t8Xx/FhRUPzbml19+Wa/e6Y1t7Nix3otRX5/bhg0bvGHFH84880zv1+VHj5PknSq3uLjY5zE8ocXX5378+HEtWrSovs2sFbvdrvPOO09S2R9S6npjzzMCS25urubMmdPo7QNgXXnFTu1NLzStG9yBTjOAL2SU4CKjlCGjVI2MUntkFADBZM89JHuJ+d9fZ+IAbavQoX9AUmwgmwU0S+ST4LJKPvn888/JJ+WQTxof+QSAVPZvgT/+q3jd4+nU7/nPkbrFtH2ru5skKSHa4bc28V/j/UfH/qYnkBmlLvUlo5g1x4xS/rMno5iFekap+HNHRgkt/urYX5f/mgI6zcBSfqrQaWZYpxa1HgEGCGWxsbG69957JZWNMLB06dJq9/VMWV9QUKAFCxZU2u5yufTAAw/o+PHjjdI2z0hoxcXF+uijj/T5559LKrvoKT+6WHnx8fG65ZZbJEnr1q3T//zP//icDvPEiRN65513GqW99dGqVSvvCAJz5sypshfu6tWr9eqrr1Z7DLvdrrvvvluSdPToUd1zzz0qKSmpcl+3291o9ZGklJQU7yhtb775plavXl1pn+PHj+v//b//5/M4t99+u2Jjy27S//a3v/WOeFadxYsXa9u2baZ1nu/PRYsWVfk57tu3T4899pjP4wZKUlKS9+L9q6++0vz58yvtk5eXp4ceeqje59i/f79Wrlzpc59vvvnG+3X5YC9J7du3lySlp6f7DOiez33Pnj1as2ZNpe0FBQW68847VVhYWGlbY5s+fbrsdrsMw9Dtt9/uHbGkKhW3XXXVVd4/SvzpT3/SDz/84PNcq1evrvHzBQBJ2n48X+X/5BBmt6lvOx5MA3who5BRGoKMUj9kFP8gowAIlrAKs8y4o1rruLu1TuSVmtYPSqJDP1AT8gn5pCFqm0/++Mc/+jwO+WR+pX2aWz7Zu3cv+QSAZYWlmf9N2mp0lyS1jgkPRnOAZo+MQkZpCDJK/YRiRuEeCqwmLNgNAAJp4xFzp5nhnVoEqSVA03PjjTfqpZdeUmpqqjIyMqrdb+rUqXryySdVXFys3/72t9qyZYsmTJigli1baufOnXr99de1adMmjRo1qkFTxHuMGjVKXbt21YEDB/S3v/1NOTk5ksqm7PTlscce0w8//KD169fr1Vdf1cqVK3Xddddp0KBBiomJUU5Ojnbu3KkVK1Zo6dKl6t+/v6677roGtfXAgQNq3bp1jfu1bt3ae5HqcfPNN+uhhx5SWlqapkyZooceekg9e/ZUdna2vv76a82aNUtDhw7VunXrqj3uLbfcosWLF2v58uVauHChzjzzTN10000aNmyYoqOjdeLECa1fv14ff/yxLrvsMj366KMNer/lzZw5UxdddJFKS0t1xRVX6I477tC5556rmJgY/fjjj3r22WeVkZGhgQMHVgpAHu3atdOLL76om2++WampqTrvvPP061//Wuecc46Sk5PldDp19OhRbdiwQZ999pn279+vd9991zRl6ZVXXqn/9//+n44fP64LLrhA9957r/r376+ioiJ9//33+s9//qOSkhINGTKkzr3T/eHPf/6zvv32W+Xl5enOO+/UDz/8oIsvvlgtWrTQtm3b9Pzzz2vPnj0aNmyYz9EpqnPkyBFNmzZNffv21eTJkzVs2DAlJyd7t82fP9/7R5FBgwZpxIgRptefdtppksoC+MMPP6xbb73V9D3uCVFXXnmlXn/9dbndbl111VW69957ddpppykqKkqbNm3Sv//9b+3du7fRfi/4MnjwYD366KOaMWOG9uzZozPPPFM333yzxo0bp4SEBOXm5mrLli1auHChHA6HKcRGRkbq9ddf17Rp05Sfn69LL71Ul1xyiS644AJ17dpVbrdbqamp2rRpk7744gtt375dTz31lMaOHevX9wSg+dtaYSTnPu1iFBnGGBZATcgoZJSGIKPUDxml8ZFRAARLxYfSnIkDtD0137QuNsKhLq2jAtksoNkin5BPGqK6fBIZGakNGzaQT6oRyvlk9OjRCg8PJ58AsARb8Uk5cg6Y1nlmmmkdw6OLQH2RUcgoDUFGqZ9QzijcQ4EVcOUJy0jPL9HBrCLTupROLYPUGqDpiY6O1v3336/HH3/c534dOnTQzJkz9cADD6ioqEgvvPCCXnjhBdM+06ZN03XXXVdj4KmtSy+9VM8++6w3SLVp00YTJ070+ZrIyEh9+OGHuueee7Rw4UJt27ZNv/vd76rdv0WLhneiu++++2q13+23364nn3zStO7aa6/V0qVL9cUXX2jXrl26/fbbTdsHDBigWbNmadCgQdUe126366233tI999yjzz77THv27NH//M//1P2N1MOIESP00ksv6d5771VRUZGee+45Pffcc97tYWFhmjlzptasWVNtmJKkiy66SO+8847uvfdeZWVl6c0339Sbb75Z5b52u907PavH7bffruXLl2v58uXas2eP7r//ftP26Ohovfjii/r666+bRJjq0qWLZs+erWuvvVZ5eXmaNWuWZs2aZdrn4Ycfls1mq1eY8ti1a5d27dpV7fbevXvrzTffrDT72vjx4zVy5Ej9+OOP+uijj7zT5nqkpaVJkoYPH67HHntMf//735WTk6O//vWvlc4xffp09evXz+9hSpIeeugh2e12zZw5Uzk5OXr22Wf17LPPVtpvzJgxldaNHDlS8+fP16233qojR47oww8/1IcffljtuRrjdweA0LelQqeZwcmM5AzUBhmFjNIQZJT6IaP4BxkFQDCEpZtnmnEmDtC24+ZOMwOTYmWv8LsWQNXIJ+SThqhNPvnHP/6hVatWkU/KIZ/4B/kEQKA5KmSTEsOhn41OkqTWscw0A9QXGYWM0hBklPoho/gHGQWBQqcZWMbGw+ZZZmIj7OqdGFPN3oA1XXfddXrxxRd15MgRn/tdffXV6tWrl1566SWtXbtWOTk5at26tQYOHKjf/OY3mjZtWqNOZXf55ZebLoQuvvhihYXV/E9YXFycdxrJuXPnavXq1Tp+/LiKiorUokULdevWTcOHD9d5552ns88+u9HaWx92u11vvPGG3nrrLb3//vveC9/u3btr6tSpuvPOOxUdHV3jcWJiYvTGG2/o+++/15w5c7RmzRqdOHFCLpdLiYmJGjRokM4//3xdeumljf4eLr30Ug0cOFDPP/+8VqxYoczMTLVt21ann366pk+frmHDhlU5pWNFkyZN0vr16/XOO+9oyZIl2rlzp7KzsxUWFqZ27dqpb9++Gj9+vKZMmeKdYtEjPDxcc+bM0axZszRv3jzt3r1bhmEoKSlJZ511lm6//Xb17t1bX3/9daO///oaO3asvv/+ez333HNasmSJUlNTFR8fr2HDhunWW2/VxIkTNXPmzHode/To0Zo/f76++eYbrV+/XkeOHFFaWpqKi4u908VedNFF+vWvf63IyMhKr7fb7frggw/0wgsvaNGiRdq/f78KCgpkGEalfR9++GGlpKToP//5j3766ScVFBSobdu2Gj58uG688UZNmDBBc+bMqdf7qI8HHnhAF198sWbNmqUVK1bo8OHDKiwsVKtWrdSnTx+dddZZuuqqq6p87ciRI7VmzRq9//77WrRokbZs2aLMzEzZ7Xa1adNGvXv31pgxYzRlyhT16tUrYO8JQPNkGIa2Hq3QaaYDnWaA2iKjBA8Z5RQyChmlMZBRAARaWFqFTjNtB2jbJnM2GZAUG8gmAc0e+SR4QjWftGnTRqNHj9b06dM1cuRIrVq1qsbjkE+abz4ZOnSoXn/9dfIJAMupOAvmbqOzShQuh92mllE8ugg0BBkleMgop5BRmm9G4R4KrMZmVPXTANRSenq6X47rcDiUkJDgXc7KypLL5WrQMZ9eul9zN6R6l8/oFq8XLu/XoGOiflJTU+V2u2W3271TF5a/MHY6ncFqGgKEelsHtbYW6m0tjVHvqq4Jaqtt27b1OidCm7/yiVT/jHI4u0jTXt9kWjf/1qHq1Cqq0duI+iOjWBu1thbqbS3U21oaWm/yCfwhWBnFlp+mNrNGm/bPuHqxzno3S3nFp3LM01N76+zerf3WRtQP+QTU21qot7VQb+vgHgqaqmA85xX39UOK2jXfu+195wT9znm7EuPC9eWdKX5pDxoXGQXU21qot3VQa2sho0j2YDcACJQNFWaaGd6JabYAAAAA+NfWY+aRnFtFh6ljfOVRXwAAAACgsYSlm0dyNsJjtM9IMnWYkaSBScyCCQAAAMC/Ks40s9XoLklqHRMejOYAAADAoug0A0s4WeTUz2kFpnV0mgEAAADgbxU7zQxOjpPNZgtSawAAAABYQVjadtOys00/bU8tNK1LjAtXuxYRgWwWAAAAAKspLZAja49p1TZ3N0l0mgEAAEBghdW8C9D8bTqaJ6PccrjDpgGMoAYAAACEFIfD4bdj2+12n8vV2Xos37Q8pGNLv7YT9VOxI1NVy4ZhCKGHWlsL9bYW6m0tjVlvm83G9RqavUqdZhIHaluFDv3cIwEAAADgb2HpO2Uz3N5ll2HTDqOLJDrNAAAAILDoNANL2HA417Q8KDlOkWFMtAQAAACEkoSEhICdKz4+vsZ9ikpd2nXC3GlmTN/kgLYTtZOeni7DMGS32xUWVvlPJTw4ax3U2lqot7VQb2upT709naLDw8O5XkOzF5a+zbTsTBygbRvMnWYGJsUGskkAAAAALCgs3dyh/xejo4oUKUlqHUunGQAAAAQOvQZgCRsOnzQtD+vYIkgtAQAAAGAV24/lqtR1aoRzm00a0qnmzjYAAAAAUF+24pNy5Bw0rStq3V+7ThSY1g1MZqYZAAAAAP4Vlmbu0L/V6Ob9ug0zzQAAACCA6DSDkFdU6tb24+bRnYd3otMMAAAAAP/acDDbtNy7XZxaRHETCAAAAID/ONJ3mJYNe5h2uzuZOvRL0oD2zDQDAAAAwL8qdprZ7u7m/ZqZZgAAABBIYcFuAOBvW4/lyek+dTPIbpOGdGAENQAAACDUZGVl+e3Ydrtd8fGnZonJycmR2+32+Zo1v6Salge0j/FrG1F/paWl3no6nU7ZbDY5HA7vdpfLJcMwqns5mjFqbS3U21qot7U0Rr3dbrfcbrdKS0vrfM2WkJBQp/0BfwpLNz+U5mrdWzsySk3rOreKVIsobhECAAAA8K+SrmfJHRmvsLRtshfnaKu7u3db6xgyCQAAAAKHq0+EvI1HTpqW+7SLUVwk3/oAAABAqHG5XAE7l9vtrvF8W46as8igpNiAthG1V/Gh2pqWETqotbVQb2uh3tbSmPU2DINrNjRrYWnbTcvOtgO0KzXftK4fs8wAAAAACICC0Q9Jkpwuty7/1xdKM04NTtY6hplmAAAAEDj2YDcA8LefDuealod3ahmklgAAAACwivT8Eh3LLTGtG5TMjJcAAAAA/KtSp5nEAdqZWmBa17cdnWYAAAAABE52kVOHjUQVK8K7rnUsnWYAAAAQOHSaQUhzug1tOZpnWje8Y4sgtQYAAACAVWw9Zs4hMeF2dW8THaTWAAAAALAEV7EcWb+YVhW3GaDdaeZOM8w0AwAAACCQsgqcpmWbpFbRdJoBAABA4NBpBiFtV2q+CkvdpnXD6DQDAAAAwM+2Vui8PzA5Tg67LUitAQAAAGAFjozdsrnND6Ptc3RTsdN8n6Rfu5hANgsAAACAxWXkl5qWW0WHKYx7JgAAAAggOs0gpG04fNK03K11FNN7AgAAAPC7LRVmmhmUHBeklgAAAACwirC07aZlV3xXbcs0P4iW1CJCrWK4TwIAAAAgcDILzJ1mEsgkAAAACDA6zSCkbThi7jQzvBOzzAAAAADwrxKnW1srdJoZ3IFOMwAAAAD8Kyzd3GnGmThQO08UmNb1ax8byCYBAAAAgDIrzDTThgGPAQAAEGBhwW4AmjeHw+GX49rtdp/LteE2DG2q0GkmpXO839qM2rPZbDUuG4YRyCYhgKi3dVBra6He1tLY9bbZbFyjIaRsP56vYuepnwmbpGEd6cAPAAAAwL8KTn9QJT0nKSxtuxxp21XaabR2bc437UOnGQAAAACBllFhppnWzDQDAACAAKPTDBokISEhIOeJj4+v82t2p55UdqHTtO7sQZ2VkBDTWM1CPaWnp8swDNntdoWFVf41xEOz1kK9rYNaWwv1tpb61tvTMTo8PDxg15VAIPx4KNe03DsxRi2jiN8AAACA1fjz7yNVDj4W21ru2PEq6TpeUtngYruWrDXtNyA5jr/bNHEMPGZt1NtaqLe1UG/rYOAxNGXBGhy54vNbbeMi+L5uRsgo1ka9rYV6Wwe1thYyShme2kHIWrsv07TcIT5KnegwAwAAAMDPfjps7jQzonPLILUEAAAAQDAFcoCIqgYf25eer/wSl2nd6X06KqFlVKCahXpg4DGUR72thXpbC/W2DgYeQ1MSrMGRc0vM2zu2bcn3dTNCRkF51NtaqLd1UGtrsWpGsde8C9A8Vew0M6p76yC1BAAAAIBVlLrc2nQkz7QupXOLILUGAAAAgJVtPZJjWm4bF6l2LSKD1BoAAAAAVpWeV2xabhtLLgEAAEBgMdMMGiQrK8svx7Xb7aZRB3JycuR2u2v9esMwtGZvumndwPZRfmsv6qa0tNRbT6fTWWmqLpfLxVRvIYx6Wwe1thbqbS2NVW+32y23263S0tI6X6c1xxELYA3bj+er2GnOLsM70mkGAAAAQOBtPWruNDOoY0vZbLYgtQYAAACAVVXqNNMiIkgtAQAAgFXRaQYN4nK5AnIet9tdp3MdzSlW6knz3J5Dk2MD1l74VvGh2pqWEVqot3VQa2uh3tbS2PU2DIPrNISMnw7nmpZ7tY1Wq5jwILUGAAAAQDD5cyCv2gw+tnF/hmm5V+tIBhdrBhh4zNqot7VQb2uh3tbBwGNoyoIxOLJhGMrIMz/DFeEuIZs0I2QUa6Pe1kK9rYNaWwsZpYw92A0A/KHig2qtosPUvU10kFoDoLGkpKQoMTFR99xzT6VtBw8eVGJiohITEzVnzpx6n2POnDne4xw8eLAhzbWUlStXej+3lStXVto+ffp0JSYmKiUlJQitQ1Pj+V6ZOXNmg44zc+ZM77EAoKlYf+ikaTmlc8sgtQRAIJBRmi4yCuqCjALAX1wul9/+q9hBxjP4mOc/p9Opnan5pn36JEb7tU381zj/MfCYtTWk3uSTpqu6fOKp7/Tp05WQkKDhw4cHq4kIgNr+fJNPmj9/DTxWl/+A6vjrGtZXPsnKL5HTbf45aBVlD/p1N//V/j8yirWRUUITGQV1+dkmozR/ZJQyzDSDkLTxsPlBtWEdW8hmswWpNUBwrVy5UtOmTavTa26//XY9+eST/mkQADRDU6dO1Q8//OBdfuyxx/Twww/X+Lp//vOfeuqpp7zLY8aM0YIFC2p1zmnTpnn/ODFhwgR98MEHdWrzpk2b9O6772rt2rU6dOiQ8vPzFRkZqXbt2qlHjx4aNmyYxo8fr9NPP13h4VXPglFaWqoFCxbos88+05YtW5Senq7S0lK1aNFCHTt2VL9+/XTaaafprLPOUs+ePevUPiAUOV1ubTpiziIj6DQDVEJGAYCGI6OQUYCaHM8tUU6R07SuX/vYILUGaLrIJwDQcOQT8gngS2ZBaaV1rWOq/rkCQEYBgMZARiGjVIWZZhCSNlR4UG1YpxZBagkAwJ8YMSL01DQieFPx4Ycf1mq/ugYgj0OHDpnC24oVK3T8+PFavdbpdOqRRx7Rueeeq1mzZmnbtm3Kzc2Vy+VSQUGB9u/fr2XLlumf//ynLrnkEr377rtVHueXX37ROeeco7vuuktffPGFDh06pMLCQjmdTmVlZWnr1q368MMP9dhjj2n06NEqKiqq13sFQsmO1HwVlppHU0shiwCApZBRQg8ZpQwZBWh+dp4wzzLTMsqh5JYRQWoNACAYyCehh3xShnwCNC8Z+eZOM3GRDkWE8cgiAFgRGSX0kFHKkFGaB2aaQcjJyC/VgUzzDzMPqgFlbrrpJt1000017te6desAtKZxdenSRWlpacFuBqrx8ssv6/nnnw92M9BENOef1aioKBUVFWnPnj1av369RowYUe2+GzZs0C+//GJ6XW3NmzdPhmEoMjJSLpdLTqdTH3zwge69994aX/u73/1Ob731liSpffv2uuGGG3TaaaepTZs2Kioq0qFDh7Ru3Tp99dVXOnz4cJXHyMzM1CWXXOINcGPGjNHll1+uvn37Kjo6Wjk5Odq9e7e+++47LV26VIWFhbV+b0AoW3/I3Hm/R5toJTBaGuATGQXBQkZBec35Z5WMQkYBqrMz1dxppl+7WNlstiC1BmgeyCcIlpdfflkvv/yynE5nzTsj5DXnn1XyCfkEqErFmWaYZQaoPTIKgoWMgvKa888qGYWMUh6dZhByNlaYZSYm3K4+7WKD1BqgaWnbtq369+8f7GYAQLPlGR3hp59+0rx583yGqXnz5kmSRowYoRMnTujQoUO1Po9n5ILzzjtPRUVFWrJkSa3C1I4dO/T2229LkgYNGqT58+crPj7etM9pp52mSy+9VE899ZSWL1+u6OjoSsd5/vnnvUHqkUce0aOPPlppnwkTJuj222/XyZMn9c4778jhcNT6/QGh6qfDuablEZ3pvA/UhIwCAA1DRjmFjAKY7UwtMC33bc99EqAm5BMAaBjyySnkE+CUip1m2sTSaQaoLTIKADQMGeUUMorEXIdodgzD0Odb0/RzWkGV2zdUeFBtcIc4hdkZPQ0AADSOK6+8UpK0YMEClZaWVrmP0+nU/PnzTfvX1o8//qg9e/ZIki6//HJdccUVksqC0qZNm3y+9quvvpJhGJKkxx9/vFKQqmjChAk6/fTTK63/8ssvJZWFx4cfftjnMVq0aKHbb79d4eH8gRvW5nQb2njY3IE/pVPLILUGAABYCRnFjIwClNl5osJMM3SaAQAAAUA+MSOfAMw0AwAAgouMYmbljEKnGTQr+zMKdee8Hfp/X+3V3xbvk/v/flmUt6HCg2rDeVANaBSeXrczZ870ud/UqVOVmJioqVOn+tzv4MGD+tOf/qRzzjlHffr0UXJysvr27auLLrpIM2fO1P79++vUvoMHD3rbOGfOnGr3y87O1p///GedccYZ6ty5s/r376/LLrtMCxYsqNP5ioqK9Prrr+vSSy/VgAED1KFDB++xZs+e7XN6ypKSEi1atEiPPfaYzjvvPPXq1UvJycnq06ePJk2apJkzZyojI8Pn+VNSUpSYmKh77rlHkvTLL7/ogQceUEpKijp27KgBAwbohhtu0I8//lin91WdwsJCPfvss5owYYK6du2qPn36aPLkyXrnnXfkdrtrfP306dOVmJiolJSUavdZuHChrr/+eg0ZMkQdO3ZUt27dNHLkSF100UV66qmn9NNPP3n3XblypRITE/Xb3/7Wu27EiBHe7wHPfytXrjSd48cff9Tf/vY3TZ061Vu37t27a+zYsXrkkUe0a9cun+/jnnvuMb2PnJwczZgxQ+PGjVPXrl3Vs2dPTZkyRR9++GGNn4kk5eXl6eWXX9Yll1xias/ZZ5+t3/3ud1qzZk21r3W5XHr//fd19dVXa9CgQerYsaP69OmjCy+8UK+88kq9p1FMT0/3fn5vvvlmlft4PofExET94Q9/qHKf5557TomJiUpOTlZeXp5pW1W/Tzw/w9OmTfOumzZtWqWa+vr5Lioq0osvvqiJEyeqW7du6tatm84//3y9/vrrjTpl7LRp0xQeHq6MjAwtXbq0yn2WLl2q9PR0hYeHm95TbXhGLmjVqpXOO+88XXDBBYqLizNtq86RI0e8X/fo0aNO563qOF27dpXdTmQAamNXar4KSs3/Jg5nphnAr/yRUf785z+TUcgoXmQUMgoZpQwZBWh+0vNKlJFvvgHcr11MkFoDWAP3UMzIJ3XPJwkJCeSTCkI5nzz77LPkE/IJYBmZ+XSaAYKBjGJGRiGjSGQU7qGQUawuLNgNAGrrx4M5uvejXSp1lXWU2XIsT59sPqHLhrb37pNX7Kw0A83wTjyoBjQ1L7zwgv7yl79U6rmbmZmpNWvWaM2aNVq5cmWdA05Ndu/ercsuu8w7FZ1UdvG1YsUKrVixQkuXLtUZZ5xR43G2bt2q66+/vtIUfOnp6d5jvf3225o9e7batWtX6fUPPvig5s6dW2l9VlaWsrKy9NNPP+m///2v3n777Sp7Ble0cOFCTZ8+XQUFp37/paWl6YsvvtCiRYv0yiuv6JJLLqnxONVJTU3VpZdeqt27d3vXFRQUaN26dVq3bp0+++wz3XXXXfU+vsvl0u23365PP/3UtL6kpET5+fk6cOCA1qxZo6VLl2rJkiX1Ps+cOXNM4cujtLRUu3fv1u7du/XOO+/ob3/7m26++eYaj/fLL7/oqquu0sGDB03rV69erdWrV2vdunX6+9//Xu3rv/32W91xxx2VgnNpaam2bt2qrVu36r///a/S0tIqvfbw4cO69tprtW3bNtP6kpISrV27VmvXrtWsWbM0Z84c9ezZs8b3Ul7btm3Vt29f7dq1SytXrtSNN95YaZ9Vq1Z5v64YWD1++OEHSdLQoUO9QcCfTpw4oauuukpbt241rd+wYYM2bNig5cuX6+23326UYNCmTRudc845+uqrrzRv3jz96le/qrSPJ/Sce+65at26da2PXVJS4h254OKLL1ZERIQk6cILL9TcuXP1ySef6IknnlBYWNWX8eVHAdi9e7d69epV63NXPE5xcbH27dsnp9NZ7fkAnLL+kHnGy26to9Q2NiJIrQFQV2QUMkp5ZBQySmMgo5QhowDBsfOE+T5JTLhdnROigtQaAHVFPiGflEc+Cc184llPPiGfAFaQUWmmGX5mgOaGjEJGKY+MEpoZhXsoZBQr4FNBszG4Qwslt4zUwawi77oXVxzShF6t1Sa27BfHpiN5cpebfCbcYdPAJP//AgdQe88884xmzJghSYqPj9dNN92kcePGKSEhQbm5udq8ebM+//xz2Wy2Rj3vyZMndeWVV3qD1LRp03TVVVcpMTFRe/bs0SuvvKI5c+Zo586dPo+zd+9eTZ06Vbm5uWrRooVuvvlmb6//zMxMffXVV3r77be1YcMGXX/99frss88qTWXncrnUrVs3TZ48WcOHD1enTp0UFhamQ4cOacWKFXrvvfeUmZmpG2+8UStWrFBiYmK17dmxY4cWLFig9u3b66677tKwYcNkGIa++eYbPf/88yoqKtJDDz2k8ePHq23btnX+3JxOp6655hpvkJowYYJuuukmdezYUYcPH9asWbP0zTffKDs7u87H9pg1a5Y3SJ1++um69tpr1a1bN8XExCgrK0vbt2/XsmXLlJt76mHkYcOGacWKFfryyy/11FNPSSq7eE1KSjIdu0uXLqb30qpVK/3qV7/SGWecoR49eigmJkbHjx/Xli1b9NprrykjI0O/+93v1Lt3b40fP77aNhcWFuqaa65RZmamHnzwQZ155pmKi4vT5s2b9Y9//ENHjx7VG2+8oUmTJmnixImVXv/999/r17/+tZxOpxwOh6644gpdcMEF6tixo4qLi7Vr1y4tXbpUixcvrvTazMxMXXTRRTpy5IgiIyN17bXXasyYMerSpYvy8/P1zTff6LXXXtO+ffv061//WkuXLlXLlnWbdW3MmDHatWuXNxCVd+jQIVOA3L59u7KyspSQkGD6rNeuXes9Vm0kJydrxYoV2rBhg+677z5JZaMYDB8+3LRfhw4dqnz9jTfeqN27d+u2227TpEmT1KpVK+3Zs0fPPPOMdu/erUWLFumdd97RDTfcUKv21OSKK67QV199pcWLFysnJ8c0PWZubq63dp4pN2tr8eLFysrKklQ2ZWf5882dO1dpaWlatmyZzj///CpfP2TIEO/Xf/7znzVo0CDTz0FtDRkyRD/88IMyMjL0hz/8QX/5y1+8wQ5A1X6qMONlSmdmvASai6efflp/+9vfJJFRyChlyChkFImM4kFGAZqnnan5puW+7WNlb+RrGQD+wT0U8klF5BPyiUQ+8SCfAM1TpZlmYplpBmhOyChklIrIKGQUiYziQUZpXug0g2YjMsyux87tprs/OHWhc7LYpWeXH9BfLyzrXbfxiPlBtQFJsYoKZ6qpZslwy1aUFexWBJQRlSDZ/Pv9mp6erh07dtS4X69evSoFgMawefNm7zR9vXr10vz589W+fXvTPuPGjdP06dNNU881hmeeecZ7zD/84Q+6//77vduGDh2qKVOm6Oqrr9by5ct9Hueee+5Rbm6uBg8erA8++EBt2rQxbT/77LN1/vnn6+qrr9b69ev1/vvv67rrrjPt8+ijj6pbt26VAuOwYcM0ZcoU3XTTTZo8ebLS09P1+uuv6/HHH6+2PZs3b9bQoUP1ySefqEWLUzNrjRw5Ut27d9ddd92lkydP6sMPP9Sdd97p871V5a233tKmTZskSddff72eeeYZ77ahQ4fqwgsv1H333af33nuvzsf28Iw0MWLECM2fP79ST+ezzjpLd911l/cCU5JiY2PVv39/bdy40buuZ8+ePi8azz33XF122WWKiYkxrR8yZIjOP/983Xbbbbr44ou1bds2/f3vf/cZptLT01VSUqIvv/xS/fr1864fOnSoxo4dq7POOktFRUWaNWtWpTBVVFSku+66S06nUzExMXrvvfc0duxY0z6jRo3SddddV+XPwe9//3sdOXJEnTt31ieffKKuXbuato8dO1YXX3yxpkyZov379+uFF16odmrN6owZM0azZs3SiRMn9PPPP6t3797ebZ6A1a9fPxUWFurAgQNatWqVJk+e7N1n06ZN3qk6axumwsPD1b9/f2VmZnrXde3aVf3796/V6zdu3KgPPvjA9FkOHTpUZ599tsaOHau0tDTNmjWr0cLUpEmTFB8fr5ycHH366aemn/MFCxaoqKhIrVq1qjb0VMczckGXLl00evRo7/rx48crKSlJx48f19y5c6s97sUXX6y//vWvOnHihPbs2aPTTz9dEyZM0Pjx45WSkqIhQ4ZU+hmoyq233uqt9RtvvKHPPvtMF1xwgUaNGqWUlJR6j2wAhCqX29CGCp1mRtBpJvRYLKMEIp9ITSOjeG729OrVSx999FGlP96SUcgoZBQyigcZhYwCNBe7Tpg7zfRrFxuklsCvyCiNrinkE+6hkE8qIp+EZj45efKk91i1QT4pQz4BmqesAqdpuU0MnWZCksXyiURG8SCjkFHIKKGRUbiHQkaxAjrNoFk5vWu8LujfRl/uODXF2Vc7MnTRwLYa3a1VpQfVhndsUfEQaCZsRVlq899RwW5GQGXcslZGdJuad2yAWbNmadasWTXut379+nr1WK3JSy+9JLfbLZvNpv/+97/q2LGjnE5nlft27Nix0c5bUlKid999V5I0cOBAb+/m8sLDw/Xcc89p5MiRlaYT9Vi1apXWrVsnSXrxxRcrBSmPc845R1OmTNGCBQs0Z86cSmGqe/fuPts7YMAAXXvttfrPf/6jL7/80meYksp6aZcPUh6XXXaZnnjiCR0/flyrV6+uV5jyfL8kJibqL3/5S5X7PPnkk1q8eLHS09PrfHypbLpFSTrttNN8Tg1Yvod7fSQnJ/vc3rJlSz322GO6/vrrtWbNGmVmZvqcbvF3v/udKUh59OjRQxdccIE++eQTrVmzptL2efPmeUfC+P3vf18pSJVX8efg4MGD3ikdZ8yYUSlIeQwZMkS33HKLXnjhBb3//vv1ClMeK1euNIUpzzSdY8aM8YaplStXmsLU999/L0lyOBymQOBPt956a5WfZUJCgn7zm9/o+eef1/bt25Wbm1vnERmqEhkZqalTp+rtt9/WBx98YPo5/+CDDyRJU6dOVWRkZK2PmZmZ6Z2a9tJLLzX9wcVut+uyyy7TSy+9VOWoBx6xsbF65513dO211yotLU1Op1NLlizxHjcsLEyDBw/WpEmTdPXVV1f7czFlyhQ98sgj+sc//iHDMJSWlqa3335bb7/9tqSyEWTGjBmjSy65RNOmTWv0UWOA5mb3iQLll7hM60Z0IouEGqtllEDkE6npZZTqRjuSyChklMrIKGQUX8goZcgoQHBUnmmm5huraH7IKI2vqeUT7qFUjXxSNfIJ+cQX8kkZ8gkQeIZhKKOAmWaswGr5RCKjVERGIaNUREYho/hCRilDRgkspuBAs3P/hK5qEekwrZuxZL9yi5zadjzPtH54J0Z3BpoKt9utpUuXSiobZaD81HL+tmnTJu+0kldddVW1/+h36NBBEyZMqPY4ixYtklQ2esKAAQN8nvOMM86QVNYrurrA6JGdna19+/Zp586d2rFjh3bs2OG9SNq1a1e14U4qC14DBw6scpvNZtPgwYMlSfv37/fZhqocP35cu3btklR2UVhdr+W4uDhdfPHFdT6+h2cUikWLFikjI6OGvRtPfn6+Dh48aPrcy4e5bdu2Vftam82myy67rNrtQ4cOlSRlZWUpJyfHtM0znWNMTEyloF2Tr7/+Wi6XSzExMTrnnHN87usJMcePH9fhw4frdJ527dp5A5QnPHmsWrVKUtlIB57wUnEfz/KQIUMUFxdXp3PXV23qYRiGDhw40Gjn9EzJuXr1ah06dEhS2bSmq1evNm2vrY8//tj7817Vaz3TeBYVFXmnuq1KSkqKVq5cqQcffLBSIHc6ndqwYYNmzJihUaNG6YUXXqj2OI8++qgWLVqkKVOmKCoqyrQtJydHX375pW6//XadccYZptFAACtafzjXtNwlIUpt45jqFmjqyCjVI6OQUWqLjFI9MsopZBQgsLILS3Ust8S0jplmgKaPfFI98gn5pLbIJ9Ujn5xCPgECq6DUrWKn27SuNTPNAM0CGaV6ZBQySm2RUapHRjmFjBI4zDSDZqdNbLjuPbOL/vb1Pu+6w9nF+t2nP6vUZXjX2SQN7RiYX+BAc/HII4/o0UcfDcq5Dxw44L2o9ASNQCk/VemwYcN87puSkqKvv/66ym2ei4VffvlFiYmJtTp3aWmpsrKyKu2/fft2/fvf/9bSpUu9PfCr4na7lZ2dXe35apo6z9NrPz8/3+d+VSn/uQ0fPtznvikpKXrjjTfqfA6pLOCuWrVK+/bt06hRo3ThhRdqwoQJGj16tM+RvusjIyNDr7zyij7//HPt3btXhmH43Lc6bdq08Tk6QatWrbxf5+XlmXqKb9myRVLZBX5tpk8sz/M9WFBQoKSkpFq/7sSJE+rUqVOdzjV27Fj9/PPP3qkbJenIkSPav3+/bDabxowZo6KiIkll38+e73OXy+UNE7WdsrMxlB8loaLyo1d4phNtDKNHj1a3bt20f/9+ffDBB3rwwQc1b948GYahbt266fTTT6/T8ebOnSupLIT26dOn0vZBgwapf//+2rFjh+bOneszjCckJOjxxx/X448/rl27dmnt2rXavHmz1q5dq+3bt0sqC2V//vOfVVBQoMcee6zK4wwfPlxvvPGGCgsLtX79eq1fv16bNm3SqlWrvKOO7NmzR1OnTtVXX31V62lWgVCz/pC508yIzswyA9QWGYWMUhdkFDIKGcU3MgoZBZCkXScKTMuRYTZ1axMdpNYAzQv5hHxSF+QT8kld80lCQgL5hHxSp/cMhILM/MoPjtNpBqg9MgoZpS7IKGQU7qH4RkYhozDTDJqlaUMSNaSDuUPM2oPmB9V6t4tRXCT9woCmIjMz0/u1p8d5oGRlZXm/rikE+dpe32kpCwsLTcuzZ8/WOeecozlz5vgMUh6eC9aqREf7vuHtGW3B5XLVoqVmnlEbJKlt27Y+961tuKzKNddco/vvv19hYWHKzc3VnDlzdMcdd2jo0KE67bTT9L//+7/1GkGhok2bNmnMmDF67rnntGfPHp9BSmrY5263n7rEqvjZe34W6vNz0Fjfg7XhCUInTpzQzz//LEneYNW3b1+1bdtWnTp1UteuXWUYhndkgs2bN+vkyZOmYwSCr2Bavh5ut7va/erDMyqAZ6pOz//rOvrA7t27vWHZ12s929auXVvr0RT69u2r6667Tk8//bS+/fZbrV69WhdccIF3+7/+9S8dPHjQ5zGio6M1btw43XfffXrjjTe0detWzZ492zvCQUFBgf7nf/6nVu0BQo3LbWjj4ZOmdSnMeAk0C2SUU8goZmSU2iOjVI+MUj0yCuBfO1PND1X0ahujMHvVI7ICaDrIJ6eQT8zIJ7VHPqke+aR65BPAvzILzJ1mosLsiolwBKk1AOqCjHIKGcWMjFJ7ZJTqkVGqR0bxH3oUoFmy22z6/Xnddc07W+VyV/2PYUonRnduzoyoBGXcsjbYzQgoIyqh5p3QYNVN2VkbnovigQMH6pVXXqn165KTk71f//zzz3rkkUfkdDqVmJiou+++W+PGjVOXLl0UFxen8PCyUVXeffdd3X///ZJU40V/IDTkc6uNP/zhD7r++uv14Ycf6rvvvtP69etVUFCg/fv365VXXtHrr7+uv/3tb7rxxhvrdfySkhLdeuutyszMVHh4uG699Vb96le/Us+ePdWqVStFRkZKKpve9LTTTpPUND73ijzfg23atNEnn3xS69d16dKlzucqH4RWrlyp3r17e8NU+W1nnHGGDhw4oJUrV+riiy/2TtnpcDi8U4eGsiuuuEL/+Mc/9Msvv+j111/Xnj17vOvrwjP6gCT98Y9/1B//+Eef+xuGoXnz5umRRx6pc5t79uypN998U1OmTNHatWvldDr1xRdf6M4776z1MRwOhy688EJ169ZNEydOVElJib777jvvaHmAlfySXqCTxeY/nKUw00xIslpGIZ8EDhmlfsgoTQMZpekho5BRgIqdZvq1jw1SS+BvZBT4A/mkfsgnTUNTzyeTJ08mn5BPyCewnIqdZtrEMstMqLJaPpHIKIFCRqkfMkrT0NQzCvdQyChWyyh0mkGz1SsxRteMSNLb645VuX1YRx5Ua9ZsdhnRbYLdCpRjs9lkGEaNvXcLCgqqXF9+isPU1NRGbVtNyk+heOLECfXs2bPafdPS0qrdVn4KzPpOTTdnzhw5nU45HA4tWLCg2qkGy/f+D5byU036+lxqs702OnfurAceeEAPPPCASktLtWHDBi1YsEBvv/22ioqK9OijjyolJUVDhgyp87G/++477ygGf//736ud7jAQn3vr1q119OjRev0ceH6O8vLy1KdPHzkc/huFp3379urZs6f27NmjlStX6sYbb/QGpbFjx3r3Gzt2rN5//33vtu+//15S2RSTLVuG/kwLPXr00GmnnaZ169bpiSeekCSddtpp6t69e62P4Xa79dFHH9X53PUNU1LZqAxXX3211q4t+8Pl3r1763WcgQMHasSIEVq1apUMw9D+/fstFaYASVp/yDzjZadWkWrfIjJIrYFfkVGaHDIKGcUXMkrtkVFCCxmFjALsOmG+9qHTTAgjozQp5BPyiS/kk9qzSj4ZPHgw+aSWyCdA85aRb+400zqGTjMhi3zS5JBRyCi+kFFqzyoZhXsoZBQroNMMmrXbzuior3dl6FhuSaVtwzuF/i9wIJDi4uJ08uRJnxebhmFo3759VW7r2rWr4uPjlZOT4+3FHCjlg8/GjRt1xhlnVLvvhg0bqt02ePBgrVu3TgcOHFBqamq9pl3ctWuXpLILkOqClKedwTZgwADv1xs2bNCVV15Z7b6+Prf6CA8P16hRozRq1CiNGTNGN954owzD0GeffWYKU7UdGcHzuUvSJZdcUu1+gfjchwwZoqNHj2rTpk0qKCjwOd1kRYMHD9ZHH32k4uJibdy4USNGjPBjS8uC0p49e/TDDz/o2LFj2rdvn2w2m2kEAk+w2r59uzIyMrR69WpJgZ2yM9iuuOIKrVu3zjvVq6+flap8//33OnLkiCTp1ltv1ahRo3zuv379ev3nP//R/v37tWbNGp1++un1andSUpL364aMMtJYxwGaq58OnTQtp5BDgIAho5BRyCiNg4wSesgoZBRYV16xUwezikzr+rWj0wwQCOQT8gn5pHFYJZ+Uf2gt1JFPyCewtoozzSTE8KgiEChkFDIKGaVxWCWjcA+l9sgozZc92A0AGiI6wqHHzulWaX2XhCim9AQamWfav02bNlW7z5IlS5STk1PlNrvdrvPOO09S2RSAmzdvbvxGVmPo0KHeUQjmzZtX7XSMx44d0/Lly6s9zq9+9StJZaHx1VdfrVdbnE6npOpHapCk48ePa9GiRfU6fmNKSkpSnz59JEmffvqpCgsLq9wvPz9fn376qd/aceaZZ3q/zszMNG3zTLcplU3NWR3P5y6Vtbcqbrdb77zzTn2bWWvnn3++pLLvgbfffrtOr500aZL3YvU///lPo7etIk8gOnHihN566y1JUt++fdW2bVvvPp07d1aXLl1kGIb+85//eH8H1PeGT1RUlPfr4uLi+jY9oKZNm6a4uDhFRkYqLi5OU6dOrdPrPVN2OhwOPfjgg7rkkkt8/vfAAw8oLKzsD8rz5s0zHasu082W/+NBt27d6nUcwzC8v89tNps6d+5c6/MDocBtGNpw2NxpZkRnZrwEAoWMQkYhozQOMopvZBQyCtCc7K4wy4zDblPPttFBag1gLeQT8gn5pHGEcj557bXXyCfkk1qfHwgVmRVmmuFZLiBwyChkFDJK4wjljMI9FDKK1TIKnWbQ7I3rmaCJvc3TQ53eldGdgcbmuahav3691qxZU2l7amqqfv/73/s8xvTp02W322UYhm655RZvj9uqHD16tGENLicyMlK/+c1vJElbt27Viy++WGkfp9OpBx54wOcF+dlnn62UlBRJ0ksvvaT58+f7PO/27dsrhaIePXpIKpsizzNdXnkFBQW68847qw0ugXbjjTdKKruY/tOf/lTlPn/84x8bNG3nBx98YAo7FX3zzTferz2h3qP8KBDVjX4hnfrcJen999+vcp+//vWvAQn5V1xxhZKTkyVJTz31lHe6y6pU/Dno1auXLr74YknSJ598oldeecXnuQ4cOKCPP/643m0tH4hee+01SVWPLOAZ1cMT8Ox2u0aPHl2vc5avqWeq1aYuISFB+/bt0+HDh7Vv3746TVuZn5+vhQsXSpJGjx6txMTEGl/Tpk0bbx0WLFhgCp1PP/20nnjiCR0/ftznMbZu3aqXX35ZUlm9PCHfY8qUKfrwww99/k6UyqbB3bNnjyRp1KhRatOGKbdhLXvSC5VTZP43bERnsggQKP7IKL5yCBmFjOJBRjmFjNI0kVHIKLCunSfMDxH0bButiDBuBQKBwD0U8gn5pHGEcj7x7GO32+s9ijP5hHwCNDcVZ5ppHUOnGSBQyChkFDJK4wjljMI9FDKK1TIKcx4iJPzu3O46nFOs3ScK1DE+Ujee3iHYTQKapPT0dO3YsaPG/aKiotS9e3fTuuuvv16zZs2S0+nUtddeq4ceekijR49WSUmJ1q5dq1deeUVOp1M9evTQ3r17qzzu4MGD9eijj2rGjBn65ZdfNHbsWN18880aN26cEhISlJubqy1btmjhwoVyOBw1hpW6ePjhh7VgwQIdPXpUf/7zn7V161ZdeeWVatu2rfbu3atXXnlFGzZs0LBhw3xO3fjvf/9bkyZNUlZWlm677TZ9+OGHmjZtmnr06CGHw6G0tDRt2bJFixcv1o8//qjp06dr0qRJ3tdfeeWVev311+V2u3X11Vfr7rvv1umnn66oqCht2rRJ//73v7V3716NGjWqyrAVaDfddJPmzJmjLVu2aNasWTpw4IBuvPFGdejQQUePHtUbb7yh5cuX1/i5+TJ9+nT96U9/0kUXXaTTTjtN3bp1U2RkpNLS0vTtt9/qzTfflCTFxsbq8ssvN712yJAhioqKUlFRkWbMmKHw8HB17tzZ20s/OTlZ0dHROvvss5WYmKi0tDQ99dRTOnTokCZPnqw2bdpo7969mj17tlasWBGQzz0qKkovv/yyrrjiChUUFOjyyy/XFVdcocmTJys5OVklJSX6+eeftWTJEi1atKjSHx2efvppbdq0Sfv379f//u//6ssvv9SVV16pfv36KSIiQllZWdq2bZuWLVum7777TpMnT9all15ar7YmJSWpe/fu2rdvn3JzcyVVPbLA2LFjNXfuXO8+gwYNUnx8fL3O2alTJ+/318svv6wOHTqoV69estvLHvBo166d4uLi6nXspmjhwoXeUTEuuuiiWr/uoosu0ooVK5STk6OvvvrKO+pBfn6+Xn75Zb3yyisaP368xo8fr0GDBnlDzqFDh/TNN99o7ty53hB26623qmfPnqbj//zzz7rrrrv0+9//XhdccIFOP/10devWTS1btlR+fr527NihDz/80PvHtYiICD3xxBMN/jyA5iYjv0TtW0Qo9WTZHx46tIxUUsvIGl4FoLymkFEef/xxPfnkk/rll1905plnklHIKGQUMooJGaV2yChA05BV4JTDbpPLXTayYL92sUFuEdC8NIV8wj0U8klF5JPQzSe+HjSsDvmkdsgnQNORWWD+XUenGaBuyChklLoiozQ+K2WU+iCj1A4ZpWmg0wxCQuvYcL197SCl5harfYsIhTkYOQ2oyqxZszRr1qwa9xs4cGCl6Sv79eunP/3pT/rjH/+o7Oxs/fGPfzRtT0hI0FtvvaUZM2ZUG6Yk6aGHHlJYWJhmzJihnJwcPfvss3r22Wcr7VffEZaq07JlS82dO1eXXXaZTpw4oY8//rhSz+xf//rXGjNmjH77299We5zu3bvryy+/1E033aQdO3Zo0aJFPqfYbNGihWl5+PDheuyxx/T3v/9dOTk5+tvf/lbpNdOnT1e/fv2aRJgKCwvTe++9p0suuUS//PKLli1bpmXLlpn2mTBhgqZPn64rr7yy3udJS0vz+f3ZsmVLvfrqq+rYsaNpfVxcnG677Ta98MIL2rx5s6644grT9vnz52vs2LGKjY3Viy++qBtuuEFFRUV66623vNNQeowdO1YzZszQ+PHj6/0+amvcuHF69913dccddyg7O1tz5szRnDlzavXahIQEff7557r11lu1evVqrVq1SqtWrap2/4rfg3U1duxY7+gONputyp/NigGrvlN2etx///169NFHdeDAAV133XWmbc8//7x3RJFQ4Jl202az1SlMXXjhhfrd734nt9utefPmecNU+/bt5XA45HK5tHz5cp9TEdvtdt1+++1VhqDk5GRlZmYqKytL7733nt57771qj5OUlKTnnntOI0aMqHX7gVAxulsrfX77MB3JKdZPh07KXYepcwGUaQoZ5eGHH5bNZiOjkFFMyChklPLIKDUjowBNw93jO+u2MzpqT3qhdp3IV6dWUcFuEtCsNIV8wj0U8klVyCfkk/LIJzUjnwBNxwuX9VVGQakyC0qVmV+qXokxwW4S0KyQUcgodUVG8Q8yim9klJqRUZoGOs0gZITZberIDSDAr+6880716dNH//73v7VhwwYVFhYqKSlJ55xzju6991516tSpVsd56KGHNG3aNP33v//V8uXLdfjwYRUWFqpVq1bq06ePzjrrLF111VWN3v5+/frp+++/1wsvvKCFCxfqyJEjiouLU//+/XXdddfp0ksvrdUFbc+ePfXNN99owYIF+uyzz7Rx40ZlZGTI5XIpISFBvXr10umnn67Jkydr6NChlV7/8MMPa+jQoXr11Ve1ceNGFRQUqG3btho+fLhuvPFGTZgwodYX1oGQlJSkZcuW6ZVXXtH8+fO1f/9+RUREqHfv3rryyit1ww03+LyYr8l3332nr7/+WmvWrNH+/fuVlpamnJwcxcXFqXfv3jr77LN14403ql27dlW+/o9//KO6d++uefPmadeuXcrNzZXL5aq038SJE/X111/r+eef13fffaeMjAzFx8erT58+uvzyy3XNNdfo8OHD9X4fdTVx4kT9+OOPmjVrlhYvXqw9e/YoJydHMTEx6t69u8444wxddtllVb62ffv2+uyzz7R48WJ98skn+vHHH3XixAmVlpYqPj5e3bt312mnnaZJkyY1+A8TY8aM0ezZsyVJffv2Vdu2bSvt06VLF3Xu3FmHDh2SVBYWG+Kmm25SYmKi3nrrLW3btk1ZWVn1GnGtqTt27Ji+++47SdLIkSOVlJRU69e2a9dOo0aN0urVq7Vs2TKlp6erbdu23j9sLF26VKtWrdK2bdt08OBB5ebmyuFwqGXLlt7fUVdddZV69epV5fGXL1+uzZs369tvv9W6deu0e/dupaamqqCgQNHR0UpMTNTAgQN1/vnn65JLLlF0dHSjfCZAc2Sz2dSpVRQPowFB0tgZ5bXXXtOKFSvIKGQUMgoZxYSMUjMyCtB0RITZ1T8pVv2TmGUGCDTuoZQhn5BPGgP5pHrkk5qRT4CmIzrCoU4RDu6hAEFCRilDRiGjNAYySvXIKDUjozQNNsNgKFzUX3p6ul+O63A4lJCQ4F3Oysqq8h9GNE+pqalyu92y2+1q3769pLJezh6h+A8mzKi3dVBra6He1tIY9a7qmqC2qgr2gL/yiURGCXVkFGuj1tZCva2FeltLQ+tNPoE/kFFQH+QTUG9rod7WQr2tg3soaKp4zgv1QUYB9bYW6m0d1NpayCjMNAMAAAAACBEOh8Nvx7bb7T6X0bzZbLYalxlzJDRRa2uh3tZCva2lMetts9n8el0JAAAAAAAAAACAwKLTDAAAAAAgJJQfxczf4uPjA3Yu+F96eroMw5DdbjeNsOLBg7PWQa2thXpbC/W2lvrU29MpOjw8PKDXlQAAAAAAAAAAAPAvhsYFAAAAAAAAAAAAAAAAAAAAAABAyKHTDAAAAAAAAAAAAAAAAAAAAAAAAEJOWLAbAAAAAABAY8jKyvLbse12u+Lj473LOTk5crvdfjsfAqu0tNRbT6fTKZvNJofD4d3ucrlkGEawmgc/otbWQr2thXpbS2PU2+12y+12q7S0tM7XlQkJCXXaHwAAAAAAAAAAAIFDpxkAAAAAQEhwuVwBO5fb7Q7o+eBfFR+qrWkZoYNaWwv1thbqbS2NWW/DMLjOAwAAAAAAAAAACCF0mgEAAAAAAAAAAAAAAAAAIISVn6W1Mdntdp/LaN5sNluNywxYE7qot7VQb+ug1tbS2PW22Wx+u670JzrNAAAAAAAAAAAAAAAAAAAQwhISEgJynvj4+ICcB4GRnp4uwzBkt9sVFlb5cdPm+NAs6o96Wwv1tg5qbS31rbenY3R4eHjArisbE926AQAAAAAAAAAAAAAAAAAAAAAAEHKYaQYAAAAAAAAAAABoZP4codEzql91y2i+bDZbjcuGYQSySQgg6m0t1NtaqLd1NHatbTYbI38DAAAAQAPRaQYAAAAAAAAAAABoZAkJCQE7V3x8fMDOBf9KT0+XYRiy2WwKC6t8K5eHZq2FelsL9bYW6m0d9a21zWaT3W5XeHh4QK8rEdqysrL8cly73W7KJDk5OXK73X45FwKvtLTUW0+n01mpM5/L5aIjaAij3tZCva2DWltLY9Xb7XbL7XartLS0zteVTSHT0GkGQMDZ7Xa53W4ZhuG98QMAAKzFcx0gMRougOAjowAAYG3kEwBNiecGtiejkE8AALAeMgr8xeVyBeQ8brc7YOeC/3kySfnfTeXxkHVoq1hf6h3aqLd1UGtraYx6l78OsNlszfJaj2QFIOA8I6MZhqGSkpIgtwYAAARDSUmJN0xVNWoqAASS56E0wzDkdDqD3BoAABBoTqfTm08Y8RtAsEVERHgfSisuLg5yawAAQDCUlpZ6O89GREQEuzkALI7nvAAAQCg859U8Ww2gWYuKilJRUZEkKT8/nz/yAABgMYZhKD8/37scFRUVxNYAgBQZGel9GK2wsFDh4eFBbhEAAAikwsJC79eRkZFBbAlCTVZWlt+ObbfbFR8f713OycmR2+322/kQOOVHaszNzVVYWJjpRrTL5WL0zxBms9lMHTipd2ij3tZCva2jMWqdl5cnwzC81wR1va5MSEio0/4A4AvPeQEAYG2h8pwXnWYABFxkZKRsNpsMw1BxcbGysrLUsmVL73oAABCaPKMP5efnex9Ot9lsPJQGIOjK/x7Kz8+X3W5Xy5YtZbczQS8AAKHM7XaroKDAdLOHfILG5HnIMRDcbndAzwf/CQ8PN91DyczMNN1D4QHr0FaxvtQ7tFFva6He1tGQWleVUcLDw7nOAxBUPOcFAIA1hdpzXnSaARBwdrtdrVq18o6GUlxcrPT0dO82/kAY+so/fMjoh6GNWlsL9baW+tTbMIxK/863atWKh9IBBF1YWJji4uKUl5cnSTp58qTy8vJkt9tls9n4dy3EcQ1jLdTbWqi3tdSn3hX3i4uLM83mAADBwD0UcA1jLdTbWqi3ddS31mQUAE0RGQVcw1gL9bYOam0tPOdFpxkAQRIVFaWEhARlZ2fLMAxviDIMg3+ALYZ6Wwe1thbqbS31qbfNZlOrVq2a7ZSdAEJPXFycXC6XCgsLJck7ahoZxVqotbVQb2uh3tZSn3pHR0crLi7OD60BgLrjHgo8qLe1UG9rod7WUd9ak1EANCVkFHhQb2uh3tZBra3Fqs950WkGQNBERUWpXbt2Ki0t9U7j5XK5vMsITTabTeHh4d5l6h26qLW1UG9rqW+97Xa7wsLCFBUVpcjIyGY78gCA0OT5I09sbKyKiopkGIZcLpck/l0LZVzDWAv1thbqbS31qbfNZpPNZlNERIRiYmJMrweApoB7KNbENYy1UG9rod7WUd9ak1EANHVkFGviGsZaqLd1UGtr4TmvMnSaARBUdrtdMTExSkhI8K7LysryPpyG0ONwOKi3RVBra6He1kK9AYSy8PBw74hpHvyeC138m2Yt1NtaqLe1UG8AoYp7KNbDv2nWQr2thXpbB7UGEMrIKNbDv2vWQr2tg1pbC/Uu07y7/AAAAAAAAAAAAAAAAAAAAAAAAABVoNMMAAAAAAAAAAAAAAAAAAAAAAAAQg6dZgAAAAAAAAAAAAAAAAAAAAAAABBy6DQDAAAAAAAAAAAAAAAAAAAAAACAkEOnGQAAAAAAAAAAAAAAAAAAAAAAAIQcOs0AAAAAAAAAAAAAAAAAAAAAAAAg5NBpBgAAAAAAAAAAAAAAAAAAAAAAACGHTjMAAAAAAAAAAAAAAAAAAAAAAAAIOXSaAQAAAAAAAAAAAAAAAAAAAAAAQMih0wwAAAAAAAAAAAAAAAAAAAAAAABCTliwG4DmrW3btn45bkbG/2/vzoOsrO78AX+aHUFAUEAxBoUgLpgoimtEwSS4JGLiWFmNOomJk8QsE2dIfpPSKc0Qo04lk8VMTKJVo45xYnTENS7BBTUuOImIKzGiIqAitkgDNvTvj66+6aZvLxho7n3v81RRdbvf9z339P3ec879WJ77vpaTTjopSXLxxRdnxIgRW+R5qAzqXVvUu3aodW1R79qi3lSqLZVPEu/7WqPetUOta4t61xb1ri3qTaWSUdgc1Lq2qHdtUe/aot61Q62pZP4/LzYH9a4t6l1b1Lt2qHVtUe9m7jQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh2DQDAAAAAAAAAAAAAABA4dg0AwAAAAAAAAAAAAAAQOHYNAMAAAAAAAAAAAAAAEDh1DU1NTVt7U4AAAAAAAAAAAAAAADA5uROMwAAAAAAAAAAAAAAABSOTTMAAAAAAAAAAAAAAAAUjk0zAAAAAAAAAAAAAAAAFI5NMwAAAAAAAAAAAAAAABSOTTMAAAAAAAAAAAAAAAAUjk0zAAAAAAAAAAAAAAAAFI5NMwAAAAAAAAAAAAAAABSOTTMAAAAAAAAAAAAAAAAUjk0zAAAAAAAAAAAAAAAAFI5NMwAAAAAAAAAAAAAAABROn63dAdjYK6+8kptvvjnz58/Pa6+9lj59+mT06NE5+OCD86EPfSj9+/ff2l2sSm+88UaeffbZPPvss1m0aFEWLVqUN998M0kyderUfOlLX9qk9h599NHcfvvtWbRoUerr6zNkyJCMGzcuRx11VPbdd99utbF+/frccccduffee/PSSy9lzZo1GT58eCZNmpSjjz4673rXu7rVTn19fW6++eY89NBDeeWVV5IkO+ywQw444IAcc8wx2XbbbbvVzuLFi3PLLbfksccey4oVKzJgwICMGTMmhx12WKZPn57evXt3q52tbdGiRXn00Ufz5JNP5sUXX0x9fX169+6d4cOHZ/fdd8+0adMyceLEbren1pVr9erVefTRR0tjesWKFamvr8+6desyaNCg7Lzzztl3330zbdq0br02Tz31VG699dY8+eSTeeONN7LNNttk7NixmTp1ag477LBu9+vee+/N3Llz8/zzz2f16tUZOnRoJk6cmBkzZmTChAndamPt2rW55ZZb8sADD2Tp0qVpbGzMiBEjst9+++Xoo4/ODjvs0K12amVNufzyy3P99deXfj777LOz1157dXqNsV35TjrppG6dt+eee+acc87p9Bz1hr9NrawnPUk+6VqR5jkZpWtFqbeM0rVaWVNklGZFGdstZJTOFa3eVLZaWU96kozStSLNczJK14pSbxmla7WypsgozYoythP5pCtFqjWVr1bWkp4mo3StKHOdfNK1otRaPularawp8kmzooztFjJK5yqh3nVNTU1NW/xZoJsefvjh/OhHP0pDQ0PZ4zvuuGO+9a1vZfTo0T3cs+rX2YS8KWFqw4YN+fnPf54777yzw3OmTZuW008/Pb16dXwzq/r6+syePTuLFi0qe7xv37457bTTMn369E7788wzz+SCCy7IypUryx7fbrvtctZZZ2X8+PGdtnP77bfnV7/6VRobG8seHz9+fGbNmpUhQ4Z02s7WdvbZZ+eJJ57o8rzDDz88X/ziF9OnT8d7J9W6smudJH/6059y3nnndXnetttum6985St53/ve1+E5V199da655pp09LFgv/32yze+8Y3069evwzbWrVuXiy66KI8++mjZ43V1dTnxxBPzd3/3d532d+nSpZk9e3ZefvnlsscHDhyYM888M5MnT+60nVpZU/7yl7/kW9/6VtavX1/6XWdhytiu/LHdYnOEKfWunnpTuWplPelp8kntzHMySm3VW0aRURIZpUWRxnYLGaVjRaw3latW1pOeJqPUzjwno9RWvWUUGSWRUVoUaWwn8klnilZrKlutrCVbg4xSG3OdfFI7tU7kE/mkmXzSrEhju4WM0rFKqbdNM1SM5557Lt/5zneybt26DBgwIDNnzszee++ddevWZd68ebnjjjuSNC9+3/ve9zJw4MCt3OPq0npC3n777TNmzJj88Y9/TLJpYerKK6/MddddlyTZdddd85GPfCSjRo3KsmXLcv311+e5555LksycOTOf/OQny7axYcOGnHPOOXnyySeTJFOmTMlRRx2VwYMH55lnnslvf/vbvPHGG6mrq8usWbM63Bn56quvZtasWaUd9scee2zpw9UjjzySG2+8MevXr8/QoUPzve99LyNGjCjbzvz583P++eenqakpQ4cOzUc/+tG85z3vyapVq3L77bfnwQcfTJJMnDgx55xzTqeLzdb2la98JcuWLct2222Xgw8+OBMnTsz222+fDRs25Omnn84NN9yQFStWJEkOPfTQfPWrX+2wLbWu7FonzWHq4osvzl577ZXddtst22+/fYYNG5ampqa89tpreeCBB/Lggw9mw4YN6dOnT/7t3/4tY8eObdfObbfdlksuuSRJMmrUqJxwwgnZZZdd8vrrr+emm27K448/nqTr98wPfvCD3HfffUmSvfbaK8ccc0y22267LF68ONdee22WLVuWJDn99NNz1FFHlW2joaEhs2bNKgWp6dOn59BDD02/fv2yYMGCXHfddVmzZk369++fc889t+zfk9TOmrJhw4b8v//3/7Jo0aIMHTo0b7zxRpLOw5SxXflju0XL2v3BD34wH/zgBzs8b8CAARk5cmTZY+pdPfWmMtXKerI1yCe1M8/JKLVVbxlFRpFRmhVtbLeQUWqr3lSmWllPtgYZpXbmORmltuoto8goMkqzoo3tRD6ppVpTuWplLdlaZJTamOvkk9qpdSKfyCfySYuije0WMkrl17vjrafQwy677LKsW7cuvXv3zr/8y7+0ubXb3nvvnR133DGXX355Xn755cyZM6fbu/JoduKJJ2bcuHEZN25chg0bluXLl+fLX/7yJrWxZMmSzJkzJ0kybty4/Ou//mtpN/L48eOz//7755xzzsmiRYsyZ86cTJs2rezO3rlz55Ym5A9+8IP53Oc+Vzo2fvz47Lvvvvnnf/7nNDQ05NJLL80+++xT9tZbV111Verr65MkZ555Zg4++ODSsT322CO77bZbfvCDH+SNN97IVVddVTYwNjY25tJLL01TU1MGDhyYc889t02f3/e+9+UXv/hFfve73+XJJ5/M3XffnSOOOGKTXreeNGbMmHziE5/IQQcd1G7xmDBhQg4//PB85zvfycsvv5x58+blAx/4QPbcc8927ah15dc6aZ4bL7744g6PH3LIIXnwwQdz4YUXprGxMb/5zW/yzW9+s805q1atyhVXXJGk+T+0fPe7322zY3fy5Mm54IIL8sgjj2TevHk56qijyn5IX7BgQSlITZ48OWeddVbpPdjynpk1a1ZeffXVXHHFFTnooIMyePDgdu1cf/31pSD16U9/Oh/5yEdKxyZMmJC99tor55xzTtauXZvLLrusw13XtbKm3HzzzVm0aFHGjBmTAw44oPShuSPGdnWM7Y0NGTIku+yyyyZfp97VWW8qS62sJ1uDfFI785yMUlv1llFkFBmlmGN7YzLKX9VCvakstbKebA0ySu3MczJKbdVbRpFRZJRiju3W5JO/KnqtqTy1spZsLTJKbcx18knt1DqRT+QT+SQp5tjemIzyV5VW7+rYfkXhPfvss6VbDR555JFtFr0Wxx13XMaMGZOkefHo6DZNlHfSSSdl8uTJGTZs2Dtu46abbirdFu7UU09td/u+/v3759RTT02SrF+/PjfccEPZdlom9sGDB+czn/lMu+OjR4/OCSeckKT59n0tOwlbW7lyZe65554kyXvf+942E3KLQw45JO9973uTJHfffXfZW4Q9+OCDpV3RJ5xwQtlF5DOf+UwGDRqUpPmDXiWbNWtWDjnkkA53Ww4ZMiQnn3xy6ecHHnig7HlqXfm1TtKtXbVTpkzJTjvtlCRlb+l6xx13ZPXq1UmST33qU+1ucderV6987nOfKz1XR69LS6179+7d5vwWQ4YMyac+9akkyVtvvVX2FoKNjY25+eabkzT/h4Hjjjuu3Tm77757jjzyyCTJwoUL8+yzz7Y7p1bWlFdffTW//vWvkySf//znO70NbwtjuzrG9uai3rVVbza/WllPthb5pHbmORmltuoto8goMkoxx/bmot61VW82v1pZT7YWGaV25jkZpbbqLaPIKDJKMcf25qDWtVNrtoxaWUu2JhmlNuY6+aR2ap3IJ/KJfJIUc2xvLuq95ett0wwVofWga1kkN9arV69MnTo1SfNC3HIbOXpGU1NTHnrooSTNH3LKfThJmncIt3xwe/jhh9PU1NTm+JIlS/LSSy8lSQ4++OD079+/bDutdwuWm5Rbt93Re6Z1O01NTXn44YfbHW/5mzZ+ztb69+9fmvRffPHFLFmypMPnqwatd4+3LEitqXVxat2i5ZaUb7/9drtjLa/LwIEDc+CBB5a9fsSIEZk0aVKS5m8aaGhoaHO8oaEhjz32WJJk0qRJHd5q78ADDyz1pVytH3/88VKwmzp1aodhsav3TK2sKb/4xS+yZs2aTJ06tew3iWzM2C7e2O6MetdWvdkyamU9qVbmuWLNczJKbdU7kVHKKcKaIqM0q+Wx3Rn1rq16s2XUynpSrcxzxZrnZJTaqncio5RThDVFRmlWy2O7I2pdO7Vmy6mVtaSameuKM9fJJ7VT6xbySXtFWFPkk2a1PLY7o949U2+bZqgITz31VJLmN/9uu+3W4XmtF4uWa+gZy5cvz+uvv56k+dZanWmp04oVK/LKK6+0OdZy26/W55UzbNiw7LjjjknK17q77bQ+1vqajX+30047dfrtDEV677XeaV3uw6paF6fWSfMHob/85S9JUtpx36KxsbG0g3/ChAmd7mBveV3efvvtLFq0qM2xRYsWld5XndWoT58+pQ90ra9p0d1ajxs3rvSBrlyNamFNue+++zJ//vwOd4SXY2xXb73fCfWurXqzZdTCelLNzHPFet/JKLVVbxmlmGuKjNK+nVob211R79qqN1tGLawn1cw8V6z3nYxSW/WWUYq5psgo7duptbHdGbWunVqz5dTCWlLtzHXFee/JJ7VT60Q+KeqaIp+0b6fWxnZX1Ltn6m3TDBXhxRdfTNJ826fevXt3eF7LDrnW19AzWr/eG38g21hnddqUdlqOv/baa1mzZk3ZdrbZZptOJ9PtttuutOO5ZQdlizVr1uS1115r1+fO+lKunWqzcOHC0uNyNVDr6q/12rVr8/LLL+eGG27I2WefXbpt3zHHHNPmvCVLlmTDhg1Jul+jpP3r0rrWXb2+LcfXr1+fpUuXdthOZ/3p3bt36VZ95WpU9DXlrbfeymWXXZak/K1WO2JsV+/YfuCBB/L1r389n/70p3PyySfnzDPPzI9//OMsWLCgw2vUu3rrTeUo+npS7cxzxZrnZJTi11tGKfaaIqP8Va2MbRmlWa3Um8pR9PWk2pnnijXPySjFr7eMUuw1RUb5q1oY2/JJs1qoNZWl6GtJEZjrijPXySfFr7V8Uuw1RT75q1oZ2zJKs0qsd8dbDaGHrFu3Lm+++WaSdHirtxaDBw9O//79s3bt2tJgome0fr27qtP2229f9rqkeXdji+HDh3faTsvzNDU1ZcWKFW0mzpZ2u+pLS39eeOGFdn3ZlL+p9fFXX321y+esVBs2bMh1111X+vmQQw5pd45aV2et586dm5/+9KcdHp85c2YOO+ywNr97JzVK2tf6b3l9d95553b96d+/fwYNGtRlO88//3zq6+vz9ttvp2/fvklqY025/PLLs3Llyuy+++6ZNm1at68ztqtzbCftA87SpUuzdOnS3H333TnggAPypS99Kdtss02bc9S7eutNZaiF9aTameeKM8/JKMWtt4wio3TF2K7OsZ3IKOX6VuR6UxlqYT2pdua54sxzMkpx6y2jyChdMbarc2zLJ+37VtRaUzlqYS0pAnNdMeY6+aS4tZZP5JOuGNvVObYTGaVc3yql3jbNsNW13qE2YMCALs8fMGBA1q5d225nG1vWptSp5XZ6G1+XJA0NDZulnZafu/OeaWnnb+lL6+PV/N678cYbS7dpnDJlStlbGqp1MWrdYuzYsTn99NMzfvz4dsc2V4021+vb0s6m1LqlnZYwVfQ15Yknnsidd96Z3r175/Of/3zq6uq6fa2xXX1ju3///pk8eXImTZqUMWPGZMCAAamvr8/ChQtz22235c0338xDDz2U73//+/mXf/mXNrfeVe/qqzeVpejrSRGY54ozz8kotVXvREbpSrWtKTJKbY1tGaW26k1lKfp6UgTmueLMczJKbdU7kVG6Um1rioxSO2NbPqmdWlN5ir6WFIW5rhhznXxSO7VuIZ90rtrWFPmktsa2jFL59bZphq1u3bp1pcetJ4GOtJzT+jq2vE2pU8uHmo2vS5K33357s7TT8nN33jOtdya/0760Pt76umqycOHCXHnllUmSoUOH5vOf/3zZ89S6Omt9wAEH5MILL0zS/PcvW7Ys999/fx588MH88Ic/zCmnnJLJkye3uWZz1eidvr4dtbMptd64nSKvKY2Njfn5z3+epqamHHvssdlll1026Xpju/rG9s9+9rOy38axzz77ZMaMGZk9e3aee+65LFy4ML/73e/a3JpXvauv3lSWIq8nRWGeK8Y8J6N0ry/VWm8Zpf3joq0pMkrtjW0ZpbbqTWUp8npSFOa5YsxzMkr3+lKt9ZZR2j8u2poio9TW2JZPaqfWVJ4iryVFYq6r/rlOPuleX6q11vJJ+8dFW1Pkk9ob2zJK5de71xZrGbqpX79+pceNjY1dnt9yTuvr2PI2pU6tJ62N69R6ov1b2mn5uTvvmZZ2/pa+tD7e+rpq8cILL+SCCy7I+vXr07dv33z961/P0KFDy56r1tVZ60GDBmWXXXbJLrvskvHjx+fQQw/NN7/5zXz5y1/O8uXL8/3vfz9z585tc83mqtE7fX07amdTar1xO0VeU37729/mpZdeyvbbb58TTzxxk683tqtvbHd2+9phw4blG9/4Rnr37p0kueWWW9ocV+/qqzeVpcjrSVGY56p/npNRil9vGaX946KtKTJK7Y1tGaW26k1lKfJ6UhTmueqf52SU4tdbRmn/uGhrioxSW2NbPqmdWlN5iryWFIm5rrrnOvmk+LWWT9o/LtqaIp/U3tiWUSq/3jbNsNVt6m2VNuW2T2w+m1KntWvXlr0uSQYOHLhZ2mn5uTvvmZZ2/pa+bOqtACvJ8uXLc9555+Wtt95Kr1698rWvfS177rlnh+erdfXWupzDDz88Bx10UJqamvLLX/4yq1atKh3bXDXaXK9vSzubUuuN2ynqmvLSSy/luuuuS5Kcdtpp76i/xnaxxnaSjBo1Kvvss0+SZOnSpVmxYkXpmHoXr970rKKuJ0VinqvueU5Gqa16b0xG6Vy1rCkyirFdjozSsSLWm55V1PWkSMxz1T3PySi1Ve+NySidq5Y1RUYxtjcmn3SsaLWm5xV1LSkac131znXySe3Uuhz5pHPVsqbIJ8Z2OTJKx3qq3jbNsNX169cv2267bZLktdde6/TcVatWlQbYiBEjtnjf+KvWr3dXdXr11VfLXpckw4cPLz1uPemX0/I8dXV1ba5r3W5XfWndn8760lU7rY9vv/32XT5npVixYkXOPffcvP7666mrq8sZZ5yRAw44oNNr1Lo6a92ZlpqvXbs2//d//1f6/TupUdL+9d2U90xnr29Lf9auXZu33nqrW+0MGTKkze7ioq4pN954YxobGzNq1KisXbs28+bNa/fvhRdeKJ2/YMGC0u9bPlQa28Ub20my8847lx63rod6F7Pe9JyiridFYp6r3nlORmnflyLXuyMySnnVtKbIKMZ2R2SUzvuSFKve9JyiridFYp6r3nlORmnflyLXuyMySnnVtKbIKMZ2OfJJ531JilNrelZR15KiMddV51wnn7TvS1Fr3Rn5pLxqWlPkE2O7IzJK531Jtmy9+2yxlmET7LzzznniiSeydOnSrF+/vnQLqo0tWbKkzTX0nNav90svvdTpuZ3VaeN2xo4d22E7Lc8zYsSIdrsHd9555/z5z3/O6tWrs3LlygwbNqxsG6+//noaGhqSJGPGjGlzbODAgRkxYkRee+21Nn3urC/l2qlU9fX1Oe+887Js2bIkyamnnpqpU6d2eZ1aV1+tuzJkyJDS41deeaX0eKeddkqvXr2yYcOGLmvd2evSutZdvb4tx3v37p3Ro0e3a+cPf/hD6fkmTJhQto3169dn6dKlZfvS0k7R1pSW2xguW7YsP/zhD7s8/5prrik9/vGPf5wBAwYY2wUc20lzcClHvYtZb3pWEdeTIjHPVec8J6P8VS3UuzMySvWvKTKKsd0RGaXzvpRrB7qriOtJkZjnqnOek1H+qhbq3RkZpfrXFBnF2C5HPum8L+Xage4q4lpSNOa66pvr5JO/KnqtuyKfVP+aIp8Y2x2RUTrvS7l2Nid3mqEi7L777kmad53++c9/7vC8hQsXtruGnjFy5Mhst912SZInnnii03Nbjg8fPjw77LBDm2MTJ04sPW5dz42tXLkyL7/8cpLyte5uO62Ptb5m498tWbIkK1eu7FY71fDeW716db773e/mxRdfTJJ88pOfzIwZM7p1rVpXV627o6Nb+fXp0yfjx49Pkjz99NNpbGzssI2W16Vv374ZN25cm2Pjxo1Lnz592pxXTmNjY55++ul217Tobq0XLVpU+uaAcjWyppRnbBez3i3zfNJ2h756F7Pe9CzrSWUzz1Xf+05Gqa16d0VG6fxv6qidojG2i1lvGaXrdopUb3qW9aSymeeq730no9RWvbsio3T+N3XUTtEY28Wrt3zSdTtFqTU9z1pS+cx11fXek09qp9bdIZ90/jd11E7RGNvFrLeM0nU7W7LeNs1QEaZMmVJ6/Pvf/77sORs2bMhdd92VJBk0aFD22muvHukbzerq6kq3/nvppZdKH4g29vTTT5d2/e2///7tdkbutNNOpZ2A999/f+kD0cbmzp1betz6/dGiddsdvWdat1NXV5f999+/3fHWt7Bs/ZytrV27Nvfff3+S5h2UO+20U4fPVwnWrl2b2bNn57nnnkuSfPSjH83MmTO7fb1aV0+tu6vlb0qSXXbZpc2xlteloaGhtPt/Y6+99loee+yxJMnee++dgQMHtjk+cODATJo0KUny2GOPdXg7vT/84Q+lncXlar3XXntlm222SZLcddddaWpqKttOV++ZIq4pX/rSl3L11Vd3+u/EE08snX/22WeXfj9y5MgkxnYRx/by5cvzpz/9KUkyatSoNmFKvYtXb3peEdeTIjHPVdc8J6PUVr27Q0Zpr9rWFBnF2C5HRpnb7nhS3HrT84q4nhSJea665jkZpbbq3R0ySnvVtqbIKMb2xuSTue2OJ8WsNVtHEdeSojHXVc9cJ5/UTq27Sz5pr9rWFPnE2C5HRpnb7njSs/W2aYaKMH78+Oyxxx5JmgdYuQF/ww03lAb70Ucf3W7nKlveMccck169mqeNSy+9NOvWrWtzfN26dbn00kuTNN+S79hjjy3bzoc//OEkyapVq3L55Ze3O7506dJce+21SZLRo0eXnZSHDRuW97///UmSP/7xj3nggQfanXP//ffnj3/8Y5Lk8MMPL3uLsClTpmTUqFFJkmuvvbZ0K8DW/uu//itvvfVWkuQjH/lI2b+pUjQ2NubCCy/MU089laS5Zh//+Mc3uR21rvxaJ80fJDauzcZuuOGGPProo0madyS3zLUtpk+fXgowV155Zd588802xzds2JBf/OIX2bBhQ5KOX5eWWq9fvz6//OUvS+e3qK+vzxVXXJGkObxMmzatXRt9+vTJ0UcfnaT5w9+cOXPanfP000+XPojtueeepW9QaM2a0jFjuzrGdpI8/PDDWb9+fYfHV65cmYsuuqj0zSEf+tCH2p2j3tVTbyqT9aTymeeqY56TUWqr3jKKjLKpjO3qGNuJjFJr9aYyWU8qn3muOuY5GaW26i2jyCibytiujrEtn9ROralc1pLqYK6r/LlOPqmdWifyiXyy6Yzt6hjbiYxSLfWua+poex/0sOeeey7f+c53sm7dugwYMCAnnHBC9tprr6xbty733Xdfbr/99iTJjjvumO9973vtdsDSuSeffLLNhFNfX1+aEHffffdMnz69zflHHHFE2XauvPLKXHfddUmSXXfdNccff3xGjRqVZcuW5X//939Lu95nzpyZT37yk2Xb2LBhQ84+++zSB/4DDzww06dPz+DBg/Pss8/mmmuuyRtvvJG6urrMmjUr++67b9l2Xn311cyaNSv19fXp3bt3jjvuuEyePDlJ8sgjj+SGG27I+vXrM2TIkJx//vkZMWJE2Xbmz5+f888/P01NTRk6dGg+9rGPZfz48Vm1alXuuOOO0q7siRMn5pxzziktTJXowgsvzIMPPpikeaf4Kaec0un5ffr06XBnplpXdq2T5l3pDQ0NOfDAAzNx4sSMGjUqAwYMyJo1a7J48eLcc889pde+T58+mTVrVvbZZ5927dx222255JJLkjTvYv7oRz+aXXbZJa+//npuvPHGPP7440mSQw89NF/96lc77M8PfvCD3HfffUmav03g2GOPzXbbbZfFixfnt7/9bZYtW5YkOf3003PUUUeVbaOhoSGzZs0q3f7vqKOOyiGHHJJ+/frl8ccfz7XXXps1a9akX79+Oe+88zJ27Niy7dTimnL11VfnN7/5TZLmbyDo6FsVjO3KH9tJ8/hubGzMgQcemAkTJmTkyJHp169f6uvrs3Dhwtx2222l//gxceLEfOc730nfvn3btaPe1VFvKlctric9RT6pnXlORqmtessoMkprMkpxxnYio9Ravalctbie9BQZpXbmORmltuoto8gorckoxRrb8klt1JrKVotrSU+SUWpjrpNPaqfWiXwin7QlnxRnbCcySrXU26YZKsrDDz+cH/3oR6Xbum1sxx13zLe+9a2MHj26h3tW/X7yk5+UblHXHVdffXXZ32/YsCH/+Z//2ektt6ZNm5bTTz+908mrvr4+s2fPzqJFi8oe79u3b0477bR2IW9jzzzzTC644IKsXLmy7PFhw4blrLPOynve855O27n99tvzq1/9qrSTc2Pjx4/PrFmzMmTIkE7b2dpOOumkTTp/hx12yE9+8pOyx9S6smudNH/YeuWVV7o8b8SIETnjjDPKBqkWV199da655poOb5W577775h//8R/Tr1+/DttYt25dLrrootI3Hmysrq4uH/vYx7p8ny5dujSzZ88uBaqNDRw4MGeeeWbpQ1hHam1N6W6YMrYrf2wn3R/fBx54YL74xS9m0KBBZY+rd3XUm8pWa+tJT5FPameek1Fqq94yiozSmoxSnLGdyCi1Vm8qW62tJz1FRqmdeU5Gqa16yygySmsySu2Nbfmk+mtN5au1taQnySi1MdfJJ7VT60Q+kU/akk+KM7YTGaVa6m3TDBXnlVdeyU033ZT58+dnxYoV6dOnT0aPHp2DDjooM2bMSP/+/bd2F6vS5gpTLebPn5/bb789ixYtyptvvpltt90248aNywc+8IEOdx5ubP369bnjjjty77335qWXXsqaNWsyfPjw7L333jnmmGPyrne9q1vt1NfX56abbspDDz1UWnhGjhyZ/fffP8cee2y23XbbbrWzePHi3HzzzVmwYEFWrFiRAQMGZMyYMTnssMMyffr09O7du1vtbE2bM0y1UOvKtWTJksyfPz9PPvlkli1blpUrV2bVqlXp169fhgwZkrFjx2by5Mk5+OCDuzV3PvXUU7n11lvzxBNP5I033sigQYPy7ne/O0cccUQOO+ywbvfr3nvvzdy5c/P888/nrbfeytChQ7PHHntkxowZmTBhQrfaWLNmTW699dY88MADWbp0aRobGzNixIjsu+++OeaYY7LDDjt0q51aWlO6G6ZaGNuVbeHChVm4cGGefvrpLFu2LG+++WYaGhoyYMCAjBgxIhMmTMgRRxzR7TGl3vC3qaX1pKfIJ10ryjwno9RWvWWUrtXSmiKjFGdsJzJKdxSp3lS+WlpPeoqM0rWizHMySm3VW0bpWi2tKTJKcca2fNK1otSa6lBLa0lPklG6VoS5Tj6pnVon8kl31NKaIp8UZ2wnMkp3VEK9bZoBAAAAAAAAAAAAAACgcDq+Nw8AAAAAAAAAAAAAAABUKZtmAAAAAAAAAAAAAAAAKBybZgAAAAAAAAAAAAAAACgcm2YAAAAAAAAAAAAAAAAoHJtmAAAAAAAAAAAAAAAAKBybZgAAAAAAAAAAAAAAACgcm2YAAAAAAAAAAAAAAAAoHJtmAAAAAAAAAAAAAAAAKBybZgAAAAAAAAAAAAAAACgcm2YAAAAAAAAAAAAAAAAoHJtmAAAAAAAAAAAAAAAAKBybZgAAAAAAAAAAAAAAACgcm2YAAAAAAAAAAAAAAAAoHJtmAAAAAAAAAAAAAAAAKBybZgAAAAAAAAAAAAAAACgcm2YAAAAAAAAAAAAAAAAoHJtmAGAzGjt2bOrq6nLKKads7a4AAADIKAAAQEWRUQAAgEohnwDUDptmAAAAAAAAAAAAAAAAKBybZgAAAAAAAAAAAAAAACicuqampqat3QkAAAAAAAAAAAAAAADYnNxpBgAAAAAAAAAAAAAAgMKxaQYAAAAAAAAAAAAAAIDCsWkGADqwZMmSzJo1K/vtt1+GDh2avn37ZtSoUZk0aVI+8YlP5LLLLkt9fX2ba8aOHZu6urqccsopbX7/l7/8JXV1dd3+d8QRR3TYr9///vf57Gc/m9122y3bbLNNhgwZkkmTJuWss87KkiVLtsArAQAAVAIZBQAAqCQyCgAAUCnkEwA602drdwAAKtE999yT4447rl1YWr58eZYvX54FCxbkqquuyvbbb5/jjjuuR/q0Zs2anHrqqbnqqqvaHVuwYEEWLFiQiy++OP/93/+dD3/4wz3SJwAAoGfIKAAAQCWRUQAAgEohnwDQFZtmAGAja9euzcc//vHU19dn2223zRlnnJEjjzwyI0eOzLp16/Lcc8/lvvvuy7XXXtvtNseMGZPHHnus03OuvvrqnHvuuUmSd7/73W2ONTU15cQTT8yNN96YJPnwhz+ck046Kbvttlt69eqVBx98MBdddFEWL16cE088MfPmzcv++++/iX85AABQiWQUAACgksgoAABApZBPAOiOuqampqat3QkAqCR33nlnpk+fniSZM2dOh98w0NjYmNWrV2fIkCGl340dOzbPP/98PvvZz+ayyy7r9nM+/PDDOfzww9PQ0JA99tgjDzzwQJt2L7nkkpx++unp27dvrr/++syYMaNdG6+//nre//735/HHH8+hhx6ae++9t9vPDwAAVC4ZBQAAqCQyCgAAUCnkEwC6o9fW7gAAVJqlS5eWHh9++OEdntenT582geedWrJkSY4//vg0NDRk+PDhmTNnTpt2m5qacv755ydJzjzzzLJBKkm22267XHDBBUmSefPm5Zlnnvmb+wYAAGx9MgoAAFBJZBQAAKBSyCcAdIdNMwCwkR133LH0+NJLL92iz9XQ0JCZM2dmyZIl6dOnT37zm99k3Lhxbc5ZuHBhFi1alCQ58cQTO22vdfi7//77N3+HAQCAHiejAAAAlURGAQAAKoV8AkB32DQDABs57LDDsttuuyVJvva1r2XKlCmZPXt25s2bl3Xr1m3W5zrttNPy0EMPJUn+4z/+I0ceeWS7cx5++OHS44MPPjh1dXUd/hs8eHDp3NbfpAAAAFQvGQUAAKgkMgoAAFAp5BMAusOmGQDYSN++fTNnzpzsscceSZKHHnoo3/72t3PYYYdl2LBhmTFjRq688sqsX7/+b3qec889N1dddVWS5B/+4R9yxhlnlD1v+fLl76j91atXv+O+AQAAlUNGAQAAKomMAgAAVAr5BIDu6LO1OwAAlWjPPffMY489ljlz5mTOnDm5++678+yzz6ahoSG33nprbr311vz7v/97brrppowcOXKT27/mmmty9tlnJ0mmT5+eH/7whx2e2zq0zZkzJ2PHju3Wc7yTfgEAAJVJRgEAACqJjAIAAFQK+QSArtg0AwAd6N27d2bOnJmZM2cmSV5++eXccsst+clPfpJHHnkkjzzySL7whS/k2muv3aR2H3300Zx88slpamrK+PHjc/XVV6dPn46X5BEjRpQeDxs2LHvvvfc7+nsAAIDqJqMAAACVREYBAAAqhXwCQGd6be0OAEC12HHHHXPqqafm/vvvz3777ZckueGGG9LQ0NDtNpYuXZrjjz8+q1evztChQzNnzpwMHz6802v23Xff0uN58+a9s84DAACFI6MAAACVREYBAAAqhXwCQGs2zQDAJurbt2+mTp2aJGlsbMzKlSu7dd2aNWsyc+bMvPDCC+ndu3euuuqqTJw4scvr9ttvv+y8885Jkp///OdZs2bNO+47AABQPDIKAABQSWQUAACgUsgnACQ2zQBAO/fcc0+effbZDo+vW7cud911V5Jk8ODB2WGHHbrV7uc+97n84Q9/SJJccMEFmTFjRreu69WrV7797W8nSf785z/n5JNPztq1azs8v76+Pj/+8Y+71TYAAFD5ZBQAAKCSyCgAAEClkE8A6I4+W7sDAFBp7rjjjpx77rl5//vfn2OPPTb77LNPdthhhzQ0NOTpp5/Oz372s8yfPz9J8vd///fp06fr5fRXv/pVrrjiiiTJtGnT8oEPfCALFizo8PxBgwZl1113Lf38xS9+Mbfddluuvfba/M///E/mz5+fL3zhC5kyZUqGDh2a+vr6PPnkk5k7d26uv/76DBgwIF/+8pf/xlcCAACoBDIKAABQSWQUAACgUsgnAHSHTTMAUMaGDRty1113lb5poJzjjz8+s2fP7lZ7ixcvLj2+8847M2nSpE7Pnzp1aubOnVv6ua6uLr/+9a/z1a9+NT/72c+yaNGi/NM//VOH148cObJb/QIAAKqDjAIAAFQSGQUAAKgU8gkAXbFpBgA28s1vfjP77LNPbr/99jz66KNZsmRJli9fniQZPXp0pkyZkpNPPjnHHntsj/arb9+++elPf5ozzjgjl1xySebOnZvFixdn1apVGTx4cHbddddMnjw5Rx99dI477rge7RsAALDlyCgAAEAlkVEAAIBKIZ8A0B11TU1NTVu7EwAAAAAAAAAAAAAAALA59draHQAAAAAAAAAAAAAAAIDNzaYZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAKx6YZAAAAAAAAAAAAAAAACsemGQAAAAAAAAAAAAAAAArHphkAAAAAAAAAAAAAAAAK5/8DHCk1jwjeyHgAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -281,12 +276,12 @@ "id": "f10127f4-6515-4ea5-a1d9-e14671eb70be", "metadata": {}, "source": [ - "The same reasoning holds for the normalised (squared) euclidean distance, we can use the `ConvolveDotProduct` value for the `speed_up` argument in `TopKSimilaritySearch` to use this optimization for both normalised and non normalised distances. In the normalised case, the formula used to computed the normalised (squared) euclidean distance is taken from the paper [Matrix Profile I: All Pairs Similarity Joins for Time Series](https://www.cs.ucr.edu/~eamonn/PID4481997_extend_Matrix%20Profile_I.pdf), see MASS algortihm." + "The same reasoning holds for the normalised (squared) euclidean distance, we can use the `normalize` parameter of the two estimators to set this option. In the normalised case, the formula used to computed the normalised (squared) euclidean distance is taken from the paper [Matrix Profile I: All Pairs Similarity Joins for Time Series](https://www.cs.ucr.edu/~eamonn/PID4481997_extend_Matrix%20Profile_I.pdf), see MASS algortihm." ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 12, "id": "bb8dabbd-d11f-4aa9-a8f6-d489548ca852", "metadata": {}, "outputs": [], @@ -300,47 +295,35 @@ "for size in sizes:\n", " for _query_length in query_lengths:\n", " query_length = int(_query_length * size)\n", - " X = rng.random((1, 1, size))\n", + " X = rng.random((1, size))\n", " q = rng.random((1, query_length))\n", - " n_cases, n_channels = X.shape[0], X.shape[1]\n", - " search_space_size = size - query_length + 1\n", - " X_means = np.zeros((n_cases, n_channels, search_space_size))\n", - " X_stds = np.zeros((n_cases, n_channels, search_space_size))\n", - " mask = np.ones((n_channels, search_space_size), dtype=bool)\n", - " for i in range(X.shape[0]):\n", - " _mean, _std = sliding_mean_std_one_series(X[i], query_length, 1)\n", - " X_stds[i] = _std\n", - " X_means[i] = _mean\n", - " q_means, q_stds = sliding_mean_std_one_series(q, query_length, 1)\n", - " q_means = q_means[:, 0]\n", - " q_stds = q_stds[:, 0]\n", + " mask = np.ones((1, size - query_length + 1), dtype=bool)\n", " # Used for numba compilation before timings\n", - " naive_squared_distance_profile(\n", - " X, q, mask, normalise=True, X_means=X_means, X_stds=X_stds\n", - " )\n", - " _times = %timeit -r 3 -n 7 -q -o naive_squared_distance_profile(X, q, mask, normalise=True, X_means=X_means, X_stds=X_stds)\n", + " mass = MassSNN(length=query_length, normalize=True).fit(X)\n", + " mass.compute_distance_profile(q)\n", + " dummy = DummySNN(length=query_length, normalize=True).fit(X)\n", + " dummy.compute_distance_profile(q)\n", + "\n", + " _times = %timeit -r 3 -n 3 -q -o dummy.compute_distance_profile(q)\n", " times.loc[(size, _query_length), \"Naive Normalised Euclidean distance\"] = (\n", " _times.average\n", " )\n", - " # Used for numba compilation before timings\n", - " normalised_squared_distance_profile(\n", - " X, q, mask, X_means, X_stds, q_means, q_stds\n", - " )\n", - " _times = %timeit -r 3 -n 7 -q -o normalised_squared_distance_profile(X, q, mask, X_means, X_stds, q_means, q_stds)\n", - " times.loc[(size, _query_length), \"Normalised Euclidean as dot product\"] = (\n", + "\n", + " _times = %timeit -r 3 -n 3 -q -o mass.compute_distance_profile(q)\n", + " times.loc[(size, _query_length), \"Normalised Euclidean distance with MASS\"] = (\n", " _times.average\n", " )" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 13, "id": "f701000b-9c17-45f7-a58c-64c22b88f641", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOcCAYAAADnnKdhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iUVdrH8d9MegKkESD0Gjoo0kF6L4pIEQuwAoKCbV3b7rquq772ssgKVpqKitIUkF5DFaRDAoQeAukhpM/M+0fMkJA26WW+n+viuqac55wzc89M5mae+xyDxWKxCAAAAAAAAAAAAAAAAAAAAAAAAKhEjGU9AQAAAAAAAAAAAAAAAAAAAAAAAKC4UTQDAAAAAAAAAAAAAAAAAAAAAACASoeiGQAAAAAAAAAAAAAAAAAAAAAAAFQ6FM0AAAAAAAAAAAAAAAAAAAAAAACg0qFoBgAAAAAAAAAAAAAAAAAAAAAAAJUORTMAAAAAAAAAAAAAAAAAAAAAAACodCiaAQAAAAAAAAAAAAAAAAAAAAAAQKVD0QwAAAAAAAAAAAAAAAAAAAAAAAAqHYpmAAAAAAAAAAAAAAAAAAAAAAAAUOlQNAMAAAAAAAAAAAAAAAAAAAAAAIBKh6IZAAAAAAAAAAAAAAAAAAAAAAAAVDoUzQAAAAAAAAAAAAAAAAAAAAAAAKDSoWgGAAAAAAAAAAAAAAAAAAAAAAAAlQ5FMwAAAAAAAAAAAAAAAAAAAAAAAKh0KJoBAAAAAAAAAAAAAAAAAAAAAABApUPRDAAAAAAAAAAAAAAAAAAAAAAAACodimYAAAAAAAAAAAAAAAAAAAAAAABQ6VA0AwAAAAAAAAAAAAAAAAAAAAAAgEqHohkAAAAAAAAAAAAAAAAAAAAAAABUOhTNAAAqtYYNG8pgMMhgMOj8+fNlPZ1KgecUAAAAKBy+Sxc/nlMAAACgdPDdu/jxnAIAAACFw3fp4sdzCqCyo2gGAABUWPHx8Zo7d6769u2runXrysXFRXXr1lW/fv00b948xcfHV5jxLRaLgoKC9M033+jpp59W9+7d5e7ubk1IGzZsWHIPBAAAAECRVZb8ZOvWrdY8xNZ/AwYMKNHHBgAAAKBklVU+k5KSov3792vu3Ll69NFH1bZtWzk6OlpzjcmTJ5fIuAAAAADKr7LKT06ePKnZs2dr3LhxatWqlTw9PeXk5KTq1aurY8eOevrpp/XHH3+UyNgASp5jWU8AAACUnT59+mjbtm2SpC1btqhPnz5lO6EC2L17tx566CGdO3cuy+1XrlzRlStXtGXLFr333nv67rvv1KVLl3I9/u+//67+/fsrLi6u2OcJAAAAVBTkJxV3fAAAAMDekc8U3Jw5c/Tcc88pJSWl2PoEAAAAQH5SUBs2bNCzzz6r48eP53h/ZGSkIiMjdeDAAc2ePVtjx47VvHnz5OPjUyzjAygdFM0AAIAK5/Dhwxo0aJB15QAnJyf169dPdevW1aVLl7R582alpaUpJCREgwYNUmBgoNq0aVNux4+Pj6dgBgAAAKigKlt+klnt2rV133335duuRYsWRXoMAAAAAMpGWeYzERERFMwAAAAAsCqr/OTAgQNZCmYMBoPatWungIAAeXt7Kzw8XDt37lR4eLgkaenSpTpx4oS2bdsmX1/fIo8PoHRQNAMAACqU1NRU3X///dYEqX379lqxYoUaNmxobXP+/HmNGjVKhw8fVlxcnO6//34dP35cjo5F/+pTkuN7e3urY8eO6tSpkzp16qSgoCC99NJLRZ4zAAAAgJJRmfMTSWrWrJnmzJlT5HkCAAAAKH/KOp/JUK9ePevvIp07d9bcuXP1008/FVv/AAAAAMq/8pCf3HHHHZo2bZrGjx+frRgmJSVFH330kf7xj3/IZDLp+PHjeuKJJ/TDDz8Uy9gASp6xrCcAAABQEF988YXOnj0rKb3I5LfffsuSIElSw4YNtXbtWnl7e0uSgoOD9fXXX5fb8du3b6/Tp08rKipK69ev15tvvqlRo0apZs2axTJnAAAAACWjMuYnAAAAAOxDWecTf/nLXxQWFqaLFy/q559/1ksvvaR+/frJw8OjWPoHAAAAUHGUZX4SEBCgFStW6I8//tATTzyR4+4xzs7OevHFF/Xee+9Zb/vxxx916tSpIo8PoHRQNAMAACqU//3vf9bLf/vb31SrVq0c2/n7++u5557L8bjyNr63t7eaNm1aLPMDAAAAUHoqY34CAAAAwD6UdT7RoEEDFg8DAAAAIKls85PRo0fr3nvvtantU089pdq1a1uvr1mzpsjjAygdFM0AQBGYzWYtXLhQAwcOVK1ateTq6qqGDRvq3nvv1YoVK6zt+vTpI4PBIIPBoK1bt+bYV8OGDa1tzp8/n+/YkydPtrZfsGBBvu0tFouWL1+uSZMmKSAgQJ6ennJ1dVW9evU0atQoLVy4UGlpaXn2cf78eeuYmSu5d+7cqalTp6pFixby9PSUwWDQM888oz/++MPa3tvbW0lJSfnOU5Ju3LihKlWqWI89cuSITccVh9TUVC1evFjjxo1T48aNVbVqVXl4eKhRo0aaMGGCli9fLovFkmcfW7dutc69T58+1ts3b96sBx54QI0bN5arq6t8fX3Vq1cvzZkzR6mpqTbPMTExUR999JF69Oih6tWry83NTU2aNNGECRO0adMma7u8XlMZt2/bts16W9++fa23Z/5ny+vr8uXLeuWVV9S+fXt5eXnJw8NDLVq00JNPPqkLFy7Y/Njyc+bMGZ04ccJ6ffLkyXm2z3z/kSNHFBISUqHHBwAAyAv5STryk6zIT8hPSmp8AACA4kQ+k458JivymcqbzwAAAJRn5CfpyE+yIj8hP5EkBwcHdenSxXrdlvc1gHLCAgAolKtXr1q6dOlikZTrv/vuu88SFxdn6d27t/W2LVu25NhfgwYNrG3OnTuX7/iTJk2ytp8/f36ebQ8fPmy544478pyrJEvz5s0tx48fz7Wfc+fOWds2aNDAkpycbJk+fXqOfT399NMWi8Viueuuu6y3ffPNN/k+LovFYvniiy+sx3Tq1MmmY3JTkOd1y5YtliZNmuT7PHXt2tVy+fLlPPvJaNu7d29LcnKyZdq0aXn22aFDB0t4eHi+j+fIkSP5znH69OmWlJSUPB97fo8x87/bX1+397t8+XKLp6dnrse7ublZfv3113wfmy0+++wza78BAQE2HdOsWTPrMV988UWFGn/+/PlZ3nMAAAC5IT8hP8mrH/IT8pOCjH/7awYAAKCkkc+Qz+TVD/lM5cxn8pL5PTlp0qQSGwcAACAn5CfkJ3n1Q35if/lJTkaPHm0d+4knnijVsQEUnqMAAAUWExOjfv366eTJk9bbGjVqpG7dusnFxUXHjx/Xvn37tHz5chmNZbup1/bt2zVy5EjFxcVJkpycnNSpUyc1a9ZMTk5OOn/+vHbu3KmkpCQFBQWpe/fu2r17t1q2bJlv388++6w+++wzSVLbtm3Vvn17OTk5KTg42Pq4H3vsMU2fPl2S9NVXX+mhhx7Kt9+vvvrKennq1KkFfsyFsXTpUj300EPWCn83Nzd17dpVDRs2lNFoVHBwsHbv3q20tDTt2bNH3bp10/79+23aNv6xxx7TwoULZTQa1aVLF7Vo0UJms1l79uxRUFCQJOngwYOaOHFinls2njlzRv3791d4eLj1trZt2+qOO+6Q0WjUoUOHdPjwYX322WeqWrVqnnOaOXOmJGn58uUKDQ2VJI0aNUp16tTJ1jav18LGjRs1Y8YMmUwm1a9fX926dVO1atV07tw5bd26VWlpaUpMTNS4ceN07NgxNWrUKM955Sfze65Dhw42HdOhQwedPn062/EVcXwAAICckJ+kIz8hPyE/Kf7xExMT9csvv+jw4cOKioqSh4eHatasqS5duujOO++UoyP/vQwAAIqGfCYd+Qz5jL3lMwAAAOUR+Uk68hPyE/KTvB09etR6uV69eqU6NoAiKOuqHQCoiB599FFrtbCzs7Plq6++ytZm79691gpsZ2fnMllZ4OrVq5YaNWpY202cONESGhqarV1YWJjlvvvus7Zr27atJS0tLVu7zCsLODg4WCRZ6tWrZ9m+fXu2tklJSRaLxWK5ceOGpUqVKhZJFoPBYDl79myej+v48ePWMTw8PCxxcXH5Phd5seV5PXbsmMXNzc06x7/97W+W6OjobO3Onj1r6dmzp7W/oUOH5thf5pUFXFxcrCsknDx5Mks7s9ls+fjjj7NU4W/bti3HPs1ms6VXr17Wdr6+vpbffvstW7tNmzZZatSoYTEYDFled7k9dltWvbhd5ufUxcXF4uHhYVm8eLHFbDZnaXfs2DFLnTp1rG3/8pe/2NR/XoYOHWrt78UXX7TpmOeff956zLBhwyrU+Ow0AwAAbEF+Qn5CfkJ+UpzjZ37N5PWvdu3alvfee8+SkpJSpMcBAADsG/kM+Qz5jH3mM3lhpxkAAFBWyE/IT8hPyE/yExgYmCW2+/fvL7WxARRN2Za7AkAFFBwcrPnz51uvf/7553r00UeztevcubPWr18vd3d3paSklOYUrf7xj3/o+vXrkqSnnnpKCxculL+/f7Z2NWvW1NKlS9WvXz9J6dXQP/30U559m0wmubu7a+PGjbr77ruz3e/i4iJJqlKliiZMmCBJslgs+vrrr/PsN/OqAuPGjcu3Qr44PPXUU0pMTJQkffDBB3rvvffk5eWVrV3jxo3122+/qVWrVpKktWvXau/evXn2nZycrGbNmmnz5s1q0aJFlvsMBoOefvppjRkzxnrbkiVLcuxn3bp12r59uyTJaDRq5cqVGjx4cLZ2/fr10+rVq2U0GkvldZeSkqKffvpJDz/8sAwGQ5b7WrdubV15QkpfvSEtLa1I40VGRlov27KqgyTVqlXLejkqKqpCjw8AAHA78pN05CfkJxL5SWmPHxoaqueff169evXStWvXitQXAACwT+Qz6chnyGck+8tnAAAAyhvyk3TkJ+QnEvlJbsxms5555hnr9S5duqhjx46lMjaAoqNoBgAK6KuvvpLFYpGUnghNmjQp17YBAQFZviiVpvDwcH3zzTeS0r8kvvPOO3m2d3Bw0Jtvvmm9/u233+Y7xqxZsxQQEJBvu2nTplkvL1iwQCaTKcd2qampWrx4sfV6aWzFefjwYW3evFmSdOedd+YbLw8PD73yyivW67Y8T2+//baqVKmS6/2Zk+x9+/bl2CZz8vjAAw+oR48eufbXsWNHTZw4Md95FYcRI0ZoyJAhud4/bNgwa5ISHx9f5O0w4+PjrZfd3NxsOiZzu8zHV8TxAQAAbkd+cgv5CfkJ+Unxje/n56cnnnhCy5cvV0hIiBISEpSUlKSQkBAtXLhQnTp1srbds2ePRo4caf3xEQAAwFbkM7eQz5DP2Fs+AwAAUN6Qn9xCfkJ+Qn6Ss9dff1379++XlF7k9P7775fKuACKB0UzAFBAW7ZssV5+5JFH8m2fVxJVkjZu3GitLB89erRcXV3zPaZLly7y8PCQJO3cuTPf9g888IBNc+nUqZPuuOMOSdKVK1e0bt26HNutWrVK4eHhkqRWrVqpe/fuNvVfFGvWrLFenjBhQrbq+JxkrMAg5f88ubq6auTIkXm2ufPOO62Xz58/n2Obbdu2WS8//PDD+c7RljbFYezYsXnebzAY1L59e+v13B6frZKSkqyXnZ2dbTomY5ULSUU+iausxwcAALgd+ckt5CfkJ+QnxTN+x44ddfnyZf3vf//TqFGj1KhRI7m5ucnFxUWNGjXSxIkTtXfv3iw/IO7fv18ffPBBIR8JAACwV+Qzt5DPkM/YWz4DAABQ3pCf3EJ+Qn5CfpLdL7/8otdee816/cUXX1TPnj1LfFwAxcexrCcAABWJxWLR4cOHrde7deuW7zEBAQHy8fEp9W3Kd+/ebb185MgRzZo1q0DHR0dH6+bNm9ak6XZOTk5q27atzf099thjeuKJJySlV8kPGzYsW5vM1fNTpkwp0HwLK/PztGXLFl24cCHfYzJWlpCkS5cu5dm2efPmcnJyyrONr6+v9XJcXFy2+69cuWJNHqX0ZDY/nTp1ksFgyDLXkmDLayC/x1cQmZN9W7cbTU5Otl62dTWC8jo+AABAZuQnt5CfpCM/IT8pjvHzWhkvg8Fg0H/+8x+dPXtW3333nSTpww8/1EsvvSRHR/7LGQAA5I985hbymXTkM/aVzwAAAJQn5Ce3kJ+kIz8hP8ls//79mjBhgvV5HzBggP7zn/+U6JgAih+/YAJAAcTGxmb5Yla/fn2bjqtfv36pJ0mhoaHWyzt37rRppYDbRUdH55okeXt7F+hEmIceekjPP/+8bt68qV9++UXh4eHy8/Oz3n/58mXrigPOzs6ltp1k5udp7dq1BT4+Ojo6z/s9PT3z7SNzEpWWlpbt/swJkru7u3x8fPLts2rVqvL09FRMTEy+bYuioI8vNTW1SONlPnnL1lUCMrez5eSv8jw+AABAZuQnt5CfpCM/IT8pzfEl6T//+Y+1aCY6Olp79uxhZTUAAGAT8plbyGfSkc/YVz4DAABQnpCf3EJ+ko78hPwkw4kTJzR06FDdvHlTUnrh0vLly1lADKiAjGU9AQCoSOLj47Ncd3d3t+m43BKNkhQbG1vkPnL6wp6hoBXa1apV0/jx4yWlf1FetGhRlvsXLFggs9ksSbr33ntVvXr1As62cIr6PJlMpjzvt2V7z/xkft3Z+pqTSucHi+J4fAWReZWCa9eu2XRMWFiY9bItCWZ5Hh8AACAz8pNbyE/SkZ+Qn5Tm+JLUpEkTNWzY0Hr95MmTRe4TAADYB/KZW8hn0pHP2Fc+AwAAUJ6Qn9xCfpKO/IT8RJLOnTungQMHKjIyUpLUunVr/fbbbywiAFRQFM0AQAHc/oUnISHBpuMyKo2LU0ZCkZvMidmHH34oi8VS4H+ZT3wpDtOmTbNezrz1psVi0fz5863Xp06dWqzj5iXz87Rs2bJCPU8lLfPrztbXnFQyr7uy1rx5c+tlW7ZOlaSLFy9aL7do0aJCjw8AAJAZ+UnRkJ8UDvnJLWWdH5T1+Bn8/f2tlyMiIoqlTwAAUPmRzxQN+UzhkM/cUl7yCQAAgPKA/KRoyE8Kh/zklvKYn1y5ckX9+/e37lrUpEkTbdiwgQUEgAqMohkAKABPT085Oztbr2f+8pWXS5cu5dsmvy0Zb5dfRXzNmjWtlzNXVpelrl27ql27dpLSV5/dvXu3JGnLli0KCQmRJDVo0EADBgwotTmVx+fpdplXWUhISMh3C1ApfTWCkt6Ksyy0bNnSevmPP/6w6ZiDBw/meHxFHB8AACAz8pOiIT8pHPKTW8o6Pyjr8TNk/oGuLFZWBAAAFRP5TNGQzxQO+cwt5SWfAAAAKA/IT4qG/KRwyE9uKW/5ybVr19S/f3+dO3dOklS3bl1t3LgxyyJiACoeimYAoAAMBoPat29vvb5nz558jzl9+rR1i768VKtWzXrZlvZHjx7N8/4uXbpYLwcGBubbX2nJaXWBzKsM/OUvf5HRWHp/nsrr85RZ3bp1syRKe/fuzfeY33//3aZVD0p7O82i6tu3r/VyUFCQrl69mmf70NBQnT592nq9X79+FXp8AACAzMhPio78pODIT24p6/ygrMeX0n/ICwoKsl6vXbt2kfsEAAD2gXym6MhnCo585pbykE8AAACUF+QnRUd+UnDkJ7eUp/wkMjJSAwcOtP72UaNGDW3cuLHYd2gCUPoomgGAAsr8Je2bb77Jt/2iRYts6jfzF6tDhw7l2fb333+3VjLnZvDgwXJ0dJQk7dq1S4cPH7ZpHiXt4YcflpubmyTphx9+0OXLl7Vs2TJJktFo1KOPPlqq8xkxYoT18rJly3Tt2rVSHd9WvXv3tl7+9ttv821vy2tTklxdXa2XU1NTCz6xUtasWTO1atXKen3hwoV5ts98f9u2bdW4ceMKPT4AAMDtyE+KhvykcMhP0pV1flDW40vSd999p+TkZEnpP8L16tWryH0CAAD7QT5TNOQzhUM+k6485BMAAADlCflJ0ZCfFA75Sbrykp/ExcVp8ODB1uI1b29vbdiwQc2bNy+W/gGULYpmAKCApkyZYr28Z8+ePL+MnjlzRh999JFN/WaucM/ri19aWpqefvrpfPurU6eOHn74YUmSxWLRxIkTFRcXZ9NczGazwsPDbWpbUF5eXho3bpyk9C0jx4wZo6SkJEnSoEGDVK9evRIZNzedO3dWnz59JEmJiYl65JFHlJKSYtOxKSkpNm2NWRwyJ4/fffddnqtaHDx4MN/kIYOvr6/18pUrVwo/wVL0xBNPWC+///77uSa2YWFhev/9963XZ86cWSnGBwAAyIz8pGjITwqH/OSWss4Pinv8hIQEmc1mm8Y+ffq0XnrpJev1QYMGqUaNGjYdCwAAIJHPFBX5TOGQz9xS1vkMAABAeUJ+UjTkJ4VDfnJLWecnCQkJGj58uA4cOCBJqlq1qn777Te1a9euWPoHUPYomgGAAgoICNDkyZOt16dOnZrjF9Lff/9dAwcO1M2bN+Xs7Jxvv+PHj7duQ7l792699NJLMplMWdpcvnxZI0aM0K5du+Ti4pJvn2+++ab8/f0lSUeOHFHnzp21fv36XNtfvnxZH330kZo3b64ffvgh3/4LK/OWnJm3lpw6dWqJjZmXTz75RFWqVJEkbdiwQb169cpzy8vg4GC9/vrratiwYalt4Tl06FD17NlTUnoSO3LkSG3cuDFbu61bt2rYsGEymUw2ve7atGljvfzTTz/ZtIVnWXvsscfUpEkTSelbYg4dOlQXLlzI0ubChQsaNmyYoqKiJKW/bzP/B8fttm7dKoPBYP23devWUh0fAACgsMhPio78pODIT26pbPnJvn371Lp1a82dO1fXr1/PsY3JZNI333yjbt26KTIyUpLk7Oysd955J9d5AgAA5IR8pujIZwqOfOaWss5nAAAAyhPyk6IjPyk48pNbyjI/SU5O1qhRo7Rz505Jkpubm3799Vd17ty5GB4ZgPLCsawnAAAV0Ycffqjdu3crKChIycnJmjx5sv7zn/+oW7ducnFx0fHjx7Vv3z5ZLBaNHj1akZGR2rZtW559NmjQQDNmzNCnn34qSXrnnXe0ZMkS9erVS66urjp79qwCAwOVkpKiAQMGqFatWvluuVi7dm2tXLlSw4YNU0REhIKCgjR48GDVqVNHnTt3lp+fn1JTUxUREaFjx47lu8VncenRo4dat26t48ePW2+rUaOG7rnnnlIZ/3Zt2rTRkiVLNH78eCUkJGjv3r3q2rWrmjRpog4dOsjHx0dJSUm6fv26jhw5UiYV+AaDQV9//bX1pKSIiAgNHDhQ7du31x133CFJOnz4sHUr17/97W9aunSpNXnISMBvN3r0aP3973+XxWLR6tWr1a5dO3Xv3l1Vq1a1tnnggQfUsWPHEn18BeHk5KSff/5ZPXv2VHx8vP744w81a9ZM/fv3V506dXT58mVt3rzZur1otWrV9PPPP1u3py2v40+dOlW///57ltsykjxJCg0NtcY6sy+//LJcxQcAAJQ+8pOiIT8pOPKTWypjfnLq1Ck98cQTmjVrlpo2barWrVvLx8dHRqNRYWFh2r17tyIiIqztHRwctGjRIrVv375YHhMAALAv5DNFQz5TcOQzt5R1PiMpx989Ll68aL28atWqHNtkxAcAAKA4kZ8UDflJwZGf3FKW+ckrr7yiDRs2WK+3bNlSP/74o3788cd8j/X19dVrr71W5DkAKAUWAEChXLlyxdKxY0eLpFz/3XPPPZa4uDhL7969rbdt2bIl1z4TExMtw4YNy7PPESNGWKKjoy2TJk2y3jZ//vw853r+/HlL//798+w387+aNWtafvvtt2z9nDt3ztqmQYMGRXr+Pv744yxj/u1vfytSf7lp0KCBdYxz587l2fbQoUOWu+66y+bnqWHDhpY//vgjWz9btmyxtundu7dN88zcb35zbNSoUZ7zeuyxxywpKSmW2rVrW2+Ljo7Otc+XX345z/5uf30V5Dm1WCwFeq0WxK5du/J9Lho3bmzZvXt3vn1ljll+79OSGN9isWT5nCjIP1vmCgAAKj/ykwZFev7IT7IiPym4ypKf3D52fv+aN29uCQwMtPVpAgAAyBH5TIMiPX/kM1mRzxRcWeYzBck/bI0tAABAUZCfNCjS80d+khX5ScGVRX6S+bEU9F9R3zMASg87zQBAIdWuXVt79uzRokWL9O233+rIkSOKjY1VzZo11b59e02aNEn333+/DAaDzX26urrq119/1ZIlS7Rw4UIdPHhQsbGxqlGjhtq3b6/JkydrzJgxBepTSl+1YOPGjdq9e7eWLl2q7du369KlS4qOjpajo6N8fX3VrFkzdezYUYMGDVKfPn2KdZWonIwePVrPPPOM9XpZbcWZWfv27fX7779r/fr1WrFihQIDAxUaGqqYmBi5uLjIz89PzZs3V5cuXTR48GB169atwLEojjkeO3ZM8+bN09KlSxUcHKyEhAT5+/urc+fOmjZtmvr37y9Jio6OlpS+qkC1atVy7fP//u//1LNnT82fP18HDhzQtWvXlJCQUCqPpyi6deumI0eOaNGiRfrxxx8VHBysyMhI+fr6KiAgQOPGjdPEiROtW61WtvEBAAAyIz8pGvKTws+R/CRdWecHxTX+3Xffrd9//127d+/Wrl27FBQUpMjISEVGRio5OVmenp6qV6+eunTponvuuUdDhgwp9dcdAACofMhnioZ8pvBzJJ9JV9b5DAAAQHlCflI05CeFnyP5STryEwAlxWCxWCxlPQkAqOz69Olj3Y5zy5Yt6tOnT9lOqBxYuHChJk+eLEnq2bOnduzYUbYTqmROnz6tgIAASVKLFi108uTJMp4RAAAAygvyk+zIT0oW+QkAAACKC/lMduQzJYt8BgAAALkhP8mO/KRkkZ8AQOEZy3oCAAD79NVXX1kvT5s2rQxnUjn98MMP1sudOnUqw5kAAAAA5R/5SckiPwEAAABKDvlMySKfAQAAAGxHflKyyE8AoPAomgEAlLo//vjDupKAj4+Pxo0bV8YzqlzOnTun999/33r9wQcfLMPZAAAAAOUb+UnJIj8BAAAASg75TMkinwEAAABsR35SsshPAKBoKJoBAJSqpKQkPfnkk9brM2bMkKuraxnOqGIZNGiQfvvtN6WlpeV4/+rVq9WzZ0/FxsZKku644w4NGjSoNKcIAAAAVBjkJ0VDfgIAAACUHfKZoiGfAQAAAIoP+UnRkJ8AQMlzLOsJAAAqvzlz5ujMmTOKiYnRpk2bdPnyZUlS9erV9dxzz5Xx7CqWDRs2aMOGDfL29laHDh1Ur149OTs7KyIiQvv27bM+t5JUtWpVLVq0SEYjNbIAAABABvKT4kN+AgAAAJQu8pniQz4DAAAAFA35SfEhPwGAkkfRDACgxP3000/atm1bltscHBz01VdfycfHp4xmVbFFR0dr06ZNud7frFkzLV26VG3bti3FWQEAAADlH/lJ8SM/AQAAAEoH+UzxI58BAAAACof8pPiRnwBAyaFoBgBQqry9vdW9e3e9/PLL6tGjR1lPp8I5duyYVqxYoV27dunChQuKiIhQVFSUXF1d5efnp86dO2vEiBF64IEH5ODgUNbTBQAAAMo18pOiIT8BAAAAyg75TNGQzwAAAADFh/ykaMhPAKDkGSwWi6WsJwEAAAAAAAAAAAAAAAAAAAAAAAAUJ2NZTwAAAAAAAAAAAAAAAAAAAAAAAAAobhTNAAAAAAAAAAAAAAAAAAAAAAAAoNKhaAYAAAAAAAAAAAAAAAAAAAAAAACVDkUzAAAAAAAAAAAAAAAAAAAAAAAAqHQomgEAAAAAAAAAAAAAAAAAAAAAAEClQ9EMAAAAAAAAAAAAAAAAAAAAAAAAKh2KZgAAAAAAAAAAAAAAAAAAAAAAAFDpOJb1BFA8tm/frlOnTikkJEQXL15UWlqannjiCfXp06espwYAAAAAAAAAAAAAAAAAAAAAAFDqKJqpJH744QeFh4eratWq8vb2Vnh4eKmMGxERUSL9Ojg4yNvb23o9OjpaJpOpRMZC2SPe9oV42w9ibV+It30pD/GuXr16qY6HiqGk8hOpfLzuUXqIt/0g1vaFeNsX4m1fyjre5CcVw5kzZ7R06VIFBQXJZDKpfv36Gj58uLp3715iY5KjoDgQa/tCvO0L8bYvxNt+lIdYk6MgN5znheJAvO0L8bYvxNt+EGv7Uh7iXR5yFIpmKonp06fL399ffn5+WrFihb777ruynhIAAAAAAAAAAECZO3bsmN588005Ozure/fucnNz0969e/Xxxx8rMjJSI0eOLOspAgAAAAAAAACAEkLRTCXRrl27sp4CAAAAAAAAAABAuWIymfTZZ5/JaDTqtddeU8OGDSVJY8aM0csvv6wlS5aoa9eu8vPzK9uJAgAAAAAAAACAEmH3RTOxsbE6c+aMzpw5o7Nnz+rs2bO6ceOGJKl3796aOXOmzX2Fh4dr7dq1OnjwoCIjI+Xo6KhatWqpW7duGjx4sFxcXErqYQAAAAAAAAAAAOA2x44d07Vr19SnTx9rwYwkubu767777tOnn36qbdu2acyYMWU3SQAAAAAAAAAAUGLsvmhm2rRpxdLP77//rk8++USJiYnW25KTk62FOJs2bdLLL7+sWrVqFct4AAAAAAAAAAAA5Vl5WLjs+PHjkqT27dtnu++OO+6QJJ04caKAjwwAAAAAAAAAAFQUdl80k1n16tVVp04dHT58uEDHnTt3Th9//LFSUlLk6uqqUaNGqU2bNkpJSVFgYKA2bdqkq1ev6q233tLbb78tNze3EnoEAAAAAAAAAAAA5UN5WLgsLCxMkuTv75/tPi8vL7m6uurq1avFMk8AAAAAAAAAAFD+2H3RzJgxY9SkSRM1adJEXl5eun79umbNmlWgPhYsWKCUlBQ5ODjon//8pwICAqz3tWnTRv7+/vrmm2909epV/fLLLxo3bly2PhYtWqTU1FSbxxw2bFiOP/AAAAAAAAAAAACUN2W1cFlCQoIkyd3dPcf+3dzcrG0AAAAAAAAAAEDlY/dFMzkVsBTEmTNndPLkSUlS3759sxTMZBgxYoS2bNmiK1euaO3atRo9erQcHbM+9Rs2bFBycrLN43bt2pWiGQAAAAAAAAAAUG6Vl4XLAAAAAAAAAACA/bL7opmi2rdvn/Vy3759c2xjNBrVu3dvfffdd7p586aOHz+u9u3bZ2mzePHiEp0nAAAAAAAAAABAaSoPC5dl7DCT224yiYmJ8vDwKNI8AQAAAAAAAABA+UXRTBEFBQVJklxcXNS4ceNc27Vq1SrLMbcXzQAAAAAAisbBwaHE+jYajXleR+VCvO0HsbYvxNu+EG/7Qrwrr+JYuKxWrVqSpKtXr2b7HScmJkZJSUlq2rRpCcweAAAAAMqXkvodhbzcvhBv+0K87Qvxth/E2r4Q73QUzRTR5cuXJaX/6JJXYlG7du1sxwAAAAAAio+3t3epjeXp6VlqY6HsEW/7QaztC/G2L8TbvhDvyqM4Fi5r1aqVVqxYocOHD6tHjx5Zjjt06FC24wEAAACgsiqt31HIy+0L8bYvxNu+EG/7Qazti73Gm6KZIkhJSdGNGzckSb6+vnm2rVKlilxcXJScnKzIyMhin8umTZt06tQpSdLFixettx0/flyS1KJFC/Xv39/m/mydIysQoDgQb/tCvO0HsbYvxNu+EG8AAAAAQGkojoXL2rZtq5o1ayowMFDDhg1Tw4YNJUkJCQlavny5HB0d1atXr+KfPAAAAAAAAAAAKBcomimCpKQk62VXV9d827u6uio5OTnLccXl1KlT2rZtW5bbgoKCrKuwSSpQ0czjjz9uU7sff/zR5j6Lwl6r2uwV8bYvxNt+EGv7QrztC/EGAAAAABS34lq4zMHBQdOnT9ebb76pV199Vd27d5ebm5v27t2r8PBwPfLII6pRo0aB5lbWC49JLGhhT4i1fSHe9oV42xfibT+INQAAAACUPxTNFEFKSor1sqNj/k9lRpvMxxWXmTNnaubMmcXeLwAAAABUFNHR0SXWt9FozFIgFhsbK7PZXGLjoWwRb/tBrO0L8bYvxNu+lHW8vb29S20se1KcC5e1adNGr7/+un788Uft2rVLJpNJ9evX10MPPaTu3bsXeG7lbeExiQUt7Amxti/E274Qb/tCvO0HsUZ5UtTfUVJTU3Xz5k0lJydnybsNBkOWc+fS0tJksViKNBbKL+JtX4i3fSHe9oNYVyxGo1GOjo5yc3OTq6trgQvzy/o3FKl8/I5C0UwRODs7Wy+npaXl2z6jTebjyqu5c+eW9RQAAAAAoEBMJlOpjWU2m0t1PJQt4m0/iLV9Id72hXjbF+JdORT3wmVNmzbV3//+9+KZHAAAAABUQIXNlS0Wi2JjY5WYmJhrm8wnXrJwSeVHvO0L8bYvxNt+EOuKw2QyKTU1VYmJiTIYDPLy8rJpoanc2OtvKBTNFEHmF1xOK5fdLqNNUV6opcXX19emdiW1knN5qGpD6SHe9oV42w9ibV+It30pD/EuDysQAAAAAABKTnleuIyFxwAAAADYk/j4+GwFM7evcF7QFc9RsRFv+0K87Qvxth/EuuKwWCzWnYAsFouio6Pl7e1dIeoRyhOKZorA2dlZVatW1Y0bNxQZGZln2/j4eCUnJ0uyvSClIiitSjN7rWqzV8TbvhBv+0Gs7Qvxti/EGwAAAABQ3MrzwmVlvfCYVD4WtEDpINb2hXjbF+JtX4i3/SgPsWbhMRSntLQ0xcfHW69XrVpV7u7u2U60zbxDqC0LH6BiI972hXjbF+JtP4h1xWGxWJSSkqKbN29aaxFiYmJUo0YNip8KgKKZIqpbt65OnjypsLAwmUwmOTg45NguNDQ0yzEAAAAAAAAAAADIWWVYuKw0F5hgQQv7QaztC/G2L8TbvhBv+0GsUdFl5FqS5OHhoSpVqpThbAAAAOyPwWCQi4uLnJ2dFR0dreTkZFksFiUnJ8vNza2sp1dhUF5URM2bN5eUniCEhITk2u7EiRPZjgEAAAAAAAAAAEDOMhYhy1i4LDcsXAYAAAAAJSNz0QwnZQIAAJQdg8EgDw8P63VbdmjHLRTNFFHnzp2tl7ds2ZJjG7PZrG3btklKr7hv3bp1qcwNAAAAAAAAAACgomLhMgAAAAAoWxkLGBgMBjk6OpbxbAAAAOybs7OzDAaDJCktLa2MZ1Ox8E22iJo2baqWLVvq5MmT2rJli/r06aOAgIAsbX799VdduXJFkjR06NBKlUA4ODiUSL9GozHP66hciLd9Id72g1jbF+JtX4g3AAAAAKA0dO7cWStWrJCUvnBZs2bNsrUpzwuXldRvKBK5uT0h1vaFeNsX4m1fiLf9INaobMxms6T0opmMEzQBAABQNjK+k1ksFuv3NNim8lRvFNKpU6cUFhZmvR4XF2e9HBYWpq1bt2Zp36dPn2x9TJ48Wa+88opSUlL0xhtv6L777lPr1q2VkpKiXbt2aePGjZIkf39/jRw5skQeR1nx9vYulXE8PT1LZRyUD8TbvhBv+0Gs7Qvxti/EGwAAAABQEir6wmWl9RuKRG5uT4i1fSHe9oV42xfibT+INQAAAACUvfLzy0EZ2bRpk3UFstsFBQUpKCgoy205Fc00atRIzzzzjD755BMlJiZqyZIl2dr4+/vr5ZdflpubW7HMGwAAAAAAAAAAoDxj4TIAAAAAAAAAAFDW7L5oprh07NhR77//vtasWaODBw8qKipKjo6OqlWrlrp27aohQ4bIxcWlrKcJAAAAAAAAAABQKli4DAAAAAAAAAAAlDW7L5qZOXOmZs6cWSx9+fn5adKkSZo0aVKx9FcRREdHl0i/RqMxyxa1sbGxMpvNJTIWyh7xti/E234Qa/tCvO1LeYi3t7d3qY4HAAAAACg7FXXhspL6DUUqH7k5Sgexti/E274Qb/tCvO1HeYg1v6EAAAAAQFZ2XzSDojGZTKUyjtlsLrWxUPaIt30h3vaDWNsX4m1fiDcAAAAAICf2vnBZaebK5Ob2g1jbF+JtX4i3fSHe9oNYAwAAAEDZM5b1BAAAAAAAAAAAAAAAAAAAAFD+zJo1S35+furQoUNZTwUVTIcOHeTn56dZs2Zlu+/ixYvy8/OTn5+flixZUgazKx68P27J77nI6/Vgq8ryuikLGc/bu+++m+2+JUuWWO+/ePFiGcwOKHnsNAMAAAAAqBQcHBxKrG+j0ZjndVQuxNt+EGv7QrztC/G2L8QbAAAAAABUBoGBgRo1apT1+r333qsvv/wyz2NmzZqlH374QZIUHh5ektOr8N5991299957Wa7/5S9/yfOYDh066NKlS+revbtWrlxZ0lOEnfLz8ytQ+9atW2vr1q0lMxkAqKQomgEAAAAAVAre3t6lNpanp2epjYWyR7ztB7G2L8TbvhBv+0K8AQAAAABAZbBq1SqdOHFCrVq1KuupVEoff/yxHnzwQbm4uJT1VACgUrp48aLuuusuSdLs2bM1YcKEMp4R7BlFMwAAAAAAAAAAAEAxYzdMFAdibV+It30h3vaFeNsPYg2gOFksFr377rtasGBBmc5jzpw5mjNnTpnOoSSEhoZq4cKFeuyxx8p6Knapfv367I50mzvuuEOzZ8/Ot52rq2spzKb4HTx4sKyngFxMmDCBghZUehTNAAAAAAAAAAAAAMWM3TBREoi1fSHe9oV42xfibT+INYDC8vX1VWRkpFavXq0jR46oXbt2ZT2lSiXj+f3vf/+rRx55RG5ubmU9JUDu7u5q2bJlWU8DAColimZQJCW1Shorb9gX4m1fiLf9INb2hXjbF+KN8io6OrrE+jYajVl+3IyNjZXZbC6x8VC2iLf9INb2hXjbF+JtX8o63qVZGAEAAAAAAOzDtGnT9NFHHyk5OVnvvPOOvv3227KeUqUya9Ysvfbaa7p+/brmz5+vJ554oqynBAAAShBFMyiS0voxkJU37Avxti/E234Qa/tCvCu3NJNZO06Ha9WhUN3VwFsPdK5f1lMCJEkmk6nUxjKbzaU6HsoW8bYfxNq+EG/7QrwrtxtJadp09rLWHgvTi0Oay9eJeAMAAAAoO+cibmrzqev6/XyU/vdgBxmNhrKeEoAKqHbt2nrkkUf05Zdfav369Tp48KA6dOhQ4H7MZrMCAwO1ceNG7d+/X2fPnlVcXJzc3d1Vr1499e7dW9OmTVPdunVz7WPWrFn64YcfVK9ePR08eNB6+7vvvqu33npLkrRnzx41adIkz7mMHTtWW7duVY0aNXTkyJEcF+xes2aNfvrpJx08eFARERFycXFRo0aNNHjwYE2bNk1eXl4Ffg5yMnLkSP300086fvy4PvnkE02aNEkeHh6F7u/EiRP68ssvtXPnToWFhcloNKpu3brq06ePHnvsMdWvn/Nv6hcvXtRdd90lSZo9e7YmTJigX3/9Vd98842OHTumiIgIdenSRStXrsy17cKFC3Xs2DElJCSoUaNGeuihhzR58mQ5OTlJkiwWi5YtW6ZFixYpODhYN2/eVNOmTTVx4kRNmjRJBkPOf6du3ryp9evXa8eOHfrjjz904cIFJSYmytPTUwEBARo8eLAmTZqkKlWqFOo5y+nxZFiyZImeeuopm/t6/vnn9cILL2S73WQyaenSpVq1apWOHDmi6OhoeXh4qFmzZhoxYoQmT56c7y5DwcHBmj17tnbs2KHIyEj5+vqqa9eumjFjhu68806b51jS7r33Xu3atUvdu3fXypUrc2337rvv6r333pMkhYeH59ruxo0bmj9/vjZs2KCgoCDFxMTIxcVFDRs2VJcuXXTfffepS5cuBZpjhw4ddOnSJY0fP15z5szJsY3JZNLChQv1ww8/KDg4WAaDQQ0bNtT999+vqVOnFmi8onye/P7771q/fr327t2r06dPWx9/7dq11b17d02dOlXNmzfP9fjbPzdjY2M1d+5c/frrr7p06ZIcHR3VqlUrTZo0SWPGjCnQ48rNzz//rEWLFun48eNKTU1V/fr1NWLECM2YMSPf87gyv+cOHDiQ42fW4cOH9fXXX2vPnj0KCwuTyWSSr6+vqlevrrvuukv9+vXT4MGDrZ8pfn5+WY5/6qmnsr2vb3/vnj9/XmvWrFFgYKBOnjxpfY1mjDFhwgT179/f5sdRt25dffPNN/r+++8VHBys1NRUNWzYUPfee69mzJghd3f3PJ8Xs9msFStWaNWqVTp06JAiIyMlpf+NvvPOOzVs2DANHTrU+nl7u507d2rJkiXau3evrl+/LgcHB9WrV0/9+vXTjBkzVKtWrTzHLy5mi0X7zkVp9ZFQ1fJ00wPtfUpl3PKGohkAAAAA+bJYLDp4MVqrDoVq9dGriohPkSQFX4+naAYAAABAqYtJSNXWs9HaHBylfRfilGa2SJLa1vHUIx2ql/HsgHTshoniQKztC/G2L8TbvhDvyi0lzayDl+K042y0doZE62J0kvW+3UFX1KpW4U/CLgx2wwQqj6efflrffvutEhMT9dZbb2np0qUF7uP999+3niCfWVxcnI4fP67jx49rwYIF+vTTTzV8+PAC9T1mzBhr0cyyZcv0/PPP59r2+vXr2rFjhyTpvvvuy1YwExMTo0cffdTaJkNycrIOHz6sw4cPa/78+Vq0aJE6duxYoHnmxGAw6IUXXtCkSZMUERGhL774Qs8880yh+vr444/11ltvZfvbHhQUpKCgIC1YsEAffPCBxo8fn2c/FotFM2fO1I8//mjTuC+88ILmz5+f5bbjx4/r73//uwIDA/XVV18pLS1Njz/+uH755Zcs7Y4eParnn39eR44c0Ycffphj/w8++KB27dqV7fbIyEjt3r1bu3fv1vz587VkyRI1a9bMpjmXpsuXL+vhhx/W8ePHs9yekpKiffv2ad++fdb551bwtWLFCs2aNUvJycnW20JDQ7Vs2TKtWrUqx/dWZbB161ZNnTrVWiCQITU1VceOHdOxY8f01Vdf5Vl0Uxjx8fGaMGGC9uzZk+X2o0eP6ujRo1q2bJk++uijfPsp6udJbkVbqampCg4OVnBwsBYvXqz/+7//06OPPprvfM6cOaPx48fr4sWLWW7fs2eP9uzZo/379+udd97Jt5/cpKWlafr06Vq1alWW20+dOqVTp07pp59+0k8//VTo/iVp3rx5evXVV7N9zoWGhio0NFRHjhzR/Pnzde7cuUIX0l24cEGdOnXK8b7Lly/r8uXLWrlypcaOHavZs2fL0THvEojExESNHTtW27dvz3L7iRMndOLECa1bt07Lli3LtWDy4sWLmjRpko4dO5btvpCQEIWEhOjnn3/WihUr1KNHjyz3JyUl6amnntLy5cuzHXvy5EmdPHlS8+fP1+eff67Bgwfn+TgKy2yx6GhovDYGRWljcJTC/zzPq663m8a3s898gaIZAAAAADmyWCw6efWGVh0O1S+HQ3UlJjFbm8OXYnQxMkH1ffNefQEAAAAAiiryZqq2nI7S5uAoHbgUJ5Mle5s1R69SNINyg90wURKItX0h3vaFeNsX4l3xXbuRrF3nYrUzJEb7LsQqMTXnIqjtZyLV3M+1lGcHoLKoVauWJk+erLlz52rr1q3as2ePunbtWqA+0tLSVLNmTQ0bNkydOnVSgwYN5OLiotDQUO3fv19ff/21bt68qRkzZmjTpk0KCAiwue/GjRvrrrvu0oEDB/Tzzz/nWTSzYsUK69++23dVSE5O1v3332/dfeb+++/XgAEDVL9+faWmpmr37t2aN2+ewsPDNWHCBG3evFn16tUr0POQk2HDhql9+/Y6fPiwPv30U02ZMkVVq1YtUB9ff/213nzzTUnpOyE8+eST6ty5s0wmk7Zv3645c+YoISFBTz75pHx8fDRw4MBc+/r88891/Phxde3aVX/5y1/UpEkTxcbGZjvRXpIWLlyoAwcOaMCAAXr44YdVt25dhYaG6r///a8OHDig1atX67vvvtOJEyf0yy+/6P7779fo0aNVs2ZNhYSE6L333tPp06e1ePFiDR8+PMedG9LS0tSqVSsNHTpUd955p2rVqqW0tDRdunRJa9as0cqVK3XhwgVNnDhRW7Zskatr8f29GzZsmO6444482/z73//W5s2bJSnbTklRUVEaMWKErly5IhcXFz388MPq3r276tevr5s3b2rLli364osvdO7cOT3wwAPatGmTqlWrlqWPP/74Q48//rjS0tLk4uKi6dOna8CAAXJxcdGBAwf08ccf64UXXijQe6Yi2LFjh8aOHau0tDQ5ODho7NixGjp0qOrUqaPk5GQFBQVp06ZNWr9+fbGP/cQTT1gLZjp06KAZM2aocePGun79ur7//nutWrVKf/vb3/Lsozg+T9LS0uTl5aUhQ4aoW7duaty4sdzd3RUWFqajR4/qiy++UGRkpF566SU1a9ZMd999d67zSUxM1EMPPaSoqCj99a9/Va9evVSlShUdOXJE77//vkJDQ/X1119r8ODB6tevX6Get1dffdVaMNO0aVPNmjVLrVu3VlxcnFatWqXFixdr2rRphepbSi/GyyiYadCggaZMmaI2bdrIy8tL8fHxOnPmjAIDA7V27dosx23fvl1hYWEaN26cJOnll1/W0KFDs7SpXv3W/+WbTCY5Ozurb9++6t27t5o3by4vLy/FxMTo7Nmz+vrrr3Xq1CktXbpUDRo00IsvvpjnvJ999lkdOHBA48eP17333qsaNWroypUrmjNnjvbv36+DBw/qww8/1CuvvJLt2OvXr2v48OEKCwuTJN19990aP368mjVrJoPBoAsXLmjnzp3ZCpWk9HOtHn30UW3YsEGSNHjwYN17771q0KCBjEajDh48qLlz5+ry5ct69NFHtXr16nw/72xlsVh0POymNpyK1MbgKF27kZKtzeXoRB2/Gq+WNe3vPC+KZlAkJbVKGqus2BfibV+It/0g1vaFeFcuF6MT9duJCP12MkLnIrMXytxu6b4QPdq1TinM7BZWSQMAAADsw7UbydpyOn1HmT8u31AOdTJZnAq7oYvRiapTzblU5gcAAADAPpjMFh29Gq/AkBgFhsQoODzBpuN2hsRoWrfS/Q0FKG1mi0VRCanW66a0tDKcTcnzdHOU0WAotfGefPJJLVy4UAkJCXrnnXdyXLU+Lw8//LCef/55OTk5Zbm9ffv2Gjp0qKZOnaohQ4bo6tWr+vjjj/Xpp58WqP/7779fBw4c0NmzZ3Xo0KFcT/xdtmyZJKlJkybZ2rz//vs6cuSIPD099fPPP6t9+/ZZ7u/atavGjBmjoUOH6tq1a3rzzTc1b968As0zNy+++KIefPBBRUdH67PPPsv3hPzMIiIi9Nprr0lKL3D67bffVKfOrc/8Ll26aPDgwRo5cqQSEhL03HPP6cCBA9likeH48eMaN26c5syZI0M+r7EDBw5o+vTpeuONN6y3tW/fXr1791bPnj116dIlvfHGG4qOjtYbb7yh6dOnZ2nXvXt3de3aVfHx8VqwYEGORTOzZ89WkyZNsuzmkJaWprvuukujRo3SQw89pHHjxunMmTP66aef9PDDD9v2xNnA09Mzyzkot/vqq6+sBTNjxozRgw8+mOX+v//977py5Yrq1aun5cuXq0GDBlnu79Gjh+655x6NHDlS58+f1yeffKJ//OMfWdq88MILSktLk5OTk3788Ud1797del+HDh00YsQIDRkyJNtONkWRkJCgkydP5tuudu3aeT4/hZWUlKTp06crLS1N7u7u+u6777LtoNG5c2c98sgjunLlSrGOvX79emvRxYABA7R48eIsr72BAwfq/fffz3dHluL4PBkwYIDuv/9+ubtnLSpo166dBg0apGnTpumee+7R8ePH9c477+RZNBMREaGUlBStXbtWLVq0sN7evn179ejRQ71791ZSUpLmz59fqKKZEydO6Msvv7TOb+XKlVl2eunVq5c6deqkWbNmFbjvDL/88ovMZrPc3d21Zs0a1ahRI8v93bp10yOPPKK4uLgsz1nLli2z7OLi7++vli1b5jpOzZo1deDAAdWqVSvbfb169dLkyZP11FNP6fvvv9enn36qxx9/PFuxW2b79+/Xp59+qrFjx1pva9++vfr376+BAwfq5MmT+uabb/Tyyy9n27XmhRdesBbM/Otf/9KTTz6Z5f4777xTo0aN0r///W+l3fa955tvvtGGDRvk5OSkxYsXZ/t87dixo8aNG6eRI0fq1KlT+sc//qHVq1fn+jjyY7FYdPLaTW0IitLGoEhdjcteKHO79aciKZoBCqq0Vj5hlRX7QrztC/G2H8TavhDviuf6jRStD4rU+pOROnHtpk3HtKlTTfe0r61eDTyINwAAAIBicyUmSZv/LJQ5ejXepmOcHY3q1ay6hrTxl687BTMAAAAAii4mMVW7z8Uq8FyMdp+LVWyS7YUAflVd1Le5n7rU88i/MVDBxSamaeCnB8t6GqVmwxMd5O2ec9FDSfDz89OUKVP0ySefaOfOndq5c6d69uxp8/H169fP8/7atWtr5syZ+uc//6nffvtNFosl34KNzEaNGqVXXnlFJpNJP/30U45FM+fOndOBAwckZd9lJj4+Xl9//bUk6aWXXsp2gnuGevXq6bnnntMLL7ygVatW6YMPPshyMnZhDRw4UB07dtTvv/+uuXPnaurUqfLy8rLp2CVLlighIb2I8j//+U+WgpkM7dq109NPP6233npLV69e1Zo1a3Tvvffm2J+np6feeecdm57/OnXq6NVXX812u7u7u8aPH6/3339fUVFR6tixY5aCmQwZuw/9+OOP1p09btekSZM859C7d28NGTJEa9as0dq1a4u1aCYv27dv1z//+U9J6cUrH330UZb7L168qBUrVkiS3n777WwFMxnatWtnfW99//33WYpm/vjjDx06dEiSNHHixCwFMxn8/f312muvFWkHj9sdOnRIvXr1yrfd7NmzNWHChGIbN8OPP/6oq1evSpJeeeWVbAUzmeX0ei+K+fPnS5JcXFz00UcfZStikKS//vWvWrVqVa6FRcX1eeLv75/nXKtVq6YXX3xREydO1N69exUVFSUfH59c27/00ktZCmYyNG7cWEOHDtXy5cu1d+/ePMfMzYIFC6yLGn/44YdZCmYyjB8/XsuXL9emTZsKNcb169clpX8m3F4wk1leBSy28PDwyPNz3WAw6D//+Y+WLl2qhIQEbdu2TSNHjsy1/fDhw7MUzGRwcXHRlClT9Le//U1RUVEKCgpS69atrfefOXNGa9askZS+69XtBTOZ3f58WywWzZ49W5I0bdq0HAsSJcnLy0uvvvqqJkyYoH379uns2bP5fubeLtVkVlhsih5bdVhXYpNtOqZ5zaoa3s5fvRraZ45C0QwAAABgp2ISU7UpOErrTkbatGKzJDXwcdXQln4a17WxGvulJ3/R0dEUzQAAAAAokgtRidp8OkqbgqN06pptKza7OBrVo5GnBrSorpF3NVJV1/QTVshRAAAAABSGxWJRcHiCdv65m8yxq/Ey2/LjiSSDpNb+Hrq7iY+G39lArfyryWg0kJ8AKBazZs3S/PnzFR8fr7feeqtIK9LfuHFDUVFRSkxMlMWS/iGXsTPAjRs3dOHCBTVs2NDm/vz8/NS7d29t3rxZK1as0H/+8x8ZjcYsbTJ2mZGk0aNHZ7lv165diouLk6Q8T36W0nczkKTU1FQdPnw4x0KGwnjxxRc1duxYxcXF6dNPP9Xf//53m47bvn27pPRilxEjRuTa7uGHH9Zbb71lPSa3opnBgwfneMJ7ToYPH57rjjWZT/7ObSxJatOmjX788UfFxMQoNjY2351LIiIiFBkZqZSUW7sY+Pr6SlKx7raSl7Nnz2rKlClKS0uTv7+/Fi5cKFdX1yxtNmzYIJPJJHd391xPWM/QtWtXffLJJwoLC9Ply5dVt25dSdK2bdusbfIqThk+fLg8PT0VGxtbhEdVfqxfv15SevHCxIkTS21ck8mkXbt2SZL69OmT404jkmQ0GjV+/Hj9+9//zvH+kvo8uXnzpiIjI5WQkGD93Mxc1HP8+PFcd5sxGAy6//77c+27ffv2Wr58uaKjo216H94u43OoVatWuRYJSdKDDz5Y6KKZmjVrSpKCg4N18OBBdejQoVD9FFRqaqrCw8MVHx+f5fu0j4+PwsPDdfz48TzjfHuRZmaZn6sLFy5k+dzcsGGDNc45FR3mJSgoSOfPn5dk+2tQkn7//fd8i2YsFouS08yKSzIpIcWs6IRUXYlJybdgpqGPqwa3rK4xnRurWc2qkuz3NxSKZgAAAAA7kpBi0rYz0Vp3KlK7z8fKZMOvPTWrOmtQC18NbuGr5jXc5ejoKG9v2/6zDgAAAAByYrFYFBKZqE3BUdocHKUzEYk2HefuZNTdTbzVL8BH3Rt6ys3ZQQ4ODtaCGQAAAAAoiIQUk/ZdiE0vlDkXo/D4VJuPrerioG6NvNSjkae6N/KSt7uTHBwc5O1dsJMdASA/Pj4+mj59uj744APt27dPmzdvVr9+/Ww+/tKlS/rf//6n9evX69KlS3m2jYqKKlDRjJR+YvLmzZt17do17dixQ717985y/88//yxJuuuuu9S4ceMs9x0+fNh6uU2bNjaPmbHzQXHo06ePunbtqj179uiLL77QjBkz8tw1IkPGbhft2rXLtYBFkmrUqKH69evr4sWLue6QIaWf9G6rvE6uznzSfV7tMu8KER8fn+PJ+nv37tVXX32lrVu3Kjo6Ote+oqKi8ptykcXGxurhhx9WTEyM3NzctHjx4hyLKzJ2iElISMi1+CIn169ftxbNZMTJ2dk5z9elk5OT2rZtq507dxbgkeSue/fuWrlyZbH0VRhHjx6VlF5Q4O7urrQ023fZK4rz589bd226884782yb1/3F+XkSGRmpuXPn6tdff1VISIi1iCInkZGRud7n6+ub5+dJ5p2tcnsf5iY5OVkhISGSlOMuX5kVpdBl9OjR+u9//6vk5GQNHz5c/fr108CBA9WlSxe1aNGiQLuT5Sc1NVWLFi3S0qVLdfTo0SxFerfL73OnWbNmud53+/OeWcb7wMnJSR07drRh1rdkfP5I0tChQ20+Lq+/acmpJsUlmxSXlKbktPRdhVzyWRa5vrerBjb30cDmvmpS3e3P87yq2jyfyoqiGQAAAKCSS0kza9e5GK07FantZ2OsSVRevN0cNaC5jwa3qK52darIWIxJLgAAAAD7ZLFYFHQ9Ib1Q5nSULkQl2XRcVRcH9Wrirf7NfdSlgadcHI35HwSUAw4ODiXW9+2r9t5+HZUHsbYvxNu+EG/7QrzLlwtRidp5Nlo7zkbr4OU4pZps3E5GUjM/d/Vs4q2ejb3Vrk5VORqz/n5CrAGUlMcff1xffvmlYmNj9e6779pcNLNx40ZNmTLFekJ6fhITbVvYJLOhQ4fK3d1dCQkJ+umnn7IUzRw+fFinT5+WpBx3WwgPDy/weIWdZ15eeukljRo1SvHx8ZozZ47+9a9/5XtMTEyMJKl69er5tq1Ro4YuXrxoPSYnBTlZ3s3NLdf7Mv/tydhFKL92Oe048O677+q9996zaT7FHY/bmUwmTZ06VWfOnJHBYNDs2bNz3VUjIiKiUGNkfgwZBUJeXl75/v+On59focYrjzKKEDJ2FiktmQuy8ns/1ahRI9f7iuvz5PDhwxo3bpzNxWBJSbn/P3de71Up//dhXmJiYqzFPPk9b0V5nTZr1kyfffaZ/vrXvyomJkbr16+37krk6+urfv366ZFHHsmyc0phREdHa+zYsVmKn/KS3+eOrZ+Ttz/vGUVQXl5ecnZ2tmkuGYrj80fSnzvKpGUplMlPHU8XDWrhqwHNfRTg516sxUyVBUUzAAAAQCWUZrbo94txWncqUltORyk+Of/k2sPZQX2beWtwC191auCZ7YceAAAAACgoi8Wi42E3rTvKXIlNtuk4TzdH9W2avqNMp/rV5OTAiWaoeLy9vUttrIKcWIOKjVjbF+JtX4i3fSHepSs5zaR956K0+dR1bTl1XecjbTtxXJLcnBzUo6mv+raooT7Na6iOV94nPt6OWMMeeLo5avNTna3XTaW0M0FZ8XQrm1MuPT099fjjj+vtt9/WgQMHtH79eg0aNCjPYyIjIzVjxgwlJCTIw8NDM2fOVN++fdWwYUNVq1bNejLwjh07NHr06ELPrUqVKhoyZIiWLVum1atX67333pOrq6skadmyZZLSF5YYNWpUtmPN5lsnA2/atCnPHVsyq127dqHnm5MePXro7rvv1o4dO/TVV19pxowZeZ6cn1lxnZhckotvFNT27dutBTMNGzbUrFmz1LVrV/n7+8vd3V2Ojunvg7ffflsffPBBic/nn//8p7Zu3SpJeu6553J8LWXIOAHe19dXy5cvt3mM+vXrZ7uNk85LX1Ge8+L4PElJSdHUqVMVFRUlJycnTZ06VUOGDFGTJk3k5eUlFxcXSem743Tq1EmS8tyFprSU9Gt15MiR6t27t1asWKHNmzdr7969ioiIUGRkpJYuXaqlS5dq/Pjxmj17dqGLxv/xj39YC2aGDRumBx98UK1atVL16tXl6upqfYx33HGHrly5Ui6e99tlLsD59ttvVa9ePZuOq169ulIyFcok2Vgo4+Jo1MRO/hrY3FctalIokx+KZgAAAIBKwmKx6EhovNaditTGoEhFJeT/H9Iujgb1bJxeKNOjsRcrNgMAAAAoMrPFoiNX4q07yly7kWLTcb4eTurXLL1Q5s661SjkBwAAAFBoV2MTtTUoXJtPXVfgmQglpNi+cnd9H3f1a1FDfZr7qWtjX7k6lZ+TmIHyyGgwyMf91mmIaWnk8yVl+vTp+vzzzxUVFaV33nkn36KZX375RbGxsZKkhQsXZtkBJrPMuzwU1v33369ly5bpxo0bWr9+ve655x6ZzWZr0ULv3r1z3Okg84IT1atXL/ZimIJ46aWXtGPHDiUkJGj27Nl644038mzv5eWla9eu2bS7xfXr163HVASLFy+WlD7fDRs2WHexSLutKK44Xjv5WbRokb788ktJ6Sfuv/DCC3m29/HxkSTFx8crICCgUMVIGXGKjo6WyWTKs4/C7m5S3DIKFTIXjuQkr12nfHx8FBoaqmvXrhXr3PKT+X2R3/OZ8V7KSXF8nuzYsUPnz5+XJL3zzjt65JFHcmyX165RpSVzcXZ+z1txvE6rVaumiRMnauLEiZKk4OBgrV27Vl9++aXCwsL0ww8/qG3btpo+fXqB+75x44ZWrFghSRozZozmzp2ba9uSfu59fX2t46SkpBRot5mMzx8p/flq2bJlnu2thTLJaQqPsK2w38nBKGezQb4eTqrj5aZhpbwzVEVG0QwAAABQgVksFp0OT9C6U5FafypSV+PyPxnNwSB1aeipwS181bupt6q4kBYAAAAAKJo0s0V/XI7T5uAobT4drcibqTYdV7Oqs/o181H/AB+1rV1FDhTKAAAAACgEk9miPy5Ga0vQdW0+Fa6TV+NsPtbRaFDnRj7q16KG+raoocbVPVilGUC5VKVKFc2cOVOvv/66jhw5otWrV+fZ/tSpU5LSTyTPrWBGkg4dOlTkufXr10++vr6KjIzUsmXLdM8992jXrl26evWqpPSToHPStm1b6+W9e/fqvvvuK/JcCqtz587q16+fNm/erIULF2rWrFl5tm/ZsqWuXbumI0eOKC0tzbr7yu3Cw8N16dIl6zEVQVBQkKT0HXgyCmZykrErREkJDAzUSy+9JCn9tTJnzpx8/0a3bdtWP//8s5KTk3Xo0CHdddddBR63ZcuWWr58uVJSUnTs2DG1b98+x3ZpaWk6duxYgfsvCVWqVJEka6Fcbs6ePZvrfe3atVNoaKgOHTqkhISEAhULFEXDhg3l5uamxMRE/fHHH3m2zevzqjg+TzJe+5LyPL44PjeLytXVVY0bN1ZISEi+88nveS2MgIAABQQEaMyYMerevbsSEhK0cuXKLEUztn6nDgkJUWpq+m8Kee0kdfr0ad28ebNI885Pu3bttHTpUqWmpmr//v3q0aOHzcdmfg3u27dPXbt2zdYmJc2sG8lpiksyKTHVtsJ+R6NB1VwdVc3VUW5ORl2/fkNm0pUC4+w4FElJbQl4+/Zchd2uCxUD8bYvxNt+EGv7QrxL38XoRP12IkK/nYzQuchEm47pUK+ahrSsrgHNfeXtbts2tDkh3gAAAAAkKdVk1v6L6YUyW89EKyYx/90uJamOp4v6BaQXyrSq5SEjJ6OhkirJ1VaNRmOW1SRjY2PzXUkUFROxti/E274Qb/tCvEtGTGKqdoXEaGdItHaFxCg2ybacRJKqezipR2Nv3d3EW10aemZaYCy1SKtXl4dYZ15lHUDlM2XKFM2bN0/h4eF699131aZNm1zbmkzpJ+MmJyfLbDbn+LtuQkKCli5dWuR5OTo66p577tH8+fO1ceNGxcbG6ueff5Ykubu7a+jQoTke17t3b7m7uyshIUFffPGFRo0aVaaFiy+99JI2b96spKQkffTRR3m27dWrl7Zu3arY2Fj9+uuvuZ7o/e2338pisViPqQgydpTJa1eSI0eO6MCBAyU2h3PnzunRRx9Vamqq/Pz8tHjxYrm7u+d73ODBg/Xaa6/JYrHos88+0+eff17gsXv37q3/+7//kyT98MMPuRbNrF69ulzsOCJJ9evXl5ReFBMfH28tosksMjJS27Zty7WPQYMG6bffflNCQoIWLlyoadOmldh8M3N0dFT37t21adMmbd26VWFhYapVq1a2dmazWT/88EOu/RTH50nm3ZRu3ryZ4/NoNputuzGVtd69eyskJEQnTpzQkSNH1K5duxzbfffddyU2hzp16qhJkyY6evSooqKistzn4uJivZySkvsiwJmf97w+dxYsWFD4idpo4MCB+te//iWLxaLPP/+8QEUz7dq1U+3atRUaGqrFixfrsccek6urq1JNf+4oU4RCGYr6i46iGRRJaSXamf9DAZUf8bYvxNt+EGv7QrxLRlhskn49EqpVh0N15HLeq4NkaFvHU/e0r60R7f3l7+lWIvMi3gAAAID9SE4za++FWG0KitL2s9G6kWzbDzwNfFzVP8BH/Zr5qHkNd37ggV3IODmpNJjN5lIdD2WHWNsX4m1fiLd9Id6FY7FYFByeoJ0hMQoMidGxq/EyW2w71iCptb+Hejb2Vs/GXgqo4Z6lgL+k4kGsARQ3Dw8PPfnkk/rXv/6lEydO6Nq1a7m2bdy4sSRZV/+/fdcEk8mkZ599VmFhYcUytzFjxmj+/PlKTk7Wzz//rF9//VWSNGTIkBxPPJfSf2ueMmWKPvnkE+3fv1///Oc/9frrr+e6cOP169e1bt06PfLII8Uy59vdeeedGjx4sNatW6dvvvkmywnft5swYYLef/99JSQk6NVXX1WXLl3k7++fpc2xY8f08ccfS5L8/f01bNiwEpl3cWvcuLFOnz6tvXv3KiQkxPpayhAREaGZM2eW2PhxcXF6+OGHFRUVJRcXFy1atEh16tSx6dimTZvqnnvu0cqVK7V8+XLdeeedevzxx3Ntf+HCBR04cECjR4+23tahQwe1a9dOR44c0YIFC3TPPfdk2zEiLCxM//73vwv1+EpC9+7d9fnnnyslJUVffPGFnn322Sz3p6am6tlnn1ViYu6Lso4dO1bvv/++QkND9cYbb6hVq1a5FgyEhoaqdu3axTb/v/zlL9q0aZOSk5P1t7/9TQsXLsy2qP/HH3+sEydO5NpHcXyeZH6tf//993r66aezHffGG2/oyJEjBX2IJWLixIlasGCBLBaLnnvuOa1YsUIeHh5Z2vz000/auHFjocdYs2aNevTokeu5QVeuXNGZM2ck3SreyuDj4yNnZ2elpKTo/PnzuY7RqFEjGQwGWSwWff/99zkWPK1bt05fffVVoR+HrZo0aaJhw4Zp9erVWrNmjebMmZPrzmM3b95UamqqvLy8JKUX0D/zzDN64YUXdP78eU2b8YReeetDpRlyLte4GX9D61Yt0+gHJ0lKL5Sp+mehjDuFMsWOohkAAACgHIu+maI1x65q1aFQ7TsfJYsNP/408fPQPe3raGR7fzX2y/k/HwEAAADAVkmpJgWei9Xm4CjtOButhFTbVkluWt3NuqNMY183fuABAAAAUGAJKSbtuxCbXihzLkbh8ak2H1vVxUHdGnmpRyNPdW/kJW93pxKcKQCUnsmTJ+t///ufrl27psjIyFzb3XvvvXrzzTeVnJysp556SkePHlWfPn1UrVo1nTp1Sl9++aUOHz6szp07a9++fUWeV+fOndWgQQNduHBB//d//6fY2PSFIO+///48j3vxxRe1a9cuHThwQJ9//rkCAwP1yCOPqE2bNnJ3d1dsbKxOnTql7du3a9OmTWrZsmWJFc1kzGf9+vVKSUnJc2eE6tWr69VXX9WLL76o0NBQ9e/fX0899ZQ6d+6stLQ0bd++XXPmzNHNmzdlMBj0wQcfyMmpYvwtGjdunNatW6eEhASNGDFCzzzzjNq3by+TyaT9+/dr7ty5un79ujp16qT9+/cX+/gvv/yygoODJUmPPfaYPDw8dPLkyVzbV69eXX5+ftbr7733ng4fPqzz58/rX//6l9auXatx48apRYsWcnZ2VnR0tI4fP67Nmzdrx44dGjZsWJaiGUl69913NWLECKWmpmrs2LGaPn26BgwYIBcXFx04cEAff/yxoqKi1Lp1ax0/frxYHndCQkKejzOz5s2bZykGGThwoOrVq6dLly7p7bffVlRUlIYPHy5XV1edOnVKX3zxhY4ePaqOHTvq999/z7FPV1dXzZs3T6NHj1ZCQoLGjBmjsWPHatiwYfL391dKSopOnz6tjRs3at26dbpy5UqxPG4pfYegjIK1devWafjw4Zo+fboaN26siIgIff/991qxYoXuuOMOHTp0KNd+ivp50rdvX/n5+Sk8PFxvvfWWLl26pGHDhsnX11chISH65ptvtH379mL73CyqNm3a6NFHH9VXX32lQ4cOaeDAgXryySfVqlUrxcXFadWqVVq0aFG+z1tePvvsMz3++OMaMGCA7r77bjVr1kzVqlVTbGysDh06pC+//NJajDV58uQsxzo6OuqOO+7Qvn379N1336lt27Zq06aNHB3Tyxe8vb3l7e0tHx8fDRgwQBs2bNDmzZs1duxYTZ48WfXq1VN4eLh+/fVXff/992rQoIHi4uIUERFRlKctX++++64OHDigsLAwvfbaa9q8ebMeeOABNWvWTAaDQRcvXtTOnTu1YsUKzZ8/31pclmYy655xD2nNhs3auuE3/bb6Fx09ckQjx05Qyzbt5VG1mhLib+jCubM6tH+vdm3dKGcXF02ZMlXVXB3k7uzA7ygliKIZAAAAoJyJT07ThhNhWnUoVDtORyjNhmXS6ni5aUR7f93TvrZa+VcjiQIAAABQJPHJadoZEqPNwVEKPBer5DTbCmVa1HS37ijTwKdkdrsEAAAAULldjE7SzpBo7QyJ0R+XbyjVZON2Mkov3u/R2Es9G3upbe2qcjTyewmAysfNzU3PPPOMXn755Tzb1a5dW++++66effZZJSUl6ZNPPtEnn3ySpc2oUaP0yCOP5FvYYqvRo0fro48+shbM+Pr6ql+/fnke4+Liop9++kmzZs3S6tWrdfz4cb300ku5tq9atWqxzDU3bdu21fDhw6075eTl0UcfVWxsrN5++22Fh4frlVdeydbGxcVFH3zwgQYOHFgS0y0R99xzjyZMmKAlS5bo6tWrevHFF7Pc7+DgoNdff12xsbElUjRz+fJl6+WcXre3e/755/XCCy9Yr3t7e+vXX3/V1KlTtWfPHu3evVu7d+/O9ficXlN33XWX/ve//+nJJ59UUlKS/vvf/+q///2v9X5HR0e9++672rt3b7EVzRw6dEi9evWyqe2ZM2ey7Pzh7OysTz/9VOPHj1dCQoLmzZunefPmWe93cHDQG2+8oZiYmFyLZiTp7rvv1vfff6+pU6cqJiZGS5Ys0ZIlSwr/oApg3rx5Gj9+vPbt26cDBw7osccey3J/27Zt9f7772vAgAG59lHUzxMPDw/NmTNHkyZNUlJSkhYuXKiFCxdmadOjRw+9/fbbuvvuuwvxKIvf66+/rrCwMK1evVqnT5/WU089leX+Bg0a6IsvvlCnTp0KPUZCQoJWrVqlVatW5Xi/0WjUCy+8kONuWk8//bR156jp06dnuS/ze/e9997TiBEjdPnyZW3btk3btm3L0rZu3bpatGiRJkyYUOjHYasaNWrol19+0cSJE3Xy5Ent2LFDO3bsyLGtyWRWVEKqbiSlKSHFJIukV96ZLU+f/2jVj9/qyqULmvfh27mO5edXXf6eue9qhuJD0QyKJDo6ukT6NRqNWf6gx8bGymy27UdZVDzE274Qb/tBrO0L8S665DSzAkOi9duJCO04G60kG05I83Z31MDm1TW0VXW1q1NVRoNBklkxMTElOtfyEG9vb+9SHQ8AAACwB3FJadp+NlqbgqO093ysUmw8Ma2tfxX1C/BRv2bequPlWsKzBAAAAFDZpKSZdfDyDQWGxGhnSLQuxSTbfKyro1GdGlRTj0bphTK1qnHCGQD78Mgjj2jOnDn57vTw4IMPqmnTpvrf//6nffv2KTY2Vj4+PmrdurUmTJigUaNGKTAwsNjmNWbMGH300UfW6/fcc491R4G8VKlSRQsWLNCePXv0ww8/aM+ePQoLC1NSUpKqVq2qhg0b6s4779TAgQPVt2/fYptvbl588UWtWbPGpt/Bn332WQ0aNEhfffWVduzYoWvXrslgMKhu3brq06ePpk+frvr165f4nIvb7Nmzdffdd2vx4sU6duyYUlJSVKNGDXXr1k1TpkxRhw4d9O6775b1NHNVs2ZN/fLLL1q/fr2WL1+u33//XdevX1dqaqo8PT3VqFEjderUSYMHD1b37t1z7GP06NFq3bq1Zs+ere3btysqKkq+vr7q3LmzHn/8cd11113au3dvKT+y3HXt2lWbNm3SRx99pO3btysyMlI+Pj7q1KmTHn/8cXXu3NmmmPXv31+HDh3SF198ofXr1+vs2bOKjY2Vu7u7GjVqpG7duhVboV1mVapU0cqVK7VgwQL9+OOPCg4OlsFgUMOGDTVq1ChNnz5d169ft6mfonye9OvXTxs2bNDs2bO1Y8cORUZGytPTUwEBARozZoweeuihLIVdZc3JyUkLFizQ0qVLtWjRIp04cUJpaWmqW7euhg0bppkzZ8rLy6vQ/X/22WfasGGDAgMDFRQUpOvXrysqKkouLi6qV6+eunXrpkmTJql169Y5Hj9o0CAtW7ZMn3/+uf744w9FRkYqNTX77pF16tTRpk2b9Mknn2jt2rW6fPmydYxhw4bpscceK9LjKKiGDRtqy5YtWrp0qVatWqUjR44oKipKjo6Oql27ttre0UF39x8snybtFBaXNX9xdHLSX//5uu4d95B+/fl7Hdq/R9fDQpWYkCB3Dw81qF9f7du3V//+/TVo0KBSe0z2zmCxWGxfjgG4TUltceXg4JDlRMjo6GiZTKYSGQtlj3jbF+JtP4i1fSHehZNmtuj3i7FadzJSW85EKz45/+fMw9lBfZt5a3ALX3Vq4FkmK6SVh3hXr169VMdDxVCSW/CWh9c9Sg/xth/E2r4Qb/tCvG0Xk5CqrWeitTk4Snsvxslkw06XBkl31q2qfgE+6tvMWzWrlu1JaWUdb/IT5IYcBcWBWNsX4m1fiLd9Id7ZXbuRrF3nYrUzJEb7LsQqMdX2xbnqeLqoZ2Mv9WjspbvqVZOLo7EEZ1ow5SHW5CgVw5kzZ7R06VIFBQXJZDKpfv36Gj58eK4nbheHwuQo165dk9lsltFoVM2aNXNtl7koIi0trVDzQ8VBvO0L8bYvxNt+EOuCMZktupGUprikNN38c0eZ/BgNBlV1dVA1F0d5uDj8uRhy0dn6/SwDOUo6dpoBAAAASpHZYtGR0HitOxmpTcGRikrIP/F0cTSoZ+P0Qpkejb3K1Y8/AAAAACqeiPgUbTkdrc2no3TwUpxs2VDGwSDdVa+a+gX4qE8zb1X3cC75iQIAAACoNExmi45ejVdgSIwCQ2IUHJ5g87EORoM61K2qHo291LORlxr4uMpQTCecAWXh2LFjevPNN+Xs7Kzu3bvLzc1Ne/fu1ccff6zIyEiNHDmyrKcIAABg90xmi24kpykuyaSbySZZbCiVMRoMqurioGquxVsog6KjaAYAAAAoYRaLRcHhCVp3MlLrT0Uq7EZKvsc4GA3q0qCaBrfwVe+m3qriwld3ID8ODg4l1rfRaMzzOioX4m0/iLV9Id72hXhnFxaXrM3BkdoYFKlDl2/YtAqao9GgLg091T/AV32a+cjb3anE51kYxBsAAAAon2ISU7X7XKwCz8Vo97lYxSbZvoK1r4eTejTyUs/GXurcoBq/k6DSMJlM+uyzz2Q0GvXaa6+pYcOGkqQxY8bo5Zdf1pIlS9S1a1f5+fmV7UQBAADskMlsUfyfhTLxKSZZLLYVylT5s1CmirODjEYKZcojMkoAAACghFyKTtK6U5H67WSEzkcl5dveIOnOulU1qIWvBgT4yKucnpAGlFeZt5MtaZ6enqU2Fsoe8bYfxNq+EG/7Yq/xvhiZoLXHrmrtsTAduhRj0zHOjkb1DvDT0Da11L9lTXm6Vby8xF7jjfKHwn4UB2JtX4i3fSHe9sVe4m2xWBR8PUE7zkZrZ0i0jobekNmWin2l/0bSxr+Kejbx1t1NvNW8pkeFXJXZXmKNwjt27JiuXbumPn36WAtmJMnd3V333XefPv30U23btk1jxowpu0kCAADYkfRCGZPiktMUn0yhTGVF0QwAAABQjK7fSNH6oEitPxmpE9du2nRMy5oeGtzCVwNb+KhmVZcSniEAAACAyuxseLzWHk0vlDkeGmfTMW5ODurbwk9D2/irb4sarOAMFBMK+1ESiLV9Id72hXjbl8oU75vJadp5JkJbTl3XlqDruhaXbPOx1Vwd1SvAT/1a1FDvAD/5Vql8v5FUplhXBrGxsTpz5ozOnDmjs2fP6uzZs7px44YkqXfv3po5c6bNfYWHh2vt2rU6ePCgIiMj5ejoqFq1aqlbt24aPHiwXFxyfj0fP35cktS+ffts991xxx2SpBMnThTwkQEAAKAgzGaL4lNMiktKL5Qx21AoYzAYVMX5z0IZFwc5UChTofDLFwAAAFBEMYmp2hQcpXUnI/XH5RuyZdG0hj6uGtzCV4Na+KqBj1uJzxEAAABA5WSxWBR07YbWHg3T2mNXFXwt3qbjqrg4qn/LGhrappZ6B9SQm3PJ7YgBAAAAoHI5F3FTm09d15ZT17XvXJRSTGabj21Rq6r6NK+hfi1qqEN9Lzk6sBMLSs+0adOKpZ/ff/9dn3zyiRITE623JScnWwtxNm3apJdfflm1atXKdmxYWJgkyd/fP9t9Xl5ecnV11dWrV4tlngAAALilaIUyDqri4kihTAVG0QwAAABQCDdTTNp2JlrrTkZqz4VYmcz5J1K1qjprUAtfDW7pqwA/dxkMJFJAcYqOji6xvo1GY5YVAWNjY2U22/5DMCoW4m0/iLV9Id72pbLH22Kx6OS1m9oUFKlNwZG6EJVk03HVXB3Vp6m3+jf3VdeGXnJ2TD85LelmnJJs2yizXCrreJfmbiIAAABAWUhOM2nfuShrocz5yASbj3VzclCPpr7q07yG+raooTpeLCSG8qF69eqqU6eODh8+XKDjzp07p48//lgpKSlydXXVqFGj1KZNG6WkpCgwMFCbNm3S1atX9dZbb+ntt9+Wm1vW13xCQvr7x93dPcf+3dzcrG0AAABQNGaLRTeT0wtlbthaKCODPFzSC2WqUihTaVA0AwAAANgoOc2sXeditO5kpHaERCs5Lf9EytvNUQOapxfKtKtdRUYKZYASYzKZSm0ss9lcquOhbBFv+0Gs7Qvxti+VId5mi0XHr8ZrU3CUNgdHKzQu2abjvN0c1aeZt/oH+KhjvWqZVnG2VPjnJDeVId6oHCjsR3Eg1vaFeNsX4m1fKmK8r8UlKzAkRjtCorX3fIwSU22fb10vF/Vs4q2ejb3Vsb6nXP4s2JclSdHRthX9V1TlIdYU9uduzJgxatKkiZo0aSIvLy9dv35ds2bNKlAfCxYsUEpKihwcHPTPf/5TAQEB1vvatGkjf39/ffPNN7p69ap++eUXjRs3rrgfBgAAAPJgLZRJTtONJFsLZSQPZwdVc3VUFVdHOVIoU+lQNIMicXBwKJF+jUZjntdRuRBv+0K87Qexti+VOd5pZov2X4jVbyfCtTk4SvEp+Z94VcXZQf0CfDSklZ86NfCsdIlUZY43AAAAUJ6YzBYdvnJDm09HaXNwlK7Hp9p0XHUPJ/Vt5qP+Ad66o261SpeTABUFhf0oCcTavhBv+0K87Ut5jLfJbNHRq/EKDIlRYEiMgsNt3+nCwWhQh7pV1aOxl3o28lIDH1cZrIuIVd6CfVuUx1jbs6IWsJw5c0YnT56UJPXt2zdLwUyGESNGaMuWLbpy5YrWrl2r0aNHy9Hx1il6GTvM5LabTGJiojw8PIo0TwAAAHtjsVh0M+XPHWWSTDLZWCjj/mehTFUXh0yLjqEyomgGRVJaq1NkXoUDlR/xti/E234Qa/tS0eNtNlt08GK0Vh0O1ZqjVxURn5LvMS6ORg1oWVMj29dWn+Z+cnUqmeLi8qiixxsAAAAoT9LMFh24FKfNwVHaejpakQm2FcrUrOqs/gE+6hfgwy6XAAAAAGwSk5iq3ediFXguRrvPxSo2Kc3mY309nNSjkZd6NvZS5wbVVMWFU5BQ+e3bt896uW/fvjm2MRqN6t27t7777jvdvHlTx48fV/v27a3316pVS5J09epVNW7cOMuxMTExSkpKUtOmTUtg9gAAAJXLrUIZk24kp8lkzr9QRkrfUaaqq6OqUShjV8hYAQAAAKUnUieuxmnV4VD9eviqrsQk5nuMo9Ggu5tV1z131NbAVrX4QQgAAABAoaSazNp3IU6bgqO07Wy0YhNtO1GtrpeL+jXzUf8AH7Wq5ZFpJWcAAAAAyM5isSg4PEE7/9xN5tjVeNl4XpkMklr7e6hnY2/1bOylgBruFOvD7gQFBUmSXFxcshW8ZNaqVassx2QummnVqpVWrFihw4cPq0ePHlmOO3ToULbjAQAAcIvFYlFCiklxyem7ythaKJN5RxknCmXsEmf1AQAAwK6di7ipVYdCterwFZ0Nv5lve4NB6tzQR/fcUVtD2/jLx8O5FGYJAAAAoLJJSjVrz4UYbQ6O1vaz0YpPNtl0XEMfV+uOMgF+7hTKAAAAAMhTQopJ+y7EphfKnItReLxtu1lKUlUXB3Vt6Kmejb3UvZGXvN2dSnCmQPl3+fJlSem7xTg4OOTarnbt2tmOydC2bVvVrFlTgYGBGjZsmBo2bChJSkhI0PLly+Xo6KhevXoV/+QBAAAqKIvFooRUs+KS0nQjKU1pthbKOP1ZKONKoQwomkERRUdHl0i/RqNRnp6e1uuxsbEym80lMhbKHvG2L8TbfhBr+1LR4n0tLlnrTkXot5MROhmWf6GMJLWq5aEhLf00qIWvalZzSb8x5aaiU2w7vjIpD/H29vYu1fEAAACA4pCYYlLguRhtCo7SzpAYJaba9j26mZ97eqFMM281ru5ewrMEAAAAUNFdjE7SzpBo7QyJ0R+XbyjVZON2MpKaVndTj8Ze6tnYS21rV5WjkUJ9QJJSUlJ048YNSZKvr2+ebatUqSIXFxclJycrMjIyy30ODg6aPn263nzzTb366qvq3r273NzctHfvXoWHh+uRRx5RjRo1CjS328fITV6FPrmxZbGO29sYDAZZLLZ/7qBiId72hXjbF+JtPypKrBNS0neTiStAoYzbn4Uy1Vwd5eRQuXMZg8Fg0/c7o9GY53V7QdEMisRksm31w6Iym82lNhbKHvG2L8TbfhBr+1Ie4x2TkKqNwVFafypSf1y+IVtSqUY+rhrcsroGtfBVfW9X6+3l7bGVtfIYbwAAAKC8iE9O086Q9EKZXedilZxmW6FMq5oe6vfnjjKZ8xEAAAAAuF1KmlkHL99QYEiMdoZE61JMss3Hujoa1alBNfVolF4oUytj4TAAWSQlJVkvu7rmn6e7uroqOTk5y3EZ2rRpo9dff10//vijdu3aJZPJpPr16+uhhx5S9+7dCzy3xx9/3KZ2P/74Y4H7joiIkMVikdFolKOjbacaFqY4BxUX8bYvxNu+EG/7UV5ibbFYlJBiUmxiqmITU5Vqsu33FHdnB3m6OcnTzVnOjpW/ICSj6MXJyalQiw5nXijZnlA0AwAAgErrZopJW09Had2pSO29ECeTDasO+Fdz1qAWvhrcwlfN/NxtWj0JAAAAADKLTUzT9rPR2hwcpT0XYm1e1bld7SrphTLNfFTbkxPVAAAAAOTu2o1k7ToXq50hMdp3IdbmnSwlqY6ni3o29lKPxl66q141udjBiWVAUaWkpFgv21I8ktEm83GZNW3aVH//+9+LZ3IAAAAVlMViUWKqSbEJ6YUyKTYWyrg5OcjTPb1QhnwGtqBoBgAAAJVKcppZgSExWncqUjtDopWclv/JaT7ujhrQPL1Qpm3tKjJSKAMAAACggKJupmrrmWhtPh2l/RdtK9o3GqQ76lRV/wAf9W3moxpVnUthpgAAAAAqIpPZoqNX4xUYEqPAkBgFhyfYfKyD0aAOdauqR2Mv9WzkpQY+riwaBhSQs/OtnD0tLS3f9hltMh9XUubOnVviYwAAABSX9EIZs2ITUxSbYHuhjKuTg7zcnOTp7iQXx/KxOw4qDopmAAAAUOGlmS3afyFW605FasvpaN1MMeV7jIezg/o189bglr7qWN9TjkZ+HAIAAABQMOHxKdpyOkqbgqP0x+UbsqFORg4GqWP9auoX4KM+TX3k6+FU8hMFUCYcHEruh1uj0ZjndVQexNq+EG/7QrztS2HjHZOYql0hMdoZEq1dITGKTcr/RP0M1T2c1KOxt+5u4q0uDT1VxYVThEoD7+3Ky9XV1Xo5KSkp3/YZbTIfV1J8fX1tahcdHV3gvlNTU2U2p5/ImluxkMFgyJL/mEwmWSy27bqLiod42xfibV+It/0oq1gnpZkVl5imuKQ0mwtlXByNqubqqGqujpl2lLHYVMRcWZnNZpnNZqWmptr0/c5oNMrT09N6PTY21vr9rrR4e3uX6ng5ISMGAABAhWS2WHQkNF7rTkZqU3CkohLyT4ZcHA26u3F6oUz3Rl5szwkAAACgwMLikrUpOEqbT0fpyJV42fIzkqPRoK4NPdWvmY96NfWSlxuFMoA9KM0fAjP/6InKjVjbF+JtX4i3fckt3haLRSeuxmnLqevaEhSuPy5G21ScL0kGg9S+rpf6taihfi1qqJV/NRlZMKzM8d6uPJydnVW1alXduHFDkZGRebaNj49XcnKyJNsLWkqDyZT/woO3s+UE2tvbcIJ15Ua87Qvxti/E236UVqwtFouS08yKSzIVqFDG2dEoT1dHVXVxkKsTO8rkxmKxFOr7ndlsLtRxFR1FMwAAAKgwLBaLgsMTtO5kpNafilTYjZR8j3EwGtS1gacGt/RV76be8nAmmQIAAABQMJdjkrQpOH1HmRNhN206xsXRoG4NvdQ/wEd3N/FiVWcAAAAAObqZnKadZyL+LJS5rmtxyTYfW83VUb0C/NSvRQ31DvCTbxWXEpwpgLp16+rkyZMKCwuTyWTKdXfJ0NDQLMcAAADYk/RCmfQdZZLTbCyUccjYUcZBLo5GGQwsAIDixa90AAAAKPcuRidp3ckIrTsVqfNR+W93bpB0Z92qGtzSV/2b+cjLnVWcAQAAABTMucjE9B1lgqMUHJ5g0zFuTkb1bOylfs181KOxl9wp2gcAAACQg3MRN7X51HVtOXVd+85F2bzisiS1qFVVfZqn7ybTob6XHB2MJThTAJk1b95cJ0+eVHJyskJCQtSsWbMc2504cSLLMeVFbkU+ebHlhNXb2xgMBnYnqMSIt30h3vaFeNuPkoh1yp+FMrGFKpRxlKsTeU1BGQwGm77fGY3GPK/bC4pmAAAAUC5du5GsDaeitO5UpE5es20l51Y1PTSopa8GNfdVjarOJTxDAAAAAJWJxWLRmYhEbQqK0ubTUQqJTLTpOA9nB/Vq6qX+zXzUtaEXP+wAsIqOji6xvo1Gozw9Pa3XY2NjZTbbfrItKg5ibV+It30h3vYlzSydikqzFsqcj7StMF+SXB2N6tzAUz2beKtnE2/5V7u1m8yNuNiSmC6KoDy8t729vUt1PHvSuXNnrVixQpK0ZcuWHItmzGaztm3bJkny8PBQ69atS3OKeSrMayMiIkIWi0VGo1GOjradaliY4hxUXBU93k888YSWLFmievXq6ciRI9nub9eunS5duqQJEybo008/LYMZFt13332nmTNnSpIOHz6s+vXrF7qvih7v/J6L/F4PtqoMrxup4se7uBXne6m8KWysk9NMik1IVWxiqhJTTTYd4+xglKe7kzzdnOTm5FDoHWVGjBihwMBA9ejRQ7/++muh+qioMopenJycCvX9LnO+Yk8omgEAAEC5EZOQqo3BUVp/KlJ/XL4hW9YwaOTjqsEtq2tQC1/V93Yt8TkCAAAAqDwsFotOXrupzcFR2hQcpUsxyTYd5+nqqF5NvdU/wEed61eTsyOFMgCyM5ls+6G4OJjN5lIdD2WHWNsX4m1fiHflc+1Gsnadi9XOkBjtuxCrxFTbCyfqeLqoZ2Mv9WjspbvqVZNLppyD10nFwnu7cmnatKlatmypkydPasuWLerTp48CAgKytPn111915coVSdLQoUNtLjQBJGnnzp0aOXKk9fp9992nr7/+Os9jMk7yl0p28QbYt4yT0wvi/PnzdntiNlCZpaSZFZOYotgE2wtlnByM8nRzkpebk9ycC18oAxQF38oBAABQpm6mmLT1dPqOMnsvxMlkzr9Uxr+aswa18NXgFr5q5udOMgUAAADAZmaLRUdD47U5OH1HmatxKTYd5+PuqD7NfNSvmY861qsqRwcKZQAAAADcYjJbdPRqvAJDYhQYEqPgcNt3k3EwGtShblX1aOylno281MDHld8+gBJw6tQphYWFWa/HxcVZL4eFhWnr1q1Z2vfp0ydbH5MnT9Yrr7yilJQUvfHGG7rvvvvUunVrpaSkaNeuXdq4caMkyd/fP0vxA1AYK1as0HPPPVeudiwCAJSc8rpLUUqaWbGJ6TvKJKSk2XRMRqGMp5uT3O2wUCZzIewvv/yinj17lvGMQNEMAAAASl1ymlmBITFadypSO0OilZyWf6GMj7ujBjRPL5RpV7uK3SVTAAAAAArPZLbowKU4bQqO0pbTUQqPT7XpOL8qTurbzEf9A3x0R52qcjCShwAAAAC4JSYxVbvPxSrwXIx2n4tVbJJtJ5BJkq+Hk3o08lLPxl7q3KCaqrhwCg9Q0jZt2qRt27bleF9QUJCCgoKy3JZT0UyjRo30zDPP6JNPPlFiYqJ1h4/M/P399fLLL8vNza1Y5l1cCrMLSWpqqszm9J2y0tJy/owzGAxycHCwXjeZTLJY8v/9F9ndvjOVxWLRW2+9pQULFuR6TEZ8pNxjVJwqW7zze/4OHjyY5/0VQebXVVpaWoEex+3xlqTt27fbdKybm1u5e87yey5mz56t2bNnW+8vKrPZXO6eg7xUtvd3cSvKe6mgSvq1Y0us00wWxSWlKS4pTQk27ijjaDSomqujqrk6yt05a//FLWO+FoulXL7PMj9mk8lUrHM0m80ym81KTU216fud0WjMsvNXbGxslr9/pcHb27tUx8sJGTeK5PYvRMXFaDTmeR2VC/G2L8TbfhBr+2JLvNPMFu07H6PfTkZoS3CU4lPyT4iquDiof4CvhrSsro4NPOXICWrlAu9vAAAAVASpJrP2hERq7bEw/Xb0qqISbCuU8a/mrH7NfNS/uY/a+FeRkYJ9AAAAAH+yWCwKDk/Qzj93kzl2NV5mG88jNBik9nW91K9FDXWs7aqm1V3JN4AKqmPHjnr//fe1Zs0aHTx4UFFRUXJ0dFStWrXUtWtXDRkyRC4uLmU9zWwKc8KqLSdL396GE6yLh6+vryIjI7V69WodOXJE7dq1K+spSSLe9ian+LZs2bIMZoLSwPvbfuQW61STWTeSTAUulKnq6qhqLo5ydzayCHIpslgshfp+ZzabS6SQqbyjaAZFUlqVX5kr3FD5EW/7QrztB7G2LxnxNpstOnAxWqsOhWrN0auKvJmS77GuTkb1b1lT97SvrT7N/eTiWDJFuig+vL8BAABQXqSkmbXvQqy2nInRtrPRirGxUKael4v6B/ioX4CPWtb04EcdAAAAAFYJKSbtuxCbXihzLsbmnSslqaqLg7o29FSvpj4admdD+VZJP4k+OjraLk9SAsrazJkzNXPmzGLpy8/PT5MmTdKkSZOKpT/gdtOmTdNHH32k5ORkvfPOO/r222/LekoAgEoo1WRWTEKqYpPSlGDDAsiS5GA0qJqLo6q6OsjD2YHfVFAhUDQDAACAYmWxWHQ8NE6/HA7VL4dDFRqblO8xjkaDegX46Z72tTWgVU1VceFrKgAAAADbJKWated8jDYFR2n72RjdtPFHnca+btYdZZpWd+NHHQAAAABWF6OTtDMkWjtDYvTH5RtKNdm+ynbT6m7q0dhLPRt7qW3tqnI0GuTg4CDvKuVv1wkAQPlVu3ZtPfLII/ryyy+1fv16HTx4UB06dCh0fxEREfr888+1YcMGXbx4UcnJyapRo4a6du2qiRMnqmvXrrke26FDB126dEnjx4/XnDlzdOjQIX3++ecKDAxUWFiYUlJSFB4enmPbw4cPa+7cudq9e7eioqJUq1YtDRkyRM8884x8fX2tY+zbt0/z5s3TwYMHFRERIX9/f40cOVJ//etfVaVKlRznZTabFRgYqI0bN2r//v06e/as4uLi5O7urnr16ql3796aNm2a6tatW+jn7fbHk+HixYu66667bO6ne/fuWrlyZY737dy5U0uWLNHevXt1/fp1OTg4qF69eurXr59mzJihWrVq5dl3TEyMZs+erbVr1+ry5cuqUqWKWrVqpYkTJ+ree++1eY4l7d1339V7770nSdbXS04CAwM1atQoSdKKFSvUo0ePHNuZzWatWLFCq1at0qFDhxQZGSkp/b1z5513atiwYRo6dKicnJxsnuOsWbP0ww8/qF69ejp48GCu7TZu3Kgvv/xShw4dUkJCgvz9/TVo0CA98cQT8vf3t3m8w4cPa/Hixdq5c6euXr0qSfL399fdd9+tGTNmqEmTJrkee/78ea1Zs0aBgYE6efKk9TmtXr267rrrLk2YMEH9+/fP9fglS5boqaeekiQdOHBAdevW1TfffKPvv/9ewcHBSk1NVcOGDXXvvfdqxowZcnd3t/lx3S4lJUVbtmzR5s2bdfDgQZ07d043b95U1apV1ahRI/Xv319TpkzJ8pmQkx07dmjx4sU6cOCArl+/LoPBIF9fX9WsWVNdunTRgAEDdPfddxd6nsX1Xrp48aI+//xzbd26VZcvX5bZbFatWrV09913a8qUKWrVqlW2Y+69917t2rXLev2HH37QDz/8kKVNXp8jObn9vdStWzd9++23WrJkiU6fPq3k5GTVrd9QfYeM0JhHpuS6S95b//ibflv1s2rVrqN12/cqKTZCi+d/qQ0bNujy5cu6efNmtvdqUf7mZPj999/16aefas+ePYqLi1PNmjXVu3dvPfHEE2ratGmex97++q5fv36O7TJ/ls+ePVsTJkzItc8NGzZo2bJl2r9/v8LDw2UymVSzZk21bdtWgwcP1r333it3d/cc/z5kxCGz/MZD8eNsRAAAABSLkPB4rTocqlWHQxUSfjPf9gaD1KWRj+5pX0dD29SSt4dzKcwSAAAAQGWQkGJSYEh6oUzguRglppptOi6ghnt6oUyAjxr5upXwLAEAAABUFClpZh28fEOBITHaGRKtSzHJNh/r4mhU5/rVrIUytapRHAMAKB5PP/20vv32WyUmJuqtt97S0qVLC9XPli1bNGXKFN24cSPL7ZcuXdKlS5e0dOlSPfroo3rrrbdkNBrz7GvBggV6+eWXlZaWlu+4P/74o5599lmlpKRYbzt//rzmzZunDRs2aOXKlapZs6b+97//6bXXXpPFYsnS7pNPPtG2bdu0cuXKHAtn3n//fWsRRmZxcXE6fvy4jh8/rgULFujTTz/V8OHD851vaUtKStJTTz2l5cuXZ7vv5MmTOnnypObPn6/PP/9cgwcPzrGP4OBg3X///QoLC8vS7/bt27V9+3Zt2rRJ3bp1K7HHUFYuXryoSZMm6dixY9nuCwkJUUhIiH7++ec8i24K65VXXtG8efOyjTlv3jz99NNPWrJkSb59mM1mvfrqq/rss8+yvO4l6ezZszp79qy++eYbvfPOO5o4cWK24y9cuKBOnTrl2Pfly5d1+fJlrVy5UmPHjtXs2bPl6Jj3qeKJiYkaO3astm/fnuX2EydO6MSJE1q3bp2WLVsmDw+PfB9bTv76179mKwCR0ndfjI6O1sGDB/XVV19p0aJF6tKlS459/POf/9Rnn32W7faMx3vgwAF9//33CgoKKtQci+u99MMPP+i5555TcnLWfOLcuXM6d+6cvv32W7300kt65plnCjXPwkpJSdEDEyZoy+bNWW4/HXRSp4NOav2vK/Thl9/Kt7pflvsdDAY5O6YvOObkYFTo6aN6+OGHrUVqOSmOvznz5s3Tq6++KrP51m8/Fy9e1OLFi/Xzzz/ryy+/LNDjL4qoqChNmzYt2/sjY04XL17U6tWrJYkimHKOohkUSXR0dIn0azQa5enpab0eGxub5cMPlQvxti/E234Qa/sQFpes9Scj9NupCJ0My79QRpJa+1fRkJbVNaiFr2pU/fOHo5Sbik6x7XiUvfLw/vb29i7V8QAAAFD24pPTtP1sjDYHR2n3+Rglp9m20nP7up7q09RLfZt6qa6XawnPEgAAAEBFce1Gsnadi9XOkBjtuxBrczG+JNXxdFHPxl7q0dhLd9WrJhfHvE8wBoDywMHBocDH2LIz7+1tDAZDtpPAUTi1atXS5MmTNXfuXG3dulV79uyxaXX+zI4eTT/BOSUlRU5OTpoyZYqGDBkid3d3HT16VLNnz9aFCxf09ddfy8PDQ//6179y7evQoUP66aefVKdOHc2aNUt33nmnUlJStHv37mxtjx8/ruXLl6tRo0Z64okn1KpVK8XHx+u7777T0qVLdfbsWf373//W8OHD9e9//1sdO3bU1KlT1bRpU0VGRuqLL77Qxo0bdeTIEX344Yc5zistLU01a9bUsGHD1KlTJzVo0EAuLi4KDQ3V/v379fXXX+vmzZuaMWOGNm3apICAgAI9d3nx9/fP8QTqzFauXKkPPvhAkrLtdmOxWPToo49qw4YNkmTdpaBBgwYyGo06ePCg5s6dq8uXL+vRRx/V6tWrdccdd2Tp48aNGxo3bpz1JP9Ro0Zp/Pjx8vPz09mzZzV37lwtWbJEp06dKvTjLI+7c1+/fl3Dhw+3Pu67775b48ePV7NmzWQwGHThwgXt3LlTq1atKvax582bZy2YqVWrlp5++ml16NBBSUlJ2rhxoz777DNNmTJFiYmJefbz0ksvaf78+ZKkbt266YEHHlCDBg3k7u6uY8eO6fPPP9epU6f03HPPqUaNGhoy5P/Zu/PAqKrz/+OfWZLJnkxCQhIIhC1hR0QRBNkVRaVCrXVpRautC1KXav3ZfbFqaVXcLd9q3bfWfUFQVgEVEEFZEpYAIZCErJM9s/7+QCIhM2GAZJLMvF//wMw5995n5smdyc09zznnN9ve5XIpPDxckydP1sSJE5Wdna2EhARVVlZq9+7devbZZ5WTk6P//ve/6t27t+6+++5W47n99tv11Vdf6fLLL9esWbPUvXt3FRQU6JFHHtH69eu1ceNGPfTQQ/r9739/Uu+by+VSZmamZsyYoZEjR6pnz54ym83av3+/Vq1apVdeeUXl5eW65pprtGrVKiUnNy/cWLJkSVPBzJAhQ3TNNddowIABiouLU1VVlXJycrRq1apWVwdqTVudS0uWLNG8efPk8XgUHR2tm2++WRMmTJDZbNb69ev1yCOPqKysTH/7298UHx+va6+9tmnbRx99VHV1dU1xXHDBBbrnnnua7f9UVvv581//pq3fbtaZZ5+jH1z2E6WkpulQUaHeef1Fbfh8tfbu3ql7brleT738lsLMZsVGmBUXYVJMuFmRYYd/f6itrdW1116rhoYG3X777Zo4caKioqK0bds2de/eXVLbfOd8+OGHTT9rcXFxmjdvXlPx22effabHH39cN91003FXJmoLdXV1mjVrlrZt2yZJGjFihK6++moNHDhQFotFBw4c0Oeff6533nmnaZsj3w9ff/21br31VknSI488opEjRzbbd3p6+inHZzAY/Pr97tjipOMVyAYrimZwSlwuV0CO43a7A3YsdDzyHVrId+gg18Gjss6hT3eUa3FOmb4uqD7+BpL6JEZo+qBumj4wSRnW7wep8TMRHDi/AQAA0F4q6x1atevwijJf7rPJ6T7+gAuDpBE9YnXRaT11/tBU9bRGqaKigt9ZAQAAgBDncnv0bWGN1uRVak1epXaU1Pm9rclo0Ok9Yw+vJtMnQb0TIzrlIFIAaM3JTEpXWloqj8cjo9Hoe6UCj1uGuu9nnA/2AYmeSKtkaJ/BpkcPfDWZTDKbzbr99tv1wgsvqLa2VvPnz29RCHD0wFdvObrzzjtlt9tlMpn02muvacqUKU1tZ555pmbPnq0LLrhAOTk5euKJJ3TFFVdo0KBBXuPLzc3V4MGD9dFHHzWbZPHss89u0XfLli0aPXq03n777WYDvSdNmiS73a53331Xb7/9tpYuXaqZM2fq2Wefbfb6p06dqgsuuEDr16/Xyy+/rD/84Q8tXt8111yje+65R2FhYc2eHzVqlC6++GLdcMMNOu+883Tw4EE98sgjXlepON77d3S/o9vNZrOGDRvms//XX3+tJ598UpKUnZ2tf/zjH822f/755/XJJ58oLCxMr7zyiqZNm9Zs+zFjxujKK69sys3vfvc7ffzxx836PPTQQzpw4ICkw6uf3HHHHc3eg1mzZunyyy/XsqNWljCbzcdddeR4duzYcdw+CQkJLQaE+/teezsPjnb33Xc3FTf86U9/ahqUfsSZZ56pSy+9VPfee6+cTmez7Y/et7f3orUYS0pKdP/990uSMjIy9MknnzQVCkjShAkTNG3aNP3whz9sWonJ22fn8uXLmwpmHn30Uf30pz9tEf8VV1yhH//4x1q1apV+85vf6Pzzz2+2nx49emjz5s1KTU3VsaZMmaLrr79et9xyi1555RU99dRTuuWWW5qds8e+F+vXr9fTTz+tH//4x03PjRgxQtOmTdPkyZO1fft2vfTSS/r9739/Uj8/v/nNb5SZmdni9+czzjhDs2bN0vXXX6/zzz9fpaWlevbZZ/Xb3/62Wb8jn3sZGRn6+OOPW6w8NXHiRN1www2qqKg4qfja4lxyOBy688475fF4FBMTo48++qjZZ8SYMWP0gx/8QNOnT1dRUZH+9Kc/afbs2U2FH/369ZOkps+zhISEVj9jWuNye1RV71BJzferfG39drMuvvQK3fnH+5qeyx4yTOdMPU/z/3i3PnzrDeVu/UZrPvqfbr7xFzIelasj50V5ebliYmK0aNGiZrEdverRqX7n2O32pmKhuLg4LVmyRNnZ2U3tY8eO1UUXXaTzzz9feXl5kg4Xjhyb9+Od60e3Hb3Nsf3+/ve/NxXMXH/99Zo/f36zn+NRo0Zp5syZ+vOf/6zKysqmYw0bNkw2m62pX9++fU86n94cyUlYWNhJ/X537OdBqAj231EBAADQBmrtLq3YWa7F28v05T6bXH5MDJQWF67pA5N03sAkDUiO4uYRAAAAAL+U1Tq0Yle5lu0o14b8Kr+uP4wG6fSecZqSZdXkAYlKjY9kdUIAAAAAqqx36PM9Nq3ZU6nP99hka3D6vW1SdJjG9UnQ+L4JGt07TjEWhtgAgDeG+grFLzy9o8MIGNsvNsoT1f6z2x+RnJys66+/Xo888og+++wzffbZZzrnnHP82varr75qWnnh6quvbjZ4+YiEhAQ9/PDDuuCCC+R2u/XMM8/on//8p899/uMf//BrsK3BYNCjjz7qdWWE6667Tu+++65cLpcaGxu1YMGCFjPlm0wmzZkzR+vXr1d5eblycnI0dOjQZn169erVagw9evTQvHnzdM8992jRokXyeDwBGbdQWFioq666SvX19bJarXr11VcVFxfX1O7xePTII49Ikm644YYWBTNHJCQk6C9/+Ysuu+wyffnll9q9e3fTwHq73a6XXnpJ0uGVN26//fYW24eFhenRRx/VyJEj5XA42uz1HVnxoTVXXHFFU9FQW9q5c6c+/PBDSdKFF17YomDmaMcWVpyqV199VXV1h4uu77333mYFM0dMmDBBV199tZ599lmf+1mwYIEkaebMmS0KZo6IiIjQ/PnzNWbMGO3fv1+fffaZJk+e3NQeHR2t6Ohon8cwGAy699579frrr6u2tlYrV67UzJkzffa/+OKLmxXMHGGxWPTzn/9cd9xxh8/z0B99+vRptX3IkCH66U9/qqeeekoffvhhi6KZQ4cOSTpcyNNaXk/mnkBbnUsffPCBCgsLJUm/+tWvvBZI9OrVS3/+8591ww03qK6uTi+//LJ++ctfnnDM3rjcHlU3OFRZ71B1g1Mej0e19u8nEktM6qZbft18pSCjwaDYCLPmP/CAvly1TKWlpXr5hed0y003+DzOL3/5S5/FH23xnfPRRx81vY933XVXs4KZIwYPHqxf/epX+tOf/uT7DWkDNptNzz33nCTptNNO0wMPPODzOyQ8PFwpKSntGg9OHVf0AAAA8KrR6daavEotzinT6rwKNTqPP1KtW4xFFw1P06S+sRrSPZJCGQAAAAB+OVRt17KdhwtlNh2olh8LyshkNOjMXnGampWoif2sSowOO/5GAAAAAIKax+PRjpI6rf5uNZkthTV+XV9Ih1etHJIWrfF9rRrXJ0HZ3aOazbAMAEBH+eUvf6lnn31W1dXV+tvf/tZixRFfVqxY0fR/X4PzpcMrIGRnZys3N1crV6702a9Hjx5eV5XxZsiQIV4HO0tqNuh+0qRJPge6H91v3759xx2sX1VVpYqKCtXV1cnjOfwLQGRkpCSpurpa+/btU2Zmpl/xn6z6+nr95Cc/UWFhocxms55//vkWBQM5OTnas2ePJLVayCA1X8Vn/fr1TUUzmzZtUmVlpaTDBSq+xmb06NFDkydP1pIlS072JXUqS5YsacrtTTfdFNBjHzk3EhISNGPGDJ/9fvKTn/gsmqmqqtLq1aslHT/32dnZSkpKUllZmdavX9+saOZYDodDhw4dUk1NTbMV1xMTE1VSUqItW7a0erwf/ehHPttOO+20pv/7cx76o7KyUhUVFWpoaGjK55FivNzcXDkcjmYrSB0pUFq7dq327Nlz3CKcE9FW59KRnw+DwaCf/OQnPo93ySWX6K677lJVVZVWrlx5SkUzbrdHVQ0O2b4rlHF7fF/4TJp+oSIiI5sKZeIjwxQXESaj0SApWpdccon+/e9/KycnR8XFxV6LwqTWf1ba4jvnyD4MBoOuuOIKn/u46qqr9Oc//7np56c9rFq1qqlQ7oYbbmhR3Imuh6IZAAAANHG6PVq/z6bFOWVavrOi2awDvsRYTJqalaRLR2dqbN8kmU1GVVRUNLsQBwAAAIBjFdoatfS7QplvDtb4tU2YyaAxveM1JStRE/pZFR/Jn7gBAACAUFdnd2ndPtvhQpk9lSqp8X8m9ViLSWMy4zW+b4LO7pMgaxTF+ACCV0VFxQlv43A45Ha7JUlOp/fVuozu0Lov7HQ55fHxXpyqo++xu1yupvc8Li5Ov/jFL/Tggw/qyy+/1JIlS5pm8D+SH6lljrZt2ybp8Az4gwYN8plDSRo5cqRyc3O1e/du1dXVKTw8vEWfwYMHy+VyNRs47HK5vA5a7tu3r8/jHb1Chr/9bDab13779+/XE088oSVLlmj//v0+X590eLWKnj17Nnuutffv2H6ttR8xd+7cppUW7rvvPo0dO7bFdl999VXT/88777zj7vOIwsLCpn1t2bKl6fnhw4cfN7dHBvo7nU6/XscRBoOhxUDxkpISv7Y99jj+vte+zgNJ2rx5s6TDK3+MHDnyhF7Lsfv29l60FuPWrVslqWmVDV/HHjRokMLDw2W321v83Hz99ddNx7j++ut1/fXX+xV3UVFRi+M5HA698MIL+u9//6tvv/1Wdrvd5/alpaUttj/6vThyHh6bb5fLpdjY2KbHvs5Df2zbtk1PP/20li5d2rRyjDdut1ulpaVKTk5ueu5HP/qRXnvtNZWXl+vss8/W+eefr8mTJ2vMmDHq27fvScVzRFudS0c+b3v37q2EhATf35lGo4YNG6Y1a9Zo27ZtPvv5+sxxe6SaRqeqGpyqaXS1WihztNNGjlSPhAjFWswyGg6f24cLZr5/bUd8++23Skr6fkW1Iz+z0dHR6tmzp8+Y2+I75+j3MT4+3uc+EhIS1KtXL+3bt08ej6fVn+/WPveOfv7Yz5tNmzY1/f/MM888pc+bY/d9qtxut9xutxwOh1+/3xmNxmarxNlstmafd4FwMitBtTXuKAIAAIQ4t8ejbw7UaHFOqT7JLVdl/fF/SbeYjZrQL0HTBybp7D4JirSEdYpfbgEAAAB0bvkVDVq243ChzLbiWr+2sZiNOrtPvKZmJWp83wTFWPizNoCuoT1nHzQaja0+RvAg16GFfIcW8n1q9pXXa/XuCn22u0IbC6rkcPk/w3D/blEa38+qc/pZNbxHrMzG9l9NhnyHDnKNzuxkJj30Zwb39pzlHd+76aab9O9//1s2m03z589vKpppzZGBtAkJCTKbW/+bWkpKiqTD+aysrGx6fLSEhIQW+faV/yMrvHhz9Gejv/28/fx++umnuu6665pWAjie+vp6v/qdrAcffFBvv/22JOnaa6/Vtdde67VfaWnpSe3/6PiPHiR9dHGBN8drb01nO7/LysokHf5Z9FbY1Z6OrEbSrVu3VvuZzWYlJCR4LQw52dwf+zNeUVGhH/3oR01FRMdzvJ/9I+eht/P7eOehP1566SXdddddfhcNNDQ0NHs8YcIEPfDAA/rzn/+s+vp6vfPOO3rnnXckSWlpaTrvvPN0zTXXnNQqOG11Lh3Zz/F+PqTvP2+P/Ewdj9vjUU2j64QKZQwyKCrs+79NZvdKU3zE998Dx+b66Lh9FWEcXXThTVt855zI+5icnKx9+/Ydt9/JKi8vb/q/r5V3OprH4zmp89LtdofkZNjcXQQAAAhBHo9HuYfqtDinTEtyylRc7XvGiSNMRoPGZsZr+sAkTexvVVQ4y04CAAAAOL680jot3VGuZTsrtLPEvxvYUWFGjeuboKlZiRrXJ0GRXH8A6IICOcHI8W5aI3iQ69BCvkML+W5do9OldXvKtSznkJbnHNLeMv+uLSQpIsyocf26afLAFE0emKIeCb4H5wYK+Q4d5BqhwBNhle0XG5seO13tswpLZ+GJ6JjJJOPj43XTTTfpgQce0FdffaUlS5b4vUqJwdA2BaKdqRCwrKxMN954o+rq6hQdHa25c+dq8uTJyszMVFxcXFNBxWeffabZs2e3ezzvv/++/v73v0s6PMD/vvvu89n36IHKL7/8sjIyMvw6hq9B5G2VX/jnVN7vo1d2ePDBB3XmmWf6tV1CQkKzx7/97W+bCmZmzJihK6+8UoMHD1a3bt0UERHRFONpp52mAwcOdGjx086dO5sKZpKTkzV37lyNHz9evXr1UkxMjMLCDq/0+PLLL+u2226T5L1Y67rrrtPMmTP15ptvauXKlVq3bp2qqqpUWFio559/Xi+88IJuu+02/eY3vznpWNviXGrL87G64fCKMtUnUCgTbTEqLsKsWItZ5bHfF5a1RVz+ThDU2d5H4AiKZgAAAELIvvJ6Lc4p0+KcMu0rbzhuf4Ok0zNiNX1gN03JsiohMqz9gwSAk8Qszmgr5Dt0kOvQQr4Dx+PxaMehOn2aW6aluWXaU+7fDI4xFpMm9k/U1Owkjc2MV0TYyX+3k+/QQr4BAACCU6GtXityS7Qs55DW7CpVnd3/mXB7JUZpysAUTcpO1pi+Sad0fQEAOA6DUZ6opKaHHj9XEsCJu+GGG7Rw4UKVl5fr73//+3GLZo5M5lBRUSGn09nqzP9HVsUwGAwtBuh3Ru+//75sNpsk6fnnn9fEiRO99vO1YkJb+uabb3TLLbfI4/GoT58++ve//93qe52YmNj0/7i4OA0aNOiEj3l0jg4dOqR+/fr57FtSUnLC+28PR//Nzu12+/wbXm2t7xXKk5IOf9ZUVlbKbrcHdLWZ+Ph4HTp06Ljvp9Pp9LmCyNETrERGRp5U7qurq5tWWbn00kv11FNP+ezr70om7enVV1+V0+mUyWTSu+++qwEDBnjt50+sycnJuvHGG3XjjTfK7Xbr22+/1UcffaRnnnlGNptNDz/8sEaOHKkLLrjA7/ja6lw6klt/zrcjn7fHfta6PZ6m4hhbg1P7K/0b1xUdblJshFmxEWafq2geL66j2092IqC2+M458n9/3sfW+hz7eeNLayuVHf1ZXVxcrN69ex83JnRuFM0AAAAEuaKqRn2SW67FOaXKKfZv5rXBqdGaPjBJ52YnKSU2sEvaAsDJYhZntBfyHTrIdWgh323L4/Foc4FNi7YUatG3Rcov9+/awxoVpvMGp+r8Yaka16+bws3tU+xAvkML+QYAAOiaXG6Pvs6v0PLcQ1qWU6LthVV+b2s2GjS6T6ImZx9eTaZfcjSzEwMAgk5MTIzmzp2rv/71r/rmm2/04Ycfttp/4MCBkiS73a4tW7botNNO89n366+/liT17ds3oIUIJysnJ0fS4fuDvgpmJGnTpk3tGkdxcbGuvvpq1dXVKS4uTi+//PJx71kOGzas6f/r1q3TmDFjTvi4RxdbbNq0SWPHjvXZ90huO1pMTEzT/ysrK5sNSD9aXl6ez30MHz5c//3vf+VwOLR+/XqNGzeuzeP0ZfDgwTp06JC2bNnSakHA1q1bZbfbvbYNHTpUBoNBHo9H69at049+9KMTjiMvL08Oh0OSdMkll/jst3PnzlYLkAIlNzdXkjRkyBCfBTPSiZ+rRqNRI0aM0IgRIzRjxgxNmzZNkvTuu++eUNFMW51LAwcO1Pr167Vv3z6Vlpb6XBnK4XDo22+/bdrG4/Go1u5SVYNL1Q1OuY4sKNPKwjIGSVHhpu9WlDHJbDr+fZWvv/5al112WavtR7+Wk9EW3zmDBg3Shg0btG/fPpWXl/v8nCgtLVV+fr7P/R/9eXOkwNKb3bt3+2wbPnx40/8///xzimaCAEUzAAAAQaiizqGlO8q1OKdMXxdU+7VN36RInTcwSdMHJinDGtHOEQIAAADo6txujzbmV+ijb4u0eGuRDlT6t6JMtxiLpg/prhnD0nRWn0S/bugAQFfUnrPZGo3GZgViNput1VkT0XWR69BCvkML+T6sst6htXmVWp1XobV5lbI1+L86QbfoMI3ra9X4flaNyYxXjOXIEBhHp5hV+2jkO3R0hlwHcoIpAIF33XXX6emnn1ZJSYnmz5+voUOH+uw7ceJE3XfffZKkV155xecA5vXr1zcNbJ8wYUKbx9weXK7DK9A1Njb6XLWkrq5O//3vf9sthoaGBs2ZM0cHDhyQyWTSwoULWy0KOGL48OFKT0/XwYMH9eKLL+oXv/iFIiJObIzGiBEjlJCQoMrKSr3xxhu68cYbvRYMFxYWasWKFSe07/bSq1evpv9v2rRJU6ZM8drv7bff9rmPc889V3/4wx/k8Xi0cOHCgBbNTJgwQStWrFBFRYUWL16sCy+80Gu/l19+2ec+unXrpjPOOEPr16/Xm2++qbvvvttncYUvzqNW82ptlYznnnvuhPbbXo7E21qsRUVFWrx48Ukf4+jzoays7KS3PZVzacKECXrxxRfl8Xj06quvat68eV77vf/++6qqOjw5wMizxmlHSZ1c7u8rZMLDLZIku6Nl4dWRQpk4Pwtljvbee+/pD3/4gyIjI1u01dbW6r333pMkZWdnKzU19YT2fURbfOcc/T4eyYc3r732mjwe35VFx37ejBgxwmu/t956y+c+xo8fr6ioKNXV1enf//63fvSjH8lk8n8F06M/1xsbG/3eDu2HohkAAIAgUdPo1IpdFVqyvUxf7rN9P/tAK9LjLDpvYKKmD+qm/t0imXUNAAAAQKucLrfW7S3Xx1uK9PGWIh2q9u8P/alxETp/aKpmDEvTqN5WmYxcewAIfkcG8ASC2+0O6PHQcch1aCHfoSVU8u3xeLSjpE6r8yq1Jq9SWwpr5PbjfoZ0eEblIWnRGt/XqnF9EpTdPUrGo+5rdKX3L1TyDXKNzuVEBnoe4c/942P7HFlFAe0jOjpa8+bN0x/+8Adt27ZNxcXFPvuefvrpOu2007Rp0ya9+OKLuuiii1oMUK6qqtKdd94p6XDh37XXXtvq8TtLvvv27Svp8ED8d999V7NmzWrW7nK5dPvtt6uoqKjdYrj99tv11VdfSZL+9Kc/aerUqX5tZzQaddttt+nXv/619u7dq7lz5+rJJ5+UxWLx2r+6ulqvv/66rr/++qbnLBaLrrjiCj311FPasmWLHn/88RaD9J1Op26//Xafq574oy3HkJx55pkym81yOp16+umnNXny5Bb7f/zxx7Vx40af++jXr59mzJihDz/8UB999JEef/xx3XLLLV771tbWyuFwKCEhoU3i//GPf6x//OMfqq+v1x/+8AedeeaZSklJadZnzZo1evHFF1vdz+23364rr7xS1dXV+tnPfqYXX3zR58rZjY2Neumll3TVVVc1DcDv06dP03n32muv6ZJLLmnxPi5evFjPPPPMCb9Gb+f3qerbt6+WLVumvLw8rVu3TqNHj27WXldXpxtvvFH19b4n5Xr77bd1/vnney34kA4XRRwpmj/R1UDa6lyaMWOGUlNTVVRUpIcfflhTp07V4MGDm/XZuSdfv//DHyRJEZGRmnTh7GYFM5KUlJyi/D27dXD/PklHFcpEmGU+hfsqhw4d0h//+EfNnz9fUvPc/va3v1VJSYkk6ZprrjnpY7TFd86MGTPUvXt3FRcX68EHH9S0adPUv3//Zn1yc3P18MMPtxrLoEGDZLVaVVFRoWeeeUaXX355i8/Yd955p6lYyJv4+HjNmTNHTz31lDZv3qzf/va3uv/++72eFw7H4YkbkpOTm57r3r170//37t3barwny2Aw+PX73bGFpd4KTUMBRTMAAABdWIPDrTV7KrV4e6nW7KlUo/P4f4xKigrTtOxETR+UpGFpMRTKAAgazOKMtkK+Qwe5Di3k++Q5XG6t32fT0h3lWrajTJX1/s38nB5v0bTsJE3NStLQ9JimwWxVtsp2jPYw8h1aOjrfzOIMAADQujq7S+v22Q4XyuypVEmNw+9tYy0mjcmM1/i+CTq7T4KsUWHtGCkABLeTuX4tLS2Vx+OR0WiU2ezfUMOTKc7BYUe/dyaTyed7fv311+vJJ59UUVFRs1UVvPV/9NFHNW3aNNntdl1xxRX6xS9+ofPPP19RUVH65ptvtGDBgqbBvLfccouGDRvmMz6j0dgiv77y7e/PTGv9jn7+2Pdj9uzZ+tvf/qbGxkb98pe/1NatWzV58mTFxcUpJydHCxcu1KZNm3TWWWfpyy+/9LqPI8f3drzjxfnSSy/pf//7n6TDKyNMmTJFO3bs8Ll9dHR0s8H8119/vVatWqUPPvhA7733nr799ltdc801GjVqlOLi4lRVVaWdO3dq9erV+vjjj2WxWFqsuHD33Xfr3Xff1cGDB/WXv/xFW7du1eWXX67k5GTt2rVLTz75pDZu3KiRI0fq66+/bnqN/p7LvrT2Oo+WkZGh2NjYpsdpaWn6wQ9+oDfffFPLly/XT3/6U11//fVKSUlRQUGBXn/9db333nsaPXq01q1bJ8l7zh566CFt3LhRhYWF+vOf/6zly5friiuuUFZWlgwGg/Lz8/XZZ5/prbfe0gsvvKDx48c3bXv0z6u396K1n4f09HT95je/0e9//3vl5+fr3HPP1W233aZRo0apoaFBn3zyiZ566imlpaWpvr5epaWlXn++L7jgAt144416+umn9fnnn2vcuHG69tprNWbMGCUmJqq2tlZ79uzR559/rvfff1+VlZW66qqrmvaTkpKic889V0uWLNGyZct02WWX6Wc/+5kyMjJUUlKi999/X6+88ooyMzNls9l8xnG898Lb+9/a55IvV1xxhf7973/L7Xbryiuv1Lx58zRmzBhFRERo06ZNeuqpp7R79+5m5+qx8fz1r3/VXXfdpRkzZujss89Wv379FB0drfLycn3xxRdauHBhU3xz5sw54Rjb4lwym81asGCBrrjiClVXV+uiiy7SLbfcotFnj1e9w6PPv/hSL/37SVWUH/7MvulXv1GCNbFFLENHnK6v132unC3f6JM3ntV5554rY3S0anR45ZL09HS/X9fROR45cqT+85//KD8/Xz/72c/Uo0cPHThwQM8++6yWLl0q6fAqWNdff/1Jf05Kp/6dYzabNX/+fM2ZM0eVlZU6//zzdeutt2r8+PHyeDxavXq1HnnkEUmHC7Ly8vJkMBhaxGU2m3XNNdfo4Ycf1vbt2zV79mzdeuut6tmzpw4dOqR3331Xr7zyynE/b373u99p5cqV2rZtm5555hl99dVXuuaaazR48GCFh4frwIED+vzzz/XWW2/pt7/9ra688sqmbTMzM5tWFXvyySfVs2dPDRgwoCkvycnJzT4jT8SRnISFhZ3U73e+CvWCHUUzAAAAXYzT5da6/Cot3l6mFbvKVWs//kCgGItJUwYcLpQZlRF3SrMPAEBnxSzOaC/kO3SQ69BCvltnd7r15XeFMqt2V6iqwb/3qpc1QlOzEjU1K1HZKVFNRfoet1sd+W6T79BCvgEAADpefkWDVudVaHVepb4uqJbD5f8M9P26RWp83wSN75ugYemx3NMAAOAYkZGRuv3223X33Xcft++wYcP06quv6pprrlF1dbUef/xxPf744y36XX/99frjH//YHuG2ix49eujBBx/UL3/5SzU0NOiRRx5pGkh9xKxZszRnzhxdcsklbX78goKCpv+vWrVK48aNa7X/uHHj9MEHHzQ9NhgMevbZZ/X//t//03/+8x/t2bOn1fe/W7duLZ6Lj4/X//73P82aNUvFxcV688039eabbzbrc+WVV2rcuHGaO3euvy/tuI73Wo946aWXdOGFFzZ77r777tOmTZu0e/duLV68WIsXL27WPnv2bF199dWt5iwlJUUfffSRrrzySm3fvl2rVq3SqlWrTvh1nIxbbrlFBQUF+te//qWDBw/q17/+dbP2pKQkPffcc8ddreO+++6T1WrVP/7xDxUXF+uBBx7w2Tc6OrpFcdqDDz6oCy64QAUFBVqxYoVWrFjRrL1nz5566aWXdNlll53Q62sPp59+uu655x7df//9stlsuvfee1v0ueWWWzRo0KCmohlvbDabXn31Vb366qte2y0Wix566CGNHDnyhGNsq3Np+vTpevzxx3XHHXeourpa999/f4s+JpNJP7vlDl3y4580ez4q3Kz4yDD9at6N+uB/r6iiokL3/vWvuvevf23qc+znyIn43e9+pyeeeEJLly5tKpI5WlZWll577bVTLqpri++cmTNn6i9/+Yv++Mc/ymaz6S9/+Uuz9qioKD377LN67LHHlJeX5zOWO++8U6tXr9b69eu1bt06XXXVVc3ax48fr/nz5+vss8/2uY+oqCi99957uvrqq7V27Vpt2rRJt912WyvvQHN33HGH7rzzTu3bt6/F8Z944olmRTZofxTNAAAAdAFuj0ebD1Rr8fYyfbqj3K+ZnS1moyb0S9D0QUk6OzNB4ebQXFoRAAAAgH8aHC6t3WPTsp3l+mx3hV8F+tLhAW1TBhwulOnXLZLVLAEAAIAQZHe6tbGgWmvyKrU6r0L7Kxv93tZiNmp0rziN+65QJjXO0o6RAgAQHObMmaNHH31UBw4cOG7fKVOmaOPGjXrqqaf0ySefaO/evbLb7UpOTtbYsWN17bXXauzYsQGIum1dddVV6t+/vx577DF9+eWXstlsSkpK0pAhQ3TVVVdp1qxZWr16dUeH6VNYWJgefPBB/exnP9MLL7yg1atXq6CgQLW1tU0r05x22mmaNm2apk+f7nUfgwYN0ueff64FCxboww8/VEFBgWJiYjR48GBdffXVuvTSS/XKK68E+JX5lpKSok8//VQLFizQBx98oIKCAkVFRWnQoEGaM2eOLrvsMr9ylpmZqc8++0xvvPGG3nnnHX3zzTcqKyuT2WxWjx49dMYZZ+jiiy9ul5/rBx54QFOmTNHChQu1ceNG1dfXKz09Xeeee67mzZunHj16HHcfBoNBv/71r/XjH/9Yzz77rD777DPt3btXVVVVioqKUo8ePTRs2DBNmTJFF154oSIjI5tt37NnT61cuVILFizQokWLtH//flksFvXq1UsXXnihbrzxRiUkJLT5az9Zv/71r3XaaafpX//6lzZu3Ki6ujp169ZNo0aN0rXXXqvJkye3+nP6/vvv6+OPP9batWu1a9cuHTp0SJWVlYqMjFSfPn00YcIEXXfddcrMzDzpGE/lXPJ4PKqzu2Srd2jk5Iv0/LvD9b+XntX6tZ/pUOFBuT1udUvurpGjx2r2lXPUL2ugJCkyzKT4qDAlRIZ/P6YrtqeWLl2qhx9+WGvWrNHBgwfV0NBw0q/riPDwcL3xxht67rnn9Prrr2vHjh1yOBzKzMzUrFmzNHfu3BY/ZyerLb5z5s2bp9GjR+uJJ57QF198oaqqKqWkpGjixIm65ZZblJ2drccee6zVfURFRendd9/Vk08+qbfeekt79uyR2WzWgAEDdPnll+tnP/uZX9+hSUlJ+vDDD/XBBx/of//7n9avX6+ysjIZDAalpqbqtNNO04wZMzRz5swW21533XVKSUnRc889p2+//VYVFRVyOo8/5g/tw+DxePyfzgM4Rmlpabvs12QyNVsyqqKigpkBgxj5Di3kO3SQ61Pn8XiUe6hOi7eXaUlumYqr7cfdxmQ06OzMeE0flKQJ/ayKCg/M0tfkO7R0hnx7m0kHaK/rE6lz/NwjcMh36CDXoYV8e1drd2l1XqWW7SjXmrxKNTj9K5TJTonS1KxETclKVGZi29xIaUvkO7R0dL65PoEvXKOgLZDr0EK+Q0sw5Lu4ulFr99i0Oq9S6/bZVO/w73pCknrEWzS+b4LG9U3QqIw4WYJ84q9gyDf80xlyzTUKfKmoqDjhbQoLC+VyuWQ0GtW9e3evfQwGQ7NVEFwulxiSGLzId2gh36GFfJ+YeodLVQ0uVTU45XD5dy0UYTYpLtKkuAizwk3tew20Zs2aplWb3nnnnWarRJHrrq24uFhut1smk0lpaWnH7W80GhUfH9/02Gazye32//q9LRx9jdRRWGkGAACgk9lbXt9UKLOv/PizBRgkjcqI0/RBSZoyIFHxkfyKBwAAAMC36ganVu2u0NId5fpir012l383QoamRWvKgMOFMj0TIto5SgAAAACdjcvt0beFNVqTV6k1eZXaUVLn97Ymo0Gn94zVuD6HV5PpnRjBKpUAEGAnU8DlzwDaY/sw6Da4ke/QQr5DC/luncfjUYPTraoGp6obXLL7WShjMRsVF2FWXIS500wWQK6Dg8fjOanf79xud0hO4sCISpySoysN25LRaGz1MYIL+Q4t5Dt0kOsTU1TVqCXbS/Xx9lJtL671a5uhaTE6f1A3nTuwm1Jiw9s5wtaR79BCvgEAALqeyjqHVuyu0LId5Vq3r0pO9/FvgBgkndYzVlMGJGryAKtS4yztHygAAACATqWy3qHP99i0Zk+lPt9jk63B6fe2SdFhGtfn8GoyZ/WOU4yFISoAAAAAug6Px6NGp7tpRZmuXCgDhDr+IoFTEqjlko5eFgrBj3yHFvIdOsh1S2U1jfro20K9v7lQ6/aW+7XNgJQY/eC0dF08Il29k6LbOcKTR75DC/kGAADonEpr7Vqx83ChzFf7q+TPgjJGw+GVLKdmJWpSf6u6xXRsgT4AAACAwPJ4PNpRUqfV360ms6WwRn7U3Es6XHg/JC1a4/taNa5PgrK7R8nIajIAAAAAupgGh+twoUyjU3anf4Uy4aYjhTImWcxGVtYEOhmKZgAAAAKousGhxVuL9d7mg1qzq1QuP+409bRG6uIR6Zo5Il0DU2O5qAIAAADgU3F1o5bvrNDSHeXaVFAtf8a2mYwGndUrTlOyEjWxv1XWqLB2jxMAAABA51Fnd2ndPtvhQpk9lSqpcfi9bazFpDGZ8RrfN0Fn90ngegIAAABAl3R4RRmnqhqcaqRQBgg6FM0AAAC0swaHS8tzDum9zQe1NOeQXzMQdIux6KLhabp4RLpO75XARRUAAAAAnw5UNmjZdyvKfFtY49c24SaDxmTGa0pWoib0syougj8VAwAAAKEkv6JBq/MqtDqvUl8XVMvhz9KU3+nXLVLj+yZofN8EDUuPldnIPQwAAAAAXc/JFMqEmYyKizApLsKsCAplgC6DO6E4JRUVFe2yX6PRqPj4+KbHNptNbrd/X0joesh3aCHfoSPUc+1wubVun00fby/V8h3lqrW7jrtNjMWkqVlJumBwN53RK16m724yVVZWtnO0py7U8x1qOkO+rVZrQI8HAADQ2ewrr9eyneVauqNcOcV1fm1jMRs1rk+8pmYnaXzfBEWHm9o5SgAAAACdhd3p1saCaq3Jq9TqvArtr2z0e1uL2ajRveI07rtCmdQ4SztGCgAAAADtx35UoUzDiRbKWMyKCOsahTLjxo1TSUlJR4cBdBoUzeCUuFzHHwDcFtxud8COhY5HvkML+Q4doZBrt8ejzQeqtXh7mT7dUa7Keudxt7GYjZrQL0HTByXp7MwEhZuNhxs8bnXltysU8o3vkW8AAID25/F4tLv0+0KZ3aX1fm0XFWbUOf2smpKVqLMz4xVJoQwAAAAQMoqrG7V2j02r8yq1bp9N9Q7/Jz/qEW9pKpIZlREny5H7FwCALstkOvG/C/kzKPjYPgaDQR6P/yuYoWsh36GFfIeWYM63w+VWVYNLVQ1O1Tv8G98SZjQqLvLwijKRYcF1byWYcx1KDAaDX7/fGY3GVh+HCopmAAAAToHH41HuoTot3l6mJbllKq62H3cbs9GgsZnxmj4oSRP6WRXFoDUAAAAAXhy53li6o1zLdpZrX3mDX9vFWkya0M+qqdmJOqt3PIPbAAAAgBDhcnv0bWGN1uRVak1epXaU+LcqpSSZjAad3jNW4/ocLpTpnRjRJWZPBgD4z2q1nvA2paWl8ng8MhqNMpv9G2p4MsU56LrId2gh36Glq+fb7nTLVu+Qrd6hOvvxJz6WJLPJqITIMMVHhikq3BQy10RdPdeh5kjRS1hY2En9fhcfH9/WIXUJFM0AAACchL3l9Vq8vUyLc8qUX3H8gWsGSaMy4jR9UJKmDEhUfCS/hgEAAABoyePxaGtRrZbmHi6UOWBr9Gu7hEizJvW3ampWos7oFacwE4UyAAAAQCiorHfo8z02rdlTqc/32GRr8G8wmCQlRYdpXJ8EjeuboLN6xynGwr0LAAAAAF2Xw+WWre5woUytv4UyRqPiI8MUHxWm6BAqlAFCDX/xAAAA8FNRVaOW5BwulMk95N/sbENSozV9UJLOzU5Sckx4O0cIAAAAoCtyuT365mC1lu2o0LKd5X6tYCkdHuA2ZYBVU7ISNbJnnMxGbuQAAAAAwc7j8WhHSZ1Wf7eazJbCGrk9/m1rkDQkLVrj+1o1rk+CsrtHyciAMAAAAABdmMP13YoydSdWKBMXaVZCZLiiLRTKAKGAohkAAIBWVNQ59GluuRbnlGnTgWq/tumbFKnpg5I0fWCSeiZEtHOEAAAAALoip9ujrwuqtDS3XMt3Vais1uHXdt1jwzUlK1FTByRqWHqMTBTKAAAAAEGvzu7Sun22w4UyeypVUuPf9YMkxVpMGpMZr/F9EzQ2M0GJ0WHtGCkAoDOrqKg44W0cDofcbrckyen0PhDZYDDIZDI1PXa5XPJ4/KzoRJdDvkML+Q4tXSnfTrdH1Q1OVTU4VWt3+bWNyWhQnMWsuAizoiwmHbm74nL5t30w6Uq5Rktut1tut1sOh8Ov3++MRqPi4+ObHttstqbf7wLFarUG9HjeUDQDAABwjJpGp1bsrNDinDKt22eTy49rgvQ4S1OhTP/kqPYPEgAAAECX43C5tT6/Skt3lGvlrgpV1vs341mPeMvhQpmsRA1JjWbGMwAAACAE5Fc0aHVehVbnVerrgmo5/LlZ8Z1+3SI1vm+CxvdN0LD0WFalBABIOrlBwUf+DuV2u+XxeLz+XerYQbYMug1u5Du0kO/Q0tnz7XS5Vd3oUlWDU3V2l/yJzmQwKDbCrLgIk6LDWVHmiM6ea/h2pGBGOvx72sn8fud2u0OyWIyiGQAAAEkNDrdW5x0ulFmTVym7HzefkqLCdO7ARE0fmKShaTFcWAEAAABoodHp1hd7bVq2o1yrdleoutG/P0L3TozQ1KxETRmQqOyUKK43AKALOnq2xrZmNBpbfYzgQa5DC/kOLcfm1+mWNuRX67PdFfosr0L7Kxr83leE2ajRveM1vp9V4/tZlRZnaetwcYo4v0MHuUawCQsLa1phpqGhQZGRkR0cEQAglDjdHtUctaKMP6UdRoNBsREmxVnMiraYZOT+CoJIXV1d0//Dw8M7MJKuh6IZAAAQspwut77cV6XFOWVauatctfbjLzsYazFpStbhQplRGXEyMTsbAAAAgGPU211au9empTvKtXp3heoc/i1x3r9bZNOKMn2TIimUAYAuzmq1BuxY8fHxATsWOha5Di3kO/gV2Rq0PPeQluUc0ppdpaqz+z/Ta0ZipKZkp2jywBSN6ZukiLD2K9ZE2+P8Dh3kGl1dRESE6uvrJUk2m63pOf5uBQBoLy63R9WNTlU1uFTb6JLHj1IZo8GgWItJcREUyiD4eDweOZ1O1dfXq7a2tun5qKioDoyq66FoBgAAhBS3x6PNB6r18fYyLd1Rrsp653G3iTAbNaG/VdMHJmlsZrzCzcwIBQAAAKC5mkanVudVatmOcq3ZY1Oj079CmUHdozUly6opAxLVO5GZOgEAAIBQUFzVoPs+2q73Nh+Ux5+pkiWZjQaN7pOoyd8VyvRLjmbAMgCg3VksFoWHh8tut8vj8aiyslJS66squd3+/V0MXRf5Di3kO7R0ZL6dbo+cbo9c7u/LZFpbR8MgyWQ0yGw0yGwwSI1SXaNU18o2+B7ndtfh8XjkOeaPB5GRkQoLC+ugiLomimYAAEDQ83g8yimu0+KcUn2SW67iavtxtzEbDRrbJ17TByZpQj+rosKZoQ0AAABAc1UNTq3aVaGlO8v1xV6bHC7/RrsNS4vR1KxETR5gVY+EiHaOEgAAAEBn4XC59dyavVrw6Q7V+rGqTHKsRZOzkzU5O0XjB3RTbAQDYgAAgWUwGGS1WlVRUSG7/fv77K0NrmXgbWgh36GFfIeW9s632+NRo9OtBodbjU63H+vJHC6UsZiNiggzKsJs1OF5BDxyu/2cjQBecW53LTExMYqJienoMLocimYAAEDQ2ltWr8U5ZVqcU6b8iobj9jdIOqNXnKYPTNLkAYmKj+RXJQAAAADNVdQ5tHJXhZbuKNe6/Cq5/LgRY5A0smespnxXKNM91tL+gQIAOlxFRUW77dtoNCo+Pr7psc1m4+Z2kCLXoYV8B7cN+TbdvyRPeWX1PvsYJA1Ni9H4flaN72fVwO7RMn63moyzvkYVvjdFJ8f5HTo6Q66tVmtAj4fgZzQalZiYKLvdrvr6ejkcjmY/1waDodlM5w6Ho8Vs6Age5Du0kO/QEoh8uz2H77OU1tpVUeeUP7UuBoNkjTKrW3S4EqPCZGTBzVPGud21GI1GmUwmWSwWWSwWmc2MaTwZvGsAACCoFFU1aklOmT7OKdOOQ/4tuDk0LVrTB3bTudmJ6hbT2sKeAAAAAEJRaY1dy3dWaNnOcn21v8qvmzgmgzSqV5ymDEjUpAFWdYvmWgMAQo3LdfwVBNqK2+0O6PHQcch1aCHfwaGkxq4FK/K1OKfMa3uMxaxJ2ckanRGtMb3ilBj9/cAlj9stfgKCE+d36CDXCBYGg6FpoOaxTCZTs2KtiooKfu6DGPkOLeQ7tLRXvhscbq3ZU6lPc8v02e5KNTiPX1AcZjJobGa8zs1O0oT+VkWHm045DnyPcxuhiKIZAADQ5VXUOfRpbrkW55Rp04Fqv7bp1y1S0wcm6byBSeqZENHOEQIAAADoaoqqGrVsZ7mW7ajQ5gPV8md+LbPRoNG94zQ1K1ET+1mVEBV2/I0AAAAABCWny63XNhZr4doC1Tm8Dwq77Iyeuvv8gUqKsTBICQAAAEDQaHS69fmeSn2SW65VuytU7+Oa6Ghmo0FjMuM1LTtRk/pbFWNhiDuAtsMnCgAA6JJqGp1asbNCi3PKtG6fTS4/RrD1iLfovIFJmj4wSf2To9o/SAAAAABdSkFlg5btKNfSHeXaWlTr1zbhJoPG9knQ1KxEndM3QbER/MkVAAAACHUb8qs0f+le5ZXVe23PTonSPef106ShvQIcGQAglJlM7TNLv9FobPUxggv5Di3kO7Scar7tTrc+31upT3LKtGJnuWrtx58U4PBkZPE6b2CSJmclKY57LAHBuR1ayPdhfLoAAIAuo8Hh1uq8w4Uya/IqZfejUiYpOkznZidq+sAkDU2LkcFgCECkAAAAALqKvWX1WrrzcKHMjkN1fm0TYTZqfN8ETclK1Li+CYoOb58BBwAAAAC6lpIauxasyNfinDKv7bEWk24en6HZI1IUHsZwDQBAYFmt1oAcJz4+PiDHQedAvkML+Q4t/uTb7nRrze5SfbC5UEu2Fam6wXncbUxGg87ul6QLh6Vp+pBUWaPD2yJcnALO7dASqvnmrzAAAKBTc7rc+nJflRbnlGnlrnLV2o+/XGesxaQpWYcLZUZlxMlkpFAGAAAAwGEej0e5xdV6a12+Ps0t8znz87Giw406p59VU7MSNTYzXhFhFMoAAAAAOMzpcuu1jcVauLZAdQ7v9zFmDk3WvAkZskaFBTg6AAAAAGg7Dpdbn+8u04ffFOrjrUWy1TuOu43RIJ3VJ0kXjUjT+UNSlRRjCUCkAPA9imYAAECn4/Z4tKmgWotzyvTpjnLZ6o8/C0GE2agJ/a2aPjBJYzPjFW4OzWUEAQAAAHhXWe/Qf9bn6v1vCrWntNavbeIiTJr4XaHM6N5cZwAAAABoaUN+leYv3euzID87JUp3T8vU8PTYAEcGAAAAAG3D6XLryz3l+uCbQn28pVAVdccvlDEYpDMzE3Xx8DRNH5qqlNiIAEQKAN5RNAMAADoFj8ejnOI6Lc4p1Se55Squth93G7PRoLF94jV9YJIm9rMqMpyZngEAAAA0Z3e69cbXxXrmiwOqbnQdt7810qxJAxI1NcuqMzLiZDZRKAMAAACgpZIauxasyNfinDKv7bEWk24en6HZI1JkMhoCHB0AAC1VVFS0y36NRqPi4+ObHttsNrnd3ldeQ9dHvkML+Q4tx+a7vKJSX+VXaklOqZbmlqvcj0IZSTqtR6zOG9RNU7OSlBIbfvhJZ70qKrxPNIDA49wOLZ0h31arNaDH84aiGQAA0KH2ltVrcU6ZFueUKb+i4bj9DZLO6BWn6QOTNHlAouIj+XUGAAAAQEsej0dLcsv1xKr9OljV2GrfbtFhmjwgUVOzEnVaz1iZGdAGAAAAwAeny63XNhZr4doC1Tm8DzKZOTRZ8yZkyBoVFuDoAADwzeU6/oQybcHtdgfsWOh45Du0kO/g53Z7tGFfhT785qA+/OagSmv9K5QZlhajcwcevs/SPdbS9Dw/L10D53ZoCdV8M8oUAAAEXFFVY1OhzI5DdX5tMzQtWtMHdtO52YnqFhPezhECAAAA6Mq+LqjSghX52lpU67NPaly4pnxXKDMsPUZGA4UyAAAAAFq3Ib9K85fuVV6Z9xmSs1OidPe0TA1Pjw1wZAAAAABw8kpr7frvpkP6YOtXKj7ORGRHDE6N1rnZSZqWlai0eMvxNwCADkTRDAAACIjyWrsWby/R4pwybT5Q49c2/bpFavrAJJ03MEk9EyLaOUIAAAAAXd2+8no9tmq/Vuyq8Nln5oh0XTe+jzKi3Sw1DwAAAMAvJTV2LViRr8U5ZV7bYy0m3Tw+Q7NHpMjEypUAAAAAuoj8iga9uL5QH24tkd3lOW7/gd2jNC0rSedmJ6oHY7kAdCEUzeCUmEymdtmv0Whs9TGCC/kOLeQ7dBiNRtU0OrXo20K9t/mg1u4qlR/XVuoRb9H5g7vp/EHd1D85uv0DRZvg3A4t5BsAAHQ2FXUO/d/nB/Tm5kNyub1feIzsGac//mCYTstIOLxNhe/CGgAAAACQJKfLrdc2Fmvh2gLVObwX3c8cmqx5EzJkjQoLcHQAAAAAcHK2Ftbo+XUHtXxnhY43nCsrOUrTshN1bnaSMqwUygDomiiawSmxWq0BOU58fHxAjoPOgXyHFvIdnFxuj175cp8e/ORLVdY5jts/Odaii4anaeaIdJ2WkSCDgVnYujrO7dBCvgEAQEdpcLj12sYi/efLg6q1u7z26WWN0C8nZmhKVjclJiYENkAAAAAAXdaG/CrNX7pXeWX1XtuzU6J097RMDU+PDXBkAAAAAHDiPB6Pvthr0/PrCrVhf1WrfbO7x2rKgARNzbIqMzEyQBECQPuhaAYAALSpL/PK9Kf3t2l7YesXV/GRYbpgaKpmjkjXWX2TZDJSKAMAAADAP26PRx9vL9MTn+1XcbXda5+ESLN+cXYPzR6eIrPJSHE+AAAAAL+U1Ni1YEW+FueUeW2PtZh08/gMzR6Rwr0NAAAAAJ2e0+3Rp7llemFdoXaU1PnsF2Yy6Ien99S14/ooOzVWFRUVcrm8T1gGAF0NRTMAAKBNHKys1/2LcvT+5oM++0SGmXTu4O6aOSJdE7KSFW42BjBCAAAAAMFgQ75NC1bmK6fY+40di9mgK0elac7oNMVY+PMnAAAAAP84XW69trFYC9cWqM7h9tpn5tBkzZuQIWtUWICjAwAAAIAT0+Bw6d1vS/TyhiIdrGr02S863KQfjkjRVWf2UHav7gGMEAACh7vGOCUVFRXtsl+j0aj4+PimxzabTW639z9Mousj36GFfAefRqdbL647qGe+KFCDj5tIk7OTNX1goib0TVBkuEmSVFttU20gA0W74twOLZ0h31arNaDHAwAAHW9PWb0eXZWvz3ZX+uwzY3A33Ty+p1LjLIELDAAAAECXtyG/SvOX7lVeWb3X9uyUKN09LVPD02MDHBkAAAAAnJjKeofe+LpYr39dLFu902e/btFhumJUqn44IkUxFrNMJlMAowSAwKJoBqckUEuvud1ulnkLIeQ7tJDvrsvj8WjV7ko9tHyfDti8z0YwMDVWf5o5RGP6JjUt2Um+QwPndmgh3wAAoD2V1Tq0cG2B3vnmkFwe733OyIjTbZN6aWD36MAGBwAAAKBLK6mxa8GKfC3OKfPaHmsx6ebxGZo9IkUmoyHA0QEAAACA/wptjXppQ6He/bZEDU7fE5/2skbo6jPTNGNwN4WbjQGMEAA6DkUzAADghO0tq9eDy/fp8702r+1xESbdfE4vXT9poMwmLq4AAAAAnLgGh0svf1Wk5788qDofq1r2SYzQrRN7aVzfBBkMDGADAAAA4B+ny63XNhZr4doCn9cbM4cma96EDFmjwgIcHQAAAAD4b2dJnV5Yd1BLcsp8Tj4mSUPTojVndLom9rfKyD0VACGGohkAAOC3mkannvn8oF7ZWCSXu+VVlkHS7BEpumlcTyXFRlAwAwAAAOCEudwefbStVE+t3q9DNQ6vfRKjzLphXE/9YFiKzMz2DAAAAOAEbMiv0vyle5VXVu+1PTslSndPy9Tw9NgARwYAAAAA/vF4PPpqf7VeWHdQa31MenzEuD4JmjM6TSN7xjIBGYCQRdEMAAA4LrfHo4+2luqxVftVVud90NppPWJ155TeGtg9OsDRAQA6m1WrViknJ0d5eXnKz8+X0+nUzTffrEmTJnV0aACATu7LfTY9siJfO0rqvLZbzEb99Iw0/XR0mqLDTQGODgAAAEBXVlJj14IV+VqcU+a1PdZi0s3jMzR7RIpMFOcDAIKQydQ+f08zGo2tPkZwId+hhXx3Pi63Ryt2luu5Lw9oS2GNz34mg3T+4GTNOStdA5L9G8tFvkMHuQ4t5PswimYAAECrthbW6B/L9mpLYa3X9uSYMN06sZemD0xiNgIAgCTp9ddfV0lJiWJjY2W1WlVSUtLRIQEAOrldJXV6dFW+1u7xPhuaQdJFQ5N107ieSokND2xwAAAAALo0p8ut1zYWa+HaAtU53F77zByarHkTMmSNCgtwdAAABI7Vag3IceLj4wNyHHQO5Du0kO+O0+Bw6e2vD+j/VuUpr9T7GC5Jigwz6fLRGbpufB/1tEad0jHJd+gg16ElVPNN0QwAAPCqvNahJ1bv13vflsjjpT3MZNBVo1L1szE9FMUMzwCAo9xwww1KS0tTcnKy3nnnHb3yyisdHRIAoJMqrbHr6TUFem9LidzeLjwkje4dp9sm9lJWCqtaAgAAADgxG/KrNH/pXuWV1Xttz06J0t3TMjU8PTbAkQEAAADA8VU1OPTSF/v0nzV7VVLd6LNfYnS45ozN1NVje8sazeRjAHAsimYAAEAzTpdbb2wq1sK1B1TT6PLa55y+Cbp9cm/1skYEODoAQFcwfPjwjg4BANDJ1dtdenFDoV5cX6h6HzM99+sWqVsn9tLYzHhWtQQAAABwQkpq7FqwIl+Lc8q8tsdaTLp5fIZmj0iRycj1BgAAAIDOpbiqQc+u3qOXv8xXTaPTZ7+e1kj9YkJf/WhUhiKZ9BgAfKJoBgAANPlyn00PLtvnc8a1XtYI3TG5t8b3TQhsYAAQImw2m3bt2qVdu3Zp9+7d2r17t6qrqyVJEydO1Ny5c/3eV0lJiRYtWqSNGzeqrKxMZrNZqampGjt2rKZPny6LxdJeLwMAAJ9cbo/e31Kip9cUqLTW4bVPt+gw3Ti+py4ekszgNQAAAAAnxOly67WNxVq4tkB1Pgr0Zw5N1rwJGbJGhQU4OgAAOlZFRUW77NdoNCo+Pr7psc1mk9vt/XsYXR/5Di3kO/D2lNXp+S8P6sOtJXK6PT77ZadE65qzemjawCSZjQY11FapofbUjk2+Qwe5Di2dId9WqzWgx/OGohkAAKCDtkY9vGKflu/0/keyqDCjrhvbQ1eOSlWYyRjg6AAgdPz85z9vk/1s2LBBjz32mOrrvy+CbGxsbCrEWbp0qe655x6lpqa2yfEAADgej8ejz/fa9MjKfO0u9V6kHxlm1NVnpuknZ6QxGxoAAACAE7Yhv0rzl+71OTFYdkqU7p6WqeHpsQGODACAzsHlcgXkOG63O2DHQscj36GFfLefbw5W64V1hVq5q0K+S2WkM3vFac7oNJ3VO14Gg0HyuNVeKSHfoYNch5ZQzTdFMwAAhLAGh0vPryvUC+sPqtHp/ZJrxuBumjchQ8kx4QGODgBCW7du3dSjRw9t3rz5hLbbs2ePFixYILvdroiICF1yySUaOnSo7Ha71qxZo6VLl6qwsFD333+/HnjgAUVGRrbTKwAA4LAdh2r1yMp8fbmvymu70SD9YFiybji7p7px3QEAAADgBJXU2LVgRb4W55R5bY+1mHTz+AzNHpHCapYAAAAAOg2Px6M1eZV6fn2hvi6o9tnPaJCmDEjU1aPTNDg1JoARAkDwoGgGAIAQ5PF4tHRHuRasyFdRtd1rn4Hdo3TXlEyN6MGMawAQKJdeeqn69eunfv36KSEhQYcOHdItt9xyQvt47rnnZLfbZTKZ9Lvf/U5ZWVlNbUOHDlVaWppeeuklFRYW6v3339dll13WYh8vvPCCHA6H38ecMWOG0tLSTihOAEDwO1Rt11NrCvTBlhKfs6Kd3Sdev5zQS/2TowIaGwAAAICuz+ly67WNxVq4tkB1DrfXPjOHJmvehAxZo8ICHB0AAAAAeOd0ufVxTpleXF+o3aXeV8qUpHCTQRcNTdZPz0hThjUigBECQPChaAYAgBCzq6RO/1y2Txv2e5/lOSHSrLnnZGjm0GRmXAOAAPNWwHIidu3ape3bt0uSJk+e3Kxg5oiLLrpIy5cv14EDB7Ro0SLNnj1bZnPzS8NPPvlEjY2Nfh93zJgxFM0AAJrU2l16Yd1BvbShSI1O7wPXspKj9MuJvTQmMz7A0QEAEDgmk6nd9m00Glt9jOBBrkML+fbfhnyb7l+Sp7wy7wPMBnaP1v87t2+nnhiMfIcW8h06yDUAAPClzu7SO98e0ssbilTsY5Jj6fBqmZee1l2Xn56qpGgmAACAtkDRDAAAIaKqwal/rSnQ/zYVy+VlmmeTQfrRyO76xdk9FRfBrwgA0BWtW7eu6f+TJ0/22sdoNGrixIl65ZVXVFtbq61bt2rEiBHN+rz44ovtGicAIDg53R69880hLVxboPI6p9c+KTFhunl8hi4Y3I0ifQBA0LNarQE7Vnw8haihglyHFvLdUnFVg/724Xa9t/mg1/a4CLPump6tK8/q3eWuOch3aCHfoYNcAwCA8lqHXv+6SP/dVKyqBpfPfikxYbryjDTNGp6i6PD2m4wFAEIRI2IBAAhyLrdH720p0ROf7VdlvfeBa2dkxOnOKb3VPzkqwNEBANpSbm6uJMlisahv374++w0ePLjZNscWzQAAcCI8Ho9W51Xq0ZX52lPe4LVPVJhRc85K11WjUhURxo0eAAAAACfG4XLruTV7teDTHaq1ex9kdtkZPXX3+QOVFGMJcHQAAAAA0FJBZYNe3lCo97aUqNHpZYbj7/RJjNDVo9N1/qAkhZlYpQ4A2gNFMwAABLHNB6r1z2X7tL241mt7amy4bpvUS1OzEmUwdK0Z1wAALRUUFEiSUlNTZTL5HpCcnp7eYhsAAE5GTnGtFqzI14b9VV7bTQZp1vAU/fzsnkqKDgtwdAAAAACCwee7y/SHd7do56Ear+1D0uP0lx8M1ajegVvhCwAAAAB8ySmu1fPrDmrpjnK5fdfKaESPGM0Zna7xfRNkZNwWALQrimYAAAhCpTV2Pbpqvz7aVuq13WI26Ooz0zVndBqzPANAkLDb7aqurpYkJSUltdo3JiZGFotFjY2NKisra/NYli5dqpycHElSfn5+03Nbt26VJA0cOFBTp071e3/+xthaodCpMhqNrT5GcCHfoYNcn7zCqkY9sSpfH24t8dlnQn+rbp3YW327dY4VLcl3aCHfoYV8o7OqqKhot30bjUbFx8c3PbbZbHK73e12PHQcch1ayHdzh6rtenj5Xn283fu9jliLSbdM6KUfnpYqk7F9P3fbA/kOLeQ7dHSGXFutFBECABBoHo9H6/Kr9MK6g/pyn/eJxo6Y0C9BV49O12k9YgMUHQCAohkAAIKI3enWqxuL9MznB1Tn8P7H18kDrLp9Um+lx1sCHB0AoD01NDQ0/T8iIuK4/SMiItTY2Nhsu7aSk5OjlStXNnsuNzdXubm5TY9PpGjmpptu8qvfG2+84fc+T9XRNz0R/Mh36CDXx1fV4NBTK3brmdV7ZHd6v+YY2iNOv5kxSGf36xbg6E4M+Q4t5Du0kG90Fi6XK2DHcrvdAT0eOg65Di2hmm+ny63XNhZr4doCn/c6Zg5N1rwJGbJGhUket4LhbQrVfIcq8h06yDUAAMHN5fZo2Y5yvbC+UNuLa332MxsNumBQkn56ZlqnmWwMAEIJRTMAAASJNXmVenD5PuVXeB/83CcxQndOzdRZvRk4AgDByG63N/3fbD7+pd6RPkdv11bmzp2ruXPntvl+AQAdx+Fy65Uv8/XI0p0qr/X+3ZEeH6G7zs/WD0b0kNFoCHCEAAAAAILBhvwqzV+6V3ll9V7bs1OidPe0TA1PZ0ZmAAAAAB2nweHWB1tL9OL6Qh2wNfrsFxVm1OwRKbpiVKq6xzLBMQB0FIpmAADo4vZXNOih5fv0WV6l1/bocJNuGNdDl53WXWaTMbDBAQACJjw8vOn/TqfzuP2P9Dl6u87qqaee6ugQACBkeTweLdlWrL8vylFeqfcZ0mItZt08ub+uHZepiDBTgCMEAAAAEAxKauxasCJfi3PKvLbHWky6eXyGZo9IkYkifQAAAAAdpKrBqf9uKtbrG4tUXuf7vnxilFmXn56qS0/rrrgIhmoDQEfjkxgAgC6qzu7Ss18c0MtfFcnh8rRoN0iaOSxZc8dnKDE6LPABAgACKiIioun/DQ3eVx072pE+R2/XWSUlJfnVr6Kiot1iMBqNio//frU2m80mt9vdbsdDxyLfoYNct27LwWo9tHyfvi6o8tpuNhp06cju+vnZGUqMClN9TZW8zwXdOZDv0EK+Q0tH59tqtQbsWAAABBuny63XNhZr4doC1Tm8f3/PHJqseRMyZI3iXgcAAACAjlFU1ahXvirS298cUr2PaxdJykiw6CdnpumiIcmymJncGAA6C4pmAADoYjwejxbnlOmRlfkqqXF47TM0LVp3TcnUkLSYAEcHAOgo4eHhio2NVXV1tcrKvM/IeURNTY0aGw8vEe1vQUpX4HK5AnYst9sd0OOhY5Hv0EGuDztoa9QTn+33OcOzJE0eYNUt52Sod2KkpMB+BrcV8h1ayHdoId8AAHQNG/KrNH/pXuWVeS+/z06J0t3TMjU8PTbAkQEAAADAYbtL6/Ti+kIt2l4ml7vlpMZHDO4eratHp2nygERWxwSAToiiGQAAupCc4lr9Y9lebT5Q47U9KSpM8yZkaMaQbjIauAADgFDTs2dPbd++XUVFRXK5XDKZTF77HTx4sNk2AABIUlWDU//54qBe+9r7apaSNDg1WrdP6qWRPeMCHB0AAACAYFFSY9eCFfk+C/VjLSbdPD5Ds0ekMNgMAAAAQIfYVFCt59cd1Gd5la32G5sZr6tHp+mMjDgZGKsFAJ0WRTMAAHQBlXUOPbmmQG9vPiRvQ9dMRoOuPD1V141NV4yFr3cACFXZ2dnavn27GhsblZeXpwEDBnjtt23btmbbAABCm8Pl1v82HdK/Pz8gW4PTa5/0OIvmTsjQudmJFOgDAAAAOClOl1uvbSzWwrUFqnO4vfaZOTRZ8yZkyBoVFuDoAAAAAIQ6t8ejVbsr9MK6Qn1z0PuExpJkNEjnZifp6tFpyk6JDmCEAICTxahaAAA6Mafbo7c2F+vpNQWqanB57TM2M16/mtxbmUmRAY4OANDZjB49Wu+8844kafny5V6LZtxut1auXClJio6O1pAhQwIZIgCgE/F4PFq6o1yPf7ZfBZWNXvvEWky6bkwPXTayu8LNxgBHCAAAACBYbMiv0vyle5VXVu+1PTslSndPy9Tw9NgARwYAAAAg1Dlcbi3aVqYX1x/UnvIGn/0sZqN+MCxZV41KVY+EiABGCAA4VRTNAADQSX21v0r/XLZPO0vqvLb3iLfojsm9NaFfAst7AgAkSf3799egQYO0fft2LV++XJMmTVJWVlazPh988IEOHDggSbrgggtkNgfPZaHJZGq3fRuNxlYfI7iQ79ARyrnefKBaDy3bq28OVnttNxsN+vHpqbr+7J5KiAyOGZ5DOd+hiHyHFvINAEDnVVJj14IV+VqcU+a1PdZi0s3jMzR7RIpMRu51AADQntrrPgrX5aGFfIeWYM93TaNTb20q1ksbClVSY/fZLz7CrB+fnqofj0pTYhCvihns+cb3yHVoId+HBc/oKAAAgkRRVaMeWZmvT3LLvbZHmI362Zh0XXVGmizM9AwAQSUnJ0dFRUVNj6uqqpr+X1RUpBUrVjTrP2nSpBb7uOaaa/T73/9edrtd9957r2bNmqUhQ4bIbrdr7dq1+vTTTyVJaWlpuvjii9vldXQUq9UasGPFx8cH7FjoeOQ7dIRCrveV1Wr+x7n68NtCn30uHJamX5+frd5J0QGMLPBCId/4HvkOLeQbAICO53S59drGYi1cW6A6h9trn5lDkzVvQoasQTzoDACAziRQ91G4Lg8t5Du0BEu+D1U36Lk1e/XiF/tU3eD02a9HQqSuP6ePfnxmhqLCQ2+4dbDkG8dHrkNLqOY79D7FAQDopBqdbr24vlD/+fKgGp3ebyCdNzBJv5yQodQ4S4CjAwAEwtKlS7Vy5Uqvbbm5ucrNzW32nLeimT59+ui2227TY489pvr6er366qst+qSlpemee+5RZGRkm8QNAOj8KmrtemzZLr34xV45XB6vfU7vlaDfXjhIo3onBjg6AAAAAMFkQ36V5i/dq7yyeq/t2SlRuntapoanxwY4MgAAAAChbE9prRauytObGwtk9zE2S5IGpsbqhol9ddHwdIWZmNAYAIIBRTMAAHQwj8ejlbsr9PDyfB2wNXrtMyA5SndN6a3TM+ICHB0AoCs644wz9M9//lMfffSRNm7cqPLycpnNZqWmpmrMmDE6//zzZbFQgAkAoaDR6dILa/fpsWU7VeVjtrReiVH6fxcM1AVDU2UwGAIcIQAAAIBgUVJj14IV+VqcU+a1PdZi0s3jMzR7RIpMRq49AAAAAATG5v2Venrlbn28tUge7/OKSZLO6pOoGyf106SsZO6XAECQoWgGAIAOtLesXv9cvk9f7LV5bY+LMOmmcRmaNSJFZm4gAUDQmzt3rubOndsm+0pOTtacOXM0Z86cNtlfV1BRUdFu+zYajc2WqLXZbHK7fc8+hK6NfIeOYM61x+PR4u1lemzVPh30UZwfH2HWL8b11I9GpirMZFRlZWVggwywYM43WiLfoaWj8221WgN2LAAAOiOny63XNhZr4doC1Tm8fwfPHJqseRMyZI0KC3B0AADgiPa6j9LR1+UILPIdWrpyvj0ejz7fU6nnvjyg9flVPvsZJE3OStQ1Z/XQsO9Wwwz2+yW+dOV848SQ69DSGfLdGe6jUDQDAEAHqGl06v/WHtBrXxfL5W45hYHRIM0enqIbx/dUQiQ3kAAA8IfL5QrYsdxud0CPh45FvkNHsOT664IqLViRr61FtV7bw0wGXT4yVdeOSVdchFmSJyhe94kKlnzDP+Q7tJBvAAACZ0N+leYv3au8snqv7dkpUbp7WqaGfzf4DAAAdJxAXStzXR5ayHdo6Qr5dro9+jS3TC+sK9SOkjqf/cJMBl04uJt+cmaaMhMjJQX2fnNX0BXyjbZBrkNLqOabohmcEpPJ1C77NRqNrT5GcCHfoSXU8+32ePTBlhI9unKfymodXvuM7Bmnu6f1UXb36ABH17ZCPdehhnyHFvINAEDntK+8Xo9/tl/Ld/qeMXL6wCTdPL6neiREBDAyAAAAAMGmpMauBSvytTinzGt7rMWkm8dnaPaIFJmMhgBHBwAAACDUNDhcevfbEr28oUgHqxp99osON+nS01J0xemp6hYTHsAIAQAdiaIZnJJALZd09LJQCH7kO7SEUr437a/UH9/bps37K722p8ZF6J4ZAzVzRLoMhuC7gRRKuQb5DjXkGwCAjlVR59D/fX5Ab24+5HUlS0ka2TNWt07spaFpMQGODgAAAEAwcbrcem1jsRauLVCdw+21z8yhyZo3IUPWqLAARwcAAAAg1FTWO/TG18V6/eti2eqdPvt1iw7TFaNS9cMRKYqxMHQaAEINn/wAALSzkupG/WNxjt7YUOC1Pdxk1M8n9NHNk/ormosyAAAAAH5qcLj12sYi/efLg6q1e19Cu5c1Qr+ckKGJ/a1BWZwPAAAAIHA25Fdp/tK9yiur99qenRKlu6dlanh6bIAjAwAAABBqCm2NemlDod79tkQNTu8F/ZLUOzFCPz0zTTMGdVO42RjACAEAnQkjcwEAaCcOl1vPr92rRz7dqepG7zMZTBuUot9fNFi9k6IDHB0AAMHHZDK1276NRmOrjxFcyHfo6Kq5dns8+nhbqR5btU9FVXavfRIizbphXIZ+eFp3hZm6xutqb1013zg55Du0kG8AANpXSY1dC1bka3FOmdf2WItJN4/P0OwRKTIZKdYHAAAA0H52ltTphXUHtSSnTC6P735D06I1Z3S6Jva3ysikYgAQ8iiawSmpqKhol/0ajUbFx8c3PbbZbHK7fVcDo2sj36ElVPL9xZ5KzV+6R3t8zLbWOzFCd07po/H9rJLsqqjwPtCtKwuVXOMw8h1aOkO+rVZrQI+HriGQPxdHnwMIfuQ7dHSFXH++u0x/+2ibthyo8toebjbquvF9dNOkfoqLCAtwdF1LV8g32g75Di3kGwCAtuF0ufXaxmItXFugOof3v//NHJqseRMyZI3i+gMAAABA+/B4PPpqf7VeWHdQa/faWu07rk+C5oxO08iesTJQLAMA+A5FMzglLpcrIMdxu90BOxY6HvkOLcGW7wOVDVqwMl/Ld3ovKowKM+r6sT10xahUhZmMQfXajyfYco3Wke/QQr4BAGh/uw5V64FFOfp0+yGffWaP7KFfTc9Wj4TIAEYGAAAAIBhtyK/S/KV7ledjcrDslCjdPS1Tw9NjAxwZAAAAgFDhcnu0cleFnl93UFuLan32MxkNmj4wSVefmab+yVEBjBAA0FVQNAMAQBtocLj03JeFemH9Qdl9rP154eBumjchQ91iwgMcHQAAAICuqqS6UQs+3aHX1u+Xy+39WmNM30T9dsZgDevJygoAAAAATk1JjV0LVuRrcU6Z1/ZYi0k3j8/Q7BEpMhmZtRkAAABA22t0uvXRtlK9uL5Q+RUNPvtFmI2aNTxFV52RqtQ4SwAjBAB0NRTNAABwCjwej5buKNfDK/JVXG332mdQ92jdNbU3s60BANDOKiq8r/TWFoxGo+Ljvx+MbrPZ5Ha72+146FjkO3R05lzXO1x6eX2h/vNlgers3mPqkxip2yb31jn9rDIY3O36ORgMOnO+0fbId2jp6HxbrdaAHQsAgPbidLn12sZiLVxboDqH9+/RmUOTNW9ChqxRYQGODgAAAEAoqGl06n+bDunVjUUqq3X47JcQadblp6fq0tNSlBDJ9QkA4PgomgEA4CTtKqnTP5bt1Vf7q722WyPNmjshQzOHJstoYLY1AADam8vlCtix3G53QI+HjkW+Q0dnyLXL7dGibaV6cvV+HarxfkMoMcqsX5zdU5cMT5HZaKAQ4CR1hnwjcMh3aCHfAACcmA35VZq/dK/yyuq9tmenROnuaZlMDgYAAACgXZTU2PXKV0V6a3Oxan1MJCZJPeItuuqMVM0cmqyIMFMAIwQAdHUUzQAAcIJs9U79a22B/repWG5Py3aTQbpsZKp+cXYPxUbwVQsAAADAP1/us+mRlfnacajOa7vFbNRPzkjV1aPTFR3OzSAAAAAAp6akxq4FK/K1OKfMa3usxaSbx2do9ogUmYxMDgYAAACgbe0tq9cL6wv10bZSOb0NwvpOVkqU5oxO19SsRJm5NgEAnARG8gIA4CeX26N3vy3RE6v3y1bv9NrnzF5xunNKb/XrFhXg6AAAAAB0VbtK6vToqnyt3WPz2m6QdNGQbrpxfE91j7UENjgAAAAAQcfpcuu1jcVauLZAdQ7vszjPHJqseRMyZI0KC3B0AAAAAILdNwer9cK6Qq3cVSHfpTLS6F5xunp0us7qHSeDgWIZAMDJo2gGAAA/bDpQrX8s3atcHzM+p8aG6/bJvTVlgJWLNAAAAAB+Ka2x6+k1BXpvS4nXVSwlaXTvON02sZeyUqIDGxwAAACAoLQhv0rzl+5VXlm91/bslCjdPS1Tw9NjAxwZAAAAgGDm8Xi0Jq9Sz68v1NcF1T77GQ3SlAGJunp0mganxgQwQgBAMKNoBgCAVpTU2PXoqnwt2lbmtd1iNmjO6HRdfWaaIsJMAY4OAAAAQFdUb3fpxQ2FenF9oep9zOrcNylSt03qpbGZ8RTmAwAAADhlJTV2LViRr8U53u93xFpMunl8hmaPSJHJyDUIAAAAgLbhdLn1cU6ZXlxfqN2l3ov3JSncZNDFQ5P1kzPSlGGNCGCEAIBQQNEMAABe2J1uvfJVkZ754oDPQWxTBlh1+6TeSou3BDg6AAAAAF2Ry+3R+1tL9PTqApXWOrz2SYoO003jeuqiockyM1ANAAAAwClyutx6bWOxFq4tUJ2P+x0zhyZr3oQMWaPCAhwdAAAAgGBVZ3fpnW8P6eUNRSqutvvsF2sx6dLTuuvy01OVFM01CQCgfVA0AwDAMVbvrtCDy/dpf2Wj1/a+SZG6c0pvje4dH+DIAABAa0ym9lv1zWg0tvoYwYV8h45A5nptXoUeXr5Pu0rrvLZHhBl1zege+unodEWFs4ple+DcDi3kO7SQbwAAvNuQX6X5S/cqr8z7bM7ZKVG6e1qmhqfHBjgyAAAAAMGqvNah178u0n83FauqweWzX0pMmK48I02zhqcomvsiAIB2RtEMAADfya9o0EPL92l1XqXX9hiLSTeO66lLR6TIbGLwBQAAnY3Vag3YseLjKZ4NJeQ7dLRHrrcdrNL9i7brs52lXtuNBumyMzJ0x7lZSomLaPPjwzfO7dBCvkML+QYAhLqSGrsWrMjX4pwyr+2xFpNuHp+h2SNSZGKFSwAAAABtoKCyQS9vKNR7W0rU6PT47Nc3KVJXn5mm6YOSFMb4KwBAgFA0AwAIeXV2l5754oBe3lAkp7vlRZtB0g+GJWvuORmyRrEMKAAAAIDjK7I16MElufrfxgJ5fNwbmpSdrHsuGKTsVGZ1BgAAAHDqnC63XttYrIVrC1TncHvtM3NosuZN4H4HAAAAgLaRU1yr59cd1NId5fIy7KrJiB4xmjM6XeP7JshooHgfABBYFM0AAEKWx+PRx9vL9OiqfJXUOLz2GZYWo7um9tbg1JgARwcAAACgK6ppdOpfK3fr/z7LU4OPQWoDU2P12wsH6ZwByQGODgAAAECw2pBfpflL9yqvrN5re3ZKlO6elqnh6RTtAwAAADg1Ho9H6/Kr9MK6g/pyX1WrfSf0S9DVo9N1Wg+uRQAAHYeiGQBASMoprtX8pXv1zcEar+1J0WGaNyFDMwZ3Y3YDAAC6iIqKinbbt9FoVHx8fNNjm80mt9v7YHh0feQ7dLRlrp1uj975plhPfbZf5XXei/JTYsI1d0IvXTgkWSajoV0/t9AS53ZoId+hpaPzbbVaA3YsAACOVVJj14IV+VqcU+a1PdZi0s3jMzR7RIpMRu53AAAAADh5LrdHn+SU6YX1hdpeXOuzn9lo0AWDu+mnZ6Sqb7eoAEYIAIB3FM0AAEJKZZ1DT6wu0DvfHJK3FUHNRoOuGJWq68akK8bC1yQAAF2Jy+UK2LHcbndAj4eORb5Dx8nk2uPxaHVepR5dma895Q1e+0SFGTXnrHRdNSpVEWEmyeMWP1Idj3M7tJDv0EK+AQChwOly67WNxVq4tkB1Pla5nDk0WfMmZMgaFRbg6AAAAAAEkwaHS//9qkD/WrFTBZWNPvtFhRn1wxHddfmo7uoeawlghAAAtI7RwACAkOB0e/TmpmI9vaZA1Y3eB02cnRmvO6b0VmZiZICjAwAAANAV5RTXasGKfG3YX+W13WSQLhmeol+c3VNJ0QxSAwAAANA2NuRXaf7Svcorq/fanp0SpbunZWp4emyAIwMAAAAQTGoanXp52U49t3avSmvsPvslRYXp8lHddemI7oqNYFgyAKDz4dsJABD0NuRX6Z/L9mpXqfebRz3iLfrVlN46p2+CDAZDgKMDAAAA0NUUVTXqydUF+mhbqc8+5/RN0LwJGerbLSqAkQEAAG9WrVqlnJwc5eXlKT8/X06nUzfffLMmTZrU0aEBwAkpqbFrwYp8Lc4p89oeazHp5vEZmj0iRSYj9zsAAAAAnLw9ZfW67a1cHbD5XlkmI8Gin56ZrguHdJPFbAxgdAAAnBiKZgAAQauoqlGPrMzXJ7nlXtsjzEZdNzZdV45K48INAAAAwHHVNDr13JcH9cpXRbK7PF77DOwepdsm9tIZveIDHB0AAPDl9ddfV0lJiWJjY2W1WlVSUtLRIQHACXG63HptY7EWri1QncPttc/MocmaNyFD1ihWuQQAAABwatbts+nX7+1UTaPLa/vg7tG6enSaJg9IpGAfANAlUDQDAAg6DQ63XtpQqP98eVCNTu83j84flKR5EzLUPdYS4OgAAAAAdDVOl1tvfXNIC9ceUGW902uf7rHhmntOhs4flCQjK1gCANCp3HDDDUpLS1NycrLeeecdvfLKKx0dEgD4bUN+leYv3au8snqv7dkpUbp7WqaGp8cGODIAAAAAwejdbw/pvk/2yuVuOXnY2X0SdPWZqRqVEScD90IAAF0IRTMAgKDh8Xi0YleFHl6er4NV3pcGzUqO0l1Te2tkz7gARwcAAACgq/F4PFq5q0KPrtqv/IoGr32iw0269qx0XX56qiLCWMESAIDOaPjw4R0dAgCcsOKqBv3xvR36eHup1/ZYi0k3j8/Q7BEpzOwMAAD8YjKZ2mW/RqOx1ccILuQ7eLk9Hj35Wb6e+fxAi7YRGQm6b9ZQ9YyW3G7vExij6+P8Dh3kOrSQ78MomgEABIU9ZfX657K9+nJfldf2+AizbhrfU7OGc/MIAAAAwPFtKazRIyvz9XVBtdd2k9GgH45I0c/H9pA1KizA0QEAEBg2m027du3Srl27tHv3bu3evVvV1Ye/GydOnKi5c+f6va+SkhItWrRIGzduVFlZmcxms1JTUzV27FhNnz5dFgsrQgOAJDlcbj23Zq8WfLpDtXaX1z4zhyZr3oQMrkUAAMAJsVqtATlOfHx8QI6DzoF8B4cGh0t3/nezPvimsEXbBUNT9dBlpykyvH0K79B5cX6HDnIdWkI13xTNAAC6tJpGpxauPaDXvy72uiyo0SD9cESKbhyXofhIvvYAAAhm7TVDmsTMG6GGfIcOb7k+aGvQYyvzfc7mLEmTByTqlxN7KzMpsr1DRBvi3A4t5Du0kO/28/Of/7xN9rNhwwY99thjqq+vb3qusbGxqRBn6dKluueee5SamtomxwOArmp7UY3+9Nw32lFc47U9OyVKd0/L1PD02ABHBgAAACBYldU06ucvbNDG/MoWbTdM7Ku7pw+UkQmKAQBdHKOHAQBdktvj0ftbSvTEZ/tVXuf02uf0nrG6c0pvZaVEBzg6AADQEQI1Q5oUujNvhCryHRpsdQ49seagnluzV3aX22ufET3j9dsLB2t0n8QAR4f2wLkdWsh3aCHf7aNbt27q0aOHNm/efELb7dmzRwsWLJDdbldERIQuueQSDR06VHa7XWvWrNHSpUtVWFio+++/Xw888IAiIylKBRCaPs0t058W5anB2fJ6JNZi0s3jMzR7RIpMDFYDAAAA0EZ2HarRz55br/zyumbPm4wG3XvJUF0xulcHRQYAQNuiaAYA0OVsKazR/KV7ta2o1mt799hw3Tqxl87NTpTBwM0jAAAAAL7ZnW699MU+PbpspyrrHF779LRG6tfnD9RFw9KYTQ0AEFIuvfRS9evXT/369VNCQoIOHTqkW2655YT28dxzz8lut8tkMul3v/udsrKymtqGDh2qtLQ0vfTSSyosLNT777+vyy67rMU+XnjhBTkc3r+nvZkxY4bS0tJOKE4A6Cgej0f//vyA/rX2gNf2mUOTNW9ChqxRYQGODAAABJuKiop22a/RaGw2gYXNZpPb7X1iInR95Dt4bMi36Y63clTd6Gr2fEy4Sf+4JFtj+sTKZrOR7xDC+R06yHVo6Qz5DuQkuL5QNAMA6DLKah16fFW+3t9a6rU9zGTQT89M07Wj0xUZbgpwdAAAAAC6mp3F1brhpa+UV+K9ID8uwqx5Uwbo6rN7y2LmGgMAEHq8FbCciF27dmn79u2SpMmTJzcrmDnioosu0vLly3XgwAEtWrRIs2fPltnc/PbVJ598osbGRr+PO2bMGIpmAHQJDQ63/rI4T0tyylq0DU6L06+n9tbQ1KgOiAwAAAQjl8t1/E5twO12B+xY6Hjku2v6YEuJ7l2yR063p9nzqbHhWjA7W/2To7zmlXyHFvIdOsh1aAnVfFM0AwDo9Jwut177ulj/t/aAau3ev6wn9rfq9km91DMhIsDRAQCAzqK9ZkiTOsfMGwgc8h0afM2gJklmo0E/Pj1V15/dUwmRYaqrrlJdB8SItsW5HVrId2jp6Hx3hhnSOqt169Y1/X/y5Mle+xiNRk2cOFGvvPKKamtrtXXrVo0YMaJZnxdffLFd4wSAjlBSY9ev3tmhbUUti/gvPzNDf/nBUNVW20JyEAMAAACA9uHxePT0mgI988XBFm2Du0frodlZ6hYd3gGRAQDQviiaAQB0al/srdQ/l+3T3vIGr+29EyP0q8m9dXafhMAGBgAAOp1ADiIJ1Zk3QhX5Dj4fby/VnxbltZhBTZKmZiXqlnMylGE9XJBP7oMX53ZoId+hhXx3Hrm5uZIki8Wivn37+uw3ePDgZtscWzQDAMFme1Gt7ngnVyU1jmbPGw3Sby8crJ+Ny5TBYJD3NTEBAAAA4MQ1Ot36y8d5WuxlpcvJA6z664x+iggzdUBkAAC0P4pmAACdUkFlgx5eka+Vu7zPGB8dbtTPx/bUj0/vrjCTMcDRAQAAAOiKPB6Pnlt3UE98VtCibUh6nO6c3EvD0qI7IDIAAIJTQcHh79zU1FSZTL4HXaSnp7fYBgCC1ae5Zfrjojw1OpuvihYdbtIDM7N08Rl9OigyAAAAAMGqss6hX727Q5sP1LRo++kZaZo3MUNGg6EDIgMAIDAomgEAdCr1dpeeW3dQL64vlN3VctZnSbp4SDfNnZDBcqAAAAAA/OZ0e/T3T/fo7W9KWrRNH9Jdj1w+UvU1VaxMAABAG7Hb7aqurpYkJSUltdo3JiZGFotFjY2NKitrOdvpqVq6dKlycnIkSfn5+U3Pbd26VZI0cOBATZ061e/9+Rtja4VCp8poNLb6GMGDXAcPj8ejhWsL9PTq/S3aeiZYtOCHgzQgJabZ8+Q7uHF+hxbyHTrINQCgs9lbXq/b3spVQWVjs+dNBumuqZm69LTuHRQZAACBQ9EMAKBT8Hg8+jS3XAtW5qu42u61z+Du0bpram8NS48NcHQAAAAAurI6u0v/7/2dWrvH1qLt2nGZ+t2Fg2UyGlTfAbEBABCsGhoamv4fERFx3P4RERFqbGxstl1bycnJ0cqVK5s9l5ubq9zc3KbHJ1I0c9NNN/nV74033vB7n6cqPj4+YMdCxyLXXVODw6W7/veN3t98sEXbWX0S9dRPRinRy0Rh5Du0kO/QQr5DB7kGAHSkr/ZX6a53d6iqofmEYdHhRj1w8QCN7ZPQMYEBABBgFM0AADrczpI6/WPpXm0sqPbabo0065YJGbp4aDJLgQIAAAA4IaU1dt32dq5yiuuaPW+Q9KspmbrlvCEdExgAAEHObv9+Yhyz+fi3o470OXq7tjJ37lzNnTu3zfcLAP4ormrQL17YoM0FLYv4Lz8zQ3/5wVCFm1mFAAAAAEDb+nBrif66eI+cbk+z57vHhuuR2dnqnxzVQZEBABB4FM0AADpMZZ1dD3ySp/9+XaRjrs8kHV4G9Menp+rnY3soNoKvLAAAAAAnJq+0Tr98M1dFx6xmaTEb9JcZ/XXeoOQOigwAgOAXHv79iglOp/O4/Y/0OXq7zuqpp57q6BAAdBFbDth0/fMbVFTVfBUto0H67YWD9bNxmTIwWRgAAACANuTxeLRw7QH93+cHWrQN6h6th2dlqVtM5//7CwAAbYkRyACAgHO5PXptfb7+uThXFXUOr31G94rTnVN6q283ZjUAAAAAcOI25Ffpznd3qKbR1ez5+EizHp6VpeHpsR0UGQAAoSEiIqLp/w0NDa30bN7n6O06q6SkJL/6VVRUtFsMRqNR8fHxTY9tNpvcbne7HQ8dh1x3XZ/klOoPH+5Sg7N5vmLCTbp/ZpbG90tQZWVlszbyHVrId2gh36GjM+TaarUG9HgAgM7D7nTrr4vztGh7WYu2if2tundGP0WGmzogMgAAOhZFMwCAgPrmQLX+/sIWbSus8tqeHmfR7ZN7aVJ/K7OrAQAAADgpi7aV6s8f58l5zJKWGQkWPfLDgepl7fyDcQEA6OrCw8MVGxur6upqlZW1HKhxtJqaGjU2NkryvyClK3C5XMfv1EbcbndAj4eOQ647P4/Ho39/fkD/WttyVuce8RY9PCtLfbtF+ZVH8h1ayHdoId+hg1wDAAKlss6hO9/dqU0Hqlu0XTUqVb+c2EsmI2OxAAChiaIZAEDA/G9Tsf65bF+LgWuSZDEbdM3odP30zHRFhBk7IDoAAAAAXZ3H49F/vjyoJ1cXtGgblhajh2ZlyRoV1gGRAQAQmnr27Knt27erqKhILpdLJpP3mUwPHjzYbBsA6KoaHG79ZXGeluS0LBY8vWes5s8coASuSQAAAAC0sfyKBt36Zo72VzY2e95okO6akqkfjezeQZEBANA5UDQDAGh3TpdbDy7fp/9uOuS1fWpWom6b2Etp8ZYARwYAAAAgWDjdHv390z16+5uSFm2TB1j11xn9KdAHACDAsrOztX37djU2NiovL08DBgzw2m/btm3NtgGArqikxq5fvbND24pqW7RdMixZd0/LVJiJaxIAAAAAbevrgird+c5O2RqczZ6PCjPq/osHaFzfhI4JDACAToSiGQBAu6qsd+j/vbdLG/ZXtWjL6h6jX03urVE9YzogMgAAEGx8zVrdFoxGY6uPEVzId9dT2+jS3e/t0Jq8yhZtV45K0x1TMmUyGlq0kevQQr5DC/kOLeS78xo9erTeeecdSdLy5cu9Fs243W6tXLlSkhQdHa0hQ4YEMsR2xTUK2gK57hq2F9XotjdzdKjG3ux5o0G6Y3KmrjwjTQZDy2uSY5Hv0EK+Qwv5Dh3kGgAQSB9tK9VfF+fJ4fI0e757bLgenpWlrJToDooMAIDOhaIZAEC7ySut0x3v7FDBMUt/StJNk/rpV+dmqbrKJpfL1QHRAQCAYGO1WgN2rPj4+IAdCx2PfHduh6oadMMb67X1YPNCfYNB+t2Fg3Xd+D5+74tchxbyHVrId2gh351H//79NWjQIG3fvl3Lly/XpEmTlJWV1azPBx98oAMHDkiSLrjgApnNwXPrimsUtAdy3fl89G2h7nhjixoc7mbPx1jMeuzKkZqcnXLS+ybfoYV8hxbyHTrINQCgPXg8Hv3f5we0cO2BFm3ZKVFaMDtbyTHhHRAZAACdU/DceQAAdCqf7a7Q7z7cpVp785tEFrNR8y8drh+c1qODIgMAAAAQLHYUV+va/6zXgcr6Zs9bzEYt+PFpumBYWgdFBgBAcMjJyVFRUVHT46qq74tUi4qKtGLFimb9J02a1GIf11xzjX7/+9/Lbrfr3nvv1axZszRkyBDZ7XatXbtWn376qSQpLS1NF198cbu8DgBoDx6PR48u3aWHP93Roq1XYpSemXOGBnSP7YDIAAAAAAQzu9Otvy7J06JtZS3azumXoL9d2F9R4e23+i0AAF0RRTMAgDbl8Xj0/LpCPfHZfnmOaUuOCdPDswdq/GAKZgAAAACcmrW7S3XDi1+pusHZ7HlrVJj+PedMjeoduJndAQAIVkuXLtXKlSu9tuXm5io3N7fZc96KZvr06aPbbrtNjz32mOrr6/Xqq6+26JOWlqZ77rlHkZGRbRI3ALS3BodLd/3vG72/+WCLtrP6JOqpn4xSYjSzOgMAAABoW7Z6p+56d4c2FlS3aLvi9FTdNqmXTEZDB0QGAEDnRtEMAKDNNDrdutfHTAZDUqP1z0uylBrPjW8AANA+Kioq2m3fRqNR8fHxTY9tNpvcbncrW6ArI9+d30dbS/THj3bJ6W5eqp9hjdBjlw5S7zj/PhPIdWgh36GFfIeWjs631Uqh5vGcccYZ+uc//6mPPvpIGzduVHl5ucxms1JTUzVmzBidf/75slgsHR1mm+MaBW2BXHc+h6rtuuPtHG0trGnRNmt4iu45r68M9lpV2GtPeN/kO7SQ79BCvkNHZ8g11ygAEJz2VzTo1rdylV/R0Ox5o0H61eTe+vHpqR0UGQAAnR9FMwCANlFSY9ed7+zQ1qKWN4EuGJSk357XVxFhxg6IDAAAhAqXyxWwY7nd7oAeDx2LfHceHo9H//nyoJ5cXdCibVhajB6alSVrVNhJ54tchxbyHVrId2gh321n7ty5mjt3bpvsKzk5WXPmzNGcOXPaZH9dAdcoaA/kumPlFNfqjrdzdajG0ex5o0G6bVIvXXF6qgzytFmOyHdoId+hhXyHDnINAGgLmwqq9at3d8hW72z2fGSYUfdf1F/j+1EwCQBAayiaAQCcsq2FNbrz3R0qOeYmkUHS3HMyNGd0mgwGlv4EAAAAcPKcbo/+/ukevf1NSYu2yQOs+uuM/hTqAwAAAGg3n+aW6Y+L8tTobL5aQHS4UfddNEDj+iZ0TGAAAAAAgtrH20v154/z5HB5mj2fHBOmBbOzlZ0S3UGRAQDQdVA0AwA4JR9vL9VfF+ep0dn8wiwqzKh7L+qvCcxkAAAAAOAU1dpduuf9nVq7x9ai7YrTU3XbpF4yGSnUBwAAAND2PB6PnvnioJ5e03LFyx7xFj00K0v9ukV1QGQAAAAAgllr1yJZKVF6eFaWusdaOiAyAAC6HopmAAAnxe3x6KnVBfrPlwdbtHGTCAAAAEBbKa2x69a3cpV7qK7Z8wZJt0/upStHpXVMYAAAAACCXoPDrb8sztOSnLIWbaf3jNX8mQOUEBXWAZEBAAAACGYOl1t/W7JHH2wtbdE2vm+C7ruov6LCTR0QGQAAXRNFM0GgvLxcn3/+ub7++msdOHBAlZWViomJUXZ2tn7wgx9owIABHR0igCBTa3fp9x/u0qrdlS3azsiI0wMz+yshkptEAAAAAE7N7tI63fpmroqq7c2et5gN+uuM/pqSldhBkQEAAByfydR+g1eMRmOrjxE8yHXHOVRt1x1v52hrYU2LtlnDU3TPeX0VZmrbfJDv0EK+Qwv5Dh3kGgBwqmz1Tv36vR36an91i7Yfj+yuOyb3lslo6IDIAADouiiaCQKLFi3Su+++q+7du2vEiBGKi4tTYWGh1q9fr/Xr1+vWW2/V2Wef3dFhAggSByobdMc7O7S7tL5F249OS9GvJveWuY1vEgEAAAAIPRvybbrz3Z2qaXQ1ez4+0qyHZ2VpeHpsB0UGAADgH6vVGrBjxcfHB+xY6FjkOjC2HLDp+pe2qKiqodnzRoP02wsH62fjMmUwtP8gNfIdWsh3aCHfoYNcAwBOREFlopT0/QABAABJREFUg259K1f7yltei9wxubcuPz21gyIDAKBro2gmCPTv319/+tOfNHjw4GbPb9++XX/5y1/0f//3fzrzzDMVFsaqDwBOzYb8Kt39/k7Z6p3NnjcZDbprSm9delr3DooMAAAAQDBZtK1Uf/44T063p9nzGQkWPfLDgepljeigyAAAAAAEu4++LdQdb2xSg8Pd7PkYi1mPXTlSk7NTOigyAAAAAMFs84Fq/eqdHao8ZlxWhNmo+y7urwn9Ajc5BwAAwYaimSBw1llneX1+0KBBGjp0qDZv3qz8/Hz169cvwJEBCCb/21SsfyzbJ9cxg9biI8z6+8wBOqNXXAdFBgAAACBYeDwe/efLg3pydUGLtmFpMXpoVpasUUwKAgAAAKDteTwePbZslx76ZEeLtozESD0z50xldWfFSwAAAABtb0lOmf60aLfsrubjspJjwvTwrGwN7B7dQZEBABAcQr5oxmazadeuXdq1a5d2796t3bt3q7q6WpI0ceJEzZ071+99lZSUaNGiRdq4caPKyspkNpuVmpqqsWPHavr06bJYLO31MnwymUzN/gWAE+V0ufXg8n3676ZDLdr6JkXqoVlZ6pnALM8AAAAATo3T7dHfP92jt78padE2eYBVf53RXxFhxg6IDAAA4ORUVFS0276NRqPi4+ObHttsNrnd7la2QFdFrgOjweHSnxbt1uLtpS3aTs+I0z8vyZY13Nmu57VEvkMN+Q4t5Dt0dIZcW62sRAAAXUVrk4llJUfp4dlZ6h4b+HGnAAAEm5Avmvn5z3/eJvvZsGGDHnvsMdXX1zc919jY2FSIs3TpUt1zzz1KTU1tk+P5o7S0VN9++62sVqt69eoVsOMCCB6V9Q79v/d2acP+qhZt5/RL0F9n9FOMJeS/SgAAAACcolq7S/e8v1Nr99hatF0xKlW3Tewlk9HQAZEBAACcPJfLFbBjud3ugB4PHYdct73SGrvueGeHthXVtmj7wbBk/b9pmQozGTvkfSffoYV8hxbyHTrINQDAF4fLrfuW7NH7W1sW74/rk6D7Lu6v6HAmSwcAoC0w0vko3bp1U48ePbR58+YT2m7Pnj1asGCB7Ha7IiIidMkll2jo0KGy2+1as2aNli5dqsLCQt1///164IEHFBkZ2U6v4HtOp1OPPfaYHA6HrrrqKhmNzMQK4MTkldbpjnd2qKCysUXbtWel66bxPWU0MGgNAAAAwKkpqbHrtrdylXuortnzBkm3T+6lK0eldUxgAAAAAIJeTnGt7ng7V4dqHM2eNxqkWyf20pWjUmXgXggAAACANlbV4NSv393pdSLjH52Wol9NyZSZycQAAGgzIV80c+mll6pfv37q16+fEhISdOjQId1yyy0ntI/nnntOdrtdJpNJv/vd75SVldXUNnToUKWlpemll15SYWGh3n//fV122WUt9vHCCy/I4XC0eN6XGTNmKC3N+6ARt9utJ598Utu3b9fUqVM1YcKEE3o9APDZ7gr97sNdqrU3XybaYjbo99P76vxB3TooMgAAAADBZHdpnW59M1dF1fZmz1vMBv11Rn9NyUrsoMgAAAAABLtPc8v0x0V5anQ2vxcSHW7UfRcN0Li+CR0TGAAAAICgVlDZoNveytXe8oZmzx+ZTOyK0yneBwCgrYV80Yy3ApYTsWvXLm3fvl2SNHny5GYFM0dcdNFFWr58uQ4cOKBFixZp9uzZMpubv/WffPKJGhtbrubgy5gxY7wWzbjdbj311FNavXq1zjnnHP385z8/wVcEIJR5PB49v65QT3y2X55j2pJjwvTPH2RpSFpMh8QGAAAAILhsyLfpznd3qqbR1ez5+EizHp6VpeHpsR0UGQAAAIBg5vF49MwXB/X0moIWbT3iLXpoVpb6dYvqgMgAAAAABLtvDlbrV2/vUEW9s9nzEWaj7r2onyb1ZzIxAADaQ8gXzZyqdevWNf1/8uTJXvsYjUZNnDhRr7zyimpra7V161aNGDGiWZ8XX3zxlGM5ssLMqlWrNG7cOM2dO1dGo/GU9wsgNDQ63bp3SZ4WbStr0TYkNVr/vCRLyTHhHRAZAACAf0wmU7vt+9hrK661ghv5bn8fbS3RHz/aJae7ebl+hjVCj106SL0TIwMSB7kOLeQ7tJDv0EK+AQD+anC49ZfFeVqS0/JeyOk9YzV/5gAlRIV1QGQAAAAAgt0nOWX646Ldsrua3xtJig7TglnZGpQa3UGRAQAQ/CiaOUW5ubmSJIvFor59+/rsN3jw4GbbHFs0c6qOLpg5++yzNW/ePG4MAvBbSY1dd76zQ1uLalu0XTAoSb89r68iwvhMAQAAnZvVag3YseLj4wN2LHQ88t12PB6PnlyxW/9YvLNF28heCfr31WcoKcbSAZEdRq5DC/kOLeQ7tJBvdBYU9qMtkOu2U1Jj1+1v5WhrYU2LtkuGp+g35/VVmKlj31/yHVrId2gh36GDXAMAjuXxePT8ukI9/tn+Fm39u0VqwexspcZ13L0RAABCAUUzp6ig4PCy3ampqa3e/EhPT2+xTVtxu9166qmntGrVKo0ZM4aCGQAnZGthje58d4dKahzNnjdImntOhuaMTpPBYOiY4AAAAAAEDafLrd+/u0Wvrmt5U2j6kO565PKRighrv4GlAAAAgUZhP9oDuT45Ww7YdP2LW1RU1dDseaNB+s2MQbpufJ9OeS+EfIcW8h1ayHfoINcAENqcLrfu/3Sv3v22pEXb2Mx43X9xf8VYGMYLAEB749v2FNjtdlVXV0uSkpKSWu0bExMji8WixsZGlZW1XO77VPzvf//TypUrFRERofT0dL355pst+owePVqZmZl+79PfGNtrljRm3ggt5LvjLNpWoj8v2q1Gp7vZ81HhRt13cZYm9k9s82OS79BBrkML+Q4t5BsAcKJqGp2a+/JGrdzR8qbQz8b10W8vHCSTsfMNUAMAAADQ9S36tlC3v7FJDY7m90JiLGY9dsVITR6Y0kGRAQCAULXq/7N35/FRlWf/x7+zJJOEhBDCkoWdJIiAigKiVQHBHRWs+rS1VrvYPoqKdddqf33UVquWarHFpVqrtj6PdUFREQURdwVxA7KwL1kggWTIOpOZc35/BIHjsAmZc5I5n/frxSuZ6z7LFa4MzMw5132/+65KSkq0Zs0abdiwQZFIRFdccYXGjx/vdGoA2lF9S0Q3vbJSn27YHjP2/SN76YaJA+Tn2ggAALagaeYQtLTsmokoJSVlv9unpKQoFApZ9msP1dXVO/N58cUX97hNr169vlPTzOWXX35A2z333HMHfMxDwcwb7kK9488wTN3/Zqn+9s7qmLF+3dP090tGqah3hi25UG/3oNbuQr3dhXqjo6itrY3bsb1er+V3PRgMyjCMfeyBzox6t68t9WFNf6FYJZsbLXGPpOtOHqCLRudqe7DOkdyotbtQb3eh3u7idL3tXE0EAHDgTNPUzLdXacZbZTFjfbun6vFLRtt2LQQAAGB3//d//6fq6mplZGQoKytr571fABJHeV2LrnmxVGu3We8V9UiaPr6fLjomp0OudgkAQKKiaeYQhMPhnd/7/fv/q/xmm933aw/Tpk3TtGnT2vWYABJXQyiia/73C80v3hwzdtygbP3toqOV1SXZgcwAAAAOTTQate1chmHYej44i3ofvNU1TZr+Qqmq6q2fhQT8Ht15ZoFOLureof5uqbW7UG93od7uQr3RUdDYj/ZArQ9OS2tUv5u7WvOKa2LGju7bVfdPGaKs5Ehcn6cHg3q7C/V2F+rtHh2h1jT2d3y/+tWvlJubq549e2r27Nn697//7XRKANrRssoGXftSqbY1RSzxgN+ru84arAmF3R3KDAAA96Jp5hAkJ++6qTwSiexjS+s2u+/XUc2aNcvpFADEwcZtTfrFP5eodHN9zNjFY/vrt2cfriSf14HMAAAAACSaJRuCuv7llWoIWW9a7pbq14ypRToijxmdAQBAYqOxH/FArfevpiGsa2eXaUVVY8zYuSN66uZJA5Tk83aKv0fq7S7U212ot3tQa+zJEUcc4XQKAOJkQdk2/fb1VQpFTEs8Oy1JM6YWaVhuukOZAQDgbjTNHIKUlJSd37e0tOxjS+s2u+/XUWVnZx/QdvGafakjzLwB+1BveyzZENQNs0tV12xt8vN7Pbpx0kBdMDJHDduDcc+DersHtXYX6u0uHaHezJIGAB3b6ytqdMcbaxQxrBeF+nYL6C/fP0x9szr+ZyMAAAAAOp+SzY269qVSbWlotcS9Hmn6uH760TE58ng8DmUHAAAOVTAY1KpVq7Rq1SqtXr1aq1evVn1926Sh48aN07Rp0w74WNXV1Zo7d66WLl2qrVu3yu/3KycnR8cdd5xOO+00BQKBeP0YABKQaZp6anGlZr67MWZscI9UPTB1iHIz+XcFAACn0DRzCJKTk5WRkaH6+npt3bp1n9s2NDQoFApJOvCGlM7ArtkwmHnDXah3+3v+i8267+31in7rhrXMFL/+eE6hRvXr6tjfOfV2D2rtLtTbXag3AOAbpmnqiU8qNOv9TTFjI3LTNWNqkbLSkhzIDAAAAECia5vRebVCEevkLl2Svfr95EKdMKibM4kBAIB2c9lll7XLcZYsWaKZM2equbl5ZywUCu1sxFmwYIFuueUW5eTktMv5ACS2SNTQHxes00tfVceMjR2QqXvOLlB6gFt1AQBwEv8TH6I+ffqouLhYVVVVikaj8vl8e9yuoqLCsg8A2CESNfSnhev1ny+2xIwNyk7VjKlF6tONGZ4BAAAAHLqIYeqP89fu8aLQhMIs3XlmgVKSvA5kBgAAACCRmaapxz+u0MMfxDbv52cGNGNqkQb3SHMgMwAAEE89evRQfn6+vvzyy++039q1a/XAAw8oHA4rJSVFU6ZM0fDhwxUOh/XBBx9owYIFqqys1N1336177rlHqampcfoJACSChlBEN72yUp+s3x4zNvWIXrppYn/5fVwbAQDAaTTNHKIhQ4aouLhYoVBIa9asUWFh4R63W7FihWUfAIi3uuZW3fzKKi3ZGPum7MTB3XTnmYOZxQAAAABAu2gMR3XLKyv14bpgzNgPj8nRNeP6yef1OJAZAAAAgETW0mroznlrNK9ka8zY0X0ydO85herGapcAACSM888/X4MHD9bgwYPVrVs3bdmyRVdeeeV3OsaTTz6pcDgsn8+n2267TUVFRTvHhg8frtzcXD3zzDOqrKzUnDlzdOGFF8Yc46mnnlJra+sBn/PMM89Ubm7ud8oTQMdXGQxp+oulWrO1OWZs+rh++vGoHHk8XBsBAKAj4G7pQzRmzBjNnj1bkrRw4cI9Ns0YhqFFixZJkrp06aJhw4bZmSIAF1pT06Rfv1Sm8mAoZuynx+bp8hP6yMubMgAAAADtoLohrOkvlqpsS5Ml7pF07YT++uExOc4kBgAAACCh1TSEde3sMq2oaowZO3dET908aYCSmNEZAICEsqcGlu9i1apVKi4uliRNmDDB0jDzjcmTJ2vhwoUqLy/X3Llzdd5558nvt95i99ZbbykUir0fY2/Gjh1L0wyQYJZVNui6l8q0tcnaQBfwe3THmQWaWNTdocwAAMCe0DRziAoKCjR06FAVFxdr4cKFGj9+fMwbqldffVXl5eWSpDPOOCPmjVRn5vP54nJcr9e7z8dILNS7fb27aptunbNSjeGoJR7we/X/zhisMw7v6VBmbai3e1Brd6He7kK9AQDfWF3TpKtfKNXm+rAlHvB7dOeZBTqZi0IAAAAA4qBkc6OufalUWxqsN6h5PW0zOv/oGGZ0BgAAsT799NOd30+YMGGP23i9Xo0bN07//ve/1djYqOXLl+vII4+0bPP000/HNU8AHdvbZdt0++urFYoYlnj3NL9mTB2i4bnpDmUGAAD2JnG6Nw5SSUmJqqqqdj7evn37zu+rqqr0zjvvWLYfP358zDEuvfRS3X777QqHw7rrrrs0depUDRs2TOFwWB9++KHmz58vScrNzdXZZ58dl5/DKVlZWbacJzMz05bzoGOg3gfHNE09vGiN7p1XItO0jvXuGtCjF4/SkX27OZLbvlBv96DW7kK93YV6A4A7LdkQ1PUvr1RDyNqw3y3VrxlTi3REXoZDmQEAAHQM8Zp4TGJCCzeh1rHml27V7a+uVMu3blDrkuzT3ecU6cTB9ly/jAfq7S7U212ot3tQ646ttLRUkhQIBDRo0KC9bnf44Ydb9vl20wwAdzJNU88sqdJfFm3Qt27N0qDsVD1w3hDlZQYcyQ0AAOyb65tmFixYoEWLFu1xrLS0dOebpW/sqWlm4MCBuuaaazRz5kw1Nzfr2WefjdkmNzdXt9xyi1JTU9slbwDYXUtrVLe8+LVe+rw8ZuzIvt306MXHqHfXFAcyAwAAAJCIXl9RozveWKOIYb0s1LdbQH/5/mHqm8X7DwAAALsmHpOY0MJN3Fxr0zT10Nur9Ke3ymLG+nZP1eOXjFZR78Rq3ndzvd2IersL9XYPat2xbNq0SZKUk5Ozzyb3vLy8mH0AuFvEMHXvgnV68cstMWNj+nfVH88uVEaK62/HBQCgw+J/6XYyatQo3X///Xr99de1dOlSbdu2TX6/Xzk5ORo7dqxOP/10BQJ0EQNof5u3t+iXT3+mLzfWxYxNOSpP93z/CKUkxW9GQwAAAADuYZqmnvikQrPej71QPCI3XTOmFikrLcmBzAAAAAAkspbWqG58/iu98mVFzNiYgd318I+PUfcuyQ5kBgAAOotwOKz6+npJUnZ29j63TU9PVyAQUCgU0tatW9s9lwULFqikpESStGHDhp2x5cuXS5IOO+wwTZw48YCPd6A5xms1TFZYchc31rshFNFNL5fpw7V1MWNTjuilW08dpCRfYv49uLHebka93YNauwv1buP6pplp06Zp2rRp7XKsnj176pJLLtEll1zSLsfrDGpra+NyXK/Xa5ltIxgMyjCMfeyBzox6H7zllfX69Yulqm4IW+IeSVeN66dLj81Xc8N2NTuT3h5Rb/eg1u5Cvd2lI9Tbztl6AQBtIlFD98xfp9lfV8eMTSjM0p1nFiglyZ0fsAEAAACIny3bW3TZXiYP+69RfXXnlOFK9vNeBAAA7FtLS8vO71NS9r9SdkpKikKhkGW/9lJSUqJFixZZYqWlpSotLd35+Ls0zVx++eUHtN1zzz13wMc8FKyw5C6JXu/yumb94tnFKt1cHzN20+mH6b/HDZLH43EgM2cker1hRb3dg1q7i1vr7fqmGRyaaDRqy3kMw7DtXHAe9T4wbxTX6M55axSKmJZ4WpJXd00u0EmDszrFDevU2z2otbtQb3eh3gCQ+BrDUd3yykp9uC4YM/bDY3J0zbh+8nndc1EIAADgQMRr4jGpY0xoAXu4vdbFVQ265oUSbfnW5GFej/TrCQN00ahcNdYH1ehQfu3N7fV2G+rtLtTbPTpCrZl4bM/C4V2vJ/z+/d8y9802u+/XXtpzkmcA8fPVpjr9/J9LVF0fssQDfq/+/F9H6cwRuQ5lBgAAviuaZgCgkzFMU7Pe36R/fFIRM5afGdCMqUUa3CPNgcwAAAAAJKLqhrCmv1iqsi1NlrhH0rUT+uuHx+Q4kxgAAEAHZ+cEE0xo4R5uqvWCsm367eurFYpYbzTukuzV7ycX6oRB3RL+hnM31RvU222ot3tQ644jOTl55/eRSGS/23+zze77dVSzZs1yOgUg4cxbXqXp//u5Wlqt7zmyuyTrsUtG6eh+NCgCANCZ0DQDAJ1IYziq219bpXdX18WMjerbVfecU6BuqUn2JwYAAAAgIa2uadLVL5Rqc711NsWA36M7zyzQyUXdHcoMAAAAQKIyTVOPf1yhhz/YFDPG5GEAAOBgpaSk7Py+paVlv9t/s83u+3VU2dnZB7RdvFbD7AgrLME+iV5v0zT1zOJK/XnhOpnfGhvYPVUzLxiq/Iz4ri7bkSR6vWFFvd2DWrtLR6h3R1gNk6YZAOgkyutadO3sMq2uaY4Zu+CoXrpuQn/5fV4HMgMAAACQiBZvCOqGl1eqIWSdCbNbql8zphbpiLwMhzIDAAAAkKhaWg3dOW+N5pVsjRkb2SdD951TqG5pTB4GAAC+u+TkZGVkZKi+vl5bt8a+1thdQ0ODQqGQpANvSOkM7Fr1iBWW3CWR6h0xTN2/YJ2e/3JLzNjofl117zmFykjxJ8zPezASqd7YP+rtHtTaXdxab5pmAKATWLJhu26as1LBZusSwT6vRzec3F/nH9XbocwAAAAAJKLXV9TojjfWKGJY51Hr2y2gv3z/MPXN6vizKwIAAADoXGoawrpudpmWVzXGjJ07oqdunjRASUweBgAADkGfPn1UXFysqqoqRaNR+Xy+PW5XUVFh2QdA4msIRXTrnFX6cF0wZuyc4T11yym8HwEAoDOjaQYAOrjnv9is+95er+i3blbLTPHrj+cUalS/rg5lBgAAACDRmKapJz6p0Kz3N8WMHZGXrhlTipjVGQAAAEC7K9ncqOtml2lzfdgS93qk6eP66UfH5Mjj8TiUHQAASBRDhgxRcXGxQqGQ1qxZo8LCwj1ut2LFCss+ABJb1faQfv1SmVZWN8WMTTuxjy4dk8f7EQAAOjmaZnBI9jbjwqHyer37fIzEQr33rDVq6P4F6/Tc51UxY4N7pOqB7w9Vn26db3Zn6u0e1NpdqLe7UG90VPF6fyLxe+82bq13a9TQ3W+t1UtfbYkZO7mou34/uVApSfF7njnBrbV2K+rtLtTbXag3AHRuC8q26bevr1YoYljiXZK9+v3kQp0wqJsziQEAgIQzZswYzZ49W5K0cOHCPTbNGIahRYsWSZK6dOmiYcOG2ZliXHGfF9pDotV7RVWDpr9QrJqGVks82efRHWcV6rShPRzKrGNItHpj36i3e1Brd6HebWiawSHJysqy5TyZmZm2nAcdA/WWahvDmv6vpfpozdaYsUlDe+nP/3WUMlISY3Zn6u0e1NpdqLe7UG90FHa9P5H4vXcbN9S7IRTRNf9aqkVl1TFjP/veQP3mrKHyeRN/FjU31Bq7UG93od7uQr0BoHMwTVOPf1yhhz+IXekyPzOgGVOLNLhHmgOZAQCARFVQUKChQ4equLhYCxcu1Pjx41VUVGTZ5tVXX1V5ebkk6YwzzpDfnzi313GfF+KhM9f7rRWbdfWzy9XcGrXEu3dJ1mM/OUbH9O/uUGYdV2euN7476u0e1Npd3FrvxHlVDwAJomxzvX7xzyXasC12yc8rxg/W9acOkdcFN6sBAAAAsMfm7S366T8Wa0Xldkvc45FuP+tw/eyEgQ5lBgAAACBRtbQaunPeGs0riZ08bGSfDN13TqG6pSXG5GEAAKD9lJSUqKqqaufj7dt3faZZVVWld955x7L9+PHjY45x6aWX6vbbb1c4HNZdd92lqVOnatiwYQqHw/rwww81f/58SVJubq7OPvvsuPwcAJxlmqb+8cE63fnaCpmmdWxQzy76x6Wj1T+7izPJAQCAuKBpBgA6kAXFmzX9f79QQyhiiQf8Xt17/hE696h8hzIDAAAAkIjKNtfr0ic+VUWwxRIP+L168AcjdfrwHIcyAwAAAJCoahrCum52mZZXNcaMnTO8p245ZYCSfF4HMgMAAB3dggULtGjRoj2OlZaWqrS01BLbU9PMwIEDdc0112jmzJlqbm7Ws88+G7NNbm6ubrnlFqWmprZL3gA6jkjU0J2vrtA/P1ofM3bcoGw9/ONjlEkDPwAACYemGRyS2trauBzX6/Valn8KBoMyDCMu54LzqHfbDAZPflKumYs26FsTGKhnerL+fN4QDctNi9tzzk7U2z2otbtQb3fpCPW2a/l4dC7xfK3UEX7vYR+31PvT9UFd91KJGkJRS7xbql8Pfn+ojsgPJMR7kH1xS63Rhnq7C/V2F6frzfsT7I3P54vbsb1e7z4fI3EkWq1LNjfomhdKtLk+bIl7JP16wgD9eHSuPB6PM8l1AIlWb+wb9XYX6u0e1LpzGDVqlO6//369/vrrWrp0qbZt2ya/36+cnByNHTtWp59+ugKBgNNptjvu80J76Mz1bgxFdfMrpXp/TV3M2DnDe+q20wfLCDWoNmR/bh1VZ643vjvq7R7U2l06Qr07wnUUmmZwSKLR6P43ageGYdh2LjjPbfUORQzd9eYazV2xNWZsWE4X3T+lSD3TkxP278Rt9XYzau0u1NtdqDc6Cjt/D/m9d5dErPfrK2p0xxtrFDGsbft9uwX0l+8fpr5ZKQn3Mx+IRKw19o56uwv1dhfqjY7CzguBu1/0RGLrzLV+Y1mlfv1/y9Xcav03Oj3g18wfjtSEw3o5lFnH1Znrje+OersL9XYPat2+pk2bpmnTprXLsXr27KlLLrlEl1xySbscrzPgPi/EQ2ep9+b6kH79YpnKqptixi4/oY9+dmyePDI7xc/ipM5Sb7QP6u0e1Npd3FpvmmYAwEHVDWFdP7tMy6saY8bOGJqt35w6SClJzDwDAAAAoH2YpqknPqnQrPc3xYwdkZeuGVOK1C0tyYHMAAAAACQq0zT10Nur9Ke3ymLG+nZP1eOXjFZR7wwHMgMAAADgBiWbG/Xrl0pV3dBqiSf7PPrt6YN0+tAeDmUGAADsQtMMADhkeWWDrn+5LOYNmUfStBP76pIxufJ4PM4kBwAAACDhRKKG7pm/TrO/ro4Zm1CYpTvPLKBpHwAAAEC7ammN6sbnv9IrX1bEjI0Z0F0PX3yMundJdiAzAAAAAG7w3upa3frqKjW3GpZ4Zqpff5pSpKPyaeAHAMANaJoBAAe8UVyjO+etUShiWuJpSV7dNblAJw3OcigzAAAAAImoMRzVLa+s1IfrgjFjPzomR9PH9ZPPS9M+AABAe6qtrY3bsb1erzIzM3c+DgaDMgxjH3ugs+rMta5uCOvaF0u0rLIhZuzcEb30m9MGyRNuVG240YHsOqbOXG98d9TbXai3e3SEWmdlcb8BAEjS/y6t0oyF62VYb89Sv6wUPXjeEPXNSnEmMQAAYDuaZgDARoZpatb7m/SPT2JnVMvPDGjG1CIN7pHmQGYAAAAAElV1Q1jTXyxV2ZYmS9wj6doJ/fXDY3KcSQwAACDBRaNR285lGIat54NzOkutSzY36rrZZdpcH7bEPZKmj++ni47JkUdmp/hZnNRZ6o32Qb3dhXq7B7VGR+Lz+eJyXK/Xu8/HSCydod5Rw9T9b6/V/35WFTN2dN+umjF1iDJTkxzIrPPpDPVG+6He7kGt3YV6t6FpBgBs0hiO6vbXVund1XUxY6P6dtU95xSoG2/IAAAAALSj1TVNuvqF0pgb1QJ+j+46q0ATCrs7lBkAAACARPV22Tb99vXVaolYZ9XvkuzV788q0AmDmf0eAADACXatQrT7aktIfB2t3o2hiK5+9nMtKNkSM3beyHzd/f0RCvjj00DmBh2t3ogv6u0e1Npd3FpvmmZwSJiBAO3BDfUur2vRNS+UaFVNU8zYhSNzdP3EAUryJd7PvSduqDfaUGt3od7uQr0BoHNYvCGoG15eqYaQdSbLbql+/XlqkUbkZTiUGQAAAIBEZJqmnvikQrPe3xQzlp8Z0IypRRrcI82BzAAAAAC4QVWwRT//52Itr9geM/brSUW6emKBPB6PA5kBAACn0TSDQ8IMBIiHRKv3R6u36op/fa3aplZL3O/16HfnDNOPx/Z3KLOOIdHqjb2j1u5Cvd2FegNAx/P6ihrd8cYaRQzTEu/bLaC/fP8w9c1KcSgzAAAAAImopdXQnfPWaF7J1pixkX0ydN85heqWluRAZgAAAADcYEXFdv3sycWq2t5iiSf7vLr3/CM0ZWS+Q5kBAICOgKYZAIijZz5er9+9sjzmRrVuaUmaddExOm5wtkOZAQAAAEhE+5rZ+Yi8dM2YUsSNagAAAADaVU1DWNfNLtPyqsaYsXOG99QtpwxQko+VigEAAJxWW1sbl+N6vV7LJHvBYFCGYcTlXHBeR6z3e6trdfMrpWoKW/PITPFrxnmH6ei+aXH7/U90HbHeiB/q7R7U2l06Qr3tWqRjX2iaAYA4aI0aumPOCj398fqYsaLe6fr7T0arX3aaA5kBAAAASFSRqKF75q/T7K+rY8YmFGbpzjMLlJLEjWoAAAAA2k/J5kZdN7tMm+vDlrhH0vTx/XTRMTnyeDzOJAcAAACLaDRqy3kMw7DtXHCe0/V+7vMq3f/2en1rPmP17RbQg98/TP2yUvh9bEdO1xv2ot7uQa3dxa31pmkGh4QZCNAeEq3edc2tunF2qRZv2B4zdlJBln4/uVDp3pBqa0MOZOe8RKs39o5auwv1dpeOUO+OMAMBAHQkjeGobn5lpT5aF4wZ+9ExOZo+rp98Xm5UAwAAANB+3i7bpt++vlotEevnQl2Svfr9WQU6YTCf3wAAAACIj6hh6oFFG/TsZ1UxYyP7ZOi+cwvVLTXJgcwAAEBHRNMMDgkzECAeOnO9V9c06dqXylQejG2I+emxebr8hD7yejyd9ueLh85cb3w31NpdqLe7UG8AcFZ1Q1jTXyxV2ZYmS9wj6doJ/fXDY3KcSQwAAABAQjJNU098UqFZ72+KGcvPDGjG1CIN7pHmQGYAAAAA3KA5HNVvXluld1fXxYydMTRbt582SMl+r/2JAQCADoumGQBoJ++trtVtr61SY9g6o1rA79Htpw3S6UN7OJQZAAAAgES1qrpJ018s1eb6sCUe8Ht011kFmlDY3aHMAAAAACSillZDd725Rm8Ub40ZG9knQ/eeU6isNGZzBgAAABAf1Q1h/fqlUpVsbooZu+y4fP3y+Hx5PB4HMgMAAB0ZTTMAcIhM09Q/P63UX9/bKPNbYz3Tk3T/uUUalpvuSG4AAAAAEtfiDUHd8PJKNYSsq311S/Xrz1OLNCIvw6HMAAAAACSimoawrptdpuVVjTFj5wzvqVtOGaAkH7M5AwAAdFQ+ny8ux/V6vft8jMTiZL3LtjTq6ueLYyYS83s9+n9nDNbk4b1sy8UteH67C/V2D2rtLtS7DU0zAHAIQpG2GdXmroidUW1YThfdP6VIPdOTHcgMAAAAQCJ7fUWN7nhjjSKGtXW/b7eA/vL9w9Q3K8WhzAAAAAAkopLNjbpudlnMzWkeSdPH99NFx+QwmzMAAEAHl5WVZct5MjMzbTkPOga76v1O6RZN+9cyNYatE4llpibpkYuP0dhB2bbk4XY8v92FersHtXYXt9abphkAOEjVDWFdv5cZ1c4Ymq3fnDpIKUnu7MgEAAAAEB+maerxjyv08AebYsaOyEvXjClF6paW5EBmAAAAABLV22Xb9NvXV6slYljiXZK9+v1ZBTphsD03XwIAAABwp6c/Xq/fvbJc0W9NJDYgO01PXDpag3qmO5QZAADoLGiaAYCDsLyyQde/XKbqhlZL3CNp2ol9dcmYXGZUAwAAANCuIlFD98xfp9lfV8eMTSjM0p1nFtC4DwAA0IH4fL64Hdvr9e7zMRKHk7U2TVOPf1Suv763IWYsPzOgB78/VIN7ptmWjxvw3HYX6u0u1Ns9qDUAtJ+oYeru14v19/fXxoyN6p+lR38ySt27JDuQGQAA6GxomgGA7+iN4hrdOW+NQhHr7AVpSV7dNblAJzGjGgAAAIB21hiO6uZXVuqjdcGYsR8dk6Pp4/rJ56VxHwAAoCPJyrLvs+LMzEzbzgVn2VXrltaobnrhK738RUXM2JgB3TXrx0crOz1gSy5uxnPbXai3u1Bv96DW6Ehqa2vjclyv12v5XQ8GgzIMYx97oDOzq97N4ahufXWl3lm5LWbs9KE99LszC+QJN6o23Nju58YuPL/dhXq7B7V2l45Qbzs/K98bmmYA4AAZpqlZ72/SPz6JvUCUnxnQjKlFGtyDGdUAAAAAtK/qhrCmv1iqsi1NlrhH0rUT+uuHx+Q4kxgAAACAhLSlvkW/fOozfbGxLmbswlF9dNeUEUr2M2s+AABAZxONRm05j2EYtp0LzotHvWsawvr1S2Uq3hzbEPOLsfn61ffy5fGY/J45gOe3u1Bv96DW7uLWetM0AwAHoDEc1W2vrdJ7q+tixkb17ap7zilQt9Qk+xMDAMAORkTehs3yNlTIV18uf0OVFK6WgpukaFg65ymnMwSAhLWquknTXyzV5vqwJR7we3TXWQWaUNjdocwAAAAAJKJl5UFd9tQSVQZbLHGPR/rNmUP18xMGyuNhlUsAAAAA8bG36yJ+r0e3nTpQk4f3dCgzAADQmdE0g0Pi8/niclyv17vPx0gsHb3em+padM0LxVpd0xwzduHIHF0/cYCSfB0r546so9cb7Ydauwv17uTCDfJuL5e3vkLe+vIdfyrk2xHzNFbJY+5lWU6PV14ZUpxeFwKAmy3eENT1s1eqMWyd5aVbql9/nlqkEXkZDmUGAACAA1FbWxu3Y3u9XmVmZu58HAwGZRh7ee+OTs3OWi8o3arbXlupllbr8bsk+3T3OYU6cXCW6urq4nJutOG57S7U212ot3t0hFpnZWXZej4AaC8fra3TzXNWqjFs/XczI+DTfecWaVS/rg5lBgAAOjuaZnBI7HqjvfsHCkh8HaneH63eqiv+9bVqm1otcb/Xo9+dM0w/HtvfocwSR0eqN+KLWrsL9e5ADENq2Ny2Kkxww46vm6S6jbtiLcGDP75pKNPTKHXr1345AwD02vJq3TlvrSKGaYn37RbQX75/mPpmpTiUGQAAAA5UNBrd/0btxDAMW88H58Sj1qZp6olPKjTr/U0xY/mZAc2YWqTBPdL4HXMAz213od7uQr3dg1oDwIF54cvNunf+OkWtl0WUnxnQg+cN0YDsVGcSAwAACYGmGQDYi2c+Xq/fvbI85ia1bmlJmnXRMTpucLZDmQEAsJvWZilYvqshZmczzMYdf8olo3X/xzkUwU00zQBAOzFNU49/XKGHP4i9We2IvHTNmFKkbmlJDmQGAAAAIBG1tBq66801eqN4a8zYyD4ZuvecQmXxHgQAAABAnBimqZmLNurpJZUxY0fkpetPU4p4TwIAAA4ZTTMA8C2tUUN3zFmhpz9eHzNW1Dtdf//JaPXLTnMgMwCA65im1LR1R/PLt1aH+eZxU419+SSlSZl9pMy+bV+79W37vvtg+3IAgAQWiRq6Z/46zf66OmZsQmGW7jyzQClJXgcyAwAAAJCIahrDun52mZZVNsaMnT28p249ZYCSfLwHAQAAABAfLa1R3f76ai1cWRszdsqQ7vrdGYMV8POeBAAAHDqaZnBIamtjX7C2B6/Xq8zMzJ2Pg8GgDMOIy7ngvI5U77rmVt04u1SLN2yPGTupIEu/n1yodG9ItbUhB7JLDB2p3ogvau0u1PsgRcPyNmyWt36TvPUV8m4vb/taX77jT4U8kRbb0jHSesjIyJeRkbfra9f8Hd/ny0zpJnk8e653nF4X7k1WVpat5wOAeGsMR3XzKyv10bpgzNiPjsnR9HH95PN6HMgMAAAAQCIq2dyo62aXaXN92BL3SJo+rp8uGpUjj4f3IAAAAInE5/PF5bher3efj5FY2qveNQ1hXfNiiZZXNsSM/eK4Prr8xL7y8p7EcTy/3YV6uwe1dhfq3YamGRySaDRqy3kMw7DtXHCeU/VeXdOka18qU3kwtiHmp8fm6fIT+sjr8fC72M54frsHtXYX6t3GE6rf2fziqy+Xt2HH1/oKeesr5W3cLI9MW3IxvckyMnIUzciXkd7WFBPNyJORkdf2NT1X8qfs+yB7aYSi3gBwaKobwpr+YqnKtjRZ4h5J153cXz84OseZxAAAAAAkpLfLtum3r69WS8T6WU+XZK9+f1aBThjMZCUAAACJyK5J6XaffA+J72DqXVpVr5/963OV1zVb4n6vR384b4QuHNW3vdJDO+P57S7U2z2otbu4td40zQCApPdW1+q211apMWy9QBTwe3T7aYN0+tAeDmUGAOiwjKi8TVt2a4qplLe+XL5vVoppqJA3HDsrTtzSCWRaGmGM9DxFu7Y1yEQz8mSm9ZA87pwpAAA6slXVTZr+YmnM7M4Bv0d3nVWgCYXdHcoMAAAAQKIxTVNPfFKhWe9vihnLzwxoxtQiDe6R5kBmAAAAANzivZXVuuKZpaoPRSzxjBS/HvnxMTq+gHu0AABA+6NpBoCrmaapf35aqb++tzFmnv+e6Um6/9wiDctNdyQ3AIDDWpt2NMC0NcH4Gip2NMfsiDVWyWNE9n+cdmB6fDLSe+9ogMlva4r5ZoWYjHwZ6bkyk/n/CvD5fHE7NsvVuotd9f50fVDXvViihrB1ta5uqX49+P2hOiI/Iy7nxS48t92FersL9XYX6g0A+9fSauiuN9fojeKtMWMj+2To3nMKlZWW5EBmAAAAANzi2U836LbZyxQ1rHdp9e2eqn9cOloFvbguAgAA4oOmGQCuFYq0XSCauyL2AtGwnC66f0qReqYnO5AZACDuTFOe5q27VoWpr5Bvx+owO5tiWmptS8dI6rJbI0zb6jA7v8/Ik9Gll+TlpTuwP1lZWbady63L1bpVPOr94tJNuumFFWqNWi8MDchO05M/HaMBPbq0+zmxfzy33YV6uwv1dhfqDQBWNY1hXT+7TMsqG2PGzh7eU7eeMkBJPhoOAQAAEl1tbXyuf3q9Xst78WAwKMMw4nIuOO9g6m2YpmYuWq8nP6mIGRuRl64HzjtM3ZMicfsdxcHj+e0u1Ns9qLW7dIR623k/z95w5x0AV6puaLtAtLwq9gLRGUOz9ZtTBykliQtEANBpRUPy1le2rQ6zvWK3Zpjytq8NFfJEw/alk9YrdnWY3RpkzEBXyeOxLR8AgHNM09RDb6/Sn94qixk7ul83/f2S0ereheZ9AAAAAO2jZHOjrptdps311s/CPJKmj+uni0blyMPnUgAAAK4QjUb3v1E7MAzDtnPBefurd0urod++vkpvr4xtiJlU1F2/O2OwUpK8/M50Ejy/3YV6uwe1dhe31pumGQCus7yyQde/XKbqhlZL3CNp2ol9dcmYXC4QAUBHZpryhIK7Vof5phmmoXJXrKnavnR8gR2NMHky0r9ZHSZXRkZ+Wzw9R/IFbMsHANBxtUYN3fbSMv3fko0xY2cMz9Gf/+sopST5HMgMAAAAQCJ6u2ybfvv6arVErDNHpiV59fvJBTpxsPMzPAIAAABIXFsbW3Xd7NI9rnr502PzdPkJfeTlHi0AAGAD25pmmpqaJElpaWl7HJ85c6aee+451dTUaODAgbr88st19tln25UeAJd4o7hGd85bo1DEtMTTkry6a3KBTuICEQA4z4jI27DZsjrMzmaYHY0x3tbYD9Xilk5KdxkZuTuaYXatDvPNqjFmajarxAAdRDyXbO8Iy9XCPvGod2MoqhtfLtWHa+tixi4alatrTx6g5obtaj6ks+C74rntLtTbXai3uzhd76wsPlME0LGYpqknPqnQrPc3xYzldQ1oxtQiFfTc8zVbAAAAAGgPa2qadM2LZarYHrLEfV6PbjllgKaM6OVQZgAAwI1saZqZM2eOpkyZovT0dG3atEkZGRmW8Z/97Gf65z//KantQ9yysjLNmzdPd911l2655RY7UgSQ4AzT1Kz3N+kfn1TEjOVntl0gGtyDC0QAYAdPuCFmdRhvffmuBpnGzfKY9tzcZHr9MtJzd6wQs9vqMN80yKTnSkn8/wB0FnYuH+vW5Wrd6lDrXd0Q1vQXS1W2pckS90i67uT++sHROTINQ/xGOY/ntrtQb3eh3u5CvQG4WUurobveXKM3irfGjI3sk6F7zylUVlqSA5kBAAAAcItP1gd10ysr1RCyfj6THvDpj+cU6tj+mXvZEwAAID5saZqZN2+eTNPUOeecE9Mw8/777+vJJ5+Ux+NRWlqaioqKVFJSoubmZv32t7/V2WefreHDh9uRJoAE1RiO6rbXVum91XUxY6P6dtU95xSoWyoXiACgXRiG1LhFvsrl8gU3ta0OU18hb0Plru9DQfvSSc6QsaMJJpqRt6M5Jm9nzEjrKXl9tuUDAHCfVdVNmv5iqTbXhy3xgN+ju84q0ITC7g5lBgAAACDR1DSGdf3sMi2rjF2l+ezhPXXrKQOU5PM6kBkAAAAAt5j99Rbd/dY6RQ3TEs/rGtAD5xVpEJMaAwAAB9jSNPPxxx/L4/FowoQJMWOPPvqoJCkvL08fffSR+vTpo40bN+qEE07Qpk2b9Mgjj2jmzJl2pAkgAW2qa9G1L5VpzdbmmLELjuql6yb0l58LRABw4CIt8tZXytdgXR3G11ApNVZJ28ulaFhdbUjFlEdGl947GmDyFN25OsyulWLMQMb+DwQAQJws3hDU9bNXqjFsnUmtW6pff55apBF5/D8FAAAAoH2UbG7UdbPLYhr2PZKmj+uni0blyOPxOJMcAAAAgIRnmKb+9t5GPflpZczYsJwumjF1iLK7MKkxAABwhi1NM1u2bJEkDRkyJGbsjTfekMfj0VVXXaU+ffpIkvr27aurrrpKN954oxYtWmRHigAS0JIN23XTnJUKNkcscZ/XoxtO7q/zj+rtUGYA0EGZpjwttbuaYRoq5Nve9nVnrHmrfen4U9oaYdK/aYrZbcWYjHwZXXpLPj5UAwB0TK8tr9ad89Yq8q2Z1PplpejB84aob1aKQ5kBAAAASDRvl23Tb19frZaIYYmnJXn1+8kFOnFwlkOZAQAAAHCDllZDv5u7WvPLtsWMnVyYpTvOHKyUJJ8DmQEAALSxpWmmurpakpSRYZ1Bdfny5aqpqZHH49G5555rGRs1apQkaf369XakiIPk88XnxazX693nYySWeNT7P59X6d75sTeoZab4df/UIRrVL/OQz4GDw/PbPah1BxRtlbehSt768h1/KuTdvtv39RXyRGJX5ooXI7WHjK75O1aKyd+5YozRtU/bKjEpWdJeZr/0SOIjNefw/AaAvTNNU49/XKGHP9gUM3ZEXrpmTClStzSaPgEAAAAcOtM09cQnFZr1fuz7j7yuAc2YWqSCnmkOZAYAAADALbY1hnXNCyX6urIhZuwno3N15Ul95WXVSwAA4DBbmma+aazYts3aSfz+++9Lknr27BmzCk1WVtuMRy0tLTZkiIP1TZ3iLTOTBgc3OZR6t0YN3TFnhZ7+OLbhrqh3uv7+k9Hql80Foo6E57d7UGsbtASl4CapbqMU/ObPN483SfWVksz9HqZd+JKlrvlSZh+pW7+2r5l9d/uaL29Sqmi1SAw8vwGgTSRq6O756/Ty19UxY20zqRUoJYn//QAAANwiXhOPSUxo4SZ7q3UoYuiOuav1+oqamH1G9umq+6cOUXca9jsdntvuQr3dhXq7B7UG4CarttTrkqe/VnkwZIn7PNLNpwzU1CN6OZQZAACAlS1NM/n5+Vq1apW++OILjR8/fmf8tddek8fj0YknnhizTzAYlCT16NHDjhQBJIDaxrCu+NdSfbRma8zYpKG99Of/OkoZKVwgAtBJGVGpvqqt+WVPDTHBjVJou335pHSTuvX9ViPMbg0yXXpJXAQAALhIQyiiW+as0kfrgjFjPzomR9eM78dMagAAAC5j18RjEhNauElmZqa21Lfov//9mb7YWBczfsExffT7qSOU7OezuUTAc9tdqLe7UG/3oNboSOLV2E+zmLt8U98PV9XoV898pvqWiGU8Pdmn+6YM0diB3RzIDu2N57e7UG/3oNbuQr3b2NI0c+KJJ2rlypV66KGH9OMf/1g9evTQ4sWL9cYbb0iSTjvttJh9iouLJUk5OTl2pAigkyvbXK9f/HOJNmxrihm7YvxgXX/qEHm93KAGoAMLN0rBcim44VvNMJvaYtsrJCOy/+O0B49P6pr3rdVhdl8xpo8UyLAnFwAAOoHqhrCmv1Cqsmrr+xGPpOtO7q8fHM1nGwAAAADax7LyoH751BJVBFsscY9HuvWMofrFiQPloWEfAAAAe2BXYz/NYonvuSUbdeuLXytimJZ4frdUPXHpaA3J4X6CRMXz212ot3tQa3dxa71taZq54oor9OSTT2rt2rUaNGiQioqKtGLFCkUiEXXv3l3/9V//FbPP22+/LY/Ho8MPP9yOFHGQamtr43Jcr9dreVIGg0EZhhGXc8F5h1rvd1dt061zVqoxHLXEA36v/t8Zg3XG4T0VDNa1V7o4RDy/3YNa78Y05Wmqkbe+Ysef8t3+VMi7vVzelvj8n7rHdJLSZGTk7/iTJ6Nr2/fRHY/N9N6Sdx8vE5siUpM1X+rtLh2h3nbO1gsA+7KquknTXyzV5vqwJR7we3TXWQWaUNjdocwAAAAAJJo3llXq1//3pZpbrddDuiT79JcfjtTEob0dygwAAACAWzz27hr9/vXimPiRfTL12CWj1CsjxYGsAAAA9s2Wppmjjz5a9913n2644QY1NDRo6dKlkqSkpCQ99thjysiwdhYHg0G99tprkqTx48fbkSIOUjQa3f9G7cAwDNvOBecdaL1N09Q/P63UX9/bKPNbYz3Tk3T/uUUalpvO704Hx/PbPRK61tGQvA1V8n3TBFNf2fZ9Q4V829u+eqLh/R+nvdJJ69XWDJORp2hGnoz0tsaYaHqejIx8mYGubVNP7o0p6RBrldD1RgzqDcCtFm8I6vrZsQ383VL9+vPUIo3IYyY1AAAAN4vXxGNSx5jQAvbwer3q2rWr/rpwle5/syxmPC8zoAe/f5gKeibH9XcO9uC57S7U212ot3t0hFoz8RiAeFlWHtQ9b5TExE8b1lsP/NdIpSb7HMgKAABg/2xpmpGkX//615o0aZKef/55VVVVKTc3Vz/84Q81ZMiQmG3feecdjR49WpI0efJku1IE0ImEIobuenON5q7YGjM2LKeL7p9SpJ7pyQ5kBiDhmKY8oe3y1pfL17BjVZiGCvl2rhpTIW9TtTwx7XtxSseXLCM9T9Gu+W1fM/JlZOTuaJDJl5GeI/kCtuQCAICbvba8WnfOW6uIYX0N0C8rRQ+eN0R9s5hJDQAAwO3snGCCCS0SV2vU0K//7wvN/qIiZuyo/Azdd26hstKSqH+C4rntLtTbXai3e1BrdCTxarLuCM1iiL+IYeqG/3yl6Leui1xybL6uHtdPLY3b1dLoUHKIG57f7kK93YNau0tHqHdHaOy3rWlGkkaMGKERI0bsd7tzzz1X5557rg0ZAeiMqhvCun52mZZXxb7TOmNotn5z6iClJHkdyAxAp2RE5G3cIm99xW4rxexokPmmKabVvk92jJSsXSvEZOxaHeabmJmave9VYgAAQFyZpqnHP67Qwx9sihk7Ii9dM6YUqVtakgOZAQAAAEhEDyxcr9lfVMbEzx7eU7dMGqBkP9dDAAAAcGDsauCiWSwx/WtJpYq/da/WtAmD9YsxvRWNRkXF3YHnt7tQb/eg1u7i1nrb2jQDAIdqeWWDrn+5TNUNrZa4R9K0E/vqkjG58nAzOYDdhRvbmmG+tTrMNzFvw2Z5THteBJpev4wuOW3NMJbVYfJkdM1XND1XSkqzJRcAAPDdRaKG7p6/Ti9/XR0zdnJhlu44s4AGfgAAAADtpriqUf+71Now45E0fVw/XTQqh+shAAAAAGxRXteih9+3TiZW0CtdV08sVFP9doeyAgAAOHA0zQDoNN4ortGd89YoFLEu85mW5NVdkwt00mDnl+8CYDPTkKepZkczTPnOr96Gyl3fh4K2pWMkp7etCpOep2jXHV8z8mR88yetl+T12ZYPAABoPw2hiG6Zs0ofrYt9bXHRMTmaPr6fvNywBgAAAKCdRA1Td7+1VsZul0QCfq/uPbdI3xuY6VxiAAAAAFzFNE3dM3+dWiKGJX7PeSMU8PvU5FBeAAAA30W7Ns28++677Xm4nU466aS4HBdA52CYpma9v0n/+KQiZiw/M6AZU4s0uAcrMwAJKRJqWxWmYbfVYb5pkGmokLe+Sh4jbEsqpjwyuvTe2QDT1gyTr2h621cjI09mIMOWXAAAgL221Id11X+KVVZtvfTjkXTdyf31g6NznEkMAAAAQMJ68cstWrG50RK7emKhTirormjUnpWzAQAAAOCN4q0xE4r9eGw/jRrQ3aGMAAAAvrt2bZoZP358uy8D7vF4FIlE2vWYADqPxnBUt722Su+trosZG9W3q+45p0DdUpPsTwzAoTNNeVpqdzXDNFTIV1/ZtjrMN7Hmrfal409RdMcqMbuaYvLaYhl5MrrkSD7+vQEAwG1Kq+p1ydNfqare2qgb8Ht011kFmlDIRSEAAAAA7aumMay/vr/REhvcs4suO3GQGuvtW1kbAAAAgLvVNbXqTwvXW2I905N14+mHOZQRAADAwWnXphmpbTk+AGgPm+padO1LZVqztTlm7IKjeum6Cf3l93kdyAzAAQs1SJVfSsGNSqkqkye4qW2lmIYK+eor5InEPr/jxUjN3rk6jJGep2jXvLavO2JmSpbUzs2/AACgc/tgVY3+++nPVB+yTubRLdWvP08t0og8VpkDAAAA0P4efGeDGkLW1WTunDJcyX6vGveyDwAAAAC0tz+/s0F1zdZrJLecMlBdU5hwFAAAdC7t2jSzcOHCvY6Fw2HddtttWrx4sXr27KkLL7xQY8aMUe/evSVJmzdv1uLFi/Xcc89py5YtGj16tH7/+98rKYkXWIAbLdmwXTfNWangt954+bwe3XByf51/VG+HMgOwX5EWJa97RymrXpPWvS1FWiRJqXE8pelNkpGRq+iOVWKMjPydzTBtsVzJnxLHDAAAQKJ54bNNuumFrxQxrJOD9MtK0YPnDVHfLF5bAAAAAGh/izcENbfYugL31JH5On5wD4cyAgAAAOBGH68L6rUVNZbYhMIsTSjKdigjAACAg9euTTPjxo3bY9w0TZ155plasmSJfv7zn+uBBx5Qly5dYra7+OKLdc899+iaa67R3//+d82YMUOvv/56e6YIoBP4z+dV+uP8tYp+6+a0zBS//nhOoUb16+pQZgD2KtqqpI3vK7DyVSWvmS9va0O7Ht4IZMrIyFM0I19Geu6u73d8NdN6SB5WngIAAO3j8Y826aF3N8TEj8hL14wpReqWxgQfAAAAANpfOGLonvnrLLGMgE+3njnUmYQAAAAAuFJLa1R3v7XWEksP+HTjxAHOJAQAAHCI2rVpZm8ef/xxzZs3T6eccooee+yxfW6blpamRx99VOvXr9e8efP06KOP6pe//KUdaQJwWGvU0B1zVujpj9fHjA3KTtWMqUXq043ZnIEOw4gqqeJTJa98VYFVb8gbqjuow5ger4wuvS2rw7Q1w+TJ2LFyjJmc3r65AwAA7MXbZdv22DBzcmGW7jizQClJNOoCAAAAiI+nl1Rq/bYWS+zKcf3VMyPgUEYAAAAA3OjRD8tVHgxZYled1Fc905MdyggAAODQ2NI08+STT8rj8eiKK6444H2mTZumt956S//85z9pmgFcoLYxrCv+tVQfrdkaM3bi4G6688zBSg/Y8k8WgH0xTfk3f9G2oszK1+Vr2rL/fbx+KbtArWm9FdnRBGNpkOnSq20bAAAAhzWGo7r/7XUx8R+PztXVJ/WV1+OxPykAAAAArrCprkVPfFxuiR2e00XfP7K3QxkBAAAAcKOSzY3615JKS+yo/AxNPaKXQxkBAAAcOlvuUC0pKZEk9evX74D36du3r2VfAIlrTU2Tfv3SF9qwrSlm7KfH5unyE/pwcxrgJNOUb2uJAmWvKrDyVfnqN+1/F3kU6TNWSSN/IA09R0rrrobaWkWjURsSBgAAODiPfLBJWxpaLbFbzzxMF4zozusYAAAAAHFjmqbuW7BeoYi5M+b1SLeeMlA+L9dHAAAAANgjYpj6/ZtrFd311kRJPo9+c+pA7t0CAACdmi1NMy0tbcuIb9y4USNHjjygfTZu3ChJCoVC+9kSQGfWGI5q2nMrVFUftsQDfo9uP22QTh/aw6HMAHhr1yqw8lUFVs6Rv3b1Ae3T2nukQkWTFSo4U96uucrKyopzlgAAAO2jbEuj/m9plSV2YmEPXXbiINXV1TmTFAAAAABXWLiyVh+srbPELjiqtw7r3cWZhAAAAJCQfD5fXI7r9Xr3+Ridx78/q1Dx5kZL7Odj+6igV/rOx9TbXai3u1Bv96DW7kK929jSNFNQUKCvv/5aDz/8sM4555wD2ufhhx+WJA0ePDieqQFw2GMfboppmOmZnqz7zy3UsNz0vewFIF689RU7GmVelb96+QHtE+kxVKHCsxUqPFNG175xzhAAAKD9Gaapu99aZ5k5Ldnv1R3nDpeHmdMAAAAAxFFjOKr7315niWV3SdLlJ/RxJiEAAAAkLLsmvczMzLTlPGhfG7c1adb7Gy2xgl7p+vUZwxTw773hinq7C/V2F+rtHtTaXdxab1uaZi688EJ99dVXmjdvnq644grNmDFDKSkpe9w2FArpuuuu0xtvvCGPx6Mf/OAHdqSIg8QMBDgUq6ob9exn1pmch+V11QPnDVGPLkkOZYV44/nd8Xgaq5W86nUll74if+VnB7RPtNsghYecrXDR2TK6F7QdR9Lu/ytQa3eh3u5CvQEkmtlfVevrygZL7IrxgzWwB7M6AwAAAIivRz/YpC0NrZbYtRP6Kz1gy2VcAAAAAJBpmvrN7GVqbo1a4vecN2KfDTMAAACdhS2ftl577bV65plnVFJSokceeUSzZ8/WhRdeqNGjR6tXr17yeDzavHmzFi9erP/85z+qqmq7iX7IkCG69tpr7UgRB4kZCHCwTNPUfc+VWGdy9nn10I+O5sY0l+H57ZDmWql4jvT189K69yTT2P8+mX2l4edJw78vX84RSvV4lPodTkmt3YV6uwv1BtCZbWts1UPvbbDE+mal6L/HsfItAAAAgPhaWd2k/11qnVxsTP+uOnVId4cyAgAAAOBGL39RoXfLqi2xH4/tp1EDeG8CAAASgy1NMykpKVq4cKHOOussLV26VFVVVZo5c+YetzXNtjvoR44cqVdffVWBQMCOFAHY7OUvKvTp2m2W2K/GDaJhBoinUINUOlda9ry0aoFktO5/ny69pGFTpeHfl/qMllhNAgAAJJgHF23Q9hbrzGm3njJIKUnMnAYAAAAgfgzT1N1vrf3W5GIe3TxpoDwej3OJAQAAIGHV1tbG5bher9cyyV4wGJRhHMDEnegQapta9btXllliPdOT9cuxOXv8naHe7kK93YV6uwe1dpeOUG+7FunYF9vW9e7du7c++eQTPfzww5o1a5ZWrFixx+2GDh2qyy+/XJdffrl8Pm5QARLR9pZW/f71Ykssv1uqrhhf4FBGQAJrbZFWvdW2okzZPCnSvP99UrpJh5/T1ijT/wTJZ9vLBQAAAFt9tnG7XltRY4mdeli2xg7s5kxCAAAAAFzjla+r9VVFgyV2yZg89ctKcSgjAAAAJLpoNLr/jdqBYRi2nQuH7k8L1qquOWKJ3TSxv9L8ngOqI/V2F+rtLtTbPai1u7i13rbeBevz+TRt2jRNmzZNVVVV+vrrr7VtW9tKE1lZWRoxYoRyc3PtTAmHiBkIcDDuX7BW1fUhS+x35wxTanJboxz1Tmw8v20QbZV/4wdKLntFyavflCfcsN9dzKQ0hQedqtais9Xa/0TJl9w2sL3+oNOg1u5Cvd2lI9S7I8xAAKBza40auuettZZYl2Sfrh3fz6GMAAAAALhFXVOrZr670RLr2y2gS4/NcygjAAAAAG708bpgzORiEwqzNL6wu0MZAQAAxIdjU8fn5OQoJyfHqdOjnTADAb6rldVN+t/PKi2xEwdnadLQXjsfU293od7txIjKX7lEgbI5Cqx+Q96W/Tc1mr5khftPUKhossL9J0hJqbsG41ATau0u1NtdqDeAzuiZJZVau63FErvihD7qkZ7sUEYAAAAA3OLBdzcq2PKtmZwnDVDA73UoIwAAAABu09Ia1d3fmlwsPeDTjRMHOJMQAABAHDnWNAPAfUzT1B/nr1PU3BVL9nl0w8SB8ng8ziUGdFamKf+WrxQom6PkVa/L17h5/7t4fGrtd4JChZMVHniKzECGDYkCAAB0LOV1Lfr7RxWW2NDeXXT+Ub0dyggAAACAW3yxqV5zllVbYqcM6a6xA7o5kxAAAAAAV3rkw3KVB0OW2FUn9VVPJhcDAAAJiKYZALZ5fUWNviivt8QuGZOnvlkpDmUEdEKmKd/WUgVWvqrAylfl275x/7vIo9b8MQoXTlZo8OkyU1lGFwAAuJdpmrrv7fUKRYydMY+kW04ZIJ+XZn4AAAAA8ROJGrp7vnUm5y7JXl07ob9DGQEAAABwo5LNjfr3kkpLbGSfDE09opdDGQEAAMSXrU0zkUhEr732mt577z2tWbNG9fX1ikaj+9zH4/FowYIFNmUIIF7qWyJ6cNEGSyw/M6BLxuQ5lBHQuXjr1u5olHlN/m0rD2if1t5Hta0oU3CmjHRmTQcAAJCkd1bV6v01dZbY+Uf11uE56c4kBAAAAMA1/v1ZlVbXNFti//09ZnIGAAAAYJ+IYequN9coau6KJfk8+s0pA+X1MLkYAABITLY1zbz//vu6+OKLtWHDrpvmTdPc6/Yej0emacrDCzEgITz8wSZta4pYYtef3F8pSV6HMgI6Pm99hQIrX1PyyleVVL3sgPaJZB+mUOFkhQrPkpHZL84ZAgAAdC5N4ajuf3u9JZbdJUnTTuzjUEYAAAAA3KJqe0iPflhuiRX1StMFI5nwCAAAAIB9/vezKpVsbrLEfnZsngZkpzqUEQAAQPzZ0jRTUlKi008/Xc3NzTJNU8nJySosLFT37t3l9XLDPJDoSrc06j9fbLbEThzcTScOznIoI6Dj8jTVKLBqrgIrX1VS5ZID2iea2V+horMVKpysaPfCOGcIAADQeT364SZtrg9bYr8e30/pAVsX4gUAAADgQve/vV4tEWPnY4+kW08ZKL+XCQQBAAAA2KO8rkUPf7DJEhuUnapLj81zKCMAAAB72HJXyB/+8Ac1NTXJ5/Ppf/7nf3T11VcrPT3djlMDcJhhmvrj/HUydltYKuD36PoJ/Z1LCuhgPC1BJa95s61RZtOH8pjGfveJpucqVHiWQoVnK9pzmMTKbAAAAPu0srpJz35WZYmN6d9Vpx2W7VBGAAAAANzivdW1emdVrSU29cheGp7L9VIAAAAA9jBNU3fPXxfTzP+bUwcqycfE5wAAILHZ0jTz9ttvy+PxaPr06br11lvtOCWADuK15TX6qqLBEvvpsfnK75biUEZABxFuVPK6BQqsfE3J6xfJY7TudxcjNVuhgjMVKpqsSM7RkocPLQAAAA6EYZq6+621iu7WzJ/k8+imiQPkofkYAAAAceLz+eJ2bK/Xu8/H6DiaW6O6d8F6Sywrza/p4wcc0O8ItXYX6u0u1NtdqLd7UGsAHdXc4q36eF3QEjv/qF46Mj/DoYwAAADsY0vTTE1NjSRp6tSpdpwOQAexvSWivyzaYIn16RbQxaNzHcoIcFgkpOQNixRY+aqS174tT6R5v7sYga4KDzpNoaKz1Zp/rOS15b9uAACAhPLK19UxzfyXjslT/+6pDmUEAAAAN8jKyrLtXJmZmbadC9/No2+UqHJ7yBK77axh6p/b86COR63dhXq7C/V2F+rtHtQaQEdQ19SqGQutzfw905M07cS+DmUEAABgL1vuvO3Zs6cqKiqUmsrNKICbzHp/k2qbI5bYDScPUMDPTCpwkWirkjZ91NYos2aevOGG/e5i+lMVGjhJ4aKzFe53guQL2JAoAABAYqptatVf3o1t5r/02DyHMgIAAADgFis31+uxd9dYYscO7K7zjs53KCMAAAAAbvTndzao7lv3cN00cYDSA0zcCgAA3MGWVz0nnHCCnnvuOS1btkxHH320HacE4LCSzY164cvNltj4gix9b1A3ZxIC7GQa8lcsUWDlqwqsmitvy7b97+JNVnjAOIUKz1Z4wAQpKc2GRAEAiI9t27bpo48+0ueff67y8nLV1dUpPT1dQ4YM0bnnnqvCwkKnU4SL/GXRBm1viVpiN0+imR8AAABAfJmmqdtmL1PEMHfGknwe/X7qcHk8HgczAwAAAOAmH68L6rUVNZbYhMIsjS/s7lBGAAAA9rOlaebaa6/VCy+8oAcffFA/+tGP5PfToQwkMsM0dc/8tdrtOpACfq+undDfuaSAeDNN+bd83baizMrX5Gus2v8uHp9a+x7f1igz6FSZgQwbEgUAIP7mzp2rl19+Wb1799aRRx6prl27qrKyUosXL9bixYs1ffp0HX/88U6nCRdYunG75iy3Xgg6ZUh3jR3QzZmEAAAA4Cq1tbVxO7bX61VmZubOx8FgUIZhxO18+O7mLNuiT9ZaJ1S6eHSespMi3+l3g1q7C/V2F+rtLtTbPTpCrbOysmw9H4COq6U1qrvfWmuJpQd8unHiAGcSAgAAcIgt3SujR4/WAw88oKuvvlrnnXeennjiCfXo0cOOUwNwwCvLqrWsstES+9nYPOVlBhzKCIgf39bSthVlVr4qX3DDfrc35VEkb7RCRWcrNPg0manZNmQJAIC9CgoK9Lvf/U6HH364JV5cXKw77rhDjz32mEaPHq2kpCSHMoQbtEYN3TN/nSXWJZlmfgAAANgnGo3uf6N2YhiGrefDvgWbI/rz2+sssbyuAf3s2NxDrhO1dhfq7S7U212ot3tQawBOeuTDcpUHQ5bYVSf1Vc/0ZIcyAgAAcIYtTTN33HGHJGnMmDF69dVX1b9/f51yyik67LDDlJaWtt/9f/vb38Y7RQDtJNgc0cx3N1pi/bJSdPGoXIcyAtqft26dAqteU6BsjvzbVh7QPq29j1SocLLCBWfISOf5AABIbMcee+we40OHDtXw4cP15ZdfasOGDRo8eLDNmcFN/rWkSmu2Nltil5/AhSAAAAAA8ffX9zeqtjliid0wsb9SknwOZQQAAADAbUo2N+rfSyotsZF9MjT1iF4OZQQAAOAcW5pmfve738nj8UiSPB6PmpubNWfOHM2ZM+eA9qdpBug8/vb+RgW/fSHo5P5K9nsdyghoH96GSgVWvqbkla8qacvXB7RPJHuIQoWTFSo8S0YmM5oDAA5MMBjUqlWrtGrVKq1evVqrV69WfX29JGncuHGaNm3aAR+rurpac+fO1dKlS7V161b5/X7l5OTouOOO02mnnaZAwP6VAH0+n+UrEA8VwZAe+6jcEjusd5rOP6q3QxkBAAAAcItllQ166cstltj4giydODjLoYwAAACANvG6NuP1evf5GPaLGKZ+/+ZaRc1dsSSfR7efPlhJ/kO7ZZR6uwv1dhfq7R7U2l2odxtbmmYkyTTNfT4G0PmtqGrQi9+6EHRyYZaOG9jNmYSAQ+Rp3qrAqrkKrHxVSRWLD2ifaGb/HY0ykxXNLopzhgCARHTZZZe1y3GWLFmimTNnqrl510oboVBoZyPOggULdMsttygnJ6ddzncgampq9PXXXysrK0v9+vWz7bxwn/veXqdQxNj52CPplkkD5fd6nEsKAAAAQMKLGKb+8NZa7X4VNMXv1fUnM6kSAAAAnJeVZU8jd2Zmpi3nwd499u4aFW9utMSunFCoowvy2/1c1NtdqLe7UG/3oNbu4tZ629I0YxjG/jcC0KkZpql75q+LuRB07QQuBKFz8YS2K3n1m22NMps+lMeM7nefaHqOQgVnKVR0tqI9h0sebsYEALSPHj16KD8/X19++eV32m/t2rV64IEHFA6HlZKSoilTpmj48OEKh8P64IMPtGDBAlVWVuruu+/WPffco9TU1Dj9BLtEIhHNnDlTra2tuuiii1w7cwXi751V2/Te6jpL7PyjemlYbrozCQEAAABwjf98vlllW5ossV8en6+crvav9AoAAADAnTZua9KMt8osscJe6bp8/GCHMgIAAHCebSvNAEhss7+q1ooq6wwFvziOC0HoJFqblLx2gQIrX1Xy+nflMcL73cVI7a5QwZkKFZ6tSO7RkocbfwEA7eP888/X4MGDNXjwYHXr1k1btmzRlVde+Z2O8eSTTyocDsvn8+m2225TUdGu1c+GDx+u3NxcPfPMM6qsrNScOXN04YUXxhzjqaeeUmtr6wGf88wzz1Rubu4exwzD0N/+9jcVFxdr4sSJOumkk77TzwMcqKZwVPctWG+JZacl6YoT+jqUEQAAAAC3qG4I6+EPNlpig3uk6kfH2LfCKwAAAAB3M01Tt770tZpbd00Q6/FI93x/hJL93NcCAADci6YZAIesrqlVf33PeiGof/cUXTSKC0HowKIhJa9/t61RZu0CeSLN+93FSM5QePBpChWerdY+YyUv/40CANrfnhpYvotVq1apuLhYkjRhwgRLw8w3Jk+erIULF6q8vFxz587VeeedJ7/f+v/aW2+9pVAodMDnHTt27B6bZgzD0KxZs/T+++/rxBNP1GWXXfYdfyLgwD32Ubk211sboH89oZ8yUnjdBgAAACC+Zixcr8awYYndMmmg/D5uTAMAAEDHUFtbG5fjer1eZWZm7nwcDAZlGMY+9kC8vLa8Wu+trLHELjgqR4O6etqt/tTbXai3u1Bv96DW7tIR6p2VlWXr+faEu0YAHLK/vr9RwZaIJXbjxAFK4kIQOhojoqRNH7U1yqyeJ2+4fr+7mP5UhQdOVKjobIX7nSj5WD0JANCxffrppzu/nzBhwh638Xq9GjdunP7973+rsbFRy5cv15FHHmnZ5umnnz7kXL5ZYebdd9/V9773PU2bNk1eL68RER+rqpv07yWVltiYfl112mHZDmUEAAAAwC0+Xlent0q3WWJnD++po/pkOJQRAAAAECsaje5/o3ZgGIZt58IudU2tun/BWkusV3qSrjghP671oN7uQr3dhXq7B7V2F7fW2/ammW3btukf//iH5s+fr2XLlmnbtrYPkLt3767hw4dr0qRJ+ulPf6ru3bvbnRoOgs/ni8txv30jHTfWdVxfV9Rr9lfVltiph2Xr+EEH/hym3u5ie71NQ/6KJUoqm6Pkla/L27x1/7v4ktXaf5zCQ85R68CJUlKaJCk+/+IlLp7b7kK93YV6d2ylpaWSpEAgoEGDBu11u8MPP9yyz7ebZg7V7g0zxx9/vK666ip+VxA3hmnq7vlrFTV3xZJ8Ht04aYA8Ho9ziQEAAABIeKGIoT/OX2eJZab4Nf2kvs4kBAAAAMCVZryzQXXN35r0eNIApQeYVx0AAMDWV0SPPPKIrr/+ejU1NUmSTHPX3Szl5eWqqKjQm2++qd/97nf605/+pF/+8pd2poeDYNdySbsvC4WOI2qYuu+Z5drtvjSlJfv0P1OPVFZm6kEfl3q7S1zqbZpSxefSshek5S9J28v3v4/HJw0aJw0/X57DzlJyajclt39mrsZz212ot7tQ745l06ZNkqScnJx9Nrnn5eXF7NNeDMPQrFmz9O6772rs2LE0zCDuXllWrS/LGyyxS0bnaUD3g39fAgAAAAAH4slPKrSxLmSJXXVSX3VLS3IoIwAAAABu8/G6Or2+osYSO7kwS+MLmLgcAABAsrFp5p577tFvfvObnY0ymZmZGjlypHJyciRJVVVV+vzzzxUMBtXY2KjLL79cdXV1uvHGG+1KEcB39OynG/R1edASmz6xULmH0DADHJItxW2NMstekLatObB9+h0vjfi+NPRcKb1nfPMDACDOwuGw6uvrJUnZ2dn73DY9PV2BQEChUEhbt+5/Jbbv4vnnn9eiRYuUkpKivLw8vfDCCzHbjBkzRgMGDDig4x1ofvFaCVNihaWOrLapVTMXbbTE+nQL6OfH9zno3wnq7R7U2l2ot7tQb3eh3gCcsn5bs578tMISOyIvXeeM4LNmAAAAAPZoDkd191vrLLH0gE83ThzgSD4AAAAdkS1NM8uWLdPtt98u0zSVm5ur++67TxdccIGSkqwzLEUiEf3nP//RDTfcoIqKCt12220666yzNGzYMDvSBPAdbG0I6b55pZZYQa90/fR7Ax3KCK61bY207MW2RpktKw5sn7yR0vDzpWFTpcz8+OYHAICNWlpadn6fkpKy3+1TUlIUCoUs+7WH6urqnfm8+OKLe9ymV69eB9w0c/nllx/Qds8999wBbdceWGGp47h7wZcKtkQssbumHqHcXj3a7RzU2z2otbtQb3eh3u5CvQHYwTRN/XHBOrVGzZ0xn0e65ZSB8no8DmYGAAAAwE0e/bBc5cHY1S97pCc7lBEAAEDHY0vTzEMPPaRoNKqePXvqo48+Ur9+/facjN+vH/7whzrhhBM0evRoVVdX66GHHtKsWbPsSBMHoba2Ni7H9Xq9lgubwWBQhmHE5Vw4OHe8vkrB5lZL7IaT+6uxPqjG73gs6u0u7VFvT0OVksteVXLZHPk3f3lA+0SzixQuOkfhoskyug1oCxqS4vTvGHhuuw31dpeOUO+srCxbz9dZhMPhnd/7/ft/u/fNNrvv1x6mTZumadOmtesxgT1ZvG6bnluyyRI7a0Suxg/p5VBGAAAAANzizdJt+nT9dkvsh8fkqLBnmkMZAQAAAHCbks2N+tdnlZbYyD4ZmnoE10kAAAB2Z0vTzNtvvy2Px6Nbbrllrw0zu+vbt69uuukmXXfddVqwYIENGeJgRaNRW85jGIZt58L+fVVRr5e/3mKJnXpYto7pk94udaLe7nKg9fY0b1Vg1RsKrHxV/orF8sjc7z7Rrv0UKpqsUOFkRbOH7DbA75cTeG67C/V2F+rdcSQn75oxKhKJ7GNL6za779cRMZEC9qQ1aug3L31tiXVJ9un2yYc7lBEAAAAAt2gIRTRj4XpLrHdGsn55fB+HMgIAAADgNhHD1J3z1sjY7faZJJ9Hv2H1SwAAgBi2NM2Ul5dLko4//vgD3ud73/ueJKmioiIuOQE4OFHD1D3z11liaUleXTNu/w1xwHflCdUrec08BVa+qqSNH8pj7v+G7GiXHIULz1KocLIivUZIfBAAAHCRlJSUnd+3tLTsd/tvttl9v44oOzv7gLaL10qYUsdYYQlWT35SrrLNDZbYFSf2VcBoVm1t8yEdm3q7B7V2F+rtLtTbXZyuNythAu4z6/1N2trYaoldN6G/0pJ9DmUEAAAAwG2e/axKpVuaLLGfHZunAdmpDmUEAADQcdnSNOPztX1AfCAzHX/jm5mqvV5vXHICcHBe+HKzyr71huuX3+ujXhkde3ZydCKtzUpet0CBla8qed0ieYzwfncxUrorVHBGW6NM3ijJw/8dAAB3Sk5OVkZGhurr67V169Z9btvQ0KBQKCTpwJtSOjo7VzxihSVnVQZDeuT9jZZYUa80ff/IXnGpC/V2D2rtLtTbXai3u1BvAPFUsrlR//lisyX2vYHdNKGQBjoAAAAA9thU16KHP9hkiQ3KTtWlx+Y5lBEAAEDHZkvTTL9+/VRcXKwFCxYc8GozCxYs2LkvgI5hW2Or/vZ+7BuuH4zs7VBGSBjRkJI3vKfkslcVWLdAntam/e5iJKcrPOg0hQonq7Xv8ZLXlv/SAADo8Pr06aPi4mJVVVUpGo3unMTg23Zf1bNPnz52pQe0i/sXrldLZNfs8R5Jt54yUH4vqwwCAAAAiJ+oYeoPb62VYe6KBfwe3TCxvzyseg4AAADABqZp6p756xT61nWS35w6UEk+JpkFAADYE1vuMD7llFO0YsUK3X///ZoyZYpGjBixz+2XLVum++67Tx6PR6eeeqodKQI4ADPf3aCGkHWGxpsmDZCfN1w4GNGItO5dpX32rJJWvyFvaPt+dzH9KQoPnKhQ4WSF+42T/AEbEgUAoHMZMmSIiouLFQqFtGbNGhUWFu5xuxUrVlj2ATqLRatqtWhVrSV23pG9NDw33aGMAAAAALjFS19t0YqqRkvsZ2Pz1adbikMZAQAAAHCbucVb9fG6oCV2/lG9dGR+hkMZAQAAdHy2NM1cc801evjhh9XQ0KATTjhBt99+u376058qOzvbst3WrVv1j3/8Q7///e9VX1+vlJQUXXPNNXakCGA/viiv15zlNZbYGUOzdUzfrg5lhM7KW1Mqffi8tGK21Fit/bW9mN4khfuPU6jwLIUHTJSSu9iRJgAAndaYMWM0e/ZsSdLChQv32DRjGIYWLVokSerSpYuGDRtmZ4pxs7dVddqD1+vd52PYozkc1X1vr7PEuqcl6erxA9q1/tTbPai1u1Bvd6He7kK9Adhha2OrHnpvoyXWv3uKLh6V61BGAAAAANymrqlVMxaut8R6pSdp2ol9HcoIAACgc7ClaaZ///565JFH9NOf/lQNDQ266aabdPPNN2vgwIHq1auXPB6PNm/erLVr18o0TZmmKY/Ho0ceeUT9+vWzI0UA+xAxTP1x/jpLrEuyV9PH8fzEgfNtLVXa4ocUWPX6frc1PV619jm+bUWZQafKTMm0IUMAABJDQUGBhg4dquLiYi1cuFDjx49XUVGRZZtXX31V5eXlkqQzzjhDfr8tbw3jLisry7ZzZWby+sQJD88tVtX2sCV2+9mHq39uz7iel3q7B7V2F+rtLtTbXag3gHh4YNF6NYSiltjNkwYo2U+jHgAAAAB7zHhng+qaI5bYjZMGKD2QGNf6AAAA4sW2V0s/+clPlJ2drV/96leqqKiQaZpavXq11qxZI0kyTXPntnl5eXr00Ud15pln2pUegH14/ovNWlndZIn96nt91CM92aGM0Jn4tq1U2qd/UfKqufLI3Oe2rbmjFCqcrFDBGTLTetiUIQAAHUtJSYmqqqp2Pt6+ffvO76uqqvTOO+9Yth8/fnzMMS699FLdfvvtCofDuuuuuzR16lQNGzZM4XBYH374oebPny9Jys3N1dlnnx2XnwNob6VV9Xr8vbWW2HGDsjXlqHyHMgIAAADgFks2BDV3xVZL7Iyh2RrdjyY9AAAAAPb4eF2dXl9RY4mdXJil8QXdHcoIAACg87C1xfiss87SunXr9NJLL2n+/PlatmyZtm3bJknq3r27hg8frkmTJmnKlClKSkqyMzUAe1HTGNas9zdZYgU9UnXhyByHMkJn4du2SmmLZyp55Wv7bJaJ9BqhUMFZChWeJSMjz8YMAQDomBYsWKBFixbtcay0tFSlpaWW2J6aZgYOHKhrrrlGM2fOVHNzs5599tmYbXJzc3XLLbcoNTW1XfIG4skwTN02+2tFjF2vK5N8Ht05Zbg8Ho+DmQEAAABIdK1RQ/fMX2eJpQd8umZ8f2cSAgAAAOA6zeGo7n5rnSWWHvDpxokDHMkHAACgs7F9XT6/368LLrhAF1xwgd2nBnAQ/rJooxrDUUvspkkD5PdyYxr2zFe7WqmLH1KgbM7em2UCmdKxv5SO/KHqvd0VjUb3vB0AADhoo0aN0v3336/XX39dS5cu1bZt2+T3+5WTk6OxY8fq9NNPVyAQcDrNdlVbWxu3Y3u9XmVm7ppBOBgMyjCMuJ0PVi9/tVmL11nre8mYfGUntcal7tTbPai1u1Bvd6He7uJ0vbOysmw7FwD7Pb24Uuu2tVhiV57YV9ldmAAQAAAAgD0e/bBc5cGQJXb1Sf3UIz3ZoYwAAAA6F9ubZgB0Hks3bo9Z1vOsw3toZJ+uDmWEjsxbu1Zpi2cqsHKOPOaeb0owktMVGvkLpY7/tZTarS0Yx5tbAQDojKZNm6Zp06a1y7F69uypSy65RJdcckm7HK+js7MR1zAMGn9tUtfcqj+/s94Sy88M6NIxubbVgHq7B7V2F+rtLtTbXag3gPayqa5Fj39cbokdntNFU4/o5VBGAAAAANymZHOj/vVZpSU2sk+GphzR06GMAAAAOh+aZgDsUSRq6I8L1lliXZJ9unpcP2cSQoflrVurtMUPKVD2yj6bZVqO/Kmaj/ypvF26K/WbhhkAAABgP2a+u1HB5ogldsPEAUpJ8jqUEQAAAAA3ME1T9y1Yr1Bk14rqXo906ykD5fN6HMwMAAAAgFtEDFN3zlsjY9fbEiX5PPrNKQPl9fC+BAAA4EDZcofJ119/rUGDBqmwsFDl5eX73b68vFwFBQUaPHiwysrKbMgQwLc998Vmra5ptsQuP6GPsrskOZQROhpv3Tqlz79BWf86TSmls/fYMGMkpatp1DTV/mSRmo69RmZKpgOZAgAAoLP6orxeL39dbYmdXJilEwZ1cyYhAAAAAK6xcGWtPlhbZ4ldcFRvHda7izMJAQAAAHCdZz+rUumWJkvs52PzNSA71aGMAAAAOidbmmaeeeYZrVu3TgUFBcrPz9/v9vn5+SoqKtK6dev0zDPP2JAhgN1VN4T1yAebLLGinmk6/6jeDmWEjsQb3KD0+Tcq61+nKqXkRXnMaMw2RlIXNR1zuWovWaSmsdfKTOlmf6IAAADo1CJRQ3e/tdYSS0vy6rqT+zuUEQAAAAC3aApH9aeF6y2x7C5JuvyEPg5lBAAAAMBtNtW16OFv3b81KDtVl4zJdSgjAACAzsuWpplFixbJ4/HonHPOOeB9zj33XJmmqQULFsQxMwB78uCiDWoMW1cNuXHSAPm9LOvpZt7tG5W+4GZlPTNJKSUv7LFZxkxKa2uW+ckiNR13Pc0yAAAAOGjPLo1d/fJX3+uj3hkBhzICAAAA4BaPfrhJm+vDlti1E/orPeB3KCMAAAAAbmKapu5+a61CkV33b3kk/ebUgUry2XLLJwAAQEKx5ZPdsrIySdIRRxxxwPsMHz5cklRaWhqXnADs2ZIN2/VG8VZL7OxhPXRUfoZDGcFp3u2blLbkrwqUvCiPEdnjNmZSmppHXKzmkb+Qmdrd5gwBAADa+Hy+uB3b6/Xu8zHaV+X2kB798FurX/ZK049G58tnQzM/9XYPau0u1NtdqLe7UG8A7WlldZOe/azKEhvTv6tOHcJn3wAAAADs8fqKGn2yfrsldv5RvXQk928BAAAcFFuaZhoaGiRJ6enpB7zPN9tu3759P1sCaC+RqKF7F6yzxDICPl11Uj9nEoKjvNvLdzTLvLD3Zhl/qppH/FjNR18mMzXb5gwBAACssrKybDtXZmambedyo5vmLFFz626zp3mke84/Sj2z7avx7qi3e1Brd6He7kK93YV6AzhYxo7ZnKPmrliSz6ObJg6QxxP/Bn4AAAAAqG1q1Yx3NlhivdKTNO3Evg5lBAAA0PnZ0jSTlZWlmpoaVVVV6cgjjzygfaqq2mZwysigOxqwy/8u3aw1W5stsStO6KvuXZIcyghO8NZXKHXJ35RS/Lw8RusetzH9KW3NMiMvk5nWw+YMAQAAkMjmr9isN1dstsR+MLqfju7nTMMMAAAAAPd4ZVm1vqposMQuHZOn/t1THcoIAAAAgNvMeGe9gs3WyW1vnDRA6QFbbvUEAABISLa8kiosLFRNTY3eeOMNnXbaaQe0z9y5cyVJgwcPjmdqAHbYUh/Wox9ussSG9ErTeUf2cigj2M3bUKnUJbOUsuK5vTfL+AJqGfFjNR39S5plAAAA0O6awhH9v1eWW2LZXZJ10+lDHMoIAAAAgFvUNbVq5qKNllifbgFdemyeQxkBAAAA7cvn88XluF6vd5+PceA+XFOruSu2WmITi7pr4pCeDmUUi3q7C/V2F+rtHtTaXah3G1uaZk477TR9+OGHevTRR/XLX/5SQ4cO3ef2y5cv12OPPSaPx6PTTz/djhQB13tg0QY1tRqW2M2TBsjn9TiUEezibahS6mcPK2X5/8ljhPe4jekLqGX4j9R09K9kduk4b8QBAAB2V1tbG7dje71eZWZm7nwcDAZlGMY+9sDB+Mui9Sqvs65+OX18P5mhRtWGGm3Lg3q7B7V2F+rtLtTbXZyud1YWK+IBieAv725UsMU6m/NNEwco4HfnRWQAAAAkHrvev+7+Hh0Hrikc0d3zP7fEMlL8uvv8kcrqmuJQVvtHvd2FersL9XYPau0ubq23LU0zl19+ue699141NTXp5JNP1mOPPabJkyfvcdtXXnlFv/rVr9Tc3Ky0tDRNmzbNjhQBV/t0fVBvllhnKTh3RE+NyMtwKCPYwduwWamfzdpPs0yyWob9UE3H/LfMLqw6BAAAOrZoNGrbuQzDsPV8brC6pklPfVphiR3dJ0NnHNbd8b9r6u0e1NpdqLe7UG93od4Avqsvyuv1yrJqS2xSUXcdN7CbMwkBAAAAcJ0/v1WmTbXWicVuOWOoenXghhkAAIDOwpammR49eujhhx/WxRdfrC1btujcc8/VoEGDdMIJJyg3N1eSVFlZqffee09r166VaZryeDyaNWuWevfubUeKgGu1Rg3du2CdJdY1xacrT+zrTEKIO0/jFqV99rBSlj8rT3RfzTI/UPPR/y0jnX+HAQAAEF+maeqP89cpapg7Y36vR7ecMlAeD6tfAgAAAIifSNTQ3W+ttcTSkry6dkJ/hzICAAAA4DZfbwrq8fet70vGDOiuH4zm/i0AAID2YEvTjCRddNFFMgxDl19+uZqamrR69WqtWbPGso1ptt0c06VLF82aNUs//vGP7UoPcK1/f1alddtaLLErTuirrLQkhzJCvHgaq5W29BGlLPu3PNHQHrcxvclqGfZfaj7mv2Wk59icIQAAANzqteU1Wrqp3hK7eHSuBmanOpQRAAAAALd4dulmra6xzuZ8+Ql91Ssj2aGMAAAAgPiora2Ny3G9Xq8yMzN3Pg4GgzIMIy7nSkQRw9QN//lKu80rpiSfRzdP6qdgsM6xvPaGersL9XYX6u0e1NpdOkK9s7KybD3fntjWNCNJF198sU455RT95S9/0WuvvaZly5btbJTxer0aMWKEzj77bF155ZWsMAPYoGp7SH//qNwSO7x3F009opdDGSEePE01SvvsEaUs+9c+mmWS1HL4hW3NMhl5NmcIAAAAN6trbtUDizZYYnldA/r5WF6XAgAA4NBt27ZNH330kT7//HOVl5errq5O6enpGjJkiM4991wVFhY6nSIcVLU9pEc/3GSJFfVK0wUjuU4JAACAxBONRm05j2EYtp0rETyzuFIlmxstsZ+PzVe/boFO8fdIvd2FersL9XYPau0ubq23rU0zkpSTk6M//OEP+sMf/qBIJKJt27ZJkrp37y6/3/Z0AFd74J0Nam7d1S3okXTTpAHyeT3OJYV242mqUerSR5W67F/yRFr2uE1bs8wFaj7mcpplAAAA4Ii/vrdRdc0RS+zGif2VkuRzKCMAAAAkkrlz5+rll19W7969deSRR6pr166qrKzU4sWLtXjxYk2fPl3HH3+802nCIX9auD7mOsmtpwyUn+skAAAAAGywqa5FD39gbeQflJ2qS8bkOpQRAABAYnK0S8Xv96tXL1a0AJzw8bqg5pdts8SmHNFLw3LTHcoI7cXTvFWpSx9T6tfPyBNp3uM2ptevlqHnq/mYK2R0zbc5QwAAgPjw+eLXZOH1evf5GAfni03b9dJX1ZbYyUXdNa6oh0MZtaHe7kGt3YV6uwv1dhfqjX0pKCjQ7373Ox1++OGWeHFxse644w499thjGj16tJKSkhzKEE55b3WtFq6stcSmHtlLw7lOAgAAAMAGpmnq7rfWKhSxNvLfdtpAJfn4bAMAAKA9sbQL4ELhiKF7F6yzxDJT/Jp2Yh9nEkK78DRvU+rnjyn1q6f32SwTOuw8NY2aJqMr9QYAAIklKyvLtnNlZmbadq5EFYka+uOCry2xtGSf7jrvKGV1S3Uoqz2j3u5Brd2FersL9XYX6o3dHXvssXuMDx06VMOHD9eXX36pDRs2aPDgwTZnBie1tEZ134L1llhWql9XntjXoYwAAAAAuM3rK2r0yfrtltj5R/XWEXkZDmUEAACQuGxvmlm5cqWeeuopffTRR6qqqlJzc7PmzZungoKCndssW7ZMGzZsUJcuXTRu3Di7UwQS3r8+q9SG2hZL7MqT+qpbKjPpdUae5lqlfv53pX79lDytTXvcxvT4FBr6fTWNukJGVy76AQAAwHlPfrhOJVX1ltivJxUpr4M1zAAAALhZMBjUqlWrtGrVKq1evVqrV69WfX3ba7hx48Zp2rRpB3ys6upqzZ07V0uXLtXWrVvl9/uVk5Oj4447TqeddpoCgUC8foy9+ma1yniuWomO6fGPK1SxPWSJTR/fT11TmG8QAAAAQPzVNrVqxjsbLLFe6UlMeAwAABAntn3yaxiGbrzxRj344IMyDEOmaUqSPB6PwuGwZdsNGzZo8uTJ8vv9Wrt2rfLz8+1KE0h4VdtD+vtHFZbYsJwuOndET4cywsHytNQp9fO/K+Wrp+RtbdzjNqbHp9BhU9tWlsnsZ3OGAAAAwJ5V1DVrxltllthhORm69HsDnEkIAAAAe3TZZZe1y3GWLFmimTNnqrl51wrZoVBoZyPOggULdMsttygnJ6ddzncgampq9PXXXysrK0v9+vHZqZus3dqspxdXWmJH98nQWYf3cCgjAAAAAG4z4531CjZHLLGbJg1UeoBGfgAAgHiw7VXWr371Kz3xxBMyTVP5+fk67rjj9Pzzz+9x2zPPPFMDBw7UunXr9Pzzz2v69Ol2pQkkvD8tXK9QxNj52CPppkkD5PV4nEsK34mnpU6pXzyulC+fkre1YY/bmB6vQkOmtDXLdBtgb4IAAAAOqa2tjduxvV6vMjMzdz4OBoMyDGMfe2BfbnupRE3hqCV208T+atgedCgjK+rtHtTaXai3u1Bvd3G63llZWbady0k9evRQfn6+vvzyy++039q1a/XAAw8oHA4rJSVFU6ZM0fDhwxUOh/XBBx9owYIFqqys1N1336177rlHqanxX3kwEolo5syZam1t1UUXXSSv1xv3c6JjME1T98xfq4hh7oz5vB7dPGmAPFwnAQAAAGCDj9bWae6KrZbYyYVZGlfgjs8XAAAAnGBL08yCBQv0+OOPy+Px6NZbb9X//M//yOfz7fMixAUXXKB7771Xb7/9Nk0zQDv5cG2dFq603kh43pG9dHhOukMZ4bvwtASV+uUTSvnySXnD+2iWKTpHTaOvlNFtoM0ZAgAAOCsaje5/o3ZiGIat50sk76+u1dtl2yyxqUf01IjcLh3275R6uwe1dhfq7S7U212od/s5//zzNXjwYA0ePFjdunXTli1bdOWVV36nYzz55JMKh8Py+Xy67bbbVFRUtHNs+PDhys3N1TPPPKPKykrNmTNHF154YcwxnnrqKbW2th7wOc8880zl5ubuccwwDP3tb39TcXGxJk6cqJNOOuk7/Tzo3F5fUaPPNtZbYhePytGgHmkOZQQAAADATZrDUd391jpLLD3g040TBziSDwAAgFvY0jTz6KOPSmq7SHHXXXcd0D5jxoyRJC1fvjxueeHQ+Xy+uBz32w1VzPJ26MIRQ/e9vd4S65bq11Xj+setjgeKeu+bJxRU4PMnFPj8CXnD9XvcxvR4FR5yrlrGXCkja7A8kpyt6t5Rb/eg1u5Cvd2FegM4WC2tUd27IPZ9yZUn9nMoIwAAAOzLnhpYvotVq1apuLhYkjRhwgRLw8w3Jk+erIULF6q8vFxz587VeeedJ7/fevnqrbfeUigUOuDzjh07do9NM4ZhaNasWXr//fd14okn6rLLLvuOPxE6s+0tET3wzgZLLLdrsn5xXL5DGQEAAABwm0c+3KSK7db3t1ef1E890pMdyggAAMAdbGma+eijj+TxePTzn//8gPfp06ePJKmqqipeaaEdZGXZsyxkZmamLedJZA+9vVIba1sssVvPPFwD8no5lNHeUe8dWoLSxw9LH/+17fs98kgjzpfnpBsV6FmkgK0Jtg/q7R7U2l2ot7tQbwAH6vGPK2IuBk0f10+ZqbZ8PAEAAACbffrppzu/nzBhwh638Xq9GjdunP7973+rsbFRy5cv15FHHmnZ5umnnz7kXL5ZYebdd9/V9773PU2bNo1JIFzmr+9tVG1zxBK7YeIApSR11CmoAAAAACSS4qpG/fsz672QI/tkaMoRPR3KCAAAwD1suStly5YtkqQBAwYc8D5JSUmSpEgksp8tAezPxm1NemjhKktsZL9uOv+YPg5lhH1q2S598rD00UP7bpYZfp407iap5xBb0wMAAAAOxtqtzXp6caUldnSfDE0e1sOhjAAAQMKJhKXoga9GgvgrLS2VJAUCAQ0aNGiv2x1++OGWfb7dNHOodm+YOf7443XVVVfRMOMyyyob9OKXWyyxcQVZOmmwPZPDAQAAAHC3iGHqrjfXyDB3xZJ8Hv3mlIHyejzOJQYAAOAStjTNdOnSRXV1daqurj7gfTZt2iRJ6t69e7zSAlzjjldXqKXV2PnY65HuPHe4vF7edHUoofq2ZpkPH5Ja6vaykUcaNlUad6PUa6id2QEAAAAHzTRN3f3WWkV2uxrk83p006QB8nAxCAAAHARPU438NcXy15TIv61U2lYm1ZRKJ1wrjbzC6fSwwzfXenJycuTz7X01j7y8vJh92othGJo1a5beffddjR07loYZF4oYbe9Hdrs3TSl+r244ub9jOQEAAABwl38vqVTpliZL7Odj8zUgO9WhjAAAANzFlqaZQYMGaenSpVqxYoVOOeWUA9pn7ty5kqRhw4bFMzUcotra2rgc1+v1KjMzc+fjYDAowzD2sQf25r3V2/TWis2W2AUjc5SfZsStft+V6+sdblDKl/9UYOlj8u61WUYKF56l5jFXy+ixY2WZDlK/78r19XYRau0u1NtdOkK9s7KYCRboTF5bUaOlm+otsYtH5WhwjzSHMgIAAJ1GtFW+2jXyby2Wr6ZY/ppS+bcWy9tUs+ftNy+zNz/sVTgcVn1922vA7OzsfW6bnp6uQCCgUCikrVu3tmsezz//vBYtWqSUlBTl5eXphRdeiNlmzJgxGjBgwAEf80Bz3Fej0KH6duMPjUB793+fx96c9t8n9FV+Vud4P0Kt3YV6uwv1dhfq7R7UGsC3bapr0SMflltig7JTdcmYXIcyAgAAcB9bmmZOPfVUffbZZ/rrX/96QDN4rVixQk8++aQ8Ho/OPPNMO1LEQYpGo7acxzAM286VSEIRQ398a60llpXq16+Oz+/Qf5+uqXe4UalfP6PUzx+Tt2XvDTChwaerafTVin7TLJNgfzeuqTeotctQb3eh3gD2Jdgc0YPvbLDEcrsm6xfH5TuUEQAA6Kg8zVvlrymRr6akbRWZrSXybVslj9F64Aepommmo2hpadn5fUpKyn63T0lJUSgUsuzXHqqrq3fm8+KLL+5xm169en2nppnLL7/8gLZ77rnnDviYh2r3yS2wy+btLZr1/kZLbEjvDE075XAl+TrnDazU2l2ot7tQb3eh3u5BrQF3M01Tf3hrrUKRXRMQeiTddtrATvueBAAAoDOypWnm6quv1l/+8hetXr1a//3f/62//e1v8vv3fOq33npLP/3pT9XS0qLs7GxddtlldqQIJKSnPq1QeTBkiV09rp+6ptjy1MfetDYp9eunlbr07/K2bNvrZqFBp6lpzFWK9hhqY3IAAABA+/rr+xtV2xyxxG6cOEApSfGbdRsAAHRwRqRt9ZiaEvm2tjXI+GpK5GvacujHDm6QQvWSv3OsIJHIwuHwzu/3dk1od99ss/t+7WHatGmaNm1aux4Tncedr65QQ8j6fuSuqcO5OQ0AAACALV5bUaNP12+3xM4/qreOyMtwKCMAAAB3suXO+d69e+vhhx/WT37yEz3++OOaN2+ezjrrrJ3jDz74oEzT1AcffKCSkhKZpimv16snn3xS6enpdqQIJJxNdS168tMKS+yIvHSdNayHQxmhrVnmX0r9/FF5m/fVLHNK28oyPQ+3MTkAAIDOz+eLXxPGt1dM3d8KqmjzVXm9XvzSevPrhMLuGl/Usd+XUG/3oNbuQr3dhXp3HJ6WOvmqV8j3TWNMTbF8W8vkiR56Y4TpT1E0e4iMnocrud8xUu/hUu/D5Q1JMoz97o/4Sk5O3vl9JBLZx5bWbXbfr6OaNWuW0yngALy3slqvflVpiV1wTB+NHtDdoYwAAAAAuEltU6v+/M4GS6xXepKmndjHoYwAAADcy7blJi666CIlJSXpV7/6lTZu3KhHHnlEHo9HkvT3v/9dUttyhJKUnp6uf/7zn5bGGgDfzZ8WrlcoYu587PVIN08aIO+O5x1s1NqslGX/VtrSR+Rt3rrXzUIDJ6lpzNWK9hxmY3IAAACJIysry7ZzZWZm2nauzioSNXTPU8sssdQkn+76/lHK6pbqUFYHh3q7B7V2F+rtLtTbBkZU2rpa2vy1VLVM2rxM2rxc2l7ePsfP7LujKWaYlDNc6j1Cnu4D5ffGNk5nprTPKXFoUlJ2FaKlpWW/23+zze77dVTZ2dkHtF1tbW3ccvB6vZZ/24LBoAyaxXYKRQzd+uJXllhmil+XH58b17rEA7V2F+rtLtTbXai3e3SEWtv5WTmAvZuxcL2CzdZJJG6aNFDpAdtu2QQAAMAOtr4Cu/DCCzVx4kT97W9/05w5c/TFF19YZhcbNmyYzjnnHE2fPl29evWyMzUgoby7ulbvra6zxC4c2VtFvbo4k5BbRVp2Ncs01ex1s/CAk9U45mpFe42wMTkAAAAgvp78cJ2KK7dbYr8+pVD5naxhBgAA7EFzbVtDzM7mmGXSlmIpsv/GiP3yp0i9hrY1yOSMaGuS6T1MSuWmr84mOTlZGRkZqq+v19ate59MSJIaGhoUCoUkHXhDSmcQjUZtO5dhGLaer6N7/MNN2lhr/TfpqpP6qmvA2+n/nqi1u1Bvd6He7kK93YNaA+700do6zS22vheeWNRd4wr4fAMAAMAJtrctZ2dn6/bbb9ftt98uwzC0bds2RaNRde/eXUlJSXanAyScllZDf3p7vSWWnZakXx3P0p62ibQoZfmzSvvsEXmbqve6Wbj/BDWNuVqR3kfYmBwAAAAQf5XBZv35rTJLbEjvDP30ewMdyggAABwUIyptWxu7ekxwY/scv2t+zOoxyh4s7WH1GHROffr0UXFxsaqqqhSNRuXz7bm2FRUVln2AQ7GhtkVPflphiR2Rl65zRvR0KCMAAAAAbtIcjurut9ZZYukBn244ub8zCQEAAMD+ppndeb1e9ejRw8kUgITzz08rVB4MWWJXj+urjBSW9oy7SEgpy/9XqZ89LF/Tlr1uFu4/Tk1jpivS+0gbkwMAAEh8tbW1cTu21+tVZmbmzsfBYFCGYcTtfJ3d7bNL1Ri2zp5486T+atgedCij74Z6uwe1dhfq7S7U+yCEtstfUyJfTYl8NcXyVa+Qb2uZPJHmQz606UtWNLtI0R5DFe1x2I6vQ2XuafWY4PbY2H44Xe+sLGaJ3ZshQ4aouLhYoVBIa9asUWFh4R63W7FihWUf4GCZpqk/zl+r1qi5M+bzSLecMlBej8fBzAAAAAC4xcMfbFLFduu9W9PH9VOP9GSHMgIAAAB30QMJZGNti/75rdnTjsrP0JmH05wWV5GQUlb8X1uzTOPmvW4W7ndiW7NMzkgbkwMAAHCPaDS6/43aiWEYtp6vM/lgTZ3ml261xM4d0VMjcrt02r8z6u0e1NpdqLe7UO/dmIa8wQ3y15TIv7VYvpqStmaZ+k3tcvhoWi9FexymSI+hivQ4TNHswxTNGiR593A5Ik41od4dx5gxYzR79mxJ0sKFC/fYNGMYhhYtWiRJ6tKli4YNG2ZninG1t5V12oPX693nY7eaV1yjT9Zbm+9+OCpXh+VkOJTRoaPW7kK93YV6uwv1dg9qDbhbcVWjnl1aZYkd3SdD57LyJQAAgKNsaZppbW3VypUrJUmDBw9WIBCwjLe0tOg3v/mNnnvuOdXU1GjgwIG6/PLLddVVV9mRHpAQTNPUfW+vU/hbs6fdNGmAPMyeFh/RkFJW/EepS2bJ11i1183CfU9U05irFck92sbkAAAAAPu1tBq6d8E6Sywz1a+rTurrTEIAALicJ9wg39bSHSvIFLc1ymwrlae16ZCPbXqTFe1eoEj2EEV2rCAT6XGYzNTsdsgciaKgoEBDhw5VcXGxFi5cqPHjx6uoqMiyzauvvqry8nJJ0hlnnCG/P3Hme7NzFaLdV1tyq/qWVs1Y+JklltM1RTdPPkLpgcT5vaLW7kK93YV6uwv1dg9qDbhHxDB115trZOy6dUtJPo9uPZWVLwEAAJxmyyfEL730kn74wx+qe/fu2rQpdra6qVOn6s0335Rptr1iLCkp0TXXXKPS0lI99NBDdqQIdHqLVtfqw7VBS+zCo3NU2DPNoYwSWDSslOLnlbrkb/I1VO51s3Df7+1olhllY3IAAACAc574pFzlwZAlNv2kfuqWmuRQRgAAuIRpyLt9k/xbS3asHNPWIOPbvqFdDm+k9VAke8fKMT0OUyR7aNvqMT7+j090JSUlqqraNWHQ9u27VvCoqqrSO++8Y9l+/PjxMce49NJLdfvttyscDuuuu+7S1KlTNWzYMIXDYX344YeaP3++JCk3N1dnn312XH4OuMOf3izTlnrr+5H/d/bhCdUwAwAAAKDj+veSSpVusU5U8vOx+RrQPdWhjAAAAPANWz4lnjdvnkzT1JQpU2JWmXnttdc0b948eTwe9enTR6NHj9ann36q8vJyzZo1Sz/60Y90/PHH25Em0Gm1tEb1p7fXW2LZXZL0q+PzHcooQUXDChS/oLTP/iZffcVeNwv3OU5NY6YrkjfaxuQAAAAAZ63b2qynPrU2lR+Vn6HJw3s4lBEAAAmqtUn+raXy1xS3NchsLZGvplTe1oZDPrTp9SuaVdDWHJN9mCI92hplzDT+P3erBQsWaNGiRXscKy0tVWlpqSW2p6aZgQMH6pprrtHMmTPV3NysZ599Nmab3Nxc3XLLLUpN5UYiHJxl5UE99dE6S2z8kJ46fXiOMwkBAAAAcJVNdS165MNyS2xQdqouGZPrUEYAAADYnS1NM0uXLpXH49G4ceNixp544glJUlFRkT799FNlZGQoGAzq+OOPV0lJif7+97/TNAPsxxOfVKhye9gS+/X4fsye1l6irQqUvKC0JX+Tr758r5uF88e2Ncvkj7ExOQAAAMB5pmnq7vlrFTHMnTGf16ObJw2Q1+NxMDMAADox05S3vnxHU0zbyjH+mmJ5gxvkkbn//ffDSO3e1hSTvWP1mB5DFc0aLPmS2yF5wGrUqFG6//779frrr2vp0qXatm2b/H6/cnJyNHbsWJ1++ukxk64lgtra2rgd2+v1KjMzc+fjYDAowzDidr6OLGqYuvn5r7Xb2xEF/F5dN76v6urqHMurvVBrd6He7kK93YV6u0dHqHVWVpat5wPczjRN/eGttQpFdj3XPZJuO22gknxe5xIDAADATrbcUb9lyxZJUkFBgSVuGIYWLFggj8ejq666ShkZGZKkzMxMXXnllZo2bZo++ugjO1IEOq3125r19GLrbM5H98nQaYdlO5RRAom2KlD6ktIW/1W++k173aw1b4yaxkxXa5+xNiYHAAAAdBxzi7fqs431lthFx+SooGeaQxkBANDJtDbLv61sV3PM1hL5akrkDdfvf9/9MD0+RbMGtTXF9DhMkexvVo/pKdHciv2YNm2apk2b1i7H6tmzpy655BJdcskl7XK8ziAajdp2LsMwbD1fR/L8F5u1rNK62tbPxuYpNyMpIf9O3FxrN6Le7kK93YV6uwe1BhLfaytq9On67ZbY+Uf11hF5GQ5lBAAAgG+zpWmmpqZGkpSammqJf/HFF9q+fbs8Ho/OOussy9jw4cMlSRs3brQjRaBTMk1T9729Xq3R3WZz9kg3TRogDxe8D54RUaBkttKW/FW+7Rv2ullr3ui2Zpn8sdxgAAAAANfa3hLRA++st8RyMpJ12XH5DmUEAEAHZpryNlTKV1Mi/9a2BhlfTYl8wXXymIc+87AR6KZIj8MU7dHWGBPpMVTR7gWSL/FW8AAASdra2Kq/vme9lti/e4ouHpXrUEYAAAAA3KS2qVV/fsd6b1Gv9CRNO7GPQxkBAABgT2xpmgkEAopEIjubZ77x7rvvSpL69Omj/v37W8a+WXWG2RaAvVu4slYfrwtaYj88JkeDezCb80ExIgqUvqy0JQ/JF9xHs0zuMTtWljmeZhkAAAC43l/f26htTRFL7IaJA5Sa7HMoIwAAOohIi/xby+TbWir/jhVkfFtL5A0F97/vfpger6LdBu1YOeawnY0yRpfefF4FwFUeXLRB9SHrtcSbJw1Qst/rUEYAAAAA3GTGwvUKNluvkdw0aaDSA7bclgkAAIADZMurs/79+2vFihX65JNPNHHixJ3xOXPmyOPx6KSTTorZZ9u2bZKknj172pEi0Ok0h6P600LrbM4905N02fHMVPCdGREFyl5R2uKH5Auu3+tmrTkj/z97dx4eV33eDf97zplNo5FG0miXLS+ytdoWtjGY3SYNCRQSIMSk2ZzkKX2f1Nnapu1Lmzzt09ImafM2NLSlJUmTQBKCQwiEAGnAMYuBALaxbGu1ZcuWtY2W0Wid5SzvHyNLOtqXmTPL+X6uS9fo/HSWW3NLts7M7/7dGLvqSwivvY6TD4iIiIiIAJzuGsFTdV7d2I1lWbhpU3acIiIiIooDTYM42gNpojDG0j/RPWbwXJS6x2RC8UzrHOOpgOwpByyOKARPRLEkSbErJBdFccFtMzh60Y/nG/QL9t1WnYvdG3LiFFFsMNfmwnybC/NtLsy3eTDXRObx5vlBvNDYrxt7T3kO3yMhIiIiSkCGFM3s3bsX9fX1eOihh3DXXXehqqoKv/zlL/Hyyy8DAG677bZZx5w+fRoAUFTE9ulEc/nvtzrRMxzSjX1pzzqkczXnpVMV2M88C+fbD0Hyt827W7hgO8au/iLCa69nsQwRERFRAuOENGPJqoavvdgGbdqYwyriL9+7Maa5MALzbR7Mtbkw3+YSs3zLQUgDZyD1NULqbYwUx/Q1Qgz4Vn1qDQLU7A1QcqsmP+S8KmiuolmvSSX3/7TRx99vSlTZ2cZNlHK73YZdKxGEZBXfOHRSN5bhsOD/3nUFsjPscYrKGGbLtdkx3+bCfJsL820ezDVR6vr3I+26bZddwp/fvC5O0RARERHRQgwpmvn85z+PRx55BF6vF1u2bEF2djZ8Ph80TcOaNWvwoQ99aNYxv/nNbyAIArZt22ZEiERJpW1gHI+906Ub21WaiVsqUmv1tJhRFdjPPIe0dx6CZfDcvLuFC2oxdtUXES69kcUyREREREmAE9KM9d9HzqPZO6ob+9LvlaNmfeotfsF8mwdzbS7Mt7ksO9+aBoz0AN2ngZ6Jj+7TQF8LoCmrD8juBgpqgMItQEHkQ8ivgmRzsiAmCvj7TZT6vvPaOZz1jujG/uJ9FchL8YIZIiIiIiJKDINjYTT1jOnGvnhTKXJdtjhFREREREQLMaRoZvPmzXjsscfwmc98BqOjoxgYGAAAZGVl4fHHH4fNpv9jsbu7Gy+++CIA4OabbzYiRKKkoWka/ulQG2R1aj1nSRTwF+9ZD4GFHQtTFdjOPgfnO/8Gi6913t3C+VsjxTLr9rBYhoiIiIhoDt3+AP7lxRbdWHmBC//r+g1xioiIiGgV5BDQ1zy7QGasLwonF4CcjRMFMlsjBTKFWwD3Wr7uRES0Qu0DY/j2oTO6sW1r3Pjo1VzRmYiIiIiIjHGyS1/Eb7eIuKMmN07REBEREdFiDCmaAYAPf/jDuOmmm/Dcc8+hu7sbRUVF+MAHPoCcnNmdMU6ePImPfvSjAIDbbrvNqBCJksKhlgG8fWFIN/axnYXY4EmLU0RJQFNhO/s8nG8/BIvv7Ly7hfO2RIpl1u/lpAUiIiIiogX8/a8aMBKUdWP/cNdWWCUxThEREREt0Yh3qihmsntMM6DKix+7GFtGpDhmsoPMViC/CrC7Vn9uIkpKPp8vZucWRVHXVcnv90NV1ZhdL1Fomoa/+nkTgvLU9yoKwF++Zx2G/IPxCyyGzJprs2K+zYX5Nhfm2zwSIddGdmUnMquTHcO67ZrCdFj4HgkRERFRwjKsaAYA8vPz8elPf3rR/W655RbccsstBkRElFzGQgr+5fAF3Vi+y4o/vKYkThElOE2FrfXXcL79bVgGzsy7m5xXg7GrvojQ+ptZLENERESUxDghzRivn/PhuVNdurEPbs3HJrcQ0xwYifk2D+baXJhvcxE1Be5wz2RxTLjjBKTeBohR6R4DKO5SKLlVEx+VUPKqoWauAYQZkyPGwsBYavz/mMji/fvNCWk0H0VRDLuWqqqGXi9eDp8ZwGut+n9X77miABV5aab4/gHz5JoimG9zYb7Nhfk2D+aaKDXVdeo7zdSWZMQpEiIiIiJaCkOLZohodb77Zge8I2Hd2J/uXQenTYpTRAlKU2Fr/Z+JYpmWeXeTc6sxdtUXENrweyyWISIiIkoBnJAWe4Gwiq/95pxuzO2w4PM3rEnp58Os+TYj5tpcmO/UIYwPwNLXCKmvCZa+Rlj6myH5zgJKaHIf6wrPrVmdkHMqIOdWQsmtijx6yqHZ5pgIoWoA+DOVCPj7TZSaxkIKvvlb/cJinnQr/vj6NXGKiIiIiIho+QYGBvDmm2/i3XffRUdHBwYHB+FyuVBRUYEPfvCD2Lx5c7xDpEWEFRUN3TOKZorZaZiIiIgokbFohihJnO8fx4+PdevGrlqXifeU58QpogSkqbCdezFSLNPfNO9usqcyUiyz8RYWyxARERERLcMP3upEhz+oG/v8TWuR5VzpVGQiIqJlUGVIvnOQ+ptgmSiQkfqaII15o3J6JWPNRHFMJWRPpEBGdZfO7h5DRERx8eSJHvQMh3Rjf7KnFC473+4kIiIiouTxwgsv4JlnnkFBQQFqa2uRmZmJrq4uvPPOO3jnnXfwxS9+Eddee228w6QFNHvHEJQ13djWYnaaISIiIkpkfBWZKAlomoZ/OtQGRZ264bKIAv7iPeshsOgD0DTYzk8Uy/Q1zrub7KnA2FVfRGjjeznZgYiIiIhomdoGxvHDdzp1Y7UlLnxgS16cIiIiolQmBAanusf0TxTIDJyBoIQWP3gRmsUB2VMBxVMJObcKcm4VFE8FNDsnNxARJbK3Lw7ptq8qzcT7Kj1xioaIiIiIaGU2bdqEv/3bv0V1dbVuvLGxEX/3d3+H73znO9i1axesVi5WlajqOoZ12xtyHHCncRomERERUSLjX2tESeDF5gG8M+PNoE/sKsL6nLQ4RZQgNA228y9NFMs0zLubnLM5UixT9j4WyxARERERrYCmafjGS20IK1OF/JIA3P97GyCykJ+IiFZDVSD52yD1NU51j+lvgjTSvfixS+FeCxRswbi7DGFPBWRPVaR7jChF5/xERGQITdPQ1DOqG7u7Np8LixERERFR0rn66qvnHK+qqsKWLVtQV1eHixcvoqyszODIaKlOdo7otreVcCEWIiIiokTHohmiBDcaUvCtly/oxgoybPjM1cVxiigBaBpsbb+F8+1/haW3ft7d5JzNGNv1eYQ23cpiGSIiIiKiVfifpv5Zhfwf3VmETXnOOEVERETJSAgOTRXH9DdFPu9vgaAEV31uTbJD9pRDya2C7KmEll+NjE27gbRsAEDA54OiKKu+DhERxYd3JITBcVk3VlmQHqdoiIiIiChe/H4/zp49i7Nnz6K1tRWtra0YHo50/bjppptw4MCBJZ+rt7cXL7zwAo4fP47+/n5YLBYUFhbimmuuwfve9z7Y7fZYfRvzkiRJ90iJR9O0WZ1maotZNENERESU6Fg0Q5TgvvPGJfSOhHVjf7Z3HdJsJrxB1jRYL7wM59v/Cqv31Ly7ydmbMHbV5xEqu5WrhhIRERERrdJwQMa/HJ5dyH/ftSVxioiIiBKeqkD0X4SlvzHSOaavGZb+RkjDnVE5vZJeCCW3EnJuFeTcSii5VVDc6wBx6uVuSZImC2aIiOIllhPdRFFccDvVtPQGdNsuu4TSHKcpOs2YLddmx3ybC/NtLsy3eTDXsXXfffdF5TxHjx7FQw89hPHx8cmxYDA4WYhz6NAh3H///SgsLIzK9Zair68Pp06dQnZ2NkpLSw27Li1P11AIfaP6eVzbSlxxioaIiIiIlopFM0QJ7GzvGB4/1q0bu2a9G3s3m+wNf02D9eIrcL79bVh76ubdTc7aGCmW2fT7LJYhIiIiIoqS/zjSjoEx/YrOf37zOjjNWMhPRESzCMFhSP3NsPRNFMj0N0W6x8jjix+8CE2yQcnZDNkTKZBRcisjXWRYDENESSI727h/r9xut2HXioc2f69ue2tJFnJycuIUTXyleq5Jj/k2F+bbXJhv82CuYyc3NxclJSWoq5t/Hslczp8/jwcffBChUAgOhwN33nkntmzZglAohNdffx2HDh1CV1cXvva1r+HrX/860tLSYvQdTJFlGQ899BDC4TA+9rGPsdgqgc3sMuNOs2BdtiNO0RARERHRUrFohihBaZqGfzrUBkWbGrNKAv78PetNsXIagIlimVcnimVOzLubnLUB47s+j+Dm21ksQ0REREQURae7RvDkCa9u7IayLNy0iZOViYhMR1Mj3WP6mmDpb4LU1whLXxOk4UtROb3izJ/sHqN4KiMdZLI36rrHEBGRedV3+nXbW0oy4xQJEREREcXTPffcg7KyMpSVlSErKwterxef+9znlnWOH/zgBwiFQpAkCV/5yldQXl4++bUtW7agqKgIP/rRj9DV1YVnn30W+/btm3WORx99FOFweNb4fG677TYUFRXN+TVVVfEf//EfaGxsxHve8x7ceOONy/p+yFgnO/VFM9uKXeaZx0VERESUxPiOI1GC+p+mfhy/pL/R+sSuIpSaYXUCTYP14mtwvvWvsPa8O+9uinsdxnZ9HsHyOziBgoiIiIgoyhRVw9dfOo9pdfywW0T8+c0mKuQnIjIpITQy0T1mojimvwlSfwvE8Oiqz62J1onuMRVT3WNyK6GleaIQORERparTHUO67S0lXLGdiIiIyIzmKmBZjrNnz6KxsREAsHfvXl3BzGW33347Dh8+jI6ODrzwwgu4++67YbHo56S8+OKLCAaDS77u7t275yyaUVUVDz/8MI4cOYIbbrgB99133zK/IzJaXceIbru2OCNOkRARERHRcnCWOVECGgnK+NbLF3VjhRk2fObq4jhFZBBNA869jIyX/h6WrmPz7qa4SyeKZT7AYhkiIiIiohh599IQmnrGdGP3XVOCYrc9ThEREVHUaRrEofaJzjFNsFzuHjN0cfFjl0B15kL2VEW6xuRWQvZURbrHSNaonJ+IKNH5fL6YnVsURbjdU4Ujfr8fqqrG7Hrx1D8aQvdQQDe21hXb5zeRmCnXxHybDfNtLsy3eSRCrrOz2Sl8Pm+//fbk53v37p1zH1EUcdNNN+EnP/kJRkdHUV9fj9raWt0+jz322Kpjudxh5tVXX8V1112HAwcOQBTFVZ+XYmckKONsn/59k9oSV5yiISIiIqLl4GxzogT0yBsd6B/Vt3H98s3r4LBKcYooxjQNOPcK8PLXgItvzvsPk5JZirFdBxCsuJPFMkREREREMXayU79aWmm2Ax+7sjBO0RAR0aqFx2Dpb4alr3Gii0wjpL5miOGRxY9dhCZaoGSXRTrHeCoh50YKZTRnbhQCJyJKXoqiGHYtVVUNvZ6RGrqGddtpVhElmbaU/X4Xk8q5ptmYb3Nhvs2F+TYP5jqxNDc3AwDsdjs2btw4737V1dW6Y2YWzazW9IKZa6+9Fp///OdZMJME6rtHoWpT2xZRQFUBi2aIiIiIkoHhs87r6urw2muv4dy5cxgeHl70xlAQBHzve98zKDqi+DvbO4Ynjnfrxq7bkIWbNqXoSiCqAufhvwLqn5h3FyVzLcaunCiW4UqkRERERESGaOoZ1W3vXu+GVeKbdkRECU/TIA53wtLfCGmic4ylrwmi/wIEaIsfvwg1LWdacUykQEbJLgMkWxSCJyIimm3mvcnmPCckUYhTNERERESUzC5dugQAKCwshCTNv3BtcXHxrGOiRVVVPPzww3j11Vexe/duFswkkboOfUF/ZYETDitzR0RERJQMDCuaaW5uxmc+8xn87ne/W/IxmqaxaIZMRdM0fP2lNijT5i/YJAF//p51EIQUfANIU+E6/NewN/5szi8rGWsmOsvcxWIZIiIiIiKDNXvHdNuV+elxioSIiOYVHodloAVSXxMsfY2w9DdB6muCGBpe/NhFaIIEJXtjpCgmtxLyRAcZzZkHpOLrVERElLBmFs1UFvDehIiIiIiWLxQKYXg48pqJx+NZcF+XywW73Y5gMIj+/v6oxvHkk0/ilVdegcPhQHFxMX7+85/P2ueqq67C+vXrl3zOpca4UKHQasws+knVIqBTnfp7k9qSzJg9p4nMLPmmCObbXJhv82CuzYX5jjCkaKajowM33ngj+vr6oGmRagCXy4Xs7GzTPvFEc3m+oQ8nZqxKsP+qYqzJcsQpohjSNKS/8rdwzFEwo2SUYOzKP0aw8m6uUkpERERESxbLNybM9iLCUEBGhz+oG6suzjDNmz9my7eZMdfmktT51jQII12w9Ea6x1z+EAfbIGjqqk+vOrKg5FZFPvImHnM2ARb9a1JJ9Iwld75p2ZhvotTGgn4iIiIiioZAIDD5ucOx+Dwch8OBYDCoOy4aent7J+N56qmn5twnPz9/WUUzn/3sZ5e038GDB5d8ztVwu92GXMdIiqrhVNeIbuz6iiJkZ2fHKaLEkYr5pvkx3+bCfJsHc20uZs23IUUz//AP/4De3l4IgoA//MM/xJe//GWUl5cbcWmipKFpGv7zdX1L1+JMO/ZfVTzPEUlM05B+5B+QdvrH+nHJBrzvHzG08QNQYI7JeEREREQUPUa+MZHqLyI0tvbptm2SiJ2bimGVzDkBNdXzTVOYa3NJ2HyHx4HeJqD7NNBzeuoxMLj6cwsi4NkMFG4BCmqAgq1A4RaIGUUQBQGp3Oc3YfNNMcF8E6WOuQr6KwuccYqGiIiIiJJZKBSa/NxiWXzK3OV9ph8XDQcOHMCBAweiek6KvZaeYYwEZd3YznUsmCEiIiJKFoYUzfz617+GIAj45Cc/iUceecSISxIlnQsDAXQN6W+0/+zmdXBYU2xSmqbB+eY3kVb3ff24aAE+/EOg8jbA5wMUJT7xERERERER6juGdNsVhRmmLZghIooZTQOGu6aKYi4XyPSfAaLQPQYO92RRDAomimTyqwBr2urPTUREZJAW76hu2yoJ2Ojh/2VEREREtHw2m23yc1mWF9hTv8/04xLVww8/HO8QUt7RCz7d9tqcNORnLt6xiIiIiIgSgyFFM52dnQCAT37yk0Zcjigpnegc1m3npltxY1lWfIKJobR3/g3O4/+pG9MEEcKHvhcpmCEiIiIiorir7/TrtreUZMYpEiKiFCEH9d1jLhfIjA9E4eQC4NkUKYop3DJVKJNZAghCFM5PREQrJUmx66guiuKC26miuXdct705zwm7LZV7o81mllxTBPNtLsy3uTDf5sFcJy6HY6rAIRAILLr/5X2mH5eoPB7Pkvbz+XyL77QCoijqur76/X6oahQWhUkgvzvTo9veWpges+cz0Zkh3zSF+TYX5ts8mGtzSYR8Z2fHv0OfIUUz2dnZ8Hq9yMrKMuJyREmprmNEt11bkgEhxSY2pB37L6S//aBuTIOAsVv+Bek1d8YlJiIiIiJKHbF8cyIRXkQwUl27/rnckGU11Zs/Zsu3mTHX5mJIvjUNwlgvpL5GSL2NkPoaYelrhDjQCkFbfVddzZYBObcKSl4VlNxKKLlVUDwVs7vHqAAGB1d9vWTG329ziXe+E+HNHkpMRv5sTP8dSCXnfG267dpSj+l/51I11zQ35ttcmG9zYb7Ng7lOHDabDRkZGRgeHkZ/f/+C+46MjCAYDAJYekFKMlCU1b8+tRSqqhp2LaOcuDSk295a5Eq573GlUjHfND/m21yYb/Ngrs3FrPk2pGjmyiuvxPPPP4+WlhZs377diEsSJZ2TMzrN1Ja44hRJbDjqvo/0N/9p1vjIzV+DXHkn0uMQExERERGlFiNv6lP5RYTxkIK2fv1qzuV5aSn7/S5FKueb9Jhrc1l1vpUQJF8rLH2NkPqaYOlvihTIRKF7jAYBqrsUcm4V5IniGNlTCTVjnu4x/LldFH+/zYX5JkodpzvYBZOIiIiIomfNmjVobGxEd3c3FEWZtztkZ2en7hgyt77REDr8Qd1Yqs3rIiIiIkp1hhTNfOELX8Bzzz2HRx55BPfee68RlyRKKoNjYVwY0Ld+rS3OiFM00ec4/RO4Xntg1vjITX+HYPWHMfdLEEREREREFA8tvWPQpm1LArAp1xm3eIiIEoEw1gdLX6QoRupvgqWvCZKvFYIaXvW5VWs6FE9FpINMbmWkUCanHLBxiREiIjK30aCMc32jurEtxVypnYiIiJKEpgEjXsCRObtDLMVNRUUFGhsbEQwGce7cOWzevHnO/RoaGnTHkLmd7BjRbafbRJTxfRMiIiKipGJI0cx73/te/OVf/iW+8Y1v4LOf/Sy+/e1vw2q1GnFpoqRQ16m/uXJYRFTkp8bNlb3hSbhe/uqs8ZHr/xqBrR+LQ0RERERERLSQZq9+Utp6TxocVjFO0RARGUwJQ/Kdg6W/CVJfY6RQpr8R4lhfdE6fWRrpHOOphDxRIKNmrgEE/jtLRJSKfD5fzM4tiiLc7qkCEr/fD1VVY3a9eDhxaQjatIp+SQAKHEpMn9dEZIZc0xTm21yYb3NhvlOXEPRD9LVBGjwP0XcOkv8CbEMXgP5WIDSMkbt/jPDa6wyNKTs729DrJZOrrroKTz/9NADg8OHDcxbNqKqKV155BQCQnp6OmpoaI0OMqfk666yWKIoLbie7k136eV1bizNgsxoy7TIhpXq+SY/5Nhfm2zyYa3NhviMM+evt0UcfRVVVFa699lo88sgjePbZZ3HPPfegsrISTufihQGf/OQnDYiSKH7qOoZ12zVF6bBIyf+Pkr35l3D99v+dNT56zZ8jcMVn4hAREREREREtpqlnTLddmc9OB0SUmoTxAVh7TkPqa4LlcveYgbMQ1NCqz61ZnZBzKiIFMrlVE4Uy5dBsqdNZmIiIFqcoimHXUlXV0OsZob5L/97JBk8aLIKWct/ncqVirml+zLe5MN/mwnwnGTkAafACJH+kOGbqow3ieP+Chwq+c1CKdxsUKC1m06ZNqKqqQmNjIw4fPow9e/agvLxct8+vfvUrdHR0AABuvfVWWCypUxxhVEHV9CLBVFDf06Dbvrosn8Vp06RavmlhzLe5MN/mwVybi1nzbchf9Z/61KcgCMLkdldXFx566KElHSsIAotmKOXVderf+KktSf4JFLazv4brpS9DgKYbH9v1BYzv/N9xioqIiIiIiBbTNKPTTGUBi2aIKAUoIVi6TwLvHgM6jwM99cga7orOqTPWTBTHVEL2RApkVHcpu8cQERGtUrN3RkE/702IiIgollQZ4tClyWIYafD8VJHMcOeKTyv5zkcxSGpqakJ3d/fk9tDQ0OTn3d3dePnll3X779mzZ9Y5PvWpT+GrX/0qQqEQHnjgAdx1112oqalBKBTCG2+8gZdeegkAUFRUhDvuuCMm3wclj0BYwekOv27syvUsmCEiIiJKNoaVwmuatvhORCYUklU0dusnpdUWJ3fRjO38IWT85osQNP3KOGM7/jfGrvpCnKIiIiIiIqLFhGQVrX3jurGK/MU7xBIRJRxNgzR4DtaLr8HW/josHW9BDI8uftxCp7Q4IHsqoHgqIU92j6mEZk/u13GIiIgSVXMPC/qJiIgoyjQV4mjPtMKYSFGMOHge0lA7BFWO+iVF/8Won9PMDh06hFdeeWXOrzU3N6O5uVk3NlfRzIYNG/ClL30JDz30EMbHx/H444/P2qeoqAj3338/0tLSohI3Ja9THX6Elal5j4IAXLE2K34BEREREdGKGFI0c/48V02IpVAohMcffxznzp1Dd3c3RkZG4HQ6UVhYiJtvvhk33HBDSrUKTTWNPaMITb+5ArCt2BW/gFbJeuFVZLzwuVkvJo3Xfhpj13w5cvdIREREREQJqbVvHIqqX/SinEUzRJQkhPF+WNvfgK39CKztRyCNdC9+0DyUjOKJ4piJAhlPVaR7jChFMWIiIiKaT1BW0dqvL+ivzGfRDBERES2BpkEI+Ka6xVwukPFHimQEeXzxcyz3koIINXMNFPd6qDkb4SjeAnjKgJwyjKrpANcZTjhXXnklvvnNb+L555/H8ePHMTAwAIvFgsLCQuzevRvvf//7Ybfb4x1m1Pl8vpicVxRFuN3uyW2/3w9VVWNyLaMdadJ3mtqU64Q8PgJf9P8pSRqpnG+ajfk2F+bbPJhrc0mEfGdnx79TnyGVFOvWrTPiMqYVCATwm9/8Bps2bcL27duRmZmJ0dFRnDhxAg8//DDeeOMN3H///RBFMd6h0hzqOoZ12xtz05DhSM4iJ+ulN5H5/P+GoIZ04+NbPobR6/+aBTNERERERAmu2atfybk02wGXPTnvT4jIBOQgrF1HYW1/Hbb2I7D01i/7FJpkh+wph5JbBdlTATm3KtI9xuFe/GAiIiKKmda+MV1BvwBgMwv6iYiIaLrQ6EQhzPnZnWOC/phcUkkvgJK1HkrWBqhZGyY/VzLXApINACBJEhzTJ4T5fICixCQeMzpw4AAOHDgQlXPl5eVh//792L9/f1TOlwwUg34WVVU17Fqx9m67/t+T2mJXynxv0ZJK+abFMd/mwnybB3NtLmbNN2e+pACXy4Uf/vCHs7rJKIqCBx54AHV1dThx4gR27NgRpwhpIXWdI7rt2pKMOEWyOpbOo8j81X0QlKBuPFB1D0Zv+lsWzBARERERJYGmHn3RTAUnpRFRItE0SP3Nk51krJ3vQJADyztH4VZg4x6geDv8aaUIZ6wFRL5ESkRElGiaesZ026U5DqTb2PGNiIjIdJQgJH97pDjGN1UcI/rbII32xOSSqt0NJWsjlKx1kYKYyx/udYCNne+IzETTNJycMa9rW5LO6yIiIiIyO74jnAJEUZyzi4wkSdi1axfq6+vR3d0dh8hoMZqm4eSMTjO1xa44RbNylp46ZD77v2a1MQ6UfwAje/8RENjliIiIiIgoGTR5ZxbN8E1gIoovYdQLW/vrsLYfga39dYhjvcs6XkkvRHjtdQiVXg913Q3IKtk8+TWVK70SERElrJn3JpW8NyEiIkpdqgJxpGtax5iprjHi8CUImhr1S2qWtKkuMZcf3ZFHLS178RMQkSlc9AUwOC7rxpJxXhcRERERsWgGfr8fZ8+exdmzZ9Ha2orW1lYMD0eKGG666aZltfTs7e3FCy+8gOPHj6O/vx8WiwWFhYW45ppr8L73vQ92uz1W38acVFVFXV0dAGDt2rWGXpuW5qIvAN/Mm6skW5FA6q1H5i8/BTGsX1khWPZ+jPzePwMiV34jIiIiIkoGsqrhTK9+NefKAk5MIyKDhcdh7Xw7Uihz8TVYBlqWdbhmdSJcfDVCpdchvPYGKNllk91vJYmvURARESULdsEkIiJKMZoGYawvUhDjb5tRHHMBghqK/iVFC5TM0snCGHWySGYD1PSCydcLiMwkVq+PzVzsea7Fn5PR6W79eya56VaszXFCMPm/H6mab5ob820uzLd5MNfmwnxHRLVo5uabbwYACIKAQ4cOzRpfiZnnirb77rsvKuc5evQoHnroIYyPT3XaCAaDk4U4hw4dwv3334/CwsKoXG8usizjqaeeAgAMDw/j9OnT6OjowJ49e7B169aYXZdWrq5DX2jiSbeixG1scdVqSP3NcD+zH2JwSDceXP8eDN/yLUA0fV0eEREREVHSuDAwjqCs6cYqOTGNiGJNUyH11k92k7F2HlvWRBkNAuSCbZFuMmuvh1y4HZBsMQyYiIiIYk1WVJxlQT8REVFSEoJDE4UwU11jxMtdY2YsxBkNGgSoGcWzu8ZkbYCaUcI5C0QzZGcb00nJ7XYbcp1Ya+pr123v2uBBTk5OnKJJXKmSb1oa5ttcmG/zYK7Nxaz5jurd4csvvwwAs6qpX375ZQiCAE3T5jhqbpf3N7IyOzc3FyUlJZPdWZbq/PnzePDBBxEKheBwOHDnnXdiy5YtCIVCeP3113Ho0CF0dXXha1/7Gr7+9a8jLS0tJvHLsownn3xyclsQBNxxxx346Ec/GpPr0erVdQ7rtmuLXUmzGoHka4X76U9ADPh046HSGzB860OcoEJERERElGRmruRcmGFDltMap2iIKJWJw52wth+Brf0IrO1vQgwMLOt4JWMNQqXXI7z2eoTXXAPNkRWbQImIiFYpll3OUnl1wNb+AEKK/j3F6qIM03aNS+Vc02zMt7kw3+aSUvmWA5FCGN95SIPnJj8XB89DHO+PySXVtFwo2RugZm2YeszaADVrHWBxzNpfABCvvxxSKtdEJne0TT8nauc6Y4qOiIiIiCj6olo0c+ONN8454X++8URwzz33oKysDGVlZcjKyoLX68XnPve5ZZ3jBz/4AUKhECRJwle+8hWUl5dPfm3Lli0oKirCj370I3R1deHZZ5/Fvn37Zp3j0UcfRTgcXvI1b7vtNhQVFenGHA4HDh48CFVV4fP5cOzYMTz++ONoaWnB/fffD6eTKwQnmrqOGUUzJRlximR5RP8FZD79iVkveIVKdmPo1ocBKXm65RARERERUUSTlys5E1FsCKERWDvegvXia7C2vw7L4LllHa/aXAivuQbhtTcgtPY6qO51QIK+1khERDSdUas4A6m1OmD7OX1B/5rsNKwvzo9TNIknlXJNi2O+zYX5NpeEz7cSBgYvAv2tQP/ZqY+Bc4C/ffHjV8KeCXjKAM8mIGfi0VMGeMogOtxI1tKThM81Ec3JPxbGGa++Q9YOFs0QERERJa2YdJpZ6ngimKuAZTnOnj2LxsZGAMDevXt1BTOX3X777Th8+DA6Ojrwwgsv4O6774bFon/qX3zxRQSDwSVfd/fu3bOKZi4TRREejwe33HILMjIy8K1vfQtPPfUUPv7xjy/jO6NYGxwPo20goBtLhqIZcagD7qc/Dmm0RzceLtqJod9/BLDGppMSERERERHFVvOMTjMV+Vx4gYhWSJVh8Z6KdJO5eASWnhMQVHnJh2uCBLnwCoTWXo/w2usgF9QCYlRfxiQiIqIEdrrDr9veUsyJpkRERDGhqsBw17SimFZgYKJIxtcGLONefskke6QQJmfjRFHMpqnimPQ8LpJBFGM+n2/xnVZAFEVdgZjf74eqqjG5llFea9U/VzZJwBqnGrPnMJmkYr5pfsy3uTDf5sFcm0si5NvIBabmw3ebV+ntt9+e/Hzv3r1z7iOKIm666Sb85Cc/wejoKOrr61FbW6vb57HHHotJfJev09DQEJPz08qd7NSvRmC3iKhM8Elp4kh3pGBmuFM3Hi6oxdAd3wNsXImaiIiIiCgZqZqGZnaaIaJVEP0XYWs/AuvFI7B2vAkxOLSs4xX3eoRKb0B47XUIl+yGZk/8hUWIiIgoNuo7ZxTNlGTGKRIiIqIUoGnA2MBEl5hWfYFMfysgj0f/moIIZK3TF8Rc7iCTuQYQk7VnDFHyUxTFkOuoqmrYtWLlxCX9fUl1oQsitKT/vmIhFfJNS8d8mwvzbR7MtbmYNd8smlml5uZmAIDdbsfGjRvn3a+6ulp3zMyimVgZGBgAAEiSZMj1aOnqOoZ12zWF6bBIifvikDDai8ynPw5p6KJuXM6txtAd34dm42QWIiIiIqJk1TEYxGhI/6IIi2aIaCFCcAjWS2/CevE12Npfn/V6wWJUexbCa6+d6CZzPdTMkhhFSkREFD+xXIE4EVYHjAVV02Z1mlmXKZl6NedUzTXNjfk2F+bbXGKe79AopMHzEAfPQ/JNPA6eh+g7DzHoX/z4FVBdhVCyNkDNWg8leyPUrA1QsjdAzVwLSLbZB2gA/LGJJZEkwu92IqziTJTsZs7rqi1xxSkSIiIiIooGFs2s0qVLlwAAhYWFCxamFBcXzzommjHk5eXBbrfrxoPBIB599FEAwPbt26N6TVq9ug59p5naksQtOhHGB+B+5hOwDJ7Xjcs5m+H/4A+hOdzzHElERERERMmgqWdUt+1xWpGbbo1TNESUkJQwLD0nJrvJWLwnIWhLn/ChiVaEi3YgPFEkI+fVACIXeSEiotRm5Gp9qbI6YNvAOMbD+r8xyvPSUuJ7i5ZUyTUtDfNtLsy3uawo30oQkr8d0kRBjDTYBmmwLVIgM+aNTZyObCju9VCy1kPJ3gAla0Nk270OsC2w6A5/lifxd5so+ciKivou/fsm24oTd14XERERES2ORTOrEAqFMDwcqSr3eDwL7utyuWC32xEMBtHf3x/VON544w0899xzqKysRF5eHtLS0jAwMIATJ05geHgYVVVVuP3225d1zqXGGKsONuKMdrwzt5NdSFbR0K0vmtm+1p2QHYGEgB+uX+6HZeCMblzJ3oiRu38CMT1v1ddI9XyTHvNtHsy1uTDf5sJ8U6KK5d/Tqf5z39w7rtuuKEiHxWLelwxSPd80hblegKZB9LVGCmQuHoH10psQwqOLHzeN4imPFMmU3gC55CrdZJp4vALCfJsL820uzDdR6phZ0J/nssLDgn4iIjITVYE40jlREHN+2scFiMOXlrWAxVJplrRIMUzWRHFM1lRxjJbGjiVEZD5nescRkPX/3tYWs9MMERERUTIz7wyYKAgEApOfOxyORfd3OBwIBoO646Jh586d8Pl8aGlpQUtLCwKBAJxOJ0pLS3Hddddh7969y5489tnPfnZJ+x08eHAlIS/b9Na1qeDYBR9CiqYbu6l6LdzOBHvjJzAE/OzTQG+Dfjx7A6RPP4eszOK5j1ulVMs3LYz5Ng/m2lyYb3NhvilRZGcb9wZuqv3ctw606La3r/cY+nwmulTLN83P9Lke7QfOHY58tL4MDC2zW3J6HrBxD1B2M7BxD6TMYkgAFn/VLD5Mn2+TYb7NhfkmSl7NPWO67Yr8BVawJyIiSlaaBmHUC0t/61RRjL9tolDmAgQ1FP1LilYo7tKprjFZG6BOFMqo6QWAIET9mkREyaquc1i3XZrtQFaizekiIiIiomVh0cwqhEJTL1QsZQXey/tMPy4aysrKUFZWFtVzUmwduzCg2y4vcCVewUxwBPjxh4HO4/pxdymw/1kgRgUzRERERERkLE3TUN85pBvbUsyJpkSmIAeBi78DWn8bKZTpOglAW/SwSRYHUHoNULY3UiiTXwOwuwMRERGtQpNX32mmkkUzRESUxITg0ERRTBss/jZgrAPoPwv0n0NWaHjR45dLgwA1o3iqU8y0zjFqRgkgcooQkdktd9HlpUq1DrAnO0d021eUZMTsuUtGqZZvWhjzbS7Mt3kw1+bCfEfwjngVbDbb5OeyLC+6/+V9ph+XqB5++OF4h5DSjrb5dNs71+XEKZJ5hMaAxz8CtP9OP55RDOx/BshaG5+4iIiIiIgo6rr8AQyM6hd32FLCohmilKRpgLcBaD0cKZS58AYgjy/vHIVbgY17I4UypdcA1rTYxEpERESmo2kamnpmFM0UOOMUDRER0RLJAUiDF6Y6xkx2jTkPcXxg8eNXQHXmRopi3OunFcdsgOJeB1jsMbkmEaUGozrMJ3sH2FNd+vuSa8sLDXvuklGy55uWh/k2F+bbPJhrczFrvlk0swoOh2Py80AgsOj+l/eZflyi8ng8S9rP5/MtvtMKiKKo+6X0+/1QVTUm1zKapml4p61fN1aVZ4vZc7lscgCuZ++D9eJrumHVmYvhux6DKmQDUY41lfNNszHf5sFcmwvzbS6JkG++ME1zieXf1Inwcx8rvzujf/M+wy4hHQH4fME4RRR/qZxv0jNDroVRL6wXj8By8QisF1+DONa7rOPV9AKES29AuPQGyGuvhZaeN/XFkQCAxV8TSxRmyDdNYb7NJd755v0JUXR0DYUwHFR0Y5UF7DRDREQJQAlDHL4EabBtsnPMZIHMSFdMLqnaXNM6xkQKY9SJIhnNnhGTaxIREdA5OI4uv/41z53reN9PRERElOxYNLMKNpsNGRkZGB4eRn9//4L7joyMIBiMTDhaakFKMlAUZfGdokBVVcOuFWsXfQH4xvSdibYVpSfG96eEkPnCgdkFM44c+D/4GJTM9YABcaZSvmlxzLd5MNfmwnybC/NNicLIn8NU+rlv7BrWbVfkp3NS8QyplG9aWErkOjwOa+fbsLW/Dmv7EVj6m5d1uGZJQ7jkaoRKr0d47fVQsjcBgjC1Q7I/P9OkRL5pyZhvc2G+iZLTzC4z7jQLCjJscYqGiIhMR1MhjnRPdIlpg+Sb6hwjDl+CoMqLn2O5l5Rs07rFTOsYk7UeWppHfz9ORESGOHpBv0CbO82KsjxXnKIhIiIiomhh0cwqrVmzBo2Njeju7oaiKJAkac79Ojs7dceQedV16CekeZxWlLgToEWyKiPjf74EW9tv9cP2TPg/+EMonvI4BUZERERERLHU5NVPTKsscMYpEiJaEU2F1NswUSTzGqydxyCooaUfDgFy/laE116HUOkNkAu3AxInpxIREZHxZt2b5DshcLIwERFFk6ZBCPimusQMtk11jfG3QZCj301VEySomWugZm+EtaAS8JQBnk0YtORBduYDghj1axIRzcfn8y2+0wrEuwNsNL3Rou8gtrUoHX7/YHyCSVCplG9aHPNtLsy3eTDX5pII+c7Ojn/nPhbNrFJFRQUaGxsRDAZx7tw5bN68ec79GhoadMeQec0smtlW4or/mz6qAteLX4b93P/oh60uDH3gh1DyquMUGBERERERxVpzz8yimfQ4RUJESyUOd8La/jps7UdgbX8DYmBgWccrGSUIr70+0k2m5BpoafF/kZKIiIhoZqcZ3psQEdFKCaERiINtE11jzk8Vxgy2QQz6Y3JNJb1wWqeYyIeatR5K5hpAskGSJN0kIc3nS6lurkSUHIzqyprMHWDrLs2Y11XsStrvxSjJnG9aPubbXJhv82CuzcWs+Y5b0cylS5fQ3d2NsbEx7Nq1C2lpafEKZVWuuuoqPP300wCAw4cPz1k0o6oqXnnlFQBAeno6ampqjAyREszMopnakow4RTJBU+H67f1wnHlWP2x1YugD34NcsC1OgRERERERUaz1j4bhHQnrxirzOTGNKNEIoRFYO96Ctf0IrO2vw+JrXdbxqs2FcMluhEtvQGjtdVDd64F4L+BBRERENI2mabOLZnhvQkREC1GCkPzt07rGnIc0eAHi4HlIY96YXFJ1ZE8rjJlWIONeB1jZvZmIKNmNhRS0zOiAua04zvO6iIiIiCgqDC2aGR4exj/90z/hBz/4ATo7OyfHT506herqqU4WP/3pT/HUU0/B7XbjO9/5jpEhLtumTZtQVVWFxsZGHD58GHv27EF5eblun1/96lfo6OgAANx6662wWFKnwY8kSTE5ryiKC24nK/94GOcH9C2dd6x1x+x5XJSmwfnbr8Le9HP9sGTHyAe+B23N1TAislTNN82N+TYP5tpcmG9zYb6JUkfzjDd/HBYRa7MdcYqGiCapCizeU7C2vwZb++uwdL8LQZWXfLgmSJALaie7ycgFtYCYOq9HERERUerpGw1jYEz/9w47zRAREVQF4kgnJN/5aV1jJjrGDHdA0NSoX1KzOicLYaZ3jVGy1kNzZEX9ekRElDgaukegaFPbkgDUFPK+hIiIiCgVGPZu+ZkzZ3Dbbbfh3Llz0LSpvy6FOVa13L17Nz7+8Y9D0zTs378f119/fcziampqQnd39+T20NDQ5Ofd3d14+eWXdfvv2bNn1jk+9alP4atf/SpCoRAeeOAB3HXXXaipqUEoFMIbb7yBl156CQBQVFSEO+64IybfR7xMbx8cS26325DrxNrx7h7dtt0iYnfFGtgscZhoqmnAr+8HTv9EPy7ZIPzB48jY9B7jY5qQKvmmpWG+zYO5Nhfm21yYb6LkNbNopjzfCUlk9wmieBD9F2FrPwLrxSOwdrwJMTi0+EHTKO71CJVej/Da6xAuuQaanSsgEhERUfKY2WUm3SaiJMsep2iIiMhQmgZhrBfSYJu+a4z/AqTBCxDUUPQvKVqhuEunOsa410OdKI5R0/PZnZWIyKROdIzotivy05Fmi9NCyEREREQUVYYUzQQCAfz+7/8+WltbkZ6ejgMHDuDGG2/E7bffPuf+69evx969e/Hb3/4Wv/zlL2NaNHPo0CG88sorc36tubkZzc3NurG5imY2bNiAL33pS3jooYcwPj6Oxx9/fNY+RUVFuP/++5GWlhaVuCk5Hb3g023Xrs2KX8HMS38DvPWwfly0APseA+JYMENERERERMZp6hnTbXMlZyLjCMEhWC+9CWv7EdguHoE0dHFZx6t2N8Jrr0No7XUIr70eauaaGEVKREREKxXLLvOp1gW2uXdct11R4ILVwk55QOrlmhbGfJuL2fItBP0QfZGCmMnHwfOQfOchhEcXP8EyaRCgZpZMFcNkX37cCDWjeM6OrAKAWP3vbbZ8mxlzTZS8TnYO67a3lbjiFAkRERERRZshrzY//PDDOHv2LNLT0/Haa6/hiiuuWPSYW2+9FYcOHcKbb74Z+wCj4Morr8Q3v/lNPP/88zh+/DgGBgZgsVhQWFiI3bt34/3vfz/sdq6IZXbH2vRFM1euM6ZTzywvfx14/V/1Y4IE3PPfQMX74xMTEREREREZbuZqzpX5LJohihklDEtPHWztr8F68XVYvHUQNHXJh2uiFXLhDoRKr0N47Q2Q82oAkascEhERJbLsbOPeA0j2LrCtA6267StKPYY+f8kk2XNNy8N8m0tK5Ds0BgycAwZagf6zQP+0x7G+2FzTVQDklAGeMsCzaeKjDEL2BkhWByQA1thceVVSIt+0JMw1UXJQNQ2nOvWdZmqL2c2biIiIKFUYUjTz1FNPQRAEfPGLX1xSwQwA1NbWAgDOnDkTw8iAAwcO4MCBA1E5V15eHvbv34/9+/dH5XzJwOfzLb7TCoiiqHvhwO/3Q1WXPpEkEYUVFXWXBnVjlbnWmD2H83G88+9Ie+OfdWMaBIy+718QLroRMDgeIDXzTfNjvs2DuTYX5ttcEiHfnDhDtHrDARkd/qBurKLAGadoiFKQpkEaPA9r+xFYLx6BteMtiOGRxY+bRs7ZPNFN5nqEi68CbCxsIyIiotTU0Dmk295SkhmnSIiIaFFKGBi8OFEMc3ZacUwrMHQpNte0u2cVxcBTFimWcfD/DCKipYpVN8xU6LDU1juG4aCiG9u+1h3TDqLJKhXyTUvHfJsL820ezLW5MN8RhhTNNDY2AgBuueWWJR/j8XgAAIODg7EIiaJEUZTFd4oCVVUNu1as1HcOIyjrJ5PWFKQb+n05Tvz3rIIZABh5z9cR3HQ7kCDPcSrkm5aO+TYP5tpcmG9zYb6JklOzd0y3bZUEbPSkxSkaotQgjA/AeukN2Npfh/Xia5BGupZ1vJrmQWjtdQivvQ7htddDdRXGKFIiIiKixDEwGkLH4LhubEsJV2QnIoorVQWGO/UFMZcLZAYvAKoc/WtaHBMdYzZOK46Z+HB6AEGI/jWJiEzGqEXpkrHD0pkzw7rtkqw0VK7j67NLkYz5ppVjvs2F+TYP5tpEgsOmzbchRTMjI5FVNF0u15KPCQYjq91arYnYKJdo+eo69KvJbvSkwZ1myK8gAMBx6kdwHfmHWePDex5AsOoew+IgIiIiIqLE0OQd1W1vynXCKplzRRGiFVOCsHYdg/Xi67C2H4Gltx4CtCUfrkk2hIuvmuwmo+RWAgJ/D4mIiFJFLDvNJ0IX2Gh56/ygbtthEZFtCcf0+UsmqZRrWhzzbS5xz7emQRgfgDjYBmnwHETfeUiD5yEOnoc02AZBDkT/koIENXMt1OwNULI2QMneADUr8rmWUTT3PXEIQGgw6rEYLe75JsMkQq6NKowgSiVH2/T3HzvW8feIiIiIklhoFPA2Ad6GyEdPPeCNNEHBn5+Jb2xxYsiMfY/Hg+7ubrS1tWHHjh1LOqa+vh4AUFjIim1KDXWd+hUJakuWXkS2WvaGn8H1yt/MGh+54asIbvkDw+IgIiIiIqLE0dyjL5qpLHDGKRKiJKJpkAZaYL14BLb2I7B2vgNBHl/8uGnk3KqJbjI3IFx8ZWQlXSIiIkpJRnZlTeYusPVd+vdPNuc5IWgqkvTbiblkzjUtH/NtLrHKtxAamSiMiRTDSP7Ln5+HGByK+vUAQHEVRopisjZAca+f/FzNXANI8yycqmoAzPPzzt9v82CuiZLD8Yv6opmdpVnxCYSIiIhoOZRwpCustwHoaYgUxnjrAV/b/MeM9gHpuYaFmCgMKZrZsWMHnn/+ebz66qu4++67l3TMo48+CkEQcM0118Q4OqLY0zQNdR0zimaKMwy5tr35Gbh+e/+s8dFr/xKB2k8ZEgMRERERESWephlFMxX56XGKhCixCaO9sF16HdaLR2Btfx3SmHdZxyvpBQivvQ7htdcjtPY6aE7zvQBJREREtJBmLwv6iYhWTQlC8l+MFMVMFMRIg22RYpll3sculerIgZK1bqo4JmsDlKz1UNzrACv/LSciSkSx6uaYCB2WVmNgNITzffr7kvIcC7tfziPZ803Lw3ybC/NtHsx1EtI0iMOXIPW1QOpvgtjfAqmvGZKvFYIaXtapRs6/g3DJ7hgFOrdE6IZpSNHMPffcg+eeew6PPPII/vRP/xSlpaUL7v/ggw/i1VdfhSAI+IM/YBcMSn6XBoMYGJN1Y7UlsS+asZ19Hq6XvgwBmm589OovYXzHH8X8+kRERERElJjGQwou+AK6scoCFs0QAQDC47B2vgNr+xHY2l+Hpb9pWYdrljSES65GaO31CK+9DkrOZkAQYhQsERERUfJjQT8R0RKpCsSRTki+81OFMf62SHHMcAcELfoTnDSrc6oYRtc1Zj00R1bUr0dERLFlVNejZOuw9O4lv247zSpio8eRVN9DPCVbvml1mG9zYb7Ng7lOLML4ACz9zZD6WyKPAy2Q+s9ADI9E5fxibyOUwl1ROVcyMaRo5hOf+AS+9a1v4eTJk9izZw/+/d//He9///snvy4IAjRNw9GjR/Hggw/ipz/9KQRBwA033IBbb73ViBBphSRJisl5RVFccDvZnOzSv+GT47RinccJIYaTZqznXkT6b/5k1ouj47sOIHT1FyEl0ISdVMs3LYz5Ng/m2lyYb3NhvomS35m+MajTauslAdiUyxVAyaRUFeg5BbT+Fq7mF2HpfAeCElry4RoEyPlbEF57feSjaDsg2WMYMBEREVHqGAnKaB8M6sZY0E9EpqZpEMZ6dd1iJh/9FyGoS79fXfIlRSsU97qJwpj1us4xmjOPC0EQEVHKq+vQT0DdUuSCReT/f0RERBRj4TFYBs7oimMs/c0Qx/qicnpNEKG410PNrYRtTS2QXw3kVyMoZGFGLwZTMKRoRhRF/PKXv8T111+PtrY23H777XA6pwoG9uzZg+HhYQSDkRfFNU1DWVkZDh48aER4tApGtUua3gYsGTX1teu2d23IQU5OTuwueOYl4PkDgKrvboNrPoe0Wx5AWoK/sJns+ablYb7Ng7k2F+bbXJhvouQzcyXn9Z40OKwsgCOTCI/D2lMHS/cx2LqOAz3vAoHISoLWJZ5CyShBeO11CJXegHDJNdDS4t9OmoiIiCgZNXvHdNsWUcBGT1qcoiEiMpCmQfRfBNpfAvpagP6zyOhtgeg7DzE8uvjxy70cBKiZayY6xUwvjFkPNaMYEA2ZOkJERJSQTnYO67a3FbviFAkRERGlJCUcWRBjoigmUiTTAnGoHUKUqlcUVyGUnHLIngoononH7E2AxQ5JkmCbPt/f5wNM2FnIsFc+SktLceLECXz+85/HwYMHMTo69UJPb2/v5OeCIGDfvn14+OGHDSvIIIq1o20+3faV62JYMHPuZeCJjwEzV8Xd9YfALQ9wJSAiIiIiIkJTj35iWkU+V3Km1CWO9MDSfQzWruOwdB2Dpa8BwsxFJhahWl0Ir9mN8NrrESq9Hqp7Pe+viYiIiKJgZkF/WW4abBYW9BNRCpKDsPSejtybdh+Htfv4rJVjozF5Q3XmTRbD6IpjMksBC7uiEhERzRSSVTR26+9Laksy4hQNERERJTVNgzjcCam/GZaBlshjfwsk37modY5V7ZlQPBWRopjLRTI5m6E5uODxYgxdLiQnJwc//vGP8Y//+I947rnncPToUXi9XiiKAo/Hg+3bt+OOO+5AeXm5kWERxdTgWAhnvPo2njvXx6gg7MIbwON/AMgB/fj2TwC3/jMn9BAREREREQCgyat/A6iywBmnSIiiTFUgDbRMFshYu45BGr607NNoggS5YBvCa29AqPQ6yPm1gLTUPjREREREtFQzO81UFrCgn4hSgzDaC2v3xL1p93FYvPXRmyBjy4CSvXGia8yGyeIYNWsdNBsn+RIRES1Hk3cUIUW/wvvWInaaISIiooUJ4wPTusY0QxpogdR/BmJ4ZPGDl0CT7FByNumLYzzlUNMLOBd8heLSY3fdunX44z/+43hcmqLM5/MtvtMKiKIIt3uq6s3v90NV1ZhcK9Zeax3QbdstItY41ag/d1LXcWT84hMQwvo3mIKVd2Hs+r8F/P6oXi+aUinftDjm2zyYa3Nhvs0lEfLNrpREKxeSVZzrG9eNVbLTDCWr0CisPSdg6ToOa9cxWHrehRha4QuRORsRKLkWobXXIVxyDTQ7JxoRERERxdrMTjO8NyGipDS5gMOxyP1p93FIQ+2rOqVmcUBxr5vqFDOtc4zmyOEEGSIioig52aF/PXmjJw0ZjrhMqSQiIqJEFB6DZeCMrjjG0t88q3vsSmmCGFkUw1OuK5BR3aWAKEXlGhTBv/BoVRRFMeQ6qqoadq1oe7d9SLddXZgOEVpUvx/Jexqup/dDCOvfXApuug3DN38d0AAk0fOXzPmm5WO+zYO5Nhfm21yYb6Lkcq5/HLKqXzWtPJ+dZig5iMOdkx1krN3HIfU1QtCWX7ipCRKU3ErIxbvg2HwjsHY34C7BuM/H/9OIiIiIDBIIK2gbmFHQzy6YRJQEhOAQLN0nIh1kuo/D0n0C4oz3aZfMmQuU7AA8mzCaVgQ5M1Ioo7oKAUGMbuBEREQ0S13nsG67toSLKREREZmSEobkb4PU3wxLf0vkcaAFor8dArTFj1/KJVyFuq4xsqcCSnYZYHFE5fy0MBbNEMVYXceMm6vi6LbwlPqa4X5mP8SQ/jrBDb+H4ff+CyDy15yIiIiIiKbMXMm5NNsBl533DZSAVBlSX9NEgUxktV5ppGtlp7K5IBduR7hoJ+SinQjn1wK2dEiSBAe7lxERERHFxZneMUyv5xcFYHMei2aIKMFoGkR/G6xdkQIZa9dxSANnVjRhRoMAxVOBcNEOyIU7oJbsgnt97WTXmBAXciAiIjKUpmmzOs1Ee14XERERJRhNgzjcOVkUM1kk4zsHQQ1F5RKqPROKpwJyTnnk0VMBJWczNIc7KuenlTF8VoyqqmhoaMC5c+cwPDy8pBd9PvnJTxoQGVH0hRUV9d0zbq6iuCKBNHAW7mc+DjE4qBsPld6I4fd/G5CsUbsWERERERGlhplFMxXsMkMJQggOw9L97mSBjLXnBITw2IrOpWSunSqQKdwJJWcT21cTERERJZimHv3feutz0uCw8m82IoozOQCL95SuSEYMDKzoVKrVBbnwCsiFOyKFMgVXQLNPvVcsSdJkwQwREZERJCk2f2+LorjgdqJq9wXQPxbWjW0vdcfseUoVyZpvWhnm21yYb/MwS66F8QFI/c2Q+pojj/3NkPpbIIRGFj94CTTJDsWzGYqnHIqnMvKYWwktvWDW/X48n2Gz5HsxhhXNjI2N4YEHHsB3v/td9Pf3L/k4QRBYNENJq9k7hqCsX2VoW3F0imbEwTZkPv0JiOP6F2lDa67B0G0PA5I9KtchIiIiIqLU0uzVT0yryE+PUyRkapoGcfhSZBJS1zFYu45B6m9e2Uq9ogVyXg3kwp0IF+1AuGgntPT8GARNRERERNHU5J1R0F/Agn4iMp440jNZHGPpPg5Lbz0ENbz4gXNQ3KUIF+6YWMBhB5SczVzAgYiIEkq2QV233e7kWEX98PlLum1Pug3bNhRBYFHrsiRLvik6mG9zYb7NI+lzHRoFepuAngbA2wh46yOPIz3ROb8gAjllQH4VUFATecyvgZCzARZRMr6DySolfb5XyJA8jYyMYO/evTh+/Dg0bfmTH4iS1YmOYd32hhwH3Gmr/7UThy7B/fTHIY15dePh4l0Y+v1HAItj1dcgIiIiIqLUI6saWnr1RTOVBSyaIQMoYVj6GicLZCxdx2bd0y6VandPrtIbLtoJOX8bYE2LcsBEREREFGszu2BWsqCfiGJNlSH1NcHafTzS4bT7OKThjhWdSpNskPO3ThTJ7EC4cAc0Z26UAyYiIqJYOnbBp9veuS6bBTNERESJTAkD/a1TRTE9DYC3AfC1AStYnHFOGcVAQfVkYQzyq4C8Cr4fnQIMKZp54IEHcOzYMQDA7t278Ud/9Eeora1FVlaWaVv8kDnUzSiaqS1ZfZcZcaQrUjAz0qUbDxdsx9Dt3wWsXImNiIiIiIjmdmFgHEFZ1Y1V5vMegqJPCPgnVuo9Flmt11sHQQ6s6FyKe/1UgUzRTijZZZHVfIiIiIgoaYUVFa1947oxFvQTUbQJgUFYut+dKpLpqYMgjy9+4BxUZx7ChZfvTXdAzqsGJHuUIyYiIiIjzVU0Q0RERAlA0wB/+0RhTH2kMMbbCPS1AEooOtdwuKeKYgqqgfyJQpk0/j2QqgwpmnnyySchCAJuu+02PPPMMyyUIVPQNA0nO0Z0Y6stmhFGvXD/4uOQhtp143JeDYY+8N/QbK5VnZ+IiIiIiFLbzJWcCzJsyHJa4xQNpQxNg+i/MFEgcwyW7uOwDJxZ2alEG+T8mskCGa7US0RERJSaWvvGIav61R8rWNBPRKuhaZAGz090kDkGS9dxWHxnV3YqQYTiqUS4aMdkp1M1Yw3AleeJiCjJ+Xy+xXdaAVEU4Xa7J7f9fj9UVV3giPgbDspo7tYvhlyeY4nZc5RKkjHftHLMt7kw3+aRSLkWxgcg9TdD6muOPPY3Q+pvgRAaWfzgJdAkG5SczVByK6B4Jj5yK6GlF8y+zw8ACKTe3wKJkO/s7PgXIxlSNNPREWlp/IUvfIEFMylGkqSYnHfmz0ky/ty0+wLoHwvrxravda/4ORPG+pHxzCch+dt047KnEiN3/QhiElc3pkK+aemYb/Ngrs2F+TYX5psoeTV7x3TbXMmZVkQJwuKtnyyQsXYdgzjev6JTqY6cyCSky51k8rYCFq7US0RERJTqmrz6gv61WXa47Ia8bUlEqSI8Dov3JKxdxyc7yYjBwRWdSrVlQC7cPlkkIxfUcrFCIiJKSYqiGHIdVVUNu9ZK1bX7Mb2M3yoJKM9LS/i4E1Ey5Juih/k2F+bbPAzJdXgMloGzkPqbYelvgTQQeRTHeqNyek0QobjXRYpicsoheyqgeMqhuNcB4hzztk1cEGbW321DXn3Oz8/HpUuXkJvLlUFTjVGVX9Mr3JLFb89d0m170m2o3VgEYSUrEI0NAD/9FDBzpd7cclg+9StkufJWHmgCSsZ808ox3+bBXJsL820uzDdR8pjZaaaSKznTEgjjA7B2vwvL5U4y3pMQVtj2Ws4um+ggsxNy0Q4oWRu4Ui8RERGRCTXPvDdhQT8RLUIc7pxYuOF4pMNpXyMEVV7RueSsDZMdZOTCHVByNgECFwYiIiIyk5Od+tXrqwrSYbfw7wEiIqJVU8KQ/G2Q+ltgmegcYxlogehvhwBt8eOXcon0QiiezROFMRWQc8oj9/YWR1TOT6nJkKKZq666CpcuXUJzczO2b99uxCWJ4u7oBX2Lrp3rsldWMBPwAz+6G+g5pR/P2Qh88pdAihXMEBERERGtVKw6YQKp0WFJ1TS0zOg0U12UEdPnLVmlQr5XTNMgDp6DpfMYLJ1HYek6Csl3bmWnkuyQC2ohF++EUrQTctFOaDO6pMb7p8/UuTYh5ttcmG9zYb4pUfEeZX5NM+5NqgpdvDeZR7LnmpaH+Z6ghCH1NsDSdWzi4zjEka4VneryvalStANy8U7IhTugOT26feL1rw/zbS7Mt3kw10TJoa5jWLddW5wRp0iIiIiSlKZBHO6ENHC5OGbi0XcOgrqyBRhnUm0ZkaKYia4xsqcCSs5maI6sqJyfzMWQopk/+ZM/wVNPPYV/+7d/w7333ruywgGiJHPswoBu+8r1K+jKExwGfnQP0PmufjyrFNj/LJBZtIoIiYiIiIhSi1GdMIHk7LDU1jeKkZC+xe7V5SXIdnO1lcUkY76XLByI3HO2/w64+BbQ/hYwPrD4cXNJzwdKrwbWXg2s3Q2hqBZWiw3W6EYcUymda5qF+TYX5ttcmG9KFLxHmZusqDjTqy+a2bWp0NDnK5klU65p9UyT77EBoP3tyD1p+9tAxzFAHl/ZuTKKJu5LIx9C4dakuTc1Tb4JAPNtJsw1UeKRVQ2nu/SdZraVuOIUDRERUeITxgdg6W+B1N88rUjmDMTwyOIHL4Em2aDkbI50jLlcHOMph5peCLDmgKLEkKKZa6+9Ft/4xjfwF3/xF/jIRz6C//qv/0JWVpYRl6YY8/l8i++0AqIo6l448Pv9UFU1JteKhaGAjJYe/X8G5TnW5T1f4XG4nvkUrB1v64ZVVxGG7/wxVDUdiNHzb7RkzzctD/NtHsy1uTDf5pII+eZEGqLlO93p123numwoyLTHKRqKm5HeiQKZ30UmI3WeANTwys6VVzVRJLM78pi9gS9aEhEREdGizvWNIhDWv45QU8zJpESmoapAX8tUgUz7W0D/mZWdS5CAwq0TBTJXRR7da3hvSkRERAtq7RvD2Ix7km3sNENERASEx2AZODvVNWaiQEYc643K6TVBhOJeByWnXNdBRnGXAqIhJQ1kYob9hH35y19GWVkZ7rvvPqxduxbvfe97UV5eDqfTueix/+f//B8DIqSVUBRl8Z2iQFVVw64VDe+26yej2SQB5bmOpX8PchCZz/0RrB1v6YZVZx4GP/gYVFcxkETPx3IlW75pdZhv82CuzYX5Nhfmmyg51HcO6bZrit3sBJvqVBXoa54okHk7UiwzcG5l57KkAWuujExAKt0d+TyNBYxEREREtHynO/TvoRS7HchJt8UpGiKKueBIpHPM5QKZS28DAf/ix83FkaUvkCnZAdjSoxouERERpb66jmHd9posOzzpydCXjoiIKEpUGfA2Ad4GwNuA9I46SH1NEP3tEKBF5RJKeiEUz+ZIYUzORPeYnE2AxRGV8xMtl2FFM16vF7/4xS8mV6F+5plnlnwsi2Yo2cy8uaoudMFmEZd2sBJC5gsHYGs/ohtWHTnw3/kY1OwN0QqTiIiIiCilxKoTJpAYHZZW60Rbv257k8cW0+csmSVtvsPjsPScgKXzOCxdRyF1HYcYXNlEJDW9AHLxlZCLdkIuvhJKbhUgTXvTMAAgkPw/P0mba1oR5ttcmG9ziXe+2QmT5sN7lLkdO+fVbZfnO3lvsoBkzjUtX9LnW9MgDndA6joGS9dxWDqPQuprhKCt7HtQsssi96VFOyEX74SavREQpr3nOhqKfCSppM83LQvzbR6JkGveoxAt7GTniG6bXWaIiChlaRrEkS5I/c2RzjGXO8gMngOUqfvp1Sxno9oydF1jIsUxm6E5slYdPlE0GVI009/fjxtvvBFnzpyBpkWnAo0okc0smqktcS3tQCWMjP/5ImwXDuuGVbsb/jsfhZKzOVohEhERERGlHCM7HiVbhyVN09DYo38TaHNuWlJ9D/GUqPkWR3pg6T4Oa9cxWLqOwdLXAEGVl30eDQKU3EqEi3ZCLtyJcNEOqBklwMxORAn4HERbouaaYoP5Nhfm21yYb0oUvEeZW2O3/t6kIo/3JsuRTLmm1Uv4fCshWHobJu5Nj8PSfRzSaM+KTqVZHAgX1EIu3BG5Py24AtrMDqeqBiCBn49VSvh8U1Qx3+bBXBMlnhXP6yIiIkpgwrgvUhAz0DJRJNMCaaAFYmhk8YOXQJNsUHI2Q87ZPFEkUw7FUwE1vXD2+8pECciQopl//Md/REtLCwDgnnvuwR//8R+jtrYWWVlZEPiLQilGVlTUd4/qxmpLlrYiQfqRf4D93G90Y6rNhaEP/CCyqi8REREREdEK9AyHMDiuL6aoLEiPUzS0IqoCaeDMZIGMtesYpOFLKzuVNR1y4RVTE5EKr4Bm40p6RERERBR7qqah2TumG+O9CVHyEMb6YO1+d6pIxnsSgrKyTi9KRnHkvrRwB8JFO6B4KvUdTomIiIhiwDscQteQ/u+XWnaaISKiZBIeh2XgzFTXmIHIozjWG5XTa4IIxb0OSk65rjhGcZcCoiFlB0QxYchP7y9/+UsIgoCPf/zj+OEPf2jEJYnipsk7hqCsb627rXjxFQnEkS44Tv9YN6ZZnRi64/uQC7ZFNUYiIiIiIjKXmZPSXHYJJW57nKKhJQmNwtpzApauiU4yPe+ueBWgyYlIRTsRLtoJxVPBFzSJiIiIKC46BoMYDelXWmfRDFGC0lRI/Wdg7T4WuTftPg7Jf2FlpxItkHOrIRdFimTkoh1QXUVRDpiIiIhocSc79V1m0m0SNuamxSkaIiKiBagypMG2SNeYye4xzRD97RCgRecaGUVAfjUC7o0IZ2+OFMjkbAYsjuicnyiBGDJDoqOjAwDwmc98xojLEcXVzBae63McyEpbfFUke8OTELSpYhtNssN/+3chF+2IeoxERERERGQuTT36bpiV+ens/JpgxOHOyQ4y1u7jkPqaIGjK4gfOoAkSlNzKyQIZuWgnJyIRERERUcKYeW/icVqRm87OEkSJQAgNw9JzcqJA5hgs3StfvEF1ZE8Wx4QLd0DO3wpYORmViIiI4q+uU//3zbZiF0S+X0JERPGkaRBHuiaKYlqmimQGWiGoK+vuOpNqy9B1jdHyKpGx8SrAmQMAGPf5oCjLf2+aKJkYUjSTm5uLjo4OZGSwlSGlvplFM7UlS/i5VxU4Gg/qhgKVd0EuuTqaoRERERERkUk1eWcUzRQ44xQJAYisCtTXBGv3RBeZrmOQRrpWdiqbC3Lh9skCmXB+LWDjSt1ERERElJhm3ptUFDhZ0E8UD5oGcagd1u7jU11k+pt1C/wth5yzeaLD6Q6EC3dCzVoP8HebiIiIEtDJlczrIiIiihJh3AdLfzOkyc4xLZAGWla8aMVMmmSDkr1pojimHLKnAoqnAmp6oe4+XZIkwJkdlWsSJQtDimZuuOEG/PSnP8Xp06exYwe7ZlDq0jRt1ooEtcWL31xZ249AGu7UjQWr741qbEREREREZF7NM1ZzrshnUYWRhNAwLN0nJgtkLD11EMOjix84ByVz7VSBTOGOSHtsUYpyxEREREREsTGrC2YB702IDCEHYek9DWvXcVi6I0Uy4ljfik6lWZ0IF9ROFMnshFxwBTSHO8oBExERUSxIUmxeSxZFccHtRDEeVtDsHdONXbEmM2bPS6pKlnxTdDDf5sJ8R1F4HNLAGUh9TZAmusdI/c0QR71ROb0GAWrWeiieCiiecii5lVA85ZFFLER9aYAAYOb/dMy1uTDfEYYUzfzZn/0Zfv7zn+Ob3/wm9u3bB4fDYcRliQzX4Q+ifzSsG6stcS16nKP+p7ptOa8m0qaciIiIiIholQZGw/CO6O9TODEthjQN4nDHZIGMtetYZLVeaMs/lWiJ3B8W7oys1lu0E1p6fgyCJiIiIiKKPU3T0DRjghoL+oliQxjtnegicyzy6K2HoIZWdC4lYw3CRTsmO8konopZE3CIiIgoOWRnG7OivNudmAW1Lef6IatTr9WLAnB99Vq47PzbZjUSNd8UG8y3uTDfS6DIwEAr0FMPeBsBb0PkY+A8sIL3h+eUUQTkVwP5VUBBDZBfBSG3ApLNOasYZqWYa3Mxa74N+Ytvx44d+O53v4s//MM/xC233ILvfve7KC8vN+LSFGNmX4FgplNd+hXSsp0WbMhNh7BA+3Fh1Atb2291Y8EtH4FkMc8NWbLmm1aG+TYP5tpcmG9zYb6JkkuzV3+f4rCIKM3mYhZRo4Rh6WucLJCxdB+HNNqzolOp9szJlXrDRTsh528DrGlRDpiIiIiIKD56hkPwj8u6scp8Z5yiIUohqgJpoGWqi0zXcUhDF1d0Kk20Qs7bArloB8KFOyAXbofqKohywERERETxcfSCT7ddVZTJghkiIloaTQP8l6aKYnoaIkUyfc2AsrJFKmaxuycKY6onimQmCmWcOdE5P5HJGfJX32c+8xkAQHV1NY4cOYLq6mps27YN5eXlcDoXfjFcEAR873vfMyJMWgGzr0AwU2PfJd32les9yMlZ5D+s098H1GlvElmdSL96P9JN3MY8WfJN0cF8mwdzbS7Mt7kw30SJrWlG0Ux5vhOSOH9hPy1MCPgnJiFFCmSsPSchyOMrOpfiXj/ZQUYu2gkluwwQWIhIRERERKmpqUd/b5Jhl1DstscpGqLkJQSHYel+N9JBpvs4LN0nIIZHFz9wDmpaTuSedKKLjJy3FbDw95KIiIhS0/EZRTM71xkz742IiJLM2MC0wpjLH41AcCg655fsQF45kF+j6x6DzBJggQX6iWh1DCma+cEPfjDZaUMQBKiqirq6OtTV1S14nKZpLJqhpHKsTX9zdeViN1eqChz/oX6s5m7AxAUzREREREQUXU09Y7rtivz0OEWShDQNGDgHW9NvIXYejRTKDJxZ2alEG+T8mskCmXDhDmjO3CgHTERERESUuGbem1QWpE++f0hE89A0iIPn9V1kBs5AgLb8U0GA4imPdJCZ6CSjutdxQg4REZGJ+Hy+xXdaAVEUdYvs+f1+qKoak2utlKZpONo2oBurzLXF7DlJZcmQb4oe5ttcTJfv8DikgTOQ+pog9bdA6m+G1N8McdQbldNrEKBmrYfiKYfiqYCSWwnFUw41az0gzpi+rwIYHIzKdZfCdLk2uUTIt1FNOhZiSNFMaWkpX/SmlOcfD6PFO6wbu3L9Ir/kba8Cvjb92M790Q2MiIiIiIhMrXlGp5nKgoU7vhIgdbwD/OZR4OJbwKgXKykzUh3ZEwUyE51kuFovEREREZncrHsTFvQTzaZpwKWjQNsRoP1tuC/+DuJ4/4pOpVpdkAuvmOoiU3AFNHtGlAMmIiKiZKIoiiHXUVXVsGstVVv/OPwBWTe2tTA94eJMRomYb4od5ttcUibfqgxpsA1SfzMsA5HiGEt/C0T/xRUtSjEXJb0ASk45ZE85FE85ZE8FlOxNgDVt9s4agAR7XlMm17QkZs23IUUzbW1tRlyG4sDMKxDMdKTVB23a/582ScAap7bgc5T+u+/ANm1b8ZRjKH0TYLJVDJIx37RyzLd5MNfmwnybSyLkOxFWICBKBsMBGZcGg7qxygJOTFuIveEgMn57/7KPk7PLJjrIRApllKwNXK2XiIiIiGiaphlFMxUs6CeaJIz1wdH0FBwNPwMGz02Oi8s4h+IunegiE+luquRsBkQp+sESERERJaG6Tv1CyPkuKwozbfPsTURESUnTII50TRbFSAMtsPQ3QxpohaCGonIJ1ZYxVRSTc/lxM7Q0zmEhSnSGFM1Q6jLzCgQzvXvJr9uuKkyHJGjzxi2M98N69je6sfHqfVA4wTgp8k3Rw3ybB3NtLsy3uTDfRImr2Tum27ZKAjZ65ljNhgAA9vonkHH4rxbdT5PskAu2TRbIhAt38IVQIiIiIqIF9I2G0DsS1o2xoJ9MT1VgbX8NjvqDsLUdgqDKix8zQRNtkPO3RDrITBTJaM7cGAZLRERElNzqOkZ029uKMyBw4SsioqQljPumimL6LxfHtEAMjSx+8BJoog1KzqapzjE55VA8FVBdRVw4kShJsWiGKErqOvQrEtQWL9ze3NH0C131qibZEKy4KyaxERERERGROc1cybksNw1WaTnr1JqHvf6nyDj813N+TU3LnZqIVLQTcl4NIHEFOiIiIiKipWru0Rf0O60iSrMdcYqGKL7EoUtwND4Je+PPII10L+kY1ZmrW7hBzq8BJHuMIyUiIiJKHSdndJrZVuKKUyRERLQs4XFYBs5MFMi0QJookpHGvFE5vQYBqnvdRHFMxeSj4l4HiJxiT5RK+BtNFAWyouJ0l34yWm3JAkUzmgZ7/RO6oWDZrdAcWTGIjoiIiIiIzKq5R3+fUpnPlZznYj/9ODJe/srsL1zzOWDX/4IfWewKSkRERES0CjML+svz0yFyVU4yEyUI2/lDcNQfhLX9CARoC++fUwaU7cVozhYEC66AmrGGK9kSERERrdDgeBhtAwHd2GKLIRMRkcFUGdJg26zuMaL/4uL30EukOPMjBTGecsiecsieCijZmwBrWlTOT0SJjUUzRFHQ0juGoKyfQFVbPP+KBJauo7AMntONBWrujUlsRERERERkXs1e/WrOlQUsmpnJcfoncL381dlfuPEvgL1/FZmU5PMZHxgRERERUQppmlHQX5HvjFMkRMaSBs7A0fAz2Jt+ATEwsOC+msWB0Obfh333fUDpbkAQEPL5oCqKQdESERERpaZTnSO6bbtF5D0JEVG8aBrEkS5I/c2RzjGXi2QGWiGooahcQrW5Il1jcqZ1j8kph5aWHZXzE1FyimrRjCRJAABBECDL8qzxlZh5LqJEVNehv7lal+NAltM67/6O+p/qtuWsDZCLr4pJbEREREREZE7jIQVtA+O6MRbN6M1XMDN+1ReQdrlghoiIiIiIVq25hwX9ZCKhUdjPvgBHw09h7X530d3DeVsQrLkXwc13QHRmwZ7NSTxERERE0XRyRtFMTWE6LJIYp2iIiMxDCAxOFcf0N08Ux7RADI0sfvASaKINSs6mSFGMp3yySEZ1FfF9XiKaJapFM5o2dwus+caJUkVdx7Bue6EWnkLAD/vZF3Rjwep7+Z80ERERERFF1Zm+MajTbsdFAdiUy9bSlzlO/RiuV/7PrPGxXV9A8Jo/RRrv0YiIiIiIosI/LqNzKKgbY9EMpRxNg8V7Eo76J2A78xzE8MITgFRbBoIVdyJQ/WEoeTUGBUlERERkTrPmdZXMP6+LiIhWIDwOy8CZia4xLZAmimSkMW9UTq9BgOouheypiBTHeCqgeCqguNcBYlSnwRNRCovqvxZ/8zd/s6xxolSgaRrqOmfeXLnm3d/e/DQEZerNIU20IlB1d8ziIyIiIiIic2rqGdVtr89Jg8O68k6wqcRx6kdwvTL7tYqxXV/A2NVfBJ8lIiIiIqLoafbq701skoANOY44RUMUXUJgEPbmp+FoOAhLf/Oi+4eLr0agZh+CZe8HLPw9ICIiIoo1WVFR360vaK4tnn9eFxERLUCVIQ22TRTHNEPqjzyK/osQEJ3mCoozP1IQ4ymPdJDJKYecsxmwcnFIIlodFs0QrVLXUAi9I2Hd2LwrEmgaHA1P6IZCG98LLc0Tq/CIiIiIiMikmr1jum2u5BzhOPkYXK/+7azx0au+iPGrvmB4PEREREREqW7mvcmmPCcskhinaIiiQFNh7fgd7PUHYT/3PxCU0IK7q85cBCo/hEDVh6FmbzAoSCIiIiICgCbvGIKyfiL3FhbNEBEtTNOAoQ5Yzr8NW1/jZHGMNNAKQV34HnipVJsrUhAzvXtMTjm0tOyonJ+IaCb2pSJapZktPLPSLFiXPffKUJaeE7NWmQrUfCRmsRERERERkXnN7DRTWeCMUySJY/6CmS9h/KrPGx4PEREREZEZzL43YUE/JSdxpAf2pp/D0fAzSEMXF9xXE0SES29CoGYfQuv2ApLVoCiJiIiIaLqTnfp5XetzHMhK499mRESTNBXS4HlYek7C2nsaGGgCvI1A0I95lo5f3ulFG5ScssmiGNlTDsVTAdVVBAhCFK5ARLQ0hhTNvPrqqwCAXbt2IS1taS2yAoEA3n77bQDAjTfeGLPYiFZrZtHMtmIXhHn+M3fU67vMKJlrEV5zTcxiIyIiIiIicwrJKlr7xnVjlfnmnpjmOPkoXK/+31njLJghIiIiIoqtJu+MohmT35tQklFl2C68DHv9QdguvAxBUxbcXclYg0D1hxGs+lBkAhARERERxVVdx4huu7YkGlPAiYiSlKZBHO6ExXsy8tFzEpbe0xBDI4sfu9ipIUB1l04WxVwuklGy1gMi+zsQUfwZ8i/Rnj17IIoiTp48ierq6iUd09HRMXmcLMsxjpBo5eo6l3ZzJYSGYT/zK91YoHofIIgxi42IiIiIiMzpXP84ZFXTjZXnm7fTzLwFM1d/CeO7WDBDRERERBQroyEFFwcCujF2waRkIA62wdH4JOyNP4c05l1wX020IVT2XgSq740slsf3/oiIiIgSgqZpszrNbCt2xSkaIiLjCeP9kcIY7ylYeyKFMuJ4/6rPqzjzoVwujskph+Iph5yzCbDyNR8iSlyGle9pmrb4TlE8jowhSVJMziuK4oLbiWI4KONs75hubMda95zPi+3scxDkqZWeNUFCeMu9MXsOk0my5Juig/k2D+baXJhvc2G+iRLfzJWc12bZ4bKbcwUfR90P4Xrt72aNj179Jxjf9bk4REREREREZB5nvGOY/k6fJAooy+UECkpQchD21v+BveEJ2Dp+t/juOZsRqL4XwYoPQkvLMSBAIiIiIlqO7qEQekfCujF2miGiVCWEhmHxnp7oIHMKFu9JSMMdqzqnZsuAnLM50jXGUz7ZPUZLy45S1ERExknYGTOqqgKIXVEGRUd2tjH/+bndbkOus1wnW3p1b/bYJBHXVK6BwzrHz23jQd2mUHErstZUxDbAJJWo+abYYL7Ng7k2F+bbXJhvosTT3KMvmqksSI9TJPHlqPsBXK/9/azx0d1/ivErD8QhIiIiIiIic5lZ0L/Rkwa7hYtvUGKR+prgaHgC9uZnIAb9C+6rWZ0Ibr4dgep7IRfUAoJgUJREREREtFx1M7rMuNMsWJftiFM0RERRJAdh6WuY6CIT6SQj+c5BwMqbFCjpBVAKtsG2/mqgcBuQX41BNR3KxFxuIqJkl7BFMxcuXADACXiU2I61Dei2t65xz10w03kC6KrTj+3YH7vAiIiIiIjI1Jp69B0xK/LNVzTjqPs+XK89MGt8dPefYfzKP45DRERERERkNrFcGC5ZusA2e/X3JlUF6Vwwb5mSJddJJzgMW8uzsNc/AUtP3aK7y4XbEaz5CELlvw/YXACAWPwkM9/mwnybC/NtHsw1UeKo6xjRbW8rdkFg0TMRJRtVhjRwdqKDzElYvSch9TdDUOWVn9Luhpy/DXLB1shj/jaorgJIkgTb9IX0fb4ofANERIkhJkUzFy9enHO8q6sLLpdrwWODwSBaW1vx1a9+FYIgoKamJhYhEkXF0Qv6PwquXDdP553jP9RvZ64BNr0nRlEREREREZGZKaqGll79xLTKAmecookPx4nvw3VkroKZL2P8ys/GISIiIiIiMqPs7HneM4iBRF2E7kxfQLe9Y0Oeoc9LKkrUXCcFTQPa3waOPwrUPwWExxbePy0bqP0DYPsnYCmohgWA0UtSMN/mwnybC/NtHsw1JZJYFbAnarHYyU590cwVazJZxB8FiZpvig3m22CaBnGwDVLPSVh66mDpOQmptx6CPL7yU1rSIOdvgVKwDXLBNigFtVDd63SdUwVEFoZgvs2DuTYX5jsiJkUzGzZsmDWmaRpuueWWZZ/rk5/8ZDRCohjxxaiSVBRF3QsHfr8faoK1eZNVDe9e1H//Fbm22c9JaBRZJw9i+joF41UfQsA/FPsgk0Qy5Juih/k2D+baXJhvc0mEfHOCDdH8LgyMIyjrfyfN1GnGceK/4TryD7PGR6/5c4zv/N9xiIiIiIiIyJwCYQVnvPpJaltKOGmU4mC0D6j7aaRYpq958f037gF2fBKovB2w2GMeHhEREZFRjHp/LRGKxUaCMs70jurGrq8o5nuMMZAI+SbjMN9RNtQJdBwHOo4BnceBzneBgH/l5xOtQEENULIDKN4BlOyAkFsBq2SBdQWnY77Ng7k2F7PmOyZFM5qmLWt8Lg6HA1/4whfwmc98JlphUQwoimLIdVRVNexaS9XUPYrxsH4i2tZC56w47c3PQghNvSmkCSLGK++BmmDfTyJJxHxT7DDf5sFcmwvzbS7MN1FiafLqV8otyLAh27mSl0GTj+Pd78H1+j/OGh+95i8wvvP/iUNERERERETm1dw9DEWdem9QEICqosw4RkSmoqrAucORQpmm5wA1vPD+GUXA9o8DV3wMyJm9QCQRERERJZcTFwcx7XYEFlFA7dqsuMVDRISxgUhhTMe7E4/HgZHuVZxQAHLLpxXI7IwUzFgdUQuZiCiVxKRo5vvf/75u+9Of/jQEQcDf//3fo6SkZN7jBEGAw+FAUVERtm/fDpfLFYvwiKKirnNYt12a7ZhzIpqj/gnddrj0RqgZxTGNjYiIiIiIzKupR79yWmWBObrMpL37XaS//rVZ46PX/gXGd7BghoiIiIiMN6szfRQlQhfYxbx9Vj/xY312GkJjwwiNzXMAzSkZcp1IhKEO2Bt+BlvDzyANdyy4ryZICG98D4I1H4G87kZAnHjrPIa/u4thvs2F+TYX5ts8EiHX7KRBBBy7oP+brqbEDYdVilM0RGQ6wRGgq26qOKbzOOBrW905s0onu8egeAdQVAs4uDgJEdFSxaRoZv/+/brtT3/60wCAO++8E9XV1bG4JJHh6jr0RTO1JRmz9pH6mmHteVc3Fqi5N6ZxERERERGRuc0smqnId8YpEuOkHf8O0t/4+qzx0Wv/EuM7/igOERERERERwdCurInYBbaha0S3XVHgTLgYk1Ei5jrulBBs538LR8MTsF58DQK0hXd3r0Og+l4EKu+Glp4XGdQAJODzynybC/NtLsy3eTDXlEhiVdifCMViM73V6tVtbylIi+nCBmaSiPmm2GG+l0AJQeprgtRTB0vPSVh66iAOnIWgrfx5Up25kAtqoRRsg1ywDUr+NmhOj36ncQUYj+6/a8y3eTDX5pII+U6Ewv6YFM3MdPjwYQDAhg1sZU2pQdO0OYpmZndGcjT8VLetOPMRWrc3prEREREREZF5qZqGZq9+2eZU7zSTdvwRpL/xjVnjLJghIiIiIoqv5pldMPNT+96EjCf5WmFvOAhH01MQxwcW3FeT7AhuuhWB6n2Qi68CBMGgKImIiIgSh1EFXPEuFlPU2fO6thals4AtRuKdbzKW6fOtKpB8rbB4T8LiPRUpkulrgqCGVn5Kmwty/lbI+dsiHwXboLqKZt+3xuF5N32+TYS5Nhez5tuQopmbbrrJiMsQGaZ7KATvSFg3dkXxjE4zcgD25qd1Q8GqDwGSNcbRERERERGRWXX6gxgN6V/cSOWJaWnH/wvpb/zTrPHRa/9fjO+4Lw4RERERERERAMiKijN9+oL+ioLU74JJBgiPw372eTgaDsLadXTR3eXcKgSq70Ww/APQHO5F9yciIiKi5He+f3zWeyW1JRnz7E1ENA9NgzjUHimQ6TkJq/cUpN56iOHRxY+d75SSHXJe9WRxjJy/DUrWekAQoxc3ERHNyZCiGaJUU9epX43AnWbBuhyHbsze+muIwSHdWKB6X8xjIyIiIiIi82qasZJzjtOCPFdqFu7PWzBz3f0Y3/6HcYiIiIiIiIguO9c/jrCi6cYqUrign2JM0yD1noaj4SDsLb+EGBpZcHfV5kKw/AMIVO+DkreFXWWIiIiITObEjC4zxZl25LlscYqGiJKFMNoLq/fkZJGMxXsKYsC34vNpggTFUwE5fyvClwtkcjZz0XUiojhh0QzRCsxs4bmt2AVhxgvujvondNuhtddBdZfGPDYiIiIiIjKvmUUzlfnps+5VUkHasf9C+puzC2ZGrvsrBLb/rzhERERERERE0zX16LvMlLjtyHTwbUlaHiHgh73ll3A0HISlr2HR/cNFVyJQvQ/BTbcB1jQDIiQiIiKiRHSyU19kXVviilMkRJSohOAQLN5TE8UxkQ9ppHtV55SzNkx0kNkaecyt5r0pEVEC4avTRCtQ1zHj5qpY38JT8rXC2vm2bixQ85GYx0VERERERObW5NVPTKsoSL2VnNOO/SfS3/znWeMj1/81Ald8Jg4RERERERHRTE1efUF/Rb4zTpFQ0tE0WDrfjnSVOfsCBCW44O5qWg4ClR9CsPrDULLLDAqSiIiIiBLZ7MWQM+bZk4hMITwOS1/DZAcZa89JSP62VZ1ScRVNFMhsg5y/FXL+Vmj2zOjES0REMcGiGaJlGgnKONunn4h2RYn+5so+o8uMmpaD0Ibfi3lsRERERERkXpqmobkntSempR19GOm/++ascRbMEBERERElllldMFOwoJ+iSxjthaPpKTgaDi46eUmDgPC6GxGovheh9XsByWZMkERERESU8PpGQ+jw6wuvt7HTDJF5KGFIAy2R4hjvSVi8pyD1t0DQlBWfUnVkRwpjCmoRniiU0Zy5UQyaiIiMwKIZomU63TUCVZvatkoCqgqnvdmjBOFo+oXumEDl3XzBnoiIiIiIYso7EoJvXNaNpdLEtLSj/4H03/1/s8ZHrv8KAld8Og4RERERERHRXBRVw5le/eJjqXRvQlGkyrBefA2OhidgO//bRScxKRnFCFTtQ7DqQ1Azig0KkoiIiIiSyanOEd220ypiU25qLTBGRBM0FdLgeVh6Tk50kTkFS1/Doh1LF6Ja06HkbUG4YOtkJxk1Yw0gCFEMnIiI4oFFM0TLVNehv7mqKkiH3SJObtvOvQgxMKDbJ1h9ryGxERERERGReTX16CeluewSStz2OEUTXWlH/x3pv/uXWeMjN3wFgVoWzBARERERJZJ2XwDjYVU3VpHPohmaIg61w9HwM9gbfw5ptHvBfTXRitDG9yJQvQ/hNdcComRQlERERESUjOo6hnXbW4pdkEROdidKepoGcaRrqkBmoouMGBpZ/Nj5TinaIOdVRYpj8rdCLtgGJWsj7zuJiFIUi2aIlmnmzVVtcYZu21H/hG47XHw1lOyNMY+LiIiIiCgRhEIhPP744zh37hy6u7sxMjICp9OJwsJC3HzzzbjhhhtgsfBWNBaaekZ12xX5TggpsOpR2jv/hvS3vjVrfOSGryJQ+ynjAyIiIiIiogU1efX3JvkuKzzp1jhFQwlDCcJ27kU4Gg7C1v76orvL2ZsQqN6HYOWd0NI8BgRIRERERKng5IxOMzPndRFRchDG+ycKZE7BOlEoI473r/h8miBCyd4EuWAb5IJahPO3QvFUAJItilETEVEi40wlomWQVQ2numbcXJW4Jj8X/Rdgu/SG7uuBGnaZISIiIiLzCAQC+M1vfoNNmzZh+/btyMzMxOjoKE6cOIGHH34Yb7zxBu6//36Iorj4yWhZmmdMTKtMgZWc0955COlvPThrfOSG/4NA7X7jAyIiIiIiokXNKugvSP57E1o5qb850lWm6RcQg4ML7qtZ0hDc/PsIVO+DXLgDSIGFIIiIiIjIOEFZReOM+5Hp87qIKDEJoRFYvKdh8dbB0nMKFu9JSMMdqzqn4i6FnL8N4fxtkUKZvBrA6lfvC8AAAQAASURBVIxSxERElIxYNEO0DGd7xzAeVnVj26atSOBo+Jnua6rdjWDZ+w2JjYiIiIgoEbhcLvzwhz+c1U1GURQ88MADqKurw4kTJ7Bjx444RZi6mr1juu3KJJ+Ylvb2Q0h/+8FZ4yM3/g0C2z5pfEBERERERLQkTT0z7k1SoKCflik0CvvZ5+CoPwhrz7uL7h7O34ZA9T6Eym+HZuNK4ERERES0Mo09owgr2uS2AGBLEYtmiBKKHISlrxEW78nJTjKSrxUCtMWPnYeSXgA5f2ukOCZ/G+T8rdAcWdGLmYiIUgKLZoiW4UTHsG67NNuBnHRrZEMJw9GoL5oJVtwJWOwGRUdEREREFH+iKM7ZRUaSJOzatQv19fXo7u6OQ2SpbWA0jJ7hkG4smYtm0t7+NtLf/tdZ4yyYISIiIiJKbJqmock7s9MMV3I1BU2DpecEHA0HYTvzHMTw6IK7q/ZMBCvuRKB6H5TcKoOCJCIiIqJUVjdjXtemPCdcdk6PJIobVYY0cHayQMbqPQmpvwWCGl75Ke3uSIHMtCIZ1VUYxaCJiChV8a9CWhVJkmJy3pmT7OaadBcPJztHdNtXlGRMPgfW8y9CHOvTfT209aMxe45SSaLmm2KD+TYP5tpcmG9zYb5jx+/34+zZszh79ixaW1vR2tqK4eHIC/w33XQTDhw4sORz9fb24oUXXsDx48fR398Pi8WCwsJCXHPNNXjf+94Hu93Y4m5VVVFXVwcAWLt2raHXNoPmGZPSHBYRpdmOOEWzOs63/hXOd749a3zkxr9FYNsn4hAREREREREtVYc/iJGgohtjp5nUJowPwN78DBwNT8AycGbR/UMluxGsvhfBslsAS3LetxIRERFRYpo5r2tbMbvMEBlG0yD6L8DiPQlrzylYvHWw9DZAkMdXfkpLGuS8Gsj52xAu2BopkHGvAwQhioETEZFZsGiGViU7O9uQ67jdbkOus5hTXfqJaNeWF049B80/1++85iq4N+82KLLUkij5JmMw3+bBXJsL820uzHf03HfffVE5z9GjR/HQQw9hfHzqRchgMDhZiHPo0CHcf//9KCyM3ao7sizjqaeeAgAMDw/j9OnT6OjowJ49e7B169aYXdesmr1juu3yfCckMfleMJ63YOam/4vA1o/HISIiIiIiIlqOph79+yhZaRYUZNjiFA3FjKbCeulNOBqegK31RQhqaMHdVWceAlX3IFB1D9Ss9cbESERERESmomkaTs7oNFNbkhGnaIhSnzjSPdlBxuI9BYv3FMSgf8Xn00QrZE/FZPcYOX8blJwyQOQUZyIiig7+j0K0RB2D4+jyB3RjV66fKJgZbAfOvqQ/YOd+gyIjIiIiolSUm5uLkpKSye4sS3X+/Hk8+OCDCIVCcDgcuPPOO7FlyxaEQiG8/vrrOHToELq6uvC1r30NX//615GWlhaT+GVZxpNPPjm5LQgC7rjjDnz0ox+NyfXMbubEtIokXMl5/oKZv0Ng68fiEBERERERES3XzIL+yoJ0CFwBNmWII12wN/4cjoafQRq+tOC+miAhtG4PgjX7EFq3hxOdiIiIiCim2geD8I3LujF2miGKkrEBoPNdoOM40i/8DlL3SUhj3hWfToMAJbsMcv7WqSKZ3CrAYo9i0ERERHp8dZJoiY62Dei23WlWbMyduLl69zEA2tQX7ZlAzV3GBUdEREREKeGee+5BWVkZysrKkJWVBa/Xi8997nPLOscPfvADhEIhSJKEr3zlKygvL5/82pYtW1BUVIQf/ehH6OrqwrPPPot9+/bNOsejjz6KcDi85GvedtttKCoq0o05HA4cPHgQqqrC5/Ph2LFjePzxx9HS0oL7778fTqdzWd8XLazJqy+aqSxIoudX0+B8+1/hfOehWV8a2fP3CGxhoRURERERUbJonlHQX5mfRPcmNDclDNuFw3DUH4T14isQNHXh3TNLEajeh2Dl3VBdBQYFSURERERmN7PLjCfdihI3J+ATrZgchO3cb5DW+CTQ/jouz41cSS9ZJWPNRHHM1okuMjXQbOwERURExmLRDK2Kz+eLyXlFUYTb7Z7c9vv9UNWFX4SPtTdaunXb24pd8PsHAVWB+9ijEKd9LVD+AYyPhoDRhdvRU0Qi5ptih/k2D+baXJhvc0mEfGdnZxt6PaPMVcCyHGfPnkVjYyMAYO/evbqCmctuv/12HD58GB0dHXjhhRdw9913w2LR3xq++OKLCAaDS77u7t27ZxXNXCaKIjweD2655RZkZGTgW9/6Fp566il8/OMfX8Z3RgsZDsi4NKjPV9J0mtE0ON9+EM53/m3Wl1gwQ0RERESUXDRNQ+PMopmCJLk3oVnEwfNwNPwMjqafQxzrW3BfTbIhWPZ+BKs/jHDJbkAQF9yfiIiIiCja6jr1RTPbil3sekm0AlJfMxwNT8De/AzE4OCyj1fTPJALahHO3wa5YCvk/K3Q0jzRD5SIiGiZWDRDq6IoiiHXUVXVsGvN591LQ7rtbcXpUBQF1rbDEEe6dF8br94X93iTWSLkm4zDfJsHc20uzLe5MN+J4+233578fO/evXPuI4oibrrpJvzkJz/B6Ogo6uvrUVtbq9vnsccei0l8l6/T0NAQk/ObVbN3TLdtEQWU5abFKZpl0DQ43/oWnEf/fdaXhvc8gOCWP4hDUEREREREtFK9I2H4xmXdGItmkowcgL3115GuMp1vLb67pwKB6nsRrPggNEdW7OMjIiIiIppHXceIbru2hF0siJZKCA3D1vIrOBp/BmtP3ZKPU22uad1jtkEu2AbVVQSwYI2IiBIQi2aIlmA0pOBsr34iWm1x5ObKUf9T3Xg4bwuUvBrDYiMiIiIiuqy5uRkAYLfbsXHjxnn3q66u1h0zs2gmVgYGBgAAkiQZcj2zaPbqV3LelJcGq5Tgq/pqGpxv/QucR/9j1pdYMENERERElJyaZtybuOwSStz2OEVDyyH1NsDRcBD25qchhoYX3Fe1piNYfgeC1fdCzt/KyVBEREREFHdDARnn+sd1Y7XFrjhFQ5QkNA2W7mNw1B+E/ezzEOTxhfe3OIDCbQjkViOcFymUUbLWs9MoERElDRbNEC3Bqc4RqNrUtkUUUF3ogjjSA1vbYd2+gZqPGBwdEREREVHEpUuXAACFhYULFqYUFxfPOiaaMeTl5cFu10+MCgaDePTRRwEA27dvX9Y5+/v7l7RfLItxRFFccDueWnr1L2JXFbgSuzBJ0+B485tIm6NgZvQ9X4O85Q8Q7+gTOd8UXcy1uTDf5sJ8mwvzTZQYmnr0RTPleU4ILKhIWEJwGPYzz8Je/wSsvacX3T9cuCPSVWbTrYCNHYSIiIiIKHGc6tR3mbFJAiry+Tcr0VyEsT44mn4Be+PPYPG1Lrp/eM21sF71GaDqdsCahnGfD4qiGBApERFRdLFohmgJ6jr0q2pVFjjhsIqw1z0JQZv6I1CzOhEqv8Po8IiIiIiIEAqFMDwc+bvV4/EsuK/L5YLdbkcwGFxyQcpSvfHGG3juuedQWVmJvLw8pKWlYWBgACdOnMDw8DCqqqpw++23L+ucn/3sZ5e038GDB1cS8oq43W7DrrWYmUUzOzbmIzs7O07RLELTgEN/B7zz77O/dse3kb5zPxLxbaxEyjfFFnNtLsy3uTDf5sJ8E8XHzKKZyoJE/Ove5DQNlq5jcDQ8MbGScGDB3VVHNoKVdyNQ/WEoOZsNCpKIiIiIaHlOdurndVUXumCzcEENokmqAmv7a3DUH4St7RAEVV5wdyW9AMGqDyFQdQ+EnI2J+74jERHRMrBohmgJ6mbcXNUWZwCaCke9flJecPPt0Gxs70lERERExgsEpia6OByORfd3OBwIBoO646Jh586d8Pl8aGlpQUtLCwKBAJxOJ0pLS3Hddddh7969id0FJcmMhxS09upXUKspzoxTNIvQNODQ/wWOfGv21+74NrBzv/ExERERERFR1DR7x3TbLJpJHJMrCTcchGXw3IL7ahAQXns9AjX7ENrwHkCyL7g/EREREVG81XXo3yfZVsy5W0QAIA61w9H4JOyNT0Ia6V5wX02QENpwMwJV+xBedyMgRqYW811dIiJKFSyaIVqErGo4PaONZ21JBqztr0MavqQbD1Tfa2RoRERERESTQqHQ5OcWy+K3epf3mX5cNJSVlaGsrCyq53z44Yejer5U0tg9BFWb2hYFoKowAYtmNA146W+B1x+c8QUB+MC3gR2fjENQREREREQULQOjYfQM6+8vK/OdcYqGAEysJHwEjoaDsJ1/afGVhF2FCFZ9GIGqe6BmrjEoSCIiIiKi1ZFVDae7Zs/rIjItJQjbuRcj94Ltry++u3s9AjX7EKi4G1p6ngEBEhERxQeLZogWcbZ3DGNhVTdWW5IBx6tP6MZkTyXkglojQyMiIiIimmSz2SY/l+WFJ8JM32f6cYnK4/EsaT+fzxezGERRhNvtntz2+/1QVXWBI4zxzpku3fYGTxoCo0MIjMYpoLloGtJe/zocx/5LPwwBY7/3DYQ23AHEMHcrkaj5puhjrs2F+TYX5ttc4p3v7Oxsw65FlKiavfqbELtFxLqctDhFY27iUAccjT+bWEm4a8F9NdGC0Pr3IFCzD+G1NwAi1xAmIiIiouRyxjuGgKx/DYCdZsiMpL5mOBoPwt70NMTg4IL7ahYHgmW3IlC9D3LxLkAQjAmSiIgojlg0Q7SIuo5h3faaLDtyBT9s51/SjQdq7uUfkEREREQUNw6HY/LzQCCw6P6X95l+XLJTFMWwa6mqauj15tPQrV89rSI/PSHimqRpcL75T3Acf0Q/DAEjN38dwcoPAYkU7zwSJd8Ue8y1uTDf5sJ8mwvzTWS8Zu+Ybrsi3wlJ5HsmhlFCsJ1/CY76g7C2H4EAbcHd5awNCFbvQ6DybmjOXIOCJCIiIqJ4k6TYFEmLorjgdiyd6tYX8K/LcSA3I3Xe+0pE8cw3zRAchu3Mr2A//VNYeuoW3V3O34pgzb0IVXwAsGcCABb7V4H5Nhfm2zyYa3NhviNYNEO0iLrOGS08izPgaHoKghqeHNMkO4LlHzQ6NCIiIiKiSTabDRkZGRgeHkZ/f/+C+46MjCAYDAJYehcXSkxNPfo3gyrynXGKZA6aBucb34Dz3e/ohyFg5D1fR7DqnjgFRkRERERE0Tb73iQ9TpGYizRwBo6Gn8He9AuIgYEF951cSbjmI5CLdnIhOCIiIiITMqpT6vRusLHW4D2v2961IZcdYQ1mZL4JgKYB7W8Bxx8D6p8CwmML7+9wA9vuBbZ/ApaibbAAWM0dO/NtLsy3eTDX5mLWfLNohmgRMzvN1Ba74Dj1hG4suOk2aA5z/iNCRERERIljzZo1aGxsRHd3NxRFmXfFsM7OTt0xlJzCiorWvnHdWGVBgkxM0zQ43/g6nO9+Vz8MASPv+QaCVR+KU2BERERERBQLTV590UxlQQIV9Kea8BjsTc/C0fAErN3HF989bwuC1fsQLL8D2sRKwkREREREqeL4BZ9ue+c6FsxQihrpBU7+FDj+KNDXsvj+628AduwHqm4HrGmxj4+IiCjBsWiGaAHdQ0H0DId0Y9dbmyD523RjgZqPGBgVEREREdHcKioq0NjYiGAwiHPnzmHz5s1z7tfQ0KA7hpJTa984ZFXTjSVEpxlNg/P1r8F54nv6YRbMEBERERGlpOGAjEuDQd0YO81EmaYBnceB448i69STEEIjC+6u2jIQrLgTgeoPQ8mrMShIIiIiIiJjdQ6Oo9Mf0I1dyaIZSiWqArT+NlIo0/w8oMoL7+8qBLZ/DNj+cSBnozExEhERJQkWzRAtoK5T/6ZDhl3CxktP68bk7E2RNvZERERERHF21VVX4emnnwYAHD58eM6iGVVV8corrwAA0tPTUVOTOpNn5uusEw2iKC64HQ8tvfouM2uzHXA77XGKZoKmIe21f4BjjoKZsVu+CbnqQ4hdlqInEfNNscFcmwvzbS7Mt7kw30Tx1ewd021bRAFluVzFNio0DZbzvwXe+Vegqw4AICywe7j4agRq9iG48X1cSZiIiIiIZvH5fIvvtAKiKMLtdk9u+/1+qKoak2tN92pjn247wy4hxxqO2fdJEfHKt5mIQ+2w1f8M9oafQRzpWnBfTZAQ3nAzQjUfQXj9TYA4MSU4Sr8HzLe5MN/mwVybSyLkOzs7/oXNLJohWkBdx7Bu+9pCDfbWX+vGAtX7AGGhtyiIiIiIiIyxadMmVFVVobGxEYcPH8aePXtQXl6u2+dXv/oVOjo6AAC33norLJbUuS008iZ7+gsK8XJ+sEO3vW1NdnxfaNA04H/+Gnj3uzO+IEC46z+RXvsRJOta04mQbzIGc20uzLe5MN/mwnwTGavJO6rb3pSXBqvE4rXVsnQeRfqb/wxr19EF91OduQhUfgiBqg9Dzd5gUHRERERElIwURTHkOqqqGnKtE5f8uu1txRnQVBXGfJd0mVH5TnlKELZzL8LR8DNY21+HAG3h3d3rEKi+F4HKu6Cl50cGNQAxzgXzbS7Mt3kw1+Zi1nynzuwoohiYWTSzz3YEghqa3NZEG4KVdxkdFhERERGlqKamJnR3d09uDw0NTX7e3d2Nl19+Wbf/nj17Zp3jU5/6FL761a8iFArhgQcewF133YWamhqEQiG88cYbeOmllwAARUVFuOOOO2LyfZAx6jv1bwbVlGTGKRJMFMz8FfC7/9CPCyJw538CtffGJy4iIiIiIoq55h590UxlfrKWyycGqa8J6W9+E7YLh+fdRxNEhEtvQqBmH0Lr9gKS1cAIiYiIiIgSQ13HiG57W4krTpEQrZzU1wxH40HYm5+BGFi4O4xmcSBY9n4Equ+FXLyLC30TEREtA4tmiOYxGlJwpnds2oiGqwef1+0TKrsFWlqOsYERERERUco6dOgQXnnllTm/1tzcjObmZt3YXEUzGzZswJe+9CU89NBDGB8fx+OPPz5rn6KiItx///1IS0uLStxkPEXV0NA1pBvbUhynFdU1Dfj1/cBbD+vHWTBDRERERGQKTTOLZgpYNLMSov8inG89CHvLL+dfUTirFONVH8Z4xV1QXUXGBkhERERElEDGQwpaZnS9rC3OiFM0RMsjhEZgO/MrOBoOwtpTt+j+4bwtCFbvQ7D8Dmj2OC6iR0RElMRYNEM0j9NdI1CnvSexSzoL1/A53T6BGk7+IiIiIqLEc+WVV+Kb3/wmnn/+eRw/fhwDAwOwWCwoLCzE7t278f73vx92uz3eYUadz7fw6kurIYoi3O6pohS/3w9VVWN2vcW09o0hENZfvyRdi+lzMCdNQ9qrfwfHie/rhwURY7f8C0KltwBGxxQFiZZvih3m2lyYb3Nhvs0l3vnOzs427FpEiWY8pKBtIKAbY9HM8gijvXAe/Tc46n8KQZXn3imrFNj718DWDyPgH4KqKMYGSURERESUYOq7R6BMm9clCUBNIe9FKIFpGizdx+FoOAj72echhMcW3F21ZyJY/kEEqj8MJa/GoCCJiIhSF4tmiOZR1zGs2/5/nK8A4altxV2KcMlug6MiIiIiolR24MABHDhwICrnysvLw/79+7F///6onC8ZKAZOGlJV1dDrzdTQpb9fKciwwW0XjY1J05D+2t/DcfKH+mFBxMjv/X8Ibr4DSJGJXPHONxmHuTYX5ttcmG9zYb6JjHOmb0zXE0USgE25zrjFk0yE4BDSjj+CtLofQJDH59xHTctB4KovwHnDHwOW1Fv8goiIiIhopeo6R3Tb5fnpSLNJcYqGaH7CWB8czU/D3nAQFl/rovuHSnZHusqUvQ+wOAyIkIiIyBxYNEM0j+lFM5kYxY3y67qvB6o/Agii0WERERERERGhqWdUt12Rb/CkNE1D+mt/h7STj+qHLxfMVHzA2HiIiIiIiCguZt6brPekwWHleycLkgP4/9m77zipqvv/4++Z2SlbYFlhgWUpCkgXFBuWBDQ2sCv2Go1GoynffI2JKb98i9+viV+TWKImMfZEFEuwG3uvtKUvAiKyy4LAsmyZfu/vD7LDnu1l2u59PR8PH+45c+bez8xnd9kz937OyV32iHIX/UnucE2rQyxvgYLTv6PQtG/LnVuoPApmAAAAAMOyCrNoZlppQYYiAVphxeX96n0FVs2X74s35LKi7Q6P5w1WeOLZCk2cK2vAvumJEQAAh6FoBmhF3LK1YsveydVpng/ls8OJtu3OUWji2ZkIDQAAAABUvs28MW3CkPz0nbydgpna43+nyDgKZgAAAJA9IpGI5s2bpw0bNqiqqkp1dXXKy8vT0KFDdeyxx+ob3/iGcnK4XNZda7Y2GO0Jg9M4N+lt4lH5Vz+lvM/ukqd+a6tDbI9PwQMuUfDga2Tn7pPmAAEAAIDewbJtLausNfqmDuuXoWiAvdy7Nyuw+in5Vz8lT92WdsfaLo8i+x6j8KRzFRk1U3Lz2QQAAKnEv7RAK9Ztb1B9xPpXy9aFnjeNxyP7fkt23qD0BwYAAADA8SzbbnljWrqKZmxb+e/+p3KXP2p2u9yqPf73iow7NT1xAAAAAJ0UCoX06quvauzYsTrooIPUv39/1dfXa+nSpbr33nv14Ycf6qabbpLbze4o3bGmWUH/+CFp3gWzN7At+da9rPyPfy9PzcbWh7jcCk+cq4ZDvy+r37D0xgcAAAD0Mht3BFUbjht97DSDjImH5dvwugKr5sv71QdyyW5/eOEohSadq9CEs2TnD05TkAAAgKIZ9IjH40nJcZtfnEr3xarlW/Ze5Jnq2qBJ7i+NxyNTL0zZa3eiTOcb6UW+nYNcOwv5dhbyjWyVyr/Rs+n7vrI6pPqIeTFockm/1M9RbFu5b/9agRYFMx7Vn3S74uNOVV+ZJWVTvpFa5NpZyLezkG9nId9oT0FBgR5++OEWu8nE43HdfPPNKisr09KlSzV9+vQMRdh7RWKW1m8PGn3sNNOEbcu76T3lf3ybcr5e2eaw8JjZapjxb4oXjUljcAAAAEDvVVZZZ7SH9PNpSD9/hqKBU3l2lCuw6kn5yxfIHapud6zt8Ss8drZCk85VbNhhksuVpigBAEAjimbQI0VFRWk5T2FhYVrO02jVto2Jr89vtsuMCkeq39TTJC68pky6843MIt/OQa6dhXw7C/lGtkjX/ETK7Pf9h1+Z27kPzPdp3IghcqXyA3bbll66QVr2iNnv8sh19l9VMOWs1J07C/B7zjnItbOQb2ch385CvtGU2+1utZDK4/Ho0EMP1cqVK1VVVZWByHq/9duDilvmCrrjBrPTjCTlVC1R3kf/J1/FJ22OiYw4Sg0zblBsyNQ0RgYAAAD0fssqao32tNJ+GYoETuOK1Mn3+Yt7dpXZurTD8bHiyQpNOlfhcafJ9vdPfYAAAKBNFM0ArVj05Z7q73wFdZrnI/PB6ZdQMAMAAAAgY1ZW1hjtyaWFqS2Ysaw9BTML7zf7XR5p7v3S5DNTd24AAABkVE1NjdatW6d169Zp/fr1Wr9+vWpr99ycNHPmTF133XWdPtbXX3+tl19+WYsXL9aOHTuUk5OjoUOH6ogjjtCJJ54ovz+9qwJblqWysjJJ0ogRI9J67r5izbZ6oz2yKKACv7MvPXp2rFXeJ7+Xf8NrbY6JDj5ADUf8RNERR6UxMgAAAKDvaL7TzNRhBRmKBI5g28qpWrxnV5l1L8oVbWh3uOXrp/D4MxSadI7ixZPTFCQAAOiIsz+5BlqxpSaoil1BSdKpno9U4ArtfdDllg68KEORAQAAAIC0onK30Z4yLIUrU1mW9NK/SwsfMPspmAEAAHCEq666KinHWbhwoe666y4Fg8FEXzgcThTivPHGG7rppps0dOjQpJyvNbFYTM8884wkqba2VitWrFBFRYVmzZqlAw44IGXn7cvWbDWLZsY7eJcZ9+4K5X16h/zl/5DLtlodEysao4YZ/67I6BOkVC58AAAAAPRh1Q1RbaoOGX3ThrHTDJLPFdyhwJp/yL/qSeVUr+twfKT0cIUnnavwmJOknEAaIgQAAF1B0Qx6pLq6OiXHdbvdKiwsTLRrampkWa1fZEi2d1ZvT3x9vudN47HIvseq3sqTUvS6nSqT+Ub6kW/nINfOQr6dJRvyXVRUlNbzoXdI1fxEyo7ve0mybVvLN5uvc99CT8pee+7bv1ag7GEzBpdH9bPvUnTYrD47N8qWfCP1yLWzkG9nId/Okul8O2V+MmjQIJWWliZ2Z+msL774QrfffrsikYgCgYDOOOMMTZkyRZFIRB988IHeeOMNbdmyRbfccot+85vfKDc3NyXxx2IxPfXUU4m2y+XSqaeeqgsvvDAl53OC5kUzE4bkZyiSzHE1bFfeonsVWP6YXFak1THxgqFqOOxHCk84U3JzaRYAAADoiWXNdpkJ5Li1v4ML+JFkVlzer95XYNWT8n3xulxWtP3hecUKTZyr0MS5sgbsm54YAQBAt/DJLHokHo+n5TyWZaXtXEu+qpEkTXR9qQPdG4zHQpPOTVscTpbOfCPzyLdzkGtnId/OQr6RLdL5fZip7/uttWFVN8SMvnHFuSmJxbv541YLZmpPvEOR0SdKDvq55/ecc5BrZyHfzkK+nYV8J8/cuXM1ZswYjRkzRgMGDNC2bdt0/fXXd+kYDz30kCKRiDwej375y19q3LhxicemTJmikpIS/e1vf9OWLVv0/PPP69xzz21xjEceeUTRaPs3qjQ1Z84clZSUGH2BQEDz58+XZVmqrq7WokWLNG/ePK1du1Y33XST8vK4yaorYpatddsbjD4nFc24IrXKXfKAAkvvlzta3+oYK1CkhoOvVeiAi6Ucf5ojBAAAAPqmsopaoz2lpEA5bnZyRM+4d29WYPVT8q9+Sp66Le2OtV0eRfY9RuFJ5ygyahaLIwAA0EvwLzbQTFnlnslV811m4vlDFBk1MxMhAQAAAIAkqXybeVNagd+j0sLU3HwVWPqA0bbdOao94Q5Fxp6UkvMBAAAg+7RWwNIV69at0+rVqyVJxxxzjFEw0+iUU07RW2+9pYqKCr388ss666yzlJNjXr567bXXFA6HO33eGTNmtCiaaeR2uzVw4ECdcMIJ6tevn/7whz/omWee0cUXX9yFV4aNO4IKx2yjb7wTVneOhRVY8XflLbxH7lDrO2/a3jwFD7xSwYOulO3rl+YAAQAAgL6t+U4z00oLMhQJer14WL4Nryuwar68X30gl+z2hxeOVGjSeQpNOEt2/uA0BQkAAJKFohmgiYZIXJ9va1BAYZ3p+cB4LDxxLpXhAAAAADJqzVZzBePxg/PkciV/BTX3ro3ybTQXEqg/4kYKZgAAANAln376aeLrY445ptUxbrdbM2fO1GOPPab6+nqtXLlS06ZNM8Y8+uijKYmv8TyrVq1KyfH7sjXbzLlJSX+fBuR6MxRNGlgx+dcsUN6nt7e56rDt9io05UI1HPI92XmD0hwgAAAA0PdFYpZWVZlFM1OHUaiOrvHsKFdg1ZPyly9oczGERrbHr/DY2QpPPEfR0sOlFFyTAwAA6UEFANDEii11itvSGe5P1N+1dwVnWy6FJvVsRT0AAAAA6KnmRTMTBuen5Dy5yx4xVtSyfP0Umnx+Ss4FAACAvqu8vFyS5Pf7NXr06DbHTZo0yXhO86KZVNm5c6ckyePxpOV8fUn5VnMXzPEpmptknG3Lt+FV5X38e+VUr2t9iFwKTzhTDYf9UFb/4WkOEAAAAHCO8m31isTN3UCmDmOnGXTMFamT7/MX9+wqs3Vph+NjxZMVmnSuwuNOk+3vn/oAAQBAylE0AzRRVlErSTo/x1xROTryaC50AAAAAMi48m3Nbkwbkvwb01yRWvlXP230hSadK/n66E1wAAAASJnNmzdLkoYOHdpuYcqwYcNaPCeZMRQXF8vv9xv94XBYjzzyiCTpoIMOSuo5naD5TjMTUjA3yTTv5g+V99Ft8m4ta3NMeL/j1DDjx4oPHJ/GyAAAAABnKqs0d5kZPTBX/QLc/og22LZyqpYosGq+/OtelCva0O5wy9dP4fGnKzTxHMUHT0lTkAAAIF34qxFooqyyTvu7NutQ91qjPzSJFZUBAAAAZFZ1Q1RbayNG34TBeUk/j3/VU3JH9154sl1uhaZemvTzAAAAoG+LRCKqrd2zUNXAgQPbHVtQUCC/369wOKwdO3YkNY4PP/xQL774oiZMmKDi4mLl5uZq586dWrp0qWprazVx4kSdcsopXTpmZ2NM5Q42bre73XYqWbat8mZFM5NKCvrMjj2ercuV++Gt8m56r80x0dLDFTzqRsVLDt7znBTGk8lcI/3It7OQb2ch385BroHUaVwMudG0UnaZQUuu4A751yxQYNX8NncMbSo67HCFJp+r8OgTJW9uGiIEAACZQNEM8C9xy9byylr92POW0W/lDlRkv2MzFBUAAACAzuqrN6Q1+ny7eTEokOPW6OICedyu5J3Eiit3+SNGV3T0CXIVjUrpTWDZJhvyjfQg185Cvp2FfDsL+c5OoVAo8XUgEOhwfCAQUDgcNp6XDAcffLCqq6u1du1arV27VqFQSHl5eRo5cqSOOuooHXPMMV2eS1x77bWdGjd//vzuhNwthYWFaTvXhq/r1BCxjL4Z40pV1L/jPGe17Z9Lb94srVrQ9pihU6Xjfi3vmG/J60riXKwL0plrZB75dhby7Szk2znINZActm1rWbOdZqYN65ehaJB1rLi8X32gwKr58n3xulxWtP3hecUKTThboUlzZQ3YL01BAgCATKJoBviX9dsbFIuEdJbfXDksNHGu5PFlKCoAAAAAnVVUVJS2c2XiQufGMnM160nD+mvQwH2Se5I1L0o1m4wu3zd+IF8a39tsxIVt5yDXzkK+nYV8Owv5zg6RyN5dEnNyOr4c1Tim6fOSYcyYMRozZkxSj+l0Kyp3G+3ifn4N7s0FMzUV0ju/kZb8XbLjrY/ZZ7R07C+lSWdKFOYBAAAAaVdRE9aOerMQYmopRTNO595docDqp+Rf/aQ8dVvaHWu7PIqMmqXw5HMVGTlT8njTFCUAAMgGFM0A/1JWUacT3QtV5DJXJQhNOjdDEQEAAADAXisrzBvTJg9Lwc2gH99rtodOlUYdmfzzAAAAoM/z+fYuRhWLxToc3zim6fOy1b333tvxoD5sZWWN0Z4yrH+GIumhhp3S+7+XPvmLFA+3PqZfiTTzp9JBF3NDFQAAAJBBzXeZKcrN0YgB/gxFg4yKh+X74g0FVs6X96v35ZLd/vDCkQpNPFfhCWfJKhiSpiABAEC2oWgG+Jeyylpd5nnT6IuUzpA1YN/MBAQAAAAATaxofmNaaZJvTKtaIW00d97UjGsllyu55wEAAIAjBAJ7dx4JhUIdjm8c0/R52WrgwIGdGlddXZ2yGNxut7GrUk1NjSzLStn5mlq60dwFc8w+/pS+1qSL1Cuw9AEFFv1Frkhtq0Msf3+FDvmewtMuk7y50u66VselQyZzjfQj385Cvp2FfDtHNuQ6nbuyA+lSVmH+7T61tJ9cXL9wFM+OtQqselL+8n/IHWp/Dmp7/AqPna3wxHMULT1McrFjKAAATkfRDPAvOzav1RGeVUZfaPL5GYoGAAAAQFf11RvSJKk2HNOXOxqMvpH9XEl9zXnv3qGma7JZuYNUU3qs1JtufkuSTOcb6UOunYV8Owv5dpZM55sb0lrn8/nUr18/1dbWaseOHe2OraurUzi8Z6ePzhak9AbxeDxt57IsKy3ns21ba7bWG33jB+em9bV2WzyiwMrHlffZH+UOtv49aecEFJz2bQUPukp24F+/V7LstaUr18gO5NtZyLezkG/nINdAcjTfaWbasIIMRYJ0ckXq5Pv8RQVWPSnv1iUdjo8NmqTQpHMVHnfa3jkdAACAKJoBJEnbaiP6VvBV4yci6hugyJgTMhcUAAAAgC7pizekNVq9xVxBLcft0r5F/qTF4ArukK98gdEXmnKh4q6crLtBLBO4sO0c5NpZyLezkG9nId/ZY/jw4Vq9erWqqqoUj8fl8XhaHVdZWWk8B9mrandENaGY0Td+cH6GoukkKy7/588r75Pb5dn9VatDbHeOQpPPV8Mh18nOH5zmAAEAAAC0py4c07qvzYXFppb2y1A0SDnbVk7VEgVWPyn/5y/IFW1od7jl66fw+NMVmniO4oOnpClIAADQ21A0A0ha/tVOne15x+iLTjxT8vjbeAYAAAAApE/zlZzHFufK60neVvKBFfPkikcSbdvtU3DKhUk7PgAAAJxp/PjxWr16tcLhsDZs2KD999+/1XGrVq0ynoPstWabOTfpH/CopL8vQ9F0wLbl3fiW8j++TTk7ytscFhp3mhoO/5GswlFpDA4AAABAZ63YUie7SdvrcWnikCwv3keXuYI75F+zQIHVTypn5+cdjo8OO1yhSecoPOYkyZubhggBAEBvRtEMICm69p8qdu02+sKTz89QNAAAAABgan5jWlJXco5HlLv8b0ZXeP+TZecXJ+8cAAAAcKTDDjtMCxYskCS99dZbrRbNWJald97Zs6hVfn6+Jk+enM4QU6qtnXWSwe12t9tOlfJtQaM9YUiBcnKy73JjTsWnyv3gt8rZsqjNMZF9j1XoyBsUL54kl6TUZatnMpVrZAb5dhby7Szk2znINZB8ZRV1RnvikHz5c/jZ6hOsuLxffaDA6ifl2/CaXFa0/eF5xQpNOFuhSXNlDdgvTUECAIC+IPs+xQYyYGLVc0b7q4Kpyt1nbIaiAQAAAABT+VZz6/kJSSya8a97We6Gr42+4LTLk3Z8AAAAONfYsWM1ceJErV69Wm+99ZZmzZqlcePGGWNeeOEFVVRUSJJmz56dlQUY3VVUVJS2cxUWFqblPOubrfZ70KiBaX2dHdqyTHrzv6XPX217zIgZ0nG/lm/UkcrSPXLala5cIzuQb2ch385Cvp2DXAM9V1ZZa7SnDivIUCRIFvfuCgVWPyX/mqfkqa1sd6ztcisy6hiFJ52jyKhZksebniABAECf0neuPADdFNm+UQdFyyTX3r7q/eeKTRsBAAAAZINQNK6NO5uv5pyXnIPbtgJlDxpd0WGHKj54SnKODwAAgF5tzZo1qqqqSrR37967Y3tVVZXefvttY/ysWbNaHOPyyy/Xr371K0UiEd18880688wzNXnyZEUiEX344Yd6/fXXJUklJSU69dRTU/I6kDwrKncb7cmlWXIT6I710lv/K614qu0xgydL3/p/0rgTJZer7XEAAAAAskbcsrWi0txpZlppvwxFgx6Jh+X74g0FVs2Xd9P7csluf3jhSIUmnqvwhLNkFQxJU5AAAKCvomgGjhdc9Jjcrr1/hO+287TPQadnMCIAAAAA2OvzrxtkNblu4HZJ+xcnp2gmp2qxvNuWG33Bad9OyrEBAADQ+73xxht65513Wn2svLxc5eXlRl9rRTP77beffvSjH+muu+5SMBjUvHnzWowpKSnRTTfdpNxclrPKZtt2h/R1bdjomzKsf4ai+ZfaKumdW6XFD0tWrPUxA0ZJx/5SmnK25PakNz4AAAAAPbJue4MaopbRN3UYRTO9iWfHWgVWPSl/+QK5QzvbHWt7fAqPma3wpHMULT1ccrnTFCUAAOjrKJqBs1kxDd74rNH1jn+WjshjG08AAAAA2WHN1gajve8+uQp4k3OjV27ZQ0Y73q9Ukf2OS8qxAQAAgEaHHHKIbrvtNr300ktavHixdu7cqZycHA0dOlQzZszQSSedJL/fn+kwk666ujplx3a73Sos3LvLS01NjSzLaucZPffxevP15PncKvREUvo62+IK18i/8M8KLH1Arlio1TFW3iCFDvuBwlPOlzw+qWZ3q+OyXSZyjcwh385Cvp2FfDtHNuS6qKgorecDUmlZhbnLzPABfg3M92YoGnRapF7+dS8qsHK+vFuXdDg8NmiiQpPOU3jcabIDWbKjKQAA6FMomoGj+b58W/2i242+DcPP1BEZigcAAABA93k8qVsx2O12t9tOpbVfm0UzE4cWJOW1umor5Vv/T6MvfODl8nh9PT52b5fJfCO9yLWzkG9nId/OQr5T57rrrtN1112XlGMVFxfrsssu02WXXZaU4/UG8Xg8beeyLCvl51u1pdZojx+cL9uylL5XKSkaVO6yR5S7+E9yh1svgrF8BQpOv1rBqZdLvvw9nWnMRaqlI9fIHuTbWci3s5Bv5yDXQM8sqzTnIewyk8VsWzlblyqwar78n78gV7Sh3eGWr0DhcacrNOkcxYunSC5XmgIFAABORNEMHM2/8nGjvdQaoyFjpmUoGgAAAAA9kc7V85quFJhqn+8wV00+aN9ByXmtC2+X7CYXa735yjvyauXlDuj5sfuYdOYbmUWunYV8Owv5dhbyDaRG+bZ6oz1hcH5az+8K7lDhMxcqp3pdq4/bHr+CUy9RcPo1snNZXR0AAADoC8qa7TQzdVhBhiJBW1zBnQqselqBVfOVs/PzDsdHhx2m0KRzFR5zkuTNTUOEAAAAFM3Awdx1W+T78h2jb178WF1eyooEAAAAALJDJGapvMpcRW1KaRJuAo3US4seMvsOvECiYAYAAABAG9ZsNYtmxg/OS+v589+7udWCGdvlUXjiXDUc9n1ZBSVpjQkAAABA6nxdF1Hl7rDRdyD3dWUHy5I2vCUtfkSFa16Uy4q2PzxvkEITzlZo4jmyivZLU5AAAAB7UTQDx/Kvekou20q06+yAFubN1E8KfBmMCgAAAAD2Wru1VtG4bfRNGta/5wde9oQU2mX2HX5Nz48LAAAAoE/aFYxqy+6I0TdhSPp2mnHv3iz/5y+26A+PnaP6w3/MTVcAAADoNSKRiObNm6cNGzaoqqpKdXV1ysvL09ChQ3XsscfqG9/4hnJyuKVPksoqzEXF8n0e7TeQnUkyworJs6Nc3i2L5d26RKr8TKqtlCS52niK7XIrOmqWQpPOVWTULMnjTVu4AAAAzfEXNpzJiiuwer7R9Vz8SI0bXpyhgAAAAAD0VHV1dcqO7Xa7VVi4d4eXmpoaWZbVzjOS47N1W432iAEBxYN1qg724KC2rf4f3i1Pk67oqFmq8wySUvge9iaZyjfSj1w7C/l2FvLtLJnOd1FRUdrOhd7F4/F0PKib3G53u+1k+3y7ebOaP8etMYML5HG3dXtUcuUue1AuO55o29481Z79uOJDpsolKXXvdOalO9fILPLtLOTbWci3c5BrdCQUCunVV1/V2LFjddBBB6l///6qr6/X0qVLde+99+rDDz/UTTfdxPeOpGWVdUZ76rD0zUGczhXerZyqJfJWLVbOlsXK2Vomd7S+4ydKivcfqdCkcxSecJasgqEpjhQAAKBzKJqBI3m/el+ef1W7N5oXP1Yns4UnAAAA0GvF4/GOByWJZVlpOd+qLeYFofGD83p8Xu+m9+TZuc7oa5h2eVrfv94mXflG5pFrZyHfzkK+nYV8I1uks6CqaeFYKny5bKfRnlDSX8UD90npORMadkorzYXQXAdfrv4TZqbn/Fkm1blGdiHfzkK+nYV8Owe5RnMFBQV6+OGHW+wmE4/HdfPNN6usrExLly7V9OnTMxRh9mi+08zUYQUZiqSPs225azbKu2WxcqoWy7tlsTw7P5dLducP4fEpPOYkhSedq2jp4ZKLoi8AAJBdKJqBIwVWPm60V1qjtNzeTz+naAYAAABAFinfZq7aNWFIfo+PmVv2oNGOFY1VdMTRPT4uAAAAgL5rRUWN0Z4yrH/6Tv7ZX6Vow962yyPN+F76zg8AAAAkkdvtbnUXGY/Ho0MPPVQrV65UVVVVBiLLLqGopTXbGoy+adzXlRyxkHK2rZC3apFytiyWt2qx3MGdHT+vNUMOUMPEuQqOPUV2YEBSwwQAAEgmimbgOK76r+Xb+KbRNy9+rPJ9ORo9MDdDUQEAAACAKW7ZKm92QWjCkLweHdNTvUG+L98x+kLTLpNcrh4dFwAAAEDftrJyt9GeUpqmFdOjQemTP5l9B8yVBoxIz/kBAACQVWpqarRu3TqtW7dO69ev1/r161Vbu2c3kpkzZ+q6667r9LG+/vprvfzyy1q8eLF27NihnJwcDR06VEcccYROPPFE+f3+VL2MVlmWpbKyMknSiBH8vbt6a53i1t6dTtwuaXIJO810h6t+m7z/Ko7J2bJIOV+vlMuKdutY8cKRipUcIv/Yb0gjj5CKJyi8a5dsdvwFAABZjqIZOE5gzdNyWbFEu8H269n4UZo6okAeNzeKAQAAAMgOX+4MKhyzjL7xg3u200xg2cNG2/IXKjT+zB4dEwAAAEDrqqurU3Zst9utwsK9hSs1NTWyLKudZ3RfXTimL7abu2CO7OdK6etr5Fv2qPIbdhh9u6dcrngazp0t0plrZB75dhby7Szk2zmyIddFRUVpPV86XXXVVUk5zsKFC3XXXXcpGAwm+sLhcKIQ54033tBNN92koUOHJuV8rYnFYnrmmWckSbW1tVqxYoUqKio0a9YsHXDAASk7b29RVlFntMcW5ynf58lQNL2IFZNnx1p5tyxSTtViebcslqd2c7cOZbt9ig05QNGh0xUrma7o0Omy8wbJ4/HI34d/zwAAgL6Johk4i20psPIJo+vF+OGqVR5beAIAAADIKs13mRnSz6eiPG+3j+cK1Siw+mmjLzT5fMnLjpsAAABAKsTTuNKuZVkpO9+aqlqj7XG7tF+RP/Wvz4orsPg+oysy8huK7DNOcvAqxqnMNbIP+XYW8u0s5Ns5yHXqDBo0SKWlpYndWTrriy++0O23365IJKJAIKAzzjhDU6ZMUSQS0QcffKA33nhDW7Zs0S233KLf/OY3ys1NzWfosVhMTz31VKLtcrl06qmn6sILL0zJ+XqbskpzHjJtGPd1tcYV3q2cqiX/2kVmsXK2lskdre/4ia2w8gYpOvTgRIFMbPBkyZPeHZcAAABShaIZOIp380fy7N5k9M2LHytJmlbKFp4AAAAAsseareZFjfGD83p0vMCq+XLF9q6aZ7s8Ch1wcY+OCQAAAKDvW7PVLOgfMzBXvhx3ys/r2/CqPDXmNZ3g9KtTfl4AAABkr7lz52rMmDEaM2aMBgwYoG3btun666/v0jEeeughRSIReTwe/fKXv9S4ceMSj02ZMkUlJSX629/+pi1btuj555/Xueee2+IYjzzyiKLRaKfPOWfOHJWUlBh9gUBA8+fPl2VZqq6u1qJFizRv3jytXbtWN910k/LyenZNoDezbVvLKs2dZrivS5Jty12zUd4ti/fuIrPzc7lkd/1QLrfiA8cbu8hY/UdILlcKAgcAAMg8imbgKIFV5i4z5dZwLbb3l8clTRnK5AoAAABA9lizzSyamTAkv/sHs2IKLH/U6IqMOVFWv2HdPyYAAAAAR2hR0N+TuUln2bZyF//F6IoWT1G09IjUnxsAAABZq7UClq5Yt26dVq9eLUk65phjjIKZRqeccoreeustVVRU6OWXX9ZZZ52lnBzzFrvXXntN4XC40+edMWNGi6KZRm63WwMHDtQJJ5ygfv366Q9/+IOeeeYZXXyxcxe9+rI6pJpgzOhz5E4zsbByti2Xt2qRcrYslrdqsdzBnd06lOUrUGzIQYqWTFes5GDFhkyV7XPgewoAAByLohk4hiu4Q771rxl9j8ePkeTSuMH5yvV5MhMYAAAAADRj27bKt5mrOY8f3P0b03wbXpentsLoC067vNvHAwAAAOAcLQr6e7gLZmd4Kz6Rd9syoy84/WpWPQYAAECPfPrpp4mvjznmmFbHuN1uzZw5U4899pjq6+u1cuVKTZs2zRjz6KOPtvrcnmo8z6pVq1Jy/N6irKLWaBcXeDW0vy9D0aSPq36bvP8qjsnZslg5X6+Qy+r8jkZNxQtH/msXmYMVHXqw4vuMldzcGwcAAJyLohn0iMeTmj+m3W53u+3u8K99Vi4rkmiHba+eiX9DknTg8P4pey3oWCryjexFvp2DXDsL+XYW8g2kXkVNWHXhuNE3YUj3b0zLXfaQ0Y4OnqrY0OndPh4AAAAAZwhF4/piR9Do69EumJ2Uu8TcZSbef6QiY05M+XkBAADQt5WXl0uS/H6/Ro8e3ea4SZMmGc9pXjSTKjt37tlFxOn3MC2rrDPa04b1k6uvFdBbcXl2lCcKZLxVi+XZ/VW3DmW7fYoNOeBfRTLTFR06XXbeoCQHDAAA0LtRNIMeKSoqSst5CgsLe3YA25ZWzTe6XrIOU40KJElHjR+atteCjvU43+hVyLdzkGtnId/OQr6B5Fuz1VzJuSg3R4MLureKmmfbCnkrPzP6QtMuZ4VmAAAAIMVSeaNbuha02LC1QZa9t+2SNHFov5S+Ns/Xq+X78h2jLzz9Knm8/pSdM5uxeImzkG9nId/OQr6dg1xnt82bN0uShg4d2u7ftMOGDWvxnGTGUFxcLL/f/Ps2HA7rkUcekSQddNBBST1nb7Os2U4zU0sLMhRJ8rjCtcqpWrKnSKZqsXKqlsodre/4ia2w8gYpOvTgRIFMbPBkyePM+RIAAEBnUTQDZ9j0kbTjc6Pr8dixia8PGbVPuiMCAAAAkGR94Ya0Rmu/Nldynji0QDk53ZvC5y1/2Ghb+YMVG3+K41eqaw8Xtp2DXDsL+XYW8u0s5BvZKp2LdaVqQYsvy3cb7TGDCzRsSIpXLH7LnMMob6DyjvyO8nzd332zL2HxEmch385Cvp2FfDsHuc4ekUhEtbV7ijEGDhzY7tiCggL5/X6Fw2Ht2LEjqXF8+OGHevHFFzVhwgQVFxcrNzdXO3fu1NKlS1VbW6uJEyfqlFNO6dIxOxtjqq4LJHNeXhOM6oudIaPvoOGFveuahm3LXfOlcrYsUk7lIuVsWST3jrVyye74uc0P5XIrPnC8YiUHKz7sYMVKDpHVf7ixMFq63xk+h3EW8u0s5Ns5yLWzkO89KJqBMyx6yGiut0r0iT1BklQ6IFdDCwMZCAoAAABAMvWFG9IardtpFv1PGzWwe6+vdqtU/rzR5T7sahUNGtKT8ByHC9vOQa6dhXw7C/l2FvINJM/KihqjPWVY/9SesGaztOIps++wqyUKZgAAANBDodDeQoxAoOP7hAKBgMLhsPG8ZDj44INVXV2ttWvXau3atQqFQsrLy9PIkSN11FFH6Zhjjulygci1117bqXHz58/vTshd1pN5+ZKtW412wOvWjAnD5fVk8c2d0ZC0Zan01SfSpk/2/L9he/eO5e8vDT9EGnG4NOJwuUoPVk6gf1bf5MnnMM5Cvp2FfDsHuXYWp+Y7m/+eQi9QXV2dkuO63W7jh7KmpkaWZXXrWK5QjQpXLpCrSd8T8VnSv3qmDstP2etA5yQz38h+5Ns5yLWzkG9nyYZ8p7M4Akg327ZbuTGtmx9aLHxAsqJ72x6/dMi3exAdAAAAACdZWWnuNDOlNMUXVD++V7Jie9s5udKhV6X2nAAAAHCESCSS+LozO7s3jmn6vGQYM2aMxowZk9Rj9iULN5r3cE0dPiB7C2Z2bpBeulHa8LZ5LaYrivbbUyAzck+RjIonSO5etKsOAABAL0HRDHokHo+n5TyWZXX7XIFVT8sVDyfaUeXo6fg3E+2pJQVpex3onJ7kG70P+XYOcu0s5NtZyDeQXFt3h7Wj3rwIN6W0G6s5x8LSwvvNvqnnSPmDehAdAAAAgM5K5YJd6VjQIhq3tKbKLJoZ1d+dstflCtWocOGDxiJoocnnKhhxSxHnLn6WDYuXIH3It7OQb2ch386RDblm4bHW+Xy+xNexWKydkeaYps/LVvfee2+mQ0iaRV+af/sfMipLv59tW3r6KqliYeef4/FJw6ZLIw77104yh0kFg1MXIwAAABIomkHfZtsKrHrC6Ppn/GDt0N4PKKaVFqQ7KgAAAAAp0NtvSGv08bqdRrvA71E/V1jV1V1bzc636inl139t9O2eeJHi7LTZoWy4sI30INfOQr6dhXw7S6bzzQ1paEs6F5hIxYIWn2+rVzRuG31jBwZS9rpyyx6VK1qfaNsutxqmfVsWC3UYWLzEWci3s5BvZyHfzkGus0cgEEh8HQqFOhzfOKbp87LVwIEDOzUuVddRkjUvj8YtlX21y+gbP9Cb0us/3eXZslj9OyiYsfIGKVZyiGLDDlasZLrixVOkHP/eAVFJWfjaOpLpz2GQXuTbWci3c5BrZ8mGfGfDdRSKZtCn5Wxdqpwd5Ubf4/FjE1/n+zwaMygv3WEBAAAASIHefkNao1Vbao32uOK8rn9gYdvyL3nA6IqUzlBkn3ESF2i7jAvbzkGunYV8Owv5dhbyDSTHmq31Rru00K9+gRRdWoyFlbvsIaMrMnaOrP4jUnM+AAAAOI7P51O/fv1UW1urHTt2tDu2rq5O4XBYUucLUnqDdM2VuzsvX72lTqGYeT1k8tC8rJzj55Y9arRtl1vxgeMVHTpdsZLpipYcLKvfcMnlMp+Yha+lp/gcxlnIt7OQb+cg187i1HxTNIM+LbDS3GVmp7dEH4QmJ9oHDCuQx+1q/jQAAAAAyJjmN6ZNGJLf5WPkVH6mnO2rjL7Qgd/uUVwAAAAAnGXN1gaj3Z25SWf5y/8hd8N2o6/hoKtSdj4AAAA40/Dhw7V69WpVVVUpHo/L4/G0Oq6ystJ4DtJjWWWd0d53n4AG5HozFE3bXMFq+de9aPQ1zLhBwYO/m6GIAAAA0BGKZtBnuSK18n/+gtH3vOdbsuVOtKcNK0h3WAAAAADQrvJtPb8xLbfsQaMd7z9SkVHH9CguAAAAAM5Svq15QX9eak5kW8pd8lejKzLiKMUHT0nN+QAAAOBY48eP1+rVqxUOh7Vhwwbtv//+rY5btWqV8Zy+oq0ioZ5yu93ttjuredHMtNL+KYu5J/xr/yFXPJJo2x6folPOy8pYUyFZ+UbvQL6dhXw7B7l2FvK9B0Uz6LP8a5+XKxZMtG2XR/fuPtIYM620X7rDAgAAAIA2VTdEtbU2YvRNGNy1G9Pcu7+S74vXjb7gtEsltzMu1gAAAADoubhltyzoH5yanWZ8X7yunF1fGH1BdpkBAABAChx22GFasGCBJOmtt95qtWjGsiy98847kqT8/HxNnjw5nSGmVFFRUVrOU1hY2OXn2LatZVvMopmjxg1NW8ydZlnSynlGl2vS6RpQOjZDAWVed/KN3ot8Owv5dg5y7SxOzbczS4XgCIGVjxvtbUO+oSprQKLtcUlTSthpBgAAAED2aL6Ssz/HrVH75HbpGLnLHpXLthJty1ug8MS5SYkPAAAAgDN8uTOocMwy+sanomjGtpW76C9GV2zQREVHHJ38cwEAAMDxxo4dq4kTJ0raUzSzdu3aFmNeeOEFVVRUSJJmz56tnBzWpE6Hil1Bbd0dNvqmj8qyghlJ+uIdaecGs++QKzITCwAAADqNv+rRJ3m2rVDO1yuNvvcKZhvt/QfnKc/HSssAAAAAsseareZKzuOK8+Rxuzp/gEi9/KvmG13hSXNl+9hlEwAAAEDnrWm2y8yQfj7tk+9N+nlytiySd+sSoy940NWSqwvzIAAAADjGmjVrVFVVlWjv3r078XVVVZXefvttY/ysWbNaHOPyyy/Xr371K0UiEd18880688wzNXnyZEUiEX344Yd6/fU9O7mXlJTo1FNPTcnrQEuLvqw22gPyvBpTnJrdLntk4f1mu3iiNPKIzMQCAACATqNoBn1SYNUTRjteMFQL6iZJqk30TRvGTWMAAAAAskvznWYmDMnr0vMDa56RO7J33mPLpeDUS5MSGwAAAICu8XhSt3CX2+1ut91Ta782i2YmDMlPyevJW3Kf0Y73K1Vs/Ckpfe96m1TnGtmFfDsL+XYW8u0c5Dq13njjDb3zzjutPlZeXq7y8nKjr7Wimf32208/+tGPdNdddykYDGrevHktxpSUlOimm25Sbm7XdoLPdtXV1R0P6ga3263CwsJEu6amRpZltfOMlj5cW2W0p5YUaNeuXckIL2lcdVUqXPOSmpb4N0y+QOEsizPVkpFv9B7k21nIt3OQa2fJhnwXFWV+B0GKZtD3ROrlL3/O6ApNPEdln5oXeKaVUjQDAAAAILus2WoWzYwf0oVV1GxLuWUPGV2R/b4lq3BUEiIDAAAA0FXpvBDY9KJnMqzbscZoH7TvoOS/nm1rpC9eN7o8R/1ARYMGJ/c8fUyyc43sRr6dhXw7C/l2DnKdnQ455BDddttteumll7R48WLt3LlTOTk5Gjp0qGbMmKGTTjpJfr8/02EmXTweT8t5LMvq8rmWbt5ttKcOK0hbvJ2Vu3yeXPbemGxvnoLjTpOdZXGmW3fyjd6LfDsL+XYOcu0sTs03RTPoc/zrXpI7Wpdo23Jp7dBTVRveboybVlqQ7tAAAAAAoE114Zi+2hU2+iYM7nzRjPfLd+Sp2Wj0haZdlozQAAAAADiIZdlaWWHesDZ5WApu9vzwLrOdWyRNvyT55wEAAECfcd111+m6665LyrGKi4t12WWX6bLL+Bw90xoicX3ebLfLqcOy7L4uK6bAyieMrtC402T7WLQZAACgN2APUPQ5zSco0VEz9dkuc4IytJ9PQ/r1vRUhAAAAAPRe5dvMC0I5bpfGDMrt9POb7zITGzhe0dIjkhEaAAAAAAf5qrpBteGY0TeltH9yT7J7i7TMvJ6jQ78j+bqw2yYAAACAPmHFljpZ9t62x+3SpKHZNTfwbXxTnvoqoy805cIMRQMAAICuYqcZ9Cme7eXybl1i9IUmn6eyNbVG37RSqvwBAAAAZJfybfVGe8ygXHk9nVvrwrNjrXxfvW/0BaddLrlcyQoPAAAAQBdVV1en7Nhut1uFhXt3f6mpqZFlWUk59idrtxvtorwc+eNBVVeHknJ8Scp9/w8KWNFE2/b4VDP+PNkpfM96q1TmGtmHfDsL+XYW8u0c2ZDroqKitJ4P6KlllXVGe8LgPAW8ngxF07rA8seMdnTIgYoXT85QNAAAAOgqimbQpwRWPW60rbxiRUYdo7I3Vxr900qzbAtPAAAAAI63Zqu508yEIZ1fRS2w7GGjbQX2UXjcaUmJCwAAAED3xOPxtJ3LsqyknW/VFnMhsgmD85N6o6crXCvf8r8bfaGJcxXzF0lpfM96q2TmGtmPfDsL+XYW8u0c5BrZxONJTSGK2+1ut92R5kUzBw7vn7JYu8O9a6N8X71n9EWmXpxVMaZTT/ON3oV8Owv5dg5y7Szkew+KZtB3xELyly8wukIT52pHSNq8K2z0s9MMAAAAgGyzZqu508yEwZ0rmnEFqxVoPheacr6UE0hWaAAAAAAcZM227hf0d0Zg5Ty5I3tvirPlUvDAK5N6DgAAAAAtpWsXoqa7LXXEsmwtb1Y0c9T4kuzaMemz35ntwADlH3ax8r25mYkny3Ql3+j9yLezkG/nINfO4tR8UzSDPsO//hW5w7uNvtCkc1VWYa6Ilu9za+ygvHSGBgAAACANUrmiV6pX3ghG49q4M2j0TSzp16nX5F89X65YKNG23TmKTLvMsSucJQMrrTgHuXYW8u0s5NtZyDeQPLZttyjoHz84iddU4mEFyh4yuiJjTpI1YN/knQMAAABAr/H5tjrVhmNG38GjsqhgJhqSlpg7ZeqgiyUKZgAAAHoVimbQZwRWPmG0IyOOklU4UmWLvzT6p5QUyON2pTM0AAAAAGmQzlXHkr3yxsZN1bLsvW23Szps3DDl+TqYtsej0grzYo1r8pkaMGJCUuNzOqeutOJE5NpZyLezkG9nId9A922tjWhX0LxhLZk7zfjLn5enfqvRF5x+ddKODwAAAKB3WfjlTqM9vChXQ/oHMhRNK1Y9KwXNGHXwtzMTCwAAALqNohn0CZ7q9fJWfmr0hSadJ0kqqzR3mplW2i9tcQEAAABAZ6yoNHfNHFNc0HHBjCStfk7aXWH2HX5tEiMDAAAA4CTl2xqMdoHfo9JCf3IOblvKXXKf0RUpPVyxIVOTc3wAAAAA7aqurk7Jcd1ut7GARU1NjSzL6tRzP/rcLKo/oCQ/ZXF2R7+P/2zcYBkdcZTqPAOlLIox3XqSb/Q+5NtZyLdzkGtnyYZ8p3MR3LZQNIM+wb/2BaNtBfZRZPRxCkUtrdlqXuChaAYAAABAtllZUWO0p5R2cnX0j/9ktocfJg0/OElRAQAAAHCaNVvrjfb4wXlyuVxJObZ349vKqV5n9AUPuiopxwYAAADQsXg8npbzWJbV6XMt3WwuKnZASX7a4uyIZ/sa5WxZZPQFJ1+YNfFli67kG70f+XYW8u0c5NpZnJpvimbQJ3g3f2i0w+NPkzx+rarcrZhlJ/rdLmlKSUG6wwMAAACQBqlceSzVK2+UbdpptPcb4O3w9Xiqlqr/ZnPHzboDLlHUwaubJUs2rLSC9CDXzkK+nYV8O0um850NK6QBybJmm1k0M2FwftKOnbfkL0Y7ts84RUfNStrxAQAAAPQuO+qj2rwrbPRl02LIgRV/N9rxvMGK7PetDEUDAACAnqBoBr1ftEE5W8uMrsiIoyVJZZW1Rv/+xXnK93nSFhoAAACA9EnnShjJXHkjGrf0+dfmDpnjinM7PH7ukgeMdrxgqEL7Hi85cEWQVHPqSitORK6dhXw7C/l2FvINdF95s51mJgxJTtFMzpbF8lZ+ZvQFp18lJWkXGwAAAAC9z7Jm93Xled0aMygvQ9GYXJE6+cufNfrCk8+TPN4MRQQAAICeoGgGvZ53yyK5rGiibbs8ig07VJJUVlFnjM2m1QgAAAAAQJI27AgaO2RK0vjB7V8UctdVyb/uJaMvdMAlXKwBAAAAsojHk7pFvNxud7vt7thRH9G2uqjRN6mkX1JeR97Svxptq6BEsQmnp/Q96itSkWtkL/LtLOTbWci3c5BroPOWNbuva8qwAuW4s6Ow3l/+rNzRvYsK2C63QpPOzWBEAAAA6AmKZtDreTd/bLRjg6fK9hXIsu0WKxJQNAMAAAAg26xptpLz8AF+9Qu0P10PrPi7XFYs0bZzAgpNOi8l8QEAAADonqKiorSdq7CwsMfHKNu2zWjnej06cMwweXp609r2z6X1rxpd7iOvV9GgIT07rkMlI9foPci3s5BvZyHfzkGugbaVNb+va1iW3Ndl2wqs+LvRFdn3WFn9hmUoIAAAAPQURTPo9bwVZtFMdPgMSdLGHUHtDsWNx6YNK0hbXAAAAADQGWu2NhjtCYPz239CLKTAinlGV2j8GbJz03dDHgAAAIC+Z2XlbqM9aVj/nhfMSNKHd0lqsrumv1A6+LKeHxcAAABAl6Rqp8fu7LAUjlla3WxRsYNGFGbFbpSeykXK2VFu9EWmXZIVsWUDdtRyFvLtLOTbOci1s5DvPSiaQa/mitQqZ9tyoy9auqdopqzS3MJzSD+fhvb3py02AAAAAOiM8m3mRaHxQ/LaHe9f+5zcoWqjLzTt8mSHBQAAAMBhVlTUGO0pw/r3/KC1W6Uys+hfh14p+bNkBWkAAADAQdK1G2Zndlha9OVOReN7i+tdLunoScPVP+BNZWid89Z8s120n/pNPU1y6A2mHWFHLWch385Cvp2DXDuLU/NN0Qx6tZzKhXLZe3eTsd1eRUsOliSVVTTbwrOUCzAAAAAAskvcsrV2Wxd2mrFt5S590OiKjDha8X32T0V4AAAAAHqgurq640Hd5Ha7jYubNTU1siyrR8dc9pUZ734Dcnr8GgIf3qHceCTRtj0+1Uw4X3YK35u+JhW5RvYi385Cvp2FfDtHNuQ6XYURQE8s3GjOCcYP6ZcdBTP1O6SV/zD7Dvk2BTMAAAC9HEUz6NW8mz8y2rGhB0reXEmtFM0MK0hXWAAAAADQKZuqQwrFzAum49spmvFWfKScnWuNviC7zAAAAABZKR6PdzwoSSzL6tH5dodiqqgJG33jinN7dExXpE7+ZY8afeHxZygWGCil8b3pa3qaa/Qu5NtZyLezkG/nINdA6xZ9aRbNHDwqS4q9lv5NalL4L49POvCizMUDAACApKBoBr2ar+Jjox0tnSFJ2lEf1Ve7zIs77DQDAAAAINus2VpvtIf082mf/LZXUgssfchoxwbsp+iomakIDQAAAICDrN1mzk28HpdGD8zt0TH9q+bLHd6daNtyKXjQVT06JgAAAIDuS9VumF3dYcm2bX22cYfRN2GQL6W7dXaKban/p/fL06QrPHaOGiIeKcJumY2yYUctpA/5dhby7Rzk2lmyId/ZsBsmRTPotVyhGnm+XmX0NRbNLKs0d5nJ87o1tjgvbbEBAAAAQGc0L5oZN7jteYt710b5Nr5p9IWmXia53CmJDQAAAIBzrNnaYLTHDspTjqcHc414VLlL7ze6IqOPU7xodPePCQAAAKBH0rXrUUc7LH1VHVJ1Q8zoO6AkP+O7Mnk3vSdPzZdGX3DKBRmPK9uxo5azkG9nId/OQa6dxan55s4a9Freyk/kkp1o2x6/okMPkiSVVZhFM1OGFSjH7UprfAAAAADQkfJt5o1pEwbntzk2d9kjxhzI8vVTaMJZKYsNAAAAgHOsabbTzIQhPVuIzP/5C/LUVRl9wYOu7tExAQAAAPQNy7fUGe2BeV6VFvozFM1egRV/N9qxgeMVG3pwhqIBAABAMlE0g17Lu/ljox0tmS7l7JlAlVWYk6tpw/qlLS4AAAAA6Azbtlu5Ma31ohlXpFb+1U8bfaFJ50q+totsAAAAAKCzmu+COb6dgv4O2bZyl9xndEVLDlGsZHr3jwkAAACgz9hWGzHa4wbnyeXK7GLI7rot8n3xhtEXmnKRlOG4AAAAkBwUzaDX8lY0K5opnSFJCkUtrW52cWdaKUUzAAAAALJLRU1YdWFzy9u2VnP2r3pK7ujexQFsl1uhqZemND4AAAAAztAQievLnSGjr62C/s7wbnpXOTvKjb7g9Ku6fTwAAAAAfUtD1Lw2UuD3ZCiSvQIrn5DLthJt25un8PjTMhgRAAAAkomiGfRKruCOFhdcosP3FM2s3lqnmGUn+t0u6YBhBWmNDwAAAAA60nwl5wG5ORpc4Gs50Iord9kjRldkv+Nl9R+eyvAAAAAAOMTarxtkN2l7XNLYQa0X9HdG7uK/GO1Y0RhF9j2228cDAAAA0Lc0RMyimXxfhotm4lH5Vz5hdIXGnS7bxyLNAAAAfQVFM+iVvBWfGG3bm6fY4KmSpLKKOuOxscV5mZ9cAQAAAEAz5dsajPaEIflyuVwtxvk2vinP7k1GX3Da5akMDQAAAICDNC/o329grgLe7l1CzNm6TL6Kj42+4EFXSS4uSQIAAADYoz5iGe3cDN/X5dv4pjwN24y+0AEXZSgaAAAApEJOpgMAusO72bzgEi05WPLsWZG5rKLWeGzaMKr+AQAAAGSf8mY3pk0Y3PpKzoGyh4x2rHiyYsMOTVVYAAAAABymxdxkSH63j5W75D6jHc8brPD407p9PAAAAADJ4/GkpjjF7Xa3224uFDWLZgr8OSmLrTNyVzxmtGMl06UhU8QSza3rar7Ru5FvZyHfzkGunYV870HRDHolb7NVyqKlR0iSLNvWskpzp5lppQVpiwsAAAAAOsO2ba3uxI1pnu1rWq7SPPUyqZUdaQAAAACgO1rbBbM73Ls2yrf+FaMvdODlksff3dAAAAAAJFFRUVFazlNYWNju4xHbvFFzUGFB2mJrYcd66av3ja6cGd/NXDy9UEf5Rt9Cvp2FfDsHuXYWp+bbmaVC6NXcdVuVU73e6IsOnyFJ+nJnSDWhmPHYgaXsNAMAAAAgu3xdF1V10Jy7jB/c8sa03Ga7zFi5AxUed0oqQwMAAADgIOGYpfU7gkbf+DZ2wexI7tIH5LL3rhhteQsUmnxhj+IDAAAA0PfUh83rI3n+DK77vfABs51bJE06IyOhAAAAIHUomkGv4634xGhbvgLFiidLksoqao3HhvTzaWh/VjADAAAAkF3WbDN3mcn3eVQ6wJy7uII75F/7rNEXmnIRqzQDAAAASJr12xsUt2yjb1wrBf0dcTVsV2D1U0ZfaMoFsv0sbAYAAADAVB+JG+0CvyczgUSD0tK/m30HXiR5A5mJBwAAACmTwTJtoHu8FR8Z7diwwyT3nm/l5kUzU4cVpC0uAAAAAJnl8aTuoorb7W633VVrvzZXcp4wJF/eHHOKHlj1hFzxSKJte3yKTLs4pa8TeyQ738he5NpZyLezkG9nId/IVr1hjtJ8bjJqn4D65/q6fJzAir/LFQ8n2rbbq8j0K5m/JAG/45yFfDsL+XYW8u0c5BrZrLq6OiXHdbvdKiwsTLRrampkWVab42uDYaNtR8Mpi609vtVPKz9onrdm/7NlZSCW3qSr+UbvRr6dhXw7B7l2lmzId1FRUVrP1xqKZtDreCs+NtqR0hmJr8sq64zHppWyghkAAADgFOmcZDf9QKE71u9cb7QPHDXQjD8WkZabq5u5ppytAcPH9+i86J6e5hu9B7l2FvLtLOTbWcg3skVvmKNs2LXZaE8dsU/X447US8sfNbpcU8/VgBETuxUT2sfvOGch385Cvp2FfDsHuUY2icfjHQ9KAsuy2j1Xfdh8LOBJX2xN+cr+ZrQjI45WtP9IKQOx9GYd5Rt9C/l2FvLtHOTaWZyab5YzQK/irq2Up2aT0RcdfoQkaWd9VJuqQ8ZjB1I0AwAAACALrayoMdpTSvubA1YtkOqqzL7Dr0ltUAAAAAAcp8XcZFj/Nka2Y8nfpGarM+vI7/cgKgAAAAB9WUPUXNk8z5f+HSo9X6+Sd+sSoy805cK0xwEAAID0oGgGvYp380dG2/IPUHzQBEnSsspa47Fcr1tji/PSFhsAAAAAdMbO+ogqa8yC/8nDmqw2aNvSx/eYTxp5pDTswNQHBwAAAMAxonFLq6vMaytTSru4Eno8Jn34R7Nv3EnSYHaZAQAAANBSzLIVjplFM/kZKJoJrPi70Y7nD1Fkv2+lPQ4AAACkR06mAwC6wlvxsdGOlh4mufbUfpVV1BmPHVBSoBy3K22xAQAAAMis6urqjgd1k9vtVmHh3pvHampqZFlWO89o2ydf7DLagRy3inKiifg9lYvUv9Jc3azugEsVTeHrgymZ+UZ2I9fOQr6dhXw7S6bzXVRUlLZzoXfJ9jnK2m31ijS7Wa00z+pS3N7yZ1VQs8noq516hWLMX5Im07/jkF7k21nIt7OQb+fIhlwzR0E2C0biLfpyveld99sVqVVg7XNGX3jSeZKbWykBAAD6Kv7SQ+9h260UzcxIfF3WbKeZaaX90hIWAAAAgOwQj7e80JIqlmV1+3wrt5hzl/2L8+SyLTUeLm/J/cbj8X6lCo06Vkrj64OpJ/lG70KunYV8Owv5dhbyjWyR7XOUVc3mJsP6+1Xgc3f+OLatfgv/bHRFhxyk8JDpzF9SiN9xzkK+nYV8Owv5dg5yDZgaoi1/HtK904y//Fm5og2Jtu3yKDT5vLTGAAAAgPRKb5k20AOuSK1s/wCjLzr8CElSOGZp9dZ647FppQXpCg0AAAAAOq18mzl3mTAkL/G1u7ZSvvX/NB4PTb1Ucqf3ghEAAACAvq/53GR8k7lJZ3i/+kA521cZfcHpV0kuV49jAwAAANA3NURa7ryUm86iGdtWYPnfja7Ift+SVTA0fTEAAAAg7dhppg9asGCBHnvsMUnSzTffrHHjxmU4ouSw/f216/zn5QpWy1v5qXKqFiu+z/6SpNVV9YrG7cRYt0uaUkLRDAAAAIDss6ZZwf/4wfmJrwPL/yaXvXeVNdubp9Ckc9MWGwAAAADnWLO1wWg3nZt0Ru6S+4x2vHBfRfY7rsdxAQAAAOi76iPmTjP+HJdy3OkrvM/Zskg5O9cafaEpF6Xt/AAAAMgMimb6mE2bNunJJ5+U3+9XOBzOdDgpYecWKTLmREXGnJjoW76lzhgzdlCeCvx8ewMAAADILnXhmL7aZc7VJgz5141p0QYFVj5uPBaacLZsf/90hQcAAADAISzbbmUXzM4XzXi+XinfV+8bfQ0HfYddMgEAAAC0Kxg1i2byvOmdQwRWmLvMxAtHKjriyLTGAAAAgPSjqqAPicViuvvuu7Xvvvtq6NCheu+99zIdUtpsq40Y7XGD8zIUCQAAAAC0be02cyXnHLdLowfmSpIC5QvkDtcYj4emXpq22AAAAAA4x6bqkIJRy+ibMKTz11ZyF5u7zFi5AxWecFZSYgMAAACQGh5PagpU3G53u+2mgjGznefzpCyu5lwNO+Rf/4rRFz7gYnlyvGk5f1/RlXyj9yPfzkK+nYNcOwv53oOimT7kmWee0ebNm/Xb3/5Wzz77bKbDSau6Zlt39gvwrQ0AAAAg+6xptpLzmEG58uW4JdtWoOxh47HIqFmKF41OZ3gAAAAAHGLNVnNuMijfq0H5vk491737K/nXvWT0BaddLuX4kxUeAAAAgBQoKipKy3kKCwvbfMzlNeci/XJ9aYtLKx+W4k0WZvb4lXfkVcrLS9P5+6j28o2+h3w7C/l2DnLtLE7Nt6MrC2pqarRu3TqtW7dO69ev1/r161VbWytJmjlzpq677rpOH+vrr7/Wyy+/rMWLF2vHjh3KycnR0KFDdcQRR+jEE0+U35/aCwUbNmzQP/7xD5177rkaPnx4Ss+VjerC5jIEBb70bt0JAAAAAJ2xZqu508z4wfmSJO9X7yunep3xWHDa5ekKCwAAAIDDlDebm0wYkt/p5+YufUAue+9iZrY3T6EpFyUtNgAAAAB9V33YXBi5wJ+m2xctS1r0oNk3+Uwpb5/0nB8AAAAZ5eiimauuuiopx1m4cKHuuusuBYPBRF84HE4U4rzxxhu66aabNHTo0KScr7loNKq7775b++67r04//fSUnCPbtZxQUTQDAAAAIPuUN9tpZsKQPElSbpl5oSZWNFbREUenLS4AAAAAztJ8F8wJgztXNOMK7lRg1XyjLzTpfNkBZ65OCAAAAKBr6pstjJyXrqKZ9W9K1RvNvkOvTM+5AQAAkHGOLpppatCgQSotLVVZWVmXnvfFF1/o9ttvVyQSUSAQ0BlnnKEpU6YoEonogw8+0BtvvKEtW7bolltu0W9+8xvl5uYmPfYnnnhCW7Zs0W9+8xu53e6kH783qIuYRTP5FM0AAAAAyDKhaFxf7AgafROG5MtTvUG+L98xx067THK50hkeAAAAAIewbVtrtrZe0N+RwPK/yxUL7T2Wy6Pggd9OanwAAAAAUqO6ujolx3W73Sos3FtIX1NTI8uyWh27vabOaPtcVsriair/o3vla9KODZqg2vyxUhrO3dd0Jd/o/ci3s5Bv5yDXzpIN+S4qKkrr+Vrj6KKZuXPnasyYMRozZowGDBigbdu26frrr+/SMR566CFFIhF5PB798pe/1Lhx4xKPTZkyRSUlJfrb3/6mLVu26Pnnn9e5557b4hiPPPKIotFop885Z84clZSUSJLWrl2r559/Xuecc45GjhzZpdj7krrmO834KJoBAAAAkF3WbQ/Ksve23S5p/0F5Cnz0sDHO8hcqNP7MNEcHAAAAwCkqa8KqbXZdZcKQTuw0Ewspd9kjRld43Kmy+g1LZngAAAAAUiQej3c8KAksy2rzXHXNdprJ9bpTHpe7tlLeL940+kJTLlKcm4OTor18o+8h385Cvp2DXDuLU/Pt6KKZ1gpYumLdunVavXq1JOmYY44xCmYanXLKKXrrrbdUUVGhl19+WWeddZZycsy3/bXXXlM4HO70eWfMmKGSkhLF43HdfffdGjVqlM4444wevZberr7ZTjMF6dq6EwAAAAA6qflKzvvuk6s8q06B1U8b/aHJ50ve5O9SCgAAAACSVL6twWgXBnI0pJ+vjdF7BVY/LXdop9EXPOiqpMYGAAAAoG8LNrvHK8/rTvk5A6uekMveWyBjefMVHndays8LAACA7EFlQQ98+umnia+POeaYVse43W7NnDlTjz32mOrr67Vy5UpNmzbNGPPoo4926/yhUEhbtmyRJF144YWtjvnlL38pSbrhhht02GGHdes8vUGLnWb87DQDAAAAILs0L5oZPzhPgVXz5YoFE322y6PQARenOzQAAAAADrJmW7O5yZA8uVyu9p9kxZW75K9GV2TkNxUfNCHZ4QEAAADow5ovjJznS/E9XvGo/CvnG13h8WfI9hWk9rwAAADIKhTN9EB5ebkkye/3a/To0W2OmzRpkvGc5kUz3eX1enXssce2+tjq1au1ZcsWHXLIIerfv78GDx6clHNmo1jcUjhmbpdZkOoJFQAAAAB0UfPVnCcM9iuw3FxEITLmRFn9hqUzLAAAAAAO07ygf8Lg/A6f49vwT3l2bzL6gtOvTmpcAAAAAPq+hoh5j1d+iu/x8n3xujwN24y+0JTWF6cGAABA30XRTA9s3rxZkjR06FB5PG3/AT9s2N4bnhqfkww+n0/XXHNNq4/dfffd2rJli8444wyNGzeuy8fesWNHp8a197p7wu12t9tuqrbZZEqS+uf5UhYbkq8r+UbvR76dg1w7C/l2FvINdF00bmnddrNo5pvxz+SprTD6gtMuT2NUAAAAAJzGtu2WRTNDOiiasW3lLvqz0RUdfICipTOSHR4AAACAPi4YNXeayfWm9jpjYMXfjXZ06HR2zAQAAHAgima6KRKJqLa2VpI0cODAdscWFBTI7/crHA53uhgl06699tpOjZs/f37Hg5KgsLCwzcdqrYYWfcOHDFSej2/v3qq9fKPvId/OQa6dhXw7C/kGOrZhR1DRuG30Tdz8hNGODp6q2NDp6QwLAAAAgMNsr49qZ0PM6OuoaMZb8bG8X68w+oLTr5ZcrqTHBwAAAKBvq4+YRTOp3GnGU71Bvs0fGX2hAy5K2fkAAACQvVgSuptCoVDi60Ag0OH4xjFNn4fk2B2KGm2P26VcL7vMAAAAAMgezVdyPqZfhQJVC42+0LTLuekMAAAAQEo1n5vk+9waPsDf7nNyl9xntOP9Ryoy+sSkxwYAAACg72toVjSTl8KimcCKeUbbChQpPGZ2ys4HAACA7MVWHN0UiUQSX+fkdPw2No5p+rxUuu6663Tdddd1+/n33ntvEqNJrbqwuSJav0COXNxoBgAAACCLlG8zd8j8ju+fUpP6/3jeYIXHcqEGAAAAQGo1L5oZPzhf7nauqXi2r5Hvy3eMvuBBV0puFi8DAAAA0HUNUcto5/lStOZ3LCT/mqeNrtDEuVJO+4sGAAAAoG+iaKabfD5f4utYLNbOSHNM0+dls4EDB3ZqXHV1dUrO73a7VVhYmGjX1NTIsqxWx27Zvsto53ndKYsLqdGVfKP3I9/OQa6dhXw7Szbku6ioKK3nA3qq6Y1pxdqlGQ1vG4+HDrhI8vSO+SIAAACAzvF4UldY4na72223pfzroNGeOLSg3Tjzlt5vtK3cfRSdfG5KXxtM3c01eify7Szk21nIt3OQa6B96dppxv/5C3KHa4y+0JQLUnIuAAAAZD+KZropEAgkvg6FQh2ObxzT9Hl9QTwe73hQEliW1ea5dgfN3XsKfJ60xYXUaC/f6HvIt3OQa2ch385CvoH2xS1ba5vsNHNRzuvy2HsXX7A9Pi7UAAAAAH1QOhd8aLq4RXs+b1Y0c/DowW3Huesrae1zRpf78GtUNHhYt2JEcnQ21+gbyLezkG9nId/OQa6BvSzbVrD5TjPe1BTNBFY8ZrQjI74hq3BUSs4FAACA7MdyBt3k8/nUr18/SdKOHTvaHVtXV6dwOCyp8zu4oPPqm61AUOBndTMAAAAA2WNTdUih2J6LQD5FdZHndePx8LjTZecyVwQAAACQWjvrI6rYZRbNTB7Wzk2cH98rWXsL/uXNkw67KkXRAQAAAOjrmhfMSKnZacazbYW8W8uMvtABFyb9PAAAAOg92GmmB4YPH67Vq1erqqpK8Xi8za3oKysrjecguerCZtFMfoq27QQAAACA7ijfVp/4+lT3Ryp27TYeD067PM0RAQAAAHCilZU1Rtuf49aY4vzWBwerpUUPmX0HXSLl7ZOa4AAAAACkXFv3tvWU2+1ut90oFIu36OuX6016XHmrHjfaVkGJ4mOOl8fNPWXJ0Nl8o28g385Cvp2DXDsL+d6DopkeGD9+vFavXq1wOKwNGzZo//33b3XcqlWrjOcguZoXzbDTDAAAAIBssmZrY9GMrW/nvGI8FimdofigCekPCgAAAEDKVVdXp+zYbrdbhYV7d4mpqamRZbVctbmpz9ZVGe1xxXmq3V3T6tjAp3crN7p3AQDb5dbuSRfLSuFrQuu6k2v0XuTbWci3s5Bv58iGXBcVFaX1fOg90vW90fRnoKmdsboWfaWDB8mXk8QbN0M1UvmzRpf7kG+raGBx8s4BQ1v5Rt9Evp2FfDsHuXYWp+abopkeOOyww7RgwQJJ0ltvvdVq0YxlWXrnnXckSfn5+Zo8eXI6Q3SE+ghFMwAAAACy15qtDZKkw1xrNMW90XgsdOC3MxARAAAAgHSIx1uuopwqlmV1eL7VVeYNauMH57X+nFhY/rIHja7I2DmKFgyT0via0LrO5Bp9B/l2FvLtLOTbOcg1sFdDs4WRvR5XcgtmJKnsCSnasLft8kjTL0nuOQAAANDrUDTTA2PHjtXEiRO1evVqvfXWW5o1a5bGjRtnjHnhhRdUUVEhSZo9e7ZycvrWW57pbTslqT5irshREEj+tp1ILbb+chby7Rzk2lnIt7OQb6DzbNtW+bY9qzM332Um3n+kIqOOyURYAAAAABxo7y6Ye0wYkt/qOH/5P+Ru2G70NRx0VcriAgAAAOAMdeGY0c73J/k+OtuWFt5v9k2YI/UfltzzAAAAoNfpWxUcXbRmzRpVVe3din737t2Jr6uqqvT2228b42fNmtXiGJdffrl+9atfKRKJ6Oabb9aZZ56pyZMnKxKJ6MMPP9Trr78uSSopKdGpp56akteRSZnetlOSwpbLaBcPKGCr2V7OqVt/ORX5dg5y7Szk21nIN9C2ypqwasNxDXd9rRPcC43HgtMuldwU/AMAAABIvbpwTF/tCht9rRbNWHHlLvmr0RUZcZTig6ekMjwAAAAAaVBdXZ2S47rdbuN6YU1NjSzLajFu685dRjs3x53UmHIqPlW/r9cYfbUTzlMsRa/bqTqbb/QN5NtZyLdzkGtnyYZ8Z8N9/Y4umnnjjTf0zjvvtPpYeXm5ysvLjb7Wimb2228//ehHP9Jdd92lYDCoefPmtRhTUlKim266Sbm5uUmJG6bmqxD0C3gzFAkAAAAAmNZsa5AkXep5VR6Xnei3vAUKT5ybqbAAAAAAOEz5v+YmjXLcLo0e2PK6le+L15Wz6wujL3jQ1SmNDQAAAEB6xOPxtJzHsqxWz1UXihrtXK87qTHllj1qtOOF+yo87HApTa/bqdrKN/om8u0s5Ns5yLWzODXfji6aSZZDDjlEt912m1566SUtXrxYO3fuVE5OjoYOHaoZM2bopJNOkt/vz3SYfVZtqFnRTLK37gQAAACAblqztV55Cul8z1tGf3jSXNm+fhmKCgAAAIDTrNlab7THDMqVL8dtDrJt5S7+i9EVGzRJ0RFHpTo8AAAAAA7QEDFXNM/3eZJ2bFfDdvnXv2L0BadcKLncbTwDAAAATuLo6oLrrrtO1113XVKOVVxcrMsuu0yXXXZZUo7XW2R6205J2tUQNtquWChlcSE1smHrL6QP+XYOcu0s5NtZsiHf2bBtJ7KPx5O8iyvNud3udtttKd/WoLM976q/a++qzrZcihz47ZTGi57pbr7R+5BrZyHfzkK+nYV8Ax1rvtPM+MH5LcbkbFko79alRl/D9KsklyuVoQEAAABwiIaIuaJ5ni958/fA6qfksvbuZGN7fApPOCtpxwcAAEDv5uiiGfRcprftlKT6cLMJldflyG2j+hKnbv3lVOTbOci1s5BvZyHfyBbpLKZqWjjWFtu29fm2Ot3sMVc2c42frcL9DkxRZEiFzuQbfQO5dhby7Szk21nIN9BS851mJgzJazEmr9kuM/F+pYqMnZPSuAAAAAA4R0O0edFMkhYXs+IKrJhndIXHniw7l0X4AAAAsAfLraFXs21b9c1WIUjm1p0AAAAA0F3basOaHPxMo91V5gOHX5OZgAAAAAA4Uiga18adQaNvwhBzpxnPzs/l2/im0Rc88ArJzfp7AAAAAJKjxU4z3uTc4+X96j15ajcbfaEDLkrKsQEAANA3UDSDXq0hasmyzb4CPxdwAAAAAGTeiooaXdFslxl78CRpv29mKCIAAAAATrRld6TFtZT9B5k7zeQu+avRtvwDFJp0bqpDAwAAAOAg9RHLaCdrp5nA8seMdmzQJMWGHJiUYwMAAKBvoLoAvVp9ON6ij51mAAAAAGeqrq5O2bHdbrcKCwsT7ZqaGlmW1c4zpC9WfKzveJYbfQ0HXKbIrl2pCBFJ1J18o3ci185Cvp2FfDtLpvNdVFSUtnMB3VETjBntfJ9buU2upbjrquQvf9YYE5p6seQ1C2sAAAAAoCeC0WY7zfh6vt63u7ZSvi/fMs8z5ULJ5erxsQEAANB3UDSDXq0uHGvRl++naAYAAABwoni8ZVF9qliW1eH5xmycZ7TrPIUK7X+KlMY4kRydyTf6BnLtLOTbWci3s5BvwLQrGDXaA3K9RjtQ9pBc1t4xtsev4AGXpCU2AAAAAM5RH2leNNPze7wCK+fJZe9dOMPyFig87rQeHxcAAAB9C0Uz6BGPJzUFKm63u912o4ZmNTO5Xrf8Xr6te5vO5ht9A/l2DnLtLOTbWcg30DFXsFpH1L9h9G0YfqaG5QQyFBEAAAAAp9oVMi+mFAb2XkdxhWsVWGEW/IcmzpWdNygtsQEAAABwjoZmRTP5PS2aiUcUWDXf6ApPOEPy5ffsuAAAAOhzqC5AjxQVFaXlPIWFha32u742L/T0C3jTFhNSp618o28i385Brp2FfDsL+QZaspc+poAiiXbU9ih2ICs1AwAAAEi/mmCzopncvZcHAysfkztal2jbcil44BVpiw0AAACAcwQjltHO9fZsYT7fF6/L3bDd6AtNubBHxwQAAEDfxJLQ6NVqQ1Gj3S9AHRgAAACADLNtBdY8ZXS9Ys/QsNJRGQoIAAAAgJPtalY0M6CxaCYeVqDsYeOxyJiTZA3YN02RAQAAAHCS+mhyd5oJLP+70Y6WHKL4wPE9OiYAAAD6Jopm0KvVhlruNAMAAAAAmeTZUa6C+k1G3zuFpynH7cpQRAAAAACcrK2dZvzlz8tTv9V4LDj96rTFBQAAAMBZGiJm0UxeD4pmPNXr5av42OgLTbmo28cDAABA38a2HOiR6urqlBzX7XarsLAw0a6pqZFlWS3GbavebbQDHjtlMSF1Optv9A3k2znItbOQb2fJhnwXFRWl9XxAV/jXv2K0N9uDpJLpGYoGAAAAgNPtCkaNdmEgR7It5S65z+iPlB6u2JCp6QwNAAAAgIM0RMzriXne7hfNBFY8ZrStwD4Kjz2x28cDAABA30bRDHokHo93PCgJLMtq9Vy1zVZHy/d50hYTUqetfKNvIt/OQa6dhXw7C/kGTL5mRTOvxA/V+KEFGYoGAAAAgNPVhMxrKQNyvfJtfEs51euMfnaZAQAAAJAqtm0rGG2+04y7eweLBuVf84zRFZo0V/L4uxseAAAA+jiKZtCr1UXMCz0F/s6tQBCNRtXQ0KBIJCLbtmXbdirCQye5XC5t37490Y5Go+SkDyPfzkGunYV8O0t38+12u5WTk6NAICC/3y+3u5sfhANZzLNznXJ2fm70vRQ/XFcWtn2hxrIshcNhhUIhxWIxdurKAvy75hzk2lnIt7OQb2fpTr5dLpdcLpd8Pp/y8vLk9XpTHSaQMTXNFiArzM1R7uK/GH2xfcYpOnKmJOYo2YZ/05yFfDsL+XYW8u0c3c01cxT0daGoJavZj0Ker3s7zfg/f1Hu8O5E25ZLockX9CQ8AAAA9HEUzaBXqw+bKxDkdzCZsm1bNTU1CgaDqQwL3dD0QyIuwPV95Ns5yLWzkG9n6U6+LctSLBZTKBSSy+XSgAEDFAgEUhUikBHNd5mpsou0xB6rffJav8AZCoW0a9cuLpBnIf5dcw5y7Szk21nIt7N0N9+xWEwNDQ3Kzc1VYWGhXC5XKsIDMmpXs6KZfYMr5d2y0OgLTr9acrmYo2Qp/k1zFvLtLOTbWci3c/Qk18xR0Fc1RFv+LOR5u1c0E1jxd6MdHfkNWYUju3UsAAAAOANFM+jV6iJm0UxHO83U1dW1KJhhhfPsQB6chXw7B7l2FvLtLN3Jd9Md/mzbVnV1tYqKiiicQZ/ib1Y080r8UNlyqyi35fQ7FAqpurra6GtcTRCZx79rzkGunYV8Owv5dpbu5LvpzWvBYFAej0f9+vVLZlhAxlm2rd0hs2hm/MZHjXa8YKjC+5/CHCWL8W+as5BvZyHfzkK+naO7uWaOglTzeLpXpNKR5t/zrf0MhOKRFn39cr1djsmzdbm825YZfZFpl6TstaGlzuQbfQf5dhby7Rzk2lnI9x4UzaBXqwt3vmgmFouprq4u0e7Xr5/y8vIc+8OfbXJy9v46isVi7YxEX0C+nYNcOwv5dpbu5Nu2bUUiEdXX1yscDkuSdu3apcGDB/M3GfoE966Nytm+2uh7OX64JGlAs6IZy7K0a9euRNvv9ys/P18+n48b0rIE/645B7l2FvLtLOTbWbqTb8uy1NDQoNraWkl7Fl3Kzc01jgX0dnXhuKwmm8aMdlVqn4q3jDHBaVfIcnm0a9eORB9zlOzCv2nOQr6dhXw7C/l2ju7mmjkKUq2oqCgt5yksLGzRV9FgXgv0uF0aWjyw6/ONd+eb7f6lKjjwLMnDz0mmtJZv9F3k21nIt3OQa2dxar65Mw29Wn2zopl8X9tFM403ZkpSfn6+CgoKuDkTAAAgjVwul/x+v4qKiuT3+yXtKaRp+nca0Jv51//TaH9t99dn9ngVBnKU4zHnHuFwOLHzUtOfC25GAwAASB+3262CggLl5+cn+pifoK/ZFTRv0vyO50W5tLeKxvL1U3jyecxRAAAAsgBzFPRlDRHzHq88n6fr843gLmn5U2bfwZdTMAMAAIAOUTGAXq0u0nynmbYnQU0/SMjNzU1ZTAAAAGify+UyLviEQqEMRgMkj2/9K0b71fihsuTWgLyW85Sm3/f5+fnciAYAAJBBTT8v5oY09DU1wWji62Lt0lzPe8bjoQMulu0rYI4CAACQRZijoC+qD5sF/e3d49WmZU9IseDetjtHmn5pDyMDAACAE1BmjR7xeNre2aUnmu8A09aOMHXNdprpn+ttMybLsiTtuUmTrWuzS/OLby6XK7GiHfoe8u0c5NpZyLezJCPfPp8v8bx4PJ6yvyuBdHHvrpB32zKj72XrMEnSPnneFuNjsT0Xh1wul3w+X+oDBAAAQJtycnKM+QnQl9Q02Wnm8pxX5HPtbdtun4JTL5PEHAUAACCbMEdBqlRXV6fkuG63W4WFhYl2TU1N4j6tRlt31hjtQI6ra/HYtvp/8hc1vaIYGX2C6mN+KUWvC63rTL7Rd5BvZyHfzkGunSUb8l1UVJTW87WGygH0SLq+iZv+sDZV32ynmZJBRSoqGtDq2O3btysej8vlcsnrbXnTGrIHN806C/l2DnLtLOTbWbqbb7fbLdu25fF4smJyBPSEb8M/jXa1XaCPrYmSpAG5LafeTYv6WcEZAAAgsxr/JrNtmwuD6HN2/atoJl9BXeJ53XgsPOFM2fnFkpijAAAAZBPmKEiVdBVhWZbV4lx14ajRzvW6uxRPTsUn8uxcZ/QFp1xAYVkWaC3f6LvIt7OQb+cg187i1Hy3vn0H0AtEYpbCMfPDgX6BjuvAuNgDAACQHfi7DH2Jf93LRvu1+MGK/WuditZ2mgEAAACAdNgV2lM0c77nTfV3NST6bbkUPOg7mQoLAAAAgMM0NFsYOd/XtUX5clf83WjHBuynaOkRPY4LAAAAzsBOM+i16sKxFn2dKZoBAAAAgGRy11XJW7XY6HvJOizxdVEuRTMAAACAE6VyJ163291uu9HuUFxuWboi5xWjPzrmeGnQ/mqMkIUtslfz3DSuOo++iXw7C/l2FvLtHMnOtcvlSunflUC6NETMhZHzulA042rYLt/6V42+0JQLJeYxAAAA6CQqDNAj1dXVKTmu2+1WYWFhol1TU9Niy9nN1aEWz4sF61QdC7Z6zGg0mjhGLNay4AaZ0/xDnng8zgeEfRj5dg5y7Szk21mSlW/LsmRZlqLRaJf/riwqKury+YBU8W0wL9TUu/L0oTUl0S7KY+oNAAAAOFE6565Nr6k0FbQ2a4yrUqWuHUa/b9ZP5GsS3/bt22Xbttxut3JymMNkM26adRby7Szk21nIt3N0N9eNRdFer5drIugTmu80k+dtvfC/NYFVT8plRRNt2+NXeMJZSYsNAAAAfR+feqNH4vF4x4OSwLKsFufaHYwYbY/bJa/LbjMmbtzNXs1zQ676NvLtHOTaWci3syQ737bd9t9wQG/gW2+u2PyB+1BFtHd3maI8dpoBAAAAkBm7GiIa46o0OwuGSiMOa/0JAAAAAJACLYpmOrvTjBVXYOU8oyu8/ymyAwOSFBkAAACcoPMl20CWqQubk6kCv6fFNrcAAAAAkEquhu3yVn5m9L0UP9Ro78NOMwAAAAAyZGd9RKObF80M2j8zwQAAAABwrPpo94pmvJvelae2wugLHXBR0uICAACAM3DnDnqtukjMaBd0dgUCONr111+vJ554QiNGjNDixYszHQ56kenTp+urr77Seeedpz/+8Y/GY5s2bdLBBx8sSbrzzjt1wQUXZCLEHuPnY6+O3ov2vh86q69832RCcXGxJOknP/mJbrzxRuOxefPm6Qc/+IEkadGiRRo5cmTa4wPgLL4Nr8llW4m2lZOnl+umGGMG5LLTDFrH31/oLuYnzsL8JLsxPwHQnurq6pQd2+12q7CwMNGuqamRZVktxu2oDWmM2yyaCfUbpWCz2KLRaOL5sZh5/QWZ5XK55PHsvQYWj8dTtsszf4NlXjrznUzMUbqnt+abOUr3pCvfzFEyL1m5tixLlmUpGo12+e/KoqKiLp8PSLVgxJyv5Hk7t9Z37vK/G+1Y8WTFBk9NWlwAAABwBnaaQa/VfKeZfD9FM9nkgw8+UHFxceK/73znOx0+53vf+56KiooSH+Shbbfeeqvx/j744IMdPmf69OkqLi7W6aefnoYI4VRNvy+Li4tVVFSU+K/5Y8XFxZo1a1amQwYAoEf8618x2nUjZiosn9G3Tx5FM5nWk/kJF5g7xvwE2aq1OUh7cxTmJwCAZIvH4yn7r3mBjGVZrY7bFYxqjGuLMTY2YN8W43rDTdp9SVfmKI25aZyjDBo0KF1h9lq9eY7S/GeRn82+pfkcZNCgQcYcZdCgQcxR+jB+vp0j2bm2bbvLfysC2agh0vWdZty7N8v75dtGX3DKhZLLlczQAAAA4AAUzaDXqm9WNMNOM9ntueee06pVqzIdRp91++23KxwOZzoMAOizNm3alLhQOW/evEyHAyBLuILV8m7+yOjbUvItc4ykwlw2ec02zE9Si/kJAKQW8xMAnWXbtnYFoxrdrGgmPmBMhiJCW5ijpBZzFABILeYoADqjvlnRTH4n7vMKrHxcLu0tPLN8BQqPOy3psQEAAKDv484d9Fp1zSdT7DST1Wzb1q233qqHHnooo3H88Y9/7PY24NmssrJSDz/8sK6++upMh+JII0eO1Ndff53pMLLKgQceqDvvvLPF1uPNBQKBdIaVNIsXL850CGjDBRdcoAsuuCDTYQBwCN8Xb8hl7/33zc4J6IvCGZI2JfoKc3PkcbPiWbZhfpJazE8yi/lJS43zE0ntzlGYnyDZmJ8AyLSGqKUia5f6uxqM/njR6AxFhLYwR0kt5iiZxRylJeYoyBTmKAAyKRg1d8vM7ahoJh5RYNV8oys8/kzJm5fs0AAAAOAAFM2g16prvtMMRTNZa+DAgdqxY4defPFFLVu2TFOnTs10SH1K4/t7xx136JJLLlFubm6mQwKUl5eniRMnKidn758asVgsgxEBAJB8kVEzVffN/5Bv/SvyVn6qyMhvanvEa4zZJ8/bxrORKcxPUov5CbJR4/xEEnMUAICj1ARjLXaZsTx+Wf2GZSgitIY5SmoxR0E2Yo4CAHCiFjvNeN3tjvdteFXu4A6jLzTlwqTHBQAAAGdo/69PIIs1n0wVdGLbTmTGVVddJb/fL0n67W9/m+Fo+p7rr79ekrRt2zY9+OCDGY4GAADAOez8YoWmXqLdZ/5dO7/9keqP/KmqG8ybGwbkslZFtmF+klrMTwAAALLHrmBUo92VRp81YD/JxeXBbMIcJbWYowAAAGSHhmb3eeV1cJ9X7vLHjHZ02KGKDxyX9LgAAADgDHwqjl6r5U4z3IyWrYYNG6ZLLrlEkvTqq692e0tuy7L03nvv6de//rXmzJmj8ePHq6SkRGPGjNGsWbP061//Wps3b273GNdff72Ki4s1ffp0o/+2225TcXGxiouLtX79+g5jOeecc1RcXKzJkye32Cq90UsvvaQrrrhCBx54oIYPH64xY8bouOOO0//93/9p165dnX7dHTn11FM1efJkSdJdd92l+vr6Hh1v1apV+vGPf6zDDjtMI0eO1L777qujjz5av/zlL7Vp06Y2n7dp06bEezhv3jxJ0gsvvKDzzz9fU6ZM0dChQ3X66acnxhYVFamoqMgYe84552jixIkaNWqUZs2apfvuu0/RaDRxDtu29fTTT+v000/XxIkTNXLkSB177LF66KGHZNt2m7HV19frH//4h370ox9p1qxZGj16tEpKSjRhwgSddtppuvvuu1VXV9ft96y1195o3rx5icc689+tt97a6jni8bgef/xxXXjhhZoyZYpKS0s1btw4nXzyybr33nsVDAY7jHPt2rW6/vrrNW3aNA0fPlzTpk3Td7/7XS1ZsqTbrz0VTj/9dBUXFye+X9py6623Jt639tTV1emee+7RmWeeqUmTJmnYsGHab7/9dMwxx+hnP/uZPvnkky7HOH36dBUXFycuuLYmHo/rgQce0Iknnqj99ttPo0eP1rHHHqu7775b4XC4S+frye+ThQsX6n//9391+umnG6//qKOO0k9+8hOVl5e3+/zmvzdramr0m9/8RkcffbRGjRqlMWPG6NRTT9VTTz3VpdfUnsaf87Fjx2rUqFH6xje+od/+9reqqanp8LlNf+ba+p1VVlamH/7whzr88MM1atSoxM/Dt771Ld1444165ZVXjN8pxcXFOvjggxPtH/zgBx3+7G7cuFH33HOPLrroIk2fPl0jRozQiBEjdNBBB+k73/mO3njjjS69Dsuy9Mgjj2jOnDmJ92XmzJn6/e9/r4aGhg7fF8uy9Mwzz+jyyy/XgQcemIjn8MMP1zXXXKPnnnvO+H3b3Pvvv6/rrrtOhxxyiEaOHKn99ttPRx55pH71q19py5YtbT4PcBI7b5CsAfuqOmj+LLHTTPZhfsL8hPkJ85OuYH7SEvMT5ifZOD/55je/yfwEaEVNMKYxLrNoJl40OkPRoC3MUZijMEdhjtIVzFFaYo7CHCUb5yhcQwFMtm2rIWoZfe0VzXh2fi5vpflvUJBdZgAAANADVBmgRzye1Ozu4na7221LLXea6RfIaTcel8uVnODQLT/84Q/197//XcFgULfccouefPLJxGOdzc1tt92m//u//2vRv3v3bq1cuVIrV67UQw89pHvuuUcnn3xyl+I766yzEiu4PfPMM/rJT37S5tht27bpvffekySdeeaZLb7vdu3apSuuuCIxplE4HFZZWZnKysr04IMP6pFHHtEhhxzSpThb43K5dOONN+qyyy7T9u3bdd999+lHP/pRt451++2365ZbbpFlmR9WlJeXq7y8XA899JB+97vf6bzzzmv3OLZt67rrrtP8+fNbjbe1+Juv8LZy5Ur9/Oc/1wcffKD7779fsVhM1157rZ5//nlj3PLly/WTn/xEy5Yt0+9///tW47nwwgv14YcftujfsWOHPvroI3300Ud68MEHNW/ePO2///7tvrZM2Lx5sy6++GKtXLnS6I9EIvr000/16aefJuIfM2ZMq8dYsGCBrr/+euNCQ2VlpZ555hk999xzrf5s9VRruW7vwlwqvPPOO/rud7+rHTvMbZuj0ahWrFihFStW6P7779fXX3+d1PPW1dXpggsu0Mcff2z0L1++XMuXL9czzzyjP/zhDx0ep6e/T+bNm6cf/OAHLfqj0ajWrl2rtWvX6tFHH9X//u//6oorrugwnnXr1um8885rcSHl448/1scff6xFixYlvpe6k+9YLKbvfve7eu6554z+NWvWaM2aNXrqqad6fGHpT3/6k37961+3+D1XWVmpyspKLVu2TA8++KC++OILFRQUdOscX375pQ499NBWH9u8ebM2b96sZ599Vuecc47uvPNO5eS0/yd5MBjUOeeco3fffdfoX7VqlVatWqV//vOfeuaZZ5Sfn9/q8zdt2qTLLrtMK1asaPHYhg0btGHDBj399NNasGCBjjrqKOPxUCikH/zgB/rHP/7R4rmrV6/W6tWr9eCDD+rPf/6zTjzxxHZfR3tcLlfK/q4E0q26wbx4WpTHtDsbtTc/6SzmJ63rbfOT1jA/aV9vnZ9kA+Yn6Z2ffPbZZ/rd737X4XHawvykdb1hfnLffffp+OOPb/d1AE6xKxjTaJd5o2Z8wH4ZigbtYY7CHKU9zFHaxxyl+5ijMEdpjjmKKVuuoQB9QSRuK26Z147bK5oJrDALba3cfRQZw88RAAAAuo+7d9AjRUVFaTlPYWFhi75w3LwZu7iof7vxbN++XbZty+12d/jBCnqu6UUQj8ej4cOH64orrtDdd9+tt99+W5999pmOOOKINp/fWo4sy9LQoUN18skn69BDD9W+++6rQCCgiooKffLJJ3rggQdUV1ena665Rm+//bbGjx/f4hhNC7CanmPcuHE65JBDtHDhQj3zzDO66aab2ozt+eefT6yMdt555xnHCYfDmjt3rsrKyuTxeDR37lwdf/zxGjVqlKLRqD788EPdc889+vrrr3XBBRfonXfe0ciRI9s8V1uav47TTjtNBx54oJYuXap77rlHV199tfr379/qc10uV6vv71//+lf9z//8jyRp0KBBiRWE4vG43nnnncQKbN///vdVXFysE044wXh+02P+5S9/0cqVK3XEEUfoiiuu0NixY1VTU6NNmza1uED28MMPa+HChTr++ON16aWXasSIEaqoqNAf/vAHLVy4UC+++KKeeOIJrVy5Us8//7zmzp2ruXPnaujQoVq/fr1++9vfJj60Pu2003Tccce1eG3xeFyTJk3S7NmzddBBB2no0KGybVtfffWVXnjhBS1YsEBffvmlLrvsMr377rsKBALtvvfN37+mbY/HY7RPO+00Y3Wl1vy///f/EismjRo1ynj+zp07dcopp6iiokJ+v1+XXnqpjjrqKI0cOVL19fV688039ec//1lffPGFzj//fL399tstfmcuXrxY1157rWKxmPx+v6699lodf/zx8vv9WrRokX7/+9/rxhtvNH5mevp7srUb4Dt7Q3xjsU1b36uN2vp5bvTee+/p/PPPVywWk8fj0Xnnnac5c+Zo+PDhCoVCKi8v1+uvv65XXnmlxfM7OnbTca09ft111yUu9hx88MG69tprNWbMGG3btk3z5s3TggULjAvLzb9vpOT8PrFtWwMGDNCcOXN05JFHavTo0crPz9eWLVu0bNky/fnPf9aOHTv0s5/9TBMmTNA3v/nNNt/nYDCoiy++WNXV1brhhhs0a9Ys5efna9myZfrtb3+ryspK/fWvf9VJJ52kb33rW90qgPjVr36VuNiz//776wc/+IEmT56s3bt3a8GCBXrkkUd09dVXt/v+Nz1vTk6O8fiKFSsSF3tGjRqlq666SgcccICKiopUW1urdevW6b333tPLL79sPPeDDz5QVVWVzj77bEnSL37xC82ZM8c4b3FxcWK8y+WSz+fTscceq2OOOUbjx49XUVGRqqurtW7dOv31r3/VmjVr9OSTT2q//fZr9d+cpq/jxz/+sRYuXKgLLrhAZ5xxhoYMGaLNmzfrjjvu0GeffabFixfr9ttv169//esWx9m2bZtOOeWUxEpm3/zmN3XBBRdo//33l8vl0pdffql3331Xzz77bIvvQ9u2deWVV+rVV1+VJJ100kk644wztO+++8rtdmvx4sX64x//qM2bN+uKK67QK6+8ooMOOqjN/Lam8fvL6/Wm7e9KINWqG2JGu4idZrLS0KFDdfnll+vee+/V22+/rY8//lgzZszo0jFisZiGDBmiOXPm6NBDD9WoUaPk9/tVWVmpzz77TA888IDq6+t1zTXX6I033tC4ceM6fezRo0fr4IMP1qJFi/T000+3e0PaggULEvOTuXPnGo+Fw2GdffbZWrZsmTwej84++2wdd9xxGjlypKLRqD766CP96U9/Svw98eabb2rEiBFdeh9aM2fOHE2bNk1lZWW65557dOWVV6pfv35dOsYDDzxgzE++//3v67DDDlM8Hte7776rP/7xj2poaND3v/997bPPPu3eHN04P5kxY4a+/e1va8yYMYn5SXMPP/ywFi1apOOOO04XX3yxhg8frsrKSt1xxx1atGiRXnzxRT322GNatWqVnn/+eZ199tk666yzNGTIEG3YsEH/93//p88//1yPPvqoTj75ZH3rW99qcY5YLKZJkybpxBNP1IEHHmjMT1566SU9++yz+vLLL3XppZfqrbfeand+0lVz5szRgQce2O6Y//iP/9Cbb74pSRo+fLjxWPP5ycUXX6wjjzwyMT956623dN999yXmJ2+88UaLuemSJUuM+cl3v/tdHXfccYn5ye23364bb7yxSz8zvcH7779vzE/OOecczZ49W6WlpQqHwyovL9cbb7yR+Nsrmb73ve8l5ifTp0/XNddco9GjR2vbtm16/PHH9dxzz+mGG25o9xjJ+H0Si8U0YMAAnXTSSTriiCM0evRo5eXlqaqqSsuXL9d9992XmJ/sv//++sY3vtFmPMFgUBdddJF27typH//4x/rmN7+pgoICLVu2TLfddpsqKyv1wAMPaM6cOa3+HHbGr3/968T8ZOzYsbr++usT85PnnntOjz76qK666qpuHVvac6Nr0/nJlVdeqSlTpmjAgAGqq6vTunXr9MEHH+jll182nvfuu++qqqpK5557riTppptu0uzZs40xgwYNSnwdj8fl8/l0zDHHaObMmRo/frwGDBigXbt2af369XrggQcS85NRo0bppz/9abtx/9u//ZsWLVqk8847T6effroGDx6siooK/fGPf0zMT37/+9/rV7/6VYvnbtu2TSeffLKqqqokSd/4xjd03nnnGfOT999/v8VNgNKe+ckVV1yh1157TZJ04okn6vTTT9eoUaMS85N7771Xmzdv1uWXX64XX3yxw993gBPUhGL6ZoudZlq/YRyZxRyFOQpzlLYxR0kN5ijMUZpjjpLcOUpZWZlxDYU5CpyuIdJy98E8X8sFlCVJ0Qb51zxjdIUmnit5/KkIDQAAAA5B5QB6rdqQeTNa/0DPv50t29auYKzjgX3EgNwcudO4A88Pf/hDPfTQQ6qvr9ctt9zS6odL7bn00kv105/+VF6veePhtGnTNGfOHF199dU64YQTVFlZqd///vf685//3KXjn3POOVq4cKHWrVunJUuWtHnjb+MKPWPHjm0x5tZbb1VZWZkKCwu1YMGCFh98HXHEETrnnHN04oknqqqqSv/93/+t++67r0txtuWmm27Seeedp+rqav3pT3/SjTfe2Onnbt++PXGzdUlJiV599VXjwsOMGTM0e/ZszZkzR/X19fq3f/s3LV26tEUuGq1cuVLnn3++7rnnng53Elq4cKGuvfZa/e///m+ib9q0aZo1a5ZmzJihr776Sv/5n/+p6upq3XLLLbrmmmuMcUcddZQOPfRQ1dbW6oEHHmi1aObuu+9udfWwQw45RGeeeaYuueQSnX322fr888/15JNP6pJLLmn/DeuCwsLCVgv/Gt13332JgplzzjlHF110kfH4T3/6U1VUVGjEiBF6/vnnNWrUKOPxo48+WmeccYbmzJmjjRs36s4772zxoe8NN9ygWCwmr9erp59+2lgF6eCDD9Ypp5yi448/vtUVlLqroaFBq1at6nBcaWlpu+9Pd4VCIX33u99VLBZTXl6ennjiCR199NHGmMMPP1yXXnqpNm/enNRz//Of/9RLL70kSTr++OP12GOPGYUIJ5xwgiZOnKhbbrml3eMk4/fJcccdp7lz5yovL8/onzp1qk488URdffXVOvnkk7Vy5UrdcsstrRbNNNq+fbsikYj++c9/auLEiYn+Aw88UEcffbSOOuoohUIh3X///d264LNy5Ur95S9/kbTnZ/uFF14wVimbOXOmDj/8cF177bVdPnaj5557TpZlKT8/X6+++qoGDx5sPH7kkUfq0ksvVU1NjfGeTZo0yYhl2LBhmjRpUpvnGTJkiMrKyjR06NAWj82cOVNXXHGFrr/+ej322GO6++679b3vfa/dn4NPP/1Uf/rTn4wVKqdNm6bjjjtOxxxzjFavXq1HHnlEv/jFL1oUEf37v/97omDmP/7jP/TDH/7QeHz69Ok688wz9d///d+Kxcy/gR555BG9+uqr8nq9euyxx1r8fj300EN13nnnafbs2VqzZo1uuukmvfLKK22+DsApdjbfaSa3Z0Uzlm2rxkFzlMI0zlG+//3v6+GHH1ZDQ4N++9vftroiZHsuvvhi/eQnP2l1fjJ79mx95zvf0UknnaQtW7bo9ttv1z333NOl45999tlatGiR1q9fr6VLl7Z5Uf2ZZ/ZcPBwzZkyLMbfddpuWLVumwsJCPf3005o2bZrx+IwZMzR37lzNnj1bW7du1f/8z//oT3/6U5fibMtPf/pTXXjhhaqurtaf//znDm92aWr79u36z//8T0l7bh585ZVXVFpamnj88MMP14knnqhTTz1VDQ0N+vd//3ctWrSo3fnJueeeqz/+8Y8dzk8WLVqk7373u7r55psTfdOmTdPMmTN19NFH66uvvtLNN9+s6upq3Xzzzfrud79rjDvyyCM1Y8YM1dXV6aGHHmr176I777yz1fnJwQcfrDPOOEMXXXSRzj33XK1bt05PPfWULr744vbfsC7oaH5y//33J25Gmzt3ri688ELj8Z///OeJ+ck//vGPFvOTo446SqeddppOPfVUbdy4UXfddZd+8YtfGGNuvPHGxPxk/vz5OvLIIxOPTZ8+XaeccopOOumkFqtE90RDQ4NWr14tySxObryZs9GwYcNSNj9pvAkvLy9Pjz32WIvVaQ877DBdcsklqqioSOq5X3311cQNTccdd5weffRR42/G448/Xrfddlti5fi2JOP3yXHHHaezzz671fnJCSecoKuuukqnnXaaVq5cqd/+9rft3pDWOD95+eWXNWHChER/4+cEM2fO7NH8ZNWqVfrrX/+aiO/ZZ5815gTf/OY3deihh+r666/v8rEbPf/887IsS3l5eXrppZdazE+OOOIIXXLJJdq9e7fxnk2cONFYIbmkpMSYozU3ZMgQLVq0qNX5yTe/+U1dfvnl+sEPfqDHH39c99xzj6699to2F2KRpM8++0z33HOPzjnnnETftGnT9K1vfUvHH3+8Vq9erb/97W+66aabWsxPbrzxxsTNaP/v//0/ff/73zceP+igg3TGGWfoP/7jP1rMT/72t7/ptddek9fr1aOPPtoir4cccoguvPDCxPzkF7/4hV588cU2XwfgFHX1DRruMncH6MlOM06bn0jMUZpijsIchTkKc5RkYI7CHMUpc5QZM2YY11CYo8DpWi2a8ba+CKP/8xfkjtQm2rZcCk05P2WxAQAAwBkomkGvVRsyb0brl4SimV3BmI6989MeH6e3ePMHh2mfNK58XVxcrO985zu644479N577+m9995r98PF5jrakaW0tFTf//73ddNNN+nll1+WbdsdXmxo6swzz9TPf/5zxeNxPfnkk60WzXzxxRdauHChJBkfvEl7thJv/LDy5z//eZsXjEaOHKkbbrhBN9xwg5599lndfvvtbW4H3RUnnHCCDj30UH322We6++67dfXVV2vAgAGdeu7f//53NTQ0SJJuvvnmFit1SXs+gP3Rj36k//mf/1FlZaVefPFFnXHGGa0er7CwULfeemun3v/S0tLExaam8vLydMEFF+jWW2/Vzp07deihhxoFM42GDBmik08+WY8//rg++uijVs/R2sWepmbNmqXZs2frxRdf1IsvvpjUopn2vPPOO/r5z38uac/FpzvvvNN4fNOmTYkLo7feemuLiz2Npk6dqiuvvFJ33nmn5s2bZxTNLF68WEuWLJEkXX755S0uekh7LrrcfPPNndpavrOWLFnS6rmau/vuu1tc5EqGxx9/PFEo8Ktf/apFwUxTrX2/98T9998vSfL7/brjjjta3Ynmhhtu0IIFCxIXxZpL1u+TYcOGtRtrYWGhfv7zn+uiiy7Sxx9/rJ07d2qfffZpc/wvfvGLVi90jB49WnPmzNEzzzyTWB2uqx588EFZliVJuv32242LPY3OP/98Pf3003r99de7dY5t27ZJ2vM7ofnFnqZ6ehEyPz+/3d/rLpdLN998s5544gnV19frnXfe0Wmnndbm+FNPPdUomGnk9/t11VVX6cc//rF27typNWvWaMqUKYnHP//888QFmJNPPrlFwUxTzd9v27Z1xx13SFJiZcXWDBgwQP/1X/+lc889V5988onWr1/f4e9coK9rXoRflNezeUpNMKbj71nco2P0Jq99b3raducpLi7WlVdeqbvuukvvv/++3n///Xb/Zmiuo/nJsGHDdN111+mXv/ylXnnllS7PT8444wz96le/Ujwe11NPPdXq3wNffPGFFi1aJKnlCs51dXV64IEHJEk/+9nPWtw80mjEiBH693//d91444167rnn9Lvf/S4p85Pjjz8+sZvnvffeq+985zudnp/MmzcvMT/5r//6L+NmtEZTp07VD3/4Q91yyy3asmWLXnrpJZ1++umtHq+wsFC//e1vOz0/aW33try8PJ133nm67bbbtHPnTh1yyCHGzWiNGlf2nj9/fpt/F3X0b+XMmTN10kkn6aWXXtLLL7+c1BvS2vPuu+/ql7/8paQ9N4b94Q9/MB7ftGmTFixYIEn6zW9+0+H85K677tLjjz9u3JC2ZMkSLV26VNKehTGa3ozWqKSkRP/5n//Zo9Vxm1u6dGm7BeKN7rzzTl1wwQVJO2+j+fPnJ27C+fnPf97uXKm17/eeePDBByXt+dvxD3/4Q6vzkx//+Md67rnn2p2fJOP3SUlJSbux9u/fXz/96U916aWX6pNPPulwftK4Y2Zzo0eP1uzZs/WPf/yj2/OThx56KDE/+f3vf9/q/OS8887TP/7xj8RCGF3V2flJezeHdUZn5if/9V//pSeffFINDQ165513dOqpp7Y5/uSTT27xmZi053vsyiuv1A033KCdO3eqvLxckydPTjy+bt26xAITc+bMaXEzWlOtzU8aPzO56qqr2rzJsOn85NNPP2V+AkjK2f2lPC7b6IsXdb9oxmnzE4k5SlPMUZijMEdhjpIMzFGYozBHYY4CZ2qIWkbbJSnX2/pOM4Hlfzfa0VHflNW/57sPAgAAwNna2OcQ6Jzq6uqU/FdTU2Ocp6ampsWY3c2KZuxIqN1jRqNRWZYly7IUi8Va/S8ec9YKafE23odk/Nd0JaR4PJ7o/973vpf4UOnmm29uMbZRZ85RXV2t9evXa8WKFVq+fLmWL18uv3/Pdqy1tbVav359i+c0fpjY2jmKioo0c+ZMSXtWQotEIi3GzJ8/P/H8M844w3js3Xff1e7duyXt+XCuvdgPP/xwSVI0GtWiRYu6/P629Toad5fZvXu37rzzTuOxRrZttzje22+/LWnPhZrZs2e3ed6mxQ1vvfVWi8cbnXjiicrNze3we0OSTjnlFLlcrlbHNr05/7TTTmszrsYdH3bt2qUdO3Z0+P5VVVWpvLw88X2zfPnyxIfcK1asaPU5jdr6HdLa93t7/5WXl+vyyy9XLBZTSUmJHnroIeXk5BhjXn75ZcXjceXl5emYY47p1PfUli1btHHjxkR/4wps0p4Py9t6/kknnWQUCnT1e7L5+9BZrb1ftm23+b3amZ+DWCyW2O0iLy9PF154YdJ+xjr6fgiHw/rggw8k7SnGKi4ubvP4TYsgmr8Pqfp9UlNTow0bNhi/N5temC0rK2vzvXC5XC1+7zX9b+rUqZKU+He8sz8Ljf81/h6aNGmSpkyZ0ua4phcIW/t5bPo7pvljxcXFkqTy8nJ9+umn3f7+7uprCwaD2rRpk1atWpV43zdv3pz4vbNs2bJ2X8dZZ53V5rEPOOCAxLgNGza0+Dlo/Hm6+uqruxTzypUr9cUXX7T5Pdg0vqYXkj/++OMu/6xZlqVoNNrlvxeBbNVip5k0Fqmj666//vrE/KSjXeA6Ultbqy+//FJr1qzR6tWrtXr16sSqm42PdUVxcXFifrJgwQLj75NGjSs4S3v+vWjqww8/TPw90d6NBdKelUKlPX9PlJWVdSnO9vz0pz+VtGd+0pVVrN99911Je+Ynp5xySpvjmt6o1fic1px44omt3kzSmpNPPrnN1aCb3ljR1s1vkhJFrLt27Wrx+UZrtm/frvXr1ye+b1avXq2BAwdKUlJXMm7P+vXrdeWVVyoW2zM/efjhhxUIBIwxr732WmJ+0tGquDNmzJAkVVVVGTs7vvPOO4mv27vx6+STT07JasqZ8uqrr0raMz9J1yIN0p6/Wz/88ENJe+Ynra3iK0lut7vVIu1Gqfp9Ul9fr02bNhm/N5veMNfe97/L5dLZZ5/d5uONN8219jljZzT+Tpk0aVKbN+BJ6tEiEEOGDJEkrV27VosXp+8G9Gg0qsrKSq1duzbxvldVVSXmJx393ml+A3RTTd+r5v/uvfbaa4n5SWs39LanvLxcGzdulNTx92DT+UnjwjeAk+XXbjTau3MGyfb1y0ww6BTmKHswR9mLOQpzlFRgjtI65ijMUTqLOQrQdfXNdprJ87lbLSDO2bpM3q9XGH2hKRelNDYAAAA4AzvNoEdaK3ZIBcuyjHNZtq36cLMJldfVbjyNH3ggs/bZZx9997vf1e9+9zt9+umnevPNN3Xsscd2+vlfffWV7r77br366qv66quv2h27c+dO7bvvvl2Kb+7cuXrzzTe1detWvffee4kLQI2efvppSXt2BRk9erTxWNMPWpuu9N+RxlV7kmHWrFmaMWOGPv74Y91333265ppr2l3xqFHjSk1Tp05t8+KLJA0ePFgjR47Upk2b2lzdSVKiiKU1zX8Wm7+PTTW9ANHeqjtNVzSqq6tr9cLFJ598ovvuu0/vvvtuuzdb79y5s83HkqWmpkYXX3yxdu3apdzcXD366KOtXhhoXN2soaGhzQsHrdm2bVti95TGPPl8vna/L71erw444AC9//77XXglbTvyyCP17LPPGhcTmhYdpNry5csl7fkwvOkW8am2cePGxIqDre1W1VR7jyfz98mOHTt077336oUXXtCGDRva/fdwx44dbT42cODAdn+fNF2Vsba2tkurP4bDYW3YsEGS2txVp9H06dM7fdzmzjrrLN1xxx0Kh8M6+eSTdeyxx+r444/X4YcfrgkTJnRpZc2ORKNRPfLII3ryySe1fPlyRSKRNsd29Htn//33b/Oxpu97XV2d8Vjjz4HX69UhhxzSiaj3avz9I0mzZ8/u9PO6+2+abdtp+7sSSKVo3FJds3lKOnd2RNcxP2nJafOT5tqbdzA/WSqpd89PJGVkjsL8ZK9MzU+6coMj8xPmJ0BfMiC0yWjX5I1UboZiQecwR2mJOQpzFOYoycccZS/mKHsxR+k85ihA1wWbFc3kej2tjguseMxox/sNU2TUrFSFBQAAAAdhpxn0Sg2RuJp/XFXga31Chexz7bXXJj4IvPXWWzv9vNdff11HH3207r///g4v9khSMBjscmyzZ89OfDj81FNPGY+VlZXp888/l6RWVwr6+uuvu3w+qXtxtudnP/uZpD0f/P3xj3/s1HN2/X/27ju+ifr/A/grSdt00QEtUGaVJXsjArJEgbKVIcgoZQiULSooCCJfQRBllQ0ie8jee6Oyd0EpCAIt0EEpXUmb/P7oL2euGU3bpE1zr+fj0cejyX3u7pN758Y7n/t87uVLAICfn1+WZXWP49bNY0x2fuh1czPdTCuX/3eaMvejvX45Yzddz5w5E+3bt8fOnTuzfDqBteORWXp6OgYOHIh79+5BJpNh3rx5JkeEio6OztE69D+D7vP6+PhAoTB/nNQ9hcMR6H5A142KlVf0v19Z7U/mHm1vrePJtWvX0KhRI8ydOxcRERFZdiBNSUkxOc3cvgqI90Njo0ya8/LlS6FuWW233HxPK1SogCVLlsDHxwdpaWk4dOgQPv/8czRt2hSVK1fGsGHD8Pvvv+d4+TpxcXFo27Ytxo8fj0uXLplt7AGyPu5YepzMfPzTNeD5+PjAxcUlq2qLWOP4QyRFcUmGNzb4unGsCnvH/ESM+QnzE+Yn1sf8JAPzEzHmJ5ZjfkKUc36p4uvURM+y+VQTyg7mKGLMUZijMEexPuYoGZijiDFHsRxzFKLsM3zSjOF5V5YSD+Xfu0XvpVT9GJDzfjAiIiIiyj3evUMFUuZkCgA8lLlPkrzdnHB4WM5HXylovPPpBj5vb28MHToUM2bMwKVLl3Do0CEEBQWZnScmJgZDhgxBUlISPDw8EBoaihYtWiAwMBBeXl7CD1mnT5/Ghx9+mOO6eXp6ok2bNti2bRv27t2LWbNmCY9737ZtGwBAoVCgc+fOBvPq/8B59OhRs6ON6StRokSO62tM48aN8e677+L06dNYsWIFhgwZYvaHZX3WGiEoq4aFvHTq1CnMmjULABAYGIhhw4bh7bffRqlSpeDu7i6M4DVjxgzMnj3b5vWZOHEiTpw4AQD47LPPjH6XdHQ/3hYpUgTbt2+3eB1lypQxeM+aoz+RZXKzza1xPFGpVBg4cCBiY2Ph7OyMgQMHok2bNihXrhx8fHygVCoBZIzsVr9+fQD28VQ2W39XO3TogGbNmmHHjh04duwY/vzzT0RHRyMmJgZbtmzBli1b0KNHD8ybN0/UmJIdX3/9tTDSXVBQEHr16oUqVarAz88Prq6uwmesVasWnjx5YhfbPTP9xqN169ahdOnSBmX0j/W68pbcOEDkyGKT1KLXchnglctrbuYoebBOI/nJBx98YHYe5ieWY34ixvwkA/OTvMf8JGeYn9gHS/ITwDBHYX5CBASkiTtOqLxNP/XbElLLTwD7yVHYhmI9zFHEmKNkYI6S95ij5AxzFPvANhSi7EtSiTsMehjpNKO8uw2ytP86KGrlTkip3N3mdSMiIiIiaWCnGSqQXqca6TRjhSfNyGUy+Lpb9qMa5c6nn36KpUuXIjY2Fj/88EOWDT67d+9GfHw8AODXX39Fs2bNjJbLagQsS3z00UfYtm0bEhIScOjQIXTs2BEajUb4wb1Zs2ZGR+nx9fUV/vfz87N6Q052jB8/HqdPn0ZSUhLmzZuHadOmmS3v4+ODZ8+eWTQyk+6x0fqPs7Zna9asAZBR3/3795v8MdIa352srF69GsuXLweQ8aPzF198Yba87jHur1+/RsWKFXPUkKaLU1xcHNLT080uI6cjc1mb7kf2rEbaSkpKMjmtcOHCePr0KZ49e2bVumVFf7/IanuaewS7NY4np0+fxj///AMA+OGHH9CnTx+j5cyNeJhX9EdWzGq7WeN76uXlhb59+6Jv374AgL/++gv79+/H8uXLERUVhU2bNqF69er49NNPs73shIQE7NixAwDQtWtXLFq0yGRZW2/7IkWKCOtRqVTZGilNd/wBMrZX5cqVDcroGswBIC3N8OkaRFL0MlncacbXzRnyXDZkM0fJG5nzk6w6zTA/yR7mJ/9hfuIDgPlJXmF+kjPMT2zD1vkJwByFyIBWizKap4BeSqLxzV2nGeYneYdtKLbFHOU/zFF8ADBHySvMUXKGOYptsA2FKG8lqcX3ebk5Z+p4p9XC9eYG0VuqNz+A1sNxnvRGRERERPkrZ0M/EOWzzJ1m3J3lUMg5AlBB4unpidDQUADA9evXsWfPHrPl79y5AyDjR1BTjT0AcPXq1VzXrWXLlsKPZLqR0c6dO4fIyEgAGT/gGVO9enXh/z///DPX9ciNBg0aoGXLlgAyGsiioqLMltf9kHf9+nWzP9q9ePEC//77r2gee3f37l0AGaPHmRu9Rzeika2cPXsW48ePB5DxXVmwYEGWo0HpvlOpqak5/m7r4qRSqXDz5k2T5dLS0sxOz0uenp4AIDTymhIREWFyWo0aNQBkxNVcw5C1BQYGCo+Bv3Llitmy5mJqjeOJ7rsPAF26dMlRPfKKq6sr3nwz46aNrOqT1XbNiYoVK2LUqFE4cOAA3N3dAQA7d+4UlbF09Lb79+9Drc64ad7cKIh///03EhMTc1ZhC+n2A7VajQsXLmRrXv3v4Pnz561aLyJHFpskvo7ycec4FQVF5vxk7969ZsszP8ke5if/YX7C/IT5CfOTrDA/McT8hChnVK9ewEsmPu8o/MrnU20ou9iGYlvMUf7DHIU5CnMU5ihZYY5iiDkKUfYlqcT3eWUeGNn5yR9wihOfu1Kq9bJ5vYiIiIhIOthphgqkxMzJlNJ+HmNOlhswYIAw2tj06dPNPlpZ98ji1NRUkyMnJSUlYcuWLbmul5OTEzp27AgAOHLkCOLj47F161YAgLu7O9q2bWt0vmbNmgk/FC5btizfHxWta1xISUnBzz//bLZs06ZNAWT8wG6u8W3dunXC59LNY+90DVjmfvS/fv06Ll26ZLM6PHjwACEhIVCr1fD398eaNWuE74o5rVu3Fn5kXrJkSY7Wrd9AumnTJpPl9u7daxejZQFAmTJlAGQ06Lx+/dpomZiYGJw8edLkMnSjwyclJWH16tXWr6QJTk5OaNSoEQDgxIkTJhtbNRqN2XhY43ii33hrqmFBo9EIIwnmN9139fbt27h+/brJcuvXr7dZHUqWLIly5coBAGJjY0XTlEql8L9KpTK5DP3tbu64s2rVqhzW0nLvv/++cAxZunRptuatUaOGMDrfmjVrkJKSksUcRAQAcUniJ80U5gjMBYp+fjJz5kzmJ1bG/CQD8xPmJ8xPmJ9YivnJf5ifEOVM6vO/RK9TtM5w9yuTT7WhnGAbim0xR8nAHIU5CnMU5iiWYo7yH+YoRNmXudOMe6ZOM643xcevNN9yUJdsaPN6EREREZF0sNMMFUiZnzTj6cJOMwWRh4cHRowYASDjB77Dhw+bLKsbPScpKclg5Bogo0FozJgxWY4GZindSGipqanYunWr0AjSpk0bYQSnzLy9vTFgwAAAwIULFzBx4kSzj0Z//vy5TX9orV27Nlq3bg0AWLt2rdkf83v27Cn8uDx58mRhRDh9N2/exJw5cwAAAQEBCAoKsnqdbUH33fnzzz9x//59g+nR0dHCiH228OrVK/Tu3RuxsbFQKpVYvXo1SpYsadG85cuXFxoft2/fbvYR5QDw8OFDYWQ/nTp16ggjJa1atQp//PGHwXxRUVGYMmWKRXXKC7oGE5VKhWXLlhlMV6vVGDNmDJKTk00uo1u3bggICACQ0aB89uxZk2WfPn2ayxqL9e/fH0DG8WPcuHFCg7W+OXPm4Pbt2yaXYY3jie67DwAbN240Ot+0adPMNq7kpb59+wqNE5999pnRRqrffvsNR44cyfE69u3bZ3b0vSdPnuDevXsA/mt41ClcuDBcXFwAAP/884/JZbzxxhvC59i4caPRxrqDBw9ixYoV2a1+tpUrV044Vu/btw8LFiwwWTYxMVF0npDL5Rg9ejSAjM8bGhqK1NRUk/MnJCRg+fLlVqk3UUGWudOMjxufNFOQMD9hfpIXmJ8wP2F+wvxEh/mJ7fKTV69eMT8hApAeLR6l+R9tcRRyY8f+goQ5CnOUvMAchTkKcxTmKDrMUdiGQmRLSWrxcdrd5b9bFmWJL+By/5Boekq1noCFT7EiIiIiIrIE7+ChAsmg04ySX+WCKjg4GGFhYXj27BliYmJMluvUqRP+97//ITU1FSNHjsSNGzfQvHlzeHl54c6dO1i+fDmuXbuGBg0aWOURyA0aNEDZsmXx8OFDfP/998IPhB999JHZ+b788kucO3cOly5dwtKlS3H27Fn06dMH1apVg7u7O+Lj43Hnzh2cOnUKR48eReXKldGnT59c19dcfQ4dOgSVSmV2VB8/Pz9MnjwZX375JZ4+fYr33nsPI0eORIMGDZCWloZTp05hwYIFSExMhEwmw+zZs+HsXDAaWLt3746DBw8iKSkJnTp1wsiRI1GzZk0AGT+kL1q0CM+fP0f9+vWz/ehtS0yYMAF//ZUxquPgwYPh4eGB8PBwk+X9/PyE0QMBYNasWbh27Rr++ecffPPNN9i/fz+6d++Ot956Cy4uLoiLi8OtW7dw7NgxnD59GkFBQfjwww9Fy5w5cybat28PtVqNbt264dNPP0WrVq2gVCpx6dIlzJkzB7GxsahatSpu3bpllc+dlJSE8PBwKBT/dWo01vABAJUqVYJc/t+PYu+//z5Kly6Nf//9FzNmzEBsbCzatWsHV1dX3LlzB8uWLcONGzdQr149XLx40egyXV1dsXDhQnTr1g1JSUno2rUrunXrhqCgIAQEBEClUuHvv//GkSNHcPDgQTx58sQqnxvIGN2udevWOHjwIA4ePIh27drh008/xZtvvono6Ghs3LgRO3bsQK1atXD16lWTy8nt8aRFixbw9/fHixcvMH36dPz7778ICgpCkSJFcP/+faxduxanTp2y2nEzt6pVq4aQkBCsWLECV69exfvvv48RI0agSpUqePXqFXbt2oXVq1dnud3MWbJkCYYOHYpWrVrh3XffRYUKFeDl5YX4+HhcvXoVy5cvFxoSg4ODRfM6OTmhVq1aOH/+PNavX4/q1aujWrVqcHLKuAbx9fWFr68vChcujFatWuHw4cM4duwYunXrhuDgYJQuXRovXrzAnj17sHHjRpQtWxavXr1CdHR0bjZblmbOnIlLly4hKioK3377LY4dO4aPP/4YFSpUgEwmw6NHj3DmzBns2LEDv/zyCxo3bizMGxwcjJMnT2Lv3r3YtWsXrl+/jn79+qF27drw8vJCUlIS/v77b5w5cwb79++Hq6srBg4caNPPQwXXjh07hFEOp02bhooVK+ZzjWwjLjlN9JpPmil4mJ8wP7E15if5m58AyDJHYX5iHPMT5ifWYMv8JCEhAffv38eZM2dw4MABKJVK5ickefI48c3vj+Ql4cebzgoc5ijMUWyNOQpzFOYozFF0mKOwDYWkQf+8Y0365ypjr5MzdZrxUDoJdXG98xtkmv/aV7ROrkir0s1mdaXcyyre5FgYb2lhvKWDsZYWxjsDexpQgZSY6bGdHkomSgWVm5sbRo8ejQkTJpgtV6JECcycORNjxoxBSkoK5s+fj/nz54vKdO7cGX369MmyUcZSH374IX7++WehsadIkSJo2bKl2XmUSiV+++03DB8+HHv37sWtW7cwfvx4k+ULFSpklbqaUr16dbRr104Y5c2ckJAQxMfHY8aMGXjx4gUmTZpkUEapVGL27Nl4//33bVFdm+jYsSN69uyJDRs2ICoqCl999ZVoukKhwHfffYf4+HibNPg8fvxY+N/Y9zazzz//HF988YXw2tfXF3v27MHAgQPxxx9/4Pfff8fvv/9ucn5j36m6desiLCwMI0aMQEpKCubOnYu5c+cK052cnDBz5kz8+eefVmvwuXr1Kpo2bWpR2Xv37sHb21t47eLigoULF6JHjx5ISkrC4sWLsXjxYmG6QqHAtGnT8PLlS5MNPgDQpEkTrFu3Dp9++ilevnyJDRs2YMOGDTn/UNmwePFi9OjRA+fPn8elS5cwePBg0fTq1avjxx9/RKtWrUwuI7fHEw8PDyxYsAD9+vVDSkoKfv31V/z666+iMo0bN8aMGTPw7rvv5uBTWt93332HqKgo7N27F3///TdGjhwpml62bFksW7YM9evXz/E6kpKSsGvXLuzatcvodLlcji+++MLoSJCjRo0SRj389NNPRdP0991Zs2ahffv2ePz4MU6ePImTJ0+KypYqVQqrV69Gz549c/w5LFW0aFHs3r0bffv2RXh4OE6fPo3Tp09bNK9MJsOyZcvw9ddfY9WqVfjnn3/w7bffmiyv31hNpO/Ro0fYsmULlEql2dH2HEFspifN+LLTTIHD/IT5ia0xP2F+wvyE+Yk+5ie2y0/8/PysVW2iAksZ/0D0OtKpVD7VhHKDOQpzFFtjjsIchTkKcxR9zFHYhkKOz9fXN0/Wo3/uAgC1VnxfVxEvz4y6aNKB25tE02TVusInINDWVSQryhxvcmyMt7Qw3tLBWEuLVOMtza5CVOC9ThWP4Ozpwk4zBVmfPn0setR6r169sHv3bgQFBcHPzw/Ozs4oVqwYWrZsiWXLlmHZsmVWHWmia9euotcdO3YURsMxx9PTE6tWrcLu3bvRu3dvlC9fHp6ennBycoKvry9q166NkJAQbNiwAb/99pvV6mvKl19+aXHP0DFjxuDYsWPo06cPAgMD4ebmBnd3d1SsWBGDBw/GuXPn0KNHDxvX2PrmzZuHhQsXomHDhvD09IRSqUTp0qXRvXt37Nu3z+CHW3tTrFgx7N69G+vWrUPXrl0RGBgId3d3ODs7w8/PD/Xr18ewYcOwc+dOzJs3z+gyPvzwQxw7dgzdu3dH8eLF4eLigoCAAHTq1Al79uyx6Wh9OdGwYUMcPXpUqK9uf2/fvj127dpl0IBiSsuWLXHx4kV8/fXXqF+/PgoXLgyFQoFChQqhRo0a+PTTT3Ho0KGsF5RNnp6e2LlzJ6ZPn47atWvDw8MDnp6eqFatGiZOnIh9+/ZZ9INkbo8nLVu2xOHDh9GtWzdhO/r5+aFRo0b46aefsG3bNri7u1v98+eUs7MzVq1aJeyvXl5ewjFo9OjROHLkCAIDA3O8/CVLluCnn37CRx99hGrVqqFo0aJwcnKCh4cH3nrrLfTv3x/Hjh3DZ599ZnT+Dz74ANu2bUPbtm2F7WlMyZIlcfToUQwfPhzlypWDUqmEl5cXqlatis8//xzHjx9HpUqVcvw5siswMBDHjx/H/Pnz8f7776NYsWJwdnaGm5sbypUrh+7du2PNmjVo2LChwbzOzs6YOXMmTpw4gYEDB6JKlSrw8vKCQqGAl5cXqlevjj59+mDlypU4e/Zsnn0mKjjS0tIQFhaGwMBANGjQIL+rY3Mvk8R5iq87x6koiJif2BbzE+YnAPMT5ifMTwDmJ7bMT3799VfmJ0QAPBP/Eb2OUZbOn4pQrjFHsS3mKMxRAOYozFGYowDMUdiGQmRbiSpx+4kwOPLfh4D4f8WF64fkUa2IiIiISEpkWq1Wm9+VoILLVo/DVSgUoh/C4uLiRI+jnnX0H2y68kx43bm6Pya2ftPsMp89ewaNRgO5XI5ixYpZv9KUK/oNKWlpaWZKkiNgvKWDsZYWxltarBHv3FyfceTogmHz5s3YuXMnfvjhB+zcuRMnT57EtGnTULFiRZusz1b5CZB1jgIAnZZdxZP4/56mM7NjBbSsWNjo8pif2D+e16SDsZYWxltaGG9pyW28mZ+QLeRbjpKeisKLqkEOjTB9sv8cjOjRweTymKPYN57TpIXxlhbGW1oYb+lgGwqR2IcLz+Lyo5fC6/91qYZP3i4LrOuW0XFGJ6AW8OlJg/mJiIiIiHKLw95SrlhzRCp9mUd0yvw6Sa0RvfZ0dcqyLjKZzDqVI6vLHBuZTAb253NcjLd0MNbSwnhLi7XjLZPJbHZdWdDEx8fj3r17uHfvHiIiIhAREYGEhAQAQLNmzRAaGmrxsl68eIH9+/fj8uXLiImJgZOTE4oXL4533nkHrVu3hlKptNXHAADcv38f27dvR/fu3VGqVCmbrstexCWpRa8LuxsfTZGIiIiIiMiWFC8fijrMAEBSocD8qQwREREREdmNuLg4myxXLpfD29tbeB0fHw+N5r+c5FWSSlRelpaK+H+uw+vvw9BvdUys0hMqG9WRrCereJNjYbylhfGWDsZaWuwh3pY8UdbW2GmGciWvvsT6OysApGrEnWj8vQtlWZfo6GhotVrI5XKLHg9P+Yc3zUoL4y0djLW0MN7SktN46zpGOzs720VyZA8GDRpkleVcvHgR8+fPR3JysvBeamqq0BHn6NGjmDBhAooXL26V9WWmVqsRFhaGwMBAdOrUySbrsDcpao1B534fd+YdRERERESU9xQvH4heP9P6wNXd20RpIiIiIiKSCuHplDam0WhE60pSiderVMjgfH0dZPhvUD6NSyEklw8C8qiOZD2Z402OjfGWFsZbOhhraZFqvOVZFyGyPwkp4sfXFnLlzWhERERE5Fj8/PxQs2bNbM/34MEDzJkzB8nJyXB1dcXHH3+MadOm4ZtvvsF7770HAIiMjMT06dNFnWqsadOmTYiMjMTQoUMNnhrpqF4mqw3e45NmiIiIiIgoPyji7oteR2hKwNuN7ShERERERJQ/EtXimzI9FWlwDd8sei/1rS6As3teVouIiIiIJIS/kFOB9DpV3GnGk51miIiIiMgBdO3aFeXKlUO5cuXg4+OD58+fY/jw4dlaxqpVq6BSqaBQKDBx4kRUrFhRmFatWjUEBARg7dq1iIyMxO7du9G9e3eDZaxevRpqtWEnEFOCgoIQEBAAAPjrr7+we/dudOvWDWXKlMlW3QuyuCRxjqKQy1BIyaduERERERFR3lPERYhe39cGwIedZoiIiIiIKJ9kftJM6ZgzkCfHit5LqdYrL6tERERERBLDX8gpV+Li4myyXLlcDm9vb+F1fHw8NBqN8PplUqq4fFpqlnVRq9XCMtLS0syWpbwlk8mgUPx3Q2F6ejq0Wq2ZOaggY7ylg7GWFsZbWqwVb41GA41GA7Vane3rSl9f32yvryAw1oElO+7du4fw8HAAQIsWLUQdZnTat2+P48eP48mTJ9i/fz8+/PBDODmJU8PDhw8jNTXVYF5TGjZsiICAAKSnpyMsLAxly5ZF586dc/VZCprYJHEnI183J8hksnyqDRERERERSZni5QPR6whtCVRhpxkiIiIiIsoH6nQN1OnidsSiUSfFZUo0QHrhCnlZLSIiIiKSGP5CTrmSnp6edSEr0Gg0onW9ThF3enF3lmVZF964a78yx4axcmyMt3Qw1tLCeEuLteOt1Wrz7LrS0Z0/f174v0WLFkbLyOVyNGvWDOvXr0diYiJu3bqFmjVrisqsWbMmR+tPSUlBZGQkAKBXL+Mjgk2cOBEAMG7cODRo0CBH67FHccniTjOF3Z3zqSZERERERCRpWq2RJ82UQCN2miEiIiIionyQpNKIXsuggU/kGdF7qeWD8rJKRERERCRB/IWcCqTETI/t9HBRmChJRERERCQdd+/eBQAolUq8+eabJstVqVJFNE/mTjM55ezsjJYtWxqdFh4ejsjISNSrVw9eXl4oWrSoVdZpL+KSxB37fdyZbhMRERERUd6TJcdArkoQvRehDYC3K3MUIiIiIiLKe0mZ7vGqIbsPp9Q40Xuqss3yskpEREREJEH8hZwKHFWaBqpMj+30VLLTDBERERHR48ePAQDFixeHQmH6GrlEiRIG81iDi4sLhgwZYnRaWFgYIiMj0blzZ1SsWNFq67QXcUl80gwREREREeU/Rdx90esUrTOeav3g7cYchYiIiIiI8l6SWtxppoXiquh1mm85aLzL5GGNiIiIiEiK2GmGCpzXqekG73mw0wwRERERSZxKpUJCQsZowkWKFDFb1tPTE0qlEqmpqYiJicmL6uWKpXU011Eot+RyudnXL5PFT5op7O5itj4ymcx6lSOryxwfmUwGrVZrojQVZIy1tDDe0sJ4S4s14y2TyWx6XUlka4q4CNHrB9ri0EAOb1d+r4mIiIiIKO9lftJMS8U10Wt12eZ5WBsiIiIikip2mqECJ1Fl2GnG04VfZSIiIiKStpSUFOF/V1fXLMu7uroiNTVVNJ+9Gjp0qEXlNm/ebOOa/Mfb21v0+nWa+EbNkn5e8PX1NTl/dHQ0tFot5HI5nJyYz9g73jgrHYy1tDDe0sJ4S0tO4q3rFO3s7Gz2Oo7I3jm9fCB6fV8bAE+lAk4KuYk5iIiIiIiIbCdRpRH+90M8asjEHf1VZZvldZWIiIiISIJ4Zw4VOJmfNOMkl0HpxFGaiYiIiEjaVCqV8L8lnTB0ZfTns6XQ0FCEhobmybryQ8zrVNHrwh4u+VQTIiIiIiKSMkXcfdHrCG0J+LixOZCIiIiIiPJHsvq/+7yaycVPmdE4e0Bdon5eV4mIiIiIJIi/klOBk6hKE732UCogk7HTDBERERFJm4vLf5000tLSzJQUl9Gfz14tWrQov6uQpejX4s5HRdhphoiIiIiI8oHipXjU5vuaEvB2ZXMgERERERHlj0TVf51mWiiuiqapSzcGFGxPISIiIiLb46/kVOBkftKMp4sin2pCRERERGQ/XF1dhf9TUlKyLK8roz+fvSpSpIhF5eLi4mxWB7lcDm9vb+F1fHw8NBqN8DomUfykGWdNqtn6qNVqYX5LOjlR3pLJZFAo/ss109PTodVq87FGZCuMtbQw3tLCeEuLNeKt0Wig0WigVquzfV3p6+ubrfJENpOeCvmrx6K37msD4M0nzRARERERUT5J+v9OMwqko6n8umiaqmzzfKgREREREUkRfyWnAseg04ySnWaIiIiIiFxcXFCoUCEkJCQgJibGbNnXr18jNTWjk4elHVIKgvT09KwLWYlGoxHWl6xKR4paI5ru46owWx/etGvfMseH8XJcjLW0MN7SwnhLizXjrdVq8/S6kvLHjh07sH79egDAtGnTULFixXyukXUo4h9BphXnJve1AWjq5pxPNSIiIiIiIqlLUmXkKHVkf8NLliSapi7bLD+qREREREQSJM/vChBl12uVuMHSg0+aISIiIiICAJQqVQoAEBUVZfZGv6dPnxrMQzkXl2z4pBhfd45RQURERERkjx49eoQtW7ZAqVTmd1WsThF3X/T6mdYHr+HOJ80QEREREVG+SVJntFe1UFwVvZ/mVxkaz+L5UCMiIiIikiJ2mqECh0+aISIiIiIyrlKlSgCA1NRU3L9/32S527dvG8xDORebpBa9dlbI2LmfiIiIiMgOpaWlISwsDIGBgWjQoEF+V8fqMneaua8pAQDwdmWnGSIiIiIiyh9J/z84cgv5VdH7qrLN874yRERERCRZ7DRDBU6iQacZNvYQEREREQEQ3fR1/Phxo2U0Gg1OnjwJAPDw8EDVqlXzpG55QaFQ2OxPLhenz3K5XJj2KlOO4uvmDCcnJ7PLk8lkeblpKJsyx4fxclyMtbQw3tLCeEuLNeMtk8myfa1IBce2bdvw+PFjDB061OAa3xGkF6mIlEqdcVdREa+0bojQBgAAfPikGSIiIiIiyidJKg0CEIPK8kei91WBzfOnQkREREQkSfyVnAqc1yrxDWkcwZmIiIiIKEP58uVRuXJlhIeH4/jx42jevDkqVqwoKrNnzx48efIEANC2bVs4OTlOWujr65tn6/L29hb+T8Fr0TR/L9cs6xIdHQ2tVgu5XO5QMXBUvBlWOhhraWG8pYXxlpacxFvXgcLZ2TlPryvtXXx8PO7du4d79+4hIiICERERSEhIAAA0a9YMoaGhFi/rxYsX2L9/Py5fvoyYmBg4OTmhePHieOedd9C6dWsolUpbfQwAwP3797F9+3Z0794dpUqVsum68ovqjfegeuM9DHp0DY8Sk6FExlMx2WmGiIiIiIjyS5IqHc0VV0XvaZTeSCtWK1/qQ0RERETSxF/JqcB5nZomeu2pZIM3ERERETmGO3fuICoqSnj96tUr4f+oqCicOHFCVL558+YGywgODsakSZOgUqkwbdo0dOnSBVWrVoVKpcK5c+dw5MgRAEBAQAA6dOhgk88hNbGJKtHrIp62vdmPiIiIiCivDBo0yCrLuXjxIubPn4/k5GThvdTUVKEjztGjRzFhwgQUL17cKuvLTK1WIywsDIGBgejUqZNN1mFP4pPTAMiQChcAgDc7zRARERERUT5JUqWjhfyq6D11mXcBOfMUIiIiIso7jvfsecpTCoXCJn+6Uf105HK5MC1RpRFN83JztmiZMpksLzcNZUPm2DBWOTN8+HD4+/ujTp06RqfXqVMH/v7+GD58eB7XTCw38d6wYQP8/f3h7++PR48eZT2DA8tqW2T1fbBUbr433Lftly32JcY75zp16gR/f/8CddOOteMtk8myfb3oqI4ePYqFCxcKf2vXrhWm3b17VzRt4cKFRpfxxhtvYPTo0XBzc0NKSgo2bNiAiRMnYurUqaIOMxMmTICbm1uefC5HF/M6VfS6iIdLPtWEyH4MGzYMvr6+qFGjhtHpNWrUgK+vL4YNG5bHNbOe9evXw9fXF76+vpLPT7LaFll9HyzlCN8bMsR9yb60b98evr6+aN++fX5XheyQn58fatasme35Hjx4gDlz5iA5ORmurq74+OOPMW3aNHzzzTd47733AACRkZGYPn26qFONNW3atAmRkZEYOnSoQfuDo0nXaPEqRTz4mI+bcz7Vhsh+FJQ2lNxgG8p/CkIbCtkv7kv2pSC2oRCRmEqVisbym+L3yjbPn8oQERERkWSxyzbliq+vb56sx9vbW/g/VSO+KdPfp5BF9YiOjoZWq4VcLoeTE7/6tnbmzBnRyOVdunTBypUrzc4zbNgwbNiwAQAQFxdn0/o5Iv3GXnPfcXvbB7Jz47N+WScnpxx9jvbt2+Ps2bPZmueff/4RHYfsQVbbwtLvg6Ws8b1x5JvcCxpr7EvZWQeZp+twIpPJ7Or4nB05jbfuWOXs7Jxn15VSUa9ePfz444/Yt28fLl++jNjYWDg5OaF48eJo2LAh2rRpA6XS8Z6GYstrSLlcLroeiI+Ph0aT0aE/Mu61qKyHkybLuqjVamH+tLQ0s2Up986ePYvOnTsLrzt16oTly5ebLC+TyTBixAghP9Hlk2Q53fcbMP8d12g0+boP6Dpu6qSnp1sc6/T0dOH/tLS0HH2OTp064dy5c9ma5969e3aXn2S1LSz9Plgqp9+b3MSbbMca+5IxjHfO6LaRVqstUNco1oi3RqOBRqOBWq3O9nWlI+czXbt2Rbly5VCuXDn4+Pjg+fPn2b4xeNWqVVCpVFAoFJg4cSIqVqwoTKtWrRoCAgKwdu1aREZGYvfu3ejevbvBMlavXg21Wm3xOoOCghAQEAAA+Ouvv7B7925069YNZcqUyVbdC6KElDRk/vZ7uxbM3xscWXZzFEDchvLixQtbVo8kzFFyFCIiIrIf5ZJvwEP23+BjWsigKts0H2tERERERFLEX8mpwElIETeMFWJjT4GwY8cOfPbZZ6hatWp+V4WIiPJAjRo18O+//6Jnz54mn4ZBBYN+R9jdu3ejSZMm+VwjxxYaGorQ0FCrLMvf3x/9+vVDv379rLK8gkD/pltb02g0wvpiX6tE03xcnbKsC2/azV+7du3C7du3UaVKFaPTM8eH8XJcjLW0MN7Soh9fXX7So0cPLFiwIB9rRbmlf5P5jh070LhxYwDW3b+1Wm2eXlfaO2MdWLLj3r17CA8PBwC0aNFC1GFGp3379jh+/DiePHmC/fv348MPPzQYVOLw4cNITU01mNeUhg0bIiAgAOnp6QgLC0PZsmVFHRQc2csUww5v3m5sR7F3WeUoRETkWJijOA5TOQoR/ae26oLodax3VWjdiuRTbYiIiIhIqvgrORU4CZkafLxcnfOpJpQdWq0WM2bMwJo1a/K7KpJ1/fr1/K6C3bH0iTOFChWycU2sb+HCheyoQERElEdik8Ud+33dmWrbO61Wi5kzZ2LVqlX5XRXJunz5cn5Xwe6cOnXKonIFMT9ZsGABbwIiIpKo8+fPC/+3aNHCaBm5XI5mzZph/fr1SExMxK1bt1CzZk1RmZz+rpySkoLIyEgAQK9evYyWmThxIgBg3LhxaNCgQY7WY0/ik8VtKG7Ociid5CZKk71gjpL/mKMYYo5CRERE1vB2uvg6K7p4E7DLDBERERHlNd7JQ7kSFxdnk+XK5XLRY7zj4+Oh0WgAAAmZbkjTqpMtqodarRaWkZZmONIaWZf+aIxFihRBTEwM9uzZg8uXL6NGjRqisjKZDAqFQvQeY5R9uu83YN/bL3O809PTLR79U/97lZaWlqPPqb8uYyNbGqPRaETb1x5YY1tkh0ajyfY6chNrsi1bfH+MHcuBnH13pEa3X2i1WrvcVvrfl/T0dKSlpVlt/9YdX9VqdbavK319fbO9PiJbiUsS77u+7uzYb890+cnevXtx/fp1g/yEKL9Urlw5v6tARERkdXfv3gUAKJVKvPnmmybL6T9d4+7duwadZnLK2dkZLVu2NDotPDwckZGRqFevHry8vFC0aFGrrDO/vczUacbblU2B9o45Ctkr5ihERESUW/L4h3gDT0XvvS7ZlJ1miIiIiCjP8ZdyyhX9myhtSaPRID09HRqtFokq8TrdnWQW1YM3auefQYMG4eeff0Zqaip++OEHrFu3TjSdsZGWzPFm/B0XYy0tjK+0WHv/1mq1eXZdSWRtWq0WcUnijv2F2WnGrmWVnxARERGR9Tx+/BgAULx4caODbeiUKFHCYB5rcHFxwZAhQ4xOCwsLQ2RkJDp37mzx4DoFQeYnzfjwSZh2jzkKERERETkqpwcnRK9faL2R7l81fypDRERERJLG57FTgZKkSkfmWzI9laYb2sg+lChRAn369AEAHDp0KNePuI+Ojsb333+PFi1aoFy5cihVqhTq1KmDYcOG4Y8//jA7b506deDv74/hw4cDAK5du4bhw4ejbt26KFmyJPz9/c2WHTJkCGrWrInSpUujfv36mDRpEmJiYkTrOH/+PEJCQlCrVi2UKlUK9evXx9SpU/H69WuT9dJoNDh9+jQmT56MoKAgVKpUCQEBAShXrhyaN2+OyZMn57qxOPPn0Xn06BH8/f0t/uvUqZPJdZw5cwahoaGoV68eypQpgzfeeANNmzbFlClTEBUVlWUdX758ialTp+Kdd95B6dKlUblyZXz00UfYuXNnrj67tc2cOVPYHuacPXtWKHf27FmT5TQaDbZt24bg4GDUqlULpUuXRunSpfH2229jyJAh2LVrF9Rqtcn5jRk+fDj8/f1Rp04ds+WOHDmCjz/+GG+99RbKlCmDt99+G5MmTUJkZGS21nft2jWMGzcODRs2RNmyZVG2bFk0bNgQY8eOxb1798zO+88//2DhwoX45JNPUKdOHeHz165dGwMHDsTRo0fNzr9hwwZhOz969AgajQarV69GUFAQypcvj7Jly6JZs2b46aefkJSUlK3PlZlKpcLBgwfx5Zdf4v3330f58uUREBCAihUronXr1pg5c6bBMcGY06dPY/Dgwahbty5Kly6NMmXKoHbt2mjTpg0mT56M06dP56qe1tqXHj16hIkTJ6JJkyYIDAxEmTJl0KBBA3z22We4ffu20Xnat28PX19f/PvvvwCATZs2Zes4YkzmfUmj0WDNmjUICgpChQoVULZsWTRv3hxz5sxBSkqKyeVk3i+ioqIwdepU4fMZ21dzc87RuXjxIkJCQlClShWUKlUKdevWtWjfAAy/36boH8s3bNhgdpmHDx/G0KFDUa9ePZQtW1aoU3BwMDZs2CDsJ7pldu7cWZi3c+fOwnp8fX3h6+uL9evXW7QdiBxVkloDVbo4S/Fx401p9oz5CfMT5ifSzU8+//xz5idGMD9hfuII+YkuR2F+Yl9UKhUSEhIAZDxJwxxPT08olUoAsOjYld9iYmIs+lMoFDb7k8vFTXxyuRwKhQIJqeJBKXzcnC1ankwmy8tNSHqyylGyGxvmKDljLzlK5njrv2aO4vg5irH9nTmK4+QoMpmMOYoRjpqj6Leh5PY6SyaTZftakcheOP1zXPT6RHpNuCs58BgRERER5T3eyUMFyutUwxHIPVyY8BcEo0aNwrp165CcnIzp06djy5YtOVrO8ePHMWDAAKGxVefff//Fv//+iy1btiAkJATTp083aDTMbNWqVZgwYQLS0tLMlgOAzZs3Y8yYMVCpVMJ7//zzDxYvXozDhw9j586dKFasGMLCwvDtt9+KRtz/559/MH/+fJw8eRI7d+6Ep6enwfJ//PFHzJo1y+D9V69e4datW7h16xZWrVqFhQsXol27dlnWN6+lpKRg5MiR2L59u8G08PBwhIeH45dffsHSpUvRunVro8v466+/8NFHH4luXktJScGpU6dw6tQpHD16FO+8847NPkN+efToEfr164ebN28aTLt//z7u37+PrVu3YseOHWjcuLFV1z1p0iQsXrzYYJ2LFy/Gb7/9luWPxkBGY9XkyZOxZMkSgydNREREICIiAmvWrMGsWbPQu3dvg/kfPnyI+vXrG13248eP8fjxY+zcuRPdunXDvHnz4ORk/tIlOTkZ3bp1w6lTp0Tv3759G7dv38bBgwexbds2eHh4ZPnZjBk7diw2bdpk8H5cXBzi4uJw+fJlrFixAqtXr8bbb79tdBkTJ07EkiVLDN7Xfd5Lly5h48aNuHv3bo7qaK19adOmTfjss8+Qmpoqev/Bgwd48OAB1q1bh/Hjx2P06NE5qmdOqVQq9OzZE8eOHRO9rztW/vbbb9i6dSuKFStmdjkXL15E7969zTbQWeOcs3jxYkyePBkajUZ479GjR1izZg22bt2K5cuXZ/WRrSY2NhaDBg0y2D90dXr06BH27t0LAOjZs2ee1YvImmzZGGjshjQAiE8xvCnDv5BrlnXhDWn5K6v8xNhNSsaeqsX8pODnJ23atBFN18Wa+Ynj5idr167FrFmzEBwcbLBvMz/5jyPkJ3lxrmV+knO2zk9MnbstnZc3mVmH/k2Zrq6uWZZ3dXVFamqq2Zs57cXQoUMtKrd582Yb1+Q/3t7eAIBk7TPR+/7eHvD19c1y/ujoaGi1Wsjl8izPcZR7+scZhUKBzz77TMhRfvjhB2zdutXs/KZidOzYMQQHB5s9XwwcOBA//PCD2RxFLpdj9erV+PLLLw1ylMzrlsvl+O233zBq1CijOcqRI0ewZ88eFCtWDPPnz8fkyZON5iinTp3Cnj17jOYoM2bMwA8//GDwfuYcZcmSJWjfvr3Jz2TqM2Qupz89u/uDTCYzmCclJQWhoaHYtm2bQXldjrJq1SosW7YMbdu2FU3XfVfu3r2LLl26iDpr6F9XHT9+HI0aNRLVOyf7sv41VE6PBZZu68z7gbGyjx49Qu/evXHjxg2Dafo5yu7du9GkSROjyza2LSyp49dff42FCxcarFOXo+gf400dOzUaDSZNmoRFixZZlKNkvgaxNEfp3r07wsLCjNZBf5kqlQrdu3fHyZMnRWV0OcqhQ4ewc+fOHOcoI0eONJq7Zc5R1q1bh4YNGxpdxldffYVFixYZvJ85R4mIiMhRHa21L23cuBGjR482m6N89dVXGDt2bLbraOw4Yo5+jNPT09GrVy+DzlS6Y6UupzeWo+jvF1euXEHPnj0NchT9fdUa55yFCxdi0qRJRnOUbdu2YeXKlcJxydh2yWpf159m7DPoi42NRUhIiMH+oauTLkdRKBTo1atXjmOUHbrt5uzsbNH1HJHdSUuFa+R50VvHNbVQl/d5EREREVE+4K/eVKAY6zTjzmSqQChevDiCg4OxaNEinDhxAn/88YfJH0NNuXHjBnr37g2VSgVnZ2cMGDAAbdq0gbu7O27cuIF58+bh4cOHWLlyJTw8PPDNN9+YXNbVq1fx22+/oWTJkhg2bBhq1aqFtLQ0oyPe3Lp1C9u3b8cbb7yBYcOGoUqVKnj9+jXWr1+PLVu2ICIiAlOmTEG7du0wZcoU1KtXDwMHDkT58uURExODZcuW4ciRI7h+/Tp++ukno/VKS0tDsWLFEBQUhPr166Ns2bJQKpV4+vQpLly4gJUrVyIxMRFDhgzB0aNHUbFixWxtO3MCAgKM3qCgb+fOnZg9ezYAoFSpUqJpWq0WISEhOHz4MACgdevW6NSpE8qWLQu5XI7Lly9j0aJFePz4MUJCQrB3717Uq1dPtIyEhAR0795duImmc+fO6NGjB/z9/REREYFFixZhw4YNuHPnjrU+tl14/vw52rVrJ3zud999Fz169ECFChUgk8nw8OFDnDlzBrt27bL6uhcvXizckFa8eHGMGjUKderUQUpKCo4cOYIlS5ZgwIABSE5ONruc8ePH45dffgEAvPPOO/j4449RtmxZuLu74+bNm1i6dCnu3LmDMWPGwM/Pz+CmxPT0dLi4uKBFixZo1qwZKlWqBB8fH7x8+RIRERFYuXIl7ty5gy1btqBs2bL48ssvzdZnzJgxuHTpEnr06IFOnTqhaNGiePLkCRYsWIALFy7g8uXL+OmnnzBp0qQcbbf09HQEBgYiKCgItWvXRqlSpeDk5IR///0Xp06dwvr16xEbG4vg4GCcOnXKYCS9Q4cOCTekVa1aFcHBwahQoQK8vLzw6tUr3LlzB6dOncrxiPfW2pcOHTqEESNGQKvVwsPDA8OGDUPTpk3h5OSECxcuYO7cuYiJicH//vc/eHt7o3///sK8YWFhSExMFG6Ma9u2LSZMmCBavru7e44+HwBMnz4dV65cQfPmzdG/f3+ULFkST548wS+//IITJ07g7t276N27Nw4cOGCyESIxMRH9+/dHSkoKxowZg2bNmsHd3R23b98WGoqscc7Zu3ev8F3z8vLCiBEjhJtLT58+jQULFmDo0KFZjrZrDUlJSejSpYswul3NmjXRt29fvPXWW1AqlXjy5Al+//137NixQ5hHd364cuUKRo0aBQCYO3cuateuDeC/Rp6SJUvavP5ElsrLhkPdDWkPEuJE7yud5ChRtEiWN+ryhrS8lflGnFKlSiEkJARhYWE4ceIELly4YPambWPnlMznikGDBqFt27Zwd3fH9evXMWfOHOFc4enpiW+//dbk8q9duybkJ8OHD0ft2rWRlpaG33//3eD7cfv2bWzfvh1vvvkmhg8fLuQna9euxebNmxEREYFvv/0WHTp0wJQpU1C/fn0MGjQIFSpUQExMDJYsWYLDhw8LdZwyZYpBfTQaDYoXL4527dqhfv36CAwMhKurK548eYI///wTK1euxOvXrzFkyBCcOHEClSpVMlhGTm9IK126tNkRhgFgx44dQqeeMmXKiObXarUYMGAADh06BABo06YNOnfujMDAQCE/WbBggZCfHDhwQDi3ARmxfvXqleiaqkuXLujZsyf8/f1x7949LFy4EBs2bBB1InCEG9KeP3+O9u3bCzcONW3aFD179hTlJ6dOncLOnTsN5s/tDWmLFi0S8pOAgACMHj0adevWRUpKCg4dOoTFixeL8hNTx85x48ZhxYoVAIBGjRqhV69eCAwMhJubG27evIlFixYJ+UnRokURFBQkml8mk8HFxQUtW7ZEixYtUKlSJfj6+iIuLg737t3D8uXLhfzkjTfeMLjOzbwtxo4di4sXL6Jnz57o3LkzihUrhsePH2Pu3LlCfjJnzhxMnjzZYDmW0Gg0CAwMRPv27VGnTh1RfnLixAmsW7dOyE/OnTtnkJ8cOHBAlJ+EhISgUqVK8PLyQnx8PMLDw3Hy5Elcvnw5R99Pa+1LBw8eFPITT09PhIaGolmzZnBycsL58+fx888/C/mJr68vBgwYIMyry0+6du2KyMhIBAUF4euvvxYt38PDI8c3O82YMQOXL19Gy5YtERISIuQnK1aswPHjx3H37l306dMHhw8fNjiX6PaLxMREhISEIDU1FZ999hlatGgBNzc33L59GyVKlICTk5NVzjl79uwR5SejRo0Sbiw9deoU5s2bh6FDh8LPzw+AbW9Iy5yf1KpVC/369UPlypWF/OTcuXPYvn27ML/u/HDlyhXhCQALFiwQHcOB//KTnNyUxhvSrE//5nlL9jNdGf35bCk0NBShoaF5sq689DJJvP0Ku3MU54KgePHiQo5y7Ngx/P7779nupH3jxg307Nkzy/PF8uXL4e7ubjZHuXLlCjZv3mw0R8ns5s2b2Lp1q8kc5d69e5g0aRI6dOiAb775xmSOcu3aNfz4449Gc5S0tDSLcpRBgwaZzFFyKiAgIFs5SunSpUXTtFot+vXrZ1GOEhwcbJCjABnXVR999JFwrW7sumrdunUIDw+31se2C8+fP0ebNm0sylGsbdGiRUKHGVM5SnBwcJZtKF988UWuchRdG0pWOcrmzZsRGBhoNEfRN2rUKLM5yqVLl/Djjz/mOEdJS0uzKEfp06ePyRxF12EmqxwlJ6y1Lx08eBDDhg3LMkf57rvv4O3tnaMcJaf+97//mc1R7ty5g549exrNUXQSExPRr18/ozmKfhtKbs85e/bsET67qRxl8ODBQo5iS0lJSejQoYNFOYqO7vxgaY5CJElOSlxvvxcbf9uIlvIreFsejjOa6vjG2fwAU0REREREtsA7c6hAea0Sd5rxcJFDIbfiqJFaDWQpcVmXcxBaV19AlnfJ6IgRI/Drr78iKSkJP/zwg9FRf8357LPPoFKpoFAosG7dOrRo0UKYVrt2bXTs2BHt27fH3bt3ERYWhu7du+Ott94yuqy7d++iSpUq2LVrl3DDIwCjI6/evHkT9evXx2+//Sa60btJkyZISUnB7t27sX37dhw9ehTt27fH8uXLRT8yNmvWDO3bt8fFixeFUYUyNxL37t0bn3/+OZydxQ2YNWvWRNu2bTFw4EChYWDOnDkGI1vlhrOzMypXrmxy+tWrV4X1VaxYETNmzBBNX7t2LQ4fPgxnZ2esWbMG7733nmh6vXr10L17d3To0AF37tzB119/jYMHD4rKzJ49G0+ePAGQMXKX/siwNWvWRIcOHdCrVy+cOHEiF5/UkCUNSD4+PggICLDqenW++OIL4eahb775BiNGjBBNr127Njp37owpU6ZYNOK4pV68eIHp06cDyGjA279/v2hEqUaNGqFFixbo3r272fWeOHFC6DDz888/GzxJpnbt2ujZsyd69OiBU6dO4auvvkKrVq1E3/9ixYrh0qVLKF68uMHymzZtiuDgYIwcORIbN27EwoULMXToUHh5eZms04ULF7Bw4UJ069ZNeK9mzZp477338P777yM8PBxr167FhAkTcnTT1xdffIHAwECDG6Fr1aqFDh06oH///ggKCkJ0dDSWL19u0ECla7wrXbq00VETGzdujAEDBiAuLmfnImvsS2q1Gp999pnQYWb37t2oXr26ML1evXpo37492rZti2fPnmHKlCno2LGj0PGjbNmyACAcz7y8vMweY7LrypUr6Nu3r9CRT/fZgoKCMHr0aKxbtw5Xr17Fr7/+ipCQEKPLiI2NhYeHB/bs2YNq1aoJ7+s3ZOT2nKNSqTB+/HhhG+zfv1/U4bF+/fpo27Yt2rVrh/v37+d+w2Rh+vTpQmNPSEgIZsyYIfoe67bhpEmT8PLlSwD/nR9iY2OFcmXLlhXiqb8PWfMYRVTQxLwW35Dm56m07sj2Wg1kyRLKUdzyLkcZNWoUVq1ahcTEREyfPj3bHZVHjx4tnCs2btyIli1bCtPq1KmDzp07o23btrhz5w4WLFiAjz/+2OQ58c6dO6hSpQr27dsnyk+MDTRw48YNNGjQANu3bxflJ++++y5SU1Oxc+dObNu2DUeOHEHHjh2xcuVKUX7SvHlztG3bFhcuXMCaNWswceJEg+uivn374ssvvzSanwQFBWHw4MH44IMP8PTpU/z0009Gn1KRU87OzqhSpYrJ6VeuXMGCBQsAAJUqVTIYbXr16tU4dOgQnJ2dsX79erRq1Uo0vX79+ujRo4cQmwkTJuDAgQOiMrNmzRKuqSZNmiQaFbZWrVro1KkTPv74Y4MnS+SW7lxtjo+PD0qUKGHV9ep89tlnwo1DU6ZMETrN6tSpUwddunTBd999Z/X8ZNq0aQAyrpMPHz4syk8aN26M9957Dx999JHZ9R4/fly4GW3evHno06ePQf27d+8u5Cfjx4/HBx98YJCfXLt2zWh+0qxZM4SEhGD48OFYv349wsLCMGzYMNE+m9n58+exePFi9OjRQ3ivZs2aaNWqFVq0aIHw8HCsXr0aX3/9dY7ykwkTJhjNT3TXq7qO39HR0Vi6dKnBjVi6DtOlS5fGgQMHDPKTJk2aYNCgQTnOT6yxL6nVaowZM0a4GW3fvn2i/KR+/fro0KEDWrdujaioKHzzzTfo3LmzQX6i277e3t5mjzHZdfnyZfTr1w9z5swRfbZ27dph5MiRWLNmDa5cuYJffvkFAwcONLqM2NhYo5+tTp06wv+5PeeoVCp88cUXADLyk0OHDoluJm7QoAGCgoLQpk2bHI/YnR3/+9//hGPewIEDMXPmTNH3WLcNJ0+eLMpPqlSpYpCfWDOeZH0uLi7C/5acO3Rl9OezV8ZGwLcXsYniHMXH3YrbU2L5CcAchTkKc5SsMEdhjqKPOQpzFF055ihEpBPv5I+N6S2xMb0lFEiHQuEEJwU7zRARERFR3mOnGSpQElMzd5qx7lNmZClxKLKigVWXac9iBpyH1s32o9vr+Pv7Y8CAAZg/fz7OnDmDM2fOiB6Vbs7ly5dx5coVAECfPn1ENy/r+Pj4YPbs2Wjfvj00Gg1WrlyJmTNnmlzmjBkzzP5wrCOTyTBnzhyjT0YICQnB7t27kZ6ejtTUVPz0008Go/IoFAr06dMHFy9eRGxsLO7evYuqVauKypQpU8ZsHUqUKIHQ0FBMnDgRBw4cgFarte7NmCZERUWhT58+SE5Ohq+vL9auXYtChQoJ07VaLebNmwcAGDRokEGHGR0fHx9MnjwZPXv2xPnz5xEREYFy5coByPhRdN26dQAyRo3K3OgBZPzoOHfuXNSrVw9qtdpqn69p06ZZlunRo4fQ4GVN9+7dw759+wAAQUFBBh1m9GVuFMitTZs2ISkpCQDw7bffGn0E+7vvvos+ffoInWKM0cW+ffv2Bh1mdFxdXTFz5kw0bNgQ//77L86cOYPmzZsL0z08PMyOmCWTyTB16lRs2bIFSUlJOHnyJDp06GCyfLt27UQdZnSUSiUGDBiAcePGmdwPLfHGG2+YnV6lShX07t0bS5Yswf79+w06zTx//hwAUKNGDbNxzcmIttbal/bu3St05ho7dqyoQUSndOnSmDJlCoYOHYqkpCRs2LBBGEXL1vz9/fHdd98ZnTZt2jQcPHgQ0dHR+OWXX0x2mgEyOnLqd5jRZ41zzv79+4Xt+Nlnnxl9QljlypUxZswYTJ061fQHtoL4+HisXr0aQEYD6Pfff2/yHOLi4oKiRYvatD5EjiY2MVX0urCHdW/wkyXHwXtpnawLOoj4wZehdc+bHMXf3x8DBw7E3Llzcfr0aZw+fRrvvvuuRfNeunRJGNW0b9++ohsDdHx8fPDzzz+jbdu20Gg0WLFiBX788UeTy5w1a5bF+cm8efOM5icDBgzAzp07hfxkzpw5RvOTfv364cKFC4iNjcWdO3cMzolZ5SclS5bEiBEjMGHCBOzfvz/P8pPIyEh88sknQn6yYcMGUYdqrVaLuXPnAgA+/fRTg5vRdHx8fDB16lR0794df/75p0F+snbtWgAZ11RjxowxmN/Z2Rnz5s1D7dq1rZqf6J5IZ07Pnj2tOoiCzt9//429e/cCyLimNnYtqWPt/GTDhg1CfjJt2jSj+UnTpk3Rt29frFy50uRydDcEdezY0eBmNJ3M+cnp06dF13qW5CfTpk3Dpk2bkJiYiJMnT6Jjx44my3fo0EF0M5qOUqnEoEGDMHbsWJP7oSWyyk+qVq2KPn36YNGiRdi7d6/BDWm6/KRmzZo2yU+ssS/t2bNHuFHys88+M5qflClTBt9++y0+/fRTJCUlYd26dRg5cmS265wTRYsWxffff2902vfff4/9+/cjOjoaK1asMHlDGgCMHDnS6GcDrHPO2bdvn7AdP//8c6Oj71epUgWfffaZ0dH9rSk+Ph6rVq0CkHHjWeYO/fqYnxR8rq6uwv8pKSlZlteV0Z/PXln61Nic3tRrCblcLrp+jI+Ph0ajwYtX4qceKGVpFtVDrVZDo9EAMN3JSZYcI6k2FMB27Sjp6emi/9PS0uDr64uQkBDMnz8fp0+fxokTJ9CkSRPIZDKD6/rMMbp8+bJwvujTpw+aNm1qUMbT0xM//vij8HvWsmXLsmxD8fDwyLIzgkwmw88//wwXFxeDssHBwaIc5ccff4RWqzUo17t3byFHuXXrlsFvt7pOGabqUqxYMQwbNgwTJ07E/v37oVarDc4vuu+3ueXoylnaASMqKgq9evUScpQ1a9bA3d1dmF+r1QrXqYMGDULz5s2NLtvT01NoQ8mcoyQnJ4uuq0aMGGGwDF0M9H/3TUtLy1FHEq1WK/xvSY5irA3F0m1tbD/QuXfvnpCjBAUFITQ01OSydOcN/en6yza2LczVcd26daI2lCJFihiUadSokagNxdj35ueffwaQ0YbSs2dPo/V3dnYW5SgnT55Es2bNhOlKpRJKpdLsdpwyZYqQoxw7dsygDUV/W7Rr185oZx+FQiFqQzG2H1qidOnSovVlVqlSJXzyySdYsmQJ9u7diy+//FI0/dmzZwAy2lBcXV1Nfu5ChQpl+/udOUfJ6b60c+dO4dp6zJgxqFy5ssFySpQogcmTJwttKGvWrMHw4cONHs+zc8wxRX+b+/v7Y+rUqUaXOXXqVFGOEhwcbFAXneHDhxv9bIB1zjm7d+8W5XrlypUzWEbFihVFbSjGzh9Z7ev60/Tn0X+tn6PUrFkT06ZNM/k9lsvlKFy4sMnjjW7ZmWOdnp4uOr5aSqPRQKPRQK1WZ/u6kk/PJHuRpNbbR6BAISvf50VEREREZCl23aYCJfOTZjyV7PdV0AwfPly4EUP3pAtLnDx5Uvj/k08+MVnu7bffFm5MPnXqlMlyJUuWxDvvvGPRuqtUqWL0ZmcAoh+MmzVrZvLHJ/1yDx8+zHKdCQkJePjwIe7cuYPw8HCEh4cLN8XpptlacnIy+vbti6ioKDg5OWHlypUGN+TcvXsX//zzDwCY7cgAQLS9L1y4IPx/7do1YUSeHj16mLxRokSJEqLOFgXd4cOHhR9HP/300zxdt25/8vHxQdu2bU2W69Wrl8lpCQkJOHv2LACYvUkMyGgE0d1IcPHiRbNl1Wo1nj59ir/++kv47kdFRaFw4cIAgFu3bpmdv2vXrian1axZU/jfWvvQy5cv8eDBA9G+qrtZ4e7duwY3fulu9vn999/x4MEDq9RBx1r7ku7YKZPJzH4HOnbsKNykqn+MtrVOnToZvUkYyGiE0X0f79y5IzSwGfPRRx+ZnGaNc47+djR2o6ROz549bX6T8enTp4VG3kGDBhk0yhE5kri4OJv9xcfHi9YVHx+PuLg4/PtC/L6XUmbR8nQ3pOkaxk3+pUvrSU5p6Wa2RS7+jDVep6WlYdiwYUJ+Mm3aNKPlM8+TlpYmGnG0V69eJtdbr1494Vxx4sQJg+k6JUuWRIMGDcx+Bp0qVaoINxJk/tN/6lmzZs2Em0jMlbt//36W2y8uLg4RERG4efMmbty4gRs3bkCpVALIuC6MiIgwmCfzDUimPk+W+8D//yUkJOCTTz5BZGSkkJ+ULl1aVObWrVvCNVa7du3MLq9Bg/9u9tTPTy5fviy6psoce91fsWLFRNdUOf1uZveGCWPbK6ttndV+kJaWJgzOAACDBw/O1T5mbLq5Oh4/fhxARn7ywQcfmFxHz549TW6HuLg4nDlzBkDGDWnm6qmfn/z5559mP1dycjIePXqE27dvC9/9x48fC/nJ9evXzW6LDz/80OSy9TtIWLIfWvIXHR2Nv//+W7Sv6ga+uHv3LpKTk0Xl/f39AQDnzp3D33//bZU66P4uXbpklX1J9/2QyWT4+OOPTa6vffv2Qn5y/Phxg1iY24dy833v2LGjcINw5j9XV1dRfvLkyROT+0WXLl1Mrs8a5xz97ditWzeTy9DPJXU3pJn67FltJ53MsT9+/LiQnwwcONDoeizd/vrLzurcbclf5hvSsvNHxrm4uAjHoZiYGLNlX79+jdTUjA7plnZIKQjS09Nt9qd/HAEyjnHp6emITxb/HuWllFu0vJzcyEnWZ6wNxZLYsA3FcdtQrl69yjYUB25D0Wq1ohxFP/bGsA0l5+yhDSUvzrVsQ8k+W7ShZI51bmOv1Wqzfa1IZC8SM93nZe3BkYmIiIiILMUeB1SgvE7NNEKJkslUQVO4cGF8+umnmD17Ns6fP49jx44ZHSEzszt37gDIaGjNavTVOnXq4K+//sL9+/ehUqng4mI42nd2HousG83LGP2R/Cwt9/r1a6Nl/v33X4SFheHQoUP4999/zdYpNjYWgYGBZsvk1qhRo4QnLXz//fdGnwp09epV4X9zDQeZ6f8IGx4eLvxfq1Yts/PVqVMHhw8ftng9WXnx4oXVlpVdN27cAJAxili9evXydN26bV69enXh8e/GVKtWDS4uLlCpVAbTrl+/LjTMDx48GIMHD7Zo3bqRjPWp1WqsXr0aW7ZswY0bN4yuT0f/EefGVKhQweQ0Hx8f4X9T+6Elbt++jcWLF+Po0aNGP4+ORqPBy5cvhRvRgIyGmM2bNyM2NhZNmzZFmzZt0KJFCzRs2BBvvvlmjusEWG9f0h1vy5YtCz8/P5PLcHFxQfXq1XH27FlhnrxQu3Zts9Pr1KkjjEAeHh5udKRyDw8Ps8dQa5xzdPEoW7as2Zt9/Pz8UKZMGZs25OuONwDQsGFDm62HyB7kZWOg7oa0mETxecvXzcmievCGNPtgKj/JqmGb+YmYI+Unt2/fFv5nfpI3mJ8wP7FVfpIX51rmJ9lnq/zEmjel6W5II+soVaqUcENvenq6yZsQnz59KpqHcu5lpk4zPm5sCixI2IbCHAVgGwrAHEUfcxTHyVHyAnOU7GMbCpFtJavEnf3dnDm+NxERERHlD16JUoGSmMoRCBzB0KFDhQYQ/ccwm6MbsdHHx8fsD9TAf6MQabVaYcSgzPR/+M2Km5ubyWlyuTzb5Yw1uh85cgRNmjTBihUrsmzsATJGMLOl2bNnY/v27QCA/v37o3///kbLRUdH52j5+vXXH41T/4dxY7KaXpDoRtf08fEx2ihpS7r9wtyP+QDg5ORkcl/Jaex1IzXpxMXFoW3bthg/fjwuXbpktrEHyPq7n5v90BJr167Fe++9hw0bNpht7NFJSUkRvW7atClmzJgBNzc3pKSkYMeOHRg1ahTefvtt1KhRA+PGjcPNmzdzVDdr7Uu65WT1/QD+O96aOtbaQlb10v9spkb71W+EN8Ya55zsbEdbH9v0G0qNNYARUe68TBLfkObr5pxPNaGcYn7C/IT5CfMTHeYnzE+yi/lJ9jE/kZ5KlSoBAFJTU3H//n2T5fQ7rurmoezTarWITxGfV7xdmaMUNMxRmKMwR2GOosMchTlKdjFHyT7mKES2lflJM+68z4uIiIiI8gmHl6IC5XWmZMraT5rRuvoiZsB5qy7TnmldffNlvd7e3hg6dChmzJiBS5cu4dChQwgKCrJoXms9fln/h9/8FhMTgyFDhiApKQkeHh4IDQ1FixYtEBgYCC8vL6Ex4PTp0/jwww9tXp/du3fjhx9+AJDx4/T3339vsqz+j+br1q1D6dKlLVpH8eLFjb5v68drk1hutrduhDQgo4Gwfv36Rsvpjx6anp5u0ID09ddf49q1awCAoKAg9OrVC1WqVIGfnx9cXV2FOtaqVQtPnjzJ11H5//77b3z++edIS0uDv78/QkND0aRJE5QpUwaenp5wds64AWHdunUYPXo0AOMj2w4YMAAdO3bE1q1bcfLkSZw/fx6vXr1CZGQkfv31V6xevRqjR4/GV199leO6WmNfstf90Rr1MjWqrS3WZa/bkYisJzZzpxl366bZzFFsz1h+8sEHH1g0L/MT5idkPXmRnwDia8FChQqJpjE/YX6SXcxPiLLWoEED7NixAwBw/PhxoyPcazQanDx5EkDGyOZVq1bNyyralKX7eE5kvoaUy+VITgfSNeLjfWFPF4vqYckxQmr5CWA/OQrbUKSTo8hkMtFN2/ox5bk8b+VFjiKTyUT7m5eXl2g6cxTHylHyYh9mjmIfMn8umUyWq/1TJpPZ9LqSyJaSVBwcmYiIiIjsAzvNUIHy2tZPmpHJoXUz/fhfsp5PP/0US5cuRWxsLH744YcsG3x8fTMapuLi4pCWlmZ21BrdyEUymSxbo6Hll927dyM+Ph4A8Ouvv6JZs2ZGy5ka7cearl+/juHDh0Or1eKNN97A8uXLzW7rwoULC/97eXmhcuXKFq1Hf5n6MXr+/DnKlStncr4XL15YtHxb02/A0Gg0JhsQExMTTS5D96jxly9fih5Hnhe8vb3x/PnzLLdnWlqaydGvdPskkDEymanY68c6LS1NNC0hIUG4aaJr165YtGiRybrk5ShcpmzYsAFpaWlQKBTYuXOn0Zs8AMvq6u/vjyFDhmDIkCHQaDS4ceMG9u3bhxUrViA+Ph4///wzateujbZt21pcP2vtS7rYWrK/6Y63eXmszape+tP1v6fZYY1zju5/S7ajuTKZjzemZB6BUJ/+sfrZs2coW7ZslnUiIsvFJYvPb77uVh7FmTlKnsicn2TVaYb5CfMTgPmJteRlfgKYzlGYnzA/yQnmJ8YxPyF95cuXR+XKlREeHo7jx4+jefPmqFixoqjMnj178OTJEwBA27ZtsxyxvCDJ6b6fE97e3niZZni+Dwzwh4cy620aHR0NrVYLuVxuPgbOHIHdGvRvfFUoFAbbfNiwYUKOMnPmTIM2lMzldcdX3XW6uRjqnoAhk8ng5+dntGyW34MclDVXTv/9zNtj7969Qo6ydu1aNG/e3OgyXr16ZXIZuvUbW1926qmfo7z55ptYtWoVXF1dTS5L/wkKvr6+qF69usmypugfR2JiYsw+jUv3dBYg4zPm5Hiqf6N3To/H+vPJ5XKTOYr+U0Yyx0y37V6+fAmNRpPtHEV/HzO2Lcx9H3x8fPDs2TNER0eb3Qb6OUrm741+7D08PHIU+1evXgk5Srdu3bB06VKTZXX7iLHvb1bbQn+a/jzZjf+mTZuEHGXPnj0G53sd/X3VVH0CAgIwfPhwDB8+XMhR9uzZg2XLlgk5Sr169SzuUAiIr0Nzsy/p5yhZbSPdtbWvr6/Jstk53pqiH+OYmBizy9N/qkrmc4Clx0lrnHNysh1lMplBWV1nLF39TS0rNTVV+N/U8QbI2H7ZzVGyOqdnLpMdupg4Ozvn6XUl5b0dO3Zg/fr1AIBp06aZPIYWRMlq8e8Hbs720zmbiIiIiKSFV6JUoCSm2vZJM5R3PD09ERoaCiCjkWHPnj1my7/11lsAAJVKleVjt69cuQIAePPNN/P8ke05cefOHQAZPw6auiENAK5evWrTejx79gx9+/ZFUlISvLy8sG7duix/fNP/kf/8+ZyNMKh/M1NWn1EX2/zm6ekp/G/uBqT79++bnFajRg0AgFqtxoULF6xWN0tUqVIFAHDz5k2Djiz6bt26BZVKZXRatWrVhMaznMb+/v37UKszRufv3LmzyXJ///232Rv88srdu3cBAFWrVjV5QxqQ/X1VLpejZs2amDBhArZu3Sq8v3Pnzmwtx1r7ku54+/DhQ6Exwxi1Wo0bN26I5tFnq9HBsjoO6E83Vi9LWOOco4vHw4cPRY1QmUVHR+PRo0cmp+sfb3QNn8ZERESYnKY73gDA77//brIcEeVMnMGTZqzcaYbyROb8ZO/evWbLMz9hfgIwP7EW5ic5w/xEjPmJeH3MT8ia7ty5gxMnTgh/f/zxhzAtKipKNO3EiRNGlxEcHAwXFxekp6dj2rRp2L59O/766y/cvHkTS5cuxdq1awFk3CDboUOHvPhYDitzfuKikMOdIzkXSIUKFcKIESMAANeuXcuyDUV3rFepVMI50ZTLly8DAMqVK1fgchRTHWYA21+fP3v2DL169RJylA0bNmSZo+if9/78888crVd3vQxk/Rl1sc1vluYo5q4ZatasCSB/c5QbN26YzVFu3rxpMkepXr26cA2a09jr5yhdunQxWe6vv/7C69evc7QOa9Ltq9WqVTN7s3d291VdjvL111+L8pLt27dnaznW2pd0y7EkR7l+/ToAGB3YIb9yFP3PZulgI5lZ45yjvx2tlaPk9ngDAOfOnTNZzhRHfVoO5Z1Hjx5hy5YtUCqV+V0Vm0jkk2aIiIiIyE6w0wwVKK9VmTvNOM6Ic1I0YMAA+Pv7AwCmT59u9pHE+jdr6UbYMObChQvCjSNNmza1Uk1tKz0943udmppqcpTOpKQkbNmyxWZ1SElJQb9+/fDkyRMoFAosXbrU7E03OjVq1ECJEiUAAGvWrBGNCmapmjVrCiOebt682eT3IDIy0mTDe14rU6aM8L+5m3/M/WD//vvvCz+imhsdzBZ0+0ZcXBwOHjxosty6detMTvPz80O9evUAAFu3bjXbMGCKfmOTuVFoV61ale1l24KuvubqGhUVZXabZkV/f9AfySy78+ZmX9J9P7RaLTZs2GCy3O7du4UR4YzdUKv7YddUo2FO7dq1C8nJyUanJSYmYteuXQCASpUqoXjx4jlahzXOOfrbcfPmzSaXsXHjRrPnP0uPN9u2bTM5rUmTJnB3dwcALF++XDjvWEp/tEz90diI7JFCobDZX+ZRUXUjpcYliW+e8PN0sWh5bEy1P/r5ycyZM0XH58zxYn7iOPlJ5tjWqlWL+YkD5yeZ463/mvmJoYKen+jHV3dNy/zEcfMTc/t3dslksmxfKzqyo0ePYuHChcKfroMLkNGBT3/awoULjS7jjTfewOjRo+Hm5oaUlBRs2LABEydOxNSpU3HkyBEAGR1mJkyYADc3tzz5XI4qLkl8nPP1cGbuUYANGjTI4jYU/c4k+vtpZufPnxdubDfXSd6e6K57sspRzJ3jcislJQW9e/cWcpQVK1ZYNAJ8zZo1hRzl119/zVEbin6OsmnTJpPfg6dPn+L48ePZXr4t6D+lwdwN/OauGT744APh+GXuKZC2oNs34uLicODAAZPlzO1r+jnKb7/9ZtM2lF9++SXby7YFS3MUc9s0K/p5hrmOFsZYa1/SfT+0Wq3ZPHXnzp1m21B017XW/s19586dZnMU3dOL3nrrrRznKNY45+hvx40bN5pcxvr1682e/yw93ugPCpHZu+++Cw8PDwAZv4lkN0fR7+jANhTKrrS0NISFhSEwMBANGjTI7+rYRFKm+7zYqZ+IiIiI8gs7zVCB8jrAMvO1AABUoklEQVRVfEMaRyAo2Dw8PISR0m7fvo3Dhw+bLFunTh3UqlULQMbNT6dOnTIo8+rVK4wbNw5Axk2M/fv3t36lbeDNN98EkPEjsrGRW9PT0zFmzBhERUXZrA5jxozBpUuXAABTpkzBe++9Z9F8crkco0ePBgD8888/CA0NNftjYEJCApYvXy56T6lUomfPngAyRuVasGCBwXxpaWkYM2aM1W9uyan69esLj9ZevHix0R9rFyxYYHYkqnLlygmPjd+3b5/Rz62TmJhodnSk7OrRo4dwA8I333yD58+fG5Q5e/Ys1qxZY3Y5Y8aMAZAR15CQELOjzKampmLFihWiRsE33nhDaPQydWPOwYMHsWLFiqw/VB7Q7av37983Onp1UlIShgwZYrIxAsi4UdHc9KtXrwqxzu7j3621LwUFBQkNJT///DNu375tUObJkyeYPHkyAMDd3V1Yr75ixYoByDg2WNPz58+FdWf2zTff4MWLFwAyRrHNKWucc4KCgoRtMHv2bNy7d89gGXfv3sXPP/9sti6VK1cWRqxcsWKF0WPsjh07hJvxjPH29ka/fv0AZIxM+vXXX5tsZFKr1cI21NF9DsD68SSyNl9fX5v9eXt7i9bl7e0NhVshpGnE+1NggJ9Fy3N2dhY63jg5OfHPxn/6N7MqFAqjZby9vTFq1CgAhvlJ5nkaNGiA2rVrA8g4V5w9e9ZgeYmJiaJzxcCBAw3K6FjyPbC0bHbLZf5s5cuXB5BxbbN7926D+WQyGcaOHSvKT4xtU/2OZtmt59ixY4X8ZOrUqWjdurVFcXZxccHYsWMBZJyzRowYgfT0dJPlk5KSDK413d3d8cknnwDIuKZauHCh0bqPHTtWdE2V0++m/k2sOV3GO++8I9Rr6dKlRuOxcOFCUX6SuUylSpXQvn17ABn5ibHPrftLTU3F69evTe5jxuYx93345JNPRPlJbGysQZk///xTlJ8Y+97o9reEhAQMGDAAiYmJBmV09UxNTcWyZcugVquFaRUqVBDisWnTJqPb8fDhw6LvjLF6ZLUtLNkPLfnT7av379/HpUuXDKarVCoMHTpUlH9kLrNr1y7RNsj8d+PGDSE/CQwMzFb9PDw8rLIvdezYEQEBAQAy8pO7d+8alImKisKUKVOEfbhPnz4GsdBd0z58+DDH+5qxGD9//hxTpkwxWm7y5MnCtXVISEi29gv9P2ucczp27CjkebNnz8aDBw8MlnHv3j1RfiKTyQzKVK9eXZSfGDvG7t69W5SfZP5+FylSRMifrl27hkmTJpncB7RaLeLi4kTv6W48BjJG4zUWl5zuV7prM2dn52xfK1LW6tWrhx9//BHt2rVDQEAAlEolPDw8UK5cOXzyySeYOXNmjm/ctGdxcXE2+8v8W1x8fDweP48TveelVFi8PLVaDY1GA41Gg7S0NP7Z+E//htz09HSjZZRKpck2lMxla9asKfyetXr1ahw7dsygTGxsrPCbrlwuR79+/QzK6FjyPbC0bHbLZd4eb7zxBoCMHGXr1q0G86WmpmLEiBGIjIw0u031O9xkt54jRozAxYsXAWS0oTRv3tyiOGs0GlEbyqefforExEST5ePi4rBkyRLRfuzk5CT8/nrjxg3MmTPHYL6UlBSMHDlSdF2V0++m/u+GOV1GnTp1hOu9sLAwqNVqgzJz5swR8j5jMQsMDBTaUPbu3Wv0c+v+4uPjER0dbXIfMxUbU9O7desm5Chff/01nj59alDm5MmT+PXXX81+b/TbUPr27YuYmBiDMvoDVyxbtkz0/ShTpoyQo6xfv97odty7dy+WLVtmth5ZbQtL9kNL/nT7akREBM6dO2cw/dWrVxg4cKAoR8lcZsuWLUhISDC5josXLwo5SunSpbNVP4VCYZV9qXXr1qJr6+vXrxuUefjwISZNmgQgI0fp0aOHQSx0OcqDBw9yvK8Zi/GzZ8/w9ddfGy331VdfCTmKsXNAVsdJ3Z81zjmtW7cWtsGsWbNw584dg2XcunULs2fPFuqk1WoNylSoUEG4Hs+8D+n+fvvtN6GzkLHvt4eHB/r27Qsgo53uyy+/NLq/paWlITk5GZGRkaL3/Pz8hGVHREQYxCSn+5QuJhqNBmq1OtvXilQwbNu2DY8fP8bQoUMNBu5yFElqcadndpohIiIiovzCx3RQgZL5sZ2eSiZTBV1wcDDCwsLw7NmzLEct/emnn9CmTRuoVCr07NkTAwcOxAcffAAPDw/cuHED8+bNE27mDQ0NzfEjpfNap06d8L///Q+pqakYOXIkbty4gebNm8PLywt37tzB8uXLce3aNTRo0MDojfq5tW7dOvz2228AMkbSadasGcLDw02Wd3d3F93MHxwcjJMnT2Lv3r3YtWsXrl+/jn79+qF27drw8vJCQkIC7t27h7Nnz+LAgQNwdXXFkCFDRMscN24cdu7ciadPn2Lq1Km4efMmunfvDj8/P9y/fx+LFi3ClStXUKtWLbMjmWaXuc+pr3Tp0qLHe/v7+6Njx47Ytm0bjh8/jt69eyMkJAT+/v548uQJNm/ejD179qB+/fq4cOGCyeXOnDkTly5dQlRUFL799lscO3YMH3/8sXCz1qNHj3DmzBns2LEDv/zyCxo3bpzrzwwARYsWxfjx4zF58mQ8evQIrVq1wqhRo1CnTh2kpKTgyJEjWLJkCQICApCcnGxyBLT3338fgwcPxtKlS/H777+jUaNGCA4Oxttvvw1fX18kJSXh0aNH+P3337F79268fPkSPXr0EOYvXLgwWrVqhcOHD+PYsWPo1q0bgoODUbp0abx48QJ79uzBxo0bUbZsWbx69SpHI7FZU/fu3bF8+XJoNBr06tULoaGhePvtt+Hq6opr165h8eLFuH//vtl99bvvvsPnn3+ONm3a4J133kG5cuXg7u6OuLg4/Pnnn0KnMoVCgd69e2e7jtbYl1xcXDB79mz07t0bCQkJaNeuHYYPH453330XCoUCFy5cwLx584SGlSlTpqBIkSIGy6lfvz7OnDmDK1euYO7cuXjvvfeE0YTd3NyEG9+yq1atWvjll1/w8OFDBAcHo0SJEnj69Cl++eUXYfS36tWr56rTDJD7c46LiwumT5+OkJAQvHz5Em3atMGIESPQuHFjaLVanD17FvPnzweQ0YHswYMHRuvh5OSEvn37Yu7cuQgPD0eXLl0wYsQIlCxZEi9evMCuXbuwcePGLI8348ePx8mTJ3H79m2sWLECFy9eRL9+/VC5cmU4OzsjMjISf/zxB7Zt24YJEyaIOkKVKlVK2M4LFy5EiRIlUL58ebi4uADIOCZyJGCSqthEw06IRTyURkpSQRESEoIFCxYgKioqy/xk7ty5aNWqFVQqFbp3747BgwejTZs2cHd3x/Xr1zFnzhzhXDF8+HBUqVIlDz5B7nXu3BnfffcdUlNTMXz4cNy4cQMtWrQQ8pOlS5fi6tWrePvtt/Hnn39aff1r164VnmLTtGlTNG/e3GgnXh0PDw9RfhISEoITJ05gz5492LFjB65du4bg4GDUrVsXXl5eePXqFf7++2+cOXMGBw4cgFKpxODBg0XL/Pzzz7F9+3Y8ffoUU6ZMwY0bN/Dxxx/D398f9+7dEzqg1K5d2+woptll7nPqK126NAoVKiS89vf3R6dOnbB161YcPXpUuHYpWrQoHj9+jE2bNmHXrl1Z5pQ//vgjLl68iMjISEyePFlYVsWKFYX85PTp09i2bRtWr16NJk2a5PozAxn5yVdffYVJkybh0aNHaNGiBUaPHo26desiJSUFhw8fxqJFi7LMTz744AMMGTIEixcvxrlz5/D222+jf//+aNiwIQoXLozExEQ8ePBAlJ/oX/MULlwY77//Pg4dOoSjR4/iww8/REhIiJCf7N69G+vXr0dgYKBwU15+6tGjB5YuXQqNRoMePXpgxIgRaNiwIVxdXXH16lUsWrQIERERZvfVKVOmYOzYsQgKCkKjRo1Qrlw5eHh4IDY2Fn/88Yfw1CGFQiHcQJQd1tiXXFxc8PPPP6Nnz55ISEhA27ZtMWLECDRt2hQKhQLnz5/HnDlzhPxk6tSpRvOTBg0a4PTp07h8+TJ+/vlntGrVShhJ2NXVVdQRIztq166NlStX4uHDhwgJCUHJkiXx5MkTrFy5EkePHgWQ8RSskJCQHC1fJ7fnHBcXF/zwww/o168fXr58iffffx+jRo1CkyZNoNVqcebMGcydOxdAxoAR9+/fN1oPJycnBAcH4+eff0Z4eDg6duyIUaNGoVSpUnj+/Dl27tyJ9evXZ3m8+eqrr3D8+HHcvn0by5Ytw4ULFxAcHIwqVarAxcUFT548we+//45t27bh66+/Rq9evYR5S5cuLeQnCxYsQIkSJVChQgWh04y/v7/oGEm5FxoaitDQUKssy9/fH/369RMGdpCC7I5UnhsajcbgSTPerk4W18HcKO6Uf9iGIs02lE8//VSYX6vVsg3FgdtQHjx4gPPnzws5Srdu3YSnVrANxfHaUPTPtbochW0obEOxhFarzdPrSnsWHx+Pe/fu4d69e4iIiEBERAQSEhIAZDzBKDu5y4sXL7B//35cvnwZMTExcHJyQvHixfHOO++gdevWoqcI2cL9+/exfft2dO/eHaVKlbLpuvKT4ZNmHLNzEBERERHZP3aaoQJlzoeVkJCSjtepaXidmo43/XiDZkHn5uaG0aNHY8KECVmWrV69OtauXYsBAwYgISEBCxcuxMKFCw3KhYSEYOLEibaork2UKFECM2fOxJgxY5CSkoL58+cLPwLqdO7cGX369MFHH31k9fU/efJE+P/06dNo2rSp2fKNGjUSPRFHJpNh2bJl+Prrr7Fq1Sr8888/+Pbbb03O7+/vb/Cel5cXNm3ahI8++gjPnz/Htm3bsG3bNlGZjz/+GI0aNcLIkSMt/WhZyuqz6vz666/CiGY63333Ha5evYr79+/j0KFDOHTokGh6ly5d0Lt3b7MxK1q0KHbv3o2+ffsiPDwcp0+fxunTp7P/QXJg2LBhePz4MZYtW4bIyEiMHz9eNL1IkSJYsWIFBgwYYHY506ZNg6+vL2bPno3nz59j5syZJsu6u7sbjPw6a9YstG/fHo8fP8bJkydx8uRJ0fRSpUph9erVRp9kktdq166NL7/8Ej/88APi4+Px/fffG5QZNmwY3nrrLbONs/Hx8di0aRM2bdpkdLpSqcSsWbOEUbqyw1r70gcffIB58+Zh3LhxeP36NWbMmIEZM2aIyigUCowfP97kU7369++PVatWIS4uDtOmTcO0adOEaZmPI9nx1VdfYeHChTh27BiOHTtmML1ChQpYv369MJJhTlnjnNOhQwdMmTIF3377LeLj40XbAMjYJ5YtW4awsDCTDT5AxujbZ8+excWLF3HhwgWDGxYbN26MGTNm4N133zW5DHd3d2zbtg39+/fH77//jmvXrgkj8Vti9OjR+OKLL/Dw4UP06dNHNC0sLAzdu3e3eFlEjqRsYXdcnNgKsYkqRL9ORVyiGm4cJa1Ac3Nzw5gxY/Dll19mWbZ69erYsGEDgoODkZCQgAULFhh90tvAgQNNPiXNHpUsWRKzZ8/GyJEjkZKSgrlz5wo3Uut06dIF/fr1Q+fOna2+/sePHwv/nzp1Ksubnho3bow9e/YIr2UyGVauXInx48fjl19+wYMHD8xuf/3RQHW8vb3x22+/oUuXLnj27Bm2bt2KrVu3isr06tULjRs3ttpNxLrPYom1a9eiXbt2ove+//57XL16FRERETh48CAOHjwomv7hhx+ib9++ZmNWtGhR7Nu3D7169UJ4eDhOnTpl9Il7tjB8+HA8fvwYS5YswdOnT/HFF1+IphcpUgSrVq3K8qae77//Hr6+vpg1axaePXtmcA2rz8PDwyA/mT17Ntq2bYvHjx/jxIkTOHHihGh6qVKlsHbtWru49qlTpw4mTJiA6dOnG73WBDK2a+XKlc12cIuPj8eGDRuwYcMGo9OVSiV++ukn4Ukn2WGtfal169YICwvDmDFjkJCQgO+//94gH1MoFPjqq69M5rAhISFYuXIl4uLiMHXqVEydOlWYlvk4kh0TJ05EWFgYjh49KnSS0VexYkVs3LjRKvlJbs85HTt2xNSpUzF58mTEx8eLtgGQkTOsXLkS8+fPN9lpBsi40fDMmTO4cOECzp8/LzxRSKdJkyaYOXMmGjVqZHIZ7u7u2LVrF/r27Ytz587h6tWrwij8lhg7dizGjRuHhw8fGqw/LCxM1MmGSGo+qlkMLcoXRnxKGl4mp8HVmTekFXRsQ2EbCsA2FKm0oRjLUdiGYshR2lD0cxS2obANhSw3aNAgqyzn4sWLmD9/vujpV6mpqUJHnKNHj2LChAk2exqmWq1GWFgYAgMD0alTJ5usw15Mav0m4pPVSFJrkKRKRwlvDjxGRERERPmDnWaoQPHzcIGfR37XgqytT58+WLBggajhwZQWLVrg/PnzWLJkCY4cOYKHDx9CpVLB398fDRs2RL9+/dCwYcM8qLV19erVC+XLl0dYWBjOnz+P+Ph4FC5cGFWrVkXPnj3RuXNnnD17Nr+raZKzszNmzpyJ4OBgrFmzBufOncPjx4+RmJgIDw8PlClTBjVr1sR7772HDz74wOgy3nrrLZw5cwbz58/H3r178eTJE3h6eqJy5cro06cPPvzwQ5M38eSHokWL4uDBg5g3b55QX3d3d7z11lvo27cvunbtalHMAgMDcfz4cWzZskUYZS42NhZOTk4oUaIE6tatiw4dOtjke/3999+jRYsWWLZsGa5evYrk5GQEBASgVatWGD58uEUj7cpkMowbNw7dunXDr7/+itOnT+Phw4d49eoV3NzcUKpUKVSvXh0tW7ZEmzZtDEZSKlmyJI4ePYr58+dj//79ePz4MZRKJUqXLo2goCAMHjwYPj4+Vv/sOTVu3DjUrFlTGGE9KSkJfn5+qF27NoKDg9G8eXOz39Pt27fj4MGD+P3333H//n08f/4cL1++hJubGwIDA9G0aVMEBwcjMDAwx3W01r6kaxhasmQJTpw4gcePH0Or1aJYsWJ49913MXDgQLMj5gcEBODgwYOYO3cuzp07h8jISKSkpOT4c+m4uLhg48aNWL16NTZv3oy///4barVa+FF56NChVnvqiTXOOaGhoahfvz4WLlyI8+fP49WrVyhatCjeffddhIaGomLFiggLCzO7DF1jzeLFi7Fjxw48ePAATk5OKF++PHr06IHg4GCLzqFFihTBrl27sHfvXmzduhWXLl1CTEwMZDIZihcvjho1aiAoKAjt27c3mLd///7w9/fHr7/+ilu3biEuLg5paWlZrpMor8XFxdls2XK5HN7e3sLr+Ph4aDQaKAD4uwD+hRVAYYXFdVCr1dBoNADA/SkP6I/EmJ6ebnabf/LJJ5g3b57o2Jqenm505O2mTZtadK7QaDRCvI3RaDQWfw8sLWuunP77xrZHjx498MYbb1icnxhbhv7nNVffzPU0t52M0Wq1BsuXyWTCExWyyk9at24tmlcX6woVKuD06dMWX1OlpaXlaF/OyYjuxrZ34cKFceDAAYvzE1P7QalSpSzKT+rXr2/wPdIxti0s+T5MmzYNzZo1syg/Mff9Hjt2LD766COj+UnJkiVRo0YNtGzZEu3atYOLi4toOcWLF89WfmKsHlltC2PbIavjkiljx45F9erVLc5PMtcnO/lJTs9V1tqXunXrhrfffjvL/ER/XplMJtx0WKJECRw6dAhz5swxyE+MHUfM0Y+xQqHA+vXrs8xPjC3f0uOkjjXOOUOHDkXdunXN5ifz5s0zu11cXFywdetWi/MTU99vb29v7Ny506L8JPP8/fr1Q5EiRczmJ6bO3ebotp1arc72daWvr2+2yhPZitJJjgBvJQJ4I5pDYRsK21AAtqE4ahtK5hyFbSjSaUMpUaIE21DANhTKHT8/P5QsWRLXrl3L1nwPHjzAnDlzoFKp4Orqis6dO6NatWpQqVQ4e/Ysjh49isjISEyfPh0zZsyw2j6jb9OmTYiMjMSMGTMglzt2R/ciHs4o4uGc39UgIiIiIoJMy+etUy7Y6jHPCoVC1NAYFxeX68fNPnv2DBqNBnK5HMWKFcttFcnK9Eez4Q9Ijo/xlg7GWlpsFe+zZ88Ko6Lv2LHD4lHYybasEe/cXJ8ZezIAka3yE8D6OQrzE/vH6xjpYKylhfGWFlvEm/mJ/cptvJmfkC0wRyFr4TWMtDDe0sJ4SwtzFOlgG4ptbN68GeXKlUO5cuXg4+OD58+fY/jw4QCAZs2aWfRU6MmTJyM8PBwKhQLffvstKlasKJq+a9curF27FgDQtWtXo08KWr16NdRqtcX1DgoKQkBAAADgr7/+wqRJk9CtWzd07dpVKBMWFoaTJ09i2rRpBnWypoJ0nxfZL8ZbWhhvaWG8pYOxlhZ7iLc95Ch80gwRERERERERERERERGRlemeeGULmUekzu0I1TKZLFfzk+1kjo1MJsvREwupYGC8pYXxlhbGWzqsHWv9J6lKnbEOLNlx7949hIeHA8h4WpKxzint27fH8ePH8eTJE+zfvx8ffvihqBMUABw+fBipqakWr7dhw4YICAhAeno6wsLCULZsWaGzGxERERER5Q12miEiIiIiIiIiIiIiIiKyMv3R+2zN29s7V/NHR0dDq9VCLpcb3BRI9oU3zUoL4y0tjLe0WCve+stRKBQ8j9uhnMZa1yna2dk5T68rHdn58+eF/1u0aGG0jFwuR7NmzbB+/XokJibi1q1bqFmzpqjMmjVrcrT+lJQUREZGAgB69epltMzEiRMBAOPGjUODBg1ytB4iIiIiIjLEbJmIiIiIiIiIiIiIiIiIiIiIiIgc1t27dwEASqUSb775pslyVapUEc2TudNMTjk7O6Nly5ZGp4WHhyMyMhL16tWDl5cXihYtapV1EhERERFRBnaaoVyx1Wg3uhEzTL3OicyPwCX7wUdRSwvjLR2MtbQw3tJi7XjLZDKOokhEREREREREREREREQ28/jxYwBA8eLFzbZLlShRwmAea3BxccGQIUOMTgsLC0NkZCQ6d+6MihUrWm2dRERERESUgZ1mKFfy6hGw3t7euV5GdHQ0tFot5HI5H0ls53jTrLQw3tLBWEuLNeOtvyyFQsHzuB3Kabx1HaOdnZ3z7LqSiIiIiIiIKK/ExcXZbNlyuVzUdhIfHw+NRpPj5anVamH+tLS0XNePrCfzYCPp6ekcrMaBMd7SwnhLi63inZ6eLvqf5/H8Z61YazQaaDQaqNXqbF9Xss3FkEqlQkJCAgCgSJEiZst6enpCqVQiNTUVMTExeVG9XLO0ngVpcGSyX4y3tDDe0sJ4SwdjLS2MdwbecUhEREREdq1JkyY2vcmEiIiIiIjIUo0bN8aLFy/yuxpEVEDo38RqaxqNJlfr403a9itzbBgrx8Z4SwvjLS22ijdzFPtj7Vhrtdo8va50VCkpKcL/rq6uWZZ3dXVFamqqaD57NnToUIvKbd682cY1yWCNwZGp4GC8pYXxlhbGWzoYa2mRarzZaYaIiIiIiIiIiIiIiIiIiIiIiIgckkqlEv53csr6djldGf35bCk0NBShoaF5si4iIiIiIilipxnKFVuN+i6Xy0U92eLj46HRaHK1TLVaLSyDjyS2L3z0uLQw3tLBWEsL4y0t1oq3RqOBRqOBWq3O9nWlr69vttdHjk//e2lt1n5crUwmy9X8ZFuZ4yOTyXhec1CMtbQw3tLCeEuLNeOdOd8hIiIiIiKigs/FxUX435J7hnRl9OezZ4sWLcrvKhARERER2TV2mqFcyatHwGo0mlyvi43i9ouPHpcWxls6GGtpYbylxdrx1mq1eXZdSY4tLztT5fZxtdHR0dBqtZDL5RaNakf5izfOSgdjLS2Mt7Qw3tKSk3jrOkU7Ozuzkz4REREREZGDcXV1Ff5PSUnJsryujP589qxIkSIWlStIgyOT/WK8pYXxlhbGWzoYa2mxh3jbQ7sL78whIiIiIiIiIiIiIiIiIiIiIiIih+Ti4oJChQohISEBMTExZsu+fv0aqampACzvjFJQFKTBkangYLylhfGWFsZbOhhraZFqvNlphoiIiIiIiCif8MlcRERERPaB12VkC7Z8ypXu6UimXmeXTCbL1fxkO5ljI5PJeMxyYIy3tDDe0sJ4S4e1Yy2Tyfj0VCspVaoUwsPDERUVhfT0dJPb9enTp6J5iIiIiIio4GOnGZIMuVwOjUYDrVYLrVbLBiAiIiKifKS7JgNyf2MPkU5cXJzNlm3tx9Wmp6dDo9FAJpNBrVYzP7EzmRui09PTeRODg2KspYXxlhbGW1pyG2+tViv8dpyenp7t60pfX99slSfpyMvvhn6+khNxcXFITk6GVquFQqFgjmLHeNOstDDe0sJ4SwvjLR05ibV++4lSqWTOYSWVKlVCeHg4UlNTcf/+fVSoUMFoudu3b4vmISIiIiKigo+dZkgyFAoF0tLSoNVqkZaWBmdn5/yuEhEREZFkqVQqodHHyYlpCVlHXj4+NrePq1UoFFCr1dBqtVCpVFAqlVasHeVW5ptseZO142KspYXxlhbGW1pyG2/d78ZAxk1peXldSWQvXFxckJKSAq1Wi9TUVLi6uuZ3lYiIiIgkS/fbsVwuh4uLS35Xx2E0aNAAO3bsAAAcP37caKcZjUaDkydPAgA8PDxQtWrVvKyizdmqw561n4RJ9o3xlhbGW1oYb+lgrKWF8c7Au9NIMpRKJVJTUwEAycnJ7DRDRERElE+0Wi0SExOF17wRh6TI1dUVKSkpAIDExES4uLhwJGciIiKifJKcnCz8z87MJFVeXl5ISEgAALx+/RpKpZI5ChEREVE+SUpKApDxVE0PD498ro3jKF++PCpXrozw8HAcP34czZs3R8WKFUVl9uzZgydPngAA2rZt63ADv+XVU4ty+yRMKlgYb2lhvKWF8ZYOxlpapBpvx7qyJzJDv7EzMTERcrkc7u7uku0xR0RERJTXdE/USExMFDozy2Qy3pRGkqS7AU03inNcXBw8PDzYeYaIiIgoD2k0GiQlJYk69TM/IWuKi4uz2bLlcrmocTM+Ph4ajSbHy9M9TVOr1SI5ORkvXrxgjmInZDKZaERwXZzIMTHe0sJ4SwvjLR25ibUuR9F1Zk5LS0N6enq2ryvzqmNEXrtz5w6ioqKE169evRL+j4qKwokTJ0TlmzdvbrCM4OBgTJo0CSqVCtOmTUOXLl1QtWpVqFQqnDt3DkeOHAEABAQEoEOHDjb5HERERERElPfYaYYkw8nJCZ6ennj9+jUAICEhAQkJCew0Yyf045Cbhj0qGBhv6WCspYXxlpacxFur1Ro0DPn4+PB6jCRJLpfDx8dHaOxMTU1FamoqZDIZb0izEzyvSQdjLS2Mt7Qw3tKSk3hnLufp6elwowhT/kpPT8+zdek6veQGcxT7xXOatDDe0sJ4SwvjLR05jbWxHEUmk+XpdaU9O3r0KE6ePGl02t27d3H37l3Re8Y6zbzxxhsYPXo05s+fj+TkZGzYsMGgTEBAACZMmAA3Nzer1JuIiIiIiPIfW39IUjw9PZGeno7k5GThPf4YZX8YE2lhvKWDsZYWxltachJvmUwGHx8fuLq62qBGRAWDq6srfH198fLlS6FDmbHOZZT/eF6TDsZaWhhvaWG8pSUn8XZzc4Onp6cNakNUcDBHKRh4TpMWxltaGG9pYbylI6exZo5iO/Xq1cOPP/6Iffv24fLly4iNjYWTkxOKFy+Ohg0bok2bNg77FFJbPQ3T2k/CJPvGeEsL4y0tjLd0MNbSYg/xtoenYcq0/KWbciE6Otomy1UoFKIdJC4uzqojZ6jVaiQlJUGlUrHBxw7IZDI4OzsLr9VqNWPiwBhv6WCspYXxlpacxlsul8PJyQmurq5QKpW5esKMn59fjuclx2Wr/ASwbY6i0WiQmpqKlJQUpKWl8ccoO8DzmnQw1tLCeEsL4y0tOYm37ukZLi4ucHd3F82fXcxPyBTmKGQNPKdJC+MtLYy3tDDe0pHTWDNHobxQUO/zIvvCeEsL4y0tjLd0MNbSYg/xtocchU+aIUlydnYW9Zqj/GUPB2TKO4y3dDDW0sJ4SwvjTWRdcrkcbm5ucHNzy++q0P/jcU46GGtpYbylhfGWFsabyLqYo9gXHuOkhfGWFsZbWhhv6WCsiYiIiIiI7E/Oh3YmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIislPsNENEREREREREREREREREREREREREREREREQOxym/K0BERERERERkDQqFwmbLlsvlZl+TY2G8pYOxlhbGW1oYb2lhvImIiIiIiIiyZqt2FObl0sJ4SwvjLS2Mt3Qw1tLCeGdgpxkiIiIiIiJyCL6+vnm2Lm9v7zxbF+U/xls6GGtpYbylhfGWFsab7AU79pM1MNbSwnhLC+MtLYy3dDDWZM/yqh2Febm0MN7SwnhLC+MtHYy1tEg13uw0Q0RERERERERERERERGRl7NhPtsBYSwvjLS2Mt7Qw3tLBWBMREREREeU/DmdAREREREREREREREREREREREREREREREREDodPmiEiIiIiIiKHEBcXZ7Nly+Vy0YiA8fHx0Gg0Nlsf5S/GWzoYa2lhvKWF8ZaW/I53Xj5NhIiIiIiIiCinbNWOkt95OeUtxltaGG9pYbylg7GWFnuItz20o7DTDBERERERETmE9PT0PFuXRqPJ0/VR/mK8pYOxlhbGW1oYb2lhvMlesGM/WQNjLS2Mt7Qw3tLCeEuHPcTaHm5II/uUV7ky83JpYbylhfGWFsZbOhhraZFqvNlphoiIiIiIiIiIiIiIiMjK2LGfbIGxlhbGW1oYb2lhvKWDsSYiIiIiIsp/8vyuABEREREREREREREREREREREREREREREREZG18UkzlCt+fn42WW5MTAy6d+8OAFi0aBGKFClik/WQfWC8pYXxlg7GWloYb2lhvMle2So/Afi9lxrGWzoYa2lhvKWF8ZYWxpvsFXMUsgbGWloYb2lhvKWF8ZYOxprsGe/zImtgvKWF8ZYWxls6GGtpYbwz8EkzRERERERERERERERERERERERERERERERE5HDYaYaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgcDjvNEBERERERERERERERERERERERERERERERkcNhpxkiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJyOOw0Q0RERERERERERERERERERERERERERERERA6HnWaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI4bDTDBERERERERERERERERERERERERERERERETkcdpohIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIih8NOM0RERERERERERERERERERERERERERERERORwZFqtVpvflSAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyJj5phoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBwOO80QERERERERERERERERERERERERERERERGRw2GnGSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInI47DRDREREREREREREREREREREREREREREREREDoedZoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMjhsNMMERERERERERERERERERERERERERERERERORx2miEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKHw04zRERERERERERERERERERERERERERERERE5HDYaYaIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgcDjvNEBERERERERERERERERERERERERERERERkcNxyu8KEGX24sUL7N+/H5cvX0ZMTAycnJxQvHhxvPPOO2jdujWUSmV+V7FAio+Px71793Dv3j1EREQgIiICCQkJAIBmzZohNDQ0W8u7cuUKjhw5goiICLx69QpeXl4oV64cWrVqhdq1a1u0jPT0dBw9ehRnzpzBkydPkJKSgsKFC6N69epo27YtSpcubdFyXr16hf379+PChQt48eIFAMDf3x/169dHUFAQChUqZNFyHj16hAMHDuDGjRuIjY2Fq6srSpYsiSZNmuC9996DQqGwaDn5LSIiAleuXMGdO3fw+PFjvHr1CgqFAoULF0alSpXQsmVLvPXWWxYvj7G2X0lJSbhy5YqwT8fGxuLVq1dQqVTw8PBAqVKlULt2bbRs2dKibXP37l0cPHgQd+7cQXx8PNzd3REYGIhmzZqhSZMmFtfrzJkzOHHiBB4+fIikpCR4e3vjrbfeQps2bVCxYkWLlpGamooDBw7gjz/+QFRUFNLS0lCkSBHUqVMHbdu2hb+/v0XLkco5Ze3atdi1a5fwevLkyahatarZebhv27/u3btbVK5KlSqYMmWK2TKMN1HuSOV8kpeYn2TNkY5zzFGy5ijxZo6SNamcU5ijZHCUfVuHOYp5jhZvsm9SOZ/kJeYoWXOk4xxzlKw5SryZo2RNKucU5igZHGXfBpifZMWRYk32TyrnkrzGHCVrjnKsY36SNUeJNfOTrEnlnML8JIOj7Ns6zFHMs4d4y7RardbmayGy0MWLFzF//nwkJycbnR4QEIAJEyagePHieVyzgs/cATk7yZRGo8HSpUtx7Ngxk2VatmyJwYMHQy43/TCrV69eYfr06YiIiDA63dnZGSEhIXjvvffM1ufvv//GrFmz8PLlS6PTfX198fnnn6N8+fJml3PkyBGsXLkSaWlpRqeXL18e48ePh5eXl9nl5LfJkycjPDw8y3JNmzbFkCFD4ORkuu8kY23fsQaA69evY9q0aVmWK1SoEEaMGIFatWqZLLN582Zs3boVpi4L6tSpg7Fjx8LFxcXkMlQqFWbPno0rV64YnS6TydC1a1d069bNbH2joqIwffp0REZGGp3u5uaGkSNHom7dumaXI5Vzyj///IMJEyYgPT1deM9cMsV92/73bR1rJFOMd8GJN9kvqZxP8hrzE+kc55ijSCvezFGYowDMUXQcad/WYY5imiPGm+yXVM4neY05inSOc8xRpBVv5ijMUQDmKDqOtG8DzE/McbRYk32TyrkkPzBHkcaxjvmJdGINMD9hfpKB+UkGR9q3dZijmGYv8WanGbIbDx48wKRJk6BSqeDq6orOnTujWrVqUKlUOHv2LI4ePQog4+Q3Y8YMuLm55XONCxb9A7Kfnx9KliyJa9euAcheMrV+/Xrs2LEDAPDGG2+gY8eOKFasGJ49e4Zdu3bhwYMHAIDOnTujV69eRpeh0WgwZcoU3LlzBwDQoEEDtGrVCp6envj777+xbds2xMfHQyaTYfz48SZ7RkZHR2P8+PFCD/t27doJF1eXLl3C3r17kZ6eDm9vb8yYMQNFihQxupzLly/jhx9+gFarhbe3Nz788ENUqFABr1+/xpEjR3D+/HkAwFtvvYUpU6aYPdnktxEjRuDZs2fw9fXFO++8g7feegt+fn7QaDT466+/sGfPHsTGxgIAGjdujFGjRplcFmNt37EGMpKpRYsWoWrVqnjzzTfh5+cHHx8faLVaxMTE4I8//sD58+eh0Wjg5OSE77//HoGBgQbLOXz4MJYtWwYAKFasGLp06YIyZcogLi4O+/btw61btwBk/Z2ZM2cOzp07BwCoWrUqgoKC4Ovri0ePHmH79u149uwZAGDw4MFo1aqV0WUkJydj/PjxQiL13nvvoXHjxnBxccHNmzexY8cOpKSkQKlU4rvvvjP6eQDpnFM0Gg2+/vprREREwNvbG/Hx8QDMJ1Pct+1/39bRnbs/+OADfPDBBybLubq6omjRokanMd4FJ95kn6RyPskPzE+kc5xjjiKteDNHYY7CHCWDo+3bOsxRpBVvsk9SOZ/kB+Yo0jnOMUeRVryZozBHYY6SwdH2bYD5iZRiTfZLKueS/MIcRRrHOuYn0ok1wPyE+QnzEx1H27d1mKPYf7xNdz0lymOrVq2CSqWCQqHAxIkTRY92q1atGgICArB27VpERkZi9+7dFvfKowxdu3ZFuXLlUK5cOfj4+OD58+cYPnx4tpbx9OlT7N69GwBQrlw5fPvtt0Jv5PLly6NevXqYMmUKIiIisHv3brRs2dJoz94TJ04IB+QPPvgAAwcOFKaVL18etWvXxpdffonk5GT88ssvqFGjhtFHb23cuBGvXr0CAIwcORLvvPOOMK1y5cp48803MWfOHMTHx2Pjxo1GE8a0tDT88ssv0Gq1cHNzw3fffSeqc61atbB8+XIcOnQId+7cwalTp9C8efNsbbe8VLJkSfTs2RMNGzY0OHlUrFgRTZs2xaRJkxAZGYmzZ8/i/fffR5UqVQyWw1jbf6yBjGPjokWLTE5v1KgRzp8/jx9//BFpaWn47bffMG7cOFGZ169fY926dQAyfmj53//+J+qxW7duXcyaNQuXLl3C2bNn0apVK6MX6Tdv3hQSqbp16+Lzzz8XvoO678z48eMRHR2NdevWoWHDhvD09DRYzq5du4REqnfv3ujYsaMwrWLFiqhatSqmTJmC1NRUrFq1ymSva6mcU/bv34+IiAiULFkS9evXFy6aTeG+XTD27cy8vLxQpkyZbM/HeBfMeJN9kcr5JD8wP5HOcY45irTizRyFOQpzFMfctzNjjvIfKcSb7ItUzif5gTmKdI5zzFGkFW/mKMxRmKM45r6tj/nJfxw91mR/pHIuyS/MUaRxrGN+Ip1YA8xPmJ8wPwEcc9/OjDnKf+wt3gWj+xU5vHv37gmPGmzRooXopKfTvn17lCxZEkDGycPUY5rIuO7du6Nu3brw8fHJ8TL27dsnPBauf//+Bo/vUyqV6N+/PwAgPT0de/bsMboc3YHd09MTffr0MZhevHhxdOnSBUDG4/t0PQn1vXz5EqdPnwYA1KxZU3RA1mnUqBFq1qwJADh16pTRR4SdP39e6BXdpUsXoyeRPn36wMPDA0DGhZ49Gz9+PBo1amSyt6WXlxf69u0rvP7jjz+MlmOs7T/WACzqVdugQQOUKFECAIw+0vXo0aNISkoCAHzyyScGj7iTy+UYOHCgsC5T20UXa4VCISqv4+XlhU8++QQAkJiYaPQRgmlpadi/fz+AjB8G2rdvb1CmUqVKaNGiBQDg9u3buHfvnkEZqZxToqOjsWnTJgDAoEGDzD6GV4f7dsHYt62F8ZZWvMn6pHI+yS/MT6RznGOOIq14M0dhjsIcxTH3bWthvKUVb7I+qZxP8gtzFOkc55ijSCvezFGYozBHccx92xoYa+nEmmxDKueS/MQcRRrHOuYn0ok1wPyE+QnzE8Ax921rYbxtH292miG7oL/T6U6SmcnlcjRr1gxAxolY9xg5yhtarRYXLlwAkHGRY+ziBMjoIay7cLt48SK0Wq1o+tOnT/HkyRMAwDvvvAOlUml0Ofq9BY0dlPWXbeo7o78crVaLixcvGkzXfabM69SnVCqFg/7jx4/x9OlTk+srCPR7j+tOSPoYa8eJtY7ukZRqtdpgmm67uLm54e233zY6f5EiRVC9enUAGSMNJCcni6YnJyfjxo0bAIDq1aubfNTe22+/LdTFWKxv3bolJHbNmjUzmSxm9Z2Ryjll+fLlSElJQbNmzYyOJJIZ923H27fNYbylFW+yDamcTwoqHucc6zjHHEVa8QaYoxjjCOcU5igZpLxvm8N4SyveZBtSOZ8UVDzOOdZxjjmKtOINMEcxxhHOKcxRMkh53zaFsZZOrMl2pHIuKch4rHOcYx3zE+nEWof5iSFHOKcwP8kg5X3bHMY7b+LNTjNkF+7evQsg48v/5ptvmiynf7LQzUN54/nz54iLiwOQ8Wgtc3Rxio2NxYsXL0TTdI/90i9njI+PDwICAgAYj7Wly9Gfpj9P5vdKlChhdnQGR/ru6fe0Nnaxylg7TqyBjAuhf/75BwCEHvc6aWlpQg/+ihUrmu3BrtsuarUaERERomkRERHC98pcjJycnIQLOv15dCyNdbly5YQLOmMxksI55dy5c7h8+bLJHuHGcN8uuPHOCcZbWvEm25DC+aQg43HOsb53zFGkFW/mKI55TmGOYrgcqe3bWWG8pRVvsg0pnE8KMh7nHOt7xxxFWvFmjuKY5xTmKIbLkdq+bQ5jLZ1Yk+1I4VxS0PFY5zjfPeYn0ok1wPzEUc8pzE8MlyO1fTsrjHfexJudZsguPH78GEDGY58UCoXJcroecvrzUN7Q396ZL8gyMxen7CxHNz0mJgYpKSlGl+Pu7m72YOrr6yv0eNb1oNRJSUlBTEyMQZ3N1cXYcgqa27dvC/8biwFjXfBjnZqaisjISOzZsweTJ08WHtsXFBQkKvf06VNoNBoAlscIMNwu+rHOavvqpqenpyMqKsrkcszVR6FQCI/qMxYjRz+nJCYmYtWqVQCMP2rVFO7bBXff/uOPPzBmzBj07t0bffv2xciRI7FgwQLcvHnT5DyMd8GNN9kPRz+fFHQ8zjnWcY45iuPHmzmKY59TmKP8Ryr7NnOUDFKJN9kPRz+fFHQ8zjnWcY45iuPHmzmKY59TmKP8Rwr7NvOTDFKINdkXRz+XOAIe6xznWMf8xPFjzfzEsc8pzE/+I5V9mzlKBnuMt+muhkR5RKVSISEhAQBMPupNx9PTE0qlEqmpqcLORHlDf3tnFSc/Pz+j8wEZvRt1ChcubHY5uvVotVrExsaKDpy65WZVF119/v33X4O6ZOcz6U+Pjo7Ocp32SqPRYMeOHcLrRo0aGZRhrAtmrE+cOIGFCxeanN65c2c0adJE9F5OYgQYxjo327dUqVIG9VEqlfDw8MhyOQ8fPsSrV6+gVqvh7OwMQBrnlLVr1+Lly5eoVKkSWrZsafF83LcL5r4NGCY4UVFRiIqKwqlTp1C/fn2EhobC3d1dVIbxLrjxJvsghfNJQcfjnOMc55ijOG68maMwR8kK9+2CuW8DzFGM1c2R4032QQrnk4KOxznHOc4xR3HceDNHYY6SFe7bBXPfZn5iWDdHjTXZDymcSxwBj3WOcaxjfuK4sWZ+wvwkK9y3C+a+DTBHMVY3e4k3O81QvtPvoebq6ppleVdXV6Smphr0bCPbyk6cdI/TyzwfACQnJ1tlObrXlnxndMvJTV30pxfk797evXuFxzQ2aNDA6CMNGWvHiLVOYGAgBg8ejPLlyxtMs1aMrLV9dcvJTqx1y9ElU45+TgkPD8exY8egUCgwaNAgyGQyi+flvl3w9m2lUom6deuievXqKFmyJFxdXfHq1Svcvn0bhw8fRkJCAi5cuICZM2di4sSJokfvMt4FL95kXxz9fOIIeJxznOMccxRpxRtgjpKVgnZOYY4irX2bOYq04k32xdHPJ46AxznHOc4xR5FWvAHmKFkpaOcU5ijS2beZn0gn1mR/HP1c4ih4rHOMYx3zE+nEWof5iXkF7ZzC/ERa+zZzFPuPNzvNUL5TqVTC//oHAVN0ZfTnI9vLTpx0FzWZ5wMAtVptleXoXlvyndHvmZzTuuhP15+vILl9+zbWr18PAPD29sagQYOMlmOsC2as69evjx9//BFAxud/9uwZfv/9d5w/fx5z585FcHAw6tatK5rHWjHK6fY1tZzsxDrzchz5nJKWloalS5dCq9WiXbt2KFOmTLbm575d8PbtxYsXGx2No0aNGmjTpg2mT5+OBw8e4Pbt2zh06JDo0byMd8GLN9kXRz6fOAoe5xzjOMccxbK6FNR4M0cx/N/RzinMUaS3bzNHkVa8yb448vnEUfA45xjHOeYoltWloMabOYrh/452TmGOIq19m/mJdGJN9seRzyWOhMe6gn+sY35iWV0KaqyZnxj+72jnFOYn0tu3maPYf7zlNlsykYVcXFyE/9PS0rIsryujPx/ZXnbipH/Qyhwn/QNtbpaje23Jd0a3nNzURX+6/nwFxb///otZs2YhPT0dzs7OGDNmDLy9vY2WZawLZqw9PDxQpkwZlClTBuXLl0fjxo0xbtw4DB8+HM+fP8fMmTNx4sQJ0TzWilFOt6+p5WQn1pmX48jnlG3btuHJkyfw8/ND165dsz0/9+2Ct2+be3ytj48Pxo4dC4VCAQA4cOCAaDrjXfDiTfbFkc8njoLHuYJ/nGOO4vjxZo5i+L+jnVOYo0hv32aOIq14k31x5POJo+BxruAf55ijOH68maMY/u9o5xTmKNLat5mfSCfWZH8c+VziSHisK9jHOuYnjh9r5ieG/zvaOYX5ifT2beYo9h9vdpqhfJfdxypl57FPZD3ZiVNqaqrR+QDAzc3NKsvRvbbkO6NbTm7qkt1HAdqT58+fY9q0aUhMTIRcLsfo0aNRpUoVk+UZ64Iba2OaNm2Khg0b4v/au/MYK6vzD+DfgYGiKCDI4lJFoYobCWqxVlzRFAUrVWKsf7i1UWkbbdLaUBNjE22oUZvan7a21iVptZZqsaK2xA2riCvWiqgoWrEg4IYjMkCA+f1BuJ19rlaHe9/7+SQk13nfe+6Z+8w5Z74mz9ympqbceOONWb16denaZ1Wjz+r93TLOJ6l163GKeqYsXbo0d911V5LknHPO+VTztbaLtbaTZOjQoRk9enSSZPny5Xn//fdL19S7ePWmexX1PCkS+1x173MySm3VuzUZpXPVcqbIKNZ2e2SUjhWx3nSvop4nRWKfq+59TkaprXq3JqN0rlrOFBnF2m5NPulY0WpN9yvqWVI09rrq3evkk9qpdXvkk85Vy5kin1jb7ZFROtZd9dY0w1bXu3fvbL/99kmS9957r9N7V69eXVpggwYN+tznxn81f7+7qtO7777b7vOSZODAgaXHzTf99mx5nbq6uhbPaz5uV3NpPp/O5tLVOM2v77jjjl2+ZqV4//33c9lll+WDDz5IXV1dpk6dmi9/+cudPketq7PWndlS83Xr1uWf//xn6eufpkZJ2/f3k/zMdPb+bpnPunXr8vHHH5c1Tr9+/Vp0Fxf1TLn33nuzYcOGDB06NOvWrcvcuXPb/HvrrbdK9y9YsKD09S2/VFrbxVvbSbLrrruWHjevh3oXs950n6KeJ0Vin6vefU5GaTuXIte7IzJK+6rpTJFRrO2OyCidzyUpVr3pPkU9T4rEPle9+5yM0nYuRa53R2SU9lXTmSKjWNvtkU86n0tSnFrTvYp6lhSNva469zr5pO1cilrrzsgn7aumM0U+sbY7IqN0Ppfk8613/ec2MnwCu+66a1566aUsX748GzduLH0EVWvLli1r8Ry6T/P3e+nSpZ3e21mdWo8zfPjwDsfZ8jqDBg1q0z2466675vXXX8+aNWuyatWqDBgwoN0xPvjggzQ2NiZJdtlllxbXttlmmwwaNCjvvfdeizl3Npf2xqlUDQ0Nufzyy7NixYokydlnn50jjzyyy+epdfXVuiv9+vUrPX7nnXdKj3feeef06NEjmzZt6rLWnb0vzWvd1fu75XrPnj0zbNiwNuM8+eSTpdfba6+92h1j48aNWb58ebtz2TJO0c6ULR9juGLFilxzzTVd3n/nnXeWHl977bXp06ePtV3AtZ1sDi7tUe9i1pvuVcTzpEjsc9W5z8ko/1UL9e6MjFL9Z4qMYm13REbpfC7tjQPlKuJ5UiT2uerc52SU/6qFendGRqn+M0VGsbbbI590Ppf2xoFyFfEsKRp7XfXtdfLJfxW91l2RT6r/TJFPrO2OyCidz6W9cT5LPmmGirD33nsn2dx1+vrrr3d438KFC9s8h+4xZMiQ7LDDDkmSl156qdN7t1wfOHBgBg8e3OLaqFGjSo+b17O1VatW5e23307Sfq3LHaf5tebPaf21ZcuWZdWqVWWNUw0/e2vWrMlPf/rT/Oc//0mSnH766ZkwYUJZz1Xr6qp1OTr6KL/6+vqMHDkySbJo0aJs2LChwzG2vC+9evXKiBEjWlwbMWJE6uvrW9zXng0bNmTRokVtnrNFubVevHhx6S8HtFcjZ0r7rO1i1nvLPp+07NBX72LWm+7lPKls9rnq+7mTUWqr3l2RUTr/njoap2is7WLWW0bpepwi1Zvu5TypbPa56vu5k1Fqq95dkVE6/546GqdorO3i1Vs+6XqcotSa7ucsqXz2uur62ZNPaqfW5ZBPOv+eOhqnaKztYtZbRul6nM+z3ppmqAhjx44tPX744YfbvWfTpk155JFHkiR9+/bNfvvt1y1zY7O6urrSR/8tXbq09AtRa4sWLSp1/R188MFtOiN33nnnUifgvHnzSr8QtTZnzpzS4+Y/H1s0H7ujn5nm49TV1eXggw9uc735R1g2f83m1q1bl3nz5iXZ3EG58847d/h6lWDdunWZPn163njjjSTJySefnMmTJ5f9fLWunlqXa8v3lCS77bZbi2tb3pfGxsZS939r7733Xl544YUkyf77759tttmmxfVtttkmBxxwQJLkhRde6PDj9J588slSZ3F7td5vv/2y7bbbJkkeeeSRNDU1tTtOVz8zRTxTvvvd72bGjBmd/psyZUrp/ksvvbT09SFDhiSxtou4tleuXJl//etfSZKhQ4e2CFPqXbx60/2KeJ4UiX2uuvY5GaW26l0OGaWtajtTZBRruz0yypw215Pi1pvuV8TzpEjsc9W1z8kotVXvcsgobVXbmSKjWNutySdz2lxPillrto4iniVFY6+rnr1OPqmdWpdLPmmr2s4U+cTabo+MMqfN9aR7661phoowcuTI7LPPPkk2L7D2Fvw999xTWuzHH398m85VPn8nnHBCevTYvG3cfPPNWb9+fYvr69evz80335xk80fyTZw4sd1xTjzxxCTJ6tWr84c//KHN9eXLl2fmzJlJkmHDhrW7KQ8YMCCHH354kuT555/PE0880eaeefPm5fnnn0+SHHHEEe1+RNjYsWMzdOjQJMnMmTNLHwXY3O9///t8/PHHSZKvf/3r7X5PlWLDhg256qqr8sorryTZXLPTTjvtE4+j1pVf62TzLxKta9PaPffck+eeey7J5o7kLXvtFuPHjy8FmNtuuy0fffRRi+ubNm3K7373u2zatClJx+/Lllpv3LgxN954Y+n+LRoaGnLrrbcm2RxejjnmmDZj1NfX5/jjj0+y+Ze/WbNmtbln0aJFpV/E9t1339JfUGjOmdIxa7s61naSPPPMM9m4cWOH11etWpWrr7669JdDvva1r7W5R72rp95UJudJ5bPPVcc+J6PUVr1lFBnlk7K2q2NtJzJKrdWbyuQ8qXz2uerY52SU2qq3jCKjfFLWdnWsbfmkdmpN5XKWVAd7XeXvdfJJ7dQ6kU/kk0/O2q6OtZ3IKNVS77qmjtr7oJu98cYbueSSS7J+/fr06dMn3/jGN7Lffvtl/fr1efzxx/PAAw8kSXbaaaf87Gc/a9MBS+defvnlFhtOQ0NDaUPce++9M378+Bb3H3XUUe2Oc9ttt+Wuu+5Kkuyxxx456aSTMnTo0KxYsSJ//etfS13vkydPzumnn97uGJs2bcqll15a+oX/kEMOyfjx47Pddtvltddey5133pkPP/wwdXV1mTZtWsaMGdPuOO+++26mTZuWhoaG9OzZM5MmTcpBBx2UJHn22Wdzzz33ZOPGjenXr1+uuOKKDBo0qN1x5s+fnyuuuCJNTU3p379/TjnllIwcOTKrV6/Ogw8+WOrKHjVqVH7yk5+UDqZKdNVVV+Wpp55KsrlT/Kyzzur0/vr6+g47M9W6smudbO5Kb2xszCGHHJJRo0Zl6NCh6dOnT9auXZslS5bk0UcfLb339fX1mTZtWkaPHt1mnPvvvz833HBDks1dzCeffHJ22223fPDBB7n33nvz4osvJkkOO+ywXHjhhR3O5xe/+EUef/zxJJv/msDEiROzww47ZMmSJfnLX/6SFStWJEnOPffcHHvsse2O0djYmGnTppU+/u/YY4/NV7/61fTu3TsvvvhiZs6cmbVr16Z37965/PLLM3z48HbHqcUzZcaMGbnjjjuSbP4LBB39VQVru/LXdrJ5fW/YsCGHHHJI9tprrwwZMiS9e/dOQ0NDFi5cmPvvv7/0Pz9GjRqVSy65JL169WozjnpXR72pXLV4nnQX+aR29jkZpbbqLaPIKM3JKMVZ24mMUmv1pnLV4nnSXWSU2tnnZJTaqreMIqM0J6MUa23LJ7VRaypbLZ4l3UlGqY29Tj6pnVon8ol80pJ8Upy1ncgo1VJvTTNUlGeeeSb/93//V/pYt9Z22mmn/PjHP86wYcO6eWbV77rrrit9RF05ZsyY0e7XN23alN/85jedfuTWMccck3PPPbfTzauhoSHTp0/P4sWL273eq1evnHPOOW1CXmuvvvpqrrzyyqxatard6wMGDMhFF12UL33pS52O88ADD+Smm24qdXK2NnLkyEybNi39+vXrdJyt7dRTT/1E9w8ePDjXXXddu9fUurJrnWz+Zeudd97p8r5BgwZl6tSp7QapLWbMmJE777yzw4/KHDNmTH7wgx+kd+/eHY6xfv36XH311aW/eNBaXV1dTjnllC5/TpcvX57p06eXAlVr22yzTS644ILSL2EdqbUzpdwwZW1X/tpOyl/fhxxySM4///z07du33evqXR31prLV2nnSXeST2tnnZJTaqreMIqM0J6MUZ20nMkqt1ZvKVmvnSXeRUWpnn5NRaqveMoqM0pyMUntrWz6p/lpT+WrtLOlOMkpt7HXySe3UOpFP5JOW5JPirO1ERqmWemuaoeK88847ue+++zJ//vy8//77qa+vz7Bhw/KVr3wlEyZMyBe+8IWtPcWq9FmFqS3mz5+fBx54IIsXL85HH32U7bffPiNGjMhxxx3XYedhaxs3bsyDDz6Yxx57LEuXLs3atWszcODA7L///jnhhBPyxS9+saxxGhoact999+Xpp58uHTxDhgzJwQcfnIkTJ2b77bcva5wlS5bkb3/7WxYsWJD3338/ffr0yS677JJx48Zl/Pjx6dmzZ1njbE2fZZjaQq0r17JlyzJ//vy8/PLLWbFiRVatWpXVq1end+/e6devX4YPH56DDjoohx56aFl75yuvvJLZs2fnpZdeyocffpi+fftm9913z1FHHZVx48aVPa/HHnssc+bMyZtvvpmPP/44/fv3zz777JMJEyZkr732KmuMtWvXZvbs2XniiSeyfPnybNiwIYMGDcqYMWNywgknZPDgwWWNU0tnSrlhagtru7ItXLgwCxcuzKJFi7JixYp89NFHaWxsTJ8+fTJo0KDstddeOeqoo8peU+oN/5taOk+6i3zStaLsczJKbdVbRulaLZ0pMkpx1nYio5SjSPWm8tXSedJdZJSuFWWfk1Fqq94yStdq6UyRUYqztuWTrhWl1lSHWjpLupOM0rUi7HXySe3UOpFPylFLZ4p8Upy1ncgo5aiEemuaAQAAAAAAAAAAAAAAoHA6/mweAAAAAAAAAAAAAAAAqFKaZgAAAAAAAAAAAAAAACgcTTMAAAAAAAAAAAAAAAAUjqYZAAAAAAAAAAAAAAAACkfTDAAAAAAAAAAAAAAAAIWjaQYAAAAAAAAAAAAAAIDC0TQDAAAAAAAAAAAAAABA4WiaAQAAAAAAAAAAAAAAoHA0zQAAAAAAAAAAAAAAAFA4mmYAAAAAAAAAAAAAAAAoHE0zAAAAAAAAAAAAAAAAFI6mGQAAAAAAAAAAAAAAAApH0wwAAAAAAAAAAAAAAACFo2kGAAAAAAAAAAAAAACAwtE0AwAAAAAAAAAAAAAAQOFomgEAAAAAAAAAAAAAAKBwNM0AwGdo+PDhqaury1lnnbW1pwIAACCjAAAAFUVGAQAAKoV8AlA7NM0AAAAAAAAAAAAAAABQOJpmAAAAAAAAAAAAAAAAKJy6pqampq09CQAAAAAAAAAAAAAAAPgs+aQZAAAAAAAAAAAAAAAACkfTDAAAAAAAAAAAAAAAAIWjaQYAOrBs2bJMmzYtBx54YPr3759evXpl6NChOeCAA/LNb34zt9xySxoaGlo8Z/jw4amrq8tZZ53V4uv//ve/U1dXV/a/o446qsN5PfzwwznzzDOz5557Ztttt02/fv1ywAEH5KKLLsqyZcs+h3cCAACoBDIKAABQSWQUAACgUsgnAHSmfmtPAAAq0aOPPppJkya1CUsrV67MypUrs2DBgtx+++3ZcccdM2nSpG6Z09q1a3P22Wfn9ttvb3NtwYIFWbBgQX7961/nj3/8Y0488cRumRMAANA9ZBQAAKCSyCgAAEClkE8A6IqmGQBoZd26dTnttNPS0NCQ7bffPlOnTs3RRx+dIUOGZP369XnjjTfy+OOPZ+bMmWWPucsuu+SFF17o9J4ZM2bksssuS5LsvvvuLa41NTVlypQpuffee5MkJ554Yk499dTsueee6dGjR5566qlcffXVWbJkSaZMmZK5c+fm4IMP/oTfOQAAUIlkFAAAoJLIKAAAQKWQTwAoR11TU1PT1p4EAFSShx56KOPHj0+SzJo1q8O/MLBhw4asWbMm/fr1K31t+PDhefPNN3PmmWfmlltuKfs1n3nmmRxxxBFpbGzMPvvskyeeeKLFuDfccEPOPffc9OrVK3fffXcmTJjQZowPPvgghx9+eF588cUcdthheeyxx8p+fQAAoHLJKAAAQCWRUQAAgEohnwBQjh5bewIAUGmWL19eenzEEUd0eF99fX2LwPNpLVu2LCeddFIaGxszcODAzJo1q8W4TU1NueKKK5IkF1xwQbtBKkl22GGHXHnllUmSuXPn5tVXX/2f5wYAAGx9MgoAAFBJZBQAAKBSyCcAlEPTDAC0stNOO5Ue33zzzZ/razU2Nmby5MlZtmxZ6uvrc8cdd2TEiBEt7lm4cGEWL16cJJkyZUqn4zUPf/PmzfvsJwwAAHQ7GQUAAKgkMgoAAFAp5BMAyqFpBgBaGTduXPbcc88kyfe///2MHTs206dPz9y5c7N+/frP9LXOOeecPP3000mSX/7ylzn66KPb3PPMM8+UHh966KGpq6vr8N92221Xurf5X1IAAACql4wCAABUEhkFAACoFPIJAOXQNAMArfTq1SuzZs3KPvvskyR5+umnc/HFF2fcuHEZMGBAJkyYkNtuuy0bN278n17nsssuy+23354k+c53vpOpU6e2e9/KlSs/1fhr1qz51HMDAAAqh4wCAABUEhkFAACoFPIJAOWo39oTAIBKtO++++aFF17IrFmzMmvWrPzjH//Ia6+9lsbGxsyePTuzZ8/Oz3/+89x3330ZMmTIJx7/zjvvzKWXXpokGT9+fK655poO720e2mbNmpXhw4eX9RqfZl4AAEBlklEAAIBKIqMAAACVQj4BoCuaZgCgAz179szkyZMzefLkJMnbb7+dv//977nuuuvy7LPP5tlnn815552XmTNnfqJxn3vuuZxxxhlpamrKyJEjM2PGjNTXd3wkDxo0qPR4wIAB2X///T/V9wMAAFQ3GQUAAKgkMgoAAFAp5BMAOtNja08AAKrFTjvtlLPPPjvz5s3LgQcemCS555570tjYWPYYy5cvz0knnZQ1a9akf//+mTVrVgYOHNjpc8aMGVN6PHfu3E83eQAAoHBkFAAAoJLIKAAAQKWQTwBoTtMMAHxCvXr1ypFHHpkk2bBhQ1atWlXW89auXZvJkyfnrbfeSs+ePXP77bdn1KhRXT7vwAMPzK677pok+e1vf5u1a9d+6rkDAADFI6MAAACVREYBAAAqhXwCQKJpBgDaePTRR/Paa691eH39+vV55JFHkiTbbbddBg8eXNa43/72t/Pkk08mSa688spMmDChrOf16NEjF198cZLk9ddfzxlnnJF169Z1eH9DQ0OuvfbassYGAAAqn4wCAABUEhkFAACoFPIJAOWo39oTAIBK8+CDD+ayyy7L4YcfnokTJ2b06NEZPHhwGhsbs2jRolx//fWZP39+kuRb3/pW6uu7Pk5vuumm3HrrrUmSY445Jscdd1wWLFjQ4f19+/bNHnvsUfrv888/P/fff39mzpyZP//5z5k/f37OO++8jB07Nv37909DQ0NefvnlzJkzJ3fffXf69OmT733ve//jOwEAAFQCGQUAAKgkMgoAAFAp5BMAyqFpBgDasWnTpjzyyCOlvzTQnpNOOinTp08va7wlS5aUHj/00EM54IADOr3/yCOPzJw5c0r/XVdXlz/96U+58MILc/3112fx4sX50Y9+1OHzhwwZUta8AACA6iCjAAAAlURGAQAAKoV8AkBXNM0AQCs//OEPM3r06DzwwAN57rnnsmzZsqxcuTJJMmzYsIwdOzZnnHFGJk6c2K3z6tWrV371q19l6tSpueGGGzJnzpwsWbIkq1evznbbbZc99tgjBx10UI4//vhMmjSpW+cGAAB8fmQUAACgksgoAABApZBPAChHXVNTU9PWngQAAAAAAAAAAAAAAAB8lnps7QkAAAAAAAAAAAAAAADAZ03TDAAAAAAAAAAAAAAAAIWjaQYAAAAAAAAAAAAAAIDC0TQDAAAAAAAAAAAAAABA4WiaAQAAAAAAAAAAAAAAoHA0zQAAAAAAAAAAAAAAAFA4mmYAAAAAAAAAAAAAAAAoHE0zAAAAAAAAAAAAAAAAFI6mGQAAAAAAAAAAAAAAAApH0wwAAAAAAAAAAAAAAACFo2kGAAAAAAAAAAAAAACAwtE0AwAAAAAAAAAAAAAAQOFomgEAAAAAAAAAAAAAAKBwNM0AAAAAAAAAAAAAAABQOJpmAAAAAAAAAAAAAAAAKBxNMwAAAAAAAAAAAAAAABSOphkAAAAAAAAAAAAAAAAKR9MMAAAAAAAAAAAAAAAAhaNpBgAAAAAAAAAAAAAAgMLRNAMAAAAAAAAAAAAAAEDhaJoBAAAAAAAAAAAAAACgcDTNAAAAAAAAAAAAAAAAUDiaZgAAAAAAAAAAAAAAACgcTTMAAAAAAAAAAAAAAAAUjqYZAAAAAAAAAAAAAAAACuf/AUMUr+bxg/efAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADM0AAAOcCAYAAADnnKdhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3xTVeMG8CerSRdQoNCyoewNskFZClJBEJAhyhJEGYqve73+9BVFlNfBVESGjJcNIjLL3kP23ghtoYuutJn390fMJWl2mzZp83w/n3wIyR0nOTfpfXLuOUciCIIAIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiohJE6usCEBEREREREREREREREREREREREREREREREXkbO80QERERERERERERERERERERERERERERERFRicNOM0RERERERERERERERERERERERERERERERFTisNMMERERERERERERERERERERERERERERERERlTjsNENEREREREREREREREREREREREREREREREQlDjvNEBERERERERERERERERERERERERERERERUYnDTjNERERERERERERERERERERERERERERERERU4rDTDBEREREREREREREREREREREREREREREREZU47DRDREREREREREREREREREREREREREREREREJQ47zRAREREREREREREREREREREREREREREREVGJw04zREREREREREREREREREREREREREREREREVOKw0wwRERERERERERERERERERERERERERERERGVOOw0Q0RERERERERERERERERERERERERERERERCUOO80QERERERERERERERERERERERERERERERFRicNOM0RERERERERERERERERERERERERERERERFTisNMMERERERERERERERERERERERERERERERERlTjsNENEREREREREREREREREREREREREREREREQlDjvNEBERERERERERERERERERERERERERERERUYnDTjNERERERERERERERERERERERERERERERERU4rDTDBERlWg1atSARCKBRCLBrVu3fF2cEoHvKRERERFR/vBc2vv4nhIRERERFQ2ee3sf31MiIiIiovzhubT38T0lopKOnWaIiIio2MrKysKcOXPQtWtXVKlSBUqlElWqVEG3bt0wd+5cZGVlFZv9C4KAy5cvY8mSJXjjjTfQoUMHhISEiIG0Ro0ahfdCiIiIiIiowEpKPtm9e7eYQ9y9Pfnkk4X62oiIiIiIqHD5Ks9otVocO3YMc+bMwejRo9GkSRPI5XIxa4wcObJQ9ktERERERP7LV/nk4sWL+PHHHzFo0CA0bNgQpUuXhkKhQPny5dGqVSu88cYbOHnyZKHsm4gKn9zXBSAiIiLf6dKlC/bs2QMA2LVrF7p06eLbAnng0KFDGDZsGG7evGn1+L1793Dv3j3s2rUL33zzDZYtW4a2bdv69f6PHz+O7t27IyMjw+vlJCIiIiIqLphPiu/+iYiIiIgCHfOM52bOnIm33noLWq3Wa9skIiIiIiLmE09t374db775Js6fP2/3+ZSUFKSkpODEiRP48ccf8fzzz2Pu3LkoW7asV/ZPREWDnWaIiIio2Dl9+jR69OghjhygUCjQrVs3VKlSBX///Td27twJvV6PGzduoEePHjhw4AAaN27st/vPyspihxkiIiIiomKqpOUTS5UqVcJzzz3ncrn69esX6DUQEREREZFv+DLPJCcns8MMERERERGJfJVPTpw4YdVhRiKRoGnTpqhbty4iIiKQlJSE/fv3IykpCQCwatUqXLhwAXv27EG5cuUKvH8iKhrsNENERETFik6nw4ABA8SA1KxZM6xfvx41atQQl7l16xb69euH06dPIyMjAwMGDMD58+chlxf81Kcw9x8REYFWrVqhdevWaN26NS5fvoz333+/wGUmIiIiIqLCUZLzCQDUqVMHM2fOLHA5iYiIiIjI//g6z5hVrVpVbBdp06YN5syZg9WrV3tt+0RERERE5P/8IZ80b94cY8eOxeDBg206w2i1Wnz33Xf46KOPYDAYcP78eYwfPx4rVqzwyr6JqPBJfV0AIiIiIk/MmzcP169fB2DqZLJlyxargAQANWrUwObNmxEREQEAuHLlCn799Ve/3X+zZs1w9epVpKamYtu2bZgyZQr69euHihUreqXMRERERERUOEpiPiEiIiIiosDg6zwxatQoJCYm4s6dO1izZg3ef/99dOvWDaGhoV7ZPhERERERFR++zCd169bF+vXrcfLkSYwfP97u7DFBQUF477338M0334iPrVy5EpcuXSrw/omoaLDTDBERERUrs2bNEu+//fbbiIqKsrtcdHQ03nrrLbvr+dv+IyIiULt2ba+Uj4iIiIiIik5JzCdERERERBQYfJ0nqlevzsHDiIiIiIgIgG/zSf/+/dG3b1+3ln399ddRqVIl8f9//vlngfdPREWDnWaIiArAaDRi0aJFeOqppxAVFQWVSoUaNWqgb9++WL9+vbhcly5dIJFIIJFIsHv3brvbqlGjhrjMrVu3XO575MiR4vILFy50ubwgCFi3bh1GjBiBunXronTp0lCpVKhatSr69euHRYsWQa/XO93GrVu3xH1a9uTev38/xowZg/r166N06dKQSCSYPHkyTp48KS4fERGB3Nxcl+UEgMzMTISFhYnrnjlzxq31vEGn0+G3337DoEGDUKtWLYSHhyM0NBQ1a9bE0KFDsW7dOgiC4HQbu3fvFsvepUsX8fGdO3diyJAhqFWrFlQqFcqVK4cnnngCM2fOhE6nc7uMOTk5+O6779CxY0eUL18ewcHBiImJwdChQxEXFycu5+yYMj++Z88e8bGuXbuKj1ve3Dm+7t69i08++QTNmjVDmTJlEBoaivr162PSpEm4ffu226/NlWvXruHChQvi/0eOHOl0ecvnz5w5gxs3bhTr/RMRERE5w3xiwnxijfmE+aSw9k9ERETkTcwzJswz1phnSm6eISIiIvJnzCcmzCfWmE+YTwBAJpOhbdu24v/d+VwTkZ8QiIgoXxISEoS2bdsKABzennvuOSEjI0Po3Lmz+NiuXbvsbq969eriMjdv3nS5/xEjRojLL1iwwOmyp0+fFpo3b+60rACEevXqCefPn3e4nZs3b4rLVq9eXdBoNMK4cePsbuuNN94QBEEQHnvsMfGxJUuWuHxdgiAI8+bNE9dp3bq1W+s44sn7umvXLiEmJsbl+9SuXTvh7t27TrdjXrZz586CRqMRxo4d63SbLVu2FJKSkly+njNnzrgs47hx4wStVuv0tbt6jZa3vMdX3u2uW7dOKF26tMP1g4ODhT/++MPla3PHTz/9JG63bt26bq1Tp04dcZ158+YVq/0vWLDA6jNHRERE5AjzCfOJs+0wnzCfeLL/vMcMERERUWFjnmGecbYd5pmSmWecsfxMjhgxotD2Q0RERGQP8wnzibPtMJ8EXj6xp3///uK+x48fX6T7JqL8k4OIiDz28OFDdOvWDRcvXhQfq1mzJtq3bw+lUonz58/j6NGjWLduHaRS307qtXfvXvTp0wcZGRkAAIVCgdatW6NOnTpQKBS4desW9u/fj9zcXFy+fBkdOnTAoUOH0KBBA5fbfvPNN/HTTz8BAJo0aYJmzZpBoVDgypUr4ut+5ZVXMG7cOADA/PnzMWzYMJfbnT9/vnh/zJgxHr/m/Fi1ahWGDRsm9vAPDg5Gu3btUKNGDUilUly5cgWHDh2CXq/H4cOH0b59exw7dsytaeNfeeUVLFq0CFKpFG3btkX9+vVhNBpx+PBhXL58GQDw119/Yfjw4U6nbLx27Rq6d++OpKQk8bEmTZqgefPmkEqlOHXqFE6fPo2ffvoJ4eHhTss0YcIEAMC6desQHx8PAOjXrx8qV65ss6yzY2HHjh149dVXYTAYUK1aNbRv3x6lSpXCzZs3sXv3buj1euTk5GDQoEE4d+4catas6bRcrlh+5lq2bOnWOi1btsTVq1dt1i+O+yciIiKyh/nEhPmE+YT5xPv7z8nJwcaNG3H69GmkpqYiNDQUFStWRNu2bdGiRQvI5fx5mYiIiAqGecaEeYZ5JtDyDBEREZE/Yj4xYT5hPmE+ce7s2bPi/apVqxbpvomoAHzda4eIqDgaPXq02Fs4KChImD9/vs0yR44cEXtgBwUF+WRkgYSEBKFChQricsOHDxfi4+NtlktMTBSee+45cbkmTZoIer3eZjnLkQVkMpkAQKhataqwd+9em2Vzc3MFQRCEzMxMISwsTAAgSCQS4fr1605f1/nz58V9hIaGChkZGS7fC2fceV/PnTsnBAcHi2V8++23hbS0NJvlrl+/LnTq1EncXq9evexuz3JkAaVSKY6QcPHiRavljEaj8P3331v1wt+zZ4/dbRqNRuGJJ54QlytXrpywZcsWm+Xi4uKEChUqCBKJxOq4c/Ta3Rn1Ii/L91SpVAqhoaHCb7/9JhiNRqvlzp07J1SuXFlcdtSoUW5t35levXqJ23vvvffcWuedd94R14mNjS1W++dMM0REROQO5hPmE+YT5hNv7t/ymHF2q1SpkvDNN98IWq22QK+DiIiIAhvzDPMM80xg5hlnONMMERER+QrzCfMJ8wnziSsHDhywqttjx44V2b6JqGB8292ViKgYunLlChYsWCD+/+eff8bo0aNtlmvTpg22bduGkJAQaLXaoiyi6KOPPsKDBw8AAK+//joWLVqE6Ohom+UqVqyIVatWoVu3bgBMvaFXr17tdNsGgwEhISHYsWMHHn/8cZvnlUolACAsLAxDhw4FAAiCgF9//dXpdi1HFRg0aJDLHvLe8PrrryMnJwcAMH36dHzzzTcoU6aMzXK1atXCli1b0LBhQwDA5s2bceTIEafb1mg0qFOnDnbu3In69etbPSeRSPDGG29g4MCB4mPLly+3u52tW7di7969AACpVIoNGzagZ8+eNst169YNmzZtglQqLZLjTqvVYvXq1XjxxRchkUisnmvUqJE48gRgGr1Br9cXaH8pKSnifXdGdQCAqKgo8X5qamqx3j8RERFRXswnJswnzCcA80lR7z8+Ph7vvPMOnnjiCdy/f79A2yIiIqLAxDxjwjzDPAMEXp4hIiIi8jfMJybMJ8wnAPOJI0ajEZMnTxb/37ZtW7Rq1apI9k1EBcdOM0REHpo/fz4EQQBgCkIjRoxwuGzdunWtTpSKUlJSEpYsWQLAdJL49ddfO11eJpNhypQp4v+XLl3qch8TJ05E3bp1XS43duxY8f7ChQthMBjsLqfT6fDbb7+J/y+KqThPnz6NnTt3AgBatGjhsr5CQ0PxySefiP93532aOnUqwsLCHD5vGbKPHj1qdxnL8DhkyBB07NjR4fZatWqF4cOHuyyXN/Tu3RtPP/20w+djY2PFkJKVlVXg6TCzsrLE+8HBwW6tY7mc5frFcf9EREREeTGfPMJ8wnzCfOK9/UdGRmL8+PFYt24dbty4AbVajdzcXNy4cQOLFi1C69atxWUPHz6MPn36iI2PRERERO5innmEeYZ5JtDyDBEREZG/YT55hPmE+YT5xL7//Oc/OHbsGABTJ6dvv/22SPZLRN7BTjNERB7atWuXeP+ll15yubyzEFWYduzYIfYs79+/P1Qqlct12rZti9DQUADA/v37XS4/ZMgQt8rSunVrNG/eHABw7949bN261e5yv//+O5KSkgAADRs2RIcOHdzafkH8+eef4v2hQ4fa9I63xzwCA+D6fVKpVOjTp4/TZVq0aCHev3Xrlt1l9uzZI95/8cUXXZbRnWW84fnnn3f6vEQiQbNmzcT/O3p97srNzRXvBwUFubWOeZQLAAW+iMvX+yciIiLKi/nkEeYT5hPmE+/sv1WrVrh79y5mzZqFfv36oWbNmggODoZSqUTNmjUxfPhwHDlyxKoB8dixY5g+fXo+XwkREREFKuaZR5hnmGcCLc8QERER+Rvmk0eYT5hPmE9sbdy4EZ999pn4//feew+dOnUq9P0SkffIfV0AIqLiRBAEnD59Wvx/+/btXa5Tt25dlC1btsinKT906JB4/8yZM5g4caJH66elpSE7O1sMTXkpFAo0adLE7e298sorGD9+PABTL/nY2FibZSx7z7/88sselTe/LN+nXbt24fbt2y7XMY8sAQB///2302Xr1asHhULhdJly5cqJ9zMyMmyev3fvnhgeAVOYdaV169aQSCRWZS0M7hwDrl6fJyzDvrvTjWo0GvG+u6MR+Ov+iYiIiCwxnzzCfGLCfMJ84o39OxsZz0wikeDzzz/H9evXsWzZMgDAf//7X7z//vuQy/mTMxEREbnGPPMI84wJ80xg5RkiIiIif8J88gjziQnzCfOJpWPHjmHo0KHi+/7kk0/i888/L9R9EpH3sQWTiMgD6enpVidm1apVc2u9atWqFXlIio+PF+/v37/frZEC8kpLS3MYkiIiIjy6EGbYsGF45513kJ2djY0bNyIpKQmRkZHi83fv3hVHHAgKCiqy6SQt36fNmzd7vH5aWprT50uXLu1yG5YhSq/X2zxvGZBCQkJQtmxZl9sMDw9H6dKl8fDhQ5fLFoSnr0+n0xVof5YXb7k7SoDlcu5c/OXP+yciIiKyxHzyCPOJCfMJ80lR7h8APv/8c7HTTFpaGg4fPsyR1YiIiMgtzDOPMM+YMM8EVp4hIiIi8ifMJ48wn5gwnzCfmF24cAG9evVCdnY2AFPHpXXr1nEAMaJiSOrrAhARFSdZWVlW/w8JCXFrPUdBozClp6cXeBv2TtjNPO2hXapUKQwePBiA6UR58eLFVs8vXLgQRqMRANC3b1+UL1/ew9LmT0HfJ4PB4PR5d6b3dMXyuHP3mAOKpsHCG6/PE5ajFNy/f9+tdRITE8X77gRMf94/ERERkSXmk0eYT0yYT5hPinL/ABATE4MaNWqI/7948WKBt0lERESBgXnmEeYZE+aZwMozRERERP6E+eQR5hMT5hPmEwC4efMmnnrqKaSkpAAAGjVqhC1btnAQAaJiip1miIg8kPeER61Wu7WeuaexN5kDhSOWwey///0vBEHw+GZ54Ys3jB07VrxvOfWmIAhYsGCB+P8xY8Z4db/OWL5Pa9euzdf7VNgsjzt3jzmgcI47X6tXr554352pUwHgzp074v369esX6/0TERERWWI+KRjmk/xhPnnE1/nA1/s3i46OFu8nJyd7ZZtERERU8jHPFAzzTP4wzzziL3mCiIiIyB8wnxQM80n+MJ884o/55N69e+jevbs4a1FMTAy2b9/OAQSIijF2miEi8kDp0qURFBQk/t/y5MuZv//+2+UyrqZkzMtVj/iKFSuK9y17VvtSu3bt0LRpUwCm0WcPHToEANi1axdu3LgBAKhevTqefPLJIiuTP75PeVmOsqBWq11OAQqYRiMo7Kk4faFBgwbi/ZMnT7q1zl9//WV3/eK4fyIiIiJLzCcFw3ySP8wnj/g6H/h6/2aWDXS+GFmRiIiIiifmmYJhnskf5plH/CVPEBEREfkD5pOCYT7JH+aTR/wtn9y/fx/du3fHzZs3AQBVqlTBjh07rAYRI6Lih51miIg8IJFI0KxZM/H/hw8fdrnO1atXxSn6nClVqpR4353lz5496/T5tm3bivcPHDjgcntFxd7oApajDIwaNQpSadH9efLX98lSlSpVrILSkSNHXK5z/Phxt0Y9KOrpNAuqa9eu4v3Lly8jISHB6fLx8fG4evWq+P9u3boV6/0TERERWWI+KTjmE88xnzzi63zg6/0Dpoa8y5cvi/+vVKlSgbdJREREgYF5puCYZzzHPPOIP+QJIiIiIn/BfFJwzCeeYz55xJ/ySUpKCp566imx7aNChQrYsWOH12doIqKix04zREQesjxJW7JkicvlFy9e7NZ2LU+sTp065XTZ48ePiz2ZHenZsyfkcjkA4ODBgzh9+rRb5ShsL774IoKDgwEAK1aswN27d7F27VoAgFQqxejRo4u0PL179xbvr127Fvfv3y/S/burc+fO4v2lS5e6XN6dYxMAVCqVeF+n03lesCJWp04dNGzYUPz/okWLnC5v+XyTJk1Qq1atYr1/IiIioryYTwqG+SR/mE9MfJ0PfL1/AFi2bBk0Gg0AUyPcE088UeBtEhERUeBgnikY5pn8YZ4x8Yc8QURERORPmE8Khvkkf5hPTPwln2RkZKBnz55i57WIiAhs374d9erV88r2ici32GmGiMhDL7/8snj/8OHDTk9Gr127hu+++86t7Vr2cHd24qfX6/HGG2+43F7lypXx4osvAgAEQcDw4cORkZHhVlmMRiOSkpLcWtZTZcqUwaBBgwCYpowcOHAgcnNzAQA9evRA1apVC2W/jrRp0wZdunQBAOTk5OCll16CVqt1a12tVuvW1JjeYBkely1b5nRUi7/++stleDArV66ceP/evXv5L2ARGj9+vHj/22+/dRhsExMT8e2334r/nzBhQonYPxEREZEl5pOCYT7JH+aTR3ydD7y9f7VaDaPR6Na+r169ivfff1/8f48ePVChQgW31iUiIiICmGcKinkmf5hnHvF1niEiIiLyJ8wnBcN8kj/MJ4/4Op+o1Wo888wzOHHiBAAgPDwcW7ZsQdOmTb2yfSLyPXaaISLyUN26dTFy5Ejx/2PGjLF7Qnr8+HE89dRTyM7ORlBQkMvtDh48WJyG8tChQ3j//fdhMBislrl79y569+6NgwcPQqlUutzmlClTEB0dDQA4c+YM2rRpg23btjlc/u7du/juu+9Qr149rFixwuX288tySk7LqSXHjBlTaPt0ZsaMGQgLCwMAbN++HU888YTTKS+vXLmC//znP6hRo0aRTeHZq1cvdOrUCYApxPbp0wc7duywWW737t2IjY2FwWBw67hr3LixeH/16tVuTeHpa6+88gpiYmIAmKbE7NWrF27fvm21zO3btxEbG4vU1FQAps+t5Q8cee3evRsSiUS87d69u0j3T0RERJRfzCcFx3ziOeaTR0paPjl69CgaNWqEOXPm4MGDB3aXMRgMWLJkCdq3b4+UlBQAQFBQEL7++muH5SQiIiKyh3mm4JhnPMc884iv8wwRERGRP2E+KTjmE88xnzziy3yi0WjQr18/7N+/HwAQHByMP/74A23atPHCKyMifyH3dQGIiIqj//73vzh06BAuX74MjUaDkSNH4vPPP0f79u2hVCpx/vx5HD16FIIgoH///khJScGePXucbrN69ep49dVXMXv2bADA119/jeXLl+OJJ56ASqXC9evXceDAAWi1Wjz55JOIiopyOeVipUqVsGHDBsTGxiI5ORmXL19Gz549UblyZbRp0waRkZHQ6XRITk7GuXPnXE7x6S0dO3ZEo0aNcP78efGxChUq4Nlnny2S/efVuHFjLF++HIMHD4ZarcaRI0fQrl07xMTEoGXLlihbtixyc3Px4MEDnDlzxic98CUSCX799VfxoqTk5GQ89dRTaNasGZo3bw4AOH36tDiV69tvv41Vq1aJ4cEcwPPq378/PvzwQwiCgE2bNqFp06bo0KEDwsPDxWWGDBmCVq1aFerr84RCocCaNWvQqVMnZGVl4eTJk6hTpw66d++OypUr4+7du9i5c6c4vWipUqWwZs0acXpaf93/mDFjcPz4cavHzCEPAOLj48W6tvTLL7/4Vf0QERFR0WM+KRjmE88xnzxSEvPJpUuXMH78eEycOBG1a9dGo0aNULZsWUilUiQmJuLQoUNITk4Wl5fJZFi8eDGaNWvmlddEREREgYV5pmCYZzzHPPOIr/MMALvtHnfu3BHv//7773aXMdcPERERkTcxnxQM84nnmE8e8WU++eSTT7B9+3bx/w0aNMDKlSuxcuVKl+uWK1cOn332WYHLQERFQCAiony5d++e0KpVKwGAw9uzzz4rZGRkCJ07dxYf27Vrl8Nt5uTkCLGxsU632bt3byEtLU0YMWKE+NiCBQuclvXWrVtC9+7dnW7X8laxYkVhy5YtNtu5efOmuEz16tUL9P59//33Vvt8++23C7Q9R6pXry7u4+bNm06XPXXqlPDYY4+5/T7VqFFDOHnypM12du3aJS7TuXNnt8ppuV1XZaxZs6bTcr3yyiuCVqsVKlWqJD6WlpbmcJsffPCB0+3lPb48eU8FQfDoWPXEwYMHXb4XtWrVEg4dOuRyW5Z15upzWhj7FwTB6nvCk5s7ZSUiIqKSj/mkeoHeP+YTa8wnnisp+STvvl3d6tWrJxw4cMDdt4mIiIjILuaZ6gV6/5hnrDHPeM6XecaT/OFu3RIREREVBPNJ9QK9f8wn1phPPOeLfGL5Wjy9FfQzQ0RFhzPNEBHlU6VKlXD48GEsXrwYS5cuxZkzZ5Ceno6KFSuiWbNmGDFiBAYMGACJROL2NlUqFf744w8sX74cixYtwl9//YX09HRUqFABzZo1w8iRIzFw4ECPtgmYRi3YsWMHDh06hFWrVmHv3r34+++/kZaWBrlcjnLlyqFOnTpo1aoVevTogS5dunh1lCh7+vfvj8mTJ4v/99VUnJaaNWuG48ePY9u2bVi/fj0OHDiA+Ph4PHz4EEqlEpGRkahXrx7atm2Lnj17on379h7XhTfKeO7cOcydOxerVq3ClStXoFarER0djTZt2mDs2LHo3r07ACAtLQ2AaVSBUqVKOdzml19+iU6dOmHBggU4ceIE7t+/D7VaXSSvpyDat2+PM2fOYPHixVi5ciWuXLmClJQUlCtXDnXr1sWgQYMwfPhwcarVkrZ/IiIiIkvMJwXDfJL/MjKfmPg6H3hr/48//jiOHz+OQ4cO4eDBg7h8+TJSUlKQkpICjUaD0qVLo2rVqmjbti2effZZPP3000V+3BEREVHJwzxTMMwz+S8j84yJr/MMERERkT9hPikY5pP8l5H5xIT5hIgKi0QQBMHXhSAiKum6dOkiTse5a9cudOnSxbcF8gOLFi3CyJEjAQCdOnXCvn37fFugEubq1auoW7cuAKB+/fq4ePGij0tERERERP6C+cQW80nhYj4hIiIiIm9hnrHFPFO4mGeIiIiIyBHmE1vMJ4WL+YSIKP+kvi4AEREFpvnz54v3x44d68OSlEwrVqwQ77du3dqHJSEiIiIi8n/MJ4WL+YSIiIiIqPAwzxQu5hkiIiIiIvcxnxQu5hMiovxjpxkiIipyJ0+eFEcSKFu2LAYNGuTjEpUsN2/exLfffiv+/4UXXvBhaYiIiIiI/BvzSeFiPiEiIiIiKjzMM4WLeYaIiIiIyH3MJ4WL+YSIqGDYaYaIiIpUbm4uJk2aJP7/1VdfhUql8mGJipcePXpgy5Yt0Ov1dp/ftGkTOnXqhPT0dABA8+bN0aNHj6IsIhERERFRscF8UjDMJ0REREREvsM8UzDMM0RERERE3sN8UjDMJ0REhU/u6wIQEVHJN3PmTFy7dg0PHz5EXFwc7t69CwAoX7483nrrLR+XrnjZvn07tm/fjoiICLRs2RJVq1ZFUFAQkpOTcfToUfG9BYDw8HAsXrwYUin7yBIRERERmTGfeA/zCRERERFR0WKe8R7mGSIiIiKigmE+8R7mEyKiwsdOM0REVOhWr16NPXv2WD0mk8kwf/58lC1b1kelKt7S0tIQFxfn8Pk6depg1apVaNKkSRGWioiIiIjI/zGfeB/zCRERERFR0WCe8T7mGSIiIiKi/GE+8T7mEyKiwsNOM0REVKQiIiLQoUMHfPDBB+jYsaOvi1PsnDt3DuvXr8fBgwdx+/ZtJCcnIzU1FSqVCpGRkWjTpg169+6NIUOGQCaT+bq4RERERER+jfmkYJhPiIiIiIh8h3mmYJhniIiIiIi8h/mkYJhPiIgKn0QQBMHXhSAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLyJqmvC0BERERERERERERERERERERERERERERERETkbew0Q0RERERERERERERERERERERERERERERERCUOO80QERERERERERERERERERERERERERERERFRicNOM0RERERERERERERERERERERERERERERERFTisNMMERERERERERERERERERERERERERERERERlTjsNENEREREREREREREREREREREREREREREREQlDjvNEBERERERERERERERERERERERERERERERUYnDTjNERERERERERERERERERERERERERERERERU4sh9XQAq3pKTkwtluzKZDBEREeL/09LSYDAYCmVf5Hus78DC+g4crOvAwvoOLP5Q3+XLly/S/VHxUFj5BPCP456KDus7cLCuAwvrO7CwvgOLr+ub+YQcYUYhb2BdBxbWd2BhfQcW1nfg8Ie6ZkYhR3idF3kD6zuwsL4DC+s7cLCuA4s/1Lc/ZBTONENEREREREREREREREREREREREREREREREQlDjvNEBERERERERERERERERERERERERERERERUYnDTjNERERERERERERERERERERERERERERERERU4rDTDBEREREREREREREREREREREREREREREREZU4cl8XgIiIiIiIiMgbZDJZoW1bKpU6/T+VLKzvwMG6Diys78DC+g4srG8iIiIiIiIi1wqrHYW5PLCwvgML6zuwsL4DB+s6sLC+TdhphoiIiIiIiEqEiIiIIttX6dKli2xf5Hus78DBug4srO/AwvoOLKxvIiIiIiIiIltF1Y7CXB5YWN+BhfUdWFjfgYN1HVgCtb4Ds6sQERERERERERERERERERERERERERERERERlWjsNENEREREREREREREREREREREREREREREREQljtzXBSAiIiIiIiLyhrS0tELbtlQqtZqiNj09HUajsdD2R77F+g4crOvAwvoOLKzvwOLr+o6IiCiyfRERERERERHlV2G1o/g6l1PRYn0HFtZ3YGF9Bw7WdWDxh/r2h3YUdpohIiIiIiKiEsFgMBTZvoxGY5Huj3yL9R04WNeBhfUdWFjfgYX1TURERERERGSrqLIyc3lgYX0HFtZ3YGF9Bw7WdWAJ1PqW+roARERERERERERERERERERERERERERERERERN7GTjNERERERERERERERERERERERERERERERERU4kgEQRB8XQgqGrm5uXj48CHUarXXplXSarVe2U5eEokECoVC/L9OpwMP1ZKL9R1YWN+Bg3UdWFjfgSW/9S2VSiGXy6FSqaBUKiGV5r8Pf/ny5fO9LvkHo9GIrKwsZGRkQKvVeiWjFFY+Afg9F2hY34GDdR1YWN+BhfUdWPJT3xKJBBKJBEFBQQgJCbFa31PMJyUDMwr5K9Z1YGF9BxbWd2BhfQeO/NY1Mwrlxeu8yF+xvgML6zuwsL4DB+s6sPA6LxO5rwtAhU8QBCQkJCA9PR2CIHj1i81oNHptW3lZlrMw90P+gfUdWFjfgYN1HVhY34ElP/VtNBqh1+uRm5sLiUSCMmXKQKVSFVYRyY9lZmbi3r17Yj7xVkYp7O8efs8FFtZ34GBdBxbWd2BhfQeW/Na3Xq+HWq1GcHAwSpcuDYlEUhjFIz/HjEL+jnUdWFjfgYX1HVhY34GjIHXNjEK8zouKA9Z3YGF9BxbWd+BgXQcWXufFTjMBISUlBenp6TAajeJBL5VK/T5YF6RHGhU/rO/AwvoOHKzrwML6Diz5qW/LH/YFQUBaWhoiIiKKdaAiz5kvRjMajVZBnBmF/A3rO3CwrgML6zuwsL4DS37q2/J8NCcnBzKZDOHh4d4sFhUDzChUHLCuAwvrO7CwvgML6ztw5LeumVEI4HVeVDywvgML6zuwsL4DB+s6sPA6L3aaKfG0Wi2SkpLEIFW6dGmEhoZ67ctOr9d7ZTv2yOWPDs/C3A/5B9Z3YGF9Bw7WdWBhfQeW/NS3IAjQarXIzs6GRqMBADx8+BAVKlRgGA8QRqPR6mI0lUqFsLAwKJVKrzT2FPZ3D7/nAgvrO3CwrgML6zuwsL4DS37q22g0Qq1WIzMzEwCQlZWF4OBgq21RycaMQsUF6zqwsL4DC+s7sLC+A0d+65oZhXidFxUXrO/AwvoOLKzvwMG6Diy8zgsofiUmj2RlZQEwHbhhYWEIDw8vlgcqERERERV/EokESqUSERERUCqVAEznqeZgRSVfVlYWBEEQL0YrV64cVCqV34+ORkREREQlk1QqRVhYGEJDQ8XHmE8CCzMKEREREfkTZhTidV5ERERE5C9K2nVePKsu4bKzs8WpkUJCQnxcGiIiIiIiU6iybPDJzc31YWmoKGVkZIj5JCwsjBeiEREREZFfCA4OFu8X18Yeyh9mFCIiIiLyR8wogYvXeRERERGRvykp13mx00wJp9VqIQgCJBIJFAqFr4tDRERERAQACAoKEi9G4jSvgcOcTwCIo1AQEREREfmaXC4X84nBYPBxaagoMaMQERERkT9iRglcvM6LiIiIiPxRSbjOi51mSjij0QjA1MuLI6QRERERkb+wPD81n7NSyWdu3JNKpcwnREREROQ3mE8CFzMKEREREfkjZpTAxeu8iIiIiMgflYSMIvd1AahoMEgREREREZG/KI75JG+ZJRKJOCI1lTys78DBug4srO/AwvoOLN6sb4lEAplM5o1iUTFSHDMKERERERGVXMwoRERERETexU4zREREREREVCLI5UUXcXkhZWBhfQcO1nVgYX0HFtZ3YMlPfUulUgCAQqFARESEt4tEPrZ3715cunQJN27cwJ07d6DX6zF+/HhUrlzZ10UjIiIiIiIiIiIiIqJCxk4zREREREREREREREREVGKtWLECSUlJCA8PR0REBJKSknxdJCIiIiIiIiIiIiIiKiLsNENEREREREREREREREQl1rhx4xAdHY3IyEisX78ey5Yt83WRiIiIiIiIiIiIiIioiLDTDBEREREREZUIer2+0LYtkUggk8nE/xsMBgiCUGj7I99ifQcO1nVgYX0HFtZ3YPFGfRuNRhiNRuh0OqSlpXm0bkREhEfLU9Fr2rSpr4tAREREREREREREREQ+IvV1AYio8E2cOBGRkZFo2bKlr4tCxUzLli0RGRmJiRMn2jx3584dREZGIjIyEsuXL/dB6bzD2WsMNEVR38uXLxe3c+fOnYIUN6AcOHBAfN8OHDhg8zy/54mICl/eiy550W3+FYe/W6xv/1QY56v+VtfMJ48URX0vW7aM+SQfiks+8bfPNxUub9a3IAgwGAwe3Uqy9PR0nDhxAitWrMCXX36Jl19+GYMGDcKgQYMwa9Ysj7aVlJSExYsXY/LkyXjppZcwatQofPDBB/j999+h0WgK6RUQueYvf7uo+GEbSmBhG4r/Ki4ZhYiIyF3820X5xYwSWJhR/BczCpF/YqcZIi+y/GMXGRmJMWPGuFzH/AcwMjKyCEpYvE2bNs3q/V2wYIHLdcwnh3379i2CElIgyvu5d+f20Ucf+brYREREFACYTwoX8wn5I+YTIiLytrFjx+Lrr7/GmjVrcOrUKWRmZuZrO8ePH8fbb7+NP/74A/Hx8dBoNMjOzsb169exZMkSvPvuu0hMTPRy6cnfMKMULmYU8kfMKEREROTPmFEKFzMK+SNmFCKiwMVOM0SF6Pfff8eFCxd8XYwS6/vvv+cIhEREhYgjRhARlSzMJ4WL+YSIqHAxnxD5Xvny5dGsWTOP17t58ya+//575OTkQKVSYciQIfjiiy/w73//G927dwcAJCQk4KuvvkJOTo63i01+jBmlcDGjEBEVLmYUIqKShxmlcDGjEBEVLmYUIufkvi4AUUkmCAKmTZuGhQsX+rQcM2fOxMyZM31ahsIQHx+PRYsW4ZVXXvF1UQJStWrVkJSU5Oti+JVRo0Zh1KhRLpcrW7ZsEZTGu1jf/q2kfs8TEZF3MZ8ULuYT3+L5qi3mE/KVkvo9TxSoBg4ciJiYGMTExKBMmTJ48OABJk6c6NE2Fi5cCK1WC5lMho8//hh169YVn2vcuDGio6OxZMkSJCQkYOPGjRg0aJDNNhYvXgydTuf2PmNjYxEdHe1ROanoMaMULmYU3+I5qy1mFPKVkvo9T0RE3seMUriYUXyL56y2mFHIV0rq9zyRv2OnGaJCUq5cOaSkpGDTpk04c+YMmjZt6usilSjm9/eHH37ASy+9hODgYF8XiQjly5dHgwYNfF0MIiIiIhvMJ4WL+YT8EfMJERF5g70OLJ64du0aLl68CADo2rWrVYcZs969e2PXrl24d+8eNm/ejP79+0Mut26+2r59u0ej0bZr146dZvwcM0rhYkYhf8SMQkRERP6MGaVwMaOQP2JGISIKLFJfF4CopBo7diyUSiUA4Ouvv/ZxaUoe82iGDx48wIIFC3xcGiIiosAkCIKvi0BEbmI+KVzMJ0RERET2HT16VLzftWtXu8tIpVJ07twZAJCdnY3z58/bLPPbb79h5cqVbt8aNWpUOC+IvIYZpXAxoxAREREReYYZpXAxoxAREZGvsdMMUSGpVKkSXnrpJQDAtm3b8Ndff+VrO0ajEfv27cOnn36K2NhY1KtXD9HR0YiJiUGXLl3w6aef4u7du063MXHiRERGRqJly5ZWj3/77beIjIxEZGQkrl+/7rIszz//PCIjI9GoUSMYDAa7y/z5558YPXo0mjdvjipVqiAmJgZPPvkkvvnmGzx8+NDt1+1Knz59xIbPGTNmIDs7u0Dbu3DhAv71r3+hTZs2qFatGmrUqIFOnTrh448/xp07dxyud+fOHfE9XL58OQDgjz/+wJAhQ9C4cWNERUWhb9++Tpd9/vnn0aBBA1SvXh1dunTBvHnzoNPpxH0IgoA1a9agb9++aNCgAapVq4Zu3bph4cKFTi9Wzs7Oxrp16zB58mR06dIFtWrVQnR0NOrXr49nn30Ws2bNQlZWVr7fM3uvJ6/ExER8/vnn6Natm7j/hg0bokOHDnj55ZexbNkyZGZmOtxHRkYGvv/+e8TGxqJ+/fqoVKkSGjVqhGHDhuH3339362LtHTt2YMiQIahfvz6qVauGtm3b4pNPPkFCQkK+X3thML+X06ZNc7pc3759ERkZKR5Xjty5cweff/45unfvjrp16yI6Ohr16tVD7969MW3aNNy6dcuj8rlT3wDw8OFDfP7552jfvj2qVq2KOnXqoF+/fli/fr1H+8vNzcUvv/yC/v37o2HDhqhUqRIaNGiAAQMGYMmSJdDr9Q7X1Wq12Lp1K9577z089dRTqF27NqKjo1G3bl307NkT06ZNQ0pKitP9t2zZEpGRkeIPN9euXcObb76Jli1bonLlymjYsCFGjBiB48ePe/S6HMnJycF3332HLl26oHr16qhbty5iY2Px22+/wWg0ulzf0fe8pU2bNmH48OFo2rQpKleujBo1aqBVq1bo3bs3vvrqK6u/UwcOHEBkZCRef/118bHHHntMPAbMtwMHDljt49ixY/jiiy/Qu3dvsd5q1qyJjh074p133sHly5c9eh3p6emYOnUqOnXqhOrVqyMmJgZ9+vTB6tWrXb4nAJCVlYXZs2fjueeesypP165d8f777+PIkSMO1zUYDPjf//6HF154AY0bN0blypVRt25dPPPMM5gzZw5ycnLcKkNJlpqtxeXETGgNro9RIvI95hPmE+YT5hNPlNR80qBBA+YTN5SUfHL8+HExn9SrV4/5pIQzGAWkqbW4nZKNHK398wLyDfNnTalUolatWg6Xa9iwoc06VLIxozCjMKMwo3iCGcUaMwozCsCM4u80eiMS0nNwJ1Xt66IQkZuYUZhRmFGYUTzBjGKNGaV4ZhRe5xU4BAHI1uhxPyMX9zNyfV0cn5G7XoSI8uuNN97A0qVLkZOTg6+++gqrVq3yeBvffvstvvnmG5vHMzIycP78eZw/fx4LFy7E7Nmz8cwzz3i07f79+4ujI6xduxbvvPOOw2UfPHiAffv2AQCee+45yGQyq+cfPnyI0aNHi8uYaTQanD59GqdPn8aCBQuwePFitGrVyqNy2iORSPDuu+9ixIgRSE5Oxrx58zB58uR8bev777/HV199ZXPCcvnyZVy+fBkLFy7E9OnTMXjwYKfbEQQBEyZMwMqVK93a77vvvmszesL58+fx4Ycf4sCBA5g/fz70ej1ee+01bNy40Wq5s2fP4p133sGZM2fw3//+1+72X3jhBRw8eNDm8ZSUFBw6dAiHDh3CggULsHz5ctSpU8etMnvi0KFDGDZsmE1YSkpKQlJSEi5evIi1a9di6dKl6NGjh836e/fuxdixY5Gammr1+IMHD7Bt2zZs27YNTz75JObNm4ewsDC7Zfjkk08wd+5cq8du3LiBuXPnYvXq1U5DQXE2a9YsTJkyxSqUA0BqaiqOHDmCI0eO4MCBA9iwYYNX93vlyhUMGDAAiYmJ4mO5ubnYs2cP9uzZg6FDh6J9+/Yut3Pu3DkMHz4cf//9t9XjycnJ2Lt3L/bu3YvFixdjyZIlqFChgs36//rXv7BixQqbx9PS0pCWloa//voL8+fPx+LFi9G2bVuX5dm0aRPGjx8PtfrRj9pJSUn4888/sXXrVsyZMwfPPfecy+04cv/+ffTv3x9XrlwRH1Or1Th27BiOHTuGjRs34rXXXsv39g0GA1555RX8/vvvVo9rtVpkZ2fj9u3bOHLkCOLi4rBjx45872f58uVW4ctMp9PhypUruHLlCn777Td8+eWXGD16tMvtXbt2DYMHD7b5Qevw4cM4fPgwjh075nSEnz179mDcuHE2wVmn0+HcuXM4d+4c5s+fj6SkJJt17969ixdffNFmZFutVoujR4/i6NGj4vdnTEyMy9dS0mj0RiRmaJD9z4Vo8Q9zUKW00selIiJ3MJ8wnzjDfMJ8Ulj8NZ/s2LHDrTzAfMJ8AjCf+Cut3ogsjQGZGj3UWgPMTe4qhQzlQtj04S/MFwJFRUXZnLNZqlSpks06VPIxozCjOMOMwoxSWJhRmFEsMaMwo3iTIAjI1hqQptYjU/PowtDyIXIEyTmmMVFxwIzCjOIMMwozSmFhRmFGscSMwoziDUZBQI7OCLXWALXWgBydEcZ/Oi7KpJKAbUMJzFdNVESioqIwcuRIzJkzB7t378bhw4fRrl07j7ah1+tRsWJFxMbGonXr1qhevTqUSiXi4+Nx7Ngx/Prrr8jOzsarr76KuLg41K1b1+1t16pVC4899hhOnDiBNWvWOA1T69evF0cdGDhwoNVzGo0GAwYMwJkzZyCTyTBgwAA8+eSTqFatGnQ6HQ4dOoS5c+ciKSkJQ4cOxc6dO1G1alWP3gd7YmNj0axZM5w+fRqzZ8/Gyy+/jPDwcI+28euvv2LKlCkAgPLly2PSpElo06YNDAYD9u7di5kzZ0KtVmPSpEkoW7YsnnrqKYfb+vnnn3H+/Hm0a9cOo0aNQkxMDNLT0+2OYLBo0SKcOHECTz75JF588UVUqVIF8fHx+OGHH3DixAls2rQJy5Ytw4ULF7Bx40YMGDAA/fv3R8WKFXHjxg188803uHr1Kn777Tc888wz6N69u80+9Ho9GjZsiJ49e6J58+aIioqCIAj4+++/8eeff2LDhg24ffs2hg8fjl27dkGlUnn03jmj0WjwyiuvIDMzE2FhYRg1ahQ6duyI8uXLQ6fT4e7duzh69Cg2bdpkd/0jR45gyJAh0Ol0iIyMxJgxY9C4cWNUrFgR9+/fx/r167Fq1Srs2LEDEydOxMKFC222MXfuXDFIRUVF4Y033kDLli2Rm5uLHTt24KeffsLLL79c4noRT58+HVOnTgUAlC5dGqNGjUKnTp0QERGBjIwMnDlzBn/88QckEolX95uZmYlBgwaJQapfv34YPHgwoqKicO3aNcyePRvLly/HpUuXnG7nxo0b6Nu3LzIyMhAeHo7Ro0eLvf5TU1OxZcsWLF68GCdPnsTw4cOxceNGKBQKq20YDAbUqFEDsbGxaNGiBapUqQK5XI6///4be/fuxbJly5CamoqRI0di7969iIyMdFieixcvYsOGDahYsSJee+01NG/eHIIgYNeuXfjxxx+Rm5uLt956C48//jjKly/v8fum1+sxbNgwMUh16dIFo0aNQuXKlXH37l0sWLAAu3btKtAILgsWLBCDVNu2bfHiiy+iRo0aCAkJQVpaGi5cuICdO3ciIyNDXKd58+bYu3cvNm/ejK+++goAsHLlSkRFRVltu1q1alavpUyZMoiNjUWHDh1QvXp1hISEIDExEWfPnsW8efOQkpKC999/H3Xq1MHjjz/usMw5OTkYNmwYUlNT8a9//QtPPPEEwsLCcObMGXz77beIj4/Hr7/+ip49e6Jbt2426+/fvx9DhgyBXq+HTCbD888/j169eqFy5crQaDS4fPky4uLisG3bNpt1U1NT0bt3b9y7dw9KpRIvvvgiOnTogGrVqiE7Oxu7du3CvHnzcPPmTQwZMgRxcXEoVaqUZ5VSTBkFASnZOiRn66xGgMnI0SFTKUO4itGCyN8xnzCfMJ8wnxQ1f8snkZGRuHnzJmbPno2lS5fiwoULTrfDfFJy8kmtWrWgVCqZT4o5QRCQa+4ok6tHrt7+iH0ZObqAbfDxN1qtVrzQoly5ck6XDQsLg1KphEajcTlyZH7ExcWJv0uZz4fi4uLQuXNnhIWFITQ01KPtORsds6jk/fspkUjcGrHVnzCjuJdR8lvXzCjFM6Po9Xr8/fffzCiFhBmFGSUvX2YUlUqFhIQEZpQSwGAU8DBHjzS1DlqDbU5Jy9GjYnhQvrcvkUicdkAnIu9hRmE7CjMK21GKGjMKM0pevM6LGSU/jEYBOToD1Dojsv/pJOPo90OD0dTWogrAjv1sOSIYBVOAzw9DITYMyeSPPrDe3E/pYDmkXj6JcGbSpElYtGgR1Go1vv76a6xbt86j9V988UW88847NicLzZo1Q69evTBmzBg8/fTTSEhIwPfff4/Zs2d7tP0BAwbgxIkTuH79Ok6dOoXmzZvbXW7t2rUAgJiYGJtlvv32W5w5cwalS5fGmjVr0KxZM6vn27Vrh4EDB6JXr164f/8+pkyZYtMrPL/ee+89vPDCC0hLS8NPP/2Et99+2+11k5OT8dlnnwEwnWxv2bIFlStXFp9v27YtevbsiT59+kCtVuOtt97CiRMnbOrC7Pz58xg0aBBmzpzp8kT1xIkTGDduHL744gvxsWbNmqFz587o1KkT/v77b3zxxRdIS0vDF198gXHjxlkt16FDB7Rr1w5ZWVlYuHCh3TD1448/2u0Z+9hjj6Ffv34YNmwYBg0ahGvXrmH16tV48cUXnb9hHjh69Kh4Uv3TTz/ZjDBgPia+/PJLmxEKdDodxo8fD51Oh27dumHBggUICQmxWqZHjx5o3749/vWvf2HTpk3YvXs3unTpIj6flJQkngBWrVoVmzdvRsWKFcXnO3TogK5du2LQoEFebeBOTk7GxYsXXS5Xu3Zth8dRQZw5c0ac9jMmJgZr1661GqUTADp16oTx48fj3r17Xt339OnTxW1+9NFH4oggcrkczZs3R9++fTFo0CDs3r3b6XYmTpyIjIwMNGnSBKtWrbK5oKJr167o0aMHXnjhBZw4cQL/+9//xCmSzd59913UqFHD5nPYvHlz9OnTB6NGjUJsbCySk5Pxyy+/4IMPPnBYnjNnzqBZs2ZYt26d1Y81rVq1Qs2aNfHaa68hMzMTq1evxquvvurqbbKxaNEinD59GgAwfPhwTJ8+XXyuWbNmeOaZZ/DGG29g2bJlHm/bzDzSxGOPPYb169dDLrc+/evcuTNee+01pKWliY+FhoaiQYMGOHXqlPhYTEyMVXjK68knn8TgwYPFz6v5s9W0aVP06NEDY8eOxbPPPovz58/j66+/dhqmkpOTodVqsXnzZtSvX198vFmzZujYsSM6d+6M3NxcLFiwwCZM5ebm4rXXXoNer0dISAiWLVuGjh07Wi3Tpk0bvPTSS3Y/Bx9++CHu3buHqlWrYt26dahevbrV8x07dsSzzz6LPn364NatW5gxYwY++ugjh6+lpMjWGJCQqYHWwUVp2VoDO82QV+U3oxRmPgFKRkZhPmE+sYf5hPkkUPIJYDrm+vbtiyFDhmDnzp1Ot8N8UrzzyYABA6waPvR6PfNJMWQUBKi1BmRqDMjSGKCzcwFaXjk603IKWeA1+Pib3Nxc8b47F3KoVCpoNBqr9bzl0qVL2LNnj9Vjly9fRpMmTSCXy52Wz14+uXXrllv7rVGjhqdF9YAAwPVnIj/KFFJGsbzYUyaTQS6X480338TixYuRnZ2NadOm2YyiKZU++izn/bsBACNHjsQHH3xgcz7z2GOPoU+fPhg3bhx69OghXsz0008/2WzD2T4GDRokZpSzZ8+iRYsWdl+bOVvVrl3bZhTmr776Sswo69evt8kwnTp1wuDBg9GzZ08kJibiyy+/xLx58+zuB4DDi2bzvg65XI4PP/wQgwcPRlpaGubNm4d3333X7roSicTmtVtmlOjoaGzbtg1VqlQRn+/YsSOeeeYZxMbGIjs7G2+//TZOnTplVReW2zx//jyGDBmC2bNn280olsueOHECr732Gr788kvxscceewzdu3dHu3btrDLKV199ZXXu89hjj+GJJ55A69atkZmZiUWLFqFnz542+5s9e7bdjNK2bVsMHDgQu3fvxoABA3Dt2jWsW7fO5jzPklQqtXn/LP9vPt7NDh48KGaUefPm4emnn7Zbhi+//BJqtdpqXcuM0r17dyxevNgmo8TGxqJjx46YPHkyNm3ahH379qFr167i83kzyvbt260yyhNPPCGeT5kzir3X6A7L4zUlJcVqJF5H6tSp4zCjuCqH+diyd0xbZpTatWtj/fr1VrkbMF3w9Prrr+Pu3bsO9+NpfQPAf//7X/F875NPPsG//vUv8TlHGcX8ObY0adIkZGRkoGnTpli7dq1NRnnqqafQq1cvDB48GCdOnMDKlSsxYsQIq2U+/PBDuxmlVatWeO6558TfdpKTk/Hrr786Pb88c+YMmjdvjg0bNlide7dr1w4xMTEYN24cMjMzsXbtWowfP97hdhxZsGCBmFFGjBiB77//XnzO/L5NmjQJS5YsER+39/47+543/91p1aoV/vjjD5vnu3fvjkmTJiEtLU18rnTp0mjSpAnOnj0rLlevXj2nGaVnz55WbShmLVq0QGxsLF599VU888wzOH/+PKZNm2b1mc37OswZZdu2bWjQoIHVe9K5c2d07NgRubm5WLhwoc1vILm5uRg/fryYUVasWIFOnTpZLdOhQweMGjXK7ufgo48+EjPKxo0bbTJK586d0b9/f8TGxuLWrVuYNWsWPvnkE4fvS3GXozUgJVuDh2qdOGqzPQ9zdIguE+zx+ZW5zhUKBSIiIgpUVipZAu06L4DtKJbYjsJ2FLajsB3FG9iOwnYUXudVvJk7yWRrjVDrnHeSsUetNbDTDAWmhzl6dPvxqK+LUWS2j2+JiBDvn8Q4EhkZiZdffhkzZszA/v37sX//fpsfnpxx9ocLACpVqoQJEybg448/xpYtWyAIgkc9i/v164dPPvkEBoMBq1evthumbt68iRMnTgCwHX0gKysLv/76KwDg/ffftwlSZlWrVsVbb72Fd999F7///jumT5/u8eh99jz11FNo1aoVjh8/jjlz5mDMmDEoU6aMW+suX75cnIbv888/t/lhHDCdBLzxxhv46quvkJCQgD///BN9+/a1u73SpUvj66+/duv9r1y5Mj799FObx0NCQjB48GB8++23SE1NRatWrayClJl5VIqVK1fi8OHDdvfhaiq5zp074+mnn8aff/6JzZs3ezVMPXjwQLzfvn17h8vJ5XKbUSPWrVuHO3fuQKVSYdasWTZByuyll17CkiVL8Ndff+F///ufVZhasWKFWLefffaZVZAye/zxx/HSSy/ZTJ1aEAsWLHBreydOnHD52c6PWbNmwWg0QiKR4Oeff7YJUpbsHe/5pdVqsXTpUgBAo0aN8MYbb9gso1Ao8MMPP6BVq1Y204maHTp0CMeOHQMAzJw50+EIpN27d0efPn2wYcMGLF++3CZM1axZ02l5GzZsiBdffBE//fQTNm/e7DRMAcAPP/xgd3STAQMG4LPPPkNiYiIOHz6crzBlPl4iIyPxn//8x+4yU6ZMwbZt25CcnOzx9oFHn8fWrVs7bUws6I/t0dHRTrdfqlQpvPfeexg+fDiOHDmC1NRUlC1b1uHy77//vlWQMqtVqxZ69eqFdevW4ciRIzbPr1y5Uvwx58MPP7QJUpbyfg7u3LmD9evXAwCmTp1qE6TMmjZtKv5t/9///lciwpQjeqMRDzJ1eJhj/3MbJJOiUplghCiKrkMyBQZmlMLDfGLCfGKN+cSE+cS7/D2f/Pjjj2jRogXziYWSlk+cYT7xbwajYJpNRqNHtsYAg5sNPVKJBGFKOUoFyyGVMqP4A61WK95350Jr8zKW63nLhAkTMGHCBJvHr169Cq1Wa3UxbV4FyycPXC/ih3a+3gZlizCjjBkzBj/88AP27duHffv2OW2Ez8vVeUzlypUxadIkfPDBB9i8ebPHGeW5557Dhx9+CIPBgFWrVtntNHPz5k0cP34cAPD8889bPZeVlYVffvkFgOlvgaML2qpVq4a3334bb7/9NjZs2IDvv//eKxmlR48eaN26NY4dO4ZZs2bhlVdecTujLF26VDyP/eKLL6w6zJg1bdoUkydPxpQpUxAfH49NmzahX79+drdXunRpTJs2ze2MYr4YzlJISAiGDh2KadOmITU1Fa1bt7Z73lOxYkU888wz+N///odDhw7Z3YerjNKlSxf06tULmzZtwqZNm5x2mvHU/fv3xfsdOnRwuJxcLrcZ/XTNmjViRpk7d67DjDJixAj89ttvOHHiBJYtW2Z1Ab5l/vziiy/sZpQnnngCw4cPFzO2N/z6669ube/06dOFklF+/PFHMaPMnz/faQ6xd7znl1arFTt1NGrUCG+++abNMu5klIMHD+LoUdPfo9mzZzvMKE8++ST69u2LdevWYdmyZTadZlxllEaNGuGll17CnDlzsGnTJpfnlzNmzLA7Su/zzz+P//u//0NCQgIOHTqUr04z5uOlQoUKVp3oLH311VfYsmVLgTNKmzZtCjWjOMvEgOk78sMPP8SwYcNw+PBhlxnlo48+suowY1arVi3ExsZi7dq1dn+j+d///oeEhAQApg5czn4XzPs5uHPnjnjh+LRp01xmlB9//BHLly8vcZ1mjIKA9BwdUrK0UGudX7Qrk0gQERqEsqFBRTqwK5V8gdaGArAdxRLbUdiOwnYUtqMUFNtR2I4C8Dqv4sZoFKDWGaDWGqE2zyQDz2cdD1bIEKqUI1gReB1mACAwXzVREZs4cSLCwsIAQOwVnV+ZmZm4ffs2Ll26hIsXL+LixYviyab5OU9ERkaic+fOAExTcxqNtiPTmUcfAID+/ftbPXfw4EFxqrc+ffo43Zf5pFqn04k9br3hvffeAwBkZGR4NALD3r17AZhCUO/evR0uZxkyzOvY07NnT7GeXXnmmWcc9kBv1KiReN9RcAOAxo0bAwAePnyI9PR0l/tMTk7G9evXxePm4sWL4snq+fPn3Sq3uyzDi6c9p7ds2QLAdLy4mgbRfEyZGyTNzKNGlilTBr169XK4/gsvvOBR2fyZ0WhEXFwcAFMP6aZNmxbZvk+fPi1OKzl48GCHPyhUqlTJKvTmtXXrVgCmERoaNmzodJ/muj916pTLUSQePnyImzdvWn1vli5dGoBpRFFH4Q4wBS/Lz6QliUSCJk2aAHB/dFFLiYmJuHz5MgDTZ93RDwdhYWF49tlnPd6+mfnzuHXrVqSkpOR7O57Kzs7GnTt3rN73vCNLOiKRSDBgwACHz5t/uEtLS7P5/jNPxRkSEuJxQ/b27dthMBgQEhJid2QXS+ZpuBMTE3H37l2P9lMcCIKAhzk6XE/OsdthRgIgMlyJuhXDUSq46DojE5F3MJ+YMJ88wnziGPNJ/hSHfFK5cmXmEwvMJ8wnvqYzGJGq1uF2ag6uPFDjXnouMnL1LjvMyKQSlAmWo2oZFRpGl0KN8qEoG6qEjBek+YWgoCDxvjujgJqXsVyPAsPrr78uXswwZcqUAm0rIyMDt2/fxsWLF3HhwgVcuHABwcHBAPKfUcznDOvWrbObUVavXi3ez3tB2oEDB8SM4ux8GnjUeUKn01mNDFpQ5otJMjIyMHPmTLfXM5/Hli5d2mm+Gj58uHjf2UzjTz/9tN2LVuzp06ePw4xizh6AqVOTI/nNKObj5sKFC2IGOHfunFvldldUVJR4P78ZpWPHjm5nFPNFTGaWGSU2Ntbh+t68CM/XjEYjduzYAcA0UnNRZpRTp06JGWXo0KFOM4q92UXMNm/eDMA0E4+jXGBmrvuTJ0+6nVEsvzc9ySiWn0lL3sgoly5dAmC6ONhZRnHUWc8d5oyyZcsWn2QUy/fdMqM4+96RSCQ2f28smS+etpdRzFk3NDTU6vvbHVu3bhUzylNPPeV0WfPftISEBPz9998e7cdfafVGJKbn4FJCJv5OVTvtMKNSyFC5TDDqR5dCpTLBUCnszxJHRP6L7SgmbEd5hO0ojrEdJX/YjuIY21HYjuKuktyOYhpcTI8HmVrcSsnB5Qdq3EnLRXK2Fmqdwa0OMxIAKoUU5UIUqBqhQqNKpVGnYjgqlQlGcIBmFM40Q1QEypYti3HjxmH69Ok4evQodu7caTPNmDN///03Zs2ahW3btrn8USk1NRU1atTwqHwDBw7Ezp07cf/+fezbt08MV2Zr1qwBYJryrVatWlbPWYYiRz+K2mPZQ72gunTpgnbt2uHw4cOYN28eXn31Vae9Ws3M0ys2bdrU6RSKFSpUQLVq1cQfLh1xdfJnydnoAOaTPFfLWY7alJWVZbWe2ZEjRzBv3jzs3bvXakq+vFJTU10V2SNt27ZFjRo1cOvWLXz88cdYs2YNYmNj0b59e7Ro0cJpL2XzMbVr1y5ERka6tb+8x5O5npo0aeJ0X40bN0ZQUJDXRq9855138O6773plW566ffu2eFJpPskrKpafC0cjJZq1bNkS27dvt/ucuSH42rVrbte9TqdDWlqazfIXLlzA3LlzERcX5/T7xmg04uHDhw73V7t2baf7N/faz87Odqu8lizfN3sjVFpq2bJlvkf0Gzx4MA4dOoSbN2+iTZs2eOaZZ8TvTVcjm3kqJSUFs2bNwsaNG3H9+nWn0z46C3blypVz+j1uOdJM3u+/s2fPAjAFLkcB1RHzMahWq60arl158OCBV0ce9DWN3ojEDA2ytQa7zwcrZIgupURYMC9iIiqumE9sMZ8wnzjCfJI/zCfMJ44UdT756aefmE/8lCAI0OiNyNQYkKkxIFdnP3/YEySTIlwpQ5hKjhCFVGzU5ewy/kelUon3c3NzXS5vXsZyPfINg14Pvd77nymDwWB133yRRKlSpfDKK69g+vTpOHLkCLZt2yZmFMsLwBxdVOFJRrH3PelqHwMGDEBcXBwSExOxa9cum4yyatUqAKaMUq1aNatt/PXXX+J9e6NtOpKQkCBuRyKRQCZ71JBtMBjs/l3L+zrM6z/++ONiRvnpp5/wyiuv2PxtEwTB5rVfuHABgCmjSCQSh+9/2bJlxYxy4cIFq+Us7zdo0MDphTGWz9WsWdPhspYXtdWoUcOt5R4+fGh3VGxPMoqzshuNRpvnLf9vebwDQKtWrcSM8sEHH2DlypViRmnZsqXY0cu8rmV9nzx5EgAQFxfn9qiyDx48sNq/+UIX88VCjl5bgwYNxIxi7zW6w/Jz70lGcbQvV+Uwv1d5j+mbN2+KGaVt27b5ei3OyuCsvi07PzRt2tTqubyf7xYtWogXDFl+joFHdX/16lW3616n0yEpKalAGSU5OdlpRnH2XprPlbOysjx+z83n0oDpfNrZ+pbZL+/7Dzj/nh80aBAOHjyIGzduoGXLlh5lFMvjO2992ZOamoq5c+e6lVHyfm4tX0e5cuVQqlQph/uz/I0m7/ffmTNnAJiOxaCgII/qxfw3Ta1Wu7wg1lJCQoLL2UD9WbbGgNQcHbJy9U4vS5NAgnCVDGVDFAgJkln9BuTob7crRqMRRqNR/L3BEwUdeZwo0LEdxRbbUdiO4gjbUfKH7ShsR3GE13m5ryS1oxiMAnJ0Bqi1BmRrjcjNx0wypk4yMoQESRGikCEkSAaZRbuJjG0onGmGqKi89tpr4pf9tGnT3F5vx44d6NSpE+bPn+/WKCw5OTkel61Xr17iHxzLEdEA04nt1atXAcBub9CkpCSP9wfkr5zOvP/++wBMf1TdHSnN3GPanR/1KlSoYLWOPfbCjCOWDR55SaWPvpqdnQhYLmf5o6zZtGnT0Lt3b2zYsMHlj2jerg+FQoElS5agbt26AEw/5E+ZMgW9e/dG7dq1MXDgQKxatcpuufMzNWHe8rtbt3K53O1pXv2dZSC2N01pYbI8vlyFIGfP53dayrz1v2TJEnTv3h3Lly9364cbZxdtOPusAhAvzLF3LLti+X3i6lh1N1zaM2zYMEyePBlyuRwZGRlYvnw5xo0bh2bNmqF169b497//na8RFPI6ffo02rRpg++++w7Xrl1z+eN/Qd53Z99/5s9Cfj4H3joGiyujICApS4sbKTl2O8xIJRJEhStRo6wKqgCdppOoJGE+scZ8wnzCfOJdzCePMJ9YK8p80qFDB+YTPyMIArI1eiRmaHAtOQc3UnKQlKV1q8NMsEKGCmFBqFUuGDHlg1GxlBKhQTKHoyCSfwgKChJnlXA1KmJWVhY0Gg0AiKOmUmBhRrFmWc68f8fyc9EtM0rxySgxMTFWGSVvfTOj5I+/ZpS89cuM8khJzCjt27dnRikmDEYBKdk6XEtS43ZaDjKddJiRSyWIDAtC7chgVCmjQkiQ7YjN+fnbnXd9g8Hg0Y2ICo4ZxRrbUQI3o7AdpXD4a0bJixnlkZKYUXidl++YZ5K5n6nBzZQcXHmQ/c9MMjrkeDCTTLBChnKhpplk6lYIRc1ywagYrkS4Ss5OMnZwphlCmWA5dr7eJl/rGgowCo8rMsuRN7y4n9LBvjnsS5cujddeew1Tp07FiRMnsG3bNvTo0cPpOikpKXj11VehVqsRGhqKCRMmoGvXrqhRowZKlSqFoCDTCO/79u2zmU7TE2FhYXj66aexdu1abNq0Cd988404mp95yk6ZTGZ3amvLkXni4uKc9uS35O1erx07dsTjjz+Offv2Yf78+Xj11VfFAOSKtxrXLUeC8rW9e/fim2++AWAaaW38+PFo27YtqlSpgpCQELFX/tSpUzF9+vRCKUO9evWwd+9ebN26FVu3bhV7QOfk5CAuLg5xcXGYPXs2li1bZnWiaD4x6t69Oz799NMClYEXThS9grzn5rpv1KgR5syZ4/Z6lqNTXb16Fe+88w70ej0iIyMxYcIEdOrUCdWqVUNYWJj4HbV06VJMnjwZQMF/qPaGwj5WP/roIwwfPhyrV6/Gvn37cOLECajVaty6dQtz5szBL7/8gi+//BIjR47M1/a1Wi3GjBmD1NRUKBQKvPLKK+jRowdiYmJQpkwZKJVKAKbpTVu3bg3AP973vMzHYLly5bBu3Tq316tWrVphFanIqLUGJGRooNHbTt8NAKVUclQMD4JCxs4yVDTym1EKM59IJBJILc73jPkcHdAeX2QU5hNrefNJ3r/NEonEo/pmPrFWnPLJ8uXLrX7oZj4p3ux9lt3FfFJ4fJFPevXqhZo1a6J06dLMJ0XMKABZGj0yNQZkafQwGN17ryUSCUKDZAhXyhCulEMuc35cFvRvd951/envaHFXpUoVXLx4EYmJiTAYDA7f2/j4eKt1/Im/tqEAJasdhRnFGttQCldxyihsQylZ2IaSPyU1o9SoUYNtKH4mV2dAWo4e6Tl6GF3UQWiQDBEhCoQr2Zmfip6/ZpTCyicAM0pezCjMKIWBGSUwMaPkT0nMKLzOq3AZjALUWgPUOgPUWiNydQYP55GxnkkmNEiGYIWMHWM8xE4zBKlEgrIh7p0A56XXF94HznKqvcLcT1EaN24cfv75Z6SmpuLrr792GaY2btwoTsO3aNEim+k0zTyditeeAQMGYO3atcjMzMS2bdvw7LPPwmg0in9MOnfubLcHrOW0vuXLl/d6SPLE+++/j3379kGtVuPHH3/EF1984XT5MmXK4P79+26NomDuxVxceqv/9ttvAEzl3bx5s8Pezd44dpyRyWSIjY1FbGwsACAxMRE7d+7EggULcOrUKZw6dQpvv/02Fi1aJK4TERGBxMRE6HQ6NGjQIF/7LV26NB48eOCybvV6vdNRJYqS+WIOyx8o7FGr1XYft5zi8P79+14tmyuWn4sHDx44nW7WWZ1YToGZ37pfvnw59Ho9ZDIZNmzYgDp16thdzh/q3XLUElfHan5He7FUtWpVvPnmm3jzzTeh0+lw8uRJbNiwAYsXL0Zubi7effddtGzZEk2bNvV42/v27RNHMfj2228xfPhw6O38EFoU73vZsmURHx+fr8+B+XOUlZWFunXr+tWPZIVFbxTwIFOLhzk6u88rZFJEhQchXMXYQEUr/xklf7kmf4pyX/lj+T0mk8lspjMfP368mE+mTZuG2NhYq1Fe8i6/adMmMZ8sWbIEXbp0sbvfjIwMp/t1tg+zQYMGifkkLi4Offv2hdFoxPr16wEAXbp0sfpB1cxyVPKKFSuicuXKdrfvKXt/E/K+jryv5aOPPsLTTz8NtVqNmTNn4ssvvxSfk0gkNsubz4OTk5OdTj0PPMonERERVsta3rf33ltyd1lXx5G95fK+H0uWLAFgOm/cvn27w3xiPr7yli8vqVRq87w7r0cul+PZZ5/Fs88+C8CUT+Li4vDLL79Y5RNzeQHT+UFCQgL0ej2aNGnisEzOmLOnq7q1zCf2XqM7LOshv9sArC82d7YN80hMeY9py8bNpKSkfJcD8Ly+LbNRSkoK6tWr53DblrMe5D1uzdtRq9X5rvsVK1aI+eSPP/4QR+nLy/J70973iZmrOnXn+9WRvO+bs/UtR8DL7/d8zZo18c477+Cdd96BTqfDX3/9hfXr12PhwoViPmnTpo1VPnH2PWNp9+7dNvnEnszMzAK/DlflMueTBw8eeFwn5r9pWVlZaNiwYbHKJzqDERk5OmTk6pGl0bvdmCaTShCuUqCUSo5wlaJAjT35eb/Mda5QKKx+86SCqVevHi5evAiNRoMbN244/K3mwoULVuv4E39tQwFKXjsK21AKF9tQHmEbCttQihLbUPKnpLehALBpR2Ebim8YBQGZuQak5eig1jofcVwqkaB0sBwRwXKoFCXj9VPx5K8ZpaTlE4AZpbAxozzCjMKMUpSYUfKnpGcUXuflXWInGa0B2TojNPnqJCNBsEKKkCBTRxl2kik4DhVNVITCwsIwYcIEAMCZM2ewadMmp8tfunQJgOkEw1GQAoBTp04VuGzdunUTG+PNow4cPHgQCQkJAICBAwfaXc/ywpEjR44UuBwF0aZNG3Tr1g2AKXwmJiY6Xd58snbmzBm7f/TNkpKSxClT83uCV9QuX74MwDQyg7PpAE+fPl1URQIAREVF4YUXXsC2bdvQrFkzAMC2bdusprwzH1OnTp2CVqvN134aNmwIADh37pzTuj1//ny+9+FtYWFhAJyfbAqCgJs3b9p9rnr16uLJ+aFDh7xePmcsPxeuvo9Onjzp8Dlz3d++fTvfgdB87Ddq1MhhkAK8871ZUObjFHD+vrjzvKcUCgXatGmDKVOmYO7cuQBMx9fGjRutlnN3ZATz+w4Azz33nMPliuJ9N4fB06dPO/zxwRHzMajRaPziGClMgiAgPUeHG8lqux1mJADKhihQq1wwO8wQlWDh4eGYNGkSANP35h9//OF0ect84qjDDOCdv1vdu3cX88nq1asBAAcOHBBHIH/++eftrmf5o6Cv80nbtm3RvXt3AMCCBQvEbOWI+Zzq9OnTJS6fmI+dxx9/3Gk+Keq/v1FRURg2bJhVPtm6davdfHLy5MkC55OzZ886rdtz584Vu3xy48YNu89Z5pODBw96vXzOeHKe/ddffzl8zvx9cuvWrXznE/Ox37hxY4cdZgDvn+/nh7fet/xQKBRo27YtvvrqK8ybNw+A6fjasGGD1XLu5hPz+w44zydF8b6bv1tOnTrlcT4xH4MajcYvjhFnBEFArs6ABxm5uPYgCxcTMnDvYQ4yc3UuO8wEyaQoH6ZErfJhaBhdCtXKhqBMSBAbfkqQNm0ejX68a9cuu8sYjUbs2bMHABAaGopGjRoVSdmKu4LMqOav2IZin7fqmm0oj/hzG0rejMI2FJOS2oaS9/PMNpRHAqENJe/6bEMpWnqDgKQsLa4lqXEvPddphxmlXIqoUkrUrRCC6FJKlx1mvH2eZp4N05MbEXkHM0rhYkZ5xJ8zCq/zsq+kZpS8mFEeCYSMkhczivv0RgGZuXokZmhwI1mNyw+y8ffDXKSodW7PKiOBBCEKGcqHBqFahAr1KoSgRrlgVAgPQphSznYTL2CnGaIi9vLLL4s9+adNm+a04dg8fZhGo3HYK1mtVmPVqlUFLpd5xF0A2LFjB9LT07FmzRoAQEhICHr16mV3vc6dOyMkJAQAMG/ePJ9Pw/b+++8DAHJzc/Hdd985XfaJJ54AYBrN2NkFgkuXLhVfl3kdf2cOEM5OJM6cOYMTJ04UVZGsKBQKdOzYEYCprJYjSj/99NMATCPtLl++PF/bN9dTWloatm7d6nC5pUuX5mv7hcE87Z+zgGv+bNojlUrx1FNPATD9EHLmzBnvF9KBZs2aiaMQrFy50uH3QEJCAnbv3u1wO+a6FwQBP//8c77K4s6xn5iY6PS4KCpRUVHihXO///671Y8KlrKzs/H7778XWjksv9csR4wGIE63CcDpDw+WP1o4eu+NRqM4OkphMo/uo1arsXjxYo/W7dmzpxggf/rpJ6+XzV9o9UbcScvFvXQN9Ebbz6tKIUONcsGIKqVk4CIKAGPHjhXzyVdffeX0fN78fe8qn6xcubLA5ZLL5ejXrx8AYPv27UhPTxc7z4SEhOCZZ56xu16XLl3EfPLTTz/5PJ98+OGHAEz55L///a/TZc0NaOnp6TY/cFr67bffxNflrPOSPzFnW1f55Pjx40VVJCvO8ok5C2dkZOQ7P5jrNi0tDVu2bHG4nOUMN75WvXp1AM5/DDd/Nu2RSqXiedmBAweKNJ80b95czCcrVqxw+D0QHx/v8OJt4FHdC4IgNkB4yt184uy4KCrR0dHizA4bNmxwmk/Ms34VBst8YjkTEGCdTzQajcNtuJtPPM0L+WHOuWq12mr0RXfXNeeTOXPmeL1sBSUIArI1eiQ8zMGV+5m4cj8TiRm5UGsdN2qbBStkqFhKhToVwlEvKhyVygQjTCUvERf8k63atWuLDfG7du3ClStXbJb5448/cO/ePQCm79+CzFDmb8wzUBXGLe/FkOZZs/z5Zm8Ww7y3cePGWbWhWH435F3WnEs0Go04I1vem1arFbOEo/3am0Uy702lUokZZceOHcjOzhZHcA4JCUGfPn3srte9e3cxo/zyyy/5qid369qd1/HRRx8BMGWUH374QVzePHOg5c2cN9LT07F582aH21y+fLl4ztW1a1eb5z05Rt1Z1p3jKO9yeZ8zZ5Tc3FyH61+4cMGqDcVZeR0df568dsty580o2dnZ4vPmEZ8zMjKwYsUKj48ny7pNS0vDjh07nNatq9foyfGb323I5XIxo5w5c8bhMrt27RIzSt5jOigoSMwoBw8exIULFzwuQ37r+7HHHhMzyqpVq6yet3x/4uPjrdpQ8m7f/FuIIAj45Zdf8vU+mo/9nJwch8skJydbtaHk570w39z5XnJ0q1KliphRNm7cCJ1OZ3c5jUZj1YaS3+95R7euXbuK66alpVk9Z/5+B0y/fTjahuXvaJYZxbKsUqnU6neBgrwOZ99/5qyrVquxdOlSj96L2NhY8e/yzz//nK9j0Nc3mUyGXD1wL12Dq0lqJGVp7baTAKYL1koHK1CrfBjqVgxHhVLBCFIo3N6Ppfyep0mlUkilUnE2TE9uROQ9vM6rcPE6LxNe58XrvPzxOq+8GSUvXufF67y8obhe56U3Gq06yVz5p5NMqlqHXL3zGajMJJAgJMjUSaa6nU4yUl6z5XXsNENUxEJDQ8XRnC9cuIC4uDiHy9aqVQuA6Q9C3tE1AVPYevPNN132tHeXeZQBjUaDNWvWiAHj6aefFntH51W6dGm8/PLLAIBjx47h448/djrt4IMHDwr1j2mLFi3Qs2dPAKYLjpz15h46dKgYBD/99FO7Iz+fO3cO33//PQDTBSTmxgh/Zz52jhw5Ynfk3+TkZHE0jMJw6NAhhyMOA6aTsgMHDgAwfSYsR0kYPHgwKleuDMBUL65GJT58+LC4LcttBAcHAwD+/e9/i9OuWjpw4ECRnNi5q0OHDgCAEydO2B3N4/79++JFl46MHz8eUqkUgiDglVdeEUdit8fZc55SKpUYOnQoANNnZubMmTbL6PV6vPnmm05PyLt27YqWLVsCAGbNmuXyQqwLFy7YhCLzsX/jxg0cPXrUZh21Wo1XX33VYXApaiNHjgRg+m789NNP7S7zySefFGjazlWrVjkdicPyQkFzqDerWLGieN/R6BfAo/cdAJYtW2Z3mS+++KJIQv7zzz+P6OhoAKaLv/N+P1jK+zmoXbu2+MPiunXrXF6Ydvv2bXHUnuLAKAhIztLiRkoOsu2MmCaVSBAVrkTNsioEuxgljchf6fX6QruZGzrMDAZDoe7P22V2VF6lUmmVT7Zv3+7w/axZsyYA09/TNWvW2Dyv0WgwadIkq/Nqe/u1zAvOyt+/f38ApnyyYsUK8cfFp59+GiqVyu46oaGhYj45evQo3n//fWi1Wof7iI+Px4IFC/JV3+68jqZNm4r5ZPHixWI+EQTBZtnBgweL+eTjjz/G33//bbPMqVOnxM430dHR6Nmzp80ynhyj7izrznGUdzlHx86hQ4dw5coVm+cTExMxbtw4l59nM6PR6NHr2bdvn939msudN5+UKVNGfP75558X88knn3yCvXv3On1P9+/fjz179lg99vzzz4v55KOPPkJ8fLzNenv27LG6oN7Ra3R1s6yH/G5Dr9ejffv2AIDjx4/jwIEDNs/fu3cP7733nrgve8f0a6+9JuaT0aNH486dOw73Z++5/Na3TCYT88nZs2fx/fff27w/er0eb7zxhlU+ybv9J554QswnM2bMwOrVq52+Z+aRJu0d+9evX8fBgwdt1snIyMCYMWOs8kl+jn3zzd3vV0e3ESNGADDlz48++sjuMh988IFVPvH0+3H58uXIzc11WIYdO3aI61atWtXqOcvfDq5du+ZwGzVq1BCXs8wnlmX9v//7P6vGzIL8vXL2/de/f38xn3zxxRc23w/OPgc1a9YU88natWsxY8YMp+W4fv06Vq5cma+6d/em1emRlpWLOynZuJCQgetJWUjK0kDjogFIAgnCgmSIKqVEnchQ1CwXjHIhciikgtfOqbxxrmY0GmE0GqHT6ZCWlubRrSS7dOkSdu/eLd4OHz4sPpeYmGj1nKNG9JEjRyIoKAgGgwFffPEF1q1bhytXruDcuXP4+eefxQtEo6Oj0adPn6J4WeTHQkND8cYbbwCwzSh5xcTEADBlFHMHFksGgwGvv/66y1kf3WWe8VKj0WDVqlViRunVq5fTNpQxY8YAMGWUDz/80GUbSmF27GzZsqV4UYtlRrFn2LBhVhnF3m/KZ8+eFS9sq1SpksMBDvyN+ffMw4cPO2xDyZtRvOngwYNut6GEhYVZnQcNHTpUzCj//ve/nf7+CZhyWN5lhg4dapVRHLWheNrptzCZL9A7fvy41d8is/v371tlFHsmTZokZpSXX35Z7LBpj7PnPKVUKjFs2DAAps/Mjz/+aLOMXm+bUfLq1q0bHnvsMQCmjGLve8/S+fPnsXnzZqvHzN+b169ft9sWpVarMXbsWL9pQxk9ejQAU/1+/PHHdpf56KOPCtSGsmLFCuj17rWhmDtvmbnbhmJ+3wHHbSifffZZkYwcP2jQIFSqVAmAKaM4+w7J+zmoU6eO2IF07dq1mDVrltN93b5926rjqi8ZjAJSsjS4+iALN5KzkJ6jg+BgrGe5VIoK4SrUiw5H9XKh7OBPRLzOi9d5FQle58XrvPzxOi9XGYXXefE6L28oLtd56Q1GZFh1klF73klGYuokExlm0UmmrKmTTCg7yRSJkjNcF1ExMnLkSMyaNQv379+3GTXTUt++fTFlyhRoNBq8/vrrOHv2LLp06YJSpUrh0qVL+OWXX3D69Gm0adPG7kmDp9q0aYPq1avj9u3b+PLLL8WezgMGDHC63nvvvYeDBw/ixIkT+Pnnn3HgwAG89NJLaNy4MUJCQpCeno5Lly5h7969iIuLQ4MGDfDSSy8VuLzOyrNt2zZotVqnJ27ly5fHp59+ivfeew/x8fHo3r07Xn/9dbRp0wZ6vR579+7FzJkzkZ2dDYlEgunTp0OhUBRaub1p0KBB2Lp1K9RqNfr27YvXX39dnCbz2LFjmDNnDh48eIDWrVvj2LFjXt//vn37MH36dLRr1w5PPfUUGjZsiHLlyiE3NxfXr1/H4sWLxR9+hw0bBrn80Z8jpVKJX375Bf369UN2djb69++P5557Dr169UL16tVhNBpx//59nD59Gn/++ScuXLiAr776SmwwAYAKFSrg/fffx6effoo7d+7gySefxBtvvIGWLVsiNzcXO3bswE8//YTo6Gjk5OQgOTnZK687OTkZFy9edLmcSqUSL54yGz58uHjB5osvvoi33noL7dq1g1arxdGjRzFnzhzo9XrUqlXLYVBt0qQJ3n33XUydOhXXr1/HE088gdGjR6NTp06IiIhARkYGzp49i02bNkEmk3l1dOC3334bGzZsQHx8PD7//HOcO3cOgwYNQlRUFK5du4bZs2fjr7/+QvPmzZ2OVj137lz07NkTaWlpGDt2LFavXo1+/fqhVq1akMlkSEpKwtmzZ7Ft2zYcP34c48ePF39AAUzH/i+//AKj0YgXXngBEyZMQNu2baFSqXD69GnMnTsXN27c8Nr3ZkGNGjUKy5cvx9mzZ7FgwQLcvn0bI0eORKVKlRAfH49ff/0Vu3fvdvm+OTN+/Hh8+umn6N27N1q3bo0aNWpAqVQiKSkJe/bswcKFCwGYftjIO0Vz06ZNoVKpkJubi6lTp0KhUKBq1api40B0dDSCg4PRtWtXREZGIikpCVOmTMGdO3fQq1cvlCtXDjdu3MCSJUuwd+/eInnfVSoVZs+ejeeffx5qtRoDBw7E888/j9jYWERHR0Or1eLq1avYsWMHtm7datPo88033+D06dO4desW/v3vf2Pz5s0YNGgQ6tevj6CgIKSlpeH8+fPYuXMn9u3bh9jYWPGibn+m1hqQkOH4YrZwpRxRpYKgkLFPPZEjeUfY8fXIW97EfGKbT7xZ38wnzCfMJ/6TT8qXL49bt24xnzhQkvNJ7969UaZMGeaTfNAbjMjSGJCpMSBba4DRzb+JUokEYUoZwpUyhCnlhT6LpTf/dguCYNMJJ5DFxcVhz549dp+7fPkyLl++bPWYvZnwatasicmTJ2PGjBnIycmxO+podHQ0PvjgA/ECCQpso0ePxsyZM5GYmOg0o/Tr1w//+c9/oNFoMHHiRJw9exZdu3YVM8rPP/+MU6dOoW3btnYvYPFU27ZtxYzyxRdfiBnF3JnGkQ8//BAHDx7E8ePHMXfuXOzfvx/Dhw9HkyZNEBoaiocPH+LixYvYs2cPduzYgYYNG2L48OEFLq+z8mzdutWtjPLZZ5/hnXfeQXx8PLp27YrJkyeLGWXPnj2YMWMGsrKyIJFI8N133xWbjDJkyBBs2bIF2dnZ6N27NyZPnixmlKNHj2L27Nm4f/9+oWWUvXv34ptvvkH79u3Ro0cPNGrUCOXLl0dOTg6uX7+OBQsWiBnlxRdftMkoCxYsQJ8+fZCVlYW+ffuif//+eOaZZ8SMkpiYiNOnT+OPP/7AhQsX8PXXX9tklA8//BCffPIJ7ty5I9btY489htzcXGzfvh1z5szxekZJSkrChQsXXC4XHBxsk1FGjBiB+fPnQ6/XY+jQoXj33XfFjHLkyBHMnj0bOp0OMTExuH79ut3tNmnSBB988AGmTJmCa9euoWPHjhgzZgwef/xxlC1bFunp6Th79iw2btwImUzmdBZYT73zzjtYt24d4uPj8X//9384e/YshgwZgsjISKs2lBYtWuDkyZMOtzNv3jx0794daWlpGD16NFauXInnnnsOMTExYkY5c+YMtm7dimPHjmHixIlWo8wPHjwYP//8M4xGIwYPHoxJkyahXbt2UKlUOHXqFObMmYPr16977XuzoEaPHo2lS5fizJkz+PXXX3H79m2MHj0alStXxr179zB//nzs3LnT5fvmzKuvvop///vf6N27N9q0aYOaNWtCpVLhwYMH2L17N3799VcApg5seb/vLTPKl19+KWYU84ww5ozSrVs3uxnF3IayePFi7Nmzp0jed5VKhblz56J///5Qq9Xo168fBg8ejNjYWFSuXBkajQZXr17F9u3bsXnzZty/f99q/enTp+PkyZO4desWPv74Y/z5558YMmQI6tevD6VSidTUVJw7dw5xcXHYu3cvevfubZPtilKuzoCUbC0eZmthcJERQoPkKBcWhFLBCkjZSYaI8mA7Cq/zKmxsR2E7CttR2I5ixuu8/KMdRW8wQq0zIltrgFprcDl4mD0SiQQhCilCgmQIUcgQrJCyY4yPsdMMkQ8EBwdj8uTJ+OCDD5wuV6lSJUybNg1vvvkmcnNzMWPGDMyYMcNqmX79+uGll15yGXjc1b9/f3z33XdikCpXrhy6devmdB2lUonVq1dj4sSJ2LRpE86fPy9On2lPeHi4V8rqSJMmTfDMM884nYrTbPTo0UhPT8fUqVORlJSETz75xGYZpVKJ6dOni1MiFgfPPvsshg4diuXLlyMxMdGm57pMJsN//vMfpKenF0qYAkwj4B48eNDpCAKxsbF2R4Zq1aoV1q9fjzFjxuDevXtYvXq105GI7B1T48ePx927dzFv3jwkJCTYHJPlypXD/PnzxRE0vGHBggVYsGCBy+UaNWpkM/Jm/fr18emnn+KTTz7Bw4cPbY7FiIgILFq0CFOnTnU6usNbb70FqVSKadOmIT09Hd99953dKWzNIx54S6lSpbBixQoMGDAADx48wNq1a216Zg8ZMgQdOnTA66+/7nA7NWvWxObNmzFq1ChcvHgRW7dudTrFZt66b9GiBd577z18/fXXSE9Px5dffmmzzvjx41G/fn2/CFNyuRzLli3Dc889h2vXrmHnzp3YuXOn1TJdunTB+PHjMWjQoHzvJykpyenxWapUKfz888/i6B9mYWFhGDt2LGbMmIEzZ87YNAitX78eHTt2RGhoKGbOnIkRI0YgNzcXCxcuFEOaWceOHTF16lQ8/vjj+X4d7urUqROWLl2KcePG4eHDh1i+fLnb0wBHRETgjz/+wJgxY3D48GEcOnQIhw4dcrh8Yf9NKyiDUcCDLC3S1Dq7zyukEkSVUiJcxVhAFMiYT5hPChvzCfOJP+aTF154Ae3atWM+scB8UjiKYz7R6I3I1OiRlWuAWud+5xGFVIIwlRzhShlCgmS80IystGrVCt9++y3+/PNP/PXXX0hNTYVcLkdUVBTatWuHp59+Gkql0tfF9Dpno0IWlEQigUz2aKZYg8Hg95377c1iaI9CocAbb7xhk1HyLl+xYkWrjPLDDz/ghx9+sFomb0axt9+8s4s5Yy+jdO7c2el6MpkMq1atEjPKuXPn8O677zpcPiwszGp77ta1vVnS7GnQoIFNRjHPHJjXyJEjkZaWhqlTp+LBgwd2R8k1Z5Ru3brZbMPy/87q3JNl3T2O7M0GZ/bMM8+IGSUhIcFmhhJ7GcVZ2c0zArr7esyzmx04cMDpCKqxsbHiDICWWrRoYZVRVq1ahVWrVjncTmhoqM02Xn31Vdy5cwfz5s1DfHy8zTGZN6PYe43usKyHX3/9VeyA4Iy9jFKnTh2rjJL3WLTMKNevX3d4TE+ePBmCIIgZZfr06Zg+fbrNch06dHD4ej2tb8BUB5YZZc2aNVizZo3VMi+88ALat28vjmRv73NctWpVq4yyZcsWbNmyxW45zfu13EbTpk2tMsoXX3xhs445o5g7bzj7PnF1XHjy/erI0qVLxYwSFxdnM7p/3oySn+/5Bw8eOD0+zRklKirKav3g4GAxo5w+fdrmwitzRlEqlR5nlIL8vXL2/QcA7du3t8ooS5cuxdKlS+1uK++64eHhVhnF1W8t9r5/CpsAIDNXjzS1Dtla53lGKpGgdLAcESEKqOSmzk5GgwGeXw5nzVvnaXlnw/RERESEx/sjIsfYjsJ2lMLGdhS2o7Adhe0oltiOUvTtKHqDEWqtEdm6/HeSkUokCDZ3kgn6p5MM20n8Cq+OI/KRl156CTNnznQ5vfcLL7yA2rVrY9asWTh69CjS09NRtmxZNGrUCEOHDkW/fv1cTr3uiYEDB1qdeD377LNWvcMdCQsLw8KFC3H48GGsWLEChw8fRmJiInJzcxEeHo4aNWqgRYsWeOqpp9C1a1evldeR9957D3/++afTKUTN3nzzTfTo0QPz58/Hvn37cP/+fUgkElSpUgVdunTBuHHjbKayKw5+/PFHPP7441i8eDHOnTsHnU6HChUqoH379nj55ZfRsmVLTJs2rVD2PX78eDRs2BB79+7F2bNnkZiYKPbyr1ChAh577DEMHjwYPXv2dPhDaatWrXDkyBH873//w9atW3H27FmkpqZCKpWiXLlyqFOnDjp06IA+ffqgdu3adrfx5ZdfomvXrpg3bx5OnTqFnJwcREdH48knn8TEiRPF6cf9xauvvoq6deti7ty5OHnyJHJychAVFYXu3btj0qRJqFKlilvbefPNN/Hss89iwYIF2Lt3L+7evYucnByUKVMGdevWRefOnTF48GCvl79+/frYv38/ZsyYgU2bNuHevXsICwsTR0bs16+fWye0MTEx2LVrFzZs2ICNGzfi1KlTSElJgcFgQEREBGrXro22bdsiNjZWHFnD0ttvv41mzZqJI0mq1WqUL18eLVq0wMiRI9GlSxe3T6yLQlRUFHbu3Ik5c+Zg/fr1uHXrFoKCglCnTh0MGjQII0aMcHoy78q+ffuwfft2HDlyBLdu3UJSUhLS09MRFhaGOnXqoGvXrhg5ciQqVKhgd/1PPvkENWvWxMqVK3H58mVkZGTYHXG3W7du2LlzJ77//nvs27cPycnJKF26NOrWrYuBAwdi2LBhuHv3br5fh6e6deuG48ePY8GCBdi2bRuuX7+O9PR0hISEoGbNmmjfvr3DHyIrVqyIjRs3Ytu2bVi3bh2OHz+OBw8eQKfToXTp0qhZsyZat26Nnj17ev2HCW8RBAEZuQbcz9RAb7TfEFM2RIHIsKBCH/GZiIoH5pPCxXzCfAIwn/hbPhk4cCB+++03l9thPim++WT79u2YMWMG84kbBEFAju6fjjIazxqDVHIpwpRyhKtkUMml4oh1VHJMmDABEyZM8Mq2IiMjMWLECIwYMcIr2wt0JXk2TIAZxVJh1DUzCjMKwIzCjMKMAjCj+GtGyQ+9wYi0HD0e5uihMzj/+xYkkyIiRI4ywYpCaSPx9t9uzoZZMu3duxeXLl3CjRs3cOfOHej1eowfP97m4lfyH8wohYsZhRkFYEZhRmFGAXidV1FlFN0/nWTUXuokExokg4qdZPyeRChpv6KTlatXr0Kr1UIqlSI6Otrr2y/MUUEsT+CLevQRKnqs78DC+g4crOvAwvr2D1q9EYkZGmQ5GEFNJZciupQSwUEyu8+7yxv1ff/+fRiNRkilUlSsWNGjdcuXL5+vfZJvFed8AvB7LtCwvgMH6zqwsL4DC+vbMaNRQLbWgEyNAVkavcPO9nlJAIQEyUwdZZQyBP0zGrM/KGh9M58EJmYUKi5Y14GF9R1YWN+BhfXtXeYBANLUOmTkGiDAca6RAAhTyhERIkdokKzQO/yzDYVcmTBhApKSkhAeHg6VSoWkpCSx00xxzSj8jgssrO/AwvoOLKzvwBFIdW3qJGMQZ5PR5rOTTIjFTDLFrZMMMwpnmiEiIiIiKhEEQUCKWofkLB2MdvrFSyUSRIYpUDZEwdGfiYiIiIgCkN5oRJbG1FEmW2OwmxvskUokCFPK/rnJIedslURERERE5ENGo4D0XD3S1DrkurjYTSaVICLYNKuMP3X6Jxo3bhyio6MRGRmJ9evXY9myZb4uEhEREVGJYe4kk601/at1MRulPXk7yQQrpLzeqphjpxkiIiIiomJOrTUgIUPjcLrQcKUcFcOD2CBERERERBRgtHojMjV6ZGoMyNEanIy7bE0ulSBcKUeYSobQIFmxGi2NiIiIiIhKJo3eNKtMeo4eBheDAAQrZIgIkaOUSs48Q36padOmvi4CERERUYmhMxiR/c9MMgXqJBNk6iQTqjDNJMNOMiULO80QERERERVTBqOAB1lapKl1dp+XSyWIKqVEuFLGIEdEREREFAAEQUCuzohMjQGZGr3DjvX2KOVShCvlCFeyMYiIiIiIiPyDIAjI0hiQptYhS2twuqxUIkEplRwRIXIEK2RFVEIqaunp6bh27RquXbuG69ev4/r168jMzAQAdO7cGRMmTHB7W0lJSdi8eTP++usvpKSkQC6XIyoqCu3bt0fPnj2hVCoL62UQERERUQFo9Uaodd7oJCNDSJCUnWQCBDvNEBEREREVM4IgIFNjQGKGBnqj/dHUyoYoEBkWBJmUgY6IiIiIqCQzCgLUWoOpo0yu3mFGyEsC0+jL4SoZwpRyKDkzJVGxkrcBVyKRQHAx4joVT6zrwML6Diys78DC+vaM3ijgYY4OaWo9dC4ugAuSSRERokCZYLlftIl4u64lEglkMnYCMhs7dqxXtnP8+HHMmDEDOTk54mMajUbsiBMXF4cPPvgAUVFRXtkfEREREeWPIAjQGYR/OskYkK01uswI9sgsOsmEBMmgkrOTTKBhpxkiIiIiomJEqzciMVOLLI3e7vMquRTRpZQIDmIDChERERFRSWUwCsjS6JGpMSBLY4DRzQuwpBIJQoNkCFfKEKaUQS5jRxmiwiSXF10zHC+kDBys68DC+g4srO/Awvq2T63VIyVLi4c5OpcdTcJVCpQLDUK4Su7XF7vlt66lUlNeUygUiIiI8GaRSozy5cujcuXKOH36tEfr3bx5E99//z20Wi1UKhX69euHxo0bQ6vV4sCBA4iLi0NCQgK++uorTJ06FcHBwYX0CoiIiIgoL7GTjNaA7H9mk2EnGfIGdpohIiIiIioGBEFAqlqHpCyd3QvipBIJyocpUC5EwZBHRERERFQC6QxGZOYakKnRQ601QoB7HWXkUgnClHKEK2UIDZJB6gcjLxMREREREZkZBQEP1TqkZmug1hqcLiuTSlA2JAhlw4KglLPjUSAaOHAgYmJiEBMTgzJlyuDBgweYOHGiR9tYuHAhtFotZDIZPv74Y9StW1d8rnHjxoiOjsaSJUuQkJCAjRs3YtCgQTbbWLx4MXQ6ndv7jI2NRXR0tEflJCIiIgoE5k4y2VrTTDJqXT47yUglCFHIEBIkQ2iQFEp2kqE82GmGiIiIiMjP5WgNSMjQIFdvPxSGKWWIClciSM5RoomIiIiISgpBEJCrNyJLY0Bmrt5hHrAnSCZFuEqGcKUcwQo2DBERERERkf/R6o1IydYgNVsLg9H5oADBChnKhSlRJljBgQACnL0OLJ64du0aLl68CADo2rWrVYcZs969e2PXrl24d+8eNm/ejP79+9vMIrl9+3ZoNBq399uuXTt2miEiIiKCqe1D+89MMmqtAdlaA/Qu8oA9MqlpJplQhWk2GXaSIVfYaYaIiIiIyE8ZjAKSsrRIVdsfqUoulSAqXIlwlYzBj4iIiIioBBAE02hqWRoDMjUGj0ZTC1bIEK6UIVwlh5Id6on8gl6vL7RtSyQSyGSPRlc3GAwQ7MxMS8Uf6zqwsL4DC+s7sLC+H8nSGJCm1iFT4/xcSSKRoJRKjrIhcgQrTO+d0WiA0fNBp4uUt+raaDTCaDRCp9MhLS3No3UjIiI83l+gOHr0qHi/a9eudpeRSqXo3Lkzli1bhuzsbJw/fx7NmjWzWua3334r1HISERERlRTmTjLiTDIF6CQTGiT7ZzYZdpIhz7HTDBERERGRnxEEAZkaA+5naKBzEBQjQhSoEBYEGUdUIyIiIiIq1gxGAdkaAzI1emRpDDC4eTGVRGJqIApXyhCmlEEhY0cZokCS98LLQL3oNhCwrgML6zuwsL4DS6DXt94oID1HhzS1HloXgwMoZFJEBMtRJlgOeTHMOd6ua0EQYDAYCrQNeuTy5csAAKVSiVq1ajlcrmHDhlbr5O00Q0RERET2CYIArd6IbJ2xQJ1k5P/MJGOaTUaKIHaSoQJipxkiIiIiIj+iMxiRmKF1OMKaUi5FdCklQoJkdp8nIiIiIiL/pzMYkakxICtXj2ytEQLcazCSSSUIU8oQrpQjNEjGTvREREREROTXcnQGpKn1yMjVw+ii80hokAxlQxQIU8p4MRwVmrt37wIAoqKirGYEyqtSpUo26xARERGRLUEQoNEbofZmJ5kgGYJkEuYC8ip2mikBUlNTcejQIZw8eRL37t3Dw4cPERYWhnr16uGpp56CXM5qJiIiIvJ3giAgVa1DUpbObsORVCJB+VAFyoUqGAqJiIiIiIoZc6NRpsaALI0BOTr3RwkOkklNHWVUcoQoOJIaERERERH5N6MgIDNXj1S13mX2kUkkKB0sR0SIAkp58ZtVhooXrVaLzMxMAEC5cuWcLhsWFgalUgmNRoOUlBSvlyUuLg6XLl0CANy5c0d8rHPnzggLC0NoaKhH29Pr7Q/GV1Ty/lYhkUgCbkatQML6Diys78DC+g4cBa1rjd6I7H86yGRrDTDks5NMqGUnGeaBQuPtz7ZEInHaAd1fsTdFCbB582Zs2LABFStWRLNmzVCqVCkkJCTg2LFjqFatGmrXro3g4GBfF5OIiIiIHMjRGZCQoUGuzmj3+bAgGaJKKRkQiYiIiIiKEUEQoNYakanRI0tjgNZg/3zfnmCF7J8ZZWRQytlRhoiIiIiI/J/OYESaWo+HOTqXI0sr5VKUDVGgtEoOKWfQpCKSm5sr3lepVC6XV6lU0Gg0Vut5y6VLl7Bnzx6rxy5fvowmTZpALpe7VT5Lt2/fdmu5mJgYj7abX8XxIkrKP9Z3YGF9BxbWd+BwVteCICBXZ0S2Ro9srR5ZGn2+OskoZFKEKuUIU8oQqpQjSMa2D1/J72dbKjVdt6ZQKBAREeHNIhUJdpopAWrXro3/+7//Q8OGDa0ev3jxIs6dO4esrCyPwxQRERERFT6DUUBSlhZpah3sxUm5VIKK4UEopZIzKBIRERERFQMGo4BsrUHsKONuw5EEEoQGSRGmkiNcKYNCxg7zRERERETk/wTBlIHS1KaL55wlIAkkCFfJUDZEgWDOokk+oNVqxftyuetL5szLWK7nLRMmTMCECRNsHr969Sq0Wq14QSIRERFRUbPsJJOl1SO7AJ1kwpRyhLKTDPkJdpopAdq2bWv38QYNGuD27dswGo0wGt0fxZCIiIiICl9mrh6JmVroHIw2HRGsQIXwIMg4whoRERERkV/TGYzI0hiQqTEgW2twe0p7mUTyz2wypkYjnvsTkSfyNjBLJBK3v3+oeGFdBxbWd2BhfQeWklbfBkFAeo4eqWodtHrn16PIpVJEhMgREaKAPAByj7frWiKRcJR3LwkKChLv6/V6l8ubl7Fcz19Vr17d10UgIiKiYkoQBOSYZ5L5ZzaZ/HSSCfpnJhnzLUgmYScZ8isB32kmPT0d165dw7Vr13D9+nVcv34dmZmZAIDOnTvb7dXvSFJSEjZv3oy//voLKSkpkMvliIqKQvv27dGzZ08olcrCehkOmb9w+MVDRERE5B90BiMSM7XIzLX/Y7xSLkV0KSVCgtgAQkRERETkjwRBgNYgIDNXj0yNATk6g9vrKmRShCtlCFfKEBIk4++2RCWcO6NXewsvpAwcrOvAwvoOLKzvwFJc6ztHZ0BKlgYP1ToYXXQECVPKUS40CKWCFQGdffJb1+aZRhQKBSIiIrxZpIClUqnE+7m5uS6XNy9juZ6/cjd7uNNZKD/ydu4yGNwfVISKH9Z3YGF9BxbWd2AQAGh0RuTojcjWGArUSSYkyNTWERokhUJmOVOeEQb3m06okHnrs22exEOn0yEtLc2jdf0h0wR8p5mxY8d6ZTvHjx/HjBkzkJOTIz6m0WjEjjhxcXH44IMPEBUV5ZX9uSM5ORmZmZkICQkJ6B8giIiIiPyBIAhIU+vxIEtrtyFJIpGgfKgC5UIVkPLcjYiIiIjIr5hHWsvU6JGZa4DWwYyR9qjkUoSr5AhXyqCUS/lbLRERERERFStGQUBGjg4pWVpka51fcC+VSBAREoRyYUFQKYpnxyAquYKCghAeHo7MzEykpKQ4XTYrKwsajQYAUK5cuaIoXrGW96JLXmBdsrG+AwvrO7CwvksmQRCQqzMiW2eAWmuEWmtw2QHenkedZKQIUcgQJJe6Xon8grc/24IgwFAMe0UFfKcZS+XLl0flypVx+vRpj9a7efMmvv/+e2i1WqhUKvTr1w+NGzeGVqvFgQMHEBcXh4SEBHz11VeYOnUqgoODC+kVPKLX6zFjxgw0atQIoaGhbIglIiIi8qFcnQEJGVqHI1CHBskQXUrJQElERERE5EeMRgHZWgMyNQZkafTQuznSmgQShARJEa6UI0zJhiMiIiIiIiqedAYjUrK1SM3WQu9i4AClXIbyYUEoExIEmZTXp5D/qlKlCi5evIjExEQYDAaHMwHFx8dbrUNERERUXJgHAVNrDaabzligTjKhQaZ/rWeSISp+Ar7TzMCBAxETE4OYmBiUKVMGDx48wMSJEz3axsKFC6HVaiGTyfDxxx+jbt264nONGzdGdHQ0lixZgoSEBGzcuBGDBg2y2cbixYuh0+nc3mdsbCyio6PtPmc0GjF79mxcvHgRnTt3hlKp9Oj1EBEREZF3GIwCkrO1SM3WwV78lEkliAoPQimVnJ2cifxc3s+oRCLhyDolGOs7cLCuAwvrO7Dkt771RgFZGj0yNQZka9wfbU0qkSBMKUO4So6wIBkvEiti3vx8SyQShxdNEXlKr3c+EntB5D1WDQYD/66VUKzrwML6Diys78BSnOpbrTUgVa1DZq7ebtuGmQRAuEqOiBAFQoNMr00wGqB3f2LOEslbdW00GmE0GqHT6ZCWlubRuhERER7vL1DUq1cPFy9ehEajwY0bN1CnTh27y124cMFqHSIiIiJ/ZfxnJhlvdJIJNc8kw04yVAIFfKcZex1YPHHt2jVcvHgRANC1a1erDjNmvXv3xq5du3Dv3j1s3rwZ/fv3h1xu/dZv375dnNbTHe3atbPbacZoNGLOnDnYv38/Hn/8cVStWhVardbDV0VEREREBZWZq0diphY6B6OvlQlWoEK4AnIpQyaRt+TNWYWJF1IGFtZ34GBdBxbWd2BxVt8avQEZOTpk5Oih1jq/KMySQiZFKZUcpYIVCFXKIWVHeL+Rn8+39J9splAoeIEZFQt5L7z014tuqeBY14GF9R1YWN+Bxd/r22AUkJ6rR5paB42LXi9yqQRlghWICJHzQjo7vF3XgiDAYDAUaBv0SJs2bbB+/XoAwK5du+x2mjEajdizZw8AIDQ0FI0aNSrKIhZLHKwmsLC+AwvrO7CwvosHAUDOPx1ksrUG5OSzk4xSLkOoUoYwpRwquQRyDgZWYnn7s11cBx9jei2go0ePive7du1qdxmpVIrOnTsDALKzs3H+/HmbZX777TesXLnS7Zu9QGaeYWbPnj3o2LEjJkyY4KVXSeS/Jk6ciMjISLRs2dLu8y1btkRkZKTHM0j5E1evMZAURX3fuXMHkZGRiIyMxPLly/O9nUBkft+mTZtm89yyZcvE5+/cueOD0pE/6du3LyIjI9G3b98CbefAgQPicXXgwAEvla7gdAYj7j7Mxd8Pc+12mFHKpaheNhiVSivZYYaIqIQZP348IiIi0LRpU7vPN23aFBERERg/fnwRl8x7XL3GQFIU9X3nzh1EREQgIiICy5Yty/d2ApH5fZs6darNc8uWLROfZz4JTIIgIFujR0J6Drr16IWoyPIY1L8fst3oMKNSyFAhXIXaFcJQPyoclSNCEK5S4OCBA+JxtX///iJ5HURERK6wDSWwsA3Fv7lqQ4mIiGAbCgEo+jYUjd6IhAwNriapkZihcdphJkQhQ+XSStSODEGF8CB2mKFiqXbt2mjQoAEAU6eZK1eu2Czzxx9/4N69ewCAXr16FemAXYVNLpcXyi3vRZMymazQ9sWb728Fqe/XX39dPGe197z5nPX111/3+evM783VayxuN3+v7/j4ePGcZ+XKlT5/v4rTzfy+ffvttzb1bc4o5cuXR3x8vM/LGug3qUwGjQFIUetxJy0Xl+9n41ZqDh5kaZGtNbjdYUYpl6FcaBCqlQ1Bg+hSqBcVjioRISgTEgRVkMLh/vv164fIyEj069evQK/j8OHD4nF3+PBhn7+vgXTz1rmaVCqFVCoVBx/z5OYPSs5ZvY9cvnwZAKBUKlGrVi2HyzVs2NBqnWbNmnm1HOYOM3v37kWHDh0wadIkcWQ8KjoHDhxAv379xP/37dsXv/zyi9N1Jk6ciBUrVgAAkpKSCrN4FMAiIyM9Wr5Ro0bYvXt34RSGiKgYmjZtGr755hvx/506dcK6deuslhEEAWk5ejzI1IqB9OzJ45g4/Hmr5e4/eODWCNTffPON2IAaHh6OCxcuQKVSuV3m+Ph4LFmyBHv37sW1a9eQnp4OuVyOiIgIVK9eHU2aNMH/s3fX4U1dDRjA31hTF0ppoUChuLu7S9Fhgw0ZsKFzYUzZPjY2ZsAGG2MDBmzocHd3dy3WQoV6mzb+/ZHlkjTS1CXv73n6jPXe3Jzek9zcN8datmyJjh07wtvb2+Zxjh07htWrV+PcuXN48uQJ0tPT4ebmhrJly6JKlSpo0qQJ2rZti8aNG/P+k6iIOXr0KPr27Sv8/8CBA7F48WK7j5k8ebLQ6SUhISFfy0fOK7tfitWtWxdHjhzJp9IQkbPQ6fVIzdAgOUON5AwNNP8NcM9qJi0RAHe5FN6uMni7ySCXFv497zfffINvv/1W+P927dph8+bNWT7u5MmT6NWrl9nvHP28//bbb4VBaF5eXrh9+3a28klkZCSWL1+OQ4cO4c6dO0I+KVWqFEJCQlC/fn20atUKHTt2hI+Pj83jHD16FKtWrcLZs2fx5MkTKBQKuLu7IygoSMgnHTp0QJMmTZhPiIogtqFQUcU2FCJyNnq9HilKLRIUaqSp7K9gIhaJ4OMqhZ+7FK4y6zMJO9KGYs2pU6fQp08fs985+nnPNhTndfPmTURFRQn/n5ycLPw7KirK4jO6Y8eOFscYM2YMPv30U6hUKsycORMDBw5EnTp1oFKpcPz4cezduxcAULZsWbPv2KnkYTsKFVVsRyFybjq93rCKjFKDNKUGimwMjDHlKpPAQy6Fh4vhv8406J3tKGxHsYaDZnIpIiICABAUFGR3qaFy5cpZPCav6HQ6/Prrrzh8+DBatmyZJwNmNBpNHpUuZ0rKMm+bN2/G9evXzQZNkaWSUt/kGNa388hc1/nh0aNHaNKkCQBg3rx5GD58eL4/J1mXl+9tYyP1+++/jw8++CDXZcsPx48fx5MnT4R7vAyNDk+TlEhXmzcu7d5i2SjkyIAZAFizZo3w75SUFOzYsQMDBw506LHLly/HJ598AoVCYfZ7jUaDp0+f4unTpzh58iQWLVqEAQMGYNGiRRbHSE1NxZQpU7B9+3ar2+7cuYM7d+5g586dAIBVq1ahS5cuDpUvs+K6bCcVPfmZYzK/TrVabZG/h9Fqza9JGzduxFtvvWU3n+h0z2eSLOxcWJhyWt+Onj+dTldsz29hvEb0en2+PVdu3tsFUd+mj9NqtcX2dVOYTM+/tXsOjUaTZ+eV+aRoEYlE0ItESEk3DJRJydA43KgkFongKZfASy5F1YplATzPJxobsy6bfu7m9/vV9PoDGDppPXr0yOw7aGtWrVpl8TtHy2n62JSUFGzZsiVP8smTJ0/w5MkTnDhxAgsXLsxRPklJSUFKSoqQT7766iusXr0anTt3dqh8RjqdDjqdDmq1OtudXorKLGlExQ3bUIiI8hczSsmUmzYUjVaHhHQNEtM1UGttrygDAC4SMfzcpfB1k0Eizl6bX+Y2FFvWrl2breOacqY2FDK3b98+HDp0yOq2W7duCZMfG1kbNFO5cmW89dZb+Pnnn5Genm519bSyZcti+vTpcHNzy5NyU/GwceNGvPvuu6hTp05hF4WIqER69OiRsODA/PnzMWLEiEIuUdGg0+uhUGqRptIg9b9BMjnpi2AcJOP53yAZaQENkjF+Pz5t2jR8+OGHBfKc2XXs2DFERkYiODjY7n7GyXtyInM7yrZt2zBo0CCHHvvXX3/ho48+cqgdxdYg39TUVEycOBHbtm2z2GatHWXt2rXo2rVrNv/K4o2DZnJBpVIhJSUFAODv7293X09PT8jlciiVSsTFxeVpOdatW4dDhw7B1dUV5cqVw7///itsCwoKgpubG9zd3bN1zIcPHzq0X5UqVbJ13JwqLp0oM5dTr9fju+++w/Lly20+xnSAk1TKtySQvfrO6vxdvnw5T8pUmPLyNdKoUSP88ssvWe7n5uZWYK/Holbfpsc1LkNH2SMWiy3O24gRI/Il6LC+ii57721rN+fWWHst2XqO/K5/0+uPq6srMjIysH79erzxxpuITsnAsxQV9DAPrGq1Cgd2bTN7DODYtfzEiRN48OABAMN9ZGpqKtasWYMhQ4bYfyAM94bvvPOO8LwjRoxAly5dUK5cOej1ejx9+hQXL17Erl27cPnyZYhEIqtlGj9+PPbt2wcACA0NxahRo9C4cWP4+voiLS0N4eHhOHXqFHbs2IHY2Ngc1YHxvBqX7SQqyjJ/KVXUB8xYo9frMXv2bCxdurSwi1Lk5Vd9nz9/Pk+OU1I0bNgQ8+bNy3K/7MzAk135+d5mfRc9xvo15hMOQiqZVBodUpQapCq1UKh0Fvfpmc1dYmjEkIpF8JJL4SmXwEMucXiwe2EzZo1169bhjTfesLmfSqXCpk2bzB7jqJMnTwr5xMPDA2lpaVi9erVDHdLWr19vlk+GDx+OTp06CfkkKioKFy9exO7du3HlyhWbxxk7diwOHDgAwNC5aeTIkWjUqBF8fHygUCgQHh6Os2fPCvkkN9dzvV5vMfiYiPIHM0rh4z2ruaKQUfIT67voYkYhU8b79ryUodYiMjEDyRlauxlJBMBTblhVxsNFkqMJ8phRDBnl4cOHZm0oVPQ0bdoU33//PbZv347z588jPj4eUqkUQUFBaNmyJXr27Am5XF7YxcxzRXFyosKUOf/r9XrMmjXLbkbh5GP5OxmV6T1rcT2/efkayU5GKYrv74Kob04+lnvWJh8zZhRjfefVeWV9Gej0QLpaa1hNRqVFulqXs0EyUjHcXSTwcJHA3UViPthdr7M5CRiQvff2xo0bhX/nZiLBwpp8zJg3Vq9enWVGMf6tphnFkXJayygrV65E//79s3zs+vXr8dZbbwnPm1VGsfWeHDVqlM2Mkp6ejgcPHphllJzUQXGffIw9S3PBNLQ78uWoq6srlEpltsK+I4wB29h509TgwYNRpkyZYvvlbXHm7++PuLg4bN26FZcvX0b9+vULu0hEcHd356x9RES51KtXL2zYsAErV61Gz2FjobIxG9vlk4eRkpwEV1dXdO7c2epsY7YYZy4oU6YMJk6ciC+//BIHDhxATEwMypQpY/NxWq0Wn3zyCQDDUp/bt29H3bp1zfZp1KgRevfujY8++gi3bt3C9evXLY6za9cuYcBMly5d8Pfff1s0DLRs2RIjRozAjz/+iG3btmU5GwMRFS5jPtm2bRvzCRUZ7u7uqFWrVmEXg4iKOb1ejwyNDikZWqQoNVDaaQTKTC4VCyvKuMnEBbJial7r0aMHNm3ahLVr19pt7Nm9ezcSExPh6uqKTp06YceOHQ4/h3EG54CAAEyYMAEzZ87EwYMHHconn376KQDDZABbt261OlNrz5498eGHH+L27dtW88nu3buFhp5OnTph+fLlFvmkRYsWGDlyJPMJUTHCjEJFETMKEZUkOt3zDm9RKSqUzbDdGUoiFsHPzbCqjIs0d7NRM6MYtGnTRmhD2bx5MzNKHpoyZQqmTJmSJ8cKCAjA6NGjMXr06Dw5njMrCROPMaM4riTUd3FRFDIK69u5sL7zh06nh0JtmOhLYRwkk8WEX9aYDpJxc5FAms0VIU05U10zoxi0bt06zzJKcZ18rGDWXiqhVCqV8G9HZtU27mP6uLwwZcoUrFmzxupPo0aNEBAQkO1Zv0NCQhz6IdsmTJggXHS+/vrrQi4NERER5ZXBQ4YCAG7fuomrVy1nGZNLJQgt7Yl92zYCMAQXHx8fh4+fkZEhzFwwcOBADBs2DGKxGFqtFmvXrrX72LNnzyI6OhoAMHr0aIsBM5nVqFHD6sxrpsHvf//7n92ZtCQSCfr161foX9YRkX2vvvqq8F7+9ttvC7k0REREuaPT65Gq1OBpshJ3n6Xjflw6nqWpHBow4y6ToIyXC6qUdkeV0u4I9JLDPYczKBcFQ4ca8snNmzftrsBrzBLdu3eHt7e3w8fPyMjA5s2bAQADBgzA0KFDhXxiuuK5NefOnUNMTAwAQz6x1tBjqnr16hgwYIDF73fu3Cn8+8svv3Qon9SsWdPucxFR4WNGISIiyh9KjQ5RyUpEJGY9maubTIJyPnJUC3BHGS95rgfMAMwomUkkEvTt25cZhagYYEYhIqK8otUZ2jBiUlR4EJeOWzEKPErIwLM0FRRq+6s/GokAuMrE8HeXoYKvK2qU8UBoaXcEecvh5SrN1YAZZ8OMYs6ZMwoHzeSCi4uL8G9Hligy7mP6uKJKKpU69KPRaPLlJ/MINOMyUEX9x7TcQUFBGDlyJADDbO2nT5+2+pjMyxDa+omKisKXX36Jdu3aISQkBEFBQahfvz5ee+01HD161O5j69evDz8/P0ycOBEajQbnzp3DxIkT0aBBAwQGBsLPz8/uvuPHj0edOnVQtmxZNGrUCNOnT0d0dLTZcxw/fhyjRo1C3bp1ERQUhEaNGuGzzz5DYmKizXKpVCocOHAAH3/8MXr06IEqVaogICAAISEhaNu2LT7++GM8ePDA7t+W1fnL/Pdk/klNTcWCBQsQFhaGqlWrIiAgAJUrV0bTpk0xaNAg/PzzzwgPD7f5/EqlEitWrMDQoUNRs2ZNBAYGIjQ0FD169MDPP/+MlJSULF83169fx8SJE1GnTh0EBQWhTp06GDduHM6cOZOt14i9HyPj0mw5+QkLC4Ofnx/CwsLs7vf111/Dz8/P7HVl7X2SkpKCX375BX379kX16tVRpkwZVKhQAe3atcN7772HY8eO5Xl9G+vs999/R5cuXVChQgVUrFgR7du3x9y5c5GWlmZ2vrK69mzevNnsdR8SEoKOHTti1qxZePbsmd3Hnjx5El9++SXCwsLM/v4WLVrg7bffxrVr1+w+fuLEifDz80P9+vWh0WgQFxeHmTNnomXLlggODkZISAh69eqFVatW5bjOM/+sXr0aYWFhqFSpEoKDg9GqVSt89dVXiIuLMztvxqUWTa+J//zzj/C6sPWeOnfuHKZMmYImTZogODhYeD906NAB77zzDrZu3Qq1Wi3s7+fnhwYNGgjPMWXKFOE5jD9ff/212XPcvXsX8+bNw7Bhw1C/fn2ULVsWZcuWRb169TBmzBjs2rXL7jlYvny52d+hUqmwePFidO/eXTgvbdq0wezZs5GcnJzlOVWpVFizZg1efvll1K1bVyhPkyZNMH78eKxfvx7p6ek2H3/w4EFMmDABDRs2RLly5VChQgW0bt0an3zyCSIiInJc161atYKfnx9eeeWVLM9D27ZtLeobAE6dOiXsk/m82rqeGN/DRt9++61FnZq+v60t27lu3Tr069cPVatWRdmyZdG0aVN8+umniI2NzdXr3/T64+JfHtVqGULK7i0bhN+LIEKApwtC/d2gSI7Hnj17ABhW/svOtXzr1q1ISkoCAAwaNAhlypRB27ZtAQArV660+9hHjx4Jz1OpUqUc/72mx6lYsaLF9ry6V8u8bGd2fogoe8qVKyfkk927d5std54Tz549w9dff41OnTqhSpUqKF++PBo3bozJkyfj5MmTdh/buHFjBAQEYOrUqQCAS5cuYerUqcI9QEBAgN19jVmmQoUKaNasGT799FPExcWZPcfp06cxduxYNGzYEOXLl0ezZs3w5ZdfIjU11Wa5dDodjhw5gs8//xy9e/c2yycdO3bE559/joiIiJyeMqt/T2YZGRn4/fff0b9/f9SsWRNly5ZFtWrV0LJlSwwbNgy//vqr2TU6M61Wi1WrVmHEiBGoW7cugoODUb16dYSFheHXX39Fenp6lmW8ffs2pk6digYNGqB8+fJo0KABJkyYgAsXLuT4784P/fv3R0BAQJZLWs+ePRsBAQFmrytrjPlk4MCBqF27NsqVK4fKlSujU6dO+PDDD3Hq1KlslzGr+gYMdbZ48WL06NEDlStXRmhoKDp37oz58+dDqVRm6/m2b99u9rqvUqUKunbtiu+++w6JiYl2H3v27Fl8/fXX6N+/v9nf36ZNG7z//vu4deuW3cdPnToVAQEBaNy4MQAgKSkJ33zzDdq2bYuQkBBUqVIFffv2xbp167L1N9nz77//on///qhatSpCQkLQrl07fPvtt8J9lD3GfBIQEGDzPXXp0iW8+eabaNGiBUJCQoT3Q5cuXfDBBx9g586dZrNuBQQEoEmTJsL/v/HGG8Jrz/gze/Zss+d48OABFixYgJdeegmNGzdGhQoVUKFCBTRq1Ajjx48XVv6zZeXKlcKxHz16BJ1Oh2XLlqF3797CeenQoQN+/PFHKBSKLM+LTqfD+vXrMWbMGDRs2FAoT4sWLTBx4kRs3rwZarXa5uOPHj2KKVOmoGnTpqhYsSIqV66M9u3bY8aMGYiKisry+W1p164dAgICMH78q0hKVyMiMQO3/2tgSlCosfnfNehQrzI61KuMcYN7WzxeLBLhwY3Lwj73Lh5HaQ8XyP/rDGbremJ8Dxt99913FnVq7/0NABs3bsQLL7yAmjVrokKFCmjZsiW++OKLPL2frVmzJurVqwcANgfZx8fHY+/evQCeNw45aufOncL7asiQIShbtqyQT4wrZNoSGRkp/Lty5crZel5Tpp+/uTkOERUtzCjZyyimbShVqlRhRmFGYUZhRmFGKQIZ5dVXX83yPHTs2NHqPmfOnBH2yXxec5NRXnltEu49UyBeoYa1KQX279yKt8e/hAHtm6B7s1oYHtYJc2d/jaQs3pPZwYxCRMUVMwozCjMKM4o9zCiWmFHMM8r4V1/D8tX/4k5UstCGkXmQzPnTJ/D1x+/ixZ7t0b1ZLfRqWQ9jBvbErz98jbiYaLjJJPD3MAySqV7GA6H+7gj8b5CMxM4gmbzIKGfPns2XjMJ2FGaUoiR7y4+QGVdXV+HfGRlZz9Jh3Mf0cWRdSVn6680338Tff/+N9PR0zJo1K8vZ4W05cOAAxo0bh5SUFLPfP378GI8fP8batWsxduxYzJo1C2Kx/bFwS5cuxfTp0806uNuyZs0avP3222arIz148AC//fYb9uzZg02bNiEwMBDz58/HF198YVZPDx48wM8//4xDhw5h06ZN8PT0tDj+999/j++++87i98nJybh27RquXbuGpUuXCoNa8lpUVBQGDx5scdOamJiIxMRE3Lt3D/v370dUVBS++OILi8dHRETg5ZdfxrVr18x+r1KpcPr0aZw+fRpLlizBypUrUaVKFatl2LhxI6ZOnWp2E//kyROsX78emzdvtnp+iju9Xo+DBw9i/PjxFqFcrVbj6tWruHr1Kv7880/Exsbm6XOnpqZi+PDhFl9AXLlyBVeuXMH69evx008/ZXmcxMREjB07FkeOHDH7vVKpxKVLl3Dp0iUsWbIEy5YtQ9OmTS0ev3LlSqtL/anVaty+fRu3b9/G8uXL8fXXX2Ps2LFZlufu3bsYNmyYRUg5efIkTp48iTNnzuRqJhSNRoMJEyYII6KNbt68iZs3b2LdunVWQ1t2rt2//fYbPv/8c7OBBYDh/fDkyRNcvnwZS5Yswf37961eTxzx8OFDNGvWzOq2iIgIREREYNOmTRgyZAjmzZuX5Spt6enpGDJkCA4fPmz2++vXr+P69evYtWsX1q9fDw8PD6uPf/ToEUaPHo2rV69abAsPD0d4eDj+/fdfbNy4EW3atDHbnpGRgTfeeAMbNmyweOyNGzdw48YNLFmyBL///jt69Ohh9++wplWrVrh58yaOHz9udbvp769fv46EhASzwS4AcOzYMQCGgbgtWrTIdhmyS6fTYfLkyRaftffu3cMvv/yCbdu2YcuWLQgMDMzR8TXa569NrR7o3mcg7ty4hn07NmPSu9Ph5eaCst5yoePdxo0boVKp4O/vj86dO2PLli0OP5dxyc6qVauiUaNGAAwDbw4fPoxr167h+vXrqF27ttXHymQy4d+3b9/O9t9pZDrI+/bt20J4NMrre7XiumwnUXHDfMJ8wnxiHfOJc+ST7GA+MVeY+USt1aFxsxa4efMmjhw7hsgky0bQi2efN8beu30TyUmJ8PPzg5dcCh93F3jJpdi71tDJoaTkk8yGDh0qXDdmzJgBiURitr2k5xMiZ5V5hSyRSFTs2lKYUZhRmFEsiUQiZhQnyiiOrnbIjGKuuLahmNZ3frWhaLTW7wX0Oh1mffQOdm4xPyfMKDmTVUbJ6/s0kUhkcQ6JKH8wozCjMKNYx4ziPBnFUcwo5owZZdPGDZizeCUaNWtptl2pVOKbT9/H/h2W9733797C/bu3sHnN34Xaz8u4D9tRSmZGIQMOmskFFxcXeHl5ISUlxeKGILPU1FThZsnf378gikdFQFBQEMaMGYNff/0VBw8exMmTJ9GyZcusH2jiypUrePnll6FSqSCTyTBu3Dj07NkT7u7uuHLlCubNm4eHDx9i8eLF8PDwwGeffWbzWBcvXsS6desQHByMyZMno2HDhtBoNFZnMLh27Ro2bNiAypUrY/LkyahduzZSU1Pxzz//YO3atbh37x5mzJiBsLAwzJgxA02bNsX48eNRtWpVxMXFYdGiRdi7dy8uX76MH3/80Wq5NBoNAgMD0bt3b7Ro0QKVKlWCq6srHj16hDNnzmDx4sVIS0vDxIkTsW/fPlSvXj1b5y4r06dPF4LUkCFDEBYWhqCgIEgkEkRHR+PixYvYsWOH1cfGx8ejT58+iIyMhFwux8svv4zWrVujYsWKSEtLw4EDB7Bo0SLcv38fL774Ivbt22exZNuFCxcwadIkaDQayOVyTJgwAV27doVcLse5c+cwZ84cfPDBB3n+dxe2o0ePYsiQIdBoNJBIJBgyZAh69eqF4OBgKJVK3Lp1C/v27cPu3bvz/LlNZ+xo3LgxJk6ciNDQUMTExGDVqlXYvHkz3nvvPbvHUCqVGDRoEC5fvgyJRIJBgwaha9euqFixItRqNU6cOIHffvsNsbGxGD58OPbv348KFSqYHUOj0cDX1xc9e/ZEq1atEBoaCnd3d0RFReHKlStYtGgR4uLi8OGHH6JatWpo166dzfKkp6fjpZdeQnx8PN555x20b98enp6euHz5Mr7//ns8efJEmHGhc+fOOTpvn3/+uRCkqlatiqlTp6JOnTpITk7G5s2bsXz5cpsj1R1x7do1IUiFhIRg3LhxqFu3Lnx9fZGamoq7d+/i2LFjFu/Hw4cPIyoqShjdPX36dPTq1ctsn9KlSwv/1mq1cHFxQadOndChQwfUqFEDvr6+wpcnixcvxs2bN7F27VqEhIRg2rRpdsv99ttv49y5cxg2bBj69++PMmXKIDIyEr/88gvOnDmD8+fP48cff8Snn35q8diYmBiEhYUJM5m1a9cOw4YNQ7Vq1SASifDw4UMcPXrUIsAChsEFY8eOFVYx6dGjB/r374+QkBCIxWKcP38ev/76KyIiIjB27Fhs27YNDRs2zLoiTLRp0wZLlixBTEwM7ty5g2rVqpltNw1Ter0eJ06cQO/e5jM6Gxt86tev73AAXrt2LVQqFdq3bw8AeOWVV/DKK6+Y7ePr62v1sbNmzcKZM2fQu3dvDB06FOXLl0dsbCwWL16MPXv24P79+/j000/x+++/O1QWI51Oj2dpaiSkm38J2bV3P/z24yzEP4vF/Uun0LdXN7NGEGOoGzBggFnAyUpsbCwOHDgAwBCgjPr27Ytp06YhPT0dq1evtvolHwCz0LNs2TL07NnT7jXElvr162PXrl0AgA8//BB//fWX2fuJiIon5hPH80mzZs0QGhoKV1dXREZG4uTJk8wnzCd5/tzMJ8wnzCeW9Ho9lBodUpRapGRokKHRoXqDZsDyvxD/LBYPw+8hJNS8wfri2ZNmj3966yJa9A2DSCQSGsmOHj0KoPjnE1teeOEFzJgxAzExMTh48CC6dOli8bcAzCdEhSGrxvq8VBw6UpqWUSKRoHz58hg7dizmz5+PgwcP4syZM2jVqpXZY0w7kFk7n5kzyquvvopevXrB3d0dly9fxpw5c4SM4unpafOaBRhmSDVmlKlTp6JRo0bQaDQ4ceKExXNfv34dGzZsQGhoKKZOnSpklBUrVmDNmjW4d+8evvjiC/Tt2xczZsxAs2bN8Oqrr6JatWqIi4vDwoULsWfPHqGMM2bMsCiPTqdDUFAQwsLC0KxZM6ENJTIyEqdOncLixYuRmpqKiRMn4uDBg6hRo4bFMbI6f6b7Zd7+8ccfCxll6NCh6Nu3r5BRoqKicPHiRWzfvt3qYzNnlFGjRqFNmzZCRtm/fz8WLlwoZJSDBw/Cx8fH7Bjnz583yyiTJk1Ct27dhIzy448/4oMPPjD7u3P7njO9f8jJYx05RlZ1cuTIEbOMMmzYMPTu3Rvly5dHRkYGbt26hb1792Lnzp0Wj89NfQOG1dyNGaVJkyaYNGkSqlSpgpiYGKxcuRIbN27E+++/L+wvkUgsjqNUKjF48GBcunQJEokEgwcPRrdu3RASEgK1Wo3jx49jwYIFQkY5dOgQKlasaHYMvV4PX19f9O7dG61bt0ZoaCg8PDzw9OlTXL58GQsXLhQySs2aNYX7NWvnIj09HS+//DISEhLw3nvvoWPHjvDw8MDly5fx7bffChmld+/eFvdQjvr000+Fe+Vq1arhjTfeEDLKxo0bsWzZMrz22mtZnn8jqVRqtv3q1atmGeXVV19FvXr14Ofnh5SUFNy9exdHjhzBjh07zB577NgxREVFYdCgQQAM7+nM3+MHBAQI+4tEIri4uKBz587o1KkTatSoAT8/PyQkJODu3bv4448/hIxSuXJlTJ8+3aLsptf5d955B2fPnsXw4cMxYMAABAYGIiIiAnPnzhUyypw5c/D5559bHCcmJgZ9+vTB06dPAQDt27fH8OHDzTLK4cOHsWnTJovXoV6vx7hx44Qc37NnTwwYMACVKlUSMsovv/wiZJSdO3cKnZoc1b59e6ENJTw83OK7ksxtKKdPn7boOGzMKA0aNLDIFbauJ+vXr4dKpRIGCQ19aRR6D37JrMOzl7f5tdRoxW9zcO7sGYSFheHFF19EhQoVEBMTgz/++AO7d+/G/fv38dlnn+HPP//M1rkwynz9GTp0qJBRjhw5gq5du5rtb+yk+cILL8DNzc3h65dpRhk6dKiw74ABA4SMsnbtWvzvf/+z+njTul62bBnCwsKsXkOy0rBhQyGjTJ8+HStWrLCbUXJ6n2Y8LzKZzKJTI1FRUxIG9QNsR3G0HSUsLAzNmzdnPy8nbUcZOnQoevbsyXaUEtqO4sjAfmdsR4mKjkbv3mGIjja0ozRu0Ro9+r2AkMpVAJEITyMe48LpEzi4e7vFY/V6PT5/ZzJOHN4PAOjYpRv69euP6lUqQyIpvH5emTOKcR+2o5TMdhQO7DfgoJlcKl++PG7cuIGoqChotVqbL4InT56YPaZI0esgSs/ZUlYibdaj2HNKJHn+8szL59G7+gEi+6P089Lrr7+Ov/76CwqFAt9++63VGW3seffdd6FSqSCRSPD333+jU6dOwrZGjRqhX79+6NOnD27duoX58+dj6NChqFmzptVj3bp1C7Vr18bmzZvNGh+sjQy9evUqmjVrhnXr1sHd3V34fdu2bZGRkYEtW7Zgw4YN2LdvH/r06YM//vjD7PXfoUMH9OnTB2fPnsXff/+Njz76yOILrpdffhnvv/8+ZDKZ2bY6deqgV69eGD9+PHr27ImnT59izpw5WLBgQbbOnT0ZGRnCh8TkyZOtfij16NED06ZNs7rU20cffYTIyEhUqFABGzZsQEhIiNn2Nm3aoF+/fujbt68wG8PHH39sts8HH3wAjUYDmUyGNWvWoHXr1sK2xo0bo0+fPujZs6fFDAe5oVAocOPGjSz3K1eunEUDVV7IyMgQAqS7uztWr15t8QVD8+bNMXLkSLOl5/LC7t27hZvxrl27Yvny5Wavu27duuH777/PcqT+999/j8uXL8PHxwf//vsvGjRoYLa9ZcuWGDx4MHr16oXo6Gh89dVX+O2338z26dq1KwYNGmT23gIMNy/du3fHq6++in79+uHatWv49ttv7d4IPXv2DCqVCjt27DB77zdo0ABt2rRBhw4dkJGRgSVLluQoTF2/fh1//PGHUL7MM4q0b98ezZo1y3IpRXu2bNkCnU4Hd3d3bN++HWXKlDHb3qpVK4wcORLJyclm56xWrVpmo/vLli2LWrVq2XyewMBAnDt3DkFBQRbb2rdvjzFjxuCNN97AqlWrsGDBAkyaNMniSxBTZ86cwYIFCzBkyBDhd8ZlRrt164YbN25gxYoVmD59usX174MPPhA6pH322Wd4/fXXzbY3atQIAwYMwIwZMyxmjFmxYgX27NkDmUyG5cuXW9zEN23aVGjEvnnzJj7++GNs27bN5t9hjen16NixY2ZhKiIiAo8ePYJIJEK3bt2we/duHDt2zKyxTavV4vTp0wBgMcObPZlnayldurTdOjV15swZTJ8+He+8847Z77t06YKhQ4fi4MGD2LJlC549e+Zw56pUpQZRySqotDqLbaVKB6Bl2/Y4dugAtm9ej369uwvbwsPDcfbsWQDAsGHDHHouo3///Veoc9Mw5enpiR49emDjxo34999/8dlnn1m97wwJCUH37t2xe/duZGRk4IUXXkCjRo3QpUsXNGnSBI0aNXJoAPdLL72E+fPnQ6FQ4PTp02jcuDG6du2K1q1bo0mTJqhTp06BdvwhJ5TDjJKf+QQoGRmF+cSxfAI8b6Bv0KABunfvznzCfJKnz818wnzCfPKcXq+HQqU1DJRRaqHOdP/dsOnzz4WLZ0+aDZpJio1CVGSEWT45e+oEBvbrI+xTUvKJPWXKlEHHjh2xb98+rF271qwenCWfmM6iRpTnctGGUlzp3Qouo7z55ptYunQp0tLSMGvWLKuDNO156623hIyyatUqs3uMxo0bY8CAAejVqxdu3ryJX375BS+++KLN6/nNmzdRu3ZtbN++3ez+01onuStXrqB58+bYsGGD2T1Bu3btoFQqsWnTJqxfvx579+5Fv379sHjxYrNrZceOHdGrVy+cOXMGy5cvxyeffGLxGT1q1ChMmzbNoqG+QYMG6N27N1577TV0794dT548wY8//oiFCxdm69zZk5GRIdyvTp061Wrn4169emH69OlWM8q0adOEjLJlyxaLjNK2bVsMGDAAvXv3xoMHDzBv3jyLTinvvfeekFH+/fdfs8/xJk2aoE+fPujWrZvVGV5zSqFQ4Pr161nuFxwcnG8ZZcKECWYZpW3btmb7tGjRAqNGjUJERESePveuXbuwfbuhc0+3bt3wzz//mL0mu3fvjlq1amHWrFl2jzN79mxcunQJPj4+2Lhxo0VHn1atWmHIkCHo0aMHoqKi8L///Q+LFi0y26dr164YPHiw1YzSo0cPvPbaawgLC8O1a9cwa9Ysux3ejRll165dZu/9hg0bom3btmjTpg0yMjLw559/5mjQzLVr14QOPA0aNMDWrVvNMkqHDh3QokULTJo0KdvHNtq8eTN0Oh08PDywe/dui4zSunVrjBo1CklJSWbnrHbt2mZlKVeunM2ZbQFDRrl06ZLVjNKhQweMHTsWU6dOxT///IP58+dj8uTJdt8Hp0+fxm+//WZ2D9qgQQN07doVnTp1wo0bN7Bs2TJ8/PHHFte/d999VxgwM2PGDLz55ptm2xs3boyBAwfif//7n0VGWbZsGXbv3g2ZTIZ//vnHYrBGs2bNMGzYMOGzYfr06di5c6fNv8Ma0+vR0aNHzTrGPn78WGhD6d69O3bt2oWjR4+adUjLaUYJrVIFiQq18P/u3n6oXNV6p1yJWARft+efH+fOnsHHH39s0anU+H7bv38/Nm/enKcZpVOnTti7dy9Wr15tVg/h4eE4c+YMAODFF1/M1nHXrVsn1LmxsyUAeHl5oWfPntiwYQPWrVtndeZowJBRevTogV27diEjIwP9+/cX8kXTpk3RuHFjhzLKyy+/jJ9//hkKhQKnTp0SvkNp3bo1mjZtirp16zKjUP7KRUZxvAto7uR1K2J+ZZTMA/ulUinefvttLFu2DGlpaZg9e7ZFRslqoN97771nM6M0a9YML7zwgvA5NH/+fAwfPtxmRjG2o2TOKNY+P65evWo1o3Ts2BEqlQqbNm0S2lGsZZQuXboIGeXvv//GZ599ZvH3jRkzBtOnT7eaUfr27YsJEyYIGWXu3LlWM0pOB3qbtqPYyihhYWH4+OOPkZCQYHVSAHsZpUOHDnjhhReEjDJ//nyLjDJt2jSbGaV58+bo378/unXrZtaOkts29fT0dIdWHrCWUfJiYH9GRgYmT55sN6O0bt0ar7zyCiIiIvJ0YP+uXbuEXGoto/Tq1QuzZ882yyjWBvbPmjVLaEexllHatm2LYcOGCRnl66+/tsgoPXr0wLBhwywyCgD07t0bEydOFDLK7NmzzdpPM58LY0bZvXu32Xu/SZMm6NChg5BRli5diu7du1scJyvXrl0T2lGsZZTOnTujZcuWZhkluwP7t23bZjejtGvXDq+88gqSkpLg5eUl/O316tUze52WL1/e7moYwcHBNjNK586dMX78eCGj/Prrr5g6darF+8D0OnfmzBmLjNKkSRP06NFDyCgrVqzAp59+CpFYgjSlBqlKDdKUGrz75rvCgJkJb0/DiLETzZ6nVt0G6NyzDya99xG0asP9qggiuLlIsH39Kpw4vN9mRmnZsiVGjBghfDZ88skn2c4oprn4xIkTZq8taxnlxIkT6Nevn7CPaUZp27atxevB1vUk8wQuZcqUsVunmevDWkbp0aOHkFG2bNmCxMTEHGWUzNefcuXKCRll3bp1Ziv6mLajjBgxAlKp1OHr18aNG4WM8uKLLwr7GgfabdiwAevXr8eXX35pNaNUqVLFLKO88MILOcooo0aNsmhHyZxRMt/35ERxH9jPnm65VKNGDdy4cQNKpRLh4eEWI/SMTL9gtTbTU2ESpSfA5/fGhV2MAhM37jT0bgW32k9AQADGjRuHn3/+GUePHsXRo0ctbh5tOX/+PC5cuAAAGDlypNUbKl9fX/zwww/o06cPdDodFi9ejNmzZ9s85jfffOPQF/kikQhz5syxerM3duxYbNmyBVqtFkqlEj/++KPFRVQikWDkyJE4e/Ys4uPjcevWLdSpU8dsn8wzR2VWrlw5TJkyRbgR0Ov1Di9TnpXExESo1YYvFTPPXJdZ5ov7o0ePsHHjRgCG85k5SBnVr19fqPtVq1aZdUq7cOECLl68CMDwgWXaIc2obNmy+OKLL3I1Q25mFy9edGi2nHnz5mH48OF59rxGa9asETrifPrpp2jbtq3NJWSDg4Pz9LmXLFkCAJDL5fjpp5+s3sy888472Lx5s82Oe6mpqVi8eDEAw4jczB3SjCpUqIB3330XH3zwATZv3owffvjBovOUPd7e3pg2bRpGjRqFU6dOIT4+HqVKlbK5v3E2tcxCQ0PRq1cvbNiwAadOnbL7nLYsXbpUWErzxx9/tDqSfNiwYcKXKzkRExMDwHATmDlImbLXQcwRHh4eNpfQBAzXvS+//BJr166FQqHAoUOH0LdvX5v7h4WFmXVIM5LL5Rg3bhzee+89q9e/u3fvCo2PvXv3tuiQZirz+dbr9Zg3bx4A4NVXX7XZiOfr64vPP/8cw4cPx+nTp3Hv3j2bywdbExAQgOrVq+P27ds4duwYxowZI2wzriBTo0YN9OvXTxg0Y+rixYtITU0FkPU1Nq80aNAAb7/9tsXvRSIRJk2ahIMHD0Kj0eDs2bPo2bOn3WNptDpEp6iQlGH9+uQiEaGinytGjXgRxw4dwI4dO5CamirUl3H2AdNlNx1lXLKzWbNmFp8vQ4YMwcaNGxEdHW111gMj4zXceA9x4cIF4d+A4b3WsWNHDB8+3OZ1LDg4GIsWLcJrr72GtLQ0pKenY8uWLcLyo3K5XOhAPXz4cHh5eWXr7yTKCjNK/mE+YT5hPnmO+cSA+cQc80nB5JNKlUORpjKsJpOq1EJrZzYrP//SCAmtiofhd3HxzEm8NHI0vOQSeMolWH/oHICs80lKSgqA4plPHDV06FDs27fPafNJo0aN0LdvXwwfPrxYNtRQ0eZs+QQAkl47D717wWWU8ePHY+7cuThy5AiOHDni8GyK586dw/nz5wEY7mOtDcr19fXFTz/9hF69ekGn0+HPP//E999/b/OY3333ncMZZd68eVYzyrhx47Bp0yYho8yZM8dqRhk9ejTOnDmD+Ph43Lx5E3Xr1jXbJ6uMEhwcjNdffx3Tp0/Hjh078jSjJCQk5CqjGCdomD17dpYZZd68eVi5cqVZhzTT/DlmzBirnQLLlSuHmTNnYuzYsY7/YVm4cOGCQx3Y58+fjxEjRuTZ8xqtWrVKGChgzCi25PUkjcbVJeRyOebOnWuzA+jGjRvtZhRj56yPPvrI5sy4FStWxHvvvYf33nsPmzZtwpw5c8zujcuVK2e3rD4+Pvjoo4/w0ksv4eTJk1lmlI8//thqR9TQ0FD07t0b69evtzpbuyOWLFkiZJQ5c+ZYzSgvvvgi/v33X+zduzdHz+FoRsntQC5HMsrMmTOxevVqpKWl4dChQ2adrDLr27ev1UHbcrkcr776Kt555x2r1787d+4IA+3DwsIsBsyYspZR5s6dCwDCzO/W+Pr64ssvv8TQoUNx6tSpHLWh1KhRA7du3cLRo0fNrkOmbSgDBgwQBs2YMs0ojlxzVBod4tKUiE9TQauzPxOwm0wCf085fN1kSAiXC79v2LAh3n33XYv9RSIRJk+ejP3790Oj0eD06dMWKxLl1LBhw7B3715s377dLKOsXr0agGFlpsaNs3ePtWrVKgCGjsmZP1+M3wdERUXhwIEDNuvfONGP8R7i/Pnzwr8BQ3bq1KkTXnrpJZsZpXz58vjzzz/x6quvIjU1Fenp6di0aRM2bdoEwLINhRmF8hozSv5iRmFGYUZ5jhnFgBnFXEnMKOPGj8d7776L+Ph47D5+HuVDnw9Of3T/Ho7uN6yk1LZzd4sBM6blCfD1gYdcAg+5FB4uUohEwNLfDRMxlqSMkheYUZ5jRik4BbfcRgnVvHlz4d/GJZYy0+l0OHToEADDhTxzxxwq+aZOnSpcYLOagcmU8XUDGGZUtKVFixbCDDaHDx+2uV9wcLDDnQNq165tc7lI09dwhw4dbF5ATfd7+PBhls+ZnJyMhw8f4ubNm7hx4wZu3LghhLmUlBSHjuEoPz8/YXaXNWvW2OwYZc2ePXug1Wrh7u6e5axTxhnooqKizGb9Mq1be52/wsLC8mW2ssJiXIrTw8MDo0aNKrDn1Wq1whKCHTt2tDoCHTCMhLU36+rx48eRnJwMAHY7KwHPQ7parcalS5fs7puWloZHjx6ZvfZNw5692bxFIhEGDRpkc7vxRikhIQFJSUl2y2GN8ZpSu3ZtmzddAHIVvgMDAwEAt2/fNrvhy29qtRpPnjzB7du3hfMeFRUlBNesZlE3nWU3M9NzlfnatWfPHmF5wwkTJmSrzLdu3cKDBw8AOP4aBCCMhs8OY2dZ0yU6Tf+/devWQlC6fv262YySxsAlkUiyvVx1Tg0aNMjmF26m9WE8f9bo9XokKNS4F5duc8AMAFTwdYWnXIpevXrB09MTCoXCbLbsdevWAYDVTov23LhxA1euXLH52M6dOwuzJxg7vlnj7++Pbdu24ccff0T9+vUttt+7dw9//vknunbtismTJyMtLc3qcbp3747jx4/j1VdftZi1QKlU4sSJE/j444/RqFEjIUASUfHAfJK9fGK8T2A+YT7JK8wnzCfWOFM+2XXoOG7HKhCRmIGkDI3dATOAYYbk5v9dv66eP42Kfq7wc5dBJhGX6HySXc6eT06ePCnkE2MjFRHlnEargUaT9z9arVZ4Dq1WK/x+8uTJQkaZOXOm2WOMHT0AWBxv//79wrYRI0bYfN6mTZsKecI4cNH0xyg4OBjNmze3+zcY1a5dG1WqVLG6j+kA4g4dOsDLyyvL/cLDw7M8b8aMcu3aNVy5cgVXrlyBXG7oEJ2SkoJ79+5ZPNbe+TP9e3Q6ndnvvb29hYyyatUqZGRkOFzPO3bsEDJKp06d7O5rXGn06dOnePDggdW6HTZsmM3H9+zZ0yyj5PS1mV2mr1/jj/GeSq/X230ue3VinEnWNKNYe66cHNtefSuVSuGeqWPHjggICLB5fNOMkrlshw8fFjJKWFiYQ3WvVqtx7tw5u/smJSUhPDwcV69eFV77pvdaly5dsnkuRCIRBgwYYPPYxvuThIQExMXFZfu1c/DgQQCGa0LdunVt7meatU3Pv+l10VbdBQQEADDcf58+fTrHr+/svJY0Gg3S09Px6NEjXL9+XTjvERERQka5fPmyxWNM/54XXnjB5rFNZx7OfP0zTlQCAK+99lq2ynzt2jXcv3/fodegaT+PkydPZvu8GjPOsWPHzH5/5MgRAIaMYswf165dQ2xsrHB+TDNKs2bNLI5t/Ps1Wh3ux6biZlQyYlOUNgfMiEQi+LjJUNnfDZX93eAtF0On01rUh63XgGmHaHufR/Z+rF1/evToIWSUTZs2Cb83Ds4fPHiw3cdn/rly5QouX75s8VjjT4cOHYSMsmrVKpvH8fHxwdatW21mlLt372LRokXo2LEjXnvtNSQlJVk9TteuXXHs2DGH2lD++eefHJ9XnU4HtVqNhISEbP0QUe688cYbwqSBX331lcOPM94bAIbJx2xp2bKlMOm26ffzmQUHB1ud5MqaOnXq2JzI2/Ra37FjR5vtKKb7Zbcd5fr167h+/Trc3NwA5H07SqlSpXLcjrJr1y4ho3Tr1s3uvsbz/fTpUzx+/Fj4vWnd2msj69OnT4lqRzGu7lMY7SjGe6ZOnTrZnPxLLBbbbdc6duyYkFH69+9v9zmNda9Wq4WJ5mwxtqOYvvZN21HsrYgqEonsfp9vHNiT03YU4zWldu3aNgcJAYaV83LK2I5y69YtnDt3LsfHyS61Wo3IyEjcunVLOO9Pnz4VMkpWK9Gafs+t0eqQlK7Gk8R03I5OgVdwVWHb/fsPzB534vAB4R596Mjng1FEIhE8XKQo4+WK0NKeqFPWG1XKeCLIxw1erjKIxSLcvHlTyCj2BvQAMLveG1dmzA5b/byM7yXjaquAIaMUdjvK4MGDbbajmL528/KzJCwsDF5eXlAoFNi6davwe2NGMV3N0hHXr18XMoq1x3bp0kXIKPb6Vfn7+2Pnzp2YM2eO1fZP04wyYcIEm+0oPXv2xMmTJzFhwoQsM4qztqNwpZlcqlq1KmrVqoUbN27gwIED6Nixo0VHnq1btyIyMhKAofEyt8vuUfFTqlQpTJgwAT/88ANOnz6N/fv3W51NILObN28CAFxcXCxG72fWuHFj3L59G+Hh4VCpVFaX+7W35HZm9kaqmt7cO7qfccWBzB4/foz58+dj9+7dZmHDmvj4eFSqVMnuPo6Sy+UYMGAA1qxZgy1btgjLZLZu3RrNmze3G2CMN8YKhcJm5yZrYmJihFH1xhHuWdWtTCZDvXr1LEb35lTr1q2F0aOFwdjZokGDBlZnt8gvDx48gEKhAIAsZ1W1t920c1lW70lTxhH2puLi4vDrr79i69atCA8PF26urYmLi7O5zd/f3+7sBL6+vsK/U1NTsxXOjauoAbAbpABke5S1qRdeeAFz586FUqlEWFgYOnfujG7duqFFixaoWbNmns08AhgC1LJly7B27VpcuXIFKpXK5r7x8fF2j2VrdTnA8rybMr4PZDIZmjZt6kCpnzMN5r169XL4cdZeg1lp3bo1li5dipiYGNy5c0f4e43hqk2bNihfvjxCQkLw8OFDs6U7jdesevXqFdgKJFWrVrW5zfRLP1vBQanW4mmyCgq1ZSMlAMjEz1+H4v/+7ebmhr59+2LlypVYu3Ythg0bhpMnT+LBgwcQiUTZ7pRmDEgymczqFzZSqRT9+/fHn3/+aTF7tEV5ZTKMHDkSI0eORFRUFE6cOIFLly7h3LlzOHfunDALz9q1axEVFYW1a9daXXqzXLly+PrrrzFz5kxcuXIF586dw6VLl3Dy5Enh+pCUlISpU6dCq9Xmy+w1RJT3mE+YTwDmE4D5xBTzyXPMJ47LaT55EhVt9zUGADKJGF5yCbzkEri7SNCtY3us/WdFtvKJceax4phPcoL55Hk+mTRpElQqFfMJUTHCjMKMAjCjANYzSlb3TXmBGcWgMDKKI/XLjOK4ot6G4khG0ej0UGsNrwulRocUpe0OwWKRCGU8XeDrJoVUYn++XGYUcwWdUaZMmQKNRpPjjKLX660OsiNyJhqtBvpsDJJwlLWB/YBhlenXXnsNP/zwA06dOoXdu3cLGSXzQD9T169fB2C4j61Vq5bdgR2NGjXCrVu3cO/ePSgUCpsZxdHBIaGhoTb3NV2pwdH9jIMGM3v8+DEWLFiAXbt2ZZlRTO/xjeydv8z7mW6XSCRCRtm0aRPOnz/vcEYxTo6kUCiEzsuOePr0qTBYwzipkYuLC2rWrGmz7CKRyCyjZGdwjzXZySiZnyvzwH5b7NWJsTO4aUbRarUO55Sc1rfxfQEY7rXtPda0g7np+xiA2cRYphNXZOXp06cWz5mdjBITE2PxeOO58Pf3h7e3t82/yXSV+8TERLsrrWSmVCpx7949ANk7b6bnXyQSWdz3GAf0Gg0YMAA//fQTlEolevbsma2MYnqczPVlTXYyyrNnzyyOZ3qdDwyuiIj4NChUWmRodGb7eXv7Cv9WKMwzyp2bhve/VCpDs6ZN4ePpAncXCdxkEph0JYJOp4XO/LBmg4q6d+9u9281Ze01mJVWrVphyZIliI6Oxo0bN4SMYrwetWrVCmXLlhUyytGjR4UJ0Uwziru7e66uJ/a2m9aHvc8j05yUnJyco2uptYH5MpkMffr0wcqVK7Fq1SoMHjzYLKMMGjRIeC5Hrl///PMPAEO+6Nu3r9X9jBll+/btSExMtJlRRCIRXnrpJbz00kt2M8qaNWvw9OlTmxklMDAQM2fOxJdffpkv7SiZB/ZnR1FY3cbpV5q5efMmDh48KPyYLmsWFRVlts10xLCpMWPGwMXFBVqtFjNnzsSGDRtw+/ZtXL16Fb///jtWrFgBAChbtmyWsy5SyTVp0iThBn327NkOPcZ4UfH19c1ysJVxqTu9Xo/ExESr+5h+AZkV48h/a8Ricbb3s/Ylzt69e9G2bVv8+eefWQYpAEhPT89yn+z45ptv0KNHDwCGUPfLL79gxIgRqF69Orp164ZffvlFGG1u6tmzZzl6PtPym9attQ8vU8YZpEoC4xfoxhHnAPL0y3xbTD+gswrA9paNjI2NzdHzZ37tXrp0Ca1bt8bcuXNx7969LMNkRkaGzW323oNA1u9DexITE4WyZXXerL1OHa3batWqYeHChfD19YVGo8Hu3bvx/vvvo3379qhVqxYmT56MEydOZKvs1iQkJKBXr1748MMPce7cObtBCsj6mpPT65+xAc/X19fqF1/25MX1x1GmMxgYZxR48uSJEBSM2zPPVKDVaoX7qYJashOA3Y6u9upDrwdiUlUIj8uwOmBGIhKhnLccvu4yq8c2zhRw5MgRIZQAhrBZoUIFh8uv1Wrx77//AjDMNGCrIdf4fAqFAps3b3bo2EFBQRg4cCBmzJiBLVu24Nq1a3jzzTeF83LkyBGsX7/e7jHEYjEaNGiAsWPHYu7cuTh9+jQOHDhgNsPE559/brODR1aMX7xk54eIcof5hPmE+cR6PikIzCcGBZ1PHMV84ricXn+UNl5DrjIJAjxdEOrvhqql3RDkLYeHXGqWPwDH8olxn+KWT3LLWfPJqVOnsHfv3jzLJ0RUOJhRmFGYUZhRjJhRzDGjOK4ot6FklVHS1Vo8SVLibqwCam2mnnY2lHKXorSnS5YDZgBmFHvyK6PkZRsKERUOZhTbGeWPP/5gRrGjpGeUghjYz4xiUBgZxZH6LQ4ZRaPVITlDg6T054MYEtQSxCvUFgNmAEBkct512ucrl3q4SJCeYljxx8/PF1WDfBDg6QIPF/MBM7YU5YxiHCjDdhRmlJwwDuzPzk9R4PRLnuzbt8/mMoe3bt3CrVu3zH7XsWNHi/0qV66Mt956Cz///DPS09OxcuVKi33Kli2L6dOnZ/mhVxj0bn5Ieu181juWEBI3P0CUP+PFTG+KJRKJWQDy9/fHlClT8PXXX+PcuXPYu3cvevbsaXaBzxyYjNvEYnGWYSrzcaztb+v3to7nyL729jP9febzERcXh4kTJ0KhUMDT0xNTp05F586dUblyZXh7ewtfgh4+fFiYKSbzMYzPb+35HCmnn58fVq1ahXPnzmHjxo04evQorly5Aq1Wi4sXL+LixYtYsGABVqxYYbZEt/Hm0N/f3+EPMgAICQkRypCdujUdeJDblapEIlGOj2EsR1bHcLROjLLT8Tmn9W3vvWmvPJn3NQ0Ghw4dcvhcBgcHC/uqVCqMHz8e8fHxkMlkeO2119CrVy9UrVoVvr6+kMvlAAwzuxlnbLP2OnH0XJj+Pdm5BmQ+blbnzfTGJqvXtbVyDBw4EJ07d8aGDRuwf/9+nDhxAs+ePUNcXBzWrl2LtWvXYvjw4fjll19s/u1ZlfGTTz4RZroLCwvDSy+9hDp16iAgIACurq7Ca7xu3bqIjIy0+lp39HzaK5ej7yVrTF+DK1euRMWKFR16XEBAQLafKzg4GNWqVcOdO3dw/PhxjB8/XghJNWrUEGaJbNeuHVauXCkEritXriAlJQWAYWlPa8+bnetJTt+vjhwzNUODyEQFlFYCMQD4urugrI8rZBKxzc/ZDh06IDg4GJGRkVi9erUwy8uLL75oVp6s3rOHDh1CVFQUAGDnzp0OfZG2du3aHC2BHBAQgBkzZkAkEmHOnDkAgC1btthdttiahg0bYt26dWjfvj3Cw8ORmJiIo0ePok+fPg4fw3heZDJZkZhRgIqOnGYUjTbvZxkzJZU8f//m5XPpXQv+9e/j44NJkybhm2++wblz57B7926HZ7fJq0HPptfGwmaaTzw8PDBlyhR07dpVyCemX0C98MIL+VIGLy8vrFixAufPn8emTZtw7NgxXL161SKf/PXXX2jWrJnwOON9mL+/PzZs2ODw81m7jyiIAe1kLjfn3HSGo3379kEmsz7IN7Ny5coJ/86cT8aPH4+ePXuiSpUqFvnE+LoriAaxrOT3a7Vv377o0KEDNm7ciP379+PUqVMW+WTYsGGYN29ejq9lH3/8sZBPevfujREjRqB27dooXbq0WT5p2LAhIiMji8R5z8w0By5asgx+gWWhUOmg1dkvq18pw5LwIojg4SKGp6sUXnIJZHY6egUGBqJq1aq4e/cujh07hjFjxggD92vUqCE0ALZu3dpmPjFtMCqp2rRpI+STf/75R8gn2Z3BOSf5ZM2aNTmaNdnPzw+ffPIJ9Ho95s2bBwDYvHlztsvcoEEDi3xy6NAhhIWFZbtMRJnlpg2FGcVxzCjmMmeU119/XWhDcXd3F9pQmFEorzGj5AwzStFgmlH+/vtvhzs8ZWfGeaO8yCitWrVGUroa8QoN0q1M6mVKIhLBx00KP5MJvorDNdKZM4q1NhRmFMorRTWj5Fc+AZhRigJmFIPi8Plb0jCj5IwzZhSVRoenyUooVFqhH1CaKvsd9b1cJQgp5QY3mRhikQgukpyfy+KWUdiO4jhmlOLJ6QfN5JWmTZvi+++/x/bt23H+/HnEx8dDKpUiKCgILVu2RM+ePYUPyCJHJIbe3b+wS+EUJk6ciN9++w3x8fH45ptv0LNnT7v7G2cMiI+Ph0ajsdsZ2LhstEgkytZMA4Vl06ZNSEoyjMJdvny51QFpALK9hFdONGnSBE2aNAEApKSk4OjRo1i5ciW2bNmC2NhYjB49GufPnxcGvRk79aampqJGjRo5mu3eOBtFfHw8tFqt3WPkdNR7XjPewOoyryOYib1lu0uVKoUnT54gOjo6T8uWFdP3RFbn094S7KYjgv39/REcHJztshw+fBgPHjwAAHz//fc2O7wXxGs/K6bL1+bmvGXn+caMGYMxY8YAMAxe3b59OxYtWoSnT59i5cqVqF+/PiZOnJjtYycnJwtffgwZMgS///67zX2N16b84u9v+MxNSEiASqXK1kxppq9BHx8f1K5dO8/LZ6p169bCoBng+UwEbdu2FfYxzjJw7do1JCQkCDMRiMVitGrVKl/Ll1MarQ5PkzKQoLA+C4WLVIxgXzd4uWb9hYlIJMLQoUPx008/4YcffkBGRgZcXV2FAZ+OWrVqVbb2Bwz18fjx42zNdGBq9OjRwqCZ+/fv5+gYHh4eGDRoEL777jsAEJbyJMq1HGYUfS6XOM/y+KaDafP5uQrChAkT8PvvvyM+Ph7ffvttlo09xvvghISEEpdPtmzZItwD/PXXX+jQoYPZ32dcSrkg7tEaN26Mxo0bAzBkjmPHjmHlypXYtm0bYmNj8corr+DMmTNCPjHeH6SmpqJ69eo5yifGOkpISChx+UShUNjcVtzziemA09KlS5s14jjqyJEjQj759ttvMXLkSKv72ZrpsCBlJ5/kxevU29sbo0aNEjLb7du3sWPHDvzxxx+IiorC6tWrUa9ePUyYMCHbx05JScHGjRsBAIMHD8avv/5qc9/8PvfGfJKYmJitfKLR6iD3fF4nGWJXBFSomuXjJCIRPOUSeMql8JRLIHFkKrb/tG7dGnfv3rXIJ6aNOMZ8cv36dYt8Yjp7VkklEokwePBgzJ07F3PmzMlxPlmzZk22n/v48eOIiIhA+fLls/1YABg5cqTQ2JNX+SSnxyGykIs2FGaU7GFGeS5zRunSpYuwTWNS18wozCh5gRklZ5hR8kdOMwpg3obi7e2NWrVq5Xn5TOU2owRUrYfIJKXd55BLxSjlLoOPqxTibOSnooIZhRmF8kkRzSglLZ8AzCimmFF8ATCjFBRmlJxxpoyi1uqgUGmhUGuRkJAIAFCotEhQqB1+DrFIBDeZGO4uEkh8n/ft9pJL4eHy/D3uTBmF7SiOY0YpnorOcORCMmXKFKxZs8bhH3sCAgIwevRozJ07F8uXL8eSJUswa9Ys9O/fv+gOmKEC5eXlhddffx2AYdm+rVu32t3f+CGpUqlw5coVu/ueP2+YRaJKlSrZXqq6MNy8eROA4ebU1oAZALhw4UIBlcjAy8sLvXr1wrJly4QbtqioKGF1BQCoX78+AECpVOa4fMaO7iqVClevXrW5n0ajybLuC4qnpyeArG/y7927Z3NbgwYNAAAXL160G7ryWuXKlYUwbHyv2GKvTo11DwCnTp3KUVmMr33AsLpKTspRUFxdXVGlShUAuTtvOVWjRg28/fbb2L17Nzw8PAAgW7N+mAoPD4dabQhG9s777du3831pdOP7QK1W48yZM9l6bF68BrPDODgmOjoat2/ftjpopmLFiqhYsSL0ej2OHz8u7FOvXj2zQF5UpKu0uBWdYnXAjAgiBHjJUb2Ml0MDZoyGDRsG4PkSu7169YK3t7fDj09JScH27dsBGFau+eOPP+z+/PTTTwAMs5OsXr3a4efJzLhaUG6ZHocz6xAVL56enpgyZQoA4PLly9i2bZvd/WvWrAkg63tY4Pm9QWhoaLHLJx06dLC538WLFwuoRAaenp7o0aMHli5dildffRWA4XPZ9D6gXr16AAz5JKflM82eWeWTrOq+oBjzSVYDnu3lE+O9VUHnk0qVKgn5JKv7aHt1aqx7IOf3hqYrLNu7Ty7o1741rq6uCA0NBZB1efIjn1SvXh1vvvkmdu7cKSwZb5x9ysjReyHTfDJgwACb+925c8fuxBR5wfg+cCSfKDU6PEtT4UFcOm7HKlCmUnVh29UL52w+TiYRw89dhop+rqhWxh3Bvq7wcZNma8AM8LwhJyYmxmxwv/H3AFChQgUhn5w4ccIsn2TnHr04Gzp0KIDn+aRnz57w8vJy+PGpqanYsWMHAKB9+/b4/fff7f788MMPAAz5JCeNREZ5lSuYT4iKN2aU55hRmFGYUZhRssKMYsn0NXj69Ok8LZc12c0oB44cw54DhwEAVWvUhquH/ft0V5kYof5u8HOXFcsBM0bMKMwoRMUZM8pzzCjMKMwozChZyc+MotbqkJSuxtMkJe7GKnAnVoHIpAxcvHoTCoVjGUUsAjxdJCjj6YJKpdxQvYw7Qkq5IcDTBW4y2wPhSnJGMe3nVbduXbajOIgZpfhy+kEzlDsajSZffkyXJQMMy5Tl13PlV7ltlfmVV14RluKaNWuW2WMy79uuXTth2/Lly20+74kTJ4Rw0q5dO4vtRjqdLsu/wdF9s7tf5vNhvKlRKpXCvzPvm5ycbNYZ2No5NR0Nn5tyWvsx7RQeGxsr/L5bt27Ch8WCBQty9Foxrdu///7b5n6bNm0yG6SS09emkV6vz/ExjCsZ3Lt3D4mJiVb3iY6OxsGDB22Wt1u3bgAMsxT89ddfNuvV1k9O6xt4PmL6wIEDiIiIsPp4lUqFlStX2nzNtW3bVrip/+2336BWq7N9HlWq5x31k5OTbe5jPD85fe0bf+xdYxz5ad++PQDD6PLz58/b3G/58uUW5z/ztTyn5QgKChJCXVxcnNk205lZ0tPTbR5DqXw+U1dqaqrN/f7880+br6Psnk9b9delS5ccX0Pq1KkjzHzx119/2f1b8uLHdAaBNWvW4N69exCJRGjRooXZfsb31+HDh3HixAnhPWfruMalaG1dk1xdXbOs08z1kdW1RHjfZaih1VkuhesukyC0tBsCPGTQ6bL3nqtSpQqaNm0KuVwOuVyOIUOGZOvxGzZsEL5gGj16NPr372/35+WXX0adOnUAAKtXrzY7VnauS2fPnhXKFBISkq3jmJ570y9bKlSokK3XmE6ng06ng1qtRkJCQrZ+iChvjBs3Tsgns2fPtrtcuGkjyD///GNzvzNnzghfIBvvJYo643VNqVTanHFLoVBg7dq1BVksM6bnMj4+Xvh3jx49hHuLhQsX5ujYpnVrb0Dmtm3bisRMWYBh4C5gyCe2Bj3HxcXh0KFDNo9hnBXQNJ8UBKlUKtw/HTx4UFi6OzOdTme3Pjp06CDkk0WLFtl9/9piep9kq+OTTqczu98vTMbX6vXr13H58mWb+9m7RuVWcHCwMLmA6XsRgNmkOabZLzPT826voXHp0qU5LKXjTL/jyLwip16vh0KlRXSKEnefKXDvmQIxKSoo1IZrZvVadREQWBYAsGXdSrPc5SoVI8DTBZX93VC1tBvKesvhKZdCnIsv301nQvv3338RHh4OkUhk9nvT/Y4cOSLkE9PveLLLmE9M/76irHr16mb5xNj446jNmzcLr8sxY8Zg4MCBdn9GjRol5JPMn5PZuS6Z5oqQkJB8OQ4RFQ/MKAbMKMwozCjMKI5ypoySlfr16wttKMuXLxc6QOUXRzKKVqdH0+aGtpZd+w7i/BlDZ82GzVpYHE8qFpl12BOLRFY7MDGjMKMQUcFiRjFgRmFGYUZhRnFUXmSUDJNt4VEJ/w2SUSIhXQ2V9vk1aPPav20eQywSQS593kU+1N8NFUu5obSnC9xdJA63V5S0jGK6n2k/L9OBNdnFjMKMUlxw0AwVSZnfwDm5YSmqPDw8hNVmrl+/jn379tnct3HjxmjYsCEAw4fm4cOHLfZJTk7Ge++9B8CwRNorr7yS94XOB8YO8AqFQlhKz0iv10Or1eLtt9+2edObWw8ePBBGydpy4MAB4d/GIAEAVatWRb9+/QAYVr2wt0Q5ADx8+BDr1683+13jxo2FUchLly41W8nGKCoqCjNmzLB77IJkvFlSqVRYtGiRxXa1Wo23334b6enpNo8xZMgQlC1r6FAzc+ZMHDt2zOb7+8mTJ3lQ6ueM7w2lUon33nvP6oCOOXPm4Pr16zaP4ePjg3HjxgEwfInxySef2F3GNCYmxiIUGV/7ALBq1Sqrj5s5c6bd4FKQRo0aJdz4v/vuu1YD4Lp167B3716L3zt67d6+fbvdmS0iIyNx9+5dAObvRcCwjKVx1hXjcqjWVK5cWfg7Vq1aZbVsu3btMhs0k1+qVKmC3r17AzD87b/88ovNfdPS0sy+UBGLxXjrrbcAGP7eKVOm2A0cKSkp+OOPP3JcVtMBS8b3fY0aNVC6dGmz/YzXh1WrVgl1mTlwZUdgYCAA+3XqKJ1ej9hU20FbIhIhyFuOkFKuZmE5u3bs2IGIiAhEREQIAwQdZZxFwN3d3WwZa3v69u0LALh79y7OnXs+q/fevXsxbty4LK8hCQkJ+Oijj4T/79mzp9n2999/Hz/99JPNwSnG99CBAweEwYbu7u52ZxWyx/jZn50fIsobzCcGpvkk84xHAJhP4Dz5xBbmk+KfTxzl7Pnk559/RkqGBk+SlLgTq8CD+HTEpamh0uiQrlAgxeTciMVivPzqZADAk4hHmP3JuyjlAlQt7Y7Q0u5CZy/j31rQ+WTNmjVFLp8UFGfLJ0Z5lU+IqHAxoxgwozCjMKMwoxg5e0Yprm0oGWotniYbclX1Bs0AALu3rEdqSjIAoGHT54NmPFwkKO/rimoBhhyVVd89ZpSsMaMQUV5iRjFgRmFGYUZhRjHKj4yi1uqQmK7Gk/9WktF5BQl/x9YN66xmlGMH92LDymXPfyECPOUSlPFyQeVSbqhRxh3+HrLnm3M4qVdJySiminI/r4LCjOKcGUWa9S5ElNfGjBmD+fPnIzo6GnFxcXb3/fHHH9GzZ0+oVCoMHz4c48ePR/fu3eHh4YErV65g3rx5wofNlClThOUgi7r+/fvjq6++glKpxBtvvIFr166hU6dO8Pb2xrVr1/DHH3/g0qVLaN68eb4sTRcZGYkBAwagRo0a6N27Nxo2bCjc5EdGRmLjxo1CyKtbty6aNGli9vjvvvsOly5dwoMHD/DZZ59hx44dGDp0KGrWrAkXFxckJCTg2rVr2L9/P44cOYLevXvjhRdeMDvG7Nmz0adPH6jVagwZMgQTJkxA165dIZfLce7cOcyZMwfx8fGoU6cOrl27lid/t0KhwI0bNxzat0aNGhCLn3cg79atGypUqIDHjx/jm2++QXx8PMLCwuDq6oqbN29i0aJFuHLlCpo2bWq2eoEpV1dXLFiwAEOGDIFCocCAAQMwZMgQ9O7dG2XLloVKpcKdO3ewd+9e7Nq1C5GRkXnydwOGmSN69OiBXbt2YdeuXQgLC8OECRMQGhqKZ8+eYdWqVdi4cSMaNmxod4nKadOm4fjx4zh37hx+//13HDt2DCNHjkTdunXh7u6OpKQk3Lx5E4cPH8a+fftQq1YtjBw5Unh8p06dEBAQgNjYWMyaNQuPHz9G79694e/vj/DwcKxYsQKHDx/Ot9d+dtWtWxdjx47Fn3/+iYsXL6Jbt254/fXXUbt2bSQnJ2Pz5s1YtmxZlufNnoULF2LSpEno2rUr2rVrh2rVqsHb2xtJSUm4ePEi/vjjDyGkjxkzxuyxUqkUDRs2xOnTp/HPP/+gXr16qFu3rrACjZ+fH/z8/FCqVCl07doVe/bswf79+zFkyBCMGTMGFSpUQGxsLLZu3YpVq1YhJCQEycnJePbsWW5OW5Zmz56Nc+fOISoqCl988QX279+PF198EdWqVYNIJMKjR49w9OhRbNy4EUuWLDEbzT9mzBgcOnQI27Ztw+bNm3H58mWMHj0ajRo1gre3N1JSUnD37l0cO3YMO3fuhKurK8aPH5/jsrZu3Rrh4eFITk4W/j8zY/mM+4jFYrRq1SrHz9msWTM8fPgQu3btwl9//YXmzZsLs014eXkJM/lkJU2pwdNkldksE6a8XaUI9HKBTFJ448gjIiKE5VA7d+4szHKSlb59++Kbb74BYJjJxvg5pdfrsXnzZmzevBl16tRBt27d0KhRIwQGBkImk+HZs2c4deoUli9fjtjYWABAgwYN8OKLL5odPy4uDn/99Re+//57dO3aFa1atUKtWrXg5+cHrVaL+/fvY9euXdi4caPwpdL06dOztVwpERUdzCeW+eTKlSvo0qULvL29cfPmTSxcuJD5hPmE+YT5pMTmk1nffIOzZ88hOjoKX375Jbbu2oue/QehYuUqEIlEiIqMwIXTJ7B/51Z8+dOvaNTMMEuyWCTCyFGjce3scezeuQN7d25D3x7XimQ+yc0MaXmVT4qD4pxPdu7ciU2bNjGfEJUQzChsQwGYUZhRmFGMnDGjFOc2lKYtWuFBfDoUquedOhv+l6FSU1IAGDJKw6YtUMpdBl83KVz/W1nGUcwoWSsKGYVtKORsMndEFolEJWqCZGYU+xnl+vXrWLRoETOKk2SUoUOHolevXswoJTSjODKwJK8yyt9//43yVWoipGpN6MSGe2JvH194+/jCx9cPLdt1wonD+3H62CG8+9pIDBj2MgLLBiMhPg6H9+7Azk3/IrhCRaSmJCM+Lg4+rlJU9HPL9Tm0pjhnFEfbUXIzaIYZJWslLaOIRCJIJNnLskUBB80QFQI3Nze89dZbmD59epb71qtXDytWrMC4ceOQkpKCBQsWYMGCBRb7jR07Fp988kl+FDdflCtXDrNnz8bbb7+NjIwMzJ07F3PnzjXbZ8CAARg5ciQGDRqUb+W4deuWsOSpNdWqVcPSpUstbgj9/PywdetWjB8/HidPnsSJEyeEpeqssfbh0qRJE8yfPx+vv/661XMglUoxe/ZsnDp1Ks/C1MWLFx1e2vXu3bvw8fER/t/FxQULFizAsGHDoFAo8Ntvv+G3334TtkskEsycOROJiYk2wxQAtG3bFqtWrcL48eORmJiIlStXCqNX89tvv/2GYcOG4fTp0zh37hxee+01s+316tUTbhxskcvlWLduHaZOnYpt27bh2rVr+PDDD23un7nuPTw88Msvv2D06NHIyMjAX3/9ZbGEaZs2bfDNN9+gXbt2Ofgr897//vc/REVFYdu2bbhz5w7eeOMNs+0hISFYtGgRmjVrluPnUCgUwg2gNWKxGB988IEwct/Um2++iZdffhnx8fGYMGGC2bb3338fH3zwAQDDlyB9+vRBREQEDh06ZLHEbPny5bFs2TIMHz48x3+Ho8qUKYMtW7Zg1KhRuHHjBo4cOYIjR4449FiRSIRFixbh448/xtKlS/HgwQN88cUXNvfPbfBo06YNVqxYYfb/mVWsWFH4sgUA6tSpY3b9yK7Jkydjy5YtwowhpoYNG2Z31gYA0Gh1iElVITFdY3W7TCJGkLcLvOSFfyu8Zs0a4Qtj4+w2jqhevTpq1KiBW7duYdOmTZg5cyZcXFzg4+MDd3d3KBQKXLt2LcvPj44dO2LhwoVCI6mR8QtGlUqF7du3Y/v27TaP4erqimnTpmHixIkOl5+IihbmE8t88vPPP+Pnn38224f5hPkkrzGf5AzzSd5QaXRIUWqQotQiHZ6Ys2Q1PnrjNdy/ewvnTx3H+VPHrT5OIgL83GXwkkvg7iKBWCTC0sV/Fot8otFYzwdZyW0+KU5KSj6ZPn068wlRMceMwjYUgBmFGYUZxZQzZBRTxbkNpVr9pmYDZgCgbHB5BJULRtQTQyfSGrVqo3mNCtDrcraiOjNK1opaRmEbChUlmV/P+aW4dKI0LadEIrF5fry8vPDOO+9g2rRpZr+3tn+jRo2wcuVKjBkzxm5GGT9+PGbMmGE2yCEzsVjscJ05uq+9/Ux/n/l8VKxYET/88APeeOMNmxll4MCBGD16NAYMGGD1GMbnt/Z8WZXTWFdZZZTq1atjxYoVkMlkZr8PCAjAzp078corrwj5xF5G8fHxsShfixYt8Ouvv2LKlCk2M8r3339vllFy+57LTkZ58OCBWUaRSqVYuHAhhgwZgrS0NKsZZdasWUhISBAyirXyduzY0Syj/PPPP/jnn3+sliGv6tto0aJFGDJkCE6dOmU1o9SvXx9z5sxBx44dhb8p83GkUik2bNiAKVOmYMuWLVlmFG9vb7Nj+Pj44Ndff8XLL79sM6O0bdsWs2fPFgYd5Oa1b3pdkkqlOXoNzZo1CzExMdiyZYvNjLJkyRI0atRIKJu958lcDpFI5FBGmT59Ovr16we9Xg+1Vo9UpQZpSg2GvjIRZ86cQUJCAj58e6rZ48ZMehOvTH4LAPDOp//D1FE3Ef30Cc6dPIZzJ81XOipfvjxWr/wHQ4cORXxcnNW/w9Hzae/6Bxi+p9mxYwdGjBiRZUax9vglS5bgww8/xJIlSxzKKLm5drRr184so7Rv397ieKGhoRbtKKVKlbJ5TOP3PiKRyGrZ3njjDZsZZfjw4cLnoKOfu6ay81mY+XFGOXkv2XrPrlv3fOWjAQMGOHzc2rVro2bNmrh58yY2bdqEb775Bi4uLihVqhQ8PDyQlpbmUEbp1KkT/vjjD7i6upr9Pjg4GED22lGmTp1qcx9bjOdFJpPBz88v248vbIXfU5DISY0cORK//PKLQyOsO3XqhNOnT2PhwoXYu3cvHj58CJVKhYCAALRs2RKjR49Gy5YtC6DUeWvEiBGoWrUq5s+fj9OnTyMpKQn+/v6oXbs2hg8fjgEDBmS5tGZOtWzZEhs3bsSBAwdw7tw5REZGIjY2FkqlEr6+vqhTpw769OmDF198URj1mllgYCC2bNmC3bt3Y8OGDTh79ixiYmKgVqvh4+ODypUro1mzZujRo4fNkbgvvPAC6tSpg3nz5uHw4cOIj4+Hv78/mjdvjkmTJqFJkyY4depUvpyDnGjZsiX27duHn376CYcPH0ZcXBxKlSqFZs2aYdKkSWjevDlmz56d5XG6dOmCixcv4s8//8TOnTtx7949JCUlwd3dHZUrV0arVq3ypaHP09MTmzZtwtKlS7FmzRrcvn0bIpEIlSpVwoABAzBhwgTExMQ4dBzjcqurV6/GyZMnERUVhYyMDHh5eaFSpUpo1KgRunXrhk6dOlk8vnPnztizZw/mzZuHI0eOIC4uDj4+PqhevToGDx6Ml156CREREXn+9+eUTCbD0qVLsXbtWixbtgzXr1+HRqNB+fLl0bt3b0yZMgW+vr45Pv7ChQuxZ88eHDt2DLdu3UJMTAzi4+Mhl8tRoUIFtGrVCqNHj0adOnWsPr579+5Yv349fv/9d1y4cAFxcXFQq9UW+wUHB2Pfvn34+eefhSUWjc/Ru3dvvPbaa7n6O7KrUqVKOHDgANauXSvMJBAfHw+pVIpy5cqhSZMm6Nu3r9Xru0wmw+zZszFmzBgsX74cx48fR0REBNLS0uDh4YGKFSuiQYMG6NKlC7p3756rcppev0Qikc3rWevWrbF69WoAhi8EcqNevXrYvn278PlgvD5nRa/XIylDg+gUFbQ66zMXucnEqOLvBrE4Z8uu5rW1a9cCMDQmZ3e5zz59+uDWrVuIj4/Hnj17EBYWhhYtWgizoBw7dgyXLl1CeHg4EhISoNVq4eXlhQoVKqBRo0YYOHCgzRm3v/76a0yePBn79+/HyZMncePGDURERCA1NRUymQw+Pj6oWbMm2rZti2HDhiEoKCjX54KIChfzie18UqdOHbz44ovMJ8wneV5+5pOcYT7JneQMDe49U0CpMV+NsVyFivhz3Tbs2boRB3dvx+0bV5GUkACJVILAoHJo2Lgx+vXti7CeHS0aAJhPSo7inE9q1KiBdu3aYdiwYShfvnyOB0kRUdHBjMI2FIAZhRmFGQUo+RnFlqLehqLX66FQ6VC5zvNZ7EUiERo2bWGxrwhAsxatsGXDOgBAx/btIBGLkCmWOYwZxTGFnVHYhkJU8owePRrz5s1zKKN07twZ58+fx6+//oo9e/bgwYMHQkZp1aoVXnnlFbRq1aoASp23XnrpJVStWhU///wzTp06ZdaO8tJLL2HgwIE4evRovjx3q1atsHXrVuzbtw9nz54VMkpGRgb8/PxQt25d9OnTByNGjLCbUbZv345du3bh33//xZkzZ8wySmhoKJo3b46ePXva/AwYPHgw6tatizlz5gj3/KVLl0aLFi0wefJkNG3atEhllFatWuHAgQP44YcfcPjwYTx79kzIVJMnT0aLFi2ElQ/sMc0ou3btwt27d4WMEhoaitatW2Pw4MF5Xn4vLy9s3boVixcvxurVq80yysCBAzFp0iSHMoqXlxeWLVuGEydOYNWqVThx4gSioqKQnp4OLy8vVK5cGY0bN0b37t3RuXNnq3///v37MWfOHBw5cgTPnj0TvpMcMmQIRo4cWeQyyrJly7B69Wr89ddfuHbtGjQaDSpUqICwsDC8/vrrubq3/+OPP7Br1y4cPXpUyChxcXFwdXVF+fLl0bp1a7w8ajRCqtbE43gF0pQaqLTPb36bte2EH//4G/+uWIKb1y4jMT4eGo1lRilbLhirNu3C33/+iv17dyHyv4xSsWJFhIWFYeLEiQWeUY4cOYI1a9Zg48aNuHz5MuLi4iCVShEcHIymTZuib9++Vq/vMpkMP/zwA8aOHYtly5bh6NGjZhklJCQEDRs2RNeuXdGjR49cldP0+iUSiWxez9q2bStM0pEX7Si7d+/GvHnzcOrUqRKdUdasWQPAkFGymyf79u2LmzdvIj4+Hrt370afPn3QsmVL3LlzBwcPHsSxY8dw8eJFhIeHIz4+XsgoFStWRKNGjTBo0CCbdfXNN99gypQp2LdvH06cOIEbN27g8ePHQkbx9fVFjRo1hIxSvnz5XJ+L4kikL0lrIZKFO3fuQKVSQSwWC7Nd5KX8bHw0bYBnI2fJx/p2Lqxv58G6di6FWd9KjQ5RyUqkqazPzOYmk6CstwtcZcVjVqPiIC/qOzo6GjqdDmKxGIGBgdl6bOnSpXP0nFS4inM+Afi55mxY386Dde1cnKm+dXo9FCotUpRapGRooLExsDwzEQA3Fwm85BJ4yaVwkdqe7bKoc6b6ptzXN/OJcyrOGUUkEpnNzqjVasEmv5KJde1cWN/OhfVd/Oj0QFK6GvEKtcVkBJlJxSL4ucvg6yaDTCJifTuRvKprY0aRSCTZvlctjrM+k0F+ZxQiIqK8ptfrodLqkKbUIFWpRZpSA7U2+yPEJWIRPORSeLpI4SGXwlUmtljZlogK19OnT6HT6eDi4oJq1aoVdnGyjSvNEBEREVGxpdPrEZemxrM0tdUGB7FIhDJeLvBzkzJMExEREVGJp9XpkarUIEWpRapSC52DnXLEIhE85IaBMp4uEkglxXegDBFRUZJ5da78ZNoxk0o21rVzYX07F9Z30ZWh1iIuTYXENBW0WeQsDxcp/D1d4O0mg9hOuwTr23nktK7FYkM2l8lkHARDeSa/BvZzYKBzYX07F9a3c3G0vlUaHdJUWihUWqSpdNDocjhIxkUC9/9+XM0m8NJDq7U+aS7lDb63nUte1bdOp4NOp4NarUZCQkK2HlsUMg0HzRARERFRsaRQafE0WWlzNjdvVykCvVwgY4c/IiIiIirBVBodUpVapCg1UKi0cPQrbqlYBE+5FF5yCTxcJBCLOciciIiIiIjISK/XIzlDjbhUFVKV9juZi0Ui+LrL4O8hh5sLB8MQkfPJ3OmSnW5LNta3c2F9Oxdr9W1YSUYvDJJRqLQOr2xvShgkI5PA3UUMuZQryRQmvredS17Xt15fPAe2cdAMERERERUrGp0eMSkqJKarrW6XScQI8nKBlytvdYmIiIio5NHr9cgwDpTJ0CDDxiBya1ykYnjJJfCSS+EmY4MUERERERFRZmqtDvFpKsSnqaDW2s9bcqkE/h4u8PNwgYQTERARERFRCaDX66HU6JCm1CAlQ53jQTJSsUhYRcZDJoYLB8kQUSFjT0IqkjJ/OIpEIo5kLMFY386F9e08WNfOpaDqOyldg+gUpdVALgJQysMFAZ4uYNtU/srr+s68DCgRERERmdPp9VCotEhRapGq1GbZccuUu0wCT1fDQBm5lKswEhEVJI3G/qz0uZE5S2u1Wn73VkKxrp0L69u5sL6LFoVKiwSFGskZWujtrOEpAuApl6KUuwweckP96XVaZDWfAevbeeRVXet0Ouh0OqjVaiQkJGTrsX5+ftl+PiIiInJuWp0ez9LUSErXQKNzvA3CyGyQjIsELhIRB8kQUZHCQTOUK1JpwbyE2InSubC+nQvr23mwrp1LXte3UqNFZEI6UpXWO5u4u0gQ7OsONxe+zgpDTutbLDZ02pTJZGzAISIiIspEq9MbVpNRapCm1ELrYAcbsUgEDxcJPOUSeMklkEo4UIaIqCTK3PGSnW5LLta1c2F9OxfWd+HT6fRIytAgQaHOchVPiVgEPzcpfN1kcMnBhASsb+eR13Wt1+uh1WpzdQwiIiIie9KUWjxNVkKVjQm7pGJDW4RxoAwHyRBRUcdBM0RERERUZOn0ejxLUSImRQmdlUYFsUiEIB9X+Hu4MHwTERERUbGn1uqQotQiJUMDhUpnd3ZjUxKxCF5yCTzlUni6SCDm0otEREREREQ2KTU6JCgMs2hnNUGBm0wCP3cpvF2lELMdgoiIiIhKEK1Oj5hUFRIU6iz3lZmsJMNBMkRUHHHQDBEREREVSWlKDSIT0pGhsT57lo+bDGV93eDCmbOJiIiIqJjS6/VQav4bKKPUIkPt+MyxLhKxYaCMqxTuMjEbp4iIiIiIiOzQ6w2reSYo1EhV2c9eYpEI3q5S+LlL4SbjCvdEREREVPJktbqMTCI2DJCRieHhIoGMg2SIqJjjoBnKFY1Gky/HFYlEkEief/mk1Wq5PHEJxvp2Lqxv58G6di55Wd9ZzWQhk4gR5O0CL7kU0Oug0Ti+PCzljbyqb51OB51OB7VajYSEhGw91s/PL9vPR0RERFQU6PV6KFRaYaCM2kaDlDVuMsl/K8pIIJdyoAwREREREVFWNFodEtM1SEjXZJm/XCRi+LlL4eMmhVTMCbuIiByV+TsqkUjEvgElGOvbubC+Sx6dHohJUSLeRp8cDxcpgv3cIJeKodPpWN8lFN/bziWv6ztzv7HigoNmqEjK/GbkxbhkY307F9a382BdO5e8qG+9Xo/kDC2iU5TQ6CwfLwLg5y5DgKcLJGJ2DixMef3+1uv10Godn1WdiIiIqLjR6vRIU2mRotQgVamF1sr9rjUikQgeMjE8XaXwkksg4yqLREREREREDklXaRGfrkZyRtaTPnnKJfBzl8HTRcLJCYioRJNKC6arYHHsREk5x/p2Lqzv4i1VqUFEggIqK5PTikUiBHm7wt/TRbgnZn07D9a1c8lpfYv/m1xCJpMVy8mOOWiGiIiIiAqdSqNDVLISqSrrAydcZWKU9ZbDTcaQRkRERETFg1qrQ+p/q8mkqRxfmU8iEsFTLoGXqxQeLhIOGCciIiIiInKQTqdHslKDBIUG6Wr7EzVJxCL4uknh5yaDi5QTFBARERFRyaXT6RGVnIFnqUqr2z1cpChfyg1yKfvkEFHJxUEzToKz+xMREVFRpNfrEZemxrM0NXRW7lfEIhECPGUo5S7j7G4lGOvW+RTHfMLliZ0L69t5sK6dS0HUt1KjQ4pSg5QMbZYdtEzJJGJ4/TdQxt1FAt4d5R7f384lL+tbJBJxVj0nxOsDERFR8abS6JCQrkZiuibLlT1dZWKUcpPB21UKMScpIKIiihmFiIjySnZXlyEisqW436Ny0EwJZ2zc0+l00Ov1/GAjIiKiIkOh0uJpshJKK8EcALzkUgR5u0Am4QxvJZFOp4NOZ6h73qM6D9N8otPphKVb84pUWnARlx0pnQvr23mwrp1LXtS3Xq+HQqVFcroayRlqm/e21rjJJPB2k8HbVQZXmZj3RPmM72/nkt361uv10Ov1EIvFcHV1hZ+fXz6VjIqa/M4oRERElH/0ej3SVFrEKzRIVWrs7isSieDtKoGfmwxuzF9UDOj1eqENhfeoziW/+3lpNPavlzmVeQIKrdbxVZep+GF9OxfWd/Gl0wMxKUrEK9RWt7vLJCjnI4eLVAyt1jAJGOvbebCunUte1LdOpxOuFVqtFgkJCdl6fFFod+GgmRLO1dUVGRkZ0Ov1SE9Ph7u7e2EXiYiIiJycVqdHTKoKCTaCuVQsQpC3HF5yCRuuSjCFQiH828XFpRBLQgXJ3d1dyCdpaWnw8vIq7CIRERFlm06nR4pSg+R0NVIyNNDoHBsoI4IIHvLnA2VcpOz0QlRUpKenAzA0HLm5uRVyaaggMaMQEREVPxqdHknpaiQoNFBp7ecxmUQMPzcpfN2kkHKCLipGMjIyhH/LZLJCLAkVtOLazytzp0t2ui3ZWN/OhfVdPKWptHiapLR6vywWiRDgKUMpd5lFnxzWt/NgXTuXvKhv035eMplMGEBTnHDQTAnn7e2NpKQkABBGdbm5ubEDKhERERU4vV6PlAwtolKU0Ois33yXcpchwNMFEjHvVUoivV4PjUaD9PR0pKWlCb8vLl/4U+75+voiISEBIpEISUlJ0Gq1cHd3h0xm+YUcERFRUaLR6pCcYRgok6rUQOfgl8kSkQherlJ4u8ng5SrjfS5REWPshGT87lwkEnHQhJNhRiEiIio+0tVaJCg0SM7IOpN5uEhQyl0GT07ORcWMXq9HRkaG0M8HAAf2Oxn28yIiotzQ/TeJrb3VZcr6yCHnpF5E5ICS1s9LpOfwsBJNr9fj4cOHSE9PNxvVJRbnzZLDOgdn0swJ0yVm8/N5qGhgfTsX1rfzYF07F3v1rdcDSq3O5mAZiUgEuVQM9iEsPnLy/tbr9RazFbi5ucHX1zfbz1+6dOlsP4aKhidPniApKQk6nU54n+byMwABAABJREFUPYhEIuEnN/LzsyZz+ay9nqnkYH07D9a1c8lufev1hhmMNTo9tNl4XYghglQMSMRicCLjwsP3t3PJaX1nvn+Uy+UoXbp0tu9L/fz8srU/FS3FNaMA/O7NmbCunQvr27mwvrOm0emh1mady0QAZGIRpJKi29bA+nYeOa3rzPu6uLigVKlS2b4vZRtK8cV+XlRcsL6dC+u7eNDpgQy1DjpY3jeLALhIxJBJsv4sYX07D9a1c2E/L640U+KJRCJUrFgRjx49Qnp6uvACzqtG4oK6UPKC7FxY386F9e08WNfOxVjfer1h2ddUpcZKLDcEc0+5FG4uEkCvg40xNVTE5fT97enpCU9PzzwuDRV1ZcuWhYuLC2JjYwEgTzMKO6RRXmJ9Ow/WtXOxO9AbgFqrQ4ZaB6XG9oBva6RiEVylYrjKTBuddOBLqnDx/e1cclvfLi4u8PX15WvFCRXnjFJYz0WFi3XtXFjfzoX1/ZxWp4dCpYVCrctyVRmpWAQPFwlcZWKIRCg2bQ2sb+eR07p2cXGBn58fVxhxMuznRcUR69u5sL6LHr1ejxSlFmkqrdXtLhIxfNykkIj00GXzRpn17TxY187FWft5caUZJ6HX65GWloaUlBSL2QhyQ6VS5clxMhOJRJDJZML/q9VqzgRZgrG+nQvr23mwrp2LtfpOydDg3jMF0lTWb7T93KUI9Xfjsq/FUE7f32KxGBKJBHK5HHK5HFJpzsfwF4UZCCh3VCoVUlNTkZaWBpVKlSdfwuRXPgH4ueZsWN/Og3XtXKzVt1anR1K6BvEKNeIVaqi1jte/t6sEpTxk8HeX8Z62COL727nkJqPIZDK4ubnBxcUlx53RmE9KBmYUKqpY186F9e1cWN+WkjI0eJqkRLxCY39HEVDaXYYgbxd4uxaPuWJZ384jN3XNjEJG7OdFRRnr27mwvou2lAwt7jxTIENt+T2WWARU9HNFOR+5w8djfTsP1rVzYT8vAw6aoVxJSEjIl+OKxWL4+PgI/5+UlMSRjCUY69u5sL6dB+vauZjWd0qGGl9tuYLV555aXV2mtIcMH3StjK41/Dk7VjFVFN7ffn5+Bfp8VDw8e/Ys344tkUjMXncJCQl51khFRQ/r23mwrp2Lsb4T0lTYfzMG2y49xvHwRGRoHLuPcZOJ0aqSDzpU9UPbUD/4uBWPjlnOiu9v51LY9V0UGnuoaMqvNhSgaGRzKhisa+fC+nYurG+DFKUGW67EYu2FKDyIT7e7b4CnCwY1DMQLDQIR4OlSQCXMG6xv51EU6pptKGRLfrWjFHYup4LF+nYurO+iKUOtxfyjEVh1Lspqv5z65TzxWc9QVCrllq3jsr6dB+vauRSF+i4K7Shs2aVcKaigbfqFApV8rG/nwvp2Hqzrkk+v12PXtSh8vvkaopOVFttFIuClFhXxQc+a8HaVWTkCFVd8fxMREVFxEP5MgXkb7uDo3WfQ6hybR8jfQ4b2VfzQoaofmlX05ooyRESULQXZWZHZ3Hmwrp0L69u5OFt934xKxrITD7HxQiQUKvuddVqGlsKoVpXQrXYgZJKSkcucrb6dGeuaiIiI8tLFiBR8uSscjxIyLLbJpSJMalMBw5sEQSLmJLZERKY4aIaIiIiIci0yMR2fb7qKvTdirG6vGeSFrwbWQ5MQzmxFRERERAVv541n+Gr3faSrs57ZNdTfDR2qGgbK1A7ygJirIxIREREREeUJtVaHnVejsPzEQ5x+EG93Xw8XCV5oXB4jW4WgeqBXAZWQiIiIiKhoyq/VZYiInAUHzRARERFRjmm0Oiw9/gA/7rltdSY4V5kYb3apjvHtKpeY2d+IiIiIqPhQaXT46eBDrL1ofXA3AIhFQP1yXsJAmYp+rgVYQiIiIiIiopIvOjkDf596hJWnHyE2xXKlelNVy3hiVKsQDGwUDC+uWk9EREREhIuRKfhyp/XVZVwkIkxqWwEjuLoMEZFdHDRDuZKQkJAvxxWLxWZL1CYlJUGny3omUCqeWN/OhfXtPFjXJd/1qFTM3HkPN6LTrG5vXdkX07uHoryvK1KTkwq4dJSfisL728+PqxYRERGRfU+TlJi25Q6uR1ner7rKxGhZyRftQ33Rroov/NzZEYuIiPJefrWhAEUjm1PBYF07F9a3cynp9a3X63HucTLWnI/CgTvx0OiszYdtIBEBHauVwrDGZdG0ojdEIhE06alISC/AAuezkl7f9FxRqGu2oRAREZUMGWotFhyNwEobq8vUK+uJz3uGopI/V5chIsoKB81Qrmi1ljPK5wedTldgz0WFj/XtXFjfzoN1XXKkqbT47WgEVl+IgrU2rtKecrzbKQRdq/tCJBKx3p0A399ERERU1BwLT8Rn2+8hKUNjsW148wr4tE9tKNNSeA9DRET5qiA/Z5jNnQfr2rmwvp1LSanvNJUWO64/w5oL0QiPsz/qxd9dhoH1y2BggwAEeskBwGkGkpSU+qassa6pKJFIJPlyXLFYbPf/qWRhfTsX1nfhuRiRjM+337W5usyUdhXxUrNyebq6DOvbebCunQvr24CDZoiIiIjIYQfvxuO7fQ8RnaKyun1Ei4qY1qMmdMpUNgAQERERUYHT6vT4/XgE/jz5xGKbq1SMmQPrYXCT8gAApfUFE4mIiIiIiCgH7selY+3FaGy7Fos0lf2BLw2CPTGkYSC6VC8FmcQ5O+sQERWGglqFyHS1JSr5WN/OhfWd/zLUWny/6xb+PHYfeisT2Tas4IvvhzRA1TKe+V4W1rfzYF07F2etbw6aISIiIqIsRaco8d2+hzh4N8Hq9lB/N8we0hBNK5UCACQoC7J0RERERERAfJoan2y7i9OPki22VfRzxfcDa6B59fKFUDIiIiIiIqKSSaPT4/DdBKy9GI0zVrKYKVepGL1q+2NIw0BUL+NRQCUkIiIiIio+zj2Mx/trLyP8meWsXy5SMd7tVh3j24Xm6eoyRETOgoNmiIiIiMgmrU6PtRejseDIYyjUljPDyaUijGsZjDEty6NM6VKFUEIiIiIiIuBiZAo+2nIHMalqi21dqpfCpz0qw8ddXgglIyIiIiIiKnni0tTYcDkGGy7H2FyZ3qiinysGNyyDvnUC4OXKLipERERERJllqLX4Yfct/HHU3uoy9VG1jFfBF46IqITgNxJEREREZNXN6DR8vfs+rkdbzmABAM1DvDG9a2VU8HOFRCIu4NIREREREQF6vR7/nIvCvMOPodWZtyRJxCK82aEChjcOgkjEWdeIiIiIiIhyQ6/X49KTVKy9EI19t+Oh0VnpzfcfsQhoG+qLoY0C0TzEB2JmMiKiIiEhISFfjisWi+Hj4yP8f1JSEnQ6ywkZqWRgfTsX1nf+uxSZgs+338HD+AyLbS4SESa1q4iXm5WDVKzJt+u4EevbebCunUtRqG8/P78CfT5rOGiGiIiIiMwoVFosPBaBleejYK3Ny89Ninc6haBnLX92PiQiIiKiQpOq1ODLneHYf8eykaiMpwyz+lZDg2DOukZERERERJQb6Sotdt6Mw9qL0bgdo7C7r6+bFAPqBWBQg0CU9eFqn0RERY1Wqy2Q59HpdAX2XFT4WN/OhfWddzLUOiw8FoG/zz212jenTpAHZvSqgsr+boBeh8I47axv58G6di7OWt8cNENEREREgiP3EvDt3geISlFZ3T6gXgBeb18RPm68jSQiIiKiwnMnVoFpm+/gUYLlzGvNQ7wxs3dVlPKQFULJiIiIiIiISoZHCRlYdzEaW67GIkVpvzNN3bIeGNIwEF1r+EMu5cr0RERERET2XH6Sgi92hltdXUYmEWFC6/J4uVlZSMWcyJaIKK+wtyMRERERITZVhe/2PbA6SzcAVCrlio+6VUbjCt4FXDIiIiIiInNbrsbim733odRYTr02vmUwXm0dDAkbkoiIiIiIiLJNq9Pj2P1ErL0QjRMPkuzuK5eK0L1maQxtGIhaQR4FVEIiIiIiouLLkdVlPu8ZitDS7gVfOCKiEo6DZoiIiIicmFanx7+XojH/yGOkqXQW210kIoxtGYxRzcrChbPDEREREVEhylDr8P3+B9h4JdZim4+rFF/2roI2ob4FXzAiIiIiIqJiLlGhxsYrsfj3UjSeJltfid4o2EeOwQ0D0bduafi6cYVPIiIiIiJHXPlvdZkHXF2GiKhQcNAMERERkZO6HZOGr3bfx7WoNKvbm1X0xoddKyGklFsBl4yIiIiIyFxEYgambb6DWzEKi211gjzwbb9qCPKWF0LJiIiIiIiIiq+rT1Ox9kI09tyKg0prZarr/4gAtKrsg6GNgtC6sg/EInbkIyIiIiJyhFKjw2/HIvD3Weury9QO8sAMri5DRJTvOGiGiIiIyMmkq7T4/UQk/jn7FNbawHzcpHi7Y0WE1S4NERu+iIiIiKiQHbwbjxk7wpGq1FpsG9IwEG93rMhVEYmIiIiIiByUodZhz604rL0QjevR1ifVMvJ2laBf3QAMbhiI8r6uBVRCIiIiIqKS4erTVMzYcY+ryxARFQEcNEO5IpFI8uW4YrHY7v9TycL6di6sb+fBui6ajt5LwKw94XiSpLS6vV/dALzVqRL83GXZOi7r27mwvomIiKggaHR6LDjyGMvOPLXY5iYT4+PuldGzVulCKBkREREREVHxE5mYgXWXYrD5SiySMjR2960Z6I4hDQPRo6Y/XGX50yeAiIiIiKikUmp0WHgsAitsrS4T6IHPe4WiCleXISIqMBw0Q7ni5+dXIM/j4+NTIM9DRQPr27mwvp0H67pwxSRn4Iut17HtsmWHQwAILe2BrwbWQ6sq/nnyfKxv58L6JiIiorz2LFWFj7bexfmIFIttlUu5Ynb/6qjs71YIJSMiIiIiIio+dHo9Tj5IwpoL0TgWnggr/fUEMokIXWuUwtCGgahb1pMr0RMRERER5cDVp6n4Ysc93LexusxrrYMxslk5ri5DRFTAOGiGiIiIqATT6fT45/QjfLvzJlKszBznIhFjUscqmNypCuRSzhZHRERERIXv7KNkfLz1LuIUaottPWr64+PuleHuwntXIiIiIiIiW5LSNdhyNRbrLkUjItH6yvNGQV4uGNSwDPrXLYNSHtlbhZ6IiIiIiAwcWV3ms56hqBrA1WWIiAoDB80QERERlVA3o5Lx0forOP8o0er2FpVL4auB9VC1jGfBFoyIiIiIyAqdXo9lp59iwdHHFg1KMokI73YKwaAGZTjbMRERERERkQ03o9Ow5kI0dt2Mg1Kjs7tvixBvDGkUiHahfpBwlmsiIiIiohyzt7qMVGxYXWZUc64uQ0RUmDhohnIlISEhX44rFovh4+Mj/H9SUhJ0Ovtf6lHxxfp2Lqxv58G6Ljzpai0WHY/A8tNPoLEyfYWPqxRvdwpBv3plIBKp8+TznPXtXIpCffv5+RXo8xEREVH+Ss7Q4PMd93DkXqLFtiAvF3zbrxrqlOVgbyIiIiIiosxUGh323Y7H2ovRuPwk1e6+nnIJ+tYJwKCGZVCplFsBlZCIiIiIqGRSanRYdDwCy85YX12mVqAHPufqMkRERQIHzVCuaLXaAnkenU5XYM9FhY/17VxY386DdV0wTtxPxDd7HyAySWl1e+/apfF2x4rwc5fl6yAH1rdzYX0TERFRbtyMTsO0zXes3sO2ruyDL3tXga+brBBKRkREREREVHRFJSvx76UYbLwcg4R0jd19q5Z2w9BGQehVyx9uLpICKiERERERUcl17WkqvtgZjvC4dIttXF2GiKjo4aAZIiIiohIgLk2NHw88xK6bcVa3V/CVY3q3ymge4mN1OxERERFRQdPr9dhwORbf738AldZ8CjaxCJjQpjxeaVEOYhEblIiIiIiIiABDjjr9KBlrL0Tj8L0Eq7NZG0nEInSu5oehjQLRMNgLImYrIiKnJ5Hkz8BJsVhs9/+pZGF9OxfWtyWVRoffjj3GX6cira8uE+SBL3tXRdUAj4IvXC6xvp0H69q5sL4NOGiGiIiIqBjT6fXYdCUW8w49QorScqUPqViE0c3LYmzLYMilznnDS0RERERFT4Zai6/3PMD2688stvm5SfFVn6oc8E1ERMVefnVIA9jQ6UxY186F9e1cslPfKUoNtlyJxdoLUXgQbzmTtakATxcMahiIFxoEIsDTJU/KSrnH97fzYF1TUebn51cgz+Pjw+/1nAnr27k4e31fepyI99ZexZ2YVIttMokIb3aphgkdqkAmKRmf/85e386Ede1cnLW+OWiGiIiIqJi690yBr/fcx6VIyzAOAA2DvfBRt0oILe1ewCUjIiIiIrLtYXw6Pth8B/eeWXb0ahDsiVl9qqGMFzt2ERFR8VdQHdIA523odEasa+fC+nYu1ur7ZlQylp14iI0XIqFQWU6cZaplaCmMalUJ3WoHlphOeiUZ39/Og3VNRERU/Ck1WszdewcLD4dDa2V5mbrB3vh+SAPUDPIuhNIREZEjOGiGiIiIqJjJUOuw+FQklp1+Co2VMO4ll+DNDhXRr14AxCJRIZSQiIiIiMi6vbfi8L9d4UhT6Sy2vdQkCK+3rwApO3cREREREZETU2t12Hk1CstPPsTp+/F29/VwkeCFxuUxslUIqgd6FVAJiYiIiIich2F1mUs2V5d5o3M1TOxYclaXISIqqThohoiIiKgYOfUwCd/suY/HiUqr23vW8sfbHUPg7yEr4JIREREREdmm1uow79BjrDwfZbHNw0WMz3pWQZfqpQqhZEREREREREVDdHIG/j71CCtPP0JsivU2AKOqZTwxqlUIBjYKhpcr2wOIiMgxCQkJ+XJcsVhstqpSUlISdDrLSXOoZGB9Oxdnrm+VRoffjz/G0pOR0FrOZ4uagR74ondVVC/jgdTkpIIvYD5w5vp2Nqxr51IU6rsgV2W3hYNmiIiIiIqBBIUaPx58iB3X46xuD/aRY3q3SmhZybdgC0ZERERElIXoFCWmb7mLy08sZ2GrFuCOb/tVQ0U/10IoGRERUf7Krw5pQNFo6KSCwbp2Lqxv5yIWi+Ht7Y1T9+Ox/MRD7LoWZXV1eSOJCOhYrRSGNS6LphW9IRKJoElPRUJ6ARaacozvb+dRFOq6KHRIo6JJq9UWyPPodLoCey4qfKxv5+Is9X09KhVf7AzHvWeWN9tSsQjjWwVjTPOykErEJfp8OEt9E+va2ThrfXPQDBEREVERptfrsflqLOYdeoykDI3FdolYhFHNymJcy2C4yrjUKxEREREVLScfJOGTbXeRmG55L9u3TmlM61oJrjJJIZSMiIgo/xVkw6OzNnQ6I9a1c2F9l1w6vR57byfgr9OXcCs6xe6+/u4yDKxfBgMbBCDQS254PAdbFHt8fzsP1jUREVHxodLosOhEJJadfmJ1dZkaZdwxo1cVVAtwL/jCERFRrnDQDBEREVER9SAuHV/vuY/zEdYbzOqX88RH3SqjKsM4ERERERUxOr0ef56IxO/HI5G5XclFIsIHXSuhf90AiESiQikfERERERFRYTn3OBlzDz7C9eg0u/s1CPbEkIaB6FK9FGQSTppFRERERJSfbkSlYcbOe1ZXl5GIRRjfshxeaVEOUt6bExEVSxw0Q0RERFTEKDU6LD31BEtOPYFGZzl1hadcgtfbV8DA+mUgZidDIiIiIipiEhVqfLr9Hk48SLLYFuwjx7f9qqFmoEchlIyIiIiIiKjwPIhLx7zDj3D4XqLNfVylYvSq7Y8hDQNRvQxzExERERFRflNpdPjjZCT+OmV9dZnqZdwxo2co78+JiIo5DpohIiIiKkLOPkrC13se4FFChtXt3Wv6451OFVHaw6WAS0ZERERElLWrT1MxbfMdRKeoLLZ1qOqHGT1D4eXKrySJiIiIiMh5xKWp8fvxCGy8HGO1Ex4AVC7tgUH1AxBW25+ZiYiIiIiogHB1GSIi58FvW4iIiIiKgESFGnMOPcLWa8+sbi/nLce0rpXQJtS3YAtGREREROQAvV6P1ReiMefgI4vVEiUiYEq7ChjZrCxEXCmRiIiIiIicRIZaixVno7Ds9BMo1Dqr+4SW9sAHPWuie+1AJCUlQqvVFnApiYiIiIicj1qrwx8nIrGUq8sQETkNDpohIiIiKkR6vR7brj3DT4ceISldY7FdIgJealoWr7UOhqtMUgglJCIiIiKyL02lxVe772P3zTiLbf4eMszqUxWNK3gXQsmIiIiIiIgKnlZn+N7/12OPEZuqtrqPn5sUE9tWwNiONSHjrNVERERERAXmZnQaZuy4h7s2VpcZ17IcxnJ1GSKiEoeDZoiIiIgKyYP4dMzacx/nHqdY3V63rAc+7h6KagHuBVwyIiIiIiLH3HumwLTNd/AgPsNiW5MKXviqT1WU9nAphJIREREREREVvBP3EzH30COrHfAAQC4V4aWmZTGqWVn4uMs5YIaIiIiIqICotTr8eeIJlpyKtL66TIA7Pu8VihpcXYaIqETioBnKFYkkf2a8F4vFdv+fShbWt3NhfTsP1rVtKo0OS05F4s8TEVBbSeKeLhK83qEiBjUMgkQsKoQSZh/r27mwvomIiAgAdt54hpm77iNDo7PYNqZ5WUxsWwHSYnI/S0RERERElBt3YhWYe+gRTj5IsrpdBKBPndKY2LY8Ar3kBVs4IiIiIiInl9XqMmNblMPYluU4qJ2IqATjoBnKFT8/vwJ5Hh8fnwJ5HioaWN/OhfXtPFjXBqfC4/DRhiu4F5tmdXtYvbL4rG9tBHq7FnDJ8hbr27mwvomIiJyLSqPDjwceYt2lGIttXnIJvuhdBe2rFMx3RkRERERERIUpOkWJ345GYOu1Z7AyWTUAoEWIN97sUBHVOWM1EREREVGBUmt1WHzyCRafegKtzvKOnavLEBE5Dw6aISIiIioACWkqzNpxA2vORljdHuzrhi/710GXWoEFXDIiIiIiIsc9SVLiw813cD3achB4zUB3fNO3Gsr7Fu8B4ERERERERFlJVWqw7MxT/H02Ckorq28CQNXSbnizQ0W0quxbsIUjIiIiIiLcjE7DFzvDcSdWYbGNq8sQETkfDpohIiIiykd6vR4bL0bif1tvID5NZbFdIhZhbJtKeKtrdXjIeWtGREREREXX0XsJ+GzHPSRnaC22vdCgDN7tFAK5lI1LRERERERUcmm0Omy4HIvfj0cgIV1jdZ8ATxkmtimPPnUCIBGLCriERERERETOLavVZaoFuOPznqGoGcjVZYiInAl7ZlKuJCQk5MtxxWIxfHx8hP9PSkqCTmd9hh4q/ljfzoX17TxY18DD+HR8vTscpx8mWd1ep6wnPukRipqBnlApUqCynNyi2GB9O5eiUN9+fn4F+nxERETOTKvTY+HxCCw++cRim1wqxkfdKiGsTkAhlIyIiIiIiKhg6PV6HLqXgJ8PP8bD+Ayr+7jLxBjVvBxeahIENxdJAZeQiIiIiIhuxaThix3huM3VZYiIKBMOmqFc0WotZxbNDzqdrsCeiwof69u5sL6dhzPVtVqrw7IzT/HniUiotJazVrjLxJjcrgKGNAyERCwqkefFmeqbWN9EREQlWVyaGp9su4szj5IttlX0c8XsftVQNcC9EEpGRERERERUMK49TcXcQ49wPiLF6naJCBhQvwxea10e/h6yAi4dERERERFltbpM1dJumNGrCleXISJyYhw0Q0RERJSHLkak4Kvd4bhvY6a5TtX88F7nEAR6yQu4ZERERERE2XMxIgXTt95BbKraYluX6qXwaY/K8JTz60UiIiIiIiqZIhMzMP9oBHbfjLO5T7sqvnijfUVU9ncrwJIREREREZGR3dVlRMArLYIxrhVXlyEicnZs1SYiIiLKA8kZGvx8+BE2XI61uj3QywXvdwlBx6qlCrhkREQFLz4+HidOnMCFCxcQGRmJxMREeHp6okaNGujfvz+qVatW2EUkIiI79Ho9/j4bhZ8PP0LmhRMlYhHe6lARLzYOhEgkKpwCEhERERER5aPkDA0Wn4zE6gvRUFtZTR4Aagd64M2OFdGkgncBl46IiIiIiABAo9Vh8akn+PMkV5chIqKscdAMERERUS7o9XrsuhmHHw88RLxCY7FdLAKGNQ7CxDbl4eEiKYQSEhEVvB07dmDTpk0IDAxEgwYN4O3tjadPn+LMmTM4c+YM3nzzTbRu3bqwi0lERFakKjX4Ymc4DtxJsNgW6OWCWX2ron45r0IoGRERERERUf5SaXRYczEai09GIjlDa3Wfst4umNKuArrX9IeYEwkQERERERWK2zFpmLEzHLdjrK8uM6ZFOYxvFczVZYiISMBBM0REREQ5FJGYgW/3PsCJB0lWt9cMdMfH3UJRK4izVhCRc6latSpmzJiB2rVrm/3+xo0b+PLLL7Fo0SI0a9YMMpmskEpIRETW3I5Jw7TNd/A4UWmxrUWIN2aGVYWfO6/dRERERERUsuj1euy5FY/5Rx4jMskyDwGAp1yCcS2DMbRRIORSdrwjIqLiSSLJn0kexWKx3f+nkoX17VyKWn2rtTosPhGJP05EQGN1dRl3fBFWFbWDPAuhdMVfUatvyj+sa+fC+jbgoBkiIiKibNJodVhxNgqLTkRAqbEM4W4yMSa1LY+hjYIgFXOmOSJyPi1atLD6+1q1aqFu3bq4dOkSHj16hCpVqhRwyYiIyJbNV2Lx7b77Fve3IgDjWwVjfKtgSHhvS0REREREJcyFiGTMOfgI16LSrG6XikUY0igQ41qWg68bJxEgIqLizc/Pr0Cex8fHp0Ceh4oG1rdzKcz6vv4kGe+tvYrrT5MttknEIkzqUAWvd6kKuTR/Bgg6I76/nQfr2rk4a31z0AwRERFRNlx+koKvdt/HvWfpVre3r+KLD7pUQpC3vIBLRkQlRVJSEu7evYu7d+/i3r17uHfvHlJSUgAAHTp0wJQpUxw+VmxsLHbs2IHz588jLi4OUqkUQUFBaNWqFXr06AG5vOCvVcZZzPJrNjMiIsqeDLUO3+1/gE1XYi22+bhK8b+wKmhd2bfgC0ZERERERJSPHsSn45fDj3HwboLNfbrVKIUp7SqgvK9rAZaMiIiIiIhMqbU6LDhwDz/vv2N1dZkagV74bkh91C/vW/CFIyKiYoODZoiIiIgckJKhwS9HHmP9pRhYRnCgjKcM73ephI5V/SAScQZuIsq5V199NU+Oc/bsWfz8889IT38+yE+pVAoDcfbt24fp06cjKCgoT57PEc+ePcOVK1fg5+eHihUrFtjzEhGRdY8TMjBt8x3cjlVYbKsT5IFv+1XjYHAiIiIiIipREhRq/H48EusvRUNr7ct+AA2CPfFWh4qoV86rYAtHRERERERmbjxNxntrL+HaE64uQ0REucNBM0RERER26PV67L0Vj+8PPERcmtpiuwjAsMaBmNimPDzlvLUiorxVunRpBAcH49KlS9l63P379zFnzhyo/s/enYdHVZ7/H//MmUky2UlCIGGHbKyiIIgLAu4LuH/tYlu72VbRqrUuuNSlWrUu1dKvWO2i1q/2Z91BcUNEEa0gigghCzshgexkncnMOb8/UGCYhHW25Lxf1+WVzLmfOeeOd4bMnHPu5/F65Xa7dd5552n06NHyer36+OOPtWDBAlVWVuree+/Vfffdp8TExDD9BLv5fD7Nnj1bHR0duuSSS2QYRtiPCQDo2gdldbp9/jq1eP1Bse8c1VfXTB2kOCf/VgMAAADoGdo7/Hru8yo9/dlWtXjNTscMynDryskDNa2AybEAAD1TfX3XK6wdDsMwlJ6evutxY2OjTLPzv7fo/qi3vUSr3h1+U//8tEJPLtnS6eoyeb0TdedZBRqVm6LWph0KnhoMh4LXt31Qa3uJhXpnZGRE9Hid4c5OAACALlQ0tOv+BRu0ZH1jp/HCPkm65dShGpWbEuHMAPRkF110kfLy8pSXl6devXpp+/btuvLKKw9qH0899ZS8Xq+cTqduvfVWFRYW7oqNHj1aubm5evbZZ1VZWam5c+fq4osvDtrHM888o46O4GbBrpx11lnKzc3tNGaaph577DEVFxfr5JNP1oknnnhQPw8AIHR8flP/+9EW/WtZZVAsMc7QracP0+nDs6KQGQAAAACEnt+0NH91jeZ8vEXbmrydjumV6NJlx/bXhWP7yMXkAQCAHszvD55AJxxM04zYsRB91NteIlHv8upW3fHWWq3ZFtwK43RIP5rYT5cd21/xLoPfvTDj9W0f1Npe7FpvmmYAAAD24vObeu7zKv11SYU8vuCuarfL0K+OH6Dvjs+Ry2C2OQCh1VkDy8EoLy9XcXGxJGnatGkBDTPfmj59uhYuXKiKigrNnz9fF1xwgVyuwI+H7777rjwezwEfd9KkSZ02zZimqTlz5mjx4sWaPHmyLrvssoP8iQAAoVLd7NXN88r1xZamoNiwrETdf06BhmaFf/UxAAAAAIiE/25s1KMfbFJpdefzTie4HPreuBz9+Jh+rCQPAAAARJnPb+qpzyr1t08qOl1dZlhWou44c5hG5jCxLQDg4HHmBwAAYA9fVzbrnnfWq6yLi2gnDOulG08eotz0hAhnBgAH5rPPPtv1/bRp0zodYxiGpkyZoueee04tLS1atWqVxo4dGzDmX//612Hn8u0KMx9++KGOP/54zZw5U4bBbJ0AEA3LNjXq5nnlqmv1BcXOHJGlm08dqsR4ZxQyAwAAAIDQKq9u1Z8XbdKSDZ2vIu+QdObI3rrihAHKSeNcPwAAABBt+1pdxnBIl+6xugwAAIeCphkAAABJzR6f/vejLXrxy20Knq9C6p0cp9+eNFgnF2bK4WB1GQCxq6SkRJKUkJCgYcOGdTlu5MiRAc/Zu2nmcO3ZMHPcccfpqquuomEGAKLAtCw9/dlWzVm8RXtPzBbndOi6aYN14dg+vMcFAAAA0O1VN3v1+MdbNPfr6qDPP9+aOChNv54ySMP7Jkc2OQAAAABBfH5TTy+t1JNLul5d5vYzhmlULqvLAAAOD00zAADA1izL0vtl9Xrw/Q2qbu4IijskXXRkH82cPFApCbx1AhD7tmzZIknKycmR09n1igH9+vULek6omKapOXPm6MMPP9SkSZNomAGAKGls8+n2+Wu1eF1DUCw3LV73zSjgQhMAAACAbq/F69e/PqvUs8sq1e4zOx0zLCtRV08ZpOOGpjNpAAAAABADWF0GABBJ3PkJAABsq7LRoz8u2KCPOrmJUJLyeyfqltOGaky/1MgmBgCHyOv1qqmpSZKUlZW1z7EpKSlKSEiQx+NRbW1tSPN48cUXtWjRIrndbvXr108vvfRS0JiJEydqyJAhB7S/A81vX01Ch2vvph+agHo26m0fPbnWqyqbdcNrJdra6AmKnTCsl+6eXqD0xLgoZBY9PbneCEa97YV6AwBgTz7T0msrt+uJjytU2xo8KZYkZSXH6fLjB2j66Gy5DJplAAAAgGjzmZae/mxrl6vLDM106/Yz8zSaSb8AACFE0wwAALAdn2np38ur9PjiLZ3OOpfgMvSL4/rrkvE5cjm50QZA99He3r7re7fbvd/xbrdbHo8n4HmhUF1dvSufl19+udMxffr0OeCmmcsvv/yAxr3wwgsHNC4U0tPTI3YsRB/1to+eUGvLsvTcZ5t05+ur5fUHvtc1HNJ1pxXp8il5MrhZrEfUGweOetsL9QYAoGezLEuL1zXoz4s2aX1d5+e1EuMM/XBCrn5wdK6S4sM30QoAAACAA1de3ao731qn4m0tQTHDIf1oQq4uO26AElhdBgAQYjTNAAAAW1ld1ax73lmvku3By7tK0nFD0nXjKUPUv9f+bzYHgFjj9Xp3fe9y7f/j3rdj9nxeKMycOVMzZ84M6T4BAPvX6vXplle+1itfVATFeqfE68/fPUrH5feOQmYAANgTq2EiFKi1vVDv/Vtd1aw/LdygZZt2dBo3HNL5R/TVL08YqOyU+Ahnd3Cot71Qb/ug1gAABPOZlp75bKue/KRCHX5WlwEARB5NMwAAwBZavH7NWbxZL3yxTZ2s7qqspDhdd9JgnVqUKYeDWbcBdE/x8btvBPD5fPsd/+2YPZ8Xi+bMmRPtFAAg5q2tbtblz36u0m3NQbGjB2foL98fp5x0GsMBAIikjIyMiB2LFZbsg1rbC/XebXNdqx58p0Svfbm1yzEnDe+jm84crsK+qRHMLHSot71Qb/ug1gAAu1tb06o756/T6i5Wl/nhhFz9gtVlAABhRtMMDku4Zklj5g17od72Qr3tI5ZqvbC0Vve9u17bmztfSeHCI/vq6imDlermrdGhiqV6I/yod+xyu3ffDN3e3r7f8d+O2fN5sSgrK+uAxtXX14ctB8MwAi5uNjY2yjTNsB0P0UW97aOn1Pqd4hrd+Va5Wr3Buf9wQj9dNWWQ4sw21de3RSG72NFT6o0DQ73tJdr1jmRjBAAAdtPY1qHHFpbrn0s2yOvr/O/7qH5puuWsEaysCQAAAMQQn2npX0u36oklna8uMyTTrTtYXQYAECHcGYrDEqmLgcy8YS/U216ot31Eo9ZbG9p0++ur9O7qbZ3GC/um6N4Lxmj84MwIZ9bz8dq2F+odO+Lj45WamqqmpibV1tbuc2xzc7M8Ho+kA29KiXV+vz9ixzJNM6LHQ3RRb/vobrXu8Jt6dNEm/Xt58Pvd5Hinbj9jmE4qzJRkdaufK1K6W71xeKi3vVBvAAC6P6/P1LOfbtSf3y9TQ2tHp2P690rUb08v1Llj+8swWEEeAAAAiBVra1p151vrtLqq89VlfnB0rn55PKvLAAAih6YZAADQ4/hNS08v2aCH3ilRizf4JpkEl6Ffn1ygyyYPUzwfwAH0MAMGDFBxcbGqqqrk9/u7XB1y69atAc8BAHQvVTs8mjW3XCsrm4NiBdlJuv+cAg3KiO2VxAAA6OlYDROhQK3thXpLlmXpvZJazV60SZsbOl9JOSXeqZ8e21/fG58rd5xTjY0NkU0yRKi3vVBv+4iFWrMaJgAgWlhdBgAQq2iaAQAAPcrXFY2a9fJKraxo7DQ+uaC37j5vtAZnJUc4MwCIjKKiIhUXF8vj8WjdunUqKCjodNzq1asDngMA6D4+Wd+gW99cq8Y2X1Bsxuhs3XjyELnjaA4HACDaWA0T4UCt7cVu9V5R0aRHF23SV1uDJweQJKfh0P8c2Uc/n9RfvZLiJEX239pws1u97Y562we1BgDYxbqaVt2xj9VlLjk6V79idRkAQJTQNIPDEq5Z0mJh5g1EDvW2F+ptH5GudavXr8c+2qTnP6+UGTxZhTKT4vTbk4fojBG95XB4VV/vDVsudsRr215iod7Mkta1iRMn6tVXX5UkLVy4sNOmGdM0tWjRIklScnKyRo0aFckUAQCHyG9a+tsnFfrbJxXa+y1vgsuhG04eonPH9IlKbgAAAABwqDbVt2v2h5u0sKzra88nFWToyhMHsaImAAAAEGN8pqVnl1bqr0u2dLq6zOBMt+44Y5jG9EuNQnYAAOxE0wwOS6Rmw2DmDXuh3vZCve0jnLX+cG297n9vg7Y1dd4Ic96YbF114iClJ7po5IgQXtv2Qr1jS35+vkaMGKHi4mItXLhQU6dOVWFhYcCYefPmqaKiQpJ05plnyuXioyEAxLqG1g7d+uZafboheEXFAb0SdP85BSrqw2qKAAAAALqPhtYOPflJhV5csV3+zmbDknREvxRdPWWQxvbnBjsAAAAg1qyradWdb63Tqn2sLvPL4wbIHcfqMgCA6OLOKAAA0G1tb/Lqgfc3dDn73NBMt24+baiOGpAW4cwA4NCtWbNGVVVVux7v2LFj1/dVVVX64IMPAsZPnTo1aB8//vGPddttt8nr9eruu+/W+eefr1GjRsnr9WrJkiV67733JEm5ubmaMWNGWH6OaHA6nWHbt2EY+3yMnoV620d3qfVXFU264bWSTpvEpxVk6s6z8pXq5jTf/nSXeiM0qLe9UG8AALqX9g5T/15epX/+d6tavJ1PxjOgV4KunDxQJxdmyuFwRDhDAAAAAPvy7eoyTyzZIm8Xq8vcfsYwHcHqMgCAGMHVdAAA0O34TUsvfrlNjy3erBZv8Mox8U6Hfjqpvy6dmKs4JzfKAOheFixYoEWLFnUaKykpUUlJScC2zppmhg4dqmuuuUazZ89WW1ubnn/++aAxubm5mjVrlhITE0OSdyzIyMiI2LHS09MjdixEH/W2j1irtWVZenrJBt3zZrE69rro5DQcuvGMIl02eRg3kB2iWKs3wot62wv1BgAgNpmWpfmra/TY4i1drhyfnujSZcf214Vj+3B+HwAAAIhB62vbdMf8tZ2uLuOQ9IOjc/XL41ldBgAQW2iaAQAA3UrJ9hb94Z31nX74lqQJg9I069ShGpThjnBmABBbjj76aD344IN68803tXz5ctXV1cnlciknJ0eTJk3SGWecoYSEhGinCQDoQrPHpxtf+kpvfFUZFOuTmqC/fH+cJg7NjEJmAAAAAHDwlm5q1CMfbFLJ9tZO4/FOh747Lkc/OaYfK2kCAAAAMchvWnrqvxWa89GmTleXGZTh1h1nsroMACA2cbYJAAB0C21ev55YUqHnPq9UJ5+91SvRpWunDtJZI3sz0zaAbm3mzJmaOXNmSPaVnZ2tSy+9VJdeemlI9gcAiIzSbU361bOfa111cKP4scOy9Oj3jlSfVJrEAQAAAMS+tTWt+vOizfp4fUOXY84ckaUrThio3HQmeAEAAABiUfn2Zv32Pyv05eaGoJhD0iVH5+hXxw9kdRkAQMyiaQYAAMS8xesadP9761W5w9tpfMbobF09ZaB6JcZFODMAQCypr68P274Nw1B6evqux42NjTJNM2zHQ3RRb/uIxVq/sapad7+9Vu0dwXn8dFJ/XT55kFy+NtXXt0Uhu+4tFuuN8KHe9hLtemdkZETsWAAAdBc1zV79dckWvbayWmYnE2FJ0tED03T1lEEakZMc2eQAAAAAHBC/aemvi9bqoXdL5fUFn28blOHW7WcM09j+rC4DAIhtNM0AAICYVdPs1YPvb9R7pXWdxgdnujXrlKE6elBahDMDAMQiv98fsWOZphnR4yG6qLd9RLPWHp+phxZu1MsrtgfFUhOcuuusPE3Oy5AsU/w6hgavbXuh3vZCvQEAiJ5Wr1//WlqpZ5dVqq2TyQAkaWimW1dPGaTjh/Vi5XgAAAAgRu1o9+mG18u0bNOOoJhD0vfH5+jyE1hdBgDQPdA0AwAAYo5pWXp5xXbN/nCzWrzBN7nEOR36yTH99OOJ/RTv4sM3AAAAureKhnbdNLdcxdtagmLD+ybp/hkF6t/LHYXMAAAAAODA+ExLc7+u1uMfb1FtS0enY7KS4vTL4wfonDHZchk0ywAAAACxaluTR79+qURra4JXvR+U4dbvzhimI1ldBgDQjdA0AwAAYkp5davueWe9VlY2dxofPzBVs04dqiGZiRHODAAAAAi9j9bW6/b5a7WjPbhZ/MKxffSbaYOVQKM4AAAAgBhlWZY+Xt+oPy/apHW1wTfUSZLbZeiHE3L1gwm5So53RjhDAAAAAAdjXU2rrnqpRNuavAHbHQ7pkqNz9avj+ssdx/t6AED3QtMMAACICe0dfj35SYWeXVYlv2kFxdPdLl0zdZCmj+oth4MZ6AAAANC9+UxLf/14i/75361BMbfL0KxTh+jsUdlRyAwAAAAADsyabS16dNEmLd20o9O44ZDOGZ2tXx4/QNkp8RHODgAAAMDB+rKiSb95pSRooq8+qQl67JJxykt3yO8PngQMAIBYR9MMAACIuiXrG3T/extU0ejpND59VG9dPWWQMpLiIpwZAAAAEHq1LR26ZV65lm0OvrFscKZb988oUH52UhQyAwAAAID9q9rh0f8u3qz5q2u7HHPc0HT9+sRBfLYBAAAAuokPyut0y7xyeXyBE90Oy07W0z+ZqIGZSaqvr49SdgAAHB6aZgAAQNTUtHj18MJNemdN5xfWBmW4NevUIZowKD3CmQEAuiOnM3zLgBuGsc/H6Fmot31Eo9bLN+/Qja+XqKa5Iyh22vAs/e6MfCUnhO/fMzvjtW0v1NteqDcAAJHR7PHpn//dquc/r5LXH7xivCQV9knS1VMG6ZjBnNcHAAAAuotXvtque99dL3Ovt/ljclP09M+PVWYyK0cCALo3mmYAAEDEmZalV7+q1uwPN6nJE7xsq8tw6McT++knk/opwcWNLgCAA5ORkRGxY6Wnc+OHnVBv+whnrS3L0pMfrdP9b5XIv9dVpzinQ7ecNUKXHjdEDocjbDkgEK9te6He9kK9AQAIrQ6/qZdWbNffPqlQQ5uv0zF9U+N1+QkDdNbI3jL4XAMAQEwK1+RjTGZhL9S7Z7EsS08s2aLHF28Oip0wrJceOH9EQMMM9e7ZeH3bB7W2F+q9E00zAAAgosqrW/WHd9frq63NncaPGpCqm08dqqFZiRHODAAAAAiPxrYOXf+fFXpn9bagWG66W/97yTiNGxS5xj8AAAAAOBCWZen9snr95cNN2tzg6XRMcryhHx/TT98blyt3nD1vugAAoLuI1ORjTGZhL9S7+/Kblm577Ws999/ghpn/GT9Af7hgjOKcge/xqbe9UG/7oNb2Ytd60zQDAAAior3Dryc+3qxnllYGzawtSWlup349ZZDOGZ3NLHQAAADoMVZtbdQV/7dcG2tbg2KTC3rr0e8eFTBLGwAAAADEgq+2NumRDzZ1OQGW03DowrF9dNmx/ZWRFBfh7AAAAAAcjvYOv379/BedTvZ15bR8XXdaoRzcuwMA6EFomgEAAGH3UVm1bn7pK21uaO80fuaILF07dbAyk7mwBgA4dPX19WHbt2EYAbNtNDY2yjTNsB0P0UW97SPctX5lxTbd9+46ef2BTeMOSb84foAuO26gHN4W1XtbQnZMdI3Xtr1Qb3uJdr0jNVMvAACRsKWhXX/5cLPeK63rcsy0ggxdOXmgBmeyYjwAAADQ3TS0evXzp5dp2cbAa6sOh3TnOaP0o2OHRCcxAADCiKYZAAAQNjXNHt09b7Ve/XJrp/EBvRJ00ylDNWmIPZf8AwCElt/vj9ixTNOM6PEQXdTbPkJV6/YOv+5fsFFzv64OiqUnunT3WXk6dmgvyTLFr1b08Nq2F+ptL9QbAICD19DWob9/slX/+XKbfJ2sFi9Jo3OTdc2UwTpyQGqEswMAAKEQrsnHoj2ZBSKLendvVTs8mvnCaq2rbQvYHud06J7pBTp1eHrAvxXU216ot31Qa3uJhXrHwuRjNM0AAICw+GhtvW5/c6nqWzuCYk7DoR9NyNXPJvWXO86IQnYAAABAeGyqb9eNr5eprLo1KDYmN0X3zshXTlpCFDIDAAAAgGAen6n/t7xK//jvVjV7Om867Z+eoCsnD9QpRZlyOBwRzhAAAIRKpCaYYDILe6He3cfamlZd9eIabW8OvI8nJcGph84r1PiBafutJfW2F+ptH9TaXuxab5pmAABASPlMS48v3qynPqvsNH5EvxTdctpQ5fVOinBmAAAAQHi9X1qnO99apxZv8EnG747rq6unDFKck6ZxAAAAANFnWpbeLq7VY4s3q3KHt9MxaW6nfn5sf100tq/iXXyWAQAAALqrL7bs0G9eKVXTXo3y2Slxmn3hcOVncw8PAKBno2kGAACETHWzVzfPK9cXW5qCYikJTv36xEE674hsGcxEBwAAgB7E5zf1l48269llVUGxpDhDt50+TKcOz4pCZgAAAAAQbNmmHXp00SYVb2vpNB7ndOi7R+XoJ5P6Kc3NLQUAAABAd/ZBWZ1unlcur98K2D4k063ZFw5XbnpClDIDACByOMMFAABC4tMNjbrtjXLVt/mCYqeP6qvfTh2ojERnFDIDAAAAwmd7k1ez5pVpRUVzUGxYVqL+eE6BhmQlRiEzAAAAAAi0vrZNf160SR+ta+hyzOnDs3TFCQPUv5c7cokBAAAACIsXv9ymPy7YIDOwX0ZH9EvRw+cXqldiXHQSAwAgwmiaAQAAh8VvWvrbJxX62ycV2usztuKcDt1y1ghdetwQNTQ0yO/3d7oPAAAAoDtauqlRt8wrV11rcOP4mSOzdPMpQ5UYT+M4AAAAgOiqafHqiSUVeu2r7fLvfSL/G+MGpOrqKYM0KjclsskBAAAACDnLsvTEkgo9+UlFUGxyXi/dOz1f7jiuXwAA7IOmGQAAcMhqWzp02xvl+mzTjqBYblqC5vzwaB05sFfkEwMQGpYpR3ujjLZaOdpqZbTVymitlbO9TjKbpZZqydsqTf97tDMFACCiTMvSU//dqsc/3hI0O1uc06HfnjRYFxzRRw6HIzoJAgAAAICkNq9fzy6r1DNLK9XWYXY6ZkimW1edOEgn5vXiMwwAAADQA/hMS/e9u16vrqwOip03Jls3nTpULoP3/gAAe6FpBgAAHJLPN+/QzfPKVdvSERSbnNdLvz+7QEP69Yp8YgD2zdcuo7VWRluNHK3fNMJ80wyzqzGmrXZnrL1ODjN45vwgfq8kZqFB9Dmd4fs9NAxjn4/Rs1Bv+ziUWje2dejWeWVavK4hKJablqAHzitiZuYYxWvbXqi3vVBvAAAC+U1Lc1dV6/HFW1TTyTl8ScpMcukXxw3QeUf04YY5AAAAoIdo7/Dr5nnl+nBtQ1Ds55P665fH96dZHgBgSzTNAACAg7KvWbWdDunKEwfpB0fnyOXibQYQEaZfjvb6PZpdanY1wexcIaZuj+9rZXS0hDwFR1udlJgd8v0CBysjIyNix0pPT4/YsRB91Ns+9lfrr7Y06PJnv1ZFQ1tQ7KThffTwxWPVKyk+XOkhxHht2wv1thfqDQCwK8uy9MmGRv150SaV1wR/bpGkBJehHxydox9N7KfkeCbCAQAAAHqKxjafrn2lRF9tbQ7Y7pB04ylDdNGRfaOTGAAAMYC7WXFYwjWTMzMD2gv1thfq3b3Vt+6cVXvJ+oagWJ+UeN1/bqGOHJAmiVrbDfUOIcuSOlq+WfmlZvcKMK3frgyze4UYR+vOphiHrP3vN4ycbbWyUnKimgMAAOFkWZae/e8m/X7uann9ZkDMcEjXnVaky6fkyWB2ZgAAAABRUrK9RY8u2qTPNu7oNO6QNH10ti4/foD6pNLsDwAAAPQkVTs8uurFNVpf1x6wPd7p0N1n5+ukwswoZQYAQGygaQaHJVIzOTMzoL1Qb3uh3t3H5xvrdOVzK1XZ2B4UO7EwW3+6eKyyUhK6fD61thfqvRd/h9RSI7VUf/Pf3t9vD9zuC36dRV1CupTcW0rO3uPrzv9Scwuk1Mit8AEAQCS1en26+eWVevXLrUGx3inx+vP3jtJxeb2jkBkAAAAASNuaPJqzeIveWFXT5dQ6xw5J16+nDFJBdlJEcwMAAAAQfuXVrbrqpTWqbu4I2J6a4NTD5xfqqG8mvwUAwM5omgEAAPtkWZae/Gid/vhWiXxm4CU3wyH95tRCXTE1n1m1YS+WJbU37NX80lkzTLXUvH3n2FhjxEkpffZqgAlshgnY7uq6KQ6IFfX19WHbt2EYAQ2BjY2NMk1zH89Ad0a97WN/tV5f26rfvlKidbVtQc89akCq7junSH1SnWH99wehw2vbXqi3vUS73pGaXAoAgD01e3x6+rNKPfd5pTy+zttlCrKTdPWUgZo0pFdkkwMAAAAQEcs379BvXi1Vs8cfsL1PSpz+fOFw5dM4DwCAJJpmAADAPjS2dui6/6zQe8XbgmLZqQn683eP0rF5WVHIDAiDjnap9dtGl+r9N8OYHfvfZ6QlZkjJfTppgNm7Gaa35E6XHDS7oWfx+/37HxQipmlG9HiILuptH3vW+u01tbr77XVq6wi+6fqHE3I184QBcjkNfje6MV7b9kK97YV6AwB6Mp/f1MtfbdeTSypU3+brdEx2SpyuOGGgzhrZW04mvAIAAAB6pAWldbrtjXJ5/YFN9EMz3Zp90XDlpDExJgAA36JpBoclXDOpRntmQEQW9bYX6t19rKps0g2vlWproycoNmFQmv4wo1C9U4wu/xZQa3uJyXpbphztDXK01spoq/nma60crTUyWmvkaKuV0Vq7e7u3Kbr5dsJyJshM6i0rqffOr4lZMpOyZCVm7dyWmCUrKWtnzJ0hOeMObMft1mGtfhML9WYmZwBAuHT4Tf3pg0164YvgxvHkeKfuPHOYphZkRiEzAAAAAHZmWZYWldfrzx9u1qb69k7HJMUZuvSYfrpkfI7ccc4IZwgAAAAgUv7zxTb9ccEG7b3m5Nj+KXr4vCKlJ3JrMAAAe+IvIw5LpGbrY2ZAe6He9kK9Y49lWfp/X2zTIx9sks8M/HjtkPSzSf112XH95TQcB1U7am0vYat3R6uMb5pdjLbaXY0vu5ph2mp3/edoq5fDiq3fOcthyHJnyNyj+WXn93s0wCTu/k9xSQe3GkyUXmO8vgEAPUXlDo9ueHWNvq5sCYoVZifp/nMKNDDDHYXMAAAAANjZ15XNeuSDTfqyovOJf5wO6YKxfXTZsQOUmXyAE+sAAAAA6HYsy9Kcj7foH59uDYpNyc/QPWfnyx1nRCEzAABiG00zAABgl2aPT79/e70WlNYFxXolunT32XmaNKRX5BNDz2X65Gir393s0vpNI8y3jS+t327f2RDj8LVFO+MgZlyKrKTMXY0u364G820zzO7GmCxZCb0kgxkeAQCIRR+UbNfVz69QY7svKHbO6GzdcPIQLjQBAAAAiKgtDe368wcb9G5J8Dn7b03Jz9BVkwdqSFZiBDMDAAAAEGk+09If3lmv17+uDoqdf0Qf3XjKELmMg5iUEwAAG6FpBgAASJJKtrfoptfLtLnBExQ7sn+q/jA9X31S46OQGboVy5I8TTIaNsjRvK3zFWHaamW01e1skGmvlyNoweDosgzX7uaXvVeE2fNxUm+ZiZmSi9nmAQDozvympUcXlGn2+2Wy9npbkuBy6IaTh+jcMX2ikxwAAAAAW2po9Wr2++V6esmGoBXhvzUyJ1nXTBmkcQPTIpwdAAAAgEhr7/Br1txyfbSuISj2i+P667Jj+8vhoGEGAICu0DQDAIDNWZalV76q1oPvb5DXH3zx7dKJubr8hIHMRmFnfq+MtrqAxhejtSZgRRijrU5qr5daqiW/R+nRznkvZkKazMTespKyOl8RJjFrV8xKSJc4mQQAgC00tHXo1y9/po/KaoJiA3sl6P5zClTYJzkKmQEAAACwow6/qb99tE5/XlCmHZ2sgilJ/dISNPPEgTq1KFMG5zEBAACAHq+htUPXvlKqlZXNAdsNh3TTKUN1wVgm/gIAYH9omgEAwMZavX794d31equ4NiiW5nbqzjPzNDkvIwqZIawsSw5P485VX1r3aHxprZWjrWavFWFqZXh2RDvjIJYzfo9ml977XhEmMVNyskoSAAAIVFbdquteLdXWxuCVFqcVZOj2M4YpJYFTZwAAAAAio6GtQze8Xq7lmzs/H5ua4NTPJvXXxUf1VbzLiHB2AAAAAKJha6NHV720Rhvr2gO2J7gcumd6vqbmZ0YpMwAAuheu/AMAYFPl1a26aW6ZNuz1wVqSRucm697pBcpNT4hCZjgkvvbAZpc9mmF2P67Z2STTXieH2fkshdFiySHLnfHNyi+Zu5tfvmmIsfZaEcaKS2E1GAAAcMjeK6nVHfPXqd1nBmx3OqSrThykS47OkYP3GgAAAAAiZENdm655uURbGoKb+l2GQ985qq9+Oqm/0hO5vA8AAADYRVl1q656cY1qWjoCtqe5nXr4/CId2T81SpkBAND9cFYNAAAbmvt1te57b4M8e90kKEnfG5+jX584UHFOZqqLKtMvh6dBRmtNFyvC7NEU01ono6N5//uMMCsuafeqL3s1vuxeBab3zu/dvSSDt6YADo/T6Qzbvg3D2Odj9CzUu+cyLUuPfbRJf/+kIijWJzVB959byEWmHozXtr1Qb3uh3gCA7uyzjY268fUyNXn8QbHThmfpihMGaEAvdxQyAwAAABAtyzbt0HWvlqrFG/g5oW9qvP58YZHyeidFKTMAALon7kwEAMBG2jv8un/BRs39ujoolpLg1O9OH6aTClm6NSwsS+po3d340lYrxzcNMZ2tEONor5fDCm5qiibL4ZSVmLmr6cVMzNq1IoySs5XcZ7CU3EdK7q36Dpf8BisVAYisjIyMiB0rPT09YsdC9FHvnmFHe4eu+/eXen/N9qDYUYN66a8/GK8+adyIZie8tu2FetsL9cae6urq9Mknn+iLL75QRUWFGhoalJKSoqKiIp177rkqKCiIdooAbOzlFdt1/3vr5bcCt/dNS9Bjl4zTsDSH/P7gZhoAAAAAPdd7JbW67c216tjrg8KwrETNvqhIfVO5FwMAgINF0wwAADaxoa5NN75eprU1bUGx4X2TdN+MAmarO1j+Djna6ztpfKnpfEUYX3u0Mw5ixqfI+ma1l85WhLF2Ncj0luVOlxydz9brdDqVvOfN6vX1EhdzAQBAjFhb3azLnlmmddUtQbHvHD1Qd503Sgmu8K1WBQAAomf+/Pl67bXX1LdvX40dO1ZpaWmqrKzU0qVLtXTpUl199dU67rjjop0mAJvxm5YeXbRJz31eFRQb3T9Nf/vRBOWku1VfXx+F7AAAAABEy7+XV+mh9zdqr756HTUgVQ+dV6g0N7f8AgBwKPgLCgCADbxVXKN73lmvto7glUv+58g+umbqYCW4Om+GsBXLksPbJEdr7V4rwuzxuLVm94ownoZoZxzEMuKCGl/MpN0rwgStEONiBhIAANCzLSjepmv+/aWaPL6A7S7DodtnjNQPJg2Ww+GIUnYAACDc8vPzdccdd2jkyJEB24uLi3XXXXfpySef1IQJExQXFxelDAHYTYvXr1vnleujdQ1BsZMKM/WXH0xQUjyX8QEAAAA7sSxLjy3eon/+d2tQbFpBhn5/Vr7ccdzXAwDAoeJsGwAAPZjHZ+rhhRv10ortQbGkOEO3nD5Mpw/PikJmEeT3BK74ErAizB6NMW21Mlrr5DC90c44iJnQa6/Gl97BjTHfPLbiUyVu+gRgU+GcfdUwDKWnp+963NjYKNMMbkZFz0C9ewbLsvSPTyv0vx9uCpqRLSPJpT+eW6SJQzICGmaodc/Ga9teqLe9RLveGXuuvIqYc8wxx3S6fcSIERo9erRWrFihTZs2KS8vL8KZAbCjqh0eXftKqcqqW4NiPzmmn66cMpiGGQAAAMBmfH5T97yzXnNX1QTFLhzbRzecPEROg/tAAAA4HJxxAwCgh9pc366b5papZHvwxbf83om675wCDclMjEJmh8ky5Whv3KPRpaaLFWG+iXubop1xEMuZsLvxZY/VX3Y2vvQOXBHGnSE5mekUAA6E3++P2LFM04zo8RBd1Lv7afX6dedb67SgtC4oVtQnSQ+dV6ictISgG6qptb1Qb3uh3vZCvUOnsbFR5eXlKi8v19q1a7V27Vo1Ne081zJlyhTNnDnzgPdVXV2t+fPna/ny5aqtrZXL5VJOTo6OPfZYnX766UpIiPxquE6nM+ArAITT15XNuu6VUtW2dgRsdxkO3XraUE0fnS2DCZEAAAAAW2nz+nXj3DItWd8YFPvV8QP0s0n9Aib/AgAAh4amGQAAeqAFpXW66611avEG3yBy7phsXX/SYLnjYuhmgI62LhpfajpZIaZODiu2bnyxHIYsd8auZpfdK8Jk7dEY03tXY4ziklgNBgAAIEwqGtp13aulKq9pC4qdPjxLt50+NLbeCwMAEMMuu+yykOxn2bJlmj17ttradv999ng8uxpxFixYoFmzZiknJyckxzsQNTU1WrlypTIyMjRo0KCIHReAPb27plZ3vLVWHl/gOpjpbpceOLdA4wamRSkzAAAAANFS39qha14u0aqqloDthkO6+dShOu+IPlHKDACAnoemGQAAepAOv6lHF23Sv5dvC4q5XYZuOnWIpo/KjlxCnmZp63KpebsSqjdKLdXBjTFttXJ0BK+GE21mXLKsPVeACVoRZo/v3RmSwY2XAAAA0fbZxkbNmluuxnZfwHbDIV05eaB+OCGXGdkAADhEvXv3Vv/+/bVixYqDet769ev1yCOPyOv1yu1267zzztPo0aPl9Xr18ccfa8GCBaqsrNS9996r++67T4mJ4V8Z2efzafbs2ero6NAll1wiwzDCfkwA9mRZlv7+6VY9/vGWoNjgTLceOb9IAzPcUcgMAAAAQDRVNLTrqpdKtKm+PWB7gsvQvTPydWJeRpQyAwCgZ6JpBgCAHmJro0ez5pYFzUAhSUMz3brvnALl9U6KSC6Olu1K/OopaeX/Sd5mSVJkjtw1y3DJdGfubnZJ6r17RZi9V4hJzJTiwn+DBgAAAELDsiw9v7xKj36wSf7AiZuVmuDUH6bn69ihvaKSGwAA3dlFF12kvLw85eXlqVevXtq+fbuuvPLKg9rHU089Ja/XK6fTqVtvvVWFhYW7YqNHj1Zubq6effZZVVZWau7cubr44ouD9vHMM8+oo6PjgI951llnKTc3t9OYaZp67LHHVFxcrJNPPlknnnjiQf08AHCgPD5Td7+9TvOLa4NiEwel6b5zCpTm5nI9AAAAYDcl21v065dKVNsSeK4j3e3Sny4o1BH9UqOUGQAAPRdn4QAA6AE+XFuvO+av1Y52f1DszJFZmnXKUCXFh38lFKNxkxK/eFLu4hfl8HvDfjwzIW33KjC7Gl96d7oijJWQJjmYNRQAAKCn8fhM3fvues1bVRMUG5aVqIfOK2TmZgAADlFnDSwHo7y8XMXFxZKkadOmBTTMfGv69OlauHChKioqNH/+fF1wwQVyuQIvX7377rvyeDwHfNxJkyZ12jRjmqbmzJmjxYsXa/LkybrssssO8icCgANT19Kh375Wqq+2NgfFLhjbRzecNFguJ+erAQAAALtZuqlRv321VC1eM2B7Tmq8Zl80XEOzmOAVAIBwoGkGAIBuzOc39b+Lt+hfSyuDYvFOh244eYjOHZMth8MR1jyctSVK/PyvSiibJ4cV3LhzoCwjflfDi7Vn48s3K8MErgiTKTnjQ/hTAAAAoLvZ1uTR9a+VaXUnqy1Oyc/QXWflKTkCzeMAAKBzn3322a7vp02b1ukYwzA0ZcoUPffcc2ppadGqVas0duzYgDH/+te/DjuXb1eY+fDDD3X88cdr5syZMgxuWAcQemtrWnXty6XauiOw2c9wSNdMHaTvjcsJ+zl7AAAAALHnnTW1+t2ba+UzrYDt+b0T9ecLh6tPKvfAAAAQLjTNAADQTW1r8mjW3PJOZ6oblOHWfTPyVdgnOaw5uKq+UOLnjyth/XtdD3IYUlaBOtwZMt2ZezW+ZH3TJNNbVlKWrLgUiYuFAAAAOAArKpp0w2tlqm3tCIr94rj++vmx/WXw3hIAgKgqKSmRJCUkJGjYsGFdjhs5cmTAc/ZumjlcezbMHHfccbrqqqtomAEQFp+sb9BNc8vV4g2cXCopztAfpufrhLyMKGUGAAAAIJqe/7xKDy3cGLR93IBUPXReoVLd3MoLAEA48ZcWAIBuaMn6Bv3uzbVqaPMFxU4pzNStpw9VSkKY/sxbluI2f6zEz+covuLTroc54+UY+z3p+KulrDw119fL7z/0VWgAAACAb73y1Xbd/96GoNnYkuIM3XVWnqYWZEYpMwAAsKctW7ZIknJycuR0dr36W79+/YKeEyqmaWrOnDn68MMPNWnSJBpmAITNC19U6cH3N2qvjynKSY3Xny4oUkF2UnQSAwAAABA1lmXpLx9t1tOfVQbFTirI0O/PzleCi/MUAACEG00zAAB0Iz7T0hNLtuifn27VXtfdFOd06Nqpg/Q/R/aVIxwzalum4te9q8Rljymu+uuuh8UlqX3U9+QZf5l6DRwR+jwAAABgWx1+Uw+9v1EvrtgeFBvQK0EPnVeovN7ciAYAQCzwer1qamqSJGVlZe1zbEpKihISEuTxeFRbWxvSPF588UUtWrRIbrdb/fr100svvRQ0ZuLEiRoyZMgB7/NAc9xXo9Dh2rvxh0agnotaxz6faenBBev1/5ZXBcXG5Kbo4QuGq3dK/AHti3rbC/W2F+ptH9QaAPAtn9/U799erzdW1wTF/ufIvvrtSYPlNMJwfw8AAAhC0wwAAN1ETbNXt7xRrs83NwXF+qUl6L5z8jUyJyX0B/Z3KKH0dSUu/6tc9Wu7HGYmpKv9iEvVdsSPZCVmhPWmAAAAANhPbUuHbppbpi+2BL8fnjQkXX+Ynq80N6e6AACIFe3t7bu+d7vd+x3vdrvl8XgCnhcK1dXVu/J5+eWXOx3Tp0+fg2qaufzyyw9o3AsvvHDA+zxc6enpETsWootax5Yd7R265rkvtKi0Oig2/YhcPfg/Y+WOO/Rz5dTbXqi3vVBv+6DWAGBPrV6/bny9TJ9saAyKXXHCAP3kmH7hmRAXAAB0ijsJAADoBpZuatSt89aqtrUjKDYlP0O3nzEs9DcIdrTJXfwfJX7xpJxNW7sc5k/qo/ajfqb2Ud+VFR+Gph0AAADYXnFVi377Wqm2NXmDYj+ckKsrJw9kNjYAAGKM17v777bLtf/zVt+O2fN5oTBz5kzNnDkzpPsEAEnaXNeqnz29VKXbmoNivz65QNecXCCDzykAAACA7dS1dOial0u0eltLwHanQ7rltGE6Z0x2lDIDAMC+aJoBACCGmZalf3y6VU8s2SLTCow5DYd+feJAfX98Tkhnn3B4dsi98lklrvinjLa6Lsf50wepddwv5Rl+vuRMCNnxAQA4VOFc5cwwjH0+Rs9CvWPLm6uqdddba+XxmQHbE1yGbj8zT2eOPPSLS9TaXqi3vVBve6HesSk+Pn7X9z6fb7/jvx2z5/Ni1Zw5c6KdAoAo+3xjnX7xzOeqbQls9It3GvrjRUfovKP6RykzAAAAANG0paFdV724RpsbPAHbE1yG7p+RrxPyMqKUGQAA9kbTDAAAMaq+tUO3vblWn3ayVGvf1HjdOyNfR/RLDdnxHK01Svzyn3J//awMb/DMeN/yZQ1X6/hfyZt/pmTwVgIAEDsyMiJ3kjk9PT1ix0L0Ue/o8PlN3f/WGj350fqgWL90t5740dEa3T+0taHW9kK97YV62wv1jg1ut3vX9+3t7fsd/+2YPZ8Xq7Kysg5oXH19fdhyMAwj4He9sbFRpmnu4xnorqh17HlzVbXumF+uDn/gTFcZSS49fP5wHTkg6ZBf/9TbXqi3vVBv+4iFWkfyXDkAYLc121p09Uslqm3tCNienujSI+cXakwI7/EBAAAHhztdAQCIQV9s2aGb55WrurkjKHb80F6686xh6pUYF5JjGTsqlPjFk3KvfkEOv6fLcR0549R69BXqGDxVCuHKNgAAAMDeGlq9uur5L/RRWU1QbOLQTD12yTj1TmG1QwAAYll8fLxSU1PV1NSk2trafY5tbm6Wx7PzvNSBNqR0B36/P2LHMk0zosdD9FDr6DEtS098XKG/fVoRFBuWlahHLihSv/SEkNaHetsL9bYX6m0f1Bp7q6ur0yeffKIvvvhCFRUVamhoUEpKioqKinTuueeqoKAg2ikCOAT/3dio618tVWtHYKNkblq8Zl80XEMyE6OUGQAAkGiaAQAgppiWpWc+q9ScxZu11yR1MhzSFScM1I8m5soIQdOKs65MiZ//VQllc+UwfV2O8w46Ua3jL5ev3wSaZQAAABB2JVVNuuyZZdpU1xoU++GkwfrdjJGKcxpRyAwAABysAQMGqLi4WFVVVfL7/XI6nZ2O27p1a8BzACDWtHeYuvOttXq3pC4odtyQdP1hRr5SErj0DgAA9m/+/Pl67bXX1LdvX40dO1ZpaWmqrKzU0qVLtXTpUl199dU67rjjop0mgIPwVnGN7pi/Tj4z8EafwuwkPXphkbJT4qOUGQAA+BZn7gAAiBENbR26Y/46LV7XEBTrnRynP0zP17iBaYd9HNe2r5T4+RwlrHunyzGWHPLmn6nWcb+Uv8/owz4mAACRUF9fH7Z9G4ah9PT0XY8bGxtlmuY+noHujHpHz/ultbp1Xpna9pqJzWU4NOu0YbpgbF8172gM2fGotb1Qb3uh3vYS7XpnZGRE7FjdTVFRkYqLi+XxeLRu3bouZ0xevXp1wHMAIJbUtHh13SulWlXVEhT7zlF9de20wXIZTDgFAAAOTH5+vu644w6NHDkyYHtxcbHuuusuPfnkk5owYYLi4uKilCGAg/F/yyr1pw82BW0fPzBVD51XSHM9AAAxgr/IAADEgJVbmzRrbrmqmrxBsYmD03T3WfnKTD6Mk2KWpbiKT5T4+eOK3/xx18MMlzxF56tt3C/kzxh26McDACAK/H5/xI5lmmZEj4foot7hZ1qWnlxSoSc/qQiKZSXH6Y/nFGhs/9Sw14Fa2wv1thfqbS/UO3ZMnDhRr776qiRp4cKFnTbNmKapRYsWSZKSk5M1atSoSKYYVl2trBMKhmHs8zF6DmodXaXbW3T1i8VB5+6dDun6U4bqO+NyQ3o86m0v1NteqLd9UGvszzHHHNPp9hEjRmj06NFasWKFNm3apLy8vAhnBuBgmJal2Ys261/LKoNipxRm6q6z8hTv4m8AAACxgqYZAACiyLIsPb+8So8u2iz/Xsu0OiRddlx//WxSfzkPdZY6y1T8+gVK/PxxxW37suthLrfaR31XbUf+TGZqv0M7FgAAAHAImj0+/e7NtfpwbUNQbFROsh44t1B9UuMjnxgAADhs+fn5GjFihIqLi7Vw4UJNnTpVhYWFAWPmzZunioqdjbNnnnmmXK6ec+kqkqsQ7bnaEno2ah0576/Zpque+1ot3sBGzNQEl/5yyThNKcwOew7U216ot71Qb/ug1qHV2Nio8vJylZeXa+3atVq7dq2ampokSVOmTNHMmTMPeF/V1dWaP3++li9frtraWrlcLuXk5OjYY4/V6aefroSEhHD9GF36tvE+nA34AA5fh9/UXW+t0/zi2qDYd47qq+tOGizDwWqUAADEkp5z5QEAgG6mqd2nu95ep4Vl9UGxzCSX7j47XxMHH+JJVNOnhLJ5Svz8cbnqyroelpCm9jE/VNvYS2UlZh3asQAAAIBDtKm+Xde9UqL1de1BsemjemvWqUOVwExsAABEzZo1a1RVVbXr8Y4dO3Z9X1VVpQ8++CBg/NSpU4P28eMf/1i33XabvF6v7r77bp1//vkaNWqUvF6vlixZovfee0+SlJubqxkzZoTl5wCAg2FZlv7x8Qbd88Zq7TXXlQZkJOofP56gwr6p0UkOAACbu+yyy0Kyn2XLlmn27Nlqa2vbtc3j8exqxFmwYIFmzZqlnJyckBzvQNTU1GjlypXKyMjQoEGDInZcAAenxevXja+X6dMNjUGxKycP1KUTc+WgYQYAgJhD0wwAAFGwZluLbny9TBWNnqDYuAGpumd6vrJTDmE2bV+73MUvKnH5k3I2belymJnUW21H/kzto78nK56LewAAAIi8JesbdPO8cjV7Amdtdjqka6YO1nfH9eXCEgAAUbZgwQItWrSo01hJSYlKSkoCtnXWNDN06FBdc801u25Ie/7554PG5ObmatasWUpMTAxJ3gBwqDr8pm5/fZWe+++moNj4wRl64ofjlZUS+VnnAQBAsN69e6t///5asWLFQT1v/fr1euSRR+T1euV2u3Xeeedp9OjR8nq9+vjjj7VgwQJVVlbq3nvv1X333ReRzyk+n0+zZ89WR0eHLrnkEhkGEwkBsai2pUPXvFyi4m0tAdudDum204dp+ujwr0YJAAAODU0zAABEkGVZemnFdj20cKM6/FZQ/CfH9NMvjx8gl3FwNwc6vE1yf/2cEr/8h4zWmi7H+VMHqG38L9U+/ELJxYU9AAAARJ5lWXr6s0r970ebtfc74vREl+6bka8Jgw5xxUUAABCTjj76aD344IN68803tXz5ctXV1cnlciknJ0eTJk3SGWecoYSEnneuqr4+eIXpUDEMQ+npu98zNTY2yjTNsB0P0UOtI2dHu0/Xv1qizzYGzxh99qhs3XZGnoyOVtXXt4YtB+ptL9TbXqi3fcRCrTMyMiJ6vEi66KKLlJeXp7y8PPXq1Uvbt2/XlVdeeVD7eOqpp+T1euV0OnXrrbeqsLBwV2z06NHKzc3Vs88+q8rKSs2dO1cXX3xx0D6eeeYZdXR0HPAxzzrrLOXm5nYaM01Tjz32mIqLi3XyySfrxBNPPKifB0BkbGlo15UvrtGWhsDJcd0uQ/efU6Djh/WKTmIAAOCA0DQDAECEtHj9uvvtdXq3pC4olu526a6z8g76Q7SjrVaJK56Se+WzMjw7uhznyyxQ2/jL5Sk4WzL48w8AAIDoaO/w66631+udNbVBsYLsJD14boH693JHITMAANCZmTNnaubMmSHZV3Z2ti699FJdeumlIdlfd+D3+/c/KERM04zo8RA91Do8Nte365pXSrSxrj0o9qvjB+hnk/rJ4bAi/v+eetsL9bYX6m0f1Dq0OmtgORjl5eUqLi6WJE2bNi2gYeZb06dP18KFC1VRUaH58+frggsukMsVeI393XfflcfjCXpuVyZNmtRp04xpmpozZ44WL16syZMn67LLLjvInwhAJBRXtejql9eortUXsL1XokuPXFCk0bkpUcoMAAAcKO6aBQAgAsqqW3Xj62XaVB98we2Ifin6w/R85aQd+GyaRtNWJX7xN7lX/z85fMH7/FZH3yPVdvTl8g45SXKwhDMAAACip7LRo+teK1Xp9uBZmU8pzNTtZwxTYrwzCpkBAAAAsLPlm3fo+tfK1NgeeANcgsuhO8/M0ylFWVHKDAAAhNpnn3226/tp06Z1OsYwDE2ZMkXPPfecWlpatGrVKo0dOzZgzL/+9a/DzuXbFWY+/PBDHX/88Zo5c6YMg2v6QKz5dEODrn+tTG0dgauG9UtL0OyLijQ4MzFKmQEAgINB0wwAAGFkWZZe+7paDyzYII/PCor/4OgcXTl5oFzOAzv55axfp8Tlf1VCyatymL4ux3kHnqC28b9SR/9JksNxyPkDAAAAobBs0w7dNLdMDW2B72Edkq6YPEA/nthPDt63AgAAAIiwuV9X65531stnBp6/z0qK00PnFzJjNAAAPUxJSYkkKSEhQcOGDety3MiRIwOes3fTzOHas2HmuOOO01VXXUXDDBCD5q+u0R1vrZN/r88LhX2S9OcLi9Q7OT5KmQEAgINF0wwAAGHS5vXrvvc26I3VNUGx1ASnbj9zmKbmZx7Qvpzbv1bS548rfu1bcii4+eZbnmGnq238r+Tre8Qh5w0AAACEimVZeuGLbXp44Ub593obmxzv1D1n5+mEvIzoJAcAAADAtkzL0mMfbdZTn1UGxQqyk/Sn8wsPanV4AADQPWzZskWSlJOTI6ez61Wv+/XrF/ScUDFNU3PmzNGHH36oSZMm0TADxKhnl1bqkUWbgrZPGJSmB84tUEoCt94CANCd8JcbAIAwWFfTqpvmlmtdbVtQbGTfZN07I1/9e7n3vRPLkmvrZ0r6fI7iN33U9TDDJU/hOWob90v5M/MPN3UAAAAgJLw+U/e9t0Gvf10dFBuc6dZD5xVqSGZiFDIDAAAAYGdtXr9+N3+tFpbVB8UmD+ulu6fnKzm+65toAQBA9+T1etXU1CRJysrK2ufYlJQUJSQkyOPxqLa2NqR5vPjii1q0aJHcbrf69eunl156KWjMxIkTNWTIkAPe54HmuK9GocOxd9MPTUA9W0+vt2lZevj9Dfq/ZcEN9qeP6K27zspXvKtn/cz70tPrjUDU2z6otb1Q751omsFh4cMUQoF624sd6v3Gqmrd/fZatXeYQbHvjs/RtVOH7PsDtGUpbv37ci/7X7kql3c9zJkgz+jvyjPuMplpAyRJsXQZzw61xm7U216oNwBgf6qbvbrhtTKtrGwOik0e1ku/PzuPWdgAAECPF65rKBKfze2EWofW9iavrnm5WMVVLUGxH0zI1TVTh8hpOKKQ2U7U216ot71Qb/ug1rGrvb191/du934muPxmjMfjCXheKFRXV+/K5+WXX+50TJ8+fQ6qaebyyy8/oHEvvPDCAe/zcKSnp0fkOIgNPaneXp+p3/5nhV5fEdww89Pjh+rWs0fIiOLnhVjQk+qN/aPe9kGt7cWu9ebuBByWjIyMiBzHri9Qu6Le9tKT6t3e4dedc1fp+c82B8VSEly6/8IjdPYRuV3vwO+TVr8qffSwtH1V1+MS0qQJP5dj0hVyp2Rr/6fzYkNPqjX2j3rbC/UGAOxp5dYmXf9amWpaOoJiP53UT786foAMh70vKgEAAHuI1DUUic/mdkKtD93XFY36+bNfq2pH4I2vLsOhu84dre8fMyhKmXWNetsL9bYX6m0f1Dp2eL3eXd+7XPu/Ze7bMXs+LxRmzpypmTNnhnSfAA5fU3uHLn92uRaX1wTFZp05XL84cZgcXNsAAKDbomkGAIAQWFfdrJnPfaHiyh1BsRG5aXrsknEa2ju58yf7PNKXz0kfPyLVb+j6IEm9pWOvkCb8XHJzchUAAACx5/WV1br3vfXq8FsB2xPjDN1+xjCdUpQVpcwAAAAA2Nnbq6p0zb+/VFuHP2B7mtulOT8Yr+Pze0cpMwAAECnx8fG7vvf5fPsd/+2YPZ8Xq+bMmRPtFIBubXtTu37yz6VatTXwnh+X4dAfLzpCF4wbEKXMAABAqNA0AwDAYZr31Vbd9NJKNXuCT6x9b+Ig3T5jpNxxzuAnepqkZf+UPvlfqbmq6wOkD5SOv1o66gdSXGIIMwcAAABCw+c39acPNun/fbEtKNY/PUEPnVeo/OykKGQGAAAAwM4sy9JfP1yn+99aIyuwt19DspL09x9PUF52SnSSAwAAEeV2u3d9397evo+RgWP2fF6syso6sMmK6uvrw3J8wzACVlVqbGyUaZphORair6fVe2Ndm2a+sFoVjZ6A7Ylxhh48r0jHDU0O22unO+hp9ca+UW/7oNb2Egv1juSq7F2haQaHhQ9TCAXqbS89qd5en6mHF27Q/1se3PCSGGfo1tPzdNaobLU171DbHjFHW70SvvynElY8LcPT2OX+/Zn5aj/6cnkLz5GccVJzu6T9n7yLFT2p1tg/6m0vsVDvWPgwBQDYqb61QzfNLdPnm5uCYhMHpekPM/LVKzEuCpkBAABEVzhvqomFz+aIDGp96Dr8pu55e51eW7k9KDZ+YJoePL9IvVwdMXUDHPW2F+ptL9TbPmKh1lxD6Vx8fLxSU1PV1NSk2trafY5tbm6Wx7PzBvoDbUjpDvx+//4HhYBpmhE7FqKvO9d7VWWzrn65RA1tgZPkZiS69OiFRRqZk9Jtf7Zw6c71xsGj3vZBre3FrvWmaQaHhQ9TCAfqbS/dtd4VDe26aW65ire1BMWGZSXq/nMKNDQrMeBnM5qrlPjF3+Ve/W85Olq73HdHnzFqG3+5vMNOlRzGzo3d8P/R3rprrXFoqLe9UG/ECqezk5XdQsQwjH0+Rs9CvQ9cybYWXfvyGlXu8ATFLjk6V9dMGyKX4YhCZgeGWtsL9bYX6m0v1BuxKpKflflsbh/U+sA0tHXohtfKtHxLcHP/jNHZuvnUIYpzGjH//5J62wv1thfqbR/UOrYMGDBAxcXFqqqqkt/v7/K6wtatWwOeA6DnWbK+QTe+Xqa2jsDGxv7pCfrLRcM1MCP2V5kCAAAHjqYZAAAO0gdldbrjrXVq9gSf3Jw+qrduPHmIEuN3n1wzGtYrafkTSljzihxmR5f79Q44Vm3jL1fHgOMkR+zeWAgAQKyK5Ox5e84UiJ6Pendu7oqtuv7FlWrf64JSvMvQveeP0YXju9/FZGptL9TbXqi3vVBvALC3DXVtuvblEm1uCGzud0i68sSB+tGEXDk4Bw8AgC0VFRWpuLhYHo9H69atU0FBQafjVq9eHfAcAD3LG6uqddfb6+U3rYDtRX2S9OiFReqdHB+lzAAAQLjQNAMAwAHy+U3N/nCz/u/zqqBYgsuhG08eqnPGZO/a5qxeraTljyu+fL4cVtdLbnuGnqK28ZfLl3NkONIGAAAAQspvWnrg7RI9vmhtUCwnza2//nC8xg7sFfnEAAAAANje0k2NuuG1MjXtNemV22Xo92fnaVpBZpQyAwAAsWDixIl69dVXJUkLFy7stGnGNE0tWrRIkpScnKxRo0ZFMsWw6mplncPFCrD20p3rbVmWnv5sqx79YGNQ7JjB6Xro/OFKTgjP66S76s71xsGj3vZBre2Feu9E0wwAAAegaodHs+aWa2Vlc1BsUIZb959ToILsJEmSa+syJX0+R/EbP+hyf5bDKU/hDLWN+4X8WcxMAwAAgO6hsa1DV//7C31QUh0UO3pwhh77wTj1SXVHITMAAAAAdvfqV9t173sbgmaLzk6J05/OL9LwvslRygwAAMSK/Px8jRgxQsXFxVq4cKGmTp2qwsLCgDHz5s1TRUWFJOnMM8+Uy9Vzbq/LyMiIyHFYAdZeuku9TdPS799YrX9+HNwwc+6R/fTARWMV77LnTcQHo7vUG6FBve2DWtuLXevdc97VAwAQJovXNej2N9eqsd0XFDtteJZuOW2okuMMxW38QEnL5iiuclmX+7Kc8Wof8T9qG3eZzLSB4UwbAADbqa+vD9u+DcMIOHHQ2Ngo0+x6JTl0b9S7c2trWvWbl9doU317UOzCsX1146lDFedrU319WxSyOzTU2l6ot71Qb3uJdr0jddMRAKBzftPS7A836dllwavED++bpIfPK1Kf1PgoZAYAAEJtzZo1qqra/Td/x44du76vqqrSBx98EDB+6tSpQfv48Y9/rNtuu01er1d33323zj//fI0aNUper1dLlizRe++9J0nKzc3VjBkzwvJzAIgsj8+v615YoXlfVQbFfn7CUN181ggZhiMKmQEAgEihaQYAgC74TEuPL96spz4L/tAc53ToummDdeGYLCWse0tJnz8uV83qLvdlxqWofcz31Tb2p7KSs8OZNgAAtuX3+yN2LNM0I3o8RBf1lhaV1+t3b5arxRt4A7LTcOj6kwbroiP7SrK6/f8nam0v1NteqLe9UG8AsI9Wr1+3vFGuj9Y2BMWmFWTorjPzlBjvjHxiAAAgLBYsWKBFixZ1GispKVFJSUnAts6aZoYOHaprrrlGs2fPVltbm55//vmgMbm5uZo1a5YSExNDkjeA6Glq79Av//W5lqytDYrdctYIXXbisChkBQAAIo2mGQAAOlHd7NUt88q1fEtTUKx/eoL+OH2Ijqh/R0nP/VXOxg1d7sd0Z6pt7KVqH/NDWW57LmsHAACA7su0LP3j0616/OMtQbHMJJfuP6dARw1Ii0JmAAAAsc/pDN+N+oZh7PMxeg5q3bWqHR5d/VKxSre3BsV+Mqm/rjxxkAxH95otmnrbC/W2F+ptH9S6ezj66KP14IMP6s0339Ty5ctVV1cnl8ulnJwcTZo0SWeccYYSEhKinWbI1dfXh2W/0V4BFpHVnepd3ezVlf9ZHfSZwWU4dOdZ+TprVEbYXhc9RXeqNw4f9bYPam0vsVDvjIyMiB6vMzTNAACwl083NOq2N8pV3+YLip2el6h7B36m9LdmytlS1cmzd/Kn5KjtqMvUPvJiKS4pnOkCAAAAYdHi9euO+Wu1sCz4gtGIvsl64NwC5aT1vAvHAAAAoRLJC4F7XvREz0atd/pyc4Mue/ZrVTd5ArbHOR36w/lj9D9HD4xSZqFFve2FetsL9bYPah1aM2fO1MyZM0Oyr+zsbF166aW69NJLQ7K/7iBSq7KyAqy9xGq9N9a16aoXS7R1R+BnhqQ4Q388t1CThqTHZN6xLlbrjfCg3vZBre3FrvWmaQYAgG/4TUt/+6RCf/ukQtZesSyjRY/lfaoJ1S/LqOh6lglfr6FqG/creYrOkZzx4U0YAAAACJMtDe36zSulWlfbFhQ7c2SWbjl1mNxxzJIJAAAAIPLe+KpSv3nhS3l8gTNi9kqK019/MF7HDMuKUmYAAAAAYsHXlc265uUSNew1WW5mkkuPXjBcI3KSo5QZAACIFppmAACQVNvSodveKNdnm3YEbM9Wva5OelvfNd6Ta3NrF8+WfNmj1Dr+cnmHnSYZznCnCwAAAITNpxsadfO8Mu1oD5xdxnBIv54ySJeMz5HD4YhSdgAAAADsyrIs/e/Ccj34TmlQbFh2sv5x6QQN6c3NbwAAAICdLV7XoJteL1P7Xk32A3ol6C8XDdeAXu4oZQYAAKKJphkAgO19vnmHbp5XrtqWjl3bBjq26VfOebrYtUhxpk8yO39uR79j1Dr+V+oYNFnixkEAAAB0Y5Zl6f+WVenPH26SudfSi2lup/4wvUCThqRHJzkAAIBuqL6+6xWrD5dhGEpP3/3erLGxUabZxUlMdGvUeievz9Rdb63VG6uqg2ITB6frgfOKlOb0qr7eG4XsQod62wv1thfqbR+xUOuMjIyIHg8AYsXcr6t199vr5N/rGseIvsl69IIiZSbHRScxAAAQdTTNAABsy7QsPfXfrXr84y27bgoscmzS5a7XNcP4RE6H1eVzvUNOUuv4X8mXOz5C2QIAAADh095h6p5312n+6tqgWF7vRD10XiGzrwEAABwkv9+//0EhYppmRI+H6LFjretbO/Tb10q1oqI5KHb+EX1048mD5XI6euT/FzvW286ot71Qb/ug1oglTqczLPs1DGOfj9GzxGK9LcvSPz6t0F8+3BQUO3ZILz14fpGS4sPz+9/TxWK9ET7U2z6otb1Q751omgEA2FJDa4d+9+ZaLdnQKEka5yjVFa7XdIrziy6fYzkMefLPVtv4X8nfe3ikUgUAAADCqmqHR9e/VqbibS1BsWkFGbrzzDwuJgEAAACIinU1rbr2lVJVNHoCtjskXTN1kL4/PkcOVoEHAAA4IJFahWjP1ZbQ80W73n7T0u/nrdZTS4IbZs4/qr/uv/AIxbvseXNwOES73ogs6m0f1Npe7FpvmmYAALazoqJJN88r17YmjyYbKzXT9ZomGcVdjreMeLWPuEBtR10ms9eQyCUKAAAAhNkXW3boxtfLVNfqC4r96vgB+umkfjK4AQ0A0B34fVL9esmVICk12tkAAELgk/UNumluuVq8gbPzJ8UZumd6vibnReamTwAAAACxqb3Dr+teWKE3VlYGxX554jDdeMZwGQbXOAAAAE0zAAAbsSxL/7esSn/5aKNO0VJdEf+ajjDWdz0+Lklto76n9iN/JjOlbwQzBQAAAMLvxS+36YH3N8pvWgHbk+MN3XVWvqbkcwMaACAGWZaMlu1y1pbIVVuy82tdqVRXLvk90nFXSROui3aWAIDD9J8vtunB9zfIH/hxRX1T4/XIBUUqyE6KTmIAAAAAYsKO9g794pll+nRdXVDs1rNH6OeTh0UhKwAAEKtomgEA2MKOdp9+/+Ya9d74ht52zVWeETzLxLfMhF5qG3up2o/4kSx3r8glCQAAAERAh9/UHxds1CtfbQ+KDcpw66HzCjU0KzEKmQEAEMjhbZKztvSb5phSuWpL5awtkeFp6PpJ21ZHLD8AQOj5TEt/WrhR/++LbUGxUTnJeuj8QvVOjo9CZgAAAN1ffX19WPZrGIbS09N3PW5sbJRpmmE5FqIvFuq9vcmrK/+zWmXVrQHbXYZDvz+7QGeMzAjb77vdxEK9ETnU2z6otb3EQr0zMqI/YSdNMwCAHq94c7WWzXtCd/teU/+42i7H+ZP7qu3In6l91Hel+OQIZggAAABERk2LVze8VqavtjYHxY4bkq57pucr1c3pIgBAhPm9ctavl7OuRK5dTTIlcjZVHPy+ttM0AwDdVbPHp5vnlWvJ+sag2KlFmbr9jDy544woZAYAANAz+P3+iBzHNM2IHQvRF+l6b6hr01UvrlHlDm/A9uR4Qw+cW6iJg9P5/QsjXt/2Qr3tg1rbi13rzV0QAICeq71R5e88rlEbn9dkR5Pk6HyYP32wWsf9Up7h50nOhIimCAAAAETKqspmXf9aqbY3dwTFLp2YqytOGCin0cWbZgAAQsGyZDRtlbO2ZFdjjKu2RM6G9XKYwX+fDu0YptTRKhmc4wGA7mRro0fXvFyidbVtQbGfT+qvXxzfX4aDzysAAACAna3c2qRrXilVY5svYHtWUpwevbBIw/syQS4AAOgcTTMAgB7H0Voj1+d/U/xX/6dJVmuXzTK+3iPUOv5X8uadKRnOyCYJAAAARNC8VdX6wzvr5fVbAdsTXIZuP2OYThueFaXMAAA9laO9Ibg5prZMRkfwameHwoxLlj+zUP6sQpnZI5Q05Gipz0gpOUuqr5dsOEsaYo/TGb5zjoZh7PMxeg471HpFRZOufblY9a2BN77FOR2648x8nTUqO0qZRZ4d6o3dqLe9UG/7oNYAEB4fra3XTXPL5fGZAdsHZbj15wuLNKCXO0qZAQCA7oCmGQBAj2Hs2KLEL55UwqoXZJjeLse19Bkn38Qr1DF4qsTMdAAAAOjBfKalRxdt0vOfVwXFctPi9eB5hSrqw8xrAIDD4PPIWVe2symmrvSb5phSOVu2hWT3luGSv9dQ+bMK5csqkj+rSL6sIpmp/SXHzpvPnE6nkjIyQnI8IJQyIvh7mZ6eHrFjIbp6Wq1f+7JC17+4St69bnzLSo7XX384XkcPyYxSZrGhp9Ub+0a97YV62we1BoDD99rK7frDO+u117xgGpmTrEcvKFJGUlx0EgMAAN0GTTMAgG7PWVuqxOV/VULpXDmsrmcRLU05RlknXy1r4DERzA4AAACIjoa2Dt08t1yfbdoRFBs/MFX3zSjgQhIA4MBZpozGTbuaYr5dQcbZuEEOy9z/8w+APyV3V1PMrq8ZQyVnQkj2DwCIHZZl6U/vlenPC8qCYgV9UvSPH0/QwMykKGQGAAAAIFZYlqV//Her5izeEhQ7bki67junQEnx4VvlFQAA9Bw0zQAAui3XthVK/HyOEta92+UY03LoHcckxR83U0eMO1ZWlyMBAACAnqOsulW/fbVUFY2eoNh3juqra6cOkstpRCEzAEB34Git2dUUs+trXbkcvraQ7N9MSAtsjskslD+rUFZCWkj2DwCIbe0dfv32Pys076vKoNiUwmzN/v5RSnPT4A8AABBqTmd4mgsMw9jnY/Qskaq337T0wIL1euGLqqDY9NHZ+t0ZeYrjOkfY8fq2F+ptH9TaXqj3TjTNAAC6F8tS3JYlSvx8juK3fNLlMK/l1Mv+yVqQcbF+fd5U5aYzIykAAADs4b2SWt0xf53afYGz/sc5HZp1ylCdMyY7SpkBAGKOt0WuurLdzTF1O1eQMdrqQrJ7y4iXPzPvm+aYwl1NMmZyjuRwhOQYQCyrr68P274Nw1B6evqux42NjTLN0Kz6hNjS02pd0+zVb15eo5WVzUGx74zL0W9PHip/W7PqQ9On2e30tHpj36i3vVBv+4iFWmdkZET0eOg+IvW7sedrAD1fOOrd3uHXNf/+Um+tCm6YuXxqnm44vUgOzi1FBa9ve6He9kGt7cWu9aZpBgDQPVim4te/p8RlcxS3/asuh7VaCXref5Ke9J2laeNH6a4TBzKzBAAAAGzBtCw9/vEW/ePTrUGx3slxeuDcAo3plxqFzAAAUWf65GzYELhyTG2pnDs2hewQ/rRB8mUVBqwg4+81RDK4DAH78vv9ETuWaZoRPR6ipzvXuqy6Vde+XKKqJm/AdsMhXTdtsL4zLkeyTHXTHy8sunO9cfCot71Qb/ug1gBwcBrbOnTZM8v02frASV0cDul300fqJ8cPjVJmAACgO+NqFQAgtvk7lFA2V4nLn5CrrqzLYY1Wkp7yn66nfKfLG5+h350zTCcXZkYwUQAAACB6mj0+3fbGWn20riEoNiY3RX88t0DZKfGRTwwAEFmWJaOlao/mmNJvVpBZK4fp3f/zD4CZmLmrKWbX14x8KT45JPsHAPRMi9fW6+Z55WrtCJxpPzneqXtn5Ou4ob2ikxgAAACAmFHV2K5L//GZSrY1BWyPdxp6+DtjNf2IflHKDAAAdHc0zQAAYpOvXe7V/1HiF0/K2VTR5bDtVi896TtLz/lPVosSVdQnSfefU6ABvdwRTBYAAMQCp9MZtn0bhrHPx+hZulu9N9S26dqX12hDXVtQ7NwxfXTzacMU74rtnyFaulutcXiot73Yod4OT6OMmlI5a9fIWbOzQcZZu0aGZ0dI9m+5EuXPKvzmvyL5ew+XP6tIVnJ20NjwvQs7MHaoNwB0V5Zl6d/Lt+lPH2yUaQXG+qUl6E8XFCqvd1J0kgMAALCZ+vr6sOzXMAylp6fvetzY2CjTNPfxDHRn4ar3uppWzXxhddDKlMnxTj18wXBNHJgYtt9hdI3Xt71Qb/ug1vYSC/XOyMiI6PE6Q9MMACCmODxNcn/9f0r88h8y2mq7HLfJzNbj/nP0kn+yPNo5Y/ZFY/vo2mmDlcANgQAA2FIkP2TveUIBPV8s1/v9Ndt09fMr1eTxBWx3GQ79bsZI/XDSYDkcjihl1/3Ecq0RetTbXrp1vX0eqaZU2l4sbVslbV8tbVst7dgSmv07DCkzT+o7Uuoz6puvI+XIGCKX4eyWFxG6db0BoAfx+U098P5GvbRie1DsiH4pevDcQmUmx0UhMwAAAHvy+/0ROY5pmhE7FqIvFPVeUdGka18p0Y72wP1kJcfpzxcWqahPMr9TMYLXt71Qb/ug1vZi13p3x+tdAIAeyNFao8QVT8m98lkZ3qYux60xB+ox3zl6w5wk/zfzmCbFGbrl9GE6fXhWpNIFAAAAosqyLD32wVo9+E6JrL1ma85Mjtf/fn+cjs3j/TEAdCumKTVu2tkQs33VN19XS7Xlkunb//MPRGqu1Gfk7gaZPiOk7CIpLjE0+wcA4BtN7T7dNLdM/90YvALamSOydOvpw5gACwAAAIAWldfr5nll8vgCL3YMynDrLxcNV7/0hChlBgAAepKINc20trZKkpKSOl9ee/bs2XrhhRdUU1OjoUOH6vLLL9eMGTMilR4AIEocOyqU/Plf5V79ghy+9i7HrXYW6aG26XrfPEqWdl9Iy++dqPvOKdCQTG7uAAAAgD20en26/j9f6Y2VlUGxkblpeuJH4zUgo/PzLwCAGNFSu0djzKqdq8hsL5a8zaHZf3zqzoaYvVaPUVJmaPYPAMA+bGlo1zUvl2hDXfA5/18dP0A/m9SPFTEBAAAA6NWvtusP766XudfkYKNykvXoBUXqlcTKlAAAIDQi0jQzd+5cnXfeeUpJSdGWLVuUmpoaEP/pT3+qp59+WtLOmVJLS0v19ttv6+6779asWbMikSIAINKqS6WPH1H6V/9Pjn3MllqZNUmzqk/TB+1FkgIvop07JlvXnzRY7jhnmJMFAADdQX19fdj2bRiG0tPTdz1ubGyUaZphOx6iK5brXdHQrmtfXqOy6tag2Okjeuv2M/OUKI/q6z1RyK77ieVaI/Sot73ETL072uSsK5OzZo2ctaVy1pbIWbNGRmt1SHZvGS6ZGXnyZxXJ37tI/qzh8vcukpnaX9r7ZmSPJE/43i9FU7TrnZGREbFjAUCsW755h65/vUyNbYHn/RNcDt1xRp5OZcV4AAAAwPYsy9LfP92qxz/eEhQ7fmgv3TcjX4nx3AsEAABCJyJNM2+//bYsy9I555wT1DCzePFiPfXUU3I4HEpKSlJhYaHWrFmjtrY2/e53v9OMGTM0evToSKQJAIgAo2aN9M5jUvFcSZY6m0vOkkPtw07T36zz9VBxWlA8wWVo1ilDNH10dtjzBQAA3Yff74/YsUzTjOjxEF2xUu+lmxp109zyoJvPHJKuPHGgfjQhVw5HZF8LPU2s1BqRQb3tJez1Nv0yGjfJVVsiV22JnN98NRo3yiFr/88/AP7U/vJnFcmXVSR/ZuHOrxlDJWd8J/nYuyGM1zcARMe8r6t19zvr5dtrmuispDg9dH6hRuemRCkzAAAAALHCb1r644INemnF9qDYjFG9dctpQ+VyGlHIDAAA9GQRaZr59NNP5XA4NG3atKDYE088IUnq16+fPvnkEw0YMECbN2/WCSecoC1btuivf/2rZs+eHYk0AQDh5O9Q4uePK2nZX6QuVpaxDJc8hedqY+FP9JsP/VpV1RI0ZkimW/fNKFB+dlK4MwYAAABigmVZ+vfybXrkg43y73XfdUqCU3+Ynq/jhvaKSm4AYDuWJUdrdVBzjLOuXA5/aFb5MhPSdzfHZBXu+mrFp+7/yQAARIFpWZqzeIv++d+tQbGC7CT96fxC5aQlRCEzAAAAALGkvcPUrW+U64Py4NWQfzqpny4/foAce6+eDAAAEAIRaZrZvn1nV3BRUVFQ7K233pLD4dBVV12lAQMGSJIGDhyoq666SjfccIMWLVoUiRQBAGHkrC1R6nvXy1W9qtO45XKrfeTFajvqMn2wPVF3vL5WO9qDZwM9c0SWZp06VEkswQoAAACb8PhM3fvues1bVRMUG5rp1kPnF2lQhjsKmQFAz+fwNstZW7qzMabum6+1pTLagy/qHwrLGS9/ZoF8mYV7NMkUyUzuI3FzAACgm2jv8Ou2N9dqYVnw38fJw3rp7un5SuacPgAAAGB7O9p9+s0rpfqyoilgu0PSb08arO+My4lOYgAAwBYi0jRTXV0tSUpNDZwJb9WqVaqpqZHD4dC5554bEDv66KMlSRs3boxEigCAcDB9Slz+pJI+e1QOsyM4npCutiN+oNYxP1JHQqb+d/EW/WtpadCweKdD1588ROeNyWZGCQAAANjG9iavrn+ttNMVGE/M66W7zspTSkJETu0AQM/m75CzYf3uVWNqS3d+bdoSkt1bcshMH7SrKebblWP86YMlg3/HgZ7M6Qxfo4BhGPt8jJ4jlmu9vcmra14uVnEnn1kuOTpX104bIqfBOf2DEcv1RuhRb3uh3vZBrRHLwvUZhd97ezmUelft8OjK/6zW2pq2gO1xTofumV6gU4f3DmmOCB1e3/ZCve2DWtsL9d4pIlfkvn3DXVdXF7B98eLFkqTs7OygVWgyMjIkSe3t7RHIEAAQas66cqW8d73itn8VHHQ4peOvlk64Ru1tpqoaWnXzC8VaUdEcNHRgrwTdd06BivokRyBrAAAAIDasqGjSDa+XqbYluPn8smP767Lj+sugoRwADo5lyWiu3KM55puv9es6n+zjEJhJvYNWjvFl5ktxSSHZP4Du5dtrXZGQnp4esWMhumKl1l9XNOrnz36tqh2B13KdhkN3nTtKlxwzOEqZ9SyxUm9EBvW2F+ptH9QasSRSn1H4vbeX/dW7dFuTfvrcclU2Bn52SE1w6YkfHa1j87LCmR5CjNe3vVBv+6DW9mLXekekaaZ///4qLy/Xl19+qalTp+7a/sYbb8jhcGjy5MlBz2lsbJQk9e5NFzEAdCumX4lf/l1J//2THH5vUNifWSDnhX+V+o+XJC1ZtU63zCtTQ5svaOwphZm69fShzJ4NAAAAW3n1q+26770N8plWwPbEOEN3nZWnaQWZUcoMALoPR3ujtGG1tH21tG2VUreulFFbIsPbFJL9W65E+bK+bY7Z3SRjJXKRHwDQ872zqkpX//tLtXX4A7anuV167JLxOqGA67sAAAAApGUb6vTTp5ZqR3vgPUF90xL01E8makRuWpQyAwAAdhORu5AnT56ssrIy/eUvf9EPfvAD9e7dW0uXLtVbb70lSTr99NODnlNcXCxJysnJiUSKAIAQMOrXK3XB9Yqr+iIoZjkMtR11mTzHXquM7Fz5TUuPvFeqv7xfLmuvsS7DoWunDtLFR/WVg9mzAQAAYBMdflMPL9yo/3y5PSjWPz1BD51XqPxsVioAgAA+j5z1awNXjqktlbOlKmDYoZ4ItxxO+XsNlT+r8JuVY3Z+NdMGSg57Ll8PALAvy7L0xIfrdN9ba2TtdWJ/cFaS/n7pBOX3SYlOcgAAAABiyturqvTr57+Qx2cGbB+WnaxnfjpRAzK43gEAACInIk0zV1xxhZ566imtX79ew4YNU2FhoVavXi2fz6fMzEx95zvfCXrO+++/L4fDoZEjR0YiRQDA4bBMuVc8reRPHpDD7wkK+3oNVfPJf5Qvd5ycTqe272jXr//9hT5dVxc0tl9agu6dka9RuVxYAwAAgH3UtXToxrll+mJL8AoIk4ak656z85WeyAqMAGzMMmXs2LxHc0ypnLUlcjZskMPy7//5B8CfnLNHc8zOlWP8GXmSKyEk+wdgP/X19WHbt2EYSk9P3/W4sbFRpmnu4xnormKl1h1+U/e8vU6vrQxu8h83ME0PnV+kXnEdYf29t4NYqTcig3rbC/W2j1iodUZGRkSPh+4jXO/VYuH3HpFzIPV+8csq3fvOOpl7NduP6ZeiP180QsnyqL4++P4ixB5e3/ZCve2DWttLLNQ7Fj6jRORui3HjxumBBx7Q9ddfr+bmZi1fvlySFBcXpyeffFKpqakB4xsbG/XGG29IkqZOnRqJFAEAh8ho3KjUBTcqbuvSoJglh9qP/KlaJv1GcrklScs2NWrW3M9V0xz84XdKfoZuP2OY0tzcDAgAAAD7WLOtRde9WqptTd6g2A+PztXMEwfKZbACIwD7cLTW7FoxxlVbImddqVx1ZXJ0tIZk/2Z8yu6mmG+/ZhbKcqfv/8kAcBD8/tA09R0I0zQjejxETzRq3djm0w2vl+rzzcFN/jNG9dbNpw1VnNPgdzAMeG3bC/W2F+ptH9QasSRSv4v83tvLnvW2LEtPLKnQk59UBI2bPKyX7p2RL3ccnx26M17f9kK97YNa24td6x2xu5KvvfZanXLKKXrxxRdVVVWl3Nxcfe9731NRUVHQ2A8++EATJkyQJE2fPj1SKQIADoZlyr3y/5S85H45fG1BYX/6IDWd/IB8/Y7etW3l1iZd8UKxOvyBU0k4DYeuOnGgLhmfI4eDmwEBAABgH28V1+j3b6+Txxf4HjnB5dCtpw3TmSN7RykzAIiAjla56sp2N8fUlshVWyKjrTY0+zfipOwiqc9ItaYOUUdmofxZRTJTciXOPwAAcEA21rXp2ldKtam+PSh25eSBunRiLuf1AQAAAMhnWrr/vQ165avg1SnPHZOtWacOZYIwAAAQNRGdyn/MmDEaM2bMfsede+65OvfccyOQEQDgUBg7tijl/ZsUv+WTTuNtR/xILcdeL8Ul7dpW29KhG14vC2qY6Zsar3tn5OuIfql77wYAAADosfympb98uFn/WlYZFOubGq8Hzy3UiJzkKGQGAGFg+uRs3LirKWZXc0zjZjlk7f/5B8CfNlC+zEL5swrlyyqS1Wek0oeOk5xxkiRPfb0tZ80CAOBwLNvUqBteL9OO9sC/oQkuQ78/K08nFWZGKTMAAAAAsaS9w9Qtb5RrUXl9UOznk/rrl8f3p9keAABEVUSbZgAA3ZxlKWHVv5X88b0yOlqCwv7UAWo++X51DJgUsN3nNzVrbpmqmzsCtk8tytbvThuitAQjrGkDAAAAsWRHu083zyvXpxsag2JHDUjV/TMKlJkcF4XMAOAwWZaMlm2BzTF1ZXLWlcnh94bkEKY7Q76snSvG+LKK5M8qkj+zQFZ8SsA4p9O5q2EGAAAcvFe/2q5739sgvxnY4JqdEqeHzyuiyR8AAACAJKmxrUO/frFYX21tDtjukHTjKUN00ZF9o5MYAADAHmiaAQAcEKNpq1Len6X4zYs7jbeN/r5ajrtJig++UPboos1avqUpYNtxeVn624+OVtOORmZ6BQAAgG2srWnVda+WakuDJyh20dg+uu6kwYpz0lQOIPY5PE1y1pXIVVsqZ23priYZwxPcEHgoLGeCfJkFezTHfLOCTFK2xKyUAACEzb5WxSzqk6Q/nV+kPqnxUcgMAAAAQKypaGjTT/7va62vbQvYHu906O6z81mdEgAAxIyQNs18+OGHodzdLieeeGJY9gsAOACWpYTil5S8+PcyvM1BYX9KrppPuk8dg07o9OnzV9fo+eVVAdv6pbs1+3tHycXNgAAAALCRD8rq9Ls316q1wwzY7jIcuvGUITr/iD5RygwA9sHvlbN+/e6VY2pL5KwrkbNpa0h2b8khM33wrlVjfN/8Z6YPkgxnSI4BAAAOTKvXr1vfKNeHaxuCYlPzM/T7s/KUGM/fZwAAAABSSVWTLv3HZ6ra0R6wPTXBqYfPL9RRA9KilBkAAECwkDbNTJ06VY4Qz/LncDjk8/lCuk8AwIExmrcpZeHNit/4Qafx9pEXq+WEm2XFp3YaL93eorvfWR+wLd7p0OM/HK+slIRQpwsAAADEJNOy9OSSCj35SUVQLCspTvefW6Aj+3f+nhoAIsayZDRVBDbH1JbI2bBeDjM052fNpOw9mmN2rhzjz8iX4hJDsn8AAHDoqnZ49JtXSlVa3RoUu3RirmZOHiiD1d4AAAAASPrvulpd9swy7WgPPG/YJyVOf75wuPKzk6KUGQAAQOdC2jQjSZZlhXqXAIBIsywllLyq5I/ukuHZERT2J+eo+aR71DF4ape7aGzz6frXyuTxBc6iPeu0YTpiQK8QJwwAAADEphavX797c60WldcHxUbmJOuBcwvUN5WGcgCR5Wir390UU1f6zfdlMjqCV5g9FGZcsvyZhfJnFcqXVbhrBRkrMTMk+wcAAKG1qrJZv3m1VLUtHQHbXYZDN586VOeMyY5SZgAAAABizYfldbr+tVJ597ofaGimW7MvGq6cNK55AACA2BPSppmFCxd2GfN6vbr11lu1dOlSZWdn6+KLL9bEiRPVt29fSdK2bdu0dOlSvfDCC9q+fbsmTJige+65R3FxcaFMEQCwH46WaqV8cKsS1r/Xabx9+AVqmXybrISul1H1m5ZufaNcFY2egO0Xju2j847oG9J8AQAAgFi1ub5d171aqnW1bUGxs0f21s2nDVWCy4hCZgBsw9cuZ135HqvHlO5slGndHpLdWw6n/BnDvmmOKdrVHGOm9pcc/PsGAEB38F5JrW6fv1YeX+DEiOlul/54boHGD+z6WgAAAAAAe9nS0K5Zc4MbZo7ol6I/nV+k9MSQz+EOAAAQEiF9lzJlypROt1uWpbPOOkvLli3Tz372Mz3yyCNKTk4OGvfDH/5Q9913n6655hr97W9/08MPP6w333wzlCkCALpiWYovm6eURXfI8DQEhc2kbDVPu0feoSfvd1dPLNmiTzY0Bmwbk5ui66YNDlW2AAAAQExbsr5Bt8wrV5PHH7Dd6ZCumTpY3x3XVw6HI0rZAehxTL+MHZt2NcXsWkWmcaMclrn/5x8Af0rurqaYXV8zhkpOZo4EAKA7sixL//zvVj22eEtQbFCGW49cUKRBGe4oZAYAAAAgFvlMS7e9sVat3sDzjVPyM3TP2flyxzGJDgAAiF0Rae39+9//rrffflunnnqqnnzyyX2OTUpK0hNPPKGNGzfq7bff1hNPPKFf/OIXkUgTAGzL0VarlA9+p4S1b3Uaby88Ry0n3i7L3Wu/+/qgrE5//3RrwLaspDjdf06B4plFGwAAAD2cZVl6Zmml/vejzTIDJ2pWutule2fka+Lg9OgkB6D7syw5Wmt2rxxT902TTF2ZHL72kBzCTEjb2RSTWbhHk0zhPlecBQAA3YvXZ+rud9brzdU1QbEJg9J0/zkFSnMzQzQAAEBP43Q6w7JfwzD2+Rg9w98+3ayVlc0B284Z20+3nzFUhqwunoXujte3vVBv+6DW9kK9d4rI2c6nnnpKDodDV1xxxQE/Z+bMmXr33Xf19NNP0zQDAGEUX/6WUhbdJqOtLihmJmaqeerd8uadfkD72lDXptvnrw3Y5jQcuu+cfPVJjQ9JvgAAAECsau/w6/dvr9fba2qDYgXZSXrw3AL178VMzQAOkLdFrrqygJVjXLWlMtqDP78fCsuIlz8zb1dTzLcryJjJORIrYQEA0GM1tHbot6+V6cuKpqDY+Udk68aTh8jltOeFcwAAgJ4uIyMjIsdJT2fiqJ5m+aZ6PbkkcJXKwVlJuveCMUpOoOHeTnh92wv1tg9qbS92rXdE3rGsWbNGkjRo0KADfs7AgQMDngsACC1HW71SPrxDCWXzOo178s9S85Q7ZCVmHdD+Wrx+Xf9qqVr2Wob12qmDdNQAZqMFAABAz1bZ6NFvXytVyfbWoNgphZm6/YxhSowPzyx+ALo50ydnw/o9mmNKd37dsTlkh/CnDZIva8+VY4rk7zVEMrigDQCAnayvbdM1L5eootETsN0h6eqpg3TJ+Bw5aJ4FAAAAsIcWj0/X/r8v5Td3rybjNBz603eOpGEGAAB0GxF519Le3i5J2rx5s4466qgDes7mzTsvCns8nv2MBAAcrPh17yrlg1tltNYExUx3hpqn3ClvwdkHvD/LsnTn/LVaX9cesP3MEVn6zlF9DztfAAAAIJZ9vnmHbny9TA1tvoDtDkmXnzBAPzmmHzeeAZAsS0Zz5a4VY5y1JXLVlcpZt1YO0xuSQ5iJmbuaYnyZ3zTJZBZI8ckh2T8A4OA4neFrmjYMY5+P0XOEqtafrG/QDa+VqNnjD9ieGGfo3nMKNSU/85BzROjw2rYX6m0v1Ns+qDWAnub381ZrY23ghGFXnZSvcYMis3IRAABAKESkaSY/P18rV67U448/rnPOOeeAnvP4449LkvLy8sKZGgDYiqO9Uckf3SV3yaudxj3DTlXz1LtlJfU+qP0+/Vml3i+rD9hWmJ2kW04bys2BAAAA6LEsy9J/vtymhxZuCphhTZKS45265+w8nZDHRSPAjhyeHYHNMbUlctaVyvDsCMn+LZdbvsyCgJVjfFlFB/15HgAQXhkZkXsvmJ6eHrFjIboOpdb/+nSj7ni9OOhzS790t/526QSN7Mdq8bGK17a9UG97od72Qa0RS+rr6/c/6BAYhhHwu97Y2CjTNMNyLETWwtJa/Xtp4IrYR/RL1ZXT8nc9pt49G69ve6He9kGt7SUW6h3Jc+VdiUjTzMUXX6yvvvpKb7/9tq644go9/PDDcrvdnY71eDy67rrr9NZbb8nhcOi73/1uJFIEgB4vbsNCpSy8Rc6WbUExMyFdLSfeLk/hOdJBNrl8uqFRjy0O/ICc5nbqj+cWyB0XvpkUAQAAgGjy+kzdv2CDXltZHRQbnOnWQ+cVakhmYhQyAxBRfo+c9et2NsV82xxTWyJnc1VIdm85DPnTh+zRHFMoX1aRzLSBksFnbgAAsG8+v6m73yjWU0s2BMXGDkjXkz86Wn3SOr9mCwAAgJ7H7/fvf1AImKYZsWMhfGqavbrzrbUB2xLjDN09vUAu5+5VtKi3vVBve6He9kGt7cWu9Y5I08xvfvMbPfvss1qzZo3++te/6tVXX9XFF1+sCRMmqE+fPnI4HNq2bZuWLl2q//znP6qq2nlRuaioSL/5zW8ikSIA9FgOT5OSF98jd/F/Oo17h5yk5ql3y0zpe9D73tro0S3zyrXn5HQOSXefna8BvbjQBgAAgJ6pptmrG14v01dbm4NiJwzrpbvPzlNKQkROuQCIFMuUsWNLYHNMXZmc9evksEJzUtmf3HdnU0xm4e4mmcx8ycXnawAAcPCa2jt01fNf6IOS4Eb/s8fk6qGLxzLxFQAAAIBOWZalO99ap8Y2X8D23540WAMzOF8JAAC6n4jcweF2u7Vw4UKdffbZWr58uaqqqjR79uxOx1rWzjuvjzrqKM2bN08JCQmRSLFb83q9ev7557Vu3TpVVVWpublZSUlJysnJ0UknnaTJkyfL5eJmHcCO4jZ9pJT3b+p0hlszPlUtk2+TZ/gFB726jCS1d5i6/rVSNbYHfkC+/IQBOm5or0NNGQAAAIhpX1c267evlqqmpSMo9tNJ/fTL4wbIaRz8+2sAscPRVrtHc0ypnLWlctWVytHRGpL9m3Ep8mcVfLNyzLfNMYWyEqO/LDkAILTq6+vDtm/DMJSenr7rcWNjo0zTDNvxED2HUuutje26+sU1Kq8Jfv/y82MH6PLJA9XWvENtIc8Wh4vXtr1Qb3uh3vYRC7XOyOAcA4DD88IX2/TJhsaAbdMKMnTO6OwoZQQAAHB4ItZJ0bdvX/33v//V448/rjlz5mj16tWdjhsxYoQuv/xyXX755XI6md3oQLS3t+udd95Rfn6+jjrqKKWlpamlpUVffvml5syZoyVLlmjWrFkyDGP/OwPQIzi8zUr6+D4lrnq+07h30GQ1n3SvzJTcQ9q/ZVm69931KtkeeMFtan6GfnxMv0PaJwAAABDrXl9ZrXvfW68OvxWw3e0ydMeZw3RKUVaUMgNwSDra5Kpes7MpprZEzrqdK8gYrTUh2b1luOTvNSywOSarUGZq/0OavAIA0P34/aFZjexAmKYZ0eMhevZX66+2Num3r5aqrjVwwqs4p0O3nT5MZ43sLcs0xW9L98Br216ot71Qb/ug1gC6m3U1rfrzh5sCtvVOjtMtpw6Vg/OaAACgm4ro8iNOp1MzZ87UzJkzVVVVpZUrV6qurk7SzlkOxowZo9zcQ7uB285SUlL09NNPB60m4/f7dffdd2vFihX68ssvNW7cuChlCCCS4rYsUcqCm+RsqgiKmXEpajnhZnlGXnxYN+j858ttemN14E1EgzPduuPMYTL4gAwAAIAepsNv6uH3N+jfy7cFxfqlJejB8wpU2Cc5CpkBOBiOpq3S6mekzZ9J21erV916OWTt/4kHwJ/aP2DVGF9WkfwZQyVnfEj2DwAAcCDeKq7RXW+tk3evRv9eiS49eF6hjuyfGqXMAAAAAHQHXp+pW99cK48v8DPF7WcMU6+kuChlBQAAcPgi2jSzp5ycHOXk5ETr8D2KYRidriLjdDo1YcIErVq1SlVVVVHIDEBEeVuU/MkDSlz5r87DA45T80n3yUzrf1iH+bKiSQ8tDJxRIinO0IPnFiolIWp/VgAAAICwqGvxauYLq7V0046g2IRBabp3Rr56JXKhCIhZHa1KWPu2Eta8rLgtn0h7NMkcypQPZkJ6wKox33614rkBFQAARI9lWXrykwo9sSR4Mq1hWYl6+PxCDejljkJmAAAAALqTxz/eotLtrQHbvjuur44d2is6CQEAAISI7e9ubmxsVHl5ucrLy7V27VqtXbtWTU1NkqQpU6Zo5syZB7yv6upqzZ8/X8uXL1dtba1cLpdycnJ07LHH6vTTT1dCQkK4foxOmaapFStWSJIGDhwY0WMDiCzX1qVKfe8GOXdsCopZcUlqOe4mtY/+/mGtLiNJNc1e3fh6mfxm4IwSd5yZp6FZiYe1bwAAACDWrNraqF8887kqGtqCYt8bn6OrpwySy2ClRSDmWKbiKj5TwpqXFb/2LRkdLQe/C2e8/JkF8mUW7tEkUyQzuc9hf7YGAAAIpfYOU79/e53eXlMbFDt2SLrunZHPhFcAAAAA9mvZph3619LKgG3DshJ15eRBUcoIAAAgdGx/hvSyyy4LyX6WLVum2bNnq61t9400Ho9nVyPOggULNGvWrLCuruPz+fTyyy9LkpqamvT111+roqJCU6dO1ZgxY8J2XABR1NGm5E8fknvFU3LICg73O0ZNJ98nM/3wP8B2+E3d8HqZals6Arb/eGKuTirMPOz9AwAAALFk7oqtuv7FFWrvMAO2xzsduvm0oZo+KjtKmQHoitGwQe6SV5Sw5lU5m7Yc0HMsOWSmD9pr5Zgi+dMHS4btT50CAIAYV9vSod++WqqVlc1Bsf85sq+uO2kwjf4AAAAA9mtHu0+3z18bcOdRnNOhu8/OkzvOiFpeAAAAoRLRK78+n09vvPGGPvroI61bt05NTU3y+/37fI7D4dCCBQsikl/v3r3Vv3//XauzHKj169frkUcekdfrldvt1nnnnafRo0fL6/Xq448/1oIFC1RZWal7771X9913nxITw7Mag8/n04svvrjrscPh0IwZM/T9738/LMcDEF2uys93ri7TuCEoZrncajn2erUf8SPJEZoPrw8v3KSvtgZeeDtmcJouP4GVrAAAQGxwOp1h27dhGPt8jJ7liY+3aM7i4FUc+6TE66HzizS6X2oUskI48NruATw7FF/2hhJWvyRX5bL9j09Ik0aeKw08Rs3Jg9WRkSfFJQUNC99fFEQKr297od4A7Ki8ulXXvFyiqiZvwHbDIV03bbC+My58E/kBAAAA6Fnuf2+Dtu312eKKEwaqsE9ylDICAAAIrYg1zSxevFg//OEPtWnT7ptOLCt4VYRvORwOWZYlhyO8sx9ddNFFysvLU15ennr16qXt27fryiuvPKh9PPXUU/J6vXI6nbr11ltVWFi4KzZ69Gjl5ubq2WefVWVlpebOnauLL744aB/PPPOMOjo6grZ35ayzzlJubm7ANrfbrRdeeEGmaaq+vl6ff/65nn/+eZWWlmrWrFlKSgq+AQBAN+TzKOm/f1Lil3+XwzKDwh2549V08v0yew0N2SHnfV2t/3y5LWBbblq87pmeLyez1AEAgBiRkZERsWOlp6dH7FiIrI/LazptmBk/OENzfjBOfVLdUcgKkcJru5sw/dLahdKK56Q1b0i+9n2PdxhS3knS2O9Jw8+W4nZOaJMSgVQRO3h92wv1BtDTLV7XoJvnlql1r5Uxk+MN3TujQMcN7RWdxAAAAAB0O/NX1+jtNbUB244emKZLjqYRHwAA9BwRaZpZs2aNzjjjDLW1tcmyLMXHx6ugoECZmZlRn/GtswaWg1FeXq7i4mJJ0rRp0wIaZr41ffp0LVy4UBUVFZo/f74uuOACuVyB/+vfffddeTyeAz7upEmTgppmvmUYhrKysnTaaacpNTVVf/rTn/Tyyy/rBz/4wUH8ZABikWvbCqW8d71c9WuDYpYzXi2Tfqv2sT+WjNDNibtmW4vufW99wLYEl0MPnFuoXolxITsOAAAAEAue/yy4YeZ7EwfqjnNGKcHF2hNAVG1bLa14XvrqBam5av/js0dIR35PGnOxlNb5eTQAAIDuxLIsPbesUg+9v17mXnMT9ktL0MPnFyo/m0n0AAAAAByYykaP7ntvQ8C21ASn7jhzmIwwT3YOAAAQSRFpmvnDH/6g1tZWOZ1O3Xnnnfr1r3+tlJSeMZfjZ599tuv7adOmdTrGMAxNmTJFzz33nFpaWrRq1SqNHTs2YMy//vWvsOT37XFWr14dlv0DiBC/R0mfzVbi8r92vrpM3yPVfMof5c/IC+lhG1o7dP1rpfL4Aq++3XzqUA3vyxKsAAAA6FlavT4tKN4esO2qk/J13WlFUcoIgFpqpZX/2bmqTOWK/Y9PypLG/M/OVWVyx0pc2AUAAD1Eh9/UnXNX6dlPgxv9j+iXogfPLVRmMhNdAQAAADgwftPS7fPXqsXrD9g+69ShyklLiFJWAAAA4RGRppn3339fDodDV199tW6++eZIHDJiSkpKJEkJCQkaNmxYl+NGjhwZ8Jy9m2bCpa6uTpLkdDIbLtBdObd/rdT3rperrjQoZhnxaj3mGrUd9TPJCO0/6X7T0s1vlKtyhzdg+8VH9dXZo7JDeiwAAIBQqK+vD9u+DcNQenr6rseNjY0yzeBmZnRv7xTXqK1j98UhwyFdetwQ6t2D8dqOUX6v4ta/r/jilxS3YaEcpm+fwy0jTh1DT5J3xIXqGDJVcsbvDDQ0BIyj3vZCve0l2vXOyMiI2LEA2FNjW4eufG65PiqrCYqdMSJLt50+TAkuIwqZAQAAoDsJ1/1jhmHs8zFi09NLt2j5lqaAbWePytaZo/rs83nU216ot71Qb/ug1vZCvXeKSNNMTc3OE7jnn39+JA4XUVu2bJEk5eTk7PODRb9+/YKeE8ocsrOzlZAQ2OHt8Xj0zDPPSJKOOuqokB4TQAT4vUpa9pgSlz0mh+UPCndkj1bzKQ/In1UYlsM/tnizPtu4I2Db2P4punbqoLAcDwAA4HD5/cHvmcLFNM2IHg+R8VZxdcDj4/N7q3dKgurrW6m3TfDajiLLkmv7SiWseVkJZfNktO+/EbKjzxh5hl8gT8F0WYmZuwMHWEPqbS/U216oN4CepKbZq8v/uUTl25uDYr86foB+NqmfHKyuBwAAgAMQqUkf9pzYArHp64pGzfloc8C2/r0Sde//HKU098GtYEm9/z97dx5fRXnuAfw3M2fNvkJ2lqzsooCoIIuCyCpU7a21bm1va7HWVmvLrbZaaWvV29ralqqtW72ltRaVVVkEBEEpIChLdiA7S9aT5Owz949AyJCQBXJmzsn8vp+Pn2SeeefMkzwJZs7M877GwnobC+ttHKy1sRi13po0zSQmJqKqqgp2u12L02nG4/HA4Wjrto6Pj+92bEREBKxWK9xuN2pra/s1j127dmHdunXIy8tDYmIi7HY76urqcODAATgcDowYMQLz58/v02v2NkfOQED9gfXuTDp9BGGbHoHp9JFO+xTRDNfVD8J11bcByYxA/BZuLqjF63uqVbGECDOevSUPNkvfLo4vxHobB2ttLKy3sbDeRDQQNbt9+Li0QRWbPzZZn2SIDERsPglr4buw5r8DU11Rj+P94YPhzl0Ed+7igE0iQURERBRMntxQ3KlhxmoS8LM5mZid1/39SSIiIiIiogs5PX587x+fwScr7TFRAH775Sv63DBDREREFCo0aZqZMmUK3nrrLRw6dAhXXnmlFqfUhMvlav/cZrP1ON5ms8HtdquO6w9XXXUV6uvrUVhYiMLCQrhcLoSFhSEjIwPXXXcdZsyY0efmlvvvv79X4956661LSbnPjNrVZlSGrrffC+x8Htj+a0D2dt6fNAbCLStgTxqDQLUhFp104In1xaqYWRLw4tcmICc97iJHXTpD19tgWGtjYb2NhfUmooHgo5IGePznbxCZRAE3jUrSMSOiAczngqV0I2z5q2Au/xiCInc7XJGscA+fDXfeEnjTrwPEwEziQkRERBRsdh1rwM4Lmvvjw83431tyMDo5Qp+kiIiIiIgopP1qw1GUnG5Rxe6fnolJw/r/mSAiIiKiYKFJ08wPfvAD/Pvf/8bvfvc73HHHHTCZNDltwHk8nvbPe/M1nRvT8bj+kJmZiczMzH59TSLSwamjwDvfBqoPdN4nmoCpjwBTHwZMloCl0OTy4lt/24cWj18V/+n8kbhqCC+OiYiIiGjg2pSvXnF1anYCYsIC97c3keEoCkzV+2DL/zcsxeshepp7PMSbPAGuvCXwZM2FYo3UIEkiIiKi4OHzy/jN1hOqWGKkFa99dRQGR3D2ZyIiIiLqu/r6+oC8riiKqkn2GhsbIcvdT5RD+thRUo83dquvM0YkhePuqxJ7/fPBehsL620srLdxsNbGEgz1jo2N1fR8XdGke2XixIl4/vnn8eCDD2LJkiV45ZVXkJCQoMWpA8piOf/wjM/n63H8uTEdjwtWK1as0DsFIuPw+4DdLwBbfwn4u2iqGzQSuGUFkHJFQNOQZQUPv3UQpWfUs0ncelUa7pw8JKDnJiIiIiLSU5PLh93HG1WxBeNSdMqGaGARmypgzX8HtoJVkBrLehzvj0yDO28xXHmLIUfzWpSIiIiM6+2Dp3C8zqWKPXpTLlKibfD7/Rc5ioiIiIjo4rT6O1KWZf7NGoTqWrx4Yn2RKmY1iXjq5kyIUC65Zqy3sbDexsJ6GwdrbSxGrbcmTTM///nPAQCTJk3C2rVrMWTIEMyaNQt5eXkICwvr8fif/vSngU7xkthstvbPXS5XNyPVYzoeF6zi4+N7NY4zEFB/MHK9xbpihG96BKaaA532KYII14T74Zr0IGCyAgH6fTvnL7sqsOnISVVsxOBwPDwtFQ0NDf12HiPX22hYa2NhvY0lGOodDDMQENHAsa2oHj5Zad+2SAJmjRysY0ZEoU3wNMNS/D5s+atgrvq0x/GyORyerJvhylsCX8pEQBA1yJKIiIgoeDU4vXhpV4UqNjYtGl+6Mg2NjQ36JEVERERERCFLURQs31iKulb1xODfn56BofF2nbIiIiIi0o4mTTNPPPEEBEEAAAiCAKfTiTVr1mDNmjW9Oj5Ym2YsFgsiIyPhcDhQW1vb7djm5ma43W4AvW9ICQWcgYACwRD1lv2wH3wVYZ/8L4QuVpfxxWah+cZn4Bs8ri0Q4O/Hx6UN+NMO9Yy/0XYTnlmYDbMY2N91Q9SbALDWRsN6GwvrTUShbmOB+pr+uuGxiLSZdcqGKETJfpgrdsOavwrW0g8g+LqfYEaBAG/6tXDnLYF7+GzA3PPEOkRERERG8eLHlWhyqd9r+en8kRBFQaeMiIiIiIgolL3z+Wl8VNKgik0ZHoMvjRukT0JEREREGtOkaQZo61bubjtUpaWl4ejRo6ipqYHf74ckSV2Oq6qqUh1DRMYlNhxD5JYfwVy9r9M+BQKc47+B1qu/37a6jAYqGlx4bF0xOv6rLArAL+dnITlamxyIiIiIiPRS3+rFf040qmKz8xJ0yoYo9Ej1JbAeXQVr4buQmmt6HO+LzWxrlMldBDkiWYMMiYiIiEJLyZlWrDqoXhV+wbgUTBgap1NGREREREQUyk7UOfGbrSdUsVi7CY/fNLx9InQiIiKigU6TphlZlrU4jS5yc3Nx9OhRuN1ulJaWIjs7u8txR44cUR1DRAakyLB9/gbCdz/b5Yy7/uihcNz4DHzJV2mWksvrxw/fK4LDrZ6xbunUdFw9JFqzPIiIiIiI9PJhUR38HTrIrSYR12fF6pcQUQgQXA2wFq2FNX8VzCcP9jhetkbDnbMA7rwl8A0aC/BGLBERGcTFJlrrD6IodrtNoUlRFPx2W5nqGsVmEvHjm/Pat1nrgY2/28bCehsL620crDURBROfX8bj60vg8qmf3/zpnOGIDzfrlBURERGR9jRbaWagmjRpEt59910AwNatW7tsmpFlGdu3bwcAhIeHY9SoUVqmSERBQGwsQ+SWH8Nc9WmnfQoEuMbdg5bJDwNmu2Y5KYqC5RuPoeh0qyp+Q04c7prI2X6JiIiIyBg25deptq/PjEGYJXAPNxKFLL8XlrKPYM1fBcuxDyHInm6HK4IEz5DpcOctgWfYDEDiSqZERGQ8sbHaNWNHR3MSpIFg85GT+OS4eiXM/56WidSY8/cOWGtjYb2NhfU2FtbbOFhrItLTy7srcaSmRRX70rhBmJrJycOIiIjIWNg0c5mysrIwYsQIHD16FFu3bsX06dORk5OjGrN27VpUVlYCAG6++WaYTPy2ExmGIsN2aCXCdz0Nwdvaabc/KgOOG34NX+okzVP7x/6TeP9orSo2PN6On87h8qtEREREZAxnmj3YV96kis3KjdcpG6LgJJ0+Alv+KlgLV0N01vY43pcwEq68JXDnLIASlqBBhkREREQDg8cn4xfrj6piSVE2fHvacJ0yIiIiIiKiUHag0oFXP61SxTJibXhoWoZOGRERERHpx/DdG/n5+aipqWnfbmo6/7BMTU0Ntm3bpho/ffr0Tq9xzz334PHHH4fH48Hy5cuxePFijBo1Ch6PB7t27cLmzZsBAMnJyViwYEFAvg4iCj5iUyUiPvwxLBW7utzvHPM1tFz7KGAO0zgzYF95E57fdkIVC7dIeGZRNsI5qzYRERERGcTmwjooHbbDzCKuHRajVzpEQUNoOQ1b4Xuw5r8DU21+j+PlsAS4cxbBlbcE/oQ8DTIkIiIiGnhe33Ucx86oZ4D+0c25CLMY/nYuERERERH1UbPbh5+tL4Hc4SaIJApYPi8Tdj4XRERERAak+busdXV1ePXVV7F582YcOnQIdXV1AIC4uDiMHj0aN954I+69917ExcVpks+WLVuwffv2LvcVFBSgoKBAFeuqaWbYsGF46KGH8MILL8DpdGLlypWdxiQnJ2PZsmWw2+2d9oUySQrMH9GiKHa7TQPLgKu3osBy+J8I27Ecgqe5025/VBpab3wGvvRrocdl6MkmN5atKYZfUceXz89GZmJEwM8/4OpNF8VaGwvrbSysNxENFJsK1KtmTMuKhc3Mf9PIoHxuWI5thi1/FcxlOyAo/m6HK6IFnuE3wpW3BN6MqYDIhzmJiIguVF9fH7DXFkUR0dHR7duNjY2QZTlg56PAqmv14nebC1WxMckRuH5IGBobG1lrA+HvtrGw3sbCehtHMNQ6NjZW0/MRUfB57sMTqGx0q2LfujYVI5MC/1wQERERUTDS9G72iy++iEceeQStra0AAEU5/8R2ZWUlqqqqsHHjRjzxxBP43//9X/z3f/+3luldlgkTJuC5557D+vXrsX//ftTV1cFkMiEpKQmTJ0/GnDlzYLVa9U6z32l1od3xDQUa+EK63o2VwOrvAiVbut5/1b2QZj+FSGuktnmd5fb58eO/f4K6Vq8q/uDMLCyelKlLTiFdb+oT1tpYWG9jYb2JKBTVNLlxsFLd5D47L16nbIh0oigw1XwGa/4qWIvXQXQ39XiIN2k83HlL4M6aB8XGvwGIiIi64/d334Tan2RZ1vR81L/++NEJNHvU9Xt45hAosgxZEFRx1tpYWG9jYb2NhfUOEYoC+JwQvK0QvC1tHz0t5z/vIib6nIDgBdzNgKcF0uivwTt8tt5fCREZyOaCWqw9fEYVuyI1EndPStEpIyIiIiL9adY08/TTT+MnP/lJe6NMdHQ0xo8fj6SkJABATU0NPvvsMzQ2NqKlpQX3338/Ghoa8OijjwY0r6VLl2Lp0qX98lqJiYm4++67cffdd/fL6xFRCFEU4MDfgfeXAe7GzvujUoGFLwBZN2ifWwdPrjmCA+UNqtj03ER878YcfRIiIiIiItLJ5oI61XakVcLkoWwAIGMQHVWwFrwDa/47MDUc63G8PyIZ7rzFcOUugRw7TIMMiYiIiIyj6HQr3v38lCp288h4jE7mDNBERER9cgkNLufjHbY9LUDHfVB6Pnc3xCEz+ukLJCLq2SmHB7/cpH7PN9wi4udzMyGJwkWOIiIiIhr4NGmaOXToEB5//HEoioLk5GQ8++yzuO2222A2m1XjfD4f/vWvf+GHP/whqqqq8Nhjj2HevHkYNWqUFmkSEV0aRw2w5ntA4ftd7x9/J3DTLwGdZ+D953/K8PdPy1SxjLgw/O7L43lhTERERESGs7GgVrU9PTsOZknUKRsiDXhaYC39ANb8VTBXfNLjAx+KyQ535hy4RyyBN3UyIPD3g4iIiKi/KYqC//3wBOQOf5rZTCK+OzVDv6SIiIi0EKQNLoEgeFr0ToGIDEJWFDzxfgmaXOqVzB69YShSoq06ZUVEREQUHDRpmvnDH/4Av9+PxMRE7N69GxkZXb/RazKZ8JWvfAVTpkzBxIkTcfr0afzhD3/AihUrtEiTLkF9fX1AXlcURURHn28waGxshCzLATkX6S9k660osBS8B/u2n0HsYnUZOXwwWm54Gr5hMwCnDDgD8/vSG4eqHHjs3UOqmM0k4tlF2ZDdzah3a5dLyNab+oy1NhbW21iCod6xsbGano+IBpaKBheO1KhvVs/OjdMpG6IAUmSYKz+FNX8VrCXvQ/C29niIJ3Uy3HlL4M6cA1jCNUiSiIiIyLi2Fddjb3mTKnbP1SkYFGnRKSMiIqIuGKjBJRB6834MEVF/WLmvBntOqK8vZuXGYe7IBJ0yIiIiIgoemjTNfPjhhxAEAcuWLbtow0xH6enp+NGPfoSHH34YW7Zs0SBDulR+v7/nQf1AlmXNzkX6C4V6C61nELHtcVhLN3a535W7GC1TH4diiwZ0/lrqWrx45N0CeP3qNx0fu2kYMuNtun+vQ6He1D9Ya2NhvY2F9SaiULO5oE61HWM3YWJGlE7ZEPU/seEYbPnvwFrwLiRHZY/j/dFD4MpbAnfuYshRqRpkSEREREQen4znt6lXh0+KtODOCck6ZURERAMCG1wCShFEKObws/+FQbG0fcS5bXMYYI2ELTK+bTISSzg8EcP1TpuIDKD4dCv+sKNcFRsUYcaPbxwGQRB0yoqIiIgoeGjSNFNZ2XZz/tprr+31Mddddx0AoKqqKiA5ERFdKkvROkRs/xlEV+eVY+SwBDRPXw7P8Fk6ZNaZT1awbG0RTjo8qvhXrkrCnBGcSYKIiIiIjGljQa1qe2ZOHEySqFM2RP1DcDfBUrQOtvxVMNfs73G8bImEO3se3HlL4Eu6EuCNUyIiIiJN/X1fDSob1cvAPzgtAzYzr02IiAyDDS4B1ZsGF8UcAcVy7vPwDh87fG45PxaSpcf3UCRJgi02tn3bX1+v+0SbRDSwuX0yHltX3Gky3SfnZiLarsnjoURERERBT5O/iiRJAgD4fL5eH3NupmpR5BvDRBQcBGcdIrb/DNbi9V3ud2UvQMv1P4Nij+1yvx7+8FEZ9pU7VLEr0yLxvevTdcqIiIiIiEhfx+ucKDzVqorNzo3TKRuiyyT7YC7bAVvBO7CUboLg93Q7XBFEeDOmwpW3BJ5hNwImm0aJEhEREVFHZ1o8eOUT9YqAV6RGYhavTYiIgtdlN7g4AdkFeFoATwtiPM2Ahw0u5/SuwSW8Pd5fDS5ERAPBH3eUo/iMUxW7c0ISJmZE65QRERERUfDRpGkmIyMDR48exZYtW3q92syWLVvajyUi0pul5ANEbHscorO20z7ZFofm6U/BkzVHh8wubmN+Ld7cW6OKDYow41cLsjmLNhEREREZ1qZ89d/08eFmjE+L0ikboksjnSmANf/fsBWuhth6usfxvrgcuPOWwJW7CEr4IA0yJCIiIqLu/GlHBVq9cvu2AODhGUMg8MFeIqL+EQIruITyv/idGlzONrmwwYWISHufnmjE3/epnw3KTgzDd6ZwMl0iIiKijjRpmpk1axaOHDmC5557DrfccgvGjBnT7fhDhw7h2WefhSAImD17thYpEhF1SXA1IPyjJ2ErXN3lfnfmHDRPexJKWILGmXWv+HQrfv5+qSpmlgQ8sygH8eFmnbIiIiIiItLfpoI61fYNOXGQRN6Qp+AnOGthLVwNW/47MJ0+3ON42RYHd+5CuHIXw584ig+eEBEREQWJ/JMtWHNI3fg8f3QiRiSF65QREZHOQqDBJZT1f4NLOCBZ+T4DUYiSJCkgryuKYrfbFBiNTi+e2KB+NsgiCfjlgmzYrYF7Noj1NhbW21hYb+NgrY2F9W6jSdPMQw89hD//+c9obm7GlClT8Pjjj+Pee+9FfHy8alxtbS1effVV/OIXv4DD4YDNZsNDDz2kRYpERJ1Yjm1BxNafdDlrr2yNQfP0J+HJmhd0bwg6XD488l4hXD5ZFX/0hqEYnRyhU1ZERERERPorPt2K0lqnKjY7L/4io4mCgN8Dy/GtsOavguXENgiyr9vhimiGZ+hMuEcsgSdjGiBx0gQiIiKiYKIoCp778ITqMe4ws4ilU9N0y4mIqE/Y4BJQvW5wORtXN7h0aHRhgwsRXURsbKwm54mOjtbkPEamKAp+sn4/Tjd7VPEf3zwCE3O0vb5gvY2F9TYW1ts4WGtjMWq9NWmaGTJkCF588UXce++9aG5uxo9+9CP8+Mc/xrBhwzBo0CAIgoCTJ0/i2LFjUBQFiqJAEAS8+OKLyMjI0CJFIqJ2grsJ4Tuegi1/VZf73cNuRPP05VDCEzXOrGeyouDx9SWoaHCr4reMScTisYN0yoqIiIiIKDhsLKhVbQ+OtGBsChvLKcgoCkynvoA1fxWshWsguht6PMQ7aCzceUvgzp4Pxa7NjW8iIiIi6rvNBXU4UOlQxe6bnIqEcItOGRHRgMYGl4DqqsEFqhVb1A0ugiUSYTGJgCUcsISjyaPAL9rZ4EJERJfk3/srsf6LGlVsanYC7rl2qD4JEREREQU5TZpmAOCuu+5CfHw8vvWtb6GqqgqKoqCkpASlpW1LBCrK+TdWUlJS8NJLL2Hu3LlapUeXiMt2Un8Ipnqbjm9F+JZlEJtrOu2TrVFwTn8SntxbIAbpm5Uv7yzDztIGVWxUcgR+PDsTkhQcv0fBVG8KLNbaWFhvY2G9iSgUKYqCTfnqppkbc+KC9m97Mh6xuQbWgvdgzV8FU31xj+P94YPhzr0F7rzF8Mdla5AhEREREV0Ol1fG77aXqWKp0VZ85aoknTIioqCiKG2NKS4HG1wCoK8NLoFYwUWSJIR1WOHBX18Pv98fiC+XiIgGuLLaVvzsvUOqWEyYGc/dNg6iyHseRERERF3RrGkGAObNm4fjx4/jnXfewebNm3Ho0CHU1dUBAOLi4jB69GjceOONuOWWW2A2m7VMjS4Rl+2kQNCl3q4m4IP/AT77W9f7s2dDXPB7hEclI1zbzHpty9GTePHjClUsPtyCl++ehKQYu05Z9Yy/38bBWhsL620srDcRhYKCU60ov2BFxll58TplQ3SW1wlr6SZY81fBXPExBEXudrhissE9fDbceUvgTbsWEAMzmQkRERER9b8391ajxuFRxR6clgGriZOREBmR0HIatsN/B0o2AI4awNOMWDa4AOhjg4sq3nF/BFdwISLqQn19fUBeVxRF1f3CxsZGyHL373XSpfHJCr7790No8agbLx+bPRwWvxP19c6A58B6GwvrbSyst3Gw1sYSDPXWqt+gO5o2zQCAyWTCbbfdhttuu03rUxMRda1kK/DeA0BTRed91ihgzq+AK74a1G+kHjvTgof+eUAVk0QBL9wxHilB3DBDRERERKSVjResMpMabcWopGBtiacBTVFgqt4LW/4qWIrWQ/Q293iIN2UiXHlL4Mm6GYolUoMkiYiIiKg/nW724LVPq1SxK9MiMTNb/5vFRKQt6fRh2A+8CmvRWgiyV+90LttFG1zaV2xhgwsRUTDRaoUrWZa5mlaA/HV3JQ5WOlSxBaMTMT0rRrfvOettLKy3sbDexsFaG4tR66150wwRUdBwNwObHgf2vtL1/syZwMIXgOg0bfPqoxa3D9/62144XD5VfNnNebg2M0GnrIiIiIiIgoeiKNhUoG6amZUbB4EPYJCGxMYy2PLfgbXgHUhN5T2O90elw527GK68xZCjMzTIkIiIiIgC5Q8flcPlOz97owDg4ZlDeE1CZBSyH5bjW2A/8CrMVXt0S6OtweVskwobXIiIiELOoepmvLxLPSFwarQVj8wcolNGRERERKGDTTN0WbhsJ/UHPeptqtiNsE0/hNTF6jKKORyt1z8Gz6j/AmQBCNDPeX9QFAU/Xl2IwpPqmYlvGpGAJaNiAvY7ejn4+20crLWxsN7GEgz1DoZlO4kodByqbkZ1k0cVm5UXr1M2ZCSCxwFL8QbY8lfBXPWfHsfL5gh4sm6GK28JfCkTAEHUIEsiIiIiCqRD1c1Yd+SMKnbL2ETkDuLKl0QDneBxwHrkbdg/f71Xkyd01OcGl/Z4xwYXdeMLG1yIiIhCV6vHj5+uL4FfOR8TBeCpeZkIt0j6JUZEREQUIjRpmvniiy+waNEiSJKEbdu2ITU1tdvxlZWVmDZtGhRFwYYNG5CTk6NFmnQJuGwnBUJA6+1tRfjuZ2H//I0ud3vSrkHzzKchR6UBIfCw95v/qcbGfPWM2ZkJdjw2a2jIPKzO32/jYK2NhfU2FtabiILdxoI61XZGrA05iWE6ZUMDnuyHuWIXrPmrYC3dCMHn6na4AgHe9Clw5y2Ge/hswGzXKFEiIiIiCjRFUfCbrSdUsXCLhPuvS9cpIyLSgthYBvvnb8B65F8Qvc0XHadIFghjvwyMvR2wx6HRJcMnWdngQkRERJ38dlsZyurV7zV/fXIqxqZE6pQRERERBT2vE5KjEqaWaqC4DmgsB5pPAdN+oXdmutCkaebNN9/E8ePHcdNNN/XYMAMAqampyMnJwQcffIA333wTP//5zzXIkogGOlPVXkRueRRS44lO+xSTHS3X/Riu0XeEzEy+/ylrxO8/KlPFIq0SnluUAztnkSAiIiIiAgDIioItBepG85vy4iHwwRPqZ1JdcVujTMF7kFpqehzvi82CO28J3LmLIEckaZAhEREREWntg/xafF6lfmD+G9ekIi7crFNGRBQwigJT1X9gP/gKLKWbIUC56FA5LBHOMXfCO/ZOxKRmnY/X10Ph5ERERER0ge3F9Xjn81Oq2OjkcHx9copOGREREVEwEDwOiE1VkBwVEB2VEJsqIDmqIDoq22LOuq6Pm/woYIrQOFv9adI0s337dgiCgIULF/b6mEWLFuH999/Hli1b2DRDRJfH50L4J7+B7cArXb5B7U2ZBMcNT0OOHqJDcpempsmNZWuKIXf4cgQAT83LQnqsTbe8iIiIiIiCzcFKB041e1WxWblxOmVDA43grIe1aC2s+atgPvV5j+NlawzcOQvgzlsC36AxnDWYiIiIaABzevx44aNyVSw9xor/unKwThkRUUD43bAWrYP94GswnT7c7VBf4ig4x90Ld/Y8QLJAkjgJHhEREXXvTIsHT31QqorZzSJ+PjcLJik0JgUmIiKiS6AoENyNZxthKiE6zjfHSE2VbU0y7sZLemmxqQKIy+vnhIOfJk0zhYWFAICxY8f2+pjRo0cDAAoKCgKSExEZg6nmM0Rs/iFMDcc67VNMNrRc8whcY+8OmdVlAMDtk/Hoe0VocPpU8f++NhVThsfokxQRERERUZDamK9eZSYzwY7hCWHdH6QoQP0JwOcCzHYIrW4IghmKyQaImryVQsHM74WlbDusR1fBcvxDCLK32+GKaIJnyHS485bAM3Q6IFm1yZOIiIiIdPXGf6px0uFRxR6aPgRmPthGNCAIrWdgO7wS9i/+D2Lr6YuOUyDAM3wWnFfcB1/yBE6eQERERL2mKAqeev9Yp+eDHp4xBBmcUJeIiCi0KQoEZ+3ZhphKSE0VbY0xTWdXjXFUQvS2BOTUYlMlm2YCpbm5bdnxiIjeL+VzbmxTU1NAciKiAc7nRtie38H+2csQFLnTbm/SlXDc8Azk2GE6JHfpFEXBrzcfx5GT6v8ZTs2MwdevSdUpKyIiIiKi4OSTFWwpVC85PCs3vvuDPC2IWPdNoPLT9lBMh92KaIZisgImOxSTrf0/mGxQJBsUc9tHXLjPZIdisp7dPnesFYrJfv7YC14XkoUP0wQLRYF0+jBs+atgLVwD0dX1UtYd+RJHwZW3GO7sBVDCEjRIkoiIiIiCRU2TG2/8p1oVmzQkCtdnxuiTEBH1G+lMAewHX4W18D0Ifs9Fx8nmCLhH3g7n2K9Bjs7QMEMiIiIaKN4+cAofH2tQxaZnxWLRmER9EiIiIqLeU2SILafUK8M4Oq4aUwnB59IkFdkeBzEmAzj7nxxlzGeNNWmaiY2NxZkzZ1BTU4Nx48b16piamhoAQGRkZCBTI6IByHTyc0RseRSmuqJO+xTJgtarfwDnFfcBYugteb7q81NYfUg9W1VGrA1Pzc2EyIfpiIiIiIhU9pc3oa5VPQPb7Lzum2bC9/wO5g4NMxcSZC8EjxfwNPdLjt1RIKiab8434JxrqrFBMduhSB2bcaxn959txunYmHOxRp6zTT6heI0UaELLKdgK3oM1fxVMdYU9jpfDEuDKWQR33pfgT8jVIEMiIiIiCkYvfFQOt+/8hF6iAPxg+hAIfB+fKDQpMszHt8F+8FVYKnZ1O9QflQHnuLvgHnErFAufdSAiIqJLc6zWiee3n1DF4sPNeGz2MF5XEBERBQPZB7H5ZIdGmPPNMZKjAqKjBoJ88ck2+jWVsET4I9MgR6W0fYxMhT8yBXJUGvwRKZDsUYiNjW0f76+vB/x+TXILJpo0zWRnZ+PMmTN4//33cdNNN/XqmA0bNgAAMjMzA5kaEQ0kfjfC/vMH2Pe9CEHp/A+6d/A4NN/wDPxxWTokd/m+qHLg2S3qC2K7WcQzC7MRYdXkn3MiIiIiopCyqaBWtZ03OAwZsbaLjpdqC2E7+FqAs+o9AQrgc0LwOTU5nyJazq5209XKOBc040hWKGZ7W+PORZp6umvkgRjEq+j43LAc2wRb/iqYy3Z0uXppR4pkgWfYjXDlLYE3Yyog8vqMiIiIyMgOVjrwQb76WuRL4wYhKzFMp4yI6JJ5WmDLXwX7wdcgNR7vfmjq1XCNuxeeoTM5KQURERFdFq9fxuPri+H2Kar4z+YMR0yYWaesiIiIDMbvgdhcDamp4uzKMBUQmyrbG2TE5poun1Pub4ogQg4fBDkyDf7IVMhRqW0fz21HpgAma8DzGAg0uYt/0003YdeuXXjppZfw3//93xgxYkS34w8fPoyXX34ZgiBgzpw5WqRIRCFOOn0YkZt/CFNtQad9imhB69Xfg3P8N0L24aUzLR48uroIPll9QfzTm4bzRhsRERERURd8fhkfFtarYrNyu1llRlEQ/tGTmryxFawE2QPB4wE8joCfSxHEs803NihmW/tqNxddGefcuLPHoMMKO23jL2zMUTfyQBB7SEgByvcgbM+rMBeuhdiL74E36Uq48xbDnTUPii26n74zRERERBTKZEXB/36onvwq0irhW9em6ZQREV0K0VEF2+evw3b4n91eHyqiBe6c+XCOuwf+xFEaZkhEREQD2YsfVyD/ZKsq9uXxg3HtsBh9EiIiIhqIfK62BpimcyvDVEFsOr9qjNhyqm2SywBTRBPkiOS2lWHOrRITlXr2Yxrk8CRAYtNsf9Dk6fH7778fzzzzDFpbWzFz5ky8/PLLmD9/fpdjV69ejW9961twOp0ICwvD0qVLtUiRiEKV3wv7vhUI2/tHCLKv025f4ig4bnwW/vhcHZLrHz6/jGVrinG62auKf21iMmbldfPQHxERERGRgX16ogmNLvU1QndNM5bidbBUfqIOTvkBMPVhNJyphuxuheB3AV4nBL8Lgs/dtgKMzwWhw3/o9Lnz7FjX2VVj3G3He51Ah9cRfK5AfBuClqDIgLcVgrcV0OBLVyRLh4abs806prbmG9gjgbpjQF0JepqDxx+ZAnfuYrjyFkOOGRb4xImIiIgopKw/fAZHTraoYv99bRpngyYKBYoCU81+2A++BkvJB91OqiHb4+AafSeco++AEp6oYZJEREQ00O0vb8Lre6pVsWFxNnz3+gydMiIiIgpNgqe5rfmlw+ow7R+bKiA6a3t+kX6gSBbIESltDTCR5z6eWy0mFXL4YK5YqxFNmmYSEhLw5z//GV/72tdw6tQpLFq0CMOHD8eUKVOQnJwMAKiursaOHTtw7NgxKIoCQRCwYsUKDB48WIsU6RJJUmB+UUVR7HabBpZLrbd4Jh/hGx+G6fThTvsU0QTXpAfhmnA/IJkRyv9L+c3WMnxWoZ7FatKQaDw4fSgkUdApq0vH32/jYK2NhfU2FtabiELBpgL1m1yjk8OREn2RlghPC8J3/kodi04Hrv8hYAmDEpYA2RrgFWgUBfB7zjfQdGrGOd9w03Xjjvvs2I7bZz/3uyGcPab9dbuYdGAgE/weCH4PgKY+H6uYw+DOnAN33hJ4U6/uedUaIiIiIjKkVo8ff9hRrooNjbPhtisG6ZQREfWK3wtLyQbYD7wK86nPux3qi8+Dc9y9cOcsAEw9TbtARERE1DcOlw8/XV+imtPeJApYPj8LNjPflyYiImqnKBDcTWcbYSrONsJ0aIxpqoTobtAmFZP9fENMZCrkyLS2VWOi0uCPTIUSlsD7y0FCk6YZAPjqV78KWZZx//33o7W1FSUlJSgtLVWNUZS2P/nCw8OxYsUK3HnnnVqlR5coNjZWk/NER0drch4KDj3W2+8DPn4e2PY0IHs77x88BsItf4I9eSzsAclQO+98VoG/71PPIJEaY8eKr01EfMTAeDOev9/GwVobC+ttLKw3EQUbj0/GtuJ6VWx2N6s0hu39I6SWGnXwpl8AlrBApNc1QQBMVigmqwaLPAOQfV2sjOO8aPON4HO1rYzjdambby567PnPBb9bi6+oXykQ4E2bDHfeEriH3wRYwvVOiYiIiIiC3KufVuFMi/qexfenD4FJ4k1xomAkOOthO/wP2L54s/N7Ah0oEOAZOhOuK+6BN/Watut3IiIiogB4Zstx1Dg8qth3pqQhdxDfnyYiIoNRFAiuuvONME0VqpVixKZKiN5mTVKRLRFnG2FSIUelnl0l5vyqMYotlu8VhAjNmmYA4Gtf+xpmzZqF3//+91i3bh0OHTrU3igjiiLGjBmDBQsW4IEHHuAKM0TUtVP5wLvfBqo+67xPkICpD7fNBm2yaJ9bPztc1Yhlq75QxSwmESvuvHLANMwQEREREQXC7uONaHafXxlGAHBjTtdNM1J9KewHXlHFvBlTYR6xMJAp6k80QbFEAJaIwDfpKHLbKjoXrnbT3nDTcVvdcNN5pZzzTTydm37O7lMufVUgf8wwuPIWw527GHJkSj9+E4iIiIhoIKtqdOP/9qonwLp2aDSuGx6jT0JEdFFSXTFsB1+DreCdtmvJi1DMYXCNuBXOsXdBjhmmYYZERERkRO8fPYMNR2tVsavSI/HVCck6ZURERBRAigyx5XRbA4yjApKjCmJTxdmmmCpIjsq2e8UakG2xZ1eJSWtriDnXGBPVtq1YozTJgwJP06YZAEhKSsIvf/lL/PKXv4TP50NdXR0AIC4uDiaT5ukQUaiQ/cDuPwAf/gLoapbixBHA4hVAynjtcwuAhlYPvv3mPri8siq+/JbRGJsWo09SREREREQhYmO++sbSFWmRGBTZRWO9oiD8oychdFjBUhHNaJ3+BKI5G0z/EUTAZINismmzio7f29Zgc3ZVHMHnguB1Av7Oq+hIshthZqEtx/Sr0RSeBb8s93wOIiIiol6QJClgry2KYrfbpK0XPiqHx3/+r11JAB6+YVi//Ayw1sbCegeIosBU9hFsn/0V5hMfdTvUH5kK9xX3wDPqdijWaAgAAvWvOettLKy3cbDWRNRXNU1uPL35uCoWYZXw5M2ZkETeqyAiohAk+yC2nOpylZi27WoIsqfn1+mPVMISzq8ME5kKOersqjGRqfBHpgIWruhmFLp2qZhMJgwaNEjPFOgy1dfXB+R1RVFEdHR0+3ZjYyNkPrQyYPVUb7G+BOEbH4GppvPqMoogwnXVt+G6+nuAyQoE6GdSS35ZwYNvH0V5nbpT9tYrBmNWZkTAfu+0wt9v42CtjYX1NpZgqHdsbKym5yOi0OHy+vFRifpv5lm5cV2OtZRuhKV8pyrmvOJeyLGZAcuPNCCZoUhmwBLZY5OOJEkI6/j/lBC/3iIiIqLgouW1a8frdNLWp6W12FSgbtz/2jVDcVV2akDOx1obC+t9mTytwOf/AD75M3CmoPux6ZOByfdDypuPMMmEMG0yVGG9jYX1Ng7Wmoi645cV/HR9CZrd6hXUl80ahqQoq05ZERER9cDvgdhcA8lRAbGpqu2joxJSU1tjjNhcDUHx9/w6l0mBADl8MOSoVFUjjHx2lRh/ZApgsgU8DwoNXNqFLovfH/h/1ABAlmXNzkX6a6+3IsN28DWE734OQhery/hiM9F8wzPwJV3RFhggPyN/2lmOXccaVLExyRF4eEbGgPw94O+3cbDWxsJ6GwvrTUTBZGdpA5wdVmwUBeCGnPjOA71OhO9crgr5w5PQOuGBgM0gS0REREREA4tfVvDztUdUsZgwMx66MVunjIgIANBUBex5Gdj3KuDsZnIE0QSMWgJM/jaQepV2+RERERGd9X97q7G/wqGK3TwiHjfldXFfg4iISCs+FyRHVVsDTFPF+VViHOeaYk5C6HH6wsunCBLkiOS2Bpioc00xaZCjUto+RiQBkiXgedDAoHnTTFFREd544w3s3r0bNTU1cDqd+OCDD5CVldU+5tChQygrK0N4eDimTZumdYpEFATEhuOI/PDHMFf9p9M+BQKc47+O1qu/P+C6QLcV1eGVT6pUsfgwM369MBtmics2ExERUfDzeDxYuXIlSktLUVNTg+bmZoSFhSEpKQkzZ87E1KlTYTJx/gYKnE0FdartCelRiA83dxoXtu9PkBzqv71bpizj8stERERERNRrb+8rx+GqJlXsB7NyEBPGm/VEuqjcB+z+E3DkXUD2XXycPRaYcB8w8RtAVIpm6RERERF1VHCqBX/aWaGKJUVa8OgNQ/VJiIiIjMPTApyqARrKgIYy2E8WQWgsh+g4u2pM6xlN0lBEC+TIZPg7rAwjR6adXy0mfFDbhBdE/UCznyRZlvHoo4/id7/7HWRZhqK0dZgJggCPx6MaW1ZWhvnz58NkMuHYsWNITQ3M8uVEFIRkGdaDr8O+82kIPmen3f7oIXDc+Ax8yRN0SC6wjtc68bMNJaqYJAp4emEWBkXyBhsRERGFBpfLhY0bNyIrKwvjx49HVFQUWlpacODAAaxYsQK7du3CsmXLIIpsCKb+1+LxY2epegbZWV3MxiY2HId9/19UMU/qZHiy5gU0PyIiIiIylvr6blY3uEyiKCI6Orp9u7GxEbIsd3ME9bdmtw+/3pCvimUm2HFzTlS/1p61NhbW+xLIPphLPoDts1dgqt7X7VB/XDZc4++DJ/cWwGwH/AAC+G91T1hvY2G9jSMYah0bG6vp+Yio71xeGY+tLYZPPj9LvwDgybmZiLTx4WAiIro8grupbWWYpoqzH8+tFFMB0VEF0aW+Fg7U1PWKydbWABOZ2t4Ic64xRo5MhRyeCAh8doS0odlfWN/61rfwyiuvQFEUpKam4pprrsHbb7/d5di5c+di2LBhOH78ON5++21873vf0ypNItJT/QngvaUIO76jy93OcfegZfIjbW9iDzAtHj8eea8QLR71m2Xfn56B8WlROmVFRERE1HcRERF4/fXXO60m4/f7sXz5chw8eBAHDhzAlVdeqVOGNJDtKKmH23f+BpMkCpiRfcENYkVBxI6nIMjnJ/BQRBNarv8ZIAhapUpEREREBuD3+zU7lyzLmp6PgJc/Lkddq1cV+/70IRAUGYEsBWttLKz3xQnuJtgO/xO2L97otJLshTxDpsE57l5406ecv/YPwu8r620srLdxsNZE1JUXPirDsTqXKnb3pGRclc5nhIiIqAeKAsFVf7Yh5uzKMI7Kts/PNsmIHocmqcjmCMhRHZpiIlPPrxoTlQrFFsd78BQ0NGma2bJlC/76179CEAT8z//8D5588klIktTtzMK33XYbnnnmGXz44YdsmiEa6BQF2PsKsPFxwNPcabc/Kh2OG34NX+rVOiQXeIqi4IkNJTh+wcXwzSPj8eXxg3XKioiIiOjSiKLY5bWeJEmYOHEiDh8+jJqaGh0yIyPYmF+r2r46IwoxdrMqZjm+BZYT21Qx19i74Y/PCXR6REREREQ0QFQ0uLByv/radmpmDCYPjb7IEUTUX8SGY7AffB22/H9D8LZedJxissGVt6Ttmj8uS8MMiYiIiLq361gD/vnZSVUsd1AYvnVdmk4ZERFRUFFkCK1nIDkqITZVQHJUqVaJkZoqIPicmqQiW2MgR3VsiOnYIJMGxRrFphgKGZo0zbz00ksA2laQWb58ea+OmTRpEgDg8OHDAcuLiIKA7Ef4xu8Dhau73O0ccydarnkUsIRrnJh2Xt9Tja1F6uXucgaF4SezhkHgHxRERESG0tjYiOLiYhQXF6OkpAQlJSVwONpmAJk2bRqWLl3a69c6ffo0NmzYgP3796O2thYmkwlJSUm45pprcNNNN8FqtQbqy+iSLMs4ePAgACA9PV3Tc5MxOFw+7D7eqIrNzotXD/K5EP7RU6qQHJaI1knfDXR6REREREQ0gDy/rQxe//lVLk2igO9PH6JjRkQDnKLAXLEL9oOvwXx8KwQoFx3qD0+Ca+xdcI36MhRbjHY5EhEREfVCfasXT75fqopZTQKWz8uCWbr4BORERDSAyH6ILSdVq8S0rxrTVAGxuQqC36NNLuGJQEwGPGFJ8EUkQ45Ma2uIOdsco1gitMmDSAOaNM3s3r0bgiDg61//eq+PSUtr65zmDMREA5iiIHz7z2DpomHGH5mC5plPw5t+nQ6JaeeT4w34085yVSzKJuHZhdmwmSWdsiIiIiK9fPOb3+yX19m7dy9eeOEFOJ3nZxdxu93tjThbtmzBsmXLkJSU1C/n64rP58OqVasAAA6HA4cOHUJlZSWmT5+OMWPGBOy8ZFzbi+tVD62ZJQHTs2NVY+z7X4LkqFDFWq77MRRLpCY5EhERERFR6PtPWSO2FasnwvqvKwcjI9amU0ZEA5jPDWvhatgPvgpTbUG3Q72Dx8E57l54MucAkrnbsURERER6UBQFv9h4DLUtXlX8oWlDMCzerlNWRETU7/xeiC01ZxthKiE1VUJ0VEJ0nF01prkaguwLeBoKBMjhg86vDBOVBjkyBf7INCAmHdHpowBLGACgpb4efr8/4DkR6UmTpplTp04BAIYOHdrrY8zmtjeyfL7A/8NARPoI2/M72A+v7BR3j/4Kmq/90YB/cK2q0Y2frC2B3GEyLAHAL+ZlITWGN9eIiIiMLiEhAampqe2rs/TWsWPH8Pzzz8Pj8cBms+GWW27B6NGj4fF48PHHH2PLli2orq7Gr371Kzz99NOw2wPzJrzP58Pbb7/dvi0IAhYsWIA77rgjIOcj2phfq9q+Zmg0Iqzn3/YQm8oRtu/PqjHelIlw5yzSJD8iIiIiIgp9PlnB/354QhWLtZvwjWtSdcqIaGASWk7DfuhN2A79HaKz7qLjFEGCJ/MmOMfdC1/ylRpmSERERNR37x063akB/9ph0bj1ikE6ZURERJfE5z67Ssy5RpjK86vEOCohtpyEoMgBT0MRJMgRSR2aYlLhjzzXGJMKOTIZkKxdHitJUnvDDJFRaNI0Ex4ejoaGBpw+fbrXx1RUtM38GhcXF6i0iEhHti/eRNh/XlAHJQtw+xtoHTQZygDvWnV5ZfzwvUI0utSNgfdPScM1w2L0SYqIiIh0d+uttyIzMxOZmZmIiYnBqVOn8MADD/TpNV577TV4PB5IkoTHHnsMOTk57ftGjx6N5ORkvPnmm6iursaaNWtw++23d3qNN954A16vt1P8YubOnYvk5GRVzGaz4a233oIsy6ivr8e+ffuwcuVKFBYWYtmyZQgL4xsw1H8anF58Wtakis3Oi1dth+9YDsHvbt9WBBHN1z8BCIIWKRIRERER0QDw7uenUHzGqYrdPyVd1bBPRJdOOn0Y9gOvwlq0FoJ88femZGsUXKP+C64xX4McmaJhhkRERESXpqze1akBP8Zuwk/nDIfA+xRERMHF23q2Eeb8KjGSowJiU1Xbx9bePwt/ORTRDDky+WwjTCr8UannG2Qi0yBHDAZEvidF1Fua/LYMHz4c+/fvx5EjRzBr1qxeHbNhwwYAwKhRowKZGhHpwFK0DuHbn7ggKgBf+guQezNQX9/VYQOGoij45aZjKDjVqorPyI7FvVfzjX0iIiIj66qBpS+Ki4tx9OhRAMCMGTNUDTPnzJ8/H1u3bkVlZSU2bNiAJUuWwGRSXxpu2rQJbre707EXM3ny5E5NM+eIooj4+HjMnj0bkZGR+O1vf4tVq1bhzjvv7MNXRtS9rUX18HdYwtFqEnF9Zmz7tvn4VliPbVYd4xpzJ/wJeZrlSEREREREoc3h8uHPH1eoYjmJYVg0JlGnjIgGCNkPy/EtsB94FeaqPd0O9cUMg2vcPXDlLgYs4RolSERENHBIkhSQ1xVFsdtto/P6Zfx0fQmcXvWqAz+7OQuDo+w6ZXXpWG9jYb2NxTD1djedbYapgNhUCfHcCjHnPnaz4ml/UiQr5KhUyFFtTTFyVFpbg0xUGuSoVCjhgwCh6xoIAC7n/+qGqTUBYL3P0aRpZvbs2di3bx/++Mc/4rvf/W6P3+wjR47gtddegyAImDt3rhYpEpFGzOUfI3LTwxCgqHfM/w0wcpE+SWnsXwdOYv2RM6rYkDgbfsbZI4iIiOgy7dlz/sGCGTNmdDlGFEVMmzYNf//739HS0oLDhw9j3LhxqjF/+9vfApLfufMcOXIkIK9PxrUpv1a1PWV4DMIsZ98m9LsRseMp1X7ZHo/Wq7+vVXpERERERDQAvLy7Eg1O9erxP5gxBJLI9/WJLoXgccB65G3YP38dUlN5t2M96dfBOe5eeIdMu+gDQ0RERNSz2NjYngf1g+joaE3OEyp+u6kQh6qbVbGvTMrA4kmZOmXUv1hvY2G9jSUk660ogLMeaDgBNJQDDWVAY3mHz8sAV6M2uVgigJgMIDq97WPM2Y/RbZ8L4YmQBOGyml/6S0jWmi6ZUeutSdPMgw8+iN///vcoKSnBt7/9bfzpT3/qNJPxOZs2bcK9994Ll8uF+Ph4fPOb39QiRbpEnIGA+kI6+QUi19/faTl11zU/gG3Cfe3bA7nen1U04Tdby1SxMIuI3yzOQ3SYVaestMXfb+NgrY2F9TYW1jt4FRQUAACsViuGDx9+0XEjR45UHXNh00yg1NW1zcgSqOsIMqbaFi/2ljepYrNy49o/t3/2F0iNJ1T7W659FIo1SpP8iIiIiIgo9J2oc+Kfn51UxWZkx2JCBq8riPpKbCyD/fM3YD3yL4je5ouOUyQL3Lm3wDnuHvjjczXMkIiIiKj/7DtRjxc+LFLFhiWE4/H5I3TKiIgoxCkK0HzqbCNMWYemmLLzjTHeFm1yscWcbYQZom6MOfe5PRbgJOpEQUOTppnBgwfjz3/+M+666y789a9/xQcffIB58+a17//d734HRVHw8ccfIz8/H4qiQBRFvPbaa4iIiNAiRbpEnIGAeq22BFh9b+c/SCZ+E7bZP1WFBmq9Tza58KPV++CT1avs/Ob28bgqO0mnrPQ3UOtNnbHWxsJ6GwvrHTwqKioAAElJSd02pqSkpHQ6pj9zSExMhNWqbgh2u9144403AADjx4/v13OSsW0prEXHP7HtZhFThscAAERHFcL2/kk13jt4PNx5SzTMkIiIiIiIQt3z28rg73DhYZYEfG9aho4ZEYUYRYGp6j+wH3wFltLNEKBcdKgclgjnmDvhGv0VKPZ4DZMkIiIi6l/Nbh++/88DqnsYkijg+S9fgTCLJo9tEhGFHtkPOGrUTTEdG2MaKwCfS5tcwhI6rA5ztjmm47aNk6kQhRLN/vr66le/CrPZjG9961soLy/Hiy++COFsB91f/vIXAICitP2FGBERgddff13VWENEIcxRA/ztFqD1jDo+8hbg5l8bopvW45Pxnf/bj9MOtyr+nemZmDPauA0zRERE1H88Hg8cDgcAID6++wcKIiIiYLVa4Xa7UVtb26957Nq1C+vWrUNeXh4SExNht9tRV1eHAwcOwOFwYMSIEZg/f36fXrO3OQZyBRuusBS8NhXUq7anZ8ch3GYBAIR//EsIHd40VSDAOfMpSCZzt6/JehsHa20srLexsN7GwnoTUSB9crwBO0obVLE7rkpCWoxNn4SIQonfDWvROtgPvgbT6cPdDvUljoLzivvgzpoLSBaNEiQiIjKW+vr6ngddAlEUVZPsNTY2QpblgJwrlDyxvhhlda2q2LeuS0NGhBKwWmiB9TYW1ttYNKm37IPYXA2xqQJiU2XbR0dl2+eOCoiOagiyt3/PebFUwgdBjkqDHJkK/9mPclTa2VgKYA67+MFOP+Dkv+UUGoKh3lot0tEdTVuWb7/9dtxwww3405/+hDVr1uDAgQPw+Xzt+0eNGoWFCxfie9/7HgYNGqRlakQUKM4G4M0vtXX5djRsGrDkJUAM3IONweSptUew74T6j6Sp2Ql4eDaXkyciIqL+4XKdbwyw2Xp+cMdms8HtdquO6w9XXXUV6uvrUVhYiMLCQrhcLoSFhSEjIwPXXXcdZsyY0efmlvvvv79X4956661LSfmScIWl4FDT6MKByiZVbMmEoW1vuJR8CBRvUO0TJtyHqNypfT4P620crLWxsN7GwnobC+tNRP3FJyv4zVb1/Y34MDPum5yqU0ZEoUFoPQPb4ZWwf/F/EFtPX3ScIojwDJsF5xX3wpc8wRAT7REREenJ7/drch5ZljU7V7D6sLAO731xShUbmxKBuyYmD7jvDettLKy3sVxSvf1uiI4qSI4qiI5KSGebYiRHZVtzTHMNBCXwD+srggg5IqmtISYyVdUY449MgRyRApisPXwtxvlZ5++2sRi13pqv8xcfH4/HH38cjz/+OGRZRl1dHfx+P+Li4mA2dz/TKwUfzkBA3fK5EPHuXTCfPKQODxoNx5w/Ao5WAK0Dvt6rvziFv31yQhVLibbi5zcPQ1Njgz5J6Wig15vOY62NhfU2lmCodzDMQBBsPB5P++cmU8+XeufGdDyuP2RmZiIzM7NfX5PoYtZ9UY2zi9YCACJtJlyfkwD4PMD6R9WD7XHAzMe0TZCIiIiIiELavw+cRGmtUxX7ztQ0hFuMMSEYUV9JZwpgP/gqrIXvQfBf/D0n2RwB98jb4Rx3F+SodA0zJCIiIgq8080e/GLjMVUs3CLiqbmZMIlsEiaiEOd1tjfASGdXiJEc51eLkVpP9fwa/UARzZAjkuGPSlU1xrQ3x4QPBiQ+k05E52neNNORKIpISEjQMwW6TJyBgC5K9iHy/e/CXLlHFfZHD0Hj/L9CkewX7cQdSPXOP9mCX3xQoopZTQKeWZiNSIs4YL7OyzGQ6k3dY62NhfU2FtY7OFgslvbPO67oeTHnxnQ8LlitWLFC7xQoSK05WKXanj0yCVaTBOx8AagtUg++8WdAWJyG2RERERERUShrdPrw0q5KVSxvcBgWjE7UKSOiIKXIMB/fBvvBV2Gp2NXtUH9UBpzj7oZ7xJegWCI1SpCIiIhIO7Ki4IkNJWh0qe/V/XDmUKTG2HTKioioD9wOoKEMaCiDtboAaCg7v2qMowKis06TNBTJcrYRJg1yZMr5VWLONsnIYYMAkZOaEFHv6do0Q0QDlKIgYtvjsJZuUoXlsEQ0LnodSpgxmuUaWr145N1CePyKKv4/s4Yhb3C4TlkRERHRQGWznX+j3eVy9Tj+3JiOxwWr+Pj4Xo0L1EqYQHCssERqVY0uHChvUMWmD49EQ9kRRG//NTrO1eYbPA6OYQuAXv6MsN7GwVobC+ttLKy3sehdb66ESTQwvbSrotODbg/PGAJR4MzQRAAATwts+atgP/gapMbj3Q9NvRqucffCM3QmH2oiIiKiAe2tz07i0xNNqtgNOXGYN8oYz0oRUQjyOmGu2gNL2U5YKnYCtYXtu8ICeFrFHNa+OkxbQ0wK/JFp7duKPR7gezBE1I80aZrxer0oKmqb4TUzMxNWq1W13+Vy4Sc/+QneeustnDlzBsOGDcP999+P7373u1qkR0T9LOzT38B25C1VTLZEoHHhq4ZZYt0nK/iftcWocaiXnv/y+MGYN4qz0BEREVH/s1gsiIyMhMPhQG1tbbdjm5ub4Xa7AfS+ISUUaLniEVdY0t/7R06rtqNtJkxMj4B982MQvK3tcQUCmq9/An5ZAXBpNWO9jYO1NhbW21hYb2NhvYnocpWeacXbB06qYrNy4zA+LUqnjIiCh+iogu3z12E7/E+IHsdFxymiBe6c+XCOuxf+xJEaZkhERESkj+LTrfj99jJVLDHCjP+ZNQwCH/wmomChKJBq82Ep2wFz+U6Yq/4Dwe/p+bg+kq1RbQ0w5xpjIlMhR6XBH5kCOTINii2GTTFEpClNmmbeeecdfOUrX0FcXBwqKio67V+8eDE2btwIRWlbjSE/Px8PPfQQCgoK8Ic//EGLFImon9gOvo6wvX9SxRTJgqZ5L8OfMEKnrLS3Ymc59pSpZ464IjUSD03P0CkjIiIiMoK0tDQcPXoUNTU18Pv9kKSuZ+6sqqpSHUMUijYVqJvDZubEwl79KaxF61Rx98jb4Bs8VsvUiIiIiIgohCmKgt9uK0PHReStJgEPXs/398nAFAWmmv2wH3wNlpIPICgXb06V7XFwjb4TztF3QAnnRHJERERkDB6fjMfXl8DT8UICwBM3ZyLarskjmkREFyW0noGlfCfMZTtgKd8JsfXMZb+mbItra4CJSuvQFJPavlqMYo3sh8yJiPqPJn+RffDBB1AUBbfcckunVWbWrVuHDz74AIIgIC0tDRMnTsSePXtQWVmJFStW4I477sC1116rRZpEdJkshWsQvuMpVUwRRDhu+h18qZN0ykp7mwtq8fqealUsIdyMpxdmwSyJOmVFRERERpCbm4ujR4/C7XajtLQU2dnZXY47cuSI6hiiUFNW70L+yVZVbHZ2FMI/+o4qJluj0XLND7VMjYiIiIiIQtzHpQ3YfbxRFbtzQjKSo60XOYJoAPN7YSnZAPuBV2E+9Xm3Q33xeXCOuxfunAWAib8vREREZCwrdlag6LT6vsUdVyXh6iHROmVERIbmc8NcvRfm8p2wlO2A6czRvr9GxGD4IlLgj0xpb4TxR51fNQbmsP7Pm4gogDRpmtm/fz8EQcC0adM67XvllVcAADk5OdizZw8iIyPR2NiIa6+9Fvn5+fjLX/7CphmiEGAu24nIzT+EAPWMCc3Tl8MzfLZOWWmv9Ewrnny/VBUziQKeWZSNhHCLTlkRERGRUUyaNAnvvvsuAGDr1q1dNs3Isozt27cDAMLDwzFq1CgtUyTqFxvz1avMxIWZcF39uzDVFanirZMfhmKP0zI1IiIiIiIKYV6/jN9sK1PFEiPMuHtSik4ZEelDcNbDdvgfsH3xJqSWmouOUyDAM3QmXFfcC2/qZEAQNMySiIiIKDj8p6wRb+5VT66blWDH0qnpOmVERIajKJDqi2Eu2wlL2UcwV+2B4HP1/nBBgi/pCviGXA/7qLlA0ljAbIOjvh5+/8VXGiUiCiWaNM2cOnUKAJCVlaWKy7KMLVu2QBAEfPe730VkZNtyXNHR0XjggQewdOlS7N69W4sUiegymE5+jqgN90OQvap4y+QfwD3qyzplpb1mtw+PvFcEp1dWxR+ZOQRjU7jcIBEREQVeVlYWRowYgaNHj2Lr1q2YPn06cnJyVGPWrl2LyspKAMDNN98Mk2ngLAkvSVLAXlsUxW63SVubC+pU20syBUTufUEV8yWOgnfsVyGJff+5YL2Ng7U2FtbbWFhvY2G9iai/vPXZSZTVqx8qeWBqOsIsgbveJAomUl0xbAdfg63gnW4fsFLMYXCNuBXOsXdBjhmmYYZEREREwaXJ5cPP1peophg2SwKWz8uC1cT3J4gocARnHcwVu2Ap2wFz2c5uJzzoij8qHZ6MqfCmT4E37Roo1ihIkgR7bGyAMiYi0pcmT0edOXMGAGC321XxAwcOoKmpCYIgYN68eap9o0ePBgCUl5drkSIRXSKpvhRRa+6D4FUvMeocexecV31Hp6y0JysKfrq+pNPNtAWjEvClcYN0yoqIiIhCTX5+Pmpqzr+Z1dTU1P55TU0Ntm3bpho/ffr0Tq9xzz334PHHH4fH48Hy5cuxePFijBo1Ch6PB7t27cLmzZsBAMnJyViwYEFAvg69xGr4Bl50dLRm5yK1wpMOFJ9RX3982/9/EDzNqphp4fOIjU/ol3Oy3sbBWhsL620srLexsN5EdCnqW714eXelKjYqKRw3j+yf6wqioKUoMJftgP3gK7CU7eh2qD8yFa6xd8E18nYo1iiNEiQiIiIKToqi4FebjuFUs3qS4QempiMrMUynrIhowPJ7YKo50LaSTPlOmE4dgqBq2euebI6AN20yvBlT4UmfAjlmaOByJSIKQpo0zVitVvh8vvbmmXM++ugjAEBaWhqGDBmi2ndu1Rku7UUUvMTmGkStvhuiq14Vd2fPR8vUxw21BPsrn1Tho5IGVWzE4HD86MZhEAz0fSAiIqLLs2XLFmzfvr3LfQUFBSgoKFDFumqaGTZsGB566CG88MILcDqdWLlyZacxycnJWLZsWaeJDYhCwdqDVartmyJKkVD6rnrQFV8F0idplxQREREREYW8P39cgWa3+r7kIzOHQOR7/DRQeZ2wFbwD28HXYaov7n5o8lVwjrsPnuE3AuLAWbWYiIiI6HK8f7QWmwrqVLFJQ6LwlauSdMqIiAYURYHYeByWsp0wl+2AufITiN6W3h8OAb7BY+FNnwJPxlT4Bl8BSObA5UtEFOQ0eUdryJAhOHLkCD799FPccMMN7fE1a9ZAEARcf/31nY6pq2v7gzIxMVGLFImojwRXI6JW3wvJoX5gzZM+BY4bnwUE4ywx+nFpA178uEIVi7ab8MzCbNjMxvk+EBERUfCYMGECnnvuOaxfvx779+9HXV0dTCYTkpKSMHnyZMyZMwdWq1XvNIn6TFEUrP28un1bgh9Pml8DfB0GWaOBG5/QOjUiIiIiIgphRadb8c7np1Sxm0fEY0xKpE4ZEQWO2FwD2xdvwnZoJUR3w0XHKaIJ7qx5cI27B77BY7VLkIiIiChE/PUT9UqVUTYJT8zJZOM9EV0ywd0Ec8VumMs+gqVsJyRHRc8HdeCPSII343p40qfAm3YtFHtsgDIlIgo9mjTNzJgxA4cPH8YLL7yAxYsXY8SIEVi9ejW2bdsGAJg7d26nYw4dOgSgbQZkIgoyXiei1n0TprpCdXjQGDhu/iMgWXRKTHsVDS48tq5YtdChKAC/nJ+F5Gg+iEpERER9s3TpUixdurRfXisxMRF333037r777n55vVBQX1/f86BLJIoioqOj27cbGxshy3LAzkddKzjZgtIz52dQulPajCSnejbc1skPwe01A5fx88B6GwdrbSyst7Gw3said71jY3nzmSiUKYqC3249AbnDG/1Wk4gHrk/XLymiADCd/By2A6/AWrIBguy76DjZGgPX6K/ANeZrkCMGa5ghERERUehodvtwvM6liv34xmEYFGmcZ6aIqB/IPphOfg5L2Q6Yy3fAdPIgBKX372sqJju8qVfDkzEF3vSp8MdmAmzcIyLqkiZNM9/97nfx0ksv4dSpUxg9ejRiY2NRX18PRVGQlpaGL33pS52O2bhxIwRBwNixnLWGKKjIPkR98CDM1ftUYV/MMDQt+CsUS4ROiWnP6fHjkXcL4XD7VfEHpqbj6iHRFzmKiIiIiALF7/f3PKifyLKs6fmozftHzs/8nIBGPGL+l2q/Lz4PraPuAPq5Nqy3cbDWxsJ6GwvrbSysNxH1xfaSeuwpa1LF7p6UjMGRnBiLBgDZB0vpRtgPvApzzf5uh/risuEcdw/cOYsAs12jBImIiIhCU8kZp2pbEgXMyOakGkTUM7GpAuayHW2NMhW7IHocfTrelziqbSWZjKnwJl8JSHz/goioNzRpmsnOzsbf/vY33HfffWhpaUFdXR0AICYmBitXroTFou6wrqmpwaZNmwAAM2fO1CJFIuoNRUHE1p/AcvxDVdgfPhhNC1+DYo/XKTHtKYqCX2w6huILLoJvyInD1yZyhSwiIiIiov6mKAo2FdS1bz9q+gci0aoa0zztCUDU5K0OIiIiIiIaADw+Gc9vK1PFBkdacBff56cQJ7ibYDv8T9i+eAOSo6rbsZ4h0+Acdy+86VM4IzERERFRL5XWqp8XyoixwiyJOmVDRMFM8DTDXPlpe6OM1Hi8T8fLYYlnm2Suhyf9WihhCYFJlIhogNPsSZLbbrsN06ZNw7p161BTU4Pk5GQsXLgQcXFxncZ+/vnnuOOOOwAAc+fO1SpFIupB2O5nYTv6tiomW6PQtOBVyFFpOmWlj5X7a/D+0VpVbHi8HT+dMxwCbygQEREREfW7wzUtqGx0AwCuFApxu2m7ar8rZxF8KRP1SI2IiIiIiELUP/bXoKLBrYp99/p02MySThkRXR6x4RjsB1+HLf/fELytFx2nmGxw5S2Ba9w98MdmapghERER0cBQesEku8MTwnTKhIiCjuyH6fRhmMt3wFK2E6aa/RBkX68PVyQLvCmT4M2YCk/6VPjjczjBARFRP9B0+tVBgwbh3nvv7XHc7NmzMXv2bA0yosslSYG5aSCKYrfbpD3r/r8gbP+LqpgiWdG84K/A4JG4nJ+EUKv33rJG/O6CmeciLBJ+syQPUXbLRY6ic0Kt3nTpWGtjYb2NhfUmIj1sym9rWhch40nza6p9sjkCLdf9WIesiIiIiIgoVNW2ePHXTypVsbEpEbgpL16njIgukaLAXLEL9oOvwXx8KwQoFx3qD0+Ca+xdcI36MhRbjHY5EhEREQ0wJbXqBuXh8XadMiGiYCA2V8NcthOW8h0wl++C6Krv0/G+uJy2JpmMqfCmTARMtgBlSkRkXJo2zdDAExsbq8l5oqOjNTkPXcTBfwI7lqtjggTh9tcRldv/DW7BXO/qRieWrdkL/wX3G377X+NxReZgfZIKccFcb+pfrLWxsN7GwnoTUaDJioLNhXUAgDukLRgjHlftb530IJTwQTpkRkREREREoWrFznK0eGRV7OEZQ7iaPIUOnxvWwtWwH3wVptqCbod6B4+Dc9y98GTOASSzRgkSERERDVwXrjSTmcCmGSJD8TphrvoUlrKdMJfvhKmuqE+Hy7Y4eNKvgzdjKrzpUyBH8LlDIqJAY9MMEXWvaBPw3nc6xxf+Hsi9Wft8dOT2+XH/m/txptmjij84MwuzRvIPVyIiIiKiQPm8qhknHR7EogmPmN5S7fPFZcM19i6dMiMiIiIiolCUf7IF731xWhWbPyoBo5IjdMqIqPeEltOwH3oTtkN/h+isu+g4RZDgyZoD57h74Usar2GGRERERANbk8uHMy1eVYwrzRANcIoM6Ux+20oyZTthrtoLQfb0fNy5w0UzvMlXwptxPTzpU+BPHAkIYgATJiKiC7FphogurmIv8NZdgOxTx298Ahh/py4p6emJ1UdwoLxBFZuRm4iHbszRJyEiIiIiUpEkKWCvLYpit9sUWJsK2h4C+qHpn4gRWlT7nNOfhGTp3yXKWW/jYK2NhfU2FtbbWFhvIuoLRVHwm60n0HFBebtZxNKp6brlRNQb0unDsB94FdaitRBk70XHydYouEb9F1xjvgY5MkXDDImIiIiM4cJVZkyigIzY/r1PQUT6E1pOw1LetpKMpXwnxNYzfTreFzMc3oyp8GRMhTdlEmAJD1CmRETUG2yaoctSX18fkNcVRRHR0dHt242NjZBlOSDnoq6JdcWI/NetEL2tqrhr/NfhHHk30I+1D4V6rzp4Eiv3lKliaTFWPDFnGBobG/RJKkSFQr2pf7DWxsJ6G0sw1Ds2NlbT81Fo0PLnouPvAAWWX1bwYVE9xgol+C9pm3rnqCWIHDsv4Dmw3sbBWhsL620srLexsN5E1J0thXXYX+FQxe69OgWJERadMiLqhuyHpXQj7AdehblqT7dDfTHD4Bp3D1x5SwBzmEYJEhERERlPSa36WaqMWBtMEifwIAp5PjfM1XthLtsBS/lOmM4c7dPhsjUK3rTr2ppk0qdAjkoNUKJERHQp2DRDl8Xv92tyHlmWNTsXAaKjChHvfA2iq0EVd+XeguZrfwwE+KHYYKv3oepmPL2pVBWzmUQ8uygH4WYhqHINRcFWbwoc1tpYWG9jYb2JKJA+PVaLMw4nXra8ClHoMBe0ORyYvVy/xIiIiIiIKOS4fTJ+v71cFUuJsuKrE5J1yojoIlxNwGdvImr3nyA1lXc71JM+Bc5x98A7ZBog8GFNIiIiokC7cKWZzAS7TpkQ0WVRFEh1RW0ryZTtgLlqDwSfq/eHCxJ8SVecbZKZCt+gMYAoBTBhIiK6HGyaISIVwdWAqDX3QWquVsU9GdejeebThnuzva7Fix+tLoLXr6jij900DNmJnKWLiIiIiCjQ1n5ejdul7bhCVDeyY9oPgWjO0ERERERERL33f3urUdXkVsUenJYOq8lY9z4oSCkKpFOHgE/WAZ+9CXgcuNjjVopkgTv3FjjH3QN/fK6maRIREREZXWmtumlmeDybZohCheCsg7n8Y1jKd8JcthNSS02fjvdHZbQ1yWRMgTf1GijWyABlSkRE/Y1NM0R0nteJqLXfgKmuSB0efAWabv4jIJl1SkwfPlnBsrVFOOnwqOJ3XJWEOSMSdMqKiIiIiC6mvr4+YK8tiiKio6PbtxsbGyEHeAVGArx+GTsPFuJd00pV3B87HE15dwABqjnrbRystbGw3sbCehuL3vWOjY3V7FxEdOlON3vw6qdVqtiVaZG4ISdOp4yI2ohN5bAWroa1YDVM9cXdjpXDEuEccydco78CxR6vUYZERERE1NGFK80MT+Cku0RBy++BqeaztpVkynfCdOoQBCg9H3eWbI6AN/0aeNOnwpMxBXL0kAAmS0REgcSmGSJq4/ci6v0HYK75TBX2xWaiaf5fALPxLvBe2F6GfeUOVezKtEg8eH26ThkRERERUXf8fr9m55JlWdPzGdWnxxrwDd9KxJmaVfHmqT+FHxKgUQ1Yb+NgrY2F9TYW1ttYWG8i6sofd5TD6T3fUCcA+MGMIRAEQb+kyLAEZx2sxRtgLXwP5up9PY73JY6C84r74M6aC0gWDTIkIiIioq40OL2obfWqYplcaYYoeCgKxIbjsJTvgLlsJ8yVn0D0tvT+cAjwDR4Hb8YUeNKnwjd4nOEmGiciGqjYNENEgCIj4sNlsJzYpgr7I5LQtPA1KHbjzZT4QX4t/m+fevnFQRFmPL0gGyZJ1CkrIiIiIiJjOfL5HjwibVbF3MNvgjdjqk4ZERERERFRKDpc3Yy1h8+oYovGJCJvcLhOGZEheZ2wHNsMW+FqmMs+giD7uh8viPAMn43WcffAlzwBYIMXERERke4uXGXGLAlIi7XplA0RAYDgaoS5YjfM5TtgKdsJyVHRp+P9EcnwZkyFJ2MqvGnXQrHFBCZRIiLSFZtmiAhhu34NW8E7qphsjUbTwtcgR6bolJV+ik+34qn3S1UxsyTgmUU5iAtn5zgRERERkRa8Ph9uKvstJOH8Eule0YqWqY/pmBUREREREYUaRVHwv1tPqGLhFhH3T+Gq8qQB2QdzxW5YC96FpXRT72Y4js4AxtwKXHU3WhDN1dOIiIiIgkhprbppZmicHSaRzc1EmpJ9MJ08CEvZTpjLd8B08iAERe75uLMUkx3e1MnwZEyBN2Mq/DHDOUkBEZEBsGmGyODs+19G2Gd/UcUUkw1N8/8Cf1y2Tlnpp8nlwyPvFcLlU/8h/egNQzE6OUKnrIiIiIiIjKfq45W4SihUxerGfguSARv7iYiIiIjo0m0sqMPnVc2q2NcnpyKek2RRoCgKTKe+gLXwPViL1kJsPdPjIbI1Bu7sufDmLUbUyBsBUWzbUV8f4GSJiIiIqC9KLlhpZni8XadMiIxFbCqHpWwHzGU7Ya7YBdHj6NPxvsRR8KRPhTdjCrzJVwKSNUCZEhFRsNK8aebgwYPYsWMHSktL4XA4epwZRxAE/PWvf9UoOyJjseavQviup1UxRZDQNOcP8CVfqVNW+pEVBY+vK0FFg1sVXzw2EYvHDtIpKyIiIiIi4xHcTcg+/LwqVi0mwTz52/okREREREQhy+PxYOXKlSgtLUVNTQ2am5sRFhaGpKQkzJw5E1OnToXJxDnmBiqX14/fby9TxdJirPivK5N0yogGMrHhOKyFq2EtXA1Tw7EexyuSFZ5hN8CduwiejOsByQJJks43zBARERFR0Ck506raHp7AphmiQBA8zTBXfgJz2U5YynZAajzep+P9YYPaGmTSp8KTfi2UsITAJEpERCFDs7sABQUFuO+++/DJJ5/0+hhFUdg0QxQg5uNbEbHlx53izTc8De/QGTpkpL+Xd1Xi42MNqtiopHD8cOZQXfIhIiIiIjIqy+7fIlJuUMX25j6Ma0yc9YmIiIiI+sblcmHjxo3IysrC+PHjERUVhU1fmL4AAQAASURBVJaWFhw4cAArVqzArl27sGzZMoh8SH1A+tt/qnHS4VHFHpqWAYuJ9ab+IbSegbVoHayFq2E+eaDH8Yogwpt2Ldw5C+HJnA3FEhn4JImIiIio35TWqleayeRKM0T9Q/bDdPowzOU7YCnbCVPNfgiyr9eHK5IV3pRJ8GZMgSd9KvzxOYAgBDBhIiIKNZo0zVRWVuL666/HmTNnoCgKACAiIgKxsbG8CUGkA1P1PkS9/wAERb3SU8u1P4Y7b4lOWenro5J6vLy7UhWLtZvw64XZvHlGREREFCIkSQrYa1947cpr2cCRTh9FxKE3VbFN/quQd+2igNa4I9bbOFhrY2G9jYX1NhbWm7oTERGB119/vdNqMn6/H8uXL8fBgwdx4MABXHml8VZfH+hOOtx4fU+1KjYxIwrTsmJ1yogGDE8LrMc2wVrwHszlH3e639YVb+JouHNvgTt7HpTwQRokSURERET9ra7Fiwan+iH+4QlhOmVDFPrE5uq2lWTKd8Bcvguiq75Px/vic+FJnwJvxlR4UyYCJluAMiUiooFAk6aZX/ziFzh9+jQEQcA3vvENPPLII8jJydHi1ER0Aam2EFFrvwnB51LFW8d/A84rv6lTVvoqq3fh8XUlqpgkAL9akI2kKM5kTURERBQqYmO1e/ApOjpas3MZiqIA7zwFQG4PuRUz1iZ/F79LH6xbWqy3cbDWxsJ6GwvrbSysN3UkimKXjVSSJGHixIk4fPgwampqdMiMAu0PH5XD5Tt/bSEKwMMzhkDgTLN0KfxemMt3wlrwHqzHNkPwOXs+JCoD7tyFcOcsgj92uAZJEhEREVEglda2qratJgGp0XyuiKjXvK0wV+2BpWwnzGU7YKov7tPhsj2urUnm7H9yhH73DomIKPRo0jTz/vvvQxAE3HXXXXjppZe0OCURdUF0VCFq9b0Q3Y2quCt3MVqv/ZFOWemr1ePHI+8WosWjngXswWkZmJARpVNWREREREQG9cW/gLJdqtAK/wJMuoqzfhMRERHpobGxEcXFxSguLkZJSQlKSkrgcDgAANOmTcPSpUt7/VqnT5/Ghg0bsH//ftTW1sJkMiEpKQnXXHMNbrrpJlit2j5oJMsyDh48CABIT0/X9NwUeF9UObDhaK0qtnjsIGQlchZo6gNFganmM1gLV8NatA6iq67HQ2R7HNxZ8+DOXQTf4CsANmkRERERDRglZ9SN00Pi7JBE/r1HdFGKDOlMfttKMmU7YK7aB0H29P5w0Qxv8lXwZkyFJ2Mq/AkjAIErTBMR0aXRpGmmqqoKAHDXXXdpcToi6oLgrEPU6nsgtahnzPMMmYHmmb8y5B+UiqLgqQ9KUVqrvqidnRePO65K0ikrIiIiIiKDcjUBGx9ThcrkRLwkL8LO0ck6JUVERERkbN/8Zv+sTr5371688MILcDrPvxfrdrvbG3G2bNmCZcuWISkpcO/L+nw+rFq1CgDgcDhw6NAhVFZWYvr06RgzZkzAzkvakxUFz314QhWLsEr49nVpOmVEoUaqL2lbUaZwDaSmsh7HKyY73MNnwZ2zEN70KYBk1iBLIiIiItLahc8XZcbbdcqEKHgJLadhKd8Jc/lOWMp3Qmw906fjfbGZ8KZPgSdjKrwpkwBLeIAyJSIio9GkaSY2NhanTp1CTEyMFqcjogt5WxG19psw1Zeow0nj0TTnBcO+ef/m3hpsKlDPCpaVYMfjs4dB4MxfRERERCGnvr4+YK8tiiKio6PbtxsbGyHLcsDOZ0T2Hb+ArfmkKvZz3124YkgiBE8L6j0tmuXCehsHa20srLexsN7Gone9Y2NjNTuXnhISEpCamtq+OktvHTt2DM8//zw8Hg9sNhtuueUWjB49Gh6PBx9//DG2bNmC6upq/OpXv8LTTz8Nuz0wDx35fD68/fbb7duCIGDBggW44447AnI+0s+GI2dwuEZ9/fDNa1IRG2bMeyHUO0LLKViL1sJW8C5Mpw/3OF4RJHgzpsCdswjuYTfyQS4iIiIiA7iwaWZ4AptmiOBzw1y9F+ayHbCU7YCpNr9Ph8vWaHjTr2trkkmfAjkyJUCJEhGR0WnSNDNhwgSsX78ehYWFGD9+vBanJKJz/B5EbfgOzCcPqMK+uGw0zf8LYDbmBdx/yhrxwkfq2cEirRKeuyUHdoukU1ZEREREdDn8fr9m55JlWdPzDXRSXRGsB15Vxbb6x2GzfCV+mhOn+/ea9TYO1tpYWG9jYb2NhfXuP7feeisyMzORmZmJmJgYnDp1Cg888ECfXuO1116Dx+OBJEl47LHHkJOT075v9OjRSE5Oxptvvonq6mqsWbMGt99+e6fXeOONN+D1ent9zrlz5yI5Wb1aoc1mw1tvvQVZllFfX499+/Zh5cqVKCwsxLJlyxAWFtanr4uCU6vHjz/sKFfFMmJtuH38YJ0yomAmeBywlHwAa+FqmCt2Q1B6brj0Dh4Pd+5CuLPmQglL0CBLIiIiIgoGiqKg9MwFTTPxvI4kA1IUSLWFbSvJlH0Ec+UeCH537w8XJPiSxrc1yWRMhS9xNCDyWT0iIgo8TZpmHnzwQaxbtw4vvfQSvvzlL2txSiICAEVGxJYfwVK2QxX2RySjaeGrUGwx+uSls5omN5atKYasnI8JAJ6al4W0GJtueRERERERGZKiIHz7ExBkX3vIrZjwhO9umEQR07ONMXM7ERERUTDqqoGlL4qLi3H06FEAwIwZM1QNM+fMnz8fW7duRWVlJTZs2IAlS5bAZFLfvtq0aRPc7t4/gDF58uROTTPniKKI+Ph4zJ49G5GRkfjtb3+LVatW4c477+zDV0bB6vU9VTjdrG6w+sH0DJglUaeMKOj4PbCc2A5r4WpYjm3p1cNdvphhbSvK5CyAHDM08DkSERERUdCpbfWi0eVTxTK50gwZRUstULoVKPkQ0UWbIbac7NPh/ugMeNLbmmS8aZOhWCIDlCgREdHFadI0M2vWLPzoRz/Cr3/9a9x///34/e9/D7OZS6ATBZSiIHznL2ErXK0Ky9YYNC18DXJE1zcMBzq3T8YP3ytCg1N9Ifut69IwZXiMPkkRERERERmYpXg9LJWfqGIv+efjhJKEqcOiEWXT5K0LIiIiIgqAPXv2tH8+Y8aMLseIoohp06bh73//O1paWnD48GGMGzdONeZvf/tbQPI7d54jR44E5PVJW9WNbry5t1oVu2ZoNK7je/+kyDBV74O14D1YizdAdDf0eIgclgh39ny4cxbCN2gMIAiBz5OIiIgMwePxYOXKlSgtLUVNTQ2am5sRFhaGpKQkzJw5E1OnTu00kQDp78JVZqwmESnRVp2yIQo8wVkPS8n7sBWvBSo+BdA2O3VvpqSQLRHwpl0Db8b18KRfBzl6SEBzJSIi6g1N/sJ+4403MGLECFx77bV46aWXsGbNGtx6663Iy8vr1XL3d911lwZZEg0s9v0vwn7wVVVMMdnRtOCv8Mdl6ZSVvhRFwdObj+PoyRZVfGpmDO6bnKJTVkREREREBuZpQfjOX6pClUo8/uRbCACYnRevR1ZERERE1E8KCgoAAFarFcOHD7/ouJEjR6qOubBpJlDq6uoAAJIkaXI+Cqzff1QGt+/8EvOSAHx/egYENjsYllRbAGvBaliLVkNyVPU4XjaHwzN8Nty5t8CbNhkQ+bAqERER9T+Xy4WNGzciKysL48ePR1RUFFpaWnDgwAGsWLECu3btwrJlyyCKXC0xmJTWqptmhsXbIPJagwYYwdMMy7HNsBaugbl8JwTZ1/NBABRBhG/QWHgzpsKTMQW+QeMAiZPqExFRcNHknb577rlH9YZ0dXU1XnjhhV4dKwgCm2aI+sh65F8I3/2sKqaIJjTd/Ef4kq7QJ6kg8O+Dp7Dm0GlVLCPWhqfmZvJCloiIiIhIB2F7/wippUYVe8r7NThhg9Uk4PqsWJ0yIyIiIqL+UFFRAQBISkrqtjElJeX8pEbnjunPHBITE2G1qmcAdrvdeOONNwAA48eP79dzkvY+q2jCpoI6VezWKwZjeELPk/fRwCI6qmAtWgNrwWqYavN7HK+IJngypsGduxCeoTcAZrsGWRIREZGRRURE4PXXX++0mozf78fy5ctx8OBBHDhwAFdeeaVOGVJXSi5YaWZ4PK81aIDwuWE5sQ3WorWwHP8Qgs/Vq8P8kSnwpk+FJ2MqvGnXQLHFBDZPIiKiy6TZ9DiKovQ8iEJOoGZfu3C2BM6e0Hvm0k0I3/o/neKts56DPHwmgnG+PC3qfbDSgec+PKGK2c0ifrM4D9FhXC5VS/z9Ng7W2lhYb2NhvYmoP0j1pbAfeEUV+8g/Bu/LEwEA1w6LQbglGK9giIiIiKg3PB4PHA4HACA+vvsVBCMiImC1WuF2u1FbW9uveezatQvr1q1DXl4eEhMTYbfbUVdXhwMHDsDhcGDEiBGYP39+n16ztzkGcgUbXpufJysKfrO1TBWLtplw/9SMAbGKEGvdM8HdCHPRBlgK3oWp4lMI6Pm+tDdlIjy5i+DNngfF3jZhQzD8tLDexsJ6GwvrbRysNfVEFMUufy4kScLEiRNx+PBh1NTUdHEk6am0tlW1PTyezdYUwmQfzOW72hplSj+A6Gnu+RhzGDB0KlpTroE77Tr4Y4YBnKSaiIhCiCZNM8eOHdPiNKSD2FhtZv2Njo7W5Dwh78QuYMN3AUVWx2/6JcKvuRfh+mTVZ/1d71MOF360eh98svomyXO3XYEJOcn9ei7qO/5+GwdrbSyst7Gw3kTUZ4qC8I9+DkH2toc8ioQnfXcBaHuDfXZu9w9WEhEREVFwc7nOz0xqs9l6HG+z2eB2u1XH9YerrroK9fX1KCwsRGFhIVwuF8LCwpCRkYHrrrsOM2bM6HNjxf3339+rcW+99dalpHxJjHxt/tbechw92aKK/WB2LoamDNIpo8Aycq1VvC6g6APg87eAoo2A39PzMYl5wJjbgDG3wRw7BObAZ3nZWG9jYb2NhfU2Dta6fzU2NqK4uBjFxcUoKSlBSUlJe7P+tGnTsHTp0l6/1unTp7Fhwwbs378ftbW1MJlMSEpKwjXXXIObbrqp02qVgSbLMg4ePAgASE9P1/Tc1D1FUVB6wUozWQlsmqEQo8gwVe9vW5mzeD1EZ13Ph0hWeIffCMuVXwGyZgFmG9z19fD7/RokTERE1L80aZoZMmSIFqchMraTh4G//xdw4RKJU74PXNP7NwUGGq9fxgP/9xlONrlV8W9dPxzzxrJhhoiIiIhID5bSjbCU71DFXvHPRYmSCgCwmURMGR6jQ2ZERERE1F88nvMPsJtMPd+OOjem43H9ITMzE5mZmf36mhQ8mt0+PPtBgSqWPSgCX706Q6eMKKBkGTixE/j8n8CRNYC7sedjIlOAMV8CxtwOJI3hTMhEREQh7pvf/Ga/vM7evXvxwgsvwOk83wjhdrvbG3G2bNmCZcuWISkpqV/O1xWfz4dVq1YBABwOBw4dOoTKykpMnz4dY8aMCdh5qe/OtHjhcKubBIYnhOmUDVEfKAqkM0dgLVwDa9FaSM3VPR8imuBNnwJ3zgJ4ht0I0R4Ni0YTqxMREQWSJk0zRBRg9SeAvy3pfHNg/J3ADT/TJ6cg8Yt1R7HnuLoz/rqsePzwplydMiIiIiIiMjivE+E7l6tCtWIcfu9b3L59fVYs7Ja+zfZNRERERMHFYrG0f+7z+Xocf25Mx+OC1YoVK/ROgc7649ZinHaoJ816bP5ImCRRp4yo3ykKUPMF8MVbwBf/BhxVPR9jjQZGLgTG3g4MuQ4QeX1JREQ0ECUkJCA1NbV9dZbeOnbsGJ5//nl4PB7YbDbccsstGD16NDweDz7++GNs2bIF1dXV+NWvfoWnn34adntgVhTx+Xx4++2327cFQcCCBQtwxx13BOR8dOlKLlhlxm4WkRQV/NeuZFxSfSmshWtgKVoLU0Npj+MVCPCmToInez7cmXOg2OM0yJKIiEhbbJqhy1JfXx+Q1xVFUbVEbWNjI2RZDsi5Qp3QWovIf90GqblGFfcMvxEtU54AGhp0yasvAlXvdYdP47Vdx1WxpCgLfn7zcDiaejH7GAUEf7+Ng7U2FtbbWIKh3rGczYa6IEmBewhGFMVut6n3bHtehHTBQ05PuO5AK2zt23NGJAS0nj1hvY2DtTYW1ttYWG9jYb2Dk812/u87l8vVzUj1mI7HBav4+PhejQvUPRQgOK7N9VbR4MJfdqgf/pmaGYuxiaaAfu+1ZtRai03lsOSvhqXgXUh1RT2OVyQLvENnwJN7C7zDZgCms/+WNDYFONP+ZdR6GxXrbSyst3EEQ60H8j2UW2+9tX01yZiYGJw6dQoPPPBAn17jtddeg8fjgSRJeOyxx5CTk9O+b/To0UhOTsabb76J6upqrFmzBrfffnun13jjjTfg9Xp7fc65c+ciOTlZFbPZbHjrrbcgyzLq6+uxb98+rFy5EoWFhVi2bBnCwriSSbAoOdOq2h4Wb4fIFQwpyIiOKliL1sJatBam04d7dYx30Ni2FWWy5kKOCNzKWkRERMGATTN0Wfx+f8+D+oEsy5qdK5QInmZEvXcPpAs6wr3JE9A0+3eAIgAh+H3rj3oXnGrBU++XqGIWScCzC3MQbRX58xRE+PttHKy1sbDexsJ6U7DQ8kZgx5ue1Ae1JcC+F1Wh6tiJWFN9Tft2pNWEuVcOg80cPDMBs97GwVobC+ttLKy3sbDewcFisSAyMhIOhwO1tbXdjm1ubobb3bZaSG8bUkKBltfKRrw2/82Hx+D1K+3bkijge9PSB/z3YSDXWnDWw1qyAdaC92Cu3tvj+HOzIbtzFsGTOQeKrcO//wPkezSQ602dsd7GwnobB2vdv7pqYOmL4uJiHD16FAAwY8YMVcPMOfPnz8fWrVtRWVmJDRs2YMmSJTCZ1I/Ybdq0qf0apjcmT57cqWnmHFEUER8fj9mzZyMyMhK//e1vsWrVKtx55519+MookEpr1SvNZMYHZvUhor4SWs/AWrwB1qK1vbqGAgBfXDbc2fPhzp4POWZoYBMkIiIKIv3aNDNz5kwAbctFbtmypVP8Ulz4WkR0lt+DyA3fgfnUF6qwLy4HTfNeOj+DlgE1On344btFcPvUs7UsmzUMI5LCdcqKiIiIiMjgFAV4/8eA33M+JprwtHAfgPMzss0aOTioGmaIiIiI6NKlpaXh6NGjqKmpgd/vv+hqglVVVapjiHqyt6wJW4vUq8l8efxgDI3jw2shx+uE5fgWWAtWw1L2EQS55xnbffF5cOcuanvIKzJFgySJiIhooNizZ0/75zNmzOhyjCiKmDZtGv7+97+jpaUFhw8fxrhx41Rj/va3vwUkv3PnOXLkSEBeny5N6Rl108zwBK4CRPoR3A5YSj+AtXAtzBW7ICg9N2b6I9PgzlkAd/YC+ONzAK6UREREBtSvTTPbtm0D0NbocmFcEAQoitLFUV07N/7C1yIiAIqMyM0/hKX8Y1XYH5mKpoWvqWfSMhi/rOCxdcWoalLP6HHruEFYMDpRp6yIiIiIiAiF7wNFG1UhxxVfx3u71NcvC8bxgSciIiKigSI3NxdHjx6F2+1GaWkpsrOzuxzX8YGw3NxcrdKjEOWXFfxm6wlVLMZuwjevSdUpI+oz2Q9zxW5YC9+DpeQDiN6WHg/xR6bAnb0Q7tyF8Mfz3wkiIiK6NAUFBQAAq9WK4cOHX3TcyJEjVcdc2DQTKHV1dQBw0QkHSHuKonRaaWY4V5ohrflcsBz/ENbCNbCc2Aah4wR1FyGHJcCdNQ/unAXwDb6CjTJERGR4/do0c/3113fZ5HKxOBFdAkVB+I6nYC1aqwrLtjg0LnwdcsRgnRILDn/+uAK7jzeqYmNTIvDwzCE6ZUREREREWqmvr+950CUSRRHR0eebOxobGyHLcjdHkIrPhah1P0TH23xyWCLeFL8E4Ex7LMpmwqgEKaC17A3W2zhYa2NhvY2F9TYWvesdGxur2blCzaRJk/Duu+8CALZu3dpl04wsy9i+fTsAIDw8HKNGjdIyRQpB731xGoWnW1Wxb1+Xhkhbv972pP6mKDCd+gLWwtWwFq2F2Hq6x0NkazTcWXPhzl0EX/JVgCBqkCgRERENZBUVFQCApKSkbhtTUlLOT+507pj+zCExMRFWq1UVd7vdeOONNwAA48eP79dz0qU76fCgxaNeySMzgU0zpAG/F+bynW2NMsc292qyAdkaBU/mHLiz58ObOhkQ2YBHRER0TkBWmultnIj6zr7vT7B//oYqppjD0LTgr5Bjh+mUVXDYWlSHVz+tUsXiw8z49cJsmCXeSCEiIiIa6Pz+npcf7y+yLGt6vlBn/88KSE3lqljLdT/Gmj3q2dlmZMdChBJ031vW2zhYa2NhvY2F9TYW1jt4ZGVlYcSIETh69Ci2bt2K6dOnIycnRzVm7dq1qKysBADcfPPNMJkGTuNDIGeHFkWx2+2ByuH2YcXH6muL7MQwfGl8MiRxYE7gF+q1FhtOwFLwLiz570FqKO1xvCJZ4R1+Izy5i+AdOh2QLAAAozzqFer1pr5hvY2F9TYO1jp4eTweOBwOAEB8fHy3YyMiImC1WuF2u1FbW9uveezatQvr1q1DXl4eEhMTYbfbUVdXhwMHDsDhcGDEiBGYP39+n16ztzkG6hplIP/cH693q7bDLRJSYuyGnkB8INdbd7Ifpqo9sBSshrl4A0RXQ4+HKCY7vMNnwZO7EN4h1/f7NRTrbSyst3Gw1sbCercZOHceiAzAevgfCP/kN6qYIprRdPMK+AaP1Smr4HC81oknNpSoYpIo4OmFWUiMsOiUFRERERERiU3lCNv3Z1XMmzwBxYk34cjJz1XxWbnd36gkIiIiIm3l5+ejpqamfbupqan985qamk6Tpk2fPr3Ta9xzzz14/PHH4fF4sHz5cixevBijRo2Cx+PBrl27sHnzZgBAcnIyFixYEJCvQy9arkLUcbWlgexP646gvtWnij25aAwS4+N0ykh7IVHr5tPA4XeAz/8JVO7tebwgAsOuB8bcDmHEAlhsUeCdnTYhUW/qN6y3sbDexsFaBw+Xy9X+uc1m63G8zWaD2+1WHdcfrrrqKtTX16OwsBCFhYVwuVwICwtDRkYGrrvuOsyYMaPPzS33339/r8a99dZbl5Jynw2kn/vqlnrVdvbgSMTFGef6ozcGUr11oShA1X7gi38Dh1cBjuqejxHNQPYsYPSXIOTeDIslXLNrKNbbWFhv42CtjcWo9WbTDFGIsJR8gIhtj6tiCgQ4bnwW3owpOmUVHJrdPjzyXiFaPLIq/v3pGRifFqVTVkREREREBADhO5ZD8J+fiU0RRDRPewKbCutU42LtJkzI4N/vRERERMFky5Yt2L59e5f7CgoKUFBQoIp11TQzbNgwPPTQQ3jhhRfgdDqxcuXKTmOSk5OxbNky2O32fsmbBqZjZ1rw2q7jqtjskYNxbVaCPgmRmqcFyF8HfP4WUPIhoPRixa/kK4CxtwOjvwREJgU8RSIiIjI2j8fT/nlvVrg8N6bjcf0hMzMTmZmZ/fqaFDiFJx2q7ZzBETplQgPOqaPAF28Dh/4N1B/rebwgAkOnAmNuBUYsAOzaTdRBREQ0ELBphigEmCo/ReTGhyAo6qaQlqmPw5MzsGbe6ytFUfDk+6U4Xqee2WPuyAR8efxgnbIiIiIiIiIAMJ/YBuuxzaqYa8yd8CeMwKZ1X6jiN+TEwSQKWqZHRERERBqZMGECnnvuOaxfvx779+9HXV0dTCYTkpKSMHnyZMyZMwdWq1XvNCnIvfnJCXj9Svu2RRLxk3kjdMyI4PcCJVuBL95qa5jxtvZ8TOxQYMxtwJjbgcScgKdIREREdI7Fcn4dBp/P181I9ZiOxwWrFStW6J3CgFV4qlm1nTM4UqdMaECoP97WJPPFv4FTh3t3TNqktkaZkbcAkXwWjoiI6FKxaYYoyElnjiJq3X9D8Ktnrmid8B24xt2tU1bB4/U91dhapF4KNWdQGP5n1lAIAh+4IyIiIiLSjd+NiI9+rgrJ9ji0Xv19HK91oui0+mGqWXnxWmZHRERERL2wdOlSLF26tF9eKzExEXfffTfuvts472vX19f3POgSiaKI6Ojo9u3GxkbIstzNEaFv77Ezqu3bxg9GlOhBfX3/zvwdbIKu1ooCqeYzWAreg6VwLURnbY+HyPY4eLLnw5O3CP6kK4Fz928C+DsSqoKu3hRQrLexsN7GEQy1jo3l6gNdsdls7Z+7XK5uRqrHdDwuWMXH9+799UBdowTDz30gKIqCopNNqlhyWGCv9ULBQK13oAgtp2ApWgdLwWqYaj7r1TG+hDx4chbCm7sAclT62SB0uYZivY2F9TYO1tpYgqHewXCNwqYZoiAmNpYhevW9ED3qWQtcI7+M1qt/oFNWweOT4w34085yVSzaZsKzC7NhM0s6ZUVERERERABg/+yvkBpPqGIt1/wIijUKG/dVqOIJ4WZckcrZ2YiIiIhoYPH7/ZqdS5ZlTc+nNVlRUHSqRRWblBE1oL/mi9Gr1lJ9KayF78FauBpSY1mP4xWTHe7hs+DOWQhv+hRAMrft4AMYfTLQf7dJjfU2FtbbOFjr4GGxWBAZGQmHw4Ha2u4bf5ubm+F2uwH0viElFGj1szhQfu6rG91o9aj/fh0aZx0QX1t/Gij17k+CqxGWkvdhLVoDc+WnEJSer4P80RlwZy+AO2cB/HHZHXYE1/eW9TYW1ts4WGtjMWq92TRDFKSE1jOIXn0PxNbTqrh7+Cw0T//5+Vm4DKqywYWfrC2BrJyPCQB+MT8TqTHBP8sHEREREdFAJjqqELb3j6qYd/B4uEcsgaIo2JivviF5Y24cJNHY1zhERERERHRxVY1utHrVDxllJ4bplI1xCC2nYS1aC2vBuzCfPtTjeEWQ4E2/Du7cRXAPmwVYwjXIkoiIiKj30tLScPToUdTU1MDv90OSup6QtaqqSnUMGVNJrVO1HW6RMCjColM2FPS8rbAc2wxr4VpYyj6CIHt7PMQfngRP9jy4s+fDN2iM4Z8HJCIiCiQ2zRAFIcHjQPSa+zrNyuxNmQTH7N8BorF/dV1eP364ugiNLp8q/p2paZg8NEafpIiIiIiIqF34zl9A8LnatxUIaJ72BCCIKD7diuN1LtX42XkDZ6Y+IiIiIiLqf0WnW1Xb0XYTEiPMOmUzsAkeBywlG2EtXA1zxa5ezYjsHXwF3DkL4c6eByUsQYMsiYiIiC5Nbm4ujh49CrfbjdLSUmRnZ3c57siRI6pjyJhKz6ivQzIT7BDY1EAd+d2wnPgI1qK1sBzbAsHn7PEQ2RYLd+YcuHMWwJcyERBEDRIlIiIiYz95TxSM/G5Err8fptOHVWFffB6a5r0ImKw6JRYcFEXBLzcdR+Ep9YXpjOxY3DMpRaesiIiIiIjoHHPZTlhL3lfFXKPvgH/QaADotMpMUqQFY5IjNMuPiIiIiIhCz4VNMzmJYXxYrT/5PbCUfQRrwXttD3r53T0fEj0UrtxFcOcsgBwzTIMkiYiIiC7fpEmT8O677wIAtm7d2mXTjCzL2L59OwAgPDwco0aN0jLFgLrYyjqXSxTFbrdD1bELJgDLSgwP2PcwlAzUevea7IepYjcsBathLnkforupx0MUczg8mbPhyVkIX8YUQGqbBCIUfpoMX2+DYb2Ng7U2Fta7DZtmiIKJ7EfkpkdgqditCvuj0tG48FUo1iidEgseb312EuuPnFHFhsbZ8LM5w3mDjIiIiIhIb34Pwj96UhWSbbFonfwDAG1N8JsK1E0zs3Lj+bc8EREREQ1IgXyYymg3OovPqGfrzRlknIfVAlZrRYZUtQ/W/HdgLl4P0dXQ4yFyWAI8OQvgyb0F/sFjAUGAgNB40CtUGO132+hYb2NhvY2DtQ5uWVlZGDFiBI4ePYqtW7di+vTpyMnJUY1Zu3YtKisrAQA333wzTKaB83hdbGysJueJjo7W5DyBdqLBo9oenR6v2fcwlAyUendLUYCK/wBfvA0cfgdoOdXzMZIVyJkNjL4VQs5NsJrtGAhTZRui3tSO9TYO1tpYjFrvgfNXPdEAELb7WViL16tisj2urWEmfJBOWQWPAxUO/GZbmSoWbhHx3KIcRFj5zxkRERERkd7sB1+FqaFUFWu55hEothgAwNGTLahoUM9YPCsvTqv0iIiIiIg0peXDVAP9RmfxGfUMz1cMTTTsw2qXXetTR4HP32p72KuxrOfxlghgxAJgzG0Qh02DTTLBdnkZUB8M9N9tUmO9jYX1Ng7Wun/l5+ejpqamfbup6fwKDzU1Ndi2bZtq/PTp0zu9xj333IPHH38cHo8Hy5cvx+LFizFq1Ch4PB7s2rULmzdvBgAkJydjwYIFAfk6KPjJsoKik82qWM7gSJ2yIV0oCnDyUNu106FVvbt+EiRg+HRgzK1A3jzAxv8HEBERBQs+ZU4UJKT6UtgP/FUVk83haFzwCpe1B3C62YMfrSmCX1ZU8SduzsTQeLtOWRERERFRMOEszvoSmmsQ9p8/qGK+wePgG/MVSELb92tzYb1qf3qMDaNTooJupRnW2zhYa2NhvY2F9TYW1ptoYGt2+1BW16qKjUiO0imbENVYCRx6G/j8X8DJL3oeL5qArBuBMbcBuXMBS1jgcyQiIiLqhS1btmD79u1d7isoKEBBQYEq1lXTzLBhw/DQQw/hhRdegNPpxMqVKzuNSU5OxrJly2C383kUo6qod8Lp9atiOYMjdMqGNFVbAhz6d1uzzJmCnscDQMa1wJgvASNvAcITApoeERERXRrdmmYqKipQU1OD1tZWTJw4kRcZZHj2Pb+HoMjt24pohmPuCvgHjdExq+Dg9cv40eoi1LZ4VfF7r07BjGzOSk1EREREbTiLs862PAx4Oz7IJsC04LeIjYsHACiKgi0XNM0sHJ+KuLjg/5ue9TYO1tpYWG9jYb2NhfUmGlgKappU25IoIGsQH1brkbMBOLq6bVWZ4zsBKD0dAaRPBsbeBoxcDITHBzpDIiIiIt1MmDABzz33HNavX4/9+/ejrq4OJpMJSUlJmDx5MubMmQOr1ap3mv2uvr6+50GXQBRF1bV4Y2MjZFnu5ojgt7+0TrUdZTPB5GtFfb1Tp4yCx0Cst+CohqVoHSwFq2E69XmvjvENGg1PzkJ4cuZDiUxpC3oAeALze6aXgVhvujjW2zhYa2MJhnoHw6rhmjbNOBwOPPPMM3jttddQVVXVHv/iiy8wcuTI9u1//OMfWLVqFaKjo/Hyyy9rmSKRLqTaAliL1qpiziu+Dm/6dTplFFx+s/UEPq9SL3k6eWg0vn1dmk4ZERERERGRyrGP2mbd6ujKrwFpV7Vv7i9rQGWD+mbS/LEpWmRHRERERKSLQD2QBgTHjU6t7C05qdoeGmeDs7kJRnlUrU+19rlhPr4Vlvx3YT7+IQS/p8fX98dlwZO7GJ7chZCj09uCA/BBr1BhpN9tYr2NhvU2jmCodTA8kBYoS5cuxdKlS/vltRITE3H33Xfj7rvv7pfXCwV+v7/nQf1AlmXNzhUoxadaVNvD4+38d/siQrXegrMO1pL3YS1cA1PVfyD0YqIBX8xwuHMWwJ29AHLssPM7QvDrv1ShWm+6NKy3cbDWxmLUemvWNFNUVIS5c+eitLQUinL+DwxBEDqNnTx5Mu68804oioK7774bU6ZM0SpNIl2E7fm96g9v2RIB55Xf1DGj4LHm0Gn868ApVSwlyorl8zIhiZ3//SAiIiIiIo35vcD6R9UxWwxwwxOq0JqDVartzMRw5CVFBjY3IiIiIiIdaXnjcSDf6Cw8qZ5UKyshbMB+rb3RqdaKDHPlHlgL34OleANEj6PH1/CHD4Y7ez7cuYvgTxgJnLtfa+Dva7AayL/b1BnrbSyst3Gw1kShqaS2VbU9PMGuUybUnwRPMyylm2AtWgNz+ccQZF+Px/gjU9qun7IXwJ8w4vz1ExEREYUUTZpmXC4X5s2bh5KSEoSHh2Pp0qW4/vrrMX/+/C7HDx06FDNmzMCHH36I1atXs2mGBjTp9GFYS95XxVzj7oNii9EnoSBytKYFv9p0TBWzmgQ8e0s2YuxmnbIiIiIiomDFWZz1Yd3/F4SdPvr/7N15fFx3fe//95yZ0Yx2a7MtW94kS16z2EnshEA2IHYgIYGG0FIgrC3ULIFye2/uhdLepiz3ckvakOZXCmUte4EQyG5CEhKyOk6ILVuWZceWLdvarF2znfP7w0TyV5ZtLTPnzMx5PR8PHtH3M2f5zHwko6NzPt+vERu++K8Vi1tjMxOnbEe/eumQsc0bmyp1/Phxt9KcFurtH9TaX6i3v1Bvf/G63vk8izOQDfZ0mg+rNdYUeZRJFnEcBbt3KbL7bkX23KPg4JGz7mIXlCjecI1iK96ixIKNkhV0IVEAAAAgN7V1mWtb1lfRNJOzkjEV7H9EkT33qGD/IwqkYmfdxS6sVGz5mxVrulbJ+eulgOVCogAAIJNcaZq566671NraquLiYj3++OM6//zzz7rPNddco61bt+r3v/995hMEPFT89O3G2I6Ua+T893uTTBY5PpzQf7u7RfGUufTl/7q6XivmFnuUFQAAALIZszi7LzB0TNGnbjdiyZo1Gl79DmOG4ucP9qtrMGFs94amipz5DKm3f1Brf6He/kK9/YV6A/nDdhy1TmiaaZrr46aZ4wcUffY7Cu/6hUI9e866uWMVKL70csWarld86VVSKOJCkgAAAEBuS9mO9veYTTMNrDSTW1IJhdufVKTlHhW0PSQrMXjWXeyCUsUbNinWeK0SdZdIliuP1gIAAJe48v/sP/vZzxQIBPSJT3xiSg0zknTeeedJkvbsOfsffIFcFTqyXQX7f2PERtZ9UE6k1KOMskPSdvQ/f9WqIwNxI/6OdfP0ptXVHmUFAAAAYKLiJ790yo2Gwcs+d8qMxQ/t6jbGjTVFWsqsbAAAAADO4nBfTMMJc+Uo3600YyelF/5TeuF70oEnNZUrqcSCjRpd8RbFG66REy0/+w4AAADwhWAwM6sNWpZ1xnGuOdQ/oljSnOS3cW5Jxj6/XJO19XZshQ4/p/DuX6qg9V5ZIz1n3yUUVWLZ6xVf8RYlllwuhaKSJCo9LmvrjYyg3v5Brf2Fep/gStNMc3OzJOnqq6+e8j5VVVWSpOPHj2ciJSArFE1cZSZaqZFzb/YmmSxy52Ov6JkD/UZsXV2pPnnFYo8yAgAAADBR6PBziu7+hREbXfk2JWsvMGJJ29HWFvPGxBtXVGY6PQAAAAB5oOWYucrMnMKQqovDHmXjMsdR+JXfquTJL0o9rWfdPFm1UrEVb1Gs8TrZpQtcSBAAAAC5pqKiwpXzlJfnduP2s4djxriiKKyGhXMVCAQ8yii7eVpvx5E6tkt/+Km04+dS/6Gz72OFpIbXS+fcqMCKa1QQKVVBxhPNH7n+843pod7+Qa39xa/1dqVpZnDwxKyzJSUlU94nFjvxy2c47JM/fMN3QoefVcHBx43YyAV/KRUUe5RRdvj1Sx361tOHjVh1cVhfuG65QkF/djcCAAAAWcdOquTRz5mhglINvea/n7Lpcwf61TuSNGJXr6zKaHoAAAAA8sOeTrNpprGmyBcPqgU7d6r4iS+ooP3JM26XKqlVrOktijVdr1T1CpeyAwAAAPLbnmODxrhxXqkvrkNySmeL9PJPpZf/S+o++yQDUkBa+lpp7Z9Iq6+XipjcDQAAv3GlaaaqqkpHjhzR/v37tX79+ints2PHDknS/PnzM5ka4A3HUfFTXzFCdlGNRtb+uUcJZYeWowP6bz990YiFrID+z/WNqi6mpx8AAADIFtE//KdC3buM2PDGW+QUVZ+y7UO7u43x6nnFqpsTzWh+AAAAQDYIBoMZO7ZlWWcc54vWrhFj3DS3OKOfq9cCg0dU+OSXVdD8XwrImXQbO1KuROObFF95g5ILLpICJ2qfv5+Kv/jlZxsnUG9/od7+Qa2B3NdydMAYN82b+kThyKDjB080ybz8U+nIH6a2z8ILpLU3SmveKpXVZjY/AACQ1Vxpmlm/fr3uvfdePfbYY3rb2942pX2+853vKBAI6JJLLslwdpiNTN2YyPc/IoQOPKHw4aeN2OiGjyoY9edFlmVZ6h9N6C+/+7yG4ynjtb95wzKtWzTHm8SQEfn+841x1NpfqLe/UG/A3wLDXSp62pwEIFm1QqPnvOuUbRMpW4/s6TFib2SVGQAAAPhERUWFa+cqLy937Vxuau02m2bWLZvr6ufqmtiA9MS/SE/eISVHJt+m9jzpsv8mq/FqRUIRRdzNEB7J159tTI56+wv19g9qjWzS29ubkeNalmV8r/f19cm27Yycyw3Nh48b47rSYMY+u1zkZr0DQ50qaL1XBbt/qVDH81PaJ1XVpHjTWxRvuk72nCV/DEqihjOSbz/fODPq7R/U2l+yod7Z8DddV5pmbrzxRv3617/W1772NX3qU5/S4sWLz7j97bffrscee0yBQEB/9md/5kaKmCG3vonz6o8IjiP91+1mrKxORa/9iIpC/rzFYduO/uK7z2tf15ARf/sFdfrQlStZ4jTP5dXPN86IWvsL9fYX6g34S/Hv/6+suDnL2uBlfydZp/6J4elX+tU/ajbGv3EFS94DAAAAOLuB0YQO9pgNJCvnl3qUTYakktL270m/+Udp6Njk25QtlF7/t9I5N0lMXAIAAIBZSKVSZ98oDWzbdu1c6ZayHe2f0Ly/rDKas+/HDemudyDWr4K9Dyqy5x6F259UwDn7Q72pskWKNV6rWNN1SlWtOOkF6pZuufzzjemj3v5Brf3Fr/V2pWnm3e9+t77yla/opZde0hVXXKE777xTmzdvHns9EAjIcRw999xzuv322/XDH/5QgUBAr3vd63TNNde4kSLgnj0PSe3PmrHLPi35tGFGkv71t616uPmoETtnYbn+4Ya1NMwAAAAAWSTUsU3R5p8asdGm65VcuGHS7R/c1W2Mz11Qovll/r32AQAAADB1u4+YzfohK6DGeSUeZZMBex6WHvyM1Nk8+esFJdJrPyldskUKF7qbGwAAAOBT7cdHFU85Rqyhit/HMy4xooL9WxXZ8ysV7H9UATt+1l3sohrFGt+sWON1Ss47T+IZMwAAcAauNM1YlqVf/vKXeu1rX6v9+/fr2muvVVFR0djD8FdccYUGBgYUi8UkSY7jqKGhQT/+8Y/dSA9wj+NIj/yjGZuzRFr3Lm/yyQJdgzH9y9ZWI1ZZXKD/790XKBoOepQVAAAAgFPYKZU89ndmKFysoUv/x6Sbx5K2Hm3tMWJXr6zKUHIAAABA9unt7c3YsS3LMlZ+7evrk22fffbdXPJ8mznZ1tLKQg0P9GvYo3zSJdjZrMLffV7hA49P+roTsBRf+2ca2XiLnOIaWcNxlZePP6SXj7XGOD/8bGMc9fYX6u0f2VDriooKV88H5JO2CavMVBaFNKco7FE2eS4VV/jA7xTZc48i+x5WIHH2qz07Uq54wybFmq5TYsFGyeLZMgAAMDWuNM1I0uLFi7V9+3Z97GMf049//GMNDQ2NvdbZ2Tn2dSAQ0E033aS77rqLi7gckKkbPtnwR4RMCO99QCUd243Y0EUfU7x/0JuEssBPnu9QPDVeWysgffEtTSpyRtXbO+phZsiUfP35xqmotb9Qb3/JhnpzrQC4L7rzRwp17jBiIxs+Lqd47qTb/37fcQ3Fx/9tCEh6fVNlJlMEAAAAskoqlXLtXLZtu3o+N+w+at47WV5TmNPv0Ro8qqKnv6JI808VkDPpNvElV2ro0v+uVGXjicAk7zcfa43To97+Qr39hXr7B7UGcsveLrNppr6qyKNM8pSdUvjwM4q03KOCvQ/Iih0/6y5OuEixZW9QrPE6JRa/VgoWZD5PAACQd1xrmpGkyspK/ed//qc+//nP69e//rWee+45HTt2TKlUSlVVVVq3bp2uu+46NTU1uZkWZsGtC/u8+COCY6v0yf9nhJJzlmmk8bpJb3r4xX07O43xtecu0EWLy3K/3piyvPj5xpRQa3+h3v5CvYH8FxjpUdHvv2zEkpWNGjn35tPu8+Buc5WZdXWlqinhRgYAAACAqdlzzJxluLEmRx9WSwyraNu/q/CFf1cgOTLpJsnqVRq69FYlFl3qcnIAAAAATra3y7wOqa8uPM2WmDLHUejoi4rs+ZUK9vxaweFjZ9/FKlB8yWWKNV2n+NKrpHCOXg8CAICs4WrTzKuWLFmiv/qrv/Li1IBnClrvVainxYgNb/i4ZHnyY5gVDh0f1UuHzZnibli3wKNsAAAAAJxO0VP/T1asz4gNXfa3UjA86fYj8ZQeazVXJr16ZVXG8gMAAACQX2zHUWtXjjfN2ClFdv2Xip76ymkfCksVz9fwxZ9SbMUNkhV0Nz8AAAD4TjCYmd85Lcs64ziX7OseNcbLa4oz9rnlqqnW2+rarYKWX6qg5R4F+w6c9bhOwFJy0aWKN12nxPJNciLlkiQ+fW/l0883zo56+we19hfqfYJ/n9YH3GQnVfT0PxuhZGWT4o3XepRQdnhwd7cxrigK63WNNRrs7zvNHgAAAADcFjr6kqI7fmTEYsvfpETda067z+/ajms0aY+NgwHpqsbKjOUIAAAAIL8cOh7TSMI2Yk051DQTPvC4ip/4gkLduyd93QkXaXj9X2rk/A9IYWauBgAAgDsqKipcOU95ebkr50m3RMrWK73m6pDnL5vn2ueWq4x69+yTXv6vE/87tnNqB1i0UVp7owJrblC4ZK4mn64N2SJXf74xM9TbP6i1v/i13jTNAC6ItPxSoeNtRmx44y1SwJ/deq+6v9lsmrnmnFqFg/7+TAAAAICs4tgqfuzvFJAzHgoXaei1//OMu01skL9wcZkqi7nNAQAAAGBq9nSaq8xUFIZUlQPXFMHu3Sp+4osqOPDYpK87AUuxVW/X0MZPyimucTk7AAAAAGfySveQEinHiDXNK/EomxwycER6+WfSyz+VDj0/tX3mnSOd8yfSmrdJFUsymx8AAIA8aJqxbVs7d+5UW1ubBgYGlEqlzrrPe97zHhcyAzIklVDRM3cYoWTNGsXrr/YooezQ2jmsvV3m7AzXn7fAo2wAAAAATCbS/FOFj75oxIYv/KjsktrT7jMUT+nJfceN2BtXVmUiPQAAAAB5amLTTGNNkQKBgEfZnF1gqFPFT39FkeafKODYk24TX3yZhi79H0pVrXA5OwAAAABT0XJ00BjXlEY0p6jAo2yy3FC3tOse6Q8/lfb/TpJz1l1UWS+tvVE650aphusiAADgLteaZoaHh3Xbbbfp61//urq7u8++wx8FAgGaZpDTIrt+pmD/ASM2tOEWKYtv7rjh/uYuY1xbHtVFSys9ygYAAAD5IBgMZuzYlmWdcZyPAqN9Kv79/zViqTn1il/wwTN+1r9r61EsOX5zJGQF9IYV1RmtT7r5sd5+Ra39hXr7C/X2F+oN5J+WSZpmslJiRIXbv66ibV9TIDE86SbJqhUauvRWJRa/zuXkAAAAAFNvb29GjmtZlsrLy8fGfX19su3Jm8mz2Uv7O43xsspoxj6zrJcYkdXfLqv/oIJ//K/Vd/DEf/vbZcX6pnQYu2S+4k3XKd70FqXmrh1/Xs6vn2sOypefb0wN9fYPau0v2VDviooKV883GVeaZgYHB3XllVdq27ZtcpwpdBUD+SIVU9FzXzVCiXnnK7H0So8Syg6O4+iBXWbz3FvOWyDL8ncjEQAAAGbHzYvsk/+gkLfu/bw00mOEgtd+WRXV8864229aW43x6xqrtXTB3LSn5yZf1BuSqLXfUG9/od7+Qr2RLWjsn7nWCU0zK+aXZFcjvp1Swa6fqfDJL8saOjr5JsVzNXLJpxVf9SeSFdRMs8/3WsNEvf2FevsL9fYPao1slkqlXDmPbduunSudWjuHjHF9VTQn38eUpOKyBg6faIgZaFewv13BPzbEBAfaZQ13nf0Yp2FHKxRbfo1ijdcpueBCKfDHfwd5GDsv5OrPN2aGevsHtfYXv9bblaaZ2267Tc8//7wk6eKLL9Zf/MVf6LzzztOcOXO4OERei+74sYIDh43Y8MZP+n6VmZcOD6qjP27E3nL+Ao+yAQAAAHCKIy9Lz37djK28Vlr++jPu1jec0GN7zJnYrjuP3/UBAADgTzT2z8zAaEKH+mJG7IKG+aqoyJL32PZb6cHPSEf+MPnr4SLpNR+X9ZqPqThSouI0nz6fao2zo97+Qr39hXr7B7UGckdb94gxrq/K0hUvp8JOyRo6OrZSzKurxQQH2k+sFDN0VAEnfU0sdrhE8fo3KtZ0rRJ1l0rBcNqODQAAkA6uNM389Kc/VSAQ0Jve9CbdfffdNMrAH5KjKnzuX41QYsFFSiy61KOEssf9zeYqM8sqC7W6tsyjbAAAAAAYHEe6779LJ98sCUWlTZ8/664P7DyiRGp8hdmCkKU3rj7zyjQAAAAAcLJdRwaMccgKaPncEo+yOcmxXdJDfyvteeA0GwSkdX8uXfkZqazW1dQAAAAAzE4iZeuV3lEjVl9d6FE2U+A4Cgx3/bEJ5uCpK8UMdChgJzKbQygqNV6twWXXaHTxZSfGAAAAWcqVpplDhw5Jkj7+8Y/TMAPfiL78fQWHjxmxoY2f8v0qM8mUrYd3m00zm1dXK+DzzwUAAACz19vbm7FjW5ZlzAjY19cnO0+XkQ+33KOSV35nxEYu+LBGVSad5TP+xfMHjPGly+YoOTKo3pHT7JCl/FRvv6PW/kK9/YV6+4vX9XZzNRHAD3Z19BvjhpoSRUJBj7KRNHhM+u0XpOe/LTmpybepv1K6+jZp/lp3cwMAAACQFgd6R5WyHSPWUOVh04zjKBDrO9EE82pDzMCrK8acaIwJJEfPfpxZsgurlCqrk11Wp1TpIqXK6qQ5i1W6aK1UvkgKFSjR2yulTnOtBAAAkCVcaZqZO3eu2tvbVV1d7cbpAO/Fh1T0/F1maNGlSi7c4FFC2eOZA/3qHUkasc2r+bcBAAAAs5dy8Q/ytm27ej7XJIZV9vg/GqFU6UINrfvQWW949A4n9PT+40bsDSsq8+Jzytt64xTU2l+ot79Qb3+h3sgWNPbPzPb9Xca4oSqS0c/ytJKjim77hqLP36VAfHDSTVJVTRp+7f9UcsnlJyZNy0Ce+VxrnIp6+wv19hfq7R/ZUGsa+4Hpa+syZ/+qKQmrNJrhRyvjQwqONcKcWC3GOmlsneY6JJ3sglLZZYv+2Bhz4r+p0j82yZTVSeGiU/YJBoMS/84AAIAc40rTzIYNG9Te3q7du3dr3bp1bpwS8FThH74ra6THiA1v/KRH2WSXB5rNVWbWzC/W4oosXs4UAAAA8JGi5/5VwcEjRmzotf9LCkXPuu9v9vQoddIkbNGQpcvq56Q5QwAAACB30Ng/My3Hhozx8upCd9+bYyuy+24VPfXlU66PXmUXVWto4ycVW3WjZIUkFx+Ezada4+yot79Qb3+h3v5BrYHc0NZtNs00VJ/aLDJtyZisgcMK9h9UcOCkxpg/rh5jjfac/Riz5IQKTzTElNaNrxhzUpOMEynLeA4AAADZwJWmmU9+8pP62c9+pq9+9at6xzveoUAg4MZpAU8E4gMq3PbvRiy+5Aol59MwNpqw9cge84Jv8ypWmQEAAACygdX3igpf+IYRiy+6VPH6q6e0/0O7zN/1X9cwR4UFwbTlBwAAACD/2Y6j1q5hI9ZYk4aH1aYo3P6Uip/4vEKdOyZ93QlFNbLugxpZ9yE5BSWu5QUAAAAgs/ZOuA6pr5raBMCB2IBCnS//sRHmoKyBQyf+29+u4NDRTKRqcKyw7NIF440wY80xJ8ZOYdWJVTEBAAB8zpWmmde85jX60pe+pL/5m7/Rn/7pn+rf/u3fNGfOHDdODbguuv1bsmLHjdjQxls8ySXb/K6tV8OJ8dnWrID0xhWVHmYEAAAA4FXFj/+jAnZ8bOxYIQ297m+ndDOlayiube39RuyNK6rSniMAAACA/NZ+PKaRhLlqS+PczDfNBHv3quiJLymyf+ukrzsKKLbybRq++JOyS2ozng8AAACQCcFgZia6sizrjONcsK971Bgvryk+6+cVbr1fxQ/cokBy9IzbzYYTsGSX1Mr+YyOMXVYnu3zRH5tiFskpnitZk+eZqSrkQ70xddTbX6i3f1Brf6HeJ7jSNCNJn/70p9XQ0KAPfehDWrRokd74xjeqqalJRUVn/0P33/7t37qQITB7gdHjKtz+dSMWq79aqbnneJRRdrm/udsYX7ioTNUlBR5lAwAAAOBV4Vd+e8rDYaPnvEepyuVT2n/r7h7Zzvi4KGzpNcvmpDFDAAAAAH6wp9Oc3bmyKKTq4szdRwiMdKvomTsUffn7CjipSbeJ112ioUtvVapmTcbyAAAAANxQUVHhynnKy8tdOU+6xJIpHThuNr6cXz/vzJ9XfFj6za1SOhpmSuZJc5ZIFUukOYtP+nqJAuV1CgbDyky7U3rkWr0xO9TbX6i3f1Brf/FrvV1rmjl27Jh+/vOfq6+vT7Zt6+67757yvjTNIFcUvvB1WfHBsbGjgIY33OJdQlmkfzSpJ/YdN2KbVjHzNAAAAOC5VEwlj/2DEbKLqjW84eNTPsSDu80G+csbKxQN+3N2EgAAAAAzt+eY2TSzvCZDq8wkYyp88VsqfP5fjfs6xiYVyzV06f9QYskVU1qBEwAAAEBu2tc1pNTJM4NJapxbcuadtv+nNNI7tRMUVkzSFLP0xH/nLJLChTNLHAAAAFPmStNMd3e3LrvsMu3Zs0eO45x9ByAHBUa6VfjSt41YvPFNSlWv8Cij7PKbPT1KpMZ//sPBgK5qrPQwIwAAAACSVPjitxTs22/Ehi75b3IipVPa/0h/TC8eMh8yu3oFDfIAAAAApq+lc8gYN6W7acaxFWn5lYqe+r8KDhyedBO7sFLDGz+p0dU3SZZr8w8CAAAA8MjuIwPGeEF5VKXR8Ol3sFPS7+80YyXzpIUXnLJSjOYslqJlGcgaAAAA0+HKX3o///nPq6WlRZJ044036q/+6q903nnnac6cOQowMxPyROHz/6ZAYnwGNCdgaXjDJzzMKLs82GzOPP3a+jkqjXKzCQAAAPCSNXhUhc+aN3YS885XbOXbpnyMh1t6jHFpJKiLl/pzOV8AAAAAs9PaOWKM07nSTOjQMyp+4gsKH3tp0tedYEQj579fIxf8pZyCqU0iAAAAAOSS3t4prowyTZZlqbx8/L5AX1+fbNvOyLky4Q+vdBnjpZXRM35W4db7VdK7z4gNXP0VJRe95tSNR1JTX5EmR+R6vTE91NtfqLd/UGt/yYZ6V1RUuHq+ybjyxPovf/lLBQIBvetd79K3v/3ts+8A5JjA0DEV/uF7RizWdL1SFQ0eZZRdugbjevZAvxHbtJKZpwEAAACvFT35JVmJ8ZmcHQU0dNnnpIA15WM8tMtskL+isVLh4NT3BwAAAABJGowldbg/ZsTSsdKM1btPxb//kiJtD512m9EVN2j44r+WXbpg1ucDAAAAslUqlXLlPLZtu3audGidsOJlfVX0jPmXPP81Y5ysWaNY7QYph95zOuVavTE71NtfqLd/UGt/8Wu9XWmaOXTokCTp/e9/vxunA1xX9PxdCqTGb+Q4gaCGN3zMw4yyy4O7u+WcNC4usPTaeu+7BgEAAAA/C3U8p2jL3UYstvrtSs47d8rHaD8+qh1HzJtJV6+oTEt+AAAAAPxl4iozQSugZVWFMz5eYKRHRc/eoejL31fATk66TWLBRg2+9lal5p4z4/MAAAAAyG1t3ea1SH3V6Zv3Qx3PK3xkmxEbOf8DUiCQkdwAAACQHq40zVRXV+vQoUMqLWUpc+Qfa+Cwoi//0IjFVt0ou3yJRxlln/ubJ8w8vbxS0TAzTwMAAACesVMqefTvzVBBqYYu/utpHebh3T3GeE5hSBctLpt1egAAAAD8p2XC7M7LKqMzW8UyGVPhS99R4XN3yooPTL7JnHoNX/rfFV/6eh5uAwAAAHwslrTVfnzUiNVXn755v/CFbxjjVMl8xZa/KSO5AQAAIH1caZp53etepx/+8Id6+eWXtX79ejdOCbim8Lk7FbDjY2PHKtDwRR/1MKPscqB3VDsnzDy9eVWVR9kAAAAAkKTozh8p1LXTiA1vvEVOUfW0jvPgbrNB/qqmSoVm8lAbAAAAkIeCwWDGjm1Z1hnHuai1y3xQbcW8kul9ho6jcMs9Knzy/yjY3z7pJnZhpUY33qLY2j+TgmFlrkLpk4+1xulRb3+h3v5Cvf2DWgO5ZX/PiGzHjNWfZsVLq+8VFbQ9aMRGz3ufFAxnKj0AAACkiStNM3/913+t//qv/9KXv/xl3XTTTYpGo26cFsg4q++Aos0/NWKja94hu3SBRxllnwd3mQ/RVRSGdNGSco+yAQAAABAY6VXR7/+fEUtWNmp07Z9P6ziv9Iyo5diwEbt6ReWs8wMAAADyRUVFhWvnKi/P/b+7t/XEjPG5i6um/hkeeEp64H9Jh56b/PVgRLr4I7Je9ykVRctVNMtcvZQPtcbUUW9/od7+Qr39g1oD2a2ta8QY15YVqKhg8vb6wu3fVEDjHTZ2QYlG17wjo/kBAAAgPVyZzmD9+vX6+te/rpaWFl199dVqaWlx47RAxhU9+1UF7OTY2AlGNHLBRzzMKLs4jqP7mruM2BtXVilkBTzKCAAAAEDRM7fLih03YkOXfW7aM6E9tLvHGFcVh7Wurmy26QEAAADwoZTtaPeRASO2qnYK1xfde6UfvVv6j02nb5g55+3SR5+V3vj3UpSHVgEAAACMa+s2m2bqqyZvsQ+M9Cra/BMjNrr6HXIKSjOWGwAAANLHlZVm3v/+90uSVq9erd/97ndavXq1zj33XDU1Namo6MxzOQUCAX3jG99wI01gWqzefYrs/rkRGz3nXbJL5nmUUfbZfWxYr/SMGrHNq6o8ygYAAABAsKtZ0Ze/b8Riy9+kRN0l0z7WxFUl39BUqSAN8gAAAABm4EDPsEYSKSN2xqaZ4R7psf8rPfPvkp2YfJvFr5E23SYtvCCNmQIAAADIJ3u7ho1xfXXhpNtFX/5PBZLjz0A5Vkij5703k6kBAAAgjVxpmvnWt76lQODEgzOBQEC2bevFF1/Uiy++eMb9HMehaQZZq+iZf1bAscfGTrhIw+v/wsOMss8DzeZDdAvKIjqntsSjbAAAAACfcxyVPPb35nVMKKqhS2+d9qFaO4dPmX3tjStpkAcAAABO1tvbm7FjW5al8vLxVVP6+vpk2/YZ9shuz+4xV62vLAorlBxWb6/5AJuSMUVe+q6iz/yLrFj/pMdKlS/VyGv/hxINm6RAQMpgHdyQb7XGmVFvf6He/kK9/SMbal1RUeHq+YBcNvFeR0PVJE0zyZgK//BdIxRb/mbZpQsymRoAAADSyJWmmcWLF481zQD5INi9W5E9vzJiI+e8R05RtUcZZR/bcfTgbrNpZtOqKv4tAAAAADxSsOcehQ8/a8SGL/jwjG7qPDThd/15pQU6dwEN8gAAAMDJUqnU2TdKE9u2XT1fuu0+OmiMG2sKT3k/gZEelf/i3Qp175r0GHZkjoY3fEyja98pBQukPH0QOddrjemh3v5Cvf2FevsHtQay12gipUPHY0asobrolO0iLXfLGjYb/UfWfSCjuQEAACC9XGma2b9/vxunAVxT9My/KCBnbGwXlGhk/Yc8zCj7bG8f0NGBuBHbxMzTAAAAgDfiQyp+4otGKFW2SCPrpr9apuM4emh3jxF7Q1OlLBrkAQAAAMzQnk5zRZmmmuJTtil57O8nbZhxrAKNnPcejVy4RU6kLGM5AgAAALkuGAxm5LiWZZ1xnK0OdI6c9PSXFJDUMLfY/JwcW0Xbv2Hsl6h7jTT/XGXm08x+uVpvzAz19hfq7R/U2l+o9wmuNM0A+STYuUORvfcbsdHz3i8nOsebhLLU/bvMmaeXVxdqec2pszEAAAAAyLyi5/5VwaGjRmzotf9LCkWmfazdx4Z1oHfUiF1NgzwAAACAWZjYNLO8ptAYB7t2KbLnV6fsF2t8s4Yu+W+yyxZlND8AAAAgH1RUVLhynvLyclfOM1tH9g0Z40WVRVowt9rcqOVBqafVCIUv/5Rrn2UuyJV6Iz2ot79Qb/+g1v7i13rTNANMU/HTtxtjO1KukfPf700yWSqRsrV1wszTm1dVn2ZrAAAAAJlkHd+nwgmzoMUXvU7xZW+Y0fEenNAgv7A8otXzT50FGgAAAACmYmA0qY5+c+X6prnmNUbRM7cbY7ugRP1v+ZaS89dlOj0AAAAAearl6KAxbppXcupGT/6LOa5ZKS2f2f0VAAAAeIemGWAaQke2q2D/b4zYyLoPyomUepRRdnpqf5/6RpNGjJmnAQAAkGnBYDBjx87l5WqLf/d5BezE2NixQhq54nMKhqb/JwHHcfRwi9kgf/WqaoVmcKxslsv1xvRQa3+h3v5Cvf2FegO5rbXLXGUmZAW0tDI6Pj76kiJtDxnbjKz7IA0zAAAAAGZlz9EBY9w4b8LzX4dfkPY/bsYu+agUCGQ4MwAAAKRbfj3VAmRY0cRVZqKVGjn3Zm+SyWL3N5szT5+7oEQLyiMeZQMAAAC/qKiocO1cObNcbcsD0oTG/8DFH1F5w0UzOtwLB3p1uC9mxG7csEwVFTnyecxQztQbs0at/YV6+wv19hfqDeSWlmNm08yyqkKFg+PNb0VPf8V43Y5WaPS897qRGgAAAJBXent7M3Jcy7KMa/G+vj7Ztp2Rc6VTc0efMV5YYhmfUfFv/0kFJ71uF1Wrb9EbpQx9jrkiV+uNmaHe/kK9/YNa+0s21NvN53lOJ61NM6/O6hsIBJRMJk+Jz8TEYwFeCR1+VgUHzdkDRi74S6mg2KOMstNIPKVHW82Lw82rWGUGAAAAcF0yJt3/P8xYyTzpsr+Z8SF/9VKHMa6vLtbq2rIZHw8AAAAAJq4001hTNPZ16PBzKjjwmPH6yPq/kFMwYQZoAAAAAGeVSqVcOY9t266da6aG46lTJglbWhEZy9saOKzwnl8br4+ce7NSgZCU5e/NbblQb6QP9fYX6u0f1Npf/FrvtDbNOI4zrTiQMxxHxU9NmMmsqEYja//co4Sy16N7ezWaHO9ADAakNzTRNAMAAAC47vd3Sj1tZuwNfy9FZ9bkYtuOfj2haeba8xYoEAjMNEMAAAAAOGWlmbGmGcdR8VP/ZLxmF1Vr5Jx3u5UaAAAAgDy1r3vEGFsBaWll4di48MVvKeCMP0zqhAo1uvadruUHAACA9Epr08znPve5acWBXBFuf1Lhw08bseEL/0oKF55mD/96oLnbGG9cUq7K4rBH2QAAAMBPent7z77RDGXDcrXTERg8ovLH/q9ObmdJ1q7XwOKrpRl+TtsO9utI/6gRu2xpcUY/d6/kWr0xc9TaX6i3v1Bvf/G63hUVFa6dC8g3KdtRa5f5sNqrTTOT3pu5gHszAAAAAGavbULTzMLyiKJhS5IUiA0osuNHxuujq26UE53jVnoAAABIM5pmgLNxHBVNWGUmVVKr0TXv8Cih7HV8JKEn9/cZsatXscoMAAAA3OHm8rHZvlxtyWP/qEBifLZmRwENvO5zStmOpJnlff/OTmPcUF2opRWRrP4c0iXb6430odb+Qr39hXr7C/UGckf78VHFkmaTW1NN0R/vzZirzKRKajW69k/dTA8AAABAnmqb0LxfX1009nV0xw9lJQbHxk7A0sj573MtNwAAAKSf5XUCQLYLv/JbhY++YMSGL9wiBSMeZZS9trb0/PEhvBMioYCuWM4siwAAAICbQoeeUXTPPUZsdM07lJq7dsbHTNqOtraYq0q+cQUN8gAAAABmZ0/nsDGuKgqrsjis8P5HFD663Xht+KKPcW8GAAAAQFrs7TavReqr/riiZSqu6IvfMl6L12+SXb7EpcwAAACQCWldaeZ0HnvsMUnSRRddpMLCqS2ZPjo6qmeeeUaSdNlll2UsN8xOMBjMyHEtyzrj2DWOo+Jn/tkIpcoWKbn2HRl777nsgV09xviyhkqVF539BlbW1BuuoN7+Qa39hXr7C/UGspidVMljf2+GImUavvhTszrstoP96hlOGrGrV9I0AwAAAGB2WiY0zTTOLZIcW8VPf8WIp8oXK7bybW6mBgAAACCPTVxppqH6xDONkdZ7FRw6Yrw2su4DruUFAACAzHClaeaKK66QZVl66aWXtHr16intc+jQobH9ksnk2XeAJyoq3FlFpLy83JXznKL5V9KxPxih4FX/UxXVc73JJ4sdPj6iF9r7jdiNG5bO6HvEs3rDE9TbP6i1v1Bvf6HeQPaI7vihQt27jNjwxk/KKZxdg8tDu81VZlbOK9LiiuisjgkAAAAAE1eaaawuUsHeBxTq2mnEhzd8QgqG3UwNAAAAQJ4aiqd0ZCBuxOqrCiXHUeEL3zDiidoLlJy/zs30AAAAkAGuNM1IkuM4ru4HzJptS4/8oxmrWi6dc5M3+WS5X710WCf/uJZGQ7piRY13CQEAAAA+ExjpUdFT/2TEklUrNLr2nbM6bjJl6zctvUbsjStYZQYAAAA4m0yuWJ8vq8BObJpZOa9Qxc/cbsRSlcuVXHmDglbmPs9sli+1xtRQb3+h3v5Cvf2DWgPZb1+3ucqMFZCWVBYq3P7kKQ38I+s+6GZqAAAAyBDXmmamy7ZtSZm9oQCc0c6fS8fMCyFdcasUzNofG0/dvf2wMX7T2lpFQvz8AgAAAG4peuqfZMX6jNjgZZ+TrNldwzxzoF99o+YKsDTNAAAAAGc3k5XYZyoXV4HtG0noSL85u/OVzlMK9rQaseDrP6uKqmo3U8tquVhrzBz19hfq7S/U2z+oNZB99naZzft1c6KKhCwVvvB1I54qX6r40te7mRoAAAAyJGuf/n/llVckcfGY7Xp7e8++0QxYlmXUvq+vb6yRyhV2UmVbb9PJLR+pqhXqX3illKH3nMvauoa143C/EbuyoXTK3x+e1xuuot7+Qa39hXr7SzbU280Hj4BcEOzcoeiOHxqxWOOblVy4cdbHfnBXtzE+p7ZEC8ojsz4uAAAAAH/b1WHeVygMplS77XZzo/nnSKve4l5SAAAAAPJeW5e50kxDdaGC3btVcOAxIz5y/vsln654CQAAkG8y0jRz4MCBSeMdHR0qKSk5476xWEx79+7VZz/7WQUCAa1ZsyYTKSJNUqmUK+exbdu1c0lSZNfPFextM2JDGz6hlO1Ici+PXHHfjk5jXFUc1rqFJTOumdv1hreot39Qa3+h3v5CvQGPOY5KHvt7BeSMh0KFGrr01lkfOp609dtWsxn+jSsrZ31cAAAAAGie0DTz4fKnFTi+39zoqs9KluVeUgAAAADyXlv3hKaZqiIVbr/DiNnRCo2ufJubaQEAACCDMtI0s2zZslNijuPo6quvnvax3vOe96QjJWDqUgkVPWNeCCVr1iheP/3vXz9wHEcP7OoyYlevrFLQCniUEQAAAOAvkZa7Fe543ogNX/hXsktqZ33s3+/v02BsvCkuIOkNTVWzPi4AAADgB1NdjX0msmEV2Nl68ZXxewsRxfWe+I+M15Pz12mg+iIpg59jLsiHWmPqqLe/UG9/od7+kQ21rqiocPV8QK6Z2DSzunRIkZfuNmKj57xLChe6mRYAAAAyKCNNM47jTCs+mWg0qo9//ON6//vfn660gCmJ7PqZgv3maklDG26RAjSBTGbnkSEdPB4zYptX8hAdAAAA4IZAfFBFT3zJiKXKFmvk/A+k5fgP7e42xufXlWpuaUFajg0AAADkOzdXZc3FVWB3Hxsa+/pPg4+oImmuaj+08ZNK8TDxKXKx1pg56u0v1NtfqLd/UGsguwzGkjo6EDdiG7t+poCdGBs7wQKNnPMut1MDAABABmWkaeab3/ymMX7f+96nQCCgf/iHf9DChQtPu18gEFA0GlVtba3WrVunkpKSTKQHnF4qpqLnvmqEEvPOV2LplR4llP3u32U+RLdoTkSr5xd7lA0AAADgL4XP3ang8DEjNvS6z0ihyKyPPZpI6bFWc0bnN66onPVxAQAAACBlO9rbdWJ256hi+mjoF8br8YUblah7jQeZAQAAAPkrGAxm5LiWZZ1xnE329w4b4zIrptq2nxix+Ko/kVU6z820ckou1RuzR739hXr7B7X2F+p9QkaaZm6++WZj/L73vU+SdMMNN2j16tWZOCWQFtEdP1Zw4LARG974SVaZOY2U7ejBCU0zm1ZWK8DnBQAAAGRcsLdNhdvNSSviSy5XfOlVaTn+Mwf6NZwYn9XZCkivb2JVSQAAAACzd/D4qGLJE9cbNwcfVE2gz3h9eOOnuDcDAAAApFlFRYUr5ykvL3flPDNxZM+AMf6Lst/LGjWvRyKXf0oRlz6rfJDN9Ub6UW9/od7+Qa39xa/1zkjTzESPPPKIJGnZsmVunA6YmeSoCp/7VyOUWHCREosu9Sih7Pf8wX51DyWM2KZVPEQHAAAAZJzjqPjxf1DAHv993LHCGnztZ9P2YNnzB/qN8fkLS1VVHE7LsQEAAAD4255jJ2Z3LtGwPhy6x3gtvvgyJRdc6EVaAAAAAPLc7qPjTTNBpfSnSfN6RE3XSDVNLmcFAACATHOlaebyyy934zTArERf/r6Cw8eM2BAzmZ3R/c3mKjMr5hZpWVWhR9kAAAAA/lGw/zcqOPCYERs5/32yK9I3WcW2dnO2tQsXl6Xt2AAAAAD8bU/XiaaZ9wfvV0Vg0Hht6OJPeZESAAAAAB/Yc3T8+mOT9ayqkx3mBq/5qMsZAQAAwA2uNM0AWS8+pKLn7zJDiy5VcuEGjxLKfvGkrd/s6TFim1dVe5QNAAAA4CPJmIofv80IpYrmauTCLWk7xWAsqd3HhozY+jqaZgAAAACkx55jwyrXoD4Y+rURj9VfrdTcczzKCgAAAMhvvb29GTmuZVkqLy8fG/f19cm27Yyca7Z2Hen741eO/mLC9Uhy7rkaKFstZehzyhe5VG/MHvX2F+rtH9TaX7Kh3hUVFa6ebzI0zQCSCv/wXVkjZgPI8MZPepRNbnhy33ENxlJj44Ckq1dWepcQAAAA4BOF27+uYP8BIzZ86f+QU1CStnNsPzQo2xkfh4MBra1N3/EBAAAA+FtL57D+IvQrlQVGxmKOAhrecIt3SQEAAAB5LpVKnX2jNLBt27VzTUf/aFJdgwlJ0oWB3Trf2mu8PrzuA0rxwPC0ZWu9kRnU21+ot39Qa3/xa70trxMAvBaID6hw278bsfiSK5Scv86jjHLD/c3dxnhdXanmlUY8ygYAAADwB2vgsIqeM1fJTNReoFjTW9J6nm0H+43x2toSRcP8CQEAAADA7PWPJpUc6NT7gg8Y8VjjtUpVr/AoKwAAAAD5rq1rvGl/4iozqdKFijdsdjslAAAAuIQnXuB70e3fkhU7bsSGNt7iSS65YjCW1ONt5lKkm1ZVeZQNAAAA4B/FT35RgaQ5E/PgZZ+TAoG0nmdbu9k0s76uNK3HBwAAAOBfezqH9VehX6ooEBuLOQFLwxs+4WFWAAAAAPLd3u5hSdKyQIfeYG0zXhs5732SFfIiLQAAALiAphn4WmD0uAq3f92IxeqvVmruOR5llBt+29qrWNIZGwetgF7fVOlhRgAAAED+C7c/pcgec+az0bV/plTNmrSeZzieUvORISO2flFZWs8BAAAAwL8Ot+/Xu4IPG7HYyrfJrljmUUYAAAAA/ODVlWY+ELxXVmD8uSe7oFSx1W/3Ki0AAAC4gKYZ+FrhC1+XFR8cGzsKaHjDLd4llCMebO42xq9ZWq45hWGPsgEAAAB8wE6q+PH/bYYi5Rre+Km0n+qlwwNKjd8rUtAK6NzakrSfBwAAAIA/NbZ+Q5FAYmycVEjDF33Mw4wAAAAA+EFb94gq1a8bg48Z8dG175RTwH0QAACAfEbTDHwrMNKtwpe+bcTijW9SqnqFRxnlhp6hhJ5+pc+IbVpV5VE2AAAAgD9EX/6+Qt27jdjwxZ+SU1iR9nNtax8wxmvmF6uwIJj28wAAAADwH6v/oC7uu8+I7Zh3neyyOo8yAgAAAOAXbV0jenfwIUVPauJ3rJBGz32Ph1kBAADADTTNwLcKt31NgcTw2NgJWBre8AkPM8oND7d0G7NOR0OWLm9I/4N6AAAAAE4IjHSr6OmvGLFk9SqNrvmzjJxv20GzaWZ9XWlGzgMAAADAfwqfuUMhpcbGo05YXed+2MOMAAAAAPjB8ZGEBoeH9O7QQ0Y81nid7JL5HmUFAAAAt9A0A18KDB1T4UvfNWKxpuuVqmjwKKPccX9ztzG+fHkFs04DAAAAGVT8+/8nK9ZvxAYv+5xkpf/38NGErR1HBo3Y+kVlaT8PAAAAAP8J9rYpuvvnRuy7qTdq8aIlHmUEAAAAwC/aukb0tuDjqg6Y91tG1n3Qo4wAAADgJppm4EtFz9+lQCo2NnYCQQ1v+JiHGeWGw30xvXTYfIBu86oqj7IBAAAA8l/w2B8U2fljIzba9BYlF1yUkfO93DGgxElLS1oB6byFrDQDAAAAYPaKnrldAcceGw85Ef244G2qKAp7mBUAAAAAP2jrGtIHg/casfii1ypVvdKjjAAAAOAmmmbgO9bAYUVf/qERi626UXY5M5mdzYO7zFVmyqMhXby03KNsAAAAgDzn2Cp57O8V0HgTixMu0vBr/nvGTvn8wQFjvHJusYpZWRIAAADALAW7dimy59dG7JupzaqeW+tRRgAAAAD8pGD/I2qwOowYq8wAAAD4B00z8J3C5+5UwI6PjR2rQMMXfdTDjHLH/c1dxvj1KyoVDvLPCAAAAJAJkd2/UPjIC0Zs+MItskvmZ+yc29r7jfH6RawyAwAAAGD2ip7+ijHud4r0teSb1VhT5FFGAAAAAPxk4zFzguVjhfVKLHqtR9kAAADAbTztjpwViA9Oex+r74CizT81YqNr3iG7dEG60spbrZ3Dau0aMWKbV1Z5lA0AAACQ3wLxARU/+SUjlipfopHz35exc8aTtl7uMK+z1i8qy9j5AAAAAPhD6OhLiux72Ih9Lflm9atETXNpmgEAAACQWaGjL2pNYocR29/wHikQ8CgjAAAAuC3kdQLAdASGjinSeq8iLb+SNXxUve95VApMvfer6NmvKmAnx8ZOMKKRCz6SiVTzzgO7uo3xvNICnV/HrNMAAABAJhQ++1VZw+ZKj4Ov+6wUjGTsnDuODCqWdMbGAUnrFvI7PwAAADBTwWAwY8e2LOuM42xS/Iy5ykyPU6JvpjZLklbMK8no55QPcqnWmD3q7S/U21+ot39QayD7BJ/9d2N8xKlQeO31HmUDAAAAL9A0g5xh9b2iiu+9QQHHHouFjmxTsvbCqe3fu0+R3T83YqPnvEt2yby05pmPHMfR/c3mA3tXr6iSxYwLAAAAQNoFe/eq8MVvGbH4kiuVWHplRs/7/MEBY9w4t0ilUf5sAAAAAMxURUWFa+cqLy937VzT8sqT0iuPGaG7km/RkApVELR0fsMChYM8SDodWVtrZAT19hfq7S/U2z+oNeAtq79dJfsfMGLfszfr3ZVMGgYAAOAn/BUaOcMuW6zUnHojFmn51ZT3L3rmn42GGydcpOH1f5G2/PLZS4cH1dEfN2KbVlV5lA0AAACQxxxHxY/9g7lCplWgwdd9JuOn3tbeb4wvqCvL+DkBAAAA5DHHkX5zmxE65szRd1NvlCQ1ziuhYQYAAABARhW++E0FNP682KAT1RNz3qygxUTBAAAAfsJfopE7AgHFmq41QpHWe6WTHiY7nWD3bkX2mA02I+e8R05RdVpTzFcP7Oo2xksro1oxt8ijbAAAAID8VbDvIRUcfNyIjaz7gOw5SzN63mTK1kuHBo3Y+kXMsgYAAABgFtoekV55wgh9NXm9RhWRJK2cT6M+AAAAgMwJjPYpuvPHRuxHqSs1v7rGo4wAAADglZDXCQDTEWu8TsVP3z42tka6FW7/vRKLX3fG/Yqe+RcF5IyN7YISjaz/UKbSzCtJ29FDE5pmNq+qViDAjAsAAADILsFgMGPHtizrjOO0SI6q+Hf/aITskvmKbfhoRt+bJL18ZFijSduIXbB4TsbPm61cqTeyArX2F+rtL9TbX6g3slVvb2/Gjm1ZlsrLy8fGfX19sm37DHu4zHFU+uDfGTcijwZq9MPUVWPjpXNCGf2M8kXW1xppRb39hXr7C/X2j2yodUVFhavnA7JVdMcPFUgMj41TTkDfTG3W9dWFHmYFAAAAL9A0g5xiz1mqxNxzFD72h7FYZM+vztg0E+zcocje+43Y6HnvlxOdk6k088qzr/Spd8RczWfTyiqPsgEAAABOz80bgSff9EybR/+P1N9uhKxN/6iKeXXpP9cEO180G+VXzCtV/cK5GT9vrshIvZGVqLW/UG9/od7+Qr2RLVKplGvnsm3b1fOdTcG+rQodfdGI/UvyrYorPDZuqIpmVc65Ittqjcyi3v5Cvf2FevsHtUY2ydREWVk5mUUqrsKXvmWE7rU3qt2p0fKaEt9OGpYOWVlvZAz19hfq7R/U2l+o9wk0zSDnxBuvNZpmCvY+IF3xv6VgZNLtT16ZRpLsSLlGzn9/JlPMK/c3mw/PrZ5frEUVUY+yAQAAAPLU8QPS4/9kxpZcKq39E1dO/3RbjzHeWF/pynkBAAAA5CHHVtHTXzFCoyWL9aOu1xqxppoiN7MCAAAAfM+tyceyYjKL7d+Xho4Zoa8lr5UkrW+Yr4qKYi+yyktZUW+4hnr7C/X2D2rtL36ttz9bhZDTYo1vlqPA2NiKD6jglUcn3TZ0ZLsK9v/GiI2s+6CcSGlGc8wXowlbj+wxH57bvIpVZgAAAIC0e/CzUnJkfBywpGu+JAUCp98nTZIpW8/tn9A0s4zf+wEAAADMTMHe+xXqajZi25Z8UMmT5vKrKQlrTlF44q4AAAAAMHuOIz35VSP0tL1Sf3DqFQ1bWlRBAz8AAIDfsNIMco5dUqvkgosUPvzMWCzSco/i9Vefsm3RxFVmopUaOffmTKeYN37X1qvhhD02Dki6egUPzwEAACA79fb2ZuzYlmUZs2309fXJtu0z7DF1oYNPqnTnL4zY6Dl/rpFInZTB9/SqHR0DGoqnjNiKSiujn2e2y2S9kV2otb9Qb3+h3v7idb3dmqkXyAl26pR7M8nKRj0cvFTS0bFYYzUPqQEAAADIkL2/kY7tMEJfS75ZkrR8boksK/MTlgEAACC70DSDnBRrus5ominY/xspPiQVjC+dGTr8rAoOPm7sN3LBXxrb4Mwe2NVtjC9aXKbqkgKPsgEAAADOLJVKnX2jNLFtOz3nSyVU+tvPmceOVmhowy1yXHo/z77SZ4yXVkY1Jxp09fPMdmmrN7IetfYX6u0v1NtfqDfgnUjL3Qr17jViwxtu0e4XY0ascS5NMwAAAIDbMjVZlteTWUxU8thXdPK6lnvtWv3GXidJWloR8fWkYemQbfVGZlFvf6He/kGt/SUb6p0Nk4/RNIOcFGvYpOJH/04B58SNz0ByVJF9WxVb8ZYTGziOip/6irGPXVSjkbV/7naqOWtgNKnftR03YptWscoMAAAAkE7Rl7+nUM8eIzZ88afkROe4lsO29n5jvH5RmWvnBgAAAJBHUgkVPfMvRihZs0bxhqvVuvVFI95YQ9MMAAAA4Da3JpjwcjKLYFezwgfMSZb/PfVmObIkScsqo0y0kWZMXuIv1NtfqLd/UGt/8Wu9La8TAGbCKaxSYtGlRiyy556xr8PtTyp8+Gnj9eEL/0oKF7qSXz74zZ4eJVLO2DgcDOiqxkoPMwIAAADyS2C4S0VP/7MRS9as0ejqd7iWQ8p2tL19wIitryt17fwAAAAA8kek+acK9h80YkMbP6m+UVtHB+JGnKYZAAAAAJlQ+MI3jHG3U6afp147Nm6o4tkxAAAAP6JpBjkr1nSdMQ4feFyB0eOS46howiozqZJaja5x78GzfPBAc7cxvnTZHJVGWZwKAAAASJfip/6frLjZsDJ42d9KVtC1HFq7hjUQM2cQuYCVZgAAAABMVzKmoue+aoQS89cpseQK7ekcNuLhYEBLKnlQDQAAAEB6WYMdxqTLkvTt5NWKqWBsXF9NAz8AAIAf8QQ8cla8/o1yggUKpE7MThawEyrY+4Ds4rkKH33B2Hb4wi1SMOJFmjmpazCu5w72G7HNq6o8ygYAAADIP6GjLymy8ydGbHTFDUrWXuhqHtsOmk07i+ZEVFNScJqtAQAAAGBy0R0/UHDwiBEbvvhTUiBwStNMfVWhQlbAzfQAAAAA+ED0pe8oYCfHxikrou+m3jA2Lgxbml/GPRAAAAA/omkGOcspKFV8yZWKtD0wFou0/FKB+KCxXapskWKrbnQ7vZz20O4e2c74uChs6bX1Fd4lBAAAAOQTx1bxY3+vgMZ/6bbDxRq+5G9cT2Vbu9ksv66OVWYAAAAATFNiWEXP32WE4gsvVqLuNZKklglNM001zOwMAAAAIL0C8UFFX/6BEdtRc416Xxm/77GsqlBWgAZ+AAAAP7K8TgCYjVjTdca44NBTCne+bMSGL/qYFAy7mVbOu7+5yxhf2VipaJh/LgAAAIB0iOz6mcJHtxuxkYu2yC6Z52oetuNoW7u50sz6RaWu5gAAAAAg9xW+9F1Zw+Z9heGLPzn2deuEppnGuTTNAAAAAEivyM6fyIqP3/NwFNA90euNbRqqCt1OCwAAAFmCp+CR0+JLr5QdLjnt68k5yxRbcf1pX8epDvaOaseRISO2aVWVR9kAAAAA+SUQG1Dxk//HiCXnLNPIee9zPZe2rhH1jSSN2AWsNAMAAABgGgKxARVu+zcjFl9yuZK1F0qSkrajvV0TmmZYaQYAAABAOtlJFb74H0YoXv8GPdVvPu9UX821CAAAgF/RNIPcFooqXv+G0748vOHjkhVyMaHc98CubmNcURjShsU8OAcAAACkQ9Ez/yJrxPyde+h1n5WCBa7nsq293xjXlhWotjzieh4AAAAAclf0xW/KivUZsaGN46vMHOgZUTzlGK838qAaAAAAgDQqaL1PwYHDRmz4/A+qrXvEiNWz0gwAAIBv0TSDnBdrum7SeLKySfHGa13OJrc5jqP7m7uM2BtWVCkU5J8KAAAAYLaCPXsU/cN3jFhs2RuUWHK5J/lsOzhgjNezygwAAACAaQiM9Kpw+zeMWKx+k1Jzzxkb7+kyH1KrKQlrTlHYlfwAAAAA+IDjqPCFrxuhxLzzdah4rYbiKSPeUE3TDAAAgF/xJDxyXqLuUtnRilPiwxtvkQJ8i09HS+ew9veMGrHNq6pOszUAAACAKXMcFT/+DwrYyfFQsEBDr/2fHqXjnLLSzPpFpZ7kAgAAACA3Fb7wdVnxwbGxo4CGN37C2GbPsSFj3FjDKjMAAAAA0id0+BmFO182YiPrPqi2Cc8/FRdYmlda4GZqAAAAyCJ0FCD3BcOKNWw2QsmaNYrXX+1RQrnr/uZuY7ygLKJzF5R4lA0AAACQPwraHlTBwSeM2Mi6D8ouX+JJPq/0jKpnOGnELljESjMAAAAApiYw3KXCl75txGJN1ylVtcKI7ek0V5ppomkGAAAAQBoVTVhlJlW2SPH6q9U2YdXLZVWFCgQCbqYGAACALELTDPLCyAUfll1wYlZkJ1Sowcv+TuJCZ1psx9GDu8ymmatXVnLBCAAAAMxWclTFv/tHI5QqqdXwBR/xKCHp+QmrzMwtCWthecSjbAAAAADkmqLn71IgOf4QmhMIaviij5+y3Z5Oc6WZ5TTNAAAAAEiTYO9eFez/jREbOf/9khXU3m6zaaa+imsRAAAAPwt5nQCQDnZZnXrf9bDCh55Wct65sssWeZ1SztnePqCjA3EjtnlVtUfZAAAAAPmjcNvXFBw4ZMSGLr1VCnt3g2bbwQFjvH5RGQ3zAAAAAKbEGjis6B++b8RiK98mu2KZETs+ktCxwYQRY6UZAAAAAOlS+MI3jLEdKdfoqhslSW1dw8Zr9dWFruUFAACA7EPTDPKGU1SteOObvU4jZ90/YZWZhupCZnwDAAAAZsnqb1fR8/+fEYsv3Kj48jd5lJHkOI62TVhpZn1dmUfZAAAAAMg1hc/9qwL2+CRcjhXW8EUfO2W71k7zIbWCYECLK3lQDQAAAMDsBYa7FNn9cyM2uvadUrhIjuNo34SVZhqquBYBAADwM8vrBAB4L5GytXV3jxHbvKrKo2wAAACA/FH8u88rkIqNjZ1AUEOv+5zk4aou7cdj6pww2/P6RaUeZQMAAAAgl1h9BxRt/okRG13zp7LLFp6ybUvnqTM7hyxWuAQAAAAwe4V/+K4CqZOb+Qs0cu57JElH+uMaTtjG9g3VTBwMAADgZzTNANDT+/vUN5o0YlevoGkGAAAAmI3wwScUaXvAiI2e8+dKVa/wKKMTnp+wykxVUVhLKqIeZQMAAAAglxQ9e4cC9vj9BCcY0cgFH5l02z3HzKaZxprijOYGAAAAwCcSI4r+4T+NUGzFW+QUz5Uk7Z2wykxJJKiakrBr6QEAACD70DQDQPfv6jbG5y4o0cI5PDQHAAAAzFgqoeLH/rcRsqOVGt5wizf5nGTbwQFjvH5RqQIernwDAAAAIDcEe/cqsvsXRmzknHfJLpk36fZ7uiY2zRRmKjUAAAAAPhLd9TNZo71GbOT8D4x93TbhWqS+qpD7IAAAAD5H0wzgcyPxlH67x7yQ3LSSVWYAAACA2Yi+/J8K9bYasaFL/lpOtNyjjMa9MGGlmfV1ZR5lAgAAACCXFD19uwKOPTZ2wkUaueAvJ902aTtq6zJnd26qKcpofgAAAAB8wE6pcPs3jFB8yeVKVTWNjdsmrDTTUE0DPwAAgN/RNAP43KN7ezWaHL/JFQxIb1hB0wwAAAAwG9GdPzHGiZq1iq16u0fZjOvoi6mjP27E1i8q9SgbAAAAALki2NWsSOu9RmzkvPfKKZz8fsKBnhHFU44RW07TDAAAAIBZKti/VcG+V4zYyLoPGuOJDfz1VVyLAAAA+B1NM4DPPbCr2xhvWFKuquKwR9kAAAAAeSAZU7BnjxEavuTTkhX0KKFxz09YZWZOYUj1VcywBgAAAODMip6+3RjbkTKNrPvQabdv6Rw2xnNLwppTyL0HAAAAALNT+MLXjXGyerUSCy8ZG9uOc8pKM/WsNAMAAOB7NM0APnZ8JKEn9/UZsU2rWGUGAAAAmI1gT4sCTmps7CigxPz1HmY0btvBAWO8rq5UgUDAo2wAAAAA5ILQ0RcV2fewERtZ90E5kbLT7rNnQtNMY01xRnIDAAAA4B+hjm0KdzxvxEbWfVA66T5HR19Mo0nb2KaBycMAAAB8j6YZwMd+09KrlO2MjSOhgK5YXuFhRgAAAEDuC3U1G2O7fIlUkB0PiG2bsNLM+rrTP+QGAAAAAJJU9NRXjLEdrdTouTefcZ+JTTNNc4vSnhcAAAAAfync/g1jnCqZr9jyNxmxiavMlEWDqipm1UsAAAC/o2kG8LH7m7uM8WvrK1QSCXmUDQAAAJAfQp07jXGyZrVHmZiODcTVfjxmxNYvKvUoGwAAAAC5IHToGRUcfNyIjVzwl3IKSs6438SmmeU1NM0AAAAAmDmr7xUVtD1oxEbPfa8UNBti9naZTTP1VUUKnLQSDQAAAPyJp+MBnzrSH9ML7QNGbPOqKo+yAQAAAPLHxJVmktWrPMrENHGVmdJIUMureXANAAAAyJRgMJixY1uWdcZxWjiOip+esMpM8VzFz3vPGd9b73BCnYMJI7ZyXklGP4985kqtkTWot79Qb3+h3v5BrYHMKNz+TQUce2xsh0s0uuZPT9lub7fZwF9fXZjx3AAAAJD9aJoBfOqh3T1yThqXRIJ6zbI5XqUDAAAA5AfHVrBrlxHKlqaZ5w+aTfPn15UqaDG7GgAAAJApFRUVrp2rvLw8/Qdt3SodfsYIWZf/jSrmLjjjbs3d5ir3BSFL59XXKhTkgdF0yEitkbWot79Qb3+h3v5BrYHZC4weV7T5p0ZsdM075ERKT9m27ZSVZmiaAQAAgMRfp/PQL37xC91000266aab1NLS4nU6yFIP7DJvWl3VWKlIiH8SAAAAgNmw+ttlJQaNWCpLmmYmrjRzQV2ZR5kAAAAAyHqOI/3mNjNWvlha/56z7rqzw7z2WDGvlIYZAAAAADMWffn7CiTHm2EcK6TR8957ynYp29H+HrNppoGVZgAAACBWmsk7Bw4c0E9+8hNFIhHFYjGv00GW2t89ol1HzeVIN6+q8igbAAAAIH+EupqNsR2tlF08z6NsxnUNxfVKz6gRW7/o1BnYAAAAAECStPs+6fA2M3b530ihyFl33XXEXOVyVS3XHgAAAEA2CAaDGTmuZVlnHM9KMqbCl75thOKNb1ZgziJNfDeH+kcUSzpGrHFuScbet19ltN7IOtTbX6i3f1Brf6HeJ9A0k0eSyaTuvPNOLV26VPPnz9fjjz/udUrIUg/s6jbGVcVhXbCIWaYBAACA2Qp17TTGyZpVUiDgUTbjXjhoPrRWXGCpaW6xR9kAAAAA/tDb25uxY1uWpfLy8rFxX1+fbNtOz8EdW6UP/71xEzFVvlT9SzZLU3hPL7eb2ywpD2X0s8h3Ga01sg719hfq7S/U2z+yodYVFRWung+5w63vjZN/BmZt23el4S4jFLn8U4pM8l6ePWxOMF1RFFbDwrkKZMF9mnyW1noj61Fvf6He/kGt/cWv9aZpJo/87Gc/U3t7u770pS/p7rvv9jodZCnHcXR/s3kxefWKKgUtLhABAACA2Qp2mivNJKtXeZSJaVt7vzE+b2GpQlwDAAAAABmVSqVcO5dt22k7X8GeXyvUtcuIDW/4hFJOQDrLOZIpW3u7zJXuG6oKXf0s8l06a43sR739hXr7C/X2D2oNzILjSL//qhlbdpm04PxJN99zbNAYN84rpWEGAAAAknzeNNPX16fW1la1trZq79692rt3rwYGTsy+e/nll2vLli1TPlZnZ6fuu+8+bdu2Td3d3QqFQpo/f74uueQSbdq0SZHI2Zern422tjb9/Oc/10033aS6urqMngu5beeRIR08bs6ssGlVlUfZAAAAAPll4kozqerVHmVien7CSjPr61hpEgAAAMAk7KSKnr7dCCUrGxVrfPOUdn+ld1SJlGPEGmuK0pUdAAAAAD9pfVjqNBv6dcnHTrt5y1HzXsiKeaWZyAoAAAA5yNdNMx/60IfScpznnntOd9xxh0ZGRsZisVhsrBFn69atuvXWWzV//vy0nG+iRCKhO++8U0uXLtX111+fkXMgfzywq9sY182JaM38Yo+yAQAAAPJHYPS4goMdRiwbVpo5PpxQW/eIEbtgETeKAAAAAJwqsvtuhY63GbHhjZ+UrOCU9t/Taa4yM6+0QOWFvr4dCQAAAGSN3t7ejBzXsiyVl5ePjfv6+mTb9qyPW/LoPyl80jhV2aj+6guk07yP5sPHjXFdqZWx9+xnmao3shP19hfq7R/U2l+yod4VFRWunm8y/JX6j6qrq7Vw4UK9+OKL09pv3759uv322xWPxxWNRnXDDTdo7dq1isfjeuKJJ7R161Z1dHToC1/4gr74xS+qsLAw7bn/6Ec/UkdHh774xS/Ksqy0Hx/5I2U7enBC08zmldUsRQoAAACkQair2Rg7wQKlKuo9ymbctnZzZrXCsKVV82icBwAAADBBKq6iZ+8wQsmaNYrXXz3lQ0xsmmGVGQAAACB7pFIpV85j2/aszxXs3KFw+5NGbPj8DyhlO5JOPXbKdrR/wgRiSyujrr1nP0tHvZE7qLe/UG//oNb+4td6+7pp5sYbb1RDQ4MaGho0Z84cHTt2TB/96EendYxvfetbisfjCgaD+sxnPqOmpqax19auXava2lp973vfU0dHh+655x7ddNNNpxzjO9/5jhKJxJTP+aY3vUm1tbWSpJaWFt1zzz16+9vfrsWLF08rd/jPtvZ+dQ2Z32ubVlV5lA0AAACQX4ITmmaSlU2S5f1l97b2fmN87oIShYJMuAAAAADAFG3+qYL9B43Y0MWfkqYx8daeYzTNAAAAAJi9whe+YYztomrFVrzltNu3Hx9VPOUYsYaq9E9uDQAAgNzk/dM7HpqsgWU6Wltb1dx84qGoK6+80miYedW1116rRx55RIcOHdJ9992nt73tbQqFzI/9oYceUiwWm/J5L774YtXW1iqVSunOO+/UkiVLdMMNN8zqvcAf7m82V5lpmlukZVwgAgAAAGkR6txpjFM1qz3KxLTtoLnSzPpFZR5lAgAAACBrJWMqfPZOI5SYv16JxZdP6zAtrDQDAAAAYJasgcOK7PmVERs59z1SMHLafdomrDJTWRTSnKJwRvIDAABA7vF108xsPfPMM2NfX3nllZNuY1mWLr/8cn3/+9/X0NCQduzYofPOO8/Y5rvf/e6Mzj86OqqOjg5J0jvf+c5Jt/nMZz4jSfr0pz+tDRs2zOg8yA/xpK2tLT1GbPNKVpkBAAAA0iU0caWZ6lUeZTKufzSpPRMeWrugjqYZAAAAAKboju8rOHTEiA1Pc5WZ3uHEKavdN9E0AwAAAGCaoi9+SwEnNTZ2QoUaXTP5s3Gv2ttlNs3UV3EtAgAAgHE0zczC7t27JUmRSET19fWn3W716vHZhXfv3n1K08xMhcNhXXXVVZO+1tzcrI6ODl144YUqKyvT3Llz03JO5K4n9x/XYCxlxK6maQYAAABIj1RMwd5WI5Ss9n6lme2HBuScNI6EAlo9v9izfAAAAABkocSwip67ywjF6y5Rou6SaR1mYsN+JBRQXUV01ukBAAAA8I9AbEDRHT8yYqOrbpRTWHHG/SauNFNfXZj23AAAAJC7aJqZhfb2dknS/PnzFQwGT7vdggULTtknHQoKCvThD3940tfuvPNOdXR06IYbblBTU1Pazonc9UBztzFeX1eq+WWnX7YUAAAAwNQFe/YqYCeNWKp6hUfZjNt2sN8Yr60tUUHI8igbAAAAANmo8KXvyBox7yEMb/zUtI/TMqFppqGqSCFr6ivVAAAAAEB0549kJQbHxk7A0sj57zvrfm1d5vVIfRVNMwAAABhH08wMxeNxDQwMSJKqqs68WkdJSYkikYhisZi6u7vPuG22mGqeZ2oWmg3Lss44xvQMxVJ6bO9xI3bNmpqM1W+6qLe/UG//oNb+Qr39hXoDpwp17TTGqbLFcgpKPcpm3LaDA8Z4fV2ZR5kAAAAAyEaB2IAKt33NiMWXXKlk7fppH6t1QtPM8pqiWeUGAAAAwGdSCUVf/KYRitdfLbt8yRl3S6Zs7e8ZNWINrDQDAACAk9A0M0Ojo+O/aEejZ19aPhqNKhaLGftls4985CNT2u7HP/5xhjM5oby83JXz5KtHtrUrlrTHxiEroBs3NKiiuMDDrE6PevsL9fYPau0v1NtfqDcghbqajXGyepVHmYwbjCW169iQEbtgkfeNPAAAAACyR+H2/5AV6zNiQxtvmdGxJq400zSXphkAAAAAUxdpvVfBwSNGbGTdB8+638HjMSVtx4jVV3E9AgAAgHE0zcxQPB4f+zoUOvvH+Oo2J++XSVu2bNGWLVtcORey393bDxvjy5pqsrZhBgAAAMhFoc4JTTM13jfNvHhoUCffIwoHA1pbS9MMAAAAgBMCI72Kbv8PIxZr2KzU3LXTPlYyZWtf94gRa2SlGQAAAABT5Tgq3P4NI5SovUDJ+evOuuveLrOBv6o4rPJCHosEAADAOH47nKGCgvGGg2QyedbtX93m5P2y2V133eV1CkiT7sGYftfaZcSuP3+BR9kAAAAAechxFOzaaYRS1as9SmbctvZ+Y7xmfomiYcujbAAAAABkm8IX/l1WYnBs7Cig4Q2fmNGx9veMKpEyZ3amaQYAAADAVIUP/V6hzh1GbOT8D0xp37YJDfwNVYVpywsAAAD5gaaZGYpGo2Nfj46OnnX7V7c5eb9sVlVVNaXtent7M3J+y7JUXl4+Nu7r65Nt2xk5V7776bYOpU6aXjoatnRhbSRjtZsJ6u0v1Ns/qLW/UG9/yYZ6V1RUuHo+4EysgcOy4gNGLFnt/Uoz2w6aOa1fxCozAAAAAE4IDHWq8KVvG7FY01uUqmqa0fH2dJozO88rLVBZlNuQAAAAAKam8IWvG+NU+RLFl71hSvu2dZlNM/XVNM0AAADAxF+rZ6igoEClpaUaGBhQd3f3GbcdHBxULBaTNPVmlFyRSqVcOY9t266dK9/cu7PTGF/eUKFI0L3azQT19hfq7R/U2l+ot79Qb/hdaMIqM3akXHZJrUfZnDAST2nn0SEjtr6uzKNsAAAAAGSboufvUiA5PimcEwhqeMPHZny8iU0zTawyAwAAAGCKgt0tKnjlUSM2cv4HJCs4pf0nrjRTX8X1CAAAAEyW1wnksrq6OknSkSNHzviQ4OHDh0/ZB3DD4b6YXjw0aMQ2rcqvxi0AAABkv1/84he66aabdNNNN6mlpcXrdNIu2NVsjJPVq6RAwKNsTnjx8KCx4mTQCui8BSUeZgQAAAAgW1gDhxV9+QdGLLbqT2TPWTbjY05smllO0wwAAACAKSrc/h/G2I5WaHTl26a0byJl65XeUSPGSjMAAACYiKaZWVixYoUkKRaLqa2t7bTb7dw5Puvwq/sAbnhwl7kKUlk0qEuWlnuUDQAAAPzowIED+slPfqJIJOJ1KhkzcaWZVPVqjzIZt6293xivnleswoKpzcgGAAAAIL8VPnenAnZ8bOxYBRq+aOarzEisNAMAAABgZgJDxxTZfbcRGz3nz6Xw1BpfDvSOGpOISVJDFU0zAAAAMNE0MwsbNmwY+/qRRx6ZdBvbtvXooyeWjywuLtaaNWtcyQ2QpPubu4zx65uqFA7yYw8AAAB3JJNJ3XnnnVq6dKlx/ZRvQp0TVpqpWeVRJuO2HRwwxusXlXqUCQAAAIBsYvW9omjzT43Y6Jp3yC5dMONj9g4n1DWUMGKNNM0AAAAAmILCl75jNvUHCzRyzrunvH9b14gxnlsSVmk0lLb8AAAAkB94en4Wli9frlWrTjwM9cgjj6ilpeWUbX71q1/p0KFDkqRrrrlGoRC/lMMdrZ3Dap1wYbh5VZVH2QAAAMCPfvazn6m9vV0f+chHZFn5efkZiPUrONBuxJIerzQzmrC148igEVtfV+ZRNgAAAACySdEzdyhgJ8fGTjCi4Qv/albHbJmwykwkZGlRRXRWxwQAAADgA4lhRV/+vhGKrXirnKLqKR+irdt8Nqq+mgZ+AAAAnMrXHRy7du3SkSNHxsb9/f1jXx85ckS//e1vje2vuOKKU47x3ve+V5/97GcVj8d122236a1vfavWrFmjeDyuJ598Ug8//LAkqba2Vtddd11G3gcwmQd2dRvjuSVhratjdmkAAIBs1tfXp9bWVrW2tmrv3r3au3evBgZOrBhy+eWXa8uWLVM+Vmdnp+677z5t27ZN3d3dCoVCmj9/vi655BJt2rRJkUgkU29DktTW1qaf//znuummm1RXV5fRc3kp2LXLGDtWgVIV9R5lc8LLHQNKpJyxsRWQzltY4mFGAAAAALJBsKdVkZa7jdjIue+WUzx3VsfdM6FppqG6UEErMKtjAgAAAMh/0eafyor1GbGRdR+Y1jH2dpnXI/VVhbPOCwAAAPnH100zW7du1aOPPjrpa7t379bu3buN2GRNM8uWLdMtt9yiO+64QyMjI/rBD35wyja1tbW69dZbVViYf7+UB4PBjBx34izU+TordaY4jnNK08zm1TUKZ+lKR9TbX6i3f1Brf6He/kK9M+dDH/pQWo7z3HPPjV2jvCoWi4014mzdulW33nqr5s+fn5bzTZRIJHTnnXdq6dKluv766zNyjmwR6tppjFOVy6VggUfZnPD8wQFjvHJusUoi2XktAAAAAMA9Rc/8swKOPTa2w8UaWf8Xsz7unmPmQ2qNNczsDAAAAOAs7JQKt3/TCMWXXqVURcO0DnPqSjP593weAAAAZo+nZtLgwgsv1Je//GXde++92rZtm3p6esZmcb744ou1efPmjM/i7JWKigpXzlNeXu7KefLF86/06nBfzIjdtLFeFRW58TlSb3+h3v5Brf2FevsL9c6M6upqLVy4UC+++OK09tu3b59uv/12xeNxRaNR3XDDDVq7dq3i8bieeOIJbd26VR0dHfrCF76gL37xixlp7v/Rj36kjo4OffGLX8z7pqpQV7MxTlav8iiTcdva+43x+kWsOAkAAAD4XbBzpyKt9xqx0fPeK6ewatbHnrjSDE0zAAAAAM6moO0hBfsPGLHhdR+c1jHiSVsHe0eNWAMrzQAAAGASvm6a2bJli7Zs2ZKWY9XU1Ojmm2/WzTffnJbjAbPxy+2HjHF9TbHWLCjzKBsAAABM1Y033qiGhgY1NDRozpw5OnbsmD760Y9O6xjf+ta3FI/HFQwG9ZnPfEZNTU1jr61du1a1tbX63ve+p46ODt1zzz266aabTjnGd77zHSUSiSmf801vepNqa2slSS0tLbrnnnv09re/XYsXL55W7rnolKaZGm+bZuJJWy93DBqx9Yu4FgAAAAD8rujp242xHSnTyDQfSJtMMmWfMrNzE00zAAAAAM7EcVT4wr8bocTcc5RcsGFahznQO6qUY8aW0TQDAACASfi6aQbIR8mUrV//ocOIXX/eQgUCAY8yAgAAwFRN1sAyHa2trWpuPtHEceWVVxoNM6+69tpr9cgjj+jQoUO677779La3vU2hkHlp+NBDDykWi52y7+lcfPHFqq2tVSqV0p133qklS5bohhtumNV7yQmphILde4xQsnq1R8mcsPPIkGLJ8TtEAUnrFrLSDAAAAOBn1mCHIvu3GrGRdR+SE5l9g/3+nlElbfMpteU0zQAAAAA4g9DR7Qof3W7ERs7/gDTNZ5v2Tmjgn1daoJIIj0MCAADgVPyWiFnp7e3NyHEty1J5efnYuK+vT7ZtZ+Rc+eb3+46razBuxC5fVpyxWqUD9fYX6u0f1NpfqLe/ZEO9KyoqXD1frnjmmWfGvr7yyisn3cayLF1++eX6/ve/r6GhIe3YsUPnnXeesc13v/vdGZ1/dHRUHR0nGrjf+c53TrrNZz7zGUnSpz/9aW3YML0Zw7JNsLdNAdv83TtV7e1KM8+39xvjxrlFKo1y6Q8AAAD4Wbj998bYLijVyLk3p+XYezqHjfH80gKVcQ0CAAAA4AzCBx43xqnSBYovv2bax2nrMq9HGlhlBgAAAKfBX60xK6lUypXz2Lbt2rly3b07jhnj1fOLVVdekFOfH/X2F+rtH9TaX6i3v1Dv7LF7925JUiQSUX19/Wm3W716fDWU3bt3n9I0M1PhcFhXXXXVpK81Nzero6NDF154ocrKyjR37ty0nNNbtmLL3qBQV7OCA4eUKl2YlpmaZ2PbQbNpZn0dq8wAAAAAfhduf8oYJ+oukQqK03LslglNM42sMgMAAADgLEJdO41xvH6TZE3/Mca9XeZKM/XVNM0AAABgcjTNAHlkNGHrkT09RmzTyiqPsgEAAIDb2tvbJUnz589XMBg87XYLFiw4ZZ90KCgo0Ic//OFJX7vzzjvV0dGhG264QU1NTWk7p5dS1as08OZ/kyQFRvtkDR3xNJ9kytZLhweN2Po6b5t4AAAAAHjMcRQ+ZK40k6i7JG2Hn7jSTONcmmYAAAAAnFmo02yaSdasPs2WZ9bWPaFpporrEQAAAEyOphkgj/yurVdDcXtsHJB0NU0zAAAAvhCPxzUwMCBJqqo68++AJSUlikQiisVi6u7udiO9WZlqjmdqFJoty7LOOFZxpVRcqcxlcHY7jgxrJGEbsQuXzMno55Kvzlpv5A1q7S/U21+ot79Qb+D0rP6DCg4cNmKJhRen7fgTm2aaWGkGAAAAwBkERo8rOHDIiCWrp980E0vaaj8+asRYaQYAAACnQ9MMkEce2GU+THjh4jLVlBR4lA0AAADcNDo6fmMgGo2edftoNKpYLGbsl60+8pGPTGm7H//4xxnOZFx5eblr55qqnS+aq042zStR/cK5HmWTX7Kx3sgMau0v1NtfqLe/UG9gXPjQU8bYLqxSqrIxLcfuGUqoeyhhxJbTNAMAAADgDEJdzcbYCRYoVdEw7ePs7xmR7Zix+iqaZgAAADA5mmaAPDEwmtQTbceN2KZVrDIDAADgF/F4fOzrUOjsl3qvbnPyfpm0ZcsWbdmyxZVz+dXT+8wm+o3LuB4AAAAA/C7cbjbNJBZulAKBtBy7ZcIqM5GQpUVzzj6JAwAAAAD/CnbuNMbJyiYpGJ72cdq6RoxxbVmBigqCs8oNAAAA+YumGSBPPLKnV/HU+BQK4WBAVzVWepgRAAAA3FRQML7CYDKZPOv2r25z8n7Z6q677vI6hayXTNl6bn+vEdtYz/UAAAAA4GuOo3D7741Qou6StB2+dULTTEN1oYJWehpyAAAAAOSnUJfZNJOqWT2j47R1m00z9VWsegkAAIDTo2kGyBP37+oyxq9ZNkdlUX7EAQAA/CIaHZ/Nd3R09Kzbv7rNyftlq6qqqa2Y0tvbe/aNZsiyLJWXl4+N+/r6ZNt2xs43XTs6BjUYM5ulVlQEM/qZ5LNsrzfSh1r7C/X2F+rtL17Xu6KiwrVzAdMRPL5PweFjRiy+MH1NMxNXmmmq4SE1AAAAAGcWmrjSTPXMmmb2dp3axA8AAACcDk/UY1aCwcwsa2lZ1hnHMHUOxvXcgX4j9qbVNRmrT7pRb3+h3v5Brf2FevsL9c5OBQUFKi0t1cDAgLq7u8+47eDgoGKxmKSpN6TkglQq5dq5bNt29Xxn89wrx43xksqoKgqDWZVjLsu2eiNzqLW/UG9/od7+Qr2BE8KHnjLGqeJ5sucsTdvxJ64000jTDAAAAIAzSY4q2LvXDKVrpRmaZgAAAHAGNM1gVtyaQe/kWQJxqp/v2CfbGR8XFwT1lgvrVViQG00zE1Fvf6He/kGt/YV6+wv1zh51dXVqbm7WkSNHlEqlTttEffjwYWMf5L7n280m+vV1ZR5lAgAAACBbhNt/b4wTCy+WAoG0HDuRsk95SI2mGQAAAABnEupuUcAZn+TCUUDJqpXTPs5oIqVDx2NGrKGK6xEAAACcHlNCA3ngly8eNsab1szP2YYZAAAAzNyKFSskSbFYTG1tbafdbufOnafsg9yVsh1tbx8wYhcsKvUoGwAAAABZwXFOWWkmUXdJ2g6/v2dUyZNn8xJNMwAAAADOLNi10xin5iyVCoqnfZz9PaM6+WokIGlZVXRWuQEAACC/0TQD5LhXuoe0/eBxI/aW8xd4kwwAAAA8tWHDhrGvH3nkkUm3sW1bjz76qCSpuLhYa9ascSU3ZE5r17AGYikjxkozAAAAgL8Fe1pkjfQYsUTdxWk7/p7OYWNcW1ag0mgobccHAAAAkH9CnROaZqpXzeg4e7vM65EF5RFFw0wuDAAAgNPjr9eYld7e3owc17IslZeXj437+vpk23ZGzpXrfvTUQWNcURTS6qpgxmqTCdTbX6i3f1Brf6He/pIN9a6oqHD1fLli+fLlWrVqlZqbm/XII4/oiiuuUFNTk7HNr371Kx06dEiSdM011ygUyp/LwmAwczdELMs649hL2w8NGuNFc6KqnVPoUTb5IZvrjfSi1v5Cvf2FevsL9QZOFW43V5lJlS6UXbYobcffc8x8SG05q8wAAAAAOIvQhJVmkjUzm9itrXvEGNdXc08EAAAAZ5Y/T0fBE6lU6uwbpYFt266dK5c4jqN7d3QasTc0VcqSk9OfF/X2F+rtH9TaX6i3v1Dv9Nm1a5eOHDkyNu7v7x/7+siRI/rtb39rbH/FFVeccoz3vve9+uxnP6t4PK7bbrtNb33rW7VmzRrF43E9+eSTevjhhyVJtbW1uu666zLyPrziZjPVyY1jXnvpyF5jfMnyahrL0iyb6o3Motb+Qr39hXr7C/UGpPAhs2kmsTB9q8xIUkvnkDFuomkGAAAAwJnYKYW6dhmhZPXqGR2qrctsmmmoomkGAAAAZ0bTDJDDWjqHtb9n1IhtWlXtUTYAAACYra1bt+rRRx+d9LXdu3dr9+7dRmyypplly5bplltu0R133KGRkRH94Ac/OGWb2tpa3XrrrSos5CZCrrNtR8/s6zFiG5dVeZQNAAAAgKzg2AofetoIJeouSespWjvNh9QaaZoBAAAAcAbBvlcUSJrXEcmaGTbNnLLSDNcjAAAAODOaZoAc9kBztzGuLSvQuQtKPMoGAAAA2eLCCy/Ul7/8Zd17773atm2benp6FAqFNH/+fF188cXavHmzIpGI12kiDfYcG1TvcMKIbayv9CgbAAAAIDf84he/0Pe//31J0m233aampiaPM0qvYFezrFifEUvUpW+lme6hhLonXIfQNAMAAADgTIKdO4xxqmiunKLpTww8Ek/pUF/MiNWz0gwAAADOgqYZIEfZjqMHdplNM5tWVskKBDzKCAAAALO1ZcsWbdmyJS3Hqqmp0c0336ybb745LcfLBb29vRk7tmVZKi8vHxv39fXJtu2MnW+qfrujwxjXlkVUrJh6e2On2QNTka31RvpRa3+h3v5Cvf3F63pXVFS4di7M3oEDB/STn/xEkUhEsVh+/t4cbn/KGKfKl8guqU3b8fd0DhvjaMhS3Zxo2o4PAAAA+Em+N/W/KtS10xinalbN6DgTV5mxAtLSSppmAAAAcGY0zQA56sVDAzo6EDdim1dNfwYGAAAAIF+kUinXzmXbtqvnO53nDpizR6+rK82KvPJNttQbmUet/YV6+wv19hfqjdNJJpO68847tXTpUs2fP1+PP/641yllRMEhs2kmsTB9q8xIpzbNNFQXKmgxoRcAAAAwXX5o6n9VqLPZGCerV8/oOBObZhaWRxQNWzPOCwAAAP7Ab4xAjrq/2Vxlpr6qUMtrijzKBgAAAIDbHMfRtoMDRmz9olKPsgEAAACy389+9jO1t7frIx/5iCwrT2+R2UmFDj1jhOJ1l6T1FC2dQ8a4aS73JgAAAIDpOrmpf8OGDV6nk1mOo1DXDiOUrFkzo0O1dZlNM/XVXI8AAADg7FhpBshBiZSth3f3GLHNq6o8ygYAAACAF17pHVX3cMKIXVBX5lE2AAAAyEd9fX1qbW1Va2ur9u7dq71792pg4ETj9uWXX64tW7ZM+VidnZ267777tG3bNnV3dysUCmn+/Pm65JJLtGnTJkUikUy9DUlSW1ubfv7zn+umm25SXV1dRs/lpVDnDlmJQSOW7pVmWjvNh9QamdALAAAAmLZXm/q/9KUv6e677/Y6nYyyho7KGjGfc0pWr5rRsfZ2mytf1lcVzjgvAAAA+AdNM0AOenp/n/pGk0Zs00qaZgAAAAA/mbjKTE1JWHVzMvugIQAAAPzlQx/6UFqO89xzz+mOO+7QyMh4s0UsFhtrxNm6datuvfVWzZ8/Py3nmyiRSIzN4Hz99ddn5BzZItz+lDFOViyXU1yTtuMnUrb2ddM0AwAAAPfR1J+7gl3NxtgOl8guXzyjY01caaahmqYZAAAAnB1NM0AOemBXtzE+d0GJFs6JepQNAAAAAC9sa+83xuvryhQIBDzKBgAAAPmuurpaCxcu1Isvvjit/fbt26fbb79d8Xhc0WhUN9xwg9auXat4PK4nnnhCW7duVUdHh77whS/oi1/8ogoL0//A049+9CN1dHToi1/8oizLSvvxs0n40O+NcaIuvavM7O8ZVdJ2jBhNMwAAAHADTf25K9S5wxinqldKgelfmw3FUzoyEDdirDQDAACAqaBpBrMSDAYzctyJN63y/SbWdIzEU/pta68Ru2Z1TcZq4Qbq7S/U2z+otb9Qb3+h3shWmfydONu+7x3HOWWlmQuXlOf0dUE2ybZ6I3Ootb9Qb3+h3v5CvTPnxhtvVENDgxoaGjRnzhwdO3ZMH/3oR6d1jG9961uKx+MKBoP6zGc+o6amprHX1q5dq9raWn3ve99TR0eH7rnnHt10002nHOM73/mOEonElM/5pje9SbW1tZKklpYW3XPPPXr729+uxYtnNpNxzkjFFT78nBFKLLwkradoOTZkjGvLClQS4XYjAAAA3EVTf24JTVhpJlmzekbHmbjqZTAgLamkaQYAAABnx1+xMSsVFRWunKe8vNyV8+SCx188rJGEPTa2AtKNGxtUUZrZpWHdRL39hXr7B7X2F+rtL9Qb2cKt6xPJ++/7V7qHdGzQnE3tyjWLVFFR4lFG+c3resM91NpfqLe/UG9/od7pM1kDy3S0traqufnEw1FXXnml0TDzqmuvvVaPPPKIDh06pPvuu09ve9vbFAqZt68eeughxWKxKZ/34osvVm1trVKplO68804tWbJEN9xww6zeSy4IHXtJgaT5EFli4Ya0nmNP57AxZpUZAAAAuIWm/twV6txpjJPVa2Z0nL1d5vVIXUVUkZA/Go8AAAAwOzTNADnml9sPGeNLl1erJo8aZgAAAACc3dNtPca4uiSihppij7IBAAAAJvfMM8+MfX3llVdOuo1lWbr88sv1/e9/X0NDQ9qxY4fOO+88Y5vvfve7Mzr/6OioOjo6JEnvfOc7J93mM5/5jCTp05/+tDZsSG+DidvC7U8Z42TVSjmFlWk9x8SmmSauQwAAAOASmvpzUyA2oGD/ASOWrFk1o2O1dZmTBNRXscoMAAAApoamGSCHHB+O69GWTiN2/fkLPcoGAAAAgFee2tdtjDcuq1QgEPAoGwAAAGByu3fvliRFIhHV19efdrvVq1cb+0xsmpmpcDisq666atLXmpub1dHRoQsvvFBlZWWaO3duWs7ppUByVE64SIHEicaWRN3FaT/HxKaZ5TU8pAYAAIDcQFO/N4JdzcbYscJKVTbO6Fht3WbTTEMVK18CAABgamiawaz09vZm5LiWZam8vHxs3NfXJ9u2M3KuXPKz7UeVSDlj44JgQBsXRjJWB7dQb3+h3v5Brf2FevtLNtS7oqLC1fMhN2Ty9+Js+L4/2e9bu4zxOfOjOX9dkE2yrd7IHGrtL9TbX6i3v3hdb65PTq+9vV2SNH/+fAWDwdNut2DBglP2SYeCggJ9+MMfnvS1O++8Ux0dHbrhhhsmnWE6Fw1f8mkNb/iEQsdeUvjQU0osTG/TTNdQXD3DSSPWNJeVZgAAAJAbaOr3RqhrhzFOVTZKwYIZHWti00x9NU38AAAAmBqaZjArqVTKlfPYtu3aubLZvTuPGePXNVSoMBTIu8+GevsL9fYPau0v1NtfqDeyhZvfh15+33f0xdTRHzNi5y8o4ecwg/h3zj+otb9Qb3+h3v5CvbNDPB7XwMCAJKmqquqM25aUlCgSiSgWi6m7u/uM22aDqeZ4pkah2bIsa/JxMCinboPidSdmpU5nBm3d5nVINGxpSVWRLFa9zKjT1hp5iXr7C/X2F+rtH9Q6e9HU741Q505jnKxeNaPjDMaSOjoQN2L1VTTNAAAAYGpomgFyxNGBmLYdHDBim1ed+UYjAAAAgPzzfHu/MS4vDDGbGgAAALLO6Ojo2NfRaPSs20ejUcViMWO/bPWRj3xkStv9+Mc/znAm405ebSlTDr7UY4xXzi9TVWVlxs8Lkxu1Rvag3v5Cvf2FevsHtc4O+dzUL3nf2H+mZrFQV7Pxmj1v7Yzy2N87bIxDVkD1NcUKBmlMcxvNgf5Cvf2FevsHtfYX6n0CTTNAjnhoV4+ck8bFBUG9Ztkcr9IBAAAA4JGJzfTr60qZ2RkAAABZJx4fnwE4FDr77ahXtzl5v0zasmWLtmzZ4sq58sWuI+a1yKraMo8yAQAAAKYnn5v6pexr7B9rFkvGpJ49xmtFyzaqqKJi2sc8sse8HllaXay51Uw2nA1oDvQX6u0v1Ns/qLW/+LXeNM0AOeL+XV3G+KqmSkVC/uz2AwAAAPxs24SVZtbX8aAaAAAAsk9BQcHY18lk8qzbv7rNyftlq7vuusvrFDzR3GFei6yqLfUoEwAAAGB6aOr3SOcuyZ5wPTj/nBkdquXooDFumlcy06wAAADgQzTNADlgf8+Idh01lxndvIrZEgAAAAC/OTYQV/vxmBFbv4gH1QAAAJB9Tp69eSqzM7+6zVRmffZaVdXU/j7f29ubsRwsyzJmBOzr65Nt2xk7Xzxpq/WY+ZBaXUkgo+8RJ7hda3iLevsL9fYX6u0f2VDrihms4pHv8rmpX8rixv6Ol8xxxTIpOrOJwPYcM1eaaZzLvREAAABMHU0zQA54oLnbGFcVhXXhImaTBgAAAPxm4iozpZGgllcXeZQNAAAAcHoFBQUqLS3VwMCAuru7z7jt4OCgYrETzeFTbUjJBalUyrVz2bad0fPt7RxS0naMWH1lxNX3iBMyXWtkF+rtL9TbX6i3f1Dr7JDPTf2S9439p2sWK3zlWZ38CcarVmpohjk0d/QZ44U08XsmG5oD4R7q7S/U2z+otb9kQ72zobGfphkgyzmOowd2mTcUr15ZpaAV8CgjAAAAAF7Z1m7OpHZ+XSnXBgAAAMhadXV1am5u1pEjR5RKpRQMBifd7vDhw8Y+yD4tncPGeEFZRCURbjMCAAAgN9DUf4JbDVyvNosFj+0w4onqVTPKoX80qa7BhBFbWkETf7agOdBfqLe/UG//oNb+4td689dsIMs1Hx3SgV5zlotNq/LrohwAAABIh9M9gJcOlmWdceyWFw6aTTMXLirP6Pv2q2ypNzKPWvsL9fYX6u0v1Dt7rVixQs3NzYrFYmpra1NjY+Ok2+3cudPYB9lnzzGzaaZxLiteAgAAILfQ1O8+p6BUdkGJrPigJClZvXpGx2nrGjHGISugxRW5sQoQAAAAsgNNM0CWu7/ZnOFiYXlEa+YXe5QNAAAAkL3cXM715KVr3dI5ENO+HvPG0BVr6lRRMcf1XPzGi3rDG9TaX6i3v1Bvf6He2WPDhg36xS9+IUl65JFHJm2asW1bjz76qCSpuLhYa9ascTNFTNGerglNM9U0zQAAACC30NTvvv7rvi45tqz+doU6dyo5f92MjrO327weWVwRVSjIhBkAAACYOppmgCyWsh09uMtsmtm8qkqBQMCjjAAAAAB45Zl9Pca4JBLSmgVlHmUDAAAAnN3y5cu1atUqNTc365FHHtEVV1yhpqYmY5tf/epXOnTokCTpmmuuUSiUP7eu8mU1TMdxtKfTfEhtxfwSVr10Catp+Qv19hfq7S/U2z+odfaiqT9z1yhn/r4PSpXLlKpcppn+NOzrGTXGy2uKuB7xEP/O+Qv19hfq7R/U2l+o9wn5c+cByEMvtPerayhhxDavqvYoGwAAAABeenqf2VB/wZIKZlIDAABARu3atUtHjhwZG/f39499feTIEf32t781tr/iiitOOcZ73/teffazn1U8Htdtt92mt771rVqzZo3i8biefPJJPfzww5Kk2tpaXXfddRl5H17Jl9Uwjw2Mqnc4acQuWl6riorijJ0Tp8dqWv5Cvf2FevsL9fYPap09/N7UL7l3jZLu7/sDx81np9YuqnL1egtnxr9z/kK9/YV6+we19he/1ju/frOH67yZgcA/HthlziS9Ym6xls8t8SibzKHe/kK9/YNa+wv19hfqjWzV29ubsWNblmX84aCvr0+2bWfsfJN5ck+nMT63tjCj79nPsqHecAe19hfq7S/U21+8rnc+P6izdevWsVmWJ9q9e7d2795txCZrmlm2bJluueUW3XHHHRoZGdEPfvCDU7apra3VrbfeqsLCwrTkjfRq7hgwxkUFQS2uLPIoGwAAAPgVTf3+1XJ00Bg3zcu/Z6cAAACQWTTNYFZydQaCXBBLprS1xWyaeesFi/L6Buyr/FhvP6Pe/kGt/YV6+wv1RrZIpVKuncu2bVfPd3w4odauYSO2bmGJqzn4mdv1hneotb9Qb3+h3v5CvbPPhRdeqC9/+cu69957tW3bNvX09CgUCmn+/Pm6+OKLtXnzZkUiEa/TxGk0d/Qb4xXzS2VZAY+yAQAAgF/R1O9PvUNxdQ3GjFjjvFKPsgEAAECuomkGyFKP7u5U/2jSiF133gKPsgEAAADgpRcOmTM7R0OWVs8r9igbAAAA+MWWLVu0ZcuWtByrpqZGN998s26++ea0HC8X5MtqmC+90mWM6ysjrHrpIq9X04K7qLe/UG9/od7+kQ219sNkrLPh56b+TP0en8nv++cP9hnjcDCgMivONYmHsuHfObiHevsL9fYPau0v2VDvbLhGoWkGyFJ3v3jYGG9YWqmFc5jFAgAAAPCjbQfNpplzF5YoFLQ8ygYAAADAVOTLapi7jw0Z4+VVhazm5CFW0/IX6u0v1NtfqLd/UOv0oal/9tz6Xkzn933rhOuRpZWFCji2+LHKHvw75y/U21+ot39Qa3/xa71pmsGs5OIMBLlgKJbS1p1Hjdgbmubk7SwJfq+331Bv/6DW/kK9/SUb6p0NMxAAbnq+vd8Yr68r8ygTAAAAAH4ST9ra3zNqxBrnFnmUDQAAAAC/2ds1Yozrq5hwGAAAANNH0wxmJRdnIMgFv2np0mhy/MHToBXQVcvn+OYz8Fu9/Y56+we19hfq7S/UG8is/tGk9hwbNmIXLCr1KBsAAAAAfrKvZ0Qp2zFiy6t5SA0AAACAO9q6zfsj9VyPAAAAYAYsrxMAcKr7m7uM8SVLyzWnKOxRNgAAAAC8tP3QgE5+RC0SCmjN/BLP8gEAAADgHxMb+BeWR1QSYU4+AAAAAO5om7DSTAMrzQAAAGAG+Ks2kGV6hxN6en+fEdu0ssqjbAAAAAB4bdvBfmO8trZEBSHmwAAAAACyXTAYzNixLcs64zhdWrvNB9Sa5hZn9H3hVG7VGtmBevsL9fYX6u0f1BrZLFO/y2fq+75nOKHekaQRWz63hGsSj/HvnL9Qb3+h3v5Brf2Fep9A0wyQZR7e3aPUSdNIR0KWLl9e4V1CAAAAADy17eCAMV5fV+ZRJgAAAACmo6LCvb/tl5eXZ+S4+3p3G+NzFle5+r5wqkzVGtmJevsL9fYX6u0f1BrZxK3f5dP1fb+rp9sYR0KWzllWq6AVSMvxkR78O+cv1NtfqLd/UGt/8Wu9/dkqBGSxB3aZF3yXL69QUQEzJAAAAAB+NBhLatexISN2waJSj7IBAAAA4CeO46i5w2ziX13L9QgAAAAAd+w5Zl6PNNSU0DADAACAGWGlGSCLdPTFtP2QecG3eVWVR9kAAAAAuSUYzFyzuVfL1f6ho1/2SStRhoMBnVdXntH3CpYn9hNq7S/U21+ot79QbyAzOgdi6hmKG7FVtax8CQAAAMAdu4+Yz1A1zSvxKBMAAADkOppmgCwycZWZsmhQlyz15zJYAAAAwHRVVFS4di63lqvd0XnUGJ+/aI5q51a7cm6M8+vyxH5Erf2FevsL9fYX6o1s0dvbm7FjW5ZlfK/39fXJtu20nuOZNjP/ogJLJYGYenvjp9kDmeBGrZE9qLe/UG9/od7+kQ21dvNv5cgtmbpGydT3/c5Dx41xXVkoo9dZmJps+HcO7qHe/kK9/YNa+0s21DsbrlFomgGyhOM4uq+5y4i9vqlS4SCzIgIAAAB+9fQ+s7F+w7JKjzIBAAAAMF2pVMq1c9m2nfbz7T46aIyXVxfJsW25964wmUzUGtmLevsL9fYX6u0f1BrZxK3vxXR83zuOo7auYSO2rDLKz1MW4t85f6He/kK9/YNa+4tf683T+ECWePqVPu3tGjFim1YygzQAAADgV8PxpP7Q3mfENi6r8igbAAAAAH6zp9N8QG15TZFHmQAAAADwm+7hhPpGk0asobrQo2wAAACQ61hpBsgS33z6sDFeNCeidXWlHmUDAAAA5J7e3t6MHduL5Wqf2n9cSdsZGwcDUkN5IKPvEydkw/LEcAe19hfq7S/U21+8rndFRYVr5wLc1HLMbJppomkGAAAAgEvaJkw8HAlZWlAe8SgbAAAA5DqaZoAs8IfDA3r+4IARe8+GBQpaAY8yAgAAAHKPm8vHurFc7XOvHDfGq+YXKxJ0933iBL8uT+xH1NpfqLe/UG9/od7A7MWTtl7pMR9Sa6RpBgAAAIBL2rrN65H6qkJZAZ6jAgAAwMxYXicA4NRVZmpKwnrz6mqPsgEAAACQDba1m4316+vKPMoEAAAAgN+0dY8o5Zix5TTNAAAAAHDJ3q5Tm2YAAACAmWKlGcBjrZ3DemzvcSP25xfUqiBETxsAAADgV6MJWy93DBqx9YtomgEAAADgjj2dw8Z4YXlExQVBj7IBAAAAkA7BYGZ+p7cs64zjmdg3YaWZ5XOLM5Y/picT9Ub2ot7+Qr39g1r7C/U+gaYZwGPfftZcZaYsGtRbz5vrUTYAAAAAssHLHYNKnDStsxWQzl9Y4mFGAAAAAKYrkw90ZfpGZ+uEWZ1XzOMBNa9wU9tfqLe/UG9/od7+Qa2RzSoqKlw5T3l5+az2dxxHbROaZs5bWuNa/pie2dYbuYV6+wv19g9q7S9+rTdNM5iVXJqBIBsdOj6qB5u7jdifrq9VWWGBRxl5wy/1xgnU2z+otb9Qb3+h3kDmbWvvN8Yr5harJMIlPAAAAJBL3HygK903Ovf17jbG5yyq4gG1LOHXm9p+Rb39hXr7C/X2D2oNTN+xgZj6R5NGrHFuqUfZAAAAIB/wxA1mJVdmIMhW//Toyzpp8mgVhoP6yOtXqaLYX00zE+VrvTE56u0f1NpfqLe/UG8g/bYdHDDG6+u4GQQAAADAHY7jqLnDbORfVVvmUTYAAAAA/KblqHmPpKggqIVzCj3KBgAAAPmAphnAI50DMf34uYNG7M82LPZ9wwwAAADgd/GkrT90TGiaWcQDagAAAADccWwgpt7hhBFbVUsjPwAAAJDrent7M3Jcy7KMSfb6+vpk2/aMj/fivmPGeFlVofr6js/4eEivdNcb2Y16+wv19g9q7S/ZUO9sWMWcphnAI//xxD7FkuP/6ISDAX3osmUeZgQAAAAgG+w8MqRYcnxJyoCkdaw0AwAAAOScTD2QJmX2Rucze828iwoslQRi6u2Np+X4mJ5suKkN91Bvf6He/kK9/SMbap0ND6QhO6VSKVfOY9v2rM7V2jlkjOsro67ljumbbb2RW6i3v1Bv/6DW/uLXetM0g1nJlRkIss1ALKnvPrnfiL15TY2i9qh6e0e9ScpD+V5vmKi3f1Brf6He/pIN9eaGD/LZ8+39xrixpkhlUS7fAQAAgFzj5o3HdN7o3H100Bgvry6SY9vy323U7OTXm9p+Rb39hXr7C/X2D2oNTF9b94gxrq8u8igTAAAA5AueusGs5MoMBNnmR88f1mB8/P0EJL37wvl59R5nI9/qjTOj3v5Brf2FevsL9QbSa9tBs2lm/SJWmQEAAADgnj2dw8a4sYYH1AAAAAC4w3Ec7e2a0DRTVehRNgAAAMgXltcJAH4zmkjp+88dMWKvb6rUkkou8AAAAAC/S6ZsvXTYnNV5fV2ZR9kAAAAA8COaZgAAAAB45ehAXENxc7K+hmqeqQIAAMDssNIM4LK7/9Cp3pGkEXvvxgUeZQMAAADkj2AwmLFjW5Z1xnG67DgyrJGEbcQuXDIno+8Np3Kr3vAetfYX6u0v1NtfqDeQPrGkrVd6zFmdaZoBAAAA4Ja2bvN6pLjA0rzSAo+yAQAAQL6gaQZwUTJl67vPdhixS5aWa+W8Yo8yAgAAAPJHRUWFa+cqLy/PyHF3vthjjJvmlah+4dyMnAtTl6l6I/tQa3+h3v5Cvf2FegMzt697RCnHjC2naQYAAACAS9q6zKaZZVWFCgQCHmUDAACAfMF0a4CL7t/VrSMDcSPGKjMAAAAAXvX0vm5jvGFZpUeZAAAAAPCjPZ3DxrhuTkTFBax8CQAAAMAdeyesNFNfRRM/AAAAZo+VZgCX2I6jbz992Iidu6BE6+tKPcoIAAAAQDZJpmw9t7/XiG1cVuVRNgAAAAD8qGVC00wjq8wAAAAAeSMYzExDvGVZZxxPx74JTTONc4szljdmJp31Rvaj3v5Cvf2DWvsL9T6BphnAJY+19mpfz6gRe+/GBSwhCgAAAKRJb2/v2TeaIcuy/v/27jzKrrrMF/dbQ1KVsVKZJzAkIYQhCAkEEQQEtBFQ0aa9ra0IXqW1nbr7anfs2y64C/uijd6lt7X1qi30r9VGHOACorRgozIPQSGEEBLGDJU5VRlqSNU5vz9yq6hdc5KqM+z9PGuxVu199tnnm/qcvXe9nPPub9TV1XUtNzY2Ri6XG9bXWN2wN/a2tifWLZ5cNaL/LvpWiLwpDbLOFnlni7yzpdh519fXF+y1YKQ9v1XTDAAApFWh6tfuNfqhyOfzvZpmXj9vurq7xB1u3pQneWeLvLND1tmS1bw1zUAB5PP5uLHHLDMLpo6Js+dPKs6AAAAghTo6Ogr2Wrlcbthf77GXdyeWj66vjfoxVQX9d9G3kcib0iTrbJF3tsg7W+RNqRjJuyGPxN0B8/l8rNuebJpZPGO8uzoXmTtBZou8s0Xe2SLv7JA1HL6Nu5tjX1uynl80Y0KRRgMAQJpomoECePzVpnimYV9i3ZXLZ0elWWYAAID/Z+WrTYnlZUf5IAgAAMpZIe+GPBx3B2xobIndzcnZL09bODvq6802U0qyeifIrJJ3tsg7W+SdHbKGoXt+y97E8oTa6pgxsaZIowEAIE00zUAB9JxlZk5dTbxl8ZQijQYAACg1uXw+fr9xT2Ld0rkTizQaAAAgi55tSDbyj6+pjrn1Y4o0GgAAYLjt2rVrRPZbWVmZaBBrbGyMXC53yPv5w0tbE8vzp4yJ3bt3H+nwGGbDlTflQd7ZIu/skHW2lELehbzBVH80zcAIW92wNx59OflB0wdOnxXVlWaZAQAADlq3bX80tXQk1i010wwAAFBAz25OfpZx3MwJUemzDAAASI2Ojo7BNxoGuVzusF5r3bZ9ieX5U2oLNmYO3+HmTXmSd7bIOztknS1ZzVvTDIywnrPMTBk7Kt5+0rQijQYAAChFKzckZ5mZU1cTMybUFGk0AADAcBipuzhHjMzdAf/w8o7E8vzJo0f038DQlMKdICkceWeLvLNF3tlRClmXwl2c4XC8sL05sTx/ytgijQQAgLTRNAMj6KUdzXHf88kPlN532syoqa4s0ogAAIBS9MSryTs6Lz1qYpFGAgAADJdC3q1vOO4O+PzW5F2dF04dk8k7Dpa6rN4JMqvknS3yzhZ5Z4esYWhy+Xy8sKNH08zUMUUaDQAAaeOb+zCC/vXRTZHvtjyhpir++PXTizYeAACg9OTz+Xiyx0wzy+ZOKNJoAACALGptz8XLO5NfUDt2mrs6AwAAhbG5sTVa2pOzMi2YomkGAIDhoWkGRkhDU2vc9eyOxLo/OXVGjK8xwRMAAPCaF3Y0x+7m9sQ6M80AAACF9ML25ujodhewiohYOFXTDAAAUBg9Z5mZWFsVU8aNKtJoAABIG00zMEL+7bHN0ZF77ROmmurKeO/SmUUcEQAAUIpWvpqcZWbmhNExu66mSKMBAACy6Plt+xPLcyfVxNjRVUUaDQAAkDXrtyebZuZPGRsVFRVFGg0AAGmjaQZGwK79B+K2p7cl1l22ZFrUj3UHBAAAIGnlhqbEsllmAACAQuvZNLNwmllmAACAwuk508z8qWOKNBIAANJI0wyMgH9f2RCt7bmu5arKivjA6bOKOCIAAKAU5fP5XjPNLD1qQpFGAwAAZFXPpplFmmYAAIACWr89WZPMn6JpBgCA4VNd7AFQ3qqqqkZkv5WVlQMul7K9re1xy5NbEusuPmFqzKn3AVN/yjlvDp28s0PW2SLvbJE3DJ+Xd7XEjv0HEuuWzTXTDAAAUDj5fL5X08yxmmYAAIAC6cjl46WdyZlmFphpBgCAYaRphiNSX19fkNepq6sryOsMhx/9Zn3sbe3oWq6oiPj0W4+P+np3ix6qcsqbIyfv7JB1tsg7W+QNh6/nLDPTxo+KuZNqijQaAAAgi7bubYvGlvbEOk0zAACQPqV6c+SNTc3R2p5PrDt2+vgRGy9Hxg0Ws0Xe2SLv7JB1tsj7IE0zMIxaDnTEv9z/YmLdW0+YEQuna5gBAAB6W7mhKbG8dO7EqKioKNJoAACALHp+W/KOzuNGV8bsOs38AACQNqV6c+THNrUmliePGx0L5kz3eUmZcIPFbJF3tsg7O2SdLVnNW9MMDKOfPLEhtu1JFnJ/cd7CIo0GAACyZSTvODYSd97I5/O9ZppZdnSdO6eVAHdayQ5ZZ4u8s0Xe2SJvSlW51CjrtiebZo6dNi6qq32EWCqc47JF3tki72yRd3bIGg7d81v3JpaPnT5ewwwAAMPK//HmiOzatWtE9ltZWZnoZGtsbIxcLjcirzVc2nP5+OZ/Pp9Yt/x1dXH0+PyI/Z7Sohzz5vDJOztknS3yzpZSyLtQd8KivBTyfTEcd954ece+2Lq3LbHu/JPmRn29mSpLTVbvtJJFss4WeWeLvLNF3pSKcqlRXtr9YmJ5yVGT1d0lzDkuW+SdLfLOFnlnh6xhcGu3JG8wtmiGz0kAABhemmY4Ih0dHQV5nVwuV7DXOlx3P7s9NjYmZ5m5cvmskh93KSqHvBk+8s4OWWeLvLNF3nB4HnlxZ2J56vjRsWDa+CKNBgAAyKo1DckvqB0/a2KRRgIAAIykUr058rObdieW506odIPiElYKN1ikcOSdLfLODllnSynkXQo3adI0A8Mgn8/HTY9sSqw7Yea4OP1oHywBAAB9e+SFZNPM8mMmR0VFRZFGAwAAZFHLgY54YdvexLrFs9zVGQAA0qgUb47ckcvHSzuaE+vmTa51w74y4gaL2SLvbJF3dsg6W7Kat6YZGAb3v7A71m1PFnBXnTHbF94AAKCARvKuYyNx542H1m9LLC+ZMcad00pEKdxphcKQdbbIO1vknS3FzrsU7pBGaSqHGmV1w97I5V9broiIGTUdapMSUuxzHIUl72yRd7bIOztKIWs1CuVkw+6WaOvIJ9YtmDKmSKMBACCtNM3AEcrn83Fjj1lmjplcG+cu9D8hAACgkAp5J4wjvfNGQ1NrbGpsTaw7dc74TN7Noxxk9U4rWSTrbJF3tsg7W+RNqSiHGmVNw57E8txJNVFTVdixc2ic47JF3tki72yRd3bIGgb2Qo9ZZiaPrY5JY0cVaTQAAKRVZbEHAOXuyQ174qlNexPrPnjG7Kg0ywwAANCPJ15tSizX1VbH/KnunAYAABTW89v2J5aPnTa2SCMBAACyaP32ZNPM/ClqEgAAhp+mGThCN/WYZWbWxNFx0eIpRRoNAABQDlZuSN7N+dS5EzTeAwAABdezaWbR9HFFGgkAAJBFPWeacYMxAABGgqYZOAJrtuyLB19qTKx7/2mzorrKoQUAAPRvZY+ZZpYeNaFIIwEAALIqn8/3appZOM0X1AAAgMJ5YXuyJpk/RU0CAMDw881+OAI9Z5mpH1Md71wyrUijAQAAysG2vW3x6u7WxLqlcycWaTQAAEBWbd3bFk0tHYl1i6aZaQYAACiM9lw+Xt7Vkli3wEwzAACMAE0zcJhe3tkc967dmVj33mUzo3ZUVZFGBAAAlIMneswyM76mKo6dNrZIowEAALLq+a3JOzqPG10VsyaOLtJoAACArNmwqyUOdOQT6+ZP8XkJAADDT9MMHKb/77HN0b1sGze6Mv7klBlFGw8AAFAeVm7Yk1g+dc6EqKqsKNJoAACArFq7Ldk0c+y0sVFRoTYBAAAKY932ZE0yZdyoqBtTXaTRAACQZppm4DBs2dMaP39me2Ld5afMiAm1CjcAAGBgK3vMNLP0qIlFGgkAAJBlz/fRNAMAAFAoL+xoTiwvmDKmSCMBACDtNM3AYfjB4w3RnnttnpnRVRXx3mUzizgiAACgHOzYdyBe2tmSWLd07oQijQYAAMgyTTMAAEAxvbA92TQzf6qmGQAARoamGThEu5sPxK1PbU2se8dJ02LquNFFGhEAAFAuntyQnGVm3OjKOG7GuCKNBgAAyKqWA7l4ZVeyoX/RdE0zAABA4fSaaWaqmgQAgJGhaQYO0Y9WbonmA7mu5aqKiA+cPquIIwIAAMrFE6/uSSy/fvaEqK6sKNJoAACArHphx/7I5V9broiIBVPc1RkAACiMAx25eLlHI/98NQkAACOkutgDgHKyv60jfvRkQ2LdWxdPiTmTaos0IgAAoJys7DHTzKlHTSjSSAAAgCxbu21/Yvmo+toYM7qqSKMBAAAKoapqZP7mr6ysHHC5Ly/tbI2O7p38EXHs9PEjNkaGz+HkTfmSd7bIOztknS3yPkjTDByCnz21NZpaOhLrPrh8dpFGAwAAlJPd+w/E+u3NiXVL504s0mgAAIAsW9ejaebYaWOLNBIAAKBQ6uvrC/I6dXV1g27T8Gry85KZE2vj6FnTRmpIjKCh5E16yDtb5J0dss6WrOataQaGqK09Fz94fHNi3TkLJsVCHyQBAABD8OTGPYnlmurKOGHmuCKNBgAAGGkjeYfkI7074PPbkl9QWzR9nDs6lyh3gswWeWeLvLNF3tkhaxiatVv2JpaPnTG+SCMBACALNM3AEN21ents23sgse6qM8wyAwAADM3KDcmmmdfPHh+jqnxgCgAAaVWouzhHHNrdAfP5fDzfY6aZpfNnFHS8HL6s3gkyq+SdLfLOFnlnh6yhb89vSX5msmjGhCKNBACALNA0A0PQkcvHvz66KbFu2VETYslsBRsAADA0K19tSiwvPWpikUYCAABk2ebGlmhqaU+sO36WzzsAACDtdu3aNSL7raysTDSINTY2Ri6XG/A5azY1JpbnjK8csfExvA4nb8qXvLNF3tkh62wphbxL4YZNmmZgCO5duzNe3d2aWGeWGQAAYKj2tLTH2q097uQ815fSAACAwnt2c7Khf0JtdcyZNKZIowEAAAqlo6OjIK+Ty+UGfK229ly8sqs5se6YyTUFGx/Da7C8SRd5Z4u8s0PW2ZLVvDXNwCDy+Xzc9EhylpnFM8bGGa8zhS4AADA0v9+4J/LdlkdXVcSJs8YXbTwAAMDIG8m7JB/J3QFXvrA1sbxw6tjYvXv3cA6PYVQKd4KkcOSdLfLOFnlnRylkXQp3cYaBvLKrJTryyXXHTNHIDwDAyNE0A4N48MXGWLsteUfoK5fPjoqKiiKNCAAAKDcrX92TWD5p1vioqa4s0mgAAIBCKOTd+g7l7oBrt+5NLB87bUwm7yxYrrJ6J8iskne2yDtb5J0dsobe1u9IzjIzY8LoGF/ja4wAAIwc39CBQdz0aHKWmaPra+PNx04u0mgAAIBy9MSGpsTysqMmFmkkAABA1vW8Udix08YWaSQAAEAWvbqrJbE83ywzAACMME0zMIDfb9wTT25I3hH6g8tnRVWlWWYAAICh2dfWEc9t2ZdYt/SoCUUaDQAAkGUtBzp6fUFN0wwAAFBIGxtbE8tzJ9UUaSQAAGSFeQ1hADc9kpxlZsaE0XHxCVOLNBoAAGAgVVVVI7bvysrKAZcH8vTmpujIv7ZcXVkRr59bN6Lj5cgcSd6UF1lni7yzRd7ZIm8YuvXbmyPXrT6piIgF7uoMAAAU0OYeTTOzJmqaAQBgZGma4YiM1Je8SuFDzrVb98X9L+xOrPvA6bOjdvSogo8l7UohbwpH3tkh62yRd7bIm1JVX19fsNeqq6sb8rbPbNuSWD7lqEkxe7pm/HJyKHlT3mSdLfLOFnlni7yhf89v259YPqq+NsaM1tAPAAAUzqYeTTOz6zTNAAAwsjTNcEQK9aW0YnzI+YNfvpRYrh87Kj503nExdrTDZqT5UDtb5J0dss4WeWeLvGFgj7ywI7F8xvzJRRoJAACQdT2bZhZNG1ukkQAAAFnUnsvHlj2aZgAAKCy3hIY+vLxjX9z51KbEuivfeIyGGQAA4JDsb2uPpzY0JtadccyUIo0GAADIup5NMws1zQAAAAW0bU9bdOST62ZP1DQDAMDI0gEAffg/v30hct0KtHGjq+KDb3xd8QYEAAAMateuXSO278rKysSsSo2NjZHL5QZ93sMv7Y72bsVFVUXEgrqKER0rR+5w86b8yDpb5J0t8s6WYuddqBnZ4Ujl8/neM81M1zQDAAAUzsbG5CwzY0dVRt0YX2EEAGBk+YuTIzJSX/Qq5oec2/a2xY8ffzWx7t2vnxH51n2xq3VfQcaQNcX+UJvCknd2yDpb5J0tpZC3L6XRl46OjoK9Vi6XG9LrPf7y7sTy8TPHRU1VYcfKkRtq3pQ/WWeLvLNF3tkib+jblj1tsac1eWwcO1XTDAAAUDibm5JNM7PqaqKioqJIowEAICs0zXBECvXBYyE/5Py3RzfGgW7zgI6qqoj3LZvhQ9YC8qF2tsg7O2SdLfLOFnlD/1Zu2JNYPnXuxCKNBAAAyLq1PWaZmVBTFTMnji7SaAAAgCza1GOmmdl1NUUaCQAAWVJZ7AFAKWlqaY+f/n5LYt2lJ06LaeN9aAQAAByalgO5WLV5b2LdsrkTijQaAAAg657v0TRz7LSx7ugMAAAUVK+mmYmaZgAAGHmaZqCbW57cEvsP5LqWKysiPrh8VhFHBAAAlKtVm/cmZrGsrIg4RdMMAABQJM9vTTbNLJw2tkgjAQAAsmpTU7JpZpaZZgAAKABNM/D/NLd1xL+vbEisu/C4KTF3Um2RRgQAAJSzlRuaEsuLpo+N8TXVRRoNAACQdWt7zDSzSNMMAABQYD1nmpmjaQYAgALQNAP/z21Pb4vG5vbEuivNMgMAABymJzfsSSwvnTuxSCMBAACyruVAR7y6qyWx7lhNMwAAQAEd6MjFtr1tiXWzJmqaAQBg5GmagThYlH3/8c2JdWcdMykWTR9XpBEBAADl7EBHLp7atDexbulRE4o0GgAAIOvWbW+OfLflyoqIBVPHFG08AABA9mzZ0xa5fHKdmWYAACiE6mIPAErBL1bviC17kncyuOqM2UUaDQAAUO6eadgXre25ruWKiDh1jplmAACA4li3bX9i+aj62qgdVVWk0QAAAMVQVTUyNUBlZeWAy50a9hxILI+vqYpJ4zTNlJuh5k06yDtb5J0dss4WeR+kaYbM68jl418f25RYd8qcCXHKXHeBBgAADs/KV5sSywunjY26MUpwAACgONb2aJo5durYIo0EAAAolvr6+oK8Tl1dXZ/rdz+/J7F89ORxBRsTI6e/vEkneWeLvLND1tmS1byz2SoE3dy3ble8vLMlse5Ks8wAAABHYOWG5Ac/SzXlAwAARfR8z6aZ6ZpmAACAwtqwqzmxPLd+TJFGAgBA1miaIdPy+Xzc9EhylplF08bGWcdks4sOAAA4cvl8PlY37E2sO1XTDAAAUCT5fL5X08yiaZpmAACAwnp1V7IumVuvLgEAoDCqiz0AKKZHXm6KZ7fsS6z74Bmzo6KiokgjAgAAyt3mprZoaulIrDtx5vgijQYAACiWqqqqEdt3ZWXlgMvdbWpsib2tyRrluJkTRnR8DJ9DyZryJ+9skXe2yDs7ZE0p27Vr14jst7KyMurqXrtBcWNjY+RyuV7bvbRtT2J5Su3IjYmRM9S8SQd5Z4u8s0PW2VIKedfX1xf09fqiaYZM6znLzNxJNXHBoslFGg0AAJAGz21NNubX1VbHzImjizQaAACgWAr5QWD3Dz17emjD5sTypLGj4vijZ7iBWJkaKGvSR97ZIu9skXd2yJpS0tHRMfhGwyCXy/X5WpsaWxLLMyeMKtiYGDn95U06yTtb5J0dss6WrObtdgZk1qrNe+PxV5sS6644fXZUV/qQCAAAOHxresxmedz0sb6MBgAAFM1TGxoTy0vm1KlRAACAgmptz8W2vQcS6+bU1RRpNAAAZI2mGTLrxh6zzEwdNyouPXFqkUYDAACkxZot+xPLx80YV6SRAAAARDy9cXdi+eS57nYOAAAUVkNTa691MyeOLsJIAADIoupiDwCKYf32/fGbdbsS695/2qwYXa2PDAAAODLPbU3ONLNY0wwAAGTSrl27Bt/oMFVWVkZd3WvNL42NjZHL5Xptl8/n4w+v7k6sWzCpekTHxvAaatakg7yzRd7ZIu/sKIWs6+vrC/p6MBSbGpNNM3W11TG+xlcXAQAoDH95kkn/+ujmxPLE2qp41+unF2k0AABAWmzf2xbb9x1IrDtu+tgijQYAACimjo6Ogr1WLpfr8/Ve3dUSe1uT64+bPqagY2N49Zc16STvbJF3tsg7O2QNB23qMdPM7LqaIo0EAIAsMq0GmbNxd0vc/ez2xLr/curMGDe6qkgjAgAA0mLN1v2J5bGjKuPo+toijQYAAMi6Zxr2JpanjB0V08ePLtJoAACArOo508ysieoSAAAKR9MMmfP9xzdHR/615drqyvgvS2cUb0AAAEBqPLd1X2L52Oljo7KiokijAQAAsu7ZhmSNcvzMcVGhRgEAAAqsZ9PMnDo3HAMAoHA0zZApO/YdiNtXbUuse9frp8ekMaOKNCIAACBN1mxJfiFt8fRxRRoJAABAxLM9apTjZ6hRAACAwtvc1GOmmTozzQAAUDiaZsiUf39ic7S2vzbNTHVlRbz/tJlFHBEAAJAma7fuTywv9oU0AACgSDpy+V6N/SfOVKMAAACF13OmmdlmmgEAoIA0zZAZe1vb48e/35pYd/EJU2PGhJoijQgAAEiTppb22NjjQ5/jpo8t0mgAAICse3lnc+w/kEusW6xpBgAAKLCWAx2xc397Yt3siWaaAQCgcDTNkBk//v2W2NfW0bVcERFXLJ9VvAEBAACp8tzW5B2cR1VVxPwpY4o0GgAAIOtW95hlZsaE0TF1nC+mAQAAhdVzlpmIiFkT3eQYAIDC0TRDJrQcyMW/P9GQWHf+oskxb7IvsAEAAMPjuS37E8vHTh0b1VXKbgAAoDiebUg2zRw/wywzAABA4W1qakssTx5bHWNGVxVpNAAAZJFv75AJt6/a2muaz6vOmF2k0QAAAGm0psdMM8fNGFukkQAAAEQ822OmmRNmapoBAAAKb1NjS2LZLDMAABSaphlSr70jF//22ObEujfMq4vF7qgGAAAMozU9vpB23HQ1BwAAUBztuXw8t1XTDAAAUHybG5Mzzcyu0zQDAEBhaZqhbOXy+SFtd/eaHbG5xzSfVy43ywwAADB8mts64uWdyTuladQHAACK5YXt+6O1Pfk5ihoFAAAohk1NrYllTTMAABRadbEHAIdq3bb98d2HNsbkcaPiby6YN+C2uXw+/vXR5CwzS2aNj2VHTRjBEQIAAFmzdtv+6P51tKqKiIVTxxZtPAAAQLat7jET5py6mpg0ZlSRRgMAAGTZpkZNMwAAFJemGcrG5sbW+NpvXol71u6MiIhRVRXxweWzYsaE/gup367fFS/saE6su+oNs6OiomJExwoAAGTLmh5fSJs3ZUzUjjK5KwAAUBzPNiRrlBNmmmUGAAAojl4zzUzUNAMAQGH5Bg9lo7Iy4jfrd3UtH+jIx02PbO53+3w+Hzc9simxbsHUMXH2/EkjNUQAACCjntu6P7F83HRfSAMAAIqnZ9PM8TPUKAAAQOHta+uIxub2xLpZZpoBAKDANM1QNmZMqInLlkxPrLvt6a2xZU9rn9s/8WpTrNqc/FDoyuWzo9IsMwAAwDBbszVZeyyeMbZIIwEAALKurT0Xa7clG/vNNAMAABTD5sbe3+uaZaYZAAAKrLrYA4BDceUZs+K2p7fGgY58RLw228zfXjiv17bf6zHLzJy6mnjL4imFGCYAAFAEVVVVI7bvysrKfpfb2nPxwvbmxOMnzJowouNhZA2UN+ki62yRd7bIO1vkDUnrtu+P9lw+sW6xmWYAAIAi2NijaWbquFFRU61uBwCgsDTNUFYOzjYzLX78+61d6257emtcecasmDHhtbsQrG7YG4++3JR47gdOnxXVlWaZAQCAtKqvry/Ya9XV1XX9vGpjY68vpJ2xaE5MqB1VsPEwsrrnTbrJOlvknS3yzhZ5k3WrG5IzYR5dXxvja3wkCAAAFN7mpmTTzOw6s8wAAFB42rYpOx9cPjtGVb3W/HKgIx//+ujmxDY39phlZsrYUfH2k6YVZHwAAEC2rNrYmFieN2WshhkAAKBont2SbJo5caZZZgAAgOLY1KhpBgCA4tM0Q9mZOfHgbDPd3frU1ti6py0iIl7a0Rz3Pb8r8fh7l800tScAADAintmUnOXyxDnubA4AABRPz5lmjtc0AwAAFImmGQAASoG52ClLH1w+O259alu05/IRcXC2mZse3RR/c8G8+NdHN0W+27bja6ri8lOmF2egAABAwezatWvwjQ5TZWVl1NW91gzT2NgYuVwuIiJ+/8qOxLbz60eN6FgYeQPlTbrIOlvknS3yzpZi511fX1+w14LBtBzoiBe270+sO2HG+CKNBgAAyLpNTT2aZiZqmgEAoPA0zVCWOmeb+ckftnatu/WprXHR8VPirmeTX1j7k1NmxPgab3UAAEi7jo6Ogr1WLpeLjo6O6MjlY+3W5BfSjps2pqBjYeR15k36yTpb5J0t8s4WeZNla7ftj45udxarrIg4bvrY4g0IAADItJ4zzcwy0wwAAEVQWewBwOG68ozZUV1Z0bV8oCMfn/zJc9GRe+3ToJrqinjv0pnFGB4AAJABL+9sjtb25F3Mj5s+rkijAQAAsm51w77E8jFTxsSY0VVFGg0AAJBle1raY29r8qYWczTNAABQBKbf4IhUVY3MBy2VlZUDLkdEzKkfG+96/fT48ZNbutbta0sWWpedPCOmTawdkTEyfIaSN+kh7+yQdbbIO1vkDa9Z02OWmRkTRkf92FFFGg0AAJB1z/ZomjlhhqZ+AADgoEJ/z6thb3NifUVEzJ40JqqqfLZYznxWnC3yzhZ5Z4ess0XeB2ma4YjU19cX5HXq6ur6XP9Xf3Ri3PbU1jjQke/1WHVlRXzyLcdHff3YkR4ew6y/vEkneWeHrLNF3tkib7JszZbkF9KOm67+AAAAimd1w97E8vEzNc0AAAAHFfp7Xo0bWxPrZ9XVxvSpUwoyBgrHZ8XZIu9skXd2yDpbspp3NluFSI3Zk8bEe047qs/H3nHK7JirYQYAABhBz23t2TTjC2kAAEBx7GvriJd2tiTWnTBzfJFGAwAAZN2GXfsTy77HBQBAsWiaoez9xZsXxqiqisS6ioqIvzhvQZFGBAAAZEE+n4/ntiY/8Fk8Q9MMAABQHM9t2Rf5bstVlRVx7DRfSgMAAIpjw67mxPLcyWOKNBIAALKuutgDoLzt2rVrRPZbWVmZmP6psbExcrlcn9uOjYh3LpkeP/n9lq51bz52ckwZ1T5i42N4HUrelD95Z4ess0Xe2VIKeRdq+ngYyMbG1tjb2pFYt3iGL6QBAADFsXpLcibMhVPHRE21++cBAAAHFfp7Xi9sbUxsN7W2wne5UqAUPiumcOSdLfLODllnSynkXQrf89I0wxHp6OgYfKNhkMvlBnytj501N36/oSnWbW+OmRNGx1+fd3TBxsbwGyxv0kXe2SHrbJF3tsibrGpoaotxo6tiX9vB9/+kMdUxffzoIo8KAAAoFVVVVSO278rKyl7Le1o7YlRVRRzoODjfzImzJozoGCiMvrImveSdLfLOFnlnh6wpZYX+nteWptbE+pkTRvtMMYV8Vpwt8s4WeWeHrLMlq3lrmiEV6sZUxw8/uCQ27m6N2XU1UVVZUewhAQAAKXfa0RPjPz+5LDY1tsaaLftib1tHVFSoRQAAgIMKefe8urq6+Pw7T4m/veTkWLtlT/xhw+5YOG18SdzBj+HV/a6QpJ+8s0Xe2SLv7JA1WfZvHzgpduw7EBsbW2NzY2u8fs6EYg8JAICM0jRDalRWVMRR9bXFHgYAAJAhlRUVMXdSbcydpBYBAACKb3R1ZZw0py5OmuPLmQAAQHFVVlTEtPGjY9r40XGKhhkAAIrIHKAAAAAAAAAAAAAAAACkjplmAAAAAAAAYJjt2rVrxPZdWVkZdXWvzSbT2NgYuVxuxF6P4pF1tsg7W+SdLfLOjlLIur6+vqCvBwAAUOo0zQAAAAAAAMAw6+joKNhr5XK5gr4exSPrbJF3tsg7W+SdHbIGAAAovspiDwAAAAAAAAAAAAAAAACGm6YZAAAAAAAAAAAAAAAAUkfTDAAAAAAAAAAAAAAAAKmjaQYAAAAAAAAAAAAAAIDU0TQDAAAAAAAAAAAAAABA6miaAQAAAAAAAAAAAAAAIHU0zQAAAAAAAAAAAAAAAJA6mmYAAAAAAAAAAAAAAABIHU0zAAAAAAAAAAAAAAAApI6mGQAAAAAAAAAAAAAAAFJH0wwAAAAAAAAAAAAAAACpo2kGAAAAAAAAAAAAAACA1NE0AwAAAAAAAAAAAAAAQOpomgEAAAAAAAAAAAAAACB1NM0AAAAAAAAAAAAAAACQOppmAAAAAAAAAAAAAAAASB1NMwAAAAAAAAAAAAAAAKSOphkAAAAAAAAAAAAAAABSR9MMAAAAAAAAAAAAAAAAqaNpBgAAAAAAAAAAAAAAgNTRNAMAAAAAAAAAAAAAAEDqaJoBAAAAAAAAAAAAAAAgdTTNAAAAAAAAAAAAAAAAkDqaZgAAAAAAAAAAAAAAAEgdTTMAAAAAAAAAAAAAAACkjqYZAAAAAAAAAAAAAAAAUkfTDAAAAAAAAAAAAAAAAKlTXewBUN6mTp06IvvdsWNHvOc974mIiG9+85sxZcqUEXkdSoO8s0Xe2SHrbJF3tsibUjVS9UmE933WyDs7ZJ0t8s4WeWeLvClVahSGg6yzRd7ZIu9skXd2yJpS5nteDAd5Z4u8s0Xe2SHrbJH3QWaaAQAAAAAAAAAAAAAAIHU0zQAAAAAAAAAAAAAAAJA6mmYAAAAAAAAAAAAAAABIHU0zAAAAAAAAAAAAAAAApI6mGQAAAAAAAAAAAAAAAFJH0wwAAAAAAAAAAAAAAACpo2kGAAAAAAAAAAAAAACA1NE0AwAAAAAAAAAAAAAAQOpomgEAAAAAAAAAAAAAACB1KvL5fL7YgwAAAAAAAAAAAAAAAIDhZKYZAAAAAAAAAAAAAAAAUkfTDAAAAAAAAAAAAAAAAKmjaQYAAAAAAAAAAAAAAIDU0TQDAAAAAAAAAAAAAABA6miaAQAAAAAAAAAAAAAAIHU0zQAAAAAAAAAAAAAAAJA6mmYAAAAAAAAAAAAAAABIHU0zAAAAAAAAAAAAAAAApI6mGQAAAAAAAAAAAAAAAFJH0wwAAAAAAAAAAAAAAACpU13sAUBP27Zti1/84hexcuXK2LFjR1RXV8fMmTPjzDPPjD/6oz+KmpqaYg+xLDU2Nsa6deti3bp1sX79+li/fn3s2bMnIiLOPffc+PjHP35I+3vyySfjnnvuifXr10dTU1NMnDgxFixYEBdeeGGceuqpQ9pHR0dH3HvvvXH//ffHxo0bo6WlJSZPnhxLliyJt73tbXHUUUcNaT9NTU3xi1/8Ih577LHYtm1bRERMmzYtTj/99Lj44otjwoQJQ9rPK6+8Er/85S/j6aefjp07d0ZtbW3MmTMnzj777LjggguiqqpqSPsptvXr18eTTz4Za9asiQ0bNkRTU1NUVVXF5MmT47jjjovzzz8/Fi9ePOT9ybp07d+/P5588smuY3rnzp3R1NQUbW1tMW7cuJg7d26ceuqpcf755w/pd/Pcc8/F3XffHWvWrInGxsYYO3ZszJs3L84999w4++yzhzyu+++/P+677754+eWXY//+/VFXVxeLFy+Oiy66KBYtWjSkfbS2tsYvf/nLePjhh6OhoSHa29tjypQpsXTp0njb294W06ZNG9J+snJN+f73vx+333571/I111wTJ5544oDPcWyXvve85z1D2u6EE06Ia6+9dsBt5A1HJivXk0JSnwwuTec5Ncrg0pK3GmVwWbmmqFEOSsux3UmNMrC05U1py8r1pJDUKINL03lOjTK4tOStRhlcVq4papSD0nJsR6hPBpOmrCl9WbmWFJoaZXBpOdepTwaXlqzVJ4PLyjVFfXJQWo7tTmqUgZVC3hX5fD4/4q8CQ/T444/HP/3TP0Vzc3Ofj8+aNSs+97nPxcyZMws8svI30An5UIqpXC4X3/72t+PXv/51v9ucf/75cfXVV0dlZf+TWTU1NcX1118f69ev7/PxUaNGxYc+9KG44IILBhzP888/HzfccEPs3r27z8fr6+vjs5/9bCxcuHDA/dxzzz3xve99L9rb2/t8fOHChbFixYqYOHHigPsptmuuuSaeffbZQbc755xz4qMf/WhUV/ffOynr0s46IuKpp56KL3zhC4NuN2HChPjkJz8Zp5xySr/b3HLLLfHTn/40+vuzYOnSpfHXf/3XMXr06H730dbWFl/5ylfiySef7PPxioqKuPzyy+NP/uRPBhxvQ0NDXH/99bF58+Y+Hx8zZkx86lOfimXLlg24n6xcU1566aX43Oc+Fx0dHV3rBiqmHNulf2x3Go5iSt7lkzelKyvXk0JTn2TnPKdGyVbeahQ1SoQapVOaju1OapT+pTFvSldWrieFpkbJznlOjZKtvNUoapQINUqnNB3bEeqTgaQta0pbVq4lxaBGyca5Tn2Snawj1Cfqk4PUJwel6djupEbpX6nkrWmGkvHiiy/G5z//+Whra4va2tq47LLL4qSTToq2trZ44IEH4t57742Igxe/L37xizFmzJgij7i8dD8hT506NebMmRN/+MMfIuLQiqkf/vCHcdttt0VExDHHHBPveMc7YsaMGbFly5a4/fbb48UXX4yIiMsuuyze97739bmPXC4X1157baxZsyYiIpYvXx4XXnhhjB8/Pp5//vn42c9+Fo2NjVFRURErVqzotzNy+/btsWLFiq4O+0suuaTrj6snnngifv7zn0dHR0fU1dXFF7/4xZgyZUqf+1m5cmV86Utfinw+H3V1dfHud787jj322Ni7d2/cc8898eijj0ZExOLFi+Paa68d8GJTbJ/85Cdjy5YtUV9fH2eeeWYsXrw4pk6dGrlcLtauXRt33nln7Ny5MyIizjrrrPj0pz/d775kXdpZRxwspr75zW/GiSeeGPPnz4+pU6fGpEmTIp/Px44dO+Lhhx+ORx99NHK5XFRXV8f//J//M+bNm9drP7/61a/iO9/5TkREzJgxI971rnfF0UcfHbt27Yq77rornnnmmYgY/D3z1a9+NR588MGIiDjxxBPj4osvjvr6+njllVfi1ltvjS1btkRExNVXXx0XXnhhn/tobm6OFStWdBVSF1xwQZx11lkxevToWLVqVdx2223R0tISNTU1cd111/X574nIzjUll8vFf//v/z3Wr18fdXV10djYGBEDF1OO7dI/tjt1Xrvf+ta3xlvf+tZ+t6utrY3p06f3+Zi8yydvSlNWrifFoD7JznlOjZKtvNUoahQ1ykFpO7Y7qVGylTelKSvXk2JQo2TnPKdGyVbeahQ1ihrloLQd2xHqkyxlTenKyrWkWNQo2TjXqU+yk3WE+kR9oj7plLZju5MapfTz7r/1FArspptuira2tqiqqoq///u/T0ztdtJJJ8WsWbPi+9//fmzevDnuuOOOIXflcdDll18eCxYsiAULFsSkSZNi69at8YlPfOKQ9rFp06a44447IiJiwYIF8T/+x//o6kZeuHBhnHbaaXHttdfG+vXr44477ojzzz+/z87e++67r+uE/Na3vjU+/OEPdz22cOHCOPXUU+Nv//Zvo7m5OW688cY4+eST+5x66+abb46mpqaIiPjUpz4VZ555Ztdjxx9/fMyfPz+++tWvRmNjY9x88819Fozt7e1x4403Rj6fjzFjxsR1112XGPMpp5wS3/3ud+M//uM/Ys2aNfHb3/42zjvvvEP6vRXSnDlz4r3vfW+84Q1v6HXxWLRoUZxzzjnx+c9/PjZv3hwPPPBAvOUtb4kTTjih135kXfpZRxw8N37zm9/s9/E3vvGN8eijj8aXv/zlaG9vj5/85Cfxmc98JrHN3r174wc/+EFEHPwfLf/wD/+Q6NhdtmxZ3HDDDfHEE0/EAw88EBdeeGGff6SvWrWqq5BatmxZfPazn+16D3a+Z1asWBHbt2+PH/zgB/GGN7whxo8f32s/t99+e1ch9f73vz/e8Y53dD22aNGiOPHEE+Paa6+N1tbWuOmmm/rtus7KNeUXv/hFrF+/PubMmROnn3561x/N/XFsl8ex3dPEiRPj6KOPPuTnybs886a0ZOV6Ugzqk+yc59Qo2cpbjaJGUaOk89juSY3ymizkTWnJyvWkGNQo2TnPqVGylbcaRY2iRknnsd2d+uQ1ac+a0pOVa0mxqFGyca5Tn2Qn6wj1ifpEfRKRzmO7JzXKa0ot7/JovyL11q1b1zXV4Jvf/ObERa/TpZdeGnPmzImIgxeP/qZpom/vec97YtmyZTFp0qTD3sddd93VNS3cVVdd1Wv6vpqamrjqqqsiIqKjoyPuvPPOPvfTeWIfP358fOADH+j1+MyZM+Nd73pXRBycvq+zk7C73bt3x+9+97uIiHj961+fOCF3euMb3xivf/3rIyLit7/9bZ9ThD366KNdXdHvete7+ryIfOADH4hx48ZFxME/9ErZihUr4o1vfGO/3ZYTJ06MK664omv54Ycf7nM7WZd+1hExpK7a5cuXx+zZsyMi+pzS9d577439+/dHRMSf/dmf9ZrirrKyMj784Q93vVZ/v5fOrKuqqhLbd5o4cWL82Z/9WURE7Nu3r88pBNvb2+MXv/hFRBz8HwOXXnppr22OO+64ePOb3xwREatXr45169b12iYr15Tt27fHj370o4iI+MhHPjLgNLydHNvlcWwPF3lnK2+GX1auJ8WiPsnOeU6Nkq281ShqFDVKOo/t4SLvbOXN8MvK9aRY1CjZOc+pUbKVtxpFjaJGSeexPRxknZ2sGRlZuZYUkxolG+c69Ul2so5Qn6hP1CcR6Ty2h4u8Rz5vTTOUhO4HXedFsqfKyso499xzI+LghbhzGjkKI5/Px2OPPRYRB//I6euPk4iDHcKdf7g9/vjjkc/nE49v2rQpNm7cGBERZ555ZtTU1PS5n+7dgn2dlLvvu7/3TPf95PP5ePzxx3s93vlv6vma3dXU1HSd9Dds2BCbNm3q9/XKQffu8c4LUneyTk/WnTqnpDxw4ECvxzp/L2PGjIkzzjijz+dPmTIllixZEhEH7zTQ3NyceLy5uTmefvrpiIhYsmRJv1PtnXHGGV1j6SvrZ555pquwO/fcc/stFgd7z2TlmvLd7343Wlpa4txzz+3zTiI9ObbTd2wPRN7ZypuRkZXrSblynkvXeU6Nkq28I9QofUnDNUWNclCWj+2ByDtbeTMysnI9KVfOc+k6z6lRspV3hBqlL2m4pqhRDsrysd0fWWcna0ZOVq4l5cy5Lj3nOvVJdrLupD7pLQ3XFPXJQVk+tgci78LkrWmGkvDcc89FxME3//z58/vdrvvFovM5FMbWrVtj165dEXFwaq2BdOa0c+fO2LZtW+Kxzmm/um/Xl0mTJsWsWbMiou+sh7qf7o91f07PdbNnzx7w7gxpeu9177Tu649VWacn64iDfwi99NJLERFdHfed2tvbuzr4Fy1aNGAHe+fv5cCBA7F+/frEY+vXr+96Xw2UUXV1ddcfdN2f02moWS9YsKDrD7q+MsrCNeXBBx+MlStX9tsR3hfHdvnmfTjkna28GRlZuJ6UM+e5dL3v1CjZyluNks5rihql936ydmwPRt7ZypuRkYXrSTlznkvX+06Nkq281SjpvKaoUXrvJ2vH9kBknZ2sGTlZuJaUO+e69Lz31CfZyTpCfZLWa4r6pPd+snZsD0behclb0wwlYcOGDRFxcNqnqqqqfrfr7JDr/hwKo/vvu+cfZD0NlNOh7Kfz8R07dkRLS0uf+xk7duyAJ9P6+vqujufODspOLS0tsWPHjl5jHmgsfe2n3Kxevbrr574ykHX5Z93a2hqbN2+OO++8M6655pquafsuvvjixHabNm2KXC4XEUPPKKL376V71oP9fjsf7+joiIaGhn73M9B4qqqquqbq6yujtF9T9u3bFzfddFNE9D3Van8c2+V7bD/88MPxV3/1V/H+978/rrjiivjUpz4VX//612PVqlX9Pkfe5Zs3pSPt15Ny5zyXrvOcGiX9eatR0n1NUaO8JivHthrloKzkTelI+/Wk3DnPpes8p0ZJf95qlHRfU9Qor8nCsa0+OSgLWVNa0n4tSQPnuvSc69Qn6c9afZLua4r65DVZObbVKAeVYt79txpCgbS1tcWePXsiIvqd6q3T+PHjo6amJlpbW7sOJgqj++97sJymTp3a5/MiDnY3dpo8efKA++l8nXw+Hzt37kycODv3O9hYOsfz6quv9hrLofybuj++ffv2QV+zVOVyubjtttu6lt/4xjf22kbW5Zn1fffdF//8z//c7+OXXXZZnH322Yl1h5NRRO+sj+T3O3fu3F7jqampiXHjxg26n5dffjmampriwIEDMWrUqIjIxjXl+9//fuzevTuOO+64OP/884f8PMd2eR7bEb0LnIaGhmhoaIjf/va3cfrpp8fHP/7xGDt2bGIbeZdv3pSGLFxPyp3zXHrOc2qU9OatRlGjDMaxXZ7HdoQapa+xpTlvSkMWriflznkuPec5NUp681ajqFEG49guz2NbfdJ7bGnNmtKRhWtJGjjXpeNcpz5Jb9bqE/XJYBzb5XlsR6hR+hpbqeStaYai696hVltbO+j2tbW10dra2quzjZF1KDl1TqfX83kREc3NzcOyn87lobxnOvdzJGPp/ng5v/d+/vOfd03TuHz58j6nNJR1OrLuNG/evLj66qtj4cKFvR4broyG6/fbuZ9DybpzP53FVNqvKc8++2z8+te/jqqqqvjIRz4SFRUVQ36uY7v8ju2amppYtmxZLFmyJObMmRO1tbXR1NQUq1evjl/96lexZ8+eeOyxx+If//Ef4+///u8TU+/Ku/zyprSk/XqSBs5z6TnPqVGylXeEGmUw5XZNUaNk69hWo2Qrb0pL2q8naeA8l57znBolW3lHqFEGU27XFDVKdo5t9Ul2sqb0pP1akhbOdek416lPspN1J/XJwMrtmqI+ydaxrUYp/bw1zVB0bW1tXT93Pwn0p3Ob7s9j5B1KTp1/1PR8XkTEgQMHhmU/nctDec9070w+3LF0f7z788rJ6tWr44c//GFERNTV1cVHPvKRPreTdXlmffrpp8eXv/zliDj479+yZUs89NBD8eijj8bXvva1uPLKK2PZsmWJ5wxXRof7++1vP4eSdc/9pPma0t7eHt/+9rcjn8/HJZdcEkcfffQhPd+xXX7H9re+9a0+78Zx8sknx0UXXRTXX399vPjii7F69er4j//4j8TUvPIuv7wpLWm+nqSF81w6znNqlKGNpVzzVqP0/jlt1xQ1SvaObTVKtvKmtKT5epIWznPpOM+pUYY2lnLNW43S++e0XVPUKNk6ttUn2cma0pPma0maONeV/7lOfTK0sZRr1uqT3j+n7ZqiPsnesa1GKf28K0dszzBEo0eP7vq5vb190O07t+n+PEbeoeTU/aTVM6fuJ9oj2U/n8lDeM537OZKxdH+8+/PKxauvvho33HBDdHR0xKhRo+Kv/uqvoq6urs9tZV2eWY8bNy6OPvroOProo2PhwoVx1llnxWc+85n4xCc+EVu3bo1//Md/jPvuuy/xnOHK6HB/v/3t51Cy7rmfNF9Tfvazn8XGjRtj6tSpcfnllx/y8x3b5XdsDzR97aRJk+Kv//qvo6qqKiIifvnLXyYel3f55U1pSfP1JC2c58r/PKdGSX/eapTeP6ftmqJGyd6xrUbJVt6UljRfT9LCea78z3NqlPTnrUbp/XParilqlGwd2+qT7GRN6UnztSRNnOvK+1ynPkl/1uqT3j+n7ZqiPsnesa1GKf28Nc1QdIc6rdKhTPvE8DmUnFpbW/t8XkTEmDFjhmU/nctDec907udIxnKoUwGWkq1bt8YXvvCF2LdvX1RWVsZf/uVfxgknnNDv9rIu36z7cs4558Qb3vCGyOfz8S//8i+xd+/erseGK6Ph+v127udQsu65n7ReUzZu3Bi33XZbRER86EMfOqzxOrbTdWxHRMyYMSNOPvnkiIhoaGiInTt3dj0m7/TlTWGl9XqSJs5z5X2eU6NkK++e1CgDK5drihrFsd0XNUr/0pg3hZXW60maOM+V93lOjZKtvHtSowysXK4pahTHdk/qk/6lLWsKL63XkrRxrivfc536JDtZ90V9MrByuaaoTxzbfVGj9K9QeWuaoehGjx4dEyZMiIiIHTt2DLjt3r17uw6wKVOmjPjYeE333/dgOW3fvr3P50VETJ48uevn7if9vnS+TkVFReJ53fc72Fi6j2egsQy2n+6PT506ddDXLBU7d+6M6667Lnbt2hUVFRXxsY99LE4//fQBnyPr8sx6IJ2Zt7a2xu9///uu9YeTUUTv3++hvGcG+v12jqe1tTX27ds3pP1MnDgx0V2c1mvKz3/+82hvb48ZM2ZEa2trPPDAA73+e/XVV7u2X7VqVdf6zj8qHdvpO7YjIubOndv1c/c85J3OvCmctF5P0sR5rnzPc2qU3mNJc979UaP0rZyuKWoUx3Z/1CgDjyUiXXlTOGm9nqSJ81z5nufUKL3Hkua8+6NG6Vs5XVPUKI7tvqhPBh5LRHqyprDSei1JG+e68jzXqU96jyWtWQ9EfdK3crqmqE8c2/1Roww8loiRzbt6xPYMh2Du3Lnx7LPPRkNDQ3R0dHRNQdXTpk2bEs+hcLr/vjdu3DjgtgPl1HM/8+bN63c/na8zZcqUXt2Dc+fOjRdeeCH2798fu3fvjkmTJvW5j127dkVzc3NERMyZMyfx2JgxY2LKlCmxY8eOxJgHGktf+ylVTU1N8YUvfCG2bNkSERFXXXVVnHvuuYM+T9bll/VgJk6c2PXztm3bun6ePXt2VFZWRi6XGzTrgX4v3bMe7Pfb+XhVVVXMnDmz134eeeSRrtdbtGhRn/vo6OiIhoaGPsfSuZ+0XVM6pzHcsmVLfO1rXxt0+5/+9KddP3/961+P2tpax3YKj+2Ig4VLX+SdzrwprDReT9LEea48z3NqlNdkIe+BqFHK/5qiRnFs90eNMvBY+toPDFUarydp4jxXnuc5NcprspD3QNQo5X9NUaM4tvuiPhl4LH3tB4YqjdeStHGuK79znfrkNWnPejDqk/K/pqhPHNv9UaMMPJa+9jOczDRDSTjuuOMi4mDX6QsvvNDvdqtXr+71HApj+vTpUV9fHxERzz777IDbdj4+efLkmDZtWuKxxYsXd/3cPc+edu/eHZs3b46IvrMe6n66P9b9OT3Xbdq0KXbv3j2k/ZTDe2///v3xD//wD7Fhw4aIiHjf+94XF1100ZCeK+vyynoo+pvKr7q6OhYuXBgREWvXro329vZ+99H5exk1alQsWLAg8diCBQuiuro6sV1f2tvbY+3atb2e02moWa9fv77rzgF9ZeSa0jfHdjrz7jzPRyQ79OWdzrwpLNeT0uY8V37vOzVKtvIejBpl4H9Tf/tJG8d2OvNWowy+nzTlTWG5npQ257nye9+pUbKV92DUKAP/m/rbT9o4ttOXt/pk8P2kJWsKz7Wk9DnXldd7T32SnayHQn0y8L+pv/2kjWM7nXmrUQbfz0jmrWmGkrB8+fKun//zP/+zz21yuVz85je/iYiIcePGxYknnliQsXFQRUVF19R/Gzdu7PqDqKe1a9d2df2ddtppvTojZ8+e3dUJ+NBDD3X9QdTTfffd1/Vz9/dHp+777u89030/FRUVcdppp/V6vPsUlt1fs7vW1tZ46KGHIuJgB+Xs2bP7fb1S0NraGtdff328+OKLERHx7ne/Oy677LIhP1/W5ZP1UHX+myIijj766MRjnb+X5ubmru7/nnbs2BFPP/10REScdNJJMWbMmMTjY8aMiSVLlkRExNNPP93vdHqPPPJIV2dxX1mfeOKJMXbs2IiI+M1vfhP5fL7P/Qz2nknjNeXjH/943HLLLQP+d/nll3dtf80113Stnz59ekQ4ttN4bG/dujWeeuqpiIiYMWNGopiSd/rypvDSeD1JE+e58jrPqVGylfdQqFF6K7drihrFsd0XNcp9vR6PSG/eFF4arydp4jxXXuc5NUq28h4KNUpv5XZNUaM4tntSn9zX6/GIdGZNcaTxWpI2znXlc65Tn2Qn66FSn/RWbtcU9Yljuy9qlPt6PR5R2Lw1zVASFi5cGMcff3xEHDzA+jrg77zzzq6D/W1ve1uvzlVG3sUXXxyVlQdPGzfeeGO0tbUlHm9ra4sbb7wxIg5OyXfJJZf0uZ+3v/3tERGxd+/e+P73v9/r8YaGhrj11lsjImLmzJl9npQnTZoUb3rTmyIi4g9/+EM8/PDDvbZ56KGH4g9/+ENERJxzzjl9ThG2fPnymDFjRkRE3HrrrV1TAXb3b//2b7Fv376IiHjHO97R57+pVLS3t8eXv/zleO655yLiYGZ/+qd/esj7kXXpZx1x8A+Jntn0dOedd8aTTz4ZEQc7kjvPtZ0uuOCCrgLmhz/8YezZsyfxeC6Xi+9+97uRy+Uiov/fS2fWHR0d8S//8i9d23dqamqKH/zgBxFxsHg5//zze+2juro63va2t0XEwT/+7rjjjl7brF27tusPsRNOOKHrDgrduab0z7FdHsd2RMTjjz8eHR0d/T6+e/fu+MpXvtJ155A/+qM/6rWNvMsnb0qT60npc54rj/OcGiVbeatR1CiHyrFdHsd2hBola3lTmlxPSp/zXHmc59Qo2cpbjaJGOVSO7fI4ttUn2cma0uVaUh6c60r/XKc+yU7WEeoT9cmhc2yXx7EdoUYpl7wr8v2190GBvfjii/H5z38+2traora2Nt71rnfFiSeeGG1tbfHggw/GPffcExERs2bNii9+8Yu9OmAZ2Jo1axInnKampq4T4nHHHRcXXHBBYvvzzjuvz/388Ic/jNtuuy0iIo455ph45zvfGTNmzIgtW7bE//2//7er6/2yyy6L973vfX3uI5fLxTXXXNP1B/8ZZ5wRF1xwQYwfPz7WrVsXP/3pT6OxsTEqKipixYoVceqpp/a5n+3bt8eKFSuiqakpqqqq4tJLL41ly5ZFRMQTTzwRd955Z3R0dMTEiRPjS1/6UkyZMqXP/axcuTK+9KUvRT6fj7q6uvjjP/7jWLhwYezduzfuvfferq7sxYsXx7XXXtt1YSpFX/7yl+PRRx+NiIOd4ldeeeWA21dXV/fbmSnr0s464mBXenNzc5xxxhmxePHimDFjRtTW1kZLS0u88sor8bvf/a7rd19dXR0rVqyIk08+udd+fvWrX8V3vvOdiDjYxfzud787jj766Ni1a1f8/Oc/j2eeeSYiIs4666z49Kc/3e94vvrVr8aDDz4YEQfvJnDJJZdEfX19vPLKK/Gzn/0stmzZEhERV199dVx44YV97qO5uTlWrFjRNf3fhRdeGG984xtj9OjR8cwzz8Stt94aLS0tMXr06PjCF74Q8+bN63M/Wbym3HLLLfGTn/wkIg7egaC/uyo4tkv/2I44eHy3t7fHGWecEYsWLYrp06fH6NGjo6mpKVavXh2/+tWvuv7nx+LFi+Pzn/98jBo1qtd+5F0eeVO6sng9KRT1SXbOc2qUbOWtRlGjdKdGSc+xHaFGyVrelK4sXk8KRY2SnfOcGiVbeatR1CjdqVHSdWyrT7KRNaUti9eSQlKjZONcpz7JTtYR6hP1SZL6JD3HdoQapVzy1jRDSXn88cfjn/7pn7qmdetp1qxZ8bnPfS5mzpxZ4JGVv2984xtdU9QNxS233NLn+lwuF//n//yfAafcOv/88+Pqq68e8OTV1NQU119/faxfv77Px0eNGhUf+tCHehV5PT3//PNxww03xO7du/t8fNKkSfHZz342jj322AH3c88998T3vve9rk7OnhYuXBgrVqyIiRMnDrifYnvPe95zSNtPmzYtvvGNb/T5mKxLO+uIg39sbdu2bdDtpkyZEh/72Mf6LKQ63XLLLfHTn/6036kyTz311Phv/+2/xejRo/vdR1tbW3zlK1/puuNBTxUVFfHHf/zHg75PGxoa4vrrr+8qqHoaM2ZMfOpTn+r6I6w/WbumDLWYcmyX/rEdMfTj+4wzzoiPfvSjMW7cuD4fl3d55E1py9r1pFDUJ9k5z6lRspW3GkWN0p0aJT3HdoQaJWt5U9qydj0pFDVKds5zapRs5a1GUaN0p0bJ3rGtPin/rCl9WbuWFJIaJRvnOvVJdrKOUJ+oT5LUJ+k5tiPUKOWSt6YZSs62bdvirrvuipUrV8bOnTujuro6Zs6cGW94wxvioosuipqammIPsSwNVzHVaeXKlXHPPffE+vXrY8+ePTFhwoRYsGBBvOUtb+m387Cnjo6OuPfee+P++++PjRs3RktLS0yePDlOOumkuPjii+Ooo44a0n6amprirrvuiscee6zrwjN9+vQ47bTT4pJLLokJEyYMaT+vvPJK/OIXv4hVq1bFzp07o7a2NubMmRNnn312XHDBBVFVVTWk/RTTcBZTnWRdujZt2hQrV66MNWvWxJYtW2L37t2xd+/eGD16dEycODHmzZsXy5YtizPPPHNI587nnnsu7r777nj22WejsbExxo0bF6973evivPPOi7PPPnvI47r//vvjvvvui5dffjn27dsXdXV1cfzxx8dFF10UixYtGtI+Wlpa4u67746HH344Ghoaor29PaZMmRKnnnpqXHzxxTFt2rQh7SdL15ShFlOdHNulbfXq1bF69epYu3ZtbNmyJfbs2RPNzc1RW1sbU6ZMiUWLFsV555035GNK3nBksnQ9KRT1yeDScp5To2QrbzXK4LJ0TVGjpOfYjlCjDEWa8qb0Zel6UihqlMGl5TynRslW3mqUwWXpmqJGSc+xrT4ZXFqypjxk6VpSSGqUwaXhXKc+yU7WEeqTocjSNUV9kp5jO0KNMhSlkLemGQAAAAAAAAAAAAAAAFKn/7l5AAAAAAAAAAAAAAAAoExpmgEAAAAAAAAAAAAAACB1NM0AAAAAAAAAAAAAAACQOppmAAAAAAAAAAAAAAAASB1NMwAAAAAAAAAAAAAAAKSOphkAAAAAAAAAAAAAAABSR9MMAAAAAAAAAAAAAAAAqaNpBgAAAAAAAAAAAAAAgNTRNAMAAAAAAAAAAAAAAEDqaJoBAAAAAAAAAAAAAAAgdTTNAAAAAAAAAAAAAAAAkDqaZgAAAAAAAAAAAAAAAEgdTTMAAAAAAAAAAAAAAACkjqYZAAAAAAAAAAAAAAAAUkfTDAAAAAAAAAAAAAAAAKmjaQYAAAAAAAAAAAAAAIDU0TQDAMNo3rx5UVFREVdeeWWxhwIAAKBGAQAASooaBQAAKBXqE4Ds0DQDAAAAAAAAAAAAAABA6miaAQAAAAAAAAAAAAAAIHUq8vl8vtiDAAAAAAAAAAAAAAAAgOFkphkAAAAAAAAAAAAAAABSR9MMAAAAAAAAAAAAAAAAqaNpBgD6sWnTplixYkUsXbo06urqYtSoUTFjxoxYsmRJvPe9742bbropmpqaEs+ZN29eVFRUxJVXXplY/9JLL0VFRcWQ/zvvvPP6Hdd//ud/xgc/+MGYP39+jB07NiZOnBhLliyJz372s7Fp06YR+E0AAAClQI0CAACUEjUKAABQKtQnAAykutgDAIBS9Lvf/S4uvfTSXsXS1q1bY+vWrbFq1aq4+eabY+rUqXHppZcWZEwtLS1x1VVXxc0339zrsVWrVsWqVavim9/8Zvz7v/97vP3tby/ImAAAgMJQowAAAKVEjQIAAJQK9QkAg9E0AwA9tLa2xp/+6Z9GU1NTTJgwIT72sY/Fm9/85pg+fXq0tbXFiy++GA8++GDceuutQ97nnDlz4umnnx5wm1tuuSWuu+66iIh43etel3gsn8/H5ZdfHj//+c8jIuLtb397vOc974n58+dHZWVlPProo/GVr3wlXnnllbj88svjgQceiNNOO+0Q/+UAAEApUqMAAAClRI0CAACUCvUJAENRkc/n88UeBACUkl//+tdxwQUXRETEHXfc0e8dBtrb22P//v0xceLErnXz5s2Ll19+OT74wQ/GTTfdNOTXfPzxx+Occ86J5ubmOP744+Phhx9O7Pc73/lOXH311TFq1Ki4/fbb46KLLuq1j127dsWb3vSmeOaZZ+Kss86K+++/f8ivDwAAlC41CgAAUErUKAAAQKlQnwAwFJXFHgAAlJqGhoaun88555x+t6uurk4UPIdr06ZN8c53vjOam5tj8uTJcccddyT2m8/n40tf+lJERHzqU5/qs5CKiKivr48bbrghIiIeeOCBeP755494bAAAQPGpUQAAgFKiRgEAAEqF+gSAodA0AwA9zJo1q+vnG2+8cURfq7m5OS677LLYtGlTVFdXx09+8pNYsGBBYpvVq1fH+vXrIyLi8ssvH3B/3Yu/hx56aPgHDAAAFJwaBQAAKCVqFAAAoFSoTwAYCk0zANDD2WefHfPnz4+IiL/8y7+M5cuXx/XXXx8PPPBAtLW1DetrfehDH4rHHnssIiL+9//+3/HmN7+51zaPP/54189nnnlmVFRU9Pvf+PHju7btficFAACgfKlRAACAUqJGAQAASoX6BICh0DQDAD2MGjUq7rjjjjj++OMjIuKxxx6Lv/u7v4uzzz47Jk2aFBdddFH88Ic/jI6OjiN6neuuuy5uvvnmiIj4i7/4i/jYxz7W53Zbt249rP3v37//sMcGAACUDjUKAABQStQoAABAqVCfADAU1cUeAACUohNOOCGefvrpuOOOO+KOO+6I3/72t7Fu3bpobm6Ou+++O+6+++74X//rf8Vdd90V06dPP+T9//SnP41rrrkmIiIuuOCC+NrXvtbvtt2LtjvuuCPmzZs3pNc4nHEBAAClSY0CAACUEjUKAABQKtQnAAxG0wwA9KOqqiouu+yyuOyyyyIiYvPmzfHLX/4yvvGNb8QTTzwRTzzxRPz5n/953HrrrYe03yeffDKuuOKKyOfzsXDhwrjllluiurr/S/KUKVO6fp40aVKcdNJJh/XvAQAAypsaBQAAKCVqFAAAoFSoTwAYSGWxBwAA5WLWrFlx1VVXxUMPPRRLly6NiIg777wzmpubh7yPhoaGeOc73xn79++Purq6uOOOO2Ly5MkDPufUU0/t+vmBBx44vMEDAACpo0YBAABKiRoFAAAoFeoTALrTNAMAh2jUqFFx7rnnRkREe3t77N69e0jPa2lpicsuuyxeffXVqKqqiptvvjkWL1486POWLl0ac+fOjYiIb3/729HS0nLYYwcAANJHjQIAAJQSNQoAAFAq1CcARGiaAYBefve738W6dev6fbytrS1+85vfRETE+PHjY9q0aUPa74c//OF45JFHIiLihhtuiIsuumhIz6usrIy/+7u/i4iIF154Ia644opobW3td/umpqb4+te/PqR9AwAApU+NAgAAlBI1CgAAUCrUJwAMRXWxBwAApebee++N6667Lt70pjeb0l7HAAADNklEQVTFJZdcEieffHJMmzYtmpubY+3atfGtb30rVq5cGRER//W//teorh78cvq9730vfvCDH0RExPnnnx9vectbYtWqVf1uP27cuDjmmGO6lj/60Y/Gr371q7j11lvjxz/+caxcuTL+/M//PJYvXx51dXXR1NQUa9asifvuuy9uv/32qK2tjU984hNH+JsAAABKgRoFAAAoJWoUAACgVKhPABgKTTMA0IdcLhe/+c1vuu400Jd3vvOdcf311w9pf6+88krXz7/+9a9jyZIlA25/7rnnxn333de1XFFRET/60Y/i05/+dHzrW9+K9evXx9/8zd/0+/zp06cPaVwAAEB5UKMAAAClRI0CAACUCvUJAIPRNAMAPXzmM5+Jk08+Oe6555548sknY9OmTbF169aIiJg5c2YsX748rrjiirjkkksKOq5Ro0bFP//zP8fHPvax+M53vhP33XdfvPLKK7F3794YP358HHPMMbFs2bJ429veFpdeemlBxwYAAIwcNQoAAFBK1CgAAECpUJ8AMBQV+Xw+X+xBAAAAAAAAAAAAAAAAwHCqLPYAAAAAAAAAAAAAAAAAYLhpmgEAAAAAAAAAAAAAACB1NM0AAAAAAAAAAAAAAACQOppmAAAAAAAAAAAAAAAASB1NMwAAAAAAAAAAAAAAAKSOphkAAAAAAAAAAAAAAABSR9MMAAAAAAAAAAAAAAAAqaNpBgAAAAAAAAAAAAAAgNTRNAMAAAAAAAAAAAAAAEDqaJoBAAAAAAAAAAAAAAAgdTTNAAAAAAAAAAAAAAAAkDqaZgAAAAAAAAAAAAAAAEgdTTMAAAAAAAAAAAAAAACkjqYZAAAAAAAAAAAAAAAAUkfTDAAAAAAAAAAAAAAAAKmjaQYAAAAAAAAAAAAAAIDU0TQDAAAAAAAAAAAAAABA6miaAQAAAAAAAAAAAAAAIHU0zQAAAAAAAAAAAAAAAJA6mmYAAAAAAAAAAAAAAABIHU0zAAAAAAAAAAAAAAAApI6mGQAAAAAAAAAAAAAAAFJH0wwAAAAAAAAAAAAAAACpo2kGAAAAAAAAAAAAAACA1NE0AwAAAAAAAAAAAAAAQOr8/7QfXnezPbkiAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -359,31 +342,27 @@ "plt.show()" ] }, - { - "cell_type": "markdown", - "id": "df47932f-d736-4e23-b3ee-d79a94c6b46e", - "metadata": {}, - "source": [ - "# Series Search" - ] - }, { "cell_type": "markdown", "id": "a716ea8f-9b1d-428c-8b41-0ab17af814d1", "metadata": {}, "source": [ - "## Dot products" + "## Updating the dot products used in MASS when computing matrix profiles\n", + "\n", + "This is part of the STOMP algorithm, which update the dot products of the sliding query instead of recomputing it everytime. When you compute $MASS(X,q_i)$, and $q_i$ is taken from a series $Y$ such as $q_i = Y[i:i+L]$, you can compute the dot product of $q_0$, and then only update it for subsequent $q_1, ...$" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 15, "id": "9ab17a04-76ff-422f-ab91-165959af6924", "metadata": {}, "outputs": [], "source": [ - "from aeon.similarity_search._commons import get_ith_products\n", - "from aeon.similarity_search.matrix_profiles.stomp import _update_dot_products_one_series\n", + "from aeon.similarity_search.series._commons import (\n", + " _update_dot_products,\n", + " get_ith_products,\n", + ")\n", "\n", "\n", "def compute_all_products(X, T, L):\n", @@ -409,7 +388,7 @@ " \"\"\"\n", " prods = get_ith_products(X, T, L, 0)\n", " for i in range(T.shape[1] - L + 1):\n", - " prods = _update_dot_products_one_series(X, T, prods, L, i)\n", + " prods = _update_dot_products(X, T, prods, L, i)\n", " return prods\n", "\n", "\n", @@ -428,23 +407,24 @@ " mask = np.ones((1, search_space_size), dtype=bool)\n", " # Used for numba compilation before timings\n", " compute_all_products(X, T, query_length)\n", - " _times = %timeit -r 3 -n 7 -q -o compute_all_products(X, T, query_length)\n", - " times.loc[(size, _query_length), \"compute_all_products\"] = _times.average\n", - " # Used for numba compilation before timings\n", " update_products(X, T, query_length)\n", - " _times = %timeit -r 3 -n 7 -q -o update_products(X, T, query_length)\n", + "\n", + " _times = %timeit -r 2 -n 2 -q -o compute_all_products(X, T, query_length)\n", + " times.loc[(size, _query_length), \"compute_all_products\"] = _times.average\n", + "\n", + " _times = %timeit -r 2 -n 2 -q -o update_products(X, T, query_length)\n", " times.loc[(size, _query_length), \"update_products\"] = _times.average" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 16, "id": "84953d86-45c6-41d7-be9d-6b136d1505b2", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADMIAAAOcCAYAAAAWl/zsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iUZd728XMmPQQmk9ATOgQQKaKgIAICoqIolgULoChrwb66lvV1n+PZXZ+1rqui6O5KWaRYKOqyKlICSgfpCiH0BBJIMmmkz9zvH0OGhGSSSZ1M8v0cBwczc7drZq5kcp9z/67LZBiGIQAAAAAAAAAAAAAAAAAAAAAAAKCBM3u7AQAAAAAAAAAAAAAAAAAAAAAAAIAnKIQBAAAAAAAAAAAAAAAAAAAAAACAT6AQBgAAAAAAAAAAAAAAAAAAAAAAAD6BQhgAAAAAAAAAAAAAAAAAAAAAAAD4BAphAAAAAAAAAAAAAAAAAAAAAAAA4BMohAEAAAAAAAAAAAAAAAAAAAAAAIBPoBAGAAAAAAAAAAAAAAAAAAAAAAAAPoFCGAAAAAAAAAAAAAAAAAAAAAAAAPgECmEAAAAAAAAAAAAAAAAAAAAAAADgEyiEAQAAAAAAAAAAAAAAAAAAAAAAgE+gEAYAAAAAAAAAAAAAAAAAAAAAAAA+gUIYAAAAAAAAAAAAAAAAAAAAAAAA+AQKYQAAAAAAAAAAAAAAAAAAAAAAAOATKIQBAAAAAAAAAAAAAAAAAAAAAACAT6AQBgAAAAAAAAAAAAAAAAAAAAAAAD6BQhgAAAAAAAAAAAAAAAAAAAAAAAD4BAphAAAAAAAAAAAAAAAAAAAAAAAA4BMohAEAAAAAAAAAAAAAAAAAAAAAAIBPoBAGAAAAAAAAAAAAAAAAAAAAAAAAPoFCGAAA4HM6d+4sk8kkk8mkY8eOebs5jQKvKQAAAAAAvoFz+NrHawoAAAAAQOPD+X7t4zUFADQkFMIAAACgQcnOztasWbN07bXXKjo6WkFBQYqOjtaoUaP00UcfKTs722eObxiGDh48qE8//VRPPfWUhg4dqtDQUFcw1Llz57p7IgAAAAAAwOc0llwkNjbWlX94+m/MmDF1+twAAAAAAEDj4a0MpaCgQNu2bdOsWbP0wAMPqG/fvvL393flG/fff3+dHBcAUJa/txsAAACA2jVy5EitW7dOkrR27VqNHDnSuw2qgk2bNunee+/V0aNHSz2emJioxMRErV27Vm+++aYWLlyoK6+8skEff/v27Ro9erQyMzNrvZ0AAAAAAKB85CK+e3wAAAAAAFB/yFCqbubMmXr22WdVUFBQa/sEAFQfhTAAAABoEHbv3q2xY8e6RuUICAjQqFGjFB0drZMnT2rNmjUqKirSkSNHNHbsWG3YsEGXXnppgz1+dnY2RTAAAAAAAMAjjS0XKal9+/a67bbbKl2vV69eNXoOAAAAAACg8fNmhpKSkkIRDAA0IBTCAAAAwOsKCwt1xx13uIKK/v37a/ny5ercubNrnWPHjmnChAnavXu3MjMzdccdd2j//v3y96/5n7R1eXyr1aorrrhCgwYN0qBBg3Tw4EG9+OKLNW4zAAAAAABoHBpzLiJJPXr00MyZM2vcTgAAAAAA0LR5O0Mp1qFDB9c1IIMHD9asWbP05Zdf1tr+AQCeMXu7AQAAAMA///lPHT58WJKzcOS7774rFVRIUufOnfXtt9/KarVKkuLi4jR79uwGe/z+/fvr0KFDSktL08qVK/Xqq69qwoQJatOmTa20GQAAAAAANA6NMRcBAAAAAACobd7OMKZNm6akpCSdOHFCS5Ys0YsvvqhRo0apWbNmtbJ/AEDVUAgDAAAAr/vggw9ct5977jm1bdu23PXatWunZ599ttztGtrxrVarunfvXivtAwAAAAAAjVdjzEUAAAAAAABqm7czjE6dOjH4KQA0IBTCAABwEYfDoXnz5um6665T27ZtFRwcrM6dO+vWW2/V8uXLXeuNHDlSJpNJJpNJsbGx5e6rc+fOrnWOHTtW6bHvv/9+1/pz586tdH3DMLRs2TLdd999iomJkcViUXBwsDp06KAJEyZo3rx5KioqqnAfx44dcx2z5CgJP/30k6ZPn65evXrJYrHIZDLp6aef1s6dO13rW61W5eXlVdpOScrKylJYWJhr2z179ni0XW0oLCzU/PnzNXHiRHXt2lXNmzdXs2bN1KVLF919991atmyZDMOocB+xsbGuto8cOdL1+Jo1a3TXXXepa9euCg4OVmRkpIYPH66ZM2eqsLDQ4zbm5ubqnXfe0dVXX62WLVsqJCRE3bp10913363Vq1e71quoTxU/vm7dOtdj1157revxkv886V8JCQl65ZVX1L9/f4WHh6tZs2bq1auXnnjiCR0/ftzj51aZ+Ph4/fLLL677999/f4Xrl1y+Z88eHTlyxKePDwAAAAANCbmIE7lIaeQi5CJ1dXwAAAAA8FVkKE5kKKWRoTTeDAUA0AAZAADA5fTp08aVV15pSHL777bbbjMyMzONESNGuB5bu3Ztufvr1KmTa52jR49Wevz77rvPtf6cOXMqXHf37t3GgAEDKmyrJKNnz57G/v373e7n6NGjrnU7depk5OfnGw8//HC5+3rqqacMwzCMyy+/3PXYp59+WunzMgzD+Oc//+naZtCgQR5t405VXte1a9ca3bp1q/R1uuqqq4yEhIQK91O87ogRI4z8/Hzjt7/9bYX7HDhwoHH27NlKn8+ePXsqbePDDz9sFBQUVPjcK3uOJf9d3L8u3u+yZcsMi8XidvuQkBDjP//5T6XPzRMff/yxa78xMTEebdOjRw/XNv/85z996vhz5swp9TMHAAAAAA0FuQi5SEX7IRchF6nK8S/uMwAAAADQmJChkKFUtB8ylMaZoVSk5M/kfffdV2fHAQCU5i8AACBJSk9P16hRo/Trr7+6HuvSpYuGDBmioKAg7d+/X1u3btWyZctkNnt3UrX169dr/PjxyszMlCQFBARo0KBB6tGjhwICAnTs2DH99NNPysvL08GDBzV06FBt2rRJvXv3rnTfzzzzjD7++GNJUt++fdW/f38FBAQoLi7O9bwfeughPfzww5KkTz75RPfee2+l+/3kk09ct6dPn17l51wdX3zxhe69917X6BkhISG66qqr1LlzZ5nNZsXFxWnTpk0qKirS5s2bNWTIEG3bts2jaUwfeughzZs3T2azWVdeeaV69eolh8OhzZs36+DBg5Kkn3/+WVOnTtV///tft/uJj4/X6NGjdfbsWddjffv21YABA2Q2m7Vr1y7t3r1bH3/8sZo3b15hmx577DFJ0rJly3Tq1ClJ0oQJExQVFVVm3Yr6wqpVq/TII4/IbrerY8eOGjJkiFq0aKGjR48qNjZWRUVFys3N1cSJE7Vv3z516dKlwnZVpuTP3MCBAz3aZuDAgTp06FCZ7X3x+AAAAADQEJCLOJGLkIuQi9T+8XNzc/XNN99o9+7dSktLU7NmzdSmTRtdeeWVuuyyy+Tvz9eVAAAAAHwHGYoTGQoZSlPLUAAADZC3K3EAAGgoHnjgAVd1fmBgoPHJJ5+UWWfLli2u0Q0CAwO9MmrH6dOnjdatW7vWmzp1qnHq1Kky6yUlJRm33Xaba72+ffsaRUVFZdYrOWqHn5+fIcno0KGDsX79+jLr5uXlGYZhGFlZWUZYWJghyTCZTMbhw4crfF779+93HaNZs2ZGZmZmpa9FRTx5Xfft22eEhIS42vjcc88ZNputzHqHDx82hg0b5trfjTfeWO7+So7aERQU5Bp95Ndffy21nsPhMP7+97+XGuFi3bp15e7T4XAYw4cPd60XGRlpfPfdd2XWW716tdG6dWvDZDKV6nfunrsnI8pcrORrGhQUZDRr1syYP3++4XA4Sq23b98+IyoqyrXutGnTPNp/RW688UbX/l544QWPtvn973/v2mbcuHE+dXxmhAEAAADQEJGLkIuQi5CL1ObxS/aZiv61b9/eePPNN42CgoIaPQ8AAAAAqC9kKGQoZChNM0OpCDPCAIB3eLfkGACABiIuLk5z5sxx3f/HP/6hBx54oMx6gwcP1sqVKxUaGqqCgoL6bKLLyy+/rDNnzkiSnnzySc2bN0/t2rUrs16bNm30xRdfaNSoUZKkvXv36ssvv6xw33a7XaGhoVq1apWuueaaMsuDgoIkSWFhYbr77rslSYZhaPbs2RXut+SIHRMnTqx09Ina8OSTTyo3N1eS9Pbbb+vNN99UeHh4mfW6du2q7777Tpdccokk6dtvv9WWLVsq3Hd+fr569OihNWvWqFevXqWWmUwmPfXUU7rzzjtdjy1atKjc/Xz//fdav369JMlsNuurr77S9ddfX2a9UaNGacWKFTKbzfXS7woKCvTll19q8uTJMplMpZb16dPHNaqL5BwZpaioqEbHS01Ndd32ZMQUSWrbtq3rdlpamk8fHwAAAAC8jVzEiVyEXEQiF6nv4586dUq///3vNXz4cCUnJ9doXwAAAABQ18hQnMhQyFCkppehAAAaHgphAACQ82TaMAxJzkDivvvuc7tuTEyMnn766XpqWWlnz57Vp59+Ksl5svb6669XuL6fn59effVV1/0FCxZUeozHH39cMTExla7329/+1nV77ty5stvt5a5XWFio+fPnu+7Xx9S1u3fv1po1ayRJl112WaXvV7NmzfTKK6+47nvyOr322msKCwtzu7xk2LV169Zy1ykZ4tx11126+uqr3e7viiuu0NSpUyttV224+eabdcMNN7hdPm7cOFdYkJ2dXePpY7Ozs123Q0JCPNqm5Holt/fF4wMAAACAt5GLXEAuQi5CLlJ7x2/VqpVmzJihZcuW6ciRI8rJyVFeXp6OHDmiefPmadCgQa51N2/erPHjx7suPgIAAACAhogM5QIyFDKUppahAAAaHgphAACQtHbtWtftKVOmVLp+RWFGXVq1apVr1Ibbb79dwcHBlW5z5ZVXqlmzZpKkn376qdL177rrLo/aMmjQIA0YMECSlJiYqO+//77c9b7++mudPXtWknTJJZdo6NChHu2/Jv773/+6bt99991lRp4oT/HoJlLlr1NwcLDGjx9f4TqXXXaZ6/axY8fKXWfdunWu25MnT660jZ6sUxt+85vfVLjcZDKpf//+rvvunp+n8vLyXLcDAwM92qZ4BBlJNb5AwtvHBwAAAABvIxe5gFyEXIRcpHaOf8UVVyghIUEffPCBJkyYoC5duigkJERBQUHq0qWLpk6dqi1btpS6gGjbtm16++23q/lMAAAAAKDukaFcQIZChtLUMhQAQMPj7+0GAADgbYZhaPfu3a77Q4YMqXSbmJgYRURE1Pu0mZs2bXLd3rNnjx5//PEqbW+z2XTu3DlXeHGxgIAA9e3b1+P9PfTQQ5oxY4Yk5wgU48aNK7NOyZEpHnzwwSq1t7pKvk5r167V8ePHK92meNQWSTp58mSF6/bs2VMBAQEVrhMZGem6nZmZWWZ5YmKiK8SRnKFSZQYNGiSTyVSqrXXBkz5Q2fOripKhm6fT8+bn57tuezrSR0M9PgAAAAB4E7nIBeQiTuQi5CK1cfyKRrstZjKZ9Kc//UmHDx/WwoULJUl/+9vf9OKLL8rfn68wAQAAADQsZCgXkKE4kaE0rQwFANDwkCIDAJq8jIyMUidIHTt29Gi7jh071ntYcerUKdftn376yaNROC5ms9nchhVWq7VKXzLfe++9+v3vf69z587pm2++0dmzZ9WqVSvX8oSEBNdoHoGBgfU2/WrJ1+nbb7+t8vY2m63C5RaLpdJ9lAwzioqKyiwvGVSEhoYqIiKi0n02b95cFotF6enpla5bE1V9foWFhTU6XskLIzwdgaPkep5cWNGQjw8AAAAA3kQucgG5iBO5CLlIfR5fkv70pz+5CmFsNps2b96sYcOG1Xi/AAAAAFCbyFAuIENxIkNpWhkKAKDhMXu7AQAAeFt2dnap+6GhoR5t5+6Evy5lZGTUeB/lnTgXq+roBy1atNCkSZMkOU9Y//3vf5daPnfuXDkcDknSrbfeqpYtW1axtdVT09fJbrdXuNyT6XArU7LfedrnpPo5Ma+N51cVJUcASU5O9mibpKQk121Pgp6GfHwAAAAA8CZykQvIRZzIRchF6vP4ktStWzd17tzZdf/XX3+t8T4BAAAAoLaRoVxAhuJEhtK0MhQAQMNDIQwAoMm7+OQvJyfHo+3OnTtX620pPrF3p2RA8re//U2GYVT5X8kvlWvDb3/7W9ftklPVGoahOXPmuO5Pnz69Vo9bkZKv09KlS6v1OtW1kv3O0z4n1U2/87aePXu6bnsy1bAknThxwnW7V69ePn18AAAAAPAmcpGaIRepHnKRC7ydS3j7+MXatWvnup2SklIr+wQAAACA2kSGUjNkKNVDhnJBQ8kwAAANB4UwAIAmz2KxKDAw0HW/5ElQRU6ePFnpOpVNYXqxykabaNOmjet2yVELvOmqq65Sv379JDlHa9y0aZMkae3atTpy5IgkqVOnThozZky9takhvk4XKzmCSU5OTqVT5krOkT7qeupab+jdu7fr9s6dOz3a5ueffy53e188PgAAAAB4E7lIzZCLVA+5yAXeziW8ffxiJS/Q8cZoyQAAAABQGTKUmiFDqR4ylAsaSoYBAGg4KIQBADR5JpNJ/fv3d93fvHlzpdscOnRIqampla7XokUL121P1t+7d2+Fy6+88krX7Q0bNlS6v/pS3sgdJUfwmDZtmszm+vuzo6G+TiVFR0eXCiy2bNlS6Tbbt2/3aESR+p5+tqauvfZa1+2DBw/q9OnTFa5/6tQpHTp0yHV/1KhRPn18AAAAAPAmcpGaIxepOnKRC7ydS3j7+JLzQp6DBw+67rdv377G+wQAAACA2kaGUnNkKFVHhnJBQ8gwAAANC4UwAACo9MnSp59+Wun6//73vz3ab8mpYnft2lXhutu3b9fRo0crXOf666+Xv7+/JGnjxo3avXu3R+2oa5MnT1ZISIgk6bPPPlNCQoKWLl0qSTKbzXrggQfqtT0333yz6/bSpUuVnJxcr8f31IgRI1y3FyxYUOn6nvRNSQoODnbdLiwsrHrD6lmPHj10ySWXuO7PmzevwvVLLu/bt6+6du3q08cHAAAAAG8jF6kZcpHqIRdx8nYu4e3jS9LChQuVn58vyXkRzvDhw2u8TwAAAACoC2QoNUOGUj1kKE4NIcMAADQsFMIAACDpwQcfdN3evHlzhSeF8fHxeueddzzab8nRIyo6ASsqKtJTTz1V6f6ioqI0efJkSZJhGJo6daoyMzM9aovD4dDZs2c9WreqwsPDNXHiREnOKVbvvPNO5eXlSZLGjh2rDh061Mlx3Rk8eLBGjhwpScrNzdWUKVNUUFDg0bYFBQUeTSVbG0qGOAsXLqxwxJiff/650pP4YpGRka7biYmJ1W9gPZoxY4br9ltvveU2YEpKStJbb73luv/YY481iuMDAAAAgDeRi9QMuUj1kItc4O1coraPn5OTI4fD4dGxDx06pBdffNF1f+zYsWrdurVH2wIAAABAfSNDqRkylOohQ7nA2xkKAKBhoRAGAABJMTExuv/++133p0+fXu6J4fbt23Xdddfp3LlzCgwMrHS/kyZNck3bumnTJr344ouy2+2l1klISNDNN9+sjRs3KigoqNJ9vvrqq2rXrp0kac+ePRo8eLBWrlzpdv2EhAS988476tmzpz777LNK919dJaewLTkV6/Tp0+vsmBV5//33FRYWJkn64YcfNHz48AqniI2Li9Of//xnde7cud6mvL3xxhs1bNgwSc4wafz48Vq1alWZ9WJjYzVu3DjZ7XaP+t2ll17quv3ll196NOWttz300EPq1q2bJOdUzzfeeKOOHz9eap3jx49r3LhxSktLk+T8uS0ZNF4sNjZWJpPJ9S82NrZejw8AAAAAvoJcpObIRaqOXOSCxpaLbN26VX369NGsWbN05syZctex2+369NNPNWTIEKWmpkqSAgMD9frrr7ttJwAAAAB4GxlKzZGhVB0ZygXezlAAAA2Lv7cbAABAQ/G3v/1NmzZt0sGDB5Wfn6/7779ff/rTnzRkyBAFBQVp//792rp1qwzD0O23367U1FStW7euwn126tRJjzzyiD788ENJ0uuvv65FixZp+PDhCg4O1uHDh7VhwwYVFBRozJgxatu2baVTlLZv315fffWVxo0bp5SUFB08eFDXX3+9oqKiNHjwYLVq1UqFhYVKSUnRvn37Kp0St7ZcffXV6tOnj/bv3+96rHXr1rrlllvq5fgXu/TSS7Vo0SJNmjRJOTk52rJli6666ip169ZNAwcOVEREhPLy8nTmzBnt2bPHK6NbmEwmzZ492/WFf0pKiq677jr1799fAwYMkCTt3r3bNfXxc889py+++MJ1El8chF3s9ttv1x/+8AcZhqEVK1aoX79+Gjp0qJo3b+5a56677tIVV1xRp8+vKgICArRkyRINGzZM2dnZ2rlzp3r06KHRo0crKipKCQkJWrNmjWs63hYtWmjJkiWu6Zwb6vGnT5+u7du3l3qsOGyRpFOnTrne65L+9a9/Naj3BwAAAEDjRy5SM+QiVUcuckFjzEUOHDigGTNm6PHHH1f37t3Vp08fRUREyGw2KykpSZs2bVJKSoprfT8/P/373/9W//79a+U5AQAAAEBdIUOpGTKUqiNDucDbGYqkcq/xOHHihOv2119/Xe46xe8PAKAWGQAAwCUxMdG44oorDElu/91yyy1GZmamMWLECNdja9eudbvP3NxcY9y4cRXu8+abbzZsNptx3333uR6bM2dOhW09duyYMXr06Ar3W/JfmzZtjO+++67Mfo4ePepap1OnTjV6/f7+97+XOuZzzz1Xo/2506lTJ9cxjh49WuG6u3btMi6//HKPX6fOnTsbO3fuLLOftWvXutYZMWKER+0sud/K2tilS5cK2/XQQw8ZBQUFRvv27V2P2Ww2t/t86aWXKtzfxf2rKq+pYRhV6qtVsXHjxkpfi65duxqbNm2qdF8l37PKfk7r4viGYZT6PVGVf560FQAAAABqG7lIpxq9fuQipZGLVF1jyUUuPnZl/3r27Gls2LDB05cJAAAAALyODKVTjV4/MpTSyFCqzpsZSlUyD0/fWwBA9TAjDAAAJbRv316bN2/Wv//9by1YsEB79uxRRkaG2rRpo/79++u+++7THXfcIZPJ5PE+g4OD9Z///EeLFi3SvHnz9PPPPysjI0OtW7dW//79df/99+vOO++s0j4l54ggq1at0qZNm/TFF19o/fr1OnnypGw2m/z9/RUZGakePXroiiuu0NixYzVy5MhaHeGgPLfffruefvpp131vTV1bUv/+/bV9+3atXLlSy5cv14YNG3Tq1Cmlp6crKChIrVq1Us+ePXXllVfq+uuv15AhQ6r8XtRGG/ft26ePPvpIX3zxheLi4pSTk6N27dpp8ODB+u1vf6vRo0dLkmw2myTniB0tWrRwu8//+7//07BhwzRnzhzt2LFDycnJysnJqZfnUxNDhgzRnj179O9//1uff/654uLilJqaqsjISMXExGjixImaOnWqa2rixnZ8AAAAAPAmcpGaIRepfhvJRZy8nUvU1vGvueYabd++XZs2bdLGjRt18OBBpaamKjU1Vfn5+bJYLOrQoYOuvPJK3XLLLbrhhhvqvd8BAAAAQE2QodQMGUr120iG4uTtDAUA0DCYDMMwvN0IAAB80ciRI13T165du1YjR470boMagHnz5un++++XJA0bNkw//vijdxvUyBw6dEgxMTGSpF69eunXX3/1cosAAAAAAE0VuUhZ5CJ1i1wEAAAAAOCLyFDKIkOpW2QoAICmwuztBgAAgMbjk08+cd3+7W9/68WWNE6fffaZ6/agQYO82BIAAAAAAHAxcpG6RS4CAAAAAEDjQIZSt8hQAABNBYUwAACgVuzcudM1SkdERIQmTpzo5RY1LkePHtVbb73lun/PPfd4sTUAAAAAAKAkcpG6RS4CAAAAAEDjQIZSt8hQAABNCYUwAACgxvLy8vTEE0+47j/yyCMKDg72Yot8y9ixY/Xdd9+pqKio3OUrVqzQsGHDlJGRIUkaMGCAxo4dW59NBAAAAAAAbpCL1Ay5CAAAAAAATQMZSs2QoQAAUJq/txsAAAB808yZMxUfH6/09HStXr1aCQkJkqSWLVvq2Wef9XLrfMsPP/ygH374QVarVQMHDlSHDh0UGBiolJQUbd261fXaSlLz5s3173//W2Yz9cwAAAAAAHgLuUjtIRcBAAAAAKDxIkOpPWQoAACURiEMAAColi+//FLr1q0r9Zifn58++eQTRUREeKlVvs1ms2n16tVul/fo0UNffPGF+vbtW4+tAgAAAAAAFyMXqX3kIgAAAAAAND5kKLWPDAUAACcKYQAAQI1ZrVYNHTpUL730kq6++mpvN8fn7Nu3T8uXL9fGjRt1/PhxpaSkKC0tTcHBwWrVqpUGDx6sm2++WXfddZf8/Py83VwAAAAAAFACuUjNkIsAAAAAANA0kKHUDBkKAAClmQzDMLzdCAAAAAAAAAAAAAAAAAAAAAAAAKAyZm83AAAAAAAAAAAAAAAAAAAAAAAAAPAEhTAAAAAAAAAAAAAAAAAAAAAAAADwCRTCAAAAAAAAAAAAAAAAAAAAAAAAwCdQCAMAAAAAAAAAAAAAAAAAAAAAAACfQCEMAAAAAAAAAAAAAAAAAAAAAAAAfAKFMAAAAAAAAAAAAAAAAAAAAAAAAPAJFMIAAAAAAAAAAAAAAAAAAAAAAADAJ1AIAwAAAAAAAAAAAAAAAAAAAAAAAJ/g7+0GwHelpKR4uwmAR/z8/GS1Wl33bTab7Ha7F1sEVI5+C19F34Uvot/CV/lS323ZsqW3mwDUOnIR+Apf+rwAitFv4avou/BF9Fv4Kl/qu+QiaKzIRuALfOnzAihGv4Wvou/CF9Fv4at8qe/WZS7CjDAAAAAAAAAAAAAAAAAAAAAAAADwCcwIg2rz8/PzdhMAj5jN5grvAw0R/Ra+ir4LX0S/ha+i7wLeRS4CX8HnBXwR/Ra+ir4LX0S/ha+i7wIAAAAAADRtFMKg2kpOqQT4EovF4u0mAFVGv4Wvou/CF9Fv4avou0D9IheBr+LzAr6IfgtfRd+FL6LfwlfRdwEAAAAAAJoWhkUBAAAAAAAAAAAAAAAAAAAAAACAT6AQBgAAAAAAAAAAAAAAAAAAAAAAAD7B39sNgO+y2WzebgLgEbPZXGo69IyMDDkcDi+2CKgc/Ra+ir4LX0S/ha/ypb5rtVq93QSg1pGLwFf40ucFUIx+C19F34Uvot/CV/lS3yUXAQAAAAAAqH0UwqDa7Ha7t5sAVIvD4aD/wufQb+Gr6LvwRfRb+Cr6LlC/+HmDr+LzAr6IfgtfRd+FL6LfwlfRdwEAAAAAAJoWs7cbAAAAAAAAAAAAAAAAAAAAAAAAAHiCQhgAAAAAAAAAAAAAAAAAAAAAAAD4BAphAAAAAAAAAAAAAAAAAAAAAAAA4BMohAEAAAAAAAAAAAAAAAAAAAAAAIBP8Pd2AwAAAAAAAABf4+fn5+0mAB4xm80V3gcaIvotfBV9F76IfgtfRd8FAAAAAABo2iiEgdc4HA7l5+crLy9PRUVFcjgc3m4SGimTyaSUlBTX/cLCQhmG4cUWAZWj35ZmNpvl7++v4OBgBQUF8YUWAAAAvM5qtdZoe4fDoezsbGVmZqqgoEB2u72WWgaUdebMGW83Aagy+m1pfn5+Cg0NVXh4uIKDg73dHHjIYrF4uwlAldFv4avou4Bv4XoR1Be+d4cvot+WZjKZZDKZFBgYqNDQUAUEBHi7SQAAoIGgEAZekZeXp/T09Cb9RzrqV8m+RogGX0G/vcDhcKioqEh5eXkymUxc9AEAAACflpWVpcTERBmG4foHAEBl8vLyZLPZZLFY1K5dO5lMJm83CQAAAKgyrhdBfeN7d/gi+m1ZRUVFysnJUUhIiCwWC7kIAACgEAb1r/jLupKKK7eBusLsEfBF9NsLSl4caBiGbDabrFYrxTAAAADwOcVFMA6Ho9QXmGazmWwEAFAuwzDkcDhkGIZMJpMyMjIUGBioli1bertpAAAAQJVwvQi8ge/d4Yvot6WVzNJzc3Pl5+en5s2be7FFAACgIaAQBvXK4XAoPT3ddT8oKEjNmjVTYGAgwQbqlL//hV93RUVFXmwJ4Dn67QWGYaigoEDnzp1Tfn6+JCk9PV2tW7cmAAIAAIBXXHzRhiccDodOnz7tKvImF0F9MJlM8vPzc9232+2MuosGj35blsPhUE5OjrKyskp9npTMj+B9ZrNZFovFdT8jI4ORe9Hg0W/hq3yp71qtVm83AagTJf9m9wTXi8AbOL+EL6LfllUyF5Gk7OxshYWFkYs0MBdfv8P1PPAF9Fv4KvquE38JoF7l5+eXutjDarUSaAAAKmUymRQUFKTAwEDZbDbX50l+fr5CQkK83TwAAAA0QXa7vcrb5Obmkoug3l38JXlT/9IcvoF+W5bZbFZYWJgcDofOnTsnScrJyVGzZs283DJUxOFwVOtvBsCb6LfwVfRdoP5VtcgrMzNTfn5+stvtCg4OVmRkJLkI6l1VC7iAhoB+6xQYGCjJWQTj5+cnPz8/Co4buJKF64CvoN/CVzXVvts0y3/gNXl5ea7bzZo1I9QAAFSJyWQqdYFHyc8VAAAAoKEjFwEA1FTJAUGKZ80FAAAAfEFmZqaryD0sLIxcBABQZaGhoZKcg6YUDxQCAACaLgphUK+KiookOS9kLq7SBgCgKkpOj178uQIAAAD4AnIRAEBN+fv7u3IRRr0HAACALykoKCg1Uy4AAFUVEBAgk8kkwzBUUFDg7eYAAAAv8/d2A9C0OBwOSc4LPhjdAwBQHcWfIYZhuD5XAAAAAF9ALgIAqClyEQAAADQUNputSuvn5eXJ4XDIbDZT1I16YzKZ5Ofn57pvt9tdBVlAQ0W/rZzD4VB+fn6VP4tQt8xmsywWi+t+RkYG+RUaPPotfJUv9V2r1Vpn+6YQBgAAAAAAAAAAAAAAAIDHqlrMwkXc8IaL+x39EL6AfusZwzAorGzgHA4H7xF8Dv0Wvqqp9l2ztxsAAAAAAAAAAAAAAAAAAAAAAAAAeIJCGAAAAAAAAAAAAAAAAAAAAAAAAPgEf283AAAAAAAAAPA1fn5+Vd7GZDLVQUuAil3c70wmkwzD8FJrAM/Qbz1jMpmq9XmEumM2myu8DzRE9Fv4KvouAAAAAABA00YhDAAAAAAAAFBFVqu1ytukpKTIMAyZzWb5+xPLwTu4aB6+iH5bWvGFvgEBAdX6PEL9sVgs3m4CUGX0W/gq+i4AAAAAAEDTwrAoAIBqO3HihFq1aqVWrVpp0aJFZZYvWrTItfzEiRNeaKHv4TUDAAAAAMA3nDhxQlarVVarVQsXLiyzfOHCha7lnON7htcMAAAAAADfwPUitY/XDAAAoGoohAEAAAAAAAAAAAAAAAAAAAAAAIBP8Pd2AwCgMRo4cKBOnjypSZMmaebMmd5uDlCr6N8AAACAZLPZqrxNYWGhHA6HJKmoqKi2mwSUy2Qyyc/Pz3XfbrfLMIw6PWZTOW8s+XNst9vL/Fzb7fZS6/JzX7mSr9nFj9d1v/VUQ+jfDodDDodDhYWF1fo8Qt0xm82yWCyu+xkZGa7PfqChot/CV/lS37Vard5uAgCgHjWE80agrtC/AQBAQ0IhDAAAAAAAAFBF7i7WrkhDuYgbTcvF/Y5+CF9Evy2fYRjV+jxC/XE4HLxH8Dn0W/gq+i4AAAAAAEDTYvZ2AwAAAAAAAAAAAAAAAAAAAAAAAABPUAgDAAAAAAAAAAAAAAAAAAAAAAAAn0AhDNCEbNmyRU8//bSuuuoqdenSRe3bt1e/fv10zz336JNPPlFGRka5233//feaNm2a+vXrp6ioKMXExOjGG2/Uu+++q+zsbLfHW7RokVq1aqVWrVrpxIkTKigo0KxZszRmzBh17dpVPXr00K233qqVK1eW2i47O1vvv/++rr32WnXp0kXdunXTnXfeqfXr17s91oYNG1zH2rBhgxwOh+bPn69x48apR48eioqK0rBhw/S3v/1NeXl5bvdz6623qlWrVrr11lsrfC3feOMN1/HK2/7kyZOSpM8++8y1XvE/d/tOTk7Wq6++qjFjxrja3L9/fz344INat25dhe2prqSkJM2ePVvTpk3T4MGD1alTJ0VFRalv376aMmWKli1bJofDUSfHromBAweqVatWevzxxyVJO3fu1EMPPaT+/fsrOjpa/fv31xNPPKFDhw653Ud5fWbBggWaMGGCLrnkErVu3dq1/2IOh0NffPGF7rrrLl1yySVq3769evXqpQkTJmj27NkqKCiotO3p6en605/+pCFDhqhDhw7q3bu37rjjDn311VcePffiNr/xxhsVrudpXz5x4oT+9Kc/afTo0YqJiVG7du3Us2dP3XzzzXrjjTd07NixMvusSv+22+1atGiRfvOb37hes65du2rw4MG6/fbb9c477+jgwYMePXcAAFBaSnaBFm09oQfmblPaucr/DgGApo5chFzkYuQi5CLkIgAA+K6svCIt2ZGg6fO26fBZ93+XAwCcyEXIRS5GLkIuQi4CAIBvyit06HBKjlb9kqxPfjqqr3YlertJXuPv7QYAqHu5ubl6+umntXTp0jLLTp8+rdOnT+uHH35Qamqqnn/+edeyvLw8PfLII1qxYkWpbQoKCrR9+3Zt375d//rXv7Rw4UL17du3wjZkZWXpoYce0o4dO0o9vnHjRm3cuFF//vOf9cgjjyghIUF33323Dhw4UGq9devWaf369frwww915513VnisgoIC3X333VqzZk2px/fv36/9+/fr888/15IlS9SmTZsK91OfvvzySz377LPKyckp9fipU6f09ddf6+uvv9a9996rt956S/7+tfOr2263q3///uUGF0lJSfruu+/03XffaeHChZozZ47CwsJq5bi1bcGCBXruuedUVFTkeuzUqVNavHixli1bpg8++KDSk/u8vDxNnDixwgDJZrNp8uTJ2rp1a6nHU1NTtWHDBm3YsEGffPKJFi9erA4dOpS7j7i4ON1xxx1KSkoqdez169dr/fr1Wr16tYYMGeLJ064VH3zwgV599VUVFhaWejwtLU1btmzRli1btGHDBo9Dl4tlZ2fr7rvv1ubNm0s9XlhYqKysLB09elQ//vij9uzZozlz5lT7eQAA0JQcT8tVbLxN6+Jt2nsqW8b5x1f/mqwx3Rrm32sA4G3kIk7kIqWRi1xALkIuAgCAr8jILVJsfJpWx6Vp6/FMFTmcyciADuG697KWXm4dADRM5CJO5CKlkYtcQC5CLgIAQENjGIbSc4uUkJ6nxIx8JaTnl7idp7PZpT+/B3eJ0PBOvbzUWu+iEAZo5BwOh6ZOnarY2FhJUteuXTVt2jQNGDBAISEhSk5O1rZt28o9cXn88cddoUafPn00Y8YMxcTEyGazadmyZVq8eLGSkpJ0xx13aN26dWrXrp3bdjz77LPavXu3pk2bpptuuknh4eHau3evXn/9dSUlJel//ud/NGLECD3xxBM6fvy4nnzySY0aNUrNmjXTli1b9MYbbygzM1O///3vNWLEiDIja5T017/+VTt37tTIkSM1bdo0RUVFKSkpSZ988onWrl2rgwcPavLkyfruu+/k5+dXsxf4Iu+9955ycnI0ceJEJSUl6cYbb9RLL71Uap3Q0NBS95cvX64ZM2bIMAx17txZDz74oGJiYhQZGamTJ09qwYIFWrVqlRYsWKDmzZvrz3/+c6201TCcXw5cc801Gj16tHr37q3IyEhlZ2fr+PHj+vTTT7Vt2zbFxsbqhRde0AcffFArx61N+/bt09KlS9WyZUs99dRTGjhwoPLy8rRq1Sr94x//UH5+vh599FF16tRJAwYMcLufP//5z9q/f79uuOEG3XXXXYqOjtbZs2eVlZUlyRkC3Xvvvdq2bZskaejQoXrwwQfVqVMnJSUlaeHChfrvf/+ruLg43X777Vq7dm2ZICgrK8vVLyRpwoQJmjRpklq1aqXDhw9r1qxZWrRoUZlQr668/fbbeu211yRJFotF06ZN07Bhw2S1WpWZmak9e/boP//5j0wmk2ubqvbvN9980xVqjB07VnfeeaeioqIUFBSklJQU7d27VytXrix1DAAAUJrDMPRL0jmti7cp9lCajqaVP1rdyl8ohAGA8pCLkIu4Qy5yAbkIuQgAAA2ZLadQsfE2rY5L07YTmbI7jDLrrNibRCEMAJSDXIRcxB1ykQvIRchFAADwhiK7Q0lZBReKXNLzlZDh/D8xI0/nCjyfme9Eak7lKzVSFMKgwXEYhjJyiypfsRGxhPjLXEd/2P/rX/9yhRo33XSTPv74YwUFBZVaZ+zYsXrppZeUnJzsemzlypWusGP48OFatGiRAgMDXcuvvfZaDRo0SL/73e9ks9n0yiuv6F//+pfbdvz888+aO3euxo0b53qsf//+uuyyyzRq1Cg5HA7dfvvtysrK0ldffaXLL7/ctd6AAQPUtWtX3XPPPcrOztaSJUv0yCOPuD3Wzp07NXXqVL399tuuxy6//HLddNNNevLJJzV//nzt2rVL8+bN0wMPPFDJK1g1nTp1kiQFBARIklq0aKHevXu7XT81NVXPPvusDMPQPffco7fffrvUCB79+/fXzTffrFdffVV///vf9Y9//EP33XefunfvXuO2+vn5adOmTeratWuZZVdffbXuuecevf7663rrrbf0xRdf6He/+526detW4+PWpv3796tDhw769ttvS43YMnToUI0aNUq/+c1vVFhYqOeff77MlMoX7+d3v/tdmZP0YnPnznWFGhMnTtTMmTNdJ+P9+/fX9ddf73qPjh07pr/97W/64x//WGofb7/9thITnVPQvfzyy3r66addy/r376/x48frnnvucf281qU9e/a4psrt1q2bli5dqvbt25daZ9iwYZoxY4arzVLV+3fx75Dx48dr9uzZZZaPHj1aTz/9tGw2W82eEAAAjUyh3aEdJzMVe8imdYdtZUbzKM+Ph84qt7CzAs310EAAdYpcpHaRiziRi5RFLlJ6P+Qi5CIAADQkqecKtfaQc+aXHSczVU7tSym/ns7U8bRcRVsCK14RgE9oatkIuQi5CLlI9ZCLVA+5CAAA9edcgV0J6XlKSM9XYnqeEjIuFL0kZebLXkne4amkzDzlFznk3wTrSymEQYOTkVuk6z782dvNqFc/zBgoa2hAre/X4XC4RmVo3769Zs6cWSbUKGY2m0uN0FF8EhIQEKD33nuvVKhRbMqUKfrqq6+0bt06rVixQklJSWrbtm25+7/11ltLhRrF+vTpoyuvvFKbNm1SSkqKnnjiiVKhRrHrrrtOHTp00MmTJ7V58+YKg41WrVq5HQXj//7v//Ttt98qJSVFc+bMqfVgo6rmzp2rzMxMtWvXTm+88YbbaWxfeOEFffbZZzp9+rQ+++wzvfzyyzU+tslkKjfUKOm5557TnDlzlJqaqu+//14zZsyo8XFr2//+7/+WO23xsGHDNGXKFM2ZM0c7d+7Url273I7y0a1bt1LTPF+s+OehZcuWev3118sdkeKFF17QihUrdOjQIc2fP18vvPCC6+etoKBACxYskOTs80899VSZ7QMCAvTuu+/qiiuuKDP1bG374IMP5HA4ZDKZ9I9//KNMqFFSVFRUtY9z5swZSdJVV11V4XpWq7XaxwAAoLHIzi/SxqMZio23acORdJ0rsHu0XViQv0b2bKWxfdqe/7K0lpISAF5DLlJ7yEXKIhe5gFzkAnIRchEAABqCs9kFWhPnLH7ZmZDlUcIR6G/W8B6tNK5vW7VsRhEM0Fg0tWyEXIRchFyk+shFqo5cBACA2uMwDKVkFyoxI+/CzC7ni10S0vOVXscF/i3DgtQxIkSdIpspt9Cu5k1w5NSm94yBJmTv3r06deqUJGcIcfHUm+4UFRVp06ZNkqSRI0dWeGIzefJk1zYbN250u95tt93mdlmfPn08Wu+SSy6RJB07dsztOpIzRLl4OtliYWFhuuWWWyRJBw4cKDWqiTd89913kpyjrLgLnSTJ399fV1xxhSRp+/btddIWh8OhpKQkxcfH69dff9Wvv/6quLg4V+C1f//+OjluTYSHh+vGG290u/yee+5x3V63bp3b9SZMmOB22uOkpCTFxcVJkm655Ra3P0f+/v66++67JUnp6enas2ePa9nu3buVnp4uSZo0aZLbqV3bt2+vkSNHum1nbXA4HFq9erUk50gu/fr1q7NjFQdOy5cvV05O051+DwAAd1KyC7Rkd7Ke/PKAxnzws/7wn3itPJBaaRFMy2YBuqN/a838TW/teGWMZt4zULf0b68gf07xAaAkcpGyyEXcIxchF6lt5CIAAFQuKTNfC3ec1oOL9mvcRzv15prj+rmSIpggf5Ou7WHV/43voR3/b4z+dd8Vun1gtJoFlf/3DAA0VeQiZZGLuEcuQi5S28hFAACNRX6RQ8dSc/XTYZsW/5ykt9cc1zNLD+o3s3frmne3adzHO/Xbxb/qf787ok82n9J3v6Zq3+lztVIE42c2qUN4kIZ0tug3A1rr6REd9datPbTovr7a8MyV2v7/xmjpjKv1zqQBCg+p/eJ6X8CMMKg2dycBFXH3xzzqxt69e123K6uwL+n48eOuk5DyRtsoqeTyX3/91e16FU2RarFYqrTeuXPnKmzTZZddVur+xf3u8ssvd43Y8Ouvv5Y7OkR9sNvt2rdvnyRp3rx5mjdvnkfbFY+aUBsMw9CXX36pBQsW6Oeff1Zubq7bdVNTU2vtuLWlb9++bkdFkaRLL71UgYGBKigoqLB/Fodm5Sm5XWU/DwMHDnTdPnDggAYNGlRmH+5GGSm5jx9++KHM4yaTSYZR8xHejx8/royMDElV+71QHZMmTdLbb7+tbdu26YorrtD48eM1fPhwXXnllWrZsmWtHMNkMlXr8wh1x2w2V3gfaIjot6hPR1NzFHsoTWsPpWnvqWyPt+sSEaKRMRG6tkeE+rQLk9lkktlsVpD/hc9B+i5Qv8hFGj5yESdyEffIRZzIReoGuUjTxPklfBH9FvXtVEaeVh1M1aqDqR5nI8EBZl3T1aoxPSM1rJtVoYF+MpvNah584SIP+i4AlEYuUr6BAweSi5xHLuLkC7lIbWlsuQgAALXBMAxl5BUpIT2/1GwuiedndzmTVeDRrLXVFRbkp+jwIEVZghUdHqTo8GBFWZz/t24eKH9z+d8v892AE4UwqLbqTE2YkpIiwzBkNpvdnoz4+dflr4yGyc/fv8KTs+oqHlFAco4c4OkxMjMzXbdbt25d4XYlp8jMyMgotW7JX7TNmzd3u5+Sj7do0cLtsYr3Z7fby+yr5LHatGlTYZtLBhmZmZml1i2+OMRkMlW4j5JhemXruVuenp6uoqKqV33m5ubWSn/Jy8vTlClTtGrVKo/Wz8/PL3Pci9/vit4X/zro561atapwn/7+/rJarUpOTlZ6errb/hkZGel2PyV/HirrW+5+HoqDBElq27atx/2zpIv/cKmob0nu+3LJtrRr165G70llbXjhhReUnJysBQsW6OzZs5o9e7YrVOzVq5duueUWPfjgg2rdunW1ji05pwhmqtyGrWR4DfgK+i1qk8NhaFdCulbuT9bKX5J05GzFX9KVdFnHcI29pK2uu6SNureufLQ++i5Qv8hFag+5CLlIVZCLXEAuQi5CLtLw8Tc6fBH9FnXheOo5/Xdvkr7dd1p7EjIq30BSs0A/je7dRuP6ttWImNYKCaz4Ag/6LgCUlpaW5rpdlWIPm83mul3Zxeolz2dK5jAXCwkJcbusZMbgbiYX6cJ5nt1eyYzqlbS5VatWrtsln2t9s9ls1c5FakNeXp7uv/9+1+wgnqzf0FT2Xvv7+ys8PFxnzpyp8L0ODw93u6xkv67seCV/zkoer+Ttkv2vPJUtr6nq/l6ojmeffVanT5/WokWLys1Fbr75Zk2bNq1auQgAAFVV5DB0JqvgQpFLhvP/hPPFLtn5Ff+NWRMmSa2bB7qKW6LOF7tEW4IUFR4kS7A/gynWAIUwaHDCQ/y15snB3m5GvQoPabg/ir74C9ZX2lwyoJk6daoefvhhj7YLDAysleO//fbbros9rr76ak2fPl39+/dX69atFRIS4gqcxo0bp02bNtXKqJu1rbbea0+rY2vjeL7SP2tDQECA3n//fT322GNasmSJ1q9fr127dqmgoEAHDhzQgQMH9OGHH+rjjz/WuHHjvN1cAABqTX6RXZsOp2rlL8n64Zdknc3K92i7QD+zhnaP1NhL2mpM79Zq3SK4jlsKoCEiF2lYfPEczlfaTC5Sc+QiDRu5CACgqTtyNlvf7kvSf/ee1v5TmZVvIKl5kL/GXNJGN17aVsNjWik4gNFNgabIEuKvH2YMrHzFRsJCLlKrfKXNJXORyZMn66GHHvJou9rKRd555x1XEczQoUP1wAMPqF+/fmVykfHjx2vz5s3kIrV0PF/pn7UhICBA7777rmbMmKGlS5fqxx9/1O7du0vlIrNmzdKsWbN04403eru5AIBGIKfA7prRJbFEkUtCep5OZRbI7qi7v2eC/E2KspwvcnH97yx4aWcJUpA/s9jWlYZ7NoUmy2wyKSI0oPIVUanIyEjX7eTkZMXExHi0XclRBM+ePVvhusnJyeVu502VTQVb8jld3Obik3mHw1HhPiqbbtcTJY9tGEaF063WNsMwNH/+fEnSkCFD9PXXX7udMt6bo6BUprL+WVRU5Gp/dftnye0q61sll5fcruQIImfOnFH37t3d7qOy52QymWQYRqV9tHi66otd/HuhPvTq1Usvv/yyXn75ZeXl5Wnz5s368ssvtXjxYmVnZ2v69On6+eef1bZt23ppDwAAdSEzr1BrD5zRyl+Ste7gWWXnezaSW/Mgf13bq7XG9mmjETGt1DyYcyGgqSMXqT3kIuUjFyEXqQpykZojFwEANCXxZ7K0Yo9z5pcDSVkebdMi2F9j+7TVuL5tdXX3lgryp/gFaOrMJpOsZCM1FhER4bqdnJysHj16eLRdVXKRkueBFc2qUZ8qa3Nt5CLuzjmr4uJcpHfv3jXep6cMw9Cnn34qSbrqqqu0bNkyt7lIRTP9eJsnuUhx+6ubi5Ts19XNCS/ORbp16+Z2H3Wdi1z8e6E+9OzZUy+99JJeeukl5eXlacuWLVqyZIk+//xznTt3Tg8//LC2bt1KLgIAqJRhGEo9V6iEksUuGReKXtJyqj7bXlVYQ/xLzOZSPLOL835kswCZm1DBa0NCIQyqrTpfAhcWFrr+GK/OFJ+omj59+rhu//TTTxoyZIhH20VHRys0NFQ5OTnatm1bhe/Vtm3bXLd79uxZat2SI1gUFRW53U/JE7SKjlXReiWPtWPHDt15552u+yaTqdQIDjt27HDd7tGjR6l9NWvWTJLzZL6itsTHx1fY5uJRHBwOh9v9mM1m9erVSwcOHNDmzZvr9WciLS3NdVI7fvx4ORyOck+Us7OzXc/VMIwybbz4/a7ofamoD1TX3r17lZeXJ3//8j/OikeTkCrun+W1vVjJC6W2bdtWqm9drOTPQ0xMjGufPXv2dD2+Y8cODR7sfnTnkv2zJLvdLsMwFBYWpqysLKWlpblts2EYOnLkiOt2yfWioqJksViUkZGhDRs2VOs98aR/u+Pv769hw4Zp2LBh6tWrl1555RXl5ubq22+/1ZQpUzzeT3GfLSwsbNAXJTVFZrNZFovFdT8jI6PSIA7wNvotqutMVr5i422KjUvTthMZKvJwBJFWYYEa2cOqa3tE6oqOLRTg5/yCqSg3W7Zcz4/vS323oVwcDtQmcpGGj1zEiVykLHIRchFyEdQVX/obHShGv0VNGIah+JQcrTqQqlUHU3Uk1bNgwxLsr2tjIjSmZ6QGd7K4spGcrEx5emmxL/VdchEA3tCvXz/X7U2bNmnYsGEebdepUydXLuLuHK3Yzz//7Lpdn4UcFdm5c6cmTpxY4fJivXr1KrUsLCxMkvMzpSKHDx+ucLkns34EBga6cpGtW7dWun5tstlsriKmW265xW0RTMlcpCHat2+fioqK3OYi+/fvd+UiF7/XnirZr3fs2FGtvlVyH7t27aowoyy5j/IU5yIVFSgZhqGjR4+Wu6xTp06uXGTTpk0VHsudmsxqExwcrBEjRmjEiBG65JJLXLnIDz/8UKVcBADQeBXaHTqVka+E9HwlZuQpocTMLonp+corqrvzfj+T1LaFs7glKjzYNaNLVHiQoixBCgui5KIh4l1BtZX8stRTDXGqzMbs0ksvVVRUlBITE/Xpp5/q0UcfdZ24V8Tf319DhgzR6tWrtW7dOp06dUrt27cvd93iUSL8/f01dOjQWm1/dX399df64x//qJCQEEml+925c+f01VdfSXJ+CX/xiAIdO3aU5AwusrOzy329UlNTtW7dugrbEBQUJEmuk2p3rr/+eh04cECHDh3SmjVrNGrUqEqeXe0o+SV9RaOVfPrppw364iybzabvv/9eN910U7nLFyxY4Lo9YsSIah2jbdu2iomJUVxcnL7++mu98sor5fYLu92uxYsXS3KO6FEyWOzfv7/Cw8OVnp6uzz//XI888ki54cDp06cVGxtbbjuK+3HHjh21f/9+7d69222bV61a5TacM5vNuu666/Tll19q48aN2rNnT6m2esLT/l2Za665xnU7NTW1WvswDKNan0eoPw6Hg/cIPod+C3cMw9DR1FzFxtu0Lt6m/Umej4bfNTJEI7pbNbK7Vb3bNisxGkjtfZbRd4H6RS7S8JGLkIu4Qy7iOXKRsshFUBX8jQ5fRL9FZQzD0MEzOVodl6bVcWk6YcvzaDtriLP4ZXRMhC6Pbi5/v+KLbmvn84y+CwClkYuElFl27tw5ff3115LIRYqRi1SsoeQixchFAACNQWZeUTkzujgLXpKzClSX36Y2CzQrKjxYUeeLXKLDgxRlcf7ftnlgiawCvoJ3DGjEzGazHnvsMUnSqVOn9Pjjj7s9EXE4HEpKSnLdf+CBByQ5T1yeeuopFRYWltlmwYIFrpOwm266qcFMU3nmzBn9z//8T7nLXn75ZddUovfff3+Z5cXhTEFBgf75z3+WWV5YWKhnnnlGubkVj2jVpk0bSdKxY8cqXO+hhx5yjbb65JNP6sCBAxWuv3LlSu3fv7/CdTzRsmVL1yhZy5YtU35+fpl1du7cqddee63Gx6prf/zjH0tNuVxsw4YNmj9/viRnsHDZZZdV+xjFPw8pKSn6wx/+UO46b775pg4ePChJmjJliuvkX3IGAXfffbck56gkM2fOLLN9UVGRnnnmmUrDguI+umPHDm3ZsqXM8uTkZLdtLDZjxgyZzWYZhqGHHnpIp06dcrtuecs86d/FoVNFF/qVDHE6depUYZsBAPAWh2Fod2KW3l13QnfM3qOJc/fqw58SKi2CMUnq1z5MTw7voCUP9NPn0/rpsWs6qE+7MKbEBYB6Qi5SFrmIE7lI1ZCLlEYuAgBoigzD0C9J2Xp//Qnd9sluTZ6/T3O2nKq0CCayWYB+M6C1PprYS98+OlB/uK6Lruxk4cISAKgH5CJlkYs4kYtUDblIaeQiAIDK2B2GkjLztf1EhpbvOaMPfjypl745pCnz92nUzO0aNXOHpn66Xy/9J14f/Jig5XvPavvJTCXVUhFMq7AAXRbdXOP7tNQjV0frLzd109x7++iHGQMV+8QVWji1r968NUZPjeioO/q30VWdLYoODyar8FHMCAM0cg8++KBWrlyp2NhYrVixQsOHD9e0adM0YMAAhYSE6MyZM9qxY4eWLl2qO+64Q88//7wkaezYsbrlllv09ddfKzY2VjfccIMeffRR9ejRQ+np6Vq2bJkWLlwoyTmd95///GdvPs1SBgwYoDlz5uj48eO6//771b59eyUnJ2v27NlavXq1JKlv377lBhvXXXedOnTooJMnT+q1115TWlqabrrpJgUHB+vAgQP65z//qb179+qKK67Q9u3b3bZh0KBB+umnn7Rz5069++67Gj16tEJDQyVJISEhateunSSpdevWmjlzph544AElJyfruuuu01133aXRo0erXbt2Kioq0qlTp7Rz50598803OnbsmBYsWKA+ffrU6DUym8264447NHv2bO3fv18333yzHn30UXXt2lWZmZlatWqV5syZo2bNmqlt27aVTu3rLX369FFcXJzGjBmjp556SgMHDlR+fr5WrVqljz/+2DUN7uuvv16j49x///1asmSJtm3bpkWLFikhIUHTpk1Tx44dlZycrIULF2rFihWSpM6dO+t3v/tdmX0899xz+uqrr3Tq1Cn96U9/0r59+zRx4kS1bNlSR44c0axZs7Rz504NGDBAu3btctuWqVOnas6cOSoqKtLkyZP17LPP6qqrrlJBQYG2bt2qWbNmqaioSF27dtWRI0fK3Uffvn31/PPP67XXXtPhw4c1fPhwPfDAAxo2bJisVqsyMzO1d+9erVixQn5+flq+fHmp7T3p31lZWZo8ebI6duyom266SQMHDlSHDh3k7++v5ORkff/9964Rgtq1a6frrruuGu8MAAB1I7/IoW0nMrUuPk3r49OVmlP2S77yBPiZdGUni0Z0t+qabuFq2SywjlsKAKgMuQi5SHnIRaqGXGR5qe3JRQAATYVhGNp3Ots188vpTM9G/W4dFqBR52d+6de+ufzMDAgCAN5CLkIuUh5ykaohF1leantyEQCAJOUV2pWQnq/EDOdMLs7bzv9PZ+ar0F5387oE+pnU3nJhJpfo8GBFhQcp2hKk9pZgBQdQ0NKUUAgDNHJms1nz5s3T448/rm+++UaHDx/W//t//8+jbT/44APZ7XatWLFCe/bs0aOPPlpmnbZt22rhwoWuE/WG4A9/+IM+/PBDrVmzRmvWrCmzvEePHlq4cKH8/cv+CgwMDNSHH36oSZMmKScnRx999JE++ugj13I/Pz/95S9/UXp6eoXBxrRp0zR37lzZbDb95S9/0V/+8hfXsqFDh+qrr75y3b/55ps1f/58PfHEE7LZbJo7d67mzp1b7n7NZrPrBLKmXn75ZW3dulX79u3Trl279PDDD5dabrVaNXv2bL3++usNNti49NJL9eCDD+r555/Xiy++WGZ5YGCgZs6cqcsvv7xGx/Hz89OCBQs0efJkbd26VT/++KN+/PHHMuvFxMRo8eLF5U6F26JFC3322We64447dObMGS1dulRLly4ttc5dd92loUOH6sknn3Tbll69eul//ud/9Morryg9PV2vvPJKqeVWq1Xz5s3Ta6+95jbYkKRnn31WZrNZb7zxhjIyMvTOO+/onXfeKbNeeVNYV6V/nzhxQrNmzXLbjjZt2mj+/PkeTcMNAEBdyswr0oYj6YqNt2nT0XTlFDo82i4syE/XdA3XiO5WDekSrmaBfnXcUgBAVZCLkIu4Qy7iOXKR0shFAACNmcMwtOeUs/hlTVyakrM8K35p0zxQo2MiNKZnhC5lNlwAaDDIRchF3CEX8Ry5SGnkIgDQNBiGobScIldxS0J6nhLT85WQ4fw/5Zxng4lWlyXEX1EWZ5FLdHiQ63aUJUitmweSO8CFQhigCQgNDdXs2bP1008/adGiRdqyZYvOnDkju92uVq1a6dJLL9XYsWN1++23l9ouODhYc+fO1ffff69FixZpx44dSktLU2hoqLp166Ybb7xRDz74YIM7IQkMDNTixYv173//W59//rkOHTqkwsJCde7cWbfddpsefvhhhYSEuN3+qquu0urVq/XOO+9o/fr1Sk1NVUREhAYNGqRHH31UgwcP1htvvFFhG9q1a6fvv/9e7777rjZu3KjTp08rL8/99PDXX3+9duzYofnz52vVqlU6cOCA0tPT5e/vr9atW6tnz5665pprNH78eEVFRVX7tSmpRYsWWrFihWbNmqWvv/5aR44ckZ+fn6KionTdddfpoYceUvv27WvlWHVpypQp6t27tz766CNt2bJFaWlpioyM1DXXXKMnn3xSPXv2rJXjWK1WffPNN/ryyy+1ZMkS7d27V+np6WrevLl69+6t8ePHa8qUKQoMdD/ye69evfTTTz/p/fff14oVK5SYmKiwsDD17t1bU6ZM0e23365FixZV2pZHHnlEMTEx+uijj7Rz507l5uaqbdu2Gj16tJ544glFR0d79JyeeeYZ3XLLLZozZ47Wr1+vhIQE5ebmKjw8XDExMRoxYoQmTZpUZjtP+neHDh20cuVKrVq1Slu3blVCQoLOnj2rc+fOyWKxKCYmRtdff72mTp2q5s2be9ReAABqW3JWvtbF2xQbb9OOk1myOzwblaR1WIBGdI/QyB5WXR7dnClyAaCBIxchFykPuUjVkItcQC4CAGhs7A5DuxKzXMUvnl7M0r5FkEb3dM780qdtM5m4CAUAGiRyEXKR8pCLVA25yAXkIgDQeBTZHTqdWeAscik1s0u+EtPzPB48tDrMJqlt8yBnkUt46dldosODFBZEeQM8YzIMo+7mH0KjlpKSUuVtkpOT5XA4ZDab1aZNmzpoFZqqDRs2aMKECZKk5cuX6+qrry61vORoHkVFRfXZNNSBgQMH6uTJk5o0aZJmzpzp7ebUGfqte3yeNFx+fn6yWq2u+zabTXa73YstAipHv206DMPQ4ZRcrTts07pDNv2SfM7jbbu1DNHI7laN7B6hXm1CG8TFHb7Ud1u2bOntJgC1jlwEDQm5SNNCLgI+TxouX/obHShGv22aihyGdiZkavXBNK09ZFNqjmfFLx3CgzQ6JkKjYyK9no/4Ut8lF0FjVdVshL9jUVfIRZoWchHwedJw+dLf6ECxxt5vs/OLXDO6lCxySUjPV1JWvjwcK7RaQgLMF83qcqHYpW2LQAUw4GiN+FLfrctchJIpAAAAAECjZXcY2nsqW7HxaYqNtykhPd+j7UyS+kc118juVo3oblUHa3DdNhQAAAAAAKAOFdkd2n4yU6vjnMUv6bmeXVDZKSJYY2KcM7/0aNUwBgcBAAAAAACSwzB0NrvAVezinNnlfLFLRr4yPDz3r67IZgHO4hZLsKLCSxe9RIT6kyGgzlEIAwAAAABoVPIKHdp2IkOx8Tatj7fJ5mG4E+hn0pWdLRrR3arhXa2KaBZQxy0FAAAAAACoO4V2h7Yedxa/rIu3KSPPs4yka2SIxvR0Fr90jQzhwhUA5fLz86vS+vwugTdc3O9MJpMMow6HPgdqAf3WMyaTqcqfRahbZrO5wvtAQ+QL/Tav0F5iJpc8nUzPU2J6vhJseUrMyFOBve4+I/zNJkWdL2zpYA1WdHiwosKD1eH8YyGB/B72Fl/ou/WBQhgAAAAAgM/LyC3ST0dsio23afOxDOUWOjzarkWwn4Z1tWpkd6uu6mxRKEENAAAAAADwYflFDm05nqHVB9O07rBN2fl2j7aLaRWqUednfukSGVLHrQTQGFit1iqtn5KSIsMwZDab5e/P5UqoPSUvhPfz86uwf3HRfOPRlH6X0G9LK77QNyAgoMqfRahfFovF200Aqswb/dYwDNlyCnU89ZxOpOXoRGqOjp///0RajpIy8+r0+C2C/dUpspk6RoaqY0SoOkWEum63s4TIz0xBuy9oqr9zm8ZfgwDQCB0+fFgFBQVV3q5ly5Zq1apVHbTIM2fPnlVKSkqVtwsMDFS3bt3qoEUAAMBXJWXmKzbepnXxNv18MlOeDnTSpnmgRna3amQPqy6Lai5/v6Y5MgYAAL6MXAQAAOCCvEKHNh9L1+q4NK0/bNO5As8GCOnVJlRjYiI1KiZCHa3BddxKAABQW+Lj46uVi7Rq1crrucjZs2ervF1gYKC6d+9eBy0CAKB+FNkdOpWep+NpJYpdzhe6nEjLUXa+ZzO4VofJJLW3hKhjhLO4pWNkqDq5il6ayRIaUGfHBuoahTAA4KN+85vf6OTJk1Xe7ve//72ef/75OmiRZ+bMmaM333yzytt16NBBP//8cx20CAAA+ArDMHQ4JVex8TbFxqfpQHKOx9v2aBWqkd2tGtHdqp6tQ8tMKw8AAHwLuQgAAGjqcgvs2nDUWfzy05F0j2fH7dO2mUbHRGhUTISiwyl+AQDAF91+++3VykVeeOEFvfjii3XQIs988sknev3116u8XYcOHbRnz546aBEAALUnO7/o/Cwu50oVuRxPzVFieq7sDg9H9qyG4ADz+UKXZq4il46RztldoqwhCvJndjE0ThTCAGgUrr766mqNGgHfxIUfAAA0HXaHod2JWa6ZXxIz8j3azmySBkQ114jzxS9c2AEAaMzIRZoWchEAAJqunAK7fjriLH7ZcCRdeUWeFb/0ax/mLH7pEaF2lqA6biWApsJms1Vp/cLCQjkczt9bRUV1N+I1mp6rrrqqVC5Ssn+ZTCb5+V248NNut8sw6u4i1IbO4XB49eev+HdAdRS3u2Qu0lh/l9BvK+ZwOORwOFRYWFjlzyLULbPZLIvF4rqfkZFRo597oD5Upd8ahqGz2YVKSM8r958tp24/lyJCAxQdHqzo8CDn/9bg8/eD1bJZgJvBQAuVk1Uoz4cYha/wpd+5Vqu1zvZtMvgrCdWUkpJS5W2Sk5PlcDhkNpvVpk2bOmgVUD5//wt1f431RBiND/3WPT5PGi4/P79Sf7zabDbZ7XYvtgioHP224ckrdGjL8QzFxtv042Gb0nM9+xwM8jfpyk4WjeweoWu6hcvayKfw9aW+27JlS283Aah15CLwJZxfwhfRb93j86Th8qW/0YFi9NuGLzu/SD8edha/bDqWrvyiyr/eN0kaEN1co2MidG0Pq9o0b3zFL77Ud8lF0FhVNRvh71h4C+eX8EX0W/f4PGm4fOlvdKDYxf02+WyqTqblKCEjXwnpeUpMz1dChvP/xIx85Xs4IEW12mI2qX2LQEWFByva4ix2iTpf9BJlCVJoILO64AJf+p1bl7kIM8IAAAAAALwuPbdQPx1O17rDNm06muHxiKaWYH9d0y1cI7tbdWUni0IIfwDUk5Ij8nmq/JGYgLp1cb8zmUyMIIkGj37rmYtHiIX3mc3mCu8DDRH9tmHKyitSbHyaVh1I1aZj6Sq0V/45aDZJl3dooTE9I3VtTKRahQXWQ0u9h74LAAAAAKgqwzCUmWd3zuKSka/TmQU6k3NCx1NzdDItR6cz8lSXSXSzQD/XjC5R54tdosODFGUJUpsWQfI3810iUBUUwgAAAAAAvOJURr7WxdsUG5+mXQlZ8uCaDklSuxaBGtk9QiO6WzUgujlhEACvqM4UzikpKTIMQ2azudSIfkB94qJ5+CL6bWnFF/oGBARU6/MI9cdisXi7CUCV0W+9x3auQD/8kqz/7jutDfEpHhW/+JlNGtI1Ujf2bauxl7RVq0Y484un6LsAAAAAAEmyOwwlZxUoMSNPCemlZ3ZJSM9Xdn7dzprRpnmgoixBzpldzhe5FBe8WIL9GTgPqEV84w4AAAAAqBeGYejQ2RzFxtsUG29T3Jkcj7eNaR2qEd2sGtnDqphWoYRDAAAAAADA56Vm52vlL8n6797T2ng4VXZH5cUv/maThnZvqZv6ttV1l7RVRLPGPfMLAAAAAAAXyy2wKzHDWeSSkJ5fqujldGaBijw4v66uQD9TieKWYEWFByn6/P12liAF+TNjKVBfKIQBAAAAANSZIoehXQlZWhdv07p4m05l5nu0ndkkXRbd3DXzS3tL0x3RFAAAAAAANB5nsvL0/f5kfbv3tDYfSZUn1+YE+Jl0TY9WuvHStrrukjYKD6X4BQAAAADQeBmGodScQmeRy/lil4QM58wuien5Ss0prNPjh4f4n5/NxTmTS3R4sKv4pWVYgMwM3Ak0CBTCAAAAAABqVV6hXZuPZSg23qYfD6crI6/Io+2C/M0a0tmikd2tGtY1XOGhAXXcUgCoPpvNVuVtCgsL5XA4JElFRZ79bgRqymQyyc/Pz3XfbrfLMOpuJDSgNtBvK+ZwOORwOFRYWFitzyPUHbPZLIvF4rqfkZHh+uwHGir6bf04k1Wg1XGpWnUwVTtPZsqTT7VAP5OGdrVqTM9IDe9mVfNg51f7Rv452fLP1W2DfYAv9V2r1ertJgAAAABAg1Nod+hURr5rZpfE9HwllLidV1R353h+JqltC2dhS7e2FnWMCFWniFBZA+xq29xfYUFcXg/4An5SAQAAAAA1lp5TqB+PpCs23qbNxzKU72EoZQnx1/BuVo3sbtWVnVooOMCv8o0AoAGw2+1V3oaLuOENF/c7+iF8Af3WM4ZhVOvzCPXH4XDwHsHn0G9rT1JmvtYcStPquDTtTsz2aJsgf5OGdgnX6JgIXdPNqmaBpQtD4R59FwAAAAAanqy8IudsLul5roKXhPR8JWbkKTmrwKNZUqsrNMDsnMklPEjRlvP/hztneGnbPFD+fmb5+fmVGrzAZrNxbgn4EAphAAAAAADVkpCep3XxNq2Lt2lXYpbHIVWUJUgjujuLX/pFNZe/mWmDAQAAAACA7zuVka/VcWlaHZeqfac9m7Ul2N+sa7o5i1+GdglXaCCDhAAAAAAAfIPdYehsdoGz2CXj/Kwurtld8pSZV7dFJa3CAhRlcRa3RIcHK8oS5LodHuIvk4lrEYDGjEIYAAAAAIBHDMPQwTM5WhdvU2y8TYfO5ni8bc/WoRrZ3aqRPSLUvWUIgRMAAAAAAGgUEtLztOpgmtbEpemXZM+KX0IDzLqmm/V88YuFGXIBAAAAAA1WXqH9/GwupWd2SczI16mMfBXa625alwA/k9pbnDO6RIcHuWZ1ibIEKcoSxPk00MRRCAMAAAAAcKvI7tDOxCzFHnLO/JKUVeDRdn4maWCHFhrR3aoR3axqZwmq45YCAAAAAADUj+NpuVodl6ZVcWmKO+PZQCHNAv00oruz+OWqzhYF+ZvruJUAAAAAAFTOMAzZcopKzeiSkJ7vKnhJOVdYp8e3BPsrKjzo/Gwu5wtezhe+tG4eKDODbAJwg0IYAAAAAEApuQV2bTqWodh4m346YvN4uuJgf7OGdLFoZHerhnW1yhLCKScAAAAAAGgcjqTkaHVcmlbHpSk+JdejbZoH+Wlkd6tG94zU4I4tFEjxCwAAAADAC4rsDiVlFVwocknPV0JG8e085RQ66uzYZpPUpnlgmSKX4pldmgdzXQGA6uG3BwAAAABAtpxCrT9sU2y8TVuPZyi/yLPpi60h/hre3aoR3a0a3NGi4AAu6AAAAAAAAL7PMAzFp+Rq9cE0rY5L1dG0PI+2s4T469rzM79c0bGFAvzISgAAAAAAdS87v0gJ52d0cc7m4ixySczIV1JmvuyeXQJQLcH+5lLFLdHhwYo6f79di0DOjQHUCQphAAAAAKCJSkjPU+whZ/HLnlNZcngYfEVZgnRtD6tGdo9Q3/Zh8jMzFTEAAAAAAPB9hmHo4JkLM7+csHlW/GIN8de1MREaHROhyzu0kD9ZCQAAAACgljkMQ2ezC5yzuZyf0SXxfOFLQka+MnKL6vT4kc0CXEUuzpldim8HKyLUXyYT58IA6heFMAAAAADQRBiGoQPJOYqNT1NsvE2HU3I93rZ3m2Ya0d2qkd2t6tYyhBALAAAAAAA0CoZh6Nfkc1p10Fn8kpiR79F2kc0CNKqHs/jlsujmDBQCAAAAAKix/CKHTmWUnNUlzzWzy6nMfOUX1d20Lv5mk9pbghRtCVJUeJCizhe8RFucs7yEBPrV2bEBoDoohAHQYJw4cUKXX365JOm9997T3Xff7eUWoS4sWrRITz75pCRpx44d6tixo5dbBABA41Zkd2hHQpbWxdu0Lt6m5KwCj7bzM5t0eYfmGtndquHdrGrbIqiOWwoAAMhGmgayEQAAvM9hGNp/Ots188vpTM/yktZhARoVE6ExMZHMkgsAQC0jF2kayEUANHWGYSgjt0gJFxW5FBe9nMkurNPjNw/yU3R48PnZXJwzukSdL3Zp3TyQ81wAPoVCGAAAAABoZHIK7Np4NF3r4m366Ui6svLtHm0XEmDW0C7hGtndqqu7hqtFMKeMAAAAAACgcXAYhvYkOotf1hxK83iwkLbNAzU6JkKje0bo0nZhMjNLLgAAAACgAkUOQ8mZ+a5il8T080UvGflKTM/XuQLPvr+vDpOk1s0DLxS5WJz/R4cHKcoSLEsI1wAAaDz4jQagSXnttdf0+uuvS5LOnj3r5dagoRo4cKBOnjypSZMmaebMmd5uDgAAHkk9V6gfD9sUG2/T1uMZKrB7NiVyRKi/hnezamR3qwZ1sijI31zHLQUAAN70xhtv6M0335RENgL3yEYAAI2F3WFoV2KWs/glLk0p5zwbWTfKEnR+5pcIXdK2mUwUvwAA0CiQi8AT5CIAPJFTYHcWuWTkK+F8oUvxrC6nMwtkd3j2fX11BPmbFWUJcs7kEh6saEuQos4Xu7RvEaRAvvMH0ERQCAMAAAAAPuqELU+xh9IUG2/T3lPZ8jRK6xAepJE9IjSyu1WXtgtjemMAAAAAANBoFDkM/XwyU6vj0rT2UJrScoo82q5DeJDG9IzU6JgI9WwdSvELAAAAADRhhmEo5VyhazaX4iKXhPR8JWbkeXyuWV0Rof6KslyYycU1w0t4kFo2C+CcFQBEIQwAAAAA+AyHYejXpHOKjbdpXbxNR1JzPd72krbNNLK7c+aXLpEhBGMAAAAAAKDRKLI7tN1V/GJTeq5nFyR1igjWmJgIjekZqe4tyUsAAAAAoCkpKHLoVKZzRpfE9DwlnC92SUzPV2JGvvKLHHV2bD+zSe1aBDqLWyznZ3YJDzo/00uwmgX61dmxAaCxoBAGAAAAABqwQrtDO05maV18mtbF23Qmu9Cj7fzMJg3q2EIju1s1vJtVrZsH1nFLAQAAAAAA6k+h3aEtx53FL+vi05SZZ/dou24tQzQ6JkKjYyLUlcFCAAAAAKBRy8gtUmKGcyaXi2d2OZNVIKMOj90s0Kyo8GBFWy7M5hJ9/n6bFkHyN3M+CgA1QSEM0Ig9/vjj+uyzz9ShQwf9/PPPbtdbtGiRnnzySUnSjh071LFjR9eygQMH6uTJk5o0aZJmzpypnTt3atasWdqyZYtSU1MVGRmp4cOH68knn1SPHj0qbI/dbte8efP02WefKS4uTiaTSZ07d9Ydd9yh6dOne/Sctm/frpUrV2rLli06dOiQ0tPTFRQUpPbt22vo0KGaPn26evbsWWa7hQsX6rHHHiv1WKtWrcqsd/HzL273F198oa+//lp79uyRzWZTs2bN1KNHD9188826//77FRIS4lH7PVUbr/uGDRs0YcIESdLy5cs1ZMgQLVq0SF988YXi4uKUkpKiiRMnaubMma5tHA6HlixZoiVLlmjPnj1KT09XixYt1KtXL91yyy2aPHmyAgMrvog2PT1d7733nr799lslJCQoLCxMl1xyiaZOnapbb7210ude/L78/ve/1/PPP+92vVtvvVUbN27U0KFD9dVXX7ld78SJE5o7d67WrVunkydPKisrSy1atFCPHj00fPhwTZw4UZ07dy61z2KfffaZPvvss1L7u/h4drtdn3/+uZYuXar9+/crPT1dwcHBatmypaKjo3XNNddo3Lhx5fZLAADcyc4v0qajGYqNt+mnI+k6V+DZhRyhAWZd3TVcI7pbdXWXcDUP5pQPANC0kY1cQDZCNkI2AgBoDPKLHNpyPEOrDqZp/WGbsvM9y0xiWoVqdM8Ije4Roc6Rtft3CwAADRW5yAXkIuQi5CJA42V3GDqTVaCE88UuieeLXIoLXrI8PG+srtZhAeeLXIpndrlQ7GIJ8WfwBQCoQ1wVBcBjCxYs0HPPPaeiogvTyZ86dUqLFy/WsmXL9MEHH7g9ac3Oztbdd9+tzZs3l3p879692rt3r5YuXap33nmnwuOXDF9KKiwsVFxcnOLi4jR//nz93//9nx544IFqPMOyEhISNHnyZO3fv7/U4wUFBdq6dau2bt2qOXPmaNGiRerWrVutHPNiNXndi+Xl5WnixIlat26d23VsNpsmT56srVu3lno8NTVVGzZs0IYNG/TJJ59o8eLF6tChQ7n7iIuL0x133KGkpKRSx16/fr3Wr1+v1atXa8iQIZ487VrxwQcf6NVXX1VhYemR89PS0rRlyxZt2bJFGzZsqDAUqYi7fl1YWKisrCwdPXpUP/74o/bs2aM5c+ZU+3kAAJqGlHMFWh+frtj4NG07kalCu2djz0SGBmh4d6tGdrdqUMcWCvQ313FLAQBoushGLiAbIRuRyEYAAPUjr9ChTcfStTouTT8etulcgcOj7Xq3aabRMREaFROhjtbgOm4lAACNH7nIBeQi5CISuQhQn3IL7M7ClhLFLonp+UrIyNepjHwVOepuXpdAP5OiLEHOmV3OF7lEnZ/hpb0lSEF8Pw8AXkMhDACP7Nu3T0uXLlXLli311FNPaeDAgcrLy9OqVav0j3/8Q/n5+Xr00UfVqVMnDRgwoMz2M2bMcJ34DRw4UI888oi6du2qM2fOaPHixfr666/13HPPVdiGoqIihYeH64YbbtCQIUPUtWtXhYaGKikpSXv37tU///lPpaam6sUXX1SPHj10zTXXuLa96aabNGDAAH3yySeaPXu2JGn9+vVljtGuXTvX7bS0NN18881KTExUUFCQJk+erKFDh6pjx446d+6c1q5dq3/+8586evSo7rrrLq1evVotWrSozsvrVk1f92J//vOftX//ft1www266667FB0drbNnzyorK0uSc4SKe++9V9u2bZPkHMHiwQcfVKdOnZSUlKSFCxfqv//9r+Li4nT77bdr7dq1CgsLK3WMrKwsTZw40RVoTJgwQZMmTVKrVq10+PBhzZo1S4sWLdKBAwdq9TVy5+2339Zrr70mSbJYLJo2bZqGDRsmq9WqzMxM7dmzR//5z39KVd2/9957ysnJcT2PG2+8US+99FKp/YaGhrpuv/nmm65+PXbsWN15552KiopSUFCQUlJStHfvXq1cuZLKfgCAW8fSchV7yKb1h23aeyrb42mXO1qDdW0PZ/FLn3ZhMvNZAwBAnWss2ci//vUv1xfvZCNkI2QjAICGKrfArg1HncUvPx1JV26hZ8Uvfdo205iekRrVw6qocIpfAACoLeQi5CLkIk7kIkDdMAxDaTlFSkjPU0J63vnZXPJdt1PPFVa+kxqwhPgr+nxxS1R4kKItzqKXqPAgtQoL5Pt4AGigKIRBw2M4ZMqzebsV9coItkqmhl0ZvH//fnXo0EHffvut2rRp43p86NChGjVqlH7zm9+osLBQzz//vFauXFlq25UrV+rbb7+VJI0ZM0bz58+Xv/+FXz/XXXed3nrrLb3++usVtmHMmDG64447Sp1USlK/fv00duxY/fa3v9Utt9yi/fv36/XXXy8ValgsFlksllJT2/bu3bvC4/3hD39QYmKiOnTooGXLlqlTp06lll999dW65ZZbNH78eB07dkzvv/++Xn755Qr3WVU1ed0v3s/vfve7MifoxebOnesKNIqnvi0+Ee/fv7+uv/56vfrqq/r73/+uY8eO6W9/+5v++Mc/ltrH22+/rcTEREnSyy+/rKefftq1rH///ho/frzuuecexcbGVuelqJI9e/bojTfekCR169ZNS5cuVfv27UutM2zYMM2YMcPVZkmu9zggIECS1KJFiwr7SfGoIOPHj3cVWJU0evRoPf3007LZmtbvNACAew7D0C9J5xR7KE2x8TYdS8vzeNtL2zXTyO4RGtndqs6RIXXYSgCAJ/z8/Kq8jUdfeJKLNFi+mo0U97vibKRly5au7chGLiAbcWoo2cjFvy9NJpMMo+5GdfRVJpOpWp9HqDtms7nC+0BD1JD67bl8u348bNOqgynacCRdeUWeFb/0j2ruLH6JiVB7C8UvTUVD6rsAalkTy0bIRer3mhFyEXKRYg05FwEaq0K7Q6czC5zFLSWKXIr/93QAhOrwM0ltWzgLW6IsF8/sEqSwIC6lBgBfxG9vNDimPJsiPxns7WbUq9QHt8oIifR2Myr1v//7v6VOrIsNGzZMU6ZM0Zw5c7Rz507t2rWr1EgTxaNpBAUF6Z133ikVaBT73e9+p6+//lq//vqr2+OXHHmjPC1atNALL7ygqVOnasuWLUpLS1NERISHz660EydOaPny5ZKk1157rUygUaxfv3568MEH9f7772vx4sW1HmpI1X/dS+rWrZuef/55t8coPiFv2bKlXn/99XIvznrhhRe0YsUKHTp0SPPnz9cLL7ygoKAgSc5pfxcsWCBJ6tOnj5566qky2wcEBOjdd9/VFVdcUWba2dr2wQcfyOFwyGQy6R//+EeZQKOkqKioah/nzJkzkqSrrrqqwvWsVmu1jwEA8H2Fdoe2n8hUbLxN6+JtSvFwtBp/s0mDO7bQ8O5WjehuVauwwDpuKQCgKqrzd35KSooMw5DZbC733FiSTDmpsjSxXCTjoZ9lhNZNLlLyYjh3r7lUurDJ39/f7bp/+ctfyj2PHDlypKZOnarZs2dr586d2rt3ry677DLX8rlz50pyZiPvvfeegoPLXqD5/PPPl8pG/Pz8yrSjQ4cObp+DJEVEROgPf/iD7r33Xm3ZskWZmZllshFPX5OS2cgbb7yhbt26lbvewIEDNX36dL333nv67LPP9D//8z8VtrE6qvu6l3xfu3fvrj/84Q9uiwaK86uWLVvqrbfecl3wUNLLL7/sGv10/vz5evnll91mI88++2yZfMXf318zZ87UZZdd5spGKupvFf2ukC4Ui5hMpjLrffjhh65sZPbs2erYsaPb/bjLvTxpQ3E2cvXVV1e4XsnBaaqDYo/Sin+OAwICyJ0aOIvF4u0mAFVW3/02M69Qa349o//uPa11cWeV70Hxi8kkDeocoXGXttUNl7ZTW4pfIH7nAo1JU7tmxFeuF5G4ZqQ8XDPCNSMS14wAJWXkFupkWo6Op+boQGKKEmy5rpldkrMK5KjDsW5CAsyKDj9f5GI5P7PL+YKXts0D5e/X8AtPAQBVw292AB4JDw/XjTfe6Hb5Pffc47q9bt0612273a6NGzdKcl6c0LZt23K3N5vNmjRpUpXadO7cOZ04cUIHDhzQr7/+ql9//bVUYLJ///4q7a+kH374QXa7XaGhoRo9enSF6xaf0CYlJSkhIaHaxyxPdV/3i02YMMHtBQNJSUmKi4uTJN1yyy1lpq8t5u/vr7vvvluSlJ6erj179riW7d69W+np6ZKkSZMmuR3luH379ho5cqTbdtYGh8Oh1atXS3JehNGvX786O1Zx2LR8+XLl5OTU2XEAAL4nO79I3x9I1UvfHNKYD37WE0sOasnuM5UWwTQLNGtsr0j9383dteqxgXrvzl66c0AbimAAAGgAwsPDNW7cOLfLJ0+e7LpdcmRLu92uDRs2SJKuvfZatxdtmM1m13m3p4qzkV9//VW//PKLfvnll1LZyL59+6q0v5K+//57VzZy3XXXVbju0KFDJUmnT5/WyZMnq33M8lT3db/Ybbfd5jYbOX36tA4ePCjJmaE0b9683PX8/f1dWUx6erp2797tWrZr1y5XNnL33Xe7zUaioqJ07bXXum1nbXA4HFq1apUk50Ux9ZGNLF26lGwEAOCxjJxCfbkjQQ/O3aYr/rxKT3+2Syt/Sa6wCMZskoZ0jdSfb+2jLS+N1ucPD9H9V3ehCAYAgHrCNSPucc0I14xwzQiaEodhKCkzX9tPZOqrvWf0wY8n9dI3hzT1030a+e5W9f/flbr5/Z/02MKf9f66E1q256y2ncjU6czaKYJp2SxAA6Ka66ZLWurhoVH687humn3PJVr56ECtf/IKLbqvr968NUZPjeyoOwe00VWdwxUdHkwRDAA0UswIA8Ajffv2rXBUx0svvVSBgYEqKCgoNULHsWPHXCd7JUfkLE9lyyUpNTVVs2bN0n/+8x8dOXJEhuH+L+TU1NRK9+fOrl27JEk5OTlug5jynDlzRtHR0dU+7sWq+7pf7JJLLnG7rOR2l19+eYXtGThwoOv2gQMHNGjQoDL7cDfCSMl9/PDDDxWuUxPHjx9XRkaGpMpH3aipSZMm6e2339a2bdt0xRVXaPz48Ro+fLiuvPLKUlMqAwCahrPZBVp3ftaXbScyVeRhkteyWYBGdLdqZHerLu/QQoH+hHAAADRE/fr1q/AcvW/fvq5z9F9++cX1+NGjR13ZSMnz6vJUtlxy5h0ffPCBvvnmGx0+fLhespGqnOOeOXOm0plrqqK6r/vF+vTp43ZZVbKRK664otR2gwc7RykueezKMq7LL79cK1eurHCdmiiZjQwZMqTOjiM5i37efPNNbd26VQMGDNCtt96qESNG6KqrriIbAQCUYjtXoB9+SdaKvae1IT7Fo9zEz2zSkK6RGte3ncb2aaOWYUH10FIAAFAerhnxDNeMcM0I14ygMcgrdCgxI0+JGc6ZXBLS85WYnq+EjDydyshXob3upnUJ8DOpvSVIUZYg1+wuUZbi/4MUHMDM0QCACyiEAeCRyk7Q/P39FR4erjNnzshms7keL3m7sn20bt26wuW7d+/WxIkTlZaW5kGLpby8PI/WK09KSkq1tsvNza32MctT3df9YuHh4W6XFY/K4cnxSk636+59btWqVYX7qGx5TZXsH+VND1ybnn32WZ0+fVqLFi3S2bNnNXv2bNeUwb169dLNN9+sadOmVdq3AQC+61hqrmLjbYqNT9O+0+c83q5LRLBG9ojQiO5WXdK2mcxuRsYCADRcFZ2DuVNYWCiHwznKdVFRUbnrmOzlP96YFdmLZLh5PWqq+PWW3L/mknN00pLrlbduZGRkhfuQ5DpHT0tLc61bMmOIiIiocB+RkZGl2nTxulXNRs6dOye73V5qxE9PX5MzZ854dIyLZWdnV/o6VUV1X3ep9PvavHlzt/speWFMVd6j1NRU17rV3Ye7/iY536uK9lN8sY9hGKXWK/netWrVqkbvR2VteOaZZ5SYmOjKRv71r3/pX//6l6SaZSMmk6lUv7Xb7RVe3NTUOBwOORwOFRYWVuvzCHXHbDbLYrG47mdkZJT6vQs0RHXZb9POFWjtoTStOpiqbccz5Mm1Uv5mkwZ3smhMz0iN7BEha2iAc0Fhjmw2RtnGBb70O9dqtXq7CQBQY1wz4hmuGeGaEa4ZgS8wDEPpuUUXilxKFrxk5OlsdmGdHr9FsJ+iLcGKCncWu0SFByn6fLFLq7BA+Zn57hwA4BkKYdDgGMFWpT641dvNqFdGcMMPP91NW1pf+ygoKND06dOVlpamgIAATZ8+XTfccIO6deum8PBwBQU5RwE7duyYa8SJmnw5XnyhRGRkpJYtW+bxdh07dqz2MctTG6+7JLdT3NbF8Wqrzb4gICBA7777rmbMmKGlS5fqxx9/1O7du1VQUKADBw7owIEDmjVrlmbNmlXhdMUAAN/hMAztO52t2EM2xcbbdMLm2ZcoJkl924dpRHerRnS3qnNESN02FABQ50peYO8pT85TyUUaLm+fM1c3G6luPkI2Un1kIzXPRi7utxTBlM8wjGp9HqH+OBwO3iP4nJr225RzBYo9ZNOqg2n6OSFTnkyYG+Bn0lWdLBodE6Hh3a1qEXzhK2x+huApfucCjUdTy0bIRTzDNSM1Qy5SN7hmBA1Zkd2hpKwCJaQ7i1yKZ3RJPF/scq6g7orIzSapnSVE7VsEuGZ2cf0fHlTqnA8AgJrgEwUNj8ksIySy8vVQKbPZLEmVjn5UPA1tRc6ePVvh8qKiItcoESVHNSo5qkRl+6hopNEff/xRx44dkyS9/vrrmjJlSrnrlRypoiYiIiIkOUcxjYmJ8TgUqG3Vfd2roirvUXJysuu2u/f5zJkz6tatm9t9VHYMk8kkwzCq3W+L37uL21uXevbsqZdeekkvvfSS8vLytGXLFi1ZskSff/65zp07p4cfflhbt26t0pTJAICGo6DIoW0nMhUbb9P6eJtSczwbASfAz6RBHVtoZPcIDe8WrpZhgXXcUgBAo0AuUqvIRqqPbKR8ZCPlIxsBgKbtTFaB1hxK05q4NO1MyJInl5wG+pk0pEu4s/ilW7jCgvjaGgBwHtlIrSEXqT5ykfKRi5SPXATekp1fdH42l/PFLhkXil6SMvM9mpWzuoL9za4ZXaItQYoKD1LHiFD16dRGUeEhCvQ3y2azUawOAKhTJIpAIxYWFibJORV4RQ4fPlzpvvbt26eioiL5+5f/a2P//v0qKCiQ5Jzes1jnzp0VEhKi3Nxc7dy5s8Jj7Nq1y+2ygwcPum7fdttt1dqH5PnIE3379tWSJUuUn5+vXbt26fLLL/dou9pW3de9Knr37u26vWPHDk2cONHtuiXfw5LHK7mPXbt2aciQIR7tozxhYWHKysqqMKAyDENHjx4td1mnTp1ksViUkZGhTZs2VXgsd2oyQklwcLBGjBihESNG6JJLLtErr7yi3Nxc/fDDD27DOABAw5OVV6QNR9O1Lt6mDUfSlVPo2Yg4YUF+GtY1XCO7WzWkS7iaBXrnixEAAOBENlIW2UhZZCNlkY0AACqTlJmv1XFpWh2Xpj2nsj3aJsjfrKu7WDS6Z6SGdSU3AQCgrpGLlEUuUha5SFnkImgoHIahlOzCUkUuCedndElIz1d6blGdHj8yNEBR4c4il2hLsKLDgxQV7vw/MjSgzM+Kn5+frNZmddomAABKMnu7AQDqTvGUq9nZ2YqPjy93nYKCAv3nP/+pdF82m03ff/+92+ULFixw3R4xYoTrtr+/v4YOHSpJio2NVVJSUrnbOxwOffbZZ273X1R04Q/3c+fOud3H/Pnz3e5Dkms6XEnKz893u97111/v+mP9448/rnCfdam6r3tVtG3bVjExMZKkr7/+WtnZ5X9hZbfbtXjxYknO0Tz69evnWta/f3/XCB+ff/652ymGT58+rdjY2ArbU9xvd+/e7XadVatWuQ3rzGazrrvuOknSxo0btWfPngqPV57iflIcGFXXNddc47qdmppao30BAOre6Yxczd90TI9+tl9jPvxZ/2/FYf1wMK3SIpjWYQH6zYDWmnlnL/0wY6D+clN3jekZycUcAAA0AGQjZZGNlEU2UhbZCACgPInpeZq/7bTuX7BPN/9jl96JPVFpEUywv1nX9YzQa+O764cZA/XGrTG6vhe5CQAA9YFcpCxykbLIRcoiF0F9yi9y6Fhqrn46bNPin5P09prjembpQf1m9m5d8+42jft4px767Ff973dH9MnmU/r+QKr2nT5XK0Uw/maTOlqDNaSzRb8Z0FpPj+iot27tocX39dX6J6/Q9zMGavY9ffTncd318NXRuqlPKw2Iaq6WzQJrVDAGAEBtoRCmkYiPj9df//pX3X///ZoyZYpefvllbdy40dvNgpcVhwmS9OGHH5a7ziuvvKLTp097tL8//vGP5U5Fu2HDBleY0L9/f1122WWllk+bNk2SM0R47rnnyp3y8O9//7t++eUXt8fu2rWr63bxifXF/vKXv1R6AltymtHiaXPL0717d91yyy2SpGXLlmnWrFkV7vf48eNaunRphetUV3Vf96p44IEHJEkpKSn6wx/+UO46b775pmuUlSlTppQKiIKCgnT33XdLco5IMnPmzDLbFxUV6Zlnnqk0KCjutzt27NCWLVvKLE9OTnbbxmIzZsyQ2WyWYRh66KGHdOrUKbfrlresTZs2kiruI8WBk7sAR1KpAKdTp04VthkAUP8Mw9CRlBx9silBt878SUP+ukavfLVfm49lyO6oeJ7orpEhmnZle827t4/+8/BlemFMF13V2aIAP06xAABoSMhGyio+55XIRkoiGymNbAQAUOykLU9zt5zSlPn7dOu/duvddSe073T5F58WaxZo1g29I/XmrT206rGB+uv4HhrTM1KhFL8AAFCvyEXKIhcpH7lIaeQiqE2GYSg9t1D7Tmfru19T9MnmRP3vd0f00OJfdNPHOzXs79t055w9enpZnN5ac1yLfk7Sj0fSdTQtT/lFFX9n7YmwID/1ahOqMTERum9wO708totmTeylr387QBueHqSlD/bX+3f20gtjumjyoHYa2SNC3VuFcv4GAPAJ5c+bCJ+yb98+vfrqqwoMDNTQoUMVEhKiLVu26O9//7tSU1M1fvx4bzcRXtKvXz8NGjRI27Zt0/z581VQUKC77rpLzZs315EjRzR//nz9+OOPrnUq0qdPH8XFxWnMmDF66qmnNHDgQOXn52vVqlX6+OOPXVOxvv7662W2vf7663X99dfr+++/1/fff6+bbrpJDz/8sLp27aqUlBQtXrxYy5cv14ABA9xOU3vttdeqVatWOnv2rP7617/q5MmTGjdunCIjI3XkyBF9+umnWr9+vQYPHqytW7e6fR6DBw923f5//+//6ZlnnlGbNm1cVeodO3Z0TSn75ptvavfu3Tp27Jj++Mc/6ttvv9XEiRPVq1cvBQYGymazaf/+/VqzZo1+/PFHjRs3Trfffntlb0uV1OR1r4r7779fS5Ys0bZt27Ro0SIlJCRo2rRp6tixo5KTk7Vw4UKtWLFCknPq4t/97ndl9vHcc8/pq6++0qlTp/SnP/1J+/bt08SJE9WyZUsdOXJEs2bN0s6dOyt8nyVp6tSpmjNnjoqKijR58mQ9++yzuuqqq1RQUKCtW7dq1qxZKioqUteuXXXkyJFy99G3b189//zzeu2113T48GENHz5cDzzwgIYNGyar1arMzEzt3btXK1askJ+fn5YvX15q+0GDBumnn37Szp079e6772r06NEKDQ2VJIWEhKhdu3bKysrS5MmT1bFjR910000aOHCgOnToIH9/fyUnJ+v777/Xp59+Kklq166da8QRAIB32R2G9p7O1rpDNsXGp+lkuvvRvkoySeoXFaaR3SM0ortVHa3BddtQAABQK8hGyho0aJDrNtnIBWQjy0ttTzYCAE3bsbRcrY5L0+q4NMWdyfFom2aBfhrR3arRMRG6qrNFQf4MFgIAgLeRi5RFLlI+cpHlpbYnF0FVFTkMJWfmKzEjXwnp+UpIzzt/O08J6fk6V1C2ALC2mCS1bh6oKEuQosODFR0epKjwYEWfv98i2I/ZWwAAjZbJqKgsGQ2e3W7X008/rbS0NL366qvq3LmzJCknJ0cvvfSSzp49q3fffVetWrWq9WOnpKRUeZvk5GQ5HA6ZzeZSoyyg7hw6dEi33nqrzp49W+7yxx57TD179tSTTz4pyTmiQvE0o5I0cOBAnTx5UpMmTdKVV16p559/vtSUs8UCAwM1c+ZM3XbbbeUeJzs7W5MmTXIbOPTt21fvvPOOxowZI0l67733XKNFFFuzZo3uu+8+5eXllbuPq6++Wq+99ppratGS+ygOKiTnCfxXX31V7j4ufv7JycmaPn26Nm/eXO76Jd1999167733Kl3PE7Xxum/YsEETJkyQJC1fvlxXX311hce02WyaPHlyhaFQTEyMFi9erA4dOpS7/MCBA7rjjjvKHY1Eku666y4NHTrUbX8r9tFHH+mVV14pdx9Wq1Xz5s3Ta6+9po0bN2ro0KFu38933nlHb7zxRrmvXbHytj99+rRGjBghm83mdv0TJ07o8ssvd7vfYm3atNGCBQvUv3//Ste9WMl+W9FzaIr4PGm4/Pz8ZLVaXfdtNlu5ozoB9Sm/yKFtxzMUG2/T+sM2peV49js10M+kwZ0sGtndqmu6WRXZLKCOWwpUjS/9zm3ZsqW3mwDUOnIR30E2cneZ88vp06eTjZSDbOSChpCNkIu4x+dJw+VLf6MDxYr77aHkLK3Ye1r/2ZWo+BTPil9aBPtpRPcIjY6J0OCOLRRI8QvqkS/9ziUXQWNV1WyEv2O9g1yEXEQiFyEXaVy89XmSU2B3Fbckni92ScjIV2J6nk5lFsjuqLvLcIP8TYqyBCsqPEjRxf+fL3ZpZwlqMAMR+NLf6EAx+i18lS/13brMRZgRxsft27dPycnJGjlypKsIRpJCQ0N122236cMPP9S6det05513eq+R8KoePXpo9erVeuedd7Rq1SolJyerRYsW6tevn6ZPn67rrrtOixYt8mhfU6ZMUe/evfXRRx9py5YtSktLU2RkpK655ho9+eST6tmzp9ttw8LC9NVXX2nu3Ln6/PPPFRcXJ5PJpM6dO2vChAl6+OGH3Z4IFxs1apR++OEHvffee/rxxx+Vmpoqi8WimJgY3Xnnnbr33nuVkJBQ6fOYNWuWBgwYoG+++Ubx8fHKzs6Ww+Eod902bdrom2++0cqVK7Vs2TJt375dZ86cUWFhoSwWi7p06aJBgwbp+uuvLzWtcG2qyeteFVarVd98842+/PJLLVmyRHv37lV6erqaN2+u3r17a/z48ZoyZYoCAwPd7qNXr1766aef9P7772vFihVKTExUWFiYevfurSlTpuj222/3qL898sgjiomJ0UcffaSdO3cqNzdXbdu21ejRo/XEE08oOjrao+f0zDPP6JZbbtGcOXO0fv16JSQkKDc3V+Hh4YqJidGIESM0adKkMtu1a9dO33//vd59911t3LhRp0+fLhOmdejQQStXrtSqVau0detWJSQk6OzZszp37pyrX15//fWaOnWqmjdv7lF7AQC1JzOvSD8dSde6eJs2Hk1XbmH5n/UXaxHsr2u6WTW8W7iGdLYw5TMAAI0A2UhZZCPlIxu5gGwEABo/wzAUn5KrNYdsWhu/R/Fnsj3azhLir2vPz/wyqGML+fs1jAuuAABA+chFyiIXKR+5yAXkIk2TYRhKPVfonNEl40KxS3Hxi6eDLVaXNcRf0eEXil2cM7s4C14imwXIzKwuAACUwYwwNZCRkaH4+HjFx8fr8OHDOnz4sLKysiRJI0aM0GOPPebxvs6ePatvv/1WP//8s1JTU+Xv76+2bdtqyJAhuv766xUUFFTudgsXLtTy5cv11FNPlancT09P10MPPaRLL71Uf/zjH6v/RN1g5NOmoeQoEzNnzvR2c6rN10ZKaCyvO2rG1/ptfeLzpOHypWpzND5JmflaF2/TunibdiRkeTzqTpvmgbrh0nYa26etBneJUHZmBv0WPsGXfucy8ikaI3KRpqMxnKP74vllY3jdUTO+2G/rC58nDZcv/Y2OpskwDB08k6PVcWlaHZemE7byR1O/WESov67t4Zz5ZWCHFvI3cwEWvM+XfueSi6CxYkaYpqExnJ/74vllY3jdUTO+2G/rS00/T4ochrafyNTxtFxXkUtCer4SM/KVX+TZ4IrV4WeS2rYIUvT54pYoy/lZXcKD1N4SpLAg3x/T3pf+RgeK0W/hq3yp7zIjTAP129/+tlb2s337dr3//vvKzc11PZafn+8qrlm9erVeeukltW3btsy2SUlJkpyV6BcLDw9XcHCwTp8+XSvtBAAAABoSwzB0OCVXseeLX35NPufxtt1ahmhkd6tGdo9Qn/bNFRERUYctBQAAAAAA8A7DMPRL0jlX8UtiRr5H20U2C9CoHhEa0zNCA6Kay4/iFwAAAAA+7uCZc3r+q0MenxdVVbNAs6LCgxVtCXL+Hx6kqPOzu7RtEcSgAgAA1DIKYWpJy5YtFRUVpd27d1dpu6NHj+rvf/+7CgoKFBwcrAkTJujSSy9VQUGBNmzYoNWrV+v06dP661//qtdee00hISGlts/JyZEkhYaGlrv/kJAQ1zoAAACAr7M7DO05laXYQzatO2xTQrpnIaVJ0oDo5hrR3aqR3a2KDg++sIxppAEAAAAAQCPiMAztO52t1QedxS9JWQUebde2RbBG9bBqVA+r+kWFyUxmAgAAAKCR2H4iU88uj9O5gpqNlt86LKBMsUv0+fuWEH++ewYAoB5RCFMDd955p7p166Zu3brp/7N37/FRlnf+/99zzDmTSQhJSDjliBw8iwgqQTwrKpZtf92ubbe73W6rbbWtdnW1tlVbW7Xa6va47drdfuuutYqHigcQUEFFRVE55MQxIQkhmUzOmdP9+yMSGQdhAkzuuZPX8/Hoo5nrc1/jB/w4mbnn+lxXTk6O9u3bp+uuu25Ez/Hwww8rEAjI4XDo1ltvVWVl5XBs9uzZKioq0p/+9Cc1Nzfr6aef1qc//enj/ccAAAAAktpAMKINu/1aU+fTKw0++frjO/7b7bDpzGkeVZd7dU6pV7kZrgRnCgAAAAAAYI6IYei9ph6tqu3QS3Udao27+cWty08s1qUnFunkkhz5/Z0Kh49tYRgAAAAAJJOXajt069/qFQgbR7zW7bBpkmeouaX4w/8fOtklRZM8qUp12UchYwAAEA8aYY7BsTal1NfXa+vWrZKkRYsWRTXBHHD55Zdr9erVampq0ooVK3T11VfL6fzoX9uBk2A+6dSX/v5+ZWRkHFOeAEamra1N+/fvH/E8t9utsrKyBGQEAID1+PtDemW7T2vrfXpth18DoUhc87JTHTqn1KuF5V7Nm+ZRutuR4EwBAADwcdwbAQBgdIQjht5p7Naq2g6truvQ/t5gXPOKPSlaXJmrxZW5mlOcrdzc3ARnCgAAMH5wXwRILo9v2qe7V+5Q5GM9MFO8qZpRkDHc5HKg4SU/083pmAAAWASNMCbasGHD8M+LFi065DV2u10LFy7Un//8Z/X29mrz5s066aSThuOFhYWSpObmZpWWlkbN7ezs1MDAgMrLyxOQPYBP8l//9V+65557Rjxv8uTJ2rhxYwIyAgDAGpr9g1rb4NOaOp/eaexSHBvySJIKs9yqrvCqutyrk4uz5HSwCw8AAICZuDcCAEDihCKGNu7pGm5+6eiL7+TcyTkpOr8qT4src1U1MV22Dxd22VjgBQAAcFxxXwRIDoZh6Pev79Wv1zXGxBZVeHXnZeVKcfK9MgAAVkYjjIlqamokSSkpKTFNLAebOXNm1JyDG2Fmzpyp5cuXa9OmTVqwYEHUvHfffTdmPjBSfMg2B3/vAIDxwDAM1e/v15q6Dq2p96lm36FPOTyUivx0VZcPnfxy8OINAACA443P6Obg7x0AgI+EwhG9ufvD5pd6n/z98TW/TMtN1fmVeVpclavyCWncPwGAMaq+vl5/+ctfVFNTo3A4rClTpuiyyy7T/PnzzU4NYwCfz83B3ztwbMIRQ/e+tEt/ebc1Jrb0xIn6t/OnyWHn8xEAAFZHI4yJGhuHuo0LCwvlcDg+8bpJkybFzDlgzpw5Kigo0Lp163TppZdq2rRpkqS+vj498cQTcjqdOvfcc49/8gA+0U033aSbbrrJ7DQAAEhKoYihTU3dWlPv09o6n/Z2DcY1z26TTi7OUnWFVwvLvCrOSU1wpgAAADha3BsBAODYBcMRvbFrqPllbX2HugbCcc0rm5Cm8ytztbgyV6UT0hOcJQDAbB988IHuuusuud1uzZ8/X2lpaXrjjTf0wAMPqL29XUuWLDE7RWDc4b4IYK5AKKLbVzToxZqOmNg/zyvWVxYUs0kAAABjBI0wJgkEAuru7pYk5eXlHfbazMxMpaSkaHBwUO3t7VExh8Ohr3zlK7rrrrt0++23R93YaGtr0zXXXKOJEyeOKLeP/zM+yeGadz4JbyJhho/Xnc1mk2EYJmUDxIe6jY/NZjuq30dIHLvdftjHGJ/6g2G9vtOvNbXternBp844dy1Ncdp11vQcLarI1TllXnnTXQnJj7qFVVG7AAAAADC2DIYien2nX6tqO/Ryg089g/E1v1ROTNfiylwtrsjVtLy0BGcJAEgW4XBYv/nNb2S32/WDH/xgeOPUZcuW6eabb9YjjzyiefPmKT8/39xEAQAYJb2BsG5cXqsNu7uixm2SvnPeVH3m1EJzEgMAAAlBI4xJBgYGhn9OTT3ybtapqakaHByMmnfA7Nmzdccdd+jRRx/V+vXrh4+6/dznPndUR91+9atfjeu6Rx99dMTPvX//fhmGIbvdLqeT8oM5WDQPK6Juox1Y6OtyueT1ek3OBofj8XjMTgEm8fUGtGrbPr2wuUUv17VpIBiJa5433aXzZhTowlkFOqdigtLdo/+ekbqFVVG7AAAAAGA9A8GIXtvZqZU1HXqlwae+OO+hnFCQMdT8UpmryV5OzgWA8eiDDz5Qa2urqqurh5tgJCk9PV1Lly7VL3/5S61du1bLli0zL0kAAEZJR29Q33h8m7a19kWNO+02/fDSMl044/CblQMAAOuhE8EkgUBg+Od4GkIOXHPwvIOVl5frlltuOT7JAQAAAEdhT0efXtjSqhc2t+jNnR2KxHmQVYk3TRfOLNSFswp0+lSvnA5OtQAAAAAAAGNXfyCsdTs6taq2Q69u71R/nM0vs4sytLgyT+dVeFWcQ/MLAJjJ7/ervr5e9fX1amhoUENDg7q7uyVJCxcu1LXXXhv3c7W1tWnFihXauHGj2tvb5XQ6VVhYqLPOOksXXXSRUlJSDjlv8+bNkqSTTjopJnbyySdLkrZs2TLCPxkAANbT1Dmg6x7bpj2dg1Hj6S677rmqUmdOZTM5AADGIhphTOJ2u4d/DoVCR7z+wDUHz0uUX/3qVwn/ZwAAAMD6DMPQluYuvbC5VS9sadXW5q4jT/rQzKJsXTirQBfOLNQJRVmy2WwJzBQAAAAAAMBcvYGwXt3eqVU17Vq3w6/BUHzNLycVZ2pxZa7Oq8hVYfahF0IDAEbfl7/85ePyPG+99ZYefPBB9ff3D48NDg4ON9esWrVKN998swoLC2PmtrS0SJKKiopiYjk5OUpNTVVzc/NxyRMAgGRVu69XX/9rjdp7g1Hj3jSnfv6pKs0szDQpMwAAkGg0wpgkNfWjXZoGBgaOeP2Baw6elyh5efEdA+jz+Ub83MFgUJHI0I39eBqAgOPBZrPJ4XAMPw6HwzKMOLeoB0xC3R5eJBJRJBJRMBg8qt9HSBy73S6P56PdVPx+//DvfowNoYihd/Z0aU1dh1bXdai5a/DIkyQ5bNKpk7NVXZGn6gqvJnkOvK8Nq7OzM2H5xoO6hVVZqXa9Xq/ZKQBJgcZPAACA8aVnMKSXG4ZOfnltR6cC4SPf47VJOqUkS+d92PwyMSvxm+QBAI7NhAkTVFxcrE2bNo1o3o4dO/TAAw8oEAgoNTVVV111lWbPnq1AIKB169Zp1apVam5u1o9//GPdfffdSktLi5rf19cnSUpPTz/k86elpQ1fkwy4LwIAON427unSDU/UqjcQjhqflJ2ih/5uhqZ4OUkTAICxjEYYk7jdbmVlZam7u1vt7e2Hvbanp0eDg0MLDONtUhkN4XD4yBd9zIEbGwcWMNvt9uOdFhDj480DNBPACqjbT3bgd4g09HvlaH4fYfREIhH+HY0B/YGwXt/l15o6n17d3in/QHwNzSlOu+ZP92hhuVdnl+YoJ801HEvmuqBuYVXULpD8uC8CADhWhmEM3xfh9wiQnLoGQnq53qeVtR16Y5dfwTiaX+w26dSSbJ1flavqCq8mZND8AgDJbtmyZSorK1NZWZlycnK0b98+XXfddSN6jocffliBQEAOh0O33nqrKisrh2OzZ89WUVGR/vSnP6m5uVlPP/20Pv3pTx/vP8ao4r4IAOBYHXxfZH9vSNc9uS1mw4HyCWl6cNkM5WfyuQoAgLGORhgTlZSUaOvWrWppaVE4HI7a+f9ge/fujZpjZW63e/gkmL6+PmVmcvQgAGBkDt65yu3mxgWQKL6+oF5p6NSa+qFFG4Oh+BryctKcOqfMq+pyr86cmq1U16Hf4wIAMB5xXwQAcKwOPmHe5XId5koAo6mzL6g1DT69VNOhN3Z3KRw58n0Uh006fUq2Flfmqbrcq9wM/psGACs51qaU+vp6bd26VZK0aNGiqCaYAy6//HKtXr1aTU1NWrFiha6++mo5nR8t8zlwEswnnfrS39+vjIyMY8rzeOK+CADgWB24L+LvD+mZbf6YJphTSrL0s6sqlZXKslgAAMYDfuObqKqqSlu3btXg4KC2b9+uioqKQ163ZcuWqDlWlp6ePnwTpru7W5FIRGlpaXI6nRyDCwD4RIZhKBQKqb+/X729vcPjn3TUO4Cj09g5oDX1Pr1c79O7Td2KY82GJKnYk6Lqcq+qK7w6cVKWHHbe1wEAcCjcFwEAHC3DMDQwMCC/3z88lpaWZmJGADp6g1pT79PK2na9vbtLcRz8IofdpjOnZmtxZa4WlnujTs8FAIwvGzZsGP550aJFh7zGbrdr4cKF+vOf/6ze3l5t3rxZJ5100nC8sLBQktTc3KzS0tKouZ2dnRoYGFB5eXkCsj863BcBABytg++L9AcjavIPalNLIOqa6nKv7rysXKkuThwDAGC8oBHGRHPnztXy5cslSatXrz5kI0wkEtHatWslSRkZGZo1a9ZopnjcuVwupaWlqb+/X5LU29ur3t5e2Ww2bmwgoQ4+VvnAEZlAsqNuP2IYhgwj+pvktLQ0dj4FjpFhGKrZ16c1dT6tqe9Q/f7+uOfOKEhXdXmuqsu9KpuQxns5AADiwH0RmIXPl7Ai6jbax/8O3G43J+UCJtjfE9DqOp9W1XZoY2NXXJuIuBw2zZvq0eLKXJ1b7lU2OxMDACTV1NRIklJSUmKaWA42c+bMqDkHN8LMnDlTy5cv16ZNm7RgwYKoee+++27MfLNxXwRm4fMlrIi6jXbg76AvENZu34B2dgZV7wsOx6+ck6+bL5guJxs2AgAwrnCn1UTl5eU64YQTtHXrVq1evVrV1dUxx90+88wzampqkiRdcsklUcfcms3hcBzVvNzcXHV3d6urq2t47FALnIFE4QMirIi6jZadna2srCxuiiehg2/IHeoxzBcMR/ROY7dW17VrTW2HWroDR54kyWGTTpvi0aKKXC2syFVRdkqCMx091C2sitoFrMnj8cjhcKinp2d4jPsiGE18voQVUbfR3G63vF4v90WAUbKvO6CX6jq0qrZD7zZ2K553bW6HTfOn52hxZa7OKctRZkryfL8HAEgOjY2NkoZOdTnc2otJkybFzDlgzpw5Kigo0Lp163TppZdq2rRpkqS+vj498cQTcjqdOvfcc49/8seA+yIwG58vYUXU7dDvitbugDr6QtrZGdTv3/1oY4IvzZukry4o4T4JAADjEHddj8G2bdvU0tIy/Pjgxo6WlhatWbMm6vrq6uqY5/jiF7+o2267TYFAQHfeeaeWLl2qWbNmKRAIaP369Vq5cqUkqaioSEuWLEnIn+Noeb3eo56bm5urQCCgnp4e9fb2KhAI8KYdAPCJ7Ha73G63MjIylJmZyY6nFuLxeMxOAZJ6B0N6ubZNL2xp1aqtreoaCMU1L83lUHVVvi6cVaBFVROVkz4+/tujbmFV1C5gDTabTVlZWUpLS9Pg4KAGBwcVDoe5L4KEsdlsUadpBoNBFhgh6VG3sex2+/AO2m63m8UdQIK1dA1qVe1Q88t7e3uOPEFSitOuBdM9WlyVp7NLc5ThProN5QAAY18gEFB3d7ckKS8v77DXZmZmKiUlRYODg2pvb4+KORwOfeUrX9Fdd92l22+/XfPnz1daWpreeOMNtbW16ZprrtHEiRNHnN/H/zmf5Gg3T83JyVFmZqYGBgY0MDDAfREklM1mi9p0OBQKjfvPl0h+1G20cMTQ+809eqe5X++1BlTvCw43wdx0/nR99rQicxPEMDbxgxVRt7AqancIjTDHYNWqVVq7du0hYzU1NcNH2R5wqEaY6dOn6/rrr9eDDz6o/v5+PfLIIzHXFBUV6eabb1ZaWtpxyTtZuN1u5ebmKjc31+xUAAAAxpz9PYNatbVVL2xu1Sv1+xUIxfclUl6GW+efUKALZxVoQfkEpbpYtAEAwKEc7WKPg+enpIydE9aQvOx2e1SzpN/vZ4ERkh51C6viy0dra+oc0Mqadq2sadcHzfE1v6S57DqnzKvzq/J0dqlXaRZsfqFuYVXULqxsYGBg+OfU1NQjXp+amqrBwcGoeQfMnj1bd9xxhx599FGtX79e4XBYU6ZM0ec+9znNnz//qPL76le/Gtd1jz766FE9PwAA8WrvGdQ/Pvym3mv0R427HDbd9+mTdcVJkz5hJpIBm/jBiqhbWNV4rV0aYZLA6aefrnvvvVfPPvusNm7cqI6ODjmdThUWFmrevHm6+OKLWRgBAACAI9q5v1cvbGnRi1ta9dYun+LdGGhqXroumlWoC2cW6JQpXjns7CwMAMCRHMtJuYCZxuuNcFgbdQuronaT3879vXr2g2ateL9F7zf5jzxBUmaKU4tPmKhLZhepuip/zG0iQt3CqqhdWEkgEBj++eAd/z/JgWsOnnew8vJy3XLLLccnOQAAksSejj59/g8btGN/b9R4utuh31xzms6pyDcpMwAAkCxohDkG1157ra699trj8lz5+fn6whe+oC984QvH5flGg8/nMzsFIC7sIAkrom5hVdTu6DIMQ1taerWmrkOr69rVsL8/7rkzCzO0qCJPiypyVTohTTbbUPNLl78zQdkmL+oWVmWl2qVhAAAAAECyaGjr0bPvNevZD1q0tbkrrjlZqU5dMLNAl84u0tkVnKALADg2brd7+OdQKHTE6w9cc/C8RPrVr341Kv8cAAA+ydbmLn3hDxu0r3swajw3w63/+uIZOmlyjjmJAQCApEIjDI5aOBw2OwXgqEQiEeoXlkPdwqqo3eMvFI7o7cZuranz6eUGn1q7D70D3Mc57DadNjlL1eVenVvmVWH2RycOJuvCebNQt7AqahcAAAAAYhmGobp9PXr2/aGTX2pau+Oa50lz6cKZBbp0TpEWlE+Q22lPcKYAgPEiNTV1+OeBgYEjXn/gmoPnJVJeXl5c17F5KqzAShtKAQeM97rduKdL3/zrVvUMRn/nVZSdol9+eqamZBr8DkpS4712YU3ULazKSrWbyI1TaYQBAAAAklxvIKzXdnRqTb1Pr27vjLnp90nSXXbNn56j6gqvFkzPUVYqb/8BADhe+KINVmGlG+HAAdQtrIraTR6GYai2rU8rt7VrVU27dnTEd4puTppT51Xm6fyqPJ0+JVsux1DzS2+3X72JTNhE1C2sykq1y0m5+Di3262srCx1d3ervb39sNf29PRocHBoN/x4G1RGC5vywIrYUApWNJ7qdk19h/79mXoNhoyo8bIJaXpo2QzlZ7rHzd/FWDCeahdjB3ULqxqvtctKOAAAACAJ7e8N6JWGTq2p82nDbr+CYePIkyTlpju1sNyrheW5OmNKtlLYrRQAgIQYjzcSMTaM1xvhsDbqFlZF7Y4uwzBUs69Pq2o7tKq2Q7t9R95hXxq6l7KoIleLK3N16uRsOe22A884Lv/9UbewKmoXVlNSUqKtW7eqpaVF4XBYDofjkNft3bs3ag4AAGPV8vf36Ucv7FDkY1+Ln1ycpZ8trVQ2mz4CAICP4d0BAAAAkCR2dfRrTb1Pa+t9en9vj+JrfZGmeFO1sNyr6nKvZhdlyjG8YAMAAAAAAGDsMgxDm1t6taq2Qy/VdqjJPxjXvAkZLp1XOdT8cnJxFvdSAACjrqqqSlu3btXg4KC2b9+uioqKQ163ZcuWqDkAAIw1hmHo4Q179R+vNMbEzi3L0Y8ur1Cqi80fAQBALBphAAAAAJNEDENbWnq1tt6nNXUd2tER306lkjSrMEPVFV5Vl+dqWm6qbDYWbAAAAAAAgLEvYhj6oLlHq2qGTn5p6Q7ENa8gy63zKnK1uCpXJ07KlJ17KQAAE82dO1fLly+XJK1evfqQjTCRSERr166VJGVkZGjWrFmjmSIAAAkXMQzdv3q3HtnYEhO7Yna+brlw+kGndgIAAESjEQZH7ZOO5gWSjd1uP+xjIBlRt7AqavfIguGI3trdpdV17VpT51NbT3yLNZx2m86Y4lF1Za6qy72amJWS4EzHD+oWVkXtAgAAABgvwhFD7+3tHj75ZV9PMK55RdluLf7w5JdZRTS/AACSR3l5uU444QRt3bpVq1evVnV1tSorK6OueeaZZ9TU1CRJuuSSS+R0JtcSH9aMwAq4jw4rGi91GwxH9L1nG/Tc1v0xsS/NK9Z1505hM0iLGS+1i7GFuoVVUbtDkutTMizF6/WanQJwVDwej9kpACNG3cKqqN0h3QNBralp0wtbWrVm2z51D4bimpeZ4lR1Vb4unFWo6qp8Zae6EpwpJOoW1kXtAgAAABhLwhFD7zR+2PxS16H23viaX4o9KVpcmavzq3J1QkEGC6cAAAmxbds2tbR8tHt9V1fX8M8tLS1as2ZN1PXV1dUxz/HFL35Rt912mwKBgO68804tXbpUs2bNUiAQ0Pr167Vy5UpJUlFRkZYsWZKQP8exYM0IrIj76LCisVi3vYMhfeNPb+uVutgmmO9dPlNfOnu6CVnheBuLtYuxj7qFVY3X2qURBgAAAEiAfV0DenFrq17Y3Kr1DfsVDBtxzcvPStEFMwt04cwCnVWWpxQnO6oBAAAAAIDxIRQx9PaeLq2q7dCaug519MW3mcgUb+rwyS9VE9NpfgEAJNyqVau0du3aQ8ZqampUU1MTNXaoRpjp06fr+uuv14MPPqj+/n498sgjMdcUFRXp5ptvVlpa2nHJGwAAs7X3DOpLD7+pTY3+qHGn3ab7Pn2Srjy52KTMAACA1dAIAwAAABwn9ft69OKWVr2wpUXv7O6Me15pfoYunFmoC2cV6OSSHNntLNYAAAAAAADjQygc0Zu7h5pfVtf75O+Pr/llem6qzq/K0+LKXJVNSKP5BQBgSaeffrruvfdePfvss9q4caM6OjrkdDpVWFioefPm6eKLL1ZKSorZaQIAcFw0+vr0+d9v0Pb9vVHj6W6HfvUPp2lhZb5JmQEAACuyGYYR39bUwMf4fD6zUwDiYrfbo4798vv9ikQiJmYEHBl1C6sab7UbMQx9sLdHq+uGdind2dEf99w5kzK1qCJX1RW5mp6XnsAscSTjrW4xdlipdr1er9kpAMfd/v37zU4BiIvD4Yh6Hfb5fAqHwyZmBBwZdQuronbjFwhFtGGXX6tqO7S2waeugfj+nsonpA2f/FI6gfspxwN1C6uyUu1OmDDB7BSAhGDNCKzASvfRgQPGat3Wt/Xqa49uVVtPIGo8J82pB5edoNmTskzKDMfLWK1djG3ULazKSrWbyPUinAiDo5asNxKBI4lEItQvLIe6hVWNxdoNhCJ6a0+X1tT7tLbep/beYFzznHab5k7J1sIKrxaWeTUh0z0cG2t/R1Y3FusW4wO1CwAAACCZDYYien2nXytr2/Vyfad6A/F9fqmcmK7zK3N1XmWupuWmJThLAAAQL+5Fwoq4jw4rGgt1+25jt254okbdg9F/jsIstx5aNkPT8tIs/2dErLFQuxh/qFtY1XitXRphAAAAgCPoGQzp1e2dWlvv0/odneoNxNdBn+F26OzSHC0s92r+dI8yU3j7DQAAAAAAxo+BYFjrdwyd/PJKg099wfjuqcwsyNB5H578MtmbmuAsAQAAAACJ8nKDTzc/XafBkBE1XpqXpoeWzdDELPcnzAQAADg8VuIBAAAAh7CvO6CXG3xaU+/TW7u7FIoYR54kKT/TpYVlXlVXeHXa5Gy5HPYEZwoAAAAAAJA8+gNhrdvRqVW1HXp1e6f642x+mVOUqcUfnvwyyZOS4CwBAAAAAIn21PttuuuF7Qp/7Kv2Eydl6v6lVfKksXwVAAAcPd5JAAAAAJIMw9DOjgGtqe/QmjqfNrf0xj23NC9NC8u9Wlju1czCDNlttgRmCgAAAAAAkFx6A2G90uDTqtoOrd/h12AovuaXk4o/bH6pyFVhNs0vAAAAADAWGIahP25o1kOv7ImJnVOaox8vKVeqy2FCZgAAYCyhEQYAAADjVsQw9P7eHq2p92ltvU+7fQNxzbNJmjMpU9UfNr9MzU1LbKIAAAAAAABJpmcwpJcbOrWypl2v7/Qr8PEtfg/BJumUkiwtrszVoopcTcxyJz5RAAAAAMCoiRiGHlizW39+uyUmtmTWBP37RaVy2tlYEgAAHDsaYQAAADCuDIYienN3l9bWd+jl+k619wXjmudy2DR3ikfVFV6dU5ajCRks1AAAAAAAAOOLvz+klz88+eX1nX6FIkdufrHbpNMmZ2txZa6qK7zcUwEAYIxwONjJH8nPbrcf9jGQjKxct8FwRN9f0aBnt+yPiX3xzGJ9Y+EU2Ww0wYxVVq5djF/ULayK2h1CIwwAAADGvO6BkNbt6NSaOp/W7+hUXzAS17zMFIfOLs1RdblXZ03PUYabL3UAAAAAAMD40tkX1JoGn1bVdGjD7i6F42h+cdik06dk6/yqPFWXe+VNd41CpgAAYDR5vV6zUwBGzOPxmJ0CMGJWqdu+QEjf/NNGvVwb2wRz62Un6J/PKTUhK5jJKrULHIy6hVWN19qlEQZHjd09YBV0PsKKqFtYVTLVbmvXoNbUd2h1bYfe3tMV1w6lkjQx061FlbmqrsjVaZOz5XLw399Yl0x1C4wEtQsAAAAgUTp6g1pd36FVtR16e3eXwnHcVnHabZo7dejkl4XlXuWk0fwCAAAAAONBR29A//jwm9q0pzNq3Gm36Z6/O1FLTykxJzEAADCm0QiDo8buHrCq8dr5CGujbmFVo1m7hmGobl+PXtjcohe2tOq9Rn/ccysLMnXhzEJdOKtAc4o9HMc8zvGaC6uidgEAAAAci/09Aa2u82llbbveaexWPHuKuBw2zZvm0eLKXJ1b5lV2Kl89AgAAAMB40tTZr2t+/4a2t/VGjae5HPrlP5yqRVUTTcoMAACMddyNBgAAgGWFI4Y27vbphc0tenFLq3a298U1z2aTTp/q1YUzC3XBzAJNm5CR4EwBAAAAAACST2v3oFbX+bSqtkPvNnYrnvN03Q6b5k/P0eLKXJ1TlqPMFL5uBABgPPL5fGanAByR3W6P2kTK7/crEomYmBFwZFaq24a2Pn3t0S3a1xOIGvekOvXg352gORNd/L4YR6xUu8AB1C2sykq1m8iDN7gzDQAAAEsZCIa1rn6/XtjcqpVbW9XeGzjyJElup13nlE/QhbMKdN6MAuVnpSQ4UwAAAAAAgOTT0jWolbUdeqm2Q+/t7YlrTorTrrNLh5pfFpTmKMPtSHCWAAAg2YXDYbNTAEYsEolQu7CcZK3bTU3duuGJGnUNROdWkOXWQ8tmaHpeWlLmjdGTrLULHA51C6sar7VLIwyOGt3asAordT4CB1C3sKpE1W7XQEivNPi0urZd63d0qj8Y33NmpTh0bnmuqityNX96jtIPLNII9cnni+/0GIx9vObCqqxUu4nc4QMAAADAkTV2Duil2g6tqu3Q5pbeuOakuQ5qfpmeozSaXwAAAAAAkl5t8Om7T9drMBT9vVRpXpoeXFalAjalBAAAo4BGGBy18dg5hrFhvHY+wtqoW1jVsdRuS9eg1tT7tLbep417uhQ24ptXkOVWdblX1RVenVKcJafDPhzjvyPEg9dcWBW1CwAAAOBgu30DWlXbrlW1HdrWGt+GIBluu84t82pxZa7mTctRqst+5EkAAAAAgHHjmQ/adMfz22O+vz9xUqbuX1olTxpLUgEAwOjgXQcAAACSgmEYatjfrzX1Pq2pj3+BhiSVT0hTdXmuqiu8qpqYLpvNlsBMAQAAAAAAktPO9n6trO3QS7Udqm2L795KZopDC8u8Or8qV3OnepTipPkFAAAAABDrvzfs1S9e3hMzfnZpju5eUq5UFyeJAgCA0UMjDAAAAEwTjhja1NQ9fPJLk38wrnl2m3RycZYWlnu1sNyrkpzUBGcKAAAAAACQfA5sLLKqtkOraju0vb0/rnmeVKcWlg+d/DJ3arZcDppfAAAAAACHFjEM/WLtbv3prZaY2OWzJujWC6fLyedKAAAwymiEAQAAwKgaCEb0xi6/1tT79EqDT539objmpThtOnOqR9XluTqnLEfedFeCMwUAAAAAAEg+hmGorq1vuPllZ8dAXPNy0pxaVDHU/HL65GwWKQEAAAAAjigUjuiHz+/Qs1v2x8SuOaNI3zh3smw2mwmZAQCA8Y5GGAAAACRcZ39Qr27v1Np6n17b4ddAKBLXvOxUh84p9aq6wqt5Uz1Kc3OUMgAAAAAAGH8Mw9C21j6tqm3XqtoO7emM71TdvHTXUPNLVa5OKcmW087iJAAAcHw4HHxng+Rnt9sP+xhIRslUt/2BsG58sk7rtnfGxG6onqrPn1k8+kkhaSVT7QLxom5hVdTuEBphAAAAkBB7Ovr01Nt7tbq2Q+80dilsxDevKNut6vJcLSz36uSSLBZoAAAAAACAcckwDG1u6dWq2g69VNuhJn98zS8TMlw6rzJX51fm6qTiLDm4twIAABLA6/WanQIwYh6Px+wUgBEzq259vQFd+8ibemd3Z9S4w27TTz91oj51WokpecE6eM2FFVG3sKrxWrs0wgAAAOC4MAxDNft69frbbXphc6u2NHfFPbcyP10Ly4dOfqnMT+foZAAAAAAAMC5FDEPv7+0Zbn5p6Q7ENa8gy63zKnO1uDJXJ07KlJ17KwAAAACAo7S3s1+f/8MG1e/riRpPddn1q8+dpkUzJpqUGQAAwEdohAEAAMBRC0UMvdvYrbUNPq2t82lvV3w7k9pt0snFWaqu8GphmVfFOakJzhQAAAAAACA5hSOG3tvbPdz8sq8nGNe8omy3Flfm6vyqPM0szKD5BQAAAABwzOpau/X5P2xQs38gatyT5tIfvniGTpvKiWAAACA50AiDo+ZwOMxOAYiL3W4/7GMgGVG3SGb9wbBe39Gp1XUderneJ/9AKK55qU67zpqeo+qKXJ1T5pU33ZXgTIH48JoLq6J2AQAAAOsa2lyka6j5pc6n9t74ml+KPSk6v2ro5JcTCjI4VRcAAJjG5/OZnQJwRHa7XR6PZ/ix3+9XJBIxMSPgyMys201N3frmY1tj1gAUZLn1H5+eqdJsXv/xyXjNhRVRt7AqK9Wu15u4JloaYXDUElmYQCId/OIPWAV1C7N19Aa0amurXtjSqlfq2jQQjO+NszfdpcUnFOjCmQU6pyJfaW4aaZH8eM2FVVG7AAAAQHILRQy9vWeo+WV1bYd8/fFtLjLFm/rhyS+5qsxPp/kFAAAkhXA4bHYKwIhFIhFqF5YzWnX76vZOffepOg2GotcCTM9N1YPLZqgwO4X/fjAivObCiqhbWNV4rV0aYQAAAHBIezr69PzmFr2wpVVv7exQxIhvXok3TRfOLNSFswp0+lSvnA5OKAAAAAAAAONTKBzRht1DzS9r6n3yx9n8UpqXpsWVQye/lE1Io/kFAAAAAJAwf9vcph8+t13hj60JmFOUqfuvrlROmsucxAAAAA6DRhgAAABIkgzD0Oa9XXphS6te2NyibS3dcc+dNSl7uPllRmEWizMAAAAAAMC4NRgKa139fi1/a5fW1HeoayC+nfjKJ6Tp/Ko8nVfhVemE9ARnCQAAAACA9Kc3m/XA2t0x4/One/STJRVKcztMyAoAAODIaITBUfP5fGanAMTFbrfL4/EMP/b7/YpEIoeZAZiPusVoCUUMvbOnS6vrOrS6rl0tXYG45jls0qmTs1VdkafqCq8meVIlSXa7EdUEQ+3CCnjNhVVZqXa9Xq/ZKQAAAAAJNRiK6I3tfr2yY5dWbmlV92B8J79UTUzX4spcnVeZq2m5aQnOEgAAAACAIYZh6Bcv79H/vNkcE7t05gR976LpcjrsJmQGAAAQHxphcNTC4fh2MAOSTSQSoX5hOdQtjqf+QFiv7fRrTb1Pr273xb0raarTrrOme1Rd7tXZpV550j56K/lJ9UntwoqoW1gVtQsAAACMroFgWOt3+LWytkOvNvjUF4yvMX1mQYYWV+VqcWWuSnJSE5wlAAAAAADRQuGI7nxhh57ZvD8m9g+nF+obC6fIftAGmAAAAMmIRhgAAIBxwNcX1MsNPq2p92nDLr8GQ0Zc83LSnDq3zKvqCq/mTvEo1cWOLwAAAAAAYPzqC4S1bnunVtV26NXtnRoIxdf8Mqcoc/jkl0melARnCQAAAADAoQ0Ew/q3p+v16vbOmNg3zp2sz8+dNPpJAQAAHAUaYQAAAMaoxs4Bran3aW29T5uauhWJr/dFxZ4UVZcPNb+cOClLDjs7vQAAAAAAgPGrZzCkVz9sflm/w6/BOJpfbDbp5OIsnVeRq0UVXhVm0/wCAAAAADCXvz+kG56o0Xt7e6LGHTbptotKdfnsfJMyAwAAGDkaYQAAAMYIwzC0rbVPa+o7tKbep4b9/XHPPaEgQwvLvaou96psQppsHHMMAAAAAADGse6BkF5u8GlVbYde3+lXIHzkHUZskuZOz9Wlc4p08exCucP9CofDiU8WAAAAAIAjaO0e1Ncfq9H29uh1BClOu+5eUq5zyrwmZQYAAHB0aIQBAACwsFA4oo2N3cMnv7R2B+Ka57BJp03O1sJyrxaWsyspAAAAAACAvz+ktfVDzS9v7PIrFMfxunabdPrkbJ1XmavFVRNUMblgOObzxb9JCQAAAAAAibKjvV/XPbYtZj1BdqpD9y+t0knFWSZlBgAAcPRohAEAALCYvkBY63d0am29T69u71T3YHw7i6a57Jo/PUcLy706uzRH2am8FQQAAGNDfX29/vKXv6impkbhcFhTpkzRZZddpvnz55udGgAASHKdfUGt+bD5ZcPuLoXjaH5x2KQzpnq0uDJX1eVeedNdQ+MOR6LTBQAASBq894EV2O32wz4GktHxrtv393br63/ZKv9AKGp8YqZbv/z0TJXlpx/T8wMH8JoLK6JuYVXU7hBWPwIAAFhAe29QrzT4tKbepw27/AqEj7woQ5Jy0506t8yr6nKvzpjqUYpzfL7pBQAAY9cHH3ygu+66S263W/Pnz1daWpreeOMNPfDAA2pvb9eSJUvMThEAACSZ9t6g1tR3aFVNh97e06V4brM47Tad+WHzy7nlOcpJcyU+UQAAgCTm9XrNTgEYMY/HY3YKwIgdS92urtmnr/3vFvUHozfXLM3P0P/805kqzkk71vSAT8RrLqyIuoVVjdfapREGAAAgSe32DWhtvU9r6jv0XlOP4mt9kSbnpKi6PFcLK7yaU5Qph92W0DwBAADMEg6H9Zvf/EZ2u10/+MEPNG3aNEnSsmXLdPPNN+uRRx7RvHnzlJ+fb26iAADAdPt7AnqprkOrajv0TmO34jj4RS6HTfOmDTW/LCzzKovTdQEAAAAAFrH8nSZ95y+bFPrYB+CTJ+foD188Q7kZbpMyAwAAOD64Yw8AAJAkIoahrS29WlPv09p6n7a398c9d2ZhhqrLh05+mZ6XJpuN5hcAADD2ffDBB2ptbVV1dfVwE4wkpaena+nSpfrlL3+ptWvXatmyZeYlCQAATNPaPaiXan1aVduhTU3dcW0ykuK0af70HC2uzNXZpTnKTOGrNAAAAACAtfznK9t159+2xoyfW5mvX//DqUp381kXAABYH+9oAAAATBQMR/T2nm6tre/Q2nqf9vUE45rnsNt0+uQsVZfn6tzyHBVkpSQ4UwAAgGh+v1/19fWqr69XQ0ODGhoa1N3dLUlauHChrr322rifq62tTStWrNDGjRvV3t4up9OpwsJCnXXWWbrooouUknLo9zqbN2+WJJ100kkxsZNPPlmStGXLlhH+yQAAgJU1+we1qq5DL9V26L29PXHNSXHadXbpUPPLgtIcZbgdCc4SAADA+nw+n9kpAEdkt9vl8XiGH/v9fkUiERMzAo7sWOrWMAz9Yu0uPfzG3pjYpTMn6PuXlmmwt1uDvcctXWAYr7mwIuoWVmWl2vV6vQl7bhphAAAARlnPYEiv7fBrTb1P63Z0qmcwHNe8dJdd86fnqLrCqwXTc5SVyls5AABgni9/+cvH5XneeustPfjgg+rv/+g0vMHBweHmmlWrVunmm29WYWFhzNyWlhZJUlFRUUwsJydHqampam5uPi55AgCA5NXYOaBVtR1aVduhLS3xreZJc9l1TplXiytzNX+aR2k0vwAAAIxIOBzf91tAMolEItQuLCfeug1FDN31wg49/UFbTOzvTyvU9dVTZJfBfwMYNbzmwoqoW1jVeK1dVk/iqDkcfCkEa7Db7Yd9DCQj6nbs2d8T0Nr6Dq2u69CGXX4Fw0Zc8/IyXKouz1V1Ra7mTvXI7UzuWqB2YUXULayK2kUymTBhgoqLi7Vp06YRzduxY4ceeOABBQIBpaam6qqrrtLs2bMVCAS0bt06rVq1Ss3Nzfrxj3+su+++W2lpaVHz+/r6JEnp6emHfP60tLThawAAwNiy2zegVbXtWlXboW2t8f2+z3Dbde6HzS/zpuUo1cV7aAAAAACA9Q0Ew7r56Xq9sr0zJnbdOZP1hblFstlso58YAABAAtEIg6OWyKOKgEQ6+DgwwCqoW2va3tajF7a06oXNLXpnT6eM+HpfVDohQxfMKtCFMwt1yuQc2e3WvSFF7cKKqFtYFbWL0bZs2TKVlZWprKxMOTk52rdvn6677roRPcfDDz+sQCAgh8OhW2+9VZWVlcOx2bNnq6ioSH/605/U3Nysp59+Wp/+9KeP9x8DAABYyM72fq388OSXurb4ml+yUhxaWD7U/HKmBTYZAQAAAABgJLoGQrrhiRptauqJGnfYpH+/sFRXzMk3KTMAAIDEohEGAADgOIlEDG1q7NQLW1r14pZW1e/rOfKkD508OUcXftj8Uj4xM4FZAgAAHB/H2pRSX1+vrVu3SpIWLVoU1QRzwOWXX67Vq1erqalJK1as0NVXXy2n86PbWQdOgvmkU1/6+/uVkZFxTHkCAADzGIahhv39WvVh88v29v645nlSncPNL3OnZsvloPkFAAAAADD27OsO6LrHtsV8Xk5x2vTjJRU6t4yNrgEAwNhFIwwAAMAxCIQiem17u17Y3KIXt7RqX/dgXPNcDpvOKpugC2cW6IKZBSrITk1wpgAAAMllw4YNwz8vWrTokNfY7XYtXLhQf/7zn9Xb26vNmzfrpJNOGo4XFhZKkpqbm1VaWho1t7OzUwMDAyovL09A9gAAIFEMw1BtW99w88uujoG45uWkObWoIleLK3N1+uQsOWl+AQAAAACMYTvb+3XdY9vU0h2IGs9Kcej+pVU6uSTLpMwAAABGB40wOGo+n8/sFIC42O12eTye4cd+v1+RSMTEjIAjo26TW/dgSOsaOrWmvkPrGnzqCYTjmpfhdmhBaY4WVeRpQVmOslI+fCsW7pfPF9+OpsmO2oUVUbewKivVrtfLjmOIVVNTI0lKSUmJaWI52MyZM6PmHNwIM3PmTC1fvlybNm3SggULoua9++67MfMBAEByMgxD21r7tKq2XatqO7SnM76NRvLSXVpU4dX5Vbk6uSRbTrstwZkCAAAAAGC+D5p79M3Ha+TvD0WN52e69OCnZqg8P92kzAAAAEYPjTA4auFwfIt+gWQTiUSoX1gOdWu+tp6A1tb7tLbepzd3dykUMeKaNyHDpYXlXlWXe3Xa5Gy5nR/tRjoe/p1Su7Ai6hZWRe3CahobGyUNnericDg+8bpJkybFzDlgzpw5Kigo0Lp163TppZdq2rRpkqS+vj498cQTcjqdOvfcc0eUV3t7e1zXHS5nIJnY7fbDPgaSEXU7PhiGoQ+ae7Sypl0ra9q11x9f80t+pluLq3J1flWeTi7OliOJml+oXVgRdQuronYBAMB49dqOTt30VJ36g9Gbo03NTdVDn5qhIk+KSZkBAACMLhphAAAAPsHO9n6tqfdpTX2HPmjujXvetNxUVZd7VV2Rq5mFGbLbkmdBBgAAQDIIBALq7u6WJOXl5R322szMTKWkpGhwcDCmScXhcOgrX/mK7rrrLt1+++2aP3++0tLS9MYbb6itrU3XXHONJk6cOKLcvvrVr8Z13aOPPjqi5wWSxcGniQFWQd2OHZGIoXf2+PTs+y1a8X6z9voH4ppX5EnVJbOLdNmJhTplslf2JGp+ORxqF1ZE3cKqqF0AADAePLd1v25fsV3hj23cObMwQ7+4uko56S6TMgMAABh9NMIAAAB8KPLhTqRr6nxaU+/Tbl98izEk6cRJmVpY7tXCcq+m5aYlMEsAAADrGxj46H1WamrqEa9PTU3V4OBg1LwDZs+erTvuuEOPPvqo1q9fr3A4rClTpuhzn/uc5s+ff1zzBgAAIxeOGHprZ4dWfNCiFR80q7UrvpNfSrxpunROkS6ZXaiTSnIs0/wCAAAAAEAiPPJ2i+5bvStmfN40j356RYXS3ZxiDgAAxhcaYQAAwLgWCEX05u4uran36eUGn9p7g3HNczlsOmNKtqrLc3VuWY4mZLoTnCkAAMDYEQgEhn92Oo98e+rANQfPO1h5ebluueWW45Lbr371q+PyPAAAjGehcEQbdnZoxfstem5zi9q642t+mZqXPnTyy5wizS7Olo1TdgEAAAAA45xhGHro5d16eENzTOyiGXn6/iWlcjnsJmQGAABgLhphAADAuNMzGNKr2zu1tt6ndds71ReMxDUvw+3Q2aU5qi736qzpHmWm8FYKAADgaLjdHzURh0KhI15/4JqD5yVKXl5eXNf5fL4EZwIcH3a7XR6PZ/ix3+9XJBLfZyDALNStNQXDEb29u0sra9r1Ul27fH1H/h0vSVNzU3VB1QSdX5WnyonpHza/RNTZ2ZnQfBOB2oUVUbewKivVrtfrNTsFICEcDk4eQPKz2+2HfQwko4PrNBSO6IfPbdfy91pjrvv704r07cXTZGcTCSQJXnNhRdQtrIraHcLqTQAAMK683ODTD1Zsl38gvsUY+ZkuVZd7tbA8V6dNzmInFQAAgOMgNTV1+OeBgYEjXn/gmoPnmS0cDpudAnBUIpEI9QvLoW6TVzA8dNLuqtoOran3yd8f3/2W0rw0La7M1eLKXJVNSBs++SVZFzAfLWoXVkTdwqqoXWD00eQFKzq4iRJIdgPBsK778ztauTW2CebGi6r0teoyTlJFUuM1F1ZE3cKqxmvt0ggDAADGBcMw9P/ebtHP1+yWcYRrS/PStLDcq+pyr04ozGAHFQAAgOPM7XYrKytL3d3dam9vP+y1PT09GhwclBT/aS0AACBxAqGI3tjl16raDq2t96l7ML5FxxX56VpcmavzKrwqnZCe4CwBAAAAALAuf19Q//zfb+rNndEnk9tt0o+vnqPPnDHFpMwAAACSB40wAABgzAuFI/rJql164r19h4zbJM2ZlPnhyS9eTc1NG90EAQAAxqGSkhJt3bpVLS0tCofDcjgch7xu7969UXMAAMDoGwhG9PquTq2q7dDL9Z3qDcTX/FI1MV3nV+XqvIpc7rcAAAAAABCH1q4Bff73G1TT2h01nuK068HPnqILZxWalBkAAEByoREGAACMad0DIX336Tpt2NUVEztjSrYumpGnc8q8ystwmZAdAADA+FVVVaWtW7dqcHBQ27dvV0VFxSGv27JlS9QcAAAwOgaCYa3bMXTyy6sNPvUFI3HNm1mYocWVuVpcmauSnNQEZwkAAACz+Hy+I18EmMxut8vj8Qw/9vv9ikTi+2wDmGFXR7++9ugW7fUPRo1npjj080+doFMnpfD6i6TFay6siLqFVVmpdr1eb8Kem0YYAAAwZjV2Duj6x2u0s2MgJva1s0v0j2dOks1mMyEzAAAAzJ07V8uXL5ckrV69+pCNMJFIRGvXrpUkZWRkaNasWaOZ4mF90gk2QLKx2+2HfQwkI+rWPH2BsF5t8GllTbte2e7TQJzNLydOytL5VXlaXJWrSZ7x2/xC7cKKqFtYFbULmC8cju+UQCCZRCIRahdJa3Nzj775eI06+0NR4xMyXXroUzNUnp9O/cJSeM2FFVG3sKrxWrs0wgAAgDHp3cZuffvJWvk/dpMoxWnTDy4p0/lVeSZlBgAAAEkqLy/XCSecoK1bt2r16tWqrq5WZWVl1DXPPPOMmpqaJEmXXHKJnM7kuZWVyJ1rgEQ6eHcowCqo28TqHgjqpW379Oz7zVpT06bB0JGbX2w26fSpXl0yu0gXzy7UpJy0UcjUeqhdWBF1C6uidgEAgJW9vtOvG5+sVf/HNqSYPiFDDy2rUkGmy6TMAAAAklfyrB4AAAA4Tp7dsl93PL9dwbARNZ6X7tJ9Sys1uyjTpMwAAADGjm3btqmlpWX4cVdX1/DPLS0tWrNmTdT11dXVMc/xxS9+UbfddpsCgYDuvPNOLV26VLNmzVIgEND69eu1cuVKSVJRUZGWLFmSkD8HAADjkb8/qFVbW/Xs+816uXa/AuEjN7/YbdLc6bm6dE6RLppVqILs8XvyCwAAAAAAx8tzW/fr+yu2KxSJXt9wYolH//XFM2QP9o3LHd4BAACOhEYYAAAwZkQMQ79Z16jfv743JlY+IU0PXF2lwuwUEzIDAAAYe1atWqW1a9ceMlZTU6OampqosUM1wkyfPl3XX3+9HnzwQfX39+uRRx6JuaaoqEg333yz0tLYaR4AgGPl6w3oh89s0TPv7Y3ZQORQ7DbprLI8XTJ7qPklP4v7KgAAAAAAHC//u7FF9760K2b87PIJ+vU1pykzxSmfr8+EzAAAAJIfjTAAAGBMGAhG9IPnGvRiTUdM7OzSHN11ebky3A4TMgMAAMDhnH766br33nv17LPPauPGjero6JDT6VRhYaHmzZuniy++WCkpybfo1ufzmZ0CEBe73S6PxzP82O/3KxI58skPgJmo28TY2tKj7yyv0V7/4GGvc9ptmjvVo8VVeaquyFVuumsoEOpj8c0RULuwIuoWVmWl2vV6vWanAAAAkoxhGPrVukb94RCbfF50wgQ9+Lkz5HbaTcgMAADAOmiEAQAAltfeG9S3l9fog+bemNhnTy3U9dVT5LDbTMgMAABg7Lr22mt17bXXHpfnys/P1xe+8AV94QtfOC7PNxrC4bDZKQBHJRKJUL+wHOr22D31fpvuXrlDgU84BcZpt+nMqR4trszVwnKvPGkffX3E3/3Ro3ZhRdQtrIraBQAAVhGKGLr7xR1a/n5bTOwzpxTopgtKaYIBAACIA40wOGoOB7vqwxrsdvthHwPJiLqNX11br77x2Fa1dAWixh026aYLSvXpUwpNymx8onZhRdQtrIraBQAAwJEEQhHdu3qXHt+0Lybmcth01rSh5pdzy7zKSuUrIwAAAAAAEmkgGNGtf6vXmvrYE8e/enaJvnTmJNltbPIJAAAQD77VwFHjCGdY1cHHpANWQd0e2uqaffr6nzerZzAUNZ6V4tRDnztVCyvzTcoMB1C7sCLqFlZF7QIAAOBgLV2D+u5TddrcEnuC7knFmbp7SYXyM90mZAYAAAAAwPjTPRDSt5bX6p3G7qhxu026+YLpWnriRJMyAwAAsCYaYQAAgCU9vG6HfvjMFkWM6PESb5r+8MUzVFmQZU5iAAAAAAAAJntzt1+3PF0vX38oJvb/nVqgby6cIpeDEwUBAAAAABgN+3sC+vpfa1TX1hc17nbY9KPLy1VdkWtSZgAAANZFIwwAALCUUDiiHz6zRf/92q6Y2KlTcvTbz5+uCZkpJmQGAACA8cThcJidAhAXu91+2MdAMqJuj55hGPrvDXv1i7W7YjYPSXXaddvFZbp0FifoJgq1CyuibmFV1C4AALCK3b4BXfeXbdrbNRg1nuF26GdLK3Xa5GyTMgMAALA2GmFw1Hw+n9kpAHGx2+3yeDzDj/1+vyKRiIkZAUdG3R5az2BI332yVut3dMbELj5hgr5/abkcwT75fH2xkzEqqF1YEXULq7JS7Xq9XrNTAI476hpWdfDvDsAqqNv49AyGdONfNmnFBy0xsal56fr1P5ymE4pYXDOaqF1YEXULq6J2AQBAMtra0qtv/HVbzImteRkuPfipKlVOzDApMwAAAOujEQZHLRwOm50CcFQikQj1C8uhbqW9/kFd/3iNtrf3x8T+ZX6xvnxWsWw2Y9z/PSUbahdWRN3CqqhdAACA8at+X4++8j9vqaGtNya2eMZE/ewzJ8uT5jIhMwAAAAAAxqc3dvl14/Ja9QWjNzGbnJOih5bNUHFOqkmZAQAAjA00wgAAgKT3/t5ufXt5rTr6ondJcTts+t7Fpbr4hAkmZQYAAAAAAGCuFe836zt/2aTeQHRTtM0m3XB+pa5bVC673WZSdgAAAAAAjD8vbmvXbc82KBQxosZPKMjQz6+uUm4Gm1UAAAAcKxphAABAUnt+W7t+sKJBgXD0DSJvmlP3XlWpk4qzTMoMAAAA45nP5zM7BSAudrtdHo9n+LHf71ckEjnMDMB81G18QhFD//HyLj38xt6YWHaqU3ddXqGzy7zy+ztHP7lxitqFFVG3sCor1a7X6zU7BQAAMIr+b2OL7n1pl4yPjc+dkq17rqpUhtthSl4AAABjDY0wAAAgKRmGof98rUm/Wd8UEyvNS9P9Sys5KhgAAACmCYfDR74ISEKRSIT6heVQt7F8fUHd8ky93tzdFROrnJiun15RoZKcVP7eTEbtwoqoW1gVtQuMPoeDhdxIfna7/bCPgePJMAz98pU9+s/XGmNiF87I0x2XVcjtPHINUrewKmoXVkTdwqqo3SE0wgAAgKQzGIrozue3a8XW9pjYvGke3b2kXJkpvI0BAAAAAADjzwfNPfruU3Vq7Q7ExC6fNUH/dv50pbrG55deAAAAGD2cdgQrOvg0MeB4CkcM3br8Az2yIbYJ5vNnTdXtS2bJYbcd1XNTt7AqahdWRN3CqsZr7bKCFAAAJBVfX1DfebJWm5p6YmJ/d/JEffu8aXIe5Q0iAAAAAAAAqzIMQ0+816Z7XtqpYNiIijntNn3nvKn61EkTZbNx3wQAAAAAgNEyEAzrm//7jp7f3BoT+9YFlfr6eeV8VgcAAEgAGmEAAEDS2L6/Tzc8Uasm/2DUuN0mfWvRVH3mlAJuEAEAAAAAgHFnIBjRT1ft1FMftMXE8jNd+skVFTpxUpYJmQEAAAAAMH51DQT15T++pTd2dESN223SnVfN0d+fOcWkzAAAAMY+GmEAAEBSeH2nX//2dJ16BsNR4+kuu360pEJnl+aYkxgAAAAAAICJ9voHddNTtdrW2hcTO7UkSz9eUqG8DJcJmQEAAGA88/l8ZqcAHJHdbpfH4xl+7Pf7FYlETMwIY0lbT0DX/WWLavdFf153O2z60ZJKLa7MOqrXSuoWVkXtwoqoW1iVlWrX6/Um7LlphAEAAKZ77N1W3bNqp8JG9HhhllsPXF2l8vx0cxIDAAAAPoHD4TA7BSAudrv9sI+BZETdfuS1HZ26+ala+QdCMbFrzpikb1RPldPO6bnJgtqFFVG3sCpqFzBfOBw+8kVAkolEItQujos9vgFd99g2NfkHo8Yz3A7dd1WlTp+SfdxqjbqFVVG7sCLqFlY1XmuXRhgAAGCacMTQA2t365G3W2JiswozdN/SSk3IcJuQGQAAAHB4idy5Bkikg3eHAqxiPNZtJGLol2vqdd+LtTI+tnFIutuhny47UZefOMmc5BC38Vi7sD7qFlZF7QIAgNGyrbVXX39sm3z90ZtW5KW79ItlVaqamGFSZgAAAOMLjTAAAMAUvYGwbn2mXq9s74yJXVCVq9svLlOqix3cAAAAAADA+NI1ENS3H92kF7e0xsRKJ2ToN9ecpoqCLBMyAwAAAABgfHtzt1/fWV6r3kAkarwkJ0UPLZuhkpxUkzIDAAAYf2iEAQAAo66la1A3PFGrura+mNg/zZukrywokd1mMyEzAAAAAAAA89S0dOtf//S2duzvjYldNKtA9/7dScpKdZmQGQAAAAAA49vKmnbd9myDguHoo1urJqbrF5+aobwMPq8DAACMJhphAADAqNrc3KNvLa9Ve28watzlsOnWC6frsln5JmUGAAAAxM/n85mdAhAXu90uj8cz/Njv9ysSiRxmBmC+8Vq3z23Zrx88V6+BYPSf1W6Trjt3ir54ZrFC/T3y9ZuUII5ovNYurI26hVVZqXa9Xq/ZKQAAgGP0l3da9dNVO2V8bPyMKdm658oKZaawDBMAAGC08Q4MAACMmpU17bp9xXYNhqK/jPKkOXXvlRU6pSTbpMwAAACAkQmHw2anAByVSCRC/cJyxnrdhsIR/fzlPXrk7ZaYmCfNqR9dXq4zp3qSdnEvPtlYr12MTdQtrIraBQAAiWAYhn67vkm/e60pJra4Mld3XFomt9NuQmYAAACgEQYAACScYRh6eMNe/ccrjTGxabmpeuDqKpXkpJqQGQAAAAAAgHn29wZ089P1eqexOyY2syBDP72yQoXZKSZkBgAAAADA+BaOGPrpqp3666Z9MbFlJ03UjYunyWG3mZAZAAAAJBphAABAggXDEd31wg49s3l/TGzulGzdfUWFslN5SwIAAAAAAMaXTU3d+u5TddrfG4yJXTUnXzcunqYUdpUFAAAAAGDUDYYiuu1v9XqpzhcT+5f5xfryWcWy2WiCAQAAMBOrTgEAQMJ09gd105N12niIXU2XnjhR3108VU4HCzoAAAAAAMD4YRiGHn2nVT9bs1vhiBEVcztsumnxNF114kSTsgMAAAAAYHzrGQzp28tr9fae6HUONknfPX+alp1cYE5iAAAAiEIjDAAASIidHf264fEa7ekcjBq3Sfpm9RR97rRCdkgBAAAAAADjykAwrLte3KEVW9pjYoVZbv30ygrNLMw0ITMAAAAAALC/N6Bv/LVGtfv6osZdDpvuuLRM51flmZQZAAAAPo5GGAAAcNy9tduvG5+sU/dgOGo8zWXXnZeVa2G516TMAAAAAAAAzNHYOaAbn6xTXVtfTGzu1Gz96LJy5aS7TMgMAAAAAAA0dg7o2r9sU5M/erPPDLdd911VqdOneEzKDAAAAIdCIwwAADiulr+/Tz9+cafCESNqfGKmSz9bWqUZBRkmZQYAAAAAAGCOVxt8uu3ZhphNQyTpH8+cpH9dUCKHnZNzAQAAAAAww7bWXn3zrzVq7wtGjeelu/TzT7HOAQAAIBnRCIOj5nA4zE4BiIvdbj/sYyAZWbFuI4ahX6zZpT9u2BsTO6EwQw9cfYImZrlNyAyjyYq1C1C3sCpqFwAAIPlFDEO/W9+k373WFBPLcNv1/UvKtKgi14TMAAAAAACAJL21269vL69VbyASNV7sSdF//N0MleSkmpQZAAAADodGGBw1r9drdgrAUfF4OKoU1pPsddsXCOn6/31XL2xpjYldNKtA93/mZKW7edsxHiV77QKHQt3CqqhdYHSxQQisgsZJWNFYqVt/f1C3PlOnV7d3xsRK89J039IZmpaXNvqJIWHGSu1ifKFuYVXULgAAOB5W1Xbo1r/VKxg2osYrJ6brF5+q0oQMNvsEAABIVqxIBQAAx6TFP6B//u839UFTV0zsXxeW6aaLqmS320zIDAAAAEgcNgiBVdE4CSuyYt1u3uvXv/7pA+3p6I+JXTanSD9ddqIyUviKZqyzYu0C1C2sitoFAAAj9di7rfrJyp0yPjZ+2uQs3XdVpTL53A4AAJDUeLcGAACO2gdNfv3TH99Ua9dg1LjTbtOPls7Rp8+YbFJmAAAAAAAA5nh8Y6Nufvx9DYYiUeMOu003XzJD/3T2dNlsbBoCAAAAAIAZDMPQ715r0m/XN8XEFlV4dedl5UpxctocAABAsqMRBkfN5/OZnQIQF7vdHrULlN/vVyQSOcwMwHxWqNvVdR265elaDQSj88pOdeq+pVU6fUomvyvGISvULvBx1C2sykq1y8kZAABgPAiEIrrjmS36n9d3xcQmZLr14GdP1VlleSZkBgAAAAAAJCkcMXTvSzv1l3f3xcSuPmmivrt4mhx2Nq8AAACwAhphcNTC4bDZKQBHJRKJUL+wnGSqW8Mw9Ke3WvSLtbtjjgienJOiB66u0tTctKTJF+ZKptoF4kXdwqqoXWB00fQNq7BS4yRwgBXrdl/3oG5cXqv39nbHxOZMytQ9V1apINvO748xzoq1C1C3sCor1S4bhAAAkBwCoYhue7ZBq2o7YmJfPqtY/zK/mBNcAQAALIRGGAAAELdQOKK7V+7U8vfbYmKnlmTpp1dWKCfNZUJmAAAAwOii8QxWReMkrCjZ6/btPV26+ek6dfSFYmJ/d/JEfWvRVLkc9qT+MyAxkr12gUOhbmFV1C4AADicnsGQbnyyTm/u7ooat0m6afE0/d0pBeYkBgAAgKNGIwwAAIhL10BI330q9saQJC2ZNUG3XDhdLofdhMwAAAAAAABGn2EY+vPbQ6fmhj92bG6K06abL5iuy2flm5McAAAAkGAOh8PsFIAjstvth32M8aG9N6Cv/2Wbtrb2Ro27HDbddXmFLpgxwaTMDo26hVVRu7Ai6hZWRe0OoREGAAAc0R7fgK5/oka7OgZiYtedM1lfmFvEEcEAAAAAAGDc6AuEdcfz2/ViTUdMrNiTop9eWaGqiRkmZAYAAACMDq/Xa3YKwIh5PB6zU8Ao293ep3965F3tau+LGs9wO/S7z5+u+eXJ1QRzKNQtrIrahRVRt7Cq8Vq7NMIAAIDD2rinSzc+WSf/QChqPMVp1w8vLdPiylyTMgMAAAAAABh9uzr6deOTddre3h8Tmz/dozsuLZcnja9fAAAAAAAw0+a9fn3xv95UW/dg1HhehlsP/+NczSkZnwtGAQAAxgq+iQEAAJ/omc1tuvP5HQpFjKjxvAyX7l9aqZmFmSZlBgAAAAAAMPrW1HXo9hUN6g1EYmJfPqtYX55fLDun5gIAAAAAYKrXGtr1L//9lroHozf8nJybpv/+0pmaPoFTXAEAAKyORhgAABAjYhj61auN+q839sbEKvPT9bOllSrMTjEhMwAAAAAAgNEXjhj69bpD3yvJSnHoh5eW6ZwyrwmZAQAAAObw+XxmpwAckd1ul8fz0akffr9fkUjsxgYYW1bVtOuWp2sVCEdv+Fk5MV0P/d1M5TgC8vkCJmV3ZNQtrIrahRVRt7AqK9Wu15u4705ohAEAAFEGgmHdvmK7VtV2xMTOKc3RXZeXK93tMCEzAAAAAACA0dfZF9S//61eb+zqiolV5KfrnisrVJKTakJmAAAAgHnC4bDZKQAjFolEqN0x7vFN+3T3yh2KRPfA6NSSLP1saaUyUxyWqwHqFlZF7cKKqFtY1XitXRphAADAsP29AX3riVptaemNif39aYX65sIpcthtJmQGAAAAAAAw+ra29OrGJ2vV0h27U+wlJ+Tp3y+crlQXG4YAAAAAAGAmwzD0+9f36tfrGmNiiyq8uvOycqU47SZkBgAAgEShEQYAAEiS6tr6dP3jNWr92MIOh0266fxp+tRJBSZlBgAAAAAAMPqWv79PP125U4Fw9DayDrtN36qeok+fUiCbjQ1DAAAAAAAwU8QwdM+qXfrLu60xsaUn5uvfzp/Ohp8AAABjEI0wAABArzb4dMsz9eoLRqLGM1McuntJheZN85iUGQAAAJCcHA52/4c12O32wz4GkpHZdRsIRfSTlTv0+KbYBTQTMl2658oqnVySPao5wRrMrl3gaFC3sCpqFwAASEOf4W9f0aAXazpiYv88r1hfWVDMJhYAAABjFI0wAACMY4Zh6H83tur+NbsUid7cVMWeFD1wdZWm56WZkxwAAACQxLxer9kpAEfF42GjA1jPaNZtU2e/vvZ/b2tToz8mNndarh763CmamJU6avnA2njNhRVRt7AqahcAgPGnNxDWjctrtWF3V9S4TdJ3zpuqz5xaaE5iAAAAGBU0wgAAME6FIobuXbVTj23aFxM7qThT915ZKW+6y4TMAAAAAAAARt+6+v36+iPvqKM3EBP70oLpuvnSGXI52G0eAAAAAACzdfQG9c3Ha7S1tTdq3Gm36YeXlunCGXkmZQYAAIDRQiMMAADjUM9gSP/2dL1e3xm7u+klM/N024WlcjtZ2AEAAAAAAMY+wzD067Xbdc/z22JOzE1zOXT3p+boypOLzUkOAAAAAABEaeoc0HWPbdOezsGo8XSXXfdcVakzp3JSHAAAwHhAIwwAAONMU+eAbniiVtvb+2Ni/7qgRP80b5JsNpsJmQEAAADW4fP5zE4BiIvdbpfH89GX/36/X5FIxMSMgCMbzbrtGQzp9mfr9VJtR0xssjdV9y2tUkV+Oq/7iAuvubAi6hZWZaXa9Xq9ZqcAAMCYUdfWp+se26b23mDUuDfNqZ9/qkozCzNNygwAAACjjUYYAADGkU1N3frO8lr5+kNR426HTd+/hOOBAQAAgHiFw2GzUwCOSiQSoX5hOYmq2+37+3TjU3Xa1TEQEzunLEc/vKRMWalO/pvBUeM1F1ZE3cKqqF0AAMa+jXu69K3lteoZjP6dPyk7RQ8uq9LU3DSTMgMAAIAZaIQBAGCcWLFlv374/HYFw0bUeG66U/ddVak5k7JMygwAAAAAAGB0raxp1w+e267+YPTO8TZJ/3p2if7xzEmyc2IuAAAAAABJYU1dh255pl6Bj613KJ+QpgeXzVB+ptukzAAAAGAWGmEAABjjDMPQb9c36XevNcXEyiak6YGlVSrypJiQGQAAAAAAwOgKRQz9x8t79D9vNcfEPKlO3XlZmc6anjP6iQEAAAAAgENa/t4+/ejFHYpE98DolJIs/eyqSmWlsgQSAABgPOJdIAAAY9hgKKIfPLddL2xrj4nNn+7Rjy4vV2YKbwcAAAAAAMDY19Eb1M3P1OntPd0xsaqJ6brnykpNYrMQAAAAAACSgmEY+sMbe/WrVxtjYtXlXt15WblSXXYTMgMAAEAyYOUrAABjVHtvUN9ZXqv3m3tiYp85pUA3LJoqp91mQmYAAAAAAACj6/293fruU3Xa1xOMiS2Zna/vLp7G4hkAAAAAAJJExDB030u79H/vtMbErpyTr5svmM56BwAAgHGORhgAAMag+rY+3fBEjZq7AlHjdpv0nfOm6tOnFJqUGQAAAAAAwOgxDEN/3bRP9760S6GIERVz2m26cfFUXX3iRNlsLJ4BAAAAACAZBMMR3b5iu17Y1h4T+9K8SfrqghI+xwMAAIBGGAAAxpr1Ozp189N16g1EosYz3Hb9eEmF5k/PMScxAAAAAACAUTQQjOjulTv0zOb9MbGCLLd+ckWFZhdlmpAZAAAAAAA4lN5AWDc9Was3dnXFxL5z3lT9f6ey6ScAAACG0AgDAMAY8ug7Lbr3pV362AanKsp26/6lVSrPTzcnMQAAAAAAgFHU1Dmgm56qU82+vpjY6ZOz9aPLy5Wb4TIhMwAAAAAAcCi+vqC++dcabWntjRp32m36/iWluviECSZlBgAAgGREIwwAAGNAKGLo/tW79H/vtMbE5hRl6t6rKpXH4g4AAAAAADAOvLajU//+t3p1DYRjYp8/o0hfO2eynHabCZkBAAAAAIBD2esf1HWPbdNu30DUeJrLrnuurNC8aTnmJAYAAICkRSMMAAAW1zMY0i3P1Gv9Dn9M7MIZefreRaVKddlNyAwAAAAAAGD0RAxDf3h9r36zrlEfOyxX6S67br+kTIsrc03JDQAAAAAAHFp9W5+ue2yb9vcGo8Zz0pz6+dVVmlWUaVJmAAAASGY0wgAAYGHN/kFd/0SNGvb3x8S+fFax/mV+sWw2djgFAAAAAABjW/dASN9b0aBXGjpjYtNyU3XPlZWanpc2+okBAAAAAIBP9E5jl254olY9g9GnuhZlu/XgshmalstneQAAABwajTAAAFjUB809+vYTtWrvi94VxeWw6XsXleqSmRNMygwAAAAAAGD01Lf16cYna7WnczAmdl6FV7dfUqYMt8OEzAAAAAAAwCdZW+/TLc/UaTAUfa5r2YQ0PbRshvIz3SZlBgAAACugEQYAAAt6cVu7vv9cQ8wNoZw0p+69qlInF2eZlBkAAAAwPjgcLKiGNdjt9sM+BpLRSOp2xZY2/XBFgwZCkeg5NukbC6fq83MncVouRg2vubAi6hZWRe0CAGBtT76/T3e9sEOR6CUPOrk4Sz9bWqnsVJY1AgAA4PB4xwgAgIUYhqHfv75Xv17XGBObnpuq+6+uUklOqgmZAQAAAOOL1+s1OwXgqHg8HrNTAEbsUHUbDEd019+26uH1O2NiuRluPfTZUzS/nNNyYS5ec2FF1C2sitoFAMAaDMPQwxv26j9eiV3zcG5Zjn50eYVSXTS4AgAA4MhohAEAwCICoYjufGGHnt2yPyZ25tRs3b2kQlnsigIAAAAAAMa4fV0DuvbPG/XmTl9M7KTJOfrV507VpJw0EzIDAAAAAACfJGIYun/1bj2ysSUmdsXsfN1y4XQ57ZzqCgAAgPiwWhYAAAvw9QX1rce36d2m7pjYp06aqBvPmyqng11RAAAAAADA2Pbmzg597f9tVFv3YEzs78+cotuXzFSK02FCZgAAAAAA4JMEwxH94Lntem5re0zsH8+cpK+dXSKbjSYYAAAAxI9GGBw1h4MvE2ENdrv9sI+BZHRwndbv69EX/+d9NXYORF1jk/Tt86bp708v4oYQkgavubAi6hZWRe0C5vL5Yk8hAJKR3W6Xx+MZfuz3+xWJREzMCDiyQ9VtOBzWI2+36P7VOxWKGFHXux023XJhqa48sUB93V3qG+2EgQ/xmgsrom5hVVaqXa/Xa3YKAACYqi8Q1k1P1en1nf6Y2LcXTdVnTys0ISsAAABYHY0wOGrcsINVHXxTHEh2r9bt11f/39vqHghFjae7HXrws6do8QkFJmUGxIfXXFgRdQuronaB0RUOh81OATgqkUiE+oXl9A4E9cPn6g+5a2xRtls/vaJSJxRmUNtIOrzmwoqoW1gVtQsAQHLq7Avqm4/XaHNLb9S4w27TDy4p1cUnTDApMwAAAFgdjTAAACSpP7+xW7c9+YHCH9vltMiTqt9/4QzNnJRtUmYAAAAAAACjY+f+Xn35T++rri32nJczp2brrsvLlZPmMiEzAAAAAABwOM3+QV33123a1TEQNZ7msuunV1TorOk55iQGAACAMYFGGAAAkkw4YujHz27Vf766IyZ2YolH//n50zUxO9WEzAAAAAAAAEbPyi2tuuHRd2NOypWkL82bpK/ML5HDbjMhMwAAAAAAcDj1bX36+l+3qa0nGDXuSXPq51dXaXZRpkmZAQAAYKygEQZHzefzmZ0CEBe73S6PxzP82O/3KxKJmJgR8Mn6AmHd8nSt1tbHvsYurszVHZdXyBXul8/Xb0J2wJHxmgsrom5hVVaqXa/Xa3YKAADAQsIRQ/e9UKMHX6qPiWW4HfrBpaWqLs81ITMAAAAAAHAk7zZ164bHa9Q9GI4aL8xy66FlMzQtL82kzAAAADCW0AiDoxYOh498EZCEIpEI9Yuk1No9qBueqFXtvr6Y2JfmFetfFxTLbuP1F9bCay6siLqFVVG7AABgLPD3h3Tbsw1av6MzJlaal6Z7rqzQ1FwWzAAAAAAAkIxebvDp5qfrNBgyosZL89L04LIqFWSlmJQZAAAAxhoaYQAASAJbW3p1wxM12t8bfSywy2HTj5bO0fllmSxsBQAAAAAAY9q21l7d9GSd9nYNxsQunJGn2y6crjS3w4TMAAAAAHycw8F7cyQ/u91+2Mc4vp58r1V3PNegcHQPjE4qztLPPzVDnjSXOYlZDHULq6J2YUXULayK2h1CIwwAACZ7qbZDtz3boMFQJGo8J92lX//DaZpXmiefz2dSdgAAAAAAAIn3zAdt+vHKHTE7xjrsNt1QPVWfOWWibDabSdkBAAAA+Div12t2CsCIeTwes1MYkwzD0K/XbtdPnmuIiS2eMVEP/f2pbGxxDKhbWBW1CyuibmFV47V2aYQBAMAkhmHojxua9dAre2JiU3NT9fCX5mn6hAwTMgMAAAAAABgdgVBE963epb9u2hcTm5CZov/4+1NU6bVzUi4AAAAAAEkoEjF017Nb9ftXd8TElp1WoruvniOnY3zuUA4AAIDEohEGAAATBMMR/fjFnXrqg7aY2OmTs3Xv0ipNowkGAAAAAACMYa3dg/ruU3X6oLk3JnbaVK9++blTVZCdykm5AAAAAAAkoWA4opsee09PvNMUE/vKwlL928UzON0VAAAACUMjDAAAo8zfH9JNT9Xq7T3dMbEr5+Tr386fplS3y4TMAAAAAAAARsdbu7t0yzN16ugLxcQ+c2qh7rj6FLmd7BgLAAAAJCsa1mEFdrtdHo9n+LHf71ckEjExo7GjPxDWd5bXaP2OzpjYtxZN0zVzC9XZGRvDkVG3sCpqF1ZE3cKqrFS7Xq83Yc9NIwwAAKNot29A1z9eo92+gahxm6SvnztZ15xRxI4oAAAAAABgzDIMQ396q0UPvbxbYSM6luK0698vnK4lcwpoggEAAACSXDgcNjsFYMQikQi1exx09gd1/eM1MSe8Ouw23X5xqS6dOYG/5+OIuoVVUbuwIuoWVjVea5dGGAAARslbu7t001O16hqIfsOR6rTrzsvKVF2Ra1JmAAAAAAAAidcbCOuO57ZrZW1HTKzYk6J7rqxQ5cQMEzIDAAAAAADxaOka1HWPbdPOjujNP1Oddv3kigotKM0xJzEAAACMOzTCAAAwCp56v00/enGHQpHorU7zM126f2mVZhSwyAMAAAAAAIxdOzv6dePyWu342EIZSTq7NEc/vLRM2al8ZQEAAAAAQLJq2N+nrz+2Tft6glHjnlSnfv6pKs0uyjQpMwAAAIxHfKsEAEACRQxD//HKHv1xQ3NMrGpiuu5fWqWJWW4TMgMAAAAAABgdL9V26AfPNag3EIkat0n6l/nF+qezimW32cxJDgAAAAAAHNGmpm7d8ESNugbCUeMFWW49tGyGpuelmZQZAAAAxisaYQAASJD+QFjfW9Gg1XW+mNjCcq/uuLRM6W6HCZkBAAAAAAAkXihi6FevHnqDkKwUh+64rFxnl+aMfmIAAAAAACBurzb49N2n6zUYit7gojQvTb/4VJUKs1NMygwAAADjGY0wAAAkQFtPQN96olZbW3tjYtecXqTrzp0sh52dTgEAAAAAwNjk6wvq35+p14bdXTGxyvx0/fTKCpXkpJqQGQAAAAAAiNczH7Tpjue3K2xEj584KVP3L62SJ43lhwAAADAH70QBADjOtrX26ltP1GhfTzBq3GG36ebzp+mqEyealBkAAAAAAEDibW7u0U1P1am1OxATu3TmBN1ywTSlujglFwAAAACAZPbfG/bqFy/viRlfMD1HP7minM/2AAAAMBWNMAAAHEdr63269W/16g9GHwmcleLQT66o0NypHpMyAwAAAAAASLwn3tunn67aqeDHtop12m369qKpWnbyRNlsnJILAAAAAECyihiGfrF2t/70VktM7LKZE3TbRdPldNhNyAwAAAD4CI0wAAAcB4Zh6P+91aKfr92tj50IrJKcFD2wtErT8tJMyQ0AAIw9tkC3XM1vSfvekravka7+rZQ6xey0gHHF4WC3Q1iD3W4/7GPgeBkMRXT3i9u1/L19MbH8TLfuuapKJxVnxfVc1C2sitqFFVG3sCpqFwCAxAiFI/rh8zv07Jb9MbFrzijSN86dzAYXAAAASAo0wgAAcIxC4Yh+smqXnjjEQo9TSrJ0zxUVykl3mZAZAAAYM8IBOVs3yb1nnVx71snZukk2I/xRfPsaaebnTUsPGI+8Xq/ZKQBHxePhpFIcf42+Pn31fzfq/SZ/TGzu9Fw99PenaGJW6lE/P3ULq6J2YUXULayK2gUA4Nj1B8L6t6frtW5HZ0zsmwun6JozikY/KQAAAOAT0AgDAMAx6BoI6d+eqtOG3V0xsctnTdAtF0yX28kuZAAAYIQMQ472Wrka1w01v+zdIFuw75OvpxEGAACY5JW6Nn3jkXfk6wvGxP757On67iUz5HJwbwQAAAAAgGTW2R/UDY/X6v3mnqhxh0267eJSXT4r36TMAAAAgEOjEQYAgKPU2Dmg6x+v0c6OgZjYteeU6ItzJ3EkMAAAiJu9e69ce9YPNb80rpe9b3/8k3etl0IDko1T6AAAwOiIRAz9am2D7nuhRhEjOpbudugnnzpRS06aZE5yAAAAAAAgbi1dg/r6Y9u042NrH1Kcdv3kigqdXZpjTmIAAADAYdAIAwDAUXinsUvfebJO/v5Q1HiK06YfXFKm86vyTMoMAABYhW3AL1fT63I1rpdrzzo5O3eMaL7hcMs2+UyptFoqXSTZXZJxxGkAjhOfz2d2CkBc7Ha7PB7P8GO/369IJGJiRhgLugdD+t7f6rWmriMmNsWbqp8tnaGy/LSjfq2kbmFV1C6siLqFVVmpdr1er9kpAADwiXa09+u6x7aptTsQNZ6d6tADV1fpxElZJmUGAAAAHB6NMAAAjNDfNrfpzhd2KBiOXmmal+HSz66q1KyiTJMyAwAASS00KFfLRrn2rJOrcb2c+96XzRjZAo1Q/iwFSuYrOHmBIiVnyjvxoF3WfT4pHD7OSQP4JGH+e4NFRSIR6hfHpGF/n258sk67fbEn5FaXe/X9S0qVmeI8rnVG3cKqqF1YEXULq6J2AQAYuff2duuGx2vlH4jeALQgy60HP1Wl0gnpJmUGAAAAHBmNMAAAxCliGPr1ukb94fW9MbGK/HTdv7RShdkpJmQGAACSkhGRY/9Wufesk2vPerma35QtFLtg9HDCWSUKTl6gwOQFCpacJSMtdzjmcDiOd8YAAACH9cK2dt3x/Hb1B6Obee026atnl+gLcyfJbrOZlB0AAAAAAIjXq9s79d2n6jQYiv6MPz03VQ8um8HaBwAAACQ9GmEAAIjDQDCiHzzXoBdrOmJiZ5fm6K7Ly5XhZjEqAADjnb1rj1x71g01vzS+JvuAb0TzIyk5Ck6e/9GpL54pCcoUAAAgfqFwRL94eY/+/HZLTMyT5tRdl5Vr3jSPCZkBAAAAAICR+tvmNv3wue0KG9Hjc4oydf/VlcpJc5mTGAAAADACNMIAAHAE+3sD+vYTtdrc0hsT++xphbp+4RQ57Ox2CgDAeGTr75Cr6fUPm1/Wy9G1e0TzDUeKgpPO+LD5ZYHC+TMlmz1B2QIAAIxce29QNz9dp42N3TGxEwoy9NMrKlTkYZdYAAAAAACs4E9vNuuBtbHfZcyf7tFPllQojQ1AAQAAYBE0wgAAcBj1bX26/vEatXQHosYdNunGxdO07OQCkzIDAACmCA3ItfctuRqHTn1xtG2RTcaR533IkE2hiXMUnLxAwcnzFSw8TXKycBQAACSn9/Z267tP1amtJxgTu3JOvm5aPE0pTpp4AQAAAABIdoZh6Bcv79H/vNkcE7tkZp5uv6hUTgef8QEAAGAdNMIAAPAJXt3eqVuerlNfMBI1nuF26CdXlGvetBxzEgMAAKMnEpazbbNce9bJ1bhOrua3ZQsHjjzvIGHPNAUmLxhqfimeJyPVk6BkAQAAjg/DMPTYu/t03+pdCkWim35dDptuWjxNS0+caFJ2AAAAAABgJELhiO58YYee2bw/JvYPpxfqGwunyG6zmZAZAAAAcPRohAEA4BD+d2OLfrZ6lz621kPFnhTdv7RSpRPSzUkMAAAklmHI7t8p9571Q80vTa/JPtg1oqeIpOUqUPJh40vJfEWyixOULAAAwPE3EAzrRy/u1LNbYhfHFGS59dMrKjSrKNOEzAAAAAAAwEgNBMP6t6fr9er2zpjYN86drM/PnTT6SQEAAADHwag1wvT19UmS0tMPvXD4wQcf1KOPPqr9+/dr+vTp+upXv6olS5aMVnoAAEiSQhFD9720S395tzUmduKkTN13VaW86S4TMgMAAIli69svV+P6oeaXxnVydO8d0XzDmaZg8dzh5pdwXqVksycoWwAAgMRp7BzQTU/WqbatLyY2d0q27rq8nPsiAAAAAABYhL8/pBueqNF7e3uixh026baLSnX57HyTMgMAAACO3ag0wjz99NO66qqrlJmZqcbGRmVlZUXFv/SlL+mPf/yjJMkwDNXW1ur555/XnXfeqZtvvnk0UgQAQD2DId3ydL3W7/THxC4+IU+3XVSqFCeLWgEAsLxAr1zNbw6f+uJs3zai6YbNoVDBiQpOXqBAyQKFCk+WHO7E5AoAADBKXt3eqdv+Vq/uwXBM7Itzi/SvZ0+W024zITMAAAAAADBSrd2D+vpjNdre3h81nuK06+4l5TqnzGtSZgAAAMDxMSqNMM8//7wMw9AVV1wR0wTz6quv6uGHH5bNZlN6eroqKyu1bds29ff363vf+56WLFmi2bNnj0aaAIBxbK9/UNc/HnsTSJK+Mr9Y/3xWsWw2FnsAAGBJkZCcre/J1bhO7j3r5Wx5R7ZIcERPEfKWKzh5voKTFyg46UwZKVlHngQAAGABEcPQf77WpN+tb5LxsViG267vX1KmRRW5puQGAAAAAABGbkd7v657bJtauwNR49mpDt2/tEonFfMdBwAAAKxvVBphXn/9ddlsNi1atCgm9tvf/laSNGnSJL322msqKSnRnj17dPbZZ6uxsVG/+c1v9OCDD45GmgCAceq9vd36zvJadfSFosbdDptuv6RMF83IMykzAABwVAxDDl+DXHvWydW4Xq7G12UP9ozoKcLpEz9qfCmZr0hmYYKSBQAAME/XQEjfe7ZBr27vjIlNz03VPVdWalpe2ugnBgAAAAAAjsoHzT365l9r5B+IXv8wMdOlB5fNUNmEdJMyAwAAAI6vUWmE2bdvnySpqqoqJvbcc8/JZrPp61//ukpKSiRJkydP1te//nXddNNNWrt27WikCAAYp57f1q4frGhQIBy956k3zan7llbqxEnshAIAgBXYe1qHml4+bH5x9LaOaH7Elalg8ZnDzS9hb7nEaXAAAGAMq93XqxufrFOTfzAmdn5lrm67uFQZbocJmQEAAAAAgKOxfkenbnqyTgOhSNT41NxU/ceyGSrMTjEpMwAAABx3kYjU+r6UkiXZvGZnY4pRaYRpa2uTJGVlRS8m3rx5s/bv3y+bzaYrr7wyKnb66adLknbt2jUaKQIAxhnDMPSfrzXpN+ubYmKleWl64OoqTfJwEwgAgGRlC3TL1fTGh40vr8nZUTei+YbdqVDhKQqULFBw8nyFJp4oOVwJyhYAACC5PLtlv+56YYcGP7YwxmGTvn7uFH3u9ELZaAoGAAAAAMAyVmzZr+8/t13hSPQmoLMKM/Tzq6uUk853IAAAAJZmGHL4GuRqfE3uptelvW9I/T7prOukud8xOztTjEojjMMxtGtcR0dH1Pirr74qScrPz485LcbrHepMGhgYGIUMAQDjyWAoojuf364VW9tjYmdN8+jHS8qVmTIqvyIBAEC8wgE5WzfJvWedXHtelbP1PdmM8IieIpRXpWDJAgUmz1dw0lzJnZGgZAEAAJJTMBzR/Wt269F3Yk/P86Y59eMl5Tp9iseEzAAAAAAAwNH6f2816/41u2PGz5rm0U+vqFAaJ74CAABYkr1rj1yNrw01vzS+JntfW+xFO9bSCJNIxcXFqq+v17vvvqvq6urh8b/97W+y2Ww655xzYub4/X5J0oQJE0YjRQDAOOHrC+rby2v13t6emNjfnVygb583VU47O54CAGA6w5CjvVauxnVDzS97N8gW7BvRU4QzixScvGCo+aXkLBkZ+QlKFgAAIPm19QT03afqDnlPZHZRhn5yRYUKsjgdFwAAAAAAqzAMQw+9skd/3NAcE7vkhDx97+JSuRx2EzIDAADA0bD3tMrV9Ppw84uju/HIk1rel63fJ7mzE59gkhmVRphzzjlHdXV1euihh/QP//APmjBhgt58800999xzkqSLLrooZs7WrVslSYWFhaORIgBgHNi+v083PFGrJv9g1LjdJn1r0VT9f6fyOwcAADPZu/fKtWf9cPOLvT/29LbDiaRkK1h8loKTh059iXimSTYaXAEAADbu6dLNT9ervS8YE1t20kR9a9FUuZ0sjAEAAAAAwCpCEUN3vbBDT38Quyv4359WqOurp8jOdyQAAABJzdbfIVfTG8ONL87O7SN/ktxS2bubpDwaYRLia1/7mh5++GHt2LFDpaWlqqys1JYtWxQKhZSbm6vPfOYzMXNeeukl2Ww2zZw5czRSBACMca/v9Ou7T9WpNxCOGk932fWjJRU6uzTHnMQAABjHbAP+D3eyWC/XnnVydu4Y0XzD7law6NShU18mn61Q/izJ7khQtgAAANZjGIYe2diin6/ZrbARHUtx2nTz+dN1+WxOzQMAAAAAwEoGgmHd/Ey9XmnojIldd85kfWFukWw0wQAAACQdW6BbzqY35W58Ta6m1+Tcv3XEzxHOLFRo8nylVF0gTTtHypmssM8nhcNHnjzGjEojzKmnnqp77rlHN954o3p6erRx40ZJksvl0u9+9ztlZWVFXe/3+/W3v/1NklRdXT0aKQIAxrDH3m3VPat2xiz4KMxy64Grq1Sen25OYgAAjDehQbla3h469WXPOjnbPpDNiIzsKfJnKVAyf6j5peh0yZWWoGQBAACsrT8Q1h0v7NAL22JP2ZuUnaKfXlmhGQUZJmQGAAAAAACOVtdASDc8UaNNTT1R4w6b9O8XluqKOWx4AQAAkDSC/XI1v/3hJrGvybnvfdmMkTWsRNJyFSw5S8HieQqUnKWIZ5ocTqdSvN4EJW0do9III0k33HCDzj//fD322GNqaWlRUVGRPvvZz6qqqirm2jVr1uiMM86QJF1++eWjlSIAYIwJRww9sHa3Hnm7JSY2qzBD9y2t1IQMtwmZAQAwThgROdq2yN24bqj5Ze+bsoUHR/QU4ezJCpbMV2DyAgVLzpKRlpugZAEAAMaO3b4B3fhkrRr298fE5k/z6I7LyuVJG7WvBwAAAAAAwHGwrzug6x7bpu3t0Z/3U5w2/XhJhc4tYzEkAACAqcIBOVs3ydX4mtyNr8nZ8q5skcCIniLizlKw+Myh5peSsxTOrZQ47e+QRvWbrjlz5mjOnDlHvO7KK6/UlVdeOQoZAQDGqt5AWLc+U69XtnfGxC6oytXtF5cp1WUf/cQAABjj7F175Nr9qtyN6+VqfE32Ad+I5kdSvQqWnPVh48t8RTxTEpQpAADA2LS23qfvPdug3kDsjmL/PK9YX55fLIedL0wAAAAAALCSnR39uu4v29TSHb2QMivFofuXVunkkiyTMgMAABjHIiE527bI1fja0P+a35ItFLtJ2eEYzjQFJ53+4akvZymUP0uyOxKU8NjClm8AgDGnpWtQNzxRq7q2vpjYP82bpK8sKJGdDlkAAI4LW3/H0BGue9bJvWe9HF27RzTfcKQoOGmugpOHTn0JTzhBstGsCgAAMFLhiKHfrG/UH17fGxPLTHHoh5eWsTMsAAAAAAAW9EFzj775eI38/aGo8fxMlx781AyV56eblBkAAMA4Y0TkaK8danppel2upjdkD3SP7CnsbgWLTvmo8aXgRMnhTlDCYxuNMACAMeWD5h59e3mt2nuDUeMuh023Xjhdl83KNykzAADGiGC/XM1vDTW+NK6Xo22LbDLinm7IptDEOQpOXjD0v8JTJWdKAhMGAAAY+zr7g7r1bw16fac/JlY+IU33XFmpyd5UEzIDAAAAAADH4vWdnbrxyTr1ByNR41O8qfqPZTNU5OE7FgAAgIQxDNk7d8rd9OGJL42vyz7QMbKnsDkUmniigiXzhppfik6TnHxnczwc10aYl19++Xg+3bBzzz03Ic8LABhbVta06/YVDRoMRS/G9aQ5de+VFTqlJNukzAAAsLBIWM62D+Tas27of80bZYsERvQUYc80BQ40vhTPk5HqSVCyAAAA48/Wll7d9FStmrti36NdfEKe/v2C6UpzO0zIDAAAAAAAHIvntu7X7Su2KxyJXgMxszBDP7+6St50l0mZAQAAjF327r1yNa4fbnxx9LaM+DlCE2YqWHKWAiVnKTTpdBnurARkiuPaCFNdXS2bzXY8n1I2m02hUOjIFwIAxi3DMPRfb+zVL19tjIlNy03VA1dXqSSHDloAAOJyYDeLxg8bX5pel32wa0RPEUnLG2p8KZmvYMl8RbKLE5QsAADA+Pbk+/v0k5U7FQhHL4hx2G26oXqKPnNKwXG/Zw8AAAAAABLvkbdbdN/qXTHj86Z59NMrKpTOphcAAADHha1vv1yNr8nd+JpcTa/J4d894ucIecuGTnspPkvB4rky0nITkCk+7rg2wkhDi5EBABgtgVBEP3pxh57ZvD8mNndKtu6+okLZqcf91x0AAGOKrW+/3HvWy/Vh84ujp3lE8w1XuoKT5n7Y/LJA4bxKiQWXAAAACRMIRXTPS7v0xHv7YmJ5GS79ZEmFTi5hdzEAAAAAAKzGMAz98tVG/dcbe2NiF83I0/cvKZXLYTchMwAAgLHBNtApV9MbQye+NL0uZ0fdiJ8jnD35oMaXMxXJLEhApjiS47oyePXq1Z8YCwQCuvXWW/Xmm28qPz9fn/70pzV37lwVFAz9i29tbdWbb76pRx99VPv27dMZZ5yhu+66Sy4XRzgeycsvv6xt27Zp+/bt2r17t0KhkL72ta+purra7NQAIKE6+4K68ak6vdPYHRNbeuJEfXfxVDm5AQQAQKxAr1x7Nww3vzjba0Y03bA5FCo4ScHJCxSYvEChgpMkhztByQIAAOBgLV2D+u5Tddrc0hsTO7k4S3cvKdeETN6bAQAAAABgNaGIoR+/uENPvt8WE/v/Ti3QtxZNlZ2NyAAAAEbEFuiRs/mt4VNfHG1bZNPIDv4Ip08canwpOUvBknmKZE9OULYYiePaCLNw4cJDjhuGoUsvvVRvvfWW/umf/kkPPPCAMjIyYq675pprdPfdd+v666/Xf/7nf+pnP/uZnn322eOZ4pj0f//3f2pra1NWVpa8Xq/a2mI/DAHAWLOzo1/XP16jxs7BqHGbpG9WT9HnTiuUjRtAAAAMCQfl3PeeXHvWy924Ts6Wd2SLhEb0FCFvuYKTFwz9r3iuDDc7jAMAAIy2N3f7dfPT9ersj30v99lTC/XNhZPZFAQAAAAAAAsaCEZ0yzN1ermhMyZ27Tkl+uLcSayBAAAAiEdoUK6WjUMnvjS+Jue+90a8RiaSkqNgybzh5pdwTqnEe7Gkc1wbYT7J73//ez3//PO64IIL9Lvf/e6w16anp+u3v/2tdu3apeeff16//e1v9S//8i+jkaZlfeUrX1FRUZHy8/O1fPly/fnPfzY7JQBIqDd3+3XTk3XqHgxHjae57LrzsnItLPealBkAAEnCMOTw1cu1Z51ce9bL1fSG7MGeET1FOH2igpPnDzW+lMxXJLMwQckCgDU5HA6zUwDiYrfbD/sY1mAYhv64Ya8eXLtLkY9tUpbqtOt7l5Tpkpn55iSXANQtrIrahRVRt7AqahcAMJZ0DYT0rSdq9W5Td9S43SbdcuF0XTVnokmZAQAAWMCBzWE/bHxxtWyULRwY0VNEXJkKFc9V4EDjS16VZONeQ7IblUaYhx9+WDabTV/72tfinnPttdfqxRdf1B//+EcaYY7gxBNPNDsFABg1y9/bpx+v3Knwx1Z9TMx06WdLqzSjIPbEMQAAxgN7T4tcjeuHm18cfftGND/iyvxwN4uh5pewt4zdLADgMLxeGvBhTR6Px+wUMELdA0Hd+Jf39NzmlpjY1Lx0/fofTtMJRdkmZDZ6qFtYFbULK6JuYVXULgDAqtp6ArrusW1q2N8fNZ7itOmuy8tVXZ5rUmYAAABJKhL+/9m78/CoyrN/4N+zTXayrzMJJJCwCrIlkKCA+4pi1f7at2q1i7W4VatWq7ZaYeMZbgABAABJREFU96Xa4luXt7VWrb5vq3UXNwSUJCQsKmsCIYFkJgkJ2deZc+ac3x8DgWGAZCCzJd/PdeWSOc85T271ZpYzz/3ckPbvgMlaCsVWCqV+PQS116spDCkMasYcqGZX4YuWMg0Q/VJWQcPIL//HKioqAABZWVlDviYzM9PtWl/o6OhAVVUVqqqqsHv3buzevRtdXa7K+oULF2LZsmVDnqu5uRkrVqzApk2b0NLSAlmWkZaWhvnz5+Pcc89FWFiYr/41iIhGBadu4Lmv6vDahgaPscmpUfjj0jwkR5sCEBkREVFgCPYuKPVlA4UvcluVV9cbogItbSYcmYVQLUXQUk4BJMVH0RIRERHRiahq6sL1r23E7uYej7EzJ6Xgj98/FbERfA9HRERERDSaffXVV6ioqEB1dTVqa2uhaRp++ctfYtGiRYEOjYgGsbe1Dze+VYGGTvcdy6PDJDyzNA8zLSN74wsiIiKiITEMSK27oNjWuTq+2Mog2ju8m0JUoKWdCtU8Dw7LfGhppwIS1/aHOr8UwvT39wMA6urqMHPmzCFdU1dXBwCw2+0+i+tnP/vZsMyzYcMGLF++HH19hyrz7Xb7QHHNypUrcffddyMtLW1Yfh8R0WjT53Di3o93Y01Vm8fY4tx4PHj+eESYpABERkRE5EdOB+TGb2GyFkOpK4a8bzMEw+nVFFriJKiZRa7il/S5gImd1IiIiIiC1cdbGnDHv79Dj8P9PZ8gALedlYdliydAFNnBj4iIiIhotPu///s/NDc3IyYmBvHx8Whubg50SEQ0BNsaunHLfyrR3qe5HU+KUrD88knITY4MUGREREREAWYYEDtroVhLD3R9WQexd793UwgitORpUC2uji9q+mxA4furkcYvhTATJkzAli1b8MILL2DJkiVDuuaFF14AAIwfP96XoQ1ISkqC2WzGd99959V1NTU1ePbZZ+FwOBAeHo5LL70U06ZNg8PhQHFxMVauXImGhgY8+uijeOyxxxAREeGjfwMiopGpqcuBX71Ticomz9Z11+SnY9lpmRAFLvogIqIRyDAgtVRCqSt2Fb/YyiFofYNfdxhndDrUzAUHur4UwohM8lGwRESjT1ubZ6E+UTASRRGxsbEDjzs6OqDregAjosFouoHn1uzFP8rrPcbGhMt45OJcFOXEo6Oj3f/B+QnzlkIVc5dCEfOWQlUo5W58fHygQ6AR7vrrr0d6ejqSk5Px7rvv4o033gh0SEQ0iHV7OnDHezvRp7q/dmXFh+O5yychI5a7kxMREdHoInY3QLEe7PhSCqnL8zuSwWiJEw8VvmTkwwhjd72Rzi+FMFdeeSU2b96MTz/9FL/85S/xxz/+EeHh4Uc912634/bbb8cnn3wCQRDw//7f//NZXJdffjnGjx+P8ePHIy4uDk1NTbjxxhu9muOVV16Bw+GAJEm49957kZeXNzA2bdo0pKen4/XXX0dDQwM++OADXHnllR5zvPrqq1BVdci/84ILLkB6erpXcRIRhaKKfT341TuVaO52f46URAH3nD0Ol5ySEqDIiIiIfEPsqodSV3yg+KUEYl+LV9frYWOgmucPdH3RY8e5tgwnIqJh53R615WLKFjous78DWKtPSru+bAKG+o6PcYmpkTiiSW5MMeFj7r/h8xbClXMXQpFzFsKVcxdGs2mT58e6BCIyAufVrTgdx/vhqYbbsenpEbhT9+biPhIJUCREREREfmP0NcCxVbmKnyxlkJur/F6DmfsODgOFr6YC7g57Cjkl0KY2267Da+//joqKirw4osv4t1338WVV16JuXPnIiUlBYIgYN++fVi/fj3+/e9/o7GxEQAwceJE3HbbbT6L62hFKd6oqqrCjh07AACLFy92K4I56KKLLsKqVatgs9mwYsUKXHbZZZBl9//sn3/+Oex2+5B/77x581gIQ0Qj3updrbj3o93o19x3QBkTLuGJJXmYk8VqXSIiCn1CfwcU2zpX4UtdMaSOPV5db4gmqBmzoVqKoGYWQUueCoiSb4IlIiIiIp/a2tCNu97fhX1dDo+xi6cm4a6zshGuiAGIjIiIiIhoZOro6EBVVRWqqqqwe/du7N69G11dXQCAhQsXYtmyZUOeq7m5GStWrMCmTZvQ0tICWZaRlpaG+fPn49xzz0VYGLs7EBHwv5sa8fSXe2EccTx/7Bg8eUkeokz8joeIiIhGJsHeCaW+/FDhS0ul13M4o9OhWgoPdH2ZBz2aa+lHO78UwoSHh2PVqlW48MILsWnTJjQ2NmL58uVHPdcwXG/1Z86ciQ8//DCobwaUl5cP/Hnx4sVHPUcURSxcuBBvvPEGenp6sG3bNsyYMcPtnNdee82ncRIRhRLDMPDa+gYs/6rO4+ZPVnw4nlmah7EJEQGJjYiI6KRpdiiNG6HUlUCpK4bcvBWCoQ9+3QEGBDiTp8CRWeQqfkmfDSh8XSQiIiIKZYZh4D+bm/DUl3uhOt3vhsiigF+fMRbfm+HaUIqIiIiIiIbPz372s2GZZ8OGDVi+fDn6+voGjtnt9oHimpUrV+Luu+9GWlrasPw+Igo9hmHg+WIrXl5X7zF29sQEPHjBeCgSN78gIiKiEUTthdKw8VDhi5frYwBAj0iEapk/0PVFH5MF8LsSOoxfCmEAIDU1FWVlZXjhhRfw/PPPY/v27Uc9b/Lkybjhhhtwww03QJKCu8q9stJVjRYWFoacnJxjnjdlyhS3a44shCEiIhfVqeOxL/bgvS3NHmOzLDF48pI8xEb47aWLiIjo5Bk6pObtMFmLXcUv9eshOIfeDRIAnGOy4MgshJpZBNU8D0ZEgo+CJSIiIiJ/61d1PL5yDz7Y6nkvJCVaweNLcnFKRkwAIiMiIiIiGl2SkpJgNpvx3XffeXVdTU0Nnn32WTgcDoSHh+PSSy/FtGnT4HA4UFxcjJUrV6KhoQGPPvooHnvsMUREcGMjotFG0w089nkN3j3KOojvz0zF7WeMhcgFnURERBTqnHbIjd/BZC2FYiuF3PgtBF31ago9bAxUcwFUs6vwxZmQy8IXOi6/riaWJAnLli3DsmXL0NjYiC1btqC1tRUAEB8fj1NOOQXp6aHTpshqtQIA0tLSjlu0k5GR4XENERG56+zXcOd7u7ChrtNj7OJpybjn7HHcAYWIiEKC2FELpa4YJmsJFGspxP42r67Xw+NdO1pkFkG1FEKPzfJRpEREREQUSPUddtz5/k5U7Ov1GJudGYNHL8pFQpQSgMiIiIiIiEaHyy+/HOPHj8f48eMRFxeHpqYm3HjjjV7N8corr8DhcECSJNx7773Iy8sbGJs2bRrS09Px+uuvo6GhAR988AGuvPJKjzleffVVqOrQF4hdcMEFIbW2hmg061d13PtRFVZXeX5XdMMCC64ryGAHWCIiIgpNuga5aaur44ttHZSGDRC0fq+mMJRIqBlzoZrnw2GZB2fSFEAM7iYaFFwCtq1+WlpaSLd9dTgc6OrqAgAkJiYe99zo6GiEhYXBbrejpaVl2GNZuXIlKioqAAC1tbUDx7Zt2wYAmDRpEs4888whzzfUGIO9Yw/RQaIoHvcxBV5tWx9ufmsH9rZ6vhG6eWEWflxgHnU3f5i3FKqYuxSKTjZvhb5WyHUlUOqKIdeuhdRZ59X1hhQGzZwPNWsBtMwiOJOnAIIrBgEA33XTsfA5l4iIKHSV1rTj3o92o6Nf8xi7ak46lp2eCVkcXfdCiIiIiIj87WhFKd6oqqrCjh07AACLFy92K4I56KKLLsKqVatgs9mwYsUKXHbZZZBl96U6n3/+Oez2oXcSnzdvHgthiEJAV7+G29/diU3WLrfjogDcfXY2lk5PCVBkRERERCfA0CG1VEKxlsJkLYVsK4eodns3hWSCmjYLqsXV8UVLmQ5I3BCMTlzACmFCXX//ocXa4eHhg54fHh4Ou93udt1wqaiowJo1a9yOVVZWorKycuCxN4UwN9xww5DO+9e//jXkOYmCSWxsbKBDoMOUVbfg+te3or3XfZejcEXEs98/FedN401cgHlLoYu5S6Fo0Lx19AK1pUD1atdP42bvfoEgAhkzgZxFQM4iCJZ8KEo4+NGeThafc4mIiIKfbhj4e1k9XlhrhXHEWKQi4v7zcnDWxONvvERERERERMGhvLx84M+LFy8+6jmiKGLhwoV444030NPTg23btmHGjBlu57z22ms+jZOI/G9/twM3vV2JXc3uXWBNkoCHL5qAxbkJAYqMiIiIaIgMA1J7javjy4GuL2K/Z5e7404hSNBSpw8UvqhpswB58DX3REPFQpgT5HA4Bv585G4dR3PwnMOvGy7Lli3DsmXLhn1eIiJfe2ujFXf/ZzNUp/vSj5SYMPz1mjmYbokLTGBERESH051A/bdA9SpX4UtdGeD08n194oSBwheMWwBExA9/nEREREQU1Lr6NfxuxW58tbvdY2xsQjieuiQP2YkR/g+MiIiIiIhOyMHNScPCwpCTk3PM86ZMmeJ2zZGFMEQ0stS29ePGf1egvtO901OUScIfl+ZhduaYAEVGREREdHxip9Wt8EXq2efV9QYEOJOnwHGw40v6HBimaB9FS+TnQhhN0/DRRx/h66+/RnV1Nbq6uuB0Oo97jSAIWLlypZ8iHDqTyTTwZ03TBj3/4DmHXxesnn/++UCHQEQjnK4beOqzSvxl9W6PsSnpY/C3H89BeiwXfhARUYAYBtCy+1Dhy56vgf4O7+aISj5U+JK9EIjL9EGgRERERBQqqpp7ccd7O1HXbvcYW5wbj9+dl4PoMO5bRUREREQUSqxWKwAgLS0NkiQd87yMjAyPa4hoZNrR2IOb365AW5/7WrLEKAXLvzcReSlRAYqMiIiIyJPQ0wSTdR0Um6v4Reqs83oOLSEXqnmeq+OLuQBGeNzwB0p0DH77Zm3t2rW46qqrUFtbO3DMMIxjni8IAgzDgCAI/gjPa+Hhh1oz9ff3D3r+wXMOvy5YJSYmDum8tjbvWlwRBYooioiNjR143NHRAV3XAxjR6NanOnH/R1X4orLFY+z0CfF49OI8hOv9aGsb/Ll1JGPeUqhi7lIoEkURsZIdqF4DVK+GvvtLiF31Xs1hKJHQzAVQM4ugZi2AnjgROPhZxgDA987kA6H0nBsfzy5IREQ0en2yYz8e+rQG/Zr767QoAL9ckIlr8tOD9j44EREREREdncPhQFdXF4DB11hER0cjLCwMdrsdLS2e35GerJUrV6KiogIABtbkrFy5Etu2bQMATJo0CWeeeeaQ5xtqjMcr/iEKFqIoHvfxcFq3px23v1OBXof75//M+HA8f+UUmOOCf80YBQd/5i3RcGLuUigabXkr9LVBtpVBriuBYi2B1Frl9RzO2CxolkKomfOhWebDiEoZGBvZ//WCy2jL3WPxSyFMRUUFzjvvPPT19cEwDJhMJuTm5iIhISFk/8ObTCbExMSgq6tr0JsA3d3dsNtdO/0NtcgkFAzWzYcoWOm6zvwNkP3dDtz27k5sb+zxGPuv2Wm4eWEWJJHPL0fDvKVQxdyloOXogVJfDtOBD/doqRgYGsonFEOQoKXOgJpZBEdmEbTUGYB0WPfHIC1GoJGNz7lERETBRXPq+NOaOry5qdFjLC5CxiMXTUD+2NijXElERERERMHu8A1Th7Ihanh4OOx2+5A2WvVWRUUF1qxZ43assrISlZWVA4+9KYS54YYbhnTev/71ryHPSRQsDt9cajh9uLkev3prB1Sn+6bQ08xj8Mq1+UiKDvPJ76XRwVd5S+RrzF0KRSMub/s7gdpSoOYroGYN0LgVrt1cvRCTDmQvBLJPA8adBil+LCQAfHcTXEZc7g6RXwphHnnkEfT29kKSJDzwwAO4+eabER0d7Y9f7VMWiwU7duxAY2MjnE7nMXe7qK+vd7uGiGg02tnUg1+9sxP7uhxuxyUBuOusbFw2I+UYVxIREQ0Dpwq5aTOUuhKYrMWQG7+BoGuDX3cYLSEXqqXQ1fXFnA/DFOOjYImIiIgo1O3vceDuD6rwjbXLY2xKWhSeWJKLtDH8moiIiIiIKFQ5HIe+85TlwZfeHDzn8OuGy7Jly7Bs2bJhn5eIhubV0j343fvbYByxprRoQiJe+NFsxIQrgQmMiIiIRh+1D6grO1D48hVg2wQYXm6mGZkIjDsNyD7dVQCTOB5gV3sKUn4phPnyyy8hCAJuueUW3HPPPf74lX4xceJE7NixA3a7HdXV1cjNzT3qedu3b3e7hohotPl6dxt++2EVelX33fGjwyQ8viQXBdz9lIiIhpthQGqrglJXDKWuBIqtDKLa7dUUzqjUQ4UvlkLo0ak+CpaIiIiIRpJvbV34zfu7sL9H9RhbOj0Zvz5jHMLk0OyUTkRERERELibToQ7hmjb4pksHzzn8umD1/PPPBzoEopBgGAae+Xwn/vxllcfYhdPT8ccrZyBMPvqmykRERETDQnMA9ZsOFb7UlQFOL4vvw8YAY4sOFL6cDqRMAUR+h0GhwS+FMPv37wcALF261B+/zm/y8/Px7rvvAgBWrVp11EIYXdcHWtBGRUVh6tSp/gyRiCigDMPAm5sa8ezqWuhH7H5ijg3Ds5dNRHZiRGCCIyKiEUfsboRiLRkofpF6m7ybwBQDZJ+G3rR82M3z4YznrhZERERENHSGYeD/vtmHZ1bXwnnEjRCTJODOs8bh0lPYEZeIiIiIaCQIDw8f+HN/f/+g5x885/DrglViYuKQzmtra/NxJEQnTxRFxMYe2pizo6MDuq4f54qhceoGHv2sGm9/t89j7Puz0nDHmePQ29WJ3pP+TTQa+SpviXyNuUuhKOTyVndCat4Gua4EirUUcv16CKp37zgMORxaxlyolvnQMgvhTJkGiIeVE3R0DHPQ5AuhlLvx8fE+m9svhTDJycmor69HRMTIWuw8YcIETJ48GTt27MCqVauwaNEi5OXluZ3z4YcfwmazAQDOP//8IbXEDRWSxF0LKDSIR1SnHvmYfEN16nhi5R689a3njZ+Zlhg8vXQS4iPZAvhYmLcUqpi75Ff2Tii2Msi1xVDq1kJq9dxx63gMUYGWPhPOrNMQPuU8IGMWIMlQOzoAXQff7VKw43MuERFR8OhXnXj4sxqs2NHiMZYWY8ITl+RiSlp0ACIjIiIiIiJfMJlMiImJQVdXF1paPD8HHK67uxt2ux3A0ItMQoHT6Qx0CERe03X9pHPXrum496MqrNrlWQz2iyILfjIvAzB08K8IDZfhyFuiQGDuUigKurw1DEitO6FYS10/tjKIji7vphAVaGkz4bDMdxW/pE4HpLDDTgD4xiX0BV3u+olfqjIWLFiAf/3rX9i6dStmzZrlj185JBUVFWhsbBx43NnZOfDnxsZGrF692u38RYsWeczx4x//GPfddx8cDgceeughLF26FFOnToXD4UBJSQm++OILAEB6ejouvvhin/x7BIovK7SIfOnwKkjyjY4+Fbe/sQlf79rvMbZ0phmPfe8UtgD2EvOWQhVzl4aV5gCs64Hq1a4f20bA8PJDXOo0IGcRkLMIQtZ8KGHROLIsk3lLoYq5S0REFBh1bf248/1d2NXsuetawdgxePjCCYjjZiBEREREvqE5vL9HSDRMLBYLduzYgcbGRjidzmNuJlpfX+92DRGFrm67htve2YlNVvcFqKIA3HXWOHxvRmqAIiMiIqIRwTAgduyFYi2FyVYKxboOYt/xC+89phBEaCmnQDW7Cl/U9NmAMrIaWRAd5JdCmNtuuw1vv/02/vSnP+GHP/xh0HRFWblyJdasWXPUscrKSlRWVrodO1ohTHZ2Nm699VYsX74cfX19ePPNNz3OSU9Px9133z3iOuIQER1NbUsvrvvHelQ1dXuM3X52Hm48YwIEQQhAZEREFHJ0HWjafqjwZW8x4GVLV4yxAOMXATmLgezTgegUHwRKRERERKPV17vbcN/Hu9Ft91x8eW1BBn5RZIEk8j4IERER0bDR7JD3fYewhvXAvo1AXTlw/uNAzpJAR0aj0MSJE7Fjxw7Y7XZUV1cjNzf3qOdt377d7RoiCk37ux24+e1K7DxiIwxFEvDwhRNwRl5CgCIjIiKiUCZ21R/o9rIOirUUUneD13NoSZMPFL7Mg5qRDyMsxgeREgUfv1SkzJ07F88++yxuvvlmXHbZZXj55ZeRlJTkj1/tF3PmzMFTTz2Fjz/+GJs2bUJraytkWUZaWhrmzZuH8847D2FhYYNPREQU4jbsacXPX9uI1h6H2/EwWcTTV87ARdMzAhQZERGFjPa6Q4UvNWuAnmbvrg+PdRW85CxyFb8k5AAswCQiIiKiYaYbBv6nxIb/KbV5jEWZJDxwfg4W5XIBDBEREdFJU/ug7PsGiq0ciq0c8r5vIDjdv4fC3mIWwlBA5Ofn49133wUArFq16qiFMLquD2zQGhUVhalTp/ozRCIaJnVt/bjxrQrYOuxux6NMEp6+NA9zssYEKDIiIiIKNULv/oGiF5O1FFLHXq/n0OJyXN1eLPOhmvNhRCT6IFKi4OeXQpgHH3wQgOsmwIcffoixY8fi7LPPxqRJkxAZGTno9ffff79P4lq2bBmWLVs2LHMlJyfjmmuuwTXXXDMs84WCtra2QIdANCSiKCI2NnbgcUdHB3RdD2BEI9PH25rx+xVVUJ2G2/GESAXPfm8STsmI4POGF5i3FKqYu+Qtob8DsrUUcu1aKHXFkNprvLrekEzQ0udAyyqCmrkAzpRpgCgdOqG9fdA5mLcUqkIpd+Pj4wMdAhER0bDp6NNw38dVKKnp8BjLSYzAk5fkYmwCu4MTERERnRBHD5TGTVBsZVDqyyHv2wxBV49/zZ5iwDCOfw6RD0yYMAGTJ0/Gjh07sGrVKixatAh5eXlu53z44Yew2VwF9Oeffz5k2S/LdPxCkqTBTyIKMFEUj/t4KHY0duPGf+9Aa6/761FilIL/vmIKJqZGnVSMREcajrwlCgTmLoUif+StYO+AbC2DbC2BUlcKqaXS6zmcMWZomYXQMguhWubDiE4bGOPftNGJz7kugmH4/o6QKIoQDtuF2TAMt8eDcTqdvgiLTtL+/fsDHQLRkEiS5Lbwrq2tjc8rw8gwDLx0jB1QxydF4NmlE5Eey65Y3mLeUqhi7tKgNDuUxo1Q6kqg1BVDbt4KwRj6wn0DApzJU+DILIJqKYKaPhtQTm6RIfOWQlUo5e5I6gpLdBDvi1CoCKXXi1BQ2dSDO9/b5bEDLACcPTEB952bg0gTF4OdLOYthSrmLoUi5i0FmuDogly/AUr9gY4vzVsh6JrX87RfVwotMsUHEZ483hcJXhUVFWhsbBx43NnZiddffx0AMHHiRJx55plu5y9atMhjjpqaGtx3331wOBwIDw/H0qVLMXXqVDgcDpSUlOCLL74AAKSnp+Oxxx5DRASL5olCSUnVfvz8tY3otru/No1NjMRr1xUgK3HwDaCJiIholLF3A7XrgJo1wJ6vgYbvAC/WxQAAolOBcacB2ae7fuLHAV6suycaLfy21cSR9TZ+qL8hIiIf61d1PPDJbnxe2eoxVpgdi0cumoDosJGzqxEREZ0AQ4fUvB0ma7Gr+KV+PQSn56LB43GOyYIjsxBqZhFU8zwYEQk+CpaIiIiI6Ng+3NaMRz+vgV1zv7ctCcDNC7Pww9lpXm0ARURERDQaCf0dUBrWu4pebGWQ92/3aqMc4OBmOZMh5ywExhUBWYUwHCLAIi7y0sqVK7FmzZqjjlVWVqKy0n2n5qMVwmRnZ+PWW2/F8uXL0dfXhzfffNPjnPT0dNx9990sgiEKMR9vacCt//stHE7316mpGWPwyrX5SI7hhqBEREQEQO0HrOuBmq9cP7YNgLcbPITHAdmnAdkLXYUvSXksfCEaAr+sTtZ1LyvZiIgo6LX0qPj1uzuxpaHbY+z7M1Pxq8VjIYt8M0ZENBqJHbVQ6ophspZAsZZC7G/z6no9PB6qZf6Bri+F0GOzfBQpEREREdHgVKeOP67ai39/2+QxlhAp49GLczE7c0wAIiMiIiIKfkJfK5T69VBsZVDqyyHtr4AA7zbNNAQRWvJUqBn50MwFUNPnQIxKcOtmBId39yCJhtOcOXPw1FNP4eOPP8amTZvQ2toKWZaRlpaGefPm4bzzzkNYGBfME4WS19btxf3vbcWR+zwXjk/Ei1fNRky4EpjAiIiIKPCcGlD/javjS81XQF0ZoPV7N4cpGhhbeKjjS+opgCj6Jl6iEYzb9BMRkdeqmnvxq3cq0dDpcDsuCsCvzxiLK2emBSgyIiIKBKGvFYq1FKa6YijWEkiddV5db0hhUDPyoWYWwpFZBGfSZEDgB3wiIiIiCrymLgfuen/XUTcCmZ4RjccuzkVKjCkAkREREREFJ6GnGUp9uevHVga5dZfXcxiiDC3lFKgZBVDNc6Glz4ZhivFBtDTaLVu2DMuWLRuWuZKTk3HNNdfgmmuuGZb5QkFbGwvQKPiJoojY2NiBxx0dHcfd0NkwDLxYXIcXi60eY2dNTMTDF+VC6+tGW59PwiUC4H3eEgUL5i6FoiHlraFDat4O2VoKua4USn05BIfndwbHY0gmaOlzoGUWQs2cD2fKdEA6rLC2o+Nk/jVoFAql51y3jUyGGQthiIjIKyU17bj7g13ocbi/aEaZRDx6cS4Ks+MCExgREfmP2gelYcNA1xe5eZtXlxuC6Poi21IINbMIatosQOZueEREREQUXDbWdeLuD3ahtVfzGLvi1FTctjgLisQCbiIiIhrdxO4GKLb1kOvLoNjKIbdXez2HIZqgpc1wbZZjLoCaNhNQIn0QLRENJ6fTGegQiLym6/oxc9epG3hi5R68/Z1nR9jLZ6TgjjPHQRIM5j753fHyliiYMXcpFOm6DqemQWrbDcVa6vqxlUG0t3s1jyHK0FJnQLXMh2qe7/qce+S6GP79oGE0Wp9zWQhDJ0ySpECHQDQk4hEt4458TEP3vxsb8OTKGuhHtP9NHxOGP18+CROSowIT2AjEvKVQxdwdoXQnpKYtUGqLIdethdywEYLTMfh1h3HG5UDNKoKWWQTNMh9G+KFdCQL9rpJ5S6GKuUtEROQbhmHgnxsbsXxNLZxH3AMJkwXcc3Y2LpyaHJjgiIiIiAJM7LRCsZUd6PhSDqmz1us5DCkMatpMqOYCaBn5UNNOBeTw4Q+WiIhoiOyajvs+qsKXuzw7Hf280IyfzTdDEIQAREZERER+0bYHqPkKkZVfQKkrgdjb7NXlBgRoyVNdhS+W+VDT5wAmrqUk8jW/F8K0trbi73//O7744gts3boVra2tAICEhARMmzYNZ511Fq699lokJCT4OzTyki9bFRH50uHtwGhoNKeOP3y4Hf8o3esxNjMrDi9dNQfJMdzJ35eYtxSqmLshyjCAlt1A9SqgejWw52ug38s2rFHJQM4i10/2QkhxmQEveBkq5i2FKuYuERHRyet1OPGHT6vxeWWrx5g5NgxPXJKLiSn88oqIiIhGCcOA2LH3QNGLq/hF6qr3fho5Amr6bKjmfKgZBdBSTwEkfq9ERETBoduu4fZ3d2JjXZfbcQHAXWeNw+WnpgYmMCIiIvIZsXsfFNs6mGzrgPp1QLtrkwdvPqlqCXlQLfNchS8ZBW4bwhKRf/i1EObFF1/Er3/9a/T29gJw7ax3kM1mQ319PT777DP8/ve/x9NPP42f//zn/gyPiIiOoqtfxU1vfoPVlZ5VzhfPyMCTl09HuBIqS5uJiOiYupuA6jWuwpfq1UCn1bvrlShgXNGh4peUKQB3xiIiIiKiELKntQ93vrcL1S19HmNF2XH4w4XjMSacTdaJiIhoBDMMSO3VUGxlkG3lUOrXQ+pp9HoaXYmGljEbakYBVHM+tORpgKT4IGAiIqKT09Kj4ua3K1DZ1Ot2XJEE/OGC8ThrYmKAIiMiIqLhJPS1ujZ4sJZCsZZCbq/2eg5n7Fg4DnZ8Mc+DEZnkg0iJyBt++9busccew29/+9uB4pfY2FjMnDkTaWlpAIDGxkZ888036OjoQE9PD2644Qa0t7fjzjvv9FeIRER0BGtbL37yygZU7uvyGLv5zFz86qxctv8lIgpV9m5gb8mhwpembd5dL0iAZc6hwhfzHEA2DX+cRERERER+sGpXK36/Yjd6HLrbcQHAzwrN+Ol8M0TeAyEiIqKRxtAhte6CYit3dX2pL4fYu9/rafSwMVDT50Iz50PNyIeWPAUQWUBMRETBzdrejxvfqoC13e52PMok4ulL8zAni7u6ExERhSrB0QXZth4maykUWynk/Tu8nsMZleYqejnwo8dk+CBSIjoZfrn7tHXrVtx3330wDAPp6el48sknccUVV0BR3Hd90TQN//73v3HHHXegvr4e9957Ly688EJMnTrVH2GSl9ra2gIdAtGQiKKI2NhDNyg6Ojqg6/pxriAA2Gzrwq/+U4HWXtXtuCIJ+P35E3DB1GS0t7cHJrhRgHlLoYq5G8ScKqR9m6HUrYVcWwy5cRMEXfNuioRcqFlF0DIXQDUXAGExhwa7egD0DG/MfsK8pVAVSrkbHx8f6BCIiIiOyqkbeH5tHV4pb/AYiwmT8IcLJ2BBTpz/AyMiIiLyBUOHtL8CSn3ZgeKXDRD7W72eRg+Ph5oxF6o5H2pGAZyJEwFR8kHARBTMJIl/7yn4iaJ41McV+7px4793oKXHfT1EQqSC/75yMialRvstRqIjHStviYIdc5cCSu2DXL8BsrUUirUE0r4tEAynd3NEJsFhmQfVMh+apRB63DjgwAZZAgC++6VgwudcF78Uwjz33HNwOp1ITk5GaWkpsrKyjh6MLOMHP/gBFixYgLlz56K5uRnPPfccnn/+eX+ESV5yOr18kSAKErquM38H8VlFC36/YjccTsPteFyEjKcuzcOp5hj+N/Qz5i2FKuZuABkGpLYqKHXFUOpKoNjKIKrdXk3hjEqFaimEmlkE1VIIPTr1iBNG5v9b5i2FKuYuERGRd9p7VdzzURXK93Z6jOUmR+LJS3JhiQsPQGREREREw0TXIDdvh1JfDtlWDqVhPUS753ufQaeJSIRqLoCakQ/VnA9nQi4gjM4FFkR0CDe/oVAUGxuLkt378fM3t6Pb7r5hXFZCJF69Lh/jkqICFB3R0R2+KRpRKGHukk9pDsC2Aaj5yvVjXQ84Hd7NERYLjFsAZJ/u+kmZDJMgwOSbiIl8arQ+5/qlEObLL7+EIAi4++67j1kEc7jMzEzcdddduP3227Fy5Uo/REhERABgGAb+tq4eLxRbPcayE8LxzGUTuQCEiCiIid2NUKwlA8UvUm+TV9frSjRUy7yB4hdn/PiB3S2IiIiIiEaSbQ3duOv9XWjs8vxi7Pwpifjt2dkIV7i/GxEREYUYpwq5eeuBbi9lkOs3er05DnBgg5yMfGjmfKjmAjjjcnifkIiIRoQVWxpwy/9+C4fTvbv6lPQxeOW6uUiJ4XoIIiKioOTUgMbvDhW+1K4D1F7v5lAigaz5hwpf0mewuylRiPNLIYzNZgMAFBYWDvmaoqIiAEB9fb1PYiIiIncOTccfPqvGiu0tHmMFY8fgsYtzERPul5cNIiIaIsHeBaW+bKDwRW6r8up6Q1Sgpc2EI7MQqqUIWup0QORzPRERERGNbO9ubsLjK/dAPaITriQKuG1RFq6cmQqBCz2JiIgoFDjtkPdtcd0jtJVDadwEwduFQACcMRkHur24ur7osWNZ+EJERCPOP8v24t53t8Jwvx2AeTkJeOnqORgTrgQmMCIiIvKk60DTdlfRy56vgT3FgL3DuzkkE2DJP1T4Yp4NyOz3QjSS+GWVmyS5KuY0TRvkzEOcTicAQBTZUpmIyNfaelX8+r2d+M7muSvY92ak4I4zxkKW+HxMRBRwTgfkxm9hshZDqSuGvG8zBMPp1RRa4iSomUWu4pf0uYCJ7d2JiIiIaHSwazqeXLkH725p9hhLilLw+JJczDDHBCAyIiIioiHS7FAav4FcXw7FVgal8RsITrvX0zjHZEE15w8Uv+hjLD4IlohGura2tkCHQDQoURQxZswY/HllFZ75YqfH+Bl5CXjk4jw4+7rR1heAAImOQhRFxMbGDjzu6OiAruvHuYIoODB36aQYBsT2Gsh1JVCspZCtpRD7Wr2bQpDgTJ0ONbMQmmU+tPTZgBJx6ISuHgA9btcwbylUhVLuxsfH+2xuvxTCZGVlYceOHVi5cuWQu8KsXLly4FoiIvKdmpY+3PqfStg63L8oEQD8anEWfjArjbugEhEFiqFDatkJpa7YVfxiK4egeXcX3hmdDjVzwYGuL4UwIpN8FCwRERERUfBq7LTjzvd2Yfu+Ho+xmZYYPHrxBCRFcSc4IiIiCjJqL5TGb1xFL/XlkBu/g6A7vJ5Gi8uGdrDjizkfenS6D4IlotHm4Aa3RMHMqRu4/71teG3dXo+xy2ak4K4zx0ESDOYzBTVd15mjFJKYuzQYsaseitVV+KJY10HqafR6Di1pClTLfDgs86FlzIFhOmKzKy9zkHlLoWq05q5fCmHOPvtsbN++HU899RQuvfRSnHLKKcc9f+vWrXjyySchCALOOeccf4RIRDQqle3twF3v70K33f0FMEIR8chFE3DaeN9VYhIR0dGJnTbXB/26YpisJRD7Wry6Xg8bA9U8f6Drix47DmBBIxERERGNYmV7O3DPh1Xo6PPsWP7D2Wm4+fRMdsIlIiKioCA4uiE3bIRiK4dSXwa5aQsE3fM9zGC0hNwD3V5cXV+MqBQfREtERBTcHJqO362owueVnt+1/Wy+GT8vNHNTUCIiIj8Sepqh2Ephsq6DYiuF1FHr9Rxa/HiolvmudTHmfBgRCT6IlIhChV8KYW699Va88MIL6O7uxoIFC3Dffffh2muvRWJiott5LS0t+Pvf/46HH34YXV1dCA8Px6233uqPEImIRp23v9uHJ77YA6fhfjw1xoRnluYhLyUqMIEREY0yQn8HFNs6V+FL3VpIHZ47Uh2PIZqgZsyGaimCmlkELXkqIEo+ipaIiIiIKHQYhoF/lDfgL2vroB9x/yNcFnHfeTk4d1Li0S8mIiIi8gPB3gm5fgOU+jIotnLIzdsgGN7t3mlAgDNx4oGilwKo5rkwIvgeh4iIRrduu4Y73tuF9bWdbscFAHeeOQ5XzEwNTGBERESjiNDf7upwai2FYlsHuXWX13M4x2QeVvhSAD2ar+FEdIhfCmHGjh2LF198Eddeey26u7tx11134Te/+Q2ys7ORkpICQRCwb98+1NTUwDAMGIYBQRDw4osvIisryx8h0gmQJC6wpNAgiuJxH482Tt3AM6v24J8bGjzGpqZH45nLJiE52hSAyOhwzFsKVczdIdD6ITdsgly7FkpdMaR9myHAGPy6AwwIcKZMhZZZBDVzAbSMOYASMTDOd2jeY95SqGLuEhERHVu3XcMDn1Rj1a42j7Gs+HA8sSQXE5IjAxAZERERjWZCXxuUhvUHOr6UQ2re7tW9QQAwBBHOpMkHil7yoWbMhREe55uAiYiIQlBLj4pb/lOBin29bscVScBDF+bizLz4AEVGREQ0srm6nG6AYi2FyVp6Qp95nZEprsIXy3yolnnQx2T6KFoiGgn8UggDAFdffTUSExNx/fXXo76+HoZhYPfu3aiurgbg2p3voIyMDLz00ku44IIL/BUenYD4eH4wpNAUGxsb6BACpseu4Zb//QZf7GjyGLvglDQ8fcWpiDBxCXUwGs15S6GNuQtA14HGzUD1atdPbSmg9Xs3R/w4IGcRkLMIwrjTIUclQgYQPuzBEsC8pdDF3KXR6quvvkJFRQWqq6tRW1sLTdPwy1/+EosWLQp0aEQUINX7e/Hr93ahts3zfffCCfF44PwcRIf57dY4ERERjWJC734o9etdO+DWl0NuqfR6DkOQoKVMg5qRD9VcAC19DoywGB9ES0REFPqs7f246a0K1LXb3Y5HmSS8dPUcTEmU4HR6132NiIiIjkGzQ2nc5Or4Yi2F3LQZgq55NYUeFgfVMm+g+MUZlwMIgo8CJqKRxq/f9l144YXYs2cP3nnnHXzxxRfYunUrWltbAQAJCQmYNm0azjrrLFx66aVQFMWfoRERjXj17X34yT82YEdDp8fYssXjcfvZEyGKfBNJRDQsWmsOFb7UrAH6PHehPq6IBCBnoav4JXshkJDtgyCJiIhGhv/7v/9Dc3MzYmJiEB8fj+bm5kCHREQB9EVlCx74pBp9qu52XABwwwILflyQAZFfohEREZGPCD1NA0Uviq0ccluV13MYogIt5RSo5gKoGfnQ0mfBMEX7IFoiIqKRZWdTD256uxItParb8cQoE165Nh+nWGLR1ubld3ZERER0iFOF3LR5oPBFadwEwenwagpdiYZmzofjYOFL4kRAEH0UMBGNdH7f9k6WZVxxxRW44oor/P2riYhGrc3Wdvz0HxvQ1OW+64kiCXj0sum4fLYlQJEREY0QPftdBS8Hi1/aa727Xg4HxhYOdH1B6imAyA/6REREQ3H99dcjPT0dycnJePfdd/HGG28EOiQiCgBNN/DcV7V4fUOjx1hsuIyHLxqPeePi/B8YERERjWhiV/2BopcyKLZySB17vJ7DkEzQUk+Fas53dX1JmwUoEcMfLBHRMJMkKdAhEA3YUNuBX71dgW6He7cXc1wYXv/pfGQnRQEARH7/RiHgyDxl3lKoYO6OQLoT0v4dkOtKoNSVQK4vh6D2ejWFIYVBy5gLLXM+1MxCOFNOAcRDS9cD/Y6SeUuhirnr4vdCGBo5uEsChQpRFBEbGzvwuKOjA7quH+eKkWVlZQvu/XAX+jX3f+fYcBlPXzYRszOj+Pc5CI32vKXQNWpyV+2DXF8OpbYYct1ayM3bvbrcEEQ4U06BmrUAWmYRtPRZrmKYgzo6hjlgOp5Rk7c04oRS7sbHxwc6BBrBpk+fHugQiCjAWnpU3P3BLmyydnmMTU6NwuNLcpERGxaAyIiIiGhEMQyIXdaBohelvhxSZ53308jhUNNmQs0ogGrOh5Z6KiDzvQoRhR7e86Ng8cnWRtz87x1wHLEmYnL6GPzj2rlIGXPoO7jD76kThQrmLYUq5m4IMgyguQKo+dq1GeyetUB/u3dziDJgmQtknw5knw7BMheKHAYFQChs+cC8pVA1WnOXhTB0wpxO5+AnEQUhXddHRf4ahoF/lDfgua89v4TJig/Hny6biMz48FHx32IkGC15SyPPiMld3Qm5eSuUurVQ6oqhNHwDQfeuvasWlw01swiqpRCqeR6M8CM+gIyE/04jxIjJWxp1mLvkrY6ODlRVVaGqqgq7d+/G7t270dXlWkS+cOFCLFu2bMhzNTc3Y8WKFdi0aRNaWlogyzLS0tIwf/58nHvuuQgL46IuIvKNLfVduOv9XWjqVj3GlkxLxl1njUOYPDp3wSIiIqKTZBgQO/YMFL0otjJI3Q1eT6MrUdDSZx0ofJkLLWU6IJl8EDAREdHo82Z5LX77zhbohvvx/OwE/PWaORgTrgQmMCIiolBgGEBbDVDz1YGfr4GeJu/mEEQg/VQg+zRX8UvWfMAU5ZNwiYiO5JdCmC1btuCSSy6BJElYvXo1zGbzcc+32WxYuHAhDMPAihUrkJeX548wiYhGDNWp45HP9+CDrc0eY3OzxuDxJbkYE85aSCKiYzIMiO17YLIWuwpfrKUQHZ67Sx+PHpEIR2YRVEsR1MxC6DEZPgqWiIjoxPzsZz8blnk2bNiA5cuXo6+vb+CY3W4fKK5ZuXIl7r77bqSlpQ3L7yMiAlwbgLz9XROe+nIvtCNWuyiSgDvPHIdLT0mGIAgBipCIiIhCjmFAats9UPQi28oh9Xq5AAiAboqGlj4XqjkfqrkAWvJU1464RERENGwMw8BzX1bh6c93eoydOzUVf/p/MxGuSAGIjIiIKMh12IA9Xx8qfunwvtMpUqYOdHzB2EIgIm7YwyQiGgq/3HF7/fXXsWfPHpx77rmDFsEAgNlsRl5eHj799FO8/vrrePDBB/0QJRHRyNDep+LO93Zhk9VzwfalpyTjN2eNgyxxJ1QioiMJPc0wWUsOFL6UeL27o6FEQs3IHyh+cSbmAVx0R0REISIpKQlmsxnfffedV9fV1NTg2WefhcPhQHh4OC699FJMmzYNDocDxcXFWLlyJRoaGvDoo4/iscceQ0REKDQ9J6Jg16/qeOyLGny4bb/HWGqMCY8vycW09OgAREZEREQhxdAhteyCUl820PVF7Gvxeho9LBZqxlyo5gKoGflwJk0GRC68JaKRr62tLdAh0CilGwae+KIG/7ep0WPsshmpuOecHPR1d6IPgCiKiI2NHRjv6OiArut+jJbIe8xbClXM3eAk9LZAtq2DUlcCua4UUnu113M447KhWeZDzSyEZpkHIzLp0GC/AfSH7vtC5i2FqlDK3fj4eJ/N7ZdCmDVr1kAQBCxZsmTI11xyySX45JNPsHLlShbCEBEN0d7WPvzqnZ2obet3Oy4AuHlhFn40J407oRIRHSA4uiHXr4epztX1RW713DHqeAxBgpY6A2pmERyZRdBSZwCSyUfREhERDb/LL78c48ePx/jx4xEXF4empibceOONXs3xyiuvwOFwQJIk3HvvvW5dfadNm4b09HS8/vrraGhowAcffIArr7zSY45XX30VqqoO+XdecMEFSE9P9ypOIho5bO39uOP9XdjZ1OsxNjdrDB65aALiI5UAREZERERBT3dCaqlwFb3Y1kGp3wDR3u79NOEJrm4vGa6OL64NcbgBGRGNPk6nM9Ah0Cjk0HT8bsVufF7Z6jH203lmXF9kBgwdx0pPXdeZuxRymLcUqpi7gSHYO12dTq2lUKylkFsqvZ7DGZ0O1VII1TIPqnke9JiMI04Yuf9fmbcUqkZr7vqlEGbnTteiwunTpw/5mmnTpgEAKiu9fxImIhqNNtR24s73d6Kz3/3FLFwW8dCF47EoNyFAkRERBQmnCrnpOyh1JTDVFUPe9y0EXfNqCi0h1/VhP7MIqjkfhinGR8ESERH53tGKUrxRVVWFHTt2AAAWL17sVgRz0EUXXYRVq1bBZrNhxYoVuOyyyyDL7rejPv/8c9jt9iH/3nnz5rEQhmiUKq5ux30fV3nc+wCAq+em45enZUIWuQEIERERHaBrkJu3QbG5Or7IDRsgOrq8nyYy+UDhSwFUcz6c8RPYCZqIiCgAehxO3PHeTpTv7XQ7LgD49Rlj8f1ZaYEJjIiIKJDUXigNGw8VvjRvhWB41xVCj0iEapkPh2U+VMt86GOy+LmXiEKCXwphuru7AQDR0dFDvubguZ2dnYOcSURE721pwiOf74FTN9yOJ0creGbpRExKjQpQZEREAWQYkFp3QbEWw1RXAtlWBlHt8WoKZ1TqocIXSyH06FQfBUtERBR6ysvLB/68ePHio54jiiIWLlyIN954Az09Pdi2bRtmzJjhds5rr73m0ziJKPTphoG/ldrwUokNxhFjkYqI350/HmfmcQMQIiKiUc/pgNy0xdXxpb4McsMmr+8HAoAzOm2g6EXNKIAeN44LgIiIiAKstUfFLf+pxI597q/tsijgwQvG45xJiQGKjIiIyM+cdsiN38FkLYViK4Xc+C0EXfVqCj1sDFRzAVSzq/DFmZDLz71EFJL8UggTHx+P/fv3o7Gx0WOxw7E0NjYCAGJiuMs2EdGx6IaB576qw6vrGzzGJqZE4pmlE5ESYwpAZEREgSF2N0KpK4ZidXV9EXubvbpeV6JdrV0PFL8448fzwz4REdExHOziGxYWhpycnGOeN2XKFLdrhnpviIgIALr6Ndz/8W58Xd3uMTYuIRxPXZKHcYkR/g+MiIiIAu/A4h+l3tXxRWn8BoLW5/00MRa3ji/6mEzeEyQiIgoitvZ+3PR2JWrb+t2ORyoinrw0DwVjYwMUGRERkR/oGuSmra6OL7ZSKA0bIWj9g193GEOJhJoxF6p5PhyWeXAmTQFEyUcBExH5j18KYXJzc7F//3588sknOPfcc4d0zYoVKwAA48eP92VoREQhq8/hxP0rdmPVrjaPsUUT4vGHC8YjwsQ3rEQ0sgn2Lii2dQPFL3Lbbq+uN0QFWtpMODILoVqKoKVOB0S/vEUmIiIKeVarFQCQlpYGSTr2Z4+MjAyPa4iIhmJXcy/ueG8nrO12j7EzcuPxu/PHI4r3PoiIiEYPrR9K4yZX0YutHPK+byA4HV5P44wd69r5NiMfqrkAekzG4BcRERFRQOxq7sWNb1Wgpcd9p/v4CBl/+t5ETEmLDlBkREREPmLokFoqoVhLYbKWQraVQ1S7vZtCMkFNmwXV4ur4oqVMByTFRwETEQWOX1b5nXvuuSgpKcFLL72En//855g8efJxz9+2bRv+53/+B4Ig4LzzzvNHiEREIaW524Hb3tnp0fYXAK6am46bTs+EyN3KiGgkctohN34LU10xlLoSyE2bIRhOr6bQEidBzSxyFb+kzwVMUT4KloiIaORyOBzo6uoCACQmJh733OjoaISFhcFut6OlpWXYY1m5ciUqKioAALW1tQPHtm3bBgCYNGkSzjzzzCHPN9QYj1f8QxRMRFE87uNg9fG2Zvzhk93o13S346IA3LJwLK7Kz4DAex8jVqjmLRFzl0JRUOetowdyw0bItjIo1jJI+76DoKuDX3cEZ/x4aOYCqJYCaOYCGNFpA2MCAL6zD01BnbtERDQsNtV14rZ3d6Lb7v5dYMaYMCy/fCLGJrBDLBERjQCGAam9xtXxxVoKxbYOYr/nxtjHnUKQoKVOHyh8UdNmAXK4jwImIgoefimEueGGG/DEE0+gt7cXZ5xxBv7nf/4HF1100VHPff/993H99dejr68PkZGRWLZsmT9CpBPABR8UKkbajfCKfd245a0KNHW773ImiwLuPicHl81IDVBkNJxGWt7S6DHsuWvokPZXQK4rhlK7FrKtHILW59UUenQG1KwFULOKoFkKYUQlD4zx3QwBfM6l0MXcpUDq7z/Ucj08fPAb6eHh4bDb7W7XDZeKigqsWbPG7VhlZSUqKysHHntTCHPDDTcM6bx//etfQ56TKJjExsYGOoTjcmg6Hvl4B14p2eMxlhhlwvIfzkTh+CT/B0YBFex5S3QszF0KRQHN2/5OoHYdsHctsKcYaPgW0DXv50mZAowtAsYVAWOLIEWnQAIQNtzxUlDhcy4R0ciyelcr7vmwCg6n4XZ8QlIEll8+CcnRpgBFRkREdPLETqtb4YvUs8+r6w0IcCZPgcM8z9XxJWMuDBO7pBHR6OOXQpikpCS88MILuOqqq9DU1IRLLrkEOTk5WLBgAdLT0wEADQ0N+Prrr1FTUwPDMCAIAp5//nmkpnJBd7CKj48PdAhEJySUb4R/vn0fbn5zG/pU9x1PxoTLeOFHs1E4gQtBRqpQzlsa3U4od9trgerVB37WAL37vbs+PBbIPh3IWQTkLIaYkIMwQeAX3TRkfM6lUMXcJX9yOA4V5svy4LeXDp5z+HXDZdmyZdxIhWiEaOrsxy//uQkb9nrudjcjMw7P/9csZMRxt1ciIqIRo68N2FsK7C0G9qwFGjcDhj74dW4EIG0aMHaBq/AlqxCIOn7XSiIiIgpu725uwiOf10B3r4HBTEsM/nhpHmLC/bLcjYiIaNgIPU0wWddBsbmKX6TOOq/n0BJyoR4ofFHNBTDC44Y/UCKiEOO3Twb/9V//BV3XccMNN6C3txe7d+9GdXW12zmG4foEExUVheeffx4/+tGP/BUeEVFQMwwDf/26Bo+s2AHjiJs9YxMj8fKP52J8Mqu6iShE9bYCe74+VPzSWj3YFe4kE5A170DhyyIg/VRAZK8XIiIiXzKZDu24qGmD79B88JzDrwtWzz//fKBDIBqVymtaseyNTWjusnuM/bAgC7+7eArCZL7PJyIiCmk9La6il73Fro4v+7YCMAa9zI0gAukzDnR8WeC6LxjBzfuIiAJBkvgZjYaXYRh4eZ0Nz31V6zG2KDcBj16ci3DFu7xjZ3UKRcxbClXM3UOEvjbItjLIdSVQrCWQWqu8nsMZmwXNUgg1cz40y3wYUSkDY6P3v+zwY95SqGLuuvi1RP6qq67C2WefjT//+c/46KOPsHXr1oHiF1EUccopp+Diiy/GjTfeyE4wREQHqE4d97+3FW+We1aC52cn4MUfzUZ8VPAvJiMiGqD2A3XrDhW+1H8L777wFoD06YcKXzLnAaZIHwRKRERExxIeHj7w5/7+/kHPP3jO4dcFq8TEoe0e3dbm2bGCKBiJoujWNayjowO67u1O675jGAbe3NiAZ1bthXbEVq8mScA95+Tgkump6O3qRG+AYiT/C/a8JToW5i6FIl/mrdDT7Fr4YyuDYiuD1LLT6zkMUYYz5RRo5gKolgJo6XOAsJhDJ/QD6Od789EolJ5z4+NZrEUjE3ObhpOuG3jww+14pcSzCOb7czLx8NJpkKWTX9zHzuoUipi3FKpGVe72dwK1pUDNV0DNGqDxBDZ+iEkHsk93/Yw7DVL8WEgAwnwRLx3TqMpbGlFGa+76vVdkWloaHnnkETzyyCPQNA2tra0AgISEBMgyW1eGEi74oFARSjfCj9TZr+GOdytRvrfDY+ziacm499zxgKMHbY6eAERHvhTKeUuj21FzV1MhNW+HXLcWSm0x5Pr1EJyeuzwfjzM2C1pmEdSsBa6dLiISDg322F0/RCeIz7kUqkIpd/ml+MhjMpkQExODrq4utLS0HPfc7u5u2O2u1+qhFpmEAqfTGegQiE6IrutBk799Dice/rwGn+zwfB5JH2PCk5fkYVJqVNDES4ETTHlL5A3mLoWik8lbsbsRiq0ccn2Z65/tXnZ+BmCIJmip06Ga86FmFEBNnwUoR2yCw79XdBR8ziUiCl0OTcft//4OH3xX7zG2bPF4/PqciRAEIQCRERERHYPaB9SVHSh8+QqwbQIMLz+PRCYC4047UPyyEEgcD/D1jojIKwGtPJFlGSkpKYOfSEGJNxIpVIXKjXBrez9u+U8l9rZ67q687DQLfpyfAUEwQuLfhU5eqOQtEQDAMIC2GqB6NSIqPodcVwLR3u7VFHp4PFTLfDgyi6BaCqHHZrmfwL8P5EN8zqVQxdwlf7NYLNixYwcaGxvhdDohSdJRz6uvr3e7hogIAGrb+nHHezuxe3+fx9j8cbH4w4XjERehBCAyIiIiGiqx0wblQNGLUl8GqcNzB/fBGFIY1LRToWUUuIpf0mYCcvB3kiQiIqLh0W3XcMPrG/H1rv0eY7+7eAquLcoOQFRERERH0BxA/aZDhS91ZYDT4d0cYWOAsUWHur6kTAHEk+92RkQ0mrEFCxFREPrG2olfv7cLHX2a2/EwWcAD54/HWRNHzi7KRDQyCH0tUKylCLOWArYSoN31pbdpiNcbUhjUjHyomYVwZBbBmTQZEPiBn4iIKJhNnDgRO3bsgN1uR3V1NXJzc4963vbt292uISL6ancb7v94N7rtngWcP5mXgZ8XWiCJ3PmOiIgoqBgGxM5aV9GLrQxKfTmkLpv308gRUNNnue4FmgugpU4HpDAfBExERL7W1tYW6BAoxLX2qrjp39uxvbHH7bgsCnjwwgk4f0rcSedZKHVWJzqIeUuhakTlru6E1LwNcl0JFGsp5Pr1ENRer6Yw5HBoGXOhWuZDyyyEM2UaIB62ZLujY5iDphMxovKWRpVQyt34+Hifze33Qphdu3bh1VdfRWlpKRobG9HX14dPP/0UEyZMGDhn69atqK2tRVRUFBYuXOjvEImIAurDbc146NMaaLrhdjwxSsEfL83D1PToAEVGRHQYtQ9K/Xoo1mKY6kog798++DWHMQQRWsopUC2FUDOLoKbNAmR+4U1ERBRK8vPz8e677wIAVq1addRCGF3XsWbNGgBAVFQUpk6d6s8QfepYHXCIgo14xI5yRz72J6du4IW1dfhrqdVjLNok4Q8X5WJRbkIAIqNgE0x5S+QN5i6FomPmrWFAbK+GbC2DbCuDYiuD2N3o9fyGKRpa+hyolgJo5nw4U6YD0qGub3xXTSeKz7lEgcfu1HQy6jvsuPGtCtS29bsdj1BEPHlJLuaNi/NJjrGzOoUi5i2FqpDKXcOA1LoTirXU9WMrg+jo8m4KUYGWNhMOy3xX8cuRGz8YAELlv8coFlJ5S3SY0Zq7fiuE0XUdd955J/70pz9B13UYhmuBtyAIcDjcW4TV1tbioosugizLqKmpgdls9leYREQBoxsGXii24uV19R5jucmReGZpHtLGcJE4EQWIrkFu2grFWgylrhhKwzcQdO/avGpx2a6iF0shVPM8GOGxg19EREREQWvChAmYPHkyduzYgVWrVmHRokXIy8tzO+fDDz+EzebaJfr888+HLI+c5sS+3LmGyJcO3x3Kn9p6HLjt/77FVzubPcYmpsbghatmIzspKgCRUSgIVN4SnSzmLoUUwwCaKxC7Zy2wtxjYWwJ07/N+nvBYIKsQGFcEjC2CkDYdiiRDGfxKopPC51wiotBR1dyLm96uQHO36nY8LkLGny6byM1BiYjI9wwDYsdeKNZSmGylUKzrIPa1eDfFwQ1gza7CFzV9NqBE+ChgIiI6Gr+tPrj++uvx8ssvwzAMmM1mzJ8/H2+99dZRz73ggguQnZ2NPXv24K233sItt9zirzCJiAKiX9Xx+xW78cXOVo+xBTlxePiiCYgycV80IvIjw4DUXuMqerEWuz70e7nbBaKSYbcUwmEuhJpZCD0mwzexEhER0QmpqKhAY+OhHZ07OzsH/tzY2IjVq1e7nb9o0SKPOX784x/jvvvug8PhwEMPPYSlS5di6tSpcDgcKCkpwRdffAEASE9Px8UXX+yTfw8iCn5bbR34xesbYW3r8xhbMiMDj33vFESaRk6hHBERUUjQdaBpG7CnGNi71lX40uvdoh8AQEQCMLYQGLcAGFsEpE4FRH6fQUREREf3rbULv3qnEl12992q08eYsPzySRiXwAXERETkG2JX/YFuL+ugWEshdTd4PYeWOMlV9GKZDzUjH0ZYjA8iJSKiofLLt4srV67E3/72NwiCgHvuuQcPPPAAJEk6bnviK664Ak888QS+/PJLFsIQ0Yi2v8eB29/ZiW2NPR5jP5idhlsXZkEShQBERkSjjdDTDJO1ZKD4RepuHPyiwxhKJDRzAZSJZwM5i4CUKehtbx+VbReJiIhCwcqVK7FmzZqjjlVWVqKystLt2NEKYbKzs3Hrrbdi+fLl6Ovrw5tvvulxTnp6Ou6++25ERPBLbKLR6N8b6nDvu1th13S347Io4J4LJuPaonEQBN73ICIi8jndCTRuPlD4cqDjS3+79/NEJbsKXg4WviRPAo7znS8RERHRQWuq2nDPh7tg1wy34+OTIrD8e5OQEmMKUGRERDQSCb37B4peTNZSSB17vZ5Di8s5VPhizocRkeiDSImI6ET5pRDmpZdeAuDq9PLQQw8N6Zr8/HwAwLZt23wWFxFRoO1q7sWv/lOJxi6H23FJAO44cxwuPzU1QJER0WggOLoh16+Hqa4YSl0x5NadXl1vCBK01BlQM4vgyCyCljoDkikC8fHxPoqYiIiIgtGcOXPw1FNP4eOPP8amTZvQ2toKWZaRlpaGefPm4bzzzkNYWFigwxx2bW1tgQ6BaEhEUURsbOzA446ODui6fpwrhodD0/HEyhq8/e0+j7GkKAWPXzIRszLHoL293eexUOgJVN4SnSzmLgUVpwqpeStkaxkUWxnk+g0QvO34DECPSoVmLoBqKYBmLoAePx44vIi1o2MYgyYaulB6zuU9cyIi4L0tTXj4sxro7jUwONUcgz8uzcOYcHaKJSKikyPYO6HYylxdX6ylXq+BAQBnTAZUS+GBwpd50KPTfBApERENF798iigtLYUgCPjJT34y5GssFgsAoLHRu53IiYhCxdrqdtzzwS70qu435aNMEh5fMgHzxsUFJjAiGrmcKuSm76DUlcBUVwx537cQdM2rKbSEXNeH/swi124XJrZ5JSIiClXLli3DsmXLhmWu5ORkXHPNNbjmmmuGZb5QwK53FKp0Xfd5/u7rsuOu93dha4Nn99sZ5mg8fnEukqJN/HtEQ+aPvCXyBeYu+ZXTAblpMxRbueuncSMEtdf7aWLMUDPmQjUXQM3Ihx471r3wJUgLDYj4nEtEFJwMw8A/yhvw3Nd1HmOnj4/DIxflIlxhdzkiIjoBjh4oDRtchS+2dZCbt0EwvPvMqkcmwWGeP9D1RR+T6f4ZmIiIgppfCmGampoAAOPGjRvyNYqiAAA0zbvFmUREwc4wDPzfN/vwx1V7PXY7MceG4ZmlechJigxMcEQ0shgGpNZdUKzFMNWVQLaVQVQ9F6IdjzMq9VDhi6UQejQ7VRERERER0bFtqO3A3R9Uoa3P877u92em4tZFWVAkLnAhIiI6aZod8r5vXUUv9WVQGr+BoPV7PY0zNgtS9unAuCJgbBE6MYbFBERERDQsdMPAM6tr8eZGz02Ql0xLxj3nZEMWudiYiIiGSLNDafwGiu1Ax5d933m9+aseFgvVPO9A4cs8OOMnsPCFiCiE+aUQJioqCu3t7Whubh7yNVarFQCQkJDgq7CIiPxO0w08/eUe/PvbJo+x6RnRePrSPMRHKgGIjIhGCrG7AUpdCRSrq+uL2Dv0918AoCvRUC3zBopfnPHj+aGfiIiIiIgGZRgGXt/QiOVf1Xps/BEmi/jtOdm4YEpSYIIjIiIaCdQ+KI2boNS7Or7I+76F4HR4PY0Wlw0tI9/V8cWcDyHWgvj4+EMntLUNY9BEREQ0WqlOHQ98Uo1PdrR4jP04Px3LTsuEwO8giYjoeHQNctMWV8cXaymUho0QnHbvplCioGXMhWqZD4dlPpyJkwBR8lHARETkb34phMnJycGmTZuwfft2nH322UO6ZsWKFQCAqVOn+jI0IiK/6bZruPuDKpTu6fAYO29yIu47NwdhMndEJSLvCPYuKLZ1UOqKoVhLILft9up6Q1Sgpc2EI7MQqqUIWup0QPTLW0QiIiIiIhohehxOPPhJNVbubPUYs8SF4clL8pCbzO63RERE3hAc3ZAbNh7o+FIOuWkLBF31eh4tIRdqRj5Ucz7UjHwYUSlu41z+Q0RERMOt1+HEXe/vOuraiNsWZ+GHs9MDEBUREQU9Q4e0fwdMBwpf5PoNENVu76aQTFDTZ7s6vpjnQ0s5BZC4KTUR0Ujll1WO55xzDjZu3Ij//u//xk033QRRPP5C7+3bt+OVV16BIAi44IIL/BEinQBJ4q1xCg1HPucM9hzkC7b2ftz81g5Ut/R5jP1iQSZ+XmjhbifkJhjyloKUZofc+A3kumIotWsh7fsOgqF7N0XSJGiZC6BmFUHLyAdMUQNjJ/vqztylUMS8pVDF3CUKLN4XoVDh69eLmpZe3P5OJWqOcs/j9PHx+MNFuRgTzmJ78g7f51CoYu7SyRDsHZBtGyDbyiDbyiA1bYVgOL2eR0uaBM08D5q5AJo5H0Zk4sDY0TKSeUuhirlLRBSc2ntV3PKfSmxr7HE7LokCHjg/B+dNZrdYIiI6wDAgte0+1PHFVgbR3u7dFKIMLXXGQOGLmjYTkMN8Ey8REQUdwTAMw9e/ZN++fZgwYQJ6e3vxk5/8BH/5y18gyzJEUYQgCNiyZQumTJkCAPj8889x7bXXor6+HomJiaipqUF0dLSvQyQi8pmNe9vw81c3oKXH4XbcJIt46ooZWDIjI0CREVFI0HWgaRtQvdr1s7cEUHu9m2OMBRi/CMhZDGSfDkSnDHoJERERERHRYD7Z2oBf/3szuu2a23FBAG49Mw83nTEBosiNP4iIiI6qt9V1r29vMbBnLbBvK+DlhjcQRCDtFGDsAmBcEZA1H4hM8E28RERER2hrawt0CBRk6jv6sexfO7Cn1X2zjHBFxFOXTkRRTrzfYxJFEbGxsQOPOzo6oOtevuci8jPmLYWqoeSu2FEHua4EsrUESl0JxN5mr36HAQHOlGnQMguhWuZDy5jrtvkrkbf4nEuhKpRyNz7ed58D/FIIAwD//Oc/cfXVVwMALBYLLrzwQrzwwgsQBAE//elPYRgGiouLUVFRAcMwIIoi3nvvPVx44YX+CI+IyCfe+9aGO97aDIfm/gKTGGXCS1fPweyx/r/RQ0QhoL32UOFL9Rqgd79314fHugpecha5il8Sclwr0YiIiIiIiIaB5tTx5GeVeHFNtcdYbISCZ//fqVg8kQX4REREbrqbXUUve4uBPcWuzW+8JUhAxqnA2CJg3AIga57rXiARERFRgFU2duGal8vR2Nnvdjw+UsHLP56LmVlcG0FENCp1NgB7vgZq1gA1X7nWw3grebJrDUz26a5NICL4mkJERC5+K4QBgH/961+4/vrr0dHRAeEoizEPhhIdHY1//OMfWLp0qb9CIyIaVoZh4E8rd+HZL3Z5jOWlRuNv18xFZkJkACIjoqDU2+r64H+w+KXVczHZcUkm15feOYtcP+mnAqI07GESERERERG1dNtx05vfoGR3i8fYlPQxeOFHs5GVyHseRERE6Gp0dXo5WPiyv9L7OUQFMM86UPhSBGQWAGExwx8rERER0UnYsKcV172yHp397h1jzXER+Md1+ZiQEh2gyIiIyO96Wg4Uvnzl+mnxXDs3qIScA0Uvp7n+Gc1Nl4iI6Oj8WggDAC0tLfjLX/6CDz74AN9++y007dCHoKlTp2LJkiW45ZZbkJLCF69gxza3FCr83QLMrul4YEUVVmz37OBQmB2Hxy7JQ0yY7LPfTyNDKLWuoxOg9UOu3wi5bi2U2mJITVsgYOhvyVytXqdCyyyCmrkAWsYcQInwYcBDx9ylUMS8pVAVSrnry1a3RIHC+yIUKobz9WJrfRd+/W4l9nU5PMYumpaMe87JQYTConw6eaH0PofocMzd0U3oqodiK4NsLYNsK4PUXuP1HIZkgpZ2KjTzPGjmAmjps3x+3495S6EqlHKX90WIaCRbuWMffvnPTbBr7s/BeanR+Md1+UiPDY7vMImIyEf6O4G9JYcKX/Zt8X6OmAwgZ+Gh4pe4zOGPk4iIRiS/r8ROTEzEfffdh/vuuw+6rqO1tRVOpxMJCQlQFMXf4dBJcDqdgQ6B6ITouu6z/G3tUfHr93Zic323x9iVM1Nx2+KxkEWBf3/Ia77MW/ID3Qlp/3aY6kqgWIuh1G+A4LR7NYVzTBYcmYVQM4ugmufBiEg44oTgzA/mLoUi5i2FKuYukX/x7xuFqhN5vTAMA+9sbsaTX+6B6nQv4pdFAb8+Yyy+NyMFgsC/G+QbfJ9DoYq5O4IZBsQuKxRbGRRbOZT6ckiddd5PI4dDTZsJNaMAqjkfWuqpgBzmfpKfc4h5S6GKuUvkf9wkhN7f0oQHV1ThiFsFmGGOwZ++Nwnhej/a2voDE9wBoVQ4SXQQ85aCmtoHuX4DZGspFGsJpH1bIBjevQ/XIxKhWeZBzSyEZimEHjcOEATXoAGA7zHIj/icS6EqlHLXlxuEBLQlgSiKSEpKCmQIRETDpnp/L279z07Ud7ovbhcF4LbFY/H/ZqUFKDIi8jvDgNhZC1NdMZS6EijWUoj2dq+m0MPjoVrmw5FZBNVSCD02yzexEhERERERHYdd0/H4F3vw/tZmj7HkaAWPL8nF9IyYAERGRETkR4YBsWPPQNGLYiuD1N3g/TRKJNS02VDN+a7Cl5TpgGTyQcBERES+x+Kz0cswDLy6vgHLv/IsBD4tJw6PXjwB4YoYlDnCwkkKRcxbCiinA/K+76BYS2GylkJu/BaC7tkx/Hh0UwxUcwFUyzyo5kI4E3MBQTzshOBcuE2jE59zKVSN1twNaCEMEdFIsW5PO+56vwo9DvcXkiiTiIcvysWCnLjABEZEfiP0tbg++B8ofpG6rF5db0hhUDPyoWYWwpFZBGfSZPcP/kRERERERH5W32HHXe/vwo59PR5jsywxePTiXCRGscs3ERGNQIYBqW33QNGLbCuH1Nvk9TS6KRpa+hxX4UtGAbTkqYDE104iIiIKXbph4E+ra/HPjY0eYxdPTcJvz8mGLPE7TiKikKVrkJu3Q7GWun4aNkDQ+rybQ4kEsuajN20uHAc/C4uSb+IlIqJRzS+FMKqqYteuXQCA8ePHIyzMvaV3f38/fvvb3+Jf//oX9u/fj+zsbNxwww246aab/BEeEdFJeevbfXhy5R6Pdr9pMSY8e9lETEiODExgRORbah+U+vVQrMUw1ZVA3r/dq8sNQYSWcgpUSyHUzCKoabMAOWzwC4mIiIiIiPxg3Z52/PbD3ejo1zzGfjQnDTeengVZFAIQGRERkQ8YOqSWXVDqywa6voh9LV5Po4fFQs2Y69rwxpwPZ9IULvYhIiKiEUNz6njg02qs2O75Punquem46fRMCALvFRARhRRDh9Sy01X0YlsHxVYG0dHl3RSiCVraTGhZhYiYfC5gng3IJtjb2kZldwIiIvIfvxTCvPPOO/jBD36AhIQEWK2eu6MvXboUn332GQzDtYq8oqICt956KyorK/Hcc8/5I0QiIq85dQPPrq7Fm5s8dzqZlh6Fpy7NQ1KUKQCREZFP6Brkpq1QrMVQ6oqhNHzjdbtXLS7bVfRiKYRqngcjPNZHwRIREREREZ0Y3TDwSlk9nl9rxRF7fiBCEXH/uTk4e1JiQGIjIiIaNroTUkvFgaKXMij1GyD2t3k/TXiCq/DFnA/VXABn4kR2eSYiIqIRqc/hxF3v70LJng6PsVsXZeFHc9IDEBUREXnNMCC274HJdqDji3UdxP5W76YQJGgp06Fa5kG1zHdt/KpEQJIkRMTH+yhwIiIiT34phPn0009hGAYuvfRSj24wH330ET799FMIggCLxYK5c+eivLwcNpsNzz//PH74wx+isLDQH2ESEQ1Zj8OJ335YhbXV7R5jZ09MwO/OG49whV92EYU0w4DUXuMqerEWuz78e7nrhR6RCEdmEVRLEdTMQugxGT4KloiIiIiI6OR12zX8bkU11lR5LgTOig/HU5fkIieJnW+JiCgE6Rrk5u1QbGVQ6ssh16/3+l4fAOiRya6il4wCqBlz4UzIBbjrOREREY1w7X0qbv1PJbY29Lgdl0QBvzsvBxdMSQpQZERENBRiVz0Ua8lA4YvU47np82C0pClQLfPhsMyHljEHhinGB5ESERF5xy+FMJs2bYIgCFi4cKHH2MsvvwwAyMvLQ3l5OWJiYtDR0YHCwkJUVFTgr3/9KwthiCioNHba8at3dmJXc6/H2E/mZeD6IgtEfvFFFJKEnmaYrCUDxS9St3cf/g0lEmpG/kDxizMxj1+EExEREY1QkiQFOgSiIRFF8biPD6pq7sHt71Sitq3fY+yMvAQ8cMEERIf55XYy0ZDzlijYMHeDiFOF1LQZsrUMiq0McsNGCI5ur6fRo9OhmgugWQqgmQugx2W73e8bCe8ImbcUqpi7RET+0dhpx41vVWBPq/v9gnBZxONLclGUExeYwIiI6JiEnmYotlKYrOug2EohddR6PYcWP97V7cU8H6o5H0ZEgg8iJSIiOjl++eayqakJADBhwgS347quY+XKlRAEATfddBNiYlxVorGxsbjxxhuxbNkylJaW+iNEIqIh2drQjdvf2YmWXtXtuCIJuPecbFw4NTlAkRHRiRAc3ZDr18NUVwylrhhy606vrjcECVrqDKiZRXBkFkFLnQFIJh9FS0RERETBJD4+PtAhEJ2Q2NhYj2MffFePO9/aij7V6XZcFIA7zp2EXyzMgcAifwqgo+UtUShg7vqRZgdsG4E9xcDetUBdOaB6bmY1qLgsYOwCYFwRMLYIYvw4hAkCwoY/4qDFvKVQxdwlIhp+1ft7cdPbldjX5XA7Hhsu49nL8nBKBrsBEBEFA6G/3dUB1VoKxbYOcusur+dwjsmEap53oPhlHvToVB9ESkRENLz8Ugizf/9+AEBERITb8W+//RadnZ0QBAEXXnih29i0adMAAHV1df4IkYhoUF9UtuB3K3bDrhlux2MjZDx9SR5OtfAmD1FIcKoI3/oGwqo+hrzvWwi65tXlWkIuVEsh1Mwi164XbPdKREREREQhSnXqeGxFBf62tsZjLD5SwfIfzMKC3KQAREZERDQItQ+wrj9Q+FLs+rPm2dVsUAk5wNgiYNwC1z/jMoc/ViIiIqIQtLm+C7f+pxKd/e6bZqTGmPDc5ZOQnRhxjCuJiMjXBEc35IYNUKylMFlLITVvhwBj8AsP44xMcRW9WOZDtcyDPoafh4mIKPT4pRAmLCwMmqYNFMQc9NVXXwEALBYLxo4d6zZ2sDuM0+n+gYqIyN8Mw8DLZfV4fq3VY2xcQjievWwiLHHhAYiMiLwldtYh5tNboez7dsjXOKNSDxW+WAq56wUREREREY0ITV39uPGNb1Be0+oxNt0Si+d/NBvmOC5qISKiIOHoAerKDhW+2DYCTsfg1x0pKe+wwpdCYEzG8MdKREREFOLW7m7DXR9Uwa7pbsezE8Kx/PJJSBszmvrlEREFAc0OpXGTq+OLtRRy02avN33Vw+KgWuYNFL8443IAdgEnIqIQ55dCmLFjx2L79u0oKyvDmWeeOXD8gw8+gCAIOP300z2uaW11fQGbnJzsjxCJiI7Koel4+LMafLR9v8dYftYYPL4kFzHhfnkqJaKTZKr6GNFf3g3R0X3c83Ql+sCHf1fxizN+PD/8ExEREZGHtra2QIdANCSiKCI2NnbgcUdHBzbVtuPO93aiudtzAfHS6Sm46+wchBn9aGs7gZ31iYbB0fJW1/XjXEEUHJi7w8jedWB32zLItjJITVu8XuQDAM7EiVDNBdAsBdAy8mFEHfa9oxMA39MxbylkhVLuxsfHBzoEIqIh+3BbM/7wSTWcRzQWmJ4RjWeWTkRsBNdHEBH5nFOF3LR5oPBFadwEwcvNIHQlGlrGXDgOFr4kTQIE0UcBExERBYZfPp0sXrwY27Ztw/Lly7F06VJMnjwZ77//PlavXg0AuOCCCzyu2bp1KwAgPT3dHyESEXlo71Vxx/u78I21y2Ns6fQU3HXmWMgSPyAQBT2tH1FfP4SIbW8eddgQFWhpM+HILIRqKYKWOh0QeQOXiIiIiI6PXYwpFBmGgTc32PDUyj3QdPcVLYok4K4zx+HS6SkADOY4BRVd15mTFJKYu0Mn2Duh1K+HbCuDUl8OuXkbBMO7Be0GBDiTJkM150PNyIeaMRdGRIL7Sfz/MSjmLYUq5i4R0cl7tbwef/6qzuN4UXYcHl8yAeGKFICoiIhGAd0Jaf8OmKylUGylUOrXQ1B7vZrCkMKgZsyBanYVvmgp07j2hYiIRjy/vNLddNNNeOmll9DU1IRp06YhPj4ebW1tMAwDFosF3/ve9zyu+eyzzyAIAqZPn+6PEImI3Oxp6cOt71TC2m53Oy4AuGVRFv5rdhoEdoggCnpS6y7EfHIz5NadHmPO2LHoWfBbOMzzAFNUAKIjIiIiIiLynz6HE/e8swXvfGPzGEuLMeHxJbmYmh4dgMiIiGg0EvpaodSvh1JfDsVWDmn/DggwBr/wMIYgQkueCjUjH5q5AGr6HBjhsYNfSERERERudMPA8jV1eG1Dg8fYhVOScN+52dwklIhoOBkGpNZdUGzrXB1fbGUQ7R3eTSHK0FJPhWqZD4dlPrS0UwEpzDfxEhERBSm/FMLk5ubitddew3XXXYeenh60trYCAOLi4vDmm2/CZDK5nd/Y2IjPP/8cAHDGGWf4I0QiogHleztw1/u70GV33zUqQhHx0IUTsHAC25cTBT3DQNiOfyP6qwcgaP0ew/15l6Bn0YMwTFzkRUREREREI9/elh784vVN2NHQ6TGWP3YMHrlwAuIilQBERkREo4XQu3+g6EWxlR1145rBGKIMLfkUV8cXcz609NkwTDE+iJaIiIho9NCcOv7waQ0+2r7fY+yquem4+fRMbhJKRHSyDANiZy0Ua+mBri/rIPZ6Pu8edwpBhJY8DaplnqvrS8YcQIn0UcBEREShwW+9z6644gosXLgQH330ERobG5Geno4lS5YgISHB49zNmzfjhz/8IQDgggsu8FeI5CVJYstTCg2iKB738eH+8+0+PPp5NTTdfee5lGgT/nz5ZExMZdcI8g9v8paOYO9C1Jf3wLTzA48hQ45A7+IH4Zh8OUTesPUJ5i6FIuYthSrmLhERDcXXu9tw74e70NmveYxdW5CBXxRZIIn8fERERMNL7G6EYiuHXF8Opb4ccttur+cwRBO01OmuwpeMAqjps7jIh4iIiGgY9Tmc+M0HVSiuafcYu2VhFq6am+7/oIiIRgixuwGK9WDHl1JIXfVez6ElToRqme/6yciHETbGB5ESERGFLr8VwgBASkoKrr322kHPO+ecc3DOOef4ISI6GfHx7IpBoSk2NtbjmFM38NiKHfifr2s8xk4xx+Kv18xB6phwf4RHdFRHy1s6Ctsm4K1rgbY9nmOp0yBc/ndEJeeBJW3+w9ylUMS8pVDF3CUiosPphoH/KbHhr6U2GEeMRZlE/P788Vic67lJERER0YkQO21Q6stcHV/qyyB11Ho9hyGFQU07FVpGgav4JW0mIPO+PBERUbDi5qmhrb1Pxc1vVWBLfbfbcUkAfnfBBFw8LSVAkQ0vbihFoYh5G5qE3hbItnVQ6kog15VCaq/2eg5nXDY0y3yomYXQLPNgRCYNjIVCFjB3KRQxbylUMXdd/FoIQ0QUjHrsGm7532/xxY59HmPnTU3DH78/A5EmPl0SBTVdB9b9Bfji94Cueo7P/SlwzkOAEuH30IiIiIiIiPyts1/DfR/tPuqOrjmJEXjiklyMS+DnIyIiOkGGAbGz1lX0YiuDUl8Oqcvm/TRyBNT0WVAz8qGaC6ClTgekMB8ETERERL7AzVNDV317H372v5tR1eReBBOuiHj+v2Zj8aSRUQRzNNxQikIR8zZI9bUDe0uAmq9cP03bvJ9jjAXIPv3Az2mQYi2QAIyUT8bMXQpFzFsKVaM1d7mym4hGtYaOPvzklQ3Y3tDpMfaLheNx57kTIYpCACIjoiHr2Q+8ewOw6zPPsfBYYMlzwJQl/o+LiIiIiIgoACqbenDne7tg67B7jF14SjruOSsLYdy0l4iIvGEYkNprIB8oelFs5ZB6Gr2eRleioKXPhmougJqRDy1lGiCZfBAwERERER1LVVMXrvpbORo6+t2Ox0YoePnHczF7LAuciIiOytED1K47VPjS8C1g6N7NEZV8qPBl3GlAQg4gcF0aERHRiWIhDJ2wtra2QIdANCSiKLpVO3Z0dEDXdWxv7Matb1egudvhdr4sCrj33BxcMj0VHR3tfo6WyOVYeUvuZGspoj65FWKPZ0cnLX0Wes77M/QxFoCvWX7D3KVQxLylUBVKucvdIWkkkiRWElDw+XBrEx76tBp2zf31QBIF3H3+JPxkQTY6OzuD9vWC6CBRFI/7mChYjZjcNQyIrbugWMsg29ZBtpVD7G32ehrdFAPNnA/NXADNXABnylRAPPTVJN9NBYcRk7c06jB3iYi8t6m2Dde9sh7tvarb8fTYcLx6XT5yU2MCFBkRURDS7IB1w6HCF+t6QFcHv+5w4bGugpeDxS/Jk1j4QkRENIxYCEMnzOl0BjoEohOi6zq+qGjGfR/tRv8RC0PGhEt4Ykke5mSNYY5TUNF1nTl5OF1D5PrnELH+OQgw3IYMCOib/Qv05t8CSArA/24BxdylUMS8pVDF3CXyLxZ4UTBxaDoe+mg7Xi3d6zGWFG3C8h/MwvzxiQBGb2t0Cm3MWwpVIZO7ug40bQP2FAN71wJ7S4DeFu/niYgHxha5fsYVQUydBpMogT1fQkvI5C3REZi7RP7HzVNDy9rdbbjj3UqPNRLZCRH4y/enIMmkjcj/p6G0oRTRQczbANE1SE1boNSVQK4rhdywAYLWP/h1hzGUSGgZc6FmFkKzFMKZPAUQD9sGor19eGMOMsxdCkXMWwpVoZS7vvxenYUwRDSqGIaBV8ps+PPqvUcsnQey4sPxzNI8jE2ICEhsRDQ0YncDYj67DUp9uceYHpmErrOehpq1IACRERERERER+V9jRz9++c+N2FTb7jE2MysOf/mvWUiP5b0OIiI6jO4EGjcfKHwpdhW+9Ld7P09UMjC2EBi7ABhXBCRPBtiRgYiIaNTgpjyh4+Pt+/HAJ9Vw6u6rJKalR+HZyyYiLkIeNf8/uaEUhSLmrY8YOqSWSijWUpispa5uqGq3d1NIJqhps6Ba5kO1zIOWMh2QDtsOwsCo3ryVuUuhiHlLoWq05i4LYYho1HBoOu59dwv+tcHqMTbLEoMnL8lDbASfFomCmalmJaK/uBOivd1jzJF5GrrOfgpGZJL/AyMiIiIiIgqAddUtuPGNb7C/2+4xdtW8sbjvoikwyVyQTEQ06jlVoOE7YM9aV+FL7TrA3un9PDHpBzq+FALjFgBJeYAgDH+8RERERDRsXt/QgGdX13ocL8yOxeMX5yLCJB3lKiKikUvZswrhO96GYlsHsd+7TliGIEFLnX6g8GU+1LRZgBzuo0iJiIhoMFzxTUSjQnuvAze8vgml1S0eYxdPS8Y9Z4+DInFhCFHQctoRVfIEIr57xWPIECT0zrsdfbN+Bgj8e0xERERE/tHW5t0XZETDyTAM/HNDA55dtQfOI1rehskifntuDi6eloKerg70hVBrdKKDROYthaigyV2nA9K+zVCsZZBt6yA3bISg9no/TYwZmrnA9WMpgB471r3wpb19+GKmgAmavCXyUijlbnx8fKBDIKJRyDAM/PmrOry2vsFj7PwpifjduTmQuUaCiEYRob8dUWt+j/BdHwz5GgMCnMlT4DDPg2qZDy1jLgxTtA+jJCIiIm+wEIaIRry9rX247Z3vUL2/x2PsxtMycU1+OgTuWkcUtMT2Goz59BbIzds8xpwxZnSd8yy09FkBiIyIiIiIRrPR2FqagkOvw4k/fFqNzytbPcbMsWF44pJcTEyJOmaOjtbW6BTamLcUqvyWu5od8r5vodjKodSXQWn8BoLW7/U0zjGZUDPyoZrzoZrnQR9jcT8hSBeY0/Dicy6FKuYuEdEhmlPHQ5/V4MNt+z3GfjQnDTcvzILINRJENIooe1cj+st7IPXsG/RcLSEX6oHCF9VcACM8zvcBEhER0QlhIQwRjWgb6zpx53u70NGvuR0Pk0X84YLxOCMvIUCREdFQhFW+h6jV90FUPQvZ7OPPQ/cZj8IIGxOAyIiIiIiIiPxvb2sf7nhvF6pb+jzGCrNj8YcLJiA2grd8iYhGPLUPSuMmKPXlUGzlkPd9C8Hp8HoaLS4bWkY+VHMB1Iy50GMyfBAsEREREflTv+rEbz6owtrqdo+xm0/PxNX5fM9HRKOH4OhGZPGjiNj2v8c8xzkmC6plHhyW+VDN82BEpfgxQiIiIjoZ/FaUiEasD7Y24+HPaqDphtvxpGgFf7w0D1PS2KqSKGipvYhe83uEV7ztMWRIJvScdh/6p/4A4E5FREREREQ0SqyuasXvPq5Gj8Nzl+ufzTfjZ4Vm7uZKRDRSOXqgNGw8UPhSBrlpCwRd9XoaLSH3UMeXjHwu7iEiIiIaYTr6NPzqnUpsru92Oy4JwL3n5uDiackBioyIyP9kWzliVt4JqbPOY0wPG4Pegl/BMe4Mz26oREREFDJYCENEI45uGPjL13V4pbzBY2xK+hj88dJcJEXx6Y8oWEn7dyDmk5sht1d7jGnx49F17p/hTJoUgMiIiIiIiIj8z6kbeKHYir+X1XuMRYdJ+MMF43Ha+PgAREZERL4i2LsgN2yAYiuDUl8OuWkrBMOzEHIwWuKkA0UvBVAz5sCITPJBtEREREQUDPZ12XHTW5UeXWTDZBGPXTyB9w6IaPTQ7Iha9zTCv30ZAgyPYUfWaeg+41Ho0ekBCI6IiIiGk99Xgn/33Xf4+uuvUV1dja6uLjidx79xLwgC/va3v/kpOiIKdf2qE/d/vBtf7mrzGDtrcgr+9P9mwtE7+HMPEQWAYSB86z8RtfZhCE6Hx3D/5CvQffr9gBIZgOCIiIiIiIj8r71XxW8/qkLZ3k6PsdzkSDyxJBeZ8eEBiIyIiIaT0N8OpX49FFs5lPoySPt3QDB0r+YwBBHOpMmuohdzPtSMuTDC43wTMBEREREFlT0tfVj2VgX2dbl/xxoTJuHZyyZihjkmQJEREfmXvG8zor+4A3JblceYoUSip+hu9E/9AcDO2kRERCOC3wphKisrcd1112HdunVDvsYwDBbCENGQ7e924LZ3dmL7vh6PsZ8uyMbdF0yGJApw9AYgOCI6LqG/A9Ff3o2w6k89xnQlGj2L/gD7xCUBiIyIiIiIiCgwdjT24M73d6Kh03OjgPMnJ+K352QjXJECEBkREZ0soa8Fim09lPoyKLZySC2VR92l9ngMQYKWMg1qRj5UcwG09DkwwrjAkYiIiGi02drQjVv+U4mOPs3teEq0guWXT8L4JG4ySESjgFNF5Ia/IGLDfx+1o6qaPgddZz0BPXZsAIIjIiIiX/FLIYzNZsPpp5+O/fv3wzBcN/Kjo6MRHx8PURT9EQIRjXA7m3rwq3d2euxwIgnA3efk4KeLJwcoMiIajNywETGf3Qqpq95jTE2ehq5z/wQ9bpz/AyMiIiIiIgqQ97Y04fEv9sDhdF8ULYkCfrUoC9+fmQqBuxYSEYUMoad5oOhFqS+H3LrL6zkMUYGWcgpUcwHUjHxo6bNgmKJ9EC0RERERhYqSmnbc+d4u9Gvu3QTHJoTjvy+fhLQxYQGKjIjIf6TWXYj+/NdQmrd6jBmiCb3zbkPfqdcBIjcVIiIiGmn8Ugjz8MMPo7m5GYIg4Kc//Sl+/etfIy8vzx+/mohGga92t+G3H1ahT3W/uRMdJuHxJbkozEkIUGREdFyGjoiNLyKy7Jmj7sjRN+M69BTeAUimAARHRERERETkfw5Nx5Nf7sU7m5s8xpKiFDy2JBenmrnbPxFR0OuwAXuLEbnzS0jWdZDba7yewpBM0FJPhWrOd3V9SZsFKBE+CJaIiIiIQtGK7fvx+0+q4dTdN9GYmhaFP102EXGRSoAiIyLyE92JiO/+jsh1T0NwenbV1pKnouusp+BM5DpVIiKikcovhTCffPIJBEHA1VdfjZdeeskfv5KIRgHDMPDGxkY8u7oWxhFj5tgwPHvZRGQn8otBomAk9DQj5ovbYaor9hjTw+PRdeYTULPPCEBkREREREREgdHYaced7+/C9sYej7GZlhg8etEEJEVzowAiomAkdlqh2MpgalgPNKwH2vYAALzZf9uQw6GmzYSaUQDVnA8t9VRA5g7eREREROTpjY0N+OOqWo/j88fF4okluYgwsesBEY1sYkctYlbeCaV+vceYIUjom/NL9M5ZBkgsCiQiIhrJ/FIIU19fDwC4+uqr/fHriGgU0Jw6nvhyL/7znecOqaeaY/DUJbnc4YQoSCm1XyPm89sh9rV4jKkZBeg654/Qo9MCEBkRERER0dBJEhcU0PAp29OO37y/E+19msfYD2en49bFY6FI4gnNLYricR8TBSPmLQU1w4DYsReytQyyzfUjddm8n0aJhJY+G5p5HlRLAZyp0906I/OdBvkLn3MpVDF3iWg0MgwDz31dh3+UN3iMnTc5Eb87L+eE7x8QEYUEw0D4tjcRVfwoBLXXY1iLH4/us56Cljo9AMERERGRv/mlECY+Ph5NTU2Ii4vzx68johGuq1/Dbz7YhbK9nR5j509JxH3n5MAk8+YOUdBxqogsexaRm17wGDIEEb1zb0LfnGWAyK/5iYiIiCj4xcfHBzoEGgEMw8ALa6rx5KcV0I9odxuhSHjse6fgklPNw/o7Y2Njh3U+In9g3lJAGQawfxewdy2wpxjYWwx0eS48HFTYGCBrHjC2CBi3AEL6DCiSAgUA+5pTMOFzLoUq5i4RjXSabuCRz2rw/tZmj7EfzE7DrxZlQRSEAERGROQfYncjor+8G6barzzGDAjon3EteubfDsjhAYiOiIiIAsEvhTBz5szBxx9/jJ07d2LmzJn++JVENEJZ2/vxq/9Uoqa132PsF0UW/GReBgTe3CEKOmKnFTGf3gpl3zceY86oVHSd8ww0c0EAIiMiIiIiIgqMrn4Vd/x7Mz7Z1ugxNi4xEi9cNRuT0sYEIDIiolFO14HmHcDeEmDPWtc/ezw7kw8qPA4YW3ig8KUISJvODWCIiIiI6IT0q07c/WEVvt7d7jF242mZuCY/neskiGjkMgyE7fwAUV/9HqK9w2PYGWNB11lPcM0JERHRKOSXQpibb74ZH330EV566SV8//vf98evJKIR6FtbF3797k6092lux8NkAb8/bzzOnpQYoMiI6HhMVZ8g+svfQHR0eYw5xi5G11lPwIhICEBkREREREREgVHV1IWfv7YR1c09HmNnTU7B01eeitgIJQCRERGNQroT2LftQNFLsavwpa/V+3kiEw8UvixwFb6kTAVEdi4nIiIiopPT2a/hV+9U4jtbt9txSQB+e04OlpySHKDIiIh8T+hrRfTq+xG2e8VRx/unfB89C+6BYYr2c2REREQUDPxSCHP22WfjrrvuwuOPP44bbrgBf/7zn6Eo/CKXiIZuxfb9ePDTaqhOw+14YqSCp5fmYVo6P9AQBR2tH1FrH0bE1jc8hgxRQU/hXeif8WOAuxMRERERUQhqa2sLdAgUoj6v2I/fr6hCr0N3Oy4A+OVpWbhuvhl6fzfaPJvhnhBRFBEbGzvwuKOjA7quH+cKosBj3pJP6Rqkpm2QbWWun/r1EO2d3k8TmQTNXADNPA+qpQB6Qi5ESWLuUsjhcy6FqlDK3fj4+ECHQEQhqqnLgZversDu/X1ux8NkAY9enIvTx/P5hYhGLlPNSkSvugdi736PMWdkCrrPeATquMUBiIyIiIiChV8KYV599VVMnjwZhYWFeOmll/DBBx/g8ssvx6RJkxAZGTno9VdffbUfoiSiYGQYBl4stuGv62weYxOSIvDM0olIjw0LQGREdDxSaxViPr0Zckulx5gzNgtd5/wJWur0AERGRERERDQ8nE5noEOgEKPpBv77qzq8tqHBYyw2XMZDF47H/Ow4GLoOX2aXruvMXwo5zFs6KU4VctMWKPXlUGxlkBs2QVS7B7/uyGmi0qCa86Fm5EMzF8AZl+2+wYuue2z4wtylUMS8pVDF3CWikWZPax9u/HcFGrscbsdjwiQ8s3QiTrXEBCgyIiLfEhxdiPr6IYTveOuo4/bci9B9+u9hRLAYkIiIaLTzSyHMj3/8YwiH3fxvaGjA8uXLh3StIAgshCEapfpVHQ98shufV7Z6jBVlx+Hhi8YjOswvT2NENFSGgbAdbyH6qwcgaH0ew/25F6Nn8R9gmHhjloiIiIiIRo/WHhV3f7gLG+u6PMYmpkTiyUvykMGNPoiIhofTDnnfZii2MlfxS8Omo96nGnSaGDPUjHyo5gKo5nzoY7LY2ZiIiIiI/GJbQzdu+U8l2vs0t+PJ0QqWf28SJiQPvukwEVEoUqwliF55F6Sueo8xPSwO3YsehCP3wgBERkRERMHIbyvIDcPw168iohGgpUfF7e9WYmtDj8fY/5uVilsXjYUs8ktHomAiOLoQtfp+hO9832PMkMPRffrvYZ98ORcMEBERERHRqLKlvgt3vb8LTd2qx9jF05Jx15njEK6IAYiMiGiE0PqhNH4DxVYOub4MSuO3EJx2r6dxxmZBzSg40PWlAPoYsw+CJSIiIiI6vnV72nHHe7vQp+pux7Piw/Hfl09COjfSIKKRSO1DVOkTiNj86lGHHWMXo+uMR2BEpfg5MCIiIgpmfimEqamp8cevIT+TJCnQIdAItau5Bze/tQONne4tfiUBuPOsbFw5K92r+URRPO5jomAUankr7duMqBU3QerY6zGmJU5CzwXPQU+YAL5yjHyhlrtEAPOWQhdzl4gouBmGgbe/a8JTX+6FprtvEiSLAu44cywum57i1kmbiIiGQO2F0rAJSn2Zq/hl32YIumPw646gxY8/0PElH1pGPvToNB8ES0RERDRycc3I8FuxvRn3f1TlcR9hano0/nz5ZCREKgGKLHTxPjqFotGWt1LjN4j69HZI7dUeY4YShd6Fv4NjyhUQeR816I223KWRgXlLoYq56+KXQpixY8f649eQn8XHxwc6BBqBVlU24aY3tqHb7t7iNyZMxnP/NQsL85JP+nfExsae9BxE/ha0eWsYwLrngc/vB3TP3Y0x5yeQz30YsUqE/2OjoBC0uUt0HMxbClXMXSKi4NGv6njsixp8uG2/x1hqjAmPL8nFtPToAERGRBR6BEcX5IaNUGzlrsKX5i0QdG3wC4+gJeRBNR/s+JIPIzLJB9ESERERjR5cMzK8Xl5bgwc/3OVx/LTcJLzwo9mICvPLEq8Rj/fRKRSN2LzVHMCax4C1zwCG7jk+7jQIl/w3ouLHIsr/0dEwGLG5SyMa85ZC1WjNXX5KIqKg8UpxDR78cDuO2NwElvgIvPzjuchLjQlMYER0dD0twHu/BHZ+4jkWFgtcshyYcon/4yIiIiIiIgogW3s/7nx/Fyqbej3G5mSOwSMXTUBCFHdwJSI6FsHeCaV+PWRbGZT6csjN2yAcbUHMcRgQ4EyaPFD0ombMhRGR4KOIiYiIiIhOzlOfVuK5VVUex5fMyMBTV8yASR6duzsT0QjWuBV45xfAvi2eY3I4cNbvgfzrgVG6uz0RERENDQthiCjgNKeOBz/cjldL93qMzcqKw0tXz0FSdFgAIiOiY9qzFnj7p0BXg+eYZS7wvb8B8ewIR0REREREo0tpTTvu/Wg3Ovo9OxVcNTcdy07LhCwKAYiMiCh4CX1tUOrLXT+2ckj7d0CAMfiFhzEEEVryVKgZ+dDMBVDT58AIH5074BERERFRaPl0W+NRi2B+XDgO9180BSLvIxDRSKI7geI/AaseAXTVczxjFrD0RSA5z/+xERERUchhIQydsLa2tkCHQCNAt13DXe/tRElNu8fYeZOT8PsLJkBSe9HW5rmL6lCJoujW9qujowO67t0OgkT+FrR5qzsRXr4c4eV/PupOnH1zbkD/vNsAKABfJ0aloM1douNg3lKoCqXcjY+PD3QIREQ+pRsGXl5XjxeLrR5LtyMVEfefl4OzJiYGJDYiomAj9O4fKHpRbGWQW3d6PYchytCST3F1fDHnQ0ufDcPEjuJERERE/sQ1IyfPMAz8+YtKj+M3np6F6+alo6Oj3f9BjTChdB+d6KCRmrdiWw2iPr8dcsMmjzFDlNFfcAv659wAiDLXm4SokZq7NLIxbylUhVLu+nK9yLAWwpxxxhkAAEEQsHLlSo/jJ+LIuSh4OJ3OQIdAIa6+w45b/1OJ6pY+j7GfzTfj54VmCIIx7Lmm6zrzl0JOMOSt2N2ImM9ug1Jf5jGmRySi6+ynoWad5jrAv2N0QDDkLpG3mLcUqpi7RESB0dWv4f4Vu/H17naPsbEJ4XjqkjxkJ0b4PzAioiAhdu+DXF/mKnypL4fcttvrOQxRgZY6w1X4klEANW0mYIryQbRERERENFS8F3nyvrV1YVtDt9ux2xZn4Yez04N2EVuo4310CkUhn7eGjvAt/0RUyeMQNM81YlpCHrrOfgrO5KmAAa43GUFCPndpVGLeUqgarbk7rIUwq1evBuAqXjnyuCAIMIyht7I/eP6RcxHRyLClvgu3v7sTrb2a23FFEvC783Jw3uSkAEVGREej1HyJmJV3Quz33HXDkVmErrOehhGVHIDIiIiIiIiIAqequRd3vLcTde12j7EzcuNx/3k5iA5jU24iGl3ErnootrIDXV/KIHXs9XoOQwqDmnYqtIwCV/FL2kxADvdBtEREREREgfPGhga3x+ljTLhyZlqAoiEiGn5iVz2iv/wNTHXFHmOGIKJv5s/QW3ALIIUFIDoiIiIKdcP6Lezpp59+1MKVYx0notHp04oWPLBiNxxO9+K4+AgZT12ahxnmmABFRkQenHZElTyJiO/+7jFkCBJ6592Gvlk/BwQxAMEREREREREFzic79uOhT2vQr7nv0CoKwLLTMnH13HTeEyWikc8wIHbWHej24ur6InVZvZ9GjoCaPgtqRj5UcwG01OlcBENEREREI5qtvR+rq9w3Ifz+rDTIIu8lENEIYBgIq/gPor5+EKKj22PYGZuFrrOehJY+JwDBERER0Ujhk44wQz1ORKOLYRj4a6kNL5bYPMZyEiPwzNI8mOO4qx9RsBDb9yDm01v+P3v3Hd5Wfbd//D5Hki1bchxn7z1ICASySEJ2AmGW+dBFS2lLSxtW2QlQVggQVoBS2tI+pYu2PJRdaCA7hBkCCYSQvfdwHEu2tc75/cGvAXFEyLB1dKT367p6Nfp+JPl2+EiOjr9DgZ0fO2qpsjaqPnmakq37u5AMAAAAANyTTFmaNneD/rFou6PWuMSvu8/spoEdyl1IBgBZYNsy967bv+glsOUd+SLbDvlprEBIydb9lWh7ghJtBinZoo/kK2qAwAAAAEBu+ucH22V9Ye/Q0oCps49p7l4gAKgnRs0uhefcrOI1r2es1x5zoaJDrpeKQllOBgAA8k29LoQBgK8SS1qaPH2NXl2221Eb3Klc95zZTeFi3pKAXFG8/EWF5twsMxF11GJdTlZkzD2yg0zsAgAAAFBYdkXiuvGlVfpwc7WjdnSrkO79Rne1asQJBgDyiG3LV7kq7cQXs2bnIT+NVVSmZJuBn5/40ry3ZHI9GAAAAIUpEkvqhY92pI2ddWwL5kwA8Lyi1dMVnn2zzLo9jloq1EqRsfco0WG4C8kAAEA+4hMUgAZXWZPQtS+s0OLNzqMuz+/bQteO7cTxvkCuSNQoPO8OBZf9n6Nk+4oUHXaT6vp8VzJ4zQIAAKCw+Xw+tyMgyz7ctE/XPb9cu6IJR+2841rq+rGdVeQ3XUh2YKZpHvA2kIvoWxfZlny7lsu/+Z3//793ZdY6Nzf6OlawsZJtBynZ9gQl256gVLNekvn5z858/SlK78KL6Ft4Fb0LwMte/HinonFr/23TkL51fEsXEwHAkTFi+xSad7uCy5/PWK/rebaiI26VXdwou8EAAEBeYyEMgAa1ZleNfvHcCm2uiqWNm4b0i1Ed9a1+LWUwoR7ICb5dn6ps+hXyV6521JKNu6j6lEc+m7QAAAAAQBUVFW5HQJbYtq0n31ynu/69TEnLTqsV+U1NPruPLhjQ3qV0h668nNM94T30bQOyUtK2j6T1C6R1C6QNb0q1lYf+PKXNpE4nSh2HSZ1OlNm8l4pMU0X1n9hT6F14EX0Lr6J3AXhFyrL1j/e3p42N7Fahto2DLiUCgCMT2DBf4Zk3yhfd5qhZJU0UGTVZ8a7jXUgGAADyHQthADSYt9dV6caXVioSS6WNlwZMTTmjm4Z1ZdIQkBNsW8Glf1do/p0yUnFHua7X+YqMuFUKlLoQDgAAAADcUxNPauKzH+mFD7c4am0bl+g3F/bXMe2YcAfAY/askZa99P8XvrwtxaoO/TnCrf7/wpcTpU7DpGY9OEEYAAAAOAhzVlVqy770jUS/27+1S2kA4AjEowq9ea9KPv5bxnKsy0mKjJosu7RZloMBAIBCwUIYAA3imQ+3676Z65RK3yhVLcuKNO3cnurenAn1QC4wYvsUnjVRxav/46hZgZCio+5UrOdZLiQDAAAAAHet2xXVpX99X59uq3bUhndvpke+dbwqQoV+1gEAT0nUSXPvlRY8LNmpr7//FzVql77wpUkXFr4AAAAAh+Gp97em3e7dMqS+bcMupQGAw+PfslBlM6+Tr2qDo2YVlSk64lbFep7NtQMAANCgWAgDoF6lLFvT5m7Q3993HnfZu1VID57dQ83CTBIBcoF/2wcqm36lfNWbHbVk86O1b/zDshp3diEZAAAAkPsqKyvdjoAGNG/VHt30svOUW0n68ZB2unRYeykeVWU86kK6Q2OapsrLPz+1pqqqSpZluZgI+Hr0bf3zb35HpTMmyrd3zUHdP9WovZJtT1Cy3QlKth0sq1G79Mkre/c2TFCPo3fhRfQtvMpLvVtRUeF2BAA5YunWiBZvjqSNfWdAKxlMFAfgFcmYSt95SCUf/F6GbEc53v5ERcbcI6usjQvhAABAoWEhDIB6E42ndPPLqzR/zV5HbWyPJrr91C4KBnzZDwYgnW2pZNETKn37ARkZdv+s7XuxokOvk3zFLoQDAAAAvCGVOsSd9OEJKcvWE29u1u/fdm4YECry6fbTumhUtyaSbcmrLWBZFv0Lz6FvD58Rq1bpW1NV8vFTB7xfqryTEm0HKdH2BCXaDHJOWMnRicW5jt6FF9G38Cp6F4AXPPWlDUVbhAMa16OJS2kA4ND4di5V2evXyL9npaNm+0sUPfFG1fX5jmSYLqQDAACFiIUwAOrFtn0xXf3cCq3YWeOoXXxCG/1sWDuZ7GICuM6o2aWy169V0cb5jppV3FiRcVMV7zzWhWQAAAAA4K6q2qRu+fcqvbmuylHr0rRE953VXR2blLiQDAAOT9HaGQrNuVW+qPP0btsMKHbUOYq3G6pE2xNkh1q4kBAAAAAoHNurY5qxYk/a2AXHt5Lfx4RxADnOSqrk/cdV+t6vZFhJRznRqp+qx02V1bizC+EAAEAhYyEMgCO2dGtEVz+/QrujibRxv2no5pM764w+zV1KBuCLAhsXqOz1q2XW7HLUEm0Gqvrkh2SFW7uQDAAAAADc9en2qG54caU2V8UctZOPaqpbTu6skiJOuQXgDUbNLoXn3a7iVa9krCdaHqfImClKNe2Z5WQAAABA4Xr6g+1KWfb+20G/qXOOZUE6gNzm27NK4RnXKbBjiaNmm0WqOeEq1R7/Y8nk2ikAAMg+FsIAOCIzV+zRL19ZrVjSShsvD/p131nd1a99I5eSAdgvlVDpuw+r5P3fyJCdVrJlqHbg5aoZOEEy+WcBAAAAgMLz8sc7dfeMtYol0z8v+QzpylEd9O1+rWRwyi0AL7BtFS9/TqH5d8mM7XWW/SWKDr5Gdcd+nwkqAAAAQBbVxlN6bsmOtLEz+zRTeQm/nwWQo2xLwcV/Uuit+2SknJsHJZv1UvW4B5RqxiYbAADAPXyiAnBYbNvWk+9u0WPzNzlqHSqCevjcnmpfEXQhGYAvMvdtVtlrVyqw7QNHLRVqqchJDyrRbrALyQAAAADAXYmUpQdmrdczi3c4ak1LA7r7zG5s8AHAM8x9mxSefbOKNs7PWI+3H6bI6MmyGrXPcjIAAAAALy/dpX11qbSxb/Vr5VIaADgwc98mlc24XoEt7zhqtmGqtv+lqhl4ueQrciEdAADA51xbCLNp0yZt27ZNNTU1GjhwoEpKStyKAuAQJVKWpry2Vi8t3eWoDezQSPd+o7saBVlnB7itaPV0hWfdKDO2z1GLdxyl6nFTZZc0dSEZAAAAALhre3VMN764Sh9tjThqx7YJ695vdFfzML/IBeABVkrBJX9W6O0HZCRrneXickWH3aTYUedKnG4FAAAAZJ1l2/r7om1pY8O7NFbHJsyTApBjbFvFnzyt0Bt3yUxEHeVk4y6KjLtPyVbHZT8bAABABlmdqV5dXa2pU6fqySef1JYtW/aPf/TRR+rdu/f+2//4xz/07LPPqry8XE888UQ2IwL4GntrE7r+hZVatKnaUTv7mOa6cVwn+X2mC8kA7JeMKbRgiko++qujZJsBRYdcp7rjLpYMXqsAAAAACs/CDfs06eWV2lOTdNQuOL6lfjGqgwJc2wDgAb7dyxWeNUmB7R9mrMe6n67I8F/KLm2W3WAAAAAA9ntjzV5tqKxLG/vOAE6DAZBbjOgOlc2apKL1szPWa/v+QNHB10oBFvEBAIDckbWFMCtXrtRpp52mNWvWyLbt/eNGhh3IBg8erAsvvFC2beuiiy7SsGHDshUTwAGs31Orq55dro17Y2njhqQrRnbQhQNaZXxNA8geX+Vqlf3nCvl3f+qopRp1UPX4h5VseawLyQAAAADAXbZt628Lt+nReRuUstNrxX5TN53cWaf1ZrI4AA9IxVS68HGVvP8bGVbCWQ61UnTU7Yp3HudCOAAAAABf9NTC9NNgujcv1YD2jVxKAwBORStfVnjOrTJjex21VFkbRcZOVaLdkOwHAwAA+BpZWQhTV1en008/XatXr1YoFNKECRM0YsQInXHGGRnv36lTJ40ePVqzZs3Siy++yEIYIAcs3FCl619cqX11qbTxoN/U5NO7alT3Ji4lAyDpsyNqP/2XwnNvk5GsdZRj3c9QZPRk2UVlLoQDAAAAAHdF4ynd+Z81mrFij6PWtrxY953VXT1ahFxIBgCHxr91kcKzJspfuSpjvbbPd1Qz5HrZxVwDAgAAANy2fEdUCzfuSxv7Tn82GAWQG4zaSoXn3arilf/OWK/r9T+KDr+JeSYAACBnZWUhzOOPP65Vq1YpFApp/vz5Ou644772Maeeeqpmzpypt956q+EDAjigFz7aoSmvr1PKSt8utXk4oIfO6amjWjJRBHCTEY8oNOeXCq54wVGz/UFFRtymWK/zJS6oAgAAAChA6/bU6rrnV2jtnjpH7cTOjXXn6V3VKJi1g7MB4PDEowq9fb+CS/4iQ7ajnGzcWZHRU5RsO8iFcAAAAAAy+fv76afBNC0NaPxRTV1KAwCfC6ybrbJZE2XW7HTUrNJmioyeonjnsS4kAwAAOHhZ+Q3vs88+K8MwdOWVVx7UIhhJ6tu3ryRp5cqVDZgMwIFYtq1fzduoP7+31VHr2aJUD53TUy3KilxIBuC/fDs+VqPpV8hXtd5RSzbpoepTHlGqSXcXkgEAAACA+2av3KPbXl2taNxKGzckXTK0rX48pK1MNg0AkOMC6+cqPOdm+aq3OGq24VNtv5+oZuDlkr/YhXQAAAAAMtkVjWv6p7vTxs4/roWK/KZLiQBAMuLVCr0xRcFPns5Yj3U7TZGRt8suaZLlZAAAAIcuKwthli1bJkk6+eSTD/oxTZt+tgPC3r17GyISgK9RG0/pl6+u1uyVlY7aqG4VuvO0riop8rmQDIAkybYVXPKkQgvulWElHOXaPt9RdNhNkj/oQjgAAAAAcFfSsvWbNzbqyXedm3uUFft05+ndNKxL4+wHA4BDYNTuUeiNuxRc/nzGerL50aoec49SzXtnNxgAAACAr/XMBzuUSH1+mmORz9B5fVu6mAhAoQtselvhmTfIV73JUbOKyxUZeZvi3c+U2DgIAAB4RFYWwkQiEUlSOBw+6MfEYjFJUiAQaJBMAL7azkhcv3huuT7dXuOofW9ga10+oj27pQIuMmorFZ55g4rXzXTUrKIyRcZMUbzbaS4kAwAAAAD3VdYkdNPLq/Tuhn2OWo/mpZp6Vne1a8ymAQBymG2raOVLCs+7U2bdHmfZV6yaE65S7XE/lMys/JoHAAAAwCGoS1h6ZvH2tLHTejdTkxBzoAC4IFmn0Fv3q2TxHzOW4x1HKjL6bllhFusBAABvycpvSJo2bapt27Zp3bp16tev30E9ZunSpZKkVq1aNWQ0AF/y6faorn5uuXZE0k+Y8JmGJo7rpLOPbeFSMgCS5N/8rspe+4V80W2OWqLlcaoeP01Wo/YuJAMAAAAA9y3dGtH1L67U9uq4o3Za72aadFInBQOccAsgd5nVWxSe80sVrZ+dsR5vO1iR0XfJatwpu8EAAAAAHLT/LNulvbXJtLFv92f+E4Ds829fovCMa+WvXO2oWYGQosMmKdb7m5wCAwAAPCkrC2H69eunV155RfPmzdO55557UI/585//LMMwNGTIkAZOB+C/5qzao5tfXq26pJU2Xlbs09Szumtgh3KXkgGQlVLJu4+q9L1HZNiWo1zT76eqOeEXko9dhAAAAAAUpueW7NDUmeuUSNlp437T0DWjO+r841rI4Be6AHKVbSn48VMqffM+mYmIo2wVlSl64kTFel/A5BQAAAAgh9m2rafeT9/UcHCncnVtVupSIgAFKRVX6cLHVLLwcRl2ylFOtBmk6nFT2WgVAAB4WlYWwpx//vn697//rd/97ne6+uqr1aFDhwPef9q0aZo3b54Mw9C3v/3tbEQECppt2/rrwm16ZO4G2V+qtW9crIfO7alOTUpcyQZA0r6tCj/3AwU2ve0oWSVNVD3uASU6jnAhGAAAAAC4L5a0NHXmOr3w0U5HrXk4oHu/0V3HtilzIRkAHBxf5WqFZ01UYOv7GeuxLicrOuI2WeGWWU4GAAAA4FC9va5Ka3bXpo19h9NgAGSRb/dylc24Tv6dSx0121ek6OBrVXfcxZJhupAOAACg/mRlIcz3vvc9PfTQQ1qyZIlGjRqlxx57TKeccsr+umEYsm1bCxcu1LRp0/SPf/xDhmFo+PDhOvXUU7MREShYyZSle2as0/MZJov0a1emqWd1V+MSTpgAXLNiuvT8zxSo2e0oxdsNVfVJD8gOtXAhGAAAAAC4b2tVTDe8uFKfbI86av3alWnKmd3ULFTkQjIAOAiphEo++J1K3/2VDCvuKFulzRUZcZvi3U7J8GAAAAAAuejLp8F0bhLUkE7lLqUBUFCslEo+/L1K356W8TpDonkfRU66X6km3V0IBwAAUP+yshDGNE29+OKLGjZsmNatW6czzjhDpaWlMgxDkjRq1ChVV1crFotJ+ux0iq5du+rpp5/ORjygYO2rS+qGF1fqvQ37HLUzj26mSSd3VsDH6n/AFam4NP0m6a1fOUq24VPNCVeptt9PJdPnQjgAAAAAPh//Fnfb22v3auJLK7S3NumoXTiwta4Y2ZHrGvrs2uyBbgO5qBD61rd9iUpnXC//rk8z1mO9L1Dt8JtkB8vFTxzvKITeRf6hb+FV9C6AXLRmV43eWleVNvbt/q33z48CgIZiVq1X2YzrMp42a5t+1QyYoNr+P5N8bIYMAADyR1YWwkhShw4d9OGHH+ryyy/X008/rWj0810ad+78/CQKwzB0wQUX6PHHH1dFRUW24gEFZ2Nlna56brnW76lz1C4b3l4XDeJiDOAWs2q9yqZfJe1Y4qilwq1VPX6akq0HZD8YAAAAgP24buUe27b16zmr9cBry2XZ6bXSIp/uPe9Yndm3jTvhPKC8nF1o4T151bfxqDR7ivT2ryXbctYrOklnPqziLqNUnPVwqG951bsoGPQtvIreBZAL/r4o/TSY8hK/TuvdzKU0AAqCbSv48VMKLbhbRrLWUU426a7qcfcp1eIYF8IBAAA0rKwthJGkJk2a6G9/+5umTJmif//731q4cKF27NihVCqlpk2b6vjjj9eZZ56pHj16ZDMWUHAWbdyn615Yqaq69B1Ti/2m7jitq8b2aOJSMgBFK15SePbNMhMRRy3W5SRFxtwjO9g4+8EAAAAAIAdU1yV0zdOL9don2x21zs1C+u33+qtHyzIXkgHAQVgzR3rxCmnvemfNMKXBP5dG3yQVlWY9GgAAAHCoOC03XWVNQq98sjtt7H+Oa6VQkNMX3MQJYvCig+1bo3qrQjOuV2DDfEfNlqFYv0tUO+RqyR/ktFlkBe+58CL6Fl5F734mqwth/qtjx476+c9/7saXRj3iooY3vfTxDt3x6molv7RlarNQQNPOO0pHt86/ySK84cMTEjUqnXu7ipf+01nzFat2xM2qO+ZCmZzUhBzHey68iL6FV9G7AArNiu3VuvQv72vNrqijdnLvlrr/gr5qxOQSALmotlKafrP04V8z11v2kb7xiNS2f3ZzAQAAAEeA03LT/XXRSsWSn5/6GPAZ+snonqpoFHQxFb6ME8TgRY6+tW1pydPSK9dJsSrnAyo6yTj7cQU7DhXvQHAT77nwIvoWXlWovWvYtm1//d0AeJ1l2Xrg9eV6bPZqR61X60b6w0UD1KZxiQvJAGj7Uun/LpZ2LXfWmnaXzv9fqfWx2c8FAAAA4CtVVla6HaGgvLZsl257dZVqE1bauGlIPx/eQRcPbsvGAV/BNM20i99VVVWyLOsAjwDclzd9a9sKrHpVpXN+KbNml7PsK1LdoCtV1/8nko+FfPkgb3oXBYW+hVd5qXdZLADkv1gypWH3ztbO6tj+sXP7tdWDFxznXigA+Sm6S3r5KmnZS5nr/S+WTp4sFYezGgsAAMANrpwIAyC7auMpXfN/H+qVj7Y5amOPaqGHv328wsW8HQBZZ9vS+3+U/jNRStY568d9Vzp1KhcoAAAAgByUSqXcjlAQkpatR+du0N/ed17TKC/x667Tu2lwp3LZliX+ixwcy7LoX3iOF/vWjGxXaN6tKl7zesZ6ovUARcZMUaqi62cDHvv+cHC82LsAfQuvoncBuOnlxVvTFsFI0o+GdXYpDYC89em/pZeulKI7nbWy1tI3fiV1H5f9XAAAAC7J+sx3y7L0ySefaM2aNaqurj6oi1Hf//73s5AMyE87qut0yZ8WavEm51GYPxrWWZNO6yWfyY6pQNbV7v3sAsUnzztrgZB0xkNS329mOxUAAAAA5Izd0YQmvrRSizZVO2q9WoY09Rvd1bq82IVkAHAAtq3iT/6p0IJ7ZMad719WIKSaoderrs93JMN0ISAAAABQPzgt9zO2bet3c1eljQ3o0EhtSiz+jnKAl04QA/7L0bfbNyg451YVL3s24/1jPc9W7ajbZQfLJd534CLec+FF9C28yku925An5WZtIUxNTY0mT56s3//+99q9e/dBP84wDBbC5Cg+sOe+FTuiuvKZZdpWHU8b9xnSDSd10f8c30r7qva6Ey6LvPSGj8Lg2/aBQq9eLt++TY5asvnRip76qNS0m8q/ME7fwit4z4UX0bfwKi/1bkNe2ACQn5ZsqdYNL67UzkjCUTvrmOa6fmwnFfuZQA4gt5h71yk8e5KKNr+TsR7vOFqRUXfIKmuT5WQAAABA/eMUps8s3FCl5TuiaWPf7teKv58cxQli8JzVs1X23M9kRrY6SlawQpFRdyre7dTPBuht5Bjec+FF9C28qlB7NysLYSKRiEaPHq1FixbJtu1sfElkQSG+YLzkjdWVmvTyKtUk0ifChYt9uufM7hrcqbxg/xsW6hs+coBtqeSDJ1T69oMyrKSjXHvsRYqeeIPkK5bvS5NY6Vt4Fb0LL6Jv4VX0LoB8YNu2nvlwhx6YvV5JK/06YsBn6PqxnXTOsS1cSgcAX8FKquTDP6j0nYdlpGLOckkTRYb/UvHuZ0gGp3MDAAAA+eRv729Lu92+cbGGd23sThgA+SMelV6/VXrvCWXaDijWeZwio++SXdos69EAAAByRVYWwkyePFnvv/++JGnw4MH6yU9+or59+6px48YyTXZuBOqTbdv6x6LtemjOen1pvojalhfroXN6qEuzUnfCAQXMqNmlshnXqmjDfEfNKm6syLh7Fe88zoVkAAAAAJAb6hIp3f36Ov37k12OWsuyIt37je7q0zrsQjIA+Gq+nZ+obNaN8u9cmrFe1/NsRYfdJLukSZaTAQAAAGhoGyrr9MbqvWlj3+rXSiYL4AEcAd/W96UZ10l71jhqVlFY0eG3KHbUeWy2AQAACl5WFsI888wzMgxDp512ml544QUWvwANJGnZun/mOj2zeIej1rdtWPef1UMVpQEXkgGFLbBxgcpev0ZmzU5HLdF6gKpPfkhWWRsXkgEAAABAbti0t07Xv7BSK3bWOGqDOjTSXWd045oGgNySrFPpu4+q5IMnZNjOU/lSZW0UGTVZiY4jXQgHAAAAIBv+/v42fXF/0rJin87s09y1PAA8LhVT6TuPqOSD30m25SjH2w1RZOxU5pcAAAD8f1lZCLN582ZJ0hVXXMEiGKCBRGJJ3fjSKr29rspRO7VXU908vouK/bz+gKyykip9Z5pK3v+NDKUf0WTLUO3ACaoZeLlkZuXHMQAAAADkpHW7a/Wjv3+iqrqko3bRoNb62bD28pvsbgggd/g3v6uyWRPlq1rnqNkyVHfs9xUdfI1UFMp+OAAAAABZsa8uqZc+Tt8I8exjW6i0yOdSIgBe5tu1TGWvXyv/7k8dNdsfVHTI9ao79nuSwdwvAACA/8rKzNsWLVpo06ZNatasWTa+HFBwNu+t0y+eW6E1u2sdtUtPbKcfDW4jg+Mwgawyq7eobPqVCmxb5KilSlsocvKDSrQb4kIyAAAAAMgdtm3rrtfXOhbBhIpM3XpKV43p0cSlZADgZMSqVfrmvSpZ+veM9WST7oqMnqJk635ZTgYAAAAg255bskN1yc9PbPAZ0jePb+liIgCeZCVVsuh3Kn33ERlWwllvO0D7xk5VolHH7GcDAADIcVlZCDNo0CBt2rRJy5cv1/HHH5+NLwkUjMWbq3Xt8ytUWZs+YaTIZ+jWU7tq/FFNXUoGFK6i1dMVnnWjzNg+Ry3ecaSqx06VXcriUAAAAACYuWKPPthUnTbWuUlQ953VQ52alriUCgCcitbOUGjOL+WLbnfUbDOg2v4/U82ASyVfsQvpAAAAAGRTMmXp6Q/SPxuM7dlUrRrxeQDAwfNVrlF4xnUKbP/QWTQD0uiJ0tArZe2rllKprOcDAADIdVlZCPOLX/xCzz77rH71q1/pm9/8JidTAPXkP8t26Y7/rFE8ZaeNNyn164Gze+iYNmUuJQMKVDKm0IK7VfLRXxwl2/SrZsh1qj3uhxxVCwAAAACSYklLj8zdmDbWulGRnrywj0JFPpdSAUA6o2aXwvNuV/GqVzLWEy2PU2TMFKWa9sxyMgAAAABumbmyUtur42lj3+nfyqU0ADzHthRc8meF3rpPRrLOUU42O0r+838vtTrGhXAAAADekZWFMEOHDtW9996r66+/Xt/61rf029/+Vo0bN87Glwbykm3b+t2bm/XEW5sdtS5NSzTt3J5qU85OI0A2+SrXqGz6FfLvWuaopRp1UPX4aUq27OtCMgAAAADITU+9v1Vb9sXSxq4c2YFFMAByg22r+NNnFXrjLpmxKmfZX6LokGtUd8z3JZP3LQAAAKBQ2LatpxZuTRs7tk1YfVqHXUoEwEvMfZsVnnWDija95ajZhqnafj9VbPBVqmjO4joAAICvk5WFMJJ07bXXqmvXrrrkkkvUvn17nXTSSerRo4dKS0u/9rG//OUvs5AQ8IZY0tId/1mj6Z/udtSGdirXlDO7KVyctZc2AEnFy/6l8LzbZCRqHLVY99MVGXWX7GJOaAIAAACA/9oViet/396SNnZ8uzKN7dHEpUQA8Dlz30aFZ9+soo1vZKzH2w9XZPRkWY3aZTkZAAAAALct2RLR0m3RtDFOgwHwtWxbxcv+pdD8O2UmIo5yqryTqsfdp2TrfvL52HADAADgYGRttvyOHTv03HPPqaqqSpZl6YUXXjjox7IQBvjMnmhC176wQku2OD8QXXB8S109uqP8puFCMqAwGfGIQnNvVXD5846a7Q8qMvyXivW+QDJ4XQIAAADAFz32xibVJqz9tw1J14zuKIPPTwDcZKUUXPInhd5+UEay1lkubqzo8JsU63kO13sAAACAAvW3L50G07pRkUZ1Z2MPAF/NiO5UePZNKl43M2O99pjvKTr0einw9RuKAwAA4HNZWQize/dujRgxQitXrpRt29n4kkDeWb2rRr94doW27IuljZuGdPXojvpWP3YYAbLJt3OpGv3nCvmq1jlqySbdVT3+EaWa9sh+MAAAAADIccu2RfXyxzvTxs7s01xHtQy5lAgAJN/u5QrPmqTA9g8z1mPdT1dk+C9llzbLbjAAAAAAOWPz3jrNWVWZNvbNfq3YsBTAVypa9arCc26RWVfpqKXCrRUZe68S7U90IRkAAID3ZWUhzJQpU7RixQpJ0vnnn6+f//zn6tu3rxo3bswuj8BBeGvtXt340ipF46m08VCRqbvO6K5hXRq7EwwoRLb92c6gC+6VYcUd5dqjv6XosJulQIkL4QAAAAAgt9m2rftnr9MXt8opDZj6+fB2rmUCUOBSMZUufFwl7/9GhpVwlkOtFB11h+Kdx7oQDgAAAEAu+ecH22V94aJGacDU2cc0dy8QgJxl1O1VaN7tCq54MWO97qjzFB1+i+zisiwnAwAAyB9ZWQjz4osvyjAMXXjhhfrTn/6UjS8J5I3/+2C77p+1TqkvHabUqqxI087tqW7NORYTyBajtlLhWTeqeO0MR80qCisyeori3U93IRkAAAAAeMOM5Xu0eHMkbeyHg9uqWajIpUQACpl/6/sKz5okf+WqjPXaPt9RzZDrmZQCAAAAQJFYUi98tCNt7KxjWihcnJWpVwA8JLB+jsKzJskX3e6oWSVNFRl9l+JdTnIhGQAAQH7JyqexzZs3S5J++MMfZuPLAXkhZdl6aM56/WOR80NRn9Yh3X92DyaJAFnk3/Keyl67Sr7INkct0bKvqsc/LKtRexeSAQAAAIA31CUsPTx3Q9pY2/Jifbt/K5cSAShURjyi0rfuV/Cjv8qQ7agnG3dWZPQUJdsOciEdAAAAgFz04sc7FY1b+28bkr7Zr6V7gQDknnhUoQVTVLL0HxnLsa6nKDLqDtklTbMcDAAAID9lZSFMs2bNtHnzZpWVsWsacDCi8ZQmvbRKC9buddRO6tlEt57SVcGAmf1gQCGyUip5/3GVvvuwDNtylGuOv0Q1g6+WfCxMAwAAAIAD+dv7W7WtOp42dsXIDir2c40DQPYE1s9ReM4t8lVvcdRsw6fafj9RzcDLJX+xC+kAAAAA5KKUZeufX9rEdFT3CrVrHHQpEYBc49/ynspmXCffvo2OmlXcSNERtynW4xuSYbiQDgAAID9lZSHM8OHD9Y9//EMff/yx+vXrl40vCXjWtn0xXfXscq3aVeuo/WhwG/30xHYy+VAEZIUZ2a7w61eraPPbjppV0kTV4+5XouNIF5IBAAAAgLfsjMT15Dvpk877tSvTmO4VLiUCUGiM2j0KzZ+s4IoXMtaTzY9W9Zh7lGreO8vJAAAAAOS6uasqtbkqljb23f6tXUoDIKckYyp9+wGVfPi/GU+djXcYrsiYu2WFec8AAACob1lZCHPNNdfoX//6l+6//35dcMEFCgbZEQHI5OOtEV3z3ArtrkmkjQd8hm4+ubNOP7q5S8mAwhNYP0dlr18ns26PoxZvN0SRcQ/ICnPUNQAAAAAcjMfmb1Rt4vNTNg1JV4/uKIPNPgA0NNtW8YqXFJp/Z8brPLY/qJpBV6n2uIslMyu/MgEAAADgMU+9vy3tdu+WIfVtG3YpDYBc4d++ROEZ18lfucpRswOlip44UXVHf5tTYAAAABpIVn6r069fP/3+97/Xj3/8Y5188sn6/e9/rx49emTjSwOeMWP5bt366mrFkum7A5SX+PXAWT10XLsyl5IBBSYVV+lb96v0wz84SrZhquaEq1Tb71LJ9LkQDgAAAAC8Z+nWiF5euitt7KxjmuuoliGXEgEoFGb1FoXn3KKi9XMy1uNtBysyZoqs8o7ZDQYAAADAM5ZujejDzdVpY98Z0IrNPYBClkqodOGvVbLwMRl2ylFOtB6g6nFTud4AAADQwLKyEOaHP/yhJKl3795644031Lt3bx177LHq0aOHSktLD/hYwzD0hz84JyMD+eS1T3dr0svO3QE6NQlq2rk91a4xpygB2WBWbVDZ9CsV2LHEUUuFW6n65IeVbDPAhWQAAAAA4E22beuB2evTxkJFpn42rL1LiQAUBNtS8KO/qfSt+2Qmoo6yVVSm6LBJivX6H3ZlBQAAAHBAXz4NpkU4oHE9mriUBoDbfHtWKvz6tQrs/NhRs80i1Qy+WrXH/ZDNVQEAALIgKwthnnzyyf07IRiGIcuytHjxYi1evPiAj7Ntm4UwyHu7owndM2OtY3xQh0a69xvdVRbMyssUKHhFK19WePZNMuMRRy3WeZwiY++VHWyc/WAAAAAA4GGvLd+jJVvSP2f9cHBbNQ0FXEoEIN/5KlcrPGuiAlvfz1iPdRmvyMjbZIdaZDkZAAAAAK/ZXh3TjBV70sYuOL6V/D7TpUQAXGOlVLL4jyp9+wEZqbijnGx+tKrH3a9U0x4uhAMAAChMWZlh36FDB44EBb7CfTPXaV9d+jGZ5xzbQjeM7cjFEyAbErUKz79TwU/+6SjZZpGiwyaq7pjvsTsoAAAAAByiukRKj8zdkDbWtrxY3+7XyqVEAPJaKq6SRb9T6XuPybCcE1Ks0uaKjLxd8a7jXQgHAAAAwIue/mC7Upa9/3bQb+qcY1lUDxQas2qDymZer8CW9xw12/CpdsDPVTNgguRj8x8AAIBsyspCmHXr1mXjywCeM2flHsfuISf1bKJJJ3Vi8RiQBb7dy1U2/Ur596x01JKNO6t6/CNKNe/tQjIAAAAA8L6/Ltym7dXpk9GvGtVBRX42/gBQv/zblyg860b5dy/PWK/rfYGiQ2+UHSzPcjIAAAAAXlUbT+m5JTvSxs44upnKS7Iy1QpALrBtFS/9h8ILpshI1DjKyYquioy7X8mWx7oQDgAAAHw6A1xSXZfUPTPWpY2Vl/h13RgWwQANzrZV/Mk/FZ53h4xUzFGu63mOIiNvl4pCLoQDAAAAAO/bUR3Xk+9sSRsb0L6RRnWrcCkRgLyUqFHo7YcUXPKkDNtylFONOigy5i4l2g11IRwAAAAAL3t56S7tq0uljX2rP6fcAoXCjGxXePZEFa2f66jZMlTX92JFh1wj+YMupAMAAIDEQhjANQ/P3aBd0UTa2DWjO6pJiGMygYZkxKoVnj1JxatecdTsQKkiI29X7KhzXUgGAAAAAPnjV/M3qi75+aR005CuHt2BzT8A1JvAxgUKz75Jvn0bHTXbMFV73A9VM+gqKVCS/XAAAAAAPM2ybf190ba0seFdGqtTEz5fAHnPtlW84iWF5t0mM1blKKfK2ql63FQl256Q/WwAAABIw0IYwAXvbajS8x/tTBsb2rlcp/Zq6lIioDD4ty9W2fQrM06QSDbrrX3jH5FV0dmFZAAAAAC8xufzuR0hZ320pVqvfLIrbeycY1uqV+tGLiUqbKZpHvA2kIsO1LdGXZVK5k9W8Sf/l/GxyWZHqWbcVKVaHiveqZFtvOfCi+hbeBW9C6AhLVizVxsq69LGvjOA02CAfGfU7lF4zi9VvPrVjPW63t9UdNgk2UXhLCcDAABAJiyEAbKsLpHS5Olr08ZKA6YmndSZXVGBhmJbKvngDyp9+34ZVtJRrj32+4oOvVHyF7sQDgAAAIAXVVRUuB0hJ9m2rYf+/knaWFmxXxPPPEYVYT5z5YLy8nK3IwCHrLy8XLJt6ZMXpFeuk6I7nHfyFUsjr5f/xCvVyMep28gNvOfCi+hbeBW9C6A+PfV++mkw3ZuXakB7NvgA8lnR2pkKz54ks2aXo5YqbaHImClKdBrtQjIAAAB8lXpdCPPfnTANw1AymXSMH44vPxfgdb9ZsEmbq2JpY5eNaK9WjZgMAjQEo2aXymZcp6IN8xw1q7hckbH3Kt7lJBeSAQAAAED+eXHxFn2wYW/a2OVju6kZi2AAHIl9W6V/XyMt/3fmeoch0jcelZp1z24uAAAAAHlnxY6o3tuwL23sO/1bsbEpkKeMeLVC8ycruOyZjPVY9zMUGXGb7BI2RgIAAMg19boQxrbtQxoHCs3SrRHHziF924Z1/nEtXUoE5LfApjcVfu0a+Wqcu4QmWvdX9cnTZJW1cSEZAAAAAOSfmnhS97z6adpYp6al+sHQzi4lAuB5liUt+pP0+i+l2D5nvahMOuk2qf8PJdPMejwAAAAA+efvX5rT0bQ0oPFHNXUpDYCGFNj0lsIzr5eveoujZhU3VmTUHYp3P92FZAAAADgY9boQ5tZbbz2kcaCQJFKW7py+RtYX1oUFfIZuObmLTHYOAeqXlVTpu4+oZOGvZSh9MaYtQ7UDfq6aQVdIZr3+GAQAAABQQCorK92OkHN++8ZGba2qSxu7YmQHRaurFHUpEyTTNFVeXr7/dlVVlSzLcjER8PVM01R5cpf00pXSuvkZ7xPvPFY1oyfLLmstVVVlOSGQGe+58CL6Fl7lpd6tqGAHecArdkXj+s+nu9PGzj+uhYr8LLwH8kqiVqG37lPJkj9lLMc7jlb1mCmyQy2yHAwAAACHgoUwQJb86d2tWrWrNm3skiFt1alpiUuJgPxkVm9R2WtXKbD1fUfNKm2u6pMeUKL9iS4kAwAAAJBPUqmU2xFyyrZ9Mf3xnc1pY4M6NNLwzo34u8oxlmXx3wS5zUqqePH/Su88LCXrnOWSJooM/6Xi3c+QDEOin5HDeM+FF9G38Cp6F0B9eOaDHUqkPt9oschn6Ly+LV1MBKC++bd9qPCMa+Xfu9ZRswIhRYffoliv8z+75gAAAICcxlb4QBas2VWjP7ydPhmkR/NSfX9ga5cSAfmpaM1rCs+8UWbMuQtovMMIVY+7T3ZpMxeSAQAAAEB+e2z+RsWSn+++bBrS1aM7yuAXxgAOgW/nUpXNmij/zqUZ63U9z1F02E2yS9hVHQAAAED9qktYembx9rSxU3s3U5NQwKVEAOpVKq7Sdx9RyaLfyrCdp8jF256gyNipshq1cyEcAAAADkdWFsLMmzdPkjRw4ECVlBzc6Rd1dXV69913JUkjRoxosGxAQ0tZtia/tjZt1xDTkG4Z30V+H8fnAvUiGVPozXtUsuTPjpJt+lUz+FrVHv8jyeA1BwAAAAD17aMt1Xp12e60sXOObaFuzUtdSgTAc5J1n01G+eD3MmznTu6psraKjJqsREd+VwAAAACgYfxn2S7trU2mjX27XyuX0gCoT75dn6psxrXy71rmqNm+YkWHXqe6Yy9iTgkAAIDHZGUhzKhRo2SappYsWaLevXsf1GM2b968/3HJZPLrHwDkqP/7cLuWbImkjV04oLV6tQq5lAjIL2blWjWafoX8uz5x1FKN2qt6/MNKtuzrQjIAAAAAyH+WbeuB2evTxsLFPl16IjsnAjg4/s3vqGzWJPmq1mWoGtIJl2pfv8uU8gWzHQ0AAABAgbBtW0+9vy1tbHCncjb5ALzOSqnkgydU+s40GVbCUU60OFaRk+5XqqKrC+EAAABwpLKyEEb67ENjNh8H5IItVTE9Nn9j2lj7xsX6yVAmgwD1ofjT5xSe+0sZiRpHLdbtNEVGT5FdXOZCMgAAAAAoDP9Ztlsfb42mjf14SFtVlAZcSgTAK4xYtUrfvEclS/+R+Q7Nj5K+8ajUfpBUWSmlnCfFAAAAAEB9eGd9ldbsrk0b+05/ToMBvMzcu1ZlM65TYNsHjppt+lUz8HLV9r9UMrM2fRIAAAD1LGf/JWdZliTJ5/O5nAQ4PLZta8rra1WbsNLGbzq5i4IBjtIEjkg8qvDcWxVc/pyjZPuKFRnxS8V6f1MyDBfCAQAAAEBhqI2n9Kt5G9LGOlQE9c3jW7qUCIBXFK15XaG5t8oX3e6o2WZAdQMnqOSkSZK/2IV0AAAAAArNUwvTT4Pp3CSoIZ3KXUoD4IjYloIf/U2hN++Vkax1lJNNeqj6pPuVan60C+EAAABQn3J2Icz69eslSeXlfLCEN/37k116e11V2ti5fVtoQIdGLiUC8oNv5ycqm36F/HvXOmrJJt1VPf5hpZr2dCEZAAAAABSWP7+3VTsiibSxq0Z1UMDHBiAAMjNqdik873YVr3olYz3R8nhFxkyRWvRSCYtgAAAAAGTB2t21evNLczu+3b+1DDZdBDzHrN6i8KwbVbRxgaNmG6Zqj79ENSdcKfm45gAAAJAPGmQhzIYNGzKOb926VeFw+ICPjcViWr16tW655RYZhqGjj2b1NbxndzShB2evTxtrHg7oihHtXUoE5AHbVvCjvyj0xt0yrLijXNf7m4oMv0UKlLgQDgAAAAAKy7Z9Mf35vS1pYyd0bKThXRq7EwhAbrNtFX/6L4XemCIzVuUsB0oVHXyN6o75nmT6xDnxAAAAALLlqffTT4MpL/HrtN7NXEoD4LDYtoqXP6fQvDtkxqsd5VR5B1WPu0/J1gNcCAcAAICG0iALYTp37uwYs21bJ5988iE/1/e///36iARk1f2z1mlfXSptbOJJnRUuztlDmICcZtTtVXjWjSpe87qjZhWFFRl9l+Ldz3AhGQAAAAAUpkfnbVQsae+/bRrSL0Z1ZLdUAA7mvo0Kz75ZRRvfyFiPdxiuyKjJshq1y3IyAAAAAIVub01Cr3yyM23svL4tFAxw2i3gFUbNLoXn3JxxPokk1R5zoaJDrpeKQllOBgAAgIbWILPybds+pPFMgsGgrrjiCv3whz+sr1hAVsxZuUevL9+TNnZSzyYa0bXCpUSAt/m3LlTZ9Kvki2x11BItjlX1+IdllXdwIRkAAAAAFKbFm6s1/dPdaWPn9W2hbs1LXUoEICdZKQWX/Emhtx+Ukax1losbKzr8ZsV6ni2xiA4AAACAC55ZvCNtow+/aeiC41q6mAjAoShaPV3h2TfLrNvjqKVCrRQZe48SHYa7kAwAAADZ0CALYf74xz+m3b744otlGIbuvPNOtW3b9isfZxiGgsGgWrdureOPP17hcLgh4gENprouqXtmrEsbKw/6dd2YTq7kATzNSqlk0W9U+s7DMuyUo1xz/I9VM/gayVfkQjgAAAAAKEyWbeuB2evTxsqKffrpUE5yAPA5367lCs+eqMD2xRnrse5nKDL8FtmlzbKcDAAAAAA+E09a+r8Pt6eNnXxUUzUL8/tnINcZsX0KzbtdweXPZ6zX9Txb0RG3yi5ulN1gAAAAyKoGWQhz0UUXpd2++OKLJUlnn322evfu3RBfEsgJj8zboF3RRNrYNWM6qkko4FIiwJuM6A6VvX61ija95ahZwSaqHjdViU6jXUgGAAAAAIXtlU926ZNt0bSxS4a2VeNSrn0AkJSKqfS9x1Sy6LcyrKSzHGqlyKg7leg8xoVwAAAAAPC515bv1u4vze/4Tv9WLqUBcLACG+YrPPNG+aLbHDWrpIkioyYr3nW8C8kAAACQbQ2yEObLZs+eLUnq3LlzNr4c4IqFG6r03JKdaWNDO5fr1F5NXUoEeFNg/VyVzbhWZq3z6Np428GKnPSgrDDHUQMAAABAttXEU3ps/sa0sQ4VQf3PcXxGAyD5t76v8KxJ8leuyliv7fNd1Qy9TnZRWZaTAQAAAPlrz549euutt/TBBx9o8+bN2rt3r8LhsHr27KmzzjpL3bt3dztiTrJtW0+9nz6Jvl+7Mh3VMuRSIgBfK1Gj0IJ7VPLx3zKWY11OUmTUZE6fBQAAKCBZWQgzcuTIbHwZwDV1iZQmv7Y2baw0YGriuM4yDMOlVIDHpOIqfftBlX7whKNkG6ZqBl2p2v4/k0yfC+EAAAAAAH96d4t2RtJ3Sr16VAcFfKZLiQDkAiMeUelb9yv40V9lyHbUk407KzLmbiXbDHQhHQAAAJDfXn31Vb3wwgtq2bKl+vbtq0aNGmnr1q1677339N577+nKK6/U0KFD3Y6Zc97fWK0VO2rSxr47oLVLaQB8Hf/WhSqbcZ18VRscNauoTNERtyrW82yJOVoAAAAFJSsLYYB899sFm7VpbyxtbMLw9mpdXuxSIsBbzKoNKnvtKgW2L3bUUuFWqj55GpMlAAAAAMBFW6ti+uvCrWljQzqV68Qujd0JBCAnBNbNVnjOLfJFtjpqtulX7fGXqGbg5ZKf66QAAABAQ+jWrZtuu+029e7dO2182bJluuOOO/TEE09o4MCBCgQCLiXMTU+9n/4Zpn3jYg3v2tidMAC+WjKm0nenqWTRExk334i3P1GRMffIKmvjQjgAAAC4jYUweYCjbt21dGtEf/vSRZK+bcP6n+NbupQI8JaiVa8oPGuizHjEUYt1HqfImHtkl1S4kAwAAAAA8F+PzNugWPLzXzb7DOkXozpwEi5QoIza3QrNn6zgihcz1hPN+ygy9h6lmvXKcjIAAACgsJxwwgkZx3v16qU+ffpo8eLF2rBhg7p27ZrlZLlrY2Wd5q/emzb2rX6tZHKNA8gpvp1LVfb6NfLvWemo2f4SRU+8UXV9viMZnFYNAABQqFgIkwc46tY9iZSlO6evkfWFTQcCPkO3nNyFiyTA10nUKvTGZJUs/YejZJtFn120OPb7HF0LAAAAAC77cFO1Xl++J23svONaqkuzUpcSAXCNbat4xYsKzZ8ss26Ps+wPqmbQVao97mLJ5NcPAAAAyG1VVVVatWqVVq1apdWrV2v16tWqrq6WJI0cOVITJkw46OfauXOnXn31VS1atEi7d++W3+9Xq1atNGTIEI0fP17Fxdk/JdHn86X9Pz7z90Xb0s6VKCv26cw+zV3LA+BLrKRK3n9cpe/9SoaVdJQTrfqpetxUWY07uxAOAAAAuYTfROUBjrp1z5/e3apVu2rTxn48pK06NS1xKRHgDb7dK1Q2/YqMO3ekyjtp3/iHlWrRx4VkAAAAAIAvsmxbD8xenzbWKOjTT4a2dSkRALeY1VsUnnOLitbPyViPtxuiyOi7ZJV3zG4wAAAA4DBdcskl9fI8Cxcu1KOPPqra2s/nDsRisf2La2bOnKmJEyeqVatW9fL1DsauXbv00UcfqaKiQh06dMja1811++qSeunjnWljZx/bQqVFLBYCcoGvcrXCr1+rwI4ljpptFqnmhKtUe/yPJZPXLAAAAFgIkxc46tYda3fX6g9vb04b6968VBcNbO1SIsADbFvFnzyt8Pw7ZCTrHOW6nmcrOvJ22UVhF8IBAAAAAL7s30t3adn2aNrYT4a2U+MSNlwBCoZtKfjRX1X61v0yE1FH2SoqU3TYJMV6/Q8n+wIAAMCzmjVrprZt22rx4sWH9Li1a9dq2rRpisfjCgaDOvvss9WnTx/F43EtWLBAM2fO1NatW3X33XfrnnvuUUlJw2+qmUwm9eijjyqRSOi73/2uTNNs8K/pFc8t2aHahLX/ts+Qvnl8SxcTAZD02bWHxX9S6K37ZKRijnKyWS9Vj3tAqWY9XQgHAACAXFXwC2E46haHI2XZunP6GiVSnx+YaxrSLeM7y+/jIhKQiRGrVnjOTSpe+W9HzfaXKDLydsV6nedCMgAAAABAJjXxlH41f2PaWKcmQZ3ft4VLiQBkm2/PKoVnTVRg26KM9VjXUxQZcavsEO8LAAAA8J7zzz9fXbt2VdeuXdW4cWPt2LFDl1122SE9x5NPPql4PC6fz6ebb75ZPXr02F/r06ePWrdurb/+9a/aunWrXnrpJV1wwQWO5/jzn/+sRCJx0F/ztNNOU+vWmTfotCxLv/71r7Vs2TKNHTtWI0aMOKTvJ58lU5ae/mB72tiYHk3UqlH25/IA+Jy5b5PKZlyvwJZ3HDXbMFXb/1LVDLxc8hW5kA4AAAC5rOAXwnDULQ7H/324XUu2RNLGvjugtXq34hQLIBP/9iUqm36lfPs2OGrJZr1UPf4RpSq6uJAMAAAAAPBV/vjOFu2Opk/E+cWojmwCAhSCVFwli36r0vd+LcOKO8pWaXNFRt6ueNfxLoQDAAAA6kemRSmHYtWqVVq2bJkkafTo0WmLYP7rjDPO0OzZs7V582a9+uqrOvfcc+X3p0/Vef311xWLOU9A+CqDBw/OuBDGsiw9/vjjeuONNzR8+PB6mw+TL2aurNT26vTPN98dkHlBEYAssG0VL/s/heZPzngCbbJxF0XG3adkq+Oynw0AAACeUPALYb6Io25xMLZWxfTYl3ZDbde4WD8d2talREAOsy2VfPi/Kn3rPhlW0lGuPeZ7ip44UfKzyw4AAAAA5JLNe+v0t4Vb08aGdi7XiV0auxMIQNb4ty9WeOaN8u9ZkbFe1/sCRU+cKLu4UZaTAQAAALnl3Xff3f/n0aNHZ7yPaZoaOXKknnrqKUWjUS1dulR9+/ZNu89f/vKXI87y35Ng5s2bpxNPPFETJkxgnsgX2Latp750nePYNmH1ac1mp4AbjOgOlc2apKL1szPWa/v+QNHB10qBhp9jBwAAAO8q+IUwHHWLQ2Hbtqa8vla1CStt/OaTOysY8LmUCshNRu1ulc24XkXr5zhqVnEjRcbcw66hAAAAAJCjHp23UfGUvf+2z/jsNBgAeSxRo9DbDym45EkZtuUopxp1UGTMXUq0G+pCOAAAACD3LF++XJJUXFysLl26fOX9evfunfaYLy+EOVJfXAQzdOhQXX755SyC+ZIlWyJaui39xInv9G/lUhqgsBWtfFnhObfKjO111FJlbRQZO1WJdkOyHwwAAACeU/ALYTjqFofilU926a11VWlj5xzbQgM6lLuUCMhNgU1vKfza1fLV7HDUEq36qfrkabIacYoSAAAAAOSiRRv3acaKPWlj/3N8S3Vuyg6MQL4KbFyg8Oyb5Nu30VGzDVO1x/1INYOuZCdWAAAA4As2bdokSWrVqpV8vq/eOLNNmzaOx9SX/84RmTdvngYPHswimK/w1Pvb0m63blSkUd2buJQGKExGbaXC825V8cp/Z6zX9fofRYffJLuoLMvJAAAA4FUFvxDmSHHUbeHYHU3owdkb0saahwO6cmR7lxIBOchKqvS9R1Xy3mMyZKeVbBmq7X+pak64SjL58QMAAAAAuShl2Xpg9vq0sfKgX5cMaedSIgANyajbq9AbUxT89F8Z68lmvVQ95m6lWhyT5WQAAABAbovH46qurpYkNW3a9ID3DYfDKi4uViwW0+7du+s1xzPPPKO5c+cqGAyqTZs2+te/nP+2HzRokDp16nTQz3mwGQ+0+CeXbKmq0+yV6Rt+fLt/GxUH+J11IfjyvCnmUbnDv3a2QjOul1mz01GzSpupZuw9SnQZJ/7rfIa+hVfRu/Ai+hZeRe9+hk91R4ijbgvH/bPWqaoumTZ247jOChfzMgIkyazeorLXr1Zgy3uOmlXaXNUnPaBE+xNdSAYAAAAAOFgvL92p5Ttq0sZ+MrStyku4/gHkFdtW0epXFZ57m8xa5yQ321ekmoFXqPb4H0u+gAsBAQAAgNxWV1e3/8/BYPBr7x8MBhWLxdIeVx927ty5P8+zzz6b8T4tWrQ4pIUwP/vZzw7qfk8//fRBP6ebHlvwiawv7OEYKvLpByN7qFGQzzqFqLy83O0IhSVWLU2fJC36c+Z677Nlnv6gwqEDLygsdPQtvIrehRfRt/CqQu1dfoN9hDjqtjDMWbVHry9P3yHkpJ5NNLJbhUuJgNxStHaGwjNukBnb66jFOwxX9bj7ZZc2y34wAAAAAMBBi8ZT+vX89OtWnZsEdV7fFi4lAtAQzMg2hebequK1MzLWE20GKjJ6ilIVX73xEwAAAFDo4vH4/j/7/V8/9ea/9/ni4+rDhAkTNGHChHp9znxSXZfQP9/bmDZ2wcD2LIIBsmHtfOmFn0t7NzhrwcbS6Q9Ifc6TDCPr0QAAAJAfWAhzBPL1qNt8O+b2SFXHkrp3xvq0sfKgXzec1KVg/g68jiPAGlAyppIFdyv44ZOOkm36VTv0OsX6XSLT4O/8UNG38Cp6F15E38Kr6F0A9e2Pb2/W7ppE2tjVozvK7+P9BcgLtqXipf9U6M17ZMYjjrIVCKvmxBtUd/S3JK7lAAAAAAdUVFS0/8/JZPJr7//f+3zxcbnq8ccfdztCvXl64SZVxz7/72MY0sVDO7uYCCgAiVpp5h3S27/OXO92kvSNR6VGrbObCwAAAHmHhTBHIF+Pus23Y26P1NRnP9LOSPquLLd+42h1a9fSpUQ4UoV6BFi9271a+tcPpG1LnLXGHWSc978qbT9QpVkPlp/oW3gVvQsvom/hVfQugCOxeW+d/vb+trSxEzs31pDOjd0JBKBemZVrVTb7JgW2vJOxHus0VtFRt8sKMwkFAAAAOBhfnCNyMHNA/nufg5lb4rav2wj2vyorKxs4yZFJWbb+d/7qtLHR3ZuozIypsjLmUipkm2maadfOq6qqZFmWi4nym2/bYoVeu1q+ytWOmh0IqWbEzYof/S0pZUg5/h7iJvoWXkXvwovoW3iVl3q3oqKiwZ6bhTBHgKNu89+bq3fp7++mH9E5okdznXN8W5cSATli8T+lf18tZdg9VL3Pks58RCppnPVYAAAAAIDD8/DcDUqk7P23faahX4zu4GIiAPUilVDJh39Q6bsPy0g5r0tbJU0UGXGr4t1O/2xrZAAAAAAHpaioSGVlZaqurtbu3bsPeN9IJKJY7LOFFwe7yMQLUqmU2xEOaNaKPdpclb7g5dv9WuZ8bjQsy7LogYaQiqt04WMqWfi4DNv595toM0jV46bKatReytEJmrmMvoVX0bvwIvoWXlWovctCmCOQr0fd5tMxt0eiNp7SxGc/ShsrLfJpyjl9ZPBLYRSqWER65Tpp8VPOmj8onXK31P9iJk4AAAAAgIe8v3GfZq1M34HxguNbqlOTEpcSAagPvh0fq2z2JPl3Ls1Yr+t5jqLDbpJd0nA7cQEAAAD5rF27dlq2bJm2bdumVColn8+X8X5btmxJewyy46kvnXzbq2VIx7UtcykNkL98u5erbMZ1Ga8/2L4iRQdfq7rjLpYM04V0AAAAyGcshDkC+XrUbb4cc3ukps1ep/W7a9LGLhvRQSFxTK7XeOkIsFzm2/mJQq9eJl/lGkct1aSbIqf+Slazo6S9e7MfLg/Rt/AqehdeRN/Cq7zUuw151C2AI5OybD0we33aWHmJX5cM4TRcwLOSdSp992GVfPCHjLuwpsraKjJqshIdR7gQDgAAAMgfPXv21LJlyxSLxbRmzRp179494/0++eSTtMeg4X2yLaIPN1enjX13QCs2PQXqk5X67BTatx+SYTlPoU0076PISfcr1STzeyMAAABwpFgIcwQK/ajbfD5C6ZNtEf3lvS1pY8e2Ceu8Y5vn9fddKAr1CLDDZtsKfvRXhRZMkZFyXryo632BIsNvkQKlEn+vDYa+hVfRu/Ai+hZeRe8COBwvfbxTK3akbwRy6dB2ahTksiHgRYFNbys8e5J8VesdNVuG6vpepOgJV0tFIRfSAQAAAPll0KBBev755yVJs2fPzrgQxrIszZ07V5IUCoV09NFHZzNiwfryaTAtwgGN69HEpTRA/jGr1qtsxvUKbF3oqNmmXzUDLlNt/0slX8CFdAAAACgU/Eb7CHHUbf5JpizdOX2tLPvzsYDP0C3ju8hnsjsICotRV6XwrBtVvOY1R80KhBUZfafiPb7hQjIAAAAAwJGKxJL69Rsb08a6NC3ROX1buJQIwOEyYvsUWnCPgp/8M2M92aS7ImPuVrLV8VlOBgAAAOSvbt26qVevXlq2bJlmz56tUaNGqUePHmn3efnll7V582ZJ0qmnniq/P3+m6XzV/Bi37aiOacbyPWlj3+zfWsVFTMgvRKZpHvA2DpFtq+ijv6p0/hQZyVpHOdWku6InP6hUy2OUm+8Q3kDfwqvoXXgRfQuvonc/kz+fsF3CUbf550/vbdXKnek7of5ocFt1blriUiLAHf6t76vstavkq97iqCVaHKPq8Q/LKu/oQjIAAAAAQH3437e3aE9NMm3s6tEd5WcjEMBTita8ptCcW+Wr2eGo2WZANQMmqLb/TyVfkQvpAAAAgNz16aefatu2z08O2bdv3/4/b9u2TXPmzEm7/6hRoxzP8YMf/EC33HKL4vG4Jk+erHPOOUdHH3204vG43nzzTc2YMUOS1Lp1a5155pkN8n24paKiwu0IGf3unU+V/MLOpyUBn340sqcal/KZCFJ5ebnbEbyrarP04mXS6lkZioY09DL5Rt+sRoFg1qPlO/oWXkXvwovoW3hVofYuC2GOEEfd5pe1u2v1+7c2p411b16qiwa1dikR4ALbUsn7v1XpOw/JsFOOcu1xP1J0yLVMngAAAAAAD9u0t05/X7QtbWx4l8Ya3KkwL5ICXmREdyo873YVr341Yz3R8nhFxkxRqmmPjHUAAACg0M2cOXP/XI4vW758uZYvX542lmkhTOfOnXXVVVfp0UcfVW1trf7+97877tO6dWtNnDhRJSVsvpkNo3u20Ipt1Zr56WebBZzXvy2LYIAjYdvSkqelV6+T6qqc9YpO0tmPSx2HZj0aAAAAChsLYY5QIR91m6vH3B4uy7Y1+bW1SqQ+3xnENKRbT+2mIEfkehpHgB08I7pDoelXK7DxDUfNClYoevIDSnYewxG2WUDfwqvoXXgRfQuvoncBHImH525IuwbiNw1dNaqDi4kAHDTbVvGyfym0YIrMmHMCih0oVXTwNao75nuSyVUcAAAAoKENGDBA999/v1555RUtWrRIe/bskd/vV6tWrTR48GCdcsopKi4udjtmwRjUuYkGdW6i1Tsj+uOCtbr4xM5uRwK8K7pLevkqadlLmev9L5ZOniwVh7MaCwAAAJAkw7Zt++vvlr8yHXX717/+VZLUs2dPjR07Nu3+mXb4WLt27f6jboPB4AGPur3nnnvY5SNH/enNdbr1xaVpYz8Z0UWTTuvlUiIgy1bNkJ67VIrudNY6DZfO/Z3UqE32cwEAAABADtq1a5fbEQ7bwg1VuvTpT9PGvtu/lX4xuqNLidCQfD6fKioq9t+urKxUKuU8ARbeYFZtUHjOzSrauCBjPd5hhCKjJstq1DbLyeoXfQuvonfhRfQtvMpLvdusWTO3IwANorKy0u0IwNcyTVPl5Z+fgFxVVSXLslxM5B2B1a+pdOYkmbXO66BWqKWi4+5VstOo7AcrAPQtvIrehRfRt/AqL/XuF6/f1Lf8OJrkCHDULSRpU2WNpv4nfQJIx6al+sW4Hl/xCCCPpBLSrDulBQ87a4YpjZooDb+GHUQBAAAA5KQ9e/borbfe0gcffKDNmzdr7969CofD6tmzp8466yx1797d7Yg5JWXZemD2hrSxxiV+/XiItyfNA3nPSim4+EmF3nlIRrLWWQ5WKDr8ZsV6nCUZhgsBAQAAABSaXF18BhyIZVn07tcwYtUKzb9DwU+fzViv63GWoiNulR0sl/i7zAr6Fl5F78KL6Ft4VaH2bsEvhKkvHHXrXbZt66bnPlY0nv4GcPe5x6ikiIn/yHOV66RnfiRtXuislbWRzvu91OnErMcCAAAAgIP16quv6oUXXlDLli3Vt29fNWrUSFu3btV7772n9957T1deeaWGDh3qdsyc8cJHO7VyZ03a2KUntlNZkMuEQK7y7fpU4VkTFdixJGO9rvuZig6/WXYpO40DAAAAAIDDF9i4QOGZN8gX2eqoWcEKRUbdqXi3U11IBgAAADgV/G+4J0yYoAkTJtTLczVv3lwXXXSRLrroonp5vlyXL8fcvvzxDs1dsTNt7Ny+LdWriS9vvsdC56UjwLIpsPIVlc64QWa82lGLdx6nmpPuk11SIfE6cAV9C6+id+FF9C28yku925BH3QLdunXTbbfdpt69e6eNL1u2THfccYeeeOIJDRw4UIFAwKWEuSMSS+rxNzamjXVtVqKzj23hUiIAB5SKqfS9x1Sy6LcyrKSzHG6lyMg7leg8xoVwAAAAAAAgbyRqFHpzqko++kvGcqzzOEVG38UmHAAAAMgpBb8QBocvH45Q2hNN6P6Z69LGmoUCunx4u7z4/pBZoR4Btl+yTqE37lLJx085SrYZUPTEG1R37A8kw+AY2xxS8H0Lz6J34UX0LbyK3kWhOuGEEzKO9+rVS3369NHixYu1YcMGde3aNcvJcs8f3tqiytr0yfTXjO4ov2m4lAjAV/FvXajwrEnyV67OWK895kLVDLlWdlFZlpMBAAAAAIB84t+6SGUzrpWvar2jZhWFFR1+i2JHnffZHBIAAAAgh7AQBgXtvlnrVFWXPgHkxpM6qSzISwP5ybdnpcr+c4X8e1Y4aqnyjto3/mGlWhzjQjIAAAAAbqiqqtKqVau0atUqrV69WqtXr1Z19WenRo4cOfKQTtHduXOnXn31VS1atEi7d++W3+9Xq1atNGTIEI0fP17FxcUN9W18JZ/Pl/b/hWxjZZ3+vmhb2tiIro01qGP5VzwCgBuMeLVK37pfJR/9NWM92biLImPuVrLNgCwnAwAAAAAAeSUVU+k7j6jkg9/JsJ2nzcfbDVFk7FRZZW1cCAcAAAB8PWb7o2DNXVWp15fvSRs7qWcTjerWxKVEQAOybRUve0bhebfJSNY5ynU9zlJ01B2yi8LZzwYAAADANZdcckm9PM/ChQv16KOPqra2dv9YLBbbv7hm5syZmjhxolq1alUvX+9g7Nq1Sx999JEqKirUoUOHrH3dXDVt7gYlLXv/bb9p6KpRHV1MBODLAutmKzznZvki2xw12/Srtt9PVDPgMsmf/YWFAAAAAPBlbDwCLzBN84C3C5Vv5ycqfe1q+Xd96qjZ/qBqT7xRsb7fl2GY4pWeffQtvIrehRfRt/AqevczLIRBQYrEkrpnxtq0sUZBn64d08mdQEADMuLVCs2+RcGVLzlqtr9EkZG3cYwtAAAAADVr1kxt27bV4sWLD+lxa9eu1bRp0xSPxxUMBnX22WerT58+isfjWrBggWbOnKmtW7fq7rvv1j333KOSkpIG+g4+l0wm9eijjyqRSOi73/1uwV74+69311dp7qrKtLFv9WupDhVBlxIB+CKjdrdC8ycruOLFjPVEi2MUGXO3Us16ZTkZAAAAAHy1iooKtyMAh6y8vMBPR04lpQXTpDn3SFbCWW87QMY5v1Vps24qzXo4fJWC71t4Fr0LL6Jv4VWF2rsshEFBenjuRu2MpH+gu3p0RzUNBVxKBDQM//YlKnvtSvmqNjhqyaZHqfqUR5Sq6OpCMgAAAAC54Pzzz1fXrl3VtWtXNW7cWDt27NBll112SM/x5JNPKh6Py+fz6eabb1aPHj321/r06aPWrVvrr3/9q7Zu3aqXXnpJF1xwgeM5/vznPyuRyPCL169w2mmnqXXr1hlrlmXp17/+tZYtW6axY8dqxIgRh/T95JukZevB2evTxipK/PrxkLYuJQKwn22reMULCs2fLLOu0ln2B1Vzwi9U2/cHksmlfAAAAAAAcAR2rZKev1Ta9J6zZgak0ROloVdKPq5BAAAAwBv4lysKzsIN+/Tckh1pY4M7lev03s1cSgQ0ANtWcPEfFXpzqowMu3jUHnOhoidOlPzs/gsAAAAUskyLUg7FqlWrtGzZMknS6NGj0xbB/NcZZ5yh2bNna/PmzXr11Vd17rnnyu9PvyT1+uuvKxaLHfTXHTx4cMaFMJZl6fHHH9cbb7yh4cOH65JLLjnE7yj/PL9kh1btqk0b+9mw9goXc1kQcJO5b7PCc29R0fq5GevxdkMUGX2XrPKOWU4GAAAAAADyimVJ7z0hvX6rlKx11lv2kc75jdTqmOxnAwAAAI4Av/HGYfP5fG5HOGR1iZTuen1t2lhJwNQtp3R1TMJB/jBN84C3841Ru0elr12ronWzHDWruJFqxk1Votsp8t4ruLAUWt8if9C78CL6Fl5F7yIXvPvuu/v/PHr06Iz3MU1TI0eO1FNPPaVoNKqlS5eqb9++aff5y1/+csRZ/nsSzLx583TiiSdqwoQJBf+6qK5L6jcLNqWNdW9eqrOOae5SIgCyLQWX/EWht++XkahxlK3iRoqeOEmxXudLhuFCQAAAAAA4OJWVzpMtgVxjmqbKy8v3366qqpJlWS4myi5z3yaVvn69ApvedNRsw1Rd/0tVd8KVkr9Y4jWdMwq9b+Fd9C68iL6FV3mpdysqKhrsuZn5j8PWkI3ZUO5+dZk2VtaljV1/ylE6upNzF1nkry+++eedtfOlZy+Rqrc6a+0GyTzv9wpXsJOoF+V13yKv0bvwIvoWXkXvwg3Lly+XJBUXF6tLly5feb/evXunPebLC2GO1BcXwQwdOlSXX355wS+CkaTfv7VZe2uTaWPXjO4gn8nkesANvj0rFZ41UYFtH2Ssx7qeqsiIW2WHWKwGAAAAIPelUim3IwCHzLKswuhd21bxsn8pNP9OmYmIo5wq76Tqcfcp2brf/x8ogL8TDyuYvkXeoXfhRfQtvKpQe5eFMCgYSzbt1RPz1qSN9evQWN8f0smdQEB9SiWleVOluVMl2V8qGtKwX0ijJ0m+gBvpAAAAAOSpTZs+O22kVatWBzw5tk2bNo7H1BfLsvT4449r3rx5Gjx48BEvgtm9e/dB3S/XT8pdv6dW//xge9rY6O5NdELnJi4lgls4QSwHpOIKLnxcwfcek5GKO8pWqIVqRt2hRLdTxH+dz9C38Cp6F15E38Kr6F0AADIzojsVnnOzitfOyFivPeZ7ig69XgqUZjkZAAAAUL9YCIOCkEhZuv6ZJbK+sD6gyGfq3vOOZRdUeF/V5s9OgVm/wFkLtZDO/a3UdUz2cwEAAADIa/F4XNXV1ZKkpk2bHvC+4XBYxcXFisViB73Q5GA988wzmjt3roLBoNq0aaN//etfjvsMGjRInTp1Oqjn+9nPfnZQ93v66acPJWbWXffiKiW/cCEk4DN029nHqqIi5GIq5AJOEMuyTQulFy+XdnySud7v+zJPulPhksZZjeU19C28it6FF9G38Cp6FwAAqWjVqwrPuUVmXaWjlgq3VmTsvUq0P9GFZAAAAED9YyEMDltlpfNDU676w1ub9Om26rSxHw1pq2ZFSU99Hzg8pmmmXfyuqqqSZVkuJqo/gTUzVPr6tTLr9jpqiQ7DFT35Qdmh5hJ97jn53LfIb/QuvIi+hVd5qXcrKircjoAGUFdXt//PwWDwa+8fDAYVi8XSHlcfdu7cuT/Ps88+m/E+LVq0OOiFMPlg/sqdmrFsR9rYD0/srI5NWQQDZE08Ks2aLL39uJyn90qq6Cx94xGp84isRwMAAAAAAPnFqNur0LzbFVzxYsZ63VHnKTr8FtnFZVlOBgAAADQcFsLgsKVSKbcjHJR1u2v12wUb08a6NSvR9we28sz3gPplWZb3/9unYgq9eZ9KFv/RUbINn2oGX6PafpdIhil5/XuFpDzpWxQkehdeRN/Cq+hdZFs8Ht//Z7//6y8x/fc+X3xcfZgwYYImTJhQb8/3+OOP19tzucG2bU39z/K0sWbhIl02pptLiYACtGqm9PJV0t4Nzprhk4ZeJo2aKAVKsh4NAAAAAADkl8D6uQrPmihfdLujZpU0VWT0XYp3OcmFZAAAAEDDYiEM8ppl27rztTVKpD7fddE0pFvGd1HAZ7qYDDh85t61ajT9Svl3LnXUUmVtVX3yNCVb93MhGQAAAIBCUlRUtP/PyWTya+//3/t88XG5qGnTpgd1v1w+Yfau07tq2px1mrVijyTpZ8PaK1kbUWWty8HgCi+dIOZ1Rt1elcy7U8XL/pWxnmzeWzXjpirVoo8UqZNUvydk5RP6Fl5F78KL6Ft4lZd6l5NyAQANIh5VaMHdKln694zlWNdTFBl1h+ySg7veCQAAAHgNC2GQ1575cLsWb46kjX2nfysd3TrsUiLgyBQvf1GhOTfLTEQdtVjXUxQZc7fs4kYuJAMAAABQaILB4P4/19V9/WTu/97ni4/zslw+galNo4CmfqO7Fm6o0gsf7dQZvZvmdF5kFyeINQDbVtGqVxSed7vM2t3Osq9INYOuVO1xP5J8AU7vPQz0LbyK3oUX0bfwKnoXyD6fz+d2BOBrmaZ5wNte5d/8rkpfu0a+fRsdNau4kWpH3aF4z7NkGoYL6XCk8rVvkf/oXXgRfQuvonc/w0IY5K1t+2L61bz0D3xty4t16YntXEoEHIFEjcLzbldw2TOOku0rUnT4Lao7+tsSFzEAAAAAZElRUZHKyspUXV2t3budE7+/KBKJKBaLSTr4E1dw5AZ0KNeADuVff0cAh82MbFNo7q0qXjsjYz3RZpCqR0+RVdE5y8kAAAAAoGFx2hG86IuniXlSok6adaf01mOSbGe961iZ33hUofK2CmU9HBqK5/sWBYvehRfRt/CqQu1dFsIgL9m2rSmvr1VNIv3465vHd1YwwK4k8Bbfrk9VNv0K+StXO2rJiq6qHv+IUs2OciEZAAAAgELXrl07LVu2TNu2bVMqlfrKnUC3bNmS9hgA8DzbUnDpP1T65r0y4xFH2SoKq2boDao7+luSUZi7cAEAAAAAgHq05QPpuUulnZ86a4GQdPKd0oAfsoEqAAAACgYLYZCXXl22W2+urUobO/uY5hrILqjwEttW8OOnFHpjsoxU3FGu6/U/ioz4pRQodSEcAAAAAEg9e/bUsmXLFIvFtGbNGnXv3j3j/T755JO0xwCAl5mVa1U2e5ICW97NWI91HqfoyNtlhVtlORkAAAAAAMg7qYQ0/wFp3n2SlXTWOwyRzv611KRL9rMBAAAALmIhDA7bV+3y6ra6RErT5mxIG2sWDujqMZ1zNjMalmmaB7ydi4y6KpXOvFFFq1511OxASNExU5Q46izR0fnLi30LSPQuvIm+hVfRu8gFgwYN0vPPPy9Jmj17dsaFMJZlae7cuZKkUCiko48+OpsRGwzXGOAV/LyoR6mEihc9oZJ3pmXctMQqaaaaUbcp0f10GYbBdZsjQN/Cq+hdeBF9C6+idwH3VVZWuh0B+Fqmaaq8/PNNc6uqqmRZlouJDo25e6VCr10t/46PHDXbV6TaIdcqdvyPJMMn8ZrMG17vWxQuehdeRN/Cq7zUuxUVFQ323CyEwWFryMY8Uv978SDd8MwSLd9eLUm665xj1aF1c5dTIVd88c0/J218V3rmR1LVBmetdV8Z5/9R4aZds58Lrsr5vgW+Ar0LL6Jv4VX0LtzQrVs39erVS8uWLdPs2bM1atQo9ejRI+0+L7/8sjZv3ixJOvXUU+X358flqFy+LgIcCD8vDtOWD6UXL5O2OSeeSJL6fkfm+LsULm2S1ViFgr6FV9G78CL6Fl5F7wLZl0ql3I4AHDLLsrzRu1ZKJYv/qNK3H8i4GUey+dGqHne/Uk17SLYkL3xPOGye6VvgS+hdeBF9C68q1N7Nj5kHwJcc176xXrp8mH4zd7XW7Ixo/NGt3I4EfD3LkhZMk2ZNluwMP5AGT5DG3Sr5i7MeDQAAAEB++vTTT7Vt27b9t/ft27f/z9u2bdOcOXPS7j9q1CjHc/zgBz/QLbfcong8rsmTJ+ucc87R0UcfrXg8rjfffFMzZsyQJLVu3Vpnnnlmg3wfANBg4jXSnLultx7LfL2mcQfpjGlSt7FZjwYAAAAAAPKPWbVBZTNvUGDLu46abfhUO+DnqhkwQfIFXEgHAAAA5A7Dtm3b7RBAQ7JtW4ZhuB0DOLDq7dJzP5HWzHHWSppIZz8u9Twl67EAAAAA5LfHHntMc+fOPej7P/300xnHFy5cqEcffVS1tbUZ661bt9bEiRPVqhUbVQDwkLXzpBevkCrXZiga0uCfSaNvkorDWY8GAAAAAG7btWuX2xGAr+Xz+dJOdq6srMzdnbJtW8VL/6HwgikyEjWOcrKiqyLj7ley5bEuhEM2eapvgS+gd+FF9C28yku926xZswZ7bk6EwWGrrKx0OwJwUEzTTDsOvaqqSpZluZgonX/9PIWmXy2z1nmhMNH2BEVPeVh2uJXEa66g5HrfAl+F3oUX0bfwKi/17hcvwCA/DRgwQPfff79eeeUVLVq0SHv27JHf71erVq00ePBgnXLKKSouzq/TLbkuAq/w0s+LXGHEqlQy/24VL/1HxnqqaU9Fx92jVKvjpZqEVMP7QX2jb+FV9C68iL6FV3mpd7kuAgD4OmZku8KzJ6povXPTIluG6vperOiQayR/0IV0AAAAQG5iIQwOW66uHAO+jmVZudG/qYRK35mm0kW/cZRsw1TNwMtVO2CCZPqkXMgLV+VM3wKHiN6FF9G38Cp6F4djwoQJmjBhQr08V/PmzXXRRRfpoosuqpfny3W83uBV/Lw4sKLV0xWae5t8NTscNdsMqGbABNX2/6nkK+J6TRbRt/AqehdeRN/Cq+hdAIAn2baKVr6k8NzbZMaqHOVUWTtVj5uqZNsTXAgHAAAA5DYWwgCAC8x9m1Q2/SoFtn/gqKVCLVV98kNcyAAAAAAAAMgSI7pT4Xm3qXj1fzLWE62OV2TM3Uo16Z7dYAAAAAAAIC8ZtXsUnnurile9krFe1/ubig6bJLsonOVkAAAAgDewEAYAsqxo1X8Unj1RZmyfoxbvOFrV46bKLmniQjIAAAAAAIACY9sqXvaMQgumZLxWYwdKFR18reqOufCzU3sBAAAAAACOUNHamQrPniSzZpejliptociYKUp0Gu1CMgAAAMA7WAgDANmSrFPojSkq+fhvjpJtBhQdeoPq+v5AMozsZwMAAAAAACgwZtUGhWffpKJNb2asxzuOVGTUZFllbbKcDAAAAAAA5CMjXq3Q/MkKLnsmYz3W/QxFRtwmu6Qiy8kAAAAA72EhDABkgW/PKpVNv1L+3Z86aqnyDqo++WElWx7rQjIAAAAAwOHw+TgZAt5gmuYBbxckK6niD/+okrcekJGsc5aDFaod+UvFe54twzDEqz376Ft4Fb0LL6Jv4VX0LuA+ro3AC3Lp54V/45sqff06+ao3O2pWsLFqRk9WoscZ4icacqlvgUNB78KL6Ft4Fb37GRbCAEBDsm0VL/uXwvNuk5GsdZTrup+p6Og7ZReVZT8bAAAAAOCwVVSwKyO8qby83O0I7tr2sfTiZdKWDzLX+5wv89R7FQo1Uyi7yXAABd+38Cx6F15E38Kr6F0g+7g2Ai9y5edFvEaaebv0zm8y17uPl/mNRxQua5XdXPAM/p0Dr6J34UX0LbyqUHuXhTAA0ECMeEShObcouOJFR832BxUZcZtivc6XDMOFdAAAAAAAAAUkUSfNu09aME2yks56o3bSGQ9KPcZnPRoAAAAAAMhTmxZKz/1U2r3KWSsKS6fcIx1/IfNGAAAAgMPAQhgAaAC+HR+p0fQr5ata76glm/ZU9fhHlGrSzYVkAAAAAAAABWb9W9KLl0u7V2auD7xEGnerVMyJvQAAAAAAoB4k49Lce6U3HpRsy1nvNFw66zGpomP2swEAAAB5goUwAFCfbFvBxU8q9Oa9MqyEo1zb57uKDpsk+YMuhAMAAAAA1JfKykq3IwAHxTTNtOPQq6qqZFkZJmDko1i1St6cquCSv2Qspyq6KjruXqXaDJBqklINr+tcUdB9C0+jd+FF9C28yku9W1FR4XYEoEFwbQRe4MbPC3PXpwq9drX8Oz9x1GxfsWpPvEGx434gyZR4HSEDL/07B/giehdeRN/Cq7zUuw15XYSFMDhsPp/P7QjAQTFN84C364tRu0elr1+norUzHTWrqEw146Yq0f1U8crBwchW3wL1jd6FF9G38Cp6F3BXKpVyOwJwWCzLKoj+DaybrfCcm+WLbHPUbNOv2n4/Vc2ACZK/WCqAvw+vK5S+Rf6hd+FF9C28it4Fso/XHLyoQX9eWCmVfPCESt+ZlnHj1ETLvoqMu0+piq6SZUviNYSDw79z4FX0LryIvoVXFWrvshAGh42da+BVX1wFWW/WvSH96xKpeouz1m6gzPP+oDBH2uIINEjfAllA78KL6Ft4Fb0LAIBk1O5WaN6dCq58KWM90eJYRcbcrVSzo7KcDAAAAAAA5Ctz71qVzbhOgW0fOGq26VfNwMtV2/9SyWSqHgAAAFBf+Nc1ABwJKyXNu0+ae69kZzhWbNgvpNE3Sb5A9rMBAAAAAAAUCttW8fLnFXrjLpl1lc6yP6joCVerru8PJJPzegEAAAAAQD2wLQU/+ptCb94rI1nrKCeb9FD1Sfcr1fxoF8IBAAAA+Y2FMABwuPZt+ewUmPVvOGuh5tI5v5W6jc1+LgAAAAAAgAJi7tus8JybVbRhXsZ6vN1QRUbfJau8Q5aTAQAAAACAfGVWb1F41o0q2rjAUbMNU7XHX6KaE66UfMUupAMAAADyHwthcNgqK507KwK5yDRNlZeX779dVVUly8pwessh8K+dpdBr12TcYTTRfpii4x+UHWoh8TrBYWqIvgWygd6FF9G38Cov9W5FRYXbEQAA+chKKfjRXxR6+wEZiRpnubiRoifepFiv8yTDcCEgAAAAAADIO7at4uXPKTTvDpnxakc5Vd5B1ePuU7L1ABfCAQAAAIWDhTA4bKlUyu0IwGGxLOvw+zcVV+jN+1Sy+H8dJdvwqWbw1art9xPJMCVeI6hHR9S3gIvoXXgRfQuvoneB7PL5fG5HAA6KaZoHvO1V5u6VCs24Xv5tH2Ssx7udpppRt8kOtRCvVu/J175F/qN34UX0LbyK3gUAuMGo2aXwnJtVvOb1jPXaYy5UdMj1UlEoy8kAAACAwsNCGAA4SObedSqbfqUCOz921FJlbVR98jQlW/d3IRkAAAAAINs46Qhe9cXTxDwpGZfeeFCad79kJZz1cCvp9AdU1OsMFWU/HRqI5/sWBYvehRfRt/AqehcA0NCKVk9XeM7NMmv3OGqpUCtFxt6jRIfhLiQDAAAAChMLYQDgIBSteFHh2bfITEQctViXkxUZc4/sIBfYAQAAAAAAGsymhdILl0k7l2Wu97tIOukOqaRxVmMBAAAAAID8ZcT2KTTvdgWXP5+xXtfzbEVH3Cq7uFF2gwEAAAAFjoUwAHAgiRqF592h4LL/c5RsX5Giw25SXZ/vSobhQjgAAAAAAIACEItIsyZL7/xGku2sN+kinfmI1JldVwEAAAAAQP0JbJiv8Mwb5Ytuc9SskiaKjJqseNfxLiQDAAAAwEIYAPgKvl3LVTb9CvkrVzlqycZdVH3KI0o16+VCMgAAAACA2yorK92OABwU0zRVXv75KbZVVVWyLMvFRIfGv36eSmdOlK96s6NmGz7F+v1YtYN/IfmDEq/LvOH1vkXhonfhRfQtvMpLvVtRUeF2BADAoUrUKLTgHpV8/LeM5ViXkxQZNVl2abMsBwMAAADwXyyEAYAvs20Fl/5dofmTZaRijnLdUecpMvI2KVCa/WwAAAAAgJyQSqXcjgAcFsuyPNG/Rm2lQm/cpeDy5zLWk816q3rM3Uq16PPZgAe+Jxw+r/Qt8GX0LryIvoVX0bsAgPri37pQZTOuk69qg6NmFZUpOuJWxXqeLRlG9sMBAAAA2I+FMADwBUZsn8KzJql49auOmhUIKTrqjs8uaAAAAAAAAKD+2baKVv1b4Xl3yKzd7Sz7ilUz6ErVHvdDyRdwISAAAAAAQJJ8Pp/bEYCvZZrmAW+nScZU8vaDKn7/dzJkO8qJ9sMUPWmq7LI2ovvRkA6pb4EcQu/Ci+hbeBW9+xkWwgDA/+ff9oHKpl8pX/VmRy3Z/GjtG/+wrMadXUgGAAAAAACQ/8zIVoXm3KridTMz1hNtTlD1mLu4PgMAAAAAOaCiosLtCMAhKy8vz1zYulh67lJpxyfOWqBUOukOBQb8SI0LdIIh3PWVfQvkOHoXXkTfwqsKtXdZCAMAtqWSRU+o9J0HZVhJR7m278WKDr1O8hW7EA4AAAAAACDP2ZaCS/+h0gX3ykxEHGWrKKzo0BsVO/qbksGEEwAAAAAAUE9SSemNh6S590gZ5ouo/QnS2Y9LTbtmPxsAAACAA2IhDICCZtTsUtnr16po43xHzSpurMi4qYp3HutCMgAAAAAAgPxnVq5V2exJCmx5N2M91nmcoiNvlxVuleVkAAAAAAAgr+1cIT33U2nLImfNVySNniQNvUIyfdnPBgAAAOBrsRAGQMEKbFygstevllmzy1FLtBmo6pMfkhVu7UIyAAAAAACAPJdKqOSD36v0vUdkpOKOslXSVJGRtyne9VTJMFwICAAAAAA4kMrKSrcjAF/LNE2Vl5fvv11VVSUrlVTxh39UyYKpMlIxx2OSzXopOv4hWc2Okqr2ZTMuIOkr+tayXEwEHBx6F15E38KrvNS7FRUVDfbcLITBYfP52PEA3mCaZvptO6Xg2w8ouPBxGbLTarYM1Z1wheoGXS7D9Isuh1scfful20CuonfhRfQtvIreBQB4lW/HRyqbNVH+Xcsy1uuOOk/RYZNkBxtnNxgAAAAA4KClUim3IwCHbu96hV67VkWb33GUbMNUbf9LVTPw8s9OhKHHkSMsy+I9F55E78KL6Ft4VaH2LgthcNgacoUW0GD2blD5cz+WNjovaqistYxzn1BJ5+EqyX4y4IC+uHoX8BJ6F15E38Kr6F0gu9ggBF6RUwsnE7UqeWeaihc9IcN27kqVatRONWPuVrLjcLG8s7DlVN8Ch4DehRfRt/AqehcAcEhsW/rgL2r0n4ky4hFHOdm4iyLj7lOy1XHZzwYAAADgsLAQBkDh+ORF6cXLpLoqZ637ydLZj0uhZtnPBQAAAADwHDYIgVe5tnBy7TzpxSukyrXOmmFKJ/xMvjE3qawolP1syHks+IVX0bvwIvoWXkXvAgC+UvW2z65JrJwuI0O5tu8PFB18rRRgy1QAAADAS1gIAyD/Jeqk126S3vu9s2YGpHG3SYN/LrFTFAAAAAAAQP2q3Su9fou06M+Z6y16S9/4ldSuf1ZjAQAAAACA/BdY8bI05xapttJRS5W1UWTsVCXaDXEhGQAAAIAjxUIYHLbKSueHRCDXmHtWKfzq5fLtWuaopco7KHrKo0q16itVZTglBnCRaZppu5dVVVXJsiwXEwEHh96FF9G38Cov9S4nZwBAgfrkRemVa6XIdmfNVySNuE468SrJX5T1aAAAAAAAIH8ZtZUKz7tNxStfzliv6/U/ig6/SXZRWXaDAQAAAKg3LITBYUulUm5HAL6abav4038pPPc2GclaRznW/QxFRk/+7KIGvQwPsCyL9114Er0LL6Jv4VX0LpBdbBACr3Bj4aQR3aHSObeqaNWrGevJ1v0VHXuPrKbdpeqopGiD5oH3eGnBL/BF9C68iL6FV3mpd9kgBACyK7ButspmTZRZs9NRs0qbKTJ6iuKdx7qQDAAAAEB9YiEMgLxjxCMKzb1VweXPO4v+EkVH3qbao86TDCPr2QAAAAAA+YGFZ/CqBl04adsqXvZ/Ci24W2Zsn/NrB0KqGXKt6o65UDJMNifBQWPBL7yK3oUX0bfwKnoXAGDEIwq9cZeCnzyd+Q69z9a+Yb9Usqg8cx0AAACAp7AQBkBe8e34WI2mXyFf1XpnsUVv6fw/Kh5oyUQLAAAAAACAemRWrVd49k0q2vRWxnq840hFRk2WVdYmy8kAAAAAAEC+829+R2UzrpevepOzGGwsnf6A1Oc82Xv3Ml8EAAAAyBMshAGQH2xbwSV/UmjBvTKsuLM+4IfS+ClSoESqrMx+PgAAAAAAgHxkJVXy4R9V+u40Gck6ZzlYoejwWxTr8Q1O5wUAAAAAAPUrWafQWw8ouPiPMmQ7yomOoxQ47zdSo9YuhAMAAADQkFgIA8DzjNpKhWfeoOJ1Mx01q6hMNePuUXjQhS4kAwAAAAAAyF++XcsUnjVRgR0fZazX9ThL0eE3yS5pmuVkAAAAAAAg3/m3L1F4xrXyV6521KxASNFhk5Q85juqaNTEhXQAAAAAGhoLYQB4mn/zuyp77RfyRbc5aomWx6l6/DQZFZ2yHwwAAAAAACBfJWMqfe9RlXzwhAwr6Sinwq0VGXWnEp1GuxAOAAAAAADktVRCpQt/pZKFj8uwU45yos0gVY+bKqtRe/k4nRYAAADIWyyEAeBNVkolC3+t0vcekWFbjnJNv5+q5oRfSL6AfC7EAwAAAAAAyEf+Le8pPGuS/HvXOGq2DNUdc6FqhlwruyjsQjoAAAAAAJDPfLuXq2zGdfLvXOqo2b4iRQdfq7rjLpYM04V0AAAAALKJhTAAPMeMbFf49V+oaPM7jppV0kTV4x5QouMIF5IBAAAAAADkJyNerdI371PJx3/LWE9WdFVkzBQlWw/IcjIAAAAAAJD3rJRKPvyDSt9+SIYVd5QTzfsoctL9SjXp7kI4AAAAAG5gIQwATwmsm62yGdfLrNvjqMXbDVX1SQ/IDrVwIRkAAAAAAEB+CqydpfDcW+SLbHPUbNOv2v6XqmbAzyVfsQvpAAAAAABAPjOr1qtsxvUKbF3oqNmmXzUDLlNt/0slX8CFdAAAAADcwkIYAN6Qiqv0rftV+uEfHCXb8KnmhKtU2++nkulzIRwAAAAAAED+MWp2KTz/ThWvfDljPdHiWEXG3KNUs55ZTgYAAAAAcJvPx+/m0cBsW0Uf/U2lb0yRkahxlFNNuit68oNKtTxGX9WNpmke8DaQi+hbeBW9Cy+ib+FV9O5nWAgDIOeZVetVNv1KBXZ85Kilwq1VPX6akq0HuJAMAAAAAAAgD9m2ipc/r9D8yTJje51lf1DRwdeo7tiL2JQEAAAAAApURUWF2xGQz/ZtkV64TFo9M0PRkIZeJt/om9UoEDykpy0vL6+ffEAW0bfwKnoXXkTfwqsKtXdZCAMgpxWtfFnhWTfJTEQctViXkxQZc4/sYOPsBwMAAAAAFDR2PYVXHOqOUOa+TSqdNUmB9fMy1hPth6lm7BRZ5R2+crdV4Eixkxm8it6FF9G38Cp6FwDylG1LS56WXr1Oqqty1is6SWc/LnUcmvVoAAAAAHILC2EA5KZErcLz71Dwk6cdJdssUnTYJNUdc6FkGC6EAwAAAAAUOnY9hVd95Y5QVkp69wlp5h1SIuqsBxtL46cocNx3VM71GGRZoe5kBu+jd+FF9C28it4FgDwQ3SW9fJW07KXM9f4XSydPlorDWY0FAAAAIDexEAZAzvHtXq6y6VfKv2elo5Zs3FnV4x9RqnlvF5IBAAAAAADkoR3LpBcvlza9l7ne+2zp1KlSWcusxgIAAAAA5K7Kykq3IyCPBFa/ptKZk2TW7nLUrFBLRcfdq2SnUVJNQqo5+N4zTTNtsWRVVZUsy6qPyECDoW/hVfQuvIi+hVd5qXcbcoNJFsIAyB22reKl/1B4/p0yUjFHue6ocxUZcZtUFMp+NgAAAAAAgHyTjEtvPCjNu1+yEs56WWvp9Aeko07PfjYAAAAAQE5LpVJuR0AeMGLVCs2/Q8FPn81Yr+txlqIjbpUdLJfqoecsy6J34Tn0LbyK3oUX0bfwqkLtXRbC4LD5fD63IyCPGLEqlc6cpKKV/3bU7ECpakZPVrzXuTqcrjNN84C3gVxE38Kr6F14EX0Lr6J3AXex6ym84qt2hPJtXaTQzBvl270i4+Nifb6t2mE3yi4ul+h3ZJmXdjIDvojehRfRt/AqL/VuQ+58CgBeFti4QOGZN8gX2eqoWcEKRUbdqXi3U11IBgAAAMALWAiDw8YFO9SbTQulZy6W9m5w1lodK+P8PyrUrJvq6xyYL14UB7yCvoVX0bvwIvoWXkXvAtlViDvqID9YddUKLpiq4JI/y5DtqKfKO6p6zN1Ktj3h/w/Q63Bfoe5kBu+jd+FF9C28it4FAA9J1Cr05r0q+egvGcuxzuMUGX2X7NJmWQ4GAAAAwEtYCAPAPZYlvfWoNPMOyUo66ydcKp10h+Qvzn42AAAAAACAfLNqhhq9cIV81ZsdJdvwqfb4H6tm0BWSP+hCOAAAAAAAkO/8WxepbMZ18lWtc9SsorCiw29R7KjzJMPIfjgAAAAAnsJCGADuiOyUnvuptHqms1ZSIZ31a+mo07KfCwAAAAAAIN/U7JH+M1Fa8g/5MpSTzY9W9egpSrXok/VoAAAAAACgAKRiKn3nEZV88DsZtuUox9sNUWTsVFllbVwIBwAAAMCLWAiDw1ZZWel2BHiUf8MChaZfJbNmp6OWaDNQ0VMell3WRqqnHjNNU+Xl5ftvV1VVybKcF1aAXELfwqvoXXgRfQuv8lLvVlRUuB0BAAqTbSuw/EVp3h1SzS5n2VesmkFXqvb4H0kml4oBAAAAAED98+1aprLXr5V/96eOmu0PKjr0BtUdc6FkmC6kAwAAAOBV/HYThy2VSrkdAV5jJVX67sMqWfi4DNlpJVuGagdOUM3Ayz+beNGA/WVZFv0Lz6Fv4VX0LryIvoVX0bsAgC8yI1sVnvNLFa2blbGeaHOCqsfcJatx5ywnAwAAAAAABcFKqmTR71T67iMyrISjnGh5vKrH3SergmsTAAAAAA4dC2EAZIVZvUVlr12lwNb3HbVUaQtFTn5QiXZDXEgGAAAAAACQR2xLwY//rtI3p8pMRJzlojJFht6g2NHfZKdVAAAAAADQIMzKtSqbcZ0C2z9w1Gwz8NkJtf0u4YRaAAAAAIeNTxMAGlzRmtcUnnmjzFiVoxbvOFLVY6fKLm3mQjIAAAAAAID84atco/DsSQpseS/zHXqerqphtyhZ0jy7wQAAAAAAQGGwLQWX/EWht6bKSNY5ysmmR6n6pPuVatbLhXAAAAAA8gkLYQA0nGRMoQV3q+SjvzhKtulXzZDrVHvcD9l9FAAAAAAA4EikEir54AmVvveojFTcWQ81l067X+p9luy9e6VUKusRAQAAAABAfjOrtyg883oVbXrLUbMNU7X9fqqaQZdLvmIX0gEAAADINyyEAdAgfJVrVDb9Svl3feKopRq1V/X4h5Vs2deFZAAAAAAAAPnDv32JwrMnyb9rWcZ6rNf5Kj7zPqm0SZaTAQAAAACAgmDbKv70XwrNv1NmPOIop8o7qXrcfUq27udCOAAAAAD5ioUwAOpd8afPKjz3VhmJGkct1u00RUZPkV1c5kIyAAAAAACAPJGoVem701Ty4f/KsC1HOdWovSKj75LVaYSKSytcCAgAAAAAAPKdEd2p8JybVbx2RsZ67THfU3To9VKgNMvJAAAA/l97dx4mV1nmjf+u6r3TSaezQEJAloQ1LAZCBNmSIIpsosOLy7jhDAqDo76jjqIyqKDA4IaOg9tPUREQFZGwuAAhQAATCPsWEvYsLEmn03unu+r3B2/aFN1JOqHTp0/V53NdXlPnec45dXfynaRyU895gGJnIQwweLpao27ef0X1k9f2mcqXV0fLEf8VnfucGpHJDH1tAAAAAEWi4sW7om7ul6Os6fk+c/lMNjoOOC1a3/KZiIraKBv68gAAAIASULnkpqi77ZzIdjT2meupmxgtR18U63Y6LIHKAACAUmAhDDAoyl55NEb9+VNR1vRsn7nuMbtH8zu+Hz1j9xj6wgAAAACKRKajKUbcdWFUP3Z1v/PdY/eMltkXRPf2BwxxZQAAAECpyHQ0xYjbvxrVi6/rd75jr3+K1iPOiXzVyKEtDAAAKCkWwgBvTD4f1Q/9KkbMvzAyua4+0+1T3xeth38loqImgeIAAABg2ygrs88GQ6tiyZ+jdu45kW17pc9cvqwyOmb8e3Qc9ImIssqCXWCy2WzBua8/huFIbkkr2SWN5Ja0kl2AZFQ8Ny/qbj07ylpf6jOXqxkbLbO+EV27HZNAZQAAQKmxEAbYapn2xqi79YtR9czNfeZylXXRMuub0bX78QlUBgAAANtWQ0ND0iVQKppXRtz4uYjH5/Q/v9MhkTnp+1Ezfs8YyGNI6uvrB7U8GApyS1rJLmkkt6SV7AJsY12tMWL+BVHz6JX9TndOPjZaZn498jVjh7gwAACgVFkIA2yV8uULY+RfPxNlLSv7zK3b/oBofsclkRu1UwKVAQAAABSBfD5i0a8i/npORGdT3/nKuoi3fTVi+r9EePo1AAAAsI2UL18YI2/+fJStfaHPXK5qVLQe+dXo3OOkiEwmgeoAAIBSZSEMsGVyPVFz36VRu+CSyORzfabbpp0ebYf8R0RZZQLFAQAAABSBVUsj5nw64tk7+p/f/e0Rx38nYrSHkDoybS0AAF+HSURBVAAAAADbSHdn1P79O1Fz//8Xmcj3me560xHRMvuCyNVNTKA4AACg1FkIAwxYtuWlqPvbf0Tlsnv6zOVqxkTz274V63Y+KoHKAAAAYGg1NjYmXQLFKNcdVff/PGru+U5kujv6TteMibYjz411e54Ukc9EDCCH2Ww26uvre4+bmpoil+v7cBMYTuSWtJJd0khuSas0ZbehoSHpEgC2WNnLD8fImz8f5auf6jOXr6iN1sPOjo6p77cLDAAAkBgLYYABqXjuthh58+cj2766z1zXjodGy9u+Hbm67ROoDAAAAIZeT09P0iVQZMpeeSzqbj07Kl55pN/5jj3eFa1HfCXyNWMi3sAX/HK5nPySOnJLWskuaSS3pJXswtArKytLugS2hZ51Ub3wh1G98H8ik+vuM71uh4Oj7ZhvRW70zpGGBGSz2U0ew3Akt6SV7JJGcktaye5rLIQBNq2nK2rv+XbU3v+zPlP5TDba3vKZaD/wjIhsGlocAAAAAMNMd2fULvxB1Cz6SWTyfb+411M3MVpmnR/rdp459LUBAADARtjtqAi9/ETEtWdELL+/71xZZcTsc6Li0LOiPsXfD9lwNzFIC7klrWSXNJJb0qpUs2shDLBR2abnY+RfPxMVLz3YZ66nbkI0v/2S6N5hegKVAQAAAKRf+fKFUXfr2VG+5pk+c/nIRMd+H4y2Qz8X+cq6BKoDAAAASkIuF3HP/0bc8vWIns6+8xMPiHj3jyO223voawMAANgIC2GAflU+dUPUzf1SZLta+sx17vq2aDn6oshXjx76wgAAAABSLtPVHLV3/XfUPHJFv/PdDVOiZfY3o3viQUNcGQAAAFBSVj8T8aezIp6b33cuUxZx5Ocijvx8RFnF0NcGAACwCRbCAIXWtUfdHedF9WO/7TOVz1ZG62FfjI79PxyRySRQHAAAAEC6VT5zS4y47b+irHVln7l8tjzaDzoj2qb/W0RZVQLVAQAAwMA0NjYmXQJvRD4flY9cGbV3nB+ZdW19pnsaJkfr278TPRMOiFjb9wGqaZHNZqO+vr73uKmpKXK5XIIVwebJLWklu6SR3JJWacpuQ0PDNru3hTBAr7JVi2PkXz4V5auf6jPXPXrXaH7HJdEzfmoClQEAAACkW6bt1ai74+tR9dQN/c6v2/6AaJl1QfSM23OIKwMAAIAt19PTk3QJbKVsy0tRN/fsqHxuXp+5fGSi44DTovXQz0aUV0cU2e9zLpeTXVJHbkkr2SWN5Ja0KtXsWggDROTzUfXYb6PujvMi093RZ7pjz3dHy1Ffi6gckUBxAAAAACmWz0fVk3+MEXd8I7Kda/pOl9dE6yGffW0H3mzZ0NcHAAAAlIZ8PiqfmhN1874a2c6mPtM9I3eM5rf9d3RPeksCxQEAAGwZC2HYamVl/sN8UehcGyNu/VJULr6+z1S+ojbaZp0XXXv/U6T5dzubzW7yGIYjuSWtZJc0klvSSnYBhr/s2hej7ravROXzd/Q737XT4dEy6/zIjdppiCsDAAAASkmmfXXUzTs3qpbc2O98xz7vjdbDvxT5yrohrgwAAGDrWAjDVmtoaEi6BN6oF++L+P1pEWue6zs3Yb/InHJZjBg3JYptH5j6+vqkS4AtJrekleySRnJLWskuwDCS64nqh38VI+75TmTWtfWdrqqP1sO/HJ17vScik0mgQAAAAKBUVDxza4yce3Zk217tM9dTu120zP5mrNtlVgKVAQAAbD0LYaAU5XIRd/9PxC1fi8h1952f8YmIY74eUVE99LUBAAAApFjZqsVRd+vZUfHSA/3Od045LlqOPDfyteOGtjAAAACgpGS6mmPEHd+I6sd/1+985+4nRMuRX418jQfhAgAA6WMhDJSallcirj0jYsnNfeeqR0ec/L8Rex0/5GUBAAAApFpPZ9Te+6Ooue/SyOTW9Z0esX20HvW16NrtmASKAwAAAEpJxYt3R90t/xllzcv7zOWqRkfLzK9H1+6+GwIAAKSXhTBstcbGxqRLYAuVv3BXjPjLZyLb+nKfue6J06Pl2EsiP2pSRJH93maz2aivr+89bmpqilwul2BFsHlyS1rJLmkkt6RVmrLb0OCJgkBxK1+xKOrmfinKVz/V73z71PdH21u/EPmqkUNcGQAAAFBS1rXHiLsvjpqHftnvdNfOs6J59jcjP2K7IS4MAABgcFkIw1br6elJugQGKtcdtQu+HzX3/m9kIl8wlY9MtE//t2ib8amIbHlECfy+5nI5+SV15Ja0kl3SSG5JK9kFSEBXa4y459tR/dCv+vRcIiJ66neJ5tnfjO5Jb0mgOAAAAKCUlK98IOpu/nyUr3m6z1yuYkS0HnFOdO59SkQmk0B1AAAAg8tCGChy2eblMfKv/zcqVtzbZy5XOz6aj/l2rNvpsAQqAwAAAEiviuduj7rbvhJlzcv6zOUzZdE+7fRom/HvEeXVCVQHAAAAlIyerqhd+IOoue9Hkcn33TW8a9JbouXo/47cqB0TKA4AAGDbsBAGiljl03+Lulu+ENnOpj5zXW86Iprf9q3I145LoDIAAACAdMq0r44Rd34jqp+8tt/57vFTo3n2BdEzfurQFgYAAACUnLJXn4yRN38uyl99rM9cvqwqWt/6+ejY/yMRmWwC1QEAAGw7FsJAMerpjBHzL4yah37VZyqfLY+2Qz4b7dP+VaMDAAAAYKDy+ah8ak7U3XFeZNtX950uq4q2t3w62t/8LxFZbVcAAABgG8r1RM39P4vav38vMrmuPtPrtj8gWt52cfQ0TE6gOAAAgG3Pf5GFIpNtfCZG/fXTUf7Ko33mekbuGM3vuCS6J7x56AsDAAAASKls8/Kom3duVD57a7/zXZPeEi2zvhG50bsOcWUAAABAqcmueTZG3vz5qFi5qM9cPlsebQf/e7QfdIYHdQAAAEXNv3igiFQ98ceom/dfkVnX1meuc8px0TLrG5GvGpVAZQAAAAAplM9F9SNXRO1dF0d2XUuf6VzlyGg97IvRuc+pdt4FAAAAtq18Lqof/k2MuOuiyHS395nuHrNHNB/zregZPzWB4gAAAIaWhTBQDLpao+72r0b1E9f0mcqXVUXLkf8Vnfu8NyKTGfraAAAAoAiVlZUlXQLbWHb1kqi95eyoWL6w3/muyW+PtpnnRb5u+xjOachms5s8huFIbkkr2SWN5Ja0kl2g1GSbl0fdrV+Myhfm95nLZ7LRPu30aHvLpyPKqhKoDgAAYOhZCAMpV/bKYzHyL5+K8jXP9JnrHrN7NL/jkugZu2cClQEAAEDxamhoSLoEtpWedRHzvxcx778jerr6zo/YLuK4i6Nyn3dFZQofOlJfX590CbDF5Ja0kl3SSG5JK9kFilY+H1VP/jFG3P71yHY195nuqX9TNL/t4uieOD2B4gAAAJJjIQykVT4f1Q9fHiPmfzMy/Xwpo2Of90bLEedEVNQkUBwAAABACi1bFHHdv0e89Ej/89M+GHHMeRG1Y4a2LgAAAKDkZNpejbrbvhJVT/+t3/n2/T4YrYf+Z0TliCGuDAAAIHkWwkAKZTrWRN2tX+y32ZGrrIuWWd+Irt1PSKAyAAAAgBTqaouY+42Ie/43Ip/rO9+wS8SJl0TsNnOoKwMAAABKUOXSv0TdbV+JbPvqPnM9IyZEy9EXxro3HZFAZQAAAMODhTCQMuUr7o2Rf/lMlLWs6DO3brv9o/kdl0Su/k0JVAYAAAClo7GxMekSGCTlz8+P2lvPjrKm5/vM5TPZ6Hzzx6L90P+IqKiNSOHvezabjfr6+t7jpqamyOX6WewDw4jcklaySxrJLWmVpuw2NDQkXQKQIpnOtTHi9q9F9ZPX9jvfsefJ0XrkuZGvGjW0hQEAAAwzFsJAWuR6ombRj6L275dEJt/TZ7pt2r9G2yGfjSirTKA4AAAAKC09PX3/bU66ZDqaYsT8C6L68d/1O989ds9omX1hdG+//2sDRfJ7nsvl5JfUkVvSSnZJI7klrWQXKAYVz98Zdbd+IcpaVvaZy9WMiZaZ50fX5HckUBkAAMDwYyEMpECm9eUY+bfPRuWLd/WZy1WPiea3/Xes22VWApUBAAAApE/lkj9H3e1fjWzbK33m8tnKaJvxyWifdroHjgAAAADb3rq2GDH/wqh55Df9Tnfudky0zDw/8rXjhrgwAACA4ctCGBjmKp6bFyNv/lxk21f3meuadEi0HPOdyNVtn0BlAAAAAOmSbXkpRtz+1ah6+q/9zq+beFC0zL4gehomD21hAAAAQEnKdDZH/TXvjfJVT/aZy1WOjNYjz43OPU+OyGSGvjgAAIBhzEIYGK561kXt378TtYt+0mcqn8lG24xPRftB/xaRLUugOAAAAIAUyeej6rGrY8T8CyLb1dxnOlcxItre+p/Rse8HIjLZBAoEAAAASlHtwh/0uwima6fDo2X2BZEbuUMCVQEAAAx/FsLAMJRd+0KM/MtnouKlB/rM9dRNiOa3fy+6dzh46AsDAAAASJnsmmejbu6Xo3LZPf3Od+08M1pmnueLJQAAAMCQyrQ3RvWjVxaM5ctrovWwL0bHvv9sFxgAAIBNsBAGhpnKJTdG3a1nR7arpc9c565vi5bZF0a+piGBygAAAABSJNcdNQ/8PGr//r3I9HT2na4eEy1HnhNdu5/oiyUAAADAkKt++NeRWdfWe5zPlMWaU/4QPeP2TLAqAACAdLAQBoaL7o4Yccf5UfO6p31EROSzldF62BeiY/+P+GIGAAAAwGaUvfJYjLz1i1H+yqP9znfseXK0Hv7lyNeMGeLKAAAAACKiqzVqHvxlwVDn7idYBAMAADBAFsLAMJBpezXq//ThKF/1ZJ+5nvpdYu07Lome7fZNoDIAAACAFOnujNqFP4iaRT+JTL6nz3TPyB2iZeZ5sW7nmUNfGwAAAMD/U/3YbyPbuaZgrP2gTyRTDAAAQApZCAPDQN3cL/e7CKZjz5Oj9aivRb6yLoGqAAAAANKjfNmCqJv7pShf80yfuXxkomP/D0XbIZ/VZwEAAACS1dMZNff/fwVDnbscHT1j7QYDAAAwUBbCQMLKXn4kqp65uWAsX14TLUd9LTr3/qeEqgIAAABIh0xnc9TedVHUPHplv/PdDVOiZfYF0T3xwCGuDAAAAKCvqieujbLWlQVj7QedkVA1AAAA6WQhDCSsduEPCo5zVaOj6ZTfRU/DbglVBAAAAJAOlc/cHCNuO7fPl0ciIvLZimg/6Ixom35mRFlVAtUBAAAAvE6uJ2oX/aRgaN0Ob/EADwAAgC1kIQwkqOzlh/vsBtN+4OkWwQAAAABsQqbt1ai7/WtRteTGfufXbX9AtMy+IHrG7jnElQEAAABsXOXSP0dZ07MFY212gwEAANhiFsJAgmoXvG43mOqGaN/vQwlVAwAAADDM5fNR9cQ1MeLOb0a2c03f6fKaaD3ks9Gx/4cjsmVDXx8AAACUiLIy/+7eYvl81C76UcFQ9/ipkdt1ZpRlMsnUVOSy2ewmj2E4klvSSnZJI7klrWT3NRbCQELKX3ooqp69pWCsfdrpEZUjEqoIAAAAYPjKrn0x6uZ+JSpfuKPf+a6dDo+WWedHbtROQ1wZAAAAlJ6GhoakS0ifp26OeOWxgqHymZ+PhjFjEiqo9NTX1yddAmwxuSWtZJc0klvSqlSzayEMJKR24et3gxkT7ft9MKFqAAAAAIapXE9UP/SrGHHPtyPT3d53uqo+Wg//cnTu9Z4IT08FAAAAhqs7v1N4PHZKxN4nJVMLAABAylkIAwkof+mhqHz21oKx9gP/1W4wAAAAABsoW/Vk1N36pah46YF+5zt3Pz5ajvivyNeOG9rCAAAAALbE83+PeG5+4dhhn4nIliVSDgAAQNpZCAMJqF3w/YLjXPWYaN/XbjAAAAAAERHR0xm1914aNff9KDK5dX2nR0yI1plfi65d35ZAcQAAAEBjY2PSJaTKiLkXReUGx7m6idH0prdH+HXcprLZbNTX1/ceNzU1RS6XS7Ai2Dy5Ja1klzSSW9IqTdltaGjYZve2EAaGWPlLD0Xlc3MLxuwGAwAAAPCa8hWLou7Ws6O8cUm/8+37fiDaDv3PyFeNHOLKAAAAgPV6enqSLiE1yl59MiqfuaVgrO3N/xI9URbh13FI5XI52SV15Ja0kl3SSG5Jq1LNroUwMMT63Q1mvw8lVA0AAADAMNHVGiPu+VZUP/TryES+z3RP/S7RPPub0T3pLQkUBwAAALB1ahb9qOA4V90QHVPfm1A1AAAAxcFCGLZaWVlZ0iWkTtnKB/rsBtMx/RNRVu0JpttSNpvd5DEMR3JLWskuaSS3pJXsAsWk4vk7om7ul6KseXmfuXymLNoP/Hi0HfzJiPLqBKoDAAAA2DrZpuej6qnrC8ba9/9IREVtQhUBAAAUBwth2GoNDQ1Jl5A+N/5v4XHtuKg98t+jtnJEMvWUqPr6+qRLgC0mt6SV7JJGcktayS6QVhXPzo1RN3w8Mvlcn7nu8VOjefaF0TN+nwQqAwAAAHhjahb9pKDnkasYER37fyjBigAAAIqDhTAwVF68L+KpvxaOHfbpCItgAAAAgFK1rj3q5v1Xn0Uw+bKqaHvLZ6L9zR+LyGphAgAAAOmTaX05qh//Q8FYx9T3Rb56dDIFAQAAFBH/FRmGym0XFB7Xjos4+F+SqQUAAABgGKi5/6dR1ry8YKxr0iHRMusbkRu9SzJFAQAAAAyCmgd+HplcV+9xPlsZHW/2PREAAIDBYCEMW62xsTHpElKjbOX9MWrJ3wrG2g78eHS2dkW0dm3kKgZLNpuN+vr63uOmpqbI5XKbuAKSJ7ekleySRnJLWqUpuw0NDUmXAAxD2bXLova+HxWMdU16S6w9+fKITCahqgAAAADeuExHU1Q/ckXBWOde745c3fYJVQQAAFBcLIRhq/X09CRdQmqMuOd7Bce5mrHRNvX9EX4NE5HL5eSX1JFb0kp2SSO5Ja1kF0ibEfMviExPZ+9xPpON1iPOtQgGAAAASL3qh38d2XWtvcf5TDbaDvx4ghUBAAAUl2zSBUCxK195f1Q+N69grP3Aj0dU1CZUEQAAAECyKl68O6qW3lQw1rHvP0fPuD0TqggAAABgkKxrj5oHf1kw1DXlnZEbvUsy9QAAABQhO8LANla74PsFx7masdG+7z8nVA0AAAAwGMrKypIuIb1y3VF3x3mFQ9Wjo/Otn/Xrug1ks9lNHsNwJLekleySRnJLWskuMJxVP/bbyHasLhhrO/CMhKoBAAAoThbCwDZUvvL+qHz+9oKxtgM/EVFRk1BFAAAAwGBoaGhIuoT0+vtPIlY9WTCUPfq/YvTEXRMqqLTU19cnXQJsMbklrWSXNJJb0kp2gWGjpytq7v9ZwVDXzjOjZ/w+CRUEAABQnDwWBbah2gWXFBznasdFx74fSKgaAAAAgIS1roqYe37h2Pb7RRz00UTKAQAAABhMVYuvi7KWFQVjbQedmVA1AAAAxctCGNhGylcsisrn7ygYsxsMAAAAUNJuPS+io6lw7Lj/jsiWJVMPAAAAwGDJ56Jm0U8KhtZNnB7dO0xPqCAAAIDiVZ50AVCsahd+v+A4VzsuOqa+P6FqAAAAgMHU2NiYdAmpU/byIzHyvssis8FY1x4nReuovSP8em4z2Ww26uvre4+bmpoil8slWBFsntySVrJLGsktaZWm7DY0NCRdAjBEKp/+W5Q3Li0YazvojISqAQAAKG4WwsA2YDcYAAAAKG49PT1Jl5Au+XzU3XZuZCL/j6Hymmh5639Gzq/lkMrlcvJL6sgtaSW7pJHcklayCyQun4+a+y4tGOoet3es23lmMvUAAAAUuWzSBUAxql3w+t1gxkfHvh9IqBoAAACAZFU+NScqVtxXMNY2/czI1U1MqCIAAACAwVPxwvyoePnhgrG2Az8Rkcls5AoAAADeCAthYJCVr7gvKl/oZzeY8uqEKgIAAABIUFdrjJh/UcFQz6idov3N/5pQQQAAAACD6/W7wfTUvym6prwzoWoAAACKn4UwMMj63w3m/QlVAwAAAJCs2vsujbLWlQVjrYd/OaK8KqGKAAAAAAZP+coHonLZPQVjbdM+HpEtT6giAACA4mchDAyi8hX3RuULdxaMtR1kNxgAAACgNGWbnoua+/+/grGunY6Irl3fllBFAAAAAIOrz24wtdtF597vSagaAACA0mAhDAyifneDmWo3GAAAAKA0jbjzm5HJdfUe57Pl0XrEVyIymQSrAgAAABgcZasWR9UzNxeMdbz5YxFldsIFAADYliyEgUFSvvzeqHxhfsGY3WAAAACAUlXx3O19vwiy34ejZ8yUhCoCAAAAGFw1i35ccJyrqo+OfT0wFQAAYFuzEAYGSe3Cwt1gemq3sxsMAAAAUJp6umLEHecVDOVqxkbbjE8lVBAAAADA4MqufTGqFs8pGOvY/8ORr6xLqCIAAIDSYSEMDIL+doNptxsMAAAAUKKqH/p1lK95umCs9dDPR75qZEIVAQAAAAyumvt/Fpl8T+9xvrwm2vf/SIIVAQAAlA4LYWAQ1C64pODYbjAAAABAqcq0vhK1Cwp3zl233X7Rufc/JVQRAAAAwODKtL0a1Y9dXTDWMfV9ka9pSKgiAACA0mIhDLxB5csXRuWLdxWMtR90RkR5VUIVAQAAACRnxD3fiuy6loKx1iPPjchoRQIAAADFoebByyLT09l7nM9WRPu0f0mwIgAAgNLivz7DG9RnN5gR20fH1PclVA0AAABAcspfejCqH/99wVjHXu+J7gnTEqoIAAAAYHBlOpuj+uFfF4x17nly5OomJlQRAABA6bEQBt6A8mULovLFuwvG7AYDAAAAlKR8Lkbc/rWCoVzFiGg99PMJFQQAAAAw+KofvjyyXf/YDTcfmWg/8OMJVgQAAFB6LISBN6B24fcLjntGbB8d+7w3oWoAAAAAklP1xB+j4qUHC8baD/5k5Edsl1BFAAAAAIOsuyNqHvxFwVDX5GOjp2G3hAoCAAAoTRbCwFayGwwAAADAazJdzTHi7v8uGOsevWu0H/DRZAoCAAAA2AaqH/tdZNtXFYy1HXRGQtUAAACULgthYCvVLrik4LhnxAS7wQAAAAAlqWbh/0S27dWCsdYjvhJRVplQRQAAAACDrGdd1Nz/04Khrp2OiJ7t9k2oIAAAgNJlIQxshfJlf4/KZfcUjNkNBgAAAChFZY1Lo+bBywrGunaZHet2nplIPQAAAADbQtVT10dZ87KCsXa7wQAAACTCQhjYCv3vBnNqQtUAAAAAJCSfjxF3nBeZXPc/hrKV0XL4lxMsCgAAAGCQ5XNRs+jHBUPrtp8W6ya9JaGCAAAASpuFMLCFKl68JyqX/b1grH36mXaDAQAAAEpO5bO3RuXzdxSMtb/5tMiN3iWZggAAAAC2gcpnbony1U8VjLVPPyMik0moIgAAgNJmIQxsoZqF3y84fm03mP+TUDUAAAAACenpjBF3nl84VLtdtE//t4QKAgAAANgG8vmoue9HBUPdY/aIrl1mJ1QQAAAAFsLAFtjobjBldoMBAAAASkvNA7+IsqbnC8baDvtC5CvrEqoIAAAAYPBVLLsnKl56oGCs/aAzIjK+dgUAAJAU/yKDLVC74HW7wdTZDQYAAAAoPdmWlVF77w8LxtZNmBade7wroYoAAAAAto3X7wbTM2qn6Nz9+ISqAQAAIMJCGBiwihfviYrlr9sN5qB/sxsMAAAAUHJq7/rvyKxr6z3ORyZajjw3IpNJsCoAAACAwVX+0kNR+cKdBWPt006PyJYnVBEAAAARFsLAwOTzUbvgkoKhnrqJ0bHPKQkVBAAAAJCM8hX3RvXiPxWMde5zavRst19CFQEAAABsG6/fDSZXOy469vZdEQAAgKRZCAMDULHsnqhYvqBgrH263WAAAACAEpPribrbv144VDkyWg/9bEIFAQAAAGwbZY1Lo/LpvxaMtR/wsYhy3xUBAABImoUwsDkb2w1m739KqCAAAACAZFQ9/rsof+XRgrG2t3w68jVjE6oIAAAAYNuoue/HkYl873GucmR07PeBBCsCAABgPQthYDMqlt0dFcsXFozZDQYAAAAoNZmOphhx97cLxrrH7B4d+34woYoAAAAAto1s8/KoWvyngrGO/T4Y+cqRCVUEAADAhiyEgU3J56N2wfcLhl7bDeaUhAoCAAAASEbtgksi27G6YKz1iHMiyioSqggAAABg26i5/2eRyXX3HufLqqL9gI8mVxAAAAAFypMuAIazihfv2shuMJUJVQQAAAAw9MpWPRnVD19eMNa52zti3U6HJVQRAAAAlLaurq648sor4+mnn46VK1dGS0tL1NbWxoQJE2L27NlxxBFHRHm5rwVtjUz7qqh+7LcFYx37nBr52nEJVQQAAMDr2REGNqa/3WBG7mA3GAAAAKC05PMx4o7zIpPv+cdQWWW0Hn52gkUBAABAaevo6Ii//vWvERExbdq0OP7442PGjBmxevXquPTSS+Oiiy6KXC6XcJXpVPPgLyPT3dF7nM+WR/u00xOsCAAAgNfz6AfYiIoX74qKFfcWjLUdZDcYAAAAoLRULv1LVL54d8FY+4Efj9yonRKqCAAAAKirq4tf/vKXfXZ96enpifPPPz8efPDBeOCBB+LAAw9MqMJ0ynQ1R/XDvy4Y69zjpMiNmpRQRQAAAPTHjjDQn3w+ahdcUjDUM3JSdO79TwkVBAAAAJCA7o4YMf+bBUM9dROj7cAzEioIAAAAiIjIZrN9FsFERJSVlcXBBx8cERErV64c6rJSr/qRKyPbubb3OB+ZaD/wEwlWBAAAQH/sCAP9eG03mPsKxtqm2w0GAAAAKC01i34aZc3LCsZaDzs7oqImoYoAAADgjWtqaoolS5bEkiVLYunSpbF06dJobm6OiIijjjoqzjrrrAHf65VXXombbropFi1aFKtWrYry8vKYMGFCHHroofGOd7wjqqqqttWP0a9cLhcPPvhgRETstJPdXLdId2fUPPDzgqGu3Y6JnjFTEioIAACAjbEQBl5vY7vB7PWehAoCAAAAGHrZtcui9r5LC8bW7fCW6JpyXEIVAQAAwOA4/fTTB+U+9957b/zgBz+I9vb23rHOzs7exTW33HJLnH322TFhwoRBeb/+dHd3xzXXXBMREc3NzfHII4/EsmXLYubMmbHffvtts/ctRtVP/CGyba8UjLUfdGZC1QAAALApFsLA61S8MN9uMAAAAEDJG3HXhZHp6ew9zmey0XLkf0VkMglWBQAAAINr3LhxMWnSpN5dVAbqmWeeie9973vR1dUV1dXVcfLJJ8e+++4bXV1dMX/+/LjllltixYoVccEFF8SFF14YNTXbZnfV7u7u+P3vf997nMlk4sQTT4wPfOAD2+T9ilauO2oW/bRgqGvHt0b39vsnVBAAAACbYiEMbKjf3WB2tBsMAAAAUFIqXrw7qpbcWDDWse8HomfcXglVBAAAAIPnlFNOicmTJ8fkyZNj9OjR8fLLL8cnP/nJLbrHZZddFl1dXVFWVhZf+cpXYo899uid23fffWPixIlx+eWXx4oVK2LOnDlx6qmn9rnHr371q1i3bt2A3/O4446LiRMnFoxVV1fH1VdfHblcLhobG+O+++6LK6+8MhYvXhxnn3121NbWbtHPVaqqnroxytY+XzDWftAZCVUDAADA5lgIAxuoeGF+VKxcVDBmNxgAAACgpOS6Y8TtXy8cqhodbTM+k0w9AAAAMMj6W5SyJZYsWRKPP/54RETMmjWrYBHMeieccELMnTs3li1bFjfddFO85z3vifLywq/p/O1vf4vOzs4+127MIYcc0mchzHrZbDbGjh0bb3/722PkyJHx3e9+N6655pr44Ac/uAU/WYnK56Nm0Y8KhtZtt3+s2/GtCRUEAADA5lgIA+vl81G74HsFQ3aDAQAAAEpN9SNXRPnqxQVjbYf8R+RrGhKqCAAAAIaXBQsW9L6eNWtWv+dks9k46qij4oorrojW1tZ49NFH44ADDig459e//vU2qW/9+zz22GPb5P7FpuLZuVG+6smCsfaDzojIZBKqCAAAgM2xECblurq64sorr4ynn346Vq5cGS0tLVFbWxsTJkyI2bNnxxFHHNHniSL0r+KFO6Ni5f0FY20HnxVRVpFQRQAAAMCm6IsMvkz76qj9+/cKxrrH7R0dU9+XTEEAAAAwDD355GuLJqqqqmK33Xbb6Hn77LNPwTWvXwizraxevToiIsrKyobk/VItn4/a+y4tGOpumBJdux2TUEEAAAAMRDbpAnhjOjo64q9//WtEREybNi2OP/74mDFjRqxevTouvfTSuOiiiyKXyyVcZQrk81G74JKCoZ5RO0Xnnu9OqCAAAABgc/RFBl/t378b2c6mgrGWI/4rIuuLMwAAALDeiy++GBEREyZM2ORikx122KHPNYNZQ2dnZ5/xzs7O+NWvfhURr/VL2LTy5QujYuWigrH2Az8ekfGVKgAAgOHMIzFTrq6uLn75y1/2ebppT09PnH/++fHggw/GAw88EAceeGBCFaZDxfN39N0NZrrdYAAAAGA40xcZXGWvPBrVj1xZMNa5+wnRPWlGQhUBAADA8NPV1RXNzc0RETF27NhNnltXVxdVVVXR2dkZq1atGtQ67rrrrrjhhhtir732ivHjx0dNTU2sXr06HnjggWhubo699947TjjhhC2+70DrLJbdZkYs+lHBcc/ISdG997uL5ucrddlsdpPHMBzJLWklu6SR3JJWsvsaC2FSLpvN9hvesrKyOPjgg+PRRx+NlStXJlBZiuTzUbvg+wVDr+0Gc3Iy9QAAAAADoi8yiPL5qLv965GJ/D+Gyquj9a1fSLAoAAAAGH46Ojp6X1dXV2/2/Orq6ujs7Cy4bjAcdNBB0djYGIsXL47FixdHR0dH1NbWxpve9KY47LDDYtasWVu1mOPMM88c0HlXX331Ft972FnxYMRz8wqGyg7/TDSM2y6hgtjW6uvrky4BtpjcklaySxrJLWlVqtkt6YUwTU1NsWTJkliyZEksXbo0li5d2vvUjqOOOirOOuusAd/rlVdeiZtuuikWLVoUq1ativLy8pgwYUIceuih8Y53vCOqqqq21Y/Rr1wuFw8++GBEROy0005D+t5pU/H8HVHxkt1gAAAAKC36Imyo8qk5UbHi3oKxtoPOjNzIHRKqCAAAAIanrq6u3tev36W2P+vP2fC6wTB58uSYPHnyoN6z5Nz53cLj2nER0z6YTC0AAABskZJeCHP66acPyn3uvffe+MEPfhDt7e29Y52dnb1fIrnlllvi7LPPjgkTJgzK+/Wnu7s7rrnmmoiIaG5ujkceeSSWLVsWM2fOjP3222+bvW/q5fNRu+CSgqGeUW+yGwwAAABFT1+EXuvaYsT8iwqGekbtFO3TBicjAAAAUEwqKyt7X3d3d2/2/PXnbHjdcHbppZcmXcLQWLU04rE/FY4dcmZEZW0y9QAAALBFSnohzIbGjRsXkyZN6n1a6EA988wz8b3vfS+6urqiuro6Tj755Nh3332jq6sr5s+fH7fcckusWLEiLrjggrjwwgujpqZmm9Tf3d0dv//973uPM5lMnHjiifGBD3xgm7xfsah4/vaoeOmBgjG7wQAAAFBq9EVKW+19l0ZZ68qCsdbDvxRRPrQ7+QAAAEAaVFdX977u6OjY7Pnrz9nwuuFs7NixAzqvsbFxG1eybdXe+t9Rlc/1Hucr66Jpj1Min/Kfi0LZbDbq6+t7j5uamiKXy23iCkie3JJWsksayS1plabsNjQ0bLN7l/RCmFNOOaV3q9jRo0fHyy+/HJ/85Ce36B6XXXZZdHV1RVlZWXzlK1+JPfbYo3du3333jYkTJ8bll18eK1asiDlz5sSpp57a5x6/+tWvYt26dQN+z+OOOy4mTpxYMFZdXR1XX3115HK5aGxsjPvuuy+uvPLKWLx4cZx99tlRW+uJFX1sdDeYdyVUEAAAAAwdfREiIrJNz0XNop8VjHXtdHh07XpMQhUBAADA8FZZWRkjR46M5ubmWLVq1SbPbWlpic7OzogY+AKTtOjp6Um6hK2WbVkZlY//oWCsfd9/ju7yuogU/1xsXi6XS3V2KU1yS1rJLmkkt6RVqWa3pBfC9Pfliy2xZMmSePzxxyMiYtasWQVf9ljvhBNOiLlz58ayZcvipptuive85z1RXl74y/63v/2tt/ExEIccckifL3ysl81mY+zYsfH2t789Ro4cGd/97nfjmmuuiQ9+8INb8JOVhorn50XFS4VPum072G4wAAAAlAZ9ESIiRtz5zcjkunqP89nyaD3inIhMJsGqAAAAYHjbcccd4/HHH4+VK1dGT09PlJWV9Xve8uXLC65heKi5//+LTO4fD2bJl1VG+wGnJVgRAAAAW6qkF8K8UQsWLOh9PWvWrH7PyWazcdRRR8UVV1wRra2t8eijj8YBBxxQcM6vf/3rbVLf+vd57LHHtsn9Uy2fj9oF3y8Y6ql/U3TueXIy9QAAAEDK6IukX8Vzt0fVMzcXjHXs96HoGTMloYoAAAAgHfbcc894/PHHo7OzM55++unYfffd+z1vw77EnnvuOVTlsQmZ9saofuyqgrGOvf9P5EeMT6giAAAAtkY26QLS7Mknn4yIiKqqqthtt902et4+++zT55qhsHr16oiIjT55pJRVPHdb391gpp8VkbU2DAAAAAZCXyTlerpixB3nFQzlasZE24xPJVQQAAAApMeMGTN6X8+dO7ffc3K5XMybNy8iIkaMGBFTp04dktrYtJqHfhWZdW29x/lMWbQfeHqCFQEAALA1fOv/DXjxxRcjImLChAmb/FLFDjvs0Oeawaxh/PjxUVVVVTDe2dkZv/rVryIiYtq0aVt0z1WrVg3ovNR+kSSfjxELf1Aw1FO/c3Tv809Rlk3pz8QmZbPZTR7DcCS3pJXskkZyS1rJLkkr1r5Iqah+6NdRvubpgrHWQz8f+apRCVUEAAAA6TFlypTYe++94/HHH4+5c+fGzJkzY4899ig45/rrr49ly5ZFRMQ73/nOKC8vrq/opPI7I12tUf3QLwuH9jgxMg27RAp/GgZAH500klvSSnZJI7klrWT3NcX1r+wh1NXVFc3NzRERMXbs2E2eW1dXF1VVVdHZ2TngRSYDddddd8UNN9wQe+21V4wfPz5qampi9erV8cADD0Rzc3PsvffeccIJJ2zRPc8888wBnXf11VdvTcnJW/zXiNftBlM264vRMNY2t6Wivr4+6RJgi8ktaSW7pJHcklayy1Aq5r5I0T8gJCIyra/0eUhI93b7R/e+742yTGk2SYuZRjhpJLekleySRnJLWskub9QTTzwRK1eu7D1eu3Zt7+uVK1fGbbfdVnD+zJkz+9zjox/9aJxzzjnR1dUV559/frz73e+OqVOnRldXV9x1111x8803R0TExIkT48QTT9wmP0eSGhoaki5hy931m4jOpoKhqtlfiKo0/ixsFX100khuSSvZJY3klrQq1exaCLOVOjo6el9XV1dv9vzq6uro7OwsuG4wHHTQQdHY2BiLFy+OxYsXR0dHR9TW1sab3vSmOOyww2LWrFmp/mLGoMvnI277ZuHYmN0i9js1mXoAAAAghYq5L1L0DwiJiLj9KxFdzQVD5Sd+OxrGbHpRE8WhVBvhpJvcklaySxrJLWklu2ypW265JebNm9fv3JNPPhlPPvlkwVh/C2F23XXX+MxnPhM/+MEPor29Pa688so+50ycODHOPvvsqKmpGZS6eQO6OyPu/p/CsT3eGbH9PsnUAwAAwBtiIcxW6urq6n09kO1r15+z4XWDYfLkyTF58uRBveell146qPcbVp76a8Ty+wvHjvzPiDL/rwAAAAADVcx9kaL34n0R919eOHbA+yN2mpFMPQAAAJBi06dPj29961tx4403xqJFi2L16tVRXl4eEyZMiEMOOSSOPfbYqKqqSrpMIiIevCqieUXh2BH/kUwtAAAAvGG+/b+VKisre193d3dv9vz152x43XA1duzAnv7Z2Ni4jSsZZPl8jLz5/ILQ94zeNdbu9LaItP0sbJFsNlvwFKimpqbI5XIJVgSbJ7ekleySRnJLWqUpuw0NDUmXwCAr5r5IUT8gJJeLuOk/C8cq6yLe9tVEygEAAICknHXWWXHWWWcNyr3Gjx8fH/nIR+IjH/nIoNwvLVL1nZFcT4y647ux4b7B63Y8JFrqdvd9kSKXpj46rCe3pJXskkZyS1qlKbvb8vsiFsJsperq6t7XHR0dmz1//TkbXpd2PT09SZewRSqeuTXKX36oYKxt+lnRk89EpOxn4Y3J5XKpyy/ILWklu6SR3JJWsstQKua+SNE+ICQiKh/7fYxYdm/BWNvBn4zO7ipf+ihiaWqEw3pyS1rJLmkkt6RVmrLrASEUqzT1IiufuiHK1jxTMNZ24Bmp+hkYHPropJHcklaySxrJLWlVqtm1EGYrVVZWxsiRI6O5uTlWrVq1yXNbWlqis7MzIgb+ZQoGWT4ftQsuKRjqqd8lOvc4MaGCAAAAIL30RdL1ZY+IiExXc9TMv7BgrKd+l2jb/8MeEFJiSrURTrrJLWklu6SR3JJWsgtsVD4ftff9qGCoe/zUWLfT4QkVBAAAwGDIJl1Amu24444REbFy5cpNNtWWL1/e5xqGVsWzc6PilUcKxtoO/mRE1lowAAAA2Br6IulSs/CHkW17tWCs5YivRJRVJVQRAAAAwLZX8fztUf7qYwVjbQedGZHJJFQRAAAAg8FCmDdgzz33jIiIzs7OePrppzd63mOP/eMf1OuvYQj1sxtM9+hd7QYDAAAAb4C+SHqUNT4dNQ9eVjDWtfOsWLfLrGQKAgAAABgitfddWnDcPXrX6Nrt7QlVAwAAwGCxHcYbMGPGjLj22msjImLu3Lmx++679zknl8vFvHnzIiJixIgRMXXq1KEskYiofPbWPrvBtNsNBgAAAN6QUu+LlJWVJV3CwOTzUXfn+ZHJrfvHULYi2o/6r/T8DLwh2Wx2k8cwHMktaSW7pJHcklayCwxE+Yp7o2L5woKx9gM/EZHVEwEAAEg7KwHegClTpsTee+8djz/+eMydOzdmzpwZe+yxR8E5119/fSxbtiwiIt75zndGeXnx/JKn4ssS+XzULvx+wVDP6N2ie693RZnGRsnQCCeN5Ja0kl3SSG5JK9klaaXeF2loaEi6hIF58s8Rz80rGMoc+m9Rv9uBCRVE0urr65MuAbaY3JJWsksayS1pJbsw9NLwnZHa+35ccJyrmxjd+7wnFbUzOPTRSSO5Ja1klzSSW9JKdl+Tyefz+aSLSMoTTzwRK1eu7D1eu3ZtXH755RERseeee8bRRx9dcP7MmTP73OOZZ56Jc845J7q6uqK6ujre/e53x9SpU6OrqyvuuuuuuPnmmyMiYuLEiXHhhRdGTU3NtvuB6OuJGyOuen/h2Ht+GrH/qcnUAwAAAMOEvkgJ6O6M+OFbIhqf+cdY3fYR/35fRNXI5OoCAAAA2NZWPhLxo8MKx95xQcSh/5ZMPQAAAAyqkl4I88Mf/jDmzZu3+RP/n6uvvrrf8XvvvTd+8IMfRHt7e7/zEydOjLPPPjsmTJiwVXWylfL5iB8fGbHyoX+MjZ0ScdYC29wCAABQ8vRFSsAd34m45WuFY+/+ccQB70umHgAAAICh8vt/iXjk9/84rhkT8X8fiagckVxNAAAADJrypAsoBtOnT49vfetbceONN8aiRYti9erVUV5eHhMmTIhDDjkkjj322Kiqqkq6zNLz5E2Fi2AiIo76gkUwAAAAMIhKtS/S2NiYdAmblGl5KepvvzgyG4x1Tzwwmnc6JmKY187gymazUV9f33vc1NQUuVwuwYpg8+SWtJJd0khuSas0ZbehoSHpEqD0rH464tFrCsfecoZFMAAAAEWkpHeE4Y0Z1l/4yOdj5JUnRPkrj/YO9TTsFms/+DcLYUpQmhrhsJ7cklaySxrJLWmVpuz6wgfF6NVXX026hE2q+9tno/rJa3uP85GJpv9zTXRvv39yRZGIsrKygj+HGxsbo6enJ8GKYPPklrSSXdJIbkmrNGV33LhxSZcA28Rw/s5I7S1fiqpHrug9zleMiKaPzY989ejkiiIRaeqjw3pyS1rJLmkkt6RVmrK7Lb8vYkcYttpwbSRGRFQ+/beCRTAREW3T/z168hExjOtmaORyuWGdX+iP3JJWsksayS1pJbvAeuUr7i1YBBMR0bnP/7EIBgAAABg0w7UXmWl9OSof+33BWPu+74/uipG+L4I+Oqkkt6SV7JJGcktalWp2s0kXAIMun4/aBd8vGOpumBydux+fUEEAAAAAQySfjxF3fKNgKFc5MloP+WxCBQEAAAAMnZoHfh6ZXFfvcT5bGR0HfCzBigAAANgWLIShCOWj7cDTo7thcu9I28GfjMiWJVgTAAAAwBDIZKJl1vmxbuL03qG2GZ+OfO24BIsCAAAAGBrrdj4yuia9pfe4Y+/3RK5u+wQrAgAAYFsoT7oAGHSZbHTtcVJ0TTk+qp66ISqX3BBdU+wGAwAAAAyesrJh/MCNCftHy//5XVQsvi6qHvt9rHvzR4Z3vWxT2Wx2k8cwHMktaSW7pJHcklayC2zMuh3fGut2fGuUr7w/au77UbRPOz3pkgAAANgGLISheGXLonPPk6Jzz5OSrgQAAAAoMg0NDUmXsHmHfDTikI9GCiplCNXX1yddAmwxuSWtZJc0klvSSnaB1+ueMC2aj/9x0mUAAACwjVgIw1bzJFHSwhOhSCO5Ja1klzSSW9JKdgEAAAAAAAAAKEUWwrDVUvHkU+iHJ0KRRnJLWskuaSS3pJXsAgAAAABDxcNTSQMPlCKN5Ja0kl3SSG5JK9l9TSafz+eTLgIAAAAA0qSxsTHpEmBAstlswWLJpqamyOVyCVYEmye3pJXskkZyS1qlKbseMAkAAAAw+OwIAwAAAABbqKenJ+kSYKvkcjn5JXXklrSSXdJIbkkr2QUAAAAoLRbCsNU8+ZS0SNMToWA9uSWtZJc0klvSKk3Z9eRTAAAAAAAAAAAGi4UwbDVP1CGtPBGKNJJb0kp2SSO5Ja1kFwAAAAAYKh6eShqk6YFSsJ7cklaySxrJLWmVpuxuywenWggDAAAAAAAAAAAMmIfykEYeKEUayS1pJbukkdySVqWa3WzSBQAAAAAAAAAAAAAAAMBAWAgDAAAAAAAAAAAAAABAKpQnXQAAAAAApE1ZWVnSJcCAZLPZTR7DcCS3pJXskkZyS1rJLgAAAEBpsxAGAAAAALZQQ0ND0iXAVqmvr0+6BNhicktayS5pJLeklewCAAAAlBaPRQEAAAAAAAAAAAAAACAV7AjDVisrK0u6BBgQW6OTRnJLWskuaSS3pJXsAgAAAAAAAABQiiyEYas1NDQkXQJsFVujk0ZyS1rJLmkkt6SV7MLQamxsTLoEGJBsNlvwd0RTU1PkcrkEK4LNk1vSSnZJI7klrdKUXf9dHQAAAGDwWQgDAAAAAFuop6cn6RJgq+RyOfkldeSWtJJd0khuSSvZhaFXVlaWdAmwWXZWJ43klrSSXdJIbkkr2X2NhTAAAAAAAAAAAMCA2e2INLKzOmkkt6SV7JJGcktalWp2LYRhqzU2NiZdAgxImrZGh/XklrSSXdJIbkmrNGXXfxQHAAAAAAAAAGCwWAjDVrO1NGlla3TSSG5JK9kljeSWtJJdAAAAAAAAAABKgYUwAAAAAAAAAADAgDU2NiZdAmxWmnZWh/XklrSSXdJIbkmrNGW3oaFhm93bQhgAAAAAAAAAAGDA7E5NGtlZnTSSW9JKdkkjuSWtSjW72aQLAAAAAAAAAAAAAAAAgIGwIwwAAAAAbKGysrKkS4AByWazmzyG4UhuSSvZJY3klrSSXQAAAIDSZiEMAAAAAGyhhoaGpEuArVJfX590CbDF5Ja0kl3SSG5JK9kFAAAAKC0eiwIAAAAAAAAAAAAAAEAqWAgDAAAAAAAAAAAAAABAKpQnXQDpVVZWlnQJMCDZbHaTxzAcyS1pJbukkdySVrILyWpsbEy6BBiQbDYb9fX1vcdNTU2Ry+USrAg2T25JK9kljeSWtEpTdhsaGpIuAQAAAKDoWAjDVtOwI602bIpDWsgtaSW7pJHcklayC0Orp6cn6RJgq+RyOfkldeSWtJJd0khuSSvZBQAAACgtHhcLAAAAAAAAAAAAAABAKlgIAwAAAAAAAAAAAAAAQCqUJ10A6dXY2Jh0CTAg2Ww26uvre4+bmpoil8slWBFsntySVrJLGsktaZWm7DY0NCRdAgAAAAAAAAAARcJCGLaaLzKRFqtWrYpTTz01IiIuvfTSGDt2bMIVwebJLWklu6SR3JJWsgvJGjduXNIlwID4+4I0klvSSnZJI7klrWQXkqc3Qhr4+4I0klvSSnZJI7klrWT3NdmkCwAAAAAAAAAAAAAAAICBsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFSwEAYAAAAAAAAAAAAAAIBUsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFSwEAYAAAAAAAAAAAAAAIBUsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFTI5PP5fNJFAAAAAAAAAAAAAAAAwObYEQYAAAAAAAAAAAAAAIBUsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFSwEAYAAAAAAAAAAAAAAIBUsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFSwEAYAAAAAAAAAAAAAAIBUsBAGAAAAAAAAAAAAAACAVLAQBgAAAAAAAAAAAAAAgFSwEAYAAAAAAAAAAAAAAIBUKE+6AKA0LF26NO6///544okn4sUXX4y1a9dGWVlZjBkzJvbcc8+YPXt27LXXXgO+3/333x8333xzLF26NNauXRujRo2KyZMnx9ve9raYNm3agO7R09MTt9xyS9x5552xbNmy6OjoiDFjxsR+++0X73znO2OnnXYa0H3Wrl0bN910UyxcuDBeeeWViIgYP358HHzwwXHcccfFyJEjB/xzkR6XX355XHfddb3H5557bkydOnWT18gtSXn11Vfj1ltvjUWLFsUrr7wSHR0dMWrUqBg/fnxMnTo1Dj300HjTm9600etll6HW3d0d8+bNi3vuuSeee+65aGlpKfjccPTRR8eee+652fvILm9UU1NTLFmyJJYsWRJLly6NpUuXRnNzc0REHHXUUXHWWWdt0f2KMZPPP/98/PnPf46HH344Vq9eHdXV1TFp0qQ4/PDD4+ijj46ysrIB3Qeg2OmLUGz0RUgTfRHSRl+E4UJfZPP0RQAGRl+EYqMvQproi5A2+iIMJ3ojm5d0bySTz+fz2/QdgJJ37rnnxuOPP77Z84488sg444wzorx842v0crlc/OQnP4lbb711o+fMnj07Pv7xj0c2u/FNr9auXRsXXHBBLF26tN/5ioqK+NjHPhZHH330Jmt+6qmn4uKLL441a9b0O9/Q0BCf//znY8qUKZu8D+ny7LPPxtlnnx09PT29Y5tqbMgtSbrpppviiiuuiM7Ozo2ec9xxx8VHP/rRPuOySxJeeeWVuPDCC+OFF17Y5HnHHntsnHbaaZHJZPrMyS6D5dRTT93o3JY0NYo1kzfffHP8/Oc/j+7u7n7np0yZEl/84hdj1KhRm7wPQLHTF/E5p9joi5Am+iKkjb4Iw4m+iL4IwGDQF/E5p9joi5Am+iKkjb4Iw43eyPDvjdgRBtjmVq9eHRGv/eF46KGHxl577RXjxo2LXC4Xixcvjuuvvz5Wr14dt99+e/T09MSnP/3pjd7rqquu6v3LYNddd42TTjoptt9++3jppZfiuuuui2eeeSZuvfXWGDVqVHzgAx/o9x65XC6+9a1v9f5lMGPGjHjb294WdXV18dRTT8U111wTTU1N8ZOf/CTGjBmz0ZWWr776alx00UW9Tys5/vjj46CDDoqIiPvuuy9uuOGGaGxsjIsuuiguvPDCGDt27Fb/GjJ85HK5+PGPfxw9PT1RX18fTU1Nm71GbknKH/7wh/jtb38bERETJ06Mo48+OqZMmRK1tbXR3NwczzzzTCxcuLDffxhGyC5Dr7u7u6CpsfPOO8fxxx8fO+ywQ3R0dMQTTzwRc+bMic7Ozvjzn/8cY8aMiZNPPrnPfWSXbWHcuHExadKkePDBB7f42mLM5KJFi+KnP/1p5PP5qK+vj/e85z2x++67R0tLS9x8882xYMGCWLJkSXzrW9+Kr371q5ts1gAUO30Rn3OKib4IaaIvQtroi8jucKYvUkhfBGDg9EV8zikm+iKkib4IaaMvIrvDnd5IoeHSG7EQBtjmJk2aFO9///vjkEMO6fOH2R577BFHHnlknHPOObFixYqYP39+HHPMMbHPPvv0uc/y5ctjzpw5ERExefLk+NrXvhaVlZUR8drKwenTp8dXv/rVWLp0acyZMydmz54dEyZM6HOf2267LZ544omIiHj7298e//qv/9o7N2XKlJg2bVp84QtfiPb29vjFL34R+++/f7/bc1111VWxdu3aiIj41Kc+FYceemjv3N577x277bZbfO9734umpqa46qqrtngbNIanm266KZYuXRqTJk2Kgw8+OK699tpNni+3JOXhhx/ubWps7AlK++23X5x00kn9rsqWXZJw77339jY19thjj/j6179e8Nlh//33j+nTp8eXv/zl6OnpiT/96U9x4oknFmRGdhlMp5xySkyePDkmT54co0ePjpdffjk++clPbtE9ijGT3d3d8Ytf/CLy+XzU1NTEeeedV1Dzm9/85vjZz34Wf/3rX+OJJ56I22+/PWbOnLlFv24AxURfxOecYqIvQlroi8huGumLyO5woy+iLwIwGPRFfM4pJvoipIW+iOymkb6I7A5HeiPDvzfi0SPANvfFL34x3vrWt250Rd+oUaPiwx/+cO/xPffc0+95N954Y+/WoqeddlrvXwbrVVVVxWmnnRYRET09PXH99df3e5/1f6nU1dXFhz70oT7zEyZMiHe/+90REbFy5cpYsGBBn3PWrFkTd9xxR0REHHDAAQV/Gaz31re+NQ444ICIiLj99ts3uo0Y6fHqq6/2/kPx9NNP3+S2zOvJLUnI5XLxs5/9LCJee0LCmWeeucm89jcnuyThySef7H198skn9/vZYbfddut9EkFra2ssW7asYF52GUynnnpqHHTQQTF69OitvkcxZnLBggXx0ksvRUTEu9/97n6bMB/60IdixIgRERFx3XXX9fszAZQKfRGfc4qFvghpoS8iu2mlLyK7w42+iL4IwGDQF/E5p1joi5AW+iKym1b6IrI7HOmNDP/eiIUwwLAwderU3tfr/4DcUD6fj4ULF0bEa08M2WOPPfq9zx577BE77LBDRLy2SjifzxfML1++vPcD0KGHHhpVVVX93mfD1Yf9/YWw4b1nzZq1sR+r9z75fD7uvffejZ5HOvzsZz+Ljo6OOOqoo/p9Cs3ryS1Jeeihh2LFihUREfGud72r39XdmyK7JGXDp81sv/32Gz1vw7kNr5FdhptizeT6n+n177mhqqqq3qbJiy++GMuXL9/o+wGgL0I66IuQFvoisptW+iKyW2yKNZP6IgCDT1+ENNAXIS30RWQ3rfRFZLcYFWsuh1NvxEIYYFjY8ENJf6t5X3755WhsbIyI17bf2pT1/+BcvXp1vPLKKwVz67cG2/C8/owePTomTpwYEYWrjbf0PhvObXgN6XPXXXfFokWLNrqitj9yS1LuvvvuiIjIZDK9T0KIiGhpaYkVK1ZES0vLJq+XXZKy/h91Ef3/h47Xz2UymYKnCsguw02xZnL92A477LDJJ59seJ/+6gHgH/RFGO70RUgTfRHZTSt9EdktNsWaSX0RgMGnL8Jwpy9CmuiLyG5a6YvIbjEq1lwOp96IhTDAsPDYY4/1vp40aVKf+RdffHGT8xva8EPRhtdt6X3Wz69atSo6Ojr6vU9tbe0m/yBvaGiImpqaiIg+W/GRHq2trXHZZZdFRMQ///M/x6hRowZ0ndySlKeeeioiIsaPHx81NTVx5513xmc/+9n42Mc+Fp/+9Kd7/+91110X69at63O97JKUww47rPf38E9/+lPkcrk+5zzzzDOxaNGi3vNra2t752SX4aYYM9nR0RGrVq3qU/OmaunvPgAU0hdhONMXIW30RWQ3rfRFZLfYFGMm9UUAtg19EYYzfRHSRl9EdtNKX0R2i1Ex5nK49UYshAESl8vl4tprr+09futb39rnnPV/cEZEjB07dpP3GzduXL/XRby2WnK9MWPGbPI+698nn88XXLfhfTdXy4b1vL4W0uPyyy+PNWvWxJ577hmzZ88e8HVySxJyuVzvB8eRI0fGL37xi/j+978fL7zwQsF5K1asiMsvvzy+/vWvR2tra8Gc7JKUUaNGxb//+79HVVVVPPnkk3H22WfHvHnzYvHixfHQQw/F7373u/jqV78a3d3dseuuu8aHP/zhgutll+GmGDO5JT/ThvOvvvrqZt8ToFTpizDc6YuQJvoisptm+iKyW2yKMZP6IgCDT1+E4U5fhDTRF5HdNNMXkd1iVIy5HG69kfJtcleALXDDDTfEkiVLIiJixowZsdtuu/U5Z8OVidXV1Zu8X1VVVb/XRUS0t7cPyn3WH2/uHhve5/X3IB0ef/zxuPXWW6OsrCxOP/30yGQyA75WbklCW1tb5PP5iIh4/vnnY+nSpdHQ0BAf/OAHY9q0aVFZWRlLliyJ3/zmN/HUU0/Fk08+GZdeeml87nOf672H7JKk6dOnx4UXXhhz5syJuXPnxg9/+MOC+fr6+njve98bRx99dEFuImSX4acYM7kltWw4L9sAG6cvwnCmLyK3aaMvIrtppy8iu8WkGDOpLwIw+PRFGM70ReQ2bfRFZDft9EVkt9gUYy6HW2/EjjBAoh577LG44oorIuK1Dyqnn356v+d1dXX1vi4v3/QavoqKin6vi4iCLR3fyH3WH2/uHhve5/X3YPjr7u6On/zkJ5HP5+P444+PN73pTVt0vdyShM7Ozt7X69ati6qqqjj33HPjiCOOiLq6uqisrIx99tknzj333Nh5550jImLBggW92+NGyC7J6u7ujnnz5sW9997b26TbUFNTU9xxxx3x8MMP95mTXYabYszkltSy4Xx/W6sDoC/C8KYvIrdppC8iu2mnLyK7xaQYM6kvAjC49EUYzvRF5DaN9EVkN+30RWS32BRjLodbb8RCGCAxL7zwQlx88cXR09MTFRUV8X//7/+N+vr6fs+trKzsfd3d3b3J+274B+aG10UU/iH/Ru6z/nhz99jwPq+/B8PfNddcE8uWLYtx48bFKaecssXXyy1J2DAvERGzZ8+OHXbYoc95lZWV8f73v7/3+K677iqYW092GUodHR1x3nnnxbXXXhstLS1x0kknxXe/+9244oor4rLLLouvfOUrsddee8XSpUvj4osvjuuvv77getlluCnGTG5JLRvOv/7vJwD0RRj+9EXkNo30RWQ3zfRFZLfYFGMm9UUABo++CMOdvojcppG+iOymmb6I7BajYszlcOuNWAgDJOLll1+O888/P1pbWyObzcZnPvOZ2GeffTZ6/pZskbXh6vbXb71VU1MzKPdZfzyQ7brW32cg24kxfCxbtiyuvfbaiIj42Mc+tlW/f3JLEjbMS0TEAQccsNFz99133ygrK4uIiKVLl/aOyy5J+d3vfhePP/54REScccYZ8cEPfjAmTZoU5eXlUVtbG/vvv3+ce+65MXXq1Mjn8/HrX/86nn322d7rZZfhphgzuSW1bMk2vwClRl+E4U5fRG7TSl9EdtNMX0R2i00xZlJfBGBw6Isw3OmLyG1a6YvIbprpi8huMSrGXA633oiFMMCQW716dZx33nnR2NgYmUwmzjzzzDj44IM3ec3YsWN7X69atWqT57766qv9XhcRMWbMmII6NmX9+2QymYLrNrzv5mrZsJ7X18LwdsMNN0R3d3dsv/320dnZGfPnz+/zvxdeeKH3/EceeaR3fP1f4HJLEioqKmLUqFG9x5v6PaysrIyRI0dGRMTatWv7vUZ2GSr5fD7mzp0bERETJ06MmTNn9nteWVlZvPe97+295rbbbuudk12Gm2LM5Ib33Nx9NpwfN27cZt8ToFToi5AG+iJym1b6IrKbVvoisluMijGT+iIAb5y+CGmgLyK3aaUvIrtppS8iu8WqGHM53Hoj5dvkrgAbsXbt2jj//PPjpZdeioiI0047LY466qjNXrfjjjv2vl62bNkmz12+fHm/1/V3n1122WWj91n/PmPHju2zGnHHHXeMp59+Otra2mLNmjUxevTofu/R2NgY7e3tERExadKkTdbN8LJ+a7eXXnopLrnkks2e/4c//KH39f/8z/9EdXW13JKYnXbaKR599NGIiMjlcps8d/38+id9RPgzl2Q0NTVFS0tLRETsuuuumzx3t9126329sQzKLsNBMWaypqYmxo4dG6tWrSqoeVO19HcfgFKlL0Ja6IvIbZrpi8huGumLyG4xKsZM6osAvDH6IqSFvojcppm+iOymkb6I7BarYszlcOuN2BEGGDJtbW3xjW98I1588cWIiPjABz4Qxx577ICu3W677aKhoSEioncLvI1ZPz9mzJgYP358wdxee+3V+/qxxx7b6D3WrFkTK1asiIiIPffcs8/8QO+z4dyG11Aa5Jak7L333r2v1zeS+9PW1hbNzc0RUbhaW3ZJQjb7j3+a9PT0bPLcDec3vE52GW6KNZPrx5YvXx5r1qwZ0H36qweg1OiL+JxTauSWpOiLyG4a6Yv0vYb0K9ZM6osAbB19EZ9zSo3ckhR9EdlNI32RvtdQHIo1l8OpN2IhDDAkOjs744ILLohnnnkmIiLe8573xMknnzzg6zOZTO92uMuWLYvFixf3e97ixYt7VxFOnz49MplMwfwOO+zQu7Lw7rvvjs7Ozn7vs+G2eTNmzOgzv+G912/Lt6n7ZDKZmD59+kbPY/g566yz4uqrr97k/0455ZTe888999ze8e222y4i5JbkvOUtb+l9vWDBgo2et2DBgsjn8xFR+KFVdklCXV1d1NTURMRr2dpUc2PDfyit/zM3QnYZfoo1k+t/pte/54Y6Ozvj7rvvjojXniqyww47bPT9AEqBvojPOWmjLyK3aaYvIrtppC8iu8WoWDOpLwKw5fRFfM5JG30RuU0zfRHZTSN9EdktVsWay+HUG7EQBtjmuru741vf+lY8+eSTERFx3HHHxfve974tvs9xxx3Xu4r3F7/4RXR1dRXMd3V1xS9+8YuIeG3LxuOPP77f+5x44okREdHS0hKXX355n/mVK1fGH//4x4iImDBhQr9/IYwePTqOOOKIiIh48MEH45577ulzzt133x0PPvhgREQceeSRG91GjOImtyRh5513jmnTpkVExPz58+Phhx/uc86aNWvit7/9bURElJeXx6xZswrmZZehls1m48ADD4yI17bYvOaaa/o9r6WlJX7zm9/0Hh900EEF87LLcFOMmZwxY0Zsv/32ERHxxz/+MVauXNnnnF//+tfR2toaEREnnXRSvz8TQKnQF/E5p5TJLUnQF5HdNNIXkd1iVYyZ1BcB2DL6Ij7nlDK5JQn6IrKbRvoislvMijGXw6k3Ur7N7gzw/3zve9/r/YNx3333jdmzZ8fzzz+/0fPLy8v7Xf23ww47xEknnRTXXnttLF26NM4555x417veFdtvv3289NJL8ac//an3CSInnnhiTJw4sd/7z5w5M+bOnRtPPvlk/OUvf4k1a9bE0UcfHXV1dbFkyZL4wx/+EO3t7ZHJZOK0006LsrKyfu/zvve9Lx544IFYu3ZtXHLJJbF06dLeD1f33XdfXH/99RERMWrUqK1q5FAc5JakfOQjH4nFixdHa2trXHjhhXH88cfHtGnTorKyMpYsWRLXXnttrFq1KiIi3vve9xZsdRshuyTjlFNOiXvvvTc6Ozvjd7/7XTz99NNx1FFHxfbbbx/r1q2LxYsXx4033hivvvpqRETst99+ccABBxTcQ3YZTE888UTBP9jXrl3b+3rlypV9nmwxc+bMPvcoxkyWl5fHaaedFhdddFG0t7fHOeecE//0T/8UU6ZMiZaWlrjlllvi73//e0S89gSpI488st/7AJQKfRGfc0qZ3JIUfRHSSF9EdocbfRF9EYDBoC/ic04pk1uSoi9CGumLyO5wpDcy/Hsjmfz6/c0AtpFTTz11i84fP358/PCHP+x3LpfLxY9//ONNbss1e/bs+PjHP967irI/a9eujQsuuCCWLl3a73xFRUV87GMfi6OPPnqTtT711FNx8cUXx5o1a/qdHz16dHz+85+P3XfffZP3IZ2uvvrq+P3vfx8Rr211O3Xq1H7Pk1uS8sQTT8S3v/3taGpq6nc+k8nEu9/97o1+aJVdkvDQQw/FJZdcEs3NzZs8b999943/+I//iLq6uj5zsstg+eEPfxjz5s0b8PlXX311v+PFmsmbb745fv7zn0d3d3e/81OmTIkvfvGLMWrUqE3eB6DY6Yv4nFOs9EUY7vRFSCN9EYYTfRF9EYDBoC/ic06x0hdhuNMXIY30RRhu9EaGf2/EQhhgmxvMxsZ6ixYtiptvvjmWLl0azc3NMXLkyJg8eXIcc8wxvds7bk5PT0/ccsstceedd8ayZcuio6MjxowZE/vuu28cd9xxsdNOOw3oPmvXro0bb7wxFi5cGK+88kpERGy33XYxffr0OP7442PkyJEDug/pM9DGxnpySxKam5vjpptuioULF8bLL78c3d3d0dDQEPvss0+8853vjF133XWz95Bdhlpzc3Pceuut8cADD8QLL7wQra2tUVZWFqNHj47JkyfH4YcfHtOnT49MJrPJ+8gub9RgNTXWK8ZMPv/883HTTTfFI488EqtXr47q6uqYNGlSHH744XH00Udv9CkjAKVEX8TnnGKlL0Ia6IuQRvoiDBf6IpunLwKwefoiPucUK30R0kBfhDTSF2E40RvZvKR7IxbCAAAAAAAAAAAAAAAAkAob3z8HAAAAAAAAAAAAAAAAhhELYQAAAAAAAAAAAAAAAEgFC2EAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQAAAAAAAAAAAAAAAEgFC2EAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQAAAAAAAAAAAAAAAEgFC2EAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQAAAAAAAAAAAAAAAEgFC2EAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQAAAAAAAAAAAAAAAEgFC2EAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQAABmCXXXaJTCYTH/3oR5MuBQAAAGBI6YsAAAAApUpfBACGJwthAAAAAAAAAAAAAAAASAULYQAAAAAAAAAAAAAAAEiFTD6fzyddBAAAAAAAAAAAAAAAAGyOHWEAAAAAAAAAAAAAAABIBQthAAAAAAAAAAAAAAAASAULYQCAkrN8+fL44he/GAceeGDU19dHRUVFbL/99rHffvvF+9///rjsssti7dq1Bdfssssukclk4qMf/WjB+LPPPhuZTGbA/5s5c+ZG65o7d2585CMfid122y1qa2tj1KhRsd9++8XnP//5WL58+Tb4lQAAAABKjb4IAAAAUKr0RQCgeJQnXQAAwFC644474oQTTujTuHj55Zfj5ZdfjkceeSSuuuqqGDduXJxwwglDUlNHR0ecdtppcdVVV/WZe+SRR+KRRx6JSy+9NK688so48cQTh6QmAAAAoPjoiwAAAAClSl8EAIqLhTAAQMno7OyM973vfbF27doYOXJknHnmmTFr1qzYbrvtoqurK5555pm466674o9//OOA7zlp0qR4+OGHN3nO1VdfHeedd15EROy8884Fc/l8Pk455ZS44YYbIiLixBNPjFNPPTV22223yGazsWDBgvj2t78dzz//fJxyyikxf/78mD59+hb+5AAAAECp0xcBAAAASpW+CAAUn0w+n88nXQQAwFC49dZb4+ijj46IiDlz5mz0CR7d3d3R1tYWo0aN6h3bZZdd4rnnnouPfOQjcdlllw34Pe+999448sgjo729Pfbee++45557Cu7705/+ND7+8Y9HRUVFXHfddXHsscf2uUdjY2McccQR8eijj8Zhhx0Wd95554DfHwAAACBCXwQAAAAoXfoiAFB8skkXAAAwVFauXNn7+sgjj9zoeeXl5QXNh621fPnyeNe73hXt7e0xZsyYmDNnTsF98/l8XHTRRRER8alPfarfpkZERENDQ1x88cURETF//vx46qmn3nBtAAAAQGnRFwEAAABKlb4IABQfC2EAgJIxceLE3te/+MUvtul7tbe3x8knnxzLly+P8vLy+P3vfx+TJ08uOOexxx6LpUuXRkTEKaecssn7bdiIufvuuwe/YAAAAKCo6YsAAAAApUpfBACKj4UwAEDJOPzww2O33XaLiIjPfOYzMWPGjLjgggti/vz50dXVNajv9bGPfSwWLlwYERHf//73Y9asWX3Ouffee3tfH3rooZHJZDb6v7q6ut5zN3xSCQAAAMBA6IsAAAAApUpfBACKj4UwAEDJqKioiDlz5sTee+8dERELFy6ML33pS3H44YfH6NGj49hjj40rrrgienp63tD7nHfeeXHVVVdFRMS//du/xZlnntnveS+//PJW3b+trW2rawMAAABKk74IAAAAUKr0RQCg+JQnXQAAwFDaZ5994uGHH445c+bEnDlz4vbbb48lS5ZEe3t7/OUvf4m//OUv8Z3vfCduvPHG2G677bb4/n/4wx/i3HPPjYiIo48+Oi655JKNnrthA2XOnDmxyy67DOg9tqYuAAAAAH0RAAAAoFTpiwBAcbEQBgAoOWVlZXHyySfHySefHBERK1asiD//+c/xwx/+MO67776477774hOf+ET88Y9/3KL73n///fHhD3848vl8TJkyJa6++uooL9/4x62xY8f2vh49enTsu+++W/XzAAAAAAyUvggAAABQqvRFAKB4ZJMuAAAgaRMnTozTTjst7r777jjwwAMjIuL666+P9vb2Ad9j5cqV8a53vSva2tqivr4+5syZE2PGjNnkNdOmTet9PX/+/K0rHgAAAOAN0BcBAAAASpW+CACkl4UwAAD/T0VFRRx11FEREdHd3R1r1qwZ0HUdHR1x8sknxwsvvBBlZWVx1VVXxV577bXZ6w488MDYcccdIyLiJz/5SXR0dGx17QAAAABvhL4IAAAAUKr0RQAgfSyEAQBKxh133BFLlizZ6HxXV1fMmzcvIiLq6upi/PjxA7rvv/7rv8bf//73iIi4+OKL49hjjx3QddlsNr70pS9FRMTTTz8dH/7wh6Ozs3Oj569duzb+53/+Z0D3BgAAANiQvggAAABQqvRFAKD4lCddAADAULnlllvivPPOiyOOOCKOP/742H///WP8+PHR3t4eixcvjh/96EexaNGiiIj4l3/5lygv3/xHpZ///Ofxm9/8JiIiZs+eHcccc0w88sgjGz1/xIgRseuuu/Yen3HGGfG3v/0t/vjHP8bvfve7WLRoUXziE5+IGTNmRH19faxduzaeeOKJuO222+K6666L6urq+OQnP/kGfyUAAACAUqMvAgAAAJQqfREAKD4WwgAAJSWXy8W8efN6n+TRn3e9611xwQUXDOh+zz//fO/rW2+9Nfbbb79Nnn/UUUfFbbfd1nucyWTit7/9bXz605+OH/3oR7F06dL4z//8z41ev9122w2oLgAAAIDX0xcBAAAASpW+CAAUFwthAICS8bnPfS7233//uPnmm+P++++P5cuXx8svvxwRERMmTIgZM2bEhz/84Tj++OOHtK6Kior43//93zjzzDPjpz/9adx2223x/PPPR0tLS9TV1cWuu+4aBx10ULzzne+ME044YUhrAwAAAIqDvggAAABQqvRFAKD4ZPL5fD7pIgAAAAAAAAAAAAAAAGBzskkXAAAAAAAAAAAAAAAAAANhIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKlgIQwAAAAAAAAAAAAAAACpYCEMAAAAAAAAAAAAAAAAqWAhDAAAAAAAAAAAAAAAAKnw/wO7MnMN5PU/9QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADMIAAAOcCAYAAAAWl/zsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iUVd7/8c9MyqSRyYROaAIJRRGkSa8iKzZEF0QBRV117W0tu4/7/NZdn7WsuiqK7qqoCNgo6rIK0pUqHbILCZ2EJJBk0utk7t8fIUNC2qQxmeT9ui4u7pn7nHOfmTnJZL5zvueYDMMwBAAAAAAAAAAAAAAAAAAAAAAAADRyZk93AAAAAAAAAAAAAAAAAAAAAAAAAHAHiTAAAAAAAAAAAAAAAAAAAAAAAADwCiTCAAAAAAAAAAAAAAAAAAAAAAAAwCuQCAMAAAAAAAAAAAAAAAAAAAAAAACvQCIMAAAAAAAAAAAAAAAAAAAAAAAAvAKJMAAAAAAAAAAAAAAAAAAAAAAAAPAKJMIAAAAAAAAAAAAAAAAAAAAAAADAK5AIAwAAAAAAAAAAAAAAAAAAAAAAAK9AIgwAAAAAAAAAAAAAAAAAAAAAAAC8AokwAAAAAAAAAAAAAAAAAAAAAAAA8AokwgAAAAAAAAAAAAAAAAAAAAAAAMArkAgDAAAAAAAAAAAAAAAAAAAAAAAAr0AiDAAAAAAAAAAAAAAAAAAAAAAAALwCiTAAAAAAAAAAAAAAAAAAAAAAAADwCiTCAAAAAAAAAAAAAAAAAAAAAAAAwCuQCAMAAAAAAAAAAAAAAAAAAAAAAACvQCIMAAAAAAAAAAAAAAAAAAAAAAAAvAKJMAAAAAAAAAAAAAAAAAAAAAAAAPAKJMIAAAAAAAAAAAAAAAAAAAAAAADAK5AIAwAAvE7Xrl1lMplkMpl0/PhxT3enSeA5BQAAAADAO/AZvv7xnAIAAAAA0PTweb/+8ZwCABoTEmEAAADQqGRlZWnevHkaN26cOnbsKIvFoo4dO2r8+PF67733lJWV5TXXNwxDhw4d0meffaZHH31Uw4cPV1BQkCsw1LVr14Z7IAAAAAAAwOs0lbjI+vXrXfEPd/9dddVVDfrYAAAAAABA0+GpGEpBQYF++eUXzZs3T3fddZf69u0rX19fV3zjzjvvbJDrAgDK8/V0BwAAAFC/xo4dqw0bNkiS1q1bp7Fjx3q2QzWwZcsW3X777Tp27FiZ++Pj4xUfH69169bp1Vdf1aJFi3TllVc26uvv2LFDEyZMUEZGRr33EwAAAAAAVIy4iPdeHwAAAAAAXDzEUGpu7ty5evLJJ1VQUFBvbQIAao9EGAAAADQKe/fu1dVXX+1alcPPz0/jx49Xx44dderUKa1du1YOh0NHjx7V1VdfrU2bNumyyy5rtNfPysoiCQYAAAAAALilqcVFSuvQoYNuuummasv16tWrTo8BAAAAAAA0fZ6MoSQnJ5MEAwCNCIkwAAAA8LjCwkLdfPPNrkBFv379tHz5cnXt2tVV5vjx45oyZYr27t2rjIwM3XzzzYqOjpavb93/pG3I69tsNg0aNEiDBw/W4MGDdejQIT377LN17jMAAAAAAGgamnJcRJIiIyM1d+7cOvcTAAAAAAA0b56OoZTo1KmTaw7IkCFDNG/ePH399df11j4AwD1mT3cAAAAA+Oc//6kjR45IKk4c+eGHH8oEKiSpa9eu+v7772Wz2SRJMTEx+uijjxrt9fv166fY2FilpqZq1apVevHFFzVlyhS1bdu2XvoMAAAAAACahqYYFwEAAAAAAKhvno5hzJkzR4mJiTp58qSWLFmiZ599VuPHj1dwcHC9tA8AqBkSYQAAAOBx77zzjuv4qaeeUrt27Sos1759ez355JMV1mts17fZbOrRo0e99A8AAAAAADRdTTEuAgAAAAAAUN88HcPo0qULi58CQCNCIgwAABdwOp365JNPNHHiRLVr104BAQHq2rWrbrzxRi1fvtxVbuzYsTKZTDKZTFq/fn2FbXXt2tVV5vjx49Ve+84773SV//jjj6stbxiGli1bpjvuuENRUVGyWq0KCAhQp06dNGXKFH3yySdyOBxVtnH8+HHXNUuvkvDzzz/rnnvuUa9evWS1WmUymfTYY49p9+7drvI2m015eXnV9lOSMjMzFRIS4qq7b98+t+rVh8LCQi1YsEDTpk1Tt27d1KJFCwUHB+uSSy7RjBkztGzZMhmGUWUb69evd/V97NixrvvXrl2rW2+9Vd26dVNAQIBatmyp0aNHa+7cuSosLHS7j7m5uXrjjTc0YsQItWrVSoGBgerevbtmzJihNWvWuMpVNaZK7t+wYYPrvnHjxrnuL/3PnfEVFxen559/Xv369VNYWJiCg4PVq1cvPfzwwzpx4oTbj606hw8f1n/+8x/X7TvvvLPK8qXP79u3T0ePHvXq6wMAAABAY0JcpBhxkbKIixAXaajrAwAAAIC3IoZSjBhKWcRQmm4MBQDQCBkAAMAlISHBuPLKKw1Jlf676aabjIyMDGPMmDGu+9atW1dhe126dHGVOXbsWLXXv+OOO1zl58+fX2XZvXv3Gv3796+yr5KMnj17GtHR0ZW2c+zYMVfZLl26GPn5+cZ9991XYVuPPvqoYRiGMXDgQNd9n332WbWPyzAM45///KerzuDBg92qU5maPK/r1q0zunfvXu3zNHToUCMuLq7KdkrKjhkzxsjPzzd+85vfVNnmgAEDjLNnz1b7ePbt21dtH++77z6joKCgysde3WMs/e/C8XVhu8uWLTOsVmul9QMDA41//etf1T42d7z//vuudqOiotyqExkZ6arzz3/+06uuP3/+/DI/cwAAAADQWBAXIS5SVTvERYiL1OT6F44ZAAAAAGhKiKEQQ6mqHWIoTTOGUpXSP5N33HFHg10HAFCWrwAAgCQpLS1N48eP13//+1/XfZdccomGDRsmi8Wi6Ohobd++XcuWLZPZ7NlN1TZu3Kjrr79eGRkZkiQ/Pz8NHjxYkZGR8vPz0/Hjx/Xzzz8rLy9Phw4d0vDhw7Vlyxb17t272rYff/xxvf/++5Kkvn37ql+/fvLz81NMTIzrcd9777267777JEkffvihbr/99mrb/fDDD13H99xzT40fc2189dVXuv32212rZwQGBmro0KHq2rWrzGazYmJitGXLFjkcDm3dulXDhg3TL7/84tY2pvfee68++eQTmc1mXXnllerVq5ecTqe2bt2qQ4cOSZJ27dql2bNn69///nel7Rw+fFgTJkzQ2bNnXff17dtX/fv3l9ls1p49e7R37169//77atGiRZV9evDBByVJy5Yt0+nTpyVJU6ZMUURERLmyVY2F1atX6/7771dRUZE6d+6sYcOGKTQ0VMeOHdP69evlcDiUm5uradOm6cCBA7rkkkuq7Fd1Sv/MDRgwwK06AwYMUGxsbLn63nh9AAAAAGgMiIsUIy5CXIS4SP1fPzc3V99995327t2r1NRUBQcHq23btrryyit1xRVXyNeXrysBAAAAeA9iKMWIoRBDaW4xFABAI+TpTBwAABqLu+66y5Wd7+/vb3z44Yflymzbts21uoG/v79HVu1ISEgw2rRp4yo3e/Zs4/Tp0+XKJSYmGjfddJOrXN++fQ2Hw1GuXOlVO3x8fAxJRqdOnYyNGzeWK5uXl2cYhmFkZmYaISEhhiTDZDIZR44cqfJxRUdHu64RHBxsZGRkVPtcVMWd5/XAgQNGYGCgq49PPfWUYbfby5U7cuSIMXLkSFd711xzTYXtlV61w2KxuFYf+e9//1umnNPpNP7+97+XWeFiw4YNFbbpdDqN0aNHu8q1bNnS+OGHH8qVW7NmjdGmTRvDZDKVGXeVPXZ3VpS5UOnn1GKxGMHBwcaCBQsMp9NZptyBAweMiIgIV9k5c+a41X5VrrnmGld7zzzzjFt1fve737nqTJ482auuz44wAAAAABoj4iLERYiLEBepz+uXHjNV/evQoYPx6quvGgUFBXV6HAAAAABwsRBDIYZCDKV5xlCqwo4wAOAZnk05BgCgkYiJidH8+fNdt//xj3/orrvuKlduyJAhWrVqlYKCglRQUHAxu+jyhz/8QWfOnJEkPfLII/rkk0/Uvn37cuXatm2rr776SuPHj5ck7d+/X19//XWVbRcVFSkoKEirV6/WqFGjyp23WCySpJCQEM2YMUOSZBiGPvrooyrbLb1ix7Rp06pdfaI+PPLII8rNzZUkvfbaa3r11VcVFhZWrly3bt30ww8/qE+fPpKk77//Xtu2bauy7fz8fEVGRmrt2rXq1atXmXMmk0mPPvqobrnlFtd9ixcvrrCdlStXauPGjZIks9msb775RpMmTSpXbvz48VqxYoXMZvNFGXcFBQX6+uuvNXPmTJlMpjLnLr30UteqLlLxyigOh6NO10tJSXEdu7NiiiS1a9fOdZyamurV1wcAAAAATyMuUoy4CHERibjIxb7+6dOn9bvf/U6jR49WUlJSndoCAAAAgIZGDKUYMRRiKFLzi6EAABofEmEAAFDxh2nDMCQVByTuuOOOSstGRUXpscceu0g9K+vs2bP67LPPJBV/WHv55ZerLO/j46MXX3zRdXvhwoXVXuOhhx5SVFRUteV+85vfuI4//vhjFRUVVViusLBQCxYscN2+GFvX7t27V2vXrpUkXXHFFdW+XsHBwXr++eddt915nl566SWFhIRUer50sGv79u0VlikdxLn11ls1YsSIStsbNGiQZs+eXW2/6sN1112nX/3qV5Wenzx5sitYkJWVVeftY7OyslzHgYGBbtUpXa50fW+8PgAAAAB4GnGR84iLEBchLlJ/12/durUeeOABLVu2TEePHlVOTo7y8vJ09OhRffLJJxo8eLCr7NatW3X99de7Jh8BAAAAQGNEDOU8YijEUJpbDAUA0PiQCAMAgKR169a5jmfNmlVt+aqCGQ1p9erVrlUbpk6dqoCAgGrrXHnllQoODpYk/fzzz9WWv/XWW93qy+DBg9W/f39JUnx8vFauXFlhuW+//VZnz56VJPXp00fDhw93q/26+Pe//+06njFjRrmVJypSsrqJVP3zFBAQoOuvv77KMldccYXr+Pjx4xWW2bBhg+t45syZ1fbRnTL14de//nWV500mk/r16+e6Xdnjc1deXp7r2N/f3606JSvISKrzBAlPXx8AAAAAPI24yHnERYiLEBepn+sPGjRIcXFxeueddzRlyhRdcsklCgwMlMVi0SWXXKLZs2dr27ZtZSYQ/fLLL3rttddq+UgAAAAAoOERQzmPGAoxlOYWQwEAND6+nu4AAACeZhiG9u7d67o9bNiwautERUUpPDz8om+buWXLFtfxvn379NBDD9Wovt1uV3Z2tit4cSE/Pz/17dvX7fbuvfdePfDAA5KKV6CYPHlyuTKlV6a4++67a9Tf2ir9PK1bt04nTpyotk7Jqi2SdOrUqSrL9uzZU35+flWWadmypes4IyOj3Pn4+HhXEEcqDipVZ/DgwTKZTGX62hDcGQPVPb6aKB10c3d73vz8fNexuyt9NNbrAwAAAIAnERc5j7hIMeIixEXq4/pVrXZbwmQy6YUXXtCRI0e0aNEiSdLrr7+uZ599Vr6+fIUJAAAAoHEhhnIeMZRixFCaVwwFAND4EEUGADR76enpZT4gde7c2a16nTt3vujBitOnT7uOf/75Z7dW4biQ3W6vNFhhs9lq9CXz7bffrt/97nfKzs7Wd999p7Nnz6p169au83Fxca7VPPz9/S/a9quln6fvv/++xvXtdnuV561Wa7VtlA5mOByOcudLByqCgoIUHh5ebZstWrSQ1WpVWlpatWXroqaPr7CwsE7XKz0xwt0VOEqXc2diRWO+PgAAAAB4EnGR84iLFCMuQlzkYl5fkl544QVXIozdbtfWrVs1cuTIOrcLAAAAAPWJGMp5xFCKEUNpXjEUAEDjY/Z0BwAA8LSsrKwyt4OCgtyqV9kH/oaUnp5e5zYq+uBcoqarH4SGhmr69OmSij+wfvrpp2XOf/zxx3I6nZKkG2+8Ua1ataphb2unrs9TUVFRlefd2Q63OqXHnbtjTro4H8zr4/HVROkVQJKSktyqk5iY6Dp2J9DTmK8PAAAAAJ5EXOQ84iLFiIsQF7mY15ek7t27q2vXrq7b//3vf+vcJgAAAADUN2Io5xFDKUYMpXnFUAAAjQ+JMACAZu/CD385OTlu1cvOzq73vpR8sK9M6QDJ66+/LsMwavyv9JfK9eE3v/mN67j0VrWGYWj+/Pmu2/fcc0+9XrcqpZ+npUuX1up5amilx527Y05qmHHnaT179nQdu7PVsCSdPHnSddyrVy+vvj4AAAAAeBJxkbohLlI7xEXO83RcwtPXL9G+fXvXcXJycr20CQAAAAD1iRhK3RBDqR1iKOc1lhgGAKDxIBEGANDsWa1W+fv7u26X/hBUlVOnTlVbprotTC9U3WoTbdu2dR2XXrXAk4YOHarLL79cUvFqjVu2bJEkrVu3TkePHpUkdenSRVddddVF61NjfJ4uVHoFk5ycnGq3zJWKV/po6K1rPaF3796u4927d7tVZ9euXRXW98brAwAAAIAnERepG+IitUNc5DxPxyU8ff0SpSfoeGK1ZAAAAACoDjGUuiGGUjvEUM5rLDEMAEDjQSIMAKDZM5lM6tevn+v21q1bq60TGxurlJSUasuFhoa6jt0pv3///irPX3nlla7jTZs2VdvexVLRyh2lV/CYM2eOzOaL92dHY32eSuvYsWOZgMW2bduqrbNjxw63VhS52NvP1tW4ceNcx4cOHVJCQkKV5U+fPq3Y2FjX7fHjx3v19QEAAADAk4iL1B1xkZojLnKep+MSnr6+VDyR59ChQ67bHTp0qHObAAAAAFDfiKHUHTGUmiOGcl5jiGEAABoXEmEAAFDZD0ufffZZteU//fRTt9otvVXsnj17qiy7Y8cOHTt2rMoykyZNkq+vryRp8+bN2rt3r1v9aGgzZ85UYGCgJOmLL75QXFycli5dKkkym8266667Lmp/rrvuOtfx0qVLlZSUdFGv764xY8a4jhcuXFhteXfGpiQFBAS4jgsLC2vesYssMjJSffr0cd3+5JNPqixf+nzfvn3VrVs3r74+AAAAAHgacZG6IS5SO8RFink6LuHp60vSokWLlJ+fL6l4Es7o0aPr3CYAAAAANARiKHVDDKV2iKEUawwxDABA40IiDAAAku6++27X8datW6v8UHj48GG98cYbbrVbevWIqj6AORwOPfroo9W2FxERoZkzZ0qSDMPQ7NmzlZGR4VZfnE6nzp4961bZmgoLC9O0adMkFW+xessttygvL0+SdPXVV6tTp04Nct3KDBkyRGPHjpUk5ebmatasWSooKHCrbkFBgVtbydaH0kGcRYsWVblizK5du6r9EF+iZcuWruP4+Pjad/AieuCBB1zHf/vb3yoNMCUmJupvf/ub6/aDDz7YJK4PAAAAAJ5EXKRuiIvUDnGR8zwdl6jv6+fk5MjpdLp17djYWD377LOu21dffbXatGnjVl0AAAAAuNiIodQNMZTaIYZynqdjKACAxoVEGAAAJEVFRenOO+903b7nnnsq/GC4Y8cOTZw4UdnZ2fL396+23enTp7u2bd2yZYueffZZFRUVlSkTFxen6667Tps3b5bFYqm2zRdffFHt27eXJO3bt09DhgzRqlWrKi0fFxenN954Qz179tQXX3xRbfu1VXoL29Jbsd5zzz0Nds2qvP322woJCZEk/fjjjxo9enSVW8TGxMToz3/+s7p27XrRtry95pprNHLkSEnFwaTrr79eq1evLldu/fr1mjx5soqKitwad5dddpnr+Ouvv3Zry1tPu/fee9W9e3dJxVs9X3PNNTpx4kSZMidOnNDkyZOVmpoqqfjntnSg8ULr16+XyWRy/Vu/fv1FvT4AAAAAeAviInVHXKTmiIuc19TiItu3b9ell16qefPm6cyZMxWWKSoq0meffaZhw4YpJSVFkuTv76+XX3650n4CAAAAgKcRQ6k7Yig1RwzlPE/HUAAAjYuvpzsAAEBj8frrr2vLli06dOiQ8vPzdeedd+qFF17QsGHDZLFYFB0dre3bt8swDE2dOlUpKSnasGFDlW126dJF999/v959911J0ssvv6zFixdr9OjRCggI0JEjR7Rp0yYVFBToqquuUrt27ardorRDhw765ptvNHnyZCUnJ+vQoUOaNGmSIiIiNGTIELVu3VqFhYVKTk7WgQMHqt0St76MGDFCl156qaKjo133tWnTRjfccMNFuf6FLrvsMi1evFjTp09XTk6Otm3bpqFDh6p79+4aMGCAwsPDlZeXpzNnzmjfvn0eWd3CZDLpo48+cn3hn5ycrIkTJ6pfv37q37+/JGnv3r2urY+feuopffXVV64P8SWBsAtNnTpVv//972UYhlasWKHLL79cw4cPV4sWLVxlbr31Vg0aNKhBH19N+Pn5acmSJRo5cqSysrK0e/duRUZGasKECYqIiFBcXJzWrl3r2o43NDRUS5YscW3n3Fivf88992jHjh1l7isJtkjS6dOnXa91aR988EGjen0AAAAANH3EReqGuEjNERc5rynGRQ4ePKgHHnhADz30kHr06KFLL71U4eHhMpvNSkxM1JYtW5ScnOwq7+Pjo08//VT9+vWrl8cEAAAAAA2FGErdEEOpOWIo53k6hiKpwjkeJ0+edB1/++23FZYpeX0AAPXIAAAALvHx8cagQYMMSZX+u+GGG4yMjAxjzJgxrvvWrVtXaZu5ubnG5MmTq2zzuuuuM+x2u3HHHXe47ps/f36VfT1+/LgxYcKEKtst/a9t27bGDz/8UK6dY8eOucp06dKlTs/f3//+9zLXfOqpp+rUXmW6dOniusaxY8eqLLtnzx5j4MCBbj9PXbt2NXbv3l2unXXr1rnKjBkzxq1+lm63uj5ecsklVfbr3nvvNQoKCowOHTq47rPb7ZW2+dxzz1XZ3oXjqybPqWEYNRqrNbF58+Zqn4tu3boZW7Zsqbat0q9ZdT+nDXF9wzDK/J6oyT93+goAAAAA9Y24SJc6PX/ERcoiLlJzTSUucuG1q/vXs2dPY9OmTe4+TQAAAADgccRQutTp+SOGUhYxlJrzZAylJjEPd19bAEDtsCMMAACldOjQQVu3btWnn36qhQsXat++fUpPT1fbtm3Vr18/3XHHHbr55ptlMpncbjMgIED/+te/tHjxYn3yySfatWuX0tPT1aZNG/Xr10933nmnbrnllhq1KRWvCLJ69Wpt2bJFX331lTZu3KhTp07JbrfL19dXLVu2VGRkpAYNGqSrr75aY8eOrdcVDioydepUPfbYY67bntq6trR+/fppx44dWrVqlZYvX65Nmzbp9OnTSktLk8ViUevWrdWzZ09deeWVmjRpkoYNG1bj16I++njgwAG99957+uqrrxQTE6OcnBy1b99eQ4YM0W9+8xtNmDBBkmS32yUVr9gRGhpaaZv/93//p5EjR2r+/PnauXOnkpKSlJOTc1EeT10MGzZM+/bt06effqovv/xSMTExSklJUcuWLRUVFaVp06Zp9uzZrq2Jm9r1AQAAAMCTiIvUDXGR2veRuEgxT8cl6uv6o0aN0o4dO7RlyxZt3rxZhw4dUkpKilJSUpSfny+r1apOnTrpyiuv1A033KBf/epXF33cAQAAAEBdEEOpG2Iote8jMZRino6hAAAaB5NhGIanOwEAgDcaO3asa/vadevWaezYsZ7tUCPwySef6M4775QkjRw5Uj/99JNnO9TExMbGKioqSpLUq1cv/fe///VwjwAAAAAAzRVxkfKIizQs4iIAAAAAAG9EDKU8YigNixgKAKC5MHu6AwAAoOn48MMPXce/+c1vPNiTpumLL75wHQ8ePNiDPQEAAAAAABciLtKwiIsAAAAAANA0EENpWMRQAADNBYkwAACgXuzevdu1Skd4eLimTZvm4R41LceOHdPf/vY31+3bbrvNg70BAAAAAAClERdpWMRFAAAAAABoGoihNCxiKACA5oREGAAAUGd5eXl6+OGHXbfvv/9+BQQEeLBH3uXqq6/WDz/8IIfDUeH5FStWaOTIkUpPT5ck9e/fX1dfffXF7CIAAAAAAKgEcZG6IS4CAAAAAEDzQAylboihAABQlq+nOwAAALzT3LlzdfjwYaWlpWnNmjWKi4uTJLVq1UpPPvmkh3vnXX788Uf9+OOPstlsGjBggDp16iR/f38lJydr+/btrudWklq0aKFPP/1UZjP5zAAAAAAAeApxkfpDXAQAAAAAgKaLGEr9IYYCAEBZJMIAAIBa+frrr7Vhw4Yy9/n4+OjDDz9UeHi4h3rl3ex2u9asWVPp+cjISH311Vfq27fvRewVAAAAAAC4EHGR+kdcBAAAAACApocYSv0jhgIAQDESYQAAQJ3ZbDYNHz5czz33nEaMGOHp7nidAwcOaPny5dq8ebNOnDih5ORkpaamKiAgQK1bt9aQIUN03XXX6dZbb5WPj4+nuwsAAAAAAEohLlI3xEUAAAAAAGgeiKHUDTEUAADKMhmGYXi6EwAAAAAAAAAAAAAAAAAAAAAAAEB1zJ7uAAAAAAAAAAAAAAAAAAAAAAAAAOAOEmEAAAAAAAAAAAAAAAAAAAAAAADgFUiEAQAAAAAAAAAAAAAAAAAAAAAAgFcgEQYAAAAAAAAAAAAAAAAAAAAAAABegUQYAAAAAAAAAAAAAAAAAAAAAAAAeAUSYQAAAAAAAAAAAAAAAAAAAAAAAOAVSIQBAAAAAAAAAAAAAAAAAAAAAACAVyARBgAAAAAAAAAAAAAAAAAAAAAAAF7B19MdgPdKTk72dBcAt/j4+Mhms7lu2+12FRUVebBHQPUYt/BWjF14I8YtvJU3jd1WrVp5ugtAvbPb7Z7uAuAWs9ksq9Xqup2eni6n0+nBHgHVY9zCWzF24Y0Yt/BW3jR2S8dvgKaEOSPwBt4URwdKMG7hrRi78EaMW3grbxq7DTlfhEQY1JqPj4+nuwC4xWw2V3kbaIwYt/BWjF14I8YtvBVjF/AsJjLBW5WeLAh4C8YtvBVjF96IcQtvxdgFAAAAAABoXkiEQa0x4QPeikA4vBHjFt6KsQtvxLiFt2LsAgAAAAAAAAAAAAAAoDlguVgAAAAAAAAAAAAAAAAAAAAAAAB4BXaEAQAAAAAAAGrIbrd7uguAW8xmc5ldw9LT0+V0Oj3YI6B6jFt4K8YuvBHjFt7Km8auzWbzdBcAAAAAAACaHBJhUGtM+IC38KZAOFCCcQtvxdiFN2Lcwlt509hlwgeaoqKiIk93AagVp9PJ+IXXYdzCWzF24Y0Yt/BWjF0AAAAAAIDmhUQY1BqBRHgrAuHwRoxbeCvGLrwR4xbeirELAAAAAAAAAAAAAACA5sDs6Q4AAAAAAAAAAAAAAAAAAAAAAAAA7iARBgAAAAAAAAAAAAAAAAAAAAAAAF6BRBgAAAAAAAAAAAAAAAAAAAAAAAB4BV9PdwAAAAAAAADwNj4+Pp7uAuAWs9lc5W2gMWLcwlsxduGNGLfwVoxdAAAAAACA5o1EGAAAAAAAAKCGbDabp7sA1IrVavV0F4AaY9zCWzF24Y0Yt/BWjF0AAAAAAIDmhWVRAAAAAAAAAAAAAAAAAAAAAAAA4BXYEQYe43Q6lZ+fr7y8PDkcDjmdTk93CU2UyWRScnKy63ZhYaEMw/Bgj4DqMW7LMpvN8vX1VUBAgCwWi8xmcnkBAADg3ZxOp7KyspSRkaGCggIVFRV5uksAgEbMx8dHQUFBCgsLU0BAgKe7AwAAAAAAAAAA4FEkwsAj8vLylJaW1qwndePiKj3WSLqCt2Dcnud0OuVwOJSXlyeTycSkDwAAAHic3W6vdd3c3FylpqYSF8FFU3oxgeb++RLeg3FbXnZ2ts6ePaugoCDZbDaZTCZPdwkXMJvNslqtrtvp6emMXzR6jFt4K28auzabzdNdABqEj4+Pp7sAVOvCBRZZcBHegHELb8XYhTdi3MJbMXaLkQiDiy4vL6/cZBGTycSXdmhQzfWXPLwb4/Y8wzBckwQNw5DdbpfNZiMZBgAAAB5T2x1ciIvAE/h8CW/EuC2r9MTenJwcmc1mtWjRwoM9gjucTie7vsHrMG7hrRi7wMVHkhe8UekkSsBbMG7hrRi78EaMW3ir5jp2SYTBReV0OpWWlua6bbFYFBwcLH9/fyZ8oEH5+p7/dedwODzYE8B9jNvzDMNQQUGBsrOzlZ+fL0lKS0tTmzZtmBgDAAAAr0FcBJ7C50t4I8ZtWU6nUzk5OcrMzJQkZWVlKTAwsMzzBAAAAAAAAAAA0FwwcxQXVX5+vmtFf4vFIpvNJovFwmQPAECVTCZTmfcNqTg5piQpBgAAAPAGxEUAALVlNpsVEhKi4OBg133ERQAAAAAAAAAAQHPFUmG4qPLy8lzHwcHBTPQAANSIyWRScHCwa6JHXl6eAgMDPdwrAAAAwD3ERQAAdRUYGKjs7GxJxYkwpRNjAAAAgIvJbrd7ugtAtcxms6xWq+t2enq6nE6nB3sEVI9xC2/F2IU3YtzCW3nT2LXZbA3WNokwuKgcDoek4onM/v7+Hu4NAMAb+fv7y2QyyTAM1/sKAAAA4A2IiwAA6srX19cVFykqKvJ0dwAAANCM8fcovJHT6WTswuswbuGtGLvwRoxbeKvmOnbNnu4AmpeSbDOTycSqpwCAWin9HtJYs5gBAACAihAXAQDUFXERAAAAAAAAAAAAEmEAAAAAAAAAAAAAAAAAAAAAAADgJXw93QEAAAAAAADA2/j4+NS4DrvAwBMuHHcmk0mGYXioN4B7GLfuMZlMtXo/QsMxm81V3gYaI8YtvBVjFwAAAAAAoHkjEQYAAAAAAACoIZvNVuM6ycnJMgxDZrNZvr6E5eAZTJqHN2LcllUy0dfPz69W70e4eKxWq6e7ANQY4xbeirELAAAAAADQvLAsCgAAAAAAAAAAAAAAAAAAAAAAALwCiTAAAAAAAAAAAAAAAAAAAAAAAADwCr6e7gAAwHudPHlSAwcOlCS99dZbmjFjRpnzixcv1iOPPCJJ2rlzpzp37nzR++htSj9ne/fu5TkDAAAAGim73V7jOoWFhXI6nZIkh8NR310CKmQymeTj4+O6XVRUJMMwPNijpoO4SP2rLC7CuC3L6XTK6XSqsLCwVu9HaDhms1lWq9V1Oz093fXeDzRWjFt4K28auzabzdNdAAAAAAAAaHJIhAEAAAAAAABqqKioqMZ1mMQNT7hw3DEO4Y0YtxUzDKNW70e4eJxOJ68RvA7jFt6KsQsAAAAAANC8mD3dAQBoigYMGKDWrVvroYce8nRXgHrH+AYAAAAAVIXPjWjKGN8AAAAAAAAAAACeRyIMAAAAAAAAAAAAAAAAAAAAAAAAvAKJMAAAAAAAAAAAAAAAAAAAAAAAAPAKJMIAAAAAAAAAAAAAAAAAAAAAAADAK5AIAzQj27Zt02OPPaahQ4fqkksuUYcOHXT55Zfrtttu04cffqj09PQK661cuVJz5szR5ZdfroiICEVFRemaa67Rm2++qaysrEqvt3jxYrVu3VqtW7fWyZMnVVBQoHnz5umqq65St27dFBkZqRtvvFGrVq0qUy8rK0tvv/22xo0bp0suuUTdu3fXLbfcoo0bN1Z6rU2bNrmutWnTJjmdTi1YsECTJ09WZGSkIiIiNHLkSL3++uvKy8urtJ0bb7xRrVu31o033ljlc/nKK6+4rldR/VOnTkmSvvjiC1e5kn+VtZ2UlKQXX3xRV111lavP/fr10913360NGzZU2Z/aSkxM1EcffaQ5c+ZoyJAh6tKliyIiItS3b1/NmjVLy5Ytk9PpbJBr18WAAQPUunVrPfTQQ5Kk3bt3695771W/fv3UsWNH9evXTw8//LBiY2MrbaOiMbNw4UJNmTJFffr0UZs2bVztl3A6nfrqq6906623qk+fPurQoYN69eqlKVOm6KOPPlJBQUG1fU9LS9MLL7ygYcOGqVOnTurdu7duvvlmffPNN2499pI+v/LKK1WWc3csnzx5Ui+88IImTJigqKgotW/fXj179tR1112nV155RcePHy/XZk3Gd1FRkRYvXqxf//rXruesW7duGjJkiKZOnao33nhDhw4dcuuxAwCAslKyC7Ro20nNmb9d9uzq/w4BgOaOuAhxkQsRFyEuQlwEAADvlZnn0JKdcbrnk1905Gzlf5cDAAAAAAA0JXmFTh1JztGa/ybpo5+P6Zs98Z7uksf4eroDABpebm6uHnvsMS1durTcuYSEBCUkJOjHH39USkqKnn76ade5vLw83X///VqxYkWZOgUFBdqxY4d27NihDz74QIsWLVLfvn2r7ENmZqbuvfde7dy5s8z9mzdv1ubNm/XnP/9Z999/v+Li4jRjxgwdPHiwTLkNGzZo48aNevfdd3XLLbdUea2CggLNmDFDa9euLXN/dHS0oqOj9eWXX2rJkiVq27Ztle1cTF9//bWefPJJ5eTklLn/9OnT+vbbb/Xtt9/q9ttv19/+9jf5+tbPr+6ioiL169evwgkdiYmJ+uGHH/TDDz9o0aJFmj9/vkJCQurluvVt4cKFeuqpp+RwOFz3nT59Wp9//rmWLVumd955p9pJD3l5eZo2bVqVE2vsdrtmzpyp7du3l7k/JSVFmzZt0qZNm/Thhx/q888/V6dOnSpsIyYmRjfffLMSExPLXHvjxo3auHGj1qxZo2HDhrnzsOvFO++8oxdffFGFhYVl7k9NTdW2bdu0bds2bdq0ye3JKBfKysrSjBkztHXr1jL3FxYWKjMzU8eOHdNPP/2kffv2af78+bV+HAAANCdxaXlaF2vXuthU7T+dJePc/WsOntGEbsEe7RsANFbERYoRFymLuMh5xEWIiwAA4C3Scgu14bBda2JStf1EhhzO4shI/05huv2KVh7uHQAAAAAAQN0ZhqHUHIfi0vIUn56v+LQ8xaXlFx+n5+lsVtnvNYZcEq7RXXp5qLeeRSIM0MQ5nU7Nnj1b69evlyR169ZNc+bMUf/+/RUYGKikpCT98ssvFX6h+9BDD7kme1x66aV64IEHFBUVJbvdrmXLlunzzz9XYmKibr75Zm3YsEHt27evtB9PPvmk9u7dqzlz5ujaa69VWFiY9u/fr5dfflmJiYn63//9X40ZM0YPP/ywTpw4oUceeUTjx49XcHCwtm3bpldeeUUZGRn63e9+pzFjxpRbcbS0v/71r9q9e7fGjh2rOXPmKCIiQomJifrwww+1bt06HTp0SDNnztQPP/wgHx+fuj3BF3jrrbeUk5OjadOmKTExUddcc42ee+65MmWCgoLK3F6+fLkeeOABGYahrl276u6771ZUVJRatmypU6dOaeHChVq9erUWLlyoFi1a6M9//nO99NUwir8cGDVqlCZMmKDevXurZcuWysrK0okTJ/TZZ5/pl19+0fr16/XMM8/onXfeqZfr1qcDBw5o6dKlatWqlR599FENGDBAeXl5Wr16tf7xj38oPz9fv/3tb9WlSxf179+/0nb+/Oc/Kzo6Wr/61a906623qmPHjjp79qwyMzMlFU+Ouf322/XLL79IkoYPH667775bXbp0UWJiohYtWqR///vfiomJ0dSpU7Vu3bpyE2QyMzNd40KSpkyZounTp6t169Y6cuSI5s2bp8WLF5eb7NRQXnvtNb300kuSJKvVqjlz5mjkyJGy2WzKyMjQvn379K9//Usmk8lVp6bj+9VXX3VN9rj66qt1yy23KCIiQhaLRcnJydq/f79WrVpV5hoAAKAswzB06EyONhwuTn45nJxbYbmV0Yma0K37Re4dADR+xEWIi1SGuMh5xEWIiwAA0JilZhdq/WG71sSkaMfJDBUZ5cv8e38iiTAAAAAAAMBrFDicOp2Rr/i0/PMJL+nnjtPylecov5BbZU6l5lRfqIkiEQaNjtMwlJ7rqL5gE2IN9JW5gb7w/OCDD1yTPa699lq9//77slgsZcpcffXVeu6555SUlOS6b9WqVa5JIKNHj9bixYvl7+/vOj9u3DgNHjxYTzzxhOx2u55//nl98MEHlfZj165d+vjjjzV58mTXff369dMVV1yh8ePHy+l0aurUqcrMzNQ333yjgQMHusr1799f3bp102233aasrCwtWbJE999/f6XX2r17t2bPnq3XXnvNdd/AgQN17bXX6pFHHtGCBQu0Z88effLJJ7rrrruqeQZrpkuXLpIkPz8/SVJoaKh69+5dafmUlBQ9+eSTMgxDt912m1577bUyK5v269dP1113nV588UX9/e9/1z/+8Q/dcccd6tGjR5376uPjoy1btqhbt27lzo0YMUK33XabXn75Zf3tb3/TV199pSeeeELduzeuyZXR0dHq1KmTvv/++zIr2Q4fPlzjx4/Xr3/9axUWFurpp5/WqlWrqmzniSeeKDd5ocTHH3/smuwxbdo0zZ071zVJoV+/fpo0aZLrNTp+/Lhef/11/fGPfyzTxmuvvab4+OIt6P7whz/osccec53r16+frr/+et12222un9eGtG/fPr3yyiuSpO7du2vp0qXq0KFDmTIjR47UAw884OqzVPPxXfI75Prrr9dHH31U7vyECRP02GOPyW631+0BAQDQxBQ5De2Nz9S6w3ZtiLXrdEZ+tXU2xpxVbkFX+dfvfGYAHkBcpH4RFylGXKQ84iJl2yEuQlwEAIDGJDmrQOtii3d+2RWXIWcFyS+l/SchQyftuYoI9a+6IAAAAAAAwEVgGIbSch2u5BbXji7nkl7OZBaomnCH2xIz8pTvcMq3Ga67RSIMGp30XIcmvrvL0924qH58YIBsQX713q7T6XStVtmhQwfNnTu33GSPEmazuczKpSVfzvr5+emtt94qM9mjxKxZs/TNN99ow4YNWrFihRITE9WuXbsK27/xxhvLTPYocemll+rKK6/Uli1blJycrIcffrjMZI8SEydOVKdOnXTq1Clt3bq1ygkfrVu3rnR10P/7v//T999/r+TkZM2fP7/eJ3zU1Mcff6yMjAy1b99er7zySpnJHqU988wz+uKLL5SQkKAvvvhCf/jDH+p8bZPJVOFkj9KeeuopzZ8/XykpKVq5cqUeeOCBOl+3vv3pT38qM9mjxMiRIzVr1izNnz9fu3fv1p49eypd/bR79+56+umnK71Gyc9Dq1at9PLLL1e4UuczzzyjFStWKDY2VgsWLNAzzzzj+nkrKCjQwoULJRWP+UcffbRcfT8/P7355psaNGiQCgsLy52vT++8846cTqdMJpP+8Y9/lJvsUVpEREStr3PmzBlJ0tChQ6ssZ7PZan0NAACainyHU9tPpGtdrF0bj9iV5uYk+BCLr8b2bK1Jl7aT2WyS6i1UAsBTiIvUH+Ii5REXOY+4yHnERYiLAADQGCRl5ruSX/bEZboV4fD3NWt0ZGtN7ttOLYNIggEAAAAAABdPYZFTiRkF53d0SctXXHrxji7x6XnKLnB/V5faaBViUefwQHVpGazcwiK18Dc36PUaIxJhUGs+PjVfariiL0nRcPbv36/Tp09LKp6cERIS4lY9h8OhLVu2SJLGjh1b5Re+M2fO1IYNG+RwOLR582ZNnTq1wnI33XRTpW1ceumlrutVVa5Pnz46deqUjh8/XmX/b7zxRgUFBblulx53ISEhuvHGG/Xhhx/q4MGDSkpKqnCywMXyww8/SCpefbayyTiS5Ovrq0GDBum7777Tjh07GqQvTqdTZ86cUVZWVpkJB+3bt1dKSoqio6Mb5Lp1ERYWpmuuuabS87fddpvmz58vSdqwYUOlEz6mTJlS6e+0xMRExcTESJJuuOGGSn+OfH19NWPGDL3wwgtKS0vTvn37NHjwYEnS3r17lZaWJkmaPn16pb8LO3TooLFjx+rHH38sd85kMskw6j6x1el0as2aNZKKV7i9/PLL69xmZdq2bau4uDgtX75cM2fOLPNzWV9MJlOt3o/QcMxmc5W3gcaIcQtPycx36Ocjdq2LSdWmY3bluBkEsQX5amyPcE3o2UoT+3WWxbf4vTA9PV1OZ8MGUgCcR1yk8SMuUoy4iHuIixAXqW/ERZonPl/CGzFu4Umn0/O0+lCKVh9K0f7TWW7VsfiaNaJbmK7u1VrXDuiiFgHFSfXERQAAAAAAQH1Lz3Uo/lxyy/kkl+JdXpIyC6rdxbYu/HxM6mC1KMJqUYQ1QB3DLIoIs6ijNUCdw4PUoW0rV1m73a6ioqKG60wjRSIMaq02K9UlJyfLMAyZzeZKV3j08W1+Kxj7+PpW+nzUxX/+8x/X8YgRI9y+xvHjx5WTkyNJGjx4cJX1hgwZ4jo+dOhQmbKlv4SNioqqtJ3SY6lnz56VlgsLC5MkZWdnlytT+loDBw6sss+DBg3Shx9+KEmKiYkpM6Gl5It4k8lUZRulvwiqrlxl54uKinTgwAFJ0ieffKJPPvmk0nZKO3v2bL2NF8Mw9OWXX+qzzz7Tzp07lZubW2nZ1NTUcte98PWu6nXxbYBxfvnllysgIKDS8/3795e/v78KCgp08ODBSsdn3759K+1byWQPqWY/DzExMRo2bJik4p+NEu6Mz4omfFw4qaGqsSVVPpaPHTum9PR0SdLw4cPr9JpU14cZM2bo1Vdf1S+//KJBgwbpxhtv1JgxYzR06FC1atWq0nruXlsqXjGWlVMbN6vV6ukuADXGuEVDOpOZpx//k6SV0UnaciRZhUXuff7pFB6oSX3aadJl7TSgs00+5vITSBm7wMVFXKT+EBchLkJcpHaIixAXIS7S+PE3OrwR4xYN7URKtv69P1HfH0jQvrh0t+oE+vlofO82mnxZe43t2VrBlvLvwYxdAAAAAABQUw6nocSM/PM7upTs7nIu6SUzv2GTS8ICfRVhtahjWIAiwiznj60WtQ7xr3BuiFS7RRubIhJhgCYsJSXFdVyT1T3tdrvruLovZUu3W7rehapa8bD05Al3ylWXtdi6dWu3z1fV54Zmt9vlcDhqXK9kMk5d5eXladasWVq9erXb5Rub6sanr6+vbDabkpKSqnytSyYTVaR0verGVps2bSqsV5M2qjtfV7X9vVAbv/vd75SQkKCFCxfq7Nmz+uCDD/TBBx9Iknr16qUbbrhBd999d5nnDQCApuh4crZWRidqZXSidp9Kk7uLmfduH6pJl7bV1X3aqXf7FuwkAQA1RFyk+vPERYiLSMRFGgpxEQAAzjtyNkvf70/Qv/cn6j8JGW7VCbH4akLvNrrmsvYaE9Vagf5M8AAAAAAAADWXle9QXJkkl3PHaflKzMiXm+uX1oqP2aQOof6KOJfcUpLkUpL0ElLBYh9wH88eGp2wQF+tfWRI9QWbkLDAxvuj6I2T7bylz6UnrsyePVv33XefW/X8/f3r5fqvvfaaa7LHiBEjdM8996hfv35q06aNAgMDXRNsJk+erC1btshwd8bmRVRfr7W72bH1cT1vGZ/1wc/PT2+//bYefPBBLVmyRBs3btSePXtcK9EePHhQ7777rt5//31NnjzZ090FAKDeGIah6NMZWhWdqJXRSTqUlOlWPZNJGtwlXFefS37p3LLyydAAmi7iIo2LN36G85Y+ExepO+IijRtxEQBAc2YYhmLPZOnf+xP0/f5Et2MjoQG+mtinna65rJ1GRrZSgB/JLwAAAAAAoGpFTkNnMgsUn56nuAt3dknLV3pezRdmq4nQAB91tF6wo0uYRRHWALVp4S/fSnZ1Qd013m+Z0ejVZsXIwsJCOZ1OSapyxcdQ/+b1Q+8sKpKzAdotvZrj6dOn1a1bN7fqhYaGuo6TkpKqfK1Onz7tOrZarWXKlp7Q4HA4Km2nZEyUlKtMVeVKXysxMbHMeZPJVOYL/aSkJNdxaGhoubIl7VXVl6ysLLf7XNn5Fi1alOl/VFRUpe1cqDYrppZmGIY+/fRTSdLQoUO1dOnSMivQOp1O1/Nd8rNuGEa56174elf1ulQ1BmrrzJkzVbbpcDhc/Q8LC6t0fFb1epf+ebhwbF2osp+H0m0kJCSoa9eulbZRenyWVlRUJMMwZDKZXK9FVX3Jzs6WVP51s1qtZfpSl9ekqvFdWo8ePfTMM8/omWeeUV5enrZt26YlS5boyy+/VFZWlu655x5t375d7dq1q9G1nU6nCgsLPbqCMcozm81lxll6enqZ399AY8S4RX0ochraHZehdTGpWhebqoSMfLfq+fmYdGUXq8ZFtdTYHjaFB5dM7s2X3V51G940dm02m6e7ANQ74iL1h7gIcRHiIrVDXIS4CHGRxseb/kYHSjBuUV8Mw1DM2RytPpiiNYdSdCw116161gBfjYsK11U9W2pIF6v8fIr/LsvNylBVLXjT2CUuAgAAAABA3WQXFOl0qZ1c4tPzFJdWvLvL6fR8OZwNt6CZj0lqF2o5t5NLyc4uxQkvHawWhQaQjuEpPPOotdJflrqrMa6c2JRdfvnlruMtW7Zo5MiRbtXr0qWLgoKClJOTo507d1ZZdteuXa7j3r17166j9Wz37t2aNm2a6/aF4650n3v16lXmXEhIiKTiYHlVjhw5UuV5d1a39Pf3V69evXTw4EFt37692vL1yW6368yZM5KkG264ocxkj9KysrJ0+PDhi9m1Gjlw4IAcDod8fSt+O4uOjlZBQYGk8q+1u0qP6507d5YZWxfavXu367j09Uq3sWfPHg0bNsytNkorGcchISHKzMxUWlpapW0YhqFjx45VeK5Lly6yWq1KT0/Xli1bKm2jKnVZvTUgIEBjxozRmDFj1KdPHz3//PPKzc3Vjz/+qFmzZtW4PcMwavV+hIvH6XTyGsHrMG7hrnyHU9tOpGt9rF0bj9iVluveRMpgf7NGdLNpXA+bhl1iLbPVbV3GHmMXuLiIizR+xEWKERcpj7iI+4iLlEdcBDXB3+jwRoxb1IRhGDqYlKM1MSlaE5OqU2nuLQxiCyxOfpkQFa6BHVvI16fk77Hav7cxdgEAAAAA8F5Ow9DZrIJzSS5ld3SJS8uT3c35GLUV7O+jjmHnk106ntvRpWOYRe1a+JeKXaAxIREGaMIuu+wyRUREKD4+Xp999pl++9vfuiY0VMXX11fDhg3TmjVrtGHDBp0+fVodOnSosOxnn33mqjN8+PB67X9tffvtt/rjH/+owMDAcueys7P17bffSpJ69uxZbqXFzp07Syqe0JGVlVXh85WSkqINGzZU2QeLxSJJrskGlZk0aZIOHjyo2NhYrV27VuPHj6+yfH0pvVplTk5OpeU+++yzel+ttD7Z7XatXLlS1157bYXnFy5c6DoeM2ZMra7Rrl07RUVFKSYmRt9++62ef/75CsdFUVGRPv/8c0nFq6yWnnDVr18/hYWFKS0tTV9++aXuv//+CidNJCQkaP369VX2p3PnzoqOjtbevXsrLbN69epKJy2ZzWZNnDhRX3/9tTZv3qx9+/aV6as73B3f1Rk1apTrOCUlpU5tAQBwsWTlO/Tz0TSti7Vr87E05Ra6t9JoeJCvxvSwaWyPcA3uHCp/X4IkANDQiIsQF6kMcRH3ERcpj7gIAKC5cxqGohOytCYmVWtj7Drt5q64LYP9ND6yOPnlio4t5GNuXjthAgAAAADQ3OUVFrl2cXHt6HJud5fT6fkqKGq4RQVNktq28FfHsABFlE54sVoUEWaRNcC3TgthwTOYeQM0YWazWQ8++KAk6fTp03rooYcq/YLW6XQqMTHRdfuuu+6SVPyF7qOPPqrCwsJydRYuXOj6cvraa68tN3nCU86cOaP//d//rfDcH/7wB509e1aSdOedd5Y7XzJppaCgQP/85z/LnS8sLNTjjz+u3Nyqt3Nv27atJOn48eNVlrv33nsVHBwsSXrkkUd08ODBKsuvWrVK0dHRVZZxR6tWrVzbxS9btkz5+eW/pNi9e7deeumlOl+rof3xj390reJa2qZNm7RgwQJJxRMurrjiilpfo+TnITk5Wb///e8rLPPqq6/q0KFDkqRZs2a5JkVIxRMkZsyYIal4tda5c+eWq+9wOPT4449XO4miZIzu3LlT27ZtK3c+KSmp0j6WeOCBB2Q2m2UYhu69916dPn260rIVnXNnfJdMxqlqxevSk1u6dOlSZZ8BAPCk5KwCfb0nSQ99fVBXvbNL/7PiiNbEpFabBBNhtWjmoHb6YEYffX//AP3h6m4a0S2MJBgAuEiIi5RHXKQYcZGaIS5SFnERAEBz5DQM7YnL1GtrT+j6f+zRnEX/0Wc7EqtNgmkT4qcZA9rpg1v76Pv7r9AzV3XVoM6hJMEAAAAAANAEGYah5KwC7YnP1L+iz+r9TXH647+P6K5F0Zo0b5dGvrlDt36yX08uj9Hr607qy91J2nQsTcdT8+olCSbQz6zI1kEa28OmmYPa6ZkJXfXWzT219O5+2vTYYP3rviv03vTeen5SN901NEKTerXUpe1DFBboRxKMl2JHGKCJu/vuu7Vq1SqtX79eK1as0OjRozVnzhz1799fgYGBOnPmjHbu3KmlS5fq5ptv1tNPPy1Juvrqq3XDDTfo22+/1fr16/WrX/1Kv/3tbxUZGam0tDQtW7ZMixYtkiTZbDb9+c9/9uTDLKN///6aP3++Tpw4oTvvvFMdOnRQUlKSPvroI61Zs0aS1Ldv3wonfEycOFGdOnXSqVOn9NJLLyk1NVXXXnutAgICdPDgQf3zn//U/v37NWjQIO3YsaPSPgwePFg///yzdu/erTfffFMTJkxQUFCQJCkwMFDt27eXJLVp00Zz587VXXfdpaSkJE2cOFG33nqrJkyYoPbt28vhcOj06dPavXu3vvvuOx0/flwLFy7UpZdeWqfnyGw26+abb9ZHH32k6OhoXXfddfrtb3+rbt26KSMjQ6tXr9b8+fMVHBysdu3a6ciRI3W6XkO59NJLFRMTo6uuukqPPvqoBgwYoPz8fK1evVrvv/++HA6HfH199fLLL9fpOnfeeaeWLFmiX375RYsXL1ZcXJzmzJmjzp07KykpSYsWLdKKFSskSV27dtUTTzxRro2nnnpK33zzjU6fPq0XXnhBBw4c0LRp09SqVSsdPXpU8+bN0+7du9W/f3/t2bOn0r7Mnj1b8+fPl8Ph0MyZM/Xkk09q6NChKigo0Pbt2zVv3jw5HA5169ZNR48erbCNvn376umnn9ZLL72kI0eOaPTo0brrrrs0cuRI2Ww2ZWRkaP/+/VqxYoV8fHy0fPnyMvXdGd+ZmZmaOXOmOnfurGuvvVYDBgxQp06d5Ovrq6SkJK1cudK1cnL79u01ceLEWrwyAAA0nJP2PK2PTdX6w3btP50ld0MuUW2CNK6HTWMjw9WjVSDBEgDwMOIixEUqQlykZoiLLC9Tn7gIAKC5KHIa2h2XqTUxqVoXm6rk7PLJ4RVpH+qvCVHFO79c2j5EZmIjAAAAAAA0GfkOp06n5ys+LU9x6cU7usSl553b2SVf+Y6qFxStqzYhfsW7upTs6FKyu4s1QLYgdnVpbkiEAZo4s9msTz75RA899JC+++47HTlyRP/zP//jVt133nlHRUVFWrFihfbt26ff/va35cq0a9dOixYtck1gaAx+//vf691339XatWu1du3acucjIyO1aNEi+fqW/xXo7++vd999V9OnT1dOTo7ee+89vffee67zPj4++stf/qK0tLQqJ3zMmTNHH3/8sex2u/7yl7/oL3/5i+vc8OHD9c0337huX3fddVqwYIEefvhh2e12ffzxx/r4448rbNdsNru+WK+rP/zhD9q+fbsOHDigPXv26L777itz3maz6aOPPtLLL7/caCd8XHbZZbr77rv19NNP69lnny133t/fX3PnztXAgQPrdB0fHx8tXLhQM2fO1Pbt2/XTTz/pp59+KlcuKipKn3/+uUJCQsqdCw0N1RdffKGbb75ZZ86c0dKlS7V06dIyZW699VYNHz5cjzzySKV96dWrl/73f/9Xzz//vNLS0vT888+XOW+z2fTJJ5/opZdeqnTChyQ9+eSTMpvNeuWVV5Senq433nhDb7zxRrlyJSutllaT8X3y5EnNmzev0n60bdtWCxYsqPA5AwDgYjIMQ4fO5GhdbKrWxdp1NKXqle5LmCT179hCY3vYNLaHTRFhAQ3bUQBAjRAXIS5SGeIi7iMuUhZxEQBAU+ZwGtp5KkNrYlK1PjZVqTkOt+p1DLO4kl96tw1m0gkAAAAAAF7KMAzZcxyKT89T3LnklvNJL3k6k+XeQhm1ZfE1n0tysbgSXjpai4/bWy2y+Job9PrwLiTCAM1AUFCQPvroI/38889avHixtm3bpjNnzqioqEitW7fWZZddpquvvlpTp04tUy8gIEAff/yxVq5cqcWLF2vnzp1KTU1VUFCQunfvrmuuuUZ33313o/ui1t/fX59//rk+/fRTffnll4qNjVVhYaG6du2qm266Sffdd58CAwMrrT906FCtWbNGb7zxhjZu3KiUlBSFh4dr8ODB+u1vf6shQ4bolVdeqbIP7du318qVK/Xmm29q8+bNSkhIUF5eXqXlJ02apJ07d2rBggVavXq1Dh48qLS0NPn6+qpNmzbq2bOnRo0apeuvv14RERG1fm5KCw0N1YoVKzRv3jx9++23Onr0qHx8fBQREaGJEyfq3nvvVYcOHerlWg1p1qxZ6t27t9577z1t27ZNqampatmypUaNGqVHHnlEPXv2rJfr2Gw2fffdd/r666+1ZMkS7d+/X2lpaWrRooV69+6t66+/XrNmzZK/v3+lbfTq1Us///yz3n77ba1YsULx8fEKCQlR7969NWvWLE2dOlWLFy+uti/333+/oqKi9N5772n37t3Kzc1Vu3btNGHCBD388MPq2LGjW4/p8ccf1w033KD58+dr48aNiouLU25ursLCwhQVFaUxY8Zo+vTp5eq5M747deqkVatWafXq1dq+fbvi4uJ09uxZZWdny2q1KioqSpMmTdLs2bPVokULt/oLAEB9czgN7YnL1PrDqVofa1diZoFb9fx8TLqyi1VjI20a3c2m8GC/Bu4pAKAuiIsQF6kIcZGaIS5yHnERAEBTU1jk1C8nzyW/HLYrPde95Jcu4QG66lzyS2TrIJJfAAAAAADwEgUOpxIyipNc4tLO7+ZSkvSSU9iwu7q0CvZTRFjxLi4RVkvxri5hAepotahlsB8xBrjNZBiG4elOwDslJyfXuE5SUpKcTqfMZrPatm3bAL1Cc7Vp0yZNmTJFkrR8+XKNGDGizPnSq5w6HO4F8NF4DRgwQKdOndL06dM1d+5cT3enwTBuK8f7SePl4+Mjm83mum2321VUVOTBHgHVY9w2L3mFTm0/ma51sXZtPOL+5I5gf7NGdLNpXA+bhncLU7C/TwP3tHreNHZbtWrl6S4A9Y64CBoT4iLNC3ER8H7SeHnT3+hACcZt81TgcGrbiXStiUnVhsN2Zea795p3bxXo2vmlW8tAj05M8aaxS1wETVVtYiPAxeZN7xdACcYtvBVjF96oqY5bwzCUnucou6NLWr7i04uTXpIyC9SQyQP+PiZ1sJ7f0aX07i4RVosC/Dw/38LbedPYbci4CDvCAAAAAACatMw8h34+mqZ1sanacjxduW6uXtIyyE+je9g0LtKmQZ1C5c8WuwAAAAAAwEvlFTq15Xia1sakauMRu7IL3IuPRLUJKk5+iQxX15aV7ywIoPnx8WHyGho/s9lc5W2gMWLcwlsxduGNvHncFhY5lZhRoPi0PJ1KyzuX7HIu4SUtT1kFDZsUER7k50pwKfkXEWZRp7AAtQrxl5ldXRqUN4/d+kQiDAAAAACgyTmbVaANh+1aF5uqHacyVeR0bz2TjmEWjesRrjGRNvVtHyIfM8EZAAAAAADgnXILirTpWJrWxKTq56Npbi8O0qdtsMaf2/mlky2ggXsJwFuVXn0Y8BZWq9XTXQBqjHELb8XYhTdqbOM2PbdQJ1NydDK15F+26/h0Wp7b8yBqw8/HpI62IHUOL/WvZfH/ncKDFGIhBaExaWxj92JhFAIAAAAAmoQTqblaf9iu9bF27U/IcrteVJsgjeth07jIcHVvFSgTK5MAAAAAAAAvlV1QpJ+O2LUmJlWbj6Ur3+Fe8kvf9iGaEBWu8VHh6mC1NHAvAQAAAACAo8iphPS8UokuOWUSX9JzCxv0+rYgv3MJLsHqHB7oSnLp0jJY7UIDWDgUjR6JMADgpY4cOaKCgoIa12vVqpVat27dAD1yz9mzZ5WcnFzjev7+/urevXsD9AgAAHgrwzB0MClH6w6nan2sXUdTct2qZzZJ/SNaaGykTWN7MLkDAABvRFwEAADgvMw8hzaeS37ZejxdBUXVrwhrktQvooUmRIVrXKRN7UKJjwAAAAAAUN8y8wp1MjVHp1JzdKLM7i45irfnytGAu7r4mk2KsJVKcAk/v6NL55ZBCg3wa7BrAxcDiTAA4KV+/etf69SpUzWu97vf/U5PP/10A/TIPfPnz9err75a43qdOnXSrl27GqBHAADAmzichvbEZbh2fknMdG8CrL+PSUO6WDU20qYx3W2yBRHQAQDAmxEXAQAAzV16rkMbDhcnv2w7ke7WxBmzSRrQMdSV/NIqxP8i9BRAU2W32z3dBaBaZrNZVqvVdTs9PV1Op3u7pQGewriFt2LswhvVx7gtcho6m1WguLQ8xaXlKT4tX6fS8hR/7nZarqO+u11GiMVHncIC1DEsQBFhAeoYZlHHc7fbhlrkW+GuLk4V5WbJ7t5ao2iEvOl3rs1ma7C2SYQB0CSMGDFCZ8+e9XQ3cJEw8QMAgOYlr9CpbSfStT42VRuPpindzUBRsL+PRnYL07hIm4ZdEqZgf58G7imA5sTHp+a/U0wmtg9Hw6gqLnLhuDOZTDKMhltdDA2vOcRFGLfuMZlMtXo/QsMxm81V3gYaI8atd0nNKdT6mFStPpSiX066l/ziY5IGd7Hqqp4tNS4yXOHBTSP5hbELeF5RUZGnuwDUmNPpZOzC6zBu4a0Yu/BGlY3bnIIinU7PV1x6nuLS8hWflq/4c8cJGfkqdGNn1toym6R2LSyKCLMowlqc5BJhLb7dMSxAoQFVpAIYTvFj2Dw019+5JoNvj1BLycnJNa6TlJQkp9Mps9mstm3bNkCvgIr5+p5/s3c4GjbDFqgvjNvK8X7SePn4+JTJ4rbb7c3yj2x4F8Zt45SZ59BPR9O0LjZVW46lK8/h3soVLYP9NKaHTeN62DSoc6j8fJruJAhvGrutWrXydBeARiE2NlYFBQUym81q3769p7sDAPBSCQkJcjqd8vf3V2RkpKe7AwBoYGcy87QyOknf70/Q1qMpciP3RX4+Jo3o0UqTL2uviX3aytZEkl8ANC61mTMCXGzeFEcHSjBu4a0Yu/BGJePW6TR0JjNf0SeSdCo1pzjZJT1P8en5ikvLU2pOw87dC/Izn9vRxaKO1nP/h1kUYQ1Qu1D/Jj3vAbXjTb9zG3K+CDvCAAAAAAAahbNZBdpw2K51sanacSpTRe7M7JDUKcyisZHhGtvDpr4dQmRmxwUAAAAAAODFEtPz9MOBBP37QKJ+OZ4qd5a29Pcxa3RUK11zWXtd1butrEF+Dd9RAAAAAAC8RF6hU6fT8xSXfn5Hl/j0AiVkFupUao7y3VycszZMktq08D+/o0up3V06Wi2yBvqW2ykdQPVIhAEAAAAAeMyJ1Fyti7Vr/eFUHUjIdrtezzZBGncu+aV7q0CCQgAAAAAAwKvF2XP0w4FE/Xt/gnadTHOrjsXXrLE9W2ty3/Ya36uNWgSQ/AIAAAAAaJ4Mw1BKTuG5JJfinVxKHydnFzbo9QN8zcW7uIQFnEtyKd7RJSLMog6hFvn7sqsLUN9IhAEAAAAAXDSGYei/SdlaF2vXhsN2HU3Jdaue2ST1j2ihcZHhGtPDpg5WSwP3FACqZrfba1ynsLBQTmfxalIOR8NuoQ6UMJlM8vHxcd0uKiqS4c6S4oAHMW6r5nQ65XQ6VVhYWKv3IzQcs9ksq9Xqup2enu567wcaK8atZ52y52lNTIpWH0pRdEKWW3UC/Mwa1c2mq3q21MjuNgX5F79nOnKzZHcvzNIkeNPYtdlsnu4CAAAAADQJBQ6nTqfnn9vVJe98wsu5XV7yGnBXF0lqHeKnCGvAuSSX4qSXkoSX8CB2dQEuNhJhAAAAAAANyuE0tCcu49zOL3YlZRa4Vc/fx6Qru1g1NtKm0d1tsgWxqimAxqOoqKjGdZjEDU+4cNwxDuENGLfuMQyjVu9HuHicTievEbwO47bhnUjN1ZqYVK2JSdWhMzlu1Qn2N2tUd5smRIVrWFerAvzKJoyCsQsAAAAATYFhGErLdbgSXOLO7ehSkvRyJrNADRkttviaixNcrBZFhFnU8dzuLhFWizpYAxTgx64uQGNCIgwAAAAAoN7lFTq19USa1sfa9dORNKXnubfzQbC/j0Z1D9PYHjYNvyTMtaopAAAAAACAtzqanONKfjmc7N62LSEWH43pbtOEnuG6sotVFl8m2wAAAAAAvF9hkVMJGQUV7ugSn56n7IKG3dWlZZCfIsKKE106hQWqZ0RLdW4ZpM7hQfJ15MhopLuNAiiPRBgAAAAAQL3IyHPopyPFu75sOZbu9rbDLYP9NLaHTWN72DSoc6j8fJjYAQAAAAAAvJdhGDqcnKs1h1K1JiZFx1Lz3KpnDfDVmB7FO78M6UKMBAAAAADgfQzDUEZekeLTS3Z0yVN8Wr7rOCmzQM4G3NbFz8ekDud2cXHt6BJmUUdr8XFgqcU4fXx8ZLPZXLft9lyx1yjgPUiEAQAAAADU2pnMAm04bNe6w6naeSpTRW5GrDqFWTQ2MlzjIm26rH2IzCZTA/cUAAAAAACg4RiGoUNnzu/8ctLuXvKLLdBXYyPDNSEqXIM6tZAvyS8AAAAAgEbO4TSUmJHv2snFtavLueSXrPyGTScJC/RVxzCLIqwB55NcwoqTX9q08Gf+AdBMkAgDAAAAAKiR46m5Wh9r17rYVEUnZrtdr1fbII3tUZz80q1loEwEnwAAAAAAgBczDEPRidlacyhVa2NTFZ+e71a9lsF+Gh9ZvPNL/46h8jUTIwEAAAAANC5Z+Q7FlUpyKb27S2JGvooacFcXH7NJHUL9S+3oEnBuhxeLOlgtCrEw/R0AiTAAAAAAgGoYhqH/JGZr/WG71sem6liqeyuamk1S/4gWGhcZrrE9bGpvtTRwTwEAAAAAABqW0zC073SW1sSkam1MqpIyC9yq1ybET+Ojind+ubxDC/mQ/AIAAAAA8KAip6EzmQWuXVyKk12KE13i0/OVnudo0OtbA3zPJblYSiW8FO/u0qaFP5+bAVSLRBgAAAAAQDkOp6HdcRlaF2vXhsN2tyd1+PuYdGVXq8b1CNfo7mEKC/Jr4J4CAAAAAAA0rCKnoT3xma7kl+TsQrfqtQ/114SocI2PCtdl7UNkZndcAAAAAMBFlF1QpPhzO7rEl9rdJT49X6fT8+VwNty2Lj4mqV1ocXJLhPX8ji4lSS8tApjCDqBu+C0CAAAAAJAk5RUWaevxdK2Ltevno2lur/ASYvHRqG5hGtPDpuGXhCnI36eBewoAAAAAANCwHE5Du05laE1MqtbFpio1x704SYTVoqt6Fu/80rttsEwkvwAAAAAAGojTMHQ2q+Bckku+4tPzyuzsYs9t2F1dgv191DHMci7JJcCV9NIxzKJ2Lfzl62Nu0OsDaN5IhAEAAACAZiw916Gfj9q1/rBdm4+lK9/hdKteq2A/jelh07hImwZ2CpUfASwAAAAAAODlHEVO/XLyXPLLYbvS3Zww1NkW4Ep+iWodRPILAAAAAKDe5BYUuXZxiSu9u0t6nhLS81VQ1HC7upgktW3hXyrJ5fyOLhFhFlkDfPkMDMBjSIQBAAAAgGbmTGaB1h9O1fpYu3aeypC7cbHOtgCNPZf8cmn7EJkJaAEAAAAAAC9X4HBq+4l0rYlJ1YYjdmXkFblVr1vLQE2IKk5+6d4qkIk/AAAAAIBaMQxDKdmFijuX3BJf6v/49HylZBc26PWD/MyKCAtw7exSsqNLRFiA2of6sygmgEaLRBgAjcbJkyc1cOBASdJbb72lGTNmeLhHaAiLFy/WI488IknauXOnOnfu7OEeAQDQPBxPydW6c8kv0YnZbtfr3TbYtfNLt5ZM6gAAoCERG2keiI0AAOB5eYVObT2epjWxqdp4OE3ZBe4lv0S1DtL4c8kvl7QMbOBeAgAAAACairxCpxIy8hWflqe4Uju6lCS75DucDXr9ti38zyW5WMokvXQMC1BYILu6APBOJMIAAAAAQBNkGIb+k5it9YftWhebquOpeW7VM5ukKzq20LjIcI3tYVO7UEsD9xQAAAAAAKDh5RYUadOxNK2JSdXPR9OUW+jeJKPebYM1ISpc46PC1dkW0MC9BAAAAAB4I8MwlJrjUHyp5Ja4tDzFpxcnv5zJathdXSy+5nOJLcWJLiVJLh2tFrW3WmTxZVcXAE0PiTAAmpWXXnpJL7/8siTp7NmzHu4NGqsBAwbo1KlTmj59uubOnevp7gAA4DZHkVO74jK1LtauDYdT3Q6mWXxNurKLVeMiwzWqW5jCgvwauKcAAMBTXnnlFb366quSiI2gcsRGAABNRXZBkX4+mqY1h1K06Vi62yvs9m0fovFR4RofaVNEGMkvAAAAAACpwFG8q0tcWr4r4SXuXKJLfHq+2wsu1FarYD9FhFkUYT2/o0vJ7i4tg/zY1QVAs0MiDAAAAAB4sbzCIm09nq51sXb9dNSujLwit+q1sPhoZPcwje0RrmFdrQry92ngngIAAAAAADS8rHyHNh4p3vlly7E0FRQZ1dYxSeoX0UITosI1LpIdcgEAAACgOTIMQ+m5juLklpIdXc4lvcSl5etMZoGq/4RZe/4+JldyS/H/xbu6RFiLk14C/PhOHwBKIxEGAAAAALxMeq5DPx21a32sXVuOu7+aaatgP43tYdPYyHAN6tRCvj5sfwwAAAAAALxfeq5DG4/YtSYmVVuPp8vhrH5qktkkXdGxJPklXK1D/C9CTwEAAAAAnuQocioxs0BxaXnndnY5l/CSnq/4tHxlF7i38GRthQf5ltrRJeBcskvxcasQP5nZ1QUA3EYiDAAAAAB4gaTMfK2PtWv9Ybt2ncqQG4uZSpI62wI0LtKmcZHh6tMumMAZAAAAAABoEtJyCrX+cHHyy/aTGSpyI/nFxyQN7ByqCVHhGtsjXC2D/S5CTwEAAAAAF1NGnqPMTi7x6cU7u8Sl5SsxM19ufHysNV+zSR2sFnU8t6NLRFjAuePinV2C/NnVBQDqC4kwQBP20EMP6YsvvlCnTp20a9euSsstXrxYjzzyiCRp586d6ty5s+vcgAEDdOrUKU2fPl1z587V7t27NW/ePG3btk0pKSlq2bKlRo8erUceeUSRkZFV9qeoqEiffPKJvvjiC8XExMhkMqlr1666+eabdc8997j1mHbs2KFVq1Zp27Ztio2NVVpamiwWizp06KDhw4frnnvuUc+ePcvVW7RokR588MEy97Vu3bpcuQsff0m/v/rqK3377bfat2+f7Ha7goODFRkZqeuuu0533nmnAgMD3eq/u+rjed+0aZOmTJkiSVq+fLmGDRumxYsX66uvvlJMTIySk5M1bdo0zZ0711XH6XRqyZIlWrJkifbt26e0tDSFhoaqV69euuGGGzRz5kz5+1e9IlpaWpreeustff/994qLi1NISIj69Omj2bNn68Ybb6z2sZe8Lr/73e/09NNPV1ruxhtv1ObNmzV8+HB98803lZY7efKkPv74Y23YsEGnTp1SZmamQkNDFRkZqdGjR2vatGnq2rVrmTZLfPHFF/riiy/KtHfh9YqKivTll19q6dKlio6OVlpamgICAtSqVSt17NhRo0aN0uTJkysclwAAVOdYSq7WH07Vuli7/pOY7Xa93m2DNTbSpnE9bLqkZaBMJL8AAJopYiPnERshNkJsBADQFKRkF2pdbKrWxqRqp5sLhfiYTbqyc6jG9wzX2O42hQWR/AIAAAAA3szhNJSUUbybi2tHl1K7u2TmN+yuLtZAX0VYLep4LrklIsyijud2eWkd4i8fM9/PA8DFQCIMALctXLhQTz31lBwOh+u+06dP6/PPP9eyZcv0zjvvVPplflZWlmbMmKGtW7eWuX///v3av3+/li5dqjfeeKPK65eelFJaYWGhYmJiFBMTowULFuj//u//dNddd9XiEZYXFxenmTNnKjo6usz9BQUF2r59u7Zv36758+dr8eLF6t69e71c80J1ed5L5OXladq0adqwYUOlZex2u2bOnKnt27eXuT8lJUWbNm3Spk2b9OGHH+rzzz9Xp06dKmwjJiZGN998sxITE8tce+PGjdq4caPWrFmjYcOGufOw68U777yjF198UYWFhWXuT01N1bZt27Rt2zZt2rSpyskiValsXBcWFiozM1PHjh3TTz/9pH379mn+/Pm1fhwAgObDaRj6T2K21semat1hu06k5rlVz8ckXdExVGMjbRrbw6Z2oZYG7ikAAM0TsZHziI0QG5GIjQAALo4zmQVaey75ZXdcptxZuNfPx6ShXayaEBWu0T1sCg3ga3EAAAAA8CZZ+Y5ziS35ik/LO5/wkp6vhIwCt3YFrS0fs0ntQ/0vSHYpTnSJsFoUYuEzJgA0Bvw2BuCWAwcOaOnSpWrVqpUeffRRDRgwQHl5eVq9erX+8Y9/KD8/X7/97W/VpUsX9e/fv1z9Bx54wPWF+IABA3T//ferW7duOnPmjD7//HN9++23euqpp6rsg8PhUFhYmH71q19p2LBh6tatm4KCgpSYmKj9+/frn//8p1JSUvTss88qMjJSo0aNctW99tpr1b9/f3344Yf66KOPJEkbN24sd4327du7jlNTU3XdddcpPj5eFotFM2fO1PDhw9W5c2dlZ2dr3bp1+uc//6ljx47p1ltv1Zo1axQaGlqbp7dSdX3eS/z5z39WdHS0fvWrX+nWW29Vx44ddfbsWWVmZkoqXrnz9ttv1y+//CKpeGXPu+++W126dFFiYqIWLVqkf//734qJidHUqVO1bt06hYSElLlGZmampk2b5proMWXKFE2fPl2tW7fWkSNHNG/ePC1evFgHDx6s1+eoMq+99ppeeuklSZLVatWcOXM0cuRI2Ww2ZWRkaN++ffrXv/5VZoX8t956Szk5Oa7Hcc011+i5554r025QUJDr+NVXX3WN66uvvlq33HKLIiIiZLFYlJycrP3792vVqlWswg8AqJKjyKmdcZlaH5uqDYftOpNVWH0lSRZfk4Z2DdPYHjaN6h6msEBWMwWAi8nHp+Zb1/PZwLt5a2ykZNyVxEY++OADV0ICsRFiI401NnJheZPJJMNouC+2vZXJZKrV+xEajtlsrvI20Bg11nGbkJGvNYdStPpQivbGZ7pVx+Jr1vBLwnRVz5Ya1cOmFkxMatIa69gFAAAA4J4ip6GzWQXFiS7peef+L056iUvPV3quo/pG6qCFxafsji4lx1aL2oZa5MuuLgDQ6BH9Q+NjOGXKs3u6FxeVEWCTTI07OBsdHa1OnTrp+++/V9u2bV33Dx8+XOPHj9evf/1rFRYW6umnn9aqVavK1F21apW+//57SdJVV12lBQsWyNf3/K+fiRMn6m9/+5tefvnlKvtw1VVX6eabby7zZbskXX755br66qv1m9/8RjfccIOio6P18ssvl0mEsVqtslqtat26teu+3r17V3m93//+94qPj1enTp20bNkydenSpcz5ESNG6IYbbtD111+v48eP6+2339Yf/vCHKtusqbo87xe288QTT5SbuFDi448/dk30mDZtmubOneuacNCvXz9NmjRJL774ov7+97/r+PHjev311/XHP/6xTBuvvfaa4uPjJUl/+MMf9Nhjj7nO9evXT9dff71uu+02rV+/vjZPRY3s27dPr7zyiiSpe/fuWrp0qTp06FCmzMiRI/XAAw+4+izJ9Rr7+RVPJA4NDa1ynJSslnr99de7EqxKmzBhgh577DHZ7c3rdxoAoHq5BUXaeiJd62Lt+vmoXRl57m3N3MLio5HdwzSuR7iGdbUq0J9JbwDgKTabrcZ1kpOTZRiGzGZzmc/FZRhOmXKb12cII7Dh4iKlJ8NV+pyrbGKTr69vhWVLPqP/+OOPZT6jjx49WhMnTtTUqVNVWFioZ555RmvWrClTd+XKla7YyMSJE7Vo0aIy17jmmmv0yiuv6K9//WuZPl3Yj0mTJmn69OnlYiOSNHnyZN1///269tprFR0drVdeeUXjxo1znS+JjbRp08Z1X9++fSt9TqTiz/clsZHvvvuuXGxkzJgxmjp1qiZPnqzjx4/rnXfe0fPPP19lmzVVl+e99OsaHR2tp556qtLYzfz5812xkVtvvVXvvvtumWSMa6+9Vn/+85/1+uuv6/jx43rjjTf0pz/9qUwbr7/+uivO8Pzzz+uJJ55wnRs4cKBuuukm3XrrrVq7dq3r/srGm6Sqf1fofLKIyWQqV650bKRHjx5avny5IiIiypQZO3asHnnkEcXFxbnql+zqUxIbCQsLq3KclMRGbrzxRn388cflzk+aNElPPfWU7HZ7lY+lOiR7lFXyu83Pz69W70e4eKxWq6e7ANSYJ8ftyZQcfX8gQf8+kKi9p9LcqhPo56Pxvdromr7tNK5nGwWT/NJs8TsXAAAAaHxyCop0+txOLnHp+YpPO5/okpCRr8Kihlv8xmyS2rUoSXKxKMIacH6HlzALO4cCQBPAb3I0OqY8u1p+OMTT3bioUu7eLiOwpae7Ua0//elPZSYclBg5cqRmzZql+fPna/fu3dqzZ0+ZFThLVhm1WCx64403KvzS+4knntC3336r//73v5Vev/SKpBUJDQ3VM888o9mzZ2vbtm1KTU1VeHi4m4+urJMnT2r58uWSpJdeeqncRI8Sl19+ue6++269/fbb+vzzz+s9EUaq/fNeWvfu3fX0009Xeo2SJI5WrVrp5ZdfrnCVzmeeeUYrVqxQbGysFixYoGeeeUYWi0WSVFBQoIULF0qSLr30Uj366KPl6vv5+enNN9/UoEGDVFjo3kr3tfXOO+/I6XTKZDLpH//4R7kkmNIunARSE2fOnJEkDR06tMpyTEgAAEhSeq5DPx2xa91hu7YeT1e+w+lWvdYhfhrbw6axkeEa2LGFfH0adwI1AKBuTLl2Wf8xwNPduKjS790lI6jxx0Uk6S9/+UuFn9FHjRql2bNn66OPPtKuXbu0e/duXXHFFa7zH374oaTi2Mibb75ZYWzkqaee0vLly6uMjVT1+VYqnvz3+9//Xrfffru2bt1a59jIsmXLJEmvvPJKtbGRt956S4sXL673RBip9s97aT169NCzzz5b6TVKXqNWrVrplVdeqTA28txzz+lf//qXYmJi9Omnn+r3v/99mdjIZ599Jqk4NvL444+Xq+/n56e33npLV1xxRYPHRt566y1XbOTDDz+sMv7RsWPHWl+nJDYybNiwKssRGwEAVObo2Sx9fyBR3x9I0IH4DLfqBPv7aELvtprct53GRLVhoRAAAAAA8BCnYSg5q1Dx6Xk6nVGolLwzOpmao5OpOTqenK3UnIaNgwb7mxVxbieXjtaAMkkv7UP9+W4dAJo4EmEAuCUsLEzXXHNNpedvu+02V8LLhg0bXAkZRUVF2rx5s6TiVSbbtWtXYX2z2azp06fr//2//+d2n7Kzs5WSkqKcnBwZRnF2eOmJJNHR0WV2hamJH3/8UUVFRQoKCtKECROqLDt06FC9/fbbSkxMVFxcXJ0mD1yots/7haZMmVLpypmJiYmKiYmRJN1www0KCQmpsJyvr69mzJihF154QWlpadq3b58GDx4sSdq7d6/S0tIkSdOnT69wsohUPGFn7Nix+vHHHyt9THXldDpdK8COGDFCl19+eYNdq23btoqLi9Py5cs1c+bMClfkBQA0b4kZ+Vp/2K4Nh+3adSpD7i5o09kWoHGRNo2LDFefdsEyV/LeCgAALp6wsDBNnjy50vMzZ850LTSxfv16V0JGUVGRNm3aJEkaN25cpQt9mM1mzZgxo9wOrFUpiY1kZ2dXGBs5cOCARo8e7XZ7pa1cudIVG5k4cWKVZYcPH6633npLCQkJOnXqlDp16lSra1akts/7hW666aZKYyMJCQk6dOiQpOIYSosWLSos5+vrq9tuu03/7//9P6WlpWnv3r0aMqR4QZ89e/a4YiMzZsyoNDYSERGhcePGVbmzb105nU6tXr1aUvFCKhcjNrJ06VLNmjWL2AgAwC2Hz2Tq3/sT9e/9CTqYmOlWnRYWX03s01bX9G2vUZGtFOBH8gsAAAAAXAx5hUWKT88v/pdWvLtL8XGeTmfkK9/RcLu6mCS1aeF/fkeXMItrV5eOVousgb6VxmIBAE0fiTAA3NK3b98KVystcdlll8nf318FBQVlVi49fvy4cnJyJKnSiQglqjsvSSkpKZo3b57+9a9/6ejRo65JHpWVra09e/ZIknJycipN3qnImTNn6jURprbP+4X69OlT6bnS9QYOHFhlfwYMOL8q8cGDB12JMKXbqCwZp3QbDZkIc+LECaWnp0uqfqeWupo+fbpee+01/fLLLxo0aJCuv/56jR49WldeeaVatWrVoNcGADRex1JytS42Vetj7fpPUrbb9fq0DdbYc8kvl7QMbMAeAgDqg91ur3GdwsJCOZ3FO4I5HI4Ky5iKKr6/KXMUOWRU8nzUVcnzLVX+nEvFySqly1VUtm/fvlW207t3b9dn9OjoaFe5I0eOuGIj/fv3r7If/fr1K9OnisrWJDZy5swZFRUVlUkAcfc52bVrl6Ti2EhNPuMmJCRUu6tvTdT2eZfKvq69evWqtI0DBw64jq+44ooqn5fScY/o6GhXrKR0G5dffnmVbVxxxRWuRJjKxptU/FpV1U7Ja28YRplyx44dc8VGrrzyyirbqE51fSiJjWzfvl39+/evt9iIyWQqM26LioqqHOvNjdPplNPpVGFhYa3ej9BwzGazrFar63Z6enqZ37tAY3Qxxq1hGDqcnKPVB1O0+lCKjqbkulUvNMBX4yLDNaFnS13ZxSp/3+KVfHOzMuReC2jKvOl3LrvjAQAAoDEzDEMpOYUXJLnkKy49T/Fp+UrObthdXQL9zIqwWhRxLrkl4lzSS8cwi9qHWlyfBQEAuBCJMADcUt0X176+vgoLC9OZM2fKfPla+ri6Ntq0aVPl+b1792ratGlKTU11o8dSXl6eW+UqkpycXKt6ubn1+9VLbZ/3C4WFhVV6rmS1Uneu17ZtW9dxZa9z69atq2yjuvN1VXp8lO5vQ3jyySeVkJCgxYsX6+zZs/roo49cq9D26tVL1113nebMmVPt2AYAeDenYeg/idnFyS+H7TqR6t7fID4maUCnUI3tYdOYHja1C7U0cE8BAPWp9AR7dzGJ27t5a2yktuOO2EjFiI2U1VCxkQvHLb8/K2YYRq3ej3DxOJ1OXiN4nfoat4Zh6NCZHK2JSdWamFSdtLsXLwkL9NW4SJsmRIVrUKdQ+fqUTHjidx6qxu9cAAAAoHL5DqcS0vMVd24nl5L/S5Je8hwNm1TeOsRPHcMCihNezu3oUpLwEh7Eri4AgNohEQaNjhFgU8rd2z3djYvKCGj8qwDVxx+bdWmjoKBA99xzj1JTU+Xn56d77rlHv/rVr9S9e3eFhYXJYimeOHr8+HHXLiV1+YK8JFDesmVLLVu2zO16nTt3rvU1K1Jff+SXXkGzoa/XnD6Y+Pn56c0339QDDzygpUuX6qefftLevXtVUFCggwcP6uDBg5o3b57mzZuna665xtPdBQDUI0eRUzvjMrX+XPLL2Sz3VsGx+Jo0tGuYxvWwaWT3MIUF+jVwTwEA3oa4SOPl6c/MxEbqhthIwyA2AgAozTAMRSdma01MqtbGpCo+Pd+tei2D/IqTX3qG64qOofI1N5/3UgAAAACoD4ZhKC3X4drRJS6tVKJLer7OZBaoIZeasfiaFGEN0CWtW6hzyyB1Dg9SuL9THUL91T7UogA/dnUBANQ/EmHQ+JjMMgJberoXTYLZXPwHZHXbgOfk5FTb1tmzZ6s873A4XKtnlt7eu/Rqm9W1cebMmUrP/fTTTzp+/Lgk6eWXX9asWbMqLFd6Bc+6CA8PlyRlZWUpKirK7ckS9a22z3tN1OQ1SkpKch1X9jqfOXNG3bt3r7SN6q5hMplkGEatx23Ja3dhfxtSz5499dxzz+m5555TXl6etm3bpiVLlujLL79Udna27rvvPm3fvl3t2rW7KP0BADSM3IIibTmernWHU/XzkTRl5ru3wmQLi49GdbdpXKRNQ7tYFejvmb8rAABegrhIvSI2UnvERipGbKRixEYAoPlyGob2n85yJb8kZha4Va9NiJ/GR4VrQlS4Lu/QQj4kvwAAAABAlQqLnErIKCje0SUtX/HpZZNecgobdleXlkF+xbu4hFnU0RpQ5v+WwX7y8/UtEzO12+3s2ggAaFAkwgBNWEhIiCQpPT29ynJHjhyptq0DBw7I4XDI17fiXxvR0dEqKCj+cqNXr16u+7t27arAwEDl5uZq9+7dVV5jz549lZ47dOiQ6/imm26qVRuS+yty9u3bV0uWLFF+fr727NmjgQMHulWvvtX2ea+J3r17u4537typadOmVVq29GtY+nql29izZ4+GDRvmVhsVCQkJUWZmZpUTdwzD0LFjxyo816VLF1mtVqWnp2vLli1VXqsydVm5NSAgQGPGjNGYMWPUp08fPf/888rNzdWPP/5Y6SQlAEDjlZZbqJ+OpGn9Ybu2Hk9TvsO9dXJah/hpbA+bxkaGa2DHFvL1YYUbAAA8gdhIecRGyiM2Uh6xEQBAVYqchvbGZxYnv8Smur1TbrsW/poQFa4JPcN1WfsQmZvRLmoAAAAAUB3DMJSRV+Ta1SU+/VzCy7mkl6TMAjkbcFsXPx+TOljPJ7dEWC3qGBagCGvxMQs+AgAaGxJhmojDhw/rq6++0qFDh1RUVKTOnTvr2muv1fDhwz3dNXhQ586dJRWv3Hn48GH16NGjXJmCggL961//qrYtu92ulStX6tprr63w/MKFC13HY8aMcR37+vpq+PDhWrNmjdavX6/ExMQKV350Op364osvKr2+w+FwHWdnZ7smslzYxoIFC6p8HBaLxXWcn59f5nZpkyZN0p/+9CcZhqH3339f//jHP6pst6HU9nmviXbt2ikqKkoxMTH69ttv9fzzz1f4/BYVFenzzz+XVLzK6eWXX+46169fP4WFhSktLU1ffvml7r///gonTCQkJGj9+vVV9qdz586Kjo7W3r17Ky2zevXqSicxmc1mTZw4UV9//bU2b96sffv2lemrO0rGRclEmtoaNWqU6zglJaVObQEALp6EjHytPZSs9bF27Y7LUJGbwcQu4QEady75pU+7YCZzAADQCBAbKY/YSHnERsojNgIAuJDDaWh3XIbWHErVuli7UnLcS36JsFqKk1+iiuMldUm2BAAAAABv5yhyKjGz4NxOLnnnklzyXckvWfkNu4OKLdD3XJJLgDqe+z8izKKOYRa1DvHnO24AgFdhWeIm4MCBA3r++ed18OBBDRs2TBMnTlRaWpr+/ve/67vvvvN09+BBpROh3n333QrLPP/880pISHCrvT/+8Y86c+ZMufs3bdrkmmTRr18/XXHFFWXOz5kzR1Lx5Iqnnnqqwi0P//73v+s///lPpdfu1q2b67hkwsGF/vKXv2jfvn1VPobSE02OHz9eabkePXrohhtukCQtW7ZM8+bNq7LdEydOaOnSpVWWqa3aPu81cdddd0mSkpOT9fvf/77CMq+++qpr9dlZs2aVmShjsVg0Y8YMScW/k+bOnVuuvsPh0OOPP17tBIqScbtz505t27at3PmkpKRK+1jigQcekNlslmEYuvfee3X69OlKy1Z0rm3btpKqHiMlE3EMo/LZ0aUntnTp0qXKPgMAPMcwDMUmZWru2lhd//bPmjxvp/629oR2nKo+CaZPu2A9OKqjvppzuZbc1U8Pje7MiqYAADQixEbKK/nMKxEbKY3YSFnERgAAUvEEra3H0/TiqqP61bxd+u2XB/X13jPVJsF0tgVozpUd9Nmsy7T8nn56ZExnXdo+hCQYAAAAAM1CZp5DB5OytfpQij7edlovrjqmB776r2785x6N+PsvmvLBXj341UH99cfj+vSXBK2JSdWhMzn1kgTjYzapU5hFw7padUu/Nnp0TGe9emOkFs2+TOsfHqgfHxyoj2+/TC9e10O/HdlJN/RtrYGdQtW2hYXvuAEAXocdYbxcUVGR3n//fZnNZv3pT39S165dJUm33HKLnnvuOS1evFhDhw5V69atPdtReMTll1+uwYMH65dfftGCBQtUUFCgW2+9VS1atNDRo0e1YMEC/fTTT64yVbn00ksVExOjq666So8++qgGDBig/Px8rV69Wu+//74cDod8fX318ssvl6s7adIkTZo0SStXrnSt4HnfffepW7duSk5O1ueff67ly5erf//+2rNnT4XXHzdunFq3bq2zZ8/qr3/9q06dOqXJkyerZcuWOnr0qD777DNt3LhRQ4YM0fbt2yt9HEOGDHEd/8///I8ef/xxtW3b1vXlS+fOneXrW/yr8dVXX9XevXt1/Phx/fGPf9T333+vadOmqVevXvL395fdbld0dLTWrl2rn376SZMnT9bUqVOre1lqpC7Pe03ceeedWrJkiX755RctXrxYcXFxmjNnjjp37qykpCQtWrRIK1askCR17dpVTzzxRLk2nnrqKX3zzTc6ffq0XnjhBR04cEDTpk1Tq1atdPToUc2bN0+7d++u8nWWpNmzZ2v+/PlyOByaOXOmnnzySQ0dOlQFBQXavn275s2bJ4fDoW7duuno0aMVttG3b189/fTTeumll3TkyBGNHj1ad911l0aOHCmbzaaMjAzt379fK1askI+Pj5YvX16m/uDBg/Xzzz9r9+7devPNNzVhwgQFBQVJkgIDA9W+fXtlZmZq5syZrh24BgwYoE6dOsnX11dJSUlauXKlPvvsM0lS+/btNXHixFq8MgCAhuI0DEUnZGldrF0bjth1IjXPrXo+Jmlgp1CN6WHTmB42tQuteAV1AADQOBAbKW/w4MGuY2Ij5xEbWV6mPrERAGi+ChxObTlq15qYVG04YldGnnsTsbq1DHTt/NK9VSBJLwAAAACarCKnoTOZBYpLv2BHl3PH6XmO6hupA2uAryKslnM7uQScP7YGqE0Lf/mY+TwGAGgeTEZVy7Wh0du7d69efPFFjR07Vg888ECZc+vXr9e7776radOm6ZZbbqn3aycnJ9e4TlJSkpxOp8xmc5nVJ9FwYmNjdeONN+rs2bMVnn/wwQfVs2dPPfLII5KKV5rs3Lmz6/yAAQN06tQpTZ8+XVdeeaWefvppORzl/1j39/fX3LlzddNNN1V4naysLE2fPr3SiRh9+/bVG2+8oauuukqS9NZbb7lW0Syxdu1a3XHHHcrLq3ii6ogRI/TSSy9p1KhR5doomcAhFU9s+Oabbyps48LHn5SUpHvuuUdbt26tsHxpM2bM0FtvvVVtOXfUx/O+adMmTZkyRZK0fPlyjRgxospr2u12zZw5s8rJMlFRUfr888/VqVOnCs8fPHhQN998c4WrtErSrbfequHDh1c63kq89957ev755ytsw2az6ZNPPtFLL72kzZs3a/jw4ZW+nm+88YZeeeWVCp+7EhXVT0hI0JgxY2S32ystf/LkSQ0cOLDSdku0bdtWCxcuVL9+/aote6HS47aqx9Ac8X7SePn4+Mhms7lu2+32Cle7BjyhsMipnacytT62eCLH2ayqVy8tYfE1a1hXq8ZG2jSqm03WQNYTQOPgTb9zW7Vq5ekuAPWOuIj3IDYyo9zny3vuuYfYSAWIjZzXGGIjxEUqx/tJ4+VNf6MDJXx8fBQYEqqNMWf1/YFE/RidqKwC98ZtZOsgTYgK1/hIm7q1CmrgngJledPvXOIiaKpqExsBLjZver8ASjBuG4fsgiLFp+WdS3LJL3Wcp4SMAjmcDTft1scktQstTm6JsAaoY5hFEdbzSS8tAhrn99WMXXgjxi28lTeN3YaMizTOd0QvkZ6ersOHD+vw4cM6cuSIjhw5oszMTEnSmDFj9OCDD7rd1tmzZ/X9999r165dSklJka+vr9q1a6dhw4Zp0qRJslgqXmk6Ojpakir8ErF///6SpP/85z81fGRoSiIjI7VmzRq98cYbWr16tZKSkhQaGqrLL79c99xzjyZOnKjFixe71dasWbPUu3dvvffee9q2bZtSU1PVsmVLjRo1So888oh69uxZad2QkBB98803+vjjj/Xll18qJiZGJpNJXbt21ZQpU3TfffdVOkGgxPjx4/Xjjz/qrbfe0k8//aSUlBRZrVZFRUXplltu0e233664uLhqH8e8efPUv39/fffddzp8+LCysrLkdDorLNu2bVt99913WrVqlZYtW6YdO3bozJkzKiwslNVq1SWXXKLBgwdr0qRJGj58eLXXro26PO81YbPZ9N133+nrr7/WkiVLtH//fqWlpalFixbq3bu3rr/+es2aNUv+/v6VttGrVy/9/PPPevvtt7VixQrFx8crJCREvXv31qxZszR16lS3xtv999+vqKgovffee9q9e7dyc3PVrl07TZgwQQ8//LA6duzo1mN6/PHHdcMNN2j+/PnauHGj4uLilJubq7CwMEVFRWnMmDGaPn16uXrt27fXypUr9eabb2rz5s1KSEgoN8moU6dOWrVqlVavXq3t27crLi5OZ8+eVXZ2tmtcTpo0SbNnz1aLFi3c6i8AoP7lFhRp8/F0rY9N1U9H09zeTjo0wEejutk0LtKmoV2tCvDzaeCeAgCAhkJspDxiIxUjNnIesREAaPryCou06Vi61sba9fMRu7LdTH7p3Ta4OPklKlydbQEN3EsAAAAAaBhOw9DZrIJzSS75ik/PKz4+t8uLPbdhF2YJ9vdRxwt3dDl33K6Fv3x9zA16fQAAmgJ2hKmDadOmVXquJokwO3bs0Ntvv63c3NwKz7dv317PPfec2rVrV+7c66+/rq1bt+qll15St27dyp2fPXu2goODNW/ePLf6UhOsfNo8lF59c+7cuZ7uTq152wqSTeV5R91427i9mHg/aby8KdscTVdaTqE2HknT+sOp2nYiXfkO9z7ytAsN0NWXttXwzsHq3yGY4CIaPW/6ncvKp2iKiIs0H03hM7o3fr5sCs876sYbx+3FwvtJ4+VNf6OjecopKNLPR9O0JiZVm46mKc9RcSLshS5rH6wJUS01PtKmiDCSX9A4eNPvXOIiaKrYEQbewJveL4ASjNuGU+Q09PmuRH2z/6xOpeWpsKjhps6aTVLbFv6KsAacS3Ip3t2lZGeX0AAfmUymBru+JzB24Y0Yt/BW3jR22RHGC7Rq1UoRERHau3dvjeodO3ZMf//731VQUKCAgABNmTJFl112mQoKCrRp0yatWbNGCQkJ+utf/6qXXnpJgYGBZern5ORIkoKCKt5uPDAw0FUGAAAAaKoSM/K1/rBd62JTtTsuU+7uRN01PEDjo1rqxoFddXlHq0wmU6P+cAgAAAAAAFATWfkO/XSkOPlly/E0txcM6RcRUrzzS2S42oVaGriXAAAAANCw8h1O/c+Kw1oXa6+3NoP8zMW7uIRZind1sQYUJ7yEBah9qL/8WHgRAIAGRSJMHdxyyy3q3r27unfvrrCwMJ05c0YPPfRQjdr4+OOPVVBQIB8fH/3P//yPoqKiXOcuu+wytW/fXp999pkSEhL03XffVbkLDQAAANBcGIahoym5Whdr1/rDqTqY5H7y96XtgjUuMlxje9jUtWXguVUSwhquswAAAAAAABdRRp5DGw/btSYmVVtPpLu1yrHJJA3pGq6x3a0a0z1MbVr4X4SeAgAAAEDDy8p36MnlMdp5KrPGdYt3dSlObinezaV4R5cIq0Vhgb5NblcXAAC8CYkwdVDXpJTDhw/rv//9ryRp3LhxZZJgSlx33XVat26d4uPj9f3332vq1Kny9T3/spXsBFPZri+5ubkKDg6uUz8BAACAxsBpGIpOyDqX/GLXSXueW/V8TNLATqEaG2nTmB42tW3BKqYAAAAAAKBpScsp1PrDdq2NSdW2kxkqcmO7XB+TNLCzVTdc0UlXX9pWbVoEsFMuAAAAgCYlObtAjyw5pJgzFc+vDPA1n9/RJSxAHUv9395qkcWXXV0AAGisSITxoO3bt7uOx40bV2EZs9msMWPGaNGiRcrOzlZ0dLT69evnOt+uXTtJUkJCgrp161amblpamvLy8tSjR48G6D2Aypw9e1bJyck1rufv76/u3bs3QI8AAPBehUVO7TyVoXWxdm04bFdydqFb9Sy+Zg2/xKqxPWwa2c0mayAffQAAAC4WYiMAAFwcKdmFWhebqrUxqdp5KkNubPwiH7NJQzqHakJUuMb0sKlViwDZbLaG7ywAAAAAXGRxaXl68KuDik/PL3N/sL9Zf/xVd/WLCFHLID92dQEAwEsxG8yDDh06JEmyWCzlklhK69OnT5k6pRNh+vTpo+XLl2vv3r0aMWJEmXp79uwpVx9Aw5s/f75effXVGtfr1KmTdu3a1QA9AgDAu+QUFGnzsTRtOGzXT0fTlJXv3iqkoQE+GtXNpnGRNg3talWAn08D9xQAAAAVITYCAEDDOZtVoLUxqVoTk6o98ZlyY+MX+fmYNLSLVeOjwjW6OwuGAEBTc/jwYX311Vc6dOiQioqK1LlzZ1177bUaPny4p7sGAIDHHDqTrUe+PqSUnLILLbYM8tObN/dUr7bBHuoZAACoL0Q5PSguLk5S8a4uPj6VT9Lr0KFDuTol+vbtq7Zt22rTpk2aPHmyunbtKknKycnRsmXL5Ovrq9GjR9d/59FsMPnAM3jeAQDNTVpOoTYeSdO6w6nafiL9/7N35/FRlvf+/9+zZieZLJAQ1qwIuCsiLgRRERVFy/Gc/tqeLufb9tSlrV20Wm1rrdW6t3bvOedre/x2sVpxXyGggjuKypKNLYEkhGQy2TPLff/+iKYOgzBgJvfcyev5ePh4MNfnvoYP+GEyc8/1uS4NhuNYxSFpUpZXC8uGml+OL86S28XR1AAAYGTxGd0a/L0DAPBPLV2DWl031Pzy7u4exXPXxOtyaMHMHC2uyNUZpTnKTOFrYQAYi95//33dcsst8nq9WrBggdLS0vTaa6/p3nvvVXt7u5YtW2Z1igAAjLo3d3Xp2ytr1RuM3nCxODtFv/qXWZqSk2pRZgAAYCRxx9MiwWBQ3d3dkqS8vLyDXpuZmamUlBQNDg6qvb09KuZyufTVr35Vt9xyi374wx9G3dhoa2vT5z73OU2cOPGwctv/9/g4B2ve+TgcIwgr7F93DodDphnf4tojcc011+iaa65J2PNjfBjturUrh8NxRD+PkDhOp/Ogj4GP2hMY0Jq6Dq2u7dDbTV1x7WAqSTPz0nRWRa4WledqdmHmJ36PSd3CrqhdAECy4t4IAACf3O7OAa2u82tVbbveb+6Na06K26nTS4aaX04ryVGGl3unADCWRSIR/e53v5PT6dRNN900vHHqihUrdN111+kvf/mL5s+fr4KCAmsTBQBgFK2u7dANT9YrGIn+8rmiIF2/WFGp/AyvRZkBAICRRiOMRQYGBoZ/nZp66A7j1NRUDQ4ORs370Ny5c3XzzTfrwQcf1Pr164ePuv3MZz5zREfdfu1rX4vrugcffPCwn3vfvn0yTVNOp1NuN+UHa7BoHnZE3Ub7cKGvx+ORz+ezOBscTHZ2ttUpIImYpqna1h49u6lFz21u0fu7u+Kee+zUHC2ZM0lL5hSqtCAzgVlSt7AvahcAAAAA7G2Xf0Cra4dOftnSGl/zS7rHqdNLfVpckasFM7KVRvMLAIwb77//vlpbW1VVVTXcBCNJ6enpuuSSS/TrX/9aa9eu1YoVK6xLEgCAUfTIu3t16/PbYzZgPGFKlu6+pIKTMgEAGGP4yW6RYDA4/Ot4GkI+vOaj8z6qrKxM119//cgkBwAAAIwQwzD1dmOnntvUomc3tWhHe19c89xOh+aX5GnJnEk6Z3ahCrM5nhoAAAAAAIw929v7tap26MTc2rb47ptkeF06s2zo5Jf503OU6uGEUAAYbYFAQPX19aqvr1dDQ4MaGhrU3d0tSVq4cKGuuOKKuJ+rra1NTz/9tDZs2KD29na53W4VFhbq1FNP1ZIlS5SSknLAeZs2bZIkHXvssTGx4447TpK0efPmw/yTAQBgP6Zp6r9f3aPfrmuKiS0q9+knF5Qpxc3nJgAAxhoaYSzi9f7ziL1wOHzI6z+85qPzEuU3v/lNwn8PAAAAjF3BsKFXtrXr2U0ten5zq9q6B+Oal+pxamFFgZbMKdTiWZOUne5JcKYAAAAAAACjyzRNNewban5ZVduhbe39cc3LSnGpqmzo5Jd507PlZREXAFjqy1/+8og8z5tvvqn77rtP/f3//HkwODg43FyzatUqXXfddSosLIyZ29LSIkkqKiqKieXk5Cg1NVXNzc0jkicAAMnKME3duXqnHny7NSZ2yTEF+t7ZM+VyOizIDAAAJBqNMBZJTf3njtYDAwOHvP7Daz46L1Hy8vLius7v9x/2c4dCIRmGISm+BiBgJDgcDrlcruHHkUhEpmkeZAZgPer24AzDkGEYCoVCR/TzCInjdDqVnZ09/DgQCAz/7MfY1heMaN02v6rrOvRSg189g5G45mWnunVmmU+LKvI0f0a20jxDr33GYI/88fXPfGLULezKTrXr8/msTgEAAAAALGOapmr29g03v+zyH/q7QUnKSXMPN7+cNG2CPC6aXwAgGeXn56u4uFgbN248rHnbt2/Xvffeq2AwqNTUVC1fvlxz585VMBjUunXrtGrVKjU3N+vWW2/VbbfdprS0tKj5fX1DJ4mlp6cf8PnT0tKGrwEAYCwKRQz98Oltem5re0zsP+ZP1n+eNkUOB00wAACMVTTCWMTr9SorK0vd3d1qb499I/ZRPT09GhwcWgUYb5PKaIhE4lvcCFht/+YBmglgB9Rt/Ph5lNwMw+D/0Rjm7wvpxQa/1tT59drOgIKR+F6rJmV5VVXmU1W5T8dPmSD3R3bgSYZ6oW5hV9QukPz4wg0AAGD8ME1Tm1t6h5tfdgfi2/EjL92jReU+La7MjblvAgBIHitWrFBpaalKS0uVk5OjvXv36sorrzys57j//vsVDAblcrl0ww03qKKiYjg2d+5cFRUV6YEHHlBzc7Mef/xxXXbZZSP9xwAAwLZ6gxFd82itXtvZFTXukPTts6br306IPU0NAACMLTTCWGjKlCnasmWLWlpaFIlEonb+/6g9e/ZEzbGzDxd8fLiTv9PJzlUAgMPz4c8QiYWEgBWaA4Oqru/Qmjq/3tndLSPOPr2ZuamqKs/VonKfjpqUwb9fAMC4xH0RAMAnZZrm8H0Rfo4AyccwTb3f3KNVNUPNLy3dwbjmFWR6dFZ5rhZX5OrY4iy5aH4BgKT3SZtS6uvrtWXLFknSokWLoppgPnThhRequrpau3fv1tNPP61LL71Ubvc/l/l8eBLMx5360t/fr4yMjE+UJwAAycjfF9I3Hq7R5tbeqHG306Gbzi/VklnJs9k4AABIHBphLFRZWaktW7ZocHBQ27ZtU3l5+QGv27x5c9QcO/N6vQqHw5KGbsZkZmZanBEAwG4+ejPf6/VamAkwPpimqYZ9/VpT71d1XYdq9h74C7UDmVuUoaqyXFWV+zQjNy2BWQIAYA/cFwEAfFIDAwPDv/Z4PBZmAuBDEcPUu3u6taq2Q6trO7S3JxTXvElZXi2uGGp+OXpyppxsGgIA48rrr78+/OtFixYd8Bqn06mFCxfqz3/+s3p7e7Vp0yYde+yxw/HCwqGd7pubm1VSUhI1t7OzUwMDAyorK0tA9gAAWGdPYFBXPrRVu/wDUeNpHqfuuLhC82dkW5QZAAAYbTTCWGjevHlauXKlJKm6uvqAjTCGYWjt2rWSpIyMDM2ZM2c0Uxxx6enpwwuYu7u7ZRiG0tLS5Ha72RUcAPCxTNNUOBxWf3+/env/uaPHhztdARhZhmnqvT09WlPnV3V9h5o6B+Oa53I6dNLULC0qz9WZpT5NzKJZDQCAj+K+CADgSJmmqYGBAQUCgeGxtDQ2HACsEjZMvdPUNdT8UudXe298zS/F2Sk664PmlzmFnJgLAONZTU2NJCklJSWmieWjZs+eHTXno40ws2fP1sqVK7Vx40addtppUfPeeeedmPkAANhdfVufrnp4q9r224AgJ82tn19aqTlFbD4FAMB4QiOMhcrKynTUUUdpy5Ytqq6uVlVVVcxxt0888YR2794tSVq6dGnUMbdWc7lcRzTno4s+ent71dvbK4fDwc1+JMz+9WWapkzTtDAj4NCo22gH+vOnp6crNTXVoozwcZxO50EfI3mFIoZe3xlQdV2H1tZ1aF+cCzhSPU4tmJmjsyrydEapTxNSk+f9aryoW9gVtQvYj8fjUVpamvr7+yVxXwSj56M/IwzDsDATIH7UbbT9/w68Xi8n5QKjLBwx9Gbj0Mkva+o65O8PxzVvak6Kzq7M0+KKXFVOTOd9HwBAktTU1CRp6FSXg629mDx5csycDx199NGaNGmS1q1bp/PPP18zZsyQNHQK7SOPPCK3260zzzxz5JMHAMAC7zR16+pHatQ9GIkaL5rg1X0rZmlGLhuGAAAw3thvlVoS2bp1q1paWoYfd3V1Df+6paVFa9asibq+qqoq5jm+8IUv6MYbb1QwGNRPfvITXXLJJZozZ46CwaDWr1+vF154QZJUVFSkZcuWJeTPcaR8Pt8RzcvJyVF7e7va2toksbgbiUeNwY6o22gOh0NOp3P4S+KCggLl5eXxpbENZGdz7HAy6x0Ma01Nm57d1KLqrXvVPRjfAo6cdI/OPmqSlswp1Bnl+Ur1HH6DdDKjbmFX1C5gD9nZ2XK5XOrp6Rke4/0/RhMNBbAj6jaa1+uVz+fjvggwCkIRQ6/tHDr55cV6vwID8d07mZmbqsUVeVpcmauy/DT+vQIAogSDQXV3d0uS8vLyDnptZmamUlJSNDg4qPb29qiYy+XSV7/6Vd1yyy364Q9/qAULFigtLU2vvfaa2tra9LnPfU4TJ0487Pz2/30+zpFsngqMNjaUgh1Rt7HW1nfo2kdrNRiOvkdUlp+uX112lCZmpViUGT6K2oUdUbewK2p3CI0wn8CqVau0du3aA8ZqamqGj7L90IEaYWbOnKlvfvObuu+++9Tf36+//OUvMdcUFRXpuuuuU1ra2Ohadjgcys/P14QJE9TT06Pe3l4Fg0G+zAQAfCyn0ymv16uMjAxlZmay4ynwCbT3DOqFLa16dlOrXq7fp2A4vvdgk7NTde6cQp07Z5LmzciV2zU+P0ABAPChT7LYIycnR5mZmRoYGNDAwIAikQj3RZAwDocj6pTpcDhM4xWSHnUb68N7I2lpaUpJSWFRfZLiy8exYTBs6JXtnXqhpl1r6zvUs99uwx+nvCB96OSXyjyV5qcnOMuRQ93Crqhd2NnAwMDwr1NTUw95fWpqqgYHB6PmfWju3Lm6+eab9eCDD2r9+vWKRCKaNm2aPvOZz2jBggVHlN/Xvva1uK578MEHj+j5ASuxoRTsaLzX7YNvNuq6R2oUMaLvDZ003af//vzJyk73WJQZDmW81y7sibqFXY3X2qURJgmcdNJJuvPOO/XUU09pw4YN6ujokNvtVmFhoebPn6/zzjtPKSljr2vZ6/UqNzdXubm5VqcCAAAwpjV29Om5za16dlOL3tzRISPO9WPlEzO1ZE6hlswp1NziCSy0AgDgI470pFwAADB+jNcvH+2oPxjR2tq9euq9Fq3a0qreYHzNL3OLJ2jp3CItnVuokoLMBGc5Oqhb2BW1CzsJBoPDv/5oA/jH+fCaj877qLKyMl1//fUjkxwAAEnkt2sbdNvTW2PGF8+aqF/+fycozcvpZAAAjGc0wnwCV1xxha644ooRea6CggJ9/vOf1+c///kReb7R4Pf7rU4BiIvT6Yy6+R0IBNhpF0mPuoVdUbvJwTRN1e/r0+raDlXXdqhmb2/cc4+enKmzKvK0qDxX03M/PJHQUGdnZ0JyTQbULezKTrVLwwAAAACAZNM7GFZ1zV49/V6LVm/dq/5QfM0vx07N0flzC7V0bpGm5dnn5BcAQPLwer3Dvw6Hw4e8/sNrPjovkX7zm9+Myu8DAMDHMQxTtz69RX94aXtMbMWJU3TbpUfL7eJEQAAAxjsaYXDEIpH4vhAAko1hGNQvbIe6hV1Ru6PHME29u6dHa+o6tKber6bOwbjmuZwOnTQ1S4vKc7WwzKeCzH9+kTZe/99Rt7ArahcAAAAADq57IKTVW/fqqfeataamTYPh+DYTOHG6T0vnFuq8uYWa4qP5BQDwyaSmpg7/emBg4JDXf3jNR+clUl5eXlzXsXkq7MBOG0oBHxrvdRuKGLrp6QY9uaktJvaFUybr6wunqrsrYEFmOJTxXruwJ+oWdmWn2k3kxqk0wgAAAAA2FQwbemNXl9bU+/VivV/tfaG45qW6nVowM1uLynN1ekmOslL5WAAAwOFisQfswk43woEPUbewK2o3OXUNhLW2vkMv1LTrle2dCkXMQ85xSDp+6gSdXZmnxRW5mpiV8kFkUH5/fJuP2AV1C7uyU+1yUi725/V6lZWVpe7ubrW3tx/02p6eHg0ODv3sibdBZbSwKQ/siA2lYEfjqW77gxF97/F6rdveGRP7ZtU0ffakoqR9z4dY46l2MXZQt7Cr8Vq7rHgDAAAAbKQ3GNH6bZ2qrvdr3bZO9Qbj+xCTnebWmaU+VZX5dMr0bKV6OCoaAIBPYjzeSMTYMF5vhMPeqFvYFbVrnc6+kNY0+LW6tkOv7+xS2Dh084vTIZ04dYIWV+Sqqtyn/IzxeWoudQu7onZhN1OmTNGWLVvU0tKiSCQil8t1wOv27NkTNQcAgLEq0B/WN/9Ro/eae6LGXQ7pB+eV6II5BRZlBgAAkhWNMAAAAECS6+gN6cUGv6rr/Hp9VyCunUslqTDLq6pyn6rKcnXclCy5nY4EZwoAAAAAAGCNjt6Qqus7tKq2Q2/t6lI8t09cTofmTZugsypyVVXmky/dk/hEAQCQVFlZqS1btmhwcFDbtm1TeXn5Aa/bvHlz1BwAAMai1u5BXfVQjba190eNp7id+tlF5Tq9JMeaxAAAQFKjEQYAAABIQrs7B7Sm3q819X5t3N2tODYulSSV5KVpUblPi8pzVTkxXQ4HzS8AAAAAAGBs2tcT1Oq6oeaXt5viu3/idjo0f0a2Flfk6sxSn7LT+LoUADD65s2bp5UrV0qSqqurD9gIYxiG1q5dK0nKyMjQnDlzRjNFAABGxfb2fl350Fa1dgejxiekunTvpZU6ZnKWRZkBAIBkx51dAAAAIAmYpqn6ff2qruvQmjq/atv64p57zORMLSwban6Z5ktNYJYAAAAAAADWaukaVHWdX6tqO7Rxd7fi2TvE63Lo1Jk5WlyRqzNKcpSVylekAABrlZWV6aijjtKWLVtUXV2tqqoqVVRURF3zxBNPaPfu3ZKkpUuXyu1Orp9fLpfL6hSAQ3I6nQd9DCSj8VS37+3p1lV/36LAQDhqfGKmV7++bLZKC9ItygxHYjzVLsYO6hZ2Re0OSa5PybAVbmrALnjBhx1Rt7AravfwRAxT7+7pVnVth6rr2tXUORjXPLfToZOnZWtRRa6qynNVkOlNcKZjG3ULu6J2AQAAAIwXewKDWl07dPLLe809cc1JcTt12sxsLa7M0+klOcrw8r0WAGDkbN26VS0tLcOPu7q6hn/d0tKiNWvWRF1fVVUV8xxf+MIXdOONNyoYDOonP/mJLrnkEs2ZM0fBYFDr16/XCy+8IEkqKirSsmXLEvLn+CR8Pp/VKQCHLTs72+oUgMM2Vut2Tc1efe2vm9UfikSNlxZk6E//cYqKc9IsygwjZazWLsY26hZ2NV5r12GaZjwbJQEAAAAYAYPhiNY3tOu5TS16fnOr9vUEDz1JUrrXparKAi2ZU6iqyonKTvMkOFMAAHAw+/btszoFIC4ulytqcZLf71ckEjnIDMB61C3sitodWY3+Aa2q7dDq2g5tbu2Na06ax6nTS4ZOfjltZo7SaH45JOoWdmWn2s3Pz7c6BSTAr371K61duzbu6x988MEDjr/55pu677771N/ff8B4UVGRrrvuOhUWFh5RngAAJKOVb+/Wd/6+UWEjeunqcVNz9D9fOFm5GWwECQAADo0TYQAAAIAE6xkMq3rrXj27qUVratrUMxg+9CRJvnSPzj5qkpbMKdTp5flK9bB4AwAAAAAAjF072vu1qm7o5JfavX1xzcnwOnVmqU+LK3I1f0aOUj2clgkAsI+TTjpJd955p5566ilt2LBBHR0dcrvdKiws1Pz583XeeecpJSXF6jQBABgx//3ydt38xOaY8TMrCvTbz56gdC9LWgEAQHw4EQYAAABIgH09g3phc6ue3dSidfXtCkaMuOYV56Tp3DlDzS8nTffJ7WLxBgAAyYgTYWAXdtopG/gQdQu7onYPn2maatjXr1W1Q80v29oPvBv+/rJSXFpYNtT8csr0bHnd3D85UtQt7MpOtcuJMBir/H6/1SkAh+R0OpWdnT38OBAIyDDi+84OsMpYrVvTNHXfi7v0f1/dHRNbOjtfN51fJg/fjdvaWK1djG3ULezKTrX70fs3I432WRwxbmrALuz0gg98iLqFXY332t3dOaDVtR2qrmvXO03dirfjvCw/XYsqcnVWRa4qJ2bI4XBIkrq7AolLFsPGe93CvuxUu4m8sQEAAADAXkzTVG1b33Dzy86OgbjmZae5teiD5peTpk1ggRQAABZL1uYz4GAMw6B2YTtjoW7DhqmfPrddj73fFhP79ImFurpqmpwybf/nRLSxULsYf6hb2NV4rV0aYXDExuM/GIwN4/UFH/ZG3cKuxnrtmqapurY+Vdf5tbber9q2vrjmOSQdPTlTVWU+LSrP1VRf6nAsWRexjydjvW4xdlG7AAAAAJKVaZra0to73PzS1DkY17zcdLcWledqcUWuTpg6QW6nI8GZAgAAAABG0kDI0PVP1OnFhs6Y2JVnTNXn5xUNbxQJAABwOGiEAQAAAA5DxDD17p5uranza029X7sD8S3ccDsdOnnaBFWV+7Sw1Kf8TG+CMwUAAAAAALCOYZra1Nwz3PzS3BWMa15+hkdnVQw1vxxXnCUXzS8AAAAAYEvdA2F9a2Wt3m7qjhp3OqTrz52p5UdPtCgzAAAwFtAIAwAAABxCMGzo9V1dWlPXoRcb/OroC8c1L83j1Gkzc1RV7tPpJTnKTOHtNwAAAAAAGLsM09S7u4eaX1bXdai1O77ml0lZ3uHml2MmZ8rJbsAAAAAAYGttPUFd9dBW1e/rjxpPcTt0y4VlqirLtSgzAAAwVrASDwAAADiAnsGw1m0PaE1dh9Zt61RfyIhrXk6aW2eW+rSo3Kd507OV4nYmOFMAAAAAAADrRAxTbzd1a1Vth6rrOrSvNxTXvMkTUrS4IleLK3M1uzCD5hcAAAAAGCN2+Qd05d+3ak/XYNR4ZopL91xSoeOnTLAoMwAAMJbQCAMAAAB8oL03pBcb/Kqu69Abu7oUiphxzSua4FVVea4Wlfl0THGW3E4WbgAAAAAAgLErHDH0ZuNQ88uaug75++M7PXdqzgfNLxV5mjUpXQ6aXwAAsC2Xy2V1CsAhOZ3Ogz4GkpHd63ZzS4+u/Ptm+fuiPyfmZ3r0q3+ZrYqJGRZlhkSze+1ifKJuYVfU7hAaYQAAADCuNXUOaE2dX9X1HXp3d4/ia32RyvLTVFWWq6pynyonsnADAAAAAACMbaGIodd3dmlVbYfW1vsVGIiv+WVGbqrOrsjT4spcleWncQ8FAIAxwufzWZ0CcNiys7OtTgE4bHaq23X1+/SVv2xSbzASNT4zP0N/+tI8Tc1NtygzWMFOtQt8iLqFXY3X2qURBgAAAOOKaZqqbevTmjq/1tT7VdfWF9c8h6SjJ2dqUXmuqsp8mupLTWyiAAAAAAAAFhsMG3ptZ0Crajq0tsGvnsHIoSdpaAORoZNfclWSz0InAAAAABjrnny3WVf/7R0FI0bU+NziCbr/i/OUn5liUWYAAGCsohEGR4xjbmEXHAEGO6JuYVfJWrsRw9TG3d1aXduuNXUd2h0YjGue2+nQvOnZOqsiVwvLcpWf6U1wprBCstYtcCjULgAAAIBEGAgZemVHp1bVduilBr96g8ahJ0mqnJiuxRW5OqsiVzNy0xKcJQAAAAAgWfzvKzv0g8c2yTSjxxeU5ul3nztRWakeaxIDAABjGo0wOGIccwu7Gq9HgMHeqFvYlZW1OxCKaH3DPj37fqte2NKq9t5gXPMyvC5VVU7UuXMmadGsiZrATblxh9dc2BW1CwAAAOBI9QcjWrd9qPnl5W2d6g/F1/wyuzBj+OSXKTmcngsAwHji9/utTgE4JKfTGXXvPBAIyDDie68LWMVOdWuapn63rlG/W9cUEzunMk8/ubBc4f4e+fstSA6jzk61C3yIuoVd2al2E9lvQCMMAAAAxozugZCqa9r07KYWrdm6V73BSFzz8jK8OvuoSVoyd5IWlOYr1cPJdwAAAAAAYGzrGQzr5W1DzS/rtwc0GI7vi9JjJmfqrIpcLS7PVVF2SoKzBAAAySoSie87GCCZGIZB7cJ2krVuI4ap21ft0MMb98bE/uW4ifrOWTPkcphJmTtGR7LWLnAw1C3sarzWLo0wAAAAsLW27kE9v7lVz25q0fqGfQpFzENPklSck6Ylcwq1ZM4knTQjVy6nI8GZAgAAAAAAWKt7IKy1DX6tqu3QazsCCsZxH8Uh6bgpWVpckatF5T5NyqL5BQAAAADGs2DY0I1PNWhVbUdM7CsLivXlU4vlcPD9OwAASCwaYXDEOOYWdmGnI8CAD1G3sKvRqt1G/4Cq69pVXduhjbu7FV/ri1RekK5F5bk6qyJPFRPTh2++dQU6RzxH2AevubArO9VuIo+6BQAAAHBwnf0hra0fan55fWeXwsah76Q4HdKJUydocUWuqsp9ys/wjkKmAAAAAIBk1zMY1ndW1unNxq6ocYeka8+eoRXHTbImMQAAMO7QCIMjNh6PUMLYMF6PAIO9Ubewq5GqXdM0VdvWpzV1flXXdah+X39c8xySjinO1KKyoUUbU3JSo3IDDoTXXNgVtQsAAADgQx29Ia2p92tVbbve3NWleA7QdTmkk6dnDzW/lPnkS/ckPlEAAAAAgG2094b09Ye3qmZvX9S4x+XQzeeX6uzKPIsyAwAA4xGNMAAAAEhKEcPUxt3dqq73a22dX3u6BuOa53Y6NG/aBFWV5+rMshx2LAUAAAAAAOPCvp6gquuGTn7Z0NSlOA5+kdvp0CkfNL+cWZajnDSaXwAAAAAAsZo6B3TlQ1vV1Bn9vX2G16k7l1fo5GnZFmUGAADGKxphAAAAkDQGw4Ze3xlQdZ1fLzb41dkfjmteusep00pyVFWeq9NmZiszhbe5AAAAAABg7GvtHhxufnmnqVtx9L7I63Jo/owPml9KfcpK5T4KAAAAAODj1e7t1VUP16i9NxQ1npvu1i8+NUuzJmVYlBkAABjPuLMNAAAAS/UMhvXytk6tqfNr/fZO9YWMuOb50txaWOZTVXmuTp42QSluZ4IzBQAAAAAAsF5zYFCr6jq0urZD7+7piWtOitupBTOHml9OL8lhExEAAPCJuVwuq1MADsnpdB70MZCMkq1u39wV0NUPb1VPMBI1Xpydol//62xN86VZlBmSTbLVLhAP6hZ2Re0O4S43AAAARt2+3qDW1vu1ps6vN3Z1KWzEs1+pNHlCiqrKfVpU7tMxk7PkcjoSnCkAAAAAAID1mjoH9EJNh1bXdWhzS29cc9I8Tp1ekqPFFbk6bWaO0rwsVgUAACPH5/NZnQJw2LKzs61OAThsVtbtM++36Ot/36JgOHozy6OKJuiPXzxZEyekWpQZ7IDXXNgRdQu7Gq+1SyMMAAAARkWjf0Br6v2qruvQe3t6FF/ri1RekK6qsqHml/KCdDkcNL8AAAAAAICxb0dHv1bVdmhVbYdq9/bFNSfD69SZpT6dVZGrU2dkK9VD8wsAAAAA4PD99fVduv6R97T/npbzZubqvz5/kiakeqxJDAAA4AM0wgAAACAhTNPU1tYerdrarur6DjXs649rnkPSscVZqir3qarMpyk57CIDAAAAAADGPtM0ta39n80v8d5LyUpxaWGZT4srcjVverZS3M4EZwoAAAAAGKtM09Sv1zTojmdrYmLnzp6kX3z6eDZdAAAASYFGGAAAAIyYiGHq1W3tenZTi57b1KrdnfEt2PC4HDp52gQtKs/VmaU+5WWwewwAAAAAABj7TNNUXVvfcPPLjo6BuOZlp7pVVT7U/HLytAnyuGh+AQAAo8vv91udAnBITqdT2dnZw48DgYAMw7AwI+DQrKxbwzR156od+stbzTGxS46ZqOuXlKi/p0vxrQLAeMNrLuyIuoVd2al2fT5fwp6bRhgcMZeLzm7Yg9PpPOhjIBlRt7CTwbCh13Z0anVth16s75C/PxzXvAyvS6eV5OisijydVpKjzBTemsIavObCrqhdAAAAwJ6GTtHt06radq2q7VBj52Bc83xpbi2qyNXiilydOCVLbppfAACAhSKRiNUpAIfNMAxqF7YzWnUbihj60dPb9OzW9pjYl+ZP1tdOmyKHaYh/QogXr7mwI+oWdjVea5fVhjhiiezQAhLpo12QgF1Qt0g2XQMhVW/dq2c3tWhNTZv6gvG9kc7L8Oqc2ZO0ZE6hFpTlKcVNYy2SD6+5sCtqFwAAAEhepmlqU0uvVtUMnfyypyu+5pe8DI/OKh9qfjl+SpZcTkeCMwUAAAAAjDd9wYiueaxOr+4IxMS+c9Z0/dsJhRZkBQAAcHA0wgAAACAue7sG9PyWVj27qVWvNOxTKGLGNW9qbpqWzC7UkrmFOmGajwUbAAAAAABgXDBMU+80dWtVXYdW13aotTsY17xJWd7h5pdjijPldHAvBQAAAACQGJ19IX3jHzXa1NIbNe5yOnTT0hKdd1S+RZkBAAAcHI0wAAAA+Fg79vXq2U0tenZTi95u7JQZX++LjiqaoCVzJunc2YU6qihLDhZsAAAAAACAcSBimHp9e4eefr9ZT723R/t6QnHNmzwhRWdV+LS4Ildzimh+AQAAAAAkXnNgUFc+vFU7OwaixtM8Tt1+UblOnZljTWIAAABxoBEGR8zv91udAhAXp9Op7Ozs4ceBQECGYViYEXBo1C2sYpqmtrb2anVth9bUdah+X19c8xySjpuSpbMq83XxCTM0LS9d0lDtdnZ2Ji5hYATwmgu7slPt+nw+q1MAAAAAEiZsmHqrsUur6/xaW+/Xvp74Tn6ZkpOisytytbgiT7MmpbORCAAAAABg1DTs69NVD23V3v02cMhOc+vnl1ZqblGmRZkBAADEh0YYHLFIJGJ1CsARMQyD+oXtULdIpLBh6p2mbq2p79CaOr9auuNbrOFxOTRvWrYWlft0ZqlPuRkeuVwu+Xzpw9dQu7Aj6hZ2Re0CAAAAoycUMfTGri6tqu3Qmnq/Av3huOZNz039oPklV+UFNL8AAAAAAEbfxt3duvqRGnUNRH+vVJjl1S9XzNKMvDSLMgMAAIgfjTAAAADj0EDI0Ou7Aqqu8+vFhvgXa2R4nVowM0eLynO1YGa2MlN4OwkAAAAAAMaHYNjQazsDWlXbobX1fnUPxteIXpqfpsUfNL+U5KXR/AIAAAAAsMzLDX5d+3i9BsNG1HhJXpruW1GpSVkpFmUGAABweFi5CAAAME50D4T18rZOVdd16JUdAfWHjENPkpSb7tbCMp+qynJ18rQJ8rqdCc4UAAAAAAAgOQyEDL26o1Orajv0YkOneoPxNb/MLpqgRWU5WlSWw066AAAAAICk8MT7bbr52W2KmNHjx0zO1D2XVCo7jeWkAADAPnjnAgAAMIbt6wlqTb1fa+r9emNXlyKGeehJkoqzU7SofKj55ejJmXI52akUAAAkr/r6ev39739XTU2NIpGIpk2bpgsuuEALFiywOjUAAGBD/cGI1m0fan55eVtn3JuJzC7M0LLjpmrp3ELNyM+Q3+9XJBJf4wwAAAAAAIn0p9f36BcvNsaMn16So9uWlSnV47IgKwAAgCNHIwwAAMAYs8s/oOq6Dq2p8+u95p6451UUpKuq3KdF5bkqy0+Tw0HzCwAASH7vv/++brnlFnm9Xi1YsEBpaWl67bXXdO+996q9vV3Lli2zOkUAAGADvcGIXt7WqVU17Vq3PaDBcHzNL0cXZWpxRa7OqsjV1Nx0+Xy+BGcKAACQHFwuFkwj+TmdzoM+BpLRSNetYZr6+Zqd+tPre2Jiy+YW6MbzSuVx8W8DnxyvubAj6hZ2Re0OoREGAADA5kzT1NbWPlXXDzW/bGvvj2ueQ9JxU7JUVeZTVZlPxTmpiU0UAABghEUiEf3ud7+T0+nUTTfdpBkzZkiSVqxYoeuuu05/+ctfNH/+fBUUFFibKAAASErdA2G92ODXqtoOvbojoGDk0Cfpfng/ZXFFrhaV+zQpKyXxiQIAACQhGoBhR9nZ2VanABy2T1K3oYihax9+V//YENsE89UzS/S9pbPYIBMJw2su7Ii6hV2N19qlEQYAAMCGwoapd5q6teaD5peW7mBc8zwuh06Znq2qcp/OLPEpN8OT4EwBAAAS5/3331dra6uqqqqGm2AkKT09XZdccol+/etfa+3atVqxYoV1SQIAgKQS6A9rbf1Q88trOwMKG4dufnE6pBOmTBhufsnP9I5CpgAAAAAAHLn+YERX/HmDVm/dGxO7/vxZ+sqZpRZkBQAAMHJohAEAALCJgZCh13YGtKauQy9u61SgPxzXvAyvU6eV+LSozKcFJTnK8HJUPQAA+OQCgYDq6+tVX1+vhoYGNTQ0qLu7W5K0cOFCXXHFFXE/V1tbm55++mlt2LBB7e3tcrvdKiws1KmnnqolS5YoJeXAO61v2rRJknTsscfGxI477jhJ0ubNmw/zTwYAAMYaf19Iaz5ofnljV5cicTS/uBzSSdMmaHFFnqrK2EwEAAAAAGAfnX1Bfen+N7RhV2fUuMvp0O2fOkafOnGKNYkBAACMIBphAAAAklj3QFgvb+tUdV2HXtkRUH/IiGteXrpHZ5b5tKjcp5OmTpDX7UxwpgAAYLz58pe/PCLP8+abb+q+++5Tf3//8Njg4OBwc82qVat03XXXqbCwMGZuS0uLJKmoqCgmlpOTo9TUVDU3N49IngAAwF729Qa1pm6o+eWtxi7F0fsit9OhedOHTn5ZWOZTThrNLwAAAB/H7/dbnQJwSE6nU9nZ2cOPA4GADCO+71sBq3zSum3tGtTlD27Wtvb+qPFUt1O3L6/QGSUZvIYjIXjNhR1Rt7ArO9Wuz+dL2HPTCAMAAJBk2nqCWlvvV3Vdh95s7I5rl1JJmpKTokVluVpY7tPRRZlyOR0JzhQAAGBIfn6+iouLtXHjxsOat337dt17770KBoNKTU3V8uXLNXfuXAWDQa1bt06rVq1Sc3Ozbr31Vt12221KS0uLmt/X1ydJSk9PP+Dzp6WlDV8DAADGvr3dQa2u69Dq2g693dSteO6oeFwOzZ+RrcUVuTqz1KcJqXx1BgAAEI9IJGJ1CsBhMwyD2oXtHE7d7mjv1xUPbVVrdzBqfEKqS/dcUqlji7P4N4BRw2su7Ii6hV2N19rlbj4AAEAS2NnRr+o6v9bW+/Vec0/c8yompmtRmU+LynNVmp8mh4PmFwAAMDpWrFih0tJSlZaWKicnR3v37tWVV155WM9x//33KxgMyuVy6YYbblBFRcVwbO7cuSoqKtIDDzyg5uZmPf7447rssstG+o8BAABsrqVrUKtqO7SqtkPv7onvnkqK26EFM3O0uCJXp5fkKDOFr8sAAAAAAPb2fnOPvvGPGgX6w1HjEzM9um/FLJXmH3hDKQAAALvizj6OmMvlsjoFIC5Op/Ogj4FkRN2OfaZpaktrr6prO7S6tj3mWOKP43RIx02ZoLPKc7WoIleTs1MTnOnhoXZhR9Qt7IrahdU+aVNKfX29tmzZIklatGhRVBPMhy688EJVV1dr9+7devrpp3XppZfK7f7n7awPT4L5uFNf+vv7lZGR8YnyBAAAyaepc0CraodOftnU0hvXnFS3U2eUDjW/LJiZo3Qv33EAAAAAAMaGV3d06ruP1qk/ZESNT89N1a9WzFLhhBSLMgMAAEgcGmFwxHw+n9UpAEckOzvb6hSAw0bdjg3hiKHXd3TouU2tem5Ti/YEBuKa53U7dXpZvpbMmaSzj5qkvEz73KSidmFH1C3sitqF3bz++uvDv160aNEBr3E6nVq4cKH+/Oc/q7e3V5s2bdKxxx47HC8sLJQkNTc3q6SkJGpuZ2enBgYGVFZWloDsAQDAaNvZ0T988kvN3gM3we4vw+vUGaU+La7I1akzspXqofkFAAAAADC2PLNln3749DZFDDNqfHZhhn5xaaVy0j0WZQYAAJBYNMIAAAAk0EAoohdr2/Tsplat2tqqzr5QXPOyUtxaNGuilswp1MLKAmWm8LYNAACMLTU1NZKklJSUmCaWj5o9e3bUnI82wsyePVsrV67Uxo0bddppp0XNe+edd2LmAwAAe9m2r2+4+aV+X3yn6WamuLSw1KfFlbk6ZXq2UtycnAgAAAAAGJv+uqFFd67eGTM+f0a2br+onNNQAQDAmMaKSgAAgBEW6AtpdU2rnn2/VWtr29QfisQ1ryArRefMnqRzZ0/SgtJ8eVmoAQAAxrCmpiZJQ6e6uFwf/2Xc5MmTY+Z86Oijj9akSZO0bt06nX/++ZoxY4Ykqa+vT4888ojcbrfOPPPMkU8eAAAkhGmaqt/Xr1U1HVpV267tHfGdppud6tbCsqGTX+ZNnyCPi3sqAAAAAICxyzRN/frlJv3f1/bExJbMytOPlpbw2RgAAIx5NMLgiPn9fqtTAOLidDqVnZ09/DgQCMgwDAszAg6NurWfvd2DWlPXodW1HXqrsUvh/Y4d/jhTc1K1qCJXi8pzdUxxlpwOhySptzug3kQmnCDULuyIuoVd2al2fT6f1SkgyQSDQXV3d0uS8vLyDnptZmamUlJSNDg4qPb29qiYy+XSV7/6Vd1yyy364Q9/qAULFigtLU2vvfaa2tra9LnPfU4TJ048rNz2/z0+zsGad4Bk4nQ6D/oYSEbU7fhimqa2tvbqhZp2vVDTrl3++JpffOlunVWep7Mr83TitORofqF2YUfULeyK2gUAAONV2DB12/PbtfK9tpjYv50wSd9aNH143QEAAMBYRiMMjlgkEt/u9kCyMQyD+oXtULfJaUdHv9bU+bWmvkPvN8fftlI5MV2LynNVVeZTaX6aHB/chDINQ2Pt/zK1CzuibmFX1C7sZGDgnwtcU1NTD3l9amqqBgcHo+Z9aO7cubr55pv14IMPav369YpEIpo2bZo+85nPaMGCBYed29e+9rW4rnvwwQcP+7mBZPDRJkrALqjbscc0TW1sCujp95r11PvNauzoj2teQVaKzptTqPOPLtLJM3xyJ0Hzy8FQu7Aj6hZ2Re0CAIDxYCBk6IYn67WmPnYD68tPn6IvnjJ5eP0BAADAWEcjDAAAQJxM09SW1l5V1/m1pq5D2zvi26HU6ZCOK85SVblPVWW5mpydkuBMAQAAklswGBz+tdt96NtTH17z0XkfVVZWpuuvv35kkgMAAAlhGKY27PLr6fdb9PR7zdoTiO++SuGEVC09ulBL5xbpxOk+uZws6AEAAAAAjD/dA2F9e2WtNjR1R407HdL158zU8mMO73R0AAAAu6MRBgAA4CDChqm3m7pUXefX2nq/WrsPvPhyf16XQ6dMz1ZVuU9nlvrkS/ckOFMAAAD78Hq9w78Oh8OHvP7Daz46L1F+85vfJPz3AABgvIgYpt7Y0aGn32vWM5ta1No1GNe84pw0nX90oZYeXaTjpuTISfMLAAAAAGAc29cT1FUP16iurS9q3Oty6KcXlqmqPNeizAAAAKxDIwwAAMB+BkIRvbojoDX1fr3U0KnAwKEXZ0pShtelM0pzVFXm06kzc5ThdSU4UwAAAHtKTU0d/vXAwKF3g//wmo/OS5S8vLy4rvP7/QnOBBgZTqdT2dnZw48DgYAMw7AwI+DQqFt7Cxum3toV0As17Vpd26GOvlBc86bkpOjsynydXZmn2YUZcjiGml8Cgc4EZjuyqF3YEXULu7JT7fp8PqtTABLC5eJ7MCQ/p9N50MdAMtq/Ths7B/W1v27W7kD05hKZXpfu+dQsnTQtW0Ay4DUXdkTdwq6o3SE0wgAAAEjqGgjrpQa/1tT79cr2gAbC8X1hlpfh0cIynxaV+XTStAnyuMbnm0oAAIDD4fV6lZWVpe7ubrW3tx/02p6eHg0ODn3BF2+TymiIRCJWpwAcEcMwqF/YDnWb/MIRQ2/s6tKq2g5V1/sV6I9vU5FpvlSdXZmrxRW5qihIH25+SdaFzIeL2oUdUbewK2oXGH00ecGOPtpECdjB+7sD+uID76m9Nxg1XpCVoj9+cZ5mT55gUWbAofGaCzuibmFX47V2aYQBAADj1t7uoNbUd2hNvV9vNXYrYphxzZuak6Kq8lwtKvdpblGmnB8s0gAAAED8pkyZoi1btqilpUWRSORjdxHds2dP1BwAAJAcgmFDr+8MaFVth9Y2+NU1EN/i45K8NC2uGGp+Kc1PG25+AQAAAAAA/7S+fp++8r9vqWcwerOJGXnp+tOXTtG0vHSLMgMAAEgONMIAAIBxJWyYWvnuXj3+fps2tfTGPW/WpHRVleWqqszHIg0AAIARUFlZqS1btmhwcFDbtm1TeXn5Aa/bvHlz1BwAAGCdgZChV3d2alVth16s71RvML7ml4qCdJ31QfPLzLy0BGcJAAAAAIC9PfVes77513cUjESfmDpn8gTd/8V5KshKsSgzAACA5EEjDAAAGDd6BsO67vF6vbIjcMhrnQ7puOIsLSofan4pyuZGEgAAwEiaN2+eVq5cKUmqrq4+YCOMYRhau3atJCkjI0Nz5swZzRQBAICk/mBE63cMnfzycoNffSHj0JMkzZ6UobMqcnVWRa6m+VITnCUAAABGm9/vtzoF4JCcTqeys7OHHwcCARlGfJ9pAKs89E6rfvpcg0wzenze9GzddUml3OE++f191iQHHASvubAj6hZ2Zafa9fl8CXtuGmEAAMC40Ogf0NWP1GhHx8DHXuN1OXTKjGwtKsvVmaU5ykn3jGKGAAAA40tZWZmOOuoobdmyRdXV1aqqqlJFRUXUNU888YR2794tSVq6dKnc7uS5leVyuaxOAYiL0+k86GMgGVG31usdjOilBr9eqNmndds6NRCO7wu0oydn6uzKPC2uyFNxzvhrfqF2YUfULeyK2gWsF4nEdzogkEwMw6B2kbRM09QfXtmt36/fHRNbXJGrm88vldftoIZhG7zmwo6oW9jVeK3d5Fk9AAAAkCBv7gro2sfqFRgIx8QyU1w6oyRHC8t8WjAzR+leFjQCAADEY+vWrWppaRl+3NXVNfzrlpYWrVmzJur6qqqqmOf4whe+oBtvvFHBYFA/+clPdMkll2jOnDkKBoNav369XnjhBUlSUVGRli1blpA/x5FK5M41QCJ9dHcowC6o29HRNRDSqi2teuq9Fq2tbVMwjuYXh0M6abpPS+cW6by5hZqckzYKmdoHtQs7om5hV9QuAACws4hh6s7VO/T3d/bGxP7l+En6zqLpcjkdFmQGAACQvGiEAQAAY9o/Nu7Vz1btUMSIPjfYl+bW95fM1Gkzc+RxsVMcAADA4Vq1apXWrl17wFhNTY1qamqixg7UCDNz5kx985vf1H333af+/n795S9/ibmmqKhI1113ndLSWFgLAMBI6+wL6vnNrXr6/Ra9XLdPwcihm1+cDmnezFydf3SRlswp1KQJ4+/kFwAAAAAARkowbOgHTzXohdqOmNg3zy7Xv5+QL8OI76RWAACA8YRGGAAAMCaFDVP3rtmpv25ojYmVF6Tr7uUVKspOsSAzAAAAfNRJJ52kO++8U0899ZQ2bNigjo4Oud1uFRYWav78+TrvvPOUksL7NgAARkqgP6Sn32vWU++3aH39PoX32zzkQFxOh04tydPSowt17uxCFWTxsxkAAAAAgE+qNxjRd1fW6vVdXVHjDof044vn6nPzp8vv91uUHQAAQHKjEQYAAIw53QNhXf9EvV7ZEYiJnVmao59cUKZ0r8uCzAAAAMaOK664QldcccWIPFdBQYE+//nP6/Of//yIPN9o4MtH2IXT6VR2dvbw40AgwA6SSHrUbeJU13XoR0/Vq2sgfMhr3U6H5k3P1tmVeaoqz5Uv3TMUCPfJ7+9LcKb2RO3Cjqhb2JWdatfn81mdAgAASEIdvSF9/R9btbU1+jO22+nQz//teF1wTJFFmQEAANgDjTAAAGBMafQP6OpHarSjYyAm9oV5Rbr8jKlyOhwWZAYAAICxJBKJWJ0CcEQMw6B+YTvU7ScXNkz99uVG3f9680Gv87gcmj89W4srcnVmmU8TUv/5NRL/Dw4ftQs7om5hV9QuAACwk92dA7ryoa1q7ByMGk/3OHX3pbN0Hk0wAAAAh0QjDAAAGDPe3BXQNY/VqWsg+ssuj8uhG86dqQvmFFiUGQAAAAAAgDU6ekP6/pP1emNX1wHjKW6HFszM0eKKXJ1ekqPMFL46AgAAAAAgUera+nTlQ1vV3huKGvelufWLT83S3OIJFmUGAABgL3ybgSPmcrmsTgGIi9PpPOhjIBlRt4fvoXda9LPntytsmFHjueke3XVJpY6bws2i0UDtwo6oW9gVtQsAAIBDeb+5R9c+VqfW7mBMbMHMbC2bU6DTSnKU7uV+PwAAAAAAibahsUvfWlmrnsHozT0nT0jRL/9llqb5Ui3KDAAAwH5ohMER8/l8VqcAHJHs7GyrUwAOG3X78cIRQz95covuX78jJjarMEv/9fmTNMWXPvqJQRK1C3uibmFX1C4AAAA+ZJqmHt64V3eu3hmzaYjL6dC3F03Tvxw3SQ6Hw6IMAQAAAAAYX9bUd+j6x+sVjER/Ti/LT9N9K2apINNrUWYAAAD2RCMMAACwrUB/SFf+eYNeqtsXEztn9iTd+6/HKSOFtzsAAAAYeZyUC7vgBDHYEXX7yfSHIrrl2e16clNbTKwg06s7llfq2OIsCzIb+6hd2BF1C7uidgEAgJ2sfG+vfvrcdu23V4WOn5Klu5dXKCuVdQ0AAACHi3dQAADAlrbv69V//PENbWvrjYl9rapU3z23Uk4nu5oCAAAgMTgpF3bFCWKwI+o2fjv29eo///yWtrZ0x8Tml+Tqvk+foIKsFAsyG5+oXdgRdQu7onYBAEAyMk1T97++R796qSkmtrDMp1suKFOqh4ZeAACAI0EjDI6Y3++3OgUgLk6nM+rmdyAQkGEYFmYEHBp1e3Cv7wzouytr1DUQjhr3uBz6wXmlunDuRAUCndYkN85Ru7Aj6hZ2ZafapWEAAAAg8V7Y3KqrH3xH3fvdL5Gkry4s0XfPrZTbxeIaAAAAAABGg2Gauqd6l/6yoSUmdtHcAl1/7ky52dwTAADgiNEIgyMWiUSsTgE4IoZhUL+wHer2nx7e2KrbV+1UZL8zg3PT3bpzeYWOmZzF31USoXZhR9Qt7IraBQAAGJ8ihql7nq/VL6vrY2KZKW7d+S/H6Ly5RRZkBgAAAADA+BSKGLrpmW16Zkt7TOyLp0zW5adPkcNBEwwAAMAnQSMMAACwhbBh6p7qnfrb260xsYqCdN21vEJF2SkWZAYAAIDxiJNyYRd2OkEM+BB1Gz9/X0jXP16rV3cEYmKl+Wm6c/kszchL5efWKKF2YUfULezKTrXLSbkAAIwvfcGIrn2sTq8c4LP6txdN16dPLLQgKwAAgLGHRhgAAJD0ugfCuu6J+gMu6qgq8+nH55cq3euyIDMAAACMV5zABLviBDHYEXV7YO839+jax+rU2h2MiZ07K083nDtT6V4Xf3cWonZhR9Qt7IraBUafy8V3c0h+TqfzoI+BkebvC+nrD23V+809UeNup0M/vqBMS2cXHPI5qFvYFbULO6JuYVfU7hAaYQAAQFLb5R/Q1Y/UaGfHQEzsi6dM1tdOnyInRwYDAAAAAIBxwjRN/ePdvbpz9U6FImZUzOV06OqqafrX4yfJwf0SAAAAJBCnHcGOPnqaGDDSdnf26//8daO2tfVGjad5XPrNZ09QVeXEI3pe6hZ2Re3Cjqhb2NV4rV0aYQAAQNJ6Y1dA1z5Wp66B6F3cvC6HblhSovNn51uUGQAAAAAAwOgbCBm67YXtemLTvphYfoZHt11UruOKsyzIDAAAAACA8auutVv//j+vqzkQvcGnL92j//nCyTp+Gs2DAAAAI41GGAAAkJQeeqdVd6zaof02NlVuult3Lq/QMZNZ1AEAAAAAAMaPps4BXfNYnWr39sXETpiSpZ8uK1N+hteCzAAAAAAAGL/e2unXl+5/Q4H+UNT45OxU/ek/TlHZxEyLMgMAABjbaIQBAABJJWyYurt6px58uzUmVlGQrrsvqVDhhBQLMgMAAAAAALDGyw1+3fhUg7oHIzGxz51UpCvOnCq302FBZgAAABiv/H6/1SkAh+R0OpWdnT38OBAIyDAMCzPCWPNSg1/XrKzRQDi6rkry0vTry2YrzxM67NdL6hZ2Re3Cjqhb2JWdatfnS9zJeDTCAACApNE1ENZ1j9fptZ1dMbGqMp9+fH6p0r0uCzIDAAAAorlcvC+FPTidzoM+BpIRdftPEcPU79Y16g/rm2Ji6V6nfrS0TOfMyrcgMxwItQs7om5hV9QuYL1IJLZJG0h2hmFQuxgxT25q04+f2aaIGT1+zORM3XNJpbLT3CNSb9Qt7IrahR1Rt7Cr8Vq7NMIAAICksLOjX1c/Uqtd/oGY2BdPmayvnT5FTgc7mwIAACA5JHLnGiCRPro7FGAX47Vu/b1BXf3Xt/VS3b6YWNnETP32syeqbGKmBZkhXuO1dmFv1C3sitoFAACj6YE3mnXv2l0x4wtmZutny8qVxgafAAAACUcjDAAAsNzrOwO69rE6dQ9GdyV7XQ7duKRES2ezsykAAAAAABg/3m3q1Nce2KDdnf0xsQuOKdLtnzpGGSl8xQMAAAAAwGgyTVO/eLFR//tGc0zs/Nn5+sGSmXK7OKkOAABgNPAtCQAAsNRD77TqjlU7Yo4Lzkv36M7l5Tp6cpY1iQEAAAAAAFjgr6/v0g8e3aRgxIgadzkdum7pLP3H6TPl4NRcAAAAAABGVdgwdcuz2/T4ptiTWz97UqG+vnCanHxeBwAAGDU0wgAAAEuEDVN3rd6pv7/TGhOrmJiuu5dXqHBCigWZAQAAAIfm9/utTgGIi9PpVHZ29vDjQCAgwzAOMgOw3nit24FQRLc9v12Pvrc3Jpaf4dHPLq7UCVMnqLOzc/STQ1zGa+3C3qhb2JWdatfn81mdAgAA+IQGQhFd93i9XtrWGRP7+plT9e/zJo9+UgAAAOMcjTAAAGDUdQ2E9b3H6/T6zq6Y2KJyn368tFRpXpcFmQEAAADxiUQiVqcAHBHDMKhf2M54qNvdnQO65rE61ezti4kdV5yl25aVKT/TO+b/Hsaa8VC7GHuoW9gVtQsAABKlayCsqx+p0cbdPVHjLod0w5ISLZtbYFFmAAAA4xuNMAAAYFTt7OjX1Y/Uapd/ICb2pfmT9Z+nTeG4YAAAAAAAMG6s29apG5+qV9dA7OLd/+/EQn39zKlyu5wWZAYAAAAAwPi2tzuoKx/aqm3t/VHjKW6Hbl1WrjNLOfkNAADAKjTCAACAUfPazoC+91idugejF3Z4XQ7duKRES2fnW5QZAAAAAADA6DJMU39Yv1v/9cpumfvF0jxO/WBJic6ZlWdJbgAAAAAAjHc7Ovp15d+3qqU7GDWeleLSPZdW6rjiLIsyAwAAgEQjDAAAGCV/f7tVd67eoch+Kzvy0j2665IKzS3KtCYxAAAAAACAURboD+vGJ+u1fkcgJjYjN1W3X1Sukvx0CzIDAAAAAACbmnv0jX/UqLM/HDVekOnRfZ+apbICPrMDAABYjUYYAACQUOGIobuqd+rv7+yNiVVMTNfdyytUOCHFgswAAAAAAABG39bWXl3zaJ32dA3GxBZX5OoH55Uow+uyIDMAAAAAAPDqjk5999E69YeMqPFpvlT9asUsFWWzvgEAACAZ0AgDAAASpmsgrO89VqfXd3XFxBaV+/TjpaVKY2EHAAAAAAAYJx59b69+9sIOBfc7MtflkK46c5o+c1KhHA6HRdkBAAAAADC+PbNln3709DaFjejP7bMLM/TzSyvlS/dYlBkAAAD2RyMMAABIiJ0d/br6kVrt8g/ExL40f7L+87QpcrKwAwAAAAAAjAODYUN3rNqhle+1xcTy0j366bIynTh1ggWZAQAAAAAASfrrhhbduXpnzPgp0yfojosrlM4mnwAAAEmFRhgAADDiXtsZ0Pceq1P3YCRq3Oty6Afnlei8o/ItygwAAAAYGS4XX3rCHpxO50EfA8lorNXtnsCAvrOyRltaemNixxZn6faLKzUxy2tBZhhpY612MT5Qt7ArahcAAIwU0zT123VN+u9X98TEzp2Vp5uWlsjj4r0GAABAsqERBgAAjKgH327RXat3KhJ9UrDyMjy6a3mF5hZlWpMYAAAAMIJ8Pp/VKQBHJDs72+oUgMNm57pdW9umb/z1PXX2hWJiX1gwQ9eff5S8bhbTjFV2rl2MX9Qt7IraBQAARyJimLrthR165N29MbF/PX6Svn3WdDkdDgsyAwAAwKHQCIMjxs6nsAt2hIId2bFuQxFDd6zarr+/3RoTmzUpQ/dcOkuFE1IsyAyjyY61C1C3sCtqFwAAIHkZhqlfVtfrnhdqZe63WUiax6XbPnW0Lj6u2JrkAAAAAACABsOGbniyXtV1/pjY106foi+dMlkOmmAAAACSFo0wOGLsfAq7Ykco2FGy121nX1BX/3mD1tW3x8SWzi3UXZcdq3QvbzvGo2SvXeBAqFvYFbULAACQHAJ9IV394DtavTV2N9mS/Az99nMnqmJSlgWZAQAAAAAASeoZDOtbj9RqQ1N31LjTIV13zkxdcsxEizIDAABAvFiRCgAAPpGGth79nz++qe37emNiV51VpqvPrpDTyS4pAAAAGFv8/thdAoFk5HQ6o5olA4GADMOwMCPg0Oxct1tbe/SdR2q0OzAYEzurIlc3nV+mTG+YnyNjlJ1rF+MXdQu7slPtssEkAADJZV9vUF9/qEa1bX1R416XQ7dcWKZF5bkWZQYAAIDDQSMMAAA4Yi/VtemK/7dBXQPhqHGv26k7Vhyji48rtigzAAAAILEikYjVKQBHxDAM6he2Y5e6ffz9Nt32wnYNhs2ocadDuvKMqfrcyUVyOBy2+LNgZNildoGPom5hV9QuAACIR1PngK74+9aYDSwyvC7dtbxCJ02bYFFmAAAAOFw0wuCIsWMd7MJOO0IBH7JD3f5tQ7PueGG7ItFrO5Sf4dE9l87S3Mnp/KwYh+xQu8D+qFvYlZ1ql51PAQDAWBYMG7pj9U498u7emFhuuls/vbBMJ03LPsBMAAAAAAAwWra29urrD29VR1/0Rp956R79YkWlKidmWJQZAAAAjgSNMDhi7KgDu2JHKNhRMtVtOGLoztU79dDG2MUdlRPTdfclFZqUlZI0+cJayVS7QLyoW9gVtQsAADD6WroGdc1jddrc0hsTO2Zypm5bVq6JWV4LMgMAAAAAAB96c1dA315Zq95g9IZiU3JS9MsVszQlJ9WizAAAAHCkaIQBAABxC/SH9b3H6/TGrq6Y2FnlPt20tFRpXpcFmQEAAAAAAIyuV3cE9P0n6xXoD8fELjt+kq6umiaPy2lBZgAAAEDiuVx8J4jk53Q6D/oY48MLNe26/vFahSJm1HjlxAz96rKjlJeRXBtYULewK2oXdkTdwq6o3SE0wgAAgLjs6OjX1f+oUWPnYEzs/8wv1ldOK5bT4bAgMwAAAAAAgNFjmKb+72t79NuXm2TuF0t1O/X9c2dq6ex8S3IDAAAARovP57M6BeCwZWdnW50CRtn/e22nbni0RuZ+H+Dnl+Tq9/9+kiakeqxJ7DBQt7Arahd2RN3CrsZr7dIIAwAADunVHZ363uP16hmMRI2nuB36wXmlWjIrz6LMAAAAAAAARk/3QFg/eLpBLzV0xsSm5qTojosrVFaQPvqJAQAAAACAYaZp6her6nXPC7UxsfPmFOrefztOqR5OtgIAALAzGmEAAMDHMk1TD77dqrurd2q/U4KVn+HRncsrNLco05rkAAAAAAAARlHt3l5d81idmg5wWu7CMp9uWlqizBS+dgEAAAAAwEoRw9RNj2/Sn17ZGRP7/06ZppsvniuX02FBZgAAABhJfCMDAAAOKBwxdMfqnXp4496Y2KxJ6bpreYUmZaVYkBkAAAAAAMDoemJTm259focGw0bUuNMhXX76VP37vCI5HSyiAQAAwPjh9/utTgE4JKfTqezs7OHHgUBAhmEcZAbsLhg2dOOTdXpua3tM7CsLpug/Ty9WV6Bz9BM7DNQt7IrahR1Rt7ArO9Wuz+dL2HPTCAMAAGIE+sP63uN1emNXV0xscUWufnReidK8HBMMAAAAAADGtmDY0N3VO/XQATYKyUlz66cXlmne9OwDzAQAAADGtkgkYnUKwGEzDIPaHcN6gxF9d2WtXt9vnYND0ncXT9dlxxcm7QLRg6FuYVfULuyIuoVdjdfapREGAABE2dHer6sfqVFj52BM7MunFuvLC4rZ4RQAAAAAAIx5LV2DuvaxOm1q6Y2JzS3K0G3LylU4gdNyAQAAAACwWkdvSN/4R422tEZ/hnc7Hbr5/FKdMyvPoswAAACQKDTCAACAYa/u6NT3Hq9Xz2B0d3CK26Efnleqc7k5BAAAAEiSXC5OSIQ9OJ3Ogz4GklEy1O1rOzr1vcdq1dkfjolddnyhvn3WDHnd/HtCtGSoXeBwUbewK2oXAAB8aE9gUFc+tFW7/ANR4+kep+5YXqFTOMkVAABgTKIRBgAAyDRN/e3tVt1dvVOGGR3Lz/DoruUVmlOUaU1yAAAAQBLy+XxWpwAckexsvviH/Yxm3RqGqd+sbdBdz9XE3CNJ9Tj100uO1qUnTBm1fGBvvObCjqhb2BW1CwDA+FTf1qcrH9qqfb2hqHFfmls//1SlZheyzgEAAGCsohEGAIBxLhwxdPvqnfrHxr0xsVmT0nX38kpNzPJakBkAAAAAAMDoCfSH9O0HN+qFLa0xsel56frtZ0/UUUUTLMgMAAAAAADs752mbl39SI26ByNR40UTvPrlilmanptmUWYAAAAYDTTCAAAwjnX2h/S9x+r1ZmNXTOzsilz9aGmJUj0uCzIDAAAAAAAYPVtbuvSf//uWdrT3xcTOPmqi7rrsOGWneSzIDAAAAAAA7G9tvV/XP1GnwXD0ca5l+Wm6b8UsFWSy2ScAAMBYRyMMAADj1I72fn3zkRo1dQ7GxL58arG+vKBYTofDgswAAACA5Of3+61OAYiL0+lUdnb28ONAICDDMCzMCDi00a7bpza16eZnGjQQjv49nA7p8jOm6Yvzi2UM9Mg/kLAUMEbwmgs7om5hV3aqXZ/PZ3UKAACMKY+916ZbntumSHQPjI4rztI9l1QoK5UlkQAAAOMB7/oAABiHXtneqeueqFfPfkcEp7gd+uF5pTp3Vp5FmQEAAAD2EIlEDn0RkIQMw6B+YTuJqttQxNDd1bv093daY2LZaW7dckGZ5s/IlmkY4l8NjgSvubAj6hZ2Re0CADD2maapP77erF++1BgTO6M0R7deWK5Uj9OCzAAAAGAFGmEAABhHTNPU395u1d3VO2XstztKfoZHdy2v0JyiTGuSAwAAAAAAGCWt3YP63mP1eq+5JyY2uzBDt19UrsIJKRZkBgAAAAAA9meYpu5ds0t/fqslJrZsboG+f+5MuZ0OCzIDAACAVWiEAQBgnAhHDP1s1U498u7emNhRkzJ01/IKTczyWpAZAAAAAADA6HlzV0DXPV4vf384JnbpsRP1nUXT5XWzgywAAAAAAMkgHDF007Pb9PTm9pjY5+cV6cozpsrhoAkGAABgvKERBgCAcaCzP6RrH6vTW43dMbGzK3L1o6UlSvW4LMgMAAAAAABgdJimqT+90axfvdQYc1Juituh7509U8vmFliTHAAAAAAAiNEfjOjax+q0fkcgJnZ11TR95qQiC7ICAABAMqARBgCAMW57e7+ufqRGTZ2DMbGvLCjWl08tZncUAAAAAAAwpvUMhnXTM9tUXeePiRVnp+j2i8tVOTHDgswAAAAAAMCBdPaH9M1/1Oj95t6ocZfToR+eV6LzZ+dblBkAAACSAY0wAACMYeu3d+q6x+vVG4xEjae4HfrReaU6Z1aeRZkBAAAAAACMjoZ9ffruo3Xa5R+IiZ1ekqMfn1+qCal8XQIAAAAAQLJo6RrUVQ9t1faO6M/yqW6nfnZRuU4rybEmMQAAACQNvtkBAGAMMk1Tf93QqnvW7JRhRscKMj26a3mFZhdmWpMcAAAAAADAKHlmyz795NntGggbUeMOSV89bYq+NH+ynJyUCwAAAABA0ti2r09XPVyj1u5g1Hh2qlv3XlqhoydnWZQZAAAAkgmNMAAAjDHhiKGfrdqpR97dGxObPSlDdy6v0MQsrwWZAQAAAAAAjI5QxNC9a3bpb2+3xsSyU936yQWlOnVmzugnBgAAAAAAPta7e7p19T9qFRgIR41PyvLqlytmaWZemkWZAQAAINnQCAMAwBjS2R/StY/V6a3G7pjYOZW5+uF5JUr1uCzIDAAAAAAAYHS09QR17WN1endPT0zsqEkZ+tlF5ZqcnWJBZgAAAAAA4OOs29apax6r0+B+p7rOzE3VfStmqXACn+UBAADwTzTCAAAwRmxv79fVj9SoqXMwJvaVBcX68qnFcjgcFmQGAAAAAAAwOt5q7NL1j9ervS8UE7vkmAJ956wZSnE7LcgMAAAAAAB8nKc279NNz2xTxDCjxo8uytQ9l1YoJ81jUWYAAABIVjTCAAAwBqzf3qnrHq9XbzASNZ7iduqmpSU6uzLPoswAAAAAAAASzzRNPfBmi3754i5FotfMyOty6NqzZ+jioydakxwAAAAAAPhYD7zZrHvX7IoZXzAzWz9bVq40r8uCrAAAAJDsaIQBAMDGTNPUXza06N41u7TfxigqyPToruUVml2YaU1yAAAAAAAAo6A3GNFNTzdodZ0/JjZ5Qopuv7hcsyZlWJAZAAAAAAD4OKZp6pcvNeqPrzfHxJbOztMPl5TI7eJUVwAAABwYjTAAANhUKGLo9lU79Mi7bTGx2ZMydNclFSrI9FqQGQAAADD2uVzsQgh7cDqdB30MJKPDqduGfX36ziM12tHRHxM7rSRHt1xYruw0z4jnCBwIr7mwI+oWdkXtAgBgb2HD1E+f267H3o9d7/CZEwv1jappcjocFmQGAAAAu6ARBgAAG+rsD+maR+u0oak7JnZOZa5+eF6JUj0szAMAAAASxefzWZ0CcESys7OtTgE4bB9Xt49v3KNrH35PfcFI1LjDIX1jcbm+fla5nE4WzcA6vObCjqhb2BW1CwCAfQyEDF3/RJ1ebOiMiV115lT9+8lFctAEAwAAgEOgEQYAAJvZtq9PVz9Sq92BwZjYVxcU6/+cWsxNIQAAAAAAMGaFIoZufWqr/mfd9phYdppH9/7bcVpUOdGCzAAAAAAAwMF0DYT1rUdq9c7u6E0/XQ7p++eW6KKjCyzKDAAAAHZDIwwAADayblunrn+iXr377XSa4nbqpqUlOrsyz6LMAAAAAAAAEm9v14Cu+PMGvbHDHxObWzxBv/nMiZqam25BZgAAAAAA4GDaeoK68qGtatjXHzWe4nbopxeWa2EZp3ADAAAgfjTCAABgA6Zp6s9vNeveNbtkmNGxgkyP7l5eqaMKM6xJDgAAABiH/P7YBdhAMnI6ncrOzh5+HAgEZBiGhRkBh/ZxdbuhsUvXPlqjfb2hmDnLj5mo751TohTHoPz+2FN0gdHAay7siLqFXdmpdn0+FvUCALCzo19XPrRVzV3BqPHMFJfuuaRCx0+ZYFFmAAAAsCsaYXDEXC6X1SkAcXE6nQd9DCSjj9ZpMGzoJ89u0z82tsZcN6coU3dfMksTs7yjmR7wsXjNhR1Rt7ArahewViQSOfRFQBIyDIP6he1EIhH96fXdum/tLkX22yDE63LomsUztPyYiZJM6htJhddc2BF1C7uidgEASF6bW3r09Ydr1NkfjhrPz/DolytmqayAk10BAABw+GiEwRFj5xrY1Ud3hwKSXUdvUF974C29tr0jJrbs2Mm6Y8UxSvXQmIjkxWsu7Ii6hV1RuwAAYCzqGQzr2kdr9XxNe0ysaIJXP7uoXLMLMy3IDAAAAAAAHMprOwP67spa9YWiT26b5kvVL1fM0uTsFIsyAwAAgN3RCAMAQJKqa+3Wf/zxTe3q6IuJfeucCl11VpkcDocFmQEAAAAAACRe/d5u/ecDG1S/tycmduqMbN18Qaly0jwWZAYAAAAAAA7lua3t+sFTDQob0ce7HjUpQz+/tFK5GXymBwAAwJGjEQYAgCRUXbNXX//z2+oejD4aONXj1N2XHafzjy6yKDMAAAAAAIDEe+q9Zn337xvVG4zExL58arH+z6nFcjnZIAQAAAAAgGT0tw0tunP1Tpn7jc+bPkF3XFyhDK/LkrwAAAAwdtAIgyPm9/utTgGIi9PpVHZ29vDjQCAgwzAOMgOwjmma+n9vNuue6h3ab1MUTcz06p5PzdLswlReg5G0eM2FHVG3sCs71a7P57M6BQAAYBNhw9TP1+7Q/76xJyaWleLSzeeX6vRS3lsAAAAAAJCMTNPU79bt1n+9ujsmdk5lrm5aWiqv22lBZgAAABhraITBEYtEYnfiA+zAMAzqF0kpFDF02ws79Oh7bTGxOUWZuuvicuVneqlf2AqvubAj6hZ2Re0CAAC729cb1PWP12tDU3dMrGJium6/qFxTclItyAwAAADA/lwuTnNA8nM6nQd9jJEVMUzd9vw2PbyxNSb2rycU6pqzZ8rp4HTXQ6FuYVfULuyIuoVdUbtDaIQBACAJdPaFdM1jdQdc6LHs2Mm6fvFUecbnexUAAAAAADAOvNPUre89Xqd9vaGY2LK5Bbp28QylcnMEAAAASBqcAg07+ugp6xhZA6GIvvnXd/TMptgmmG+dU6GrziqTgyaYI0Ldwq6oXdgRdQu7Gq+1SyMMAAAWa9jXp289UqvdgcGY2Ic3hDo7O9nhHQAAAAAAjDmmaeqvG1p179pdihhmVMzrcuqHF83W0vIsGYZhUYYAAAAAAOBgugZC+sqf3tSr2zqixp0O6eblc/WZU6ZblBkAAADGMhphAACw0MvbOvX9J+rUG4xezJHqduqefz1OS48usigzAAAAAACAxOoLRnTzs9v0fE1HTGxydqp+89kTdezUHPn9fguyAwAAAAAAh7K3e0Bf+J83tLm5K2rc63LqF58+TufNZc0DAAAAEoNGGAAALGCapv7fWy36xdpd2m+zU03M9OjeTx2lBUdxQwgAAAAAAIxNOzr6dc2jddrW3h8Tmz8jW7/+3DzlZngtyAwAAABAPGhYhx04nU5lZ2cPPw4EApw4OoIa/QO6/MFNauocjBrP8Lp0z6WzdHJxKq8VR4C6hV1Ru7Aj6hZ2Zafa9fl8CXtuGmEAABhloYihW5/focfeb4uJzSnM0F3LKzQpO82CzAAAAAAAABJvVW2HfvxMQ8wJuZL0pfmTdfkZ02mCAQAAAJJcJBKxOgXgsBmGQe2OkJq9vfr6QzVq7wtFjeele/TzT1Vq1qQM/q5HCHULu6J2YUfULexqvNYujTAAAIwif19I1zxWp7ebumNi587K0w+WlCjV47QgMwAAAAAAgMQKG6Z+9VKj/veN5phYZopLPz6/VGeW+uRyOizIDgAAAAAAxOPNXV369spa9QajF1sWZ6foV/8yS1NyUi3KDAAAAOMJjTAAAIyS+rY+feuRWu3pGoyJ/edpU/Qf8yfL4WChBwAAAAAAGHvae0O6/ok6vdUYuzlIeUG6br+oXFN9LJQBAAAAACCZra7t0A1P1isYMaPGKyam6xefqlQ+J7wCAABglNAIAwDAKHi5wa/vP1mv3qARNZ7qduqm80u1uCLXoswAAAAAAAASa+Pubn3v8Tq19YRiYufPztf158xQqsdlQWYAAAAAACBej7y7V7c+v11GdA+MTpiSpbsvqVBmCksRAQAAMHp49wkAQAKZpqn/92aLfr52l/a7F6RJWV7dtbxCsyZlWJIbAAAAAABAIpmmqb+93ap71uxSZL9VMm6nQ985a7o+dexETsgFAAAAACCJmaap/351j367rikmtqjcp59cUKYUt9OCzAAAADCe0QgDAECChCKGfvr8Dj3+fltMbG5Rhu68uEL5mRwLDAAAAAAAxp7+YES3PL9dz2xpj4lNyvLqZxeVa25RpgWZAQAAAACAeBmmqTtX79SDb7fGxC45pkDfO3umXE42uAAAAMDooxEGAIAE8PeFdM1jdXq7qTsmtmRWnm5cUqJUDzuiAAAAAACAsWdnR7+ueaxODfv6Y2InT5ugn15YJl+6x4LMAAAAAABAvEIRQz98epue2xq7ycV/zJ+s/zxtCqe8AgAAwDI0wgAAMMLq2/r0rUdqtadrMCb2tdOn6EunTOZmEAAAAAAAGJOq6zr0o6e3qTcYiYl9YV6R/vP0qXKzUywAAAAAAEmtNxjRNY/W6rWdXVHjDknfPmu6/u2EQmsSAwAAAD5AIwwAACPo5Qa/rn+iXn0hI2o81e3Uj88v1VkVuRZlBgAAAGAkuVwuq1MA4uJ0Og/6GBgpYcPUr17cpftf2x0Ty/S69OMLy7WoPL77ItQt7IrahR1Rt7ArahcAgMTx94X0jYdrtLm1N2rc7XTopvNLtWRWnkWZAQAAAP9EIwwAACPANE098GaLfrF2l8z9YpOyvLpreYVmTcqwJDcAAAAAI8/n81mdAnBEsrOzrU4BY9C+nkF94y9va31De0xsVmGWfvPZEzUz/8jvi1C3sCtqF3ZE3cKuqF0AAEbGnsCgrnxoq3b5B6LG0zxO3XFxhebP4GcuAAAAkgONMAAAfELBsKFbX9ihx99vi4nNLcrQncsrlJ/htSAzAAAAAACAxNqwy6/LH9iglq6BmNjy4ybrp5cerXQvX0UAAAAAAJDs6tv6dNXDW9XWE4oaz0lz6+eXVmpOUaZFmQEAAACx+PYJAIBPwN8X0ncfrdM7u7tjYucdlacbl5Qoxe20IDMAAAAAAIDEMU1TD7y6Uz9+YrNCkejzcT0uh268cLY+N3+6HA6HRRkCAAAAAIB4vdPUrasfqVH3YCRqvGiCV/etmKUZuWkWZQYAAAAcGI0wAAAcofq2Pn3rkVrt6RqMiV1++hR98ZTJLPYAAAAAxii/3291CkBcnE6nsrOzhx8HAgEZhmFhRhgL+kMR3fLsNj25KfZ03ImZXt2+vFLHFmeps7PziJ6fuoVdUbuwI+oWdmWn2vX5fFanAADAQb3Y4Nd1j9dpMBy90UVpfpru+9QsTczyWpQZAAAA8PFohAEA4Ai81ODX95+oV18o+kuVVLdTN19QqkXluRZlBgAAAGA0RCKRQ18EJCHDMKhffCKN/gF999Fa1e/rj4mdNHWCfnphmXIzPCNaZ9Qt7IrahR1Rt7ArahcAgCPz2HttuuW5bdrvsFcdW5ypey6p1IRUlhcCAAAgOfFOFQCAw2Caph54s0W/WLtL+90H0qQsr+5aXqFZkzIsyQ0AAAAAACCR1tb79cOnG9QzGLvI9N9PLtLlZ0yV28npuAAAAAAAJDvTNPWnN5p134uNMbEzSnJ067IypXpcFmQGAAAAxIdGGAAA4hQMG7r1+e16fNO+mNjcogzdubxC+RkcCQwAAAAAAMaWiGHqt+ua9H9f2xMTy/A69aOlnI4LAAAAAIBdGKapX6zdpQfebImJLZuTr+8vKWGjCwAAACQ9GmEAAIiDvy+k7z5ap3d2d8fElh6VpxuWlCjF7bQgMwAAAAAAgMTx94X0/Sfr9frOrphYSV6a7ri4XNNz0yzIDAAAAAAAHK5wxNCPn92upzbHbgD67ycX6aozp8rhoAkGAAAAyY9GGAAADqG+rU9XP1Kj5q5gTOyKM6boC/MmcyMIAABYJ7BbyiiwOgsAADAGvd/co2sfq1Nrd+w9kSWz8nTDuTOV5nVZkBkAAAAAADhc/cGIvvd4vdZt74yJfbNqmj57UtHoJwUAAAAcIRphAAA4iBcb/LrhiXr1hYyo8VS3UzdfUKpF5bkWZQYAAMYrR7Bbnt2vy9u0Xtq9XtpXK/37o5LvWKtTAwAAY4Rpmnp4417dVb1ToYgZFXM5Hbq6apr+9fhJbAwCAAAAAIBNBPrD+uY/avRec0/UuMvp0A+WzNQFc9hwCwAAAPZCIwwAAAdgmqb+941m3fdio8z9YpOyvLr7kgpVTsywJDcAADDOREJy731XnsZ18ja+LHfrRjmMcPQ1DdXSSTTCAACAT24gFNFtL+zQE5v2xcQKMj26dVm5jivOsiAzAAAAAABwJFq7B3XVQzXa1t4fNZ7idupnF5Xr9JIcaxIDAAAAPgEaYQAA2E8wbOinz28/4IKPo4sydcfycuVneC3IDAAAjAumKVfndnkaX5ancZ08Ta/KGeo5+Jxt1dJJ3xyV9AAAwNjV1Dmgax6tU21bX0zshClZ+umyMu6JAAAAAABgI9vb+3XlQ1vV2h2MGp+Q6tK9l1bqmMlsdgEAAAB7GrVGmL6+oS/O0tPTDxi/77779OCDD2rfvn2aOXOmvva1r2nZsmWjlR4AAJKkjt6QvvtYrTbujl1sunR2nm44t0QpbqcFmQEAgLHM0bdPnqb18jauk6dxnVw9zYf3BJ2NUqhPcqYkJkEAADDmvdTg141PNahnMBIT+9xJRbrizKlyOx0WZAYAAAAAAI7E+809+sbDNQoMRJ8yPzHTo/tWzFJp/oHX8QEAAAB2MCqNMI8//riWL1+uzMxMNTU1KSsrupP8S1/6kv74xz9KkkzTVG1trZ599ln95Cc/0XXXXTcaKQIAoPq2Pl39SI2au6J3QnFIuuKMqfr8vCI5HCz4AAAAIyA8IM+eN+RpfFnexnVy79tyWNNNp0fhySfKU3GOVLJImnycFOiSIrELVwEAAA4mYpj6/fom/fere2Ji6R6nfnBeic6uzLMgMwAAAAAAcKTWb+/UNY/WaSBsRI3PyE3VL1fMUuEENtYCAACAvY1KI8yzzz4r0zR10UUXxTTBvPzyy7r//vvlcDiUnp6uiooKbd26Vf39/frBD36gZcuWae7cuaORJgBgHHuxwa8bnqhXXyj6JlCax6mbzy9VVXmuRZkBAIAxwTTkatv0wYkvL8vT/JYckeCh531EOK9SoamnKzj1NIUmnyxXapZ8Pl+CEgYAAONBZ19INzzVoFd3BGJiM3NTdcfFFZqRl2ZBZgAAAAAA4Eg9vXmffvTMNkUMM2p8blGG7r2kUjnpHosyAwAAAEbOqDTCvPrqq3I4HFq0aFFM7Pe//70kafLkyXrllVc0ZcoUNTY26vTTT1dTU5N+97vf6b777huNNAEA45BpmvrTG8365YuNMveLTcry6p5LKlQxMcOS3AAAgL05u5qGT3zxNK6Xc7DzsOZHMiYpNPW0oeaXKQtkZhQkJlEAADAubWru0bWP1amlO7Y595zKXN24pETpXpcFmQEAAAAAgCP157eadXf1rpjxU2dk6/aLypXGZ30AAACMEaPSCLN3715JUmVlZUzsmWeekcPh0FVXXaUpU6ZIkqZOnaqrrrpK11xzjdauXTsaKQIAxqFg2NAtz23Xk5v3xcSOmZypOy6uUF4GO6EAAID4OAa75Gl65YPml5flCsR+0XQwhidD4eJThk58mXqaIr4yyeFIULYAAGC8Mk1TK99r0+2rdigUid4WxOV06BsLp+rTJxTKwfsQAAAAAABswzRN/eqlRt3/enNM7Lyj8vTD80rkcTktyAwAAABIjFFphGlra5MkZWVlRY1v2rRJ+/btk8Ph0MUXXxwVO+mkkyRJO3fuHI0UAQDjTEdvSN99rFYbd/fExM6fna/vnztTKW5uAgEAgIOIBOVueVvexpflaVwv99535TCNuKebDpfCk44ZOvFl6mkKTzpOctGECwAAEmcgZOhnq3bo8ffbYmJ5GR79bFm5jpuSdYCZAAAAAAAgWYUNUz99brseO8Dn/U+fWKirq6bJyYYXAAAAGGNGpRHG5Ro6UrGjoyNq/OWXX5YkFRQUxJwW4/P5JEkDAwOjkCEAYDypa+vTtx6pUXNXMGrcIemKM6bq8/OK2PUUAADEMk25OmrlaVw31Pyy+3U5wv2H9RThnJkKTT1doakLFCo+VWYKC00BAMDoaOoc0LWP1almb19M7PgpWbr1wjLlZ3otyAwAAAAAABypgZCh65+o04sNnTGxK1n/AAAAgDFsVBphiouLVV9fr3feeUdVVVXD408++aQcDofOOOOMmDmBQECSlJ+fPxopAgDGibX1ft3wZL36Q9G7tad5nLr5glJVleValBkAAEhGzp5WeZrWfdD8sk7Ovtjd1A7GSM1VaOoCBaeeptDU02VkTU5QpgAAAB/v5W2duvHJenUPRmJi/9+Jhfr6mVPldnEyLgAAAAAAdtI9ENa3Vtbq7abuqHGnQ7r+3JlafvREizIDAAAAEm9UGmHOOOMM1dXV6Ze//KU++9nPKj8/X2+88YaeeeYZSdKSJUti5mzZskWSVFhYOBopAgDGONM09cfXm/Wrlxpl7hcrzPLq7ksqVDExw5LcAABAEgn2yrPn9aETXxrXyd1Rd1jTTVeKQpNP/qD55XRF8o+SHCwqBQAA1ogYpv7rld36wyu7Y2JpHqd+sKRE58zKsyAzAAAAAADwSbT1BHXVQ1tVvy/65PoUt0O3XFjGJqAAAAAY80alEebyyy/X/fffr+3bt6ukpEQVFRXavHmzwuGwcnNz9a//+q8xc1avXi2Hw6HZs2ePRooAgDEsGDZ0y3Pb9eTmfTGxYyZn6o6LK5SX4bEgMwAAYDkjLPfe9+RpfFnexvVyt7wthxGKe7ophyIFsxWcerpCU09TqOhEyZ2awIQBAADi09kf0g+ebND6HYGY2IzcVN1xcYVm5qVZkBkAAAAAAPgkdvkHdOXft2pP12DUeGaKS/dcUqHjp0ywKDMAAABg9IxKI8wJJ5ygO+64Q9/97nfV09OjDRs2SJI8Ho/+8Ic/KCsrK+r6QCCgJ598UpJUVVU1GikCAMaojt6QvvNord7d0xMTO392vr5/7kyluNmlHQCAccM05QzskLdxnTyN6+RpekXOYPdhPUUkq1ihqacpOPU0haYskJnGrmoAACC5bGnp1TWP1aq5KxgTW1yRqx+cV6IMr8uCzAAAAAAAwCexpaVXX394q/z94ajx/AyP7lsxS+UF6RZlBgAAAIyuUWmEkaSrr75aZ599th566CG1tLSoqKhIn/70p1VZWRlz7Zo1a3TyySdLki688MLRShEAMMbUtfXp6n/UqKU7etGHQ9IVZ0zV5+cVyeFwWJMcAAAYNY7+Dnma1g83v7i6dx/WfMObpdCUU4ebX4zsGRLvIQAAQJJa+d5e3f7CDgUjZtS4yyFdtXCaPnNiIfdDAAAAAACwodd3BvSdlbXqCxlR49N8qbrvU5UqzuHEegAAAIwfo9YII0lHH320jj766ENed/HFF+viiy8ehYwAAGPVmvoO3fhkg/r3uwGU5nHq5gtKVVXGzu0AAIxZ4UF5mt+Up/FleRvXydW2WQ6Zh573AdPpVrjwBAWnLlBo6ukKTzxaco7qx2cAAIDDNhg2dPuqHXr0vbaYWF66R7cuK9MJUydYkBkAAAAAAPikXqhp141PNSi038YXR03K0M8vrVRuhseizAAAAABrsJIHADCmmKapP77erF+91Biz3LUwy6t7Lq3kKGAAAMYa05Br3xZ5G1+Wp3G9PHvekCMyeFhPEc4t/+DEl9MVmjxP8mYkKFkAAICRtycwqGseq9XW1r6Y2LHFmbptWbkKMr0WZAYAAAAAAD6pv7/dqttX7YhZAzFv2gTdsbxCGV6XJXkBAADAIqF+qeFtafuL0rRTpYJ5VmdkCRphAABjxmDY0E+f264nN++LiR0zOVN3XFyhPHZBAQBgTHB27xk+8cXTtF7O/o7Dmm+kFyg49TSFpp6m0JTTZGROSlCmAAAAibV+e6dufLJBgYFwTOzTJxTqGwunyu1yWpAZAAAAAAD4JEzT1O/X79YfXtkdEzu7Ilc/Pr9UXjef+QEAAMa8yKDcLRvl2f2qvE2vyN3ytmSEhmLH7JEW0Qjzib344osj+XTDzjzzzIQ8LwBg7GjvDem7j9bq3T09MbELZufr++fO5AYQAAA25hjslmf3K0MnvjS+LHfn9sOab7rTFCo+Zbj5JZJbITkcCcoWAAAg8QzT1H+/slu/X787ZkfYNI9TNywp0ZJZeZbkBgAAAAAAPpmIYer2VTv08Ma9MbF/OW6ivnPWDLmcfM8BAAAwJhlhuds2ydP0ytB/zW/KER448LXbX5Sq9v+maHwY0UaYqqoqOUZ4IZHD4VA4HLuTHQAAH6rd26tvPVKrlu5g1LhD0pVnTtW/n1w04j+fAABAgkVCcre+M3TiS+PLcre+K4cZiXu66XAqPPFohaaepuDU0xUuPF5yeROYMAAAwOgJ9If1g6catG57Z0xsmi9Vd1xcrtL89NFPDAAAAAAAfGLBsKEbn2rQqtqOmNhXFhTry6cWswYCAABgLDENudpr5Gl6ZejElz2vyxmM3RT+gLqb5ezcpsiEGQlNMRmNaCOMNHQkIwAAo2VNXYdufKpB/SEjajzN49RPLijTwjKfRZkBAIDDYppy+evlaVwnb+M6uXe/Jmeo97CeIpI9/YMTX05XqHi+zNTsBCULAABgna2tvbrm0Trt6RqMiS0q9+mH55UoM2XEb/0DAAAAAIBR0DMY1ndW1unNxq6ocYeka8+eoRXHTbImMQAAAIwc05Src/s/T3zZ/aqcA/7Dew6HSyo+QZp5pkx3WmLyTHIj+m1YdXX1x8aCwaBuuOEGvfHGGyooKNBll12mefPmadKkoTfnra2teuONN/Tggw9q7969Ovnkk3XLLbfI4/GMZIoAgDHCNE398fVm/eqlRu3fglmY5dU9l1aqvICdTwEASGaO3jZ5m9bJ07hOnsb1cvW2HNZ8IyVHoakLhptfjAlTEpQpAABAcnjsvTb9bNV2DYaj74Y4HdKVZ0zV5zgVFwAAAAAA22rvDenrD29Vzd6+qHGPy6Gbzy/V2ZV5FmUGAACAT8rZ1fTPxpemV+Tq23tY8005FCmYrWDxfEWmna6s2WdLqROGYn6/FIkkIu2kNqKNMAsXLjzguGmaOv/88/Xmm2/qP/7jP3TvvfcqIyMj5rrPfe5zuu222/TNb35T//Vf/6W7775bTz311EimOCa9+OKL2rp1q7Zt26Zdu3YpHA7r8ssvV1VVldWpAUBCDIYN3fLcdj21eV9M7NjiTN1xUYVyM2ikBAAg6YT65NnzuryN6+VpfFnu9prDmm46vQpNPlGhqacrOPU0RQrmSA5ngpIFgINzuVxWpwDExel0HvQx7GEwbOiOF7br4Y2tMbHcdI9uu6hCJ08fO6fhUbewK2oXdkTdwq6oXQDAWNPUOaArH9qqps7oE2AzvE7dubxCJ08bO5/7AQAAxgNnT6s8u18d+q/pFbm6Gg/7OcK+MoWmnDr03+R5MtN8kj74rvqDJpjxbEQbYT7Of//3f+vZZ5/VOeecoz/84Q8HvTY9PV2///3vtXPnTj377LP6/e9/r6985SujkaZt/e1vf1NbW5uysrLk8/nU1tZmdUoAkDDtvSF9Z2Wt3mvuiYldOCdf158zU143X3YAAJAUjIjcbe9/cOLLy/I0vy2HETyspwjnHzV84kuo6CTJMz6PcwWQfHw+n9UpAEckO5tFE3bT5O/T5X/boHebAjGxE6bl6NefOVGF2akWZDZ6qFvYFbULO6JuYVfULgDAzmr39uqqh2vU3huKGs9Nd+sXn5qlWZNiN5wGAABAcnH0++XZ/Zo8u4dOfHH7Gw77OSITpik0Zb6CU05VqHi+zIyJCch07BiVRpj7779fDodDl19+edxzrrjiCj3//PP64x//SCPMIXz1q19VUVGRCgoKtHLlSv35z3+2OiUASIiavb361iO1au2OXkDrkHTVmVP1uZOL5HA4rEkOAABIkpyBnfI2rhtqfml6Rc7B2AWbBxPJLBw+8SU0ZYHM9PwEZQoAAJD8Xqxt09f/+rY6+0IxsS8smKHrzz+KDUEAAAAAALCxtxq79K1HatUbjESNF2en6JcrZmmqb2xvfgEAAGBXjmC33LvfkLfpFXl2vyL3vi2H/RyRjElDp70Un6rQlPkyJkxJQKZj16g0wmzdulWSNG3atLjnTJ06NWouPt4xxxxjdQoAkHBr6jp0w5MNGggbUePpHqduvqBMC8vYjRkAACs4BjrlaXpFnsaX5W1cd9hHuRqeTIWmzFfog1NfIjkzJRpbAQDAOGcYpn5VXa+7X6iVaUbH0jwu3fapo3XxccXWJAcAAAAgqbz44ovaunWrtm3bpl27dikcDuvyyy9XVVWV1akBOITqug59/4l6BSPRH/4rCtL1i09VKj/Ta1FmAAAAiBHql6f5raE1MrtflXvve3KYkUPP+wgjNXdojcyUUxUsPlVGzgzWyHwCo9IIMzAwIElqbGzU8ccfH9ecxsahxVODg4MJyysQCKi+vl719fVqaGhQQ0ODuru7JUkLFy7UFVdcEfdztbW16emnn9aGDRvU3t4ut9utwsJCnXrqqVqyZIlSUlIS9ccAgDHNNE3d//oe/eqlpphY0QSv7rmkUmUF6RZkBgDAOBUZlKd5w9CJL40vy733fTlkHnreB0yHS+HC4xScerpCU09TeNKxknNUPpoCwIjy+/1WpwDExel0Kjs7e/hxIBCQYRgHmQGrdQ2EdeMTdXqxIfZ1ZqovVXddUqnygvQx/TpE3cKuqF3YEXULu7JT7fp8bOaGxPrb3/6mtrY2ZWVlyefzqa2tzeqUAMRh5bt79dPnt8vY7yuWE6Zk6e5LKpSZwncnAAAAlooE5W7dKE/TK/I2vSJ3y9tyGKHDegrDm6lQ8fyh5pfiBYrklUsOZ4ISHn9G5R1zWVmZ3nvvPf32t7/VRRddFNec3/72t5Kk0tLShOX15S9/eUSe580339R9992n/v7+4bHBwcHh5ppVq1bpuuuuU2Fh4Yj8fgAwXgyGDf3kuW16enN7TOzY4kzdcVGFcjM8FmQGAMA4YppytdfI2/iyPI0vy7PnDTnCA4f1FGFf6fCJL6HieTK9WQlKFgBGTyRyeLv7AMnCMAzqN4nV7O3VNY/WaXcgdoOoqjKffrS0RJkp7nH3/5C6hV1Ru7Aj6hZ2Re1iPPvqV7+qoqIiFRQUaOXKlfrzn/9sdUoADsI0Tf3Pa3v0m5djNwOtKvPplgvLlOJmcSQAAMCoM8Jyt20aOvGl6RV5mt887PUxpjtNocknKVR8qkJTTlW4YDabwybQqPzNXnbZZXr33Xf17LPP6vLLL9fdd9+t1NTUA147ODiob3/723rmmWfkcDj0b//2b6ORovLz81VcXKyNGzce1rzt27fr3nvvVTAYVGpqqpYvX665c+cqGAxq3bp1WrVqlZqbm3XrrbfqtttuU1paWoL+BAAwtuzrDeq7K+v0XnNPTGzZnHxdd85Mebn5AwBAQjh7mj848WWdvI3r5OyPbUo9GCMtT8Gpp33Q/HKajMyiBGUKAAAwdjyxqU23Pr9dg+HorWCdDuny06fq8/OK5HA4LMoOAAAAQLI65phjrE4BQJwM09Td1Tv11w2tMbHlRxfoe+fMlNvJZ38AAIBRYRpytdfI0/TqUOPLntfkDMauVz3oUzi9Chcer+CUDxpfJh0jubwJShj7G5VGmG9961t64IEHtHXrVv3ud7/TypUrddlll+nkk0/WxIkT5XA41NraqjfeeEN///vf1dLSIkmqrKzUt771rYTltWLFCpWWlqq0tFQ5OTnau3evrrzyysN6jvvvv1/BYFAul0s33HCDKioqhmNz585VUVGRHnjgATU3N+vxxx/X/8/enYdHVZ79A/+ebbLv62SDBMKObAETiALuoqJYbd/aVms3f75o3bVqbat119a6tFr7drXLW1+ruOKGiCwBCQjIkoQkYJaZ7Ps6Z/v9MSEwDJBMyGzJ93Ndc0nOc84zN3Jnkjnz3M/99a9/3W2Ov/3tb1DV4bdKWrFiBaxWLiQjorGrtKEbt79RhvpOh8txAcDNZ2fiOwu58IOIiGg0CY4uKLXbnB1fqjdDbq3w6HpTDoWathBqZiEcmYXQE6awlSsRERHRMDk0A79a/xX+s7vBbSwuTMajl03GwqwYP0RGRERERDS2tbe3o7y8HOXl5aioqEBFRQU6OzsBAEuXLsXq1auHPVdjYyPWrl2LnTt3orm5GbIsIzU1FQUFBbjwwgsREhLirb8GEQUJVTfwi7WV+KDEffOx7+Wn4cYlGVwHQURERORNpgmp7dDRji+1WyH2tXo2hSBBSz4DakY+1IwCqKnzAYVNMvzFJ4UwoaGhWL9+PS655BLs3LkTdXV1eP755094rmk6d7ubN28e3nnnHa/eDDhRUYonysvLceDAAQDA8uXLXYpgjrj00kuxfv161NbWYu3atbjyyishy67/2z/66CP09/cP+3nz8/NZCENEY9b6gy144N0K9GmGy/FwRcTDl07G2ZPi/BQZERHRGKKrkBv2DHR82QS5fjcEQxv25SYEaMmzoGYWOru+pM4HZH6QS0REROSpuo5+3PPWQeyr63Ybm2WNwBMrc5ESxd+ziIiIiIi84Yc//OGozFNcXIznn38evb29g8f6+/sHi2vWrVuHe++9F6mpqaPyfEQUfHocOu5+6yC2Hm53G7vznAn4r/l8fSAiIiLyBrGj5mjhS00RpB73TclOxYQAPWkG1PR8ODIKoKXlwbREeSla8pRPCmEAICUlBdu2bcNLL72EF198Efv37z/hedOnT8eNN96IG2+8EZIk+Sq8Efn8888H/7x8+fITniOKIpYuXYp//vOf6O7uxr59+zBnzhyXc1555RWvxklEFAxM08Sft9nwu001bmNp0SH49aopmJwU7ofIiIiIxoAju1oMdHxRarZCVD1r56pHZ8KRucRZ/JKeDzOMxalEREREp2PbV+24/51ytPW6FyRfPTcZty2bAIvMSRxQsQABAABJREFULntERERERL6QmJiI9PR07N6926PrDh06hN/85jdwOBwIDQ3FFVdcgVmzZsHhcGDz5s1Yt24d7HY7HnvsMTz++OMIC+NOwUTjTVuPilteL3XbBEMSBTx4cQ4ump7op8iIiIiIxh6xqx5K7Vbno6YIUke1x3NocZOd3V4yCqCmLeL6mADms0IYAJAkCatXr8bq1atRV1eHL7/8Ei0tLQCAuLg4zJ49O6g6nZSWlgIAQkJCkJOTc9LzZsyY4XLN8YUwRETjXb9m4OEPKrH2gHsL4LnpUXjq8lzEhSt+iIyIiCh4CT1NUGq2wFK9GUr1Zkhddo+uN0KioWYshpq5BI7MJTBiJngpUiIiIqLxxTBN/GWbDS9troFhuo6FyCLuO38iLpmZ5J/giIiIiIjGkauuugqTJk3CpEmTEBsbi4aGBtx0000ezfGXv/wFDocDkiThpz/9KaZMmTI4NmvWLFitVvz973+H3W7H22+/ja9//etuc/ztb3+DqqrDfs4VK1YE1doaovHM3t6Pm/5Tgq9a+lyOhykinlyZi4LsWP8ERkRERDRGCL2tUGq3Qal1dnyRWys8nkOPzoKa4ez4oqbnw4xI9kKk5A0+LYQ5VmpqatC3fa2pcXYtSE1NPWX3mrS0NLdriIjIqanbgTvXlGGvvdtt7LJZSbj3vInc/ZSIiGg4tD4otu1QqjfBUr0FctOJu3CejCkqUK3znR1fMpdAS5oFiIHdpZOIiIgo2HT2afj52gp8VtHmNpYRG4KnLp+CXHbEJSIiIiLyiRMVpXiivLwcBw4cAAAsX77cpQjmiEsvvRTr169HbW0t1q5diyuvvBKy7LpU56OPPkJ/f/+wnzc/P5+FMERBoKKpBze/VoKGLtdCt5gwGc9eORWzrJF+ioyIiIgoeAmOTsi122GpKYJSWwS56YDHc+gRKc5uL+kFUDPyYURneCFS8gW/FcIEO4fDgc7OTgBAQkLCKc+NjIxESEgI+vv70dzs3u3gdK1btw4lJSUAgKqqqsFj+/btAwBMmzYN55577rDnG26Mpyr+IQokoiie8mvyn9L6btz6nwOo63S4HBcA3LpsAr6zKA2CIPgnOD9j3lKwYu5SMAravDUNSA37IFdthFK1CbK9GILuGPq6Y2gJ06BlFULNKoSWvghQji665G/7gS9oc5eIiGicOtjYg7veLENNm/sCt7MnxeLBiychKpS37ImIiIiIgsXnn38++Ofly5ef8BxRFLF06VL885//RHd3N/bt24c5c+a4nPPKK694NU4i8r3dtZ247Y1SdPTpLsdToyx44appmJgQ5qfIiIiIiIKM2gulbieUmoGOLw1fQjD1oa87hhEaDzUjH2pGARzpBTBiJwLjdF3qWMNP1Uaor+9oy8rQ0NAhzw8NDUV/f7/LdaOlpKQEGzZscDlWWlqK0tLSwa89KYS58cYbh3Xeq6++Ouw5iQJJTEyMv0MgAO/vteO2f+9Fr+r6S0mERcJz35yHc6en+CmywMS8pWDF3KVgFNB52/oVULkeqFgPHPoM6G3x7PooK5CzHJi0HMheCjkqBTKAod/RUDAI6NwlIiIa597b34RHPjyEfs1wOS4KwI2FGbhuURpEfuhCRERERBRUjqzJCAkJQU5OzknPmzFjhss1xxfCENHYsqmiFfe8Xe52DyAnIQzPXzUVKVEhfoqMiIiIKAjoDsj1u6HUFMFSUwS5bhcEw7NNYQ1LJNT0fGfxS3oB9IQpgMCNRccinxbCaJqGd999Fxs3bkRlZSU6Ozuh66euyhIEAevWrfNRhMPncBz9pjq+be2JHDnn2OtGy+rVq7F69epRn5eIyBtM08Rv15fj6Q/L3MYy4sLwx+sWYmpqlB8iIyIiCkC9bc6ClyPFL62HPLveEglMLHQWv+QsA5KmclcLIiIiIh9SdQO/Xv8V/m9Xg9tYbJiMRy6djDMnsJiViIiIiCgY1dTUAABSU1MhSSfvsZ2WluZ2TSBrbm4e1nmn+jsTBQpfd1Z/68sGPLS2HLrpenxOehSe/do0xIQpXn1+Ght8nbdEo4W5S8GIeRsADA1Sw17I1VucHV9s2yFonjWdMOUwaGl5UDMXQ8tYDD15JiAeXds/Ft+5MHedfFYIs2nTJnznO99BVVXV4DHTNE96viAIME0TQoAu0rJYLIN/1jRtyPOPnHPsdYHqxRdf9HcIRDRG9ak67vnPHry5y+Y2tnBiHF769gIkRHL3EyIiGsc0B1DzubPopfJTwLYTMI0hLxskSED6AmfHl5xlQMZCQOKHKkRERET+UN/Zj3veOoi99m63sRmpEXhyZS5So3kfhIiIiIgoGDkcDnR2dgIAEhISTnluZGQkQkJC0N/fP+wiE0+sW7cOJSUlADC4JmfdunXYt28fAGDatGk499xzhz3fjTfeOKzzXn31VQ8jJfI/b3ZW//2GCjy2ttzt+DnTkvHba+YjzDIWl2CSL3gzb4m8iblLwYh56wOGATTsAw5tdG4M+9VmoL/DszkkC5CxCMg+G8g+G0L6AiiyBeN5dcx4zV2fFMKUlJTgoosuQm9vL0zThMViQW5uLuLj44O2Aik0NHTwz319Q1eeHTnn2OsC1VA3aY5obW31ciREo0MURZcX+fb2dhiGBwtKaVQ0dTlw++sl+NLe5TZ2+exk3HdBDkS1B62tPX6ILvAwbylYMXcpGPk1b00TYnMZlKqNUKo3Q67dBkH17GehHpsDNasQWtYSqBkFQEj00cEO95+7NHYE02tuXFycv0MgIiLyqe1V7bjv7XK09rpvovS1Ocm4Y/kEWOTgvDdORERERESu60SGsw4kNDQU/f39w1pf4qmSkhJs2LDB5VhpaSlKS0sHv/akEIaIPGMYJh5/vwQvf1bpNva1+Rl4/GuzoUi8B0BERETjlGkCzeXAoQ3OwpdDG4HeFs/mECQgff5g4QsyFgGWcO/ES0HFJ4Uwjz76KHp6eiBJEh588EH8+Mc/RmRkpC+e2mssFguioqLQ2dk55I4dXV1d6O/vBzD8IpNgoOu6v0MgGhHDMJi/PlZS34071pShvtPhclwAcMvSLHwrLxWCYPLf5RSYtxSsmLsUjLydt2JXPZSazVCqN8NSvRliT6NH1xuh8VAzF8ORuQRqZiGMqDTXE/g9N27xNZeIiMj/TNPEXz+343ebqmEc1xA9RBZw73nZuHRWkn+CIyIiIiKiUeNwHP3cU5aHXnpz5Jxjrxstq1evxurVq0dtvhdffHHU5iIa61TdwD3/2YPXd9a6jd1wdg5+cvE0CILgh8iIiIiI/Kj1K2fRy+GBri+dds/nSJ0NZC91Fr5kFQCh0UNfQ+OOTwphPvnkEwiCgFtuuQX33XefL57SJzIyMnDgwAHU1dVB13VI0olbWNpsNpdriIjGk0/KWvCz9yrQp7nuTh5hEfHIJZNROIm7gxMR0Rjn6IZi+xyW6k3Ori8tBz263JRCoKYtHCh+KYSeOB0QuHMYERERUaDp6tfwi7WV+LTcvZN2ekwInrw8F1OTI/wQGRERERERjTaLxTL4Z01z7wR5vCPnHHtdoBruBq+tre7vfYgCjTc7q/eqOu55swwbK9y/F25bNgHXnpmKtra2UXkuGl+8mbdE3sTcpWDEvB0dQncD5OoiKDVbIFdvgdRR7fEcevxkqBmLoWUuhpZ+JsywY9aV9upAL99/HCuYcjcuzntrhH1SCNPU1AQAWLVqlS+ezmemTp2KAwcOoL+/H5WVlcjNzT3hefv373e5hohoPDBNE3/aZsOLm2rcxtJjQvDrVVMwKZHt6YiIaAwyNMgNX0Kp3gRL9RbIdV9AMNRhX25CgJ40A47MQqiZS6BaFwByqBcDJiIiIqLTVd7Yg7vfOoiq1j63sbNyYvHgikmIDvXJ7XgiIiIiIvKB0NCj92z7+tzfBxzvyDnHXhfs2J2agtFodVZv79Vw2xul2GPrcjkuCcADF+Xg0plJ/B6hUTNaeUvka8xdCkbM2+EReluh1G6DUlsEpaYIcmuFx3Po0VlQM/KhphfAkZEPMyL5uBP47+CJ8Zq7PvnkLSkpCTabDWFhYb54Op9ZtGgR1qxZAwBYv379CQthDMPAhg0bAAARERGYOXOmL0MkIvKLPtXALz+oxAclzW5j8zKi8OTKXMSFK36IjIiIyAtME2L7YViqN0Op3gylpgiio9OjKfSodKiZS+DIXAI1YzHMsHgvBUtEREREo+39A014+INDbt1wBQA3LMnA9/LTIAqCf4IjIiIiIiKvsFgsiIqKQmdnJ5qb3T8TPVZXVxf6+/sBDL/bChEFrvrOftz8Wikqm3tdjofIIp64bDIKJ3lvx2siIiIifxAcnZBrt8NSuxVKTRGkpgMQYHo0hx6RAjWjAGp6AdSMfBjRGV6KlsYTnxTCFBYW4tVXX8XevXsxf/58XzylT0yePBnTp0/HgQMHsH79eixbtgxTpkxxOeedd95BbW0tAODiiy+GLI+dXf8kSfJ3CETDIoriKb+m0dXY5cDtr5dgr73Lbezy2cm4/8IcKBL/DYbCvKVgxdylYDSSvBV6WyBXb4ZStRly1UZInbUePadhiXK2c80shJpVCCN2IjCwOJLfNTRcfM0lIiLyL1U38JtPq/DvL+rdxmJCZTx8ySQUZMf6PjAiIiIiIvKJjIwMHDhwAHV1ddB1/aRrKGw2m8s1RBS8Djf3YvVrJajvdLgcjw6V8MyqqZiTHuWnyIiIiIhGkdoLpW4nlJqBji8NX0IwPes2YoTGOzu+ZBTAkV7gsi6GaLT4pCrj9ttvx3/+8x88++yzuOaaawKmGKSkpAR1dXWDX3d0dAz+ua6uDp9++qnL+cuWLXOb47vf/S4eeOABOBwOPPzww1i1ahVmzpwJh8OBLVu24OOPPwYAWK1WXHbZZV75e/hLXBx3MKDgFBMT4+8Qxqy9te344d/3wt7u2v5bEID7V0zH9wuzIfCXmRFh3lKwYu5SMDph3qp9QFURUPkpULkesO8BPNndQpSBzDOBnGVAznKIafNgkWRYRilmIoCvuURERL7U0OnAT94+iD02941AZqRE4ImVubDGhPghMiIiIiIi8pWpU6fiwIED6O/vR2VlJXJzc0943v79+12uIaLgtNfehVteL0V7r+ZyPDlSwfNXTcOkxHA/RUZERER0mnQH5PrdUGqKYKkpgly3C4LhGPq6YxiWSKjp+c5HRgH0hCmAwM08ybt8UpGycOFC/OY3v8GPf/xjXHnllfjTn/6ExMREXzz1Ka1btw4bNmw44VhpaSlKS0tdjp2oECY7Oxu33nornn/+efT29uJf//qX2zlWqxX33nsvwsLCRiVuIqJAtPZLO25/dTd6VdfK38gQGc9/cx6WT0v2U2REREQjYBhA/ZfOwpeK9c4iGK1vyMtcJE13Fr5MWg5MWAKERHojUiIiIiLyseKqDtz3zkG09GhuY6vOSMad50xAiMwPd4iIiIiIxrpFixZhzZo1AID169efsBDGMIzBdSkRERGYOXOmL0P0qpN1wCEKJKPVWb3oUBvueKMEvarhcnxifBh+940ZsEZzMwwaPaOVt0S+xtylYDRu89bQIDXshVxTBKV6C2RbMQSt16MpTDkUWtpCqJmLoWUshp4807lJ7AC+W/CucZu7x/FJIcxDDz0EwHkT4J133sGECRNw/vnnY9q0aQgPH7oa/mc/+5m3QzwteXl5ePrpp/Hee+9h586daGlpgSzLSE1NRX5+Pi666CKEhPANDxGNTaZp4oVPyvGrj8rcxjLjw/DH6xZiSgrb/xIRURBoq3Z2e6n8FKjcAPQ0eXZ9ZAqQs3yg68syINrqhSCJiIiIyF9M08Qr2+347cZq6Mc1B7RIAn5yXjZWzk7yT3BERERERORzkydPxvTp03HgwAGsX78ey5Ytw5QpU1zOeeedd1BbWwsAuPjiiyHLPlmm4xNxcXH+DoHIYyPprP7mrlrc8doBaIbrzYA5mbH483cXIj7CMlrhEZ3QSPKWKBAwdykYjdm8NQygYT9w6DPn46vNQH+HZ3NIFiBjEZB9NpB9FoT0PCiyBYp3IiYPjdncHYJgmqY59GmnRxRFCIIw+LVpmi5fD0XX9aFPIp9rbW31dwhEwyKKosuLfHt7OwzDOMUVNFx9qo4H11bg/QPuC4XnZUTjV6umIi6cv+qMBPOWghVzl4JKfweUgd0tQmo2A83lHl1uymHQMvKhZi6BmnUWjIQpgAfvc4hOVzC95vJDcRqLmpo8LJgk8hNJklxeh1tbW3m/dQS6+jU8+H4l1h90vyeaFh2CJy/PxbSUCD9ENjYxbylYMXcpGDFvKVgFU+4mJib6OwQ6iZKSEtTV1Q1+3dHRgb///e8AgKlTp+Lcc891OX/ZsmVucxw6dAgPPPAAHA4HQkNDsWrVKsycORMOhwNbtmzBxx9/DACwWq14/PHHERYW5r2/EBGNuj9vPoQH397vdvys3ES89O0FiAgZO8VtRERENIaYpnMNzKENzsKXw5uAnmbP5hAkIH0+MPEsZ/FL5pmAZejmF0S+5LPfxo+vt/FB/Q15WaDeSCQaimEYzN9R0NTlwO1ryrC/rttt7PLZSfjJeROhSCL/X48S5i0FK+YuBRRdhVy/C5bqzVCqN0Gu3wPBHH5+moIILXk21MwlcGQWQkud59zx4ogALUCg8YOvuURERN5R0dSDu948iKrWPrexJdmxeGjFJMSEceELEREREVGwWbduHTZs2HDCsdLSUpSWlrocO1EhTHZ2Nm699VY8//zz6O3txb/+9S+3c6xWK+69914WwRAFEdM08fSHpfjt+gq3sZVz0vD01XNgkUU/REZERER0Eq1fAYc3Hu360mn3fI7U2UD2UmfhS1YBEBo9+nESjSKffDoXqDvSEhHRyJTUd+P2N0rR0KW6HBcF4JalWbhmQapHnb+IiIi8wjQhtZZDqd4MS/VmyLXbIKruBZynosdMgCNzCdTMQqjp+TBDx2crUSIiIqLx6sOSZvzyg0r0qq73uAUAP1qcju8XpEPkPRAiIiIi/3F0AybXI5B/5eXl4emnn8Z7772HnTt3oqWlBbIsIzU1Ffn5+bjooosQEhLi7zBHXWure8dMokAzks7qmmHi0Q8q8MaeBrexby6w4s5zJ6C7sx2efeJENHwjyVuiQMDcpWAUzHkrdDdAri6CUrMFcvUWSB3VHs+hx0+GmrEYWuZiaOlnwgw72nkVvTrQy9/5A1Uw5e6xHX1HG7epIyIij6wra8HP3qtAv+b6QzPCIuKRS3NRmBPrn8CIiIgACN2NsNRsgVK9CUr1FkjddZ5NEBYHR8Zi9GcshppZCCM6wzuBEhEREVFA03QDz26oxr92uv8+GR0q4eFLJmNxdqzvAyMiIiIa54SeJij2HbDU7QDqvwDsu4GLnwByr/J3aBSEVq9ejdWrV4/KXElJSbjuuutw3XXXjcp8wYDdqSkYDdVZvU818NN3y/Fpufuiz/8uzMD1Z6bBNAww+8mXhspbokDF3KVgFMh5K/S2QqndBqW2CErNVsit5R7PoUdnQc3Ih5peAEdGPsyI5ONOCMy/Ow0tkHPXm1gIQ0REw2KaJv641YaXNte4jaXHhODXq6ZgUmK4HyIjIqJxTe2BYtsOS/VmKNWbIDeXenS5KVqgpeVBmXo+MGk5kDoH3e3t4/LNIRERERE5NXU5cM/bB7G7tsttbFpKOJ5cOQVpMWNvN2ciIiKigGOaENsOQ7EXOx+2Ykjth93PqypiIQwREZ22zj4Nd6wpw86aTpfjogDcd342rjgj+SRXEhEREY0+wdEJ2VYMS00RlJoiSE0HIMD0aA49IgVqRgHU9AKoGfncDJbGHBbCEBHRkPpUAw99UIkPS5rdxuZnROHJlbmIDVf8EBkREY07hg65cd9Ax5dNUOxfQDAcHk2hJU6HI3MJ1MxCqNY8SKGRXm3DSURERETBY2d1B+59uxzNParb2OWzk3D3uRMRIot+iIyIiIhoHNBVyE0HINu2Dxa/iL0tQ1/3VRFgerYYiIiI6FhNXQ7c/J9SHGzscTlukQQ8eulkLMuN91NkRERENG6ovVDqdkIZKHyRG76EYHq2iasRGu/s+JJRADU9H3psNiAIXgqYyP98XgjT0tKCP//5z/j444+xd+9etLQ4b1zFx8dj1qxZOO+883D99dcjPp5vIAKdJEn+DoFoWERRPOXXdGoNnQ7c/kYJ9tndd0G94oxk3HdBDhSJ/09HG/OWghVzl7xBbK+CXLURStUmyNVbIPa3e3S9EWmFmlUINasQWuYSmOGJg2MSmLcUvJi7REREo8c0TfyjuA7Pf1YF/bg1lBZJwN3nTuTOr0RERESjTHB0Qa7bBcVeDNleDKVuFwSt1/OJuhsg9DQCoQmjHyQREY15Va19uPm1EtS297scj7BI+PWqKViQGe2nyIiIiGhM0x2Q63dDqSmCpaYIct0ujzeCNSyRUNPOdBa+ZBRAT5gCCFw3QOOHTwthfv/73+POO+9ET4+zet48ZleW2tpa2Gw2fPjhh/jFL36BX/3qV/jRj37ky/DIQ9w1m4JVTEyMv0MIGntr2/GDv+9FXUefy3FRAO6/ZAa+t2QiBFYM+wTzloIVc5dGpKcFOPQZULkeqFgPtH3l2fWWKCD7LCBnOTBpOcSEyQgRBIQM83LmLQUr5i4REdHIdDt0PPR+JdaVue82bo224MmVUzA9NcIPkRERERGNLUJ3g7PTi83Z7UVqOgDBNDyex1AioFvnQ5l0NpCVD6QvgNntAHTPdsolIiIqqe/Gza+VoLVXczmeEKHg+a9NxZRk3g8gIiKiUWJokBv3QanZ6uz6Yi/2eDMIUw6Fal04WPiiJc0ARJ/3xCAKGD7L/scffxz333//YPFLTEwM5s2bh9TUVABAXV0dvvjiC7S3t6O7uxs33ngj2tracPfdd/sqRCIiOsZ7X9px+6u70Ke6fgARGSLj+WvmYflU7oJKRESjROsHqrc5i14q1wO2XQDMoa46SpCAjIXApOXO4pf0BYDEN/pERERENLRDzb24680yHG7pcxsrmBiDX14yCbFhih8iIyIiIgpypgmptcLZ6cVWDMW+A1JH1Yim0sOToaXlQbXmQU3Lg54wFZIS4rpxY7dnu+YS0emTJMnfIRAN6VSd1T//qh23v16CbodrIWVmXCh+9/UZyIgN9UmMRMc7Vd4SBTLmLgUjr+ataUBqKoVcswVydRGU2m0QHJ2eTSFZoKXOg5a5GFpGAbTUuYBkGRznb+TjF19znQTz2LYsXrJ3717MmzcPuq7DarXiqaeewtVXXw1Fcf0AUdM0/N///R/uuusu2Gw2yLKML774AjNnzvR2iERENMA0TTy3rhzPfFzmNpYVH44/XpeH3JQoP0RGRERjhmkC9fuOdnz5agvg4S4XSJwy2PEFE5YAoWxLT0REvtXU1OTvEIiGRZIklwWCra2t0LlTNgDg49JmPPR+JXpU913If1iQjh8UpEMS2QnXH5i3FKyYuxSMmLc0anSHc2dbW7Gz+MW+A2Jf64im0uImQ03LgzZQ+GJEZQCC6+9lwZS7iYmJ/g6BiIiO896Xdtz6v7vg0F3vCcxMi8Zfrl+EpKgQP0VGREREQcs0geZy4NAG4NBG4PBGoKfZszkEEUibD2Sf7XxknglYwr0TL9EY4JNtkl944QXouo6kpCQUFRUhKyvrxMHIMr75zW+isLAQCxcuRGNjI1544QW8+OKLvgiTPNTaOrIbl0S+JooiYmJiBr9ub2+HYXjeZn086FN1/GJtBT444L6ga0FmNJ66YiriLBq//32AeUvBirlLJyN02qFUb4JctQlK1WaIvZ4tHjbCEqFmLYGWVQg1sxBmlPXoYK8O9I78ZxPzloJVMOWuyw6tREREfqbpBp77rBr/3FHnNhYVIuGXl0xGYU6s7wMjIiIiCiJCfyfkup1Q7MVQbDsg1++CoPd7PI8pKtCSZ0G15jm7vqTOhxkW74WIiYiInF7Z+hV+9uZeHL919OJJCfj9dxYgKpSdYYmIiGiY2qqAQ58dfXTaPZ8jdTaQvdRZ+JJVwI1giTzgk0KYTz75BIIg4N577z1pEcyxMjMzcc899+COO+7AunXrfBAhjUSg7qhDNBTDMJi/J9DY5cAda8qwv67bbeyK2Um457yJUCSR/+/8hHlLwYq5O34Jji4otdugVG+CUr0ZcmuFR9ebcijUtIVQMwvhyCyEnjDFufPFEV7MK+YtBSvmLhER0dCauh249+1yfFHT6TY2JTkcT67MRUZsqB8iIyIiIgpsYpcdss3Z6UWxF0NqKoEAc+gLj2NYIqFZF0C15jmLX1LOAGT+/kVERN5nmiaeXXcQv/n4oNvYitmpeOYbcxEiS36IjIiIiIJGZ52z28uhDc7Cl7avPJ8jcSqQfZaz8GVCIRCRMPpxEo0TPimEqa2tBQAsXrx42NcsWbIEAGCz2bwSExERHXWgrhu3rylFY5fqclwUgFuXZeGb81MhHNdynoiIyIWhQa7fDaV6MyzVmyDX74ZgaMO+3ITg3PkxsxBq5hKoqfMBmW3niYiIiGj07KrpxD1vH0Rzt+o2dtnMRNxzXjZCFfEEVxIRERGNM6YBqeUgFPuOgeKXYkidtSOaSo9MhWpd6Oz2Ys2DHp8LiFxkTDQWtLaOvFM7ka8c6ayuGyZ+8dY+vLLVfbHq1fNScM952ejp7ECPH2IkOt6RvD2ivb0dhmH4MSKi4WHuUjAaKm+F3lbINVsh1xRBqdkCqaXc4+fQozOhZS6GmrEYWmYBzIjko4MOAA7+Xk2eC6bX3Li4OK/N7ZNCGEly3sjStOEvhDuyi60o8oNHIiJv+ri0GT9fW4l+zfWHYIRFwqOXTsaSnFj/BEZERIHNNCG1HRrs+KLUboXo6PJoCj06E47MJc7il/R8mGHee+NDREREROOXaZr41846PLuhGrrhumu5Igm465yJWHVGEjcBISIiovFL74fc8CUUWzEUWzHkuh0Q+zs8nsaEAD1hirPTizUPaloejKg0LwRMRIGA3akpWPRrOm7/9268+6XdbexHi9Pxw4J0wDTAlKZAZRgGX3MpKDF3KRgZve0Qa7bBUlMEpaYIUtMBj7uh6hEpUDMKoKYXQM3IhxGdcdwJ/L6g0TdeX3N9UgiTlZWFAwcOYN26dcPuCrNu3brBa4mIaPSZpok/FNXi5S3uO3ilx4TgmVVTkJMY7ofIiIgoUAk9TVBqtsBSvRlK9WZIXe4fGJyKERINNWMx1MwlcGQugREzwUuREhERERE59Th0/PKDSnxU2uI2lhplwRMrczHTGumHyIiIiIj8R+hrh1y301n4Yi+G3LAHgu7weB5TtEBLOQPqQNGLljofZmjM0BcSERH5SHe/jpv+sx2by5tdjgsA7jlvIq6am+KfwIiIiCgwqL1AxS7g0GfAoc8Qa/sCgulZMYERGg81/Uxn8UtGAfTYbIAbbxH5hE8KYc4//3zs378fTz/9NK644grMnj37lOfv3bsXTz31FARBwAUXXOCLEImIxpU+1cCD71eccBHI/IwoPHl5LmLDFD9ERkREAUXrg2LbDqV6EyzVWyA37ffoclNUoFrnOzu+ZC6BljQLECUvBUtERERE5Opwcy/uerMMh1r63MbOnBCNRy6ZjNhw3v8gIiKiMc40IXbanAUv9oGOLy1lI5rKCImBZl0wUPiyAFrSbEAOGeWAiYiIRkdLt4pbXi/Fgfpul+OyKODhSybhvKkJfoqMiIiI/EZ3QK7fDaVmKyw1RZDrvwCO2RhiOOUrhiUSatoxhS8JUwBB9F7MRHRSPimEufXWW/HSSy+hq6sLhYWFeOCBB3D99dcjIcH1DUVzczP+/Oc/45FHHkFnZydCQ0Nx6623+iJEIqJxo7HLgTveKMP+4272AMCqM5Jw97kToUj8xYyIaFwyDUiN+wY7vij2Yo93gtQSpkLNLIQjcwnUtIWAwu5iREREROR768pa8ODaCvSohtvY9/PT8KPFGZBE7shGREREY5ChQ2opO9rtxV4MqatuRFPpURnOTi8DxS96/GQu7iEioqBQ29aHm14rQXVbv8vxcIuIpy+fgkUT2MGMiIhoXDA0yI37odQUOR/2Yghar0dTmHIoVOvCgcKXfGhJMwHRJ8vviWgIPvlOnDBhAn7/+9/j+uuvR1dXF+655x785Cc/QXZ2NpKTkyEIAurr63Ho0CGYpgnTNCEIAn7/+98jKyvLFyESEY0L++u6cMeaMjR2qS7HRQG4bdkE/Nf8FAhsy0dENK6IHTUDHV82Q6kpgtjX6tH1ekQK1MwlzuKXjMUwI5K8FCkRERER0dA0w8RvP6vGK8V2t7HIEAkPrZiEsyfF+SEyIiIiIi/R+iDX74Fi3+7s9lK3E6Kjy+NpTAjQE6c5u71YF0BLy4MRafVCwERERN51sLEHN71WguZu13URCREWPHfVNExNCvNTZEREROR1pgGpuexo4Yvtc4iOTs+mEC3QUufCMdDxRUs5A5DYDZUoEPmsJO3aa69FQkICbrjhBthsNpimiYqKClRWVgIATNMcPDctLQ0vv/wyVqxY4avwaAQkSfJ3CETDIoriKb8eLz480ISfv1eOPs11J9RIi4THL5+CJTlcBBJImLcUrJi7gU/ob4dcXQSlaiPkqs2Q2g97dL2pRDh3uMgqhJpZCCN+MjBQRBms/9rMWwpWzF0ip88++wwlJSWorKxEVVUVNE3Df//3f2PZsmX+Do2IfKy5W8W9bx/Ezhr3D7WmJIXjyctzkREb6ofIiIiIiEaP0NsCpW4n5CMdXxr2QjDUoS88jimFQEuZCzXN2e1FS50PMyTKCxETERH5zs7qDty+pgxd/brL8Yy4MLzy/TMRKzmg6/pJriYiIqKgY5qQ2g5Bqd06UPyyFWJfi2dzCCKQNh/IPhudSfPRnzwXUFg4SxQMfNqb6ZJLLsHhw4fxxhtv4OOPP8bevXvR0uJ8wYmPj8esWbNw3nnn4YorroCiKL4MjUYgLo6L5ik4xcSMrxa3pmniNx8fxLPrDrqNTUgIxx+vy8PkZH6wEejGW97S2MHcDQCaA6j5HKhYD1R+Cth2AqYx5GWDBAlIXwBMWg7kLIOQsRAWSYHFawH7H/OWghVzl8arf//732hsbERUVBTi4uLQ2Njo75CIyA9213biJ28fdOuCCwCXzEjEvedPRKjCjX2IiIgoyJgmxI5qKPZiZ7cX+w7IreUjmsoIjXN2erHmQU3Lg5Y0E5DG8l0+IiIabz4tb8F9b5fDoZsux6elRuGv31uElOhQtLY6/BQdERERjRaxo9ZZ9FLr7Poiddd7PIeWOMPZ7SVrCaJmnA+ERjuPt7YCLJolCho+LYQBAFmWcfXVV+Pqq6/29VMTEY07vQ4dd762G+/usbuN5efE48VvLUBcBD/kICIaU0wTaDgAVA4UvhzeDKjdns2RMBnIcRa+IPssIJSL64mIKHDdcMMNsFqtSEpKwpo1a/DPf/7T3yERkQ+Zpol/f1GPZz6tgm64LnSRRQF3njMBX5uTDGGgiyERERFRQDM0SE0lzsIX+w7ItmJIPQ0jmkqPyYJqzXN2e0nLgx6bM9jZmYhoNEgSNxugwPHG7no8/EEFjrs1gPmZ0fjz9/IRE+bckJmd1SkYHJ+nzFsKFsxd8hahuwFydRGUmi2Qa4ogtVd5PIceP9lZ+JKxGFrGmTDD4gEM5OlAEczg10RBgK+5Tj4vhCEiIt+oa+/Dj14pxp6adrexby7KwoMrZ8Iij88ffkREY06H3Vn0cuTRVefZ9eEJzqKXnGXOApjYzFEPkYiIyFvOOOMMf4dARH7S69Dx8IeH8EFJs9tYSpQFT6zMxSxrpB8iIyIiIhomtQdK/S7Ith1Q7MWQ676A6OmmNgBMQYSeON1Z+JK2EKp1AcyIZC8ETER0VFxcnL9DIIJpmvjdpxV46oMKt7HzZ6Tg+W/Oc+kQy87qFIyYtxSsmLs0Yj0twOFNwKHPnI+mUs/niJ0AZJ8NZC8Fss+CFJWK4ZRxM28pWI3X3GUhDI1Ya2urv0MgGhZRFF1e5Nvb22EYhh8j8r599i7c+voBNHWpLsdFAbjjnGx8c0Equjvb4flHKeQr4zFvaWxg7vqIoxty7TYoVRuhVG+G1Fzm0eWmFAItfRHUzCXQsgqhJ80AhIHiSBPAOPs9j3lLwSqYcpcfigem9vZ2lJeXo7y8HBUVFaioqEBnZycAYOnSpVi9evWw52psbMTatWuxc+dONDc3Q5ZlpKamoqCgABdeeCFCQkK89dcgonHqq5Ze3PXmQVQ297qNLcqKxiOXTkZcuOKHyIiIiIhOTuhpgmLf4ez2Yi+G3LgPgqF5PI8ph0FNnQvtSMeX1LkwLSwAJiKi8cUwTPzy3f348+bDbmNfz8vAo6tmQ5a4OSgREVHA6+sAqooGCl82AHV74Vy84oEoq7PwZeJZQPZZQNxEb0RKRAHGJ4UwX375JS6//HJIkoRPP/0U6enppzy/trYWS5cuhWmaWLt2LaZMmeKLMMlDuq77OwSiETEMY0zn74clzXjw/Qr0a66/DEZYJDx22WQszo4N2AWSdHJjPW9p7GLujhJDg9zwJZTqzbBUb4Zc9wUEQx36ugEmBOhJM+DILISauQSqdQEghx4zvwmA/05HMG8pWDF3yVM//OEPR2We4uJiPP/88+jtPboYvb+/f7C4Zt26dbj33nuRmpo6Ks9HRLT+YAt+sbYC3Q73+xvXn5mG/7ckA5Io+CEyIiIiomOYJsT2w1COdHuxF0NuOzSiqYywhIFuL3nQrHnQEqcDEot+iYho/HJoBu56bTfe3GVzG/vvZZNw14VTIQi8N0BERBSQHD1A9TZn4cvhjUDtTsD08HPusHhnwcuRri8JkwH+7Ccad3xSCPP3v/8dhw8fxoUXXjhkEQwApKenY8qUKfjggw/w97//HQ899JAPoiQiCm6GaeIPW2rxh6Jat7GM2BA8s2oqshPC/BAZERF5bOBDckv1ZijVm6HUFEF0dHo0hR6VDjVzCRyZS6BmLIYZFu+lYImIaCxITExEeno6du/e7dF1hw4dwm9+8xs4HA6EhobiiiuuwKxZs+BwOLB582asW7cOdrsdjz32GB5//HGEhfE9CRGNnGaY+N3Gavxtu91tLMIi4cEVOVg2mb/3EhERkZ/oKuSmA5DtxVBsxVDsxRB7m0c0lRabPdjtRU1bACNmIhf0EFHAaR1n3eUpcPQ4dNy1phRbDrW5jd117kRck5eCtjbnWDB1Vic6gnlLwYq5SyelOyDV7YZSswVy9Rbn5q+6w6MpTEsU1PQzoWUWQMtYDD1xKiAc0/lt4Ge/p5i3FKyCKXfj4uK8NrdPCmE2bNgAQRCwcuXKYV9z+eWX4/3338e6detYCENENIQ+Vccv1lbi47IWt7EFmVF4YmUuYsO4MxgRUSATelug1GwZLH6ROt0LG0/FsERBzSgYLH7hh+NERDSUq666CpMmTcKkSZMQGxuLhoYG3HTTTR7N8Ze//AUOhwOSJOGnP/2pS1ffWbNmwWq14u9//zvsdjvefvttfP3rX3eb429/+xtUdfidzlasWAGr1epRnEQU/Fq6Vdz3TjmKqzvcxiYnhuHJy6cgKy70BFcSEREReYfg6IJct2uw24tStwuC1jv0hccxBQla0kxoaQuhWhdAtS6AGZ7ohYiJiEYXu1OTP7T1qLjl9VLsq+t2OS6JAh68OAcXTU88ZW6yszoFI+YtBSvm7jhm6JAb90GpKXI+7MUev1825VCo1oXOdTAZ+dCSZgLiMUveDRPA6OcX85aC1XjNXZ8UwpSVlQEAzjjjjGFfM2vWLABAaWmpV2IiIhorGjoduGNNGQ7Ud7uNrTojGfecOwGyJJ7gSiIi8iutH4q9GEr1ZliqN0Fq3A8B5rAvN0UZWup8ODIXQ80shJY82/VNPxER0RBOVJTiifLychw4cAAAsHz5cpcimCMuvfRSrF+/HrW1tVi7di2uvPJKyLLrz6uPPvoI/f39w37e/Px8FsIQjTN7bJ34yVsH0dDlXjR38YwE3HdeNsIskh8iIyIiovFE6G6AYt/hLHyxFUNuOgDB9HyBgaFEQEudB9WaBy1tAdSUuYASPvoBExERjTF1Hf1Y/VoJvmrpczkeKot48vJcLM6O9U9gRERE451pQGoucxa91G6FUrsNoqPTsylEBVrqPDgyCqBmFEBLOQOQQrwUMBGNFT5ZKdfV1QUAiIyMHPY1R87t6HDf4Y+IiJz22btwx5oyNHW7LgQRBeD25RPwjXkpENgNgIgoMJgGpKYDgx1fFNt2CPrwF/0CgBafO9DxpRBq2iLAEuGlYImIiIb2+eefD/55+fLlJzxHFEUsXboU//znP9Hd3Y19+/Zhzpw5Lue88sorXo2TiIKXaZp49Yt6PPNpFTTDtWhcFgXcvjwLV8/lvQ8iIiLyAtOE1FYJ2Vbs3MzGXgypvWpEUxnhSVAHu73kQU+cxg1tiIiIPFTZ1IObXitx2yQjJkzGs1dOxSzr8NekERER0WkyTYhth2GpHej4UrMVYl+LZ1MIIrTkMwY6vhRATZ0PKGFeCpiIxiqf3GGLi4tDU1MT6urq3BY7nExdXR0AICoqypuhEREFrQ9LmvHg+xXo11wXgkSGSHjs0sko4G4nRER+J3baBju+KDVbIPZ69sbfCE+CI3MJ1MwlUDOWwIhM8VKkREREnjvSxTckJAQ5OTknPW/GjBku1wz33hARjW+9Dh2PfnQIaw80u40lRyp4YmUuZqfx3jERERGNEt0BuXEfFFsxZHsxFPtOjxfxHKHFTYZmXQA1LQ+qNQ9GdCbAwl0iIqIR22PrxK2vl6Kjz7UTW0qUBb+9ahomJnDRLBERkbeJHbUDHV+cxS9Sd73Hc2iJM6Cm58ORUQAtbSHMEN7jJ6LT45NCmNzcXDQ1NeH999/HhRdeOKxr1q5dCwCYNGmSN0MjIgo6hmniD1tq8YeiWrexzNgQPLNqKm/0EBH5idDf6WzzWr0ZSvUmyG2HPLrelMOgpp85WPyix0/hh+RERBSwampqAACpqamQJOmk56WlpbldE8iam90X3Z/Iqf7ORIFEFMVTfh2IvmrpxV1rSnGwscdtbGFWNB5fOQXxERY/REa+Eox5SwQwdyk4jdu87e+AbN8J2VYM2bYdct0uj7s3A4ApKtCTZ0FLWwgtLQ9aWh7MsPjBcQEA3zl4x7jNXSKicWZTZRvueesg+jXD5XhOQhiev2oqUqJC/BQZERHR2CZ0N8BSs3Wg8GUrpA7Pu6RqcZOc3V7SC6CmL3J5v0xENBp8Ughz4YUXYsuWLXj55Zfxox/9CNOnTz/l+fv27cMf/vAHCIKAiy66yBchEhEFhT5Vx8/XVmJdmfsuZHmZ0XhiZS5iwnzy0k5ERACgq5Drdzs7vlRvgly/B4KpD33dAGer19lQM5fAkVkILXUeIHFBHxERBT6Hw4HOzk4AQEJCwinPjYyMREhICPr7+4ddZOKJdevWoaSkBABQVVU1eGzfvn0AgGnTpuHcc88d9nw33njjsM579dVXPYyUKDDExMT4O4RT+nBfHe549Ut09mtuY/9v6STcecEUyBIXOY43gZ63RCfD3KVgNGbztsMGVBUBVVud/63fB5jG0NcdLyQayFwEZOUDWQUQ0uZDtoT75kN3OqUxm7tEROPYu/sa8dD7ldBN1+NnpEXimVVTuTaCiIhoFAm9rVBsnzu7vtQUQW4t93gOPTrzmMKXM2FEpnghUiKio3zyjuDGG2/Ek08+iZ6eHpxzzjn4wx/+gEsvvfSE57711lu44YYb0Nvbi/DwcKxevdoXIRIRBbz6zn7csaYMJfXuu6FeOScZd58zgQtBiIi8zTQhtVZAqd4ES/VmyLXbIKrdHk2hx0wY6PhSCDU9H2YoP6AlIqLg09fXN/jn0NDQIc8PDQ1Ff3+/y3WjpaSkBBs2bHA5VlpaitLS0sGvPSmEISL/0HQDv/qoDC9+WuE2FhUi4+mvz8GFM1P9EBkREREFHcMAmkpdC1/aPN+5FgAQlQZMKACyCpzFL8kzAJE9XoiIiLzt79vt+M0G95/fS7Jj8cTKyQhV+POYiIjodAiOTsi2YlgGCl+kpgMQYA594TH08GRn4UtGAdSMfBjRmV6KlojoxHxSCJOYmIiXXnoJ3/nOd9DQ0IDLL78cOTk5KCwshNVqBQDY7XZs3LgRhw4dgmmaEAQBL774IlJSWBEYqCSJbyopOIyF1uh7bZ247Y0SNHWpLsdFAbjz3Gz81/xUCILgp+jIG8ZC3tL4NBZzV+huhFK9GXLVRijVmyF21Xl0vREaCy1zCdSsQmhZhS5v/IP//87YMBbzlsYH5i75k8PhGPyzLA99e+nIOcdeN1pWr149qhupvPjii6M2FxENT3NXP378v19gc7l716gpKZF46dsLkJMU6YfIiIiIKCho/YDti2MKX7YCfW0jmyt5xmC3F2TlAzGZAD9/ISIi8hnTNPHcZ9V4ZbvdbWzFjET87MJsbhBKREQ0ElofFPuOgY4vWyE37IFg6h5NYYTGQU3PHyx+0WOz+Z6ZiPzKZz0iv/Wtb8EwDNx4443o6elBRUUFKisrXc4xTWc1YUREBF588UV8+9vf9lV4NAJxcXH+DoFoRIKtNfpbu2246//2oV8zXI5Hhcr47TXzcfaUJD9FRr4UbHlLdERQ5q6jG/iqCKhcD1SsBxr2eXa9ZHF+SJ6zHJi0HGLqHFhEERbvREteEJR5SwTmLvmWxXL0J5umaUOef+ScY68LVAkJCcM6r7W11cuREI0OURRdfka0t7fDMIxTXOFbX9o6cdeaUtR3uhfKXTQ9ET+7aBLCZJXfc+NMoOct0ckwdykYBWPeCn3tkOw7INu2Q7YVQ67fDUH3vOjelCzQk8+AlpYHLW0htLQFMENjjzkBQFvbaIVNoyyYcpefq9NYxc1TabRpholfvl+Ot/Y2uo19Z2Eabl0+AaKHi225oRQFI+YtBSvmboDRHZDqdkOp2QK5egvkui88fu9sWqKgpp8JLbMAWkYB9MRpgHD033Us/DbIvKVgxdx18lkhDAB85zvfwfnnn4/nnnsO7777Lvbu3TtY/CKKImbPno3LLrsMN910EzvBENG4ZxgmfvNxGZ77pNxtbGJCOP7nuoWYnMzdUImITpuhA/ZdzqKXyk+B6m2Apx+cp8wGJi1zFr9kFQCWcC8ESkREFDhCQ0MH/9zX1zfk+UfOOfa6YKfrnu2SRRQoDMMIiPw1TRP/2d2Apz/5CpphuoxJooDblmXhG/NSIAj8fqPAyVsiTzF3KRgFYt6KnTYotmLI9mIotu2QW8pGNI8REg0tdQHUtDyo1jxoybMBOcT1pAD7u9PwBWLuEo11LPKi0dTr0HHTP3diXYl7Ecy9F0/DDUsnjcrzcEMpCkbMWwpWzF0fO7L25dBnzkfVVkDt8WwOOcy58Wv22UD2UgjWObBI8rja+JV5S8FqvOauTwthACA1NRWPPvooHn30UWiahpaWFgBAfHw8ZNnn4RARBaQeh4Y7Xt2NtXvr3MYWT0rA7741H7Hh4+lXTCKiUdZy6GjHl0OfAX1tnl0fnT7Y8QXZS4FIduciIqLxxWKxICoqCp2dnWhubj7luV1dXejv7wcw/G4rRDS29ak6HvvoMN7d3+Q2lhSp4PHLcjEnPcoPkREREZHfGTqkloNQ7MWQbcVQ7MWQuuwjmkqPSncWvKTlQbUugB6f67JzLREREQWG9h4V3//rdhR/5doNVhIFPH7lbFydl+mnyIiIiAKYYQAN+4HDG53rXg5vBvrbPZtDVIDMRQOFL2cD6QvcN4wgIgpgfq08kWUZycnJ/gyBTkNra+vQJxEFgGBqjQ4A9R39uO31Ehyo73Ybu2puCu4+Lxtmfzda+93HaewItrwlOiJQc1foa4NcvQVK1UbIVZsgdVR7dL1piYSakQ8t6yyoWYUwYnOAI63XVQD8vSioBWreEg0lmHKXu0OOTRkZGThw4ADq6uqg6zok6cQN0G02m8s1RDS+1bT14a43D+Jgo/tOdPMzovDYZblIiFD8EBkRERH5hdYHuX4PFLuz6EW274To6PR4GhMC9MRpUK3OohfNugBGVJoXAiYiIqLRVNfeh2v/tA1l9V0ux0NkEb+9Zj7Om5Hip8iIiIgCjGkCzRXAoQ0DhS8bgZ5Tb1bnRhCBtPkDhS9nAZn5gCXcO/ESEfkAW7DQiLG1NAWrQG6NvtfehTvWlKG5W3U5LgnA7csn4OvzUiDADNj4yXsCOW+JTsVvuav3Q7HvhFK9GUr1JsgNeyHAHPblpiBBS50LR2Yh1Mwl0FLmAOIxvzoH6EJzGh18zaVgxdwlX5s6dSoOHDiA/v5+VFZWIjc394Tn7d+/3+UaIhq/Pqtoxc/eq0BXv/vPq+8stGL1WZmQRcEPkREREZGvCL2tUOp2DHZ7kRv2QjDUoS88jimFQEuZA9W6AGpaHrTU+TBDor0QMRERnQw3T6XTdbi5Fze+ug91HQ6X41EhEp67ajrmWi2nnWfBtKEU0RHMWwpWzN3RJ3bUQK7eArmmCEpNEcSuOo/n0BKnQ8tcDC1jMdT0hcCx7527+52PcYx5S8EqmHLXmxun+rwQ5uDBg/jb3/6GoqIi1NXVobe3Fx988AEmT548eM7evXtRVVWFiIgILF261NchEhH5xQclzXjo/Qr0a64LtSNDJDx+WS7yJ8ac5EoiIoJpQmouhaV6E5TqTVBs2yFofR5NocVNgpq5BGpmIdT0RTAtUV4KloiIaGxYtGgR1qxZAwBYv379CQthDMPAhg0bAAARERGYOXOmL0P0qpN1wCEKNKIonvJrX9ANEy9tqsb/FNW4jUVYJPxixWScNzXB53FR4AqEvCUaCeYuBSOv5q1pOhft2LYPPqSW8hFNZYTGQkvLg5a2EFpaHvSkWYAcMjjO77bxh6+5RP7HTXnodOyzd+GW10vR1qu5HE+KVPD816ZhclK4V3KMG0pRMGLeUrBi7npO6G6EUlsES00RlJqtkDqqPJ5Di5sENaMAanqBc+1LWLzrCfw3OSXmLQWr8Zq7PiuEMQwDd999N5599lkYhgHTdC70FgQBDodrZX9VVRUuvfRSyLKMQ4cOIT093VdhEhH5nGGa+P3mGvxxq81tLCsuFL9eNQUT48P8EBkRUWATu+qcRS/Vm2Gp3gyx17OWr0ZYAhyZSwaKX5bAiLR6KVIiIqKxafLkyZg+fToOHDiA9evXY9myZZgyZYrLOe+88w5qa2sBABdffDFkeew0J/bmzjVE3nTs7lC+0NLtwG3/+wU2HmxyG8tNjsRL31mASUmRPo2Jgo+v85ZotDB3KRidVt4aOlC/F6jaClQVOf/baR/ZXHETgawCICsfyCqAmJALiyjCMvLoaIzjay4RUfDYergNd715EL2q647VWXGh+O1V02CNCTnJlURERGOL0NsKxfY5lIGOL3Kr55tH6NGZA4Uv+VDT82FEpnghUiKiwOSz1Qc33HAD/vSnP8E0TaSnp6OgoACvvfbaCc9dsWIFsrOzcfjwYbz22mu45ZZbfBUmEZFP9Tp0/HxtBT456N7Od1FWNB67LBcxYWNnoRgR0ekQHF1QarcNFL9s8fgGgCmHQk1bCDWzEI7MQugJUwCBuwQSEdH4VVJSgrq6oy3UOzo6Bv9cV1eHTz/91OX8ZcuWuc3x3e9+Fw888AAcDgcefvhhrFq1CjNnzoTD4cCWLVvw8ccfAwCsVisuu+wyr/w9iChw7a5uw3//Yydq23rdxi49w4onvnYGIkJ434OIiChoOXqA2uKjhS/V2wFHp+fzCCKQOvto4UtmPhDNTWuIiIjGovcPNOEXayuhGabL8RmpEXj2yqmIC1f8FBkREZH3CY5OyLZiZ8eX2q2QGvdDgDn0hcfQw5OdhS8ZBVAz8mFEZ3opWiKiwOeTTxnXrVuHP/7xjxAEAffddx8efPBBSJJ0yvbEV199NZ588kl88sknLIQhojGpvrMft79RhtKGHrexq+Yk485zJkCWuECbiMYxQ4Ncv3uw44tcvwuCoQ193QATArTkWVAzC51dX1LnAzJ3kCIiIjpi3bp12LBhwwnHSktLUVpa6nLsRIUw2dnZuPXWW/H888+jt7cX//rXv9zOsVqtuPfeexEWxk6XROOFaZr45+dVePCt/XDorru7yqKA+1ZMx/VLJkIQBD9FSERERCPS1QhUbz1a+GLfDXhwv26QHAZk5DkLXyYUABkLgZCo0Y+XiIiIAsr/7qzD05985Xb8zAnReOryKQi3SH6IioiIyIu0Pij2HQMdX7ZCbtgDwdQ9msIIjXN2exkoftFjswHeWyciAuCjQpiXX34ZgLPTy8MPPzysaxYtWgQA2Ldvn9fiIiLyl732LtyxpgzN3arLcUkA7jhnAr4+L9VPkRER+ZFpQmo7NNDxZTOU2q0QHV0eTaFHZ8KRucRZ/JKeDzMszkvBEhER0RF5eXl4+umn8d5772Hnzp1oaWmBLMtITU1Ffn4+LrroIoSEjL1i1NZW986eRIFIFEXExMQMft3e3g7DME5xxenpU3U89mEl3trb6DaWGKHgySumYl5GNNra2rwWAwU/X+ct0Whh7lIwOmnemibE9q8g134O2VYM2VYMqa1yRM9hhCVAS8uDlrYQWloe9KSZgHTMbu89GtDD36/JM8H0mhsXx/vURDS+maaJlzbX4I9bbW5jF0xLwIMX50DhJqFERDQW6A7I9Xug1BTBUlMEue4LCIbDoykMSyTUtDOhZjiLX/SEqc5OqkRE5MYnhTBFRUUQBAHf//73h31NRkYGAKCurs5bYRER+cX7B5rw0PuVcOiubQ2jQiQ8dlku8ifGnORKIqKxR+htHuj4sgVK9SZIXXaPrjdCoqFmLIaauQSOzCUwYiZ4KVIiIqKxZ/Xq1Vi9evWozJWUlITrrrsO11133ajMFwx03bMdu4gChWEYXsvfmrY+3P3WQZSdoPvtvIwoPHbpZCRGWvj9Qx7zZt4SeRNzl4KKrgF1e6CUfgKpdjsUezHEnqaRTRUzEWpaHlSr82HETnTfrZbfGzTK+JpLRBSYdMPE4x8fxht7GtzGvjEvBXecMwEid7UnIqJgZeiQG/c5O77UFkGxFUPQej2awpRDne+fBzq+aEkzAdEnS7uJiIKeT14tGxqcb2YmTpw47GsUxbkLkKaNoJ02EVEAMkwTvz/JLidZcaH49aopmBgf5ofIiIh8SOuDYtsOpXoTLNVbIDft9+hyU1SgWuc7O75kLoGWNAsQ2SadiIiIiMjfNlW04oH3KtDZ77748FsLUnHz2ZmQubsrERFR4HB0Q6nfBUvdDqBhF1BTDKjdCPdwGlOQoCXNgGZdOFD8sgBmeKI3IiYiIqIg068Z+Om75Vh/0L3z242FGfjemWkQWARDRETBxDQgNR+EUrsFSs1WKLXbIDo6PZtCVKClzoMjowBqej601DmAFOKlgImIxjafFMJERESgra0NjY2Nw76mpqYGABAfH++tsIiIfKbXoeNnaytOeINnUVY0HrssFzFhrOQmojHINCA1fAlL9WYo1Zuh2Ish6J61fdUSpkLNLIQjcwnUtIWA4unH8URERERE5C26YeJ/imrxh6Jat7EwRcTPL8rBeVMT/BAZERERHUvoboRiL4ZiL4ZsK4bcdACC6Xn3DFMJh5o6D6o1D5p1AdSUuYAlYvQDJiIioqDW1a/h9jfKsLPGdXGwKAD3np+NVWck+ykyIiIiD5gmxLbDsNQWObu+1GyF2Nfi2RSCCC15NtR0Z8cX1boAULhZNhHRaPDJquucnBzs3LkT+/fvx/nnnz+sa9auXQsAmDlzpjdDIyLyurqOftyxpgylDT1uY1fPTcYdyydwR1QiGltavwIq1wOVnyKm4lOIfe5FgKeiR6RAzVziLH7JWAwzIslLgRIRERER0elo61XxwLsVKDrc7jY2MT4UT10+BdkJ/ECPiIjI50wTUtshyLbtg8UvUnvViKYywpOgWvOgpi2Aas2DnjgdELmxFxEREZ1cU7cDP36tFGWNrmskLJKARy6djOW53BSZiIgCl9hR6yx6qXUWvkjddR7PoSVOh5peAEdGAbS0hTBDorwQKRER+eQu5QUXXIAdO3bgt7/9LW6++WaI4qkXfO/fvx9/+ctfIAgCVqxY4YsQiYi8Yq+9C3e8UYbmHtXluCQAd54zEVfPS/FTZEREo0fo73DeBKjeBEv1FqD98ODYcMr8DCUCWvqZzo4vmUugx00G2AadiIiIApwkSf4OgWhYjr8XO9S92eHaZ+/CXWtKYe/odxs7f2oCfn7xZESE8PuERsZbeUvkbcxd8hvdAalxn7PTi207ZFsxxF7PdqgdnCp+MjRrHrS0PGhpC2HEZLncq+NPdwoUfM0lIgpMNW19WP1/Jahtd71fEGGR8KsrpiAvK9pPkREREZ2Y0N0IpbYIloGOL1KH5xtJaHGTnN1e0gugpi+CGcaiTyIiX/BJIcyPf/xjPPfcc6ioqMD/+3//D7/73e8gyyd+6o8++gjXX389+vr6kJCQgB/+8Ie+CJFGgAs+KFj460b42v2N+MV75XDopsvxqBAJT14xFfkTY30SBwUnfoBDAU13QLbvhFy9GUrVRkj1eyCYxrAvNwUJeuocqJmF0LIKoaXOAyRlcJy/YZCv8TWXghVzl8i/4uLi/B0C0YjExMSc9hz/+3kVfvbmPjh01/cBkijg3oun4fuF2RBY3E6jaDTylsgfmLvkNX0dQM3nQNVW56OmGNB6PZ9HlIG0eUBWPpBVAGSeCSkiERKAkFEPmsi7+JpLROR/JfXd+PF/StDSo7kcTwhX8NxVUzE1OcJPkRERER0l9LVBqd3m3PC1pghya7nHc+jRmVDT8weKX/JhRHIzbCIif/BJIUxKSgpeeuklXHvttfjjH/+IDz74AJdccsng+LPPPgvTNLF582aUlJTANE2Iooi//OUviIyM9EWINAJc8EHByts3wg3DxK8/KsML691/Sc5OjMAfr8tDThJf28gz/ACH/Mo0gYYDQOWnQOV64PBmQO32bI6EyUDOciBnGYTssyCHxvjmF1GiEeBrLgUr5i4REXlbn6rjZ2/uxavFNW5jiZEh+O0183BmToIfIiMiIhrjOmxAVdFA4UsRUL8P8GBjmkGWKCBzkbPoJSsfSF8AWMJHP14iIhoXuHkqHWv7V+247fUSdDt0l+OZsaH47ddnIDMu1C9xcUMpCkbMWwpWAZu7/Z2QbdudRS/VWyA17ocAc+jrjmFEJEPNWAwtczG0jAIYMZmDYwK44WswC9i8JRoCc9dJME3Ts1f00/Dqq6/ihhtuQHt7+wl3BDwSSmRkJP76179i1apVvgqNiGhU9Dg03PbvXfhgX73bWOHkRPz2mvmICVdOcCURUYDpsA8Uvgw8uuo8uz48AchZNvBYDsRmDnUFEREREREFsOqWHtz4jx3YW9vhNpY3IQ6//dZ8pET7Z1ELERHRmGIYQFPZMYUvW4C2qpHNFWUdKHoZKHxJmQmIXJ5DREREo2vtl3bc8r+73DrHzrBG46/fW4SkKPaaIyIiH1J7geptwKHPnI/anYCpD33dscLigeyzgOyzgYlnA4m5ALugExEFHJ8WwgBAc3Mzfve73+Htt9/Grl27oGlH22HOnDkTK1euxC233ILk5GRfhkVEdNpsbb34wV+Lsd/uviDk2oIJeODSGVCk8Vl1SURBoL8L+GqLs+NLxXqg8YBn18uhzg/Uc5YBk5YDKbOBcVppTkRERONDa2urv0MgGhZRFF26hrW3t8MwPNtBflNFK+5/5yA6+jS3sW/lWXHLsgm850GjajTylsgfmLs0Ilo/pIa9kG3bIduKIduLIfa1jWgqPWEKNGsetPSF0NLyYERlDLlQh3lLwSqYcjcuLs7fIRARec0/tn2Fn67Zi+NXn+XnxOPla/MQHcqNQomIyMs0B1C7w1n0cnijswhGd3g2hyUKmLjEWfiSfTaQPJNrXoiIgoDPC2GOZRgGWlpaoOs64uPjoSh88xNMuOCDgoUvboR/aevEba+XoLlbdTkuCcDd52Xj6/Oto/p8NPYF0wc4FKQMDVL9HijVmyFXbYRs/wKCoQ593QATAvTkmdAyC6FmFUJLywPkUOYuBSXmLQWrYMpdLvigsaipqcnfIRANiyRJLq/Dra2t0PXh7X5nmCb+p6gWf9hSi+NvIocpIh64MAcXTEsYxWiJnE4nb4n8iblLwyH0d0C274Bi3wHFXgy5fjcETxfoADBFC7SU2VCteVCtedCs82GGxno8D/OWglUw5W5iYqK/QyAiGnWmaeK5deV45uMyt7GLZqbiN/81F6EKO9EREZEXGDpg3wUc2ugsfqkqAtQez+aQw5ydU7PPBrKXAtY5gCR7JVwiIvIev75yi6LImz5BLFBvJBINxTCMUc3f9w804aH3K+HQXZeERIVIeHxlLs6cEMPvFzpto523NA6ZJsT2w7BUb4FSvQlKTRFER6dHU+hR6VAzl8CRuQRqxmKYYfHHneCeo8xdCkbMWwpWzF0iIhpN7b0aHnivHFsOtbuNTYgPxZMrczEpMdwPkREREQUXsdMGZaDTi2IvhtRcBsGtxHRohiUKmnWBs/AlLQ9a8hmAHOKFiImIiIaHm6eOX7ph4ql1h/DvnXVuY1+bm4J7z89Gb1cHev0Q2/GCaUMpoiOYtxSsvJa7pgGxuQxK9RbINVsg12zzeL2LKSrQrPOgZSyGllkALWWu63vqDs/mo7GDr7kUrIIpd725cSpLGImIRsgwTby4qQZ/3mZzG8uKC8Uzq6ZgQnyYHyIjInISelug1BTBUr0JSvVmSJ21Hl1vWKKgZhQMFr8YMRMBQfBOsEREREREFDBK6rtx95sHYevodxtbnhuHn1+Ug8gQ3lomIiJyYxqQmsucnV5sA4UvXfYRTaVHpQ10enF2fNETcgFBHOWAiYiIRo6b8oxPDs3Az9dW4KPSFrexHxak40eL0wHTONH+eQGBG0pRMGLeUrAace6aJsS2w7DUFkGpKYJSuxVir/vPnVNOIYjQkmdDTS9wrnuxLgCU49bx8fuKToCvuRSsxmvu+uTTSlVVcfDgQQDApEmTEBLiujtRX18f7r//frz66qtoampCdnY2brzxRtx8882+CI+IyGM9Dh0/X1uB9Qfdd7lZNCEaj1+Wi+hQLgghIh/T+qHYi6FUb4alehOkxv0e7S5pijK01PlwZC6GmlkILXk2IPK1jIiIiIhoPHnzywY88fFht863ogDcfHYWvp2XCoEF8kRERE5aP+SGPVAGil5k+w6Pd6UFABMC9ISpUNPyoFoXQLPmwYhK80LARERERCPX7dBx15oyfF7V4XJcAHDXuRPw9Xmp/gmMiIiCnthRC+VI4UvNVkjd7l3HhqIlToeaXgBHRgG0tIUwQ6K8ECkREQUSn6xsfOONN/DNb34T8fHxqKmpcRtftWoVPvzwQ5im88PVkpIS3HrrrSgtLcULL7zgixCJiIatrqMft68pQ1lDj9vY1+el4PblEyCLXBBCRD5gGpCaSgY7vii27RB09x2bT0WLzx3o+FIINW0RYInwUrBERERERBTI+jUDT39yGG/saXQbiw+X8eilucjLivZDZERERIFD6G2FUrcTsr0Yiq0YcsNeCIbD43lMyQItZS5U6wKoaXnQUufDDOHPWSIiIgpcLd0qbnm9FAfqu12Oy6KAX66YhPOnJfgpMiIiCkZCdyOU2iJYjhS+dFR5PIcWN8nZ7SU9H2r6mTDD4r0QKRERBTKfFMJ88MEHME0TV1xxhVs3mHfffRcffPABBEFARkYGFi5ciM8//xy1tbV48cUXcc0112Dx4sW+CJOIaEhf2jpx55qDaO5RXY5LAnDXuRNx1dwUP0VGROOF2Gkb7Pii1GzxuP2rEZ4ER+YSqJlLoGYsgRHJ1y0iIiKikZAkyd8hEA2LKIqn/BoAbO19uHNNKQ7UdbuNzUmPwpOXT0FyVIjbGJG3DCdviQIRc3eMMU2IHTWQbdsHHsWQWg6OaCojNBaaNQ9aWh609IXQk2YB8tGfrf7MFOYtBSvmLhGR79S29eHm/5SiqrXP5Xi4IuKpK6bgzAkxfoqMiIiChdDXBqV2m7PjS+1WyCN4f61HZTgLXwaKX7jehYiIfFIIs3PnTgiCgKVLl7qN/elPfwIATJkyBZ9//jmioqLQ3t6OxYsXo6SkBP/zP//DQhgiCghr9zfhlx9UwqGbLsejQyU8flkuFvHmDhF5gdDfCaV2q7PjS/UmyG2HPLrelMOgpp85WPyix08BBHatIiIiIjpdcXFx/g6BaERiYlzvX2woa8Qt//sl2o7b9AMAvrt4Iu5bMR0WmYsKyb+Oz1uiYMHcDTKGDtTvA6q2AlVbnP/ttI9srtgJQFYBkJUPZBVATJwCiyjCMroRewXzloIVc5eIyDvKG3tw02slaOp2vW8QFybj2a9NxYzUSD9FRkREAa2/E/Kh9Qip2gRL7VZIjfshwBz6umPo4clHC18y8mFEZ3opWCIiClY+KYRpaGgAAEyePNnluGEYWLduHQRBwM0334yoqCgAzptUN910E1avXo2ioiJfhEhEdFKGaeLFTTX48zab21hWXCh+c+VUZMWF+iEyIhqTdBVy/W5nx5fqTZDr90Aw9WFfbgoitOTZUDOXwJFZCC11HiAFw0fsRERERETkS4Zh4oX15Xjm4zKYx33+GKZIePxrs3H53HT/BEdEROQLjh6gdsdA4UsRUP054Oj0fB5BBFJmHVP4kg9Ep41+vEREREQ+tqumE7e9UYrOftfPKq3RFrxw1TRMiA/zU2RERBRwtD7ItbuAnTuBQ58BtTsR5cFaFwAwQuOgpp85WPyix+Zwo1ciIjolnxTCNDU1AQDCwlzfAO3atQsdHR0QBAGXXHKJy9isWbMAANXV1b4IkYjohHocOn72XgU+LW91GztzQjQeuywX0aE+eSklorHKNCG1VkCp3gRL9WbItdsgqt0eTaHHTBjo+FIINT0fZih3viMiIiIiopNr71Fx26u78ElJg9tYdmIEXvr2AkxNjfJDZERERF7U3XS06KVqK2DfBRia5/PIYUBG3tHCl4yFQGj0qIdLRERE5E8byltx3zsH0a+57p4xOTEMz181DUmR3IiPiGhc0x2Q6/dAqSmCUlsExf4FBMPh0RSGEgktfREcRwpfEqY6N5sgIiIaJp+s3g4JCYGmaYMFMUd89tlnAICMjAxMmDDBZexIdxhd96wqlIhotNR19OP2N8pQ1tjjNvb1eSm4ffkEyCKrzonIc0JPEyzVm6FUb4JSvQVSd51H1xshsVAzFw8WvxjRGV6KlIiIiIhOprXVfcMEokAkiiJiYo4Wy28rq8Udrx9ATVu/27nnTInHL1ZMRlSIxhwnvzo+b9vb22EYhh8jIhoe5m4AMU2I7V9Btm2HbCuGbNsOqbVyRFMZYfHQ0vKgpS2ElpYHPWmmawfmXh3oDd6fm8xbClbBlLtxcXH+DoGIyCNvfdmIRz6shH5cB9m56VF4ZtUURHGzUCKi8cfQITfucxa91BRBsRVD0Ho9msKUQ6Fa85wdX9LzoSXPAkT+TCEiopHzyU+RCRMmYP/+/di2bRvOPffcweNvv/02BEHA2Wef7XZNS0sLACApKckXIRIRudhj68Rdaw6iuUd1OS4JwF3nTsRVc1P8FBkRBSW1F4rt88HiF7m51KPLTdECNW0B1MxCODKXOD9s5y4YRERERH7FzVsoGL22owb3v/El+jXXBYKiAKw+KxPXLrRCEATmNwUcwzCYlxSUmLs+ZGiQmg5AsRVDsTsfYk/T0NedgB4zwbkwJy0PmjUPemw2IBy3KdYY/ndl3lKwYu4SEZ0+0zTx18/teGFjtdvYWZNi8diluQhV+BklEdG4YBqQmg9Cqd0CpWYrlNptEB2dnk0hKtBS50JNL4AjowBa6hxACvFSwERENB75pBBm+fLl2LdvH55//nmsWrUK06dPx1tvvYVPP/0UALBixQq3a/bu3QsAsFqtvgiRiGjQe/ub8MsPKqEet71JdKiEJ1bmYmFWzEmuJCIacGQnjOpNzscIWsBqidMHO76o1jxACfNSsERERERENNb1azoefHs//rmtym0sLkzGo5dN5v0OIiIKLo5uKPW7INt3OAtf6r6AoLp3dx+KKUjQkmZAs+Y5i1+sC2BGcJM+IiIiGn8M08RvPq3CP3fUuY1dNisJ91+QDVkUTnAlERGNCaYJse0wLEc6vtRuhdjb4tkUggghbR6QfTaQfTbaoqZCF1n4QkRE3uOTQpibb74ZL7/8MhoaGjBr1izExcWhtbUVpmkiIyMDX/va19yu+fDDDyEIAs444wxfhEhEBMM08buN1fjL53a3sQnxoXhm1VRkxYX6ITIiCgZiexUs1ZugVG+GUlMEsb/do+v1yNTBji9qxmKY4YleipSIiIiIiMYTe0c/7v1HEXbXuL9HmW2NxOMrJyMlih9GEhFRYBO6G6EMFL3I9mLIjfshmJ53fjCVcKip86Ba86BZF0BNmQtYIkY/YCIiIqIgoukGHvygEmv3N7uNXbfIipvOyoRwfIc8IiIKemJHLZQjhS81WyF1uxdDDkVLnD7Y8cXIPBNxqROODra2jumOqkRE5H8+KYTJzc3FK6+8gu9973vo7u5GS4uzUjQ2Nhb/+te/YLFYXM6vq6vDRx99BAA455xzfBEiEY1zPQ4dD7xXgQ3lrW5j+RNj8NilkxEV6pOXTCIKEkJfm/NmQPUmWKq3QOpw31n5VAwlEmpGPtSBri96bDbAG8hERERERDSKth5ux0/fLUdbr+Y2dvXcFNy+PAuKJPohMiIiolMwTUhthyDbi6HYiqHYiyG1fzWiqYzwxIFOL87CFy1xOiApoxwwERERUfDqdei4562D2HLYfQON25Zl4Vt5Vj9ERURE3iB0N0KpLYLlSOGLh+tcAECLzYGaUeB8pJ8JMyx+cEySpNEMl4iIaEg+W9V99dVXY+nSpXj33XdRV1cHq9WKlStXIj4+3u3cPXv24JprrgEArFixwlchEtE4VdfRj9vfKENZY4/b2DfmpeC25RPY4peIAL0fin2ns+NL9WbIDV9CgDnsy01BgpY6F47MQqiZS6ClzAFEFtgREREREdHoM0wTf9lmw4ubatzetYTKIu67IBsrZrALJRERBQhdhdy4b7Dbi2LfAbG3ZURTabE50NLyoFoXQLXmwYiZwM1niIiIiE6irVfFra+XYq+92+W4JAr4+UU5vHdARBTkhL42KLXbnJu81m6F3HLQ4zn0qHSoGYsHCl/yYUSmeCFSIiKikfHp6svk5GRcf/31Q553wQUX4IILLvBBREQ03u2xdeLONWVo6XHdGVUSgLvOnYir5vKXd6JxyzQhNZfCUr0JSvUmKLbtELQ+j6bQ4iYNdnxR0xfBtER5KVgiIiIiIiKnzj4NP1tbgY0VbW5jExPC8cTKXExKCPV9YERERAMERyfkul3OwhdbMZT6XR7fdwMAU5ShJc2Cal3gLH5JnQ8znIs1iYiIiIajrqMfN79WgkMtrr+HhcoinliZiyU5sf4JjIiIRkxwdEG2bYdSUwRL7VZIjfs92uAVAPTw5IGOL/lQMwpgRGd6KVoiIqLTx23IacTYyo6ChSiKJ/z6nb0NeOj9Cqi66y/80aEynrpiKhZNiPFZjETHO1nekncJXXVQqjZCrtoMpXoTxJ4mj643whKhZi2BllUINbMQZtTRVuHj5V+QuUvBiHlLwYq5S0RExytr6Mbdbx1ETVu/29j5M1Lw9NVzYPR1Qdd1P0RHRETjldhVP9DpxdntRWo6AME0PJ7HUCKhWedBteZBs+ZBTZkDKGFeiJiIiIiGg2tGgldFUw9Wv7of9Z0Ol+MxoTKeu2o6zkgfO5v78T46BSPmLQ2b1gfZtgNyzRYo1Vsg1e+BYHp279cIjYWWUQAtYzHUzAIYcZMGO6sKADz5ac/cpWDEvKVgxdx1EkzT9Kzkk4goyBmGiSc/KMVLGyrcxnKSIvDH6xYiOzHCD5ERkc/1dwKHNwGVnwIV64GmUs+ul8OACYuBScuBnOVA8gxgnP5SSURERDTetLa2+jsEIhfv7G3AIx9Uok9zXVgsCsAdF0zFjUsnQRQFtLe3wzA8X3xM5EuiKCIm5ugmNcxbChbMXQCmAbGlArJtO2RbMWTbdkgd1SOayohIhpa2cOCRBz1xGiByj7/RxrylYBVMuRsXF+fvEIiIBu34qhXf/+t2tPWoLsetMaF45fuLMDl57BTBEBGNOZoDsO0EDn3mfFRvA3TH0NcdyxIFTFwCZJ/tfCTP5DoXIiIKWiyEIaJxpbtfw63/3oWP9te7jZ2Vm4gXrpmPmDDFD5ERkc9oDqD4T8D+NUDNdsDQPLhYANLmOoteJi0HMhYBSqiXAiUiIiIiIhpav6bjl+/sx9+3VrmNxUdY8Nx/zUNhbqIfIiMionFB6wdsu4CqIqBqK1C9FegdYcFw0jQgKx/IKnD+N3bC4C60RERERHT61pc24Ma/70Cf6lo4ODk5En/73iKkxbLbHhFRQDF0wL77aOFLVRGg9ng2hxzmfI99pPDFOheQuMkEERGNDfyJRkTjRk1rD37w12KU1HW6jX138UT89JLpkCVWuBONaU0Hgf/8ALDvGv41sROOdnzJPhsIj/daeERERERERJ6wtfXiv/+xE7uq29zG5mTG4sVvzeciFiIiGl29bc7NZY4UvtTuALQ+z+cRFSB9/tHCl8wzed+NiIiIyIve+KIGd/3fHmiG637J87Ji8afrFiIuwuKnyIiIaJBhAI0HBgpfNgKHNwH97Z7NISpAxsKjhS8ZeYAc4p14iYiI/IwdYWjEWltHuKMXkY+JoojyNh03vLIDTV2u7SBlUcA952fjqrmpfoqO6MREUURMTMzg1+3t7TAM4xRX0CmZJixf/gPhGx+GMMQH80ZINLTMJVCzCqFlFsKIneCjIMcG5i4FI+YtBatgyt24uDh/h0BENOZsLm/Czf/6Ai3dDrexb+dn4YFLZyBElvwQGRERjSntNc6ClyOFL/X7AIzgo8WQGCDrzKOFL2nzAIXFmkRERMGMa0aCxyuf2/Dr9Yfdji/JicVTl09FmGXs3j8IpvvoREcwb8cR04TYdhhyzRYo1Vsg12yF2Nvs2RSCCD15NtTMxdAyFkNLWwAo4V4K+NSYuxSMmLcUrIIpd725XoQdYWjEdF33dwhEw/L23gY8/H4lHLrri3x0qIQnV+YiLyuG+UwBzzAM5ukICb3NiFx3L0IOrzvhuCkqUK3zoWYWQs1cAi1pFiAec7OX/99PC3OXghHzloIVc5fIt7jYg/zFNE38eVstfvtZFY7bxBUhsoj7L8zBZbOS0dPZgR4E141woiOYtxSsgj53TQNicxlk23bItmLItmJInbUjmsqItEJLWzjwyIOeOBUQjunI3tUHYASdZGjUBX3e0rgVTLnLDUJorOK9yMBnmiZe2FiNv35udxu7eEYCfn5hDmRpfP1b8j46BSPm7dgidtqg1GyBUlMEpWYrpO46j+fQEqdDTc+HmlEANW0RzJAo1xMCJF+YuxSMmLcUrMZr7rIQhojGLMM08duT3NSZGB+KZ1ZNRWZcqB8iIyJfUQ6vR9QnP4HY0+Q2psVNQvfin0DNyPfbbhhEREREFLzG441E8r+ufg0/X1uJDeXuhVjpMSF46vJcTEmOOGV+jtcb4RTcmLcUrAI+d7V+yA17oNiKodiLIdfthNjf4fE0JgToCVOgWvOgWfOgpuXBiEpzPckwAQTw/wsaFPB5S3QSzF0iIleaYeLRDw/hrb2NbmPfWpCKW5ZlQRQEP0RGRDS+CN2NUGqLYKnZCqW2CFJ7lcdzaLE5zqKXjAKo6WfCDIv3QqRERETBh4UwRDQmdTt0PPBuOT6raHMbW5wdi0cumYSoUL4EEo1ZWh8iNj+OsC9fOeFw7+zvoHvxPYAS5uPAiIiIiIiIRqa8sQd3vVmG6rZ+t7GzcmLx4IpJiOa9DiIiOgWhrw2yfScU+0DhS/2XEAyHx/OYkgVayhyo1jyo1gXQUufDDI0Z+kIiIiIi8ok+1cB97xw84XqJm8/OxLULrRBYBENE5BVCXxuU2m3Oji+1WyG3HPR4Dj0qHWrG4oHCl3wYkSleiJSIiCj48ZNRIhpz7O39uO2NUpQ39bqNXb9kIv57sRWCGZit0Yno9EmN+xH14W2QW8vdxoywBHSe+wTUicv9EBkREREREdHIrN3fhIc/PIR+zfV+hgDghiUZ+F5+GndxJSIiV6YJsbPWWfBypOPLCBbfAIAREgPNusBZ+JKWBy15FiCFjHLARERERDQaOvo03P5GGXbVdroclwTg/gtysHJ2kp8iIyIamwRHF2Tbdig1RbDUboXUuB8CTI/m0MOToWbkD3Z9MaIzvRQtERHR2MJCGCIaU3bVduKuNWVo7dVcjsuigIcun4VrzsxCa2sr2BmdaAwyDYR98T8I3/prCIbqNuyYsByd5z4OMzzRD8ERERERERF5TtUNPPNpFV79ot5tLCZMxiOXTEL+xFjfB0ZERIHH0CE1lx7t9mLbAam7bkRT6VEZzoKXgeIXPX4yIIijHDARERERjbbGLgdueq0EFcdtGhoiC3j00lwsnRznp8iIiMYQrQ+KfQeU2q1Qaoog1++BYHq2EM0IiXUpfNFjcwBudEREROQxFsIQ0Zjxzt5GPPLRIai6a1V9TKiMF7+zAIsncfE70VgldtoQ+fFdsNRudRsz5VB0L7kPfbOu4Y0DIiIiIiIKGvWd/bj37XLssXW5jc1IicATK3NhjeFu/ERE45baC6V+N+QjhS/2LyCq7j8zhmJCgJ44Hap1wWDxixFp9ULARERERORNX7X04qbXSmDvcLgcjwyR8MyqKZiXEe2nyIiIgpzugNywB0pNkfNh/wKC4Rj6umMYSiS09EVwZBRATc+HnjiNG04QERGNAp8XwuzevRsbN25EZWUlOjs7oQ/RlkEQBPzxj3/0UXREFIx0w8RvN1bjb9vtbmMT40Px7FXTMSeHRTBEY5Xl4LuI/PSnEPs73Ma0pJnovOAZ6HGT/BAZERERERHRyBRXteO+d8rR0qO5ja06Ixl3njMBITI/KCUiGk+E3hYo9h3OwhdbMeTGvRAM958TQzGlEKipc6FZ86Ba86ClzoMZEuWFiImIiIjIV/bXdeHH/ylFW6/r74eJEQpeuGoaJieF+ykyIqIgZOiQG/dBqT1S+LIDgtrj0RSmHOrccCLd2fFFS54FiNyznoiIaLT57KdraWkpvve972HrVved2k/GNE0WwhDRKXU7dPz03XJsrGhzG1s8MQaPXjYZMeHcHZVoLBIcnYjY8CBCS99wGzMhoHf+j9Bz5q2AZPF9cERERERERCNgmib+tt2O326shuHa8BYhsoB7zs3GytlJ/gmOiIh8xzQhdlRBsR3p9rIDcmvFiKYyQuOgWhdAS1voLHxJmsH7ZURERERjyLav2nHXmjL0qIbL8ay4ULxw1TSksZssEdGpmQak5oNHC19qt0F0dHo2hahAS50LNb0AjowCaKlzAImvv0RERN7mk0KY2tpanH322WhqaoJpOj/BjYyMRFxcHESROxcS0cjY2vtx+xulKG/qdRv75oJU3LI0C7Io+CEyIvI22b4DUR/dAamj2m1Mj7Si67ynoWbk+yEyIiIiIiKikenq1/Dg+5VYf7DVbSw9JgRPrMzFtJQIP0RGREReZ2iQmg5AsRdDse2AYi+G2NM4oqn0mCyoR7q9pOVBj80BBN4nJyIiIhqLPixpxs/eq4B23G4a01Mi8OyVUxEfofgpMiKiAGaaENsPw1JzpPBlK8TeFs+mEERoybMHOr7kQ7UuABR23yIiIvI1nxTCPPLII2hsbIQgCPjBD36AO++8E1OmTPHFUxPRGLWrthN3rSlD63GtfSVRwE/Om4hVZyT7KTIi8ipdRXjxCwgr/h0E03Ab7s+9FF1LH4IZGuOH4IiIiIiIiEamoqkHd715EFWtfW5jS7Jj8ctLJiE61GfNvYmIyNsc3VDqd0G2O4telLovIKg9Hk9jCiK0xBnQ0vIGil8WwIzgvXEiIiKi8eDfO+vw9Cdf4biGslg0IRpPXT4FERbJL3EREQUyqaUckevvg2Lf4fG1WsI0qBkFzkfaIpghUV6IkIiIiDzhk09P33//fQiCgGuvvRYvv/yyL56SiMawd/Y24pGPDkHVXW/pxITKeGJlLvKyov0UGRF5k9h2GFEf3QGlfpfbmGGJRPfSB9E/5XLucElEREREREHl/QNNePiDQ+jTXIv9BQA/WpyO7xekQ+T7HCKioCb0NEGx74BiK4Zs3w65cT8EU/d4HlMOg5o6D5o1D2paHrSUOTAtkV6ImIiIiIgClWma+P3mWvzP1lq3sfOnxuPBiyfBIot+iIyIKIAZOsJ2/xnhW38FQXcM6xItNudo4Uv6IphhCV4OkoiIiDzlk0IYm80GALj22mt98XRENEbphokXNlbjle12t7Hs+FA8c+VUZMSG+iEyIvIq00TIgf9D5MZfnnBnTNWah87zfwUjOsMPwRERERHReCVJ3FWTTo+qG3hm/Vf41w73+xwxoTIeuSwXS3LiTvt5RFE85ddEgYh5S8FKFEXANIHmCqCqCBEVn0Gq3Q6p7dCI5jPCEqGlL4SWlgctbSH0xOmApBx9vtEKnMY1vuZSsGLuEtF4pBsmHv/4MN7Y0+A29vV5KbjznAncTIOI6Dhi+1eIWncPFNv2U56nR6VDzVgMNSMfano+jMhUH0VIREREI+WTQpi4uDg0NDQgNjbWF09HRGNQt0PHT98tx8aKNrexxRNj8OhlkxEZ4pOXNCLyIaG3FZHr70dI5QduY6Yoo2fRLeidfwMgchEiEREREflWXNzpFyjQ+FXf0Yf//t+d2PFVq9vYrPRovPitBciMD/fKc8fExHhlXiJvYt5SQNNVwL4HqCoaeGwFepoAABZP50qYDGTlA1kFQFYBxPgcWATB83mITgNfcylYMXeJaKzr1wz89N1yrD/ofi/h/y3JwPfz0yCwCIaI6CjTROi+fyFi82Mn3HTVCEuAI3PJYNcXIzrTD0ESERHR6fDJqvG8vDy89957KCsrw7x583zxlEQ0htja+3HbG6WoaOp1G/vmglTcsjQLssgbOkRjjVK1CZHr7obUXe82psdMROcFz0BLOcMPkREREREREY3c1spm3PTPL9DU1e829o28TDx4+UyEKiz2JyIKWH0dQM12Z8FLVRFQuwM4wYKaIYkyYJ0zUPSSD2TmA5FJox8vEREREQW9rn4Nd6wpw47qTpfjogDcc95EfG1Oip8iIyIKTGKnDZGf3AtL9Sa3MRMC+uZcj+6COwA51A/RERER0WjxSSHMj3/8Y7z77rt4+eWX8Y1vfMMXT0lEY8Sumk7c9WYZWns1l+OSKODe8ybiijOS/RQZEXmN1o+IoqcRtvtPJxzunflf6C68H1C8szsyERERERGRN5imif/ZeAiPv18C3TBdxiyyiF9ePhPfWJjlp+iIiOikOuxA9Vbgq4GOL/V7AdPwfB5LJJC56GjhS/oCwBIx+vESERER0ZjS1O3Aj/9TirIG1+JrRRLwyCWTcc6UeD9FRkQUgEwTIaVvIOKzhyA6Ot2G9ehMdJ77BLT0M/0QHBEREY02nxTCnH/++bjnnnvwxBNP4MYbb8Rzzz0HRVF88dREFMTe3tuIRz48BO24xSExYTKeXJmLBZnRfoqMiLxFai5F1Ie3QW4udRszQuPQdc5jcOSc74fIiIiIiIhctba2+jsECiLd/Tp+sbYcH5c2u42lxYTgqSumYkZqpFfyShRFxMTEDH7d3t4OwxjBAm4iH2Lekt+YJsTWCsi27QOPYkjtVSObKzIVjrQ8aNY8aGl50BOnObvAHNHtcD6I/IyvuRSsgil34+Li/B0CEQWpmrY+rP6/EtS2u3aVjbCI+NUVU5CXFXOSK4mIxh+hpwmR6+9HyKGPTzjeO/Ob6FnyE5iWSB9HRkRERN7ik0KYv/3tb5g+fToWL16Ml19+GW+//TauuuoqTJs2DeHhQ+/mfu211/ogSiIKFLph4oWN1Xhlu91tLCchDL9eNQUZsWxNSTSmmAZC9/wVEVuehKC7LwBwZJ2FznOfhBnBLlBEREREFBh0Xfd3CBQkKpt6cNdbB/FVS5/b2OKJMXjokkmIDVN8llOGYTB/Kegwb8lrdAfkhr1Q7MWQ7Tug2HdA7BtZUaIWNxl6+kKETF7q7PgSNxHdbW1Hc9cEwDymIMDXXApWzF0iGmtKG7rx49dK0dyjuhxPCFfw7NemYloKuwsSER1hKV+LyE8fOOF7ej0iFV3nPAp1wlI/REZERETe5JNCmO9+97sQBGHwa7vdjueff35Y1wqCwEIYonGk26Hjp++UY2Nlm9vY4uwYPHrpZESG+OSli4h8ROyqR+S6u2Gp3uQ2ZkoWdC++B31nXAsIoh+iIyIiIiIiGrmPSprx0AeV6FVdd6YWAPygIB0/KEiHJAonvpiIiEad0N8BuW4nFFsxFPsOyPW7Iej9Q194HFNUoCXPgjrQ7UVNnQ8zLB6SJCGEu/4TERER0WkqrurAHWvK0O1wLfBLjwnBb6+exo1DiYgGCH1tiNjwC4QefPuE431Tr0D3WT+DGcoOWkRERGORz1aTm6bpq6cioiBla+/HbW+UoqKp123smgWpuGVpFheHEI0xlooPELn+/hPuyqElTEPnBb+GnjDVD5ERERERERGNnKYbePazavxrR53bWHSohIdWTEZhTqzvAyMiGmfELjtk23Yo9h1QbMWQmkshwPPPqwxLJDTrAqjWPGfxS8oZgMzFh0REREQ0+j4pa8FP3y2HQ3f9vXVKcjie+9pUJEZY/BQZEVFgUQ6vR9Qn90LsaXQbM8Li0bXsYTgmXeiHyIiIiMhXfFIIc+jQIV88DREFsV01nbjzzTK09WouxyVRwL3nT8QVs5P9FBkReYWjG5GbHkbo/ldPONw79/voLrgDkEJ8HBgREREREdHpaepy4Cdvl2NXbafb2NTkcDy5Mhfp3LmViGj0mQakloPOTi+2Yij2YkidtSOaSo9IdXZ6seZBTVsIPT4XEKVRDpiIiIgouEkSfz8aba/vqscjH1bAOK52Oy8rGr++chqiQny23/GYIYriKb8mCkTM2yH0dyJ848MI2ffvEw47Jl2EnnMegRmeAP6k8i3mLgUj5i0FK+auk0/eIU2YMMEXT0M+xpsaNFre3FOPhz+ohHbc3ZzYMBlPXTEVeVmn156SL/gUjMZy3kp1uxDx/q2Q2g+7jRkRKei+4FfQsgp5QyJIjeXcpbGLeUvBirlLRBR4vqjpwE/eLkdzt+o2dtmsJNxz7kSEKny9JiIaFVo/5IYvodiLodiKIdftgNjfMbKp4qdATcuDNtDxxYhKAwR2JyciIiI6lbi4OH+HMGaYpokXPinHrz6qcBu7cGYKnv2veQhV+OnpaIiJOb31J0T+wLw9RuUG4M3VQHu1+1hoDLDiV7DMvgoWvqcPCMxdCkbMWwpW4zV3uVUAjRhvatDp0g0TT7xfgpc/q3Qby02OxB+vW4ishPBRf97x+oJPwW1M5K2uAZt+DXz6OGDq7uPTV0K87FlEhcf7PjbymjGRuzTuMG8pWDF3iYj8xzRN/HNHHZ7bUAX9uF1bFUnA3edOxBWzkyDwA1giohET+tog23c6C1/sxZDrv4RgODyexxQt0FLOGOj2kgctdT7MUP4uTURERET+YZomHnpnP/68+bDb2DcXZeLhK2ZDEnk/gYjGOUcP8PEvgM9/f+LxyecDK58DotN8GhYRERH5FwthiMgvOvtU3Pq/u7CupMFtbNnUJDz/zXmIClX8EBkReUXrYeD1G4Dqre5jlkjg4ieAud/iTptERERERBR0uh06Hv6gEh+VtriNpUZZ8MTKXMy0RvohMiKiIGaaEDtrnQUvtoHCl5aDI5rKCImBZl0wUPiyAFrSbEAOGeWAiYiIiIhG5q3dthMWwdx8zmTcfv4UbqpBRFS1DVhzI9Di3jULlkjgwkeB+ddyvQkREdE4xEIYIvK56pYefP+v21FW3+U29oPCbNy7Yjp3NCEaK0wT2P2/wHt3AY5O9/GMhcCVLwPxOb6PjYiIiIiI6DQdbu7FXW+W4VBLn9tY/sQYPLxiEmLDudEHEdGQDB1SSxmUI0Uv9mJIXXUjmkqPSodqzYOWlgfVmgc9fjIgiKMcMBERERG1trb6O4SgZ5gmnv2o1OWYAOCu87LxzQXJaGtr80tcY4koii7d1Nvb22EYhh8jIhoa83aA1o+wrc8gZOfLEEz3v7+akY+e85+CEZ0J8PUyIDB3KRgxbylYBVPuxsXFeW3uUS2EOeeccwAAgiBg3bp1bsdH4vi5KHDwpgaNxM7qDtzxRgnaejWX47Io4L4LcrBqTgo62ttG9TmD6QWf6IixkLdCXzvCP7kPloPvuo2Zgoi+RTejb9HNgCAD/JkyZoyF3KXxh3lLwSqYctebNzaIiPzl49JmPPR+JXpU99fe7+en4UeLM7jRBxHRyWh9kOt3Q7EXQ7EVQ67bCdHhvnHSUEwI0BOnObu9WBdAsy6AEZXmhYCJiIiI6Hi6rvs7hKD3WUUrKpt7XY7df0E2rjgjmf9/vcQwDP6/paAzHvNWatiLqI/vgtxS5jZmSiHoXnw3+s641rnxxTj7fxNMxmPuUvBj3lKwGq+5O6qFMJ9++ikAuLXl/PTTTyEIAkzTHPZcR85ni8/ANR6/Yej0vPVlIx796BA0w/W1ICZMxlMrczE/M9oneTVeX/ApuAVb3io1RYj8+M4T7typR2eh8/xfQbPOB0zwpsQYF2y5SwQwbyl4MXeJiHxDM0y88FkV/l7s/n4nKkTCQysm4axJLAAkIjqW0NsCxb4Dsr0Yim0H5Ma9EAzV43lMKQRaylyoaQucXV9S58MMifJCxERERERE3ve3z+0uX+ckhGHl7CQ/RUNEFAB0FWE7XkJ48QsQDM1tWE2Zi67znoIel+OH4IiIiCjQjGohzNlnn33CwpWTHSei8UE3TDx/kgUiOQlh+PWqKciIDfVDZEQ06nQHwrc9g7Cdf4AA9wLYvmlfQ/fZP4NpifRDcERERERERKenqduB+94ux86aTrexKUnhePLyXN7jICIyTYgd1VBs26HYiyHbd0BurRjRVEZo3ECnlzyoaXnQkmYCkmWUAyYiIiIi8r3dtZ3YVet6f+HahVaIXF9FROOU1HIQkR/dCaVxr9uYKSroOfNW9M77ASCO6pJXIiIiCmJe6Qgz3ONENPZ19Wv46bsV2FTZ5ja2JDsWj1w6CZEhfINCNBZILeWI+uh2yI373MaMkBh0LX8EjskX+yEyIiIiIiKi07erthM/eesgmrrdOxhcOjMRPzlvIkIVyQ+RERH5maFBaiqBYi92dn2xFUPqaRjRVHp0FlTrAqhpC6Gl5UGPzQG4EJCIiIiIxqC/fm5z+TolyoILpyf4KRoiIj8ydITt+hPCt/0agu5wG9YSp6PzvKehJ07zQ3BEREQUyLj6nIi8pqatD7e/UYbK5l63sW/npeLms7MgifwQkyjomSZC9/4DEZsehaD3uw07Mhaj67wnYURa/RAcEREREZF3SBILHsYL0zTxrx12PLP+K2iGa+dLRRJw93nZ+NqclIDtiC2K4im/JgpEzNsAp/ZArtsF2bYdsq0Ysn0nBLXb42lMQYSeNANaWh60tIXQrHkwI1Nczgm2n7bMXQpGzFsKVsxdIgpmlU09+KyizeXYNQtSoUh8LSOi8UVsO4yodXdDse9wGzMFCb0L/h96Ft7E7rBERER0QiyEISKv+KKmA3e9eRBtvZrLcVkUcO/5E3H57GQ/RUZEo0noaULUup/A8tV6tzFTtKCn4A70zv0eIPCmLRERERGNLXFxcf4OgXygu1/DT17/Em/vtrmNpcWE4nffXoC5mbG+D+w0xMTE+DsEIo8xb/2sqwGo2jrwKALsuwFT93weJRzIyAOyCoCsfAgZCyGHRI3pD6qYuxSMmLcUrJi7RBRMXtlud/k6KkTCFWdwDQURjSOmgdC9/0TE5schaO4bLGtxk9B13tPQUs7wQ3BEREQULMby5wtE5CdvftmAxz467LZLakyYjKdW5mJ+ZrSfIiOi0aQc+gRRn9wDsbfFbUyLz0XnBc9AT5zuh8iIiIiIiIhOX0VjF/7fKztwsKHLbaxwciKe/a+5SIgM8UNkREReZJpAc4Wz4OVI4UtLxcjmCk8EJhQMFr4g9QxAUkY3XiIiIiKiIFPf2Y+1B5pdjl09LwURlmDrh0hENDJipw2Rn/wElurNbmMmBPTN/R66828H5FA/REdERETBhIUwRDRqdMPEcxuq8I8ddW5jOQlheGbVFKTH8k0KUdBTexGx+TGE7f3HCYd7z7gW3Yvv4U0JIiIiIiIKWu/vtePO/9uDrn7NbWz18km4/fypkETBD5EREY0yXQXq9hwteqnaCnQ3jmyu+ElHi14mLAbicwCBr5VERERERMf61446l01FQ2QB/zUv1Y8RERH5iGkipOQ/iNj4S4gO982H9OgsdJ73JLS0hX4IjoiIiIIRC2GIaFR09Wu4/50KbD7U5jZWmBOLhy+ZhMgQvuQQBTupYS+iProdcqv7TqBGeCI6z30S6oSlfoiMiIiIiMi3Wltb/R0CeYFmmHhhw1f46+c2t7FIi4RfXpqLZbnx6Ghv831wIySKImJiYga/bm9vh2EYfoyIaGjMW+8Sm0pgOfgeZFsx5LovIGi9Hs9hChL05FnQ0vKgpS2EZl0AMyLJ9aS2ttEJOIgwdykYMW8pWAVT7sbFxfk7BCIKEB19Gl7f3eBy7LKZSYiPYOdEIhrbhO5GRK6/HyGH151wvHfWNehe/BPAEuHjyIiIiCiYcVU6EZ22mrY+3P5GGSqb3T8w/XZeKm4+O4u7pBIFO0NH2Bd/QPi2ZyAY7jsi92efh65zHoUZluCH4IiIiIiIfE/XdX+HQKOsuVvFfe8cxI7qTrexyYlheOryKciMCw36f3vDMIL+70DjD/N2dAiOToQXPY3QL/8BAebQFxzDUCKg/X/27jw8qvrs//jnnFmTmRDCHvYdBQRENpEdXKutWmtXte1Tn6cWq3Uvikvdd21ta1u7Wrs8/tS628oSFkEFBBEVkR3ZtxBmJsls5/z+8BEZz4gBkjk5yft1Xb3KfO8zySdwZ2LOnPt8OxyvdPkwZTqeoHT7IVKgOPcg/o0c6F14EX0Lr6J3AXjBU2/vUHX606E905C+M7zcxUQA0PCCq19SdM5NMpP7HLVspIPik+5Sutu4wgcDAACexyAMgKOy9KP9uub51aqqyb0w3m8auv7kHvrycW0/55kAvMKMbVXJjKsV2Pqmo2b7ixQfc4OSA74hGQy8AQAAAPCmd7bGdN3zq7UrnnbUTu/fWjec3EPhgM+FZABQP4LrZigy9xb5EtvrdLxV3FbpjsOVLj9B6fJhyrY5RjJ5SwkAAAA4UrVpS/9cmvvf45P7tlLnlmGXEgFAwzJqKhWdd7NCq1/KW6/td44S426SHWpR4GQAAKCp4F0LAEfs2RU7dfeMDcpYuXcPbFnk131f6aPjO/OLCuB1wQ+f//jOHCnnHZHT7Y5T7OSHZJX1cCEZAAAAABw927b15LIdemjOJsf5Db9p6KqJ3XTekHYyGPwH4FFGYqei836m0Np/H/K4TFkvZf5v6CXdcbisFl246QkAAABQj158b5f2VufeYPSiER1dSgMADSu4fpaiFTfIrN7lqFlFrRWfeLtSPU9xIRkAAGhKGIQBcNiylq2fz92kv7/lvHtgz9ZFeuicvurEXUsATzOSMUXm3qzwh885arYM1ZzwQ1WPuFzyBVxIBwAAAABHryaV1R0z1uvfK/c4au2iAd3z5T46rmOJC8kAoB7YlkLv/a8iC+/Je4MT2x9W7YBvKN1plNLlQ2UXtXYhJAAAANA8ZC1bTyzZlrM2olsLHdM+4lIiAGgYRjKmyGu3K7zyqbz1ZK/TFJ9wK+chAABAvWAQBsBhiSczuv7FNVq4vspRG9OzpW7/Ui9FQ7y0AF7m37pYJTOuki+2xVHLlnRS7OQHlOk43IVkAAAAAFA/NlXW6prnPtTa3TWO2vCuLXTHl3qrVYTBfwDe5Ktcp2jFDQpsXZS3nuoyRvEJt8kq7VrgZAAAAEDzVLF6rzbvS+assRsMgKYm8NECRWddJ198m6NmhUoVH3+LUn3OYgdaAABQb7haHUCdbd5XqyueWaX1e2sdtQuGlevScV3kM/llBfCsbFrFi36uoqW/lWFbjnJt368oMf5nskPcERkAAACAd81ZvVc3v7JOiVTWUfvuiHL9cEwX+Tm/AcCLsikVLf2tihf/WoaVcpStcJkSY25Qst/ZXHQCAAAAFIht2/rLotyLwo9pX6wRXVu4lAgA6lm6WpGF96poxV/zllPdJig+8U5Z0fYFDgYAAJo61wZhNm/erO3bt6u6ulrDhw9XUVGRW1EA1MFbH+3Xtc+vVlVNJmfdbxq64ZQeOmtgW5eSAagPZuV6lcy4UoGd7zhqVrBE8Qm3KtX3yy4kAwAAAID6kbFsPfraR46LTyQpEvTpZ6f31IQ+rVxIBgBHz79tqaIV18u/d3Xeem2/s5UYc73sotYFTgYAAAA0b4s37dfKHYmctYuGd5TBcDqAJsC/7S2VzLxGvqqNjpoViCox9gYlj/0aN+QAAAANoqCDMLFYTPfee6/+/Oc/a+vWrQfWV6xYof79+x94/M9//lPPPPOMSktL9dhjjxUyIoA8nn1np+6auUFZy85Zb1nk1/1f6ashndkdAvAs21bo/f9VdP7tMjI1jnK64wjFptwvq0UnF8IBAAAAQP3Ym0jrhpfWaPGm/Y5arzZFuvfLfdStFTfqAeA9Riqu4tfvV3jFEzJkO+rZks6KT7hN6W7jXEgHAAAA4C+LtuY87lQa0qS+3IgDgMdlkip+8yEVLft93vMRqU6jFJ98j6wWnV0IBwAAmouCDcKsXr1aZ5xxhtatWyfb/vQ/fvLd4WDUqFH6zne+I9u2ddFFF2nMmDGFigngIFnL1sNzN+kfb2131Hq1KdKDZ/dVp5ZhF5IBqA9GzV5FZ09TaP1MR802/aoeeYVqjr9YMn0upAMAAACA+vHutriue361dsRSjtppx7bWDSf3UFGQ33sAeE9w/SxF5t4kX9x5/tY2TNUM/p6qR/5EChQXPhwAAAAAfbAjoTc35t6U44Lh5fKZ7IwAwLt8O1eoZOY1eXeltf1hJU68VrWDLpAM04V0AACgOSnIIExtba2+9KUvae3atYpEIpo6darGjRunM888M+/x3bt318SJEzV79mw9//zzDMIALognM7r+xTVauL7KURvbs6VuP7O3IlwkAnhWYOM8lcy6Vmb1Lkct07KnYqc8qGy741xIBgAAAAD1w7ZtPfX2Tj1QsVGZz+xy6zMNXTmhq84/vn3eG/UAQGNmJHYpOv9Whda8nLeeaTtAsYl3cG4HAAAAcNnji7flPG5V7NeZA9q6lAYAjlI2reIlv1bRW7+WYWUc5XT74xWbcp+ssh4uhAMAAM1RQQZhHn30Ua1Zs0aRSETz58/XkCFDvvA5p59+umbNmqXXX3+94QMCyLF5X62ueGaV1u+tddQuGF6uS8d24Q4lgFdlahVZeK+K3vlL3nLNwG8pcdL1UqCowMEAAAAAoP7UprO6Y8Z6vfL+HketbTSgu8/qo8GdSlxIBgBHwbYVev9JRRbeLTO531n2h1U94nLVDPm+ZBbk7R8AAAAAn2PzvlrNXJV7XuLrQzsoHGCHBADe49vzoUpmXi3/rvccNdsMqnrkT1Rz/A8kk5sqAwCAwinIOyHPPPOMDMPQ5ZdfXqchGEkaPHiwJGn1aucWegAazlsf7de1z61WVW3u5L7fNHTDKT101kDuTgJ4lW/3Byp59Sd5t6e1ilopPulupXpMdiEZAAAAANSfjyprde3zq7V6V7WjdkKXEt15Zh+1jgRcSAYAR86sXK+SihsU2Ppm3nqqy0mKT7hNVmm3AicDAAAAkM/flmzTwRvUFgdMfW1Ie/cCAcCRsLIqevsPKn7jIRlWylHOtB2g2OT7lG3Tz4VwAACguSvIIMzKlSslSaecckqdn9O6dWtJ0r59+xoiEoA8/vXOTt09c4OyB5+NkdSyyK/7v9JXQzpzp1TAk2xL4bf/pMjr9+c9MZHqNkGxyffILm7jQjgAAAAAqD9z11Tq5lfWKp7MOmoXDC/X1LFd5GeXWwBekk2paNljKl78SxlZ53kdK9RSibE3KNnvHMng9Q0AAABoDPYm0nr+3V05a+cMaqcWYXZuBOAd5r71Kpl5rQLblzpqtuFTzbAfqXrYjyRf0IV0AAAABRqEicfjkqRoNFrn5ySTSUlSIMDdGYGGlrFs/XzuJv3jre2OWq82RXronH7qWBpyIRmAo2XGtys661oFP1rgqNm+kBInTVPtcd/hQgkAAAAAnpa1bP1mwWb96c2tjlokaOqm03ppct9WLiQDgCPn3/62orOnyb/3w7z12r5fUWLsDbKLWhc4GQAAAIBDeXLZDiUzn96A1Gca+uYJHVxMBACHwbYUXvGEIgvvkZGpdZQzZb0Vn3KfMu0HuRAOAADgUwUZhGndurW2b9+uDRs2aOjQoXV6znvvvSdJ6tCBXwSBhhRPZnT9C2u0cEOVoza2V0vd/qXeigR9LiQDcLSCa/6taMUNMpP7HLVMm/6KnfKgsq36FD4YAAAAANSjfdVpXf/SGi3auN9R69m6SPd+pY+6typyIRkAHBkjFVfxGw8o/M5fZch21LMlnRSfcJvS3ca7kA4AAADAoVSnsnry7dybkJ5+bGt1aMHNRwE0fmZsq6KzrlNw80JHzZahmuP/S9Ujr5T8vKYBAAD3FWQQZujQoXr55Zc1b948nXvuuXV6zuOPPy7DMHTiiSc2cDqg+dq8r1ZXPLNK6/c6p/cvHF6uqWO7yGeySwTgNUYqrsi8WxX+4GlH7eMTEz9Q9agrJB8nJgAAAAB427vb4rru+dXaEUs5aqcc01rTT+mhYm7wAcBDAutnKzr3Jvni2xw12zBVO/h7Soz8iRQoLnw4AAAAAF/o2RU7tb82m7N24fByl9IAQB3ZtkIrn1Zk/m0y03FHOduiq2JT7lOm4zAXwgEAAORXkEGY8847Ty+99JJ+97vf6corr1TXrl0PefzDDz+sefPmyTAMffOb3yxERKDZWbJpv657frWqajM56wGfoetP7qGzBrZ1KRmAo+HftlQlM66Sb/8mRy0b7aD4lPuV7syQKQAAAABvs21bTy/fqQcqNiqdzd0twWcaumJCV339+PYyDG7wAcAbjMQuReffqtCal/PWM236Kz7xDmXaDypwMgAAAAB1lcla+tuS3N1gxvZqqZ5tGGQH0HgZiZ0qqbhBwQ2z89ZrjvuOEideKwUjBU4GAABwaAUZhLngggv00EMP6Z133tGECRP0q1/9SqeddtqBumEYsm1bS5Ys0cMPP6x//vOfMgxDY8eO1emnn16IiECz8q93durumRuUtXIvFCkr8uu+s/tqSKcSl5IBOGJWRsWLf6WiJb+SYWcd5WTvMxSfcLvscKkL4QAAAACg/tSms7p75ga9+N5uR61NJKC7z+qjIZ05twHAI2xboZX/T5EFd8lM7neWfSFVj7xcNYO/L/kCLgQEAAAAUFf//mCPY9fai0Z0dCkNAHyx4OoXFZ1zs8zkPkctG+2g+KR7lO46pvDBAAAA6qAggzCmaer555/XmDFjtGHDBp155pkqLi4+cEfGCRMmKBaLKZlMSvr4jo69evXSk08+WYh4QLORsWz9fM4m/WPpdketd5siPXhOP3UsDbmQDMDRMKs2quTVqxTYscxRswJRJcbfrGS/cyTuhAwAAADUG5/P53aEZumjylpd/ewH+nBntaM2tEsL3fPlvmoTDbqQrPEyTfOQj4HGqLn0rVm5XsWzpymw+Y289XSXk1Q96U5ZLbuJnzre0Fx6F00LfQuvoncBNDaWbevxRdty1gZ3inIjUgCNklGzV9G5N3/uzrS1x3xVibHTZYdaFDgZAABA3RVkEEaSunbtqrfffls//vGP9eSTTyqRSByo7dq168CfDcPQ+eefr0cffVRlZWWFigc0efFkRtNeWKPXN1Q5auN6tdRtX+qtSJC3UwFPsW2FPnhakXm3ykwnHOV0h6GKnfKgrBZdXAgHAAAANG2ctyq8WSt36Ir/fUf7azOO2sVje+ja045RwMfFb1+ktJSdQuE9Ta5vs2lpwc+lufdK2aSzXlQmnXKHAkO+pVJubOJpTa530SzQt/AqeheA2xau26d1e2py1i4czm4wABqf4PqZilbcILPaueO2VdxG8Yl3KNVjigvJAAAADk/BBmEkqVWrVvrb3/6mO++8Uy+99JKWLFminTt3KpvNqnXr1jr++ON11llnqW/fvoWMBTR5H1XW6op/rdKGvbWO2oXDyzV1bBf5TN5QBbzEqN2naMV0hda+4qjZhk/VI36smhMukcyC/qgHAAAAgHqXtWw9PPNDPTJ7jaMWCfp039cG64zjyl1IBgBHYPMS6fnLpJ3v5a8PPE867W4p2rawuQAAAAAclb8szt0NpmfrIo3t1dKdMACQh5GMKTL/NoU/eDpvPdn7DMXH/0x2UasCJwMAADgyrlwd261bN/3oRz9y41MDzc6STVW67vk1qvrM3VIDPkM3nNxDZw7kDVXAawIfLVB05rXyJbY7atnSroqd/JAyHYYUPhgAAAAA1LPKREqX/XOZ5q923p2wd7uofvOdoerdrsSFZABwmJIxafbt0pu/lWQ766VdpDMfkvqcXPBoAAAAwJHw+XxuR2g0lm+JadnmWM7aRSM7KeDnpoVuM03zkI+Bxqgh+ta/6TVFZlwrM77VUbPCLVU98Tal+54lvkNwNHjNhRfRt/Aqevdj/MYFNGHPLN+pe2ZtUNbKfWO1rMiv+8/uq8GduFAE8JRsUsWvP6Dit/+Qt1zb/3zFx0yXgpECBwMAAACan8rKSrcjNHnvbYvr6mc/0Pb9KUft5H6tdfPpvRUJZPi3+AKmaaq0tPTA46qqKlmW5WIi4Is1tb71r5+tyOzpeS82sQ1TycHfVc2JV318TofXNE9rar2L5oG+hVd5qXfLysrcjgA0CHr7U397YW3O4/LSsL45uo+C/uZ5MVpjdvDPDsArjqpvk3Fp5s3S4t/nr/c5VeaXf6FoSYcj/xzA5+A1F15E38KrmmvvMgiDI8bdPRqvjGXrwdkb9I+3tjlqfdoW6+GvHqOOpWEXkrmDyUd40Wf71L93tUpeuUz+3Ssdx1rhlqqefLfSvU8Tr8xwG6+58CL6Fl5F7wLuymazbkdosmzb1rMrduneWRuUzube3MNnSJeN76pvndBBhsG/w5GwLIu/N3iOV/vWqN6t6PxbFVr9Ut56pvUxik+6S5n2gz5e8ODXiEPzau+ieaNv4VX0LgC3rNkZ04z3d+Ss/deYHgzBAHDfxtelZy+RKtc7a8ES6fS7pSHflgyj8NkAAADqQcEHYSzL0vvvv69169YpFovV6WTUhRdeWIBkOFzc3aNxqqpJ66p/LNO8D3c5alOOba+ff2OIIqHmPQPXXCcf4VG2LS36nUpm3CRlap31nhNlnv2ooi3KC58NqANec+FF9C28it4F0BTUpi3dM2uDXnjXeV6jdSSgu87sraFdWriQDAAOg20rtPIpRRbcJTNZ5Sz7QqoecZlqhvyX5Au4EBAAAABAffndvHU5j1uE/frGiK4upQEASelaqeJ2aeEvJdnOeo9x0ld+JbXktQoAAHhbwa6Gr66u1u23367f//732rNnT52fZxgGgzBAHW3YndB//WWx1u5KOGo/HN9L157aT6bJFD/gGbEd0nM/ktbMdNZ8IWnKLdLIH0rc/R0AAABAE7BlX62ufX61Vu2sdtSGdCrR3Wf1Vpto0IVkAFB35r71ilZMV3DLG3nrqc4nKj7hdlktuxc2GAAAAFDPKisr3Y7gup2xpJ5ZuiVn7WvHt1e6OqZK5+kNuMA0zZybSFVVVcmyLBcTAV/saPrWt+MdRV69Ur69axw12x9WzZjrlRz0Hck2JV7HUc94zYUX0bfwKi/1bkNuvFGQQZh4PK6JEydq6dKlsu08U8YAjtrCtbt1yRNLVVWTzlkP+kzdde5x+uoJnV1KBuCIfPCy9PylUnWe4dF2/aWv/l5qP6DwuQAAAACgASxYt083vrxG+2udu0d/64QOumxcF/l93AQAQCOWTato2e9VvPgRGdmko2yFSpU46Xolj/2qZHCzIgAAAHhfNuv8Hb65eWLRVmWsT6+DCvoMnT+kPX83jZhlWfz7wHPq1LfZlIqX/FpFS34tw3Yem+4wVLEp98pq2UOybEl8H6Dh8ZoLL6Jv4VXNtXcLMghz++2366233pIkjRo1Sv/93/+twYMHq2XLljK5i71ncXePxuOpt7frnhnrc06wSFKr4oAeOKefhnSONOt/Ly9NPgJKV6t43m0KvfuPvOXaId9XzUnXSv4wd+dAo8RrLryIvoVXeal3G/IOHwC8740N+3TFv1bpM6c1VBQwdeOpPXXKMa3dCQYAdeTfsVzR2dfLv+eDvPVknzMVH3uj7OI2BU4GAAAAoKHEajN65p0dOWtnDWyr1pGAS4kANFe+3atUMusa+Xe956jZZlDVo65QzZD/kkyfC+kAAAAaTkEGYZ566ikZhqEzzjhDzz33HMMvTURznBxrbDKWrYcqNup/l+1w1Pq0LdaDZ/dVeWmIf6vPaK6Tj2j8/DveUXTGlfLvW++oWZF2ik2+V+muYz9eoIfhEbzmwovoW3gVvQvAi5IZS3fN2OAYgunWKqz7vtxHPdsUuxMMAOoilVDkzQcVfudxGbZzIDlb0lHx8bcq3X2iC+EAAAAANKSnlu9QIvXp7wGmIV0wvNzFRACaHSv78e60bz4sw0o5ypm2AxSbcp+yrfu5EA4AAKDhFWQQZsuWLZKkyy67jCEYoJ7EajOa9uIavbGhylEb37tMt53RS8VBJvkBT7CyKlr6WxUv+rkMK+OsH3Om9o+7VZlgqbMGAAAAAB7218XbtKUqmbM2qU+Zbjqtp6Khgpy6BIAjEthQoejcm+SLbXXUbBmqHXyREiOvlIIRF9IBAAAAaEjJjKV/vpV7w9LJfVupc8uwS4kANDdm5XqVzLpGge3LHDXb9Kt62FTVnHCJ5GOXKgAA0HQV5N3kdu3aafPmzWrTpk0hPh3Q5G2qrNUV/1qljXtrHbXvjijXj8Z2kWkYLiQDcLjM/ZtVMuMqBbYtcRYDEen0u6XjL5C9bx+7wAAAAABoUrZVJfWnN3MvIB/cKap7vtxHBuc1ADRSRvVuReffptDqF/PWM637KT7pLmXaDy5wMgAAAACF8tJ7u7WnOp2zduHwji6lAdCs2JbC7/xVkdfvlZFxXjeWadXn411g2h3nQjgAAIDCKsggzIgRI7R582atWrVKxx9/fCE+JdBkLd5UpeueX639tbkXxAd8hqaf0kNfGtDWpWQADldo1XOKzL1JZiruqGXaD5b//D9JrXu5kAwAAAAAGt7DczcpmbEOPDYN6drJ3RmCAdA42bZCK59WZMGdMpPOXbptX1DVwy9TzfE/4G6rAAAAQBOWtWz9dXHujT1GdG2hYzuwGySAhmXu36LorGsV3PKGo2bLUM3Qi1U94ieSP1T4cAAAAC4oyCDMFVdcoWeeeUa//OUv9fWvf503s4Ej9PTyHbp31kZlLTtnvVWxX/ef3VeDOpa4lAzA4TCS+xWZc5PCq19w1GzDVM2wHyk58nKVtW7nQjoAAAAAaHiLNlZp1od7c9bOHdRO/dpx0QiAxsfct0HROTcquHlh3nqq0yjFJ94uq2WPAicDAAAAUGgVq/fqo33JnLULR7AbDIAGZNsKvf+kIvPvkJl23mg1W9pVsSn3KVM+zIVwAAAA7inIIMzo0aN1zz336Nprr9U3vvEN/fa3v1XLli0L8amBJiFj2XqoYqP+d9kOR61v22I9cHZflZcyzQ94gX/LmyqZebV8sa2OWraks2KnPKBM+TD5fD4X0gEAAABAw8tkLd0/e2POWmnYrx+O6exSIgD4HNm0it7+o4oX/VxGNukoW6FSJU6apuSx50ncAAwAAABo8mzb1uOLtuWs9WtXrJHdWriUCECTt3+bos9fosCGirzlmuMuUGL0tVKguMDBAAAA3FeQQRhJuvrqq9WrVy9dfPHF6tKli04++WT17dtXxcVf/B9hN910UwESAo1TrDajaS+u0Rsbqhy1Cb3LdOsZvVQc5IJ5oNHLplT85s9VtPS3MmQ7yrX9zlFi/M2yg+zsBAAAAKBp+99lO7RuT03O2o/GdlbLooBLiQDAyb/jHUUrrpd/98q89WSfLyk+9ibZxW0KnAwAAACAW976aL/e35HIWbtoREcZDMYDqG+2Lb37tPTSVQrU7nOUs9FyxSffo3SXkwqfDQAAoJEo2CDMzp079a9//UtVVVWyLEvPPfdcnZ/LIAyaq02VtbriX6u0cW+to/a9kR11yZjOMjmhAjR6vsq1Knn1Cvl3veeoWaEWik+4Xak+X3IhGQAAAAAU1p5EWr9buCVn7Zj2xTr7uHYuJQKAz0glFHnzYYXf+bMM23KUs9EOio+/Tekek1wIBwAAAMBNf/nMbjCdSkOa1LeVS2kANFVG9R5pxuXS+/mvr6w99jwlxkyXHeJGqwAAoHkryCDMnj17NG7cOK1evVq27bwLPgCnxZuqdN3zq7W/NpuzHvQZmn5qT53RnzsNAo2ebSv83j8Uee0OGRnnQFuq00jFp9wvq6SjC+EAAAAAoPB+OW+TEqnccx3XTOoun8mNPgC4L7BxrqJzbpQvtsVRs2WodtAFqh51lexg1IV0AAAAANy0amdCr2+oyln7zrBy+TmnAaAeBdfNULRiulSz21GzitsqNvFObs4BAADwfwoyCHPnnXfqww8/lCSdd955+tGPfqTBgwerZcuWbA8K5PHU2zt036wNyn5mbqxVsV/3n91Xgzoy0Q80dkb1bkVnX6/QhlmOmm0GVD3qStUc/wPJMF1IBwAAAACFt2JrTC+8l/sG7hn922hwJ85zAHCXUbNHkfm3K/zh83nrmVZ9FZ90pzIdji9wMgAAAACNxeOf2Q2mrMivswa2dSkNgKbGSO5XZN6tCq/6V956ss+XFB/3M9lFZQVOBgAA0HgVZBDm+eefl2EY+s53vqO//OUvhfiUgCdlLFsPVmzUk8t2OGp92xbrwXP6qkOLkAvJAByOwIYKlcy6TmbNHkctU9ZbsVMeVLbtABeSAQAAAIA7spate2dtzFmLBE1dNq6LS4kAQJJtK/TBM4q8dqfM5D5n2RdU9fBLVXP8xZIvWPh8AAAAABqFLftqNWNV7nu/Xx/aQeEANz0EcPQCm+YrOuun8iW2O4tFZYpPuFW1vc4ofDAAAIBGriCDMFu2bJEkff/73y/EpwM8aX9tRtNeWK03N+531Cb0LtOtZ/RScdDnQjIAdZapVWTB3Spa8de85ZrjLlBi9HVSoKjAwQAAAADAXc+/u0srdyRy1i4+sbPaRLmwHIA7zKqNis65UcGPFuStpzuOVGziHbLKehQ4GQAAAIDG5okl22XZnz4uCpj62pD27gUC0DSkEoosvFtF7/49f73v6dJZP1c6E5Sy2cJmAwAA8ICCDMK0adNGW7ZsUUlJSSE+HeA5O2MpXfL/Vmrj3lpH7XsjO+qSMZ1lGoYLyQDUlW/X+yp59Qr5K9c4alZRa8Um36N094kuJAMAAAAAd+2vzehX8z/KWeveKqyvD+WCEQAusDIqevsPKl70CxkZ5/lYK9RCidE/VbL/1ySDuzsDAAAAzV1ldVrPv7srZ+2cQe1UWlSQS64ANFH+rYtVMvNa+fZvctTsYImM0++RhnxLMgypstKFhAAAAI1fQX4rGzt2rP75z3/q3Xff1dChQwvxKQHPsG1bt7yy1jEEE/QZuvHUnjq9fxuXkgGoE9tS0bLfq/iNB2VYaUc51X2SYpPukl3M9zIAAACA5uk3CzZrX00mZ+3qSd0V8HGBOYDC8u1coZKKG+Tf9V7eerL3GYqPvUl2pG2BkwEAAABorJ5ctkPJjHXgsc809K0TOriYCICnZWpV/MaDKnr7jzJkO8qpLiepesq9atltoAvhAAAAvKUggzBXXXWVnn76ad1///06//zzFQ6HC/FpAU/4zwd7tGjT/py11sUB3X92Hx3XkV2UgMbMjG1VdOY1Cm55w1Gz/WElxtyg2gHf/PgOHQAAAADQDH24M6Gn3t6RszaxT5lGdS91KRGAZildreI3H1bR8j/JsC1HORvtoMT4W5XqMdmFcAAAAAAaq5pUVk8uyz2vcdoxrdWhRcilRAC8zL/jHUVnXi1/5VpHzfYXKXHST1U78Fvy+QMupAMAAPCeggzCDB06VL///e/1gx/8QKeccop+//vfq2/fvoX41ECjFqvN6KGK3C0u25cE9Ydv9ufECdDIBVe/pOic6TKT+x21TNsBip3ykLJlvVxIBgAAAACNg23bum/2RlkH3dgw5Dd0xYRu7oUC0OwENs1XtGK6fLHNjpotQ7XHfUfVJ14lO8hNiQAAAADkenbFLlXV5u5ye+GIcpfSAPCsbErFi3+pord+I8POOsrp8hMUm3yvrJbdC58NAADAwwoyCPP9739fktS/f3+99tpr6t+/vwYNGqS+ffuquLj4kM81DEN/+MMfChETKLhfv/aR9lSnc9aumdSNIRigETNSMUXm/kzhVf9y1GwZqhn6P6oeebnkC7qQDgAAAAAaj/98sEfLNsdy1i4a0VEdSznvAaDhGTV7FHntToVXPZu3nmnVR/GJdypTPrSwwQAAAAB4QiZr6W9LtuWsje3ZUr3aHPo6JwA4mG/3KpXMvFr+3e87arYvqOqRV6pmyPcl0+dCOgAAAG8ryCDMn//8ZxmGIenjwRbLsrR8+XItX778kM+zbZtBGDRZ722L66m3d+asje3ZUuN7l7mUCMAX8W9bopIZV8u3/yNHLRstV+zkB5TpNNKFZAAAAADQuFSnsvr53NxdcDu2COnC4R1dSgSg2bBthVY9q8hrd8isrXSWzaCqh09VzdD/5kYmAAAAAD7Xq6v2ansslbN20QjOawCoIyujomW/V/GbD8uw0o5yuu1Axafcp2zrvi6EAwAAaBoKMgjTtWvXA4MwAKSsZevumRtkH7QW8pu6ZnJ3vleAxiibVvGSX6poya9l2JajXNvnLCUm3Co71MKFcAAAAADQ+PzhjS3aFc99g/fKiV0VDpguJQLQHJhVmxSdc6OCH72Wt57uOELxiXcoW9azwMkAAAAAeIlt23p80dactUEdoxrSucSlRAC8xKxcr5KZ1yiwY5mjZpt+VQ+7VDUn/FDyBVxIBwAA0HQUZBBmw4YNhfg0gGc89fYOrdyRyFm7+MRO6lgacikRgM9j7tugkhlXKrDDuYuZFYwqMf5WJft9xYVkAAAAANA4bdxbo78t2Z6zNqp7KbvgAmg4VkZFb/9JxYselpGpdZaDJUqc9FMl+58vGQzkAQAAADi0BeurtGZ3Tc7ahSPKXUoDwDNsS+F3/qLI6/fnPT+RadVHsSn3K9tuoAvhAAAAmp6CDMIA+NTueEq/fm1zzlrP1kX69rAOLiUCkJdtK7Ty/yk6/zYZ6WpHOV0+TLGTH5DVorML4QAAAACgcbJtWw9UbFTG+nQfXJ9p6OqJ3dgFF0CD8O18VyUV18u/67289WSv0xUfd5PsSLsCJwMAAADgVZ/dDaZHq7DG9eIGHwA+n7l/s6KzrlVwy5uOmm2Yqjn+YlWPvFzycZNkAACA+sIgDFBgD87ZpEQqm7N23ZTuCvi4EyHQWBg1lYpWXK/QulcdNdv0q3rE5aoZ+j+S6XMhHQAAAAA0XvPX7dPC9VU5a98a2kHdWxe5lAhAk5WuUfGih1X09p9k2FlHORvpoMSEnynVY4oL4QAAAAB41YqtMS3dHMtZu2B4R5nc4ANAPrat0PtPKvLaHTLTCUc5W9pNsSn3KVN+ggvhAAAAmjYGYYACemNDlV79YE/O2pkD2uiELi1cSgTgswKbXlN05jXyVe901LKl3RU75SFl2g9yIRkAAACAxsTnYzD+s5IZSw9WbMxZaxMN6L/HdOHvy0WmaR7yMdAYfVHf+jfOV/Hs6+Xb/5HjubYMJQddoJrR10ihEvHqg0LiNRdeRN/Cq+hdAA3l8cXbch63iwZ0ev/WLqUB0JiZ8R2KVkxTcOPcvPWaQRcqceI1UqC4wMkAAACaBwZhgAJJZizdO2tDzlqLsE+Xj+/qTiAAuTJJRV6/T0XL/5S3XDPgG0qMuYETFAAAAAAkSWVlZW5HaHQembVam/clc9Zu+FJ/denQ1qVEyKe0tNTtCMBhO9C3iT3Sf66X3vln/gPbHiPjrF8o3HWkwoWLB3wuXnPhRfQtvIreBVAfNuyt0ZzVlTlr3zqhXAEfw3YADmLbCn34giLzbpGZrHKUsyUdFZ98j9KdRxc+GwAAQDNSr4Mwn9zZ0TAMZTIZx/qR+OzHArzqL4u2alNlbc7apWO7qqw44FIiAJ/w7V6lkhlXyL9nlaNmhcsUn3SXUj1PdiEZAAAAAHjDln01+tWcNTlrw7qV6ewhnVxKBKBJsW3pnSel/0yTqvc4676gNO4a6aSfSP5gweMBAAAAaBr+unib7IMeR0M+nTO4nWt5ADQ+Rs0eRefcpNDaf+et1/Y/X4kx18sOlhQ4GQAAQPNTr4Mwtm0f1jrQXHxUWas/v7k1Z+248qjOHsQdUQFX2ZbCy/+iyOv3ysimHOVU17GKTb5XdoSTmwAAAABwKHe89L5q09aBx4Yh3fLlATIMw8VUAJqEyg3Si1dKa2flr3cdLZ31c6lt34LGAgAAANC07Iqn9PL7u3PWvjakvSLBI7/5L4CmJbjuVUUrbpBZs9dRs4rbKjbpLqW7T3QhGQAAQPNUr4MwN99882GtA82Bbdu6Z9YGpbKfDoT5DGnayd1lcjEI4BozvkPRWdcq+NFrjprtCyox+jrVDrpQMtjmGgAAAIBTZWWl2xEajTc37NPLK7bnrJ03pL06FVv8PTUCpmmqtLT0wOOqqipZlnWIZwDuM01TpdGI9OajUsWdUrracYwdLFH1mJ8qNfCbH5+/4fUGjQCvufAi+hZe5aXeLSsrczsCgDr4+1vblT7ouo6gz9A3hnZwMRGAxsKorVJk/q0Kr3o2b722z1lKjLtZdhE/8wEAAAqJQRiggc1ctVdvbKjKWfv60A7q2y7iUiIAwbX/+fguHbXOCyQyrY9R7JQHlW3dz4VkAAAAALwim826HaFRyGQt3Ttzfc5aadiv/xndib+jRsqyLP5t0Oj5dr4rzZkubXs7bz3Z81Qlxt0sK9pesmxJ9DQaJ15z4UX0LbyK3gVwNGK1GT2zfEfO2pkD26p1JOBSIgCNRWDjPEVnT5Mvsd1Rs8Jlik+4VaneZ7iQDAAAAPU6CAMgVzyZ0QMVG3PW2kUD+p+TOruUCGjmUglFX7td4fefzFuuHvJfqj7xKskXKnAwAAAAAPCmJ9/eoXV7anLWLhnTWS2LuFAEwBFI16h40c9V9PYfJdt5IWs20l6J8bco1fMUF8IBAAAAaKqeXr5TidSnu0qZhnTBsHIXEwFwm5GKq3jB3Sp67x9568keUxSfeIfs4jYFTgYAAIBPFGQQZt68eZKk4cOHq6ioqE7Pqa2t1aJFiyRJ48aNa7BsQEP6zYLN2p1I56xdObGbIkGfS4mA5su/Y7lKXr1CvqqNjlo20kHxKfcq3eUkF5IBAAAAgDftSaT12wVbctb6tSvWOYPauZQIgJcFPlqgaMV0+fZvyluvGfhtVZ94jexQSYGTAQAAAGjKkhlL/1iau9PDpD6t1KUs7FIiAG7zb3lTJbOuk2//R46aFYwqMe5mJfudIxmGC+kAAADwiYIMwkyYMEGmaeqdd95R//796/ScLVu2HHheJpNp4IRA/ftgR0JPLsvdOnd0j1JN7tvKpURAM2VlVPTWoype9IiMPHcSTfY6XfGJt8sOtyx8NgAAAADwsF/O26REKvf3rGsmd5fP5A1gAHVn1FQq8todCq/6V/4D2vTT/ol3KNX++MIGAwAAANAsvPz+bu35zA1OLxzBbjBAs5SpVeT1BxRe/icZsh3lVJcxik+6S1ZJRxfCAQAA4LMKMggjSbbt/I/Dhnwe4KasZevOGetlHdS+Ib+hayd3l8HdAICCMfd/pJIZVymw7S1HzQpElBh3k5LHfJW7dAAAAADAYVqxNaYX3tuds3ZG/zYa0omdGgDUkW0r9OHzisy/XWbtXmfdF5TGXiWNuULZWLWUdd7gBAAAAACORtay9dfF23LWhndtof4doi4lAuAW/47lis64Wv596xw1O1CsxEnTVDvgm1xfAgAA0IgUbBDmcFmWJUny+XwuJwEO37/e2an3tydy1r43spM6t2TrXKAgbFuhVf9SZO7PZKbjjnK6/fGKnfKArNJuLoQDAAAAAG/LWrbunbUxZy0SNHXZuC4uJQLgNeb+zYrOuVHBTfPy1jPlw+Q/99dS237/t1JduHAAAAAAmo05ayq1qbI2Z+0idoMBmpdsSsWLH1HRW7+RYVuOcrp8mGJT7uX6EgAAgEao0Q7CbNz48ZvppaWlLicBDs+eRFq/nP9Rzlq3VmFdOJyTJUAhGLVVis6ZrtCalx012/Cpevilqhn2I8lstD8CAQAAAKBRe/7dXVq5I/cGID84sbPaRIMuJQLgGVZG4eV/UeTNh2RkapzlYFTVo69TetC3VdaqtQsBAQAAADQXtm3rL4u25qz1a1eskd24TgloLny7V6pk5jXy717pqNm+oBKjrlbt4O9KJjfyBgAAaIwa5CrgTZs25V3ftm2botFDbx+aTCa1du1a3XjjjTIMQwMGDGiIiECDeXjuRsWT2Zy1n07prqDfdCkR0HwENr+u6Myr5Ytvd9SyLboqdvIDypQPdSEZAAAAADQN+2sz+tVnbgDSvVVY3xja3qVEALzCt+t9RWdPU2DXu3nryZ6nKDHuZlnRDvIZnEsFAAAA0LDe+iim97fn3ujjwhEdZRiGS4kAFIyVUdHS36l40S9kWGlHOd3uOMWn3K9sq94uhAMAAEBdNcggTI8ePRxrtm3rlFNOOeyPdeGFF9ZHJKAgFm+q0ivv78lZO/3Y1hrelTuGAA0qm1TxGw+paNnvZch2lGuPPU+JsTfKDh56GBMAAAAAcGi/WbBZ+2oyOWtXT+qugI+L1gF8jnSNihf/QkXL/iDDzjrK2eJ2Soy/Ralep7oQDgAAAEBz9fhndoPpVBrS5L6tXEoDoFB8lWsVnXmNAjuWO2q26Vf18EtVM/SHki/gQjoAAAAcjgYZhLFt50XIh1rPJxwO67LLLtP3v//9+ooFNKhUxtLdMzfkrEVDPv1kQjd3AgHNhG/vGpW8eoX8u9931KxQqeIT71Cq9+kuJAMAAACApmX1rmo99faOnLWJfco0qjs3AAGQX+CjBYrOmS5fVf5d5GsGfkvVJ14rO1RS4GQAAAAAmrMPdya0cENVztq3h3WQ32Q3GKDJsi2Fl/9Fkdfvk5FNOsqZ1v0Um3Kfsm0HuBAOAAAAR6JBBmH+9Kc/5Tz+3ve+J8MwdNttt6lTp06f+zzDMBQOh1VeXq7jjz9e0Sh37od3/HXJNm3cW5uzNnVMF7WOcIcAoEHYtsIrnlBkwV15T1KkOo9WfMq9sqLlLoQDAAAAgKbFtm3dO2uDrIPucxPyG7qCG4AAyMOoqVRkwZ0Kf/BM3nqmrJfiE+9UpuOwAicDAAAAAOnxxdtyHrcs8uvLA9u6lAZAQzP3f6SSmdcpsPVNR802TNUM/R9Vj/ix5Au5kA4AAABHqkEGYS666KKcx9/73vckSWeffbb69+/fEJ8ScNXmfbX64xtbctb6d4jo3MHtXEoENG1G9W6VzLpOwY1zHDXbDKr6xKtUM+T7kmEWPhwAAAAANEH/+WCPlm2O5axdNKKjOpby5jCAg9i2Qh++oMhrt8ms2essmwHVnHCJqof9kItLAAAAALhia1VSMz7Yk7P2jaEdFA74XEoEoMHYtkLv/VORBXfJTCcc5UzLHopPuU+ZDse7EA4AAABHq0EGYT6roqJCktSjR49CfDqgoD65I2oy8+ktUU1Duv7kHvKxbS5Q7wLrZ6tk9nV5L6bItOqj2CkPKdvmWBeSAQAAAEDTVJ3K6udzN+WsdWwR0oXDO7qUCEBjZO7foujcGxXcODdvPd1hqOKT7lS2VZ8CJwMAAACAT/1tyTZlD9rxtihg6mtD2rsXCECDMOPbFZ39UwU3zc9brxn8XSVGXS0FigqcDAAAAPWlIIMw48ePL8SnAVwxe3WlFq6vyln72pD2OqZ9xKVEQBOVrlFkwZ0qevfvecs1gy5UYvR1kj9c4GAAAAAA0LT98Y0t2hVP56xdMbGrwgF24QQgycoq/M7jirz5oIx0tbMciKp69LWqHfhNdu8FAAAA6tnevXv1+uuva9myZdqyZYv27dunaDSqfv366Stf+Yr69GEQ/WD7qtN6dsWunLWzB7VTaVFBLp8CUAi2rdCHzyky72cyk/sd5WxJJ8Un36N05xNdCAcAAID6xG9ywFFIpLJ6YPaGnLXWkYAuGdPZnUBAE+XbuUIlr14p/751jppV3Eaxyfcq3Y2hSwAAAACobxv31uiJJdtz1kZ2a6EJvctcSgSgMfHtXqno7OsV2PlO3nqy58lKjLtFVrRDgZMBAAAAzcMrr7yi5557Tu3bt9fgwYPVokULbdu2TYsXL9bixYt1+eWXa/To0W7HbDT+d9kOJTPWgcc+09C3T+D3FaCpMKp3KzrnRoXWvZq3Xtv/60qMmSY7WFLgZAAAAGgIDMIAR+F3CzZr52fuiHrVxG6KhvjWAuqFlVXRssdU/OZDMqyMo5zsMUXxSXfKLmrtQjgAAAAAaNps29YDFRuVsewDaz7T0DWTusswDBeTAXBdplbFix5R0bLHZNhZRzlb3E6J8bco1etUF8IBAAAAzUfv3r11yy23qH///jnrK1eu1K233qrHHntMw4cPVyAQcClh41GTyurJZTty1k49prU6tAi5lAhAfQqu/Y+iFdNl1u511LLF7RSfdKfS3Se6kAwAAAANhav1gSP04c6E/rnUeUfUk/u1cikR0LSYsa0qmXG1AlvfdNRsf5HiY6cr2f/rEhdfAQAAAECDmL9unxaur8pZ+9bQDureusilRAAag8DmhYpWTJevamPees2Ab6p69LWyQy0KnAwAAABofkaOHJl3/dhjj9XAgQO1fPlybdq0Sb169SpwssbnuXd3qao29+aLFw4vdykNgPpi1FYpMu9nCn/4XN56bd8vKzHuZtnhloUNBgAAgAbHIEwTsHfvXr3++utatmyZtmzZon379ikajapfv376yle+oj59+rgdscmxbFt3z9yg7Kc3RFXQZ+i6KT24IypQD4IfPq/onJtkpmKOWrrdcYqd/JCssh4uJAMAAACA5iGZsfTA7NyL3FtHAvqvEzu6lAiA24zafYosuEvhlU/lrWfKeik+8Q5lOg4vcDIAAADgyFRVVWnNmjVas2aN1q5dq7Vr1yoW+/j9yfHjx2vq1Kl1/li7du3SK6+8oqVLl2rPnj3y+/3q0KGDTjzxRJ166qkKhQq/64jP58v5/+Ysk7X0xOJtOWtjerZU77bFLiUCUB8CG+coOvt6+RI7HDUr3ErxCbcp1fs0F5IBAACgEBiEaQJeeeUVPffcc2rfvr0GDx6sFi1aaNu2bVq8eLEWL16syy+/XKNHj3Y7ZpPy3IpdemdrPGftohEd1bUs7FIioGkwkjFF5t6c904dtmGq5oQfqnr4ZZKPrbsBAAAAoCH9dfE2balK5qxdNq6LoiFOJwLNjm0ruPpFReffJrNmj7NsBj4+ZzPsEslX+Iv7AAAAgCN18cUX18vHWbJkiR555BHV1NQcWEsmkweGa2bNmqVp06apQ4cO9fL56mL37t1asWKFysrK1LVr14J93sZqxqq92h5L5axdNILdYACvMlJxRV67U+H3/zdvPdnzZMUn3C67uE2BkwEAAKCQeOe6Cejdu7duueUW9e/fP2d95cqVuvXWW/XYY49p+PDhCgS4cLw+VFan9ci8TTlrXVqG9N2R3BEVOBr+rYtVMuMq+WJbHLVsSSfFTn6AO4oCAAAAQAFs35/Un97cmrM2uFNUZ/TnjWOguTFjWxWdc6OCG+fkrac7HK/4xDuVbd23sMEAAACAetamTRt16tRJy5cvP6znrV+/Xg8//LBSqZTC4bDOPvtsDRw4UKlUSgsWLNCsWbO0bds23XXXXbr77rtVVFTUQF/BpzKZjB555BGl02l9+9vflmmaDf45GzPbtvX4Z3aDGdQxqiGdSlxKBOBoBDa/oeis6+SLbXbUrGCJEuNuVrLf2ZJhFD4cAAAACopBmCZg5MiRedePPfZYDRw4UMuXL9emTZvUq1evAidrmn4+d5P212Zz1q6b0kMhf/M+eQQcsWxaxYt+rqKlv5VhW45ybb+zlRh3i+wQJyIBAAAAoBAenrNJycynv58Zkq6Z1F0Gbx4DzYeVVXjF44q88aCMdLWzHIiqevQ1qh34LcngvCgAAAC86bzzzlOvXr3Uq1cvtWzZUjt37tSll156WB/jz3/+s1KplHw+n6ZPn66+fT8dEh84cKDKy8v1xBNPaNu2bXrhhRd0/vnnOz7G448/rnQ6XefPecYZZ6i8PP9uJpZl6de//rVWrlypyZMna9y4cYf19TRFC9dXafWu3N9rLhxeznkOwGsytYq8fp+Klv85bznVZazik++SFWW3JwAAgOai2Q/CVFVVac2aNVqzZs2BbWljsZgkafz48Zo6dWqdP9auXbv0yiuvaOnSpdqzZ4/8fr86dOigE088UaeeeqpCoVBDfRmfy+fz5fw/js7Sj/brxfd256yd3K+VRnUvdSkR4G1m5XqVzLhCgZ0rHDUrWKL4hNuU6nuWC8kAAAAAoHlavKlKMz/cm7N27uB2OqZ9xKVEAArNt3uVohXTFNiR/07YyR5TlBh/CxeWAAAAwPPyDaUcjjVr1mjlypWSpIkTJ+YMwXzizDPPVEVFhbZs2aJXXnlF5557rvz+3Et1ZsyYoWQyWefPO2rUqLyDMJZl6dFHH9Vrr72msWPH6uKLLz7Mr6hp+sui3F1vu7cKa1zvMpfSADgS/u1vKzrzGvn3rXPU7ECxEidNU+2Ab7ILDAAAQDPT7Adh6usX/yVLluiRRx5RTU3NgbVkMnlguGbWrFmaNm2aOnToUC+fry52796tFStWqKysTF27di3Y522q0llLd8/ckLMWCZq6cmI3dwIBXmbbCr33T0Vfu0NGpsZRTnccqdjJ98sq6ehCOAAAAABonjJZS/fN2pizVhr265IxnV1KBKCgMkkVL35ERcsek2FlHGWruK3i425WqtdpXFgCAAAASFq0aNGBP0+cODHvMaZpavz48fr73/+uRCKh9957T4MHD8455q9//etRZ/lkJ5h58+bppJNO0tSpU2Wa7N747ra4lm6O5axdMLxcJr/TAN6QTap40SMqWvpbGbblKKc7jlBs8j2ySrkuDgAAoDlq9oMwB2vTpo06deqk5cvz3+nu86xfv14PP/ywUqmUwuGwzj77bA0cOFCpVEoLFizQrFmztG3bNt111126++67VVRU1EBfwacymYweeeQRpdNpffvb3+YERz3425LtWrcn94L9S8Z0Udto0KVEgDcZNXsUnX29QutnOmq26Vf1yCtVc/wPJJOdrAAAAACgkJ58e0eecx+d1bIo4FIiAIUS2PyGohU3yFe1IW+9tv/XlRh9newwO2MDAAAAn1i1apUkKRQKqWfPnp97XP/+/XOe89lBmKN18BDM6NGj9eMf/5hrRP7PZ3eDaRsN6PRj27iUBsDh8O1eqZIZV8u/5wNHzfYFlTjxGtUO/q5k8HoHAADQXDX7QZjzzjtPvXr1Uq9evdSyZUvt3LlTl1566WF9jD//+c9KpVLy+XyaPn16zna3AwcOVHl5uZ544glt27ZNL7zwQt7tdR9//HGl0+k6f84zzjgj71a30qcnOVauXKnJkydr3Lhxh/X1wGlrVVKPvb4lZ+2Y9sX62pD2LiUCvCmwca5KZl0ns3qXo5Zp2VOxUx5Utt1xLiQDAAAAgOZtTyKt3y7IPffRr12xzhnUzqVEAArBqK1SZOHdCr//ZN56pmUPxSfeoUynkQVOBgAAADR+mzdvliR16NBBPt/n3+SvY8eOjufUF8uy9Oijj2revHkaNWoUQzAH2bC3RnNWV+asfeuEcgX9/P0AjZqVUdHS36p40SMyLOe1dOl2gxSfcp+yrXq7EA4AAACNSbMfhMk3lHI41qxZo5UrV0r6eKvbg4dgPnHmmWeqoqJCW7Zs0SuvvKJzzz1Xfn/uX/2MGTOUTCbr/HlHjRqVdxDmk5Mcr732msaOHauLL774ML8i5HPf7A1KZj7dYtOQNG1KD/lMtssF6iRTq8jCe1T0zuN5yzUDv6XESddLgYbfMQsAAAAA4PTL+R8pkcrmrF0zuTvnPoCmyrYVXPOyovNvlVm921k2/aoZ+j+qHjZV8odcCAgAAAA0bqlUSrFYTJLUunXrQx4bjUYVCoWUTCa1Z8+ees3x1FNPae7cuQqHw+rYsaOefvppxzEjRoxQ9+7d6/wx65rxUMM/jcHflmyXfdDjaMin844/9NASmp7PDoYxKNa4mXvXKPLqVfLvWO6o2WZAtSMvV+2wH0qmX035O5m+hVfRu/Ai+hZeRe9+rNkPwhytRYsWHfjzxIkT8x5jmqbGjx+vv//970okEnrvvfccW93+9a9/PeosB293e9JJJ2nq1KnNtrHr05w1ezV/7b6cta8ObqcB5VF3AgEe49u9UiWvXiH/3tWOmlXUSvFJdyvVY7ILyQAAAAAAkrRia0wvvJu7c+fp/VtrSKcSlxIBaEhmbKuic29WcMPsvPV0++MVn3SHsq37FTgZAAAA4B21tbUH/hwOh7/w+HA4rGQymfO8+rBr164DeZ555pm8x7Rr1+6wBmEuueSSOh335JP5d5ZsDHbur9VL7+UO/V9wYnd16dDWpURoLEpLS92OgHwsS3rzUWnWrVImz+tk+4Eyzn5UReWD1Bxvr0rfwqvoXXgRfQuvaq69yyDMUVq1apUkKRQKqWfPnp97XP/+/XOe89lBmKN18BDM6NGj2e62nlSnsrpv1sactVbFfk0d28WlRICH2JaK3v6jil9/QIaVcpRT3SYoNvke2cVtXAgHAAAAAJAky7Yd5z6KA6YuH9fVpUQAGoyVVXjFEyp+4wGZ6YSzHIio+sSrVTvw25LZlO+rCgAAABy9VOrT9z/9/i++9OaTYw5+Xn2YOnWqpk6dWq8fsyn444INSmWtA4+DflPfO6m7e4EAfL6966XnpkobFzhrhimNuUIafx071gIAAMCBQZijtHnzZklShw6H3j61Y8eOjufUF8uy9Oijj2revHkaNWoUQzD16LHXt2hHLPdE1BUTuqkkzLcOcChmfLuiM69RcPNCR832hZQ4aZpqj/uOZBgupAMAAAAAfOL5Fbv0/o7cC+IvHt1ZbaJBlxIBaAi+3asUrbhegR1v560nu09WYvwtsko65q0DAAAAyBUMfvp7cyaT+cLjPznm4Oc1Vo8++qjbEY7K/tq0/vZG7k0/vjq0s9qVfPHOPQAKyLalt/4k/We6lOeGHWrdWzrnt1LnYYXPBgAAAE/gav6jkEqlFIvFJEmtW7c+5LHRaFShUEjJZFJ79uyp1xxPPfWU5s6dq3A4rI4dO+rpp592HDNixIg6b3Vb13yHGvxpCtbsSugfb23PWRvRrVRfGthOBhfve8pnB8MYFGtYgdUvq3jWNJnJKkct07a/Eqf+XFbrPmraryBHj76FV9G78CL6Fl5F7wI4WvtrM/rl/I9y1rq1CusbQ9u7lAhAvcskVbzklypa+jsZlvPiPKu4jeLjblaq1+ncsAQAAAA4DOHwp0MVtbW1X3j8J8cc/LzG6ouuf/lEZWVlAyc5Mn9+c4tiyU9//zEkfX1w60abFw3LNE2VlpYeeFxVVSXLsg7xDBSCEdumyMxrFdg0P2+9dsj3VTP6GilQJDXD7136Fl5F78KL6Ft4lZd6t6ysrME+NoMwR+Hgkxl1OVkRDoeVTCbrdBLkcOzatetAnmeeeSbvMe3atavzIMwll1xSp+OefPLJOh3nRZZl697/XamMZR9YC/gM3fnVIWrVKupiMtSHg1/8UY+SMemV66S3/5anaEijfyz/pOkqZbvaI0LfwqvoXXgRfQuvoncBHK7fLNisfTW5F8ZfM6mbAj4G64CmwL/lTUUrbpB/3/q89dr+5ysx+qeyw/w3BAAAAHC4gsGgSkpKFIvFvvBmo/F4XMlkUlLdh0y8IJvNuh0hr7KwTx1KgtoeS0mSJvVtpc6lwUabF4VlWRa94CbbVmjVs4rM+5nMVMxRzpZ0VnzyPUp3HvV/C/xbSfQtvIvehRfRt/Cq5tq7DMIchVQqdeDPfv8X/1V+cszBz6sPU6dO1dSpU+v1YzZ3T721WYs35N5R4Ifje6l3O4ZggLw+WiQ9c7FUucFZa9FJOuc3Uo9xBY8FAAAAAMhv9a5qPfX2jpy1iX3KNKp7S3cCAag3Rm2VIgvvVvj9/DcyypZ2V3ziHZ9eVAIAAADgiHTu3FkrV67U9u3blc1m5fP58h63devWnOegYZ05sK1OO7a1Xl21V48v2qoLh5e7HQmAJKN6t6Jzpiu0bkbees2Ab6j6pGmyg1ybBQAAgLphEOYoBIPBA3/OZDKHODL3mIOf1xg9+uijbkdwVWUipbteWZmz1rVVsaZO7O1SIqARy2akefd9/D87zzTpgHOkMx+SihpuazMAAAAAwOGxbVv3zdqggzbCVchv6IoJ3dwLBeDo2baCa19RdN7PZFbvdpZNv2qG/reqh10qsWMvAAAAcNT69eunlStXKplMat26derTp0/e495///2c56Dh+X2mzujfRqcf21qGYbgdB2j2gmteUXTOTTJr9zpq2Uh7xSfdpXS38S4kAwAAgJcxCHMUwuHwgT/X1tZ+4fGfHHPw8xqjum7FW1lZ+cUHedDPXlmjyup0zto1k7qpJr5fNS5lwtExTVOlpaUHHldVVcmyLBcTNQ3mvo2K/Ocn8m9f5qjZwaiqJ9yq1DHnSLWSapvm60VDom/hVfQuvIi+hVd5qXfLyhiMBhqT/3ywR0s3x3LWLhzeUR1LuTAe8CoztlWRubcotGFW3nq6/RDFJ96pbBsuugMAAADqy4gRI/Tss89KkioqKvIOwliWpblz50qSIpGIBgwYUMiIzR5DMIC7jNp9isz7mcIfPp+3XtvvbCXG3iQ7XJq3DgAAABwKgzBHIRgMqqSkRLFYTHv27DnksfF4XMlkUlLdB00au2w2z+4PHvf2lpiefWdnztqkPmU6sXuLJvn1NleWZfHveTRsW6EPnlZk3q0y0wlHOV1+gmInPyCrRRepkV6I6UX0LbyK3oUX0bfwKnoXQF1Up7L6+dxNOWvlLYK6aERHlxIBOCpWVuF3/6bi1+/Pe57GDhQrMeoq1R53gWT6XAgIAAAANF29e/fWscceq5UrV6qiokITJkxQ3759c4558cUXtWXLFknS6aefLr+/6Vym4/PxOwYaP9M0D/kYDce/vkKRWdfJTOx01Kyi1qqedIfSvU8T/yJO9C28it6FF9G38Cp692NN5zdsl3Tu3FkrV67U9u3blc1mP/cX/a1bt+Y8B41PJmvprhnrc9aKA6aumtTNpURA42PUVCo650aF1r7iqNmGT9UjLlPNCT+UTH68AAAAAEBj9Mc3tmhXPHcn3CsndlM40DxPjgJe5tuzStHZNyiww7lbrySluk1UfMKtskoYdAMAAADy+eCDD7R9+/YDj/fv33/gz9u3b9ecOXNyjp8wYYLjY3z3u9/VjTfeqFQqpdtvv13nnHOOBgwYoFQqpYULF2rmzJmSpPLycp111lkN8nW4hV2g4UUH77KOBlK7X3r1Bmnp4/nrx5wp88yHFY22LWwuD6Nv4VX0LryIvoVXNdfe5Urlo9SvXz+tXLlSyWRS69aty7vVrSS9//77Oc9B4/OPpTu0dndNztr/nNRZ7UtCLiUCGpfARwsUnXmNfIkdjlq2tJtiJz+oTIchhQ8GAAAAAKiTjXtr9MSS7TlrI7u10ITeXLgCeEomqeIlv1LR0t/JsNKOslXUWvFxNynV+0uSYbgQEAAAAPCGWbNmae7cuXlrq1at0qpVq3LW8g3C9OjRQz/5yU/0yCOPqKamRv/4xz8cx5SXl2vatGkqKiqql9wA0Gitnyc9O1Wq2uSshUulM+6Xjvsa5ysAAABQLxiEOUojRozQs88+K0mqqKjIOwhjWdaBkyeRSEQDBgwoZETUwfb9Sf1u4eactb5ti/X1oR1cSgQ0ItmkIq8/oKK3/5C3XNv/fMXHTJeCkQIHAwAAAADUlW3beqBiozKWfWDNZxq6ZlJ3GbzxDHiGf8siRStukH/furz12mO/psRJP5UdblnYYAAAAEAzNmzYMN1///16+eWXtXTpUu3du1d+v18dOnTQqFGjdNpppykU4gacAJqwVLU062fSm7/JX+89RfryI1ILdq0FAABA/WEQ5ij17t1bxx57rFauXKmKigpNmDBBffv2zTnmxRdf1JYtWyRJp59+uvz+pvHX7vP53I5Qbx6cs0k1aevAY0PSDaf2UijQNP6tmjvTNA/5GJ/P3POhIv++TP7dHzhqVrilqiffrXTv09R0Xg0aD/oWXkXvwovoW3gVvQt8bO/evXr99de1bNkybdmyRfv27VM0GlW/fv30la985XN3721u5q/bp4Xrq3LWvjm0vbq35m60gBcYyf2KLLhb4ff/N289W9pN8Yl3KN35xAInAwAAALxr6tSpmjp1ar18rLZt2+qiiy7SRRddVC8fzwsqKyvdjgB8IdM0VVpaeuBxVVWVLMs6xDNwuHzb3lLk1avl27feUbMDEVWPm67UgG9IWUPidaNO6Ft4Fb0LL6Jv4VVe6t2ysrIG+9jN/ir/Dz74QNu3bz/weP/+/Qf+vH37ds2ZMyfn+Hxb3X73u9/VjTfeqFQqpdtvv13nnHOOBgwYoFQqpYULF2rmzJmSPt7u9qyzzmqQr8MNDdmYhTRr5Q7N/nBvzto3RnTV+IFdXUqEhnbwiz8+h21Lb/5WmnGTlE066z0nyjz7UUVblBc+WzNF38Kr6F14EX0Lr6J30Vy98soreu6559S+fXsNHjxYLVq00LZt27R48WItXrxYl19+uUaPHu12TFclM5YemL0xZ611JKAfnNjJpUQA6sy2FVz7b0Xn/Uxm9S5n2fSr5viLVT38UskfdiEgAAAAgOYqm826HQE4bJZl0bv1JZtU8Zu/UNGy38mwnRddpjuOVGzKPbJadJEa6UWZXkHfwqvoXXgRfQuvaq692+wHYWbNmqW5c+fmra1atUqrVq3KWcs3CNOjRw/95Cc/0SOPPKKamhr94x//cBxTXl6uadOmqaiIu2w2JjWprG5+/r2ctdaRoK47rZ9LiYBGILZdevZH0tpZzpovJE25RRr5Q4k7jgMAAABoBHr37q1bbrlF/fv3z1lfuXKlbr31Vj322GMaPny4AoGASwnd98SSbdpSlXuTg8vGdVE01OxPDQKNmhnfpsjcWxRaPzNvPd1ukOKT7lK2zTEFTgYAAAAAAJoz3673VDLjavn3fuio2b6QEqOvUe2giySD60oAAADQcHi3u54MGzZM999/v15++WUtXbpUe/fuld/vV4cOHTRq1CiddtppCoVCbsfEZzwye7U2V9bkrE0741i1LA66lAhw2QcvSc//WKre46y16y999fdS+wGFzwUAAAAAn2PkyJF514899lgNHDhQy5cv16ZNm9SrV68CJ2sctu9P6o9vbM1ZG9QxqjP6t3EpEYAvZFsKr/ibil+/X2Y67iwHipUYdaVqj7tQMn0uBAQAAAAAAM1SNq2ipb9R8eJfyrAyjnK6/RDFp9ynbFlPF8IBAACguWn2gzBTp07V1KlT6+VjtW3bVhdddJEuuuiievl4jV1lZaXbEY7K2t3V+t28dTlrJ3RpoUk9ij3/tSGXaZoqLS098LiqqkoW267mSlereN5tCr3r3NFKkmqHfF81J10r+cMS3x8FQd/Cq+hdeBF9C6/yUu+WlZW5HQGfo6qqSmvWrNGaNWu0du1arV27VrFYTJI0fvz4wzpnsmvXLr3yyitaunSp9uzZc+AGISeeeKJOPfVUV24Q4vP5cv6/OXp4ziYlM5++NhiSrp3cXYZhuBcKwOfy7flQ0YrrFdi+LG891W2C4uNvldWiU4GTAQAAAACA5sy3d7WiM69RYOcKR802A6oecblqhl4smc3+ckQAAAAUCP/liSOWzWbdjnDEbNvWnf9Zq4xlH1jzmYaum9yt0V44hvpjWZan+7e++Xe8o5JXr5CvaoOjli1up/iUe5XuOvb/Fvh7cwt9C6+id+FF9C28it7Fkbj44ovr5eMsWbJEjzzyiGpqPt11NZlMHhiumTVrlqZNm6YOHTrUy+eri927d2vFihUqKytT165dC/Z5G5PFm6o088O9OWvnDm6nY9pHXEoE4HNlkype8msVvfVbGVbaUbaKWis+9kal+pwpMcgGAAAAAAAKxcqqaPmfVPzGAzKyKUc50+ZYxabcr2ybY1wIBwAAgOaMQRg0Sy+9v1tLN8dy1i4Y1kE92xS7lAhwgZX9eMvaRb/Iu2Vtsucpik+8Q3ZRKxfCAQAAACi0Nm3aqFOnTlq+fPlhPW/9+vV6+OGHlUqlFA6HdfbZZ2vgwIFKpVJasGCBZs2apW3btumuu+7S3XffraKiogb6Cj6VyWT0yCOPKJ1O69vf/rZM02zwz9nYZLKW7pu1MWetNOzXJWM6u5QIwOfxb12s6Ozr5d+3Lm+99tjzlDhpmuxwy8IGAwAAAIBDaM478MI7PntesDmeJzwa5r6NKp5xtQJbFztqtuFT7fAfqXbEjyVfULwi1B/6Fl5F78KL6Ft4Fb37MQZh0OxU1WT08zmbctbKWwT1gxM7uZQIKDxz/2aVzLhKgW1LHDU7UKz42BuVPPZr3GEUAAAAaOLOO+889erVS7169VLLli21c+dOXXrppYf1Mf785z8rlUrJ5/Np+vTp6tu374HawIEDVV5erieeeELbtm3TCy+8oPPPP9/xMR5//HGl084dED7PGWecofLy8rw1y7L061//WitXrtTkyZM1bty4w/p6moon396hdXtqctYuGdNZLYsCLiUC8FlGcr+KF96jovf+mbeeLe2q+MQ7lO48usDJAAAAAOCLlZWVuR0BOGylpaVuR/AG25aW/EF69UYpXe2st+kr4+zfqKjzCWr42x6BvoVX0bvwIvoWXtVce5dBGDQ7v5z/kSprcne/uHZyd4UD3JsAzUNo1XOKzL1JZiruqKXbD1bs5AdktezhQjIAAAAAhZZvKOVwrFmzRitXrpQkTZw4MWcI5hNnnnmmKioqtGXLFr3yyis699xz5ffnnpKaMWOGkslknT/vqFGj8g7CWJalRx99VK+99prGjh2riy+++DC/oqZhTyKt3y7YkrPWt12xzhnUzqVEAD4ruPY/isy9Rb7qnY6abfhUc/zFqh7xY8kfdiEdAAAAAABotqo2S89dKq2ryFM0pFE/kibfKAUYgQEAAIC7GIRBs7Jia0z/eif3zeUJvcs0thd3KkHTZyT3KzLnJoVXv+Co2YapmmE/UvWwSyUfdwcGAAAAUDeLFi068OeJEyfmPcY0TY0fP15///vflUgk9N5772nw4ME5x/z1r3896iyf7AQzb948nXTSSZo6dWqz3QL6l/M/UiKVzVm7dnJ3+Ux2/QTcZsa3KzLvFoXWzchbT7cbpPikO5Vtc2xhgwEAAAAAgObNtqXl/5BeuU5K7nfWW3aTzn5U6n5S4bMBAAAAeTAIg2YjY9m6a8aGnLWw39TVk7q5EwgoIP+WN1Uy82r5YlsdtWyLLoqd/IAy5Se4kAwAAACAl61atUqSFAqF1LNnz889rn///jnP+ewgzNE6eAhm9OjR+vGPf9xsh2Bs21aHkqCCPkOprC1JOr1/aw3pVOJyMqCZsy2F3/2Hil+/N+8uvXagWImRV6p20IWSyc7VAAAAABq/yspKtyMAX8g0TZWWlh54XFVVJcuyXEzUOBmJnSqefb2C62bmrSeP+7aqx1wvBSMS3/sNjr6FV9G78CL6Fl7lpd4tK2u4zSoYhMER8/m89YbsP5du1Ye7qnPWfjimizqVFbuUCIXy2YufmtXFUNmUwm88pPCS38iQ7Sgnjz1X1eN/JoVK5K3v6KavWfctPI3ehRfRt/AqeheNwebNmyVJHTp0OOR5go4dOzqeU18sy9Kjjz6qefPmadSoUUc9BLNnz546HdeYz4v8aFw3nXVce90/e72WbKrSFRN7NOq8aFj8vHCfuWe1IrOmyb9tSd56utsEVU+6XVaLzpyf+T/0LbyK3oUX0bfwKnoXcF82m/3ig4BGxrIsevczgmteVnTOTTJrnQMu2UgHxSfdpXS3cf+3wN+dG+hbeBW9Cy+ib+FVzbV3GYTBEWvICa36tq2qRo++9lHOWr/2JZp6cn8FfJwUbW4OnoJs0nZ9KD3zA2nbcmctXCqd+bBCA89VqPDJcASaTd+iyaF34UX0LbyK3kWhpVIpxWIxSVLr1q0PeWw0GlUoFFIymazzoEldPfXUU5o7d67C4bA6duyop59+2nHMiBEj1L179zp9vEsuuaROxz355JOHE7Pgysqkx3uWa8u+GnVqWeR2HDQi/LwooExSmv+gNP8ByUo768VtpNPvUWDgV1VqGIXP5yH0LbyK3oUX0bfwKnoXAIDDY9RUKjrvFoVWv5i3XtvvbCXG3Sw71KKwwQAAAIA6YhAGzcJtL76vRCp30u2OcwYyBIOmybalJX+Q/jNdytQ4693HSuf8RirtXPhsAAAAAJqM2traA38Oh8NfeHw4HFYymcx5Xn3YtWvXgTzPPPNM3mPatWtX50GYpoYhGMAlG1+XXrhc2r0qf33It6VTbpeKWxU2FwAAAAAAaPYCGypUMnuazOpdjppV1ErxCbcr1etUF5IBAAAAdccgDJq8Oat26uUV23PWzh/WWcO68yYzmqD4Lun5S6UP/+2smQFp8o3SiT+W2B4eAAAAwFFKpVIH/uz3f/Eppk+OOfh59WHq1KmaOnVqvX28Rx99tN4+FoBmqLZKmnmLtOSP+etlPaSzHpZ6TihgKAAAAAAAAMlIxRSZf4fCK/9f3nqy12mKT7hVdtGhdwAHAAAAGgMGYXDEKisr3Y7whWrTWU3/1zs5a6Vhv354Yrkn8qN+mKaZsx16VVWVLMtyMVHD8K+vUGTGNTJrdjtq2Va9lTj1YWXbDZSqqlxIh8PVXPoWTQ+9Cy+ib+FVXurdsrIytyOgAQSDwQN/zmQyX3j8J8cc/LzGqHXrur3Jy3kFeIWXfl54XWDNv1U852aZiR2Omm34lBx6sWpGXi4FiiReQw6JvoVX0bvwIvoWXuWl3uW8CACgMQhsXqjorOvki2111KxQCyXG/UzJvmdJhuFCOgAAAODwMQiDI5bNZt2O8IV+v/Ajbd6XzFm7bHwXtQiZnsiPhmFZVtP690/XKLLwbhWteCJvuea4C5QYfd3HF1k0pa+7mWlyfYtmg96FF9G38Cp6F4UWDocP/Lm2tvYLj//kmIOf52V8v8Gr+HlR/8z4DkXm3aLQulfz1tPtjlN84p3Ktu3/8QJ//4eNvoVX0bvwIvoWXkXvAgDwOdLViiy8V0Ur/pq3nOo2XvGJd8mKti9wMAAAAODoMAiDJmvD3hr9ZdG2nLXBnaI6a2BblxIB9c+36z2VvHql/JVrHDWrqLVik+9RuvtEF5IBAAAAaOqCwaBKSkoUi8W0Z8+eQx4bj8eVTH58o4q67rgCAI2ebSn83j9VvPAemam4s+wvUmLUlaoddKFkcioeAAAAQNPi8/ncjgB8IdM0D/m4qfNtfUuRV6+Sr2qDo2YHIqoed6NSA74uwzDEd3Tj0dz7Ft5F78KL6Ft4Fb37Md59Q5Nk27bumblBGcs+sOYzpGlTeshkC080BbalomWPqfiNh2RYaUc51X2SYpPukl3cxoVwAAAAAJqLzp07a+XKldq+fbuy2eznXgCxdevWnOcAgNf59q5RtOIGBbYtyVtPdR2n+ITbZLXgNQ8AAABA01RWVuZ2BOCwlZaWuh2hMNK10pw7pYWPSLblrHcfK+Mrv1KkrJsihU+Hw9Rs+hZNDr0LL6Jv4VXNtXcZhEGT9J8P9mjxpv05a986oVy92xa7lAioP2Zsq6Izr1Zwy5uOmu0PKzHmBtUO+KbE0BcAAACABtavXz+tXLlSyWRS69atU58+ffIe9/777+c8BwA8K5tU0Vu/VfGSR2VYKUfZCrdSYuyNSvY9i3MzAAAAAACg8La+Lf3rh9Kulc6av0iacos04r+lZnrXcAAAADQdDMKgyUlmLD00Z1POWvuSoC4e3cmlRED9Ca5+UdE5N8pM7nfUMm0HKHbKQ8qW9XIhGQAAAIDmaMSIEXr22WclSRUVFXkHYSzL0ty5cyVJkUhEAwYMKGTEBvN5u98AjQ1bo9cf39Ylisz6qXx71+StJ4/9qmrGTpddVCZeIY4OfQuvonfhRfQtvIreBQDgM7Jpaf4D0rz7JCvjrHceLp39G6lN78JnAwAAABoAgzBockJ+U/d+uY/unrlBq3dVS5KumdRNxUHefoZ3GamYInNvUXjVs46aLUM1Q/9H1SMvl3zBwocDAAAA0Gz17t1bxx57rFauXKmKigpNmDBBffv2zTnmxRdf1JYtWyRJp59+uvz+pnE6qqyszO0IwBFprlujH5Xa/dLMW6Qlf8hfL+sunfmQQr0mKVTIXM0IfQuvonfhRfQtvIreBQqvsrLS7QjAFzJNM+dnRFVVlSzLcjFRwzD3fKjIq1fJv3OFo2abAdWMukLJE/5bMv0S37uNXnPpWzQ99C68iL6FV3mpdxvyffWmceUB8BmDO5XorxcM1D+XbtfK7QmN783FKfAu/7YlKplxtXz7P3LUstFyxU5+QJlOI11IBgAAAMDrPvjgA23fvv3A4/37P919cvv27ZozZ07O8RMmTHB8jO9+97u68cYblUqldPvtt+ucc87RgAEDlEqltHDhQs2cOVOSVF5errPOOqtBvg4AaDAfvCS9dLUU2+qsGT7pxKnShGlSsLjw2QAAAADARdls1u0IwGGzLKtp9a6VVdHbf1DxGw/JsFKOcqZNf8Wm3K9sm36SLakpfe3NSJPrWzQb9C68iL6FVzXX3mUQBkfM52vcO6z4fNJFIzu7HQONgGe3Rs+mFV70iMKLfynDdk5qpvp+WdWTbpMdKlXj/m7EkfBs36LZo3fhRfQtvIreRX2YNWuW5s6dm7e2atUqrVq1Kmct3yBMjx499JOf/ESPPPKIampq9I9//MNxTHl5uaZNm6aioqJ6yQ0ADS62XXr5Gmnl8/nr5YOlLz/y8f8DAAAAAAAUmLlvg0pmXavAtrccNdvwqWbYJaoeNlXyBV1IBwAAADQ8BmFwxBpyqyKgIXlia/Q9a6V/XSxtcZ6wUKiF9KUHFBx0vjhd0Xx4om+BPOhdeBF9C6+id+GmYcOG6f7779fLL7+spUuXau/evfL7/erQoYNGjRql0047TaFQyO2Y9aqystLtCECdeGlr9EbBthR8958qeu0umamYs+wPq+bEq5Qc8j3J9Eu8FjQI+hZeRe/Ci+hbeJWXepf31QEA9cq2FF7xN0UW3iMjU+MoZ8p6Kz7lPmXaD3IhHAAAAFA4DMIAQGNi29Kyv0qv/FRKJ5z1rqOlc34jlXUrfDYAAAAATc7UqVM1derUevlYbdu21UUXXaSLLrqoXj5eY9cct5ZG09Bct0avC1/lWkUrblBg6+K89VSXsYpPvE1Wiy6SLYm/x4Khb+FV9C68iL6FV9G7AIDmwIxtVXT2TxX8aIGjZstQzZDvq3rUlZI/7EI6AAAAoLAYhAGAxqJ6r/T8j6UPXnTWTL80YZo05grJ9BU+GwAAAAAAQFOVTalo6W9VvPjXMqyUo2yFy5QYO13Jvl+RDMOFgAAAAAAAoFmzbYU+eFqR+bfJTMUd5WyLropNuVeZjsNdCAcAAAC4g0EYHLHKykq3IwB14oWt0f0b5yky42qZiZ2OWrZlTyVOe1jZ9oOkqv0upIMbvNC3QD70LryIvoVXeal3y8rK3I4AAEBe/m1LFa24Xv69q/PWa/udrcSYG2QXtSpwMgAAAAAAAMlI7FK04gaFNszKW68Z+G0lRl8nBSMFTgYAAAC4i0EYHDG2loZXNaqt0TNJRV6/V0XL/5y3XDPgG0qMuUEKFEuNJTNc0aj6FjgM9C68iL6FV9G7AADUnZGKqfj1BxRe8YQM2Y56tkUXxSfcpnTXsS6kAwAAAAAAkIKrX1J0zk0yk/sctWy0g+KT7ubcBQAAAJotBmEAwCW+3atU8upP5N/7oaNmhVspPulOpXqe7EIyAAAAAMAX8fl8bkcA6sQ0zUM+bo4C62aouOJGmfHtjpptmEoe/wPVjPqJFCgW3+nuoG/hVfQuvIi+hVfRuwCApsyoqVR03s0KrX4pb732mHOVGHuj7FCLAicDAAAAGg8GYQCg0GxL4eV/VmThfTKslKOc6jpOscn3yo60dSEcAAAAAKAuysrK3I4AHJHS0lK3I7gntl165Vrp/efy1zsMkvHlXyjc8XiFC5sMX6BZ9y08jd6FF9G38Cp6FwDQVATXz1K04nqZ1bsdNauoteIT7+CmqgAAAIAYhAGAgjLjOxSdda2CH73mqNm+oBKjf6raQRdKhuFCOgAAAAAAgCbIsqRlj0uv3iQlq5x1f5E0cZo0aqrk45Q5AAAAANQFu+XCCzy1g1hyv4rn3abQ+/8vbznV+wxVT7pddlErdrBt4jzVt8BB6F14EX0Lr6J3P8a7egBQIMG1/1F09vUyk/sctUzrYxQ75SFlW/ctfDAAAAAAAICmavdq6YXLpY0L8td7TpDOfFhq1aOQqQAAAADA89gtF17UaHcQW1shPXeptH+zsxZuKX3pAQUHflVBbqraLDXavgW+AL0LL6Jv4VXNtXcZhAGAhpZKKDr/NoVX5r9rR/WQ/1L1iVdJvlCBgwEAAAAAjlRlZaXbEYA6MU0z5+R3VVWVLMtyMVGBZFMKv/VbhRc9IiObcpStcJlqxk1X6phzP96Zl+/pRqXZ9i08j96FF9G38Cov9S7DAgCAz5VKSDNulhY/lr/e51Tpy7+QSjoUNhcAAADgAQzCAEAD8m9/WyUzrpCvapOjlo10UHzKvUp3OcmFZAAAAACAo5HNZt2OABwRy7KafP/6ty9TdPb18u/9MG+9tu9XlBh7g+yi1lIjvVgSuZpD36JponfhRfQtvIreBQB4zqY3pH/9UKpc76wFS6TT7pKO/87HN/AAAAAA4MAgDAA0BCujorceVfGiR2TYzpPuyV6nKz7xdtnhloXPBgAAAAAA0AQZqbiKX79f4RVPyJDtqGdLOis+4Talu41zIR0AAAAANC3slgsvaJQ7iGVqVfTGQwq99bu85y/SnU9U9cn3yWrRWdq3r/D54LpG2bdAHdC78CL6Fl7lpd5tyJ1yGYTBEfP5fG5HAOrENM1DPq73z1f1kSL/+Yn8295y1OxARNUTblHq2PNkctcOHEKh+xaoL/QuvIi+hVfRuwAAfCq4fpYic2+SL77dUbMNU7WDv6fEyJ9IgeLChwMAAACAJohdmOBFbu8g5tu5QiUzr5F/72pHzfaHlRh9nWqP+45kmBLfY/g/bvctcKToXXgRfQuvaq69yyAMjlhDTmgBDengKch6ZdvS8n9KL18jpWLOeufhMs79nSKteirSMAnQhDVY3wINjN6FF9G38Cp6FwDQHBmJXYrOv1WhNS/nrWfa9Fd84h3KtB9U4GQAAAAAAAD/J5tW8ZJfq2jJr2TYzgsU0x2OV2zKfbJa9nAhHAAAAOBNDMIAQH2oqZRevEJ671/OmuGTxl8rjb1a8vGyCwAAAAAAcNRsW6H3n1Rk4d0yk/udZV9I1SMvV83g70u+gAsBAQAAAAAAJN+eVR/vArPrPUfNNoOqHvUT1Qz5gWT6XEgHAAAAeBdXZAPA0Vo/T/rXD6X9W5y1su7SuY9JXUYUPBYAAAAAoOH4fLwxDW8wTfOQj73IrFyn4lnTFNjyZt56ustJqp50p6yW3cR3qjc1xb5F80DvwovoW3gVvQsAaPSsrIre/r2K33hYhpVylDNtByg25T5lW/dzIRwAAADgfQzC4IhVVla6HQGoE9M0VVpaeuBxVVWVLMs6+g+cSarojQcVeut3MmQ7ysn+X1P1+JulYFTi+wWHqcH6Fmhg9C68iL6FV3mpd8vKytyOANQ7+hpedfDPDs/JpKSFP5fm3idlk856UZl06p0KDP6mSg2j8PnQYDzdt2jW6F14EX0Lr6J3AQCNiblvvUpmXqPA9mWOmm34VDNsqqqH/YhdbAEAAICjwCAMjlg2m3U7AnBELMs66v717V2jklevkH/3+86PHypVfOKdSvU+7eMFvldQD+qjbwE30LvwIvoWXkXvAgCatM1LpOd/LO10nouRJB33NenUu6Ro28LmAgAAAAAA+IRtKbziCUUW3iMjU+soZ1r1UXzyvcq0H+RCOAAAAKBpYRAGAA6HbX980mLBXTLy3Hk01Xm04lPukxXt4EI4AAAAAACAJiYZk2bdJi36nZRnR16VdpXOfFDqc3LBowEAAAAAAHzC3L9F0dnXKbj5dUfNlqGa43+g6pFXSP6QC+kAAACApodBGACoIyOxSyWzr1Nw41xHzTaDSpx4tWqHfE8yTBfSAQAAAAAKqbKy0u0IQJ2YpqnS0tIDj6uqqmRZlouJ6i6wbpaKK26UGd/qqNmGqeSQ76lm1JVSMCLxPdmkeLlv0bzRu/Ai+hZe5aXeLSsrczsCAKAh2bZCK59SZP7tMtNxRzlb2lWxKfcpUz7MhXAAAABA08UgDADUQXD9LEVn/1RmzV5HLdOqj2KnPKRsm2NdSAYAAAAAcEM2m3U7AnBELMtq9P1rVO9WdP6tCq1+KW890+ZYxSfeqUz7QR8vNPKvB0fPC30L5EPvwovoW3gVvQsAcIOR2KmS2dcruLEib73muAuUGH2tFCgucDIAAACg6WMQBgAOJV2tyGt3qui9f+Qt1wy66OOTFv5wgYMBAAAAAAA0MZ/cQXXBXTKTVc6yL6TqEZerZsj3JV/AhYAAAAAAAAAfC374gqJzb857DiMbLVd88j1KdznJhWQAAABA88AgDAB8Dt/OFSp59Ur5961z1KzitopNvlfpbuNcSAYAAAAAANC0mPvWK1oxXcEtb+StpzqfqPiE22W17F7YYAAAAACAvHw+n9sRgC9kmuYhHx8Jo2aviituVPBzdrJN9v+aqsfdKIVaiO8SHImG6FugEOhdeBF9C6+idz/GIAwAfJaVVdGyx1T85kMyrIyjnOwxRfFJd8ouau1COAAAAAAAgCYkm1bRst+rePEvZGRTjrIVKlVizPVKHvNVyTBcCAgAAAAAyKesrMztCMBhKy0tPboP8MHL0guXSYldzlqknfTlXyjU73SFju6zADmOum8Bl9C78CL6Fl7VXHuXQRgAOIgZ26qSGVcpsHWRo2b7ixQfO13J/l/nwgsAAAAAAICj5N+xXNHZ18u/54O89do+Zykxdrrs4jYFTgYAAAAAAHCQmn3Sv6dJy/+evz7gHOlLD0rFrQoaCwAAAGjOGIQBgP8T/PB5RefcJDMVc9TS7Y5T7OSHZJX1cCEZAAAAAABAE5JKKPLmgwov/4sM2Y5ytqSj4uNvVbr7RBfCAQAAAAAAHGTtbOm5S6X9W5y1ojLpSw9IA79a+FwAAABAM8cgDIBmz0jGFJl7s8IfPueo2YapmhN+qOrhl0m+gAvpAAAAAAAAmo7AhgpF594kX2yro2YbpmoHXaTEyCukYMSFdAAAAACAuqqsrHQ7AvCFTNNUaWnpgcdVVVWyLKtuT04lVPTaXQqveCJ/ucdkVU++S3akncT3A+rRUfUt4CJ6F15E38KrvNS7ZWVlDfaxGYQB0Kz5ty5WyYyr5Is579yRLemk2MkPKNNxuAvJAAAAAAAAmg6jerei829TaPWLeeuZ1scoPukuZdoPKnAyAAAAAMCRyGazbkcADptlWXXqXf/WJSqZdY18VZucHyMQVWLsjUoe+1XJMCS+F9DA6tq3QGND78KL6Ft4VXPtXQZhcMR8Pp/bEYA6MU3T+TibVvjNhxVe8qgM2zkFmTzmHFVP+JkUaiE6HW7I27eAB9C78CL6Fl5F7wLu4rwIvML1nxe2reD7/09F8++Qmaxyln0h1Yy8XMmhF0u+AOdhIKkR9C1whOhdeBF9C6+idwEADSKTVPEbD6jo7T/KkO0opzqPVnzyPbJKOroQDgAAAMDBGITBEWvIrYqAhlSa3iU98wNp6zJnMVQqnfmgQsedp1DhowGf6+Bt7AAvoXfhRfQtvIreBQqL8yLwqoL+vNizVnrxJ9L6efnr3cfKOOvnKm7dS8WFSwUP4r9z4FX0LryIvoVX0bsAgKPl3/GOojOvkb9yjaNm+4uUGH2dao/7tmQwfAkAAAA0BgzCAGg+bFt668/Sf66X0tXOercx0jm/kVp2KXg0AAAAAACAJiOblhY+Is29R8rUOuvhltKpd0hDvi0ZRsHjAQAAAAAAHJBNqXjJr1S05FEZdtZRTncYqtiUe2W17OFCOAAAAACfh0EYAM1DYrf0/GXSqpecNdMvTZoujb5MMn2FzwYAAAAAANBUbHlLev5yaceK/PWBX5VOu1uKtitsLgAAAAAAgM/w7V6lklnXyL/rPUfNNoOqHnWFaob8F9eSAAAAAI0QgzA4YpWVlW5HAOokuGmeIjOukeI7HLVsWU8lTvuFsu0GSlX7XUgH5GeapkpLSw88rqqqkmVZLiYC6obehRfRt/AqL/VuWVmZ2xGAesd5EXhFwX5epBIqev0BhZb/WYbt/PhWtKMSk25XpsckKS2J7yEcgpf+Owc4GL0LL6Jv4VVe6l3OiwBAI2RlVbTs9yp+82EZVspRzrQdoNiU+5Vt3deFcAAAAADqgkEYHLFs1rkdKNCoZGoVWXiPit55PG+5ZuC3lThpmhQokuhnNHKWZfG6C0+id+FF9C28it4FCovvN3hVQ/y8CGyco+icm+SLbXHUbBmqHXShqkddKTsY5RwMjgj/nQOvonfhRfQtvIreBQDUlVm5XiUzr1FgxzJHzTb9qh42VTUnXCL5Ai6kAwAAAFBXDMIAaJJ8u95XyYwr5d+72lGzilorNulupXtMciEZAAAAAABA02BU71Zk/u0Kr34hbz3Tup/iE+9UpsOQwgYDAAAAAAD4LMtS6O0/qWjBPTIytY5yplUfxabcp2y741wIBwAAAOBwMQgDoGmxLRUt+4OK33gw7/a16nOK9o+/Q5lwq8JnAwAAAAAAaApsW6EPnlHktTtlJvc5y76gqof/WDXHX8zdUwEAAAAAgPsqN0rPTVXxhvmOki1DNUMvVvWIn0j+UOGzAQAAADgiDMIAaDLM+DZFZ16j4ObXnUV/WDrldmn4D2Tv2yexNToAAAAAAMBhM6s2KjrnRgU/WpC3nuo0UvEJd8gq61HgZAAAAAAAAJ9h29LSx6V/Xy+lYo5ytrSbYlPuU6b8BBfCAQAAADgaDMIAaBKCa15RtOIGmckqRy3TdoD85/9JatvPhWQAAAAAAABNgJVR0dt/UPGiX8jI1DrLoRZKnDRNyWO/JhmGCwEBAAAAAAA+ZcZ3KDrnBmlDRd56zXEXKDH6WilQXOBkAAAAAOoDgzAAPM1IxRWZd6vCHzztqH2yfW1y9NUqa9PehXQAAAAAAADe59u5QiWzr5d/9/t568neZyg+9ibZkbYFTgYAAAAAAPAZtq3Qhy8oMu+WvDdTzZZ0VHzS3Up3Oanw2QAAAADUGwZhAHiWf9tSlcy4Sr79mxy1bLSD4lPuV7rzifL5fC6kAwAAAAAA8Lh0tSJvPqzw8j/JsC1HORvtoPj425TuMcmFcAAAAAAAALmMmj2KzrlJobX/zltP9j9f8ZOulx0qKXAyAAAAAPWNQRgA3mNlVLz4Vypa8isZdtZRTvb5kuLjb5MdLnUhHAAAAAAAgPcFNs5TdM6N8sU2O2q2DNUOukDVo66SHYy6kA4AAAAAACBXcN2rilZMl1mzx1mMtpfO+oWq242UnXVeZwIAAADAexiEAeApZtVGlbx6lQI7ljlqViCqxPhblOx3tmQYhQ8HAAAAAADgcUbNHkXm36Hwh8/lrWda9VV80p3KdDi+wMkAAAAAAI2Jz+dzOwIgSTKSVSqa+zOFVj6T/4CBX5XOuF8qbiWzqqqw4YAjYJrmIR8DjRW9Cy+ib+FV9O7HGIQB4A22rdDKpxWZf6vMdMJRTpefoNjJD8hq0cWFcAAAAACA5oaLPeAVdT4RbtsKfvCMiubdLrO20ln2BVU74seqPeF/JF9QfAegIfEGDryK3oUX0bfwKnoXcF9ZWZnbEQBpzSzpuUul2FZnraiV9KUHpIHnHlgqLS0tYDigftC38Cp6F15E38KrmmvvMggDoNEzaioVnTNdobX/dtRsw6fqEZep5oQfSiYvaQAAAACAwuBiD3hV3hPhe9dLL14hravI/6RuJ8k46+cqatNHRQ0bD8irub6BA++jd+FF9C28it4FgGYmGZdm3Cgt+WP+er8zpDMflkraFzQWAAAAgMLhqnEAjVrgowWKzrxGvsQORy1b2k2xkx9UpsOQwgcDAAAAAADwumxGeuNXUsVdUqbGWQ+VSqfcKh1/ocQdtgEAAAAAQGOwYYH07CXSvo3OWqiFdPo90uBvSoZR+GwAAAAACoZBGACNUzapyOsPqOjtP+Qt1/Y/X/Ex06VgpMDBAAAAAAAAmoCtb0vP/1ja/k7+ev+vSKffK5V0KGgsAAAAAIA3VFZWuh0BzU2mVkUL71do2R9kyHaU013GKHHyvbJLOkr79kmSTNPM2TWsqqpKlmUVKjFwROhbeBW9Cy+ib+FVXurdsrKyBvvYDMIAaHR8ez5UyatXyL/nA0fNCrVUfNKdSvU61YVkAAAAAAB8jIs94BWOE+G7tym08IGPLxqxnSfErWgHVU+8TemeJ0sZSfQ6XOClN3CAg9G78CL6Fl7lpd5tyAs+ADdls1m3I6AZ8e94R9GZV8tfudZRs/1FSpw0TbUDv/XxLjCH6E3LsuhdeA59C6+id+FF9C28qrn2LoMwABoP21b4nb8osvAeGdmUo5zqMlbxyffIirZ3IRwAAAAAAJ9qjicS0QSsmaXo85fLt/8jR8mWodrjvqPqE6+SHSw55EUjQKE11zdw4H30LryIvoVX0bsA0ERlUype/EsVvfUbGbbzdT5dPkyxyffIatm98NkAAAAAuIpBGBwxn8/ndgQ0IUZipyIzrlZg4zxHzfYFVXPST5Uc8l0ZhqnD7TzTNA/5GGiM6Ft4Fb0LL6Jv4VX0LgCgzhJ7pP9Mk97537znVTKt+ig+8U5lyocWPBoAAAAAAEA+vt0fqGTm1fLvXumo2b6gqkddpZrB35NMrl8CAAAAmiMGYXDE2MIZ9Wbli9LzP5Zq9jpr7QbI+OpjKm4/QMX19OkO3iYd8Ar6Fl5F78KL6Ft4Fb0LAHCwbQVXPiPNvz3veRfbDKp6+I9UM/R/JF/QhYAAAAAAAACfYWVUtPQxFS/6uQwr7Sin2w5U/OT7lW3Vx4VwAAAAABoLBmEAuCeVkP49TVr6l/z1UVOlyTdJgXBhcwEAAAAAAHicuf8jRStuVPCj+Xnr6Y7DFZ94h7JlvQqcDAAAAAAAID9f5TpFZ16jwI63HTXb9Kt6+KWqGfpDyRcofDgAAAAAjQqDMADcseUt6emLpb1rnbVoB+mcR6VekwqfCwAAAAAAwMusjIre/pOKFz0sI1PrLAdLlBh9nZIDvi4ZpgsBAQAAAAAAPsO2FH7nL4osvE9GNukoZ1r1Vezk+5VtO8CFcAAAAAAaIwZhcMQqKyvdjgAvsrIKL3lU4TcflmFlHOVUr9NUPfku2UVlUj31mGmaKi0tPfC4qqpKlmXVy8cGGgp9C6+id+FF9C28yku9W1ZW5nYEAGgWfDvfVUnF9fLvei//Acd+WftPmq5MuHVhgwEAAAAAAHwOc/9His66TsEtbzpqtmGq5vj/VvXIyyRfyIV0AAAAABorBmFwxLLZrNsR4DHm/s0qmXGVAtuWOGp2oFjxsTcpeex5kmFIDdhflmXRv/Ac+hZeRe/Ci+hbeBW9CwDNWLpGxYseVtHbf5Jh5/lZUNJR+tL90jFfkl1Z2aDnXQAAAAAAAOrEthV6/38Vee1OmemEo5wt7a7YlPuUKR/qQjgAAAAAjR2DMAAanm0r9OFzisy9WWYq7iin2w9R7OQHZLXsXvhsAAAAAAAAHhbY9Jqic6bLt/8jR82WoeSg7yh8xp1SuIUL6QAAAAAAAJzM+HZFZ09TcNO8vPWaQRcpceI1UqCowMkAAAAAeAWDMAAalJHcr+icGxVa/aKjZhumaoZNVfWwqZIv4EI6AAAAAAAAbzJq9iry2p0Kr/pX3nqmVR/FJ94hu/MIhRmCAQAAAAAAjYFtK/Th84rMu0Vmcr+jnC3ppPjku5XuPLrw2QAAAAB4CoMwABqMf8ubKplxlXzxbY5atkUXxU5+QJnyE1xIBgAAAAAA4FGfXDAy/3aZtXudZTOo6mE/Us0J/y35QvK5EBEAAAAAAOCzjJo9ilbcqNC6/+St1/Y/X4kx18sOlhQ4GQAAAAAvYhAGQP3LplT85sMqWvo7GbId5dp+5ygx/mZOXgAAAAAAABwGc/9mRedMV3DT/Lz1dPkwxSfeoWyr3gVOBgAAAAAA8PmCa/+j6JzpMmucN/XIFrdTfNKdSnef6EIyAAAAAF7FIAyAeuWrXKuSV6+Qf9d7jpoVaqH4hNuV6vMlF5IBAAAAAAB4lJVRePlfFHnzIRmZGmc5GFX16OtUO+AbkmG6EBAAAAAAAMDp/7N33/FRVfn/x99T0iaBECDSBJTeO0gRQVCxgGJZEBZU7B0riK6ra1nBsqio+HVdsVEsIIpYkCJVekc6IjWUEEJ6MjP39we/jBlm0iDJnZu8no+HD+eec++5n5n5kJmc3M89tsxkRS9+QZHbZwbtz2xyrdIueU5GZJUyjQsAAACA9VEIA6BkGIYiN09R9NJ/y+bODOjOrtNVqZe9Jm+l2iYEBwAAAABAyXI4HGaHgArCcWyLXHOfkvPopqD92Q2vVHrvf8mIqaFgWWm32wvcBkIReQurIndhReQtrIrcBYDQF/bnQsXMHyNH2pGAPm9knFJ7v6jsRleZEBkAAACA8oBCGADnzJZ+XJXmj1H43vkBfYY9TOldH1NG+zu5IykAAAAAoNyIi4szOwSUd9np0sKx0rJ3JMMT2F+plnT16wpv3l/hxRg2Nja2xEIEygp5C6sid2FF5C2sitwFgNBhy06Va+kritoyLWh/1oWXKfXSl2W4qpdxZAAAAADKEwphAJyTsL0LVGneaNkzEgP63HGNlHLFf+SJb2lCZAAAAAAAABa1e4H0/SNS0t7g/Z3ukC57TorkYj8AAAAAABA6nAdXqNLcUXKkHAjo84ZXUtol/1RW0+slm82E6AAAAACUJxTCADg7ORmKXjZWUZs+D9qd0Xq40rqPlsKiyjgwAAAAAAAAi0o/If38jLRhSvD+6k2la9+W6nUt27gAAAAAAAAK4s5U9G+vK3LDx7LJCOjOrnuxUvu8Im+l2iYEBwAAAKA8ohAGQLE5jm1RpTmPyZm0K6DP66qulD5jlXPBpSZEBgAAAABA2UhKSjI7BJQnhqGw7d/JteiFoKvuGvYwZXZ+QJmd7pOcEVIx8s9utys29q+VY5KTk+X1ekskbKC0kLewKnIXVkTewqqslLtxcXFmhwAApcqZsF4xc5+U8+SegD4jzKW0HmOU2XIIq8AAAAAAKFEUwgAoOq9HUes/lGv5eNm8OQHdWRf0VWqff8twVTchOAAAAAAAyo7H4zE7BJQT9lMHFPPrswrftyhof06tjkq99N/yVG10uuEcc8/r9ZK/sBzyFlZF7sKKyFtYFbkLACbwZMu18m1Frf0/2YzAYsSc2p2V0vdVeWPrmRAcAAAAgPKOQhgARWJPOaSYuU8o/OCKgD7DGam0i5/hDh4AAAAAAABF5fUocuMnil7+H9ncGYHd4TFK7z5amS1vlmx2EwIEAAAAAAAIznF8qyr98oScidsC+gxHuNK6PqHMtrdJdkfZBwcAAACgQqAQBkChwnd+r5hfn5U961RAX058K6VeMV6euAYmRAYAAAAAAGA9juNbFTN/jMKObgran9XgCqVd8py8MTXLODIAAAAAAIrG4aDAoULyuhW5+n1FrnhLNm9OQLe7RlulXfGGvFUbKRQyxG63F7gNhCLyFlZF7sKKyFtYFbl7GoUwAPJly05R9MLnFbl9ZkCfIZsyOt6r9C4PS47wsg8OAAAAAADAatyZcq18W1HrPpTN8AR0e1znKa3X88pu2M+E4AAAAAAAKLq4uDizQ0BZO7ZDmnmvdHBNYJ/dKfV6Ss6LH1WsI3QvR4uNjTU7BKDYyFtYFbkLKyJvYVUVNXdD9zcPAKZyHl6tSnMelyPlQECfp1JtpVz2htx1upgQGQAAAAAAgPWE7V+qmF//IUfyvqD9GS2HKL37KBkRlcs4MgAAAAAAgAJ4vdKKidK8FyR3ZmD/eS2l69+XarUp+9gAAAAAVFgUwgDw58mRa9UERa2ZKJvhDejObHKt0nr9i4syAAAAAAAAisCWkaTopa8octv0oP3uuIZKvfRluWt3LuPIAAAAAAAACpG0V5p5v/Tn0sA+m13q8YjU+ynJGVHWkQEAAACo4CiEAeBjP/mHKv3yuMKObAjo84bHKK3XC8pqep0JkQEAAAAAAFiMYSh85yzFLH5R9owTgd32MGV0vFfpne6THFwsAgAAAACwlqSkJLNDQGkyDIVvnirX4pdky0kP6PZUaaC0K16Xp1YHKSVdUuA+ocButys2Nta3nZycLK838KawQCghb2FV5C6siLyFVVkpd8N3tY4AAIyaSURBVOPi4kptbAphAEiGoYjfv1TMkuATGDm1OyvlstflrXy+CcEBAAAAAABYi/3UQcUsfFbhfy4M2p9Ts4NSL31ZnmpNyjgyAAAAAABKhsfjMTsElBJ7aoJi5j+l8H2Lg/ZntL1NaV2fkMKiJIvlgdfrJXdhOeQtrIrchRWRt7Cqipq7FMIAFZwt44RiFjytiD2/BPQZdqfSu4xURod7JLvDhOgAAAAAAAAsxOtR5MZPFb3iP0FvNuINi1F69yeV2WqoZLObECAAAAAAAEA+DEMRO75V9KJ/yZ51KqDbU6mOUvu+qpzzu5oQHAAAAAD4oxAGZ83hoDDC6px/LlL0L0/InnY0oM9TpYHSrnxTnhptZPV32m63F7gNhCLyFlZF7sKKyFtYFbkLAKHFcXybYuaPUdjRjUH7sy68TGm9npc3plYZRwYAAAAAAFAwW/pxxfz6rCL2zAnan9lisNIuflpGeEwZRwYAAAAAwVEIg7MWFxdndgg4WzmZ0tznpRUTg/d3vE2Ofv9W5fDoMg2rrMTGxpodAlBs5C2sityFFZG3sCpyFwBM4s6Ua9U7ilr3X9m87oBuryteqZc8r+yG/SSbzYQAAQAAAAAA8he++2fFLPiH7JknAvo8rvOU2vcV5dTvXfaBAQAAAEABKIQBKpojW6Tpd0pHfw/sc1WTrp0gNbum7OMCAAAAAACwmLADvylmwTNyJP8ZtD+j5c1K7z5aRkTlMo4MAAAAAACgYLbMZEUv+pcid3wbtD+zyXVKu+SfMiKrlG1gAAAAAFAEFMIAFYXXe3oFmLnPS57swP5Gl0nXvSdVqlHmoQEAAAAAAFiJLfOkopeOVeTWr4L2u6s0UOqlL8tdp0sZRwYAAAAAAFC4sD9/Vcz8p+VIOxLQ542sqtTeLyq70ZUmRAYAAAAARUMhDM5aUlKS2SGgiGypRxT9yxMK27c4oM9whCvj4qeV1fZWyW2TyuH7arfbFRsb69tOTk6W1+s1MSKgcOQtrIrchRWRt7AqK+VuXFyc2SEAQMkwDIXvmq2YRS/InpEY2G0PU0bHe5Te8X7JGWFCgAAAAAAAAPmzZacqesm/Ffn7F0H7sxpcrtTeL8lwVS/jyAAAAACgeCiEwVnzeDxmh4AiCN/9s2LmPy171smAPnf15kq5/D/yVGtyesWYCsLr9ZK/sBzyFlZF7sKKyFtYFbkLAKXLnnJIMb/+U+F/Lgjan1OzvVIv/ffpeRYAAAAAAIAQE3ZguWLmjZYj5UBAnze8ktJ6Pa+sJtdJNpsJ0QEAAABA8VAIA5RX2WmKWfyiIrd+FbQ7vf2dSu/6mOTg7qQAAAAAAAD58noUuekzuZb/R/actMDusBild3tCma3/LtnsJgQIAAAAAABQgJwMRS9/XVEbPg7anV2vp1L7vCJvTK2yjQsAAAAAzgGFMEA55ExYr0q/PCpH8r6APk90TaVe/ppyzu9uQmQAAAAAAADW4Ti+XTELnlbYkfVB+7MuvExpvZ7nQhEAAAAAABCSnAnrFDP3STlP/hHQZ4S5lNrjaWW1vJlVYAAAAABYDoUwQHnidStq9US5Vk2QzfAEdGc1ulqpvV+UEVml7GMDAAAAAACwCneWXKsmKGrdf2XzugO6va54pV7ynLIbXsmFIgAAAAAAIPR4suRaOUFRa/9PNsMb0J1Tu4tS+o6TN7aeCcEBAAAAwLmjEAYoJ+zJ+1Tpl8cVlrA2oM8bFq20S55TVrMbuDgDAAAAAIAS4HA4zA4BpcR54De55j0tR5A7pUpSVqshyujxlIzIWFkhC+x2e4HbQCgib2FV5C6siLyFVZG7AJA/x7HfVWnuE3Imbg/oMxwRSuv2pDLb3irZ+NkJAAAAwLoohAGszjAUsW2Gohe9IHtOakB3Ts32Srn8DXlj65sQHAAAAAAA5VNcXJzZIaCkZSRJc56V1n0WvL9aI2nAW4q44GJFlG1kJSo2NtbsEIBiI29hVeQurIi8hVWRuwAgyetW1Jr35Vo1IegKtzk12ir1stfkiWtoQnAAAAAAULIohAEszJZ5UjG/PquIXT8E9Bk2h9I7P6iMTvdLdv6pAwAAAAAABGUY0pZvpB9HS2lHA/vtTqnHI9IlT0phkWUeHgAAAAAAQGEcJ3YpZu6TCju6MaDPsIcpvcvDyuhwN9ePAAAAACg3+O0GsKiwA8sU88uTcqQlBPR5KtdTyhX/kbtmexMiAwAAAAAAsIjkA9Lsx6UdPwXvr9NJuvZtqUbLso0LAAAAAACgKLweRW74WNHLX5fNkx3Q7a7WTCmXvy5P9eYmBAcAAAAApYdCGMBqPFlyLf+Potb9TzYZAd2ZzW9SWs9nZYTHmBAcAAAAAAAVQ1JSktkh4Fx4PYrY+Jmilr0mW05aQLcRFq2M7k8qq81wye6QLPx+2+12xcbG+raTk5Pl9XpNjAgoHHkLqyJ3YUXkLazKSrkbFxdndggAyil78j5VmjdKYYdWBfQZNrsyOt6r9M4PSY5wE6IDAAAAgNJFIQxgIY4TO1VpzmNyHv89oM8bEavUS/+t7EZXmhAZAAAAAAAVi8fjMTsEnCVH4nbFzH9GYUfWBe3PvqCPUnv9S95KtSVDUjl7r71eL/kLyyFvYVXkLqyIvIVVkbsAKhTDUOSWqYpe+opsOekB3e4qDZR62Wty12xX9rEBAAAAQBmhEAawAsNQ5KbPFL10rGyerIDu7PO7K/Wy1+SNqWlCcAAAAAAAABbgzpJr9TuKWvuBbF53QLfXVV2pPf+p7EZXSzabCQECAAAAAAAUzJ5ySDHzn1b4/sUBfYZsymw7QmndHpeckSZEBwAAAABlh0IYIMTZ0o6p0vzRCv9zYUCfYQ9XWrcnlNluhGSzmxAdAAAAAABA6HMeXKGYBc/IefKPoP2ZLQYprftTMiJjyzgyAAAAAACAIjAMRWz/RtGLXpA9OyWg21PpfKVc9qrcdS4yITgAAAAAKHsUwgAhLPyPeYqZ/5TsGScC+txVGyvlivHyVG9uQmQAAAAAAAChz5Z1StFLxyry9y+C9ntiL1DqpS8r5/yuZRwZAAAAAABA0djSjytmwTOK+GNu0P6MlkOU3uMpGeExZRwZAAAAAJiHQhggFOWkK3rJvxW1ZWrQ7ow2tyqt+yiWsgUAAAAAAAjGMBS++yfFLPqX7OnHArvtTmW0v0vpnR9kfgUAAAAAAISs8F0/KubXZ2XPTAro80TXVGqffyunfi8TIgMAAAAAc1EIA4QYx9FNqjTnMTlP7gno87rildL3VeXUv8SEyAAAAAAAAEKfPfWwohc+n+9dUnNqtFXqpf+Wp3qzMo4MAAAAAACgaGyZJxW98HlF7pwVtD+z6UCl9fynjMjYMo4MAAAAAEIDhTBAqPB6FLXuv3KtGC+b1x3QnXXhZUrt828ZUdVMCA4AAAAAACDEGV5Fbpos12+vy56TGtgd5lJa18eV2Xq4ZHeYECAAAAAAAEDhwvYuUMz8p+VIPxrQ542qqtTeLym7YT8TIgMAAACA0EEhDBACbNkpqvz9PQo7tCKgz3BGKbXns8pqMUiy2UyIDgAAAAAAILQ5EncoZsHTCktYF7Q/u/6lSu39gryVapdxZAAAAAAAAEVjy05R9JJ/K/L3L4P2ZzXop9RLX+QGqgAAAAAgCmGAkBC98PmgRTA557VRyhX/kbfKhSZEBQAAAAAAEOLcWXKteU9Ra/5PNm9OQLc3qppSL/mnshtdww1GAAAAAABAyAo7sEwx80bLkXIooM8bUVlplzyvrCbXMr8BAAAAAP8fhTCAyRwndili+7d+bYbNroyO9yq988OSI8ykyAAAAAAAAEKX89Aqxcx/Ws6Te4L2Zzb/m9J6PCUjskrZBgYAAAAAAFBUhiHXb6/KtfaDoN3Z9Xsp9dJ/yxtTs4wDAwAAAIDQRiEMYLKoVe/IJsO37Q2L0akB/5O7dicTowIAAAAAAAhNtqxTci0bp6gt04L2e2LrK/XSl5VzfrcyjgwAAAAAAKB4IrZ+FbQIxhsWrbSLn1FWi0GsAgMAAAAAQVAIA5jIcWKnInZ+79eW2fZWimAAAAAAAADOZBgK3/2zohf9S470o4Hddqcy2t+l9M4PSs5IEwIEAAAAAAAoBneWXCvfCmjOrnORUvu+Km/l800ICgAAAACsgUIYwESuM1eDCY9RRrvbTYwIAAAAAAAg9NhTExS98DlF/DE3aH/OeW2U2ucVeao3K+PIAAAAAAAAzk7klqlypCb4taV1f0oZ7e+QbHaTogIAAAAAa6AQBjCJI3GHwnfO9mvLbHubjMgq5gQEAAAAAAAQagyvIjdPkWvZa7LnpAZ2h7mU1vUxZba+RbI7TAgQAAAAAICKyeHg9/BzkpMh15qJ/k3nd1N253vFK1ty7HZ7gdtAKCJvYVXkLqyIvIVVkbunUQgDmMS1OshqMG1ZDQYAAAAAAECSHCd2Kmb+0wpLWBu0P7t+b6X2ekHeynXKODIAAAAAABAXF2d2CNa29FMp/bhfU9gVz/O6lrLY2FizQwCKjbyFVZG7sCLyFlZVUXOXQhjABKdXg/nBry2z7QgZkRXzBxEAAAAAAICPJ0uu1RMVteZ92bw5Ad3eqKpK7fmsshsPkGw2EwIEAAAAAAA4B1kp0pI3/dsaXSbV62pKOAAAAABgRRTCACZwrZpwxmowlZTRdoSJEQEAAAAAAJjPeWi1YhY8LWfS7qD9mc1uVFqPMTKiuDsqAAAAAACwqOXvSxkn/NsufdqcWAAAAADAoiiEAcqYI3G7wnf96NfGajAAAAAAAKAis2WlyLVsnKK2TA3a74mtp9TeLymnbo8yjgwAAAAAAASTlJRkdgiWZMtMVuWlb8mepy27weVKczWQeE1LnN1uV2zsX9fjJCcny+v1mhgRUDjyFlZF7sKKyFtYlZVyNy6u9G5wSCEMUMZcq94JXA2mHavBAAAAAACAismeckixM26WI+VgQJ9hcyij/Z1K7/Kw5Iw0IToAAAAAABCMx+MxOwRLcq35QPbsFL+2tC6P8HqWEa/Xy2sNyyFvYVXkLqyIvIVVVdTcpRAGKEOO49sVsesHv7aMdrfLiKhsUkQAAAAAAADmilnwTNAimJzzWiv10n/LE9/ChKgAAAAAAABKli3jhCI3fOzXltXoanmqNzMnIAAAAACwMAphgDLkWjXBb9sbXkmZbW8zJxgAAAAAAACThf35q8L3LfJrM5xRSuv6mDLb3CrZHSZFBgAAAAAAULKi1n4ge06ab9uw2ZXeZaSJEQEAAACAdVEIA5QRx/Ftitj9o19bRrs7WA0GAAAAAABUTJ4cRS/5t3+T6zwl3/SVvJXPNykoAAAAAACAkmdLO6aoTZ/5tWU1uVaeqo1MiggAUBHl5OQoPT1d2dnZMgxDhmGU2Ng2m03Hjx/3O1dJjg+UBvIWVlXauWuz2WSz2RQeHi6Xy6WwsLASG7skUQiDs+ZwcEfO4ohe/Y7ftjeisrI73M7rWAbsdnuB20AoIm9hVeQurIi8hVWRuwCsLnLzZDmTdvu1pXd7giIYAAAAAABQ7rjWTJTNnenbNmwOpXd52MSIAAAViWEYSk5OVkZGRqmfJ5fX6y3VcwElhbyFVZVF7rrdbqWnpysqKkqxsbGy2Wylcp6zRSEMzlpcXJzZIVhHwiZpl/9qMPbuDymuZn2TAqrYYmNjzQ4BKDbyFlZF7sKKyFtYFbkLwEpsGUlyrXzbry3nvNbKana9SREBAAAAAACUDnvKIUVunurXltX8RnljuWYEAFA2UlNTA4pgSuMme9y4D1ZE3sKqSjt38xbXZGRkyOFwqFKlSqV6zuKiEAYoCwvH+W9HxkoX3WNOLAAAAAAAACZzrXxL9qxkv7a0nv+QbPyxAQAAAAAAlC9Rq9+TzZvt2zbs4Urv/JCJEQEAKhK3263U1FTfdqVKleRyuUrlAmqn869Lkt1ud4mPD5QG8hZWVdq56/V6lZ6erpSUFEmniyqjoqL8zms2/rIMlLaETdLWWf5t3R46XQwDAAAAAABQwTgSdyhy8xS/tqzG/eWu1cmkiAAAAAAAAEqHPXmfIrd+5deW2XKwvJVqmxQRAKCiycrK8j2Ojo5WTEwMK2AAAAplt9sVExOj6OhoX1vez5RQEDolObCcpKQks0OwhOhfXlR4nm1vRKySmw6SeP3KjN1uV2zsX4VHycnJfkt2AaGIvIVVkbuwIvIWVmWl3I2LizM7BAChwjAUveTfshmev5ocEUrrPtrEoAAAAAAAAEqHa9U7snn/ujuz4YhQRsf7TIwIAFDR5L1oOSoqysRIAABWFBUVpbS0NEmnP1PyFsaYjUIYnDWPx1P4ThWc49jvCt/9s19bRrvb5XFGS7x+pvF6veQvLIe8hVWRu7Ai8hZWRe4CZcvhcJgdgiU5/5iv8P2L/doyO94jW5W64hUtHWfe2Y87/cEKyFtYFbkLKyJvYVXkLgArcCTtUcT2b/zaMlsPkzemhkkRAQAqoty/H9psNjmdXDIMACgep9Mpm80mwzBC7poUPtWAUuRa9bbftjciVpltbzUpGgAAAAAAUFJY6egsuLOlpf/2b6tUS1F9RysqIsacmCqgvKuJAVZB3sKqyF1YEXkLqyJ3AYSiqJVvy2b8tYq3EeZSeoe7TYwIAFAReb2nP4tsNptsNpvJ0QAArCb388MwDN9nSqjgtihAKXEc26KIPb/4tWW0v0NGeCWTIgIAAAAAADDRqg+lxF3+bZc9L1EEAwAAAAAAyhlH4nZF7Pzery2jza0yXNVNiggAAAAAyhcKYYBS4lp55mowVZTZ5haTogEAAAAAADBRWqK0cKx/W52OUutB5sQDAAAAAABQilwr3pJNhm/bGx6jjPZ3mhgRAAAAAJQvTrMDAMojx7Etivhjrl8bq8EAAAAAAFB+JCUlmR2CpUQteE6Rmcl+bad6PC1PcnI+R6Ck2O12xcbG+raTk5NDbtly4EzkLayK3IUVkbewKivlblxcnNkhAChjjqObFLHnZ7+2jHZ3yoisYk5AAAAAAFAOUQgDlAJWgwEAAAAAoHzzeDxmh2AZjsTtitg02a8ts8m1yj6vncTrWOa8Xi/5C8shb2FV5C6siLyFVZG7AEJJ9Io3/ba9EVWU2e42U2IBAAAAgPLKbnYAQHnjOLo5yGowd8oIjzEpIgAAAAAAAJMYhqKXvCyb8dedmQ1npNK7PWliUAAAAAAAAKXDeXitwv/81a8to8PdMsIrmRMQAAAAAJRTFMIAJSxgNZjIOGW2GW5SNAAAAAAAAOYJ3ztf4fuX+rVltL9b3kq1TYoIAAAAAACg9LhWjPfb9kZVUwbXjAAAAKAE7Nu3T/Hx8YqPj9fUqVMD+qdOnerr37dvnwkRWg+vmbVRCAOUIMfRTYrYO8+vjdVgAAAAAABAheTJVvSSf/s3RddUeoe7TAoIAAAAAACg9IQdWK7wA8v82tI73ieFuUyKCAAAAADKLwphgBIUHWQ1mIzW3NkDAAAAAABUPJEbP5Mjea9fW3r3UVz8AQAAAAAAyh/DCFgNxhNdQ5mthpoUEAAAQMXRoUMHxcfH68EHHzQ7FKDEkd/5oxAGKCHOIxsVvne+X1tG+7uk8GiTIgIAAAAAADCHLSNRrlUT/NpyarRTVpMBJkUEAAAAAABQesL2L1HY4dV+bRmdHpCcESZFBAAAAADlG4UwQAlxBawGU1UZrYeZFA0AAAAAAIB5XCvelD07xa8trec/JBvTkQAAAAAAoJwxDLmW/8evyVOpjjJb/M2kgAAAAACg/OMvz0AJcB7ZqPA/F/i1ZXS4k9VgAAAAAABAheM4vk2RW6b5tWU2uU7umu1NiggAAAAAAKD0hO+dr7CjG/3a0js/JDnCTYoIAAAAAMo/CmGAEuBa+Zbf9unVYIabFA0AAAAAAIBJDEPRS16WzfD+1eSMVHr3J00MCgAAAAAAoJQYXrlWjPdr8sTWV1az600KCAAAhIoVK1bokUceUdeuXXXhhReqdu3aatOmjYYOHar//e9/Sk5ODnrczz//rBEjRqhNmzaqU6eOmjRpoquuukpvvfWWUlNT8z3f1KlTFR8fr/j4eO3bt0/Z2dmaOHGiLrvsMjVo0ECNGzfWddddpzlz5vgdl5qaqgkTJujSSy/VhRdeqIYNG+qmm27SokWL8j3X0qVLfedaunSpvF6vPvvsM1199dVq3Lix6tevr969e+vNN99UZmZmvuNcd911io+P13XXXVfga/nqq6/6zhfs+P3790uSvvjiC99+uf/lN/aRI0f08ssv+553jRo11LZtW91xxx1auHBhgfGcrYSEBH300UcaMWKEunTpovr166tOnTpq3bq1hg8frm+++UZer7fwgcpYhw4dFB8frwcffFCStG7dOt19991q27atzj//fLVt21YPPfSQdu7cme8YwXJm8uTJGjhwoFq0aKHzzjvPN34ur9err776SjfffLNatGih2rVrq1mzZho4cKA++ugjZWdnFxr7yZMn9cILL6hbt26qW7eumjdvrhtvvFHffvttkZ57bsyvvvpqgfsVNZf37dunF154QX379lWTJk1Uq1YtNW3aVP3799err76qvXv3BoyZX37HxcWpf//+fuN7PB5NnTpVf/vb33yvWYMGDdSlSxfdcMMNGj9+vLZv316k524FTrMDAKzOeWSDwv/81a8to8NdUpjLnIAAAAAAAABMEv7HXIUfWObXlt7hHnljapkUEQAAAAAAQOkJ3/2znMe3+rWldxkp2bkkCwCAiiojI0OPPPKIZsyYEdB3+PBhHT58WL/88osSExM1atQoX19mZqbuvfdezZ492++Y7OxsrV69WqtXr9aHH36oKVOmqHXr1gXGkJKSorvvvltr1qzxa1+2bJmWLVumF198Uffee68OHDigIUOGaNu2bX77LVy4UIsWLdJ7772nm266qcBzZWdna8iQIZo/f75f+5YtW7RlyxZ9/fXXmj59umrUqFHgOGXp66+/1uOPP6709HS/9kOHDum7777Td999p7///e96/fXX5XSWzPc6j8ejtm3bBi10SUhI0E8//aSffvpJU6ZM0aRJkxQTE1Mi5y1pkydP1hNPPCG32+1rO3TokKZNm6ZvvvlG7777bqHFIJmZmRo0aFCBBUdJSUkaNmyYVq5c6deemJiopUuXaunSpfrf//6nadOmqW7dukHH2LFjh2688UYlJCT4nXvRokVatGiR5s2bp27duhXlaZeId999Vy+//LJycnL82k+cOKEVK1ZoxYoVWrp0aZGLdM6UmpqqIUOGaPny5X7tOTk5SklJ0R9//KHFixdr48aNmjRp0lk/j1DCb13AOQpYDSaqqjJaDzMpGgAAAAAAAJN4shS99N/+TTE1ldH+LpMCAgAAAAAAKEVej1wr3vRrcldtrKzG/YPvDwAAyj2v16tbbrlFv/76qySpQYMGGjFihNq1a6eoqCgdOXJEq1atCnqh+4MPPugrgmnZsqXuv/9+NWnSRElJSfrmm280bdo0JSQk6MYbb9TChQtVq1b+NyF7/PHHtWHDBo0YMULXXHONqlSpok2bNmncuHFKSEjQc889p169eumhhx7Sn3/+qYcfflh9+vRRdHS0VqxYoVdffVWnTp3Sk08+qV69egWsxJLXK6+8onXr1ql3794aMWKE6tSpo4MHD2rSpEn69ddftX37dg0bNkw//fSTHA7Hub3AZ3j77beVnp6uQYMGKSEhQVdddZXGjBnjt4/L5X9T+5kzZ+r++++XYRi64IILdNddd6lp06aqXr26/vjjD02ePFlz587V5MmTValSJb344oslEqthGJKknj17qm/fvmrevLmqVaum1NRU/fnnn/r888+1atUq/frrrxo9erTefffdEjlvSdq8ebNmzJih6tWra+TIkerQoYMyMzM1d+5cffDBB8rKytJ9992n+vXrq127dvmO8+KLL2rLli268sordfPNN+v888/XsWPHlJKSIul00dDf//53rVq1SpLUvXt33XHHHapfv74SEhI0ZcoU/fDDD9qxY4duuOEGLViwIKBwKCUlxZcXkjRw4EANHjxY8fHx2r17tyZOnKipU6cGFIGVljfeeENjx46VJMXGxmrEiBG6+OKLFRcXp1OnTmnjxo36/vvvZbPZfMcUlt8Oh0PR0dG+7ddee81XBHPFFVfopptuUp06dRQREaHjx49r06ZNmjNnjt85rI5CGOAcOBPWK/xP/4rEjPZ3sxoMAAAAAACocKI2fCpH8j6/tvRuo6WwKJMiAgAAAAAAKD0RO7+XM2mXX9vp1WBK9gJPAABKm9cwlJzhLnzHQjichu+xx33u45WW2Cin7KV0IfiHH37oK4K55ppr9H//93+KiIjw2+eKK67QmDFjdOTIEV/bnDlzfMUxl1xyiaZOnarw8HBf/6WXXqrOnTvrscceU1JSkp599ll9+OGH+caxdu1affzxx7r66qt9bW3btlX79u3Vp08feb1e3XDDDUpJSdG3336rjh07+vZr166dGjRooKFDhyo1NVXTp0/Xvffem++51q1bp1tuuUVvvPGG37muvvpqPfLII5o8ebLWr1+vTz75RLfffnshr2Dx1K9fX5IUFhYmSapcubKaN2+e7/6JiYl6/PHHZRiGhg4dqjfeeEORkZG+/pYtW6p///56+eWX9eabb+qDDz7QrbfeqkaNGp1zrA6HQ7/99psaNGgQ0NejRw8NHTpU48aN0+uvv66vvvpKjz32mBo2bHjO5y1JW7ZsUd26dfXjjz/6rfDTvXt39enTR3/729+Uk5OjUaNGac6cOQWO89hjjwUULeX6+OOPfUUwgwYN0jvvvOMr3mjbtq369evne4/27t2r//znP/rnP//pN8Ybb7yhgwcPSpKeeeYZPfLII76+tm3basCAARo6dKjv32tp2rhxo1599VVJUsOGDTVjxgzVrl3bb5+LL75Y999/vy9mqfD8PnO1otyfIQMGDNBHH30UEEffvn31yCOPKCkpqQSeVWigEAY4B4GrwVRTRuu/mxQNAAAAAACAOWzpxxW1+h2/tpwa7ZXVZIBJEQEAAAAAAJQiT07ANSPu6i2U3bCfSQEBAHD2kjPcuvy9tWaHUWZ+ub+D4lxhJT6u1+v1reJRu3ZtvfPOOwFFMLnsdrvfii65F62HhYXp7bff9iuCyTV8+HB9++23WrhwoWbPnq2EhATVrFkz6PjXXXedXxFMrpYtW+qiiy7Sb7/9puPHj+uhhx7yK4LJdfnll6tu3brav3+/li9fXmAhTHx8fL6rprz00kv6+eefdfz4cU2aNKnEC2GK6+OPP9apU6dUq1YtvfrqqwGFBLlGjx6tL774QocPH9YXX3yhZ5555pzPbbPZghbB5PXEE09o0qRJSkxM1M8//6z777//nM9b0v71r3/5FcHkuvjiizV8+HBNmjRJ69at0/r16/NdFaZhw4YaNWpUvufI/fdQvXp1jRs3LugKJqNHj9bs2bO1c+dOffbZZxo9erTv31t2drYmT54s6XTOjxw5MuD4sLAwvfXWW+rUqZNycnIKfd7n4t1335XX65XNZtMHH3wQUASTV506dc76PEePHpUkde3atcD94uLizvococZudgCAVTkT1il83yK/towOrAYDAAAAAAAqHteK8bJnp/q1pV3yrFSOltYGAAAAAADIFbH9GzmS//RrS7/oEcnGpVgAAFRUmzZt0qFDhySdLlqJiYkp0nFut1u//fabJKl3794FXgg/bNgw3zHLli3Ld7/rr78+376WLVsWab8WLVpIkvbu3ZvvPtLpohuXK/h1szExMbr22mslSdu2bfNbBccMP/30k6TTq/LkV6QknV5po1OnTpKk1atXl0osXq9XCQkJ2rVrl7Zu3aqtW7dqx44dvgKpLVu2lMp5z0WVKlV01VVX5ds/dOhQ3+OFCxfmu9/AgQPlcARfRTEhIUE7duyQJF177bX5/jtyOp0aMmSIJOnkyZPauHGjr2/Dhg06efKkJGnw4MFBC2mk0wVrvXv3zjfOkuD1ejVv3jxJp1f+adOmTamdK7dAaebMmUpPTy+184QSVoQBzlLQ1WBasRoMAAAAAACoWBzHtyry9y/92jKbDpS7RluTIgIAAAAAAChFniy5Vk3wa8qp0VbZF/QxKSAAABAKNm3a5Htc2IoMef3555++i9aDrc6SV97+rVu35rtfw4YN8+2LjY0t1n5paWkFxtS+ffsC+zt06OBb4WPr1q1BVxMpCx6PR5s3b5YkffLJJ/rkk0+KdFzuKhslwTAMff3115o8ebLWrl2rjIyMfPdNTEwssfOWlNatW+e7io4ktWrVSuHh4crOzi4wP3OLrILJe1xh/x46dOjge7xt2zZ17tw5YIz8VqXJO8Yvv/xS4D7n4s8//1RycrKk4v1cOBuDBw/WG2+8oVWrVqlTp04aMGCALrnkEl100UWqXr16qZ7bLBTCAGfBeXitwvct9mtL73CPFBZlUkQAAAAAAAAmMAxFL35JNsP7V5MzSundnjQxKAAAAAAAgNIT+ftXcqQc8mtLv+hRVsYFAKCCO3HihO9xcYo9kpKSfI8Lu1j9vPPO8z3OXfEimKio/K9ltdv/WsEuv5VcJPlW0fB4PAXGVFjM8fHxvsd5n2tZS0pKktvtLvZxBRWrFEdmZqZuu+023+ogRdk/1BT2XjudTlWpUkVHjx4t8L2uUqVKvn1587qw8+X9d5b3fHkf582/YArrP1dn+3PhbDz++OM6fPiwpk6dqmPHjumjjz7yFaE1a9ZM/fv314gRI/x+jlgdhTDAWXCtettv2+uqrsxWQ/PZGwAAAAAAoHwK/+MXhR9c7teW3vEeeWNqmhQRAAAAAABAKXJnKmr1e35NObU7K6fuxSYFBADAuYuNcuqX+zsUvmMhHHlWivCcRcFBWYmNCt1Lp20WLKy1Ssx5C3qGDRumu+++W5LkcDiC7pMrPDy8RM4/fvx4XxFM9+7ddfvtt6tNmzY677zzFBUV5StQGjBggJYvXy7DMErkvCWppN7rvK95aZ/PKvlZEsLCwvTWW2/p/vvv14wZM7R48WJt2LBB2dnZ2rZtm7Zt26aJEydq4sSJuuqqq8wOt0SE7k9zIESxGgwAAAAAAIAkT5ail77i3xRTSxnt7zIpIAAAAAAAgNIVuXmKHGlH/NrSWA0GAGBxdptNca6wcx7HmacQxu2ueJ+NVatW9T0+cuSIGjduXKTj4uLifI+PHTtW4L5Hjx71PS5oVY2yVFjMefvzPlfpr9VpvF5vgWOkp6efZXR/yXtuwzDUvHlzSWfmbekUcBmGoc8//1yS1LVrV33zzTd+K/PkVdBKP2Yr7L12u92++M98r4sqb14Xdr4jR/76Xp73fHnHOHr0qBo2bJjvGIWdw2azyTCMs87RM38ulIWmTZtqzJgxGjNmjDIzM7VixQpNnz5dX375pdLS0nTPPfdo5cqVqlnT+jc2DP6vCEC+XCvPXA0mntVgAAAAAABAhRO14WM5kvf5taV1Hy05I02KCAAAAAAAoBRlp8m15n3/pro95K5zkUkBAQCAUNKmTRvf499++63Ix9WvX18ul0uStGbNmgL3Xbt2re9xbiGH2datW1fk/mbNmvn1xcTESJKSk5MLHGP37t0F9hdl1Y/w8HDf+VeuXFno/iUpKSnJV8R07bXX5lsEk5qaql27dpVlaMWyefPmAouFtmzZouzsbEmB73VR5c3rwv495JdbecdYv359kccIJjdHCypQMgxDf/zxR9C++vXrKzY2VlLxfi7kdS6r2kRGRqpXr156++239fzzz0uSMjIy9Msvv5z1mKGEQhigGJyH1yh8f5DVYLjAAwAAAAAAVCC29OOKWvWeX1tOzQ7KbtzfpIgAAAAAAABKV9Smz2TPSPRrS7/oUZOiAQAAoaZVq1aqU6eOJOnzzz9XampqkY5zOp3q1q2bJGnhwoU6dOhQvvvmriridDrVvXv3c4y4ZHz33XfKyMgI2peWlqbvvvtO0ulVKs5cgaJevXqSThe65Pd6JSYmauHChQXGEBERIUm+Ioz89OvXT5K0c+dOzZ8/v8B9S1Le4pGCVrf5/PPPS21VmpKQlJSkn3/+Od/+yZMn+x736tXrrM5Rs2ZNNWnSRNLp3MovLzwej6ZNmybp9AoweQvR2rZt61sV5ssvv5RhGEHHOHz4sH799dcC48nN0Q0bNuS7z9y5c/Mt5rLb7br88sslScuWLdPGjRsLPF8wRc3vwvTs2dP3ODExsYA9rYNCGKAYgq8GM8SkaAAAAAAAAMwRvfwN2XP8J57Tej4rncMdiQAAAAAAAEKVLStFUWs/8GvLrn+p3DXbmxQRAAAINXa7XQ888IAk6dChQ3rwwQfzvXDd6/UqISHBt3377bdLOn2h+8iRI5WTkxNwzOTJk30X7V9zzTUBRSVmOXr0qJ577rmgff/85z917NgxSdJtt90W0J9bzJOdna3//ve/Af05OTl69NFH8y20yVWjRg1J0t69ewvc7+6771Z0dLQk6eGHH9a2bdsK3H/OnDnasmVLgfsURfXq1X2rgnzzzTfKysoK2GfdunUaO3bsOZ+rtP3zn//0rW6T19KlS/XZZ59JOl2I0r792X9Pzv33cPz4cT399NNB93nttde0fft2SdLw4cN9xSLS6cKRIUNOX9u9efNmvfPOOwHHu91uPfroo4UWl+Tm6Jo1a7RixYqA/iNHjuQbY677779fdrtdhmHo7rvvLrDYLVhfUfI7t0gpv6IfSX5FP/Xr1y8wZqtwmh0AYBXOw6sVvn+JX1t6R1aDAQAAAAAAFYvj2O+K+P0rv7bMZjfIXaNNPkcAAAAAAABYW+SGSbJn+d/lOe2iR8wJBgAAhKw77rhDc+bM0a+//qrZs2frkksu0YgRI9SuXTtFRUXp6NGjWrNmjWbMmKEbb7xRo0aNkiRdccUVuvbaa/Xdd9/p119/1ZVXXqn77rtPjRs31smTJ/XNN99oypQpkqS4uDi9+OKLZj5NP+3atdOkSZP0559/6rbbblPt2rV16NAhTZo0SQsWLJAktW7dOmghzOWXX666detq//79Gjt2rE6cOKFrrrlGkZGR2rZtm/773/9q06ZN6tSpk1avXp1vDJ07d9aSJUu0bt06vfXWW+rbt69cLpckKSoqSrVq1ZIknXfeeXrnnXd0++2368iRI7r88ss1ZMgQXXbZZapTp44yMzN16NAhrVu3TrNmzdLevXs1efJktWzZ8pxeI7vdrhtvvFEfffSRtmzZov79++u+++5TgwYNdOrUKc2dO1eTJk1SdHS0atasqd27d5/T+UpLy5YttWPHDl122WUaOXKkOnTooKysLM2dO1f/93//J7fbLafTqXHjxp3TeW677TZNnz5dq1at0tSpU3XgwAGNGDFC9erV05EjRzRlyhTNnj1bknTBBRfoscceCxjjiSee0LfffqtDhw7phRde0ObNmzVo0CBVr15de/bs0cSJE7Vu3Tq1a9dO69evzzeWW265RZMmTZLb7dawYcP0+OOPq2vXrsrOztbKlSs1ceJEud1uNWjQQHv27Ak6RuvWrTVq1CiNHTtWu3fv1iWXXKLbb79dF198seLi4nTq1Clt2rRJs2fPlsPh0MyZM/2Ozy+/nU6nIiMjVbt2baWkpGjYsGGqV6+errnmGnXo0EF169aV0+nUkSNH9PPPP/tWlKpVq5ZvlRqroxAGKKIzV4PxuM5TZktWgwEAAAAAABWIYShm8Uuy6a+7CRlhLqV3fcLEoAAAAAAAAEqPLfOkotb/z68tq0E/ec5rZVJEAAAgVNntdn3yySd68MEHNWvWLO3evVv/+Mc/inTsu+++K4/Ho9mzZ2vjxo267777AvapWbOmpkyZ4ivsCAVPP/203nvvPc2fP1/z588P6G/cuLGmTJkipzPwkvXw8HC99957Gjx4sNLT0/X+++/r/fff9/U7HA699NJLOnnyZIGFMCNGjNDHH3+spKQkvfTSS3rppZd8fd27d9e3337r2+7fv78+++wzPfTQQ0pKStKkSZM0adKkoOPa7XZfQc25euaZZ7Ry5Upt3rxZ69ev1z333OPXHxcXp48++kjjxo0L2UKYVq1a6Y477tCoUaP01FNPBfSHh4frnXfeUceOHc/pPA6HQ5MnT9awYcO0cuVKLV68WIsXLw7Yr0mTJpo2bZpiYmIC+ipXrqwvvvhCN954o44ePaoZM2ZoxowZfvvcfPPN6t69ux5++OF8Y2nWrJmee+45Pfvsszp58qSeffZZv/64uDh98sknGjt2bL6FMJL0+OOPy26369VXX1VycrLGjx+v8ePHB+yXuwJNXgXld48ePfT999/7tvft26eJEyfmG0eNGjX02WefBX3NrIhCGKAInIdWK3z/Ur+2DFaDAQAAAAAAFUz4njkKO+S/7Hd6x3vljalhUkQAAAAAAAClK2rdh7Jnp/q2DdmUftFIEyMCAAChzOVy6aOPPtKSJUs0depUrVixQkePHpXH41F8fLxatWqlK664QjfccIPfcZGRkfr444/1888/a+rUqVqzZo1OnDghl8ulhg0b6qqrrtIdd9wRchewh4eHa9q0afr000/15ZdfaufOncrJydEFF1yg6667Tvfdd5+ioqLyPb5r166aN2+exo8fr0WLFikxMVFVq1ZV586ddd9996lLly569dVXC4yhVq1a+vnnn/XWW29p2bJlOnz4sDIzM/Pdv1+/flqzZo0+++wzzZs3T9u2bVNSUpKcTqfOO+88NW3aVD179tSAAQNUp06ds35t8qpcubJmz56tiRMn6rvvvtOePXvkcDhUp04dXX755br77rtVu3btEjlXaRo+fLiaN2+u999/XytWrNCJEydUrVo19ezZUw8//LCaNm1aIueJi4vTrFmz9PXXX2v69OnatGmTTp48qUqVKql58+YaMGCAhg8frvDw8HzHaNasmZYsWaIJEyZo9uzZOnjwoGJiYtS8eXMNHz5cN9xwg6ZOnVpoLPfee6+aNGmi999/X+vWrVNGRoZq1qypvn376qGHHtL5559fpOf06KOP6tprr9WkSZO0aNEiHThwQBkZGapSpYqaNGmiXr16afDgwQHHFSW/69atqzlz5mju3LlauXKlDhw4oGPHjiktLU2xsbFq0qSJ+vXrp1tuuUWVKlUqUrxWYDMMwyh8NyDQ8ePHzQ6hzFSeOVzhB5b5tj2u85R0y6+SM8K8oFBkDodDcXFxvu2kpCR5PB4TIwIKR97CqshdWBF5C6uyUu5Wr17d7BCAEleR5kV83FmKm9JPjlP7fU2eSnWU9Pc53CwkhFnp8wLIRd7CqshdWBF5C6uyUu4yL4LyqqLMjdjSj6vqp71lc2f42jIbD1BqvzfNCwpFZqXPCyAXeYuSduTIEXm9XtntdtWoUbo3tcq74ofb7S7Vc8FcS5cu1cCBAyVJM2fOVI8ePcwN6ByQt4Xr0KGD9u/fr8GDB+udd94xOxz8f2WZu+fyWVKa8yL2UhsZKCech1b5FcFIUkbHeymCAQAAAAAAFUrUho/9imAkKa37aIpgAAAAAABAueVa+4FfEYxhsyu9C6vBAAAAAIDZKIQBCuFa+Zbftie6hjJb3mxSNAAAAAAAAGXPlnZMUavf9WvLqdVJ2Y2uNikiAAAAAACA0mVPPaLITZ/7tWU1vV7euAtNiggAAAAAkItCGKAAzoMrFX7gN782VoMBAAAAAAAVTfSK/8iek+bbNmRTas9/SDabiVEBAAAAAACUnqg1E2XzZPm2DbtT6V0eMjEiAAAAAEAup9kBAKEscDWYmspsMdikaAAAAAAAAMqe49gWRfz+lV9bVrMb5DmvtUkRAQAAAAAAlC77qYOK3DLNry2z+d/krVzXpIgAAABgpt27dys7O7vYx1WvXl3x8fGlEFHRHDt2TMePHy/2ceHh4WrYsGEpRASUHAphgHw4D65Q+MHlfm2sBgMAAAAAACoUw1DM4pdkk/FXU5hLad2eMDEoAAAAAACQnZ2tqVOnas+ePUpISFBqaqpcLpdq1qypPn36qGfPnnI6uSzobLlWvyObN8e3bTjCldH5ARMjAgAAgJn+9re/af/+/cU+7sknn9SoUaNKIaKimTRpkl577bViH1e3bl2tXbu2FCICSg6/8QL5CLoaTMtBJkUDAAAAAABQ9sJ3/6SwQyv92tI73icj+jyTIgIAAAAAAJKUmZmpOXPmqFGjRmrfvr0qV66stLQ0rV+/XhMnTtSyZcs0ZswY2e12s0O1HPvJvYrYOt2vLbPlEHljapkUEQAAQGjp0aOHjh07ZnYYKCMUxCBUUQgDBBF2YLnCD67wa8vodJ/kYDUYAAAAAABQQbizFL10rF+Tp9L5ymh3h0kBAQAAAACAXDExMfrkk08CVn3xeDx66aWXtGHDBq1fv14dOnQwKULrcq2aIJvh8W0bzkild7zPxIgAAABgNqsWg4waNcrUFWmA0sRtH4AgXCvf9tv2xNRUZou/mRQNAAAAAABA2Yta/5EcKQf82tJ6PCU5uVEIAAAAAABms9vtAUUwkuRwONS5c2dJUkJCQlmHZXmOE7sUsf1bv7aM1sNlRMebFBEAAAAAIBhWhAHOEHbgN4UdOmM1mI73sxoMAAAAAACoMGxpR+Va855fW07tzspueKVJEQEAAAAAUHKSk5O1a9cu7dq1S7t379bu3buVkpIiSerVq5ceeOCBIo917Ngx/fjjj1q7dq0SExPldDpVs2ZNdevWTf369VNERNlea+D1erVhwwZJUt26dcv03OWBa+VbssnwbXvDopXR4W4TIwIAAAAABEMhDJCXYQRZDaaWMlvcZFJAAAAAAAAAZS96+Ruy5aT7tg3ZlHrxPySbzcSoAAAAAAAoGXfddVeJjLN69WpNmDBBGRkZvrasrCxfcc28efM0ZswY1axZs0TOF4zb7daMGTMkSSkpKdq8ebMOHjyo3r17q3Xr1qV23vLIcXyrInb94NeW2fY2GVFVTYoIAAAAAJAfCmGAPMIO/qawQyv92jI6sRoMAAAAAACoOBxHNyli63S/tqzmN8lzXiuTIgIAAAAAoPRUr15dderU8a2iUlR//PGH3nzzTWVnZysyMlIDBw5Uq1atlJ2draVLl2revHk6fPiwXnnlFY0dO1ZRUVGlEr/b7dbXX3/t27bZbBowYICGDh1aKucrz1wr3vTb9kZUVkb7O80JBgAAAABQIAphgFz5rQbT/EaTAgIAAAAAAChjhqGYxS/JJsPX5A2LVlrXx00MCgAAAACAknXTTTepYcOGatiwoapUqaKjR4/qwQcfLNYYH3/8sbKzs+VwOPSPf/xDTZo08fW1atVKtWrV0ueff67Dhw9r1qxZGjRoUMAYn376qXJycop8zquvvlq1atXya4uMjNSXX34pr9erpKQkrVmzRlOnTtWOHTs0ZswYuVyuYj2visp5ZKMi/pjr15bR/k4ZEZVNiggAAAAAUBAKYYD/L+zAMoUdWuXXxmowAAAAAACgIgnf9YPCDq/2a8vodL+M6HiTIgIAAAAAoOQFK0opjl27dmnr1q2SpEsvvdSvCCZX//79tWDBAh08eFA//vijbrjhBjmd/pfp/PLLL8rKyiryebt27RpQCJPLbrerWrVquuKKK1SpUiWNHz9eM2bM0LBhw4rxzCou14r/+G17I+OU2eZWk6IBAAAAABSGQhhACr4aTKXaymx+k0kBAQAAAACAwmRnZ2vq1Knas2ePEhISlJqaKpfLpZo1a6pPnz7q2bNnwAUmKIA7U9HLxvk1eSrXVUbbESYFBAAAAABAaFq5cqXv8aWXXhp0H7vdrl69emnKlClKS0vTli1b1LZtW799Pvvss1KJL/c8v//+e6mMX944D61W+L7Ffm0ZHe6RER5jUkQAAAAAgMLYzQ4ACAVhB5YF3O00veP9kiPcpIgAAAAAAEBhMjMzNWfOHElS+/btdc0116hLly46ceKEJk6cqHHjxsnr9ZocpXVErf+fHCkH/drSuj8lOVktFwAAAACAvLZv3y5JioiIUIMGDfLdr0WLFgHHlIUTJ05IkhwOR5md08oCVoNxxSujNSvpAAAAAEAo45aYFsedT0uAYci18i2/Jk+lOspqfqNJAQEAAAAAgKKIiYnRJ598EjD34fF49NJLL2nDhg1av369OnToYFKE1mFPPSLXmvf92nJqX6Tshv1MiggAAAAAgNB14MABSVLNmjULLDapXbt2wDElGUN8fLwiIvxvYJGVlaVPP/1U0ukbhxRXYmJikfYrL0U2zv3LFH5whV9bZucH5IhkNZjywG63F7gNhCLyFiXNZrOZch6bzSbDMMrk3MDZIm9hVWblrs1mC6nfBamQsLjcO582atRI7du3V+XKlZWWlqb169dr4sSJWrZsmcaMGcMX4gKcXg1mjV9beidWgwEAAAAAINTZ7fagcx4Oh0OdO3fWli1blJCQYEJk1uNa/rpsOem+bUM2pfZ8RiqjP5ABAAAAAGAV2dnZSklJkSRVq1atwH1jYmIUERGhrKysIheYFNWyZcs0e/ZsNWvWTPHx8YqKitKJEye0fv16paSkqHnz5urfv3+xx73vvvuKtN+XX35Z7LFDjmFI09/0b6tcR66L75MrLNKUkFC6YmNjzQ4BKDbyFufq+PHjMgxDdru9TG+qHkoXSgNFRd7Cqko7d3P/Jh8WFqa4uLhSPVdxUAhjcdz59BwZhlwr3vRr8lSqo6xmN5gTDwAAAAAAZSQ5OVm7du3Srl27tHv3bu3evdt3EUevXr30wAMPFHmsY8eO6ccff9TatWuVmJgop9OpmjVrqlu3burXr1/AnUlLm9fr1YYNGyRJdevWLdNzW5HzyEZFbpvh15bV4m/yxLc0KSIAAAAAAEJXZmam73FkZOHFEpGRkcrKyvI7riR07NhRSUlJ2rFjh3bs2KHMzEy5XC7Vq1dPPXr00KWXXsqFfIXZNVc6sNK/7ZInJYpgAAAAACDkUQhjcdz59NyE7V+qsIS1fm3pnR5gNRgAAAAAQLl31113lcg4q1ev1oQJE5SRkeFry8rK8hXXzJs3T2PGjFHNmjVL5HzBuN1uzZhxupAjJSVFmzdv1sGDB9W7d2+1bt261M5bLhiGope85NfkDYtRWtfHTQoIAAAAAIDQlp2d7XtclLuq5+6T97iS0LBhQzVs2LBEx5SkiRMnlviYIckwpPn+cyKqUl9qP8yceAAAAAAAxVKhC2G482kFZxhyrXzTr8lT6XxWgwEAAAAAVDjVq1dXnTp1fHMJRfXHH3/ozTffVHZ2tiIjIzVw4EC1atVK2dnZWrp0qebNm6fDhw/rlVde0dixYxUVFVUq8bvdbn399de+bZvNpgEDBmjo0KGlcr7yJHzn9wo7vMavLaPz/TJc1U2KCAAAAACA0BYe/teNNd1ud6H75+6T97hQVq1atSLtl5SUVMqRlK6w3T8r5vB6v7a0zg8p+1SqOQGhVNjtdsXGxvq2k5OT5fV6TYwIKBx5i5KWk5Pjy6GifHc5WzabzW81Oo/HI8MwSu18QEkgb2FVZZ27Xq9XXq9XOTk5xf5dMC4urpSiquCFMNz5tGIL279EYQnr/NrSOz8gOcJMiggAAAAAgLJz0003+e4cWqVKFR09elQPPvhgscb4+OOPlZ2dLYfDoX/84x9q0qSJr69Vq1aqVauWPv/8cx0+fFizZs3SoEGDAsb49NNPlZOTU+RzXn311apVq5ZfW2RkpL788kt5vV4lJSVpzZo1mjp1qnbs2KExY8bI5XIV63lVGO5MRS8b59fkqVxPGW1vMyceAAAAAAAsIDIy0vc4MzOz0P1z98l7XHng8XjMDuHsGV5VWvaGX5O7yoXKaDxAsvLzQqG8Xq+1cxcVEnmLc1VWF/WfeR6KCaxh37596tixoyTp7bff1pAhQ0yOqGxVlLydOnWqHn74YUnSmjVrVK9ePZMjwrkyK3cNwwip7yUVuhAmL+58WsEYhlwr3vJr8lSuq6ym15sUEAAAAAAAZStYUUpx7Nq1S1u3bpUkXXrppX5FMLn69++vBQsW6ODBg/rxxx91ww03yOn0n4765ZdflJWVVeTzdu3aNaAQJpfdble1atV0xRVXqFKlSho/frxmzJihYcOGFeOZVRxR6/4rR+phv7a0Hk9JjrJd2RgAAAAAACsJDw9XpUqVlJKSosTExAL3TU1N9c17FHWlFZS+8J2z5Tyxw68tvctIyc5lVAAAAABgFRX6NzjufFpxhe1brLAjZ6wG04nVYAAAAAAAKKqVK1f6Hl966aVB97Hb7erVq5emTJmitLQ0bdmyRW3btvXb57PPPiuV+HLP8/vvv5fK+FZnT02Qa83/+bVl17lI2Q2uMCkiAAAAAACs4/zzz9fWrVuVkJAgj8cjh8MRdL9Dhw75HYMQ4HXLtfJtvyZ31SbKbnyNSQEBAACUb6+++qpee+01SdKxY8dMjgahqkOHDtq/f78GDx6sd955x+xwYBEVuhCGO59WUIYh18ozV4Opp6ymA82JBwAAAAAAC9q+fbskKSIiQg0aNMh3vxYtWvgdc2YhTGk5ceKEJOV7IUpF5/rtNdncGb5tw2ZXWs9nJZvNxKgAAAAAALCGpk2bauvWrcrKytKePXvUuHHjoPvlvUFH06ZNyyo8FCBi+7dyntzj15Z+0SOSzW5OQAAAAACAs1KhC2HOFXc+taawfYsUdmS9XxurwQAAAAAAUDwHDhyQJNWsWbPAYpPatWsHHFOSMcTHxysiIsKvPSsrS59++qkkqX379sUaMzExsUj7WbnAxpGwXpHbZ/q1ZbccLNVoJes+K+THbrcXuA2EIvIWVkXuworIW1gVuQuzdenSRTNnzpQkLViwIGghjNfr1cKFCyVJ0dHRatmyZVmGWOosOTfiyZFr1QS/Jvd5reRpfJUc3BykXOLzAlZE3qKk2croM+7M89hsNhmGUSbnBs4WeQurMit3bTZbSP0uSCHMOeDOpxaU72ow15kUEAAAAAAA1pOdna2UlBRJUrVq1QrcNyYmRhEREcrKyipykUlRLVu2TLNnz1azZs0UHx+vqKgonThxQuvXr1dKSoqaN2+u/v37F2vM++67r0j7ffnll2cTsvkMQ5r+b/+2iMqKuPJFRcTEmRMTylRsbKzZIQDFRt7CqshdWBF5C6sid1HWGjVqpObNm2vr1q1asGCBevfurSZNmvjt8/333+vgwYOSpKuuukpOZ/m6RCcuzoLzCKsnSaf2+zU5L3tOcVWrmhQQyhqfF7Ai8hbn6vjx4zIMQ3a7vUy/j3DdqjXkzQmHw1EqOZK3oC/UvxOX17zN+7ycTmdIvw9l/bOqvCjt3M39dxwWFhZSvwuSKeeAO59a7we+c+8ChR3Z4NeWedFDcoRHmhQRygJ3SoAVkbewKnIXVkTewqrIXZgpMzPT9zgysvDfqSMjI5WVleV3XEno2LGjkpKStGPHDu3YsUOZmZlyuVyqV6+eevTooUsvvdSS8xelavN06cBK/7ZLnpRi4s2JBwAAAAAAE2zbtk0JCQm+7VOnTvkeJyQk6Ndff/Xbv3fv3gFj3HbbbXr22WeVnZ2tl156Sddff71atmyp7OxsLVu2THPnzpUk1apVSwMGDCiV54FiyMmUFr3m33Z+F6nx5ebEAwAAyqX7779fU6dOVd26dbVx48Z895syZYoeeOABSdKGDRtUr149X1+bNm20f/9+DRkyRO+9957Wrl2rd999V8uXL1diYqKqVaum3r17a+TIkQHF2GfyeDyaNGmSpk2bph07dkiSLrzwQt100026++67i/ScVq1apZ9//lnLly/Xzp07lZSUpMjISNWuXVvdu3fX3XffrWbNmhX4HHMFu4D+zOefG/eXX36pmTNnauPGjTpx4oSio6PVpEkTDRgwQLfffruioqKKFH9RlcTrvmTJEt93/1mzZql79+6aMmWKvvjiC23fvl3Hjx/XzTffrPfee893jNfr1VdffaWvv/5aGzduVFJSkipXrqzmzZvruuuu0y233KLw8PACYz958qTefPNN/fDDD9q/f79iYmLUsmVL3XbbbRo4cGChzz33fRk9erSeeuqpfPfr37+/li5dqh49euj777/Pd799+/bpf//7nxYuXKh9+/YpJSVFlStXVpMmTdSrVy/dfPPNuuCCC/zGzDV16lRNnTrVb7wzz+fxePTFF19o+vTp2rx5sy8n4+Pjdf755+uSSy7RNddcEzQvUb5QCHOWuPOpBe98ahjSGUvcKu5CRXe9XdEO/ilUJNwpAVZE3sKqyF1YEXkLqyJ3UZays7N9j4tyR57cffIeVxIaNmyohg0bluiYEydOLNHxQkp2uvTLP/3b4i6ULrrHnHgAAAAAADDJvHnztHDhwqB927dv1/bt2/3aghXCXHjhhXrkkUc0YcIEZWRkBFysJZ0ughkzZkyJX6SHs7D2E+nUQf+2Ps9INps58QAAABTB559/rkcffVRut9vXdujQIU2ZMkXTp0/X+++/n2+hQ2pqqgYNGqTffvvNr33jxo3auHGjpk+frrfffrvA8wcrZpGknJwc3/fmTz/9VGPHjtWdd95Z/CcYxP79+zV06FBt3rzZrz07O1srVqzQihUr9NFHH+mLL75Qo0aNSuScZzqX1z1XZmambrzxxoAi+7ySkpI0ZMgQrVixwq89MTFRS5Ys0ZIlS/Thhx/qyy+/DCgWyrV9+3Zdf/31Onz4sN+5Fy5cqIULF2ru3Lnq3r174U+6hEyYMEEvvviicnJy/NpPnDih5cuXa/ny5VqyZEmBhTQFyS+vc3JylJKSoj179mjRokXauHGjPvnkk7N+HrAGrv4/S9z51IJ2/iIdWuvf1muURBEMAAAAAADFkveuQ3kngPOTu09hdysKBYXd8CRXUlJSKUdS8iJXvKWoMy74SO0xRjkp6ZLSzQkKpc5ut/sVSyYnJ8vr9ZoYEVA48hZWRe7CishbWJWVcjfYHY9RfnTq1Emvv/66fvjhB61du1YnTpyQ0+lUzZo11bVrV1155ZWKiIgwO8xSYam5kZwMxS58TXnX1M45v6tSq7SRrPQ8UGxW+rwAcpG3KGk5OTm+HCrK33TOls1m87tW1ePxyDCMUjtfqMr777Wg19vj8fjtF2zfjRs36uuvv1b16tU1cuRIdejQQZmZmZo7d64++OADZWVl6e6779b555+vdu3aBRx/9913+4oFOnTooHvvvVcNGjTQ0aNHNW3aNH333Xd65JFH/GI6M46srCxVqVJFV155pbp166YGDRrI5XIpISFBmzZt0n//+18lJiZq1KhRatiwoXr27Ok7tl+/flq0aJEmTZqkSZMmSZIWLVoUEGd8fLzvvCdOnNBVV12lgwcPKiIiQsOGDVP37t1Vr149paWlacGCBfrvf/+rPXv26G9/+5vmzZunypUr5/s6F+bMvJXO7XXP+74+//zz2rJli6688krdfPPNOv/883Xs2DGlpKTI7XbL4/Fo8ODBWrVqlSSpe/fuuuOOO1S/fn0lJCRoypQp+uGHH7R9+3Zdd911WrBggWJiYvzOl5KSohtvvNFXBDNw4EANHjxY8fHx2r17tyZOnKjJkyfr999/9x2TX75Jp/O3oLzN/TdtGEbQ/d544w2NHTtW0ukbeY4YMUIXX3yx4uLidOrUKW3cuNFXAJN7/FtvvaX09HQNGjRICQkJuuqqqzRmzBi/cV0ul2//V155xZfXV1xxhW666SbVqVNHEREROn78uDZt2qQ5c+bkG2N5UdY/c71er7xer3Jycor9u2BpzotQAXCWuPOpxRiG9Ou//duqNpBaDzInHgAAAAAALCzvTUGKctOP3H2KcjMRq8g7kW0F9tTDilz9vl9b9vndlFm/j2Sx54Jz4/V6LZe/AHkLqyJ3YUXkLayK3EVxPfDAA0HvbH024uPjdeutt+rWW28tkfGswkr/5qLWfyJ7+jG/trQuj8rDheUVDp8XsCLyFueqSBdGG17ZMs+9ONSW96bkHrdCdd01IzJOstkL39FkW7ZsUd26dfXjjz+qRo0avvbu3burT58++tvf/qacnByNGjVKc+bM8Tt2zpw5+vHHHyVJl112mT777DO/a50vv/xyvf766xo3blyBMVx22WW68cYb5XK5/NrbtGmjK664QnfddZeuvfZabdmyRePGjfMrhImNjVVsbKyqV6/ua2vevHmB53v66ad18OBB1a1bV998843q16/v19+jRw9de+21GjBggPbu3asJEybomWeeKXDMggT793Eur/uZ4zz22GMBRR25Pv74Y18RzKBBg/TOO+/I9v9XK2zbtq369eunl19+WW+++ab27t2r//znP/rnP//pN8Ybb7yhgwdP3wTvmWee8Stsatu2rQYMGKChQ4cWuCpNSdm4caNeffVVSaevbZ8xY4Zq167tt8/FF1+s+++/3xezJN97HBYWJkmqXLlygXny7bffSpIGDBigjz76KKC/b9++euSRR6xVuH8Wzszdsio8NAwjpL6XUAhzlrjzqbXu7uH8Y74qHVrn15bW6QFln0oxKSKUJe6UACsib2FV5C6siLyFVVkpd7nzafkTHh6uSpUqKSUlRYmJiQXum5qaqqysLElFn3NAyXMte002d4Zv27DZlXbxPyRbqP4ZCgAAAAAA4NzZslMVtfYDv7bsej3lrt3JpIgAAAg9tswkVftfF7PDKDOJd6yUEWWNv1n961//8ivGyHXxxRdr+PDhmjRpktatW6f169f7rU6SuwJLRESExo8fH/SG/4899pi+++47bd26Nd/z16pVq8D4KleurNGjR+uWW27RihUrdOLECVWtWrWIz87fvn37NHPmTEnS2LFjA4pgcrVp00Z33HGHJkyYoGnTpp1TIUx+zvZ1z6thw4YaNWpUvufILeKoXr26xo0b5yuCyWv06NGaPXu2du7cqc8++0yjR4/2rTiZnZ2tyZMnS5JatmypkSNHBhwfFhamt956S506dVJOTk6hz/tcvPvuu/J6vbLZbPrggw8CimDyqlOnzlmf5+jRo5Kkrl27Frgf1yhUDBTCnCXufGqhu3sYhmKWj/dr8sReoIxG/bnjaQXFnRJgReQtrIrchRWRt7Aqchdl7fzzz9fWrVuVkJAgj8cTsGx4rkOHDvkdg7LnTFinyB3f+rVlthgsT/VmJkUEAAAAAABQNiI3fiJ75gm/tvSLHjUpGgAAgKKrUqWKrrrqqnz7hw4d6it4Wbhwoa8gw+PxaNmyZZKk3r17q2bNmkGPt9vtGjx4sJ5//vkix5SWlqbExESlp6f7VqDIW2SzZcsWv1VhiuOXX36Rx+ORy+VS3759C9y3a9eumjBhghISEnTgwIES/Rvk2b7uZxo4cGC+fz9NSEjQjh07JEnXXnutYmJigu7ndDo1ZMgQvfDCCzp58qQ2btyozp07S5I2bNigkydPSpIGDx4ctJBGkmrXrq3evXvrl19+yfc5nSuv16t58+ZJOr1qT5s2bUrtXDVq1NCBAwc0c+ZMDRs2LGC1IlQsFMKcJe58ah1hexco7Ogmv7b0zg9KdtIfAAAAAICz1bRpU23dulVZWVnas2ePGjduHHS/33//3e8YlDHDq+jFL/k1ecNjlN6VCz4AAAAAAED5Zss6pah1H/q1ZV14mdw12poUEQAAQNG1bt066EouuVq1aqXw8HBlZ2f7reqyd+9epaenS5Lat29f4DkK65ekxMRETZw4Ud9//7327NnjK4DJb9+ztX79eklSenp6vsU7wRw9erREC2HO9nU/U4sWLfLty3tcx44dC4ynQ4cOvsfbtm3zFcLkHSO/Ypy8Y5RmIcyff/6p5ORkSYWv1HKuBg8erDfeeEOrVq1Sp06dNGDAAF1yySW66KKLVL169VI9N0IPlQDngDufWoBhyLXyLb8mT+wFymoywKSAAAAAAAAoH7p06eJbnnzBggVBC2G8Xq8WLlwoSYqOjlbLli3LMsRSld88UKgJ3zZLYUfW+7VlXjRS9pjzzAkIZc5utxe4DYQi8hZWRe7CishbWBW5C6Aootb/T/asU35t6Rc9Yk4wAAAAxVTYRf1Op1NVqlTR0aNHlZSU5GvP+7iwMc47r+C/F23YsEGDBg3SiRMnCtwvV2ZmZpH2C+b48eNndVxGRsZZnzOYs33dz1SlSpV8+3JXcinK+WrUqOF7nN/7HB8fX+AYhfWfq7z5kTfe0vD444/r8OHDmjp1qo4dO6aPPvpIH330kSSpWbNm6t+/v0aMGFFobqN8oBDmHHDn09AXvne+wo5t9mtL7/IQq8EAAAAAAHCOGjVqpObNm2vr1q1asGCBevfurSZNmvjt8/333+vgwYOSpKuuuqrAuydZTVxcnNkhFC47TVr2qn9b1QZy9XpELme4OTHBdLGxsWaHABQbeQurIndhReQtrIrcBXAmW8YJRa6f5NeW1ehqeao3NykiAABClxEZp8Q7Vp7zOE7HX38Hcnvc5zxeaTEiLfA3Hkk2m83UMbKzs3XnnXfqxIkTCgsL05133qkrr7xSDRs2VJUqVRQRESHp9Ao0uauUFLRaTGE8Ho8kqVq1avrmm2+KfFy9evXO+pzBlMTrLhX9pnpmv89WExYWprfeekv333+/ZsyYocWLF2vDhg3Kzs7Wtm3btG3bNk2cOFETJ07UVVddZXa4KGXl5+oDE1T0O5+GvCCrwbirXKisxv1NCggAAAAAgNCxbds2JSQk+LZPnfrr7pgJCQn69ddf/fbv3bt3wBi33Xabnn32WWVnZ+ull17S9ddfr5YtWyo7O1vLli3T3LlzJUm1atXSgAGszlrmlr4tpRzyb7viZYkiGAAAAAAAcI5CfbXcqPUfyp6T5ts2bHZldnss5ONGyWIFMVgReYuSVqQL5G12GVHVzvk8Rt7PWY/nnIoirCr336zX6y1wv/T09ELHOnbsWIH9brfbt7JI3hu45V2JpLAxjh49mm/f4sWLtXfvXknSuHHjNHz48KD75V3d5FxUrVpVkpSamqomTZqUyfe2YP8+zvZ1L47ivEdHjhzxPc7vfT569KgaNmyY7xiFncNms8kwjLPO29z37sx4S1PTpk01ZswYjRkzRpmZmVqxYoWmT5+uL7/8Umlpabrnnnu0cuVK1axZs0ziKWtn5m7ue1gW5w2l36kohDkHFf3Op6GUyMGE7flFzmNb/NqyLhopR1iESRHBLPyCCCsib2FV5C6siLyFVZG7OFfz5s3z3bzjTNu3b9f27dv92oIVwlx44YV65JFHNGHCBGVkZGjq1KkB+9SqVUtjxoxRVFRUicSNIko+IC31v0GIGvSWmnLnIwAAAAAAcO5CerXclCPShk/9mmyt/6bYhp1NCgihghXEYEXkLc7V8ePHZRiG7HZ7mV6/GurXl5aWypUrSzp9A7qCXu8//vjD99jpdAbdd/Pmzb7+YDZv3qzs7GxJUosWLXz7NWrUSFFRUcrIyND69esLjGPjxo2+xw6Hw2/fnTt3+h7fdNNN+Y5T0Bi5bbkKiqVt27aaPn26srKytGnTJnXq1CnffUvT2b7ukv9zDfZa5GrVqpXv8bp16zR06NB849mwYYPvccuWLX1j5h1j48aN6tmzZ75jrF+/3vc4WL7FxMQoJSWlwLw1DMOXtzabzW+/hg0bKjY2VsnJyVq+fPlZ/azJLew4m59VMTEx6tu3r/r27atWrVrpmWeeUUZGhubNm6dbb7212LFYUWn/zM29HiUsLCykfhcsP1UZZ4E7n56bUErkAIYhrZrg31atsaIvukXR9or5BQt/4RdEWBF5C6sid2FF5C2sityFWTp16qTXX39dP/zwg9auXasTJ07I6XSqZs2a6tq1q6688krf0ujlSVJSktkhFMj109OKcGf4tg2bXae6PSVvCd2VC9Zht9v9PiOSk5MLvaMXYDbyFlZF7sKKyFtYlZVyN6T/rg6UV0vGS3nmRWRzSL1GmxcPAACoMOrXry9JSklJ0c6dO9W4ceOAfbKzszVr1qxCx0pKStJPP/2k/v37B+3//PPPfY/zXt/sdDrVo0cPzZ07VwsWLFBCQkLQVTG8Xm/Qm9zlcrvdvsfp6emqVKlS0DE+/fTTgPa88v6dMCsrK9+/G1555ZV67rnnZBiGJk6cqP/9738FjltazvZ1L45atWqpadOm2r59u2bOnKnnnntOMTExAft5PB7fe1SlShW1bdvW19euXTtVqVJFJ0+e1BdffKH7778/6Ao3hw4d0oIFCwqMp379+tq8ebNfwcyZfvnlFyUnJwfts9vtuuKKK/TVV19p6dKl2rhxo9q0aVPgOc8UGRkp6XSOnItLLrnE9zgxMfGcxkLoq9CFMNz5tBzb/oOUsNG/rddoiSIYAAAAAAAkSQ888IAeeOCBEhkrPj5et956a4W5o450euI5VDkPr1XE9m/92jJbDlFOXGMphONG2fB6vSGdv0Aw5C2sityFFZG3sCpyF4BP8kFp9RkXTbYbKlVraE48AACgQunRo4fv8bvvvqs333wzYJ9nnnlGhw4dKtJ4zzzzjLp06aLzzjvPr33p0qX65JNPJJ0uiOjQoYNf/+233665c+cqKytLjz76qD7//POAFSP+85//6Pfff8/33A0b/vX9acqUKXr00UcD9vnXv/7lt2JJMHmLcP744w81a9Ys6H6NGzfWwIED9c0332jGjBnq0KFDgX/L/PPPP7Vq1SrddNNNBZ7/bJzt614cd9xxh0aNGqXjx4/rqaee0jvvvBOwz7hx47Rt2zZJ0i233OJXRBQREaG///3vevfdd7Vp0ya9/fbbGjlypN/xbrdbI0eO9K1gk58ePXpo8+bNWr16tZYvX66uXbv69R85ckSjRxdcWP7QQw9p+vTp8nq9uuOOOzRz5kzVqVMn6L4HDx4M6KtRo4Z27NihvXv35nuOpKQkLV++XFdeeWXQoh9JfkU/uYVpKL8qdCFMSamodz4NWYYh/fqKf1v1JlKrG8yJBwAAAAAAoKwYhqKXvOzX5A2vpPSLRuZzAAAAAAAAQPGF6mq5rvkvK8Lz14V+hj1Mp9rdI2+IxovSZaUVxIBc5C1KWk5Oji+H8q7wUdJsNptfoYXH45FhGKV2vlDVokULde7cWatWrdInn3yizMxM3XzzzapUqZL27Nmjzz77TIsXL/btI51+X4K9Ny1bttSOHTvUu3dvjRw5Uh06dFBWVpbmzp2r//u//5Pb7ZbT6dTYsWMDjr/88svVr18//fzzz/rpp5/Ur18/3XPPPWrQoIGOHz+uadOmaebMmWrXrp1vFRCPx+M3ziWXXKL4+HgdO3ZML7/8sv78809dffXVqlatmvbs2aPPP/9cixYtUpcuXbRy5cqgY0jyKxYZM2aMHn30UdWoUcNXyFCvXj05nacvZx83bpzWrVunvXv36h//+Idmz56tQYMGqVmzZgoPD1dSUpK2bNmi+fPna/Hixbr66qs1cODAs36/zszbc33d896gIdhrkdctt9yir776SqtWrdLkyZO1b98+jRgxQvXq1dORI0c0ZcoUzZ49W5J0wQUX6NFHHw0Y77HHHtM333yjQ4cO6fnnn9fGjRs1aNAgVa9eXXv27NHEiRO1bt06v/c5WL4NGzZM//vf/+R2uzVkyBA9/vjj6tq1q7Kzs7Vy5UpNnDhRbrdbDRo00J49e2QYRsAYzZs316hRozR27Fjt2rVLPXr00O23366LL75YcXFxOnXqlDZt2qTZs2fL4XBo5syZfsd36tRJixcv1tq1a/XGG2+ob9++crlckqSoqCjVqlVLSUlJGjp0qOrVq6drrrlGHTp0UN26deV0OnXkyBH9/PPPvhV7atWqpb59+5bqzz0zlfXPXK/XK6/Xq5ycnGL/LliaK+XajIr4SYMSEaqTGjK8CtsxS1Er3pYjabckKfXKt5TT9DqTA4NZ+AURVkTewqrIXVgReQurslLulubEBmCW48ePmx1CvpxHNip6yUsKO7xGkpR68TPKbHe7yVHBLA6Hw+/ncFJSEnfKRsgjb2FV5C6siLyFVVkpd6tXr252CECpCNW5EWfCerlWvKnw/YslSRmthymt179MjgpmsdLnBZCLvEVJO3LkiLxer+x2u2rUqFGq58otZpBKt+gm1O3cuVPXXXedjh07FrT/gQceUNOmTfXwww9LktasWaN69er5+jt06KD9+/dr8ODBuuiiizRq1Kigr2d4eLjeeecdXX/99UHPk5qaqsGDB/uKVM7UunVrjR8/Xpdddpkk6e2339aQIUP89pk/f75uvfVWZWZmBh2jR48eGjt2rHr27JnvGJJ055136ttvvw06xpnP/8iRI7rzzju1fPnyoPvnNWTIEL399tuF7leQ3Lxt06bNOb/uS5cu9RXmzJw502+FoGCSkpI0bNiwfN8jSWrSpImmTZumunXrBu3ftm2bbrzxRh09ejRo/80336zu3bvnm2+53n//fT377LNBx4iLi9Mnn3yisWPHatmyZerevXu+7+f48eP16quvFvgzINjxhw8fVq9evYJem567/759+9SxY8d8x81Vo0YNTZ48WW3bti10Xysry5+55/JZUprzIqwIg7MWyl+wPY36K7PBVYrYOVvhu2Yrs8FVUgjHi7LF0uiwIvIWVkXuworIW1gVuQsgl7tGGyXf8IXCd81W5O9fKbP1MLNDAgAAAAAAKBPumu106rqP5Ty0Sq5V7yqj431mhwQAACqYxo0ba968eRo/frzmzp2rI0eOqHLlymrTpo3uvPNOXX755Zo6dWqRxho+fLiaN2+u999/XytWrNCJEydUrVo19ezZUw8//LCaNm2a77ExMTH69ttv9fHHH+vLL7/Ujh07ZLPZdMEFF2jgwIG655578i2eyNWnTx/98ssvevvtt7V48WIlJiYqNjZWTZo00U033aS///3vOnDgQKHPY+LEiWrXrp1mzZqlXbt2KTU1Nd+bPNaoUUOzZs3SnDlz9M0332j16tU6evSocnJyFBsbqwsvvFCdO3dWv3791L1790LPfTbO5XUvjri4OM2aNUtff/21pk+frk2bNunkyZOqVKmSmjdvrgEDBmj48OEKDw/Pd4xmzZppyZIlmjBhgmbPnq2DBw8qJiZGzZs31/Dhw3XDDTcUKd/uvfdeNWnSRO+//77WrVunjIwM1axZU3379tVDDz2k888/v0jP6dFHH9W1116rSZMmadGiRTpw4IAyMjJUpUoVNWnSRL169dLgwYMDjqtVq5Z+/vlnvfXWW1q2bJkOHz4cUIBVt25dzZkzR3PnztXKlSt14MABHTt2TGlpab687Nevn2655RZVqlSpSPHC2lgRBmctVO/uAZyJOyXAishbWBW5Cysib2FVVspd7nyK8ihkV8oFzmClFcSAXOQtrIrchRWRt7AqK+UuK+WivOKaEViBlebRgVzkLUoaK8JYT94VYd555x2zwyn3gq0Iw+sOK2BFGFaEAQAAAAAAAIqNC5lgVXkvFgSsgryFVZG7sCLyFlZF7gIAAAAAAFQsdrMDAAAAAAAAAAAAAAAAAAAAAAAAAIqCQhgAAAAAAAAAAAAAAAAAAAAAAABYgtPsAGBdDofD7BCAIrHb7QVuA6GIvIVVkbuwIvIWVkXuAuZKSkoyOwSgSOx2u2JjY33bycnJ8nq9JkYEFI68hVWRu7Ai8hZWZaXcjYuLMzsEoFRwzQisgHl0WBF5i5Jms9lMOY/NZpNhGGVybuDYsWM6fvx4sY8LDw9X06ZNSyEioHSZ9TPXZrOF1O+CFMLgrDFhB6vKOykOWAV5C6sid2FF5C2sitwFypbH4zE7BOCseL1e8heWQ97CqshdWBF5C6sid4GyxzUjsCLm0WFF5C3O1fHjx2UYhux2u5zOsrtkOJQulLaqsn7PrOyTTz7RuHHjin1c3bp1tXHjRr82XndYUWn/zM0tzA0LCwup3wX5lwoAAAAAAAAAAAAAAAAAAAAAJjuzMANlg9cdsB4KYQAAAAAAAAAAAAAAAAAAAAAAlvPUU0/pqaeeMjsMAGWMQhictaSkJLNDAIrEbrf7LROanJwsr9drYkRA4chbWBW5Cysib2FVVsrdUFoaFwAAAAAAAMC545oRWIGV5tGBXOQtSlpOTo4vh9xud6mdx2azyeFw+LY9Ho8Mwyi18wElgbyFVZV17nq9Xnm9XuXk5BT7d8HSvF6EQhicNY/HY3YIwFnxer3kLyyHvIVVkbuwIvIWVkXuAgAAAAAAACgrzEXCiphHhxWRtzhXZXVR/5nnoZgAVkDewqrMyl3DMELqewmFMAAAAAAAAEAx5b3DDhDK7HZ7gdtAKCJvYVXkLqyIvIVVkbsAAAAAAAAVG4UwAAAAAAAAQDGV5hLOQGmKjY01OwSg2MhbWBW5Cysib2FV5C4AAAAAAEDFwm1RAAAAAAAAAAAAAAAAAAAAAAAAYAkUwgAAAAAAAAAAAAAAAAAAAADljN1++jJhwzBkGIbJ0QAArCbv50fuZ0qocJodAAAAAAAAAGA1SUlJZocAFIndbldsbKxvOzk5WV6v18SIgMKRt7AqchdWRN7CqqyUu3FxcWaHAAAAgArM4XDI7XbLMAy53W6FhYWZHRIAwEJyP0Ok058poYRCGAAAAAAAAKCYPB6P2SEAZ8Xr9ZK/sBzyFlZF7sKKyFtYFbkLAAAABBcREaGsrCxJUkZGBoUwAIBiycjI8D2OiIgwMZJAFMLgrIVaVReQnzOX4gq1pbmAYMhbWBW5Cysib2FV5C4AAAAAAAAAAACAguS9aDktLU12u10ul4u/LQIACuT1epWenq60tDRfG4UwKDdYwhlWlXeZdMAqyFtYFbkLKyJvYVXkLgAAAAAAAICyws1TYQXcUApWRN6ipDkcDlWuXFmnTp2SJKWkpCglJaXEc8tms8lms/m2DcOQYRgleg6gpJG3sKqyyF2v1+u3XblyZQphAAAAAAAAAAAAAAAAAFgXN0+FFXFDKVgReYuSUKVKFR0+fFjJycmldqE/BQSwIvIWVlUWuWu3230FN7GxsapVq5Zf8U0ooBAGAAAAAAAAAAAAAAAAAAAAKIdsNptq166tqlWr6uTJk0pPT5fH4zE7LABACHM4HHK5XKpSpYoiIyPNDicoCmFw1pKSkswOASgSu93ud3eE5OTkgCW7gFBD3sKqyF1YEXkLq7JS7nJ3SAAAAAAAAAAAAMBckZGRqlmzptlhAABQIiiEwVmjIhhW5fV6yV9YDnkLqyJ3YUXkLayK3AUAAAAAAABQVrh5KqzASjeUAnKRt7AqchdWRN7CqqyUu6V541QKYQAAAAAAAAAAAAAAAAAUGTflgRVxQylYEXkLqyJ3YUXkLayqouYuhTAAAAAAAABAMTkcDrNDAIrEbrcXuA2EIvIWVkXuworIW1gVuQsAAAAAAFCxUQgDAAAAAAAAFFNpLuEMlKa8y6QDVkHewqrIXVgReQurIncBAAAAAAAqFm6LAgAAAAAAAAAAAAAAAAAAAAAAAEugEAYAAAAAAAAAAAAAAAAAAAAAAACW4DQ7AAAAAAAAAMBqkpKSzA4BKBK73a7Y2FjfdnJysrxer4kRAYUjb2FV5C6siLyFVVkpd+Pi4swOAQAAAAAAoNyhEAYAAAAAAAAoJo/HY3YIwFnxer3kLyyHvIVVkbuwIvIWVkXuAgAAAAAAVCx2swMAAAAAAAAAAAAAAAAAAAAAAAAAioJCGAAAAAAAAAAAAAAAAAAAAAAAAFiC0+wAYF3Vq1c3OwSgSBITEzVo0CBJ0sSJE1WtWjWTIwIKR97CqshdWBF5C6sidwFzMS8Cq+DzAlZE3sKqyF1YEXkLqyJ3AfMxNwIr4PMCVkTewqrIXVgReQurIndPY0UYAAAAAAAAAAAAAAAAAAAAAAAAWAKFMAAAAAAAAAAAAAAAAAAAAAAAALAECmEAAAAAAAAAAAAAAAAAAAAAAABgCRTCAAAAAAAAAAAAAAAAAAAAAAAAwBIohAEAAAAAAAAAAAAAAAAAAAAAAIAlUAgDAAAAAAAAAAAAAAAAAAAAAAAAS6AQBgAAAAAAAAAAAAAAAAAAAAAAAJZAIQwAAAAAAAAAAAAAAAAAAAAAAAAsgUIYAAAAAAAAAAAAAAAAAAAAAAAAWILNMAzD7CAAAAAAAAAAAAAAAAAAAAAAAACAwrAiDAAAAAAAAAAAAAAAAAAAAAAAACyBQhgAAAAAAAAAAAAAAAAAAAAAAABYAoUwAAAAAAAAAAAAAAAAAAAAAAAAsAQKYQAAAAAAAAAAAAAAAAAAAAAAAGAJFMIAAAAAAAAAAAAAAAAAAAAAAADAEiiEAQAAAAAAAAAAAAAAAAAAAAAAgCVQCAMAAAAAAAAAAAAAAAAAAAAAAABLoBAGAAAAAAAAAAAAAAAAAAAAAAAAlkAhDAAAAAAAAAAAAAAAAAAAAAAAACyBQhgAAAAAAAAAAAAAAAAAAAAAAABYgtPsAABUDLt379a6deu0bds2HThwQKdOnZLD4VDVqlXVtGlT9enTR82aNSvyeOvWrdPcuXO1e/dunTp1SpUrV1bDhg112WWXqX379kUaw+PxaN68eVqyZIkOHjyozMxMVa1aVa1bt9ZVV12lunXrFmmcU6dO6ccff9SqVat07NgxSVJ8fLw6d+6sq6++WpUqVSry84J1fP755/ruu+98288995xatmxZ4DHkLcxy/PhxzZ8/X2vXrtWxY8eUmZmpypUrKz4+Xi1btlS3bt1Ur169fI8nd1HW3G63Fi5cqOXLl+vPP/9Uamqq3/eGvn37qmnTpoWOQ+7iXCUnJ2vXrl3atWuXdu/erd27dyslJUWS1KtXLz3wwAPFGq885uS+ffv0008/adOmTTpx4oQiIyNVp04dXXzxxerbt68cDkeRxgGA8o55EZQ3zIvASpgXgdUwL4JQwbxI4ZgXAYCiYV4E5Q3zIrAS5kVgNcyLIJQwN1I4s+dGbIZhGKV6BgAV3nPPPaetW7cWut8ll1yie++9V05n/jV6Xq9XH3zwgebPn5/vPn369NHdd98tuz3/Ra9OnTqlV155Rbt37w7aHxYWpttvv119+/YtMOadO3fqtdde08mTJ4P2x8XF6cknn1SjRo0KHAfWsnfvXo0ZM0Yej8fXVtDEBnkLM/3444+aMmWKsrKy8t3n6quv1m233RbQTu7CDMeOHdPYsWO1f//+Ave78sorNWLECNlstoA+chclZdCgQfn2FWdSo7zm5Ny5c/XRRx/J7XYH7W/UqJGeeuopVa5cucBxAKC8Y16E7znlDfMisBLmRWA1zIsglDAvwrwIAJQE5kX4nlPeMC8CK2FeBFbDvAhCDXMjoT83woowAErdiRMnJJ3+4ditWzc1a9ZM1atXl9fr1Y4dO/T999/rxIkTWrRokTwej0aOHJnvWNOmTfN9GFx44YW69tprVaNGDR05ckTfffed/vjjD82fP1+VK1fW0KFDg47h9Xr1+uuv+z4MunTpossuu0wxMTHauXOnZsyYoeTkZH3wwQeqWrVqvpWWx48f17hx43x3K7nmmmvUsWNHSdKaNWs0e/ZsJSUlady4cRo7dqyqVat21q8hQofX69X//d//yePxKDY2VsnJyYUeQ97CLNOnT9cXX3whSapVq5b69u2rRo0ayeVyKSUlRX/88YdWrVoV9BdDidxF2XO73X6TGvXr19c111yj2rVrKzMzU9u2bdOsWbOUlZWln376SVWrVtXAgQMDxiF3URqqV6+uOnXqaMOGDcU+tjzm5Nq1a/Xf//5XhmEoNjZWN9xwgxo3bqzU1FTNnTtXK1eu1K5du/T666/r+eefL3CyBgDKO+ZF+J5TnjAvAithXgRWw7wIuRvKmBfxx7wIABQd8yJ8zylPmBeBlTAvAqthXoTcDXXMjfgLlbkRCmEAlLo6depoyJAh6tq1a8APsyZNmuiSSy7Rs88+q8OHD2vp0qW6/PLL1aJFi4BxDh06pFmzZkmSGjZsqH/9618KDw+XdLpysFOnTnr++ee1e/duzZo1S3369FHNmjUDxvn111+1bds2SdIVV1yhO++809fXqFEjtW/fXqNHj1ZGRoYmTZqkNm3aBF2ea9q0aTp16pQk6eGHH1a3bt18fc2bN1eDBg305ptvKjk5WdOmTSv2MmgITT/++KN2796tOnXqqHPnzpo5c2aB+5O3MMumTZt8kxr53UGpdevWuvbaa4NWZZO7MMPq1at9kxpNmjTRCy+84PfdoU2bNurUqZOeeeYZeTweffvttxowYIBfzpC7KEk33XSTGjZsqIYNG6pKlSo6evSoHnzwwWKNUR5z0u12a9KkSTIMQ1FRUXrxxRf9Ym7Xrp0+/PBDzZkzR9u2bdOiRYvUu3fvYr1uAFCeMC/C95zyhHkRWAXzIuSuFTEvQu6GGuZFmBcBgJLAvAjfc8oT5kVgFcyLkLtWxLwIuRuKmBsJ/bkRbj0CoNQ99dRT6t69e74VfZUrV9Ytt9zi216+fHnQ/X744Qff0qIjRozwfRjkioiI0IgRIyRJHo9H33//fdBxcj9UYmJiNHz48ID+mjVr6vrrr5ckJSQkaOXKlQH7nDx5UosXL5YktW3b1u/DIFf37t3Vtm1bSdKiRYvyXUYM1nH8+HHfL4p33XVXgcsy5yJvYQav16sPP/xQ0uk7JNx3330F5muwPnIXZti+fbvv8cCBA4N+d2jQoIHvTgRpaWk6ePCgXz+5i5I0aNAgdezYUVWqVDnrMcpjTq5cuVJHjhyRJF1//fVBJ2GGDx+u6OhoSdJ3330X9DkBQEXBvAjfc8oL5kVgFcyLkLtWxbwIuRtqmBdhXgQASgLzInzPKS+YF4FVMC9C7loV8yLkbihibiT050YohAEQElq2bOl7nPsDMi/DMLRq1SpJp+8Y0qRJk6DjNGnSRLVr15Z0ukrYMAy//kOHDvm+AHXr1k0RERFBx8lbfRjsAyHv2Jdeeml+T8s3jmEYWr16db77wRo+/PBDZWZmqlevXkHvQnMm8hZm2bhxow4fPixJuu6664JWdxeE3IVZ8t5tpkaNGvnul7cv7zHkLkJNec3J3Od05jnzioiI8E2aHDhwQIcOHcr3fAAA5kVgDcyLwCqYFyF3rYp5EXK3vCmvOcm8CACUPOZFYAXMi8AqmBchd62KeRFytzwqr3kZSnMjFMIACAl5v5QEq+Y9evSokpKSJJ1efqsgub9wnjhxQseOHfPry10aLO9+wVSpUkW1atWS5F9tXNxx8vblPQbWs2zZMq1duzbfitpgyFuY5bfffpMk2Ww2350QJCk1NVWHDx9WampqgceTuzBL7i91UvA/dJzZZ7PZ/O4qQO4i1JTXnMxtq127doF3Psk7TrB4AAB/YV4EoY55EVgJ8yLkrlUxL0LuljflNSeZFwGAkse8CEId8yKwEuZFyF2rYl6E3C2PymtehtLcCIUwAELC77//7ntcp06dgP4DBw4U2J9X3i9FeY8r7ji5/YmJicrMzAw6jsvlKvAHeVxcnKKioiQpYCk+WEdaWpo+/vhjSdLf//53Va5cuUjHkbcwy86dOyVJ8fHxioqK0pIlS/T444/r9ttv18iRI33//+6775STkxNwPLkLs/To0cP3Hn777bfyer0B+/zxxx9au3atb3+Xy+XrI3cRaspjTmZmZioxMTEg5oJiCTYOAMAf8yIIZcyLwGqYFyF3rYp5EXK3vCmPOcm8CACUDuZFEMqYF4HVMC9C7loV8yLkbnlUHvMy1OZGKIQBYDqv16uZM2f6trt37x6wT+4PTkmqVq1ageNVr1496HHS6WrJXFWrVi1wnNzzGIbhd1zecQuLJW88Z8YC6/j888918uRJNW3aVH369CnyceQtzOD1en1fHCtVqqRJkybp7bff1v79+/32O3z4sD7//HO98MILSktL8+sjd2GWypUr66GHHlJERIS2b9+uMWPGaOHChdqxY4c2btyor776Ss8//7zcbrcuvPBC3XLLLX7Hk7sINeUxJ4vznPL2Hz9+vNBzAkBFxbwIQh3zIrAS5kXIXStjXoTcLW/KY04yLwIAJY95EYQ65kVgJcyLkLtWxrwIuVselce8DLW5EWepjAoAxTB79mzt2rVLktSlSxc1aNAgYJ+8lYmRkZEFjhcRERH0OEnKyMgokXFytwsbI+84Z44Ba9i6davmz58vh8Ohu+66SzabrcjHkrcwQ3p6ugzDkCTt27dPu3fvVlxcnIYNG6b27dsrPDxcu3bt0uTJk7Vz505t375dEydO1BNPPOEbg9yFmTp16qSxY8dq1qxZWrBggd59912//tjYWA0ePFh9+/b1yxuJ3EXoKY85WZxY8vaT2wCQP+ZFEMqYFyFvrYZ5EXLX6pgXIXfLk/KYk8yLAEDJY14EoYx5EfLWapgXIXetjnkRcre8KY95GWpzI6wIA8BUv//+u6ZMmSLp9BeVu+66K+h+2dnZvsdOZ8E1fGFhYUGPk+S3pOO5jJO7XdgYecc5cwyEPrfbrQ8++ECGYeiaa65RvXr1inU8eQszZGVl+R7n5OQoIiJCzz33nHr27KmYmBiFh4erRYsWeu6551S/fn1J0sqVK33L40rkLszldru1cOFCrV692jdJl1dycrIWL16sTZs2BfSRuwg15TEnixNL3v5gS6sDAJgXQWhjXoS8tSLmRchdq2NehNwtT8pjTjIvAgAli3kRhDLmRchbK2JehNy1OuZFyN3ypjzmZajNjVAIA8A0+/fv12uvvSaPx6OwsDA9+uijio2NDbpveHi477Hb7S5w3Lw/MPMeJ/n/kD+XcXK3Cxsj7zhnjoHQN2PGDB08eFDVq1fXTTfdVOzjyVuYIW++SFKfPn1Uu3btgP3Cw8M1ZMgQ3/ayZcv8+nKRuyhLmZmZevHFFzVz5kylpqbq2muv1fjx4zVlyhR9/PHH+sc//qFmzZpp9+7deu211/T999/7HU/uItSUx5wsTix5+8/8fAIAMC+C0Me8CHlrRcyLkLtWxrwIuVvelMecZF4EAEoO8yIIdcyLkLdWxLwIuWtlzIuQu+VReczLUJsboRAGgCmOHj2ql156SWlpabLb7XrkkUfUokWLfPcvzhJZeavbz1x6KyoqqkTGyd0uynJdueMUZTkxhI6DBw9q5syZkqTbb7/9rN4/8hZmyJsvktS2bdt8923VqpUcDockaffu3b52chdm+eqrr7R161ZJ0r333qthw4apTp06cjqdcrlcatOmjZ577jm1bNlShmHos88+0969e33Hk7sINeUxJ4sTS3GW+f1/7d19bJXl/T/w94HW4AaIICCiEZBl6sAFZCzLeFJigiLCNqJsf6C4Rce2bMsyF2Ni/IMtzDiXscjmZqImmxuiDmd9mBkITBkqPg40iIAbzorMh1qQUob094dfzo+OttQn2vuc1ytpcp9zXfd1X4VP2rvv5HNugGojF6G7k4uo26KSi6jdIpOLqN1KU4k1KRcB+GjIReju5CLqtqjkImq3yOQiarcSVWJddrdsRCMMcMS9+eabWbBgQd56662USqXMnz8/n/vc5zo8Z8CAAeXjN954o8O5r7/+epvnJUn//v1b7aMjB65TKpVanXfwuofby8H7+d+90L3dd9992bdvXwYPHpzm5uasWbPmkK+XX365PH/Dhg3l9w/8Ale3dIXa2tr07du3/Lqj/8Ojjjoqffr0SZI0Nja2eY7a5UhpaWnJypUrkyRDhgzJlClT2pzXs2fPXHTRReVzVq1aVR5Tu3Q3lViTB695uHUOHj/uuOMOe02AaiEXoQjkIuq2qOQiareo5CJqtxJVYk3KRQA+PLkIRSAXUbdFJRdRu0UlF1G7laoS67K7ZSM1H8uqAO1obGzMj3/847z22mtJknnz5mXy5MmHPe/EE08sH7/yyisdzq2vr2/zvLbWGTZsWLvrHLjOgAEDDulGPPHEE7N169bs3r07DQ0N6devX5trvPXWW2lqakqSDB06tMN9070ceLTba6+9lkWLFh12/l133VU+vuGGG9KrVy91S5c56aST8txzzyVJ9u/f3+HcA+MHPukj8TOXrvH2229n165dSZLhw4d3OHfEiBHl4/ZqUO3SHVRiTR599NEZMGBA3njjjVZ77mgvba0DUK3kIhSFXETdFplcRO0WkVxE7VaiSqxJuQjAhyMXoSjkIuq2yOQiareI5CJqt1JVYl12t2zEE2GAI2b37t35yU9+kn//+99Jkq997WuZNm1ap84dNGhQjj322CQpPwKvPQfG+/fvn4EDB7YaO/XUU8vHzz//fLtrNDQ05NVXX02SfPrTnz5kvLPrHDx28DlUB3VLVznttNPKxweC5Lbs3r07O3fuTNK6W1vt0hV69Pj/f5q8++67Hc49ePzg89Qu3U2l1uSB9+rr69PQ0NCpddraD0C1kYu4z6k26pauIhdRu0UkFzn0HIqvUmtSLgLwwchF3OdUG3VLV5GLqN0ikosceg6VoVLrsjtlIxphgCOiubk5CxcuzEsvvZQk+fKXv5xZs2Z1+vxSqVR+HO4rr7ySTZs2tTlv06ZN5S7CcePGpVQqtRo/4YQTyp2Fa9euTXNzc5vrHPzYvPHjxx8yfvDaBx7L19E6pVIp48aNa3ce3c+3v/3tLF26tMOv2bNnl+dfc8015fcHDRqURN3SdT7/+c+Xjx9//PF25z3++ONpaWlJ0vqmVe3SFXr37p2jjz46yXu11VG4cfAfSgd+5iZql+6nUmvywPf0v9c8WHNzc9auXZvkvU8VOeGEE9q9HkA1kIu4zykauYi6LTK5iNotIrmI2q1ElVqTchGA908u4j6naOQi6rbI5CJqt4jkImq3UlVqXXanbEQjDPCx27dvX372s5/lhRdeSJKcd955mTNnzvte57zzzit38d5yyy3Zu3dvq/G9e/fmlltuSfLeIxunT5/e5jozZsxIkuzatSu///3vDxnfvn17li1bliQ5/vjj2/yF0K9fv0ycODFJ8uyzz+bRRx89ZM7atWvz7LPPJkkmTZrU7mPEqGzqlq5w8sknZ8yYMUmSNWvWZP369YfMaWhoyO23354kqampyVlnndVqXO1ypPXo0SNjx45N8t4jNv/0pz+1OW/Xrl257bbbyq/PPPPMVuNql+6mEmty/PjxGTx4cJJk2bJl2b59+yFzfve73+Wdd95JklxwwQVtfk8A1UIu4j6nmqlbuoJcRO0WkVxE7VaqSqxJuQjA+yMXcZ9TzdQtXUEuonaLSC6iditZJdZld8pGaj62lQH+zy9+8YvyD8ZRo0bl7LPPzrZt29qdX1NT02b33wknnJALLrggd999d7Zs2ZKrr746M2fOzODBg/Paa6/lz3/+c/kTRGbMmJEhQ4a0uf6UKVOycuXKvPDCC3nwwQfT0NCQqVOnpnfv3tm8eXPuuuuuNDU1pVQqZd68eenZs2eb68yZMyfPPPNMGhsbs2jRomzZsqV8c/Xkk0/m3nvvTZL07dv3AwU5VAZ1S1e5+OKLs2nTprzzzjv56U9/munTp2fMmDE56qijsnnz5tx999154403kiQXXXRRq0fdJmqXrjF79uw88cQTaW5uzh133JGtW7dm8uTJGTx4cP773/9m06ZNuf/++/P6668nSUaPHp3PfvazrdZQu3yUNm7c2OoP9sbGxvLx9u3bD/lkiylTphyyRiXWZE1NTebNm5drr702TU1Nufrqq/OVr3wlI0eOzK5du7JixYo89thjSd77BKlJkya1uQ5AtZCLuM+pZuqWriIXoYjkImq3u5GLyEUAPgpyEfc51Uzd0lXkIhSRXETtdkeyke6fjZRaDjzfDOBjcuGFF76v+QMHDszixYvbHNu/f39+85vfdPhYrrPPPjuXXXZZuYuyLY2NjVm4cGG2bNnS5nhtbW0uvfTSTJ06tcO9vvjii7nuuuvS0NDQ5ni/fv1yxRVX5FOf+lSH61BMS5cuzZ133pnkvUfdfuYzn2lznrqlq2zcuDHXX3993n777TbHS6VSvvSlL7V706p26Qr/+Mc/smjRouzcubPDeaNGjcoPfvCD9O7d+5AxtctHZfHixVm9enWn5y9durTN9yu1JpcvX56bb745+/bta3N85MiRufLKK9O3b98O1wGodHIR9zmVSi5CdycXoYjkInQnchG5CMBHQS7iPqdSyUXo7uQiFJFchO5GNtL9sxGNMMDH7qMMNg546qmnsnz58mzZsiU7d+5Mnz59csopp+Scc84pP97xcN59992sWLEijzzySF555ZXs2bMn/fv3z6hRo3LeeeflpJNO6tQ6jY2Nuf/++7Nu3br85z//SZIMGjQo48aNy/Tp09OnT59OrUPxdDbYOEDd0hV27tyZBx54IOvWrcuOHTuyb9++HHvssTn99NNz7rnnZvjw4YddQ+1ypO3cuTMPPfRQnnnmmbz88st555130rNnz/Tr1y+nnHJKJkyYkHHjxqVUKnW4jtrlw/qoQo0DKrEmt23blgceeCAbNmzIm2++mV69emXo0KGZMGFCpk6d2u6njABUE7mI+5xKJRehCOQiFJFchO5CLnJ4chGAw5OLuM+pVHIRikAuQhHJRehOZCOH19XZiEYYAAAAAAAAAAAAAAAACqH95+cAAAAAAAAAAAAAAABAN6IRBgAAAAAAAAAAAAAAgELQCAMAAAAAAAAAAAAAAEAhaIQBAAAAAAAAAAAAAACgEDTCAAAAAAAAAAAAAAAAUAgaYQAAAAAAAAAAAAAAACgEjTAAAAAAAAAAAAAAAAAUgkYYAAAAAAAAAAAAAAAACkEjDAAAAAAAAAAAAAAAAIWgEQYAAAAAAAAAAAAAAIBC0AgDAAAAAAAAAAAAAABAIWiEAQAAAAAAAAAAAAAAoBA0wgAAAAAAAAAAAAAAAFAIGmEAAAAAAAAAAAAAAAAoBI0wAAAAAAAAAAAAAAAAFIJGGAAAAAAAAAAAAAAAAApBIwwAQCcMGzYspVIpl1xySVdvBQAAAOCIkosAAAAA1UouAgDdk0YYAAAAAAAAAAAAAAAACkEjDAAAAAAAAAAAAAAAAIVQamlpaenqTQAAAAAAAAAAAAAAAMDheCIMAAAAAAAAAAAAAAAAhaARBgAAAAAAAAAAAAAAgELQCAMAVJ36+vpceeWVGTt2bI455pjU1tZm8ODBGT16dL761a/m1ltvTWNjY6tzhg0bllKplEsuuaTV+//85z9TKpU6/TVlypR297Vy5cpcfPHFGTFiRD7xiU+kb9++GT16dK644orU19d/DP8SAAAAQLWRiwAAAADVSi4CAJWjpqs3AABwJD388MM5//zzDwkuduzYkR07dmTDhg1ZsmRJjjvuuJx//vlHZE979uzJvHnzsmTJkkPGNmzYkA0bNuTXv/51/vjHP2bGjBlHZE8AAABA5ZGLAAAAANVKLgIAlUUjDABQNZqbmzNnzpw0NjamT58+mT9/fs4666wMGjQoe/fuzUsvvZS///3vWbZsWafXHDp0aNavX9/hnKVLl2bBggVJkpNPPrnVWEtLS2bPnp377rsvSTJjxoxceOGFGTFiRHr06JHHH388119/fbZt25bZs2dnzZo1GTdu3Pv8zgEAAIBqJxcBAAAAqpVcBAAqT6mlpaWlqzcBAHAkPPTQQ5k6dWqSpK6urt1P8Ni3b192796dvn37lt8bNmxY/vWvf+Xiiy/Orbfe2ulrPvHEE5k0aVKamppy2mmn5dFHH2217k033ZTLLrsstbW1ueeeezJt2rRD1njrrbcyceLEPPfcc/niF7+YRx55pNPXBwAAAEjkIgAAAED1kosAQOXp0dUbAAA4UrZv314+njRpUrvzampqWoUPH1R9fX1mzpyZpqam9O/fP3V1da3WbWlpybXXXpsk+e53v9tmqJEkxx57bK677rokyZo1a/Liiy9+6L0BAAAA1UUuAgAAAFQruQgAVB6NMABA1RgyZEj5+JZbbvlYr9XU1JRZs2alvr4+NTU1ufPOO3PKKae0mvP8889ny5YtSZLZs2d3uN7BQczatWs/+g0DAAAAFU0uAgAAAFQruQgAVB6NMABA1ZgwYUJGjBiRJPn+97+f8ePHZ+HChVmzZk327t37kV7r0ksvzbp165Ikv/zlL3PWWWcdMueJJ54oH3/hC19IqVRq96t3797luQd/UgkAAABAZ8hFAAAAgGolFwGAyqMRBgCoGrW1tamrq8tpp52WJFm3bl2uuuqqTJgwIf369cu0adPyhz/8Ie++++6Hus6CBQuyZMmSJMm3vvWtzJ8/v815O3bs+EDr7969+wPvDQAAAKhOchEAAACgWslFAKDy1HT1BgAAjqTTTz8969evT11dXerq6vK3v/0tmzdvTlNTUx588ME8+OCD+fnPf577778/gwYNet/r33XXXbnmmmuSJFOnTs2iRYvanXtwgFJXV5dhw4Z16hofZF8AAAAAchEAAACgWslFAKCyaIQBAKpOz549M2vWrMyaNStJ8uqrr+Yvf/lLFi9enCeffDJPPvlkLr/88ixbtux9rfv0009n7ty5aWlpyciRI7N06dLU1LR/uzVgwIDycb9+/TJq1KgP9P0AAAAAdJZcBAAAAKhWchEAqBw9unoDAABdbciQIZk3b17Wrl2bsWPHJknuvffeNDU1dXqN7du3Z+bMmdm9e3eOOeaY1NXVpX///h2eM2bMmPLxmjVrPtjmAQAAAD4EuQgAAABQreQiAFBcGmEAAP5PbW1tJk+enCTZt29fGhoaOnXenj17MmvWrLz88svp2bNnlixZklNPPfWw540dOzYnnnhikuS3v/1t9uzZ84H3DgAAAPBhyEUAAACAaiUXAYDi0QgDAFSNhx9+OJs3b253fO/evVm9enWSpHfv3hk4cGCn1v3GN76Rxx57LEly3XXXZdq0aZ06r0ePHrnqqquSJFu3bs3cuXPT3Nzc7vzGxsbccMMNnVobAAAA4GByEQAAAKBayUUAoPLUdPUGAACOlBUrVmTBggWZOHFipk+fnjPOOCMDBw5MU1NTNm3alBtvvDFPPfVUkuTrX/96amoOf6t0880357bbbkuSnH322TnnnHOyYcOGdud/8pOfzPDhw8uvv/nNb+avf/1rli1bljvuuCNPPfVULr/88owfPz7HHHNMGhsbs3HjxqxatSr33HNPevXqle985zsf8l8CAAAAqDZyEQAAAKBayUUAoPJohAEAqsr+/fuzevXq8id5tGXmzJlZuHBhp9bbtm1b+fihhx7K6NGjO5w/efLkrFq1qvy6VCrl9ttvz/e+973ceOON2bJlS370ox+1e/6gQYM6tS8AAACA/yUXAQAAAKqVXAQAKotGGACgavzwhz/MGWeckeXLl+fpp59OfX19duzYkSQ5/vjjM378+MydOzfTp08/ovuqra3Nr371q8yfPz833XRTVq1alW3btmXXrl3p3bt3hg8fnjPPPDPnnntuzj///CO6NwAAAKAyyEUAAACAaiUXAYDKU2ppaWnp6k0AAAAAAAAAAAAAAADA4fTo6g0AAAAAAAAAAAAAAABAZ2iEAQAAAAAAAAAAAAAAoBA0wgAAAAAAAAAAAAAAAFAIGmEAAAAAAAAAAAAAAAAoBI0wAAAAAAAAAAAAAAAAFIJGGAAAAAAAAAAAAAAAAApBIwwAAAAAAAAAAAAAAACFoBEGAAAAAAAAAAAAAACAQtAIAwAAAAAAAAAAAAAAQCFohAEAAAAAAAAAAAAAAKAQNMIAAAAAAAAAAAAAAABQCBphAAAAAAAAAAAAAAAAKASNMAAAAAAAAAAAAAAAABSCRhgAAAAAAAAAAAAAAAAKQSMMAAAAAAAAAAAAAAAAhaARBgAAAAAAAAAAAAAAgELQCAMAAAAAAAAAAAAAAEAhaIQBAAAAAAAAAAAAAACgEDTCAAAAAAAAAAAAAAAAUAgaYQAAAAAAAAAAAAAAACgEjTAAAAAAAAAAAAAAAAAUgkYYAAAAAAAAAAAAAAAACkEjDAAAAAAAAAAAAAAAAIWgEQYAAAAAAAAAAAAAAIBC0AgDAAAAAAAAAAAAAABAIfw/w2Q+LjedNdwAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -463,76 +443,10 @@ "plt.show()" ] }, - { - "cell_type": "markdown", - "id": "d11a14ed-65f0-41d5-ad00-1e3877733d2e", - "metadata": {}, - "source": [ - "## Stomp vs naive" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "63d8fe31-86b8-408b-b5c6-6c18987fdc08", - "metadata": {}, - "outputs": [], - "source": [ - "# Sizes are limited to not time-out the CI, you can test with more sizes locally !\n", - "sizes = [500, 1000, 2500, 5000]\n", - "query_lengths = [0.05, 0.1]\n", - "times = pd.DataFrame(\n", - " index=pd.MultiIndex(levels=[[], []], codes=[[], []], names=[\"size\", \"query_length\"])\n", - ")\n", - "\n", - "for size in sizes:\n", - " for _query_length in query_lengths:\n", - " query_length = int(_query_length * size)\n", - " X = rng.random((1, 1, size))\n", - " T = rng.random((1, size))\n", - " search_space_size = size - query_length + 1\n", - " mask = np.ones((1, search_space_size), dtype=bool)\n", - " # Used for numba compilation before timings\n", - " naive_squared_matrix_profile(X, T, query_length, mask)\n", - " _times = %timeit -r 1 -n 3 -q -o naive_squared_matrix_profile(X, T, query_length, mask)\n", - " times.loc[(size, _query_length), \"Naive\"] = _times.average\n", - " # Used for numba compilation before timings\n", - " stomp_squared_matrix_profile(X, T, query_length, mask)\n", - " _times = %timeit -r 1 -n 3 -q -o stomp_squared_matrix_profile(X, T, query_length, mask)\n", - " times.loc[(size, _query_length), \"Stomp\"] = _times.average" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "cc4801ae-bb48-46d1-8e71-21c045c69773", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADL8AAAOcCAYAAAAVIPLEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXTU9dn//9fMZN9mBggkQCAJsigoKLJkqSCuWBdcW+t6u1ettV9vq+2vnp67vVu1rq1W6y5atSoqrvW2goBZANkFJCCZsC9JmJnsy8x8fn+EjAlJyCRkZrI8H+dwzmdm3u/P55rJ5ALmmuv9NhmGYQgAAAAAAAAAAAAAAAAAAAAAAADohczhDgAAAAAAAAAAAAAAAAAAAAAAAADoCM0vAAAAAAAAAAAAAAAAAAAAAAAA6LVofgEAAAAAAAAAAAAAAAAAAAAAAECvRfMLAAAAAAAAAAAAAAAAAAAAAAAAei2aXwAAAAAAAAAAAAAAAAAAAAAAANBr0fwCAAAAAAAAAAAAAAAAAAAAAACAXovmFwAAAAAAAAAAAAAAAAAAAAAAAPRaNL8AAAAAAAAAAAAAAAAAAAAAAACg16L5BQAAAAAAAAAAAAAAAAAAAAAAAL0WzS8AAAAAAAAAAAAAAAAAAAAAAADotWh+AQAAAAAAAAAAAAAAAAAAAAAAQK9F8wsAAAAAAAAAAAAAAAAAAAAAAAB6LZpfAAAAAAAAAAAAAAAAAAAAAAAA0GvR/AIAAAAAAAAAAAAAAAAAAAAAAIBei+YXAAAAAAAAAAAAAAAAAAAAAAAA9Fo0vwAAAAAAAAAAAAAAAAAAAAAAAKDXovkFAAAAAAAAAAAAAAAAAAAAAAAAvRbNLwAAAAAAAAAAAAAAAAAAAAAAAOi1aH4BAAAAAAAAAAAAAAAAAAAAAABAr0XzCwAAAIBeIz09XSaTSSaTSSUlJeEOp1/gNQUAAAAAAAAAAGiLGkrP4zUFAABAMNH8AgAAAAAIiaqqKj377LM6/fTTNXLkSEVHR2vkyJGaM2eO/vGPf6iqqqpPXH/JkiX+wk2gf84888ygPjcAAAAAAAAAAAD8IFx1qYaGBn3zzTd69tlndcMNN+jEE09URESEv2Z0/fXXB+W6AAAAA0FEuAMAAAAAAARm9uzZWrp0qSTpq6++0uzZs8MbUBcUFhbqqquuksPhaHX/nj17tGfPHn311Vd65JFH9Oabb2rGjBn97voAAAAAAAAAAAB9CXWprnv66ad1zz33qKGhocfOCQAAgB/Q/AIAAAAACKr169fr7LPP9q+gFRkZqTlz5mjkyJHatWuXFi9eLI/Ho+LiYp199tnKz8/XpEmT+sT1hw8frosvvrjTcRMmTDim5wAAAAAAAAAAAIDOhbMuVVZWRuMLAABAENH8AgAAAAAImsbGRl166aX+AsPkyZO1cOFCpaen+8eUlJRo3rx5Wr9+vSoqKnTppZdq06ZNiog49v+yBvv6Y8eO1dNPP33McQIAAAAAAAAAAODYhLsu1SwtLU3Tpk3TtGnTNH36dD377LNasGBBj50fAABgoDKHOwAAAAAAQP/1wgsvaPv27ZIku92uzz//vFWBQZLS09P173//W3a7XZK0detWvfzyy/3i+gAAAAAAAAAAAAiNcNeF/uu//kv79+/Xzp079d577+n+++/XnDlzFB8f3yPnBwAAGOhofgEAAAAABM3f//53//F///d/KyUlpd1xqampuueee9qd15evDwAAAAAAAAAAgNAId11o9OjRGjZsWI+cCwAAAG3R/AIAAIABw+fzaf78+TrrrLOUkpKimJgYpaen66KLLtLChQv942bPni2TySSTyaQlS5a0e6709HT/mJKSkk6vff311/vHv/rqq52ONwxDH3zwga677jqNGzdOVqtVMTExSktL07x58zR//nx5PJ6jnqOkpMR/zZYrGuXl5emmm27ShAkTZLVaZTKZdPfdd2vt2rX+8Xa7XXV1dZ3GKUmVlZVKSEjwz92wYUNA83pCY2OjXn/9dV1xxRXKzMxUYmKi4uPjlZGRoSuvvFIffPCBDMM46jmWLFnij3327Nn++xcvXqyf/vSnyszMVExMjAYPHqzTTjtNTz/9tBobGwOOsba2Vk888YRycnI0ZMgQxcbGasyYMbryyiu1aNEi/7ijvaea71+6dKn/vtNPP91/f8s/gby/du/erQceeECTJ0+WzWZTfHy8JkyYoF/84hfasWNHwM+tM99//702b97sv3399dcfdXzLxzds2KDi4uI+fX0AAAAAAAAAwMBFXaoJdanWqEv137oUAAAAgi8i3AEAAAAAobB//37NmzdPK1asaHX/jh07tGPHDn300Ue6+OKLNX/+/DBF+IMNGzbouuuu07p169o8tnv3bu3evVsffvihHnzwQb3//vs64YQTAjpvQ0OD7rrrLj333HPtPn7yySdr6tSpWr16tVwul9577z1dddVVnZ737bffVnV1tSRp2rRpOumkkwKK51gtWbJEN910k3/r8pZKSkpUUlKif/3rX5o5c6YWLFigESNGBHTehoYG3XnnnXrhhRda3V9fX6+vv/5aX3/9tV555RX93//9n4YMGXLUc3377be6+OKL28RYXFys4uJi/etf/9Ktt96qp556KqDYesLChQt1/fXXy+12t7q/qKhIRUVFeumll/Tuu+/qxz/+8TFfa/Hixf7jcePGafjw4UcdP2LECI0dO1bbtm3zz8/MzOyz1wcAAAAAAAAADEzUpahLUZdqMpDqUgAAAAg+ml8AAADQ77lcLs2ZM0ffffed/76MjAxlZWUpOjpamzZt0sqVK/XBBx/IbA7v5ojLli3TBRdcoIqKCklSZGSkpk2bprFjxyoyMlIlJSXKy8tTXV2dioqKlJ2drcLCQh1//PGdnvtXv/qVv8Bw4oknavLkyYqMjNTWrVv9z/uWW27RrbfeKkl66aWXAioyvPTSS/7jm266qcvPuTveffddXXXVVf6VrmJjYzVz5kylp6fLbDZr69atKiwslMfj0fLly5WVlaVvvvkmoG3Gb7nlFs2fP19ms1kzZszQhAkT5PP5tHz5chUVFUmS1qxZo2uvvVafffZZh+f5/vvvdcYZZ6i0tNR/34knnqgpU6bIbDZr3bp1Wr9+vZ577jklJiYeNaY77rhDkvTBBx9o7969kqR58+a1Wzg52nvhyy+/1G233Sav16tRo0YpKytLSUlJcjgcWrJkiTwej2pra3XFFVdo48aNysjIOGpcnWn5O3fKKacENOeUU07xFxlazu+t16+trdXHH3+s9evX69ChQ4qPj9ewYcM0Y8YMnXzyyYqI4L/dAAAAAAAAADCQUJdqQl2KutRAq0sBAAAgBAwAAACgn7vhhhsMSYYkIyoqynjppZfajFmxYoUxevRo/5jm8V999VW752weK8lwOBydxnDdddf5x7/yyivtjtm3b58xdOhQ/7hrr73W2Lt3b5tx+/fvNy6++GL/uBNPPNHweDxtxjkcDv8Yi8ViSDLS0tKMZcuWtRlbV1dnGIZhVFZWGgkJCYYkw2QyGdu3bz/q89q0aZP/GvHx8UZFRUWnr8XRBPK6bty40YiNjfXH+N///d+G0+lsM2779u1Gbm6u/3xz585t93xfffWVf0x0dLQhyZg2bZrx3XfftRrn8/mMJ5980j9WkrF06dJ2z+nz+YzTTjvNP27w4MHG559/3mbcokWLjKFDhxomk6nV+66j5z5r1qxO35tHavmaRkdHG/Hx8cbrr79u+Hy+VuM2btxojBgxwj/2v/7rvwI6/9HMnTvXf7777rsvoDn33nuvf855553XK6/f8j1ztD/Dhw83HnnkEaOhoeGYngcAAAAAAAAAoO+gLkVdirrUwKxLHU3L38nrrrsuaNcBAADo78K7fAAAAAAQZFu3btUrr7ziv/3888/rhhtuaDNu+vTp+uKLLxQXF6eGhoZQhuj3//1//58OHjwoSbrrrrs0f/58paamthk3bNgwvfvuu5ozZ46kpi3MFyxYcNRze71excXF6csvv9SPfvSjNo9HR0dLkhISEnTllVdKkgzD0Msvv3zU87ZcXeuKK67odKWonnDXXXeptrZWkvTYY4/pkUcekc1mazMuMzNTn3/+uU444QRJ0r///W+tWLHiqOeur6/X2LFjtXjxYk2YMKHVYyaTSb/85S912WWX+e9766232j3P//3f/2nZsmWSJLPZrA8//FDnnHNOm3Fz5szRp59+KrPZHJL3XUNDgxYsWKCrr75aJpOp1WMTJ070r8AmNa1i5vF4jul65eXl/uNAVjeTpJSUFP/xoUOH+vT19+7dq3vvvVennXaaDhw4cEznAgAAAAAAAAD0ftSlmlCXoi4lDby6FAAAAIKP5hcAAAD0ay+99JIMw5DUVEi47rrrOhw7btw43X333SGKrLXS0lL985//lNT0IevDDz981PEWi0V/+tOf/LffeOONTq9x5513aty4cZ2Ou/nmm/3Hr776qrxeb7vjGhsb9frrr/tvh2Jr+fXr12vx4sWSpJNPPrnTn1d8fLweeOAB/+1AXqeHHnpICQkJHT7eski1cuXKdse0LL789Kc/VU5OTofnO/XUU3Xttdd2GldPOP/883Xuued2+Ph5553n/5C/qqrqmLd3r6qq8h/HxsYGNKfluJbze9v1k5OTdfvtt+uDDz5QcXGxampqVFdXp+LiYs2fP1/Tpk3zj12+fLkuuOACf3EMAAAAAAAAANA/UZf6AXUp6lIDrS4FAACA4KP5BQAAAP3aV1995T++5pprOh1/tCJEMH355Zf+FZYuueQSxcTEdDpnxowZio+PlyTl5eV1Ov6nP/1pQLFMmzZNU6ZMkSTt2bNH//d//9fuuI8++kilpaWSpBNOOEHZ2dkBnf9YfPbZZ/7jK6+8ss0qUe1pXolM6vx1iomJ0QUXXHDUMSeffLL/uKSkpN0xS5cu9R9fffXVncYYyJiecPnllx/1cZPJpMmTJ/tvd/T8AlVXV+c/joqKCmhO82pvko65WSRY1z/11FO1e/du/f3vf9e8efOUkZGh2NhYRUdHKyMjQ9dee61WrFjRqsD1zTff6LHHHuvmMwEAAAAAAAAA9AXUpX5AXYq61ECrSwEAACD4IsIdAAAAABAshmFo/fr1/ttZWVmdzhk3bpwGDRoU8m2tCwsL/ccbNmzQnXfe2aX5TqdT1dXV/qLDkSIjI3XiiScGfL5bbrlFt99+u6Sm1aLOO++8NmNariJ14403dine7mr5On311VfasWNHp3OaV1iTpF27dh117Pjx4xUZGXnUMYMHD/YfV1RUtHl8z549/uKL1FQM6sy0adNkMplaxRoMgbwHOnt+XdGyWNZcROtMfX29/zjQVblCff2jrcDWzGQy6Q9/+IO2b9+uN998U5L0+OOP6/7771dEBP8VBwAAAAAAAID+hrrUD6hLNaEuNbDqUgAAAAg+vnEDAACAfsvtdrf6YHPUqFEBzRs1alTIiwx79+71H+fl5QW0YtaRnE5nh0UGu93epS/cX3XVVbr33ntVXV2tjz/+WKWlpUpOTvY/vnv3bv/KW1FRUSHbHr3l6/Tvf/+7y/OdTudRH7darZ2eo2URwuPxtHm8ZYEhLi5OgwYN6vSciYmJslqtcrlcnY49Fl19fo2Njcd0vZZNIoGultVyXCBNJr35+pL0hz/8wd/84nQ6tXz5cuXm5h7zeQEAAAAAAAAAvQt1qR9Ql2pCXWpg1aUAAAAQfOZwBwAAAAAES1VVVavbcXFxAc3r6IP6YHK73cd8jvY+8G7W1ZWKkpKS9JOf/ERS0wfNr732WqvHX331Vfl8PknSRRddpCFDhnQx2u451tfJ6/Ue9fFAtqvvTMv3XaDvOSk0H6j3xPPripardR04cCCgOfv37/cfB1Kg6c3Xl6QxY8YoPT3df/u777475nMCAAAAAAAAAHof6lI/oC7VhLrUwKpLAQAAIPhofgEAAEC/deSHtjU1NQHNq66u7vFYmj+Q70jLwsbjjz8uwzC6/KflF+x7ws033+w/brmVvGEYeuWVV/y3b7rpph697tG0fJ3ef//9br1OwdbyfRfoe04Kzvsu3MaPH+8/3rFjR0Bzdu7c6T+eMGFCn75+s9TUVP9xWVlZj5wTAAAAAAAAANC7UJc6NtSluoe61A96S10IAAAAwUPzCwAAAPotq9WqqKgo/+2WH14eza5duzod09kW40fqbGWoYcOG+Y9brjAUTjNnztRJJ50kqWm3isLCQknSV199peLiYknS6NGjdeaZZ4Yspt74Oh2p5WpjNTU1nW5pLzWtyhXsreXD4fjjj/cfr127NqA5a9asaXd+X7x+s5YFpHCs4AcAAAAAAAAACD7qUseGulT3UJf6QW+pCwEAACB4aH4BAABAv2UymTR58mT/7eXLl3c6Z9u2bSovL+90XFJSkv84kPHffvvtUR+fMWOG/zg/P7/T84VKe6tstVxt67/+679kNofuvxW99XVqaeTIka0KDStWrOh0zqpVqwJa/SvU28Mfq9NPP91/XFRUpH379h11/N69e7Vt2zb/7Tlz5vTp60tNhaaioiL/7eHDhx/zOQEAAAAAAAAAvQ91qWNHXarrqEv9oDfUhQAAABBcNL8AAACgX2v5Iec///nPTse/9tprAZ235Vbu69atO+rYVatWyeFwHHXMOeeco4iICElSQUGB1q9fH1AcwXb11VcrNjZWkvT2229r9+7dev/99yVJZrNZN9xwQ0jjOf/88/3H77//vg4cOBDS6wdq1qxZ/uM33nij0/GBvDclKSYmxn/c2NjY9cBCbOzYsTrhhBP8t+fPn3/U8S0fP/HEE5WZmdmnry9Jb775purr6yU1FYlOO+20Yz4nAAAAAAAAAKB3oi51bKhLdQ91qSa9oS4EAACA4KL5BQAAAP3ajTfe6D9evnz5UT/M/f777/XEE08EdN6WKz0d7YNTj8ejX/7yl52eb8SIEbr66qslSYZh6Nprr1VFRUVAsfh8PpWWlgY0tqtsNpuuuOIKSU1boF922WWqq6uTJJ199tlKS0sLynU7Mn36dM2ePVuSVFtbq2uuuUYNDQ0BzW1oaAhoq/ee0LL48uabbx51dbc1a9Z0+uF7s8GDB/uP9+zZ0/0AQ+j222/3Hz/66KMdFob279+vRx991H/7jjvu6JXXr6mpkc/nC+ja27Zt0/333++/ffbZZ2vo0KEBzQUAAAAAAAAA9D3UpY4NdanuoS71g3DXpQAAABBcNL8AAACgXxs3bpyuv/56/+2bbrqp3Q90V61apbPOOkvV1dWKiorq9Lw/+clP/NuqFxYW6v7775fX6201Zvfu3Tr//PNVUFCg6OjoTs/5pz/9SampqZKkDRs2aPr06friiy86HL9792498cQTGj9+vN5+++1Oz99dLbeYb7lV+k033RS0ax7NU089pYSEBEnSf/7zH5122mlH3cJ969at+uMf/6j09PSQbUk/d+5c5ebmSmoqAl1wwQX68ssv24xbsmSJzjvvPHm93oDed5MmTfIfL1iwIKAt6cPtlltu0ZgxYyRJ5eXlmjt3rnbs2NFqzI4dO3Teeefp0KFDkpp+b1sWCI+0ZMkSmUwm/58lS5aE7PorV67UxIkT9eyzz+rgwYPtjvF6vfrnP/+prKwslZeXS5KioqL08MMPdxgnAAAAAAAAAKDvoy517KhLdR11qR+Euy4FAACA4IoIdwAAAABAsD3++OMqLCxUUVGR6uvrdf311+sPf/iDsrKyFB0drU2bNmnlypUyDEOXXHKJysvLtXTp0qOec/To0brtttv0zDPPSJIefvhhvfXWWzrttNMUExOj7du3Kz8/Xw0NDTrzzDOVkpLS6Rbiw4cP14cffqjzzjtPZWVlKioq0jnnnKMRI0Zo+vTpSk5OVmNjo8rKyrRx48ZOt6zvKTk5OZo4caI2bdrkv2/o0KG68MILQ3L9I02aNElvvfWWfvKTn6impkYrVqzQzJkzNWbMGJ1yyikaNGiQ6urqdPDgQW3YsCEsK1GZTCa9/PLL/uaHsrIynXXWWZo8ebKmTJkiSVq/fr3WrVsnSfrv//5vvfvuu/4P35sLWEe65JJL9Nvf/laGYejTTz/VSSedpOzsbCUmJvrH/PSnP9Wpp54a1OfXFZGRkXrvvfeUm5urqqoqrV27VmPHjtUZZ5yhESNGaPfu3Vq8eLEaGxslSUlJSXrvvfcUEdEz/10NxvW3bNmi22+/XXfeeaeOO+44TZw4UYMGDZLZbNb+/ftVWFiosrIy/3iLxaLXXntNkydP7pHnBAAAAAAAAADovahLHRvqUl1HXeoH4a5LSfK/5i3t3LnTf/zRRx+1O6b55wMAAICO0fwCAACAfs9ut2vx4sW66KKLtGrVKklScXGxiouLW4278MIL9eqrr+qCCy4I6LyPPfaYSkpK9Nlnn0lq+tDyyELC+eefr9dff1133313QOecNm2aVq1apRtvvFGLFi2S1LSN+AcffNDhnGHDhmns2LEBnb+7br755lbP4dprr1VkZGRQr3k0zSuX3XjjjVq9erUkafv27dq+fXuHc9LT0zVy5MhQhaixY8dq0aJFuvjii/0FofXr12v9+vWtxt1yyy3685//rDfffNN/X1JSUrvnHDdunO6//349+OCDkqSNGzdq48aNrcZMmjSpVxUZJGny5Mn64osvdNVVV8nhcKixsVGff/55m3GZmZl64403Wq0k1puv7/P5tHXrVm3durXDMePHj9fLL7+s7OzsbscPAAAAAAAAAOg7qEsdO+pSXUdd6gfhrksd+Zofyel0yul09ug1AQAABgqaXwAAADAgDB8+XMuXL9drr72mN954Qxs2bJDb7dawYcM0efJkXXfddbr00ktlMpkCPmdMTIw++eQTvfXWW5o/f77WrFkjt9utoUOHavLkybr++ut12WWXdemcUtPqXV9++aUKCwv17rvvatmyZdq1a5ecTqciIiI0ePBgjR07VqeeeqrOPvtszZ49u0dXI2rPJZdc0qrIEK6t5VuaPHmyVq1apS+++EILFy5Ufn6+9u7dK5fLpejoaCUnJ2v8+PGaMWOGzjnnHGVlZXX5Z9ETMW7cuFH/+Mc/9O6772rr1q2qqalRamqqpk+frptvvllnnHGGJPk/5DabzR0WGSTpz3/+s3Jzc/XKK69o9erVOnDggGpqakLyfI5FVlaWNmzYoNdee03vvPOOtm7dqvLycg0ePFjjxo3TFVdcoWuvvVYJCQm9+vo/+tGPtGrVKhUWFqqgoEBFRUUqLy9XeXm56uvrZbValZaWphkzZujCCy/UueeeG/L3HQAAAAAAAAAgvKhLHRvqUt2PkbpUk3DXpQAAABAcJsMwjHAHAQAAAPQms2fP9m8v/9VXX2n27NnhDagXmD9/vq6//npJUm5urr7++uvwBtTPbNu2TePGjZMkTZgwQd99912YIwIAAAAAAAAAAKFAXaot6lLBRV0KAAAAfZU53AEAAAAA6P1eeukl//HNN98cxkj6p7ffftt/PG3atDBGAgAAAAAAAAAAEF7UpYKLuhQAAAD6KppfAAAAABzV2rVr/StqDRo0SFdccUWYI+pfHA6HHn30Uf/tn/3sZ2GMBgAAAAAAAAAAIHyoSwUXdSkAAAD0ZTS/AAAAAOhQXV2dfvGLX/hv33bbbYqJiQljRH3L2Wefrc8//1wej6fdxz/99FPl5ubK7XZLkqZMmaKzzz47lCECAAAAAAAAAAD0CtSljg11KQAAAPR3EeEOAAAAAEDv8vTTT+v777+Xy+XSokWLtHv3bknSkCFDdM8994Q5ur7lP//5j/7zn//IbrfrlFNOUVpamqKiolRWVqaVK1f6X1tJSkxM1GuvvSazmTUKAAAAAAAAAADAwEBdqudQlwIAAEB/R/MLAAAAgFYWLFigpUuXtrrPYrHopZde0qBBg8IUVd/mdDq1aNGiDh8fO3as3n33XZ144okhjAoAAAAAAAAAACC8qEv1POpSAAAA6K9ofgEAAADQIbvdruzsbP3mN79RTk5OuMPpczZu3KiFCxeqoKBAO3bsUFlZmQ4dOqSYmBglJydr+vTpOv/88/XTn/5UFosl3OECAAAAAAAAAACEDXWpY0NdCgAAAP2dyTAMI9xBAAAAAAAAAAAAAAAAAAAAAAAAAO0xhzsAAAAAAAAAAAAAAAAAAAAAAAAAoCM0vwAAAAAAAAAAAAAAAAAAAAAAAKDXovkFAAAAAAAAAAAAAAAAAAAAAAAAvRbNLwAAAAAAAAAAAAAAAAAAAAAAAOi1aH4BAAAAAAAAAAAAAAAAAAAAAABAr0XzCwAAAAAAAAAAAAAAAAAAAAAAAHotml8AAAAAAAAAAAAAAAAAAAAAAADQa9H8AgAAAAAAAAAAAAAAAAAAAAAAgF4rItwBAAAAAAAAAAAAABh4ysrKwh0C0GdYLBbZ7Xb/bafTKa/XG8aIAPRn5BwAoUTOARAq5BsAoUTOaTJkyJAePR87vwAAAAAAAAAAAAAAAAAAAAAAAKDXovkFAAAAAAAAAAAAAAAAAAAAAAAAvVZEuANA3+V0OsMdAtBnmM1mWa1W/2232y2fzxfGiAD0Z+QcAKFEzgEQKuQbAKFEzmlit9vDHQIAAAAAAAAAAAAgieYXHAOv1xvuEIA+y+fz8TsEIGTIOQBCiZwDIFTINwBCiZwDAAAAAAAAAAAAhJc53AEAAAAAAAAAAAAAAAAAAAAAAAAAHaH5BQAAAAAAAAAAAAAAAAAAAAAAAL0WzS8AAAAAAAAAAAAAAAAAAAAAAADotWh+AQAAAAAAAAAAAAAAAAAAAAAAQK9F8wsAAAAAAAAAAAAAAAAAAAAAAAB6LZpfAAAAAAAAAAAAAAAAAAAAAAAA0GvR/AIAAAAAAAAAAAAAAAAAAAAAAIBei+YXAAAAAAAAAAAAAAAAAAAAAAAA9FoR4Q4AA1djY6NqamrU0NAgwzBkGEa4QwJ6hMlkkslkUlRUlOLi4hQZGRnukAAAAAAAAAAA6HeoNaG/MpvNioiIUExMjKKjo2U2s6YlAAAAAAAAQPMLus1isXRrnmEYcjqdqqmp6eGIgN7F4/GopqZGcXFxGjx4cKvHKFIACKYjcww5B0AwkXMAhAr5BkAokXMADDTLli3Tli1bVFxcrJ07d8rj8ej222/X7Nmzwx1auwzDkNvtVm1tbbhDAYLC5/PJ4/Gorq5OJpNJNptN8fHx4Q4LAAAAAAAACCuaX9Btdru9W/PKysrU0NAgs9nsX4HLbDbLZDL1ZHhA2BiGIZ/PJ6lpF5iGhgZ5PJ5WY6xWazhCAzBAkXMAhBI5B0CokG8AhBI5B0B/9/bbb6u0tFSJiYmy2+0qLS0Nd0hHVVVV1abxhUZF9CctdzJqXljQbDZ3uz4LAAAAAAAA9Ac0vyCkGhoaVFpaKp/PJ8MwZLVaFR8fT0EC/Y7P51N1dbXcbrd8Pp9KS0uVlJSkqKiocIcGAAAAAAAAAEArt956q1JTU5WcnKyFCxfqzTffDHdIHfJ4PKqqqvLfTkxMVFxcHLUm9CuGYaihoUHV1dWqr6+XJB06dEgpKSm81wEAAAAAADBg8ckYQqq5GGEYhhISEpSYmMgHtOiXzGazEhMTlZCQ4F+Zq2UxDgAAAAAAAACA3uKkk05ScnJyuMMISHMjgCTFx8crISGBWhP6HZPJpOjoaNntdkVHR0tqqq9SawIAAAAAAMBAxs4v6Dan09nlOeXl5fJ4PJKk6Oho/zHQX0VHR6uyslIej0fV1dUaNGiQJPl3hAGAYDCbzbJarf7b5BwAwUTOARAq5BsAoUTOaWK328MdAtDvud1uff/99/r++++1fft2bd++XZWVlZKkWbNm6Y477gj4XKWlpfr3v/+tNWvWqLy8XBEREUpJSVFWVpbOOecc/xfo+7qWzS+xsbFhjAQIPpPJpPj4eP/7vqKiQklJSWGOCgAAAAAAAAgPml/QbV6vt8tzmptdTCaTIiJ4+6H/i4iIkMlk8m9P38zn83XrdwgAuoOcAyCUyDkAQoV8AyCUyDkAguXmm2/ukfOsWrVKTz31lGpra/331dfX+xtqFi1apN/85jdKSUnpkeuFU3M+ptaEgSIqKqrdWhMAAAAAAAAw0PCJMEKqeXVEk8kkk8kU5miA4Gt+rxuGMSBXBwUAAAAAAAAABGbIkCEaMWKE1q9f36V5DodDTz75pBoaGhQTE6N58+Zp0qRJamhoUH5+vhYtWqR9+/bpwQcf1EMPPdTnd0uh1oSBpmWtiWZcAAAAAAAADGQ0vwAAAAAAAAAAAABhcNlll2nMmDEaM2aMbDabDh48qDvvvLNL53j11VfV0NAgi8Wi3/3udxo3bpz/sUmTJik1NVX//Oc/tW/fPn388ce64oorevppAAAAAAAAAAAQdOZwBwAAAAAAAAAAAAAMRFdccYWmTp0qm83Wrfnff/+9vvvuO0nS6aef3qrxpdn555+vESNGSJL+/e9/y+PxdDteAAAAAAAAAADCheYXAAAAAAAAAAAAoA9auXKl//j0009vd4zZbNasWbMkSdXV1dq0aVNIYgMAAAAAAAAAoCfR/AIAAAAAAAAAAAD0QUVFRZKk6OhoZWZmdjjuhBNOaDMHAAAAAAAAAIC+hOYXAAAAAAAAAAAAoA/avXu3JCklJUUWi6XDccOHD28zBwAAAAAAAACAviQi3AEAGHjuvPNOvf3220pLS9OaNWvCHQ4AAAAAAAAAAH1OQ0ODKisrJUmDBw8+6tiEhARFR0ervr5e5eXlbR5ftGiRtmzZIknauXOn/75NmzZJkiZMmKAzzjgj4Njau0Z7jtaw0xGTydTlOehfqDM1MZtZ5xJA8ByZY8g5AIKJnAMgVMg3AEKJnBMcNL8A/Vx+fr7mzZvnv33RRRfpxRdfPOqc5qKBJJWWlgYzPAAAAAAAAAAA0A11dXX+45iYmE7Hx8TEqL6+vtW8Zlu2bNHSpUtb3VdUVKSioiL/7a40v/z85z8PaNw777wT8DmblZWVyTAMmc1mRURQ6gy2vLw8XXDBBf7bF198sV5++eWjzrn99tv11ltvSZKcTmePx9TyiwID5T3Q3pcjrFZrGCIBMFCRcwCEEjkHQKiQbwCEEjmnZwyMTwMB+H300UfavHmzTjjhhHCHAgAAAAAAAAAAuqmhocF/HEgDQPOYlvOa3XHHHbrjjjt6Ljj0WwsXLtQ999yjiRMnhjsUAAAAAAAAAAMMzS/AAGMYhv7yl7/o1VdfDVsMTz/9tJ5++umwXR8AAAAAAAAAgL4uKirKf+zxeDod3zym5bxgefbZZ4N+DYSHYRh66KGH9Prrr4cthmeeeUbPPPNM2K4PAAAAAAAAIDxofgEGkMGDB6u8vFyffvqpNmzYoJNOOincIQEAAAAAAAAAgG6IiYnxH9fV1XU6vnlMy3nBMnjw4IDGOZ3OLp+7sbFRPp9PUmBNPzg2Xq/Xf9xcZ/rkk0+0Zs2aDutMzT8fiZ9RT/H5fK1eV0lyu91t7gOAnmI2m2W1Wv23yTkAgomcAyBUyDcAQomc08Rut/fo+Wh+AQaQm2++WU888YTq6+v18MMP64033gh3SAAAAAAAAAAAoBuioqKUmJioyspKlZeXH3VsVVWV6uvrJQXemBIKLRsrAmUYRhAiQSCoM/UuPp+vW79DANAd5BwAoUTOARAq5BsAoUTO6Rk0v6DbLBZLl+eYTKYgRIJADR8+XNdcc41efPFFffHFF1qzZo1OOeWULp3D5/MpPz9fX375pb755htt375dFRUViouLU1pammbNmqWbb75ZI0eO7PAcd955p95++22lpaVpzZo1/vsfffRRPfzww5Kk5cuXa8yYMUeN5fLLL9eSJUs0dOhQbdiwod335GeffaYFCxZozZo1KisrU3R0tDIyMnTOOefo5ptvls1m69Lz7ylmszks1wUwMByZY8g5AIKJnAMgVMg3AELJJ5NWOg5p8ZaDSoyJ0NWnJIc7JABo18iRI/Xdd99p//798nq9HdZu9u7d22oO0B3UmXpPnQkAAAAAAAC9W4PHp7xtZVq69aBG2uN04fHWziehUzS/oNu6sw1RWVmZDMOQ2WxWRARvv1Bo+UG9xWLRPffcozfeeEO1tbV6+OGH9d5777WZ0/ILREf+nB566CF/4aCliooKbdq0SZs2bdKrr76q5557Tueff367MXV0/iuuuMJ/7oULF+q+++7r8HkdPHhQX3/9tSTp0ksvVXR0dKvHXS6XrrvuOi1btqzV/fX19Vq/fr3Wr1+vV155RW+88YamTZvW4XV6QntfyGq5lRkABBs5B0AokXMAhAr5BkBPK6+q15KiUn1VdFDLtpaqos4jSUq1xuj22WNY2AdArzR+/Hh99913qq+vV3FxscaOHdvuuM2bN7eaA3TXL3/5S3+d6cEHH9S7777bpfmPPvqoHnnkkTb3H1lneuaZZ/TjH/+4S+e+5JJL/HWm999/X/fee2+HY1vWmS6++OI2jS8ul0s33HCDf0yzI+tMr732mk499dQuxQkAAAAAAID+aberTgUOlwocbq3aVaG6Rp8kaeLwJJpfegjdB8AAk5KSohtuuEF///vftXjxYhUWFiorKyvg+R6PRykpKfrxj3+sadOmKT09XTExMdqzZ49WrFihl19+WVVVVbr55pu1ZMmSLhXRMjMzdeqpp2rVqlVasGDBUZtfPvjgA//2X5dffnmrx+rr6zVv3jytX79eFotFl112mc466yyNHj1ajY2NKigo0DPPPKPS0lJdccUVWrp0qUaNGhVwnAAAAAAAAOj7fD5Dm/ZWaPGWg/qq6KDW73bJMNqO2+eu05b9lTo+NSn0QQJAJ6ZPn66FCxdKkr766qt2m198Pp+WLl0qSYqPj9fEiRNDGSL6mZSUFF1//fV69tlntWTJEi1fvlwzZ84MeL7H49GwYcN03nnnadq0aRo9erSio6O1d+9effPNN3r55ZdVXV2t2267TYsWLdK4ceMCPndmZqamTp2q1atX67333jtq88vChQv9dabLLrus1WP19fW69NJL/bvBXHrppTrzzDM1atQoNTY2qrCwUP/4xz9UWlqqK6+8UosXL1ZaWlrAcQIAAAAAAKB/qGv0atWuShU4XCp0uLTLVd/uuE17K1RW1SB7bPs7dyNwNL+g1/EZhly1nnCHEVK22AiZQ7hy5C9/+Uu9+uqrqq6u1oMPPqiPPvoo4LnXXnut7rvvPkVGRra6f/LkyTrvvPN0yy236Oyzz9bevXv1+OOP67nnnutSbJdffrlWrVql77//XmvXrtXJJ5/c7rgFCxZIko477rg2Y/7yl79o/fr1slqtWrhwoaZMmdLq8aysLF1++eU655xztH//fv3xj3/UCy+80KU4AQAAAAAA0PdU1jUqb1uZFm85qCVbS1Va2X4R4kiLtxyk+QVAr3Tcccfp+OOP13fffaevvvpKs2fPbtMs8Mknn2jPnj2SpLlz57bZ8b0/8hmG3AOs1mQNYa3pF7/4hebPn6+amho9/PDD+uCDDwKee/XVV+vee+9tt840d+5c3XTTTTr33HO1b98+Pfnkk3rmmWe6FNull16q1atXa/v27Vq3bl2bGlGz999/X5I0ZsyYNmMeffRRbdiwQVarVe+9954mT57c6vGZM2fqsssu09y5c3XgwAH96U9/0j/+8Y8uxQkAAAAAAIC+xzAMOcprVVDiVqHDpbW7K9XgbWdltXYUOFz68QmDgxxh/9f/P91G0Didzi7PaWxslM/XtIWTx9N+0cFZ06iznllzTLH1Nf+5/RTZ4yI7H9gNzatWNR97PB7Z7XbdcMMNeuqpp/T1119ryZIlys3N9Y9r/hlJbX9Ow4cPb/f+ZsOGDdPtt9+u3/3ud/r3v/+txsZGmY4othzt/BdccIF++9vfyuv16u2339aJJ57Y5hoOh0OrVq2S1FTEaHmOqqoqvfjii5Kk+++/X5MmTWo31uHDh+v//b//p1//+tf68MMP9eijjyo+Pr7d53SsfD5fq+csSW63u819ANBTzGazrNYftkkk5wAIJnIOgFAh3wDoDsMwVHKoVl9vdypvu1Nrd1fK4wusCCFJx6cmac6EZE0bEdutz0P7OrvdHu4QgH5vy5Yt2r9/v/92RUWF/3j//v1asmRJq/GzZ89uc47rr79eDzzwgBoaGvS///u/uvjiizVx4kQ1NDSooKBAX375pSQpNTVVF1xwQVCeR3dZLF1f6fDImkN73LUeak1BlJycrBtvvFFPPfWU8vLylJeX16rOdDSjRo066uPDhw/XHXfcod/97nf6/PPPZRhGQD/zZvPmzdMDDzwgr9erBQsWtNv84nA4tHr1akltd32pqqrSyy+/LKmpznRk40uztLQ03XPPPfr1r3+tjz76SI899ljQ6kwdMZvNIb0egIHlyBxDzgEQTOQcAKFCvgHQHVX1Hq3c4VZBsUv5Dqf2VzQEPNdkkk4aadOsccmaPDKxW5+HojWaX9BtLZsqAmUYgReWEVx33nmnXnnlFVVVVenBBx/Up59+2q3zVFZW6tChQ6qtrfX/fOPi4vyP7dixQ+np6QGfLzk5WbNmzdLixYu1cOFC/eEPf2jzj8zm1bgk6ZJLLmn1WEFBgb842FkRLysrS1JTU9b69euVnZ0dcJzHyufzdet3CAC6g5wDIJTIOQBChXwDoCN1jT6t3lWhfIdL+cUu7XEHtruLJMVGmjV9tFWnjRmkH5+SrhRrjKSmhYDIOQCCYdGiRVq6dGm7jxUVFamoqKjVfe01v2RkZOjuu+/WU089pdraWr311lttxqSmpuo3v/mNYmNjeyTuntKdJruysjIZhiGz2dzhLjaWiIFXj7JERARlV5+WBXmLxeK/xt13361XX31VlZWVeuihh/T555/7x7Ws63QWU0VFhZxOp2pqavx1poSEBElNdaY9e/a0qTMd7fypqamaPXu2Fi1apA8//FB//vOf29SZFi5c6D++4oorWp1jxYoV/jrTxRdffNT4mxt+GhsbtXHjRuXk5Bz1uR6L9r6Q1XJxAAAINnIOgFAi5wAIFfINgPYYhqHN+yq0pKhUS7eWas0OZ5cWVhuSEKXTxiVr1rhk/WhssgbFRwUx2oGH5hdggBo0aJBuvfVWPfbYY1q5cqUWL16sOXPmBDR3165d+vvf/64vvvhCu3btOurYQ4cOdan5RWpaZWvx4sU6cOCAvv76a82aNavV4++9954kaerUqcrMzGz12Pr16/3HkyZNCviaBw8e7FKMAAAAAAAA6D32V9Qrr9ilvGKXvtlZoXpP4DtDjbLHKCfDppxMm04ZmaioCLMsFovshxtfAKAvOPXUU/Xoo4/qs88+05o1a3To0CFFREQoJSVFM2fO1Lnnnqvo6Ohwh4l+ZNCgQbrtttv0yCOPaMWKFVq0aJHOOOOMgObu3LlTTz/9tD7//PNO60zl5eVdrjNdfvnlWrRokfbv369ly5a1aRpbsGCBpKbfmyPrTOvWrfMfT5gwIeBrUmcCAAAAAADou5zVDfr6+zItLSrVsm2lKq0MfGE1i9mkqaPsmjW+qeHlhNQkmc2B72SMrqH5BRjAfv7zn+vFF1+U2+3WX/7yl4CaX7788kvdeOONqqmpCegatbW1XY5r7ty5iouLU01NjRYsWNCq+WX9+vXatm2bJOnSSy9tM7e0tLTL1+tunAAAAAAAAAgPj9enDXur/A0vxeWBf7YTaTHplJGJys20KyfTplF2mlwAhM8dd9yhO+64o0fOlZycrOuuu07XXXddj5wP6Mwdd9yh559/Xm63Ww899FBAzS//+c9/dP311wdcZ6qrq+tyXD/+8Y/9daZ33323VfPL+vXrtXXrVklNTTJHos4EAAAAAADQ/3l9hjbsdmnp1qbdXdbvcqkLm7so1RqjWYd3d8k+boissZHBCxat0PyCXscaG6H/3H5KuMMIKWtseH4VrVarfv7zn+uhhx7S6tWr9cUXX+jss8/ucHx5ebluu+021dTUKD4+XnfccYdOP/10paenKykpSVFRTVtzff3117rkkku6HVdCQoLOPfdcvf/++/r000/1yCOPKCam6UsI77//viTJYrFo3rx5beb6fD+s6rlo0SJFRgb2F8rw4cO7HS8AAAAAAACC71B1owpKXMovdqmwxK2qem/Ac4cmRCons2l3l+mjrIqLsgQxUgBAoJxOZ5fnNDY2+msBHo+n3TEJkRpwtaaEyI5fj2Ph9XpbHbe8Rnx8vL/OtGrVKn322Wc6++yzW9VqWo4vLy/XzTff3KU6k8fjafO8Ojp/s5iYGH+d6eOPP9bDDz/srzO98847kprqTBdccEGb+S1vd7XOFIzXv5nP52v1vCXJ7Xa3uQ8AeorZbJbVavXfJucACCZyDoBQId8AA1tZVYMKD9eZljtcctcF/llOpMWkk0cmNdWaMuzKHBIrk6lpdxdfXZWc7azfQs5pYrfbe/R8NL+g1zGbTLLH0QEXKrfeequef/55HTp0SA8//PBRm18+/vhjud1uSdL8+fNb7cjSUneKVUe69NJL9f7776uyslJffPGFLrzwQvl8Pn3wwQeSpFmzZik5ObnNvJZJcsiQITS1AAAAAAAA9FE+w9CWA9XKP7y7y+b91Qp00S2zSTpxeIJyMmzKzbRpbHKcvwgBAOg9WjZWBMowOv/bgFpT6FBnCh+fz9et3yEA6A5yDoBQIucACBXyDdC/ebw+bdhbpcIStwocLhUdDGwn4mYjrNHKzrApO8OqqWlJrRZW604TCzmnZ9D8AgxwCQkJuuOOO/THP/5RGzZs0Kefftrh2C1btkhq+uC/o4KEJK1bt+6Y45ozZ44GDx6s8vJyvf/++7rwwgtVUFCgffv2SZIuu+yyduedeOKJ/uMVK1bo4osvPuZYAAAAAAAAEBpV9R4tL3Erv9ilAodb5TWNAc+1xkQoO8OqnEybZqZbZWOLeQAAgo46EwAAAAAAAHqL/RX1/maXlTsqVN0QeLNJdIRZp6YlKSvDquwMm0bZY4IYKbqL5hcAuvHGG/WPf/xDpaWl+stf/qJJkya1O66547C+vl4+n09ms7nNmJqaGr377rvHHFNERIQuvPBCvfLKK/ryyy/ldrv13nvvSZLi4uI0d+7cdufNmjVLcXFxqqmp0QsvvKB58+axqicAAAAAAEAvZRiGSg7VKa/Ypbxip9btqZLXF+j+LtK4oXHKzbQpJ8OmSakJspj5HAgAgFCjzgQAAAAAAIBwaPD4tHZPpQodTYuqFZfXdml+xqAYZR3e3eXkkUmKjmj7eRV6F35CABQfH69f/OIXkqTNmzdr0aJF7Y7LzMyU1FR4+PDDD9s87vV69atf/Ur79+/vkbiaV92qr6/Xe++9p08++USSdO655yohIaHdOVarVTfeeKMk6ZtvvtHvfve7o24vdvDgQb3++us9Ei8AAAAAAAA6V9foU36xSw9/WaKLXlivy1/ZoL8u3anVuyo7bXyJjTRr9nF2/e7sDH1268l689oTdXtumiaPSKTxBQCAMKHORJ0JAAAAAAAgVHY56/T2mv26+/0izXl6te54d4v+uWp/QI0v8VFmnT7Wrt+elaGPb56id2+YrP93+mjNTLfR+NJHsPMLAEnS9ddfr7///e86cOCAysvL2x1z0UUX6U9/+pPq6+t111136dtvv9Xs2bOVlJSkLVu26MUXX9T69es1ffp0rVy58phjmj59ukaPHq0dO3boz3/+s9xutyTp0ksvPeq8++67TwUFBVq9erWef/555efn65prrtGkSZMUFxcnt9utLVu2aNmyZVq0aJGOP/54XXPNNcccLwAAAAAAANq3z12vvGKX8h0ufbOzQvWejr9EeqRR9hjlZNqUm2nTySMSFUXxAQCAXoc6E3UmAAAAAACAYKht8Gr1rgoVlLhV6HBpl6u+S/PHDY1TdrpVWRk2nTQ8QZEW6kx9Gc0vACRJsbGxuvvuu/Wb3/ymwzHDhw/XX/7yF/3qV79SXV2dnnrqKT311FOtxsybN0/XXHNNp4WDQF1yySV64okn/AWJwYMHa86cOUedEx0drQULFujOO+/Up59+qk2bNun+++/vcHxiYmKPxAoAAAAAAIAmHq9P6/dWNTW8FLu6tM18pMWkqWlJysloanhJs8cEMVIAANATqDMBAAAAAACgJxiGIUd5rQpK3CpwuLR2d6UavUbA85NiLJox2qrsDJuy0q0akhAVxGgRajS/APC75ppr9PTTT2vPnj0djvnZz36m4447Tn//+9+1cuVKud1uDRo0SBMnTtSVV16pefPmKT8/v8diuuyyy/TEE0/4b1944YWKiOg8dSUkJOjVV1/V8uXL9fbbb2v58uXav3+/6urqlJiYqPT0dJ188sk666yzdPrpp/dYvAAAAAAAAANVeXWjCh0u5RW7tHyHW1X13oDnDk2IVE6mXTmZVk0fZVVclCWIkQIAeguLpev53mQyBSES9ATqTKFlNrNKKYDgOTLHkHMABBM5B0CokG+A3quq3qMVh5tdCoqd2l/ZEPBck6SJqQnKybQpO8OuiakJspjD/xkiOSc4TIZhBN4KBbRQVlbW5TkHDhyQz+eT2WzWsGHDghAV0Ps0v+9jYmI0duxYSZLT6ZTXG/gXQACgKywWi+x2u/82OQdAMJFzAIQK+QbofXyGoe/2Vyv/cMPL5v3VAc81m6SThicqJ9Oq3Ey7jhsS26u+zEzOaTJkyJBwhwAAbWzbtk0NDQ0ym81KTU0NdzhASOzbt08+n09RUVH+WhMAAAAAAEBf5fMZ2ryvQku3lmrp1lKt2eGUxxd4S8OQhCidNi5Zs8Yl60djkzUont1dBgp2fgEAAAAAAAAABKSq3qPlJW7lF7tU4HCrvKYx4LnW2AhlZ1iVk2FTVrpN1lg+ngYAAAAAAAAAABgInNUN+vr7Mi0tamp4KauqD3iuxWzS1FF2zRrf1PByQmqSzL1gdxeEHtVFAAAAAAAAAEC7DMOQo7xWecVNu7us31slbxdW3ho/NE65mTblZNo0MaV3bDMPAAAAAAAAAACA4PL6DG3Y7dKSw80u63e7ZAReYlKqNUazDze7ZB83REkxkcELFn0GzS8AAAAAAAAAAL+6Rp9W7apQfrFT+cVu7a0IfOWtuEizZqRblZNpU06GTckJbDMPAOiY0+ns8pzGxkb5fD5Jksfj6emQgF7J5/P53/fN3G53m/sAoKeYzWZZrVb/bXIOgGAi5wAIFfINEHxlVQ0qcLhU4HBpucMld13gn99FWkw6ZWSSsjNtysmwK3NIrEympkXVvLVVctYGK+rgIOc0sdvtPXo+ml8AAAAAAAAAYIDb665X/uHdXVbtcqveE/jSW6MHxSgnw6bcTJumjEhUVIQ5iJECAPoTr9fb5TlGV5aHBPoxn8/Xrd8hAOgOcg6AUCLnAAgV8g1w7DxenzbsrVJhiVsFDpeKDtZ0af4Ia7SyM2zKzrBqalqS4qIs/sf6W6MIOadn0PyCbrNYLJ0POkJzBx4w0JnNfAkEQPAcmWPIOQCCiZwDIFTIN0DPavT6tH5Ppb7e7lTedqeKywNfLivSYtK0UVblZNqVO8amUfbYIEYaHuQcAAAAAAAAAACAtvZX1KvA4VZhiUsrd7hV3RB4k0p0hFmnpiUpO8Oq7Ayb0uwxQYwU/RHNL+i27mxDVFZWJsMwZDabFRHB2w8DQ3tfjmi5lRkABBs5B0AokXMAhAr5Bui60sp6LSk6qK+KDurrrWWqrA98q/lUa4xOnzBUp48fqpzjBisuamB9tkfOAQAAAAAAAAAAA1G9x6e1uytV6HCpsMTdpQXVJClzcKyy0q3KyrDp5JGJio5gwTF038CqUAIAAAAAAADAAOHzGdqwx62vtjQ1vGzY7Q54rtkkTR1t9ze8TEhJZFdnAAAAAAAAAACAAWCXs04Fh5tdVu2sUJ0n8N1d4qPMmj7aqqx0m7LSrUq1RgcxUgw0NL8AAAAAAAAAQD/hrm3U19tK9dWWUi3delBlVQ0Bzx0UH6VZ45J1+oShmjU2Wda4yCBGCgAAAAAAAAAAgN6gtsGr1bsqVFDiVoHDpd2u+i7NHzc0TtnpVmVn2HTS8ARFWNjdBcFB8wu6zel0dnlOY2OjfL6m7j+Px9PTIQG9ks/n87/vm7nd7jb3AUBPMZvNslqt/tvkHADBRM4BECrkG6B9hmGouKxWXxc7lbfdqXW7K+Q1Ap9//LB45Y6xKzfTrompCbKYm3Z38dVXydm1uka/Qs5pYrfbwx0CAAAAAAAAAADoYYZhqLi8VoUOtwpKXFq7u1KNXSgwWWMiNCPdqux0q2amWzUkISqI0QI/oPkF3eb1ers8xzC6UHkH+jGfz9et3yEA6A5yDoBQIucACBXyDQayukavVu2sUF6xS/kOl/ZVBL67S/NW87mZNmVn2JTcshhh+MSvVfvIOQAAAAAAAAAAoC+rqvdo5Y4KFZa4VOBw60Bl4PUlk6SJqfHKSrcpO8OqE1J+WFANCCWaXwAAAAAAAACgl9vjqlO+w6W8YpdW76pQvSfwRWZGD4pRboZNuWNsmjIiUZFsNQ8AAAAAAAAAANCv+QxDWw/WqLDEpUKHW+v3VsnrC7y+NCguQlnpNmVlNO3uYouNDGK0QGBofgEAAAAAAACAXsbj9Wndnsqm3V2KXXIcqgt4bpTFpKlpScrJtCk306aRtpggRgoAQPdZLJYuzzGZWFESkCSzmYZmAMFzZI4h5wAIJnIOgFAh32AgcNU2qtDhUoHDpUKHS+XVjQHPtZikk0Y01ZdyMm0aNzReZj6L6zZyTnDQ/AIAAAAAAAAAvUBZdYMKit3KK3ZqxY4KVTd4A547LDFKuYeLEdPSkhQb1fUvEwMAEGp2u73Lc8rKymQYhsxmsyIiKHViYGjvyxFWqzUMkQAYqMg5AEKJnAMgVMg36A+8PkPrd7u0tKhUS7eWav1ul4zAN3dRqjVGs8cna9a4ZGUfN0RJMezuEizknJ7BJ8IAAAAAAAAAEAY+w9Dm/dXKL3Ypr9il7w5UBzy3afWtROVkNO3uMmZILCvhAwAAAAAAAAAA9HMHK+u0bGuZlm4t1dfbSuWqCXx3lyiLWdMzBmnWuGTNHp+s44YmUF9Cn0LzCwAAAAAAAACESGWdR4UlbuUXN20576z1BDzXFhuh7MPNLjPTrUqK4eNdAAAAAAAAAACA/qzR69OaHU4t2VqqpUWl2ryvokvzRw2K0+zxTc0uMzMHKy6K+hL6Lt69AAAAAAAAABAkhmFoe1mt8g43u6zfUylvF7abP35YfNPuLmNsOn5YvCxmVt8CAPQfTqezy3MaGxvl8/kkSR5P4E2kQF/m8/n87/tmbre7zX0A0FPMZrOsVqv/NjkHQDCRcwCECvkGfcm+inoVFDtV4HBpRYlb1Q3egOfGRJg1bbRV2Rk2ZWfaNMoe63+svrpS9dXBiBhHIuc0sdvtPXo+ml8AAAAAAAAAoAfVNXr1zc4K5RW7lF/s0v7KhoDnxkeZNWO0VbmZdmVnWDUkISqIkQIAEF5eb+BF+2aG0YUuUqAf8/l83fodAoDuIOcACCVyDoBQId+gN6n3+LR2d6UKHS4VlrhVXF7bpfmZg2OVlW5VVoZNJ49MVHSE2f8Y7/PegZzTM2h+AQAAAAAAAIBjtMdV5292WbWrQg1d2N4lfVCMcjNtys20afKIREVazJ1PAgAAAAAAAAAAQJ+1y1mnfIdLhQ63Vu2qUL0n8F1B4qPMmn54d5esdKtSkqKDGCnQe9D8AgAAAAAAAABd1Oj1ad2eSuUXu5RX7FLJobqA50ZZTDo1LUk5mTblZNo00hYTxEgBAAAAAAAAAAAQbrUNXq3aVaECh1uFJS7tdtV3af64oXHKOdzsctLwBEWwmBoGIJpfAAAAAAAAACAAZVUNync0Nbus3OFWdUPgK3ANS4zy7+4ybVSSYiItQYwUAAAAAAAAAAAA4WQYhorLa1XocKugxKW1uyvV6DUCnm+NidCMdKuy062amW7VkISoIEYL9A00vwADRHV1td599119/vnn2rRpk5xOpwzDUGJiotLS0nT88cdr2rRpmjNnjkaMGBHucAEAAAAAAMLO6zP03YFq5W13Kc/h1JYDNQHPtZikySMSm3Z3ybBpzJBYmUymIEYLAAAQXNSaAAAAAAAAjq6q3qOVOypU4HCpsMStA5UNAc81SZqYGq+sdJtyMm06fli8LGZqS0BLNL8AA8A333yjW265Rbt3727zWHl5ucrLy7Vu3Tq99dZbSk5O1ubNm1uNueiii1RQUKDs7Gx9+OGHoQobAAAAAAAg5CrqPFpe4lZesUsFDpdctZ6A59pjI5Sd0bS7y4x0q5Ji+PgVAAD0D9SaAAAAAAAA2vIZhrYerPE3u2zYU6kubO6iwXGRysqwKivDphmjk2SLjQxesEA/QPUV6Oe2b9+uK664QlVVVZKkc889VxdccIHGjBmjyMhIHTp0SJs2bdKSJUuUn58f5mgBAAAAAABCyzAMbS+rVV6xS/kOV5eLEicMi2/a3SXTphNS4mVmdxcAANDPUGsCAAAAAAD4gaumUct3uFXocGt5iVvlNY0Bz7WYpMkjEpsaXtJtGjc0jtoS0AU0vwD93J/+9Cd/MeJvf/ubrrzyyjZjZs+erTvuuENlZWWstgUAAAAAAPq92gavvtlV0dTwUuzq0pbz8VEWzUy3KifDpuxMq4bERwUxUgAAgPCj1gQAAAAAAAYyr8/Q5v1VKnC4VVji0qZ91erCOmoalhil7MPNLtNHJykhmq/vA93Fbw/Qj3m9Xn355ZeSpClTprRbjGhpyJAhuvHGG0MRGgAAAAAAQEjtdtX5m11W76pQQxe2d8kYFKPcTLtyMq2aMiJRERZzECMFAADoPag1AQAAAACAgaisqkGFJW4VOFxascOtijpvwHMjLSadPDJR2Rk2ZadblTE4ViZ2dwF6BM0vQD9WVlam2tpaSVJGRkaX59955516++23/bcLCgqUnJzcakxaWprWrFnTZu7mzZv14osvKi8vT/v375fZbNbIkSM1e/Zs3XLLLRo1alS719y5c6emTp0q6YfVwz755BPNnz9fGzduVE1NjTIyMnTVVVfp+uuvV2RkpCTJMAy9//77eu2117R161ZVV1fruOOO07XXXqvrrruuw384ND+fe++9V7/+9a+1dOlSvfDCC1q7dq3cbrdSUlJ0xhln6O6771ZqamqXX0MAAAAAABAejV6f1u6uVH6xS3kOl3Ycqgt4bnSESVPTkpSbaVNOhk0jbDFBjBQAgIHLYrF0eQ5fFAgtak29t9ZkNtOQDSB4jswx5BwAwUTOARAq5BscTaPXp/V7KlXgcKmg2KWig9Vdmp9mj1F2hk05mTadmmZVbFTXP/dC/0LOCQ6aX4B+LCoqyn+8devWkF33ySef1IMPPiifz9fq/qKiIhUVFenVV1/VY489pp/85CednuvXv/61XnnllVb3bdq0Sb/97W+Vn5+vl156SR6PRz//+c/18ccftxr37bff6t5779WGDRv0+OOPd3qtRx55RH/5y19a3bdjxw69/PLLWrBggf75z38qKyur0/MAAAAAAIDwKKtqUJ6jaXeXlTvcqm7wdT7psJTEKOVm2pSbadOpo5IUE0lRAgCAYLPb7V2eU1ZWJsMwZDabFRFBqTPY4uLi/Mfbtm3r8mseaFH/yPM+/vjj+tOf/nTUWtOTTz6pn/70p0c9l8Vi0X333aeXX3651ZjmWlNhYaFeeeUVeTwe3Xrrrfrwww9bjWuuNW3cuFFPPvnkUZ+D2WzWY489poceeqjV/S1rTW+99Zays7OPep6Ozn0kq9Xa5fMAQHeRcwCEEjkHQKiQb7DbWaNlW8u0pOigCraXq6reE/Dc2EiLssYM1qxxyZo1LlnpQ+KDGCn6A3JOzzAZhmGEOwj0TWVlZV2ec+DAAfl8PpnNZg0bNiwIUeFIp5xyinbt2iVJeuCBB3TnnXcGXGjYt2+fXC6X7rrrLq1bt05TpkzR3/72t1ZjoqKiNGbMGP/tl19+Wffdd5+kpq3tf/GLX2j69Onyer1atmyZnn76adXU1MhkMumNN97QWWed1ep8LVfjmjp1qlavXq0zzzxTV199tUaOHKm9e/fqr3/9q1avXi2pqfjRvPLXpZdeqksuuUTDhg1TcXGxHnnkEW3btk2S9K9//UtnnHFGm+fYvBrXlClTtG7dOh133HG68847NXHiRFVUVOijjz7S66+/Lp/Pp8TERH399dcaMWJEQK9fs+b3fUxMjMaOHStJcjqd8noD3wYPALrCYrG0+uIAOQdAMJFzAIQK+Qbt8foMbd5fpbxil/KKXSo6WBPwXItJmjwiUTmHG14y2XIeLZBzmgwZMiTcIQBAG9u2bVNDQ4PMZjM7tofISSed5K81/f73v9ddd90VcK1p7969crlcuvPOO7V27VqdfPLJevrpp1uNiYqK0nHHHee//eKLL+ree++V1PR30S9/+UvNmDFDXq9XS5cu1VNPPaXq6mqZTCb961//0tlnn93qfDt37tTkyZMlSaeeeqpWrVqls846S9dee63S0tK0Z88ePfHEE1q1apUk6a9//as2bdqk559/Xpdddpkuu+wypaSkaPv27Xr44Yf9C8y9++67OvPMM9s8x+Z/M5x88slau3atxo4dq7vuustfa1q4cKFee+01f62poKBAI0eODOj1a7Zv3z75fD5FRUX5a00AAAAAAKBr6hq9+qbkkJYUlWrp1lJ9f7CqS/PHDk3Q7PHJmjVuqE5Nt7OQGhAGNL+g24LW/GL4ZKpzHmN0fYsRY5dMwdnO6plnntHvf/97/+1Ro0bpnHPO0bRp03TKKado9OjRnZ7joosuUkFBgbKzs9useNVSWVmZpk6dqpqaGqWkpOjzzz9v0yiyYcMGXXDBBaqpqVFqaqpWr17t305eat38Ikm33nqr/vd//7fVOWpqapSbm6tdu3Zp0KBBcjqd+uMf/6hbb7211bgDBw5o5syZqqqq0rnnnqvXX3+9TczNzS9SU/Hmww8/VEJCQqsx77zzju644w5J0oUXXqiXXnqpw9egPTS/AAg1vqQFIJTIOQBChXyDZu5aj5bvcCuv2KlCh1uu2sBX4RoUF6HsjKZmlxmjrUqMYbV4tI+c04TmFwC9UUDNL4ZPptoBVmuKDV6t6emnn9YDDzzgvz1q1CjNnTtX06dP19SpUwOqNZ1//vnKz89XTk6OPvnkkw7HlZWVafLkyf460hdffNGmUWTDhg0677zzVF1dreHDh2vdunVtak3NzS+S9POf/1x//vOfW52jpqZGM2fObFVr+vOf/6zbbrut1bgDBw5o2rRpqqys1Ny5c/Xmm2+2ibnlvxkmT56sTz75pE2t6V//+pd+/vOfS5LmzZunV155pcPXoD00vwAAAAAA0D2OsmotLTqopVtLVVhcrrpGX+eTDkuMjlDOcUM0a3yyThuXrBG22CBGCiAQVHfR65jqnBr80vRwhxFS5TeulBE7OCjnvu2221RUVOT/MH7nzp164YUX9MILL0hqav7IycnRZZddprPPPvuYVjh96623VFPTtMLqH/7wh3Z3SDnppJP0y1/+Ug8++KD27dunzz77TBdddFG75xsxYkSrxp1mcXFx+slPfqJHH31Uhw4d0qmnntqm8UWShg0bpvPOO0/vvPOOli9f3mn8jz/+eJtihCRdccUVev/997Vo0SJ99tlnOnDgADsXAQAAAAAQIoZh6PuyWuUf3t1lw95K+bqwnM8JKfHKOdzwcnxKvMzs7gIAQK/hdHa9QaWxsVE+X9OXFDye9ptgTbXl1Jp60C233KLvvvuuVa3pueee03PPPScpsFpT83qMhmF0+HOTpNdff91fa/qf//kfpaSktBl/wgkn6K677tKDDz6ovXv36qOPPmpVa2o5fsSIEXrggQfanCMqKqpNremmm25qM27w4MGaO3eu3nnnHRUWFh41dkl67LHHFBMT02bcZZddpgULFmjRokX65JNPtGfPni7Vmnw+n/9938ztdre5DwB6itlsltVq9d8m5wAIJnIOgFAh3wwMtQ1efbPTrQKHSwXFLu1y1XVp/oRh8crOsCk706aThicq0nJ4sRGjTk5n186FgY2c06TlwjE9geYXoJ8zm83661//qosvvljPPvusli1b1uoD99LSUi1cuFALFy7UlClT9PzzzysjI6Nb11q2bJkkyWq16vzzz+9w3NVXX60HH3zQP6ej5pcf//jHrVbqamnixIn+447mS9KkSZP0zjvvyOVyye12t/qLpKUTTjih1SpgR/rZz36mRYsWyePxqKCgQBdffHGHYwEAAAAAwLGpbfBq5c4K5Ttcyi926UBlQ8Bz46Msykq3KifTpuwMmwbHt//ZAgAACL/u7KrV3ESB0KHW1DtrTT6fb0DuTAcgPMg5AEKJnAMgVMg3/YNhGCour1WBw61Ch0tr91Sq0Rv450fWmAjNTLcqK8OqmelWDYmPanl23iPoMeScnkHzCzBAzJ49W7Nnz1ZlZaVWrFihdevWad26dSosLFRFRYUkad26dbrgggv05ZdfKiUlpcvX+O677yQ17e7SUSFBkoYOHapRo0Zp586d/jntGTNmTIePtSwsHG1cUlKS/7iqqqrDgsSUKVM6PIcknXLKKf7jzZs30/wCAAAAAEAP2+2qU97h3V1W76roUmEic3CscjJtysmwacqIBEU0r8IFAACAHkOtiVoTAAAAAAC9QVW9Ryt2VKjQ4VJhibtLi6iZJE1KTVBWhlXZGTYdPyxeFnPbXWwB9E40v6DbLBZLl+e0t805QisxMVFnnnmmzjzzTElSfX293nvvPf3+97+Xy+XSgQMH9NBDD+nJJ5/s8rldLpckaciQIZ2OHTp0qHbu3Omf057Y2NgOHzObf/gSS1xcXEDjjtYx2VnMycnJ/uOjxRyolnEBQE87MseQcwAEEzkHQKiQb/qfRq9Pa3ZV6OvtTuUVO7XjUOBbxUdHmDVtVJJ+NMau3DF2DbfGBDFSDETkHAAAOkatqX2hrjUBAAAAADBQ+AxDWw/WqOBws8uGPZXqwhpqGhwXqawMq7IybJoxOkm22I4X3ADQu9H8gm6z2+1dnlNWVibDMGQ2mxUR0cHbLyFZ7lvWHGN0fYsl1i6ZwlNAj4iI0LXXXqsRI0bosssukyR9+umn+tvf/ub/ML+5aclkMnX8c2vhqD/fwzo6Z8tji8XS4XlaNl8FOi4iIuKo444Wc8tiRqCvQ7P2vhzR0apgABAM5BwAoUTOARAq5Ju+6UBFnb7aclBfFR1U3rYyVTcEvrX3CFus5kwYqjkThmpm5mDFRnV9YRagu8g5ANC3GDF2ld+4MtxhhJQR0/W6XU+Jjo7Wz372M6WkpOgnP/mJpKZa0+OPP97tBtK+uKBeX4wZAAAAAIDeylXTqOU73CpwuLW8xKVDNZ6A51rMJk0e/sPuLmOT42Tm/+1Av0DzC3ofk1lG3OBwRzHgnHHGGRoxYoT27Nkjl8ulQ4cOBbSqVkt2u1379+9XaWlpp2MPHDggSbLZbN0Jt8d1FvPBgwf9x91p/AIAAAAAYCDy+gyt2+XyN7xs2lsR8NwIs0mnptt1+vimhpfjhibwhUIAABAYk1lGLLWmUJszZ84x15psNpsOHDgQUK2puXbTV2pNLR/vLTEDAAAAANBbeH2GNu2vUqHDrQKHS5v3V6sLm7toWGKUsjNsys6watqoJCVE8xV5oD/iNxuAX2pqqvbs2SOp9epUgX6x5Pjjj9f+/fu1fv16eTyeDndHKS0t1a5du/xzeoM1a46+29DatWv9x70lZgAAAAAAeiNXTYOWbi3VV1sOaunWUjlrGgOeOyQhSrPHD9Xp44fqR+OGKCmGbecBAAD6kpSUlGOuNR04cEAbNmzoc7WmdevWHfVxak0AAAAAALRWVtWgwpKmZpcVO9yqqPMGPDfSYtIpIxOVlWFTdrpVGYNjWUQNGABofkG3OZ3OLs9pbGyUz+eTJHk8gW9BhuCrqanRli1bJEmJiYlKSkry/4yioqIkSfX19Uf9uf3oRz/SV199JbfbrYULF2revHntjps/f74Mw/DPaXnOlsder7fD63m93i6P83g8HY7bvHmz1qxZo5NOOqndx19//XVJksVi0cyZM7v0/vX5fP73fTO3293mPgDoKWazWVar1X+bnAMgmMg5AEKFfNN7GYahraU1ytvuVN52pzbsrZSvC0txTUxN0I8y7codY9fxKfH+bee9tVVy1gYpaKAT5Jwm7IAMAOiKmpoaFRUVSWqqNQ0aNMj/WHR0tCSpoaHhqOc47bTTtGTJErndbn3yyScd1preeOMNf63ptNNO64Hoj93mzZu1YcOGDmtNb775pqSmWlN2dnYoQwMAAAAAoFfweH1av7dKhQ6XChxubS2t6dL8NFu0v9llalqSYqMsQYoUQG9F8wu6rWVTQaCaP4RGaFRVVenSSy/VPffcozPPPFNms7ndcT6fT7/5zW9UVVUlSTr33HNbdcAOGzZMkrRjxw4ZhtFhd+yVV16pRx99VDU1Nfr973+vGTNmKDU1tdWYjRs36sknn5TUtNPMeeedd6xPs8fcc889WrhwoeLj41vd/9577+nLL7+UJM2dO1cpKSnHfC2fz9et3yEA6A5yDoBQIucACBXyTXjVNHi1cqdb+cVNq3EdqDz6lxhbSoi2aOZoq3IzbcrKsGlw/A+7uxg+n/ipojci5wAABipqTV0TyloTAAAAAAB9wT53vQpKXCp0uPXNTreqGwJfaComwqxpo5KUlWFVVrpNafaYIEYKoC+g+QXo59asWaOrrrpKqampmjt3rqZNm6aRI0cqISFBbrdb3377rd566y1t3rxZkpSUlKT777+/1TmmTZumt956S6WlpXrggQd0+eWXKzExUZIUGRmptLQ0SdKQIUP0+9//Xvfdd5/27t2rM844Q3fddZemT58uj8ejZcuW6emnn1Z1dbVMJpMee+wxRUZGqjeYMmWK1q1bp7POOku/+MUvdMIJJ6iiokIff/yx5s+fL0lKSEjQ//zP/4Q5UgAAAAAAwmOXs055xS7lO1xavatCjd7AFznJHByr3EybcjJtmjw8QRGW9r80CQAAgN6HWlNgqDUBAAAAACDVe3xau7tCBQ63Ch0uOQ7VdWl+5uBYZWdYlZVh05QRiYqOoKYE4Ac0vwD9WEREhIYOHaqDBw9q3759evnll/Xyyy93OD4zM1PPP/+8Ro0a1er+iy++WH/7299UUlKi5557Ts8995z/sbS0NK1Zs8Z/+4YbbpDb7dZDDz3kL2AcKTo6Wo899pjOOuusHniWPeOss87SWWedpUceeUR33XVXm8cTExP1+uuvt3ltAAAAAADorxo8Pq3dU9nU8FLs0k5n4MWJ6MMrceVm2pSdYdNwa3QQIwUAAECwUGsKHLUmAAAAAMBAZBiGdrnqVeBwqcDh0updlar3BL67S3yURdNHJyk7w6asdKtSkqgpAegYzS9APxYTE6Nvv/1Wq1at0rJly7Rq1Spt375dBw8eVH19veLi4pSSkqKJEydq7ty5Ov/88xUVFdXmPAkJCfr000/117/+VUuWLNHu3btVU1PT4XV/9atf6eyzz9ZLL72kr7/+WgcOHJDJZNLIkSM1e/Zs3Xrrrb3yg/1f//rXOvXUU/Xiiy9q3bp1crvdSklJ0RlnnKG7775bw4cPD3eIAAAAAAAE1cHKBhU4XMordmnlDrdqGgMvTgxPilZOpk25mTZNTUtSTCQrcQEAAPR11Jq6hloTAAAAAGAgqGnwatWuChU6XCpwuLXHXd+l+eOHxik7w6bsDKtOTE1QhIWaEoDAmAzDMMIdBPqmsrKyLs85cOCAfD6fzGazhg0bFoSogK5JTk6WJN1777369a9/HZRrNL/vY2JiNHbsWEmS0+mU1+sNyvUAwGKxyG63+2+TcwAEEzkHQKiQb4LD6zO0cV9V0+4uDpe2Huz4C4hHsphNmjIiQbmZduVm2pQ+KEYmkymI0QKhQ85pMmTIkHCHAKCfo9aE/oBaE4D+iP8TAQglcg6AUCHfdJ9hGNpeVqvCErcKHS6t3VOpRm/gXz+3xkRoZrpVWRlWzUy3akh824UzgP6GnNOkp2tN7PwCAAAAAAAADCCu2kYtL3Err9ilQodb7jpPwHMHx0UqO9OmnMPFiYRoPl4EAAAAAAAAAADobyrrPFq5s2l3l8IStw5UNgQ81yRpUmqCsjKsys6w6fhh8bKYWUANwLGjOg0AAAAAAAD0Y4ZhaFtpjfKKXcordmnjvir5AlyMyyTphJR45WbalJtp1/hhcTKzuwsAAOghFouly3PYaQ5oYjabwx0CgH7syBxDzgEQTOQcAKFCvjk6n2Go6EC18otdKnA4tWFPpbqwuYsGx0cqO8OmnEy7ZqRbZYuNDF6wQB9AzgkOml8AAAAAAACAfqamwauVO9zKd7iUX+zSwarGgOcmRFuUlW5VTqZN2ek2DYqnOAEAAILDbrd3eU5ZWZkMw5DZbFZEBKVO9B7BfE+29+UIq9UalGsBQHvIOQBCiZwDIFTIN9Kh6gZ9va1US4tKtWxbqcqqAt/dJcJs0tTRds0an6xZ45J1fEqSzOzuAnSInNMz+EQYAAAAAAAA6Ad2OuuUV+xUfrFLa3ZXqrELy3GNGRKrnAybcjNtOmlEoiIoTgAAAAAAAAAAAPQrXp+hdbtcWrq1VEu3lmrDbpeMLuzuMtwao1njh2rWuGRlHzdYSTEsoAYgtGh+AQAAAAAAAPqgBo9Pa3ZXKr/YpXyHSzuddQHPjY4wa/qoJOVk2pSTYVOqNTqIkQIAAAAAAAAAACAcDlbUaenWUi3ZWqq8bWVy1zYGPDfKYtaMzEGaNS5Zs8cna0xygkwmFlADED40vwAY0EpLS8MdAgAAAAAAATtQWa8Ch1t5xS6t3OFWbaMv4LkjrNHKyWza3eWUkUmKiTQHMVIAAIDOOZ3OLs9pbGyUz9f0byCPx9PTIQFd1rLWFKz3pM/n87/vm7nd7jb3AUBPMZvNslqt/tvkHADBRM4BECoDJd80en1av6dp8bQCh1NbD9Z0af4oe4yyM23KzrDr1LQkxUZZDj/ikcvl6vF4gf5qoOScztjt9h49H80vAAAAAAAAQC/l9Rn6dl9V0+4uxS5tLQ28QGExm3TyiETlHm54GT0ohtW4AABAr+L1ers8xzCMIEQC9D0+n69bv0MA0B3kHAChRM4BECr9Kd/sc9eroMSlQodb3+x0q7oh8C/Yx0SYNW1UkrIyrMrOsGmkLabV4/3lNQLCrT/lnHCi+QUAAAAAAADoRVy1jSo8vLvL8hK33HWBrx49OD5SORk25WTaNGN0khKi+fgPAAAAAAAAAACgP6n3+LR2d4UKHG4VOFwqOVTXpfmZg2OVnWFVVoZNJ49IVFSEOUiRAkDPovoNAAAAAAAAhJFhGNpaWqO8w7u7bNxXJV+AC5qbJE1MjVdupl05GTaNHxYnM7u7AAAAAAAAAAAA9BuGYWins06FJU3NLqt3VareE/juLvFRFs0YnaTsDJtmpluVkhQdxGgBIHhofgEAAAAAAABCrLrBq292NO3uku9wqbSqMeC5idEWzUy3KjfTpuwMm+xxkUGMFAAAAAAAAAAAAKFW0+DVql0VKnS4VOBwa4+7vkvzJwyLU1a6TdkZVp2YmqAIC7u7AOj7aH4BAAAAAAAAQmDHoVrlO1zKK3Zpza5KeQLd3kXScUNilZNpU26mTScOT1SEmd1dAAAAAAAAAAAA+gvDMLS9rNa/u8va3V2rJVljIzRztFVZGVZlpds0OJ7F0wD0PzS/IKTMZrN8Pp98Pp8Mw5DJxBc10L8ZhiGfr2l7QYvFEuZoAAAAAACh1ODxac3uiqbdXYpd2uUKfEWumAizpo1OUk5GU8ML288DAAA0odaEgab5/S5RawIAAACA/qayzqMVO9wqLHGr0OHSwarGgOeaTdLElARlZ1iVlWHT8cPiZWHxNAD9HM0vCKnIyEh5PB5JUl1dnWJjY8McERBcdXV1/mPe7wAAAADQ/x2orFd+sVt5xU59s7NCtY2+gOeOsEYrN9OmnEybpqYlKTqC7ecBAACORK0JA01NTY3/OC4uLoyRAAAAAACOlc8wVHSgRgUlLhU63Pp2b6W8gW/uosHxkcpOb2p2mT46SbZYdncBMLDQ/IKQiomJUW1trSTJ7Xb772NVLvQ3hmGorq7O/z6XpMTExDBGBAAAAAAIBo/P0Ma9Vcp3uJRX7NK20prOJx1mMZt0yshE5WQ27e4y2s5nJAAAAJ2h1oSBwDAMeTwe1dbWqrq62n+/3W4PY1QAAAAAgO5w1jRqxQ63ChxuLS9x6VCNJ+C5FrNJk4cnKDvDpqwMq8Ylx/EZCIABjeYXhFR0dLSioqLU0NAgwzDkcrkkNW1RD/QnzdvPN4uOjlZ8fHyYogEAAAAA9CRXTaMKStzKL3apsMSlijpvwHOHxEcqJ9OmnMMrciVE8/EcAABAV1BrwkBgGIYMo/XSv3FxcYqOjg5TRAAAAACAQHl8hjbtq1Khw62CEpe+21+tLmzuopTEKGVl2JSTYdWpo6glAUBLZESElMlkkt1ul9PpVENDg//+IxsFgP4kKipKgwcPpuMaAAAAAPoowzBUdLBGecUu5Re7tHFfVcBFCpOkSakJ/t1dxg2Nk5n/HwIAAHQbtSYMRAkJCbJareEOAwAAAADQgdKqBhU63CoscWnFDneXFk6Lsph0SlqSstKtys6wKX0QO9wCQEdofkHImc1mDRo0SA0NDaqtrVVjYyMFCfQ7ZrNZkZGRio2NVVRUFCvOAQAAAEAfU93g1codbn/DS1l1Y8BzE6MtyspoanbJSrfKHhcZxEgBAAAGHmpN6O/MZrMsFouio6MVHR2tiIgIvvgEAAAAAL1Io9en9XuqVFjiUqHDra2lNV2aP8oeo6x0q7IybJo6MlGxUZYgRQoA/QvNLwgLk8nk/7AWAAAAAAAg3AzD0A5nnfIPN7us2V0pjy/wTejHJscpJ8Oq3Ey7Jg1PUISZL6YBAAAEE7UmAAAAAAAQSnvd9SoscanA4dY3O9yqaQx8IY6YCLOmjUpSdoZNWRlWjbTFBDFSAOi/aH4BAAAAAADAgFTv8WnNrgrlO1zKK3Zpt6s+4LkxEWZNH52knEybcjJsSkniS5cAAAAAAAAAAAD9RV2jT2t3V6igxK1Ch0slh+q6ND9zcKxyDje7TBmRqKgIc5AiBYCBg+YXAAAAAAAADBj7K+r9zS7f7KhQnSfwVblG2qKVe7jZ5ZS0JEVTpAAAAAAAAAAAAOgXDMPQTmedCkvcKnC4tHpXpeq7UEeKj7Joxuim3V1mpltZOA0AgoDmFwAAAAAAAPRbHp+hjXurlFfsVF6xS9+X1QY8N8Js0ikjE5t2d8m0abQ9RiaTKYjRAgAAAAAAAAAAIFRqGrxatatChQ6XChxu7XHXd2n+hGFxykpvWjhtUmq8IiwsnAYAwUTzCwAAAAAAAPoVZ02jChwu5TvcWl7iUkWdN+C5Q+IjlZNpU26mTdNHWxUfZQlipAAAAAAAAAAAAAgVwzBUdKBSS4tKtWjzPq3ZVSGPzwh4vjU2QlnpVmWlWzUz3abB8ZFBjBYAcCSaXwAAAAAAANCnGYahooM1yit2Kb/YpY37qhRomcIk6cThCU27u2TYNH5oHLu7AAAAhIjFQqMxECiz2XzU2wDQk8g5AEKJnAMg2CrrPFpe4lJhiVuFDrf2V9QFPNdskialJir7cB3p+JQEWczUkQB0jn/jBAfNLwAAAAAAAOhzquo9Kix2Kq/YpQKHS2XVjQHPTYqxKCu9aXeXrHSrbHGsygUAABAOdrs93CEAfZbVag13CAAGEHIOgFAi5wA4Vj6foU17K7Sk6KCWbi3V2l0uebuwu0tyYrRmjUvWrHHJyj1uiOzxUUGMFsBAwb9xegbNLwAAAAAAAOj1DMPQ9wertKTooBZvOaiVjkNd2oZ+bHKccjNtysm0aVJqgiJYlQsAAAAAAAAAAKBfKK+q19fbyrR0a6mWbS1VeXVDwHMjzCZNHW3X7PFDNWtcso5PTZTJRB0JAHojml8AAAAAAADQK9V7fFq9q0L5xS7lO1za7aoPeG5MhFnTRycpN9OunEyrhiVGBzFSAAAAAAAAAAAAhIrH69P63S4tLSrV0q2l2rDHLSPwNdM0wharWeObdnfJHjNYiTGRwQsWANBjaH4BAAAAAABAr7G/ol55h5tdvtlRoTqPL+C5abZof7PLKSOTFBVhDmKkAAAAOFZOpzPcIQB9htlsltVq9d92u93y+QL//xIAdAU5B0AokXMABOpgZYMKHU4VOFxaXuJWRZ0n4LlRFpOmjrLqjBNSNXt8ssYkJ6iiokI+n0+e2io5a4MYOIABiX/jNLHb7T16PppfAAAAAAAAEDYen6Fv91Y2NbwUu/R9WeDVhQizSaekJSo306acDJtGD4oNYqQAAADoaV6vN9whAH2Wz+fjdwhAyJBzAIQSOQdAs0avT+v3VKrA4VZhiVvbSmu6NH+UPUZZ6VZlZ9g0NS1R8TFRrb6ETb4BEErknJ5B8wsAAAAAAABCylnTqHxHU7PL8hK3KusD/5BvWFK0Th8/VNNHxjUVKqIsQYwUAAAAAAAAAAAAobLXXa8Ch0uFJW59s8OtmsbAd0mIiTBr2ugkZafblJVh1UhbTBAjBQCEA80v6DaLhS+XAIEym81HvQ0APYmcAyCUyDkAAuEzDG05UK2vtzuVv92pjfuqZAQ412ySThyeqB+NGaS5U9J0QmqSTCbTgN0WGkBo8G8cAAAAAAAAAAi+ukaf1u6uUEGJW4UOl0oO1XVp/pghsf5mlykjEhUVwWe5ANCf0fyCbmu5/RuArrFareEOAcAAQs4BEErkHADNKusalbetTIu3HNSSraUqrawPeK4tLlKzxiXr9PFDNWtcsuzxUW3GkG8AhBI5BwAAAAAAAACOnWEY2umsU4Gjqdll9e4K1XsCXTJNio+yaMboJGVn2pSVbtWwxOggRgsA6G1ofgEAAAAAAMAxMwxD20ur9dWWg1q85aC+KTkkjy/wYsXxqUmaMyFZcyYM1ZQ0uyxmUxCjBQAAAAAAAAAAQCjUNHj1zc4KFTpcKixxa4878AXTJGnCsDhlZ9iUnW7TpNR4RVjY3QUABiqaXwAAAAAAANAtdY1eFRaXa8mWg1pcdFC7DtUGPDcuyqKc44ZozoShOn38UKVYY4IYKQAAAAAAAAAAAELBMAxtL6tVweFml7W7K7u0YJo1NkJZ6VZlpVs1M92mwfGRQYwWANCX0PyCbnM6neEOAegzzGazrFar/7bb7ZbP5wtjRAD6M3IOgFAi5wADz76Ken293an87U6t3OFWnSfw3/lR9hjlZtr1ozF2nZKWpKiIwytz+WrldB69cYZ8AyCUyDlN7HZ7uEMAAAAAAAAA0AdU1nm0YodbhSVuFTpcOljVGPBcs0malJqgrHSrsjNsmjAsXhazKYjRAgD6Kppf0G1erzfcIQB9ls/n43cIQMiQcwCEEjkH6H88Xp827K1SXrFL+Q6XtpcFvrtLpMWkU0YmKjfTrpxMm0bZW+7uYhxTviDfAAglcg4AAAAAAAAA/MBnGNpyoFoFDrcKS1zauLdK3sA3d9GQ+EhlZdiUnW7V9NFWWWP5OjMAoHP8bQEAAAAAAIBWDlU3qqDEpfzipu3oq+oD/8L30IRI5WTalJNp0/RRVsVFWYIYKQAAAAAAAAAAAELBWdOo5SVuFZS4tNzhlrPWE/Bci9mkKSMSlJVuU3aGVWOT42QysbsLAKBraH4BAAAAAAAY4JpX58ovdimv2KXN+6sV6OJcZpN04vAE5WTYlJtpo1gBAAAAAAAAAADQD3h8hjbtq1KBw6VCh1vfHQi8fiRJKYlRys5s2t3l1FFJSojmK8sAgGPD3yQAAAAAAAADUFW9R8tL3MovdqnA4VZ5TWPAc60xEcrOsCon06aZ6VbZYiODGCkAAAAAAAAAAABCobSqwd/ssmKHW5X13oDnRllMOiUtSdkZVmWn2zR6UAwLpgEAehTNLwAAAAAAAAOAYRgqOVSnvGKX8oqdWrenSl5f4OtzjRsap9xMm3IybJqUmiCLmWIFAAAAAAAAAABAX9bo9Wn9nkoVONwqLHFrW2lNl+aPsscoO8OqrHSbpqYlKibSEqRIAQCg+QUAAAAAAKDfqmv0afWuCuUVu5Rf7NLeivqA58ZGmjVjtFW5mTZlZ9g0NDEqiJECAAAAAAAAAAAgFPa661XgcKnA4dKqnRWqafQFPDc20qxTRyUpO92mrAyrRtpighgpAACt0fwCAAAAAADQj+xz1yvf4VJesUvf7KxQvSfwgsUoe4xyMm3KzbTp5BGJioowBzFSAAAAAAAAAAAABFtdo09rdleo0OFWQYlLOw7VdWn+mCGxyk63KTvTqsnDqR8BAMKH5hcAAAAAAIA+zOP1af3eKv/uLsXltQHPjbSYNDUtSTkZTQ0vaXZW5wIAAAAAAAAAAOjLDMPQDmedCh1uFTpcWr27QvUeI+D5CdEWzRhtVVaGVVnpVg1LjA5itAAABI7mFwAAAAAAgD6mvLpRhYd3d1m+w62qem/Ac4clRin7cLPLtFFJiouyBDFSAAAAAAAAAAAABFt1g1erdlao0OFSYYlbe9z1XZp//LB4ZWVYlZ1u06ThCYowm4IUKQAA3UfzCwAAAAAAQC/nMwx9t79a+YcbXjbvrw54rtkknTQ8UTmZVuVm2nXckFiZTBQsAAAAAAAAAAAA+irDMLS9rFb5DpcKHW6t21Mpjy/w3V2ssRHKSrcqO8OmmaOtGhQfGcRoAQDoGTS/AAAAAAAA9EJV9R4tL3Erv9ilAodb5TWNAc+1xkYoO8OqnAybstJtssbyERAAAAAAAAAAAEBfVlHn0codbhU43Coscam0KvDakdkkTUpNUHaGTVnpVk0YFi8Lu7sAAPoYvvkAAAAAAADQCxiGIUd5rfKKm3Z3Wb+3St4urNA1fmiccjNtysm0aWJKAgULAAAAAAAAAACAPsxnGNpyoFoFDrcKHC5t3FelLpSONCQ+UlkZNmWnWzV9tJXF0gAAfR5/kwEAAAAAAIRJXaNPq3ZVKL/Yqfxit/ZW1Ac8Ny7SrBnpVuVk2pSTYVNyQlQQIwUAAAAAAAAAAECwOWsatbykqdlleYlbzlpPwHMtZpOmjEhQVnrTYmnHDYmVycRiaQCA/oPmFwAAAAAAgBDa665X/uHdXVbtcqveE/gSXaMHxSgnw6bcTJumjEhUVIQ5iJECAAAAAAAAAAAgmDw+Qxv3VanQ4VKhw63vDlSrC5u7KDUpStkZNmVlWDVtlFXxUZagxQoAQLjR/AIAAAAAABBEHq9P6/ZUKd/hUn6xS8XltQHPjbSYdGpakn93lzR7TBAjBQAAAAAAAAAAQLAdrGxQYUlTs8uKHW5V1nsDnhtlMWlqWpKyMqzKTrdp9KAYdncBAAwYNL8AAAAAAAD0sPLqRhU4mnZ3WV7iVnVD4EWLYYlR/maX6aOSFMsKXQAAAOinLBb+rQsEymw2H/U2APQkcg6AUCLnYCBo9Pq0bnel8oudKnC4tK20pkvzRw+KUXaGXdkZNk0dlaTYSP4/3R3kGwChRM4JDppfAAAAAAAAjpHPMLR5f7Xyi5t2d9l8oDrguWaTdNLwROVm2pSbadOYIbGs0AUAAIABwW63hzsEoM+yWq3hDgHAAELOARBK5Bz0F7sO1WjJ1lItLSpV4fayLi2UFhdlUfaYIZo1PlmzxiZr1OC4IEY6cJFvAIQSOadn0PwCAAAAAADQDZV1Hi0vcSvf4VKBw6VDNZ6A59piI5SVYVVupl1Z6VYlxfARDQD0SjWHJPduKSYt3JEAAAAAAAAA6MXqGr1aXlyupVtLtXRrqYpLA18oTZImpCRq1rhkzRqXrKnpdkVHsLsLAABH4psVAAAAAAAAATAMQ8Xltco7vLvL+j2V8hqBz58wLE65GXblZFp1QkqCLGZ2dwGA3sRUU6aI0o2KOLhRkWWbpbLvJPdOKXG4dENBuMMDAAAAAAAA0IsYhqHismotLSrVkq2lWlFcrnqPL+D5iTER+tHYIZo1LlmnjUtWqjU2iNECANA/0PwCAAAAAADQgbpGr1btrGhqeHG4tK+iIeC58VFmTR9tVW6mTdkZNiUnRAUxUgBAwAxD5qp9iijd5P9jKd0kS/WB9sdX7pWpulSKGRTaOAFgAHA6neEOAegzzGazrFar/7bb7ZbPF/gX6wCgK8g5AEKJnIO+pLreq5U73SoodqrA4dJed32X5h+fEq+cDLtyMm2aNDxREc0Lpfnq5HTWBSFitES+ARBK5Jwmdru9R89H8wsAAAAAAEALe1x1yne4lFfs0updFar3BL69y+hBMcrNsCl3jE1TRiQq0mIOYqQAgE4ZhswVO5uaXA7+0OxirjvUpdNYSjfJk/ajIAUJAAOX1+sNdwhAn+Xz+fgdAhAy5BwAoUTOQW9iGIa+L6tVgcOlQodb/z97fx7e1nnf+d+fs5AEVwAkQZFaCWonKcl2bEei5NhOmzib0zhN03SazHSmV9snSdN2Ol3GWSdN3KS755euaTuTtpl2xl2SmWZzEm+NRHmLY1kkJdkSQa2kCC4Ad4Jnef4ARYkhJYECCG7v13XhoqBz7ptf2eItAOd87u/LF4fleJlfNwoV2zpQH9SBaEj7twRVWVpwzeSe+Ku+tFhvAOQTa05uEH4BAAAAAABrmuN6evnisI50JnW4c1Cxgcx31iq0DL1uU4UONoR0qCGkjaHAIlYKALghz5WV7JLd2y4r3iY73iY73iEzNZzdvFaRzJHrdIUBAAAAAAAAsKoMTTh6/mxSrbGkjnYlFB+ZynisaUjNdWVqiYZ0oD6o3bWlMg1jEasFAGBtIfwCAAAAAADWnL7RlFo7kzoSS+jZrqRGU5nvsLKuvFCHGkI62BDSXZsqVFxoLWKlAIB5uVOyBs9MB1ymO7r0nZAxNZbVtH5BiZzqRrnrmhWof71Ut0+q3qHU0IjYhhEAAAAAAABYfTzf18nLo2qNJdUaS6ite0QLaO6i6tICHYiGdDAa1N1bgqoIcFsuAACLhX9lAQAAAADAquf5vjp6RnWkM6HDnQmduDya8VjLkPZuKNfBaLq7y9bqYhns0gUA+eNMyu4/JetKyCXeLrv/pAw3ldW0XmG5nEiTnEiT3EiznJomucF6ybRkWZYC4XBu6gcAAAAAAACwrAyMTunZs0kdjSV0tCupxLiT8VjbNHTbhnIdiAbVEg1pG9eNAADIG8IvAAAAAABgVRqecHS0K6kjnQm1xhIaXMCFi1CxrZbpsMv+enbpAoC8mRqT3Xfyasgl3i5r4FUZXuZr+Hy8QKWcmiY5keaZwItXsUniojQAAAAAAACw6jmer7buER2NJdQaSy5okzRJqqsoVEs0pAPRoO7aHFRpobVIlQIAgBvhzg0AAAAAALAq+L6vM33jOjwddjl2cVjuAtrS715Xmu7usjWk3etKZZncEA0Ai8mYHJbV1zE76DJ4RobvZTWvW7pO7nTAxYk0yalplldaS9AFAAAAAAAAWEN6h1M62pUOuzx3NqmRSTfjsYWWoddtqpjp7rIlHKC7CwAAywDhFwAAAAAAsGJNTLl64dyQDncmdKQzoZ7hVMZjSwtNvX5LUIcawmqJBlVdVriIlQLA2maMD8ru65Adb5Pd25YOuiTPZj2vW75xOuAyHXSpbpJfGslBxQAAAAAAAABWkpTj6dilYbXGkjoaS+h03/iCxm8OB3RwurvLHRvLFSiguwsAAMsN4RcAAAAAALCiXExMzIRdXjw/pNQC2rvUVwZ0qCGkQw0h7dtQrgLLXMRKAWBtMkbj6ZDLtR1dhi9mPa8brJ8OuTTPdHXxA6HsCwYAAAAAAACwIl1MTOhoV1KtsYReODek8anMu0oXF5i6a3OFWqIh7a8PamMosIiVAgCAXCD8AgAAAAAAlrUp19PLF4d1pDOhw50JdQ1MZDy20DJ056YKHWwI6WBDiAsXAJBLvi9zpPtq0KW3XVa8XdZYb3bTGqbc8NbpgEs66OJGdssvLM9R4QAAAAAAAABWookpTy9dGFJrLKHWWFLnBjO/ZiRJ26qLdSAaUks0qH3ry1Vos0kaAAArCeEXAAAAAACw7PSNpHQklu7u8tzZpEZTme/Uta68cKa7y12bK2hLDwC54Psyh87NhFyudHQxJwaym9YskFu1Y6aTixNpklO1SyoozlHhAAAAAAAAAFYq3/d1dnBCrbGEjsaSeunCkCYdP+PxZUWW9m8J6kA0qAP1IdWUFy5itQAAYLERfgEAAAAAAEvO9XyduDyqw2cSOhwb1MnLYxmPtQxp34bydHeXaEhbq4tlGMYiVgsAq5znykrEZgIuVrxNdrxDZmo4q2l9q1BO9e5rgi7Ncqu2S1ZRjgoHAAAAAAAAsNKNply9cC6po7H049LQ5ILGN64rTYddoiE115XJNrlmBADAakH4BQAAAAAALImhCUfPdiV1uDOh1lhCiXEn47HhYlst0XR3l/31QZUH+IgDAG6JOyVr8IzseJvs3rZ04KXvhAxnPKtp/YISOdWNs4Mu4QbJKshR4QAAAAAAAABWA9/3dbpvXK2x9PWiYxdH5HiZd3cJFds6UJ8Ou+zfElRlKZ9BAgCwWnFnCAAAAAAAyAvf93Wmb1yHOxM6EkvolYvDcjO/dqHGdaXp7i4NITXWlsqkuwsALIwzKbv/lKzpji52vF12/0kZbiqrab2iimtCLk1yI81yg1sk08pR4QAAAAAAAABWk6EJR891JdXaldTRWEJ9o1MZjzUNqbmuTC3RkFqiQe1axzUjAADWCsIvAAAAAABg0YynXL1wfigdeOlM6PJw5jdYlxZa2l8f1MFoSC0NQVWXFi5ipQCwykyNye47cTXkEm+XNfCaDC/zLlvz8QKVcmrSnVyuhF28ik0SF5cBAAAAAAAAXIfn+zrRM6qjXUm1xhJq6x7RApq7KFJWoAP16bDL3VuCqghw6ysAAGsRrwAAAAAAAEBOXUhMzIRdvn9+SKkFtHeJVgZ0qCGsgw1B3bahXLZlLmKlALA6GJPDsvo6rgZdettkJTpl+F5W87qltdOdXJqmAy9N8kprCboAAAAAAAAAuKmB0Sk9ezbd2eVoV1KJ8cw35rFNQ7dtKNeBaFAt0ZC2VRfL4HNJAADWPMIvAAAAAAAgK1Oup5cvDuvwmYQOxxI6OzCR8dgi29DrNlXoUENIB6MhbQgFFrFSAFj5jPHBa7q5tKU7uiTPZj2vW74x3cnlmq4ufkl1DioGAAAAAAAAsBY4nq+2SyNq7UroaCypE5dHFzS+rqJQLdGQDkSDumtzUKWF1iJVCgAAVirCLwAAAAAAYMH6RlI6EkvocGdCz59NajSVeXeB2vJCHWoI6VBDSHdurlCggIsXADAfYzQ+HXBpmwm8WMOXsp7XCUXT3VyuefiBUPYFAwAAAAAAAFhTLg9P6mhXUkdjST13NqmRSTfjsUW2oddtrNCB6cDLlnCA7i4AAOCGCL8AAAAAAICbcj1fHT0jOtyZ0JFYQicvj2U81jKkfRvK091dGkJqqKI1PQDM4vsyR7qvhlx622XF22WN9WY3rWHKDW9Nd3KZ7ujiVu+SX1ieo8IBAAAAAAAArCUpx9OxS8NqjSXVGkvoTN/4gsZvqQyopT4ddrljY4UCBeYiVQoAAFYjwi8AAAAAAGBeyXFHz55N6nDnoI7GkkqMOxmPrSyx1RJNd3d5/ZagygN8BAEAktJBl+TZmU4uVx7mxGB205oFcqt2zOrm4lTtkgqKc1Q4AAAAAAAAgLXoYmJCR7uSOhJL6MVzQxqf8jIeW1xg6q7NFWqJhnSgPqgNocAiVgoAAFY77jwBAAAAAACSJN/3dbpvXEc6EzrcmdArl4bl+ZmPb6wt1cHpwMvu2lKZdHcBsNZ5rqxEbCbgYsXbZMc7ZKaGs5rWt4rkVO+eFXRxq7ZLVlGOCgcAAAAAAACwVk1Mufr++WEd7UqoNZbUucGJBY3fVl2slmhILdGg9m0oV4FFdxcAAJAbhF8AAAAAAFjDxlOunj83pCOxhI50JnR5OJXx2NJCSwfqgzrYEFJLNKSq0oJFrBQAljl3Stbgadm97bLjbenAS98JGc54VtP6BSVyqhvl1DRfDbqEt0omH+0CAAAAAAAAyJ7v+zo7MKHWroSOxpJ66cKQJp3Md0crL7L0+i1BHYgGdaA+pJrywkWsFgAArGVcIQUAAAAAYI25kJjQ4enuLt8/P6QpN/MLGA1VxTrYENLBaEi3bSiTzW5dANYiZ1J2/ynZ8TZZ011d7P5TMtzMA4Tz8YoqZndziTTLDdVLBmstAAAAAAAAgNwZTbl64VxSrbGkjsYS6h5a2GebjetK02GXaEjNdWWyTWORKgUAALiK8AsAAAAAAKvclOvpBxeGZwIvC2lPX2QbunNTUIcaQjrYENL6YNEiVgoAy9DUmOy+E+mAy/TDGnhNhudkNa1XXCkncqWbS7OcmiZ55Rslg4vEAAAAAAAAAHLL9329Fh9Lh126Enr54ohcL/PN0cLFtvZHg2qpD+n1W4KqLC1YxGoBAADmR/gFAAAAAIBVKD6S0pFYQkc6E3quK6mxKS/jsXUVhdNhl7Du3FSuQIG1iJUCwPJhTA6nwy3XBl0Gz8hQ5heB5+OW1k53cmmSU5MOu3il6wi6AAAAAAAAAFg0yXFHz59NqrUr3d2lb3Qq47GmIe1ZX6YD9SG1RIPata5UJp9nAgCAJUb4BQAAAACAVcD1fLX3jOhwZzrwcqp3LOOxlmnotg1lOhgN6VBDSNGqYhlcwACwyhnjA7LjHdMhlzbZ8TZZyXNZz+tWbJru5nL14ZdU56BiAAAAAAAAALg+z/d1omdUR7uSao0l1NY9ogU0d1GkrGAm7HL3lqAqAtxeCgAAlhdenQAAAAAAsEIlxx0d7UqHXVq7kkqOOxmPrSyxdTAa0sGGkPbXB1VWxEcEAFYvY7T3mpDLdEeX4UtZz+uEouluLpHmdEeX6kb5gVD2BQMAAAAAAABABvpHp/RsV0JHu5J6tiupxAKuFdmmods2lKslGlRLNKSt1WyOBgAAljfubAEAAAAAYIXwfV+vxcd0JJbQ4c6Ejl9a2I5djbWlOtSQ7u5Ce3oAq5Lvyxzplt17fCbkYsfbZY7Fs5vWMOWGt6U7udSkwy5u9S75heU5KhwAAAAAAAAAbs7xfLVdGlFrV0JHY0mduDy6oPHrK4rUEg3qQDSkOzdXqLTQWqRKAQAAco/wCwAAAAAAy9hYytXz55I60pluUX95OJXx2LIiS/u3BHWoIaQD0ZCqSgsWsVIAyDPfk5k8NyvkYsfbZU4MZjetWSC3akc66BJpTn+t2ikVFOeocAAAAAAAAADI3OXhSR3tSupoLKnnziY1MulmPLbINvS6jRU6EA3pQDSoLeEA3V0AAMCKRfgFAAAAAIBl5vzghA53JnQkltD3zw9pys28vUtDVbEONYR0sCGkfevLZFvmIlYKAHniubISnemAS2865GL1tctMjWQ1rW8VyanePd3RJR10cSu3S1ZhjgoHAAAAAAAAgIVJOZ5evjiso7GkWrsSOtM3vqDxWyoDaqkPqSUa1O0bKxQo4FoRAABYHQi/AAAAAACwxFKOpx9cHE4HXjoTOjc4kfHYItvUXZsrdKghpJZoSOuDRYtYKQDkgTsla/D0dMilLf3oOynDWdgF3h/mFZTKjTROd3RJP9zwVsnkI1IAAAAAAAAAS+tCYmIm7PLiuSGNT3kZjy0pMHXXlqAO1KcfG0KBRawUAABg6XBld5U4ffq0/vEf/1GnTp2S67ravHmz3v72t6ulpWWpSwMAAAAAzKN3OKXWWEKHOxN6/mxSYwu4iLG+okgHG0I61BDS6zaxYxeAFcyZlN1/Sna8TVY83dHF7jslw0tlNa1XFJwVcnEizfJCWySD9RIAAAAAAADA0puYcvX988M62pVQayy5oI3RJGl7pEQH6oNqiQa1b0O5Ciw++wQAAKsf4ZdVoK2tTY888ogKCwvV0tKi4uJiPffcc3r00UfV39+vBx98cKlLBAAAAIA1z/V8tXWP6Mh04OXV3rGMx1qmods3lM8EXuorAzIMYxGrBYBFkBqV3X9iuqNL+mENvCbDd7Oa1iuulBNpngm5ODVN8so3SqyTAAAAAAAAAJYJ3/d1dmBCR2IJHe1K6qXzQ0q5fsbjy4ssvX5LUAeiQR2oD6mmvHARqwUAAFieCL+scK7r6i/+4i9kmqY+/elPq76+XpL0nve8Rw8//LD+4R/+Qfv371ckElnaQgEAAABgDUqMT+nZrqQOdyZ0NJZUcsLJeGxVSYFaGkI6GA1qf31QZUW8hQewchiTQ7LjHVe7ucTbZQ2ekaHML+bOxy2rnQm6uNNdXbzSdQRdAAAAAAAAACw7I5OOXjw3pNaupI7GEuoeWljH68Z1pWqJhnQgGlRTXZlsk89BAQDA2sadMytcW1ubLl++rPvuu28m+CJJJSUleuihh/Snf/qneuaZZ/Se97xn6YoEAAAAgDXC9329Fh/T4c50d5e27hF5Gd7nbUhqrC3VoYaQDjWEtXNdiUxu5gawAhjjAzMBl/SjTVbyXNbzuhWbpru5XH34JdU5qBgAAAAAAAAAcu/KdaLWWFJHuxJ6+eKI3EwvFEkKF9vaHw2qpT6k128JqrK0YBGrBQAAWHkIv2QhmUzq9OnTOn36tM6cOaMzZ85oeHhYknTvvffqwx/+cMZzxeNxffOb39RLL72k/v5+2bat2tpaHThwQA888ICKiormHdfe3i5J2rdv35xjt912mySpo6NjgX8yAAAAAECmxlKunj+b1JFYQkc6E+odmcp4bFmRpQP1QR1sCKmlPsRFDADLnjHamw649LbJjrelO7qMdGc1py9Dbih6tZtLTZOc6ib5gWCOqgYAAMuVZVlLXQKwYpimecPnAJBLrDkA8mmlrznJ8Sk915XUkc5BtXYl1LeA60SmIe1dX66WhpAONoS1a10pG6MBi2ilrzcAVhbWnMVB+CULP/dzP5eTeV588UV94Qtf0Pj4+MzvTU5OzgRqnnjiCT388MOqra2dM7anp0eSVFdXN+dYKBRSIBBQd3d2NyAAAAAAAGY7Nzihw52DOtKZ0EsXhjXlZr5r19bqYh2MhnSoIaS9G8ppUQ9gefJ9mcOXZgIuVx7mWDy7aQ1LbuW2a7q5NMut3iW/sCxHhQMAgJUkHA4vdQnAihUMEhYHkD+sOQDyabmvOZ7n65WLST1zKq5nXu3Vy+cTWkBzF62rKNK9OyK6b2eNDm6tVrCEjdGApbLc1xsAqwtrTm4QfsmR6upqbdiwQceOHVvQuFgspkcffVSpVEqBQEDvete71NzcrFQqpSNHjuiJJ55Qd3e3Pve5z+nzn/+8iouLZ40fGxuTJJWUlMw7f3Fx8cw5AAAAAIBbk3I8vXRhWEc6EzoSS+jc4ETGY4tsU3dvrtDBhpAORkOqC87f2RMAlozvyUyenRVysXvbZU4mspvWLJBbtWMm5OJEmuRU75LsQG7qBgAAAAAAAIA8iA9P6nuvxfXMq3F977U+DYymMh5bYBm6q75S9+6I6N6dEe1cVy6D7i4AAAC3hPBLFt7znvdo69at2rp1q0KhkHp7e/WLv/iLC5rjS1/6klKplCzL0sc//nHt2LFj5lhzc7Pq6ur05S9/Wd3d3frXf/1Xvfe97831HwMAAAAAMI/e4ZSOxBI63JnQ82eTGp/yMh67IVikgw3p7i53bKxQoID2tQCWCc+VleicCbjY8XZZfe0yUyNZTevbATlVu+XUNM10dXErt0tWYY4KBwAAAAAAAID8cFxPPzif0NOnevXMq3G1XRxa0PiN4WLdtzOie3fU6MDWKpUVcZsmAABALvCqKgvZBlFOnz6tEydOSJLuv//+WcGXK97xjnfoqaee0sWLF/XNb35T7373u2XbV/+3Xen4cr3uLuPj4yotLc2qTgAAAABYC1zP1/HukXR3l86EXo1n3kXTMg3dsbFcB6PpwMuWygC7dgFYem5K1sDpazq6tMnuOynDGc9qWq+gVG6k8Wo3l0iT3HCDZPJRIwAAWJjBwcGlLgFYMUzTVDAYnHmeTCbleZlv1AEAC8GaAyCflsuac3loUkdiCbV2Duq5s0mNTLoZjy2yTb1uU4UONoR1sCGkzeGr14mmxoY1mPklJwCLaLmsNwDWBtactHA4nNP5uCK9hJ5//vmZX99///3znmOapu699179/d//vUZHR9Xe3q59+/bNHK+trZUkdXd3q6GhYdbYRCKhiYkJbdu2bRGqBwAAAICVLzE+paOxpI7EEjoaSyo54WQ8tqq0QAejIR1sCOn1WyrYtQvA0nImZfefSgdcettkxdtl978qw0tlNa1XFJwJuKQfzfJCWySDjlYAACB7rpv5zWQAZvM8j58hAHnDmgMgn/K15qQcTy9fHNbRWFKtXQmd6VvYpkFbKgNqiYbUUh/U7RsrFCi4+pnpWryxFViJeI0DIJ9Yc3KDO3OW0KlTpyRJRUVFc4Ir12psbJw15trwS2Njo7761a/q2LFjOnjw4KxxL7/88pzxAAAAALCW+b6vV+NjOjzd3aWte0Sen9lYQ1JTXakONYR1MBrSznUlMunuAmAppEZl95+Q3ds+09XFGnhNhp/dh6VecZWcmuaZkIsTaZJXvkFirQMAAAAAAACwClxITMyEXV48N6TxqcxDKiUFpu7aEtSB+vRjQyiwiJUCAABgPoRfltCFCxckpbu3WJZ13fPWr18/Z8wVe/bs0bp163TkyBG97W1vU319vSRpbGxMX/nKV2Tbtt7whjfkvngAAAAAWCFGU65eOJtMB15iCcVHpjIeW15kaX99UIcaQmqJhhQuKVjESgFgLmNy6GrA5crXwU4ZyjC5dx1uWe1MwMWd7urila4j6AIAAAAAAABg1ZiYcvXi+WEdjSV0tCupc4MTCxq/PVKiA/VBtURD2rehTAUWHbEBAACWEuGXJZJKpTQ8PCxJqqqquuG5ZWVlKioq0uTkpPr7+2cdsyxLv/ALv6BHHnlEn/rUp9TS0qLi4mI999xzisfj+sAHPqCampoF1fbD3+N6bhTYATCbaZo3fA4AucSaAyCfluuac3ZgXIfPDOp7Zwb1/fNDcjJt76L0hYyDDWHdszWsvRvKZZvcCA4sB8t1vcklY6xfVrxdVm9bOuTSe1xW8lzW87rBzXIjzXJrmuTUNMuNNMkvqZ79vSXxSQ9w1VpYcwAAAAAAAFYb3/fVNTCh1umwy0vnh5RyM79GdGVTtAP1IR2IBhUpK1zEagEAALBQhF+WyMTE1RR5IHDzFoiBQECTk5Ozxl3R3Nysz3zmM3rsscfU2toq13W1efNm/fRP/7RaWloWXNsHP/jBjM577LHHFjw3gLRgMLjUJQBYQ1hzAOTTUq05k46r5zoH9OTJXj19qldd/WMZjy0usHRwW5Xu21mj+3fVaEOoeBErBZArK/o1ju9Lwz1S97HZj6ELNx97Q4ZUvV2q23f1UbtHVnGYYAuQpRW95gAAAAAAAKxiI5OOXjw3pNaupI7GEuoeSmU81pC0u7ZULdNhl6a6MjZFAwAAWMYIvyyRVOrqi2zbvvn/hivnXDvuWtu2bdNHP/rR3BQHAAAAACtAd3JcT52M68mTvWo906exlJvx2M2VJXrjrhrdtzOi/Q1VChRwWziAReL7UvJ8Otxy6eWrQZfR3uzmNSwpsuuHgi7NUlF5TsoGAAAAAAAAgOXI9329Fh9Tayyp1lhCxy6NyPUy7+4SLra1PxpUS31I++uDCpcULGK1AAAAyCXCL0uksPBqS0THcW56/pVzrh23WP7sz/5s0b8HAAAAACyU43p6+XxCT57s1ZMne3WyZzjjsQWWobvqK/XGXenuLg3VpTIMdu4CkGOeJw3GpO6XZ3d0GR/Mbl6rUKppvCbocpu0rlEqoFMVAAAAAAAAgNUvOe7oubPpzi6tXUn1j05lPNY0pD3ry9QSDamlPqSd60pkco0IAABgRSL8skQCgcDMrycmJm56/pVzrh23WKqqqjI6b3Awyxs3gDXENE0Fg8GZ58lkUp7nLWFFAFYz1hwA+bTYa87g2JRaYwkdPjOo1lhCQxM33zzgiuqyAh1qCOtQQ1ivrw+qrOjKW+ApJRKJnNUIID+W3Wscz5E52Cm7t01Wb5useJvseIeM1EhW0/p2QG71bjk1zXJr9sitaZJbuT0dgLnWyISkm3+mBODWLLs1Z4mEw+GlLgEAAAAAAKxBrufrxOXRdNglllR7z4gW0NxFNWUFOhAN6UB9UHdvCaoiwG2SAAAAqwGv6pZIYWGhysvLNTw8rP7+/hueOzIyosnJSUmZB1PywXXdpS4BWLE8z+NnCEDesOYAyKds1xzf93Wqd0yHOxM60plQW/eIMr2WYUhqrivTwYaQDjWEtKNm9s5drIXA6pLX1zhuStbAadnx9ulHm+y+EzKc7MInXkGZ3EijnEjTzMMNN0jmPB/ZsYYBS4r3VQAAAAAAAIsrPjyp770W17ePX9TRroSS45lviGabhm7fWK4D9UG1REPaWl0sg+4uAAAAqw7hlyW0ceNGnThxQj09PXJdV5ZlzXvepUuXZo0BAAAAgNVkNOXq+bPJmcBL3wJa1ZcXWToQTYddDtQHFS4pWMRKAawJzoTs/lPpkEtvm6x4u+z+V2V4qaym9YqCcmqaZwVdvOAWyTBzVDgAAAAAAAAArByO5+v4pWE9e3ZIz51rU9vFoQWNX19RpJZoUC0NId25qUIlhfPfewcAAIDVg/DLEtq5c6dOnDihyclJdXZ2avv27fOe19HRMWsMAAAAAKxkvu/r7OCEjkyHXV66MCxnAb3qt0dKdDAa1KGGsJrXl8k22bkLwC1KjcruO5Hu5DLd1cUaOC3Dz667g1dcdU3QJf3VK98gsdMgAAAAAAAAgDWsZ2hSz3Yl1RpL6PlzQxqZzPyz2CLb0Os2Vaglmt4QbXM4QHcXAACANYbwyxK6++679dWvflWS9NRTT80bfvE8T88884wkqbS0VE1NTfksEQAAAAByYtLx9NL5IR2JJXS4M6ELicmMxwZsU3dvqdDBhpAORkOqrShaxEoBrFbG5NDVgMuVr4OdMpR5+G4+blndrJCLG2mSV1pD0AUAAAAAAADAmpdyPL18cVitsYRaY0l19o8vaHx9ZUAHoiG11Ad1+8YKBQropA0AALCWEX5ZQtu2bdPu3bt14sQJPfXUU7rvvvu0Y8eOWed87Wtf08WLFyVJb33rW2Xb/C8DAAAAsDL0DE3OhF1eODukCcfLeOzGUJEOTYdd7thUoSKbixkAMmeM98vubZ8Ju9jxdllD57Ke163YPB10aZru7NIov7gqBxUDAAAAAAAAwOpwITGh1lhCR2NJvXBuYdeHSgst3bUlqAP1FTpQH9L6IBuiAQAA4CqSFFk4efKkenp6Zp4PDQ3N/Lqnp0dPP/30rPPvu+++OXP8zM/8jD7xiU8olUrps5/9rB566CE1NTUplUqptbVV3/3udyVJdXV1evDBBxflz3GrLMta6hKAFcM0zRs+B4BcYs0BkE/XrjGOm969699OD+jwmUG9Fh/LeB7bNHTHpgrdszWsQw1hbamkVT2A2eZ9jeP7MkZ7Zfe2yYq3yeo9Lru3XeZId1bfy5chL9wgp6ZZbk2z3OmOLn4gOLuGrL4LgOWM91UAAAAAAACZmZhy9eL5YR2NJdQaS+h8YnJB43fUlOiNu+t0746IXrclrNHhpFzXXaRqAQAAsJIZvu/7S13ESvUnf/IneuaZZzI+/7HHHpv391988UV94Qtf0Pj4/G0d6+rq9PDDD6u2tvaW6gQAAACAxdI/MqlnXo3rqVNx/durcSXHpzIeW1NepPt31uj+XTU6tL1aZUXszwDgBnxfSpyTuo/Nfoz2ZjevYUk1u6W6fVcf65qlorLc1A0AAIDr6uvrW+oSgBXDsiyFw+GZ54ODg9wUCmDRsOYAuBHf99U1kO7u0hpL6AcXhpVyM78FsbzI0v76oA7Uh3QgGlRtsJg1B0Be8BoHQD6x5qRVV1fndD7uLFoG7rzzTv3+7/++vvGNb+ill17SwMCAbNtWbW2t9u/fr7e85S0qKqKFIwAAAICl5/u+2i8N6cmTvXrqVK9ePp9QplsqGIZ0+6aQ3rirRvftrFHT+gq6uwCYn+dJgzHp0g9mB10mEtnNaxVKNY3XBF1uk9Y1SgXFuagaAAAAAAAAAFalkUlHL5wbUmssqaOxhHqGUxmPNSTtri1VS31ILQ1BNdaWyTa5PgQAAICFo/MLAAAAAOCGhiemdOR0n5482aunT8XVO5x5u/pgcYHu3RHRG3fV6A07IqosLVzESgGsSK4j9b/2Qx1dXpFSw9nNaxdLtXtmd3SJ7JJs1iEAAIDlgs4vQObYLRRAPrHmAPB9X6/Gx3Q0llRrLKFjl0bkepnfZhgutnUgGlJLNKjXbwkqXFJw3XNZcwDkC+sNgHxizUmj8wuWjcHBwaUuAVgxTNNUMBiceZ5MJuV53hJWBGA1Y80BkK10u/pxHT6T0OHOQb10fkjOAi5obI+U6J6tYd2zNazm9eVXd+9KjWowNbpIVQNYEdyUrP5XZfW2y4q3ye5tk9V3QoYzkdW0fmGZnEij3Jo9cmua5USa5YWjkvlDH30Nj0piHQJwc7yvSrv2ogwAAAAAAFjdkuOOnjubDrsc7Uqqf3Qq47GWIe1ZX64D0aBa6kPaua5EpkF3FwAAAOQW4RfcsrWYPgNyxfM8foYA5A1rDoBMTDqevn9+SEc6EzrcmdDFZObdXYoLLB3cVq037qrRHbWFqi695q2m74klCFijnAnZ/adkx9tl9x6XHW+X1f+qDC/zC6bzKg5Ldfs0Ed6pVHWjnEiTvOAWyTBnn+dLLEAAcoX3VQAAAAAAYLVxPV8nLo+mwy6xpNp7RrSAvdBUU1agA9GQDtSnu7uUB7gVEQAAAIuLV5wAAAAAsEb1DE3qcGdCR2IJvXB2SBNO5ruZbwoV6VBDWPdsq9SP7N2sItuStHbbtAJrnZEakdV3Una8LR12ibfLGjgtw89uPfBKquVEmtMBl3V7VLb9oBTcJBmGxllvAAAAAAAAAGBB+kendLQrHXZ59mxSyXEn47G2aeiOjeUzgZet1cUy6O4CAACAPCL8AgAAAABrhOP5On5pOB146UzodN94xmNt09Adm8p1qCGkg9GQtlQWS5Isy5oJvgBYG4yJpOy+dtm97bKuBF0SMRlawJaA83DL6uREmtJhl5p04MUvrZk5blmWFApnWz4AAAAAAAAArBmO6+l494haY0m1xhI61Tu2oPEbgkVqiQZ1IBrSnZsqVFLINSEAAAAsHcIvAAAAALCKDY5NqTWW0OHOhJ7tSmp4MvMuCZGyAh2MhnSoIaS7tgRVygUNYM0xxvtl97bPdHOx422yhs5nPa8b3DzT0SX9aJRfXJWDigEAAAAAAABgbesZmtTRrnTY5fmzQxpNZX5tqMg29LpNFWqJhtQSDWlTqIjuLgAAAFg2CL8AAAAAwCri+b5OXR7TkVhChzsH1d49mnEvBtOQmuvKdLAhHXjZESnhggawVvi+zNHL6S4u1wZdRnqym1aG3PDWmZCLeyXoUlSRo8IBAAAAAAAAYG1LOZ5+cHFYR2MJtcaS6uwfX9D4+sqADkRDOhgN6rYNFQoUmItUKQAAAJAdwi8AAAAAsMKNTDp67uyQDncm1BpLqH90KuOxwYCtA9GgDkZDOhANKlRcsIiVAlgWfF/m8MV0wKX3+ExXF3O8P7tpDUtu5far3VxqmuRU7ZYKS3NUOAAAAAAAAABAki4kJtQaS+hoLKkXzg1pwvEyHltSYOruLUEdiAZ1oD6k9cGiRawUAAAAyB3CL7hllmUtdQnAimGa5g2fA0AuseYAq5/v++oaGNf3zgzq8JlB/eDCsBwv0/4u0o6aEt2zNaxDDWHtWV8uy7z17i6sOcAy53syE12yetvSXV1622T1tsmcTGY3rVUot2qX3JomOTXNciPNcqt3SnZg1nm5/OSA9QZAPrHmAAAAAACA5WRiytWL54enAy8JnU9MLmj8jkjJTNhl34YyFVh81gEAAICVh/ALblk4HF7qEoAVKxgMLnUJANYQ1hxgdZiYcnW0s19Pn+zVk6d6dX4g85b1JYWWDm6r1ht31ej+nTWqDQZuPugWseYAS8h1pL5Xpe5jVx89r0ipkezmtYul2j1S3b70Y/1tMqp3yrYLZUtaqj0BWW8A5BNrDgAAAAAAyCff9xXrH1drV1JHYwn94MKwUm7mG6GVF1naXx9USzSk/fVBRcoKF7FaAAAAID8IvwAAAADAMnUxMa4nT/bq6ZO9OnKmTxNTmbesj1aX6r6dEb1xV43ujlaqyKZzI7CqOCkpfuKHgi5tkpN5MG5eRRVS7d6rQZe6fVL1dslkDQEAAAAAAACAxTQy6eiFc0NqjaUDLz3DqYzHGpIaa0vVEg3pQDSoxtoy2aaxeMUCAAAAS4DwCwAAAAAsE47r6ftnB/XkqV49fTKuU5eHMx5baJl6fUOl7t9Zo/t31ShaXbqIlQLIq6lx6XK71P3y1aDL5Q7Jm8pu3uKwVHfb7KBLOCqZZi6qBgAAAAAAAADcgO/7ejU+pqOxpFpjCR27NCLXy7y7S2WJrf31IbVEg3r9lqDCJQWLWC0AAACw9Ai/4JYNDg4udQnAimGapoLB4MzzZDIpz8t853YAWAjWHGBlGRib0pHOQR0+M6jWWEIjk27GY2vKCnVoa1iHtob1+i1BlRRe6cyQ0uBg5ruBZYM1B8ix1Iis+AnZvcdlxdtk97bLHDgtw898bZiPV1Itt2aPnJpmuZEmuTXN8so3SMYP7fyXTGb1fRYT6w2AfGLNSQuHw0tdAgAAAAAAq0pifErPnR3S0VhCR7uS6h/NfJMjy5D2rC/XgWhQB6Mh7agpkfnDn/ECAABgeXAmpIvfl7pfST/f+q4lLWe1IPyCW+a62d14A6xlnufxMwQgb1hzgOXF832dvDyqI50JHe5MqKNnVJnu4WUa0p71ZToYDelQQ0jbIyUyrrmosRx+1llzgMwZE0nZfe2ye9tlxdtlx9tlJWIyMl4V5ueWr5cTaZp+NMuJNMkvrZl74gq/iZv1BkA+seYAAAAAAIBb4Xq+TlweVWssoaOxpNp7RrSA5i6qKStQSzSkA9GQ7t5cofIAt/sBAAAsN8bkkOx4h6y+Dtnx9vSvB89IVza5DNcTfskRXg0DAAAAwCIbmXT0bFdSRzoTao0l1T+W+S5ewYCtlmhQBxtC2l8fVKiYlvXASmSM9U1/yHX1YQ2dz3peN7h5OuDSPB12aZRfXJmDigEAAAAAAAAAt6JvNKVnu5JqjSX1XFdSyQkn47G2aeiOjeU6EA3pQH1QW6uLZ22EBgAAgCXk+zJHe2eFXOy+jptf+x/skiaHJLs0L2WuZoRfAAAAACDHfN9X18CEDncmdLhzUC9fHJG7gG28dtSU6FBDSAejITXXlckyuagBrBi+L3P0cjrcEm+X3duW/vVoT3bTypAb3jrT0cW9EnQpqshR4QAAAAAAAACAW+G4no53j6g1llRrLKFTvWMLGr8hWKSWaFAHoiHdualCJYXWIlUKAACAjPmezMRZ2X3TIZfpoIs53n9L09nxDrl1d+W4yLWH8AsAAAAA5MDElKfvnx/S4c6EjnQmdGloMuOxxQWmXr8lqEMNIbVEQ6opL1zESgHkjO/LHL4gu7dddrxtpqPLrX7YNTOtacut3D4TdHEiTXKqdkmF7AIDAAAAAAAAAMtBz9Ckjnalwy7Pnx3SaMrNeGyRberOTRU6EA2qJRrSplAR3V0AAACWkpuSNfDadMilPd3Npe+kzKnR7Oeu3CrV7ZVvF2c/Fwi/AAAAAMCt6k5O6kgsocOdCb1wbkiTjpfx2M3hgA42hHSoIaTbN5Sr0DYXsVIAWbuyq0v8+EzIxY63y5wcym5as1BO9c5rurk0y6naKdlFOSocAAAAAAAAAJCtlOPpBxeHdTSWUGssqc7+8QWNj1YGdCAaUks0qNs2VChQwHUhAACApWCkRmT1nZwJudjxDlkDr8nwprKa1zcL5FbtkFPdKCfSKG/dHlVs2y8VlUuS3MFByc08MI35EX4BAAAAgAw5rqdjl0Zmurss5MJGgWXodZsqdDCaDrxsCgcWsVIAWfEcWYNnZoVcrHhH1ru6+HaxnOrd091cmuXUNMkNb5OsghwVDgAAAAAAAADIlQuJCR3pTOhoV1IvnhvSxAI2QSspMHX3lmC6u0t9SHVBNjwCAADIN2Osb/qaf8d00KVdVvJs1vN6BaVyq3fLiTTKqW6SE2mUW7lNsgpnzrEsayb4gtwh/AIAAAAANzAwOqXW6e4uz55NamQy810Y1pUXqmU67HLX5gqVFFqLWCmAW+JOyup/bVbQxe47IcOdzGpar7BMbnVTOuhS05zu7BKKSibrAAAAAAAAAAAsR+MpV98/P6TWrqSOxhI6n1jY58Q7IiVqiQZ1IBrS3vVlKrDo7gIAAJAXvi9z6Px0yCUddrHiHbLGerOe2iuumhVycSKN8oJbJIPXekuB8AsAAAAAXMPzfZ3oGdWR6cDLiZ5R+RmONQ1p7/pyHWwI6lBDWNuqi2UYxqLWC2ABnAnZV9oXx9vSu7r0v5p1+2IvEJ7u5nL14QU382EXAAAAAAAAACxjvu8r1j8+E3b5wYVhpdxMrwpJFQFLr98SVEs0pP31QUXKCm8+CAAAANlxp2QNnpnu5JJ+WH0dMlPD2U9dsXkm4OJUN8qJNMkvrclB0cgVwi+4ZZbFbrVApkzTvOFzAMgl1hxg4YYnHT0bS+jwmUEdiSXUP5r5jfChYlsHG8I62BBSSzSkYHHBIla6/LDmYNlKjaQ/5OptkxVvk93bLnPgtAw/8+5N8/FKa+REmuXWNMutaZITaZZfvl66JuhmSOIdc+6x3gDIJ9YcAAAAAABWp5FJR8+fHdLRroRaY0ldHk5lPNaQ1FhbqpZoSAeiQTXVlsky2QQNAABg0UyNpTe47OtIb24Z75A98KoMN/PXcPPxDUtu5baZgIsTaZRb3Si/qDxHhWOxEH7BLQuHw0tdArBiBYPBpS4BwBrCmgPM5fu+TveO6MmTvXryZK++f3ZQjpf5Tl5N6yv0xl01um9njW7bFOLCxjVYc7Akxgaknlek7mNXH/1npIz7Nl1HcJNUt2/WwyyvFXv3LQ+sNwDyiTUHAAAAAICVyfd9neod09GuhI7Gkjp2aUTuAq4JVZbY2l8fUks0qP1bggqVrK1N0AAAAPLFGB+cHXLp65CViMnwvazm9e1iOdW70iGX6t1yqxvlVO2U7KIcVY58IvwCAAAAYE2YmHJ19Ey/njzZq6dO9erC4HjGY0sLLR3aXj0TeFlXEVjESgHc0Eh8OuDy8tWgS+Js9vNWNswOutTuk0qrsp8XAAAAAAAAAJBXifEpPXd2SEdjCR3tSqp/dCrjsZYh7d1QrgP1QbVEQ9pRUyLTYBM0AACAnPF9mcOXZPe1y46fkHUl8DLSnfXUXiAsJ9I43dGlUW6kSW6wXjKt7OvGskD4BQAAAMCqdX5gTE+fSnd3aT3Tr0kn890gGiKlun9njd64q0Z31odVZPNGGMgr35eGLs3u5tJ9TBq+lN28hilV7/ihoMseKcCO/gAAAAAAAACwErmerxOXR9UaS6g1llB79+iC+oKvKy/UgfqgDkRDuntzhcoD3FIHAACQE54rK9EpO94hK94+3dnlhMzJRNZTu+Xrp0MuTXKnAy9eWZ1EcHlV45U6btng4OBSlwCsGKZpKhi8ejNdMpmU52XXig0Aroc1B2vZlOvp2MVhHT4zqO+dGVRnf+bdXQosQ3dtDupgQ1iHtoa0OVw8c2xseEhji1HwKsCag5zwfZlDF2T1tsnqPS473iart13meH9205q23Mrtcmua5dY0y4k0y43slgpKZp847knjvMdd7lhvAOQTa05aOBxe6hIAAAAAAJhX32hKz8aSau1K6rmupJITTsZjCyxDt28oV0s0pAPRoBqqimVwkyQAAEB2nEnZ/aeuCbl0yO4/KcOZyGpa3zDlhrfKqW6cDrnsllPdKL+YaxhrEeEX3DLXdZe6BGDF8jyPnyEAecOag9Wuf3RKrbGEDncm9GxXUqOpzP++rysv1MGGkA5O7+RVXHi1uws/N7eGNQc35XuyEl2y4m2y4+0zD3NyKLtprUI5VbvkRJqmd3ZpklO1U7KL5p7M39FVgfUGQD6x5gAAAAAAsLQc19Mrl0Z0tCup1lhCp3oXtm3ZhmCRWqIhtUSDet2mCpVcc00IAAAAC2NMJGX3dciKd8wEXazBMzL87K6l+FaRnKqdciKN6Wv+1Y3p6/4FxTcfjDWB8AsAAACAFcXzfZ3oGdXhzoSOdCbUcXk047GmIe1dX65DDSEdaghpazU7eQGLynNkDZyRfU3Qxeo7IXMq85/b+fh2cXo3l0iTnEiznJpmueGtklWQo8IBAAAAAAAAAEutZ2hyJuzy/NmkRlOZd2Utsk3dualCB6JBtURD2hQq4poQAADAQvm+zNHL0yGX9nQ3l3iHrOELWU/tFVXIqd4tt7pJTqQxHXgJb5VM4g24Pv52AAAAAFj2hiccPduV1JFYQq2xhAbGMm9dHyq2dSAa1KGGsA7UB1UR4G0QsCjcSVn9r83q5mL3nZDhTmY1rVdYNt3JpflqV5dQVDLZlQ8AAAAAAAAAVpNJx9MPLgzraCyho11JdfaPL2h8tDKgA9PdXW7fWKEi21ykSgEAAFYh35OZODsr5GL3tcscH8h6are0Vu50wMWpbpQTaZJXvkEinIwF4q4vAAAAAMuO7/vq7B+f6e5y7OKwXD/z8bvWlehQNKyDDUE11pbJMnmzDOTU1Ljs/pOzgi5W/6syvKmspvUC4XQnl0iTnJp00MWr2CQZXKAEAAAAAAAAgNXo/OCEWqfDLi+eG9KEk3l3l9JCU3dvCepAfUgH6oOqCxYtYqUAAACryJXNLfumQy7xdtn9J2VMjWU1rS9Dbqg+HXS50tGlerf8kuocFY61jvALAAAAgGVhYsrVi+eG0oGXWELdQ6mMx165uHGoIaSWaEiRssJFrBRYW4zUiKy+E7J722TH29JBl8EzMvzML0DOxy2pkXtNyMWJNMsrq2NnFwAAAAAAAABYxcZTrr5/fkitXUm1xhK6kFhY9/AdNSVqqQ/qQDSkvevLVGCxeRIAAMCNGKlhWX1XNrfskN3XIWvgdNabW/pmgdyqHdOdXKYfVbulwtIcVQ7MRfgFAAAAwJK5mJjQkVhChzsT+v75IU06mbd32VIZ0KFoSIe2hnTbhnIubgA5YEwkZndzibfLTsSyntct3zAdcLn68EtrclAxAAAAAAAAAGA5831fsf5xtcaSau1K6AcXhjXlZn49qCJg6fVbgmqJpru7VLMBGgAAwHUZY32zQi52vF1W8mzW83oFZXIju68JujTJDW+VLF6bIb8IvwAAAADIG8f19PLFYR3pTOpw56BiAxMZjy20DL1uU4UONoR0qCGkjaHAIlYKrH7pD73SnVzs3umwy/CFrOd1g1vSAZeaZjmRZjnVjfKLwzmoGAAAAAAAAACwEoxMOnr+7JCOdiXUGkvq8nAq47GGpMbaUrVEQ2qJBtVYWybLpGM4AADALL4vc+hcOuQSb5fdd0JWvEPWWG/WU3sl1dMhl6Z00KW6UV5ws2SwKS2WHuEXAAAAAIuqbzSl1s6kjsQSerYrqdGUm/HYdeWFOtQQ0sGGkO7aVKHiQmsRKwVWKd+XOdpzTcilTVa8Xdbo5eymNUy54a2zurm41Y3yi8pzVDgAAACAfDp9+rT+8R//UadOnZLrutq8ebPe/va3q6WlZalLAwAAwAow5Xr6yiu9+u6pAR27NCLXy7y7S2WJrQP1IR2IBrV/S1ChkoJFrBQAAGCFcadkDZ6ZDrl0yI53yOrrkJkayX7q4Oar3VymAy9+aU0OigYWB+EXAAAAADnl+b46ekZ1pDOhI50JdVwezXisZUh7N5TrYDTd3WVrdbEMg928gIz5vsyh89NtjNtnOruY4wPZTWvacit3zAq6ONW7pIKSHBUOAAAAYCm1tbXpkUceUWFhoVpaWlRcXKznnntOjz76qPr7+/Xggw8udYkAAABYxtq6R/SZxzt1pm88o/OvXA86UB9USzSkHTUlMrkeBAAAIE2Nye47OR1yaZcV75A98KoMN/NOevPxTVtueFs65BJplFPdJLd6N5tbYsUh/AIAAAAga8MTjp7tSupwZ0KtsYQGx52Mx4aKbbVMh1321wdVEeBtCpAR35OV6JLd2yZrOuRi93XInBzKblqrUE7VrqvdXCJNcqp2SnZRjgoHAAAAsJy4rqu/+Iu/kGma+vSnP636+npJ0nve8x49/PDD+od/+Aft379fkUhkaQsFAADAsjOWcvWnh8/r/7x0WTfr87KuvHAm7HL3lgqVFXE9CAAArG3G+IDseIfsvvbpbi4nZA12yrjpK6sb8+1iOdXT1/ynu7q4lTu45o9VgXcRuGWWZS11CcCKYZrmDZ8DQC6x5iAffN/Xmb4xfe/MoA53JnTswpDcBbz33l1bqkMNYd2zNazG2jJZJrt5rVSsOXniOTIHTs8EXaze9IdfxlTmnZXm4xeUyK1ulFPTLLemSW6kWW7lNskqmHUe7/6wHLDeAMgn1hwAa0lbW5suX76s++67byb4IkklJSV66KGH9Kd/+qd65pln9J73vGfpigQAAMCyc7gzoc9/J6ae4fl3IS+wDN2+sVwt9SEdiAbVUFUsg+4uAABgLfJ9mcOXroZcpgMv1khP1lN7gcrpTi670yGXSJPcYL1kcpUfqxPhF9yycDi81CUAK1YwGFzqEgCsIaw5yJXxlKvWM3168mSvnj4V18VEZq3rJamsyNY926t1/64a3bcjopqKwCJWiqXEmpMDzqTU2yF1H7v6uNwuORPZzVtUIdXtm37cJtXtk1G1VbZp8eEAViTWGwD5xJoDYLEkk0mdPn1ap0+f1pkzZ3TmzBkNDw9Lku699159+MMfzniueDyub37zm3rppZfU398v27ZVW1urAwcO6IEHHlBR0fw7O7a3t0uS9u3bN+fYbbfdJknq6OhY4J8MAAAAq9XA6JT+4Kmzevxk/7zHd0RK9AsHN+quzRUqKeSmSwAAsMZ4jqxEbDrk0i67r0N2vEPmZDLrqd3yDdNBlya5kXRHF6+0ViJgjDWE+1sAAAAAXNf5gTE9ebJXT57s1dHOfqUcL+OxWyOleuOuGt2/q0Z3bqlUoc1u2cAcqbF0sKX75atBl94TkjeV3bzFldL6264Ju+yTQvUSu9YDAAAAy8rP/dzP5WSeF198UV/4whc0Pn51o4rJycmZQM0TTzyhhx9+WLW1tXPG9vSkd5isq6ubcywUCikQCKi7uzsndQIAAGDl8n1fX+/o0x89dU7JCWfO8SLb0M8d2Kj331kr2+KzaAAAsAY4E7L7T8mOt093c+mQ3X9KRpYbW/qGKTe8VU5140zIxalulB8I5aZuYAUj/AIAAABgRsrx9GLXgJ46lQ68nImPZjy20DZ1oKEqHXjZWaPNVSWLWCmwAk0MST3HZ3d06Tsl+ZmHyuZVXjc75FK3T6rYwO4uAAAAwApTXV2tDRs26NixYwsaF4vF9OijjyqVSikQCOhd73qXmpublUqldOTIET3xxBPq7u7W5z73OX3+859XcXHxrPFjY2OSpJKS+d/HFxcXz5wDAACAtelCYkKf+05Mz50dmvf46zaV62NvbtDmcCDPlQEAAOSHMZGU3ddxNeQSb5c12CnDd7Oa17eK5FTvuhp0qW6UU7VTKii++WBgDSL8gls2ODi41CUAK4ZpmgoGgzPPk8mkPC/LmxwB4DpYc3ArBsam9MfPnNW3T/ZrNJX5G/PaikLdszWsQw1h3bUlqOKCK+3rJzU4OLk4xWJZYc2ZnzE+KCveLqu3TXa8TVZvu6xELOt53fINcmua5dY0y6lplhtpkl9aM/skT1IikfX3ApYb1hsA+cSakxYOh5e6BGDVe8973qOtW7dq69atCoVC6u3t1S/+4i8uaI4vfelLSqVSsixLH//4x7Vjx46ZY83Nzaqrq9OXv/xldXd361//9V/13ve+N9d/DAAAAKxSjufrf3+/R3925IImnbnvi8uLLP3yfZv1Y80RGWzIBAAAVgPflznaIyt+QnZfu+x4h+x4h6zhC1lP7RVVTIdcmma6ubjhBsnkdn4gU/y04Ja5bnZpRWAt8zyPnyEAecOag5v57ql+/c53uzQ4PrdF/Q+zDGnfhnIdbAjpYDSkrdXFsy5m8HcNa3HNMcb6ZMfbZMfbZfe2p3d4ycEHX26wXk5Nk5xIk5xIc7qNcfE8N6Cusf/ewBVrcb0BsHRYcwAslmyDKKdPn9aJEyckSffff/+s4MsV73jHO/TUU0/p4sWL+uY3v6l3v/vdsu2rlwivdHy5XneX8fFxlZaWZlUnAAAAVp5TvaP67OMxnbg8Ou/xH91RqV/7kS2qLi3Mc2UAAAA54nuyEl2y4u3T3VzSXV3M8YGsp3ZLa9OdXK50c4k0ySvfIBEYBrJC+AUAAABYowbHpvS7T3TpO6du/KY9XGyrJRrSoYaQ9tcHVR7gbQTWKN+XOdKdDrlMP6x4u6zRy9lNa5hyw1uvhlwiTXIju+UXlueocAAAAACr1fPPPz/z6/vvv3/ec0zT1L333qu///u/1+joqNrb27Vv376Z47W1tZKk7u5uNTQ0zBqbSCQ0MTGhbdu2LUL1AAAAWI4mpjz95dEL+vIL3XL9ucdrygr0mz8a1b3b6BYKAABWEHdSVv9rV0Mu8XbZ/SdlTM2/IUymfBlyQ9Frgi5NciK75RdX5ahwANfirjUAAABgDXri1QF9/jux63Z7aVxXmu7u0hBSY22pTHaewFrj+zKHzl8NuvSmO7uYE9nt8OKbttzKHdNBl+lH9S6poCRHhQMAAABYS06dOiVJKioqmhNcuVZjY+OsMdeGXxobG/XVr35Vx44d08GDB2eNe/nll+eMBwAAwOr1wrmkHvl2TBcSk/Me/4nbavThezaprIhbzgAAwPJlpIZlxU/I7muXHT8hu69D1sBrMrz575HJlG8Wyq3aPn2dfzrsUrVLKqRrMpAvvBMBAAAA1pDE2JR+5wbdXu7dFtavv3GLaiuK8lwZsIQ8V1ayS3Zvu6x420zgxUwNZzWtbxXKqd49K+jiVu2QLH6+AAAAAOTGhQsXJKW7t1iWdd3z1q9fP2fMFXv27NG6det05MgRve1tb1N9fb0kaWxsTF/5yldk27be8IY35L54AAAALBvJcUf//Zlz+n9t8XmPRysD+tgDDbptAx3LAQDA8mKMxqdDLtMdXfraZSXPZT2vV1AmN7L7asgl0iQ3vFWyCnNQNYBbRfgFAAAAWCNu1O0lGLD16z+yRQ/sqpJBlxesZp4ja+C07GtCLnbfiexbGReUXBN0aZYTaZYbbpCsghwVDgAAAACzpVIpDQ+nQ/tVVVU3PLesrExFRUWanJxUf3//rGOWZekXfuEX9Mgjj+hTn/qUWlpaVFxcrOeee07xeFwf+MAHVFNTs6Dafvh7XM+NAjsAZjNN84bPASCXWHPWDt/39Z2T/fqd78Y0MDY157htGvrZAxv0n/ZvVKHN3wMsDtYcAPnCerPC+Z7M5HlZ8XZZ8fbpzS3bZY7NH95dCK8kIjfSJKemSW4k/fCCmyRj9t8RPsnCQrDmLA7CLwAAAMAqlxib0u8+eVbfPjn/jSf3bgvr4TfVq7qU3SmwyriTsvpfvRpyibfL7jspw53MalqvsPxqJ5dIc/oDsGC9ZPJRFwAAAID8mZiYmPl1IBC46fmBQECTk5Ozxl3R3Nysz3zmM3rsscfU2toq13W1efNm/fRP/7RaWloWXNsHP/jBjM577LHHFjw3gLRgMLjUJQBYQ1hzVqfu5Lg+8dU2ffdE77zH79gc0ud/fK92rKPbC/KLNQdAvrDeLGPulBQ/KXW/IvW8IvUcTz8mh7KfOxyV6vZKtXulun1S7V6Z5etkSmJrSywm1pzcIPwCAAAArGJPvjqgz383poGxud1eKgKWfv2N9XrLbrq9YBWYGpfdd2JW0MUaeFWGN/fv/kJ4gUo5NVe6uaQDL17FJomfGQAAAABLLJVKzfzatm9+ye/KOdeOu9a2bdv00Y9+NDfFAQAAYNnyPF9ffu6sfvdbpzQyOfcz9NJCS7/51l16/+u3yDT5LBwAACyy1KjU05YOuXQfS3/tPSG583+GlTHTliK7pkMu02GX2mYpQAABWMkIvwAAAACrEN1esJoZqWFZ8ROy421Xgy6DZ2T4XlbzuqXr0q2Mr3l4ZXUEXQAAAAAsS4WFV9/TO87Ng/9Xzrl23GL5sz/7s0X/HgAAAFi41y4P67/+y3F9/+zgvMd/ZFeNPvOuZq0PFee5MgAAsCaM9ks9x652dOl+Reo/LcnPbt6C0nSw5dqgS81uyS7KSdkAlg/CLwAAAMAq89RrA/rcd+j2gtXBGB+U3ddxNejS2y4r2ZX1vG75xnTApWY66FLdJL80kn3BAAAAAJAngUBg5tcTExM3Pf/KOdeOWyxVVVUZnTc4OP9NlwDmMk1TweDV3WmTyaQ8L7uNQADgelhzVp+U4+l/PntRf3X0ghxv7s2llSUF+s0fjepNu6pk+BMaHLz560sgV1hzAOQL600e+b7M4QuyettlxTtkxTtkx9tljnRnPbVXXCk30iQ30ign0iS3pklesF4yrdknDo9JGsv6+wG3ijUnLRwO53Q+wi8AAADAKpEYn9LvPXFWj1+n28sbtob00TdFVV1GtxcsT8ZofFY3FzveLmv4YtbzusH66ZBL80xHFz8Qyr5gAAAAAFhChYWFKi8v1/DwsPr75/8s4IqRkRFNTk5KyjyYkg+u6y51CcCK5XkeP0MA8oY1Z2U7dnFYn328U7GB+QMt72yO6Jfv3axgsb0mb8bD8sOaAyBfWG9yxHNkDXZOb2rZISveLrvvhMzJZNZTpze13C2n+krYpVFeaa30w5u9+pL4f4lljjUnNwi/AAAAAKvAzbq9/Nob6/VWur1gufB9mSPds0MuvW2yxnqzm9Yw5Ya3Tgdc0kEXN7JbfmF5jgoHAAAAgOVl48aNOnHihHp6euS6rizLmve8S5cuzRoDAACA1W9k0tGffO+C/unly5rb60XaGCrSR98U1d1bgvMcBQAAmIczIbv/VPoaf7wjHXjpOynDncxq2lnX+qsb00GX6kb5AV6nAJiN8AsAAACwgiXGp/T7T57Vt07Mv8PrPVtD+hjdXrCUfF/m0Ll0yKX3atjFnBjIblqzQG7VjplOLk6kSU7VLqmgOEeFAwAAAMDyt3PnTp04cUKTk5Pq7OzU9u3b5z2vo6Nj1hgAAACsbs+cHtTvfDem3pGpOccsQ/rpO+v08y0bFCiYPzwNAABgTCRl97VPd3NJB12swU4ZfnadK3yrSE71rqshl0iTnKqdkh3IUeUAVjPCLwAAAMAK9fRrA/rcd7rUPzb3wkV5kaVfe+MWva2xmm4vyB/PlTlwWnbPcdnxNlnxNtnxDpmp4aym9a1COdW7ZwVd3KodklWUo8IBAAAAYGW6++679dWvflWS9NRTT80bfvE8T88884wkqbS0VE1NTfksEQAAAHnUN5rS7z9xVt99df4NqHatK9HH39ygXetK81wZAABYtnxf5mjPNSGX6cDL8MWsp/aKgnKmu7hc6ebihhskk9vXAdwaVg/cMsti9wcgU6Zp3vA5AOQSa87qlxif0u9+N6ZvdvTNe/wN28L6+ANbFaHbCxaTOyVr4LTsvg4p8arUfUzqOa7g1GhW0/oFJelwS02T3EiznJpmeeGtklUw6zzejQBrD69xAOQTaw6AlWLbtm3avXu3Tpw4oaeeekr33XefduzYMeucr33ta7p4MX2zwlvf+lbZNpcHAQAAVhvf9/X/2uJ69OlzGp6cuxt7kW3qgwc36n2vq5VtsmkaAABrlu/JSnTJirfL7uuQHU8/zIn5g7ML4ZbVyqlumu7m0iinukle+XqJDVsB5BCfbuOWhcPhpS4BWLGCweBSlwBgDWHNWV2+3d6jj36lTX0jk3OOVQRs/bd3Numh2zfQ7QW5NTUh9XakAy5XHpfbJXfu38MFCQSlun3Tj9ukun0yKhtUYFoquOlgAGsdr3EA5BNrDoDFcvLkSfX09Mw8Hxoamvl1T0+Pnn766Vnn33fffXPm+Jmf+Rl94hOfUCqV0mc/+1k99NBDampqUiqVUmtrq7773e9Kkurq6vTggw8uyp/jVrHRGpA5wrkA8ok1Z2U5NziuRx7v1PNnk/Mef/2WoD7+lq3aGArkuTIgM6w5APJlza03zqSs/ldlxdvTYZd4u6y+kzKmxrKa1pchLxyVG2lKb2wZSQde/JKqWecZYlNLrG1rbs3JE8P3fX+piwAAAABwY4mxlP7b/2vXV1++NO/xH9lVo99+9x6tq+DCBbKUGk0HW7qPSd0vp7/2npA8J7t5S6pmAi4zj3A9u7wAAAAAWNP+5E/+RM8880zG5z/22GPz/v6LL76oL3zhCxofH5/3eF1dnR5++GHV1tbeUp0AAABYfqZcT3/1vZge/e6rmnS8OcdDJQX6+Nsb9eN3sGkaAACr3sSQ1HNc6nlF6n4l/TV+Mvvr/FahVNMo1e2Vaqcf65qkorLc1A0AC0TnFwAAAGCZu1m3l0892KR3c+ECt2Iimf4A7NqOLn2vSv7ci2QLUr5+dsilbp9UQTtjAAAAAFgsd955p37/939f3/jGN/TSSy9pYGBAtm2rtrZW+/fv11ve8hYVFRUtdZkAAADIkeMXkvrNf35FHd1D8x5/5771+uSDjaou4zUgAACrzvDl6ZDLsathl8FY9vMWVUi1e9IBlythl8hOySrIfm4AyBE6v+CWDQ4OLnUJwIphmqaCweDM82QyKc/L8qZSALgO1pzVIzk+pd97oktfb4/Pe/yerWF9/IGtqikvzHNlWImM8cF0O+Pe47J722T1tstKdmU9r1exSeaG26ZDLrdrqLRebnHVTccBwELxGgdAPrHmpIXD4aUuAQAAAABwjbGUoz/6zqv668MxefPc8bU+GNAjD+3R/btq8l8cAADILc9Lh1qu7ebS/Yo02pv93GXrZodc6vZKoXrJNLOfGwAWEZ1fcMtc113qEoAVy/M8foYA5A1rzsr0zOlB/fZ3YuofnZpzrKzI0q/dv0Vvb6qWYRj8/8UcxmhcdrxNdrx95mENX8x6XicUlRtpknPNwyytmnVTpDs4yN9JAHnBaxwA+cSaAwCLg43WgMwRzgWQT6w5y9OzsYQ++/gZXUxOzjlmSHrf6+r04Xs2q7TI4nUWVhTWHAD5sqzXG3dK1sBr6Q0t4+2yejtk93XISI1kP3WwXm5Nk9xIo5xI+qtfOk9QNpnM+nsBuGpZrzl5lOuN1gi/AAAAAMtIctzR7z/VpW929M97/FBDSB99U5RuL0jzfZkj3VeDLr3TH4SNZbfTi2+YcsNb5USa5dQ0yYk0y63eJb+wPEeFAwAAAADARmtANgjnAsgn1pyllRif0h89dU5f7+ib93hDVbE+8UBUe9anP8Pn/xVWOtYcAPmyZOtNalR2/wnZ8ROy+zrSm1n2vybDS2U1rW/aciu3y6lulHMl6HK96/yss0De8RonNwi/AAAAAMvEv50Z1CPfzqzbC9Yg35c5dG4m5HIl8GJOZLd7m28WyK3aMaubi1O1SyoozlHhAAAAAAAAAABgoXzf1+Mn+/UHT57V4Lgz53iBZehn92/Qf7i7TgWWuQQVAgCAmzHG+2XHO9KPvnZZ8Q5ZiS4Z8rOa1y8okVO1a/oaf6Oc6ka5VdslqyhHlQPA8kT4BQAAAFhiQxOOfv/Js/rGdXbsOhgN6WNvptvLmuK5shKxdNAl3i4r3iY73iEzNZzVtL5VJKd696ygCx+AAQAAAAAAAACwvHQnJ/W578bUGkvOe/z2jeX62Juiqq9iIysAAJYF35c5fDF9jb8vHXax4h2yRnuyntorrpRTPR1yiTTKqW6SF9oiGYRfAaw9hF8AAACAJfRvZwb129+Oqe863V7+y/1b9A66vaxu7pSswTOye9tmurnYfSdkOONZTesXlEy3M26SU9OcDrqEt0ombwMBAAAAAAAAAFiOXM/XYz+4rD89fF7jU96c46WFln7p3k16aG+NTK4dAQCwNDwnfY0/3iG774Ss6Wv85uT8odWFcMs3zgq5uJFGeaXrJP7dBwBJhF8AAACAJTE04egPnjyrr1+n20tLNKiPv7mBbi+rjTMpu/9U+sOvK4/+kzLcVFbTekUVs7u5RJrlhurZ6QUAAAAAAAAAgBXidHxMn3m8U+09o/Mev29bWL/xI/VcOwIAIJ+mxmX3n5Ld1zF9nb9Ddv8pGe5kVtP6hiU3vHU65NIod/qrHwjmqHAAWJ0IvwAAAAB59r0zg3rkBt1efvW+LXqwmW4vK97UmOy+E1dDLvF2WQOvyfCcrKb1iivlRJqngy7Ncmqa5JVvZKcXAAAAAAAAAABWoEnH018/e1F/83y3XM+fc7yqtEC/+SP1euOOyiWoDgCAtcOYSMju65Ad75AV70gHXgbPyPDndmNbCN8OyKnadU3QpUlO1Q7JDuSocgBYOwi/AAAAAHmSSbeXj705qnXlRXmuDNkyJodl9XVcDbr0tslKdGb9IZhbWjvdyaVJTk067EJLYwAAAADAamFZ1lKXAKwYpmne8DkA5BJrTv58/3xSn/nWGZ0dmJj3+Lv3rdOv3LdF5QFu8cLqxZoDIF9m1hffl4YuqjB2VGZvu6x4u6zedlnDF7P+Hl5RUG6kSW7N9HX+SJO8cFQyZ/9bziciwOrHa5zFwTsjAAAAIA8OnxnUI9+JKT4yt9tLaaGl/3I/3V5WCmN8IN3KON4uO96W7uiSPJv1vG7FpuluLlcffkl1DioGAAAAAGB5CofDS10CsGIFg8GlLgHAGsKak3tDE1P6/DdP6u+fOzfv8Wh1qT737j3a31CV58qApceaAyCnPFfqPyP1vCJ1H0t/7TkujfWrNNu5KzZKdXul2j1S7V6pbq/M4CaZhqGCXNQOYFXhNU5uEH4BAAAAFtHQhKM/fOqsvtZ+nW4v9UF97AG6vSxXxmjvrJCLHW+XNXwp63mdUHR6l5fmdEeX6kb5gVD2BQMAAAAAAAAAgGXtW209+uT/bVPv8OScY7Zp6BfubdBH3rhdgQL2hAcAYEGcSam3Q+p+ZTrs8op0uU2aGstyYkOq3j4TcFHt9KOUkCoA5BvhFwAAAGCR3Kzby6/ev1nvbI7Q7WU58H2ZI91XQy696cCLORbPblrDlBvelu7kUpMOu7jVu+QXlueocAAAAAAAAAAAsBJcHprQp/5vu77V3jPv8X0bg/r8j+/V7rqKPFcGAMAKNJFMd3Dpnu7k0vOKFD8peU5281qFUk3j1ZBL3T5pXZNUmHWfGABADhB+AQAAAHJseLrby79ep9vLgfqgPvbmqGor6PayJHxPZvLcTCeXKw9zYjC7ac0CuVU70kGXSHP6a9VOqaA4R4UDAAAAALC6DA5m914cWEtM01QwGJx5nkwm5XneElYEYDVjzcktz/f1lWOX9ejTZzUy6c45Higw9Yv3bNb7Xlcny3R5jYQ1hzUHwM0Yo72yetPX9a0rj+S5rOf1iyrkVO+WG2mSG2lMf63cJlkFs08cTaUfALAAvMZJC4fDOZ0vb+GXsbF027CSkpJ5j3/hC1/QY489pr6+PkWjUX3wgx/Ugw8+mK/yAAAAgJw43JnQI9/uvG63l/98/2b9GN1e8sdzZSVi091c0l1drL52mamRrKb1rSI51bungy5Ncmqa5VZuT+8CAwAAAAAAMuK6c2/+BJAZz/P4GQKQN6w5t65rYFy//e2YXrowPO/xlvqg/uubolofLJJ8T/xnBlhzgDXtykaWfR2y4x3p6/x9HTLH5t94dCHckhp5NU0q2PS6ma4uCQXlzncjOmsQgEXAa5zcyEv45V//9V/1rne9S2VlZbpw4YLKy8tnHf9P/+k/6W/+5m8kSb7v69VXX9Xjjz+uz372s3r44YfzUSIAAACQFbq9LAPulKzB07J722XH26Y/CDshwxnPalqvoFRupPFq0CXSJDe8VTJppAkAAAAAAAAAAOaacj397Qvd+uujF5Vy/TnHQ8W2fu2NW/TArio2TAMArE1uStbA6XTIpS99bd+Kn5A5ld1GlpLkBrekr+1XN8qZvtbvl1TLsqzZHQjotgYAK05e7tZ6/PHH5fu+3vnOd84Jvhw+fFhf+tKXZBiGSkpKtGPHDp08eVLj4+P65Cc/qQcffFDNzc35KBMAAAC4JUemu7300u0lf5xJ2f2nZMfbZMXT7Y3t/lMy3OxaDXtFwVkhFyfSLC+0RTLMHBUOAAAAAAAAAABWs7buEX328U6d7pt/c663NVbrV+/brFBJQZ4rAwBgiaRGZfefmO7m0iG7r0NW/2syvOyu7/tmgdzK7emAy3TQxa3eJb+w/OaDAQArUl7CL88++6wMw9D9998/59gXv/hFSdL69et19OhRbdy4UefPn9ehQ4d04cIF/cVf/IW+8IUv5KNMAAAAYEGGJxz94dPn9K9t8XmP768P6uN0e8ne1JjsvhPpgMv0wxp4TYbnZDWtV1wpJ9I8E3JxaprklW+UCCkBAAAAAAAAAIAFGku5+rPDF/S/X+rR3F4v0vqKIj38pnodiIbyXRoAAHljjPdfE3JplxXvkJXokjHvv46Z8wpK5Vbvmg65NKWDLpXbJIv7MQBgLclL+KW3t1eStHPnzjnHvvWtb8kwDH3kIx/Rxo0bJUmbNm3SRz7yEf3Gb/yGnnnmmXyUiFtgWdZSlwCsGKZp3vA5AOQSa05+HD4zqM9864x6R+buRFJaaOlX31ivh/bW0O1loSaH0uGW3nZZvW2y420yB85k/0FYWZ2cmia5kWa5Nc1yaprll66bFXQxJPEKd+FYcwDkC+sNgHxizQEAAAAALMSRzoQ+952YeobnXjcyDemn7qjV/+/gRhUXciUCALBK+L7M4QvTQZd22fEOWX0nZI32ZD21V1wppzodcEl3dWmSF9oiGXxOCwBrXV7CL/F4eifs8vLZrcTa29vV19cnwzD0Yz/2Y7OO3XnnnZKks2fP5qNE3IJwOLzUJQArVjAYXOoSAKwhrDm5lRyf0iNf79BjL16Y9/g926v1+R/fqw2h4jxXtgKN9ks9x6RLL0vdx9KPwVj284a2SHX7ph+3SXX7ZJZFVJj9zMgAaw6AfGG9AZBPrDkAAAAAgPkMjk3pD546q2+d6J/3+I5IiT725qia6sryXBkAADnkObIGz8x0dLH62mX3nZA5OZT11G7FpuluLumOLm71bnk/tJElAABX5CX8cqVDyMDAwKzfP3z4sCQpEonM6QpzJVgxMTGRhwoBAACAm3v6VK/+6z8fV8/Q3NeoZUW2Pvb23XrfXZvo9jKf4Z6rAZcrj+T5LCc1pKpt1wRd9kl1e6ViQtoAAAAAAAAAAGDx+L6vb3T06Q+fPqfkuDPneKFl6OdbNur9d9bKttilHgCwgkyNy+4/JbuvQ9Z0Rxe7/5QMdzKraX3Dkhveek3IJR148YsqclQ4AGAtyEv4ZcOGDTp9+rRefvll3XfffTO///Wvf12GYeiee+6ZMyaZTEqSqqur81EiAAAAcF1DE1P67Nfo9pIR30+HWn446DJyObt5DVOK7Jrp5KK6fVJts1RUftOhAAAAAAAAAAAAuXIxMaHf/k5Mz52df7f7120q18fe3KDN4UCeKwMAYGGMiYTs6YCL1Tfd1SXRKcP3sprXtwNyqnalgy7VjXIjTXKqdkg2/zYCALKTl/DLPffco9dee01//Md/rPe///2qrq7WCy+8oG9961uSpAceeGDOmBMnTkiSamtr81EibsHg4OBSlwCsGKZpKhgMzjxPJpPyvOzeJADA9bDm5FZr56B+61tndHk4NedYaaGlX72/Xg/tq5HhT2hwcI11LfQ9mclzsnrbZPe2yYq3y+ptkzmR3etE3yyQW71TbqRZTk2T3JpmuVW7pIIfCheNOdIYr0mXGmsOgHxhvQGQT6w5aVc6tAPAYrEsa6lLAFYM0zRv+BwAcok1Z36O5+sfXuzWnx4+p4mpue8Ry4ss/ef76/WuvTUyDGMJKgRWJtYcIA98X8ZIt+x4u6ze9vS1/XiHrOGLWU/tBUJyI03pgEukSW5Nk7xQVDJnv+dfDp8AsN4AyCfWnMWRl/DLhz70IX3pS19SLBZTQ0ODduzYoY6ODjmOo8rKSv3kT/7knDFPPvmkDMNQY2NjPkrELXBdd6lLAFYsz/P4GQKQN6w5t2Zk0tEfPX1O//d4fN7jd2+p0CcfaFBtRdHauAnOc2UlOtO7vvS2pz8U62uXmRrJatr0ji+75dSkPwhzIk1yK7dLVuHck/l7vCKw5gDIF9YbAPnEmgMAi4OQHXDrrg3qAsBiY82R2i8l9V//+biOX0zOe/zte+r0qXc2qqacHe2BbLHmAFnyXKn/tNRzXOo+JvW8InW/Io0PZD93xUapbq9Uu3fmqxncKNMwVJD97HnHegMgn1hzciMv4Zc77rhDv/d7v6df//Vf18jIiF566SVJUkFBgf7yL/9S5eXls85PJpP6+te/Lkm677778lEiAAAAMONoLKHPfjs2b7eXkgJTv3LfFj20N7J6d+1yp2QNnpbd2zbd4rhNdt9JGc54VtN6BaVyI41yIs1Xgy7hBsnMy9sSAAAAAAAAAACABZmYcvXfn3hNX/y3TrmeP+f4uooifebHmvXmptolqA4AsOZNTUi9HVcDLj2vSJfbpamx7OY1TKlqu1S755qwyz6ppDI3dQMAcIvydpfZf/7P/1k/+qM/qn/6p39ST0+P6urq9FM/9VPauXPnnHOffvpp3XXXXZKkd7zjHfkqEQAAAGvcyKSjR58+p6/eoNvLJ97coLpgUZ4rW3zm0EUF2v9BBecPy+47JcObG/xZCK8oOBNwST+a5YW2pD8kAwAAAAAAAAAAWOZaz/Tpo/9yXF39899A/P79m/Ubb9mlisBK3OseALDiTCSnu7m8cjXs0ndK8pzs5rWKpHWN13Rz2Zd+Xliam7oBAMghw/f9udsSABno6+tb6hKAFcOyLIXD4Znng4ODcl13CSsCsJqx5tyaZ7sS+szj1+/28sv3bda799asrm4vvq+CC60KvPK3Kux6Uobv3dI0XnGVnJrmmZCLE2mSV75BWk3/rXBdrDkA8oX1BkA+seakVVdXL3UJAFa5wcHBpS4BWDFM01QwGJx5nkwm5Xm39nkeANzMWl9zhiYc/dFTXfrqK73zHo9WFusTb92q2zdW5LkyYHVa62sOMIfvyxjtlRVvlx3vkBVvTz+S57Ke2isslxtplBtpkluT3sjSC2+VrLUR5GS9AZBPrDlp115vy4W8dX4BAAAAlqObdnvZXKFPPLC6ur0YqWEVnfyKAse/LHvwzILGumW1MwEXd7qri1e6jqALAAAAAABYsLUYLARyxfM8foYA5M1aWXN839cTrw7o9544q/6xqTnHbdPQf3z9ev3H169XoW2uif8mwFJYK2sOIEnyPZnJs7LjHelHXzrwYo73Zz21W7pObnWjnMhuOdVNciKN8io2zX9tf43+zLHeAMgn1pzcIPwCAACANWutdXuxBl5T4PiXVXTyKzKnRm96vluxebqby5VHo/wSdn4GAAAAAAAAAACry+XhSf3Od7v0b2cS8x7fU1emjz8Q1dbqkvwWBgBYPdyUrIHTs0IuVt9JmVMj2U8drJcTaUxf169u5No+AGDVymn45d/+7d9yOd2MN7zhDYsyLwAAANamkUlH//2Zc/rKK9fv9vLxBxq0fjV0e/EcFcaeUOD436nwwtEbn1pQpsldDym19c1yqpvkB4I3PB8AAAAAAAAAAGAl83xf//xyr/74e+c0mvLmHC8pMPXhezbpPbetk2Wujs3SAACLz0iNyOo7KTveLrvvhOy+Dln9r8rw5nYWWwjfLJBbuT0ddKlOh13c6l3yC8tyVDkAAMtbTsMv9913X853xTYMQ47j5HROAAAArF036/byS/du1o/vW/ndXoyxPgU6HlOg7e9ljXTf8FwnvE0Tez+gyZ3v4kMxAAAAAAAAAACwJnT2jemz347plUvz77h/T0NIv/mj9aqtWAWbpQEAFo0x1jfdzaUjHXaJd8hMnpUhP6t5vYJSudW7p4MuTXIiu+VWbpeswhxVDgDAypPT8Isk+X52/2ADAAAAi+Fm3V7u2lyhT6z0bi++L/vyMQWO/52KXvuGDG9uwGfmVMNUKvomTex9v6Y2HJBWeNgHAAAAAAAAAAAgEynH05eev6T/+dwlTblz73OqLLH1a2+s15t2Vq74zdIAADnk+zKHL6SDLtMhF6uvQ9bo5ayn9oqrrgm5NMqJNMoLbpEMMweFAwCweuQ0/PLUU09d91gqldLHP/5xvfDCC4pEInrve9+ru+++W+vWrZMkXb58WS+88IIee+wx9fb26q677tIjjzyigoKCXJYIAACANejZrqQ++3ineubp9lJcYOqX792sd++rkblSL2A4kyp67WsKHP87FfQev+GpXnGlJhp/UhPN/05e+fo8FQgAAAAAAAAAALD0jl0c1iPfjqmzf3ze4w82R/Qr925WsDjn+wkDAFYSz5E1cEZ239WQi913QubkUNZTuxWb5FQ3TodcmuRWN8orrWHDSgAAMpDTd2r33nvvvL/v+77e9ra36cUXX9TP/uzP6tFHH1Vpaemc8z7wgQ/o85//vH7lV35Ff/VXf6U//MM/1De+8Y1clggAAIA1JN3t5by+8krvvMdXercXc+iiAm3/S4GOx2RODN7w3Kl1t2li7wc0ue2tkrUy/7wAAAAAAAAAAAC3YmTS0Z9874L+6eXLmtvrRdoQLNJH3xzV67cE814bAGCJTY3L7j8509HF6uuQ3X9Khjt3c82F8A1LbuW26aBLuqOLW71bflFFjgoHAGDtycs2BX/913+txx9/XG9605v0l3/5lzc8t6SkRF/84hd19uxZPf744/riF7+on//5n89HmQAAAFhFnjub1Ge+tQq7vfi+Ci60KvDK36qw60kZvnf9U61CTW5/hyb2fEDOur15LBIAAAAAAAAAAGB5+N6ZQX3+u126PM81I8uQfvrOOv18ywYFCqwlqA4AkE/GREJ2/JpuLvEOWYnOG153z4RvB+RU7Z7u5tIot7pRTtVOyWZjSgAAcikv4ZcvfelLMgxDH/rQhzIe8+EPf1jf+c539Dd/8zeEXwAAAJCx0ZSrR58+d91uL3duqtAnHohqQyiQ58qyY6SGVXTiXxQ4/mXZic4bnuuWr9dE8/s10fgT8osr81QhAAAAAAAAAADA8tE/OqXff7JL3zk1MO/xnTUl+sQDDdq1rjTPlQEAFp3vyxzpnh106euQNXwp66m9otA1IZfpji6hqGQSogQAYLHlJfxy8uRJSdLmzZszHrNp06ZZYwEAAICbuVm3l196w2b9+G0rq9uLNfCaAse/rKKTX5E5NXrDc1ObDmpizweUqn8jH6wBAAAAAIBlz7L4/ALIlGmaN3wOALm00tcc3/f1/4736g+fOquhCWfO8YBt6oOHNunf3bVetrlyrhkBq9VKX3OwDHiuzERMVm+77Hi7rHi7rHiHzInBrKd2yzfIjTTKjTTJrWmSE2mSX1Yn/dA9B7y7XRlYbwDkE2vO4shL+GViYkKSdP78ed1+++0ZjTl//rwkaXJyctHqAgAAwOowmnL13585p385Nn+3l9dtKtcnH2hYOd1ePEeFsScUeOVvVXjx2RufWlCmyd3v1sSe98sNb81TgQAAAAAAANkLh8NLXQKwYgWDwaUuAcAaspLWnK6+UX30K8fVeqZ/3uMHt1Xptx/aoy1VdHsBlquVtOZgCUxNSL0dUs8rUvcr6a+X26WpsezmNUypartUt1eq3Tvz1SqpJNiyirHeAMgn1pzcyEv4Zdu2bTp+/Lj+/M//XO985zszGvPnf/7nkqStW7mBDwAAANf3/NmkPvN4p7qH5u/28pE3bNJ7blu3Irq9GGN9CnT8HwXa/l7WSM8Nz3Uqt2tiz/s1ufNd8gvL8lQhAAAAAAAAAADA8uO4nv7qcEx/9J1XNel4c44Hiwv08bfv1ntet1HGCrhmBACQNJ6Qeo7PDrrET0m+m928VpG0rkmq3TMdctmXfl5YkpOyAQDA4slL+OW9732vXnnlFT3++OP60Ic+pD/8wz9UIDD/rtuTk5P6L//lv+hb3/qWDMPQ+973vnyUCAAAgBVmNOXq/3vmnP75Bt1ePvFAgzYu924vvi/78jEFjv+dil77hgxvbohn5lTDUir6o5rY+wFNbdg/p5UyAAAAAAAAAADAWtN2Manf/OdX1H5paN7jD+5br0++o1GR8qI8VwYAyIjvS8M914RcjqW/Js5mP3dRcE43F1XvkKy83DoLAAByzPB931/sbzIxMaE77rhDJ0+elGEYWrdund773vfqrrvuUk1NjQzD0OXLl/XCCy/oH//xH9XT0yPf97Vr1y794Ac/UFERbz6Xo76+vqUuAVgxLMtSOByeeT44OCjXzXIXAgC4jrWw5rxwLqnf+tb83V4CtqlfuncFdHtxJlT02tcUeOXvVBBvu+GpXnGlJprep4mmn5JXvj5PBQKZWQtrDoDlgfUGQD6x5qRVV1cvdQkAVrnBwcGlLgFYMUzTVDAYnHmeTCbleXM7GwBALqyUNWd8ytWfHz6vL79wSd48dz/Vlhfqow806J6tlfkvDkDGVsqagxzxPZmJs7Li7bLi7bLj7bJ6O2SOZ38vole6Tk6kSW5Nk9xI+uFVbGRTScxgvQGQT6w5addeb8uFvMRXA4GAnnrqKb397W/XSy+9pJ6eHn3hC1+Y99wrWZzbb79dX/va1wi+AAAAYMbNur3csbFcn3zL8u72Yg5dUKDt7xXoeEzmxI1v8Jhad5sm9n5Ak9vemm69DAAAAAAAsIqsxWAhkCue5/EzBCBvluOa82xXUp/7TkwXk5NzjhmS3nv7On3onk0qLbSWXe0Abmw5rjm4RW5K1sBrsuMdsuPtsvs6ZPWdlDk1mtW0vgy5oXq5kUY51dOPSKP8knk2clmDNxkjc6w3APKJNSc38ta7bd26dXruuef053/+5/qzP/szdXR0zHve7t279cEPflAf/OAHZVlWvsoDAADAMvfCuaQ+862YLg3NvYgRsE195A2b9BO3L9NuL76vgvNHFDj+dyrselKGf/0P2HyrUJPbH9TEnvfLWbc3j0UCAAAAAAAAAAAsb4nxKT369Dl9rX3+DgENVcX6xANR7VlfnufKAGBtM1IjsvpOzoRc7HiHrIHXZHhTWc3rmwVyq3bMBFycSKPcql3yC8tyVDkAAFhJ8hZ+kSTLsvThD39YH/7wh9XT06Pjx49rYGBAUrqlzZ49e1RXV5fPkgAAALDMjU13e/mnFdjtxUgNq+jEvyhw/MuyE503PNctX6+J5vdrovEn5BdX5qlCAAAAAAAAAACA5c/3fT1+sl9/8ORZDY47c44XWIZ+dv8G/Ye761RgmUtQIQCsHcZYX7qbS990R5d4h8zkWRnys5rXKyiVW707HXKpbkoHXSq3SVZhjioHAAArXV7DL9eqra1VbW3tUn17AAAArAAvnkvqt1Zgtxer/1UFjn9ZRae+etOWzalNhzSx9wNKbblfMul8CAAAAAAAAAAAcK2eoUl97jtdOhJLzHv8tg3l+vibo6qvKs5vYQCw2vm+zKHz00GXdMjFinfIGpt/48qF8Eqqp7u5NMmZDrx4wS2SQYARAABc35KFXwAAAIDrGUu5+sK/ndM/vryCur14jgo7v6vA8b9T4cVnb3xqQZkmd79bE3veLze8NU8FAgAAAAAAAAAArByu5+sfX76sP/neeY1PeXOOlxaa+sgbNuvd+2qW3UZpALDiuFOyBjtnQi52vENWX4fM1HD2U1dsTndziTTOBF780pocFA0AANYawi+4ZZbFzuRApkzTvOFzAMillb7mvHA2qU9/87QuJufp9lJg6pfu3aKfvKN22VzEMMb6VNT2v1V0/H/JHOm+4blu5XZN7Pv3Su16SCoskyTxigor3UpfcwCsHKw3APKJNQcAAAAAltbp+Jg+++1OtXWPznv83m1h/eaP1KumvDDPlQHAKjA1JrvvpOy+E7Lj7bL6OmT3n5LhprKa1jcsuZXbrnZ0iTTKrW6UX1Seo8IBAMBal9fwi+M4+vrXv67vfe976uzs1PDwsFzXveEYwzD0xBNP5KlCLEQ4HF7qEoAVKxgMLnUJANaQlbLmjE46+vw3T+rvnj077/G7o5X6vffs1Zaq0jxXNg/fly68KD3/Ranjq9KNPgQ0LGnX26W7f15W/SGVGoaWwZ8AWDQrZc0BsPKx3gDIJ9YcAAAAAMiPScfT/3z2kv7n85fkev6c41WlBfqNH6nXG7eHZSyTjdIAYDkzxgdl93WkQy7xDtl9HbISMRn+3I5aC+HbxXKqd6VDLtW75VY3yqnaKdlFOaocAABgrryFXw4fPqwPfOADOnfu3Mzv+f7cN6lXGIYh3/d5owoAALAGHD3Tr9/452M6PzA+51igwNRvvmWX/sOBepnmEr82nBqX2v4lHXrpfvnG55ZUS6/7GenO/ygFN+ajOgAAAAAAAAAAgBXrBxeG9Nlvx3R2YGLe4w/tjegjb9isikBe9/oFgJXB92WOdMuOt8uOd6S7ucTbZY10Zz21FwjLiTROd3RplBtpkhusl0wr+7oBAAAWIC/vBk+ePKm3vOUtGh8fl+/7Kiws1Pbt21VZWSnTNPNRAgAAAJah0UlHv/Otk/rbo9fp9lJfqd99z17VVy9xr5TBs9KLfy299HfS+MCNz914l3T3z0uNP8auNgAAAAAAAAAAADcxMuno//u38/qXY73zHt8cDuijb4rqzs0Vea4MAJYpz5WV6Lwm5JJ+mJOJrKd2y9dPh1ya5E4HXryyOolNzAEAwDKQl/DLb//2b2tsbEyWZenTn/60fumXfkllZWX5+NZYRIODg0tdArBimKapYDA48zyZTMrzsmsfCgDXs1LWnBfPJfXfvnFaF5OTc44FbFMfuXeL3ve6WplGSoODqfwX6Huyzx1R0St/o4LOJ2To+l0LfatQqR3v1OS+fy933d70bw6PSRrLT63AElopaw6AlY/1BkA+seakhcPhpS4BAAAAwCr31GsD+t0nuhQfmZpzzDIN/fu76vSz+zcoUMDmugDWKGdSdv8pWfF22VeCLv0nZTjzd8nKlG+YcsNb5VQ3TodcdsupbpRfzOdBAABg+cpL+OXJJ5+UYRj65V/+ZX30ox/Nx7dEHriuu9QlACuW53n8DAHIm+W25oynXH3he+f12A8uz3v89o3l+uQDDdoUDsj3POW7cmNyWEUn/1mB4/9LdqLzhue65Rs0seenNbH7J+QXV07/5vL5bw0sheW25gBYvVhvAOQTaw4AAAAA5FZ8JKXffaJLT702/8arjbWl+vibo9pRU5rnygBg6RiTQ9d0c2lP/3rwjAw/u8+lfKtITtVOOZFGuZGmdGeXqp1SQXGOKgcAAMiPvIRf+vr6JEkPPfRQPr4dAAAAlqnvnx/Sb32rc95uL0W2qV+8Z5N+8o51MpegZbLV/6oCx7+swKmvyJi6cceW1KZ7NLH3/UptuV8yrTxVCAAAAAAAAAAAsLJ5vq//ezyu//7MOY1Mzr2ZO2Cb+tA9G/WTt9fKMvN/vQgA8sL3ZY5elhXvuNrNpa9D1tD5rKf2iirkVO+WW90kJ9KYDryEt0pmXm4VBQAAWFR5eUUTiUR06dIlFReTFAYAAFiLbtbt5bYN5frkWxq0ORzIb2Geo8LO7ypw/G9VePG5G59aWKbJXT+uiT3vlxtuyFOBAAAAAAAAAAAAq0PXwLh++9sxvXRheN7jB+qDevhNUa0PFuW5MgBYRL4nM3FWdl+6k0s66NIuc3wg66nd0lq50wEXp7pRTqRJXvkGaQk2mwQAAMiHvIRfDh06pMcee0xtbW2644478vEtAQAAsEzcrNvLh+/ZqPfdUZvXbi/GWJ8C7f9bgfZ/kDXSc8Nzncrtmtj77zWx48ekwtI8VQgAAAAAALD6WRYddYFMmaZ5w+cAkEu5XnOmXE9/+/wlffHIeaVcf87xULGtX/uRqN7WWC2DG7aBNWdVvc5xU7L6X5UV75AVb5fd2y6r74SMqdGspvVlyAtF5dakAy5upElupFF+SfWs8wxJvMsCrm9VrTcAlj3WnMVh+L4/911ljr3wwgs6ePCg9uzZo+eee062TQu91aCvr2+pSwBWDMuyFA6HZ54PDg7Kdee2cAaAXFgua854ytUff++8/s91ur3s21CmT71la/66vfi+7MsvK/DK36no9DdkeFPXP9WwlGp4kyb2fEBTG17PzjjADSyXNQfA6sd6AyCfWHPSqqurb34SAAAAANzAy+cT+q///IpO9szf7eWh2zfo42/fraoyur0AWGEmh6We41L3K1LP9KP3pHSD69AZsQqlmt1S7R6pdp9Ut1da1ywVleWmbgAAgBUsLymUu+66S48++qh+6Zd+Se9+97v1P/7H/+CiGQAAwCr20vkh/dbjnbqQuH63l5+8vVaWmYdQiTOhole/psDxv1NBvO2Gp3rFVZpoep8mmn9KXlnd4tcGAAAAAAAAAACwCo1OOvqDb7+q/9ka03zb8m4IFeu3371H9+6I5L84AFiokd7pkMuxq2GXgc7s5y0sT4dc6vZKtXvTX6t3SnZh9nMDAACsQnkJv/zWb/2WJOnuu+/W1772NW3ZskVvetObtGvXLpWUlNx0/Cc/+cnFLhEAAAA5MJ5y9SeHz+t/v7T03V7MoQsKtP0vBdofkzmZuOG5U+tu18TeD2hy21ski53FAAAAAAAAAAAAbtXTp3r1sa+06WJifM4x05D+48GofvVNO1RalJfblgAgc74vDXalwy1XQi7dr0gjPdnPXVozO+RSu1cKRyXTzH5uAACANcLw/fn2V8gt0zRlGFd39fZ9f9bzm3FddzHKQpb6+vqWugRgxbAsS+FweOb54OAgaxuARbNUa84PLgzp09+6XrcXQx86tEnvu2ORu734ngrOH1Hg+JdVGHtChq7/Ute3CjW5450a3/N+uTV7Fq8mYJXjdQ6AfGG9AZBPrDlpdHAHsNgGBweXugRgxTBNU8FgcOZ5MpmU53lLWBGA1exW15yBsSn9wRMxfaNj/vtJtkdK9Km3blVTXXnOagWw8i3Z6xx3StbAaVnx9pmHHT8hIzWc/dTBLXIjTXIjjXIiTXJrmuSX1uSgaADZ4H0VgHxizUm79npbLuRtC4UfztjkIXMDAACAPLjS7eX/vHR53qjJ3vVl+tRbGrSlsnjRajAmh1V08p8VOP5l2YnYDc91yzdqYs+/08Tun5BfXLloNQEAAAAAAODG1mKwEMgVz/P4GQKQNzdbc3zf1zc6+vSHT59TctyZc7zQMvRzLRv0gTvrZFsm6xeAG1qU1zlTY7L7Tsru65Adb5cV75A98KoMN5XVtL5pyw1vkxNpTD+qm+RW75ZfNE/Ij7UPWHZ4XwUgn1hzciMv4Ze1mFICAABYC27W7eWDhzbppxax24vVf0qB419W4NRXZUyN3fDc1KZ7NLH3A0ptuU8yrUWpBwAAAAAAAAAAYC25mJjQ577bpWe7kvMev2NjuT725uiibpIGANcyxgdnh1z6OmQlYjL87O5h9O1iOdW75ESa5FSnwy5u5Q7JLspR5QAAAPj/s3fn8VGVZ//Hv2f2SQIhGyQsgQSIkAXcdwU3wH3DlUCrrfWx1ra/bj5WrbZ16fp0sa11a1XAXatYRUBEcKuoKGRhT9gTSEgI2WYmM+f8/oiiNJMhQHKyfd6vV19l5r7mzJclt8nMXPd1ILZNfgEAAEDfEWiJ6K/vbNMzKyrbnfbys2nZGtUVb2REWuQpf1O+otnybP8wZqnpSVBw/HQ15xfKTMrq/CwAAAAAAAAAAAD9UNi09MyKSv393W0KhNt+oDzB69T3J2XqooI0OYyuOSQNQD9nWXLU75CrukSuqtLPG11K5GyoPOxLm77kr0xzyVUkLVeRxFEcsggAANDNaH4BAADAQflsW71+/sZGbbV52ovRVC1fyTPyFT8tZ2PsFyzDyWMVmDBLgZyLJU98p+YAAAAAAAAAAADoz9btatQ9C8pVurMx6vpZOcn68ZkjlZrgsTkZgD7LjMi5p+zzJpeSzye7rJYjuOewLx0ZMOzzJpc8RT5veDHj0yUa9wAAAHocml8AAADQIYGWiP767jY984mN014sS67KT+UrmiPvhtdlmC3tlxpOhbKnKFBQqJZhJ/BiJAAAAAAAAAAAQCcKtJh69INtmv1RhSJR3ixKS3Dr1rNGafLYZPvDAeg7wgG5dq3+SpNLqVy718gIBw7rspbhUCRp9L5JLl9MdbF8gzonNwAAALqc7c0vNTU1+uc//6k333xTxcXFqqmpkSQlJycrPz9fZ599tq677jolJ/ODMAAAQE/x2bZ6/WJBmbbUtn1B0esydNMpI3TNMZ047SUckHfdv+UvelKuqpKYpaY/RYG8qxXIv0ZmQkbnPD8AAAAAAAAAAAD2+XhLne5dWK6te4JR16dPHKzvnD5CCV7O4QXQcUagTq6aNdLqcqlylVSxSoOq18mwIod1XcvpVTh13FcaXfIUTs6R3J14kCMAAABsZ+tPnA899JB+9KMfqampSZJkWV8eA7F9+3bt2LFDCxcu1N13363f//73+ta3vmVnPAAAAPwXu6e9OPZuk694rnwlzx1wRHVL+lEKFMxScMxUyentlOcHAAAAAAAAAADAl+qaWvSL+Rv0r1W7oq6PSvbpjinZOnL4AJuTAehVLEuOxp1yVpXKVV3SOs2lqlTO+m1tSg/2uEXTO/DzJpe8fdNcIknZkoNmPAAAgL7Gtu/wfvWrX+n222/f1/CSmJioo446Sunp6ZKkyspKffrpp6qrq1NjY6Nuuukm7dmzRz/5yU/siggAAICv+Gx7vX7xRvRpLx6noZtOHaFrO2Pai2XKvfU9+VbNlmfTWzKittl8Xur0KphzoZoLChUZXHB4zwsAAAAAAAAAAICoLMvS/OJK/eyVElU3tJ324nIY+vrxQ3XdiUPldTm6ISGAHssy5dizeb8mF1d1iRzNNYd96UhCuiKpufuaXMJpeTIHDJOMw3zPGgAAAL2CLc0vxcXFuvPOO2VZljIyMvTb3/5WV1xxhdxu93514XBYzz//vH784x9rx44duuOOO3T++ecrLy/PjpgAAABQ67SXv727TU+3M+2lICNBd03L1qiUw5v2YgTr5V3zgnxFc+XaUx6zNjJguAIFMxQYf4Usf9JhPS8AAAAAAAAAAADat3NvUD+e94neXL0z6npBRoJun5KlMWlxNicD0ONEgnLuXi9X9edNLlUlcu1eI6Ol6bAua8lQZFCWImlfNLrkKZw2XpY/pZOCAwAAoDeypfnlL3/5iyKRiNLS0vTBBx8oMzMzehiXS9dcc41OPfVUHXfccaqqqtJf/vIXPfjgg3bEBAAA6PfsmPbi3L1WvqI58q19+YAveoYyT1OgYKZCIydLDuchPycAAAAAAAAAAABiMy1LL63cpQeWbVVjKNJmPc7t0M2njdD0I4cc1ntFAHonI1QvZ/Wa1gaXqlK5qkvlrNkgw2w5rOtaTo+MweOl9AlSxkTtjc9SKGms5InvpOQAAADoK2xpfnnrrbdkGIZuu+22dhtfvmrEiBG69dZb9cMf/lCLFy+2ISEAAED/Fmgx9eC7W/VUV017ibTIU/6m/Ktmy73jw5ilpidBwfHT1ZxfKDMp69CeDwAAAAAAAAAAAB1WvrtZ9yws08rtDVHXT80epP89e5TSB3ptTgagOxiNVV9Oc6lunejirNt82Nc1PQmKpOYqnDq+daJLWp6UmqOk1CH7aiK1tVKkbQMeAAAAYEvzy/bt2yVJJ598cocfc8opp0iSduzY0SWZAAAA0Grl9nr9PMa0l/85ZbhmHJtxSCd4GU3V8pU8I1/x03I2VsasDSfnKDBhpgI5F3OKDwAAAAAAAAAAgA1aIqYe/3CH/vHhDrVE2h6RlhLv0Y/PGqWzxg6SYTDtBehzLEuOvVtam1yqSvY1vDiaqg770mZcWmuDS2prk0s4LVfmwBGS4divzul0HvZzAQAAoH+wpfnli29Qw+Fwhx8T+bx72+FwHKASAAAAh+JA017yM+J117TRyjrYaS+WJVflp/IVzZZ3w/yYY64tw6lQ9hQ1T5ip8NDjJd40AQAAAAAAAAAAsMWqHfW6Z0G5ynY3R12ffsxw3X7eeCnUuO9zPAB6sUiLnLUb92tycVaXyhGKPvHpoC6dmKlwat7n01xyFU7NkxWf1gmhAQAAgC/Z0vySmZmp1atXa/HixR2e/rJ48eJ9jwUAAEDnOtC0lxtPGa7Cg532Eg7Iu+7f8hc9KVdVScxS05+iQP41CuRdLTMh42DjAwAAAAAAAAAA4BA1hiL66ztb9fynO6MekDZ8kFe/uvxInTo2VZJUG2q0NyCAw9fSJFf16taJLtWlclaVylWzTkYkdFiXtRwuRZLG7NfkEkkdL8s7oJOCAwAAAO2zpfnlnHPOUWlpqX73u9/pkksuUUFBQcz64uJi/fa3v5VhGJoyZYodEQEAAPqFQIupv7+3VXM/jj7tJS89Xnefe3DTXhx7t8pXNFe+0uflCO6JWduSfpQCBbMUHDNVcnoPLjwAAAAAAAAAAAAOyzsba/WrNzdpZ33bD8A7DGnGsRm66bRMDR2c2g3pABwKo7nm8yaXktZpLlWlcu4plxH1HeGOs9xxCqeMUzjt84kuqbmKpIzlfV4AAAB0G1uaX77//e/r73//uxoaGnTqqafqzjvv1HXXXaeUlJT96nbv3q1//vOfuvfee1VfXy+fz6fvf//7dkQEAADo81btaJ32srmm/WkvM47NkKsj014sU+4t78pfNFvuTUtivnBqOb0K5lyk5oJCRQbnH85vAQAAAAAAAAAAAIdgd2OLfvfWJi1aWxN1/YjBcbpzarbGDYmX0+m0OR2ADrEsOep37Nfk4qoukbOh8rAvbfqSvzLNJVeRtDxFEkdKDvYDAAAA9By2NL+MHDlSDz30kK677jo1NDTo1ltv1f/+7/8qKytLgwcPlmEY2rlzp8rLy2VZlizLkmEYeuihh5SZmWlHRAAAgD4r0BLR35Zt0dxPKmRG6VHJS4/XXdOylZ0ad8BrGcG98q55Uf5Vc+Ss2xSzNjJguAIFMxQYf4Usf9IhpgcAAAAAAEBfxQdrgY5zOBwxbwNAeyzL0ryiXfq/JZu1NxBus+51OXTTqSM047ih+w5IY88BegAzLEdtmVxVJXLuKmmd5lJVIkew7rAvHRk4XJG0zxtc0vIUTsuTlZAuGfsfkmjXd+vsOQDswn4DwE7sOV3DluYXSZo1a5ZSUlJ04403aseOHbIsSxs3blRZWZmk1h+2vzB06FA9/PDDOu+88+yKBwAA0Cet2FKrHzyzSptqmtusuZ2Gbjx5uAqPO/C0F2f1WvmKZsu39mUZ4bbX+qpQ5mlqLpillpGTOAkIAAAAAAAA7UpK4sAU4FAlJiZ2dwQAvcDm3Y366b+K9N6G3VHXTxmTovsuLdDIlPiY12HPAbpYS7O0s1SqXClVrJIqV7XePsD7sgdkOKTUI6SMCVL6hM//v0BOf5JtjS2Hgj0HgF3YbwDYiT2nc9jW/CJJ559/vjZt2qR//etfevPNN1VcXKyamtZxqsnJycrPz9fZZ5+tSy65RG63285oAAAAfUqgJaL/W7ROj75TFnXaS256vO4+0LSXSIs85W/Kv2q23Ds+jPl8pidBwfHT1ZxfKDMp6zDTAwAAAAAAAAAA4FCFI6Yefbdcf1i0TsGw2WY90e/WHeeP1/RjhsswYh+QBqCTNddKlUVfNrlUrJKq10lW5PCu6/JJQ/K+0uQyURqSK7n9nZMbAAAA6AFsbX6RJJfLpSuuuEJXXHGF3U8NAADQL6zaXq9fLFipjVWNbdY6Mu3FaKySr/QZ+YqflrNxZ8znCifnKDBhpgI5F0ue2KeCAQAAAAAAAAAAoGsVb6/TrS+uUsmOvVHXL5w4VD+7IFdpA7w2JwP6GcuS9u74ssHli/+v23L41/YN+nKayxfNLiljJaftHwUEAAAAbMV3vAAAAH1EMGzq7+9t09yPK9qd9nLXtGyNjjbtxbLkqvxUvqLZ8m6YL8Nsafd5LMOp0Oipai4oVHjo8RInggEAAAAAAOAQ1NbWdncEoNdwOBxKTEzcd7uurk6m2XaaA4D+q7klor+/u1VzP9qhSJT3iYYM8OinU7J1+phkKdyk2tqmdq/FngMcJMuUY0+5nLtK5KoqkbOqVM6qEjmaaw770mZChsJpeYqk5SoyOE+RtDyZA4a1fY92b/1hP1d3Yc8BYBf2GwB2Ys9plZSU1KnXo/kFAACgDyiuaNDd8zdqU02gzVrMaS/hgLzrXpW/aLZcVSUxn8OMS1Ug72oF8q6RmZDemfEBAAAAAADQD0Uike6OAPRapmnyNQRgnw831+m+heXaXhdss2ZIuuKoIbr5tBGK9zgPae9gzwG+IhKUc/d6uapL5aoqlauqRK7da2S0tN9Q1hGWDEUGZSmSlqtwWq7CqXkKp+XK8ie3Le7jH5pkzwFgF/YbAHZiz+kctjS/FBUV6eKLL5bT6dTbb7+tYcOGxazfvn27Jk2aJMuyNH/+fOXk5NgREwAAoNcJhk099N42zWln2suE4Yn62ZQsjUref3S9o26LfMVz5St9QY7gnpjP0ZJ+tJonzFRo9DTJ6enE9AAAAAAAAAAAADhUe5pb9Ke3t+jVkuqo69kpft0xNUsThg6wORnQNxihejmrVstVXfJ5o0upnLUbZJjhw7qu5fAonJLzeaNLnsKp4xVOGSd54jspOQAAANA32dL8MmfOHG3atElTp049YOOLJA0bNkw5OTlasGCB5syZo1/84hc2pAQAAOhdiisa9PP5G1UeZdqLx+nQ984eqxtPz1b93rrWrnHLlHvLu/IXzZZ70xIZitIt8znL6VUw5yI1FxQqMji/K38bAAAAAAAAAAAAOAiWZWnh2hr9bvEm1Ta3/RC+22no+hOG6usnDJXb6eiGhEDvYzRW7dfk4qoukbNuy2Ff1/QkKJL6xTSX1maXSNJoyenuhNQAAABA/2JL88vSpUtlGIYuuuiiDj/m4osv1htvvKHFixfT/AIAAPAVB5r2kpserz9cfYyOSG89xcsI1slX/Lz8RbPlrNscf6ByFQAA9ORJREFU89qRgSMUyJ+hwPjpsvxJXREfAAAAAAAAAAAAh6hyb1C/enOT3i3bE3V94rAE3TElW1kpfnuDAb2FZcqxd+vnTS4lclW3Nrs4mqoO+9JmXNp+TS7htFyZA0dIBk1oAAAAQGewpfll3bp1kqQJEyZ0+DH5+a0njK9du7ZLMgEAAPRGsaa9uByGvnXyMF130gilpQyQdpZIyx9R4spnZISbY143lHmamgtmqWXkJMnh7Kr4AAAAAAAAAAAAOAQR09Lzn+3U397ZqqYWs816vMehW07P1GUTB8thGN2QEOiBIi1y1m5obXKpKpWrulTO6tVyhBoO/9KJI1sbXL4y1cWKT+uE0AAAAADaY0vzS0ND6w8MCQkJHX7MF7V79+7tkkw4fE4nH4wFOsrhcMS8DQAHEgyb+vu7W/Xk8u1Rp72MT4/XL84bozHJHnnK5kvz5kqb35Mktff2hukZoFDuFQpOKJSZlC1J4r/uAA4W3+cAsAv7DQA7secAAAAA6Ek2VDXpnoVlKq5ojLo+aUySfnLWSA0Z4LU5GdCDhBrl2r1mX5OLq6pEzt3rZZihw7qs5XApkjz2yyaXtDxFUsfJ8gzopOAAAAAAOsqW5pekpCRVV1ersrJSEydO7NBjKisrJUkDBvCDQk+VlJTU3RGAXisxMbG7IwDoRT7bukc/fr5Y63e1PYHI7TT0/bNzdOPR8XJ9Nlt69R9SfUXsCw7Ok47/phwFV8rnTZCvi3ID6J/4PgeAXdhvANiJPQcAAABAdwiFTf3jPzv0+PIdCkc5HS0l3q2fnDVKZ45NksG0F/QjRnPN500urRNdnFWlcu4pl6EopwgeBMsdp3DKuNaJLp9Pc4mkjJWcNJYBAAAAPYEtzS9jx45VdXW13njjDU2dOrVDj5k/f74kafTo0V0ZDQAAoMcKhiP645vr9dDSjVGnvRQMHai/nB7WyA33S396RTJb2r+Y4ZTGXygd/y1p5MkSb4AAAAAAAAAAAAD0WJ9tq9c9C8u0qSYQdf2SgjR9d1KmBvps+egP0D0sS4767XJVlXw+zeXzRpfGysO+tOlPVjj18yaXtFyFU/NkDhopGUx/BQAAAHoqW34Cnjp1qt5//309/PDD+ta3vqXx48fHrC8pKdEjjzwiwzA0bdo0OyICAAD0KCu37tGPnl8ZddrLAGdIf8zdoDPr58l4eVXsC8UPlo69Tjrm69LAoV0TFgAAAAAAAAAAAJ2iIRjWA8u26sWVu6KuZyb59NNzsnRs5kCbkwFdzAzLWVv2lSaXErmqV8sRrDvsS0cGDN+vySWSliszfggHBgIAAAC9jGFZ1uHNe+yA6upqZWVlqampSYMHD9YjjzyiCy64IGrtvHnzdOONN2rnzp2Ki4vTxo0bNWTIkK6OiENQW1vb3RGAXsPhcCgxMXHf7bq6Opmm2Y2JAPRUobCpv7+3VU98uL3NtJcRxk59b8BSXaK35ArtjX2hESe0TnkZf5HqGpvZcwB0Gb7PAWAX9hsAdmLPaZWUlNTdEQD0cdXV1d0dAeg1nE7nfv9trq2tVSQS6cZEALrC2xtq9Os3N6mqoaXNmtOQZh0/VN84cZh87q6dTMGegy4XDshVvUau6tZJLq7qUrmq18iIBA/rspbhVCRp9OdNLrmKfP7/li/xwA9Gt2HPAWAX9hsAdmLPaZWamtqp17Nl8ktqaqr+/ve/a+bMmdq1a5cuvvhiZWdn69RTT1VGRoYkqaKiQu+8847Ky8tlWZYMw9CDDz5I40sP1h+/AIHOYpomX0MA2iipaNDP3yhT2e7mffcZMnW6o0hfcy3UGY7PZITa71u2nF4Fj7hYoYmzNPCI0/bdb5qN7DkAbMP3OQDswn4DwE7sOQAAAAC6UnVDSL9ZvElvrY9+CGnukHjdMTVLOYPjbU4GHD4jUCdXdcnn01xaG12ctRtlWId3yITl8imcMu4rjS55CqfkSC5fJyUHAAAA0NPY0vwiSTNmzJBpmrrpppvU1NSkjRs3qqysbL+aL4bQxMfH68EHH1RhYaFd8QAAALpNKGzqkQ+268nlOxT5vLdloBo13blMM50LleXYGfPxkYEjFMifoUDuFbJ8g+R0Om1IDQAAAAAAAAAAgMNhWZZeKarSH5duUUOwbcO9z+XQTacO19VHp8vpMLohIXBwjMAeuSs++bzJ5fOGl/rth31d05u4f5NLWq4ig7Ikh20ffQMAAADQA9j6E8DMmTN1zjnn6M9//rNee+01FRcX72t4cTgcKigo0IUXXqjvfOc7THwBAAD9Qmllg+6e/+W0l3HGFs1yLtQlzvcUZ8Qe6x3KPF3NE2apJfN0yUHDCwAAAAAAAAAAQG+xuaZZ9y4s14pt9VHXTxyVqNvOHqVhg5higR7OsuSq/FS+ojnybpgvwwwd1uUiCRkKp+UpkpqrcNp4hVPzZA4YKhk0gAEAAAD9ne3t7+np6brvvvt03333KRwOq6amRpKUnJwsl4tufAAA0D98ddqLYYV1nuNjfc21UCc41sR8nOkZoOD46WoumCFzUJZNaQEAAAAAAAAAANAZwhFTT35UoUc/2K5QxGqznuh36YdnjNS541Nk8GF/9GQtzfKumyd/8Vy5qkoO+uGWDEWSsj+f5pKrcFqewqnjZfmTuyAsAAAAgL6gW7tNXC6XBg8e3J0RAAAAbFda2aCfv1GmvdUVutn5lq51LVa6URvzMeGUI9RcMFPBIy6W3HE2JQUAAAAAAAAAAEBnKalo0D0Ly7W+qinq+rm5KfrB5JFKinPbnAzoOEdtufzFc+Vd86Icwb0deozl8CickvOVJpdchVPH8b4nAAAAgIPCqBUAAACbhMKmHnl/m0o+flvfdS7Sud4P5TEi7dZbhlOh0VPVXDBT4aHHMcobAAAAAAAAAACgF2oKRfTge9v07IpKmW2HvShjoEe3nZOlk7MG2Z4N6BAzIs+mt+QrmiPP1ndjllpOj8JDjlI4Lbf1f6m5iiSNlpw0dQEAAAA4PLY3v6xfv15PPvmkPvjgA1VWVqq5uVkLFizQmDFj9tUUFxdry5Ytio+P16RJk+yOCAAA0OnWbqvWB/Of1PTmf+suz+aYtWZcqgJ51yiQd7XMhHSbEgIAAAAAAAAAAKCzvV++R/cvKlfF3lCbNYchXX10uv7nlOGK8zi7IR0Qm9FULV/pc/KVPC1n/Y6YtZGBIxTIv1aB8VfI8ifZlBAAAABAf2Jb84tpmvrJT36iP/3pTzJNU5bVepSFYRgKhfb/AX/Lli264IIL5HK5VF5ermHDhtkVEwAAoFNFajapbNFDytv1mk4xGiVH+7UtGceouWCmQqOnSk6PfSEBAAAAAAAAAADQqWqbWvR/SzZr/urdUdfHpPp1x9Rs5Wck2JwMOADLkqtyhXxFc+TdMF+G2dJ+qQy1jJys5oIZahk5STJivBkKAAAAAIfJtuaXG2+8Uf/4xz9kWZaGDRumk046SS+88ELU2vPOO09ZWVnatGmTXnjhBX3ve9+zKyYAAMDhs0y5t7yj8EePK63yHQ2RJRntlDq9Ch5xsZoLChVJy7M3JwAAAAAAAAAAADqVZVmav3q3fr9ks+qaw23WPU5D3zxpmGYdlyGXk0YB9CAtTfKumyd/0Vy5qktjlpreQQrkXqFA/rUyEzNtCggAAACgv7Ol+WXx4sV67LHHZBiGfvrTn+rnP/+5nE6nHI72f4i/4oor9Jvf/EZvvfUWzS8AAKBXMIJ75V39gnxFc+Sq2xyzNhA/XJEjZyowfros3yB7AgIAAAAAAAAAAKDL7KgL6v5F5fpgU13U9aOHD9DtU7I0MtlvczKgfY7acvmL58i7+kU5QvUxa1sGT1CgoFDBsedLLp9NCQEAAACglS3NLw8//LCk1oku99xzT4cec/zxx0uSSkpKuiwXAABAZ3BWr5GvaLZ8a1+REW6OWbth4AlKOfUbioyaLDmc9gQEAAAAAAAAAABAl4mYlp5ZUakH392mQNhss57gdep7kzJ1cUGaHIbRDQmB/2KG5dn0lnxFc+XZ+m7MUsvpVXDsBQoUFCo8ZIJNAQEAAACgLVuaXz744AMZhqFvfOMbHX7M8OHDJUmVlZVdFQsAAODQRVrkKVsof9EcuXcsj1m614rTIs/ZGnX2DRo5OlcRmyICAAAAAAAAAACga63b1ah7FpartLIx6vqZY5P0k7NGKTXBY3MyoC2jqVq+0mflK35azoaKmLWRgZkK5F+rwPjpsvxJNiUEAAAAgPbZ0vyya9cuSdKoUaM6/Bi32y1JCofDXREJAADgkBiNu+QreVa+kqflbNwZs3a1OUJzzKkadMx0FZ48Wm6nw6aUAAAAAAAAQM/ndDIZGegoh8MR8zYA+wVaInrk/W16cvkOhU2rzXpagke3nZOlM3JSuiHd4WHP6WMsS86KT+Rb+aTcG+bLMFvaL5WhllFnKDhxpsIjJ0mGQ/zto6ux5wCwC/sNADux53QNW5pf4uPjtWfPHlVVVXX4Mdu2bZMkJScnd1UsAACAjrEsuSo/kX/VbHk2viHDbL85t8VyaoF5nJ4IT1FdylG667zROmJwvI1hAQAAAAAAgN4hKYkTxIFDlZiY2N0RgH7tg4279dN/Fau8Ovq0lxknZOrWc8dpoM9tc7KuwZ7TS4UapVXPSR89Ju0sil3rT5aOninj2OvlSRol5hShO7HnALAL+w0AO7HndA5bml+ys7O1YsUKlZaW6pxzzunQY+bPny9JysvL68poAAAA7WtplnfdPPmL5shVXRqzdJc1SE9FztRT4bO025Gs608cqutPHMq0FwAAAAAAAAAAgD6irqlF989frWc+2hp1PTstXr+6bIKOz+KgV3Sj6vWtDS+fPSUF62LXDjtGOu4GKe9Sye2zJx8AAAAAHCJbml+mTJmiTz75RH/96191yy23HHBsT2lpqR5//HEZhqHzzjvPjogAAAD7OOo2y1c0V77VL8hxgBeEPzJz9GR4it4wj1eLXBqbFqc/nJvNtBcAAAAAAAAAAIA+wrIszS+u1F3zSlRVH2yz7nIY+vbk0fr2GWPkczu7ISH6vUhYWjdf+uhRqezt2LUun5Q/XTruG9Kwo22JBwAAAACdwZbml+9+97v685//rI0bN+p//ud/9Le//U0uV/SnXrRoka677joFAgGlpKTohhtusCMiAADo7yxT7i3L5F81R+7Nb8uQ1W5ps+XRy5FTNDtyjkqtUZIkp8PQDScw7QUAAAAAAADoqNra2u6OAPQaDodDiYmJ+27X1dXJNM1uTAT0H7vqg7p/UbneXl8Tdb0gI0F3njtaY9Pi1dywV8025+sK7Dm9h9FYJW/JM/IWPSVHQ0XM2kjiSAUnFCo0frosf1LrnXw/hh6APQeAXdhvANiJPadVUlJSp17PluaXIUOG6O9//7tmzZqlxx57TAsWLND555+/b/1Pf/qTLMvSe++9pzVr1siyLDkcDj3++ONKSEiwIyIAAOinjECdvGtelL9ojpx1m2PWbrYGa3b4HD0fmaQ6ffk9yti0ON01LVvjhjDtBQAAAAAAAOioSCTS3RGAXss0Tb6GgC5mWpZeWrlLDyzbqsZQ2683v9uhm08boSuOHCKnw+jTX5PsOT2MZclV8Yl8RXPk3fiGDLOl/VIZahl1hpoLCtWSeZpkfH6IH3+f6MHYcwDYhf0GgJ3YczqHLc0vkjRjxgy53W7deOON2rp1qx566CEZhiFJevTRRyW1jomVpISEBD3xxBP7NcgAAAB0Jmf1GvmKZsu39hUZ4dhncC13Hq2/NZ+lpeZEWfpyqovTYeh6pr0AAAAAAAAAAAD0KeW7m3XvwnJ9tr0+6vopWYN02zmjlD7Qa3My9GuhRvnWvSJf0Vy5dq+JWWr6khTIvVKB/GtlDhxuU0AAAAAA6Fq2Nb9I0pVXXqmzzjpLf/vb3/Tqq6/qs88+Uzgc3reel5eniy66SN/73vc0ePBgO6MBAID+INIiT9lC+Ytmy73jo5ilpmegPkqcqtu2n6wyc0ib9TGpft197mimvQAAAAAAAAAAAPQRLRFTTyyv0GP/2a6WiNVmPcnv0g/PHKmp41L2HfgKdDVn7cbWKS9rXpIj1BCztmXIkQoUFCo45jzJRXMWAAAAgL7F1uYXSUpJSdGdd96pO++8U6ZpqqamRpFIRMnJyXK73XbHAQAA/YDRuEu+kmfkK35azqZdMWvDKeO0adSV+sHaXK3aarZZdxrSdScM0zdOYtoLAAAAAAAAAABAX7FqR73uWVCust3NUdcvyEvV9ydnapCfz7bABmZYnvLF8hXNkWfb+zFLLadXwZyL1FwwQ5HBBTYFBAAAAAD72d788lUOh0OpqandGQEAAPRVliVXxSfyF82WZ+MbMsxw+6UOl0Kjp6ohd4Ye2jJUj31QoYjZtvGFaS8AAAAAAAAAAAB9S2Moor+9s1XPfbpTbWe9SMMSvbrtnCydOCrR9mzof4zGKvlKn5Wv5Gk5Gypj1kYSM9WcX6jg+Mtl+QbZExAAAAAAulG3Nr8AAAB0upZmedfNk79otlzVq2OWmnFpCuRdo0De1VrTlKC73yjTul072tQ5DenrJwzVN08axrQXAAAAAAAAAACAPuLdjbW6/81N2lkfarPmMKQZx2boxpOHyed2dkM69BuWJVfFx/IXzZFn4wIZZkv7pTIUGnWmAgWFask8VTJ47xIAAABA/2FL80tLS4vWr18vSRo9erS8Xu9+64FAQLfffruee+45VVdXKysrSzfddJNuueUWO+IBAIA+wFG3Wb6iufKtfl6O4N6YtS0Zx6q5oFCh0VMVlkv/+HCHHvtPiSJm2/O8Rqf6dfe00RqfzrQXAAAAAAAAAACAvmB3Y4t+v2SzFq7ZHXU9Z3Cc7pySzftD6FqhRvnWvSJf0Ry5dq+NWWr6khXIvVKB/GtkDhxuU0AAAAAA6FlsaX7517/+pWuuuUbJycnatm1bm/VLL71UCxculGW1fuB0zZo1+v73v6+1a9fqL3/5ix0RAQBAb2SZcm9ZJv+q2XJvXioj6jD6z0tdPgVzLlJzwUxF0nIlSet2NeruN9Zq3a6mNvVfTHv5xonD5HFxYhIAAAAAAAAAAEBvZ1mW/l1SrT+8vVl7A5E2616XoW+dPFwzjkmXy8n7Q+gazpoN8hXPlXfNS3KEGmLWtgw5SoEJhQqOPldyeWPWAgAAAEBfZ0vzy4IFC2RZli655JI2U19ee+01LViwQIZhaPjw4TruuOO0fPlybd++XQ8++KCuvfZanXzyyXbEBAAAvYQRqJN3zYvyF82Ws25LzNrIwEw1FxQqOH66LF+iJCkcMfXPD3fo0f/sYNoLAAAAAAAAAABAP7BtT0D3LSzX8i17o64flzlQPz0nSyOSfDYnQ79ghuUpe1O+4jnybPsgZum+Q/3yZygyON+mgAAAAADQ89nS/LJixQoZhqFJkya1WfvHP/4hScrJydHy5cs1YMAA1dXV6eSTT9aaNWv06KOP0vwCAAAkSc7q1fKvmi3vuldkhAMxa0MjJ6m5YKZaRk6SjC9P5lpf1aS752/U2namvXzthKH6JtNeAAAAAAAAAAAA+oSwaempjyv00PvbFQybbdYH+pz6/qSRujA/VYZhdENC9GVG4y75Sp+Vr/gZORsrY9ZGEke2Huo37vJ9h/oBAAAAAL5kS/PLrl27JEljxozZ737TNLV48WIZhqFbbrlFAwYMkCQlJibqO9/5jm6++WZ98EHs0w4AAEAfF2mRp2yB/Ktmy13xccxS0ztQwfFXqDn/WpmDRu23Fo6Yenx5hR79YLvCUaa9ZKf4dfe52cpNT+jM9AAAAAAAAAAAAOgma3Y26pcLyqIeiiZJ5xyRrB+dOUop8W6bk6FPsyy5dnwkf/EceTYukGGG2y81HAqNOlOB/BlqyTx1v0P9AAAAAAD7s6X5pbq6WpLk9/v3u/+zzz7T3r17ZRiGzj///P3W8vNbx3Zu3brVjogAAKCHMRp3yVfyjHzFT8vZtCtmbThlnJonzFQw5yLJHddmfX1Vk37+xkat2Rl92sus44fqhpOY9gIAAAAAAAAAANAXBFoieuj97Xrq4wpF2p6JpiEDPLr17FE6fXSS/eHQZxmhBnnXzZOvaI5cu9fGrDX9yQrkXqVA3jUyBw6zKSEAAAAA9G62NL94vV6Fw+F9TTBfWLZsmSRp+PDhGjly5H5rX0yBiUQidkQEAAA9gWXJVfGJ/EVPHvgUJIdLodFT1VwwS+GMY6QoY+iZ9gIAAAAAAAAAANC/LN9cp3sXlmt7XbDNmiHpiqOG6NunDleC15aPzKAfcNasl69orrxr/iVHS0PM2pb0oxQomKngmGmS02tTQgAAAADoG2z5SX7kyJEqLS3Vhx9+qLPOOmvf/a+++qoMw9Dpp5/e5jE1NTWSpLS0NDsiAgCA7tTSLO+6efIXzZarenXMUjMuTc351yqYe5XMhCHt1m2oatLdTHsBAAAAAAAAAADoF+qaw/rj25v1akl11PXsFL/umJqlCUMH2JwMfVKkRZ7yN+UrmiPP9v/ELLVcPgVzLlJzQaEiaXk2BQQAAACAvseW5pczzjhDJSUleuCBB3TppZdq/Pjxmjdvnt5++21J0nnnndfmMcXFxZKkjIwMOyICAIBu4KjbLH/RXHlXPy9HcG/M2paMY9U8YaZC2VMkp6fdOqa9AAAAAAAAAAAA9B+WZWnh2hr9/q1NqmkKt1l3OQx948Sh+trxQzkUDYfNaNwlX8mz8pU8LWfjzpi1kcRRai4oVHDcZbJ8iTYlBAAAAIC+y5bml1tuuUUPP/ywdu3apfz8fCUlJam2tlaWZWn48OG6/PLL2zxm4cKFMgxDEyZMsCMiAACwi2XKvWWZ/Ktmy715qQy1bVDZV+ryKZhzsZonzFQkdfwBLx1r2ovDkL7GtBcAAAAAAAAAAIA+o3JvUL96c5PeLdsTdX3C0ATdMSVL2alx9gZD32JZcu34SP6i2fKULZRhtm2y2ldqOBQadaYCBYVqGXGKZPC+JAAAAAB0FluaX8aOHavZs2fr+uuvV2Njo2pqaiRJgwYN0tNPPy2PZ//T2ysrK7Vo0SJJ0plnnmlHRAAA0MWMQJ28q1+Qv3iOnHVbYtZGBma2noI0fnqHTkEKm5aeWL5Dj7zf/rSXu6ZlKy+DaS8AAAAAAAAAAAC9XcS09MJnO/XXd7aqqcVssx7vceiW0zN12cTBchhGNyREX2CEGuRd+4p8RXPkqlkXs9b0JyuQe5UCedfIHDjMpoQAAAAA0L/Y0vwiSVdccYUmTZqk1157TZWVlcrIyNBFF12k5OTkNrWrVq3StddeK0k677zz7IoIAAC6gLN6tfyrnpR33TwZ4UC7dZYMtYycpOYJM9WSeXqHT0HaUNWkn79RptU7G9usOQxp1nEZuuHk4fIy7QUAAAAAAAAAAKDX21jdpHsWlKuooiHq+umjB+nWs0dpyACvzcnQVzhr1stXNFfeNf+SoyX6v7MvtKQfrUBBoYJjpklO/s0BAAAAQFeyrflFkgYPHqzrrrvugHVTpkzRlClTbEgEAAC6RCQkT9lC+VfNlrvi45ilpnegguOvUHP+tTIHjerwUxxo2ktWsk93nTta+Ux7AQAAAAAAAAAA6PVCYVP//HCH/vnhjqjvDaXEufXjs0bqrJxkGUx7wcGKtMhT/qZ8RbPl2f5hzFLL5Vcw5yI1FxQqkpZrU0AAAAAAgK3NLwAAoG9zNOyUr+QZ+UqelqOpKmZtOHW8mgtmKphzkeT2H9TzMO0FAAAAAAAAAACg//hsW73uWVimTTWBqOsXF6Tpe5MyNdDHx2BwcBwNO+UtfVa+kmfkbNwZszaSOErNBYUKjr9clnegTQkBAAAAAF/gp34AAHB4LEuuik/kL3pSno0LZJjh9ksdLoVGT1NzwUyFM46RDvLUrbBp6cnlO/TIB9vVEmHaCwAAAAAAAAAAQF/WEAzrL8u26oWVu6Kujxjk1e1TsnRsZqLNydCrWZZcO5bLXzRHnrKFsd/fNBwKZZ2lQH6hWkacLBkcvgcAAAAA3YXmFwAAcGhamuRdN0/+VbPl2r0mZmkkbrAC+dcokHe1rPjBh/R0G6ub9PP5ZSptZ9rLzOMy9C2mvQAAAAAAAAAAAPQJb2+o0W/e3KRdDS1t1pyfvzf0zZOGy+fmvSF0jBFqkHfty/IVzZGrZn3MWtOfrEDuVQrkXytzwFCbEgIAAAAAYqH5BQAAHBTHnk3yFz8l7+rn5QjujVnbMvQ4NRfMVCh7iuR0H9LzhU1Lsz/aoYffjz7tZVSyT3cz7QUAAAAAAAAAAKBPqG4I6bdvbdbidTVR13OHxOv2qVk6YnC8zcnQWzl3r5OveK68a/4lR0vbg/a+qiXjGAXyCxUcM1Vyem1KCAAAAADoCJpfAADAgVmm3JuXyl80W+7Ny2SobRPKvlKXT8Gci9U8YaYiqeMP62kPNO2l8NgM3XgK014AAAAAAAAAAAB6O8uy9EpRlf64dIsagpE26z6XQ/9z6nBdfXS6XA6jGxKiV4m0yFO+SP5Vc+Te8WHMUsvlV+CIixXIn6FIWq5NAQEAAAAAB4vmFwAA0C4jsEe+1S/IVzRXzr1bYtZGEjPVXDBTwXGXy/IlHtbzMu0FAAAAAAAAAACg/9hSG9C9C8v0ydb6qOsnjkrUbWeP0rBBPpuTobdxNFTKV/KsvCXPyNm0K2ZteFCWAgUzWt/f9A60KSEAAAAA4FDR/AIAANpwVpXKXzRb3nXzZIQD7dZZMtQycpKaJ8xUS+bpknH4E1jKqpt09xtlKq1k2gsAAAAAAAAAAEBfFo6Ymv1xhR55f7tCUQ5ES/S79IPJmTovN1WGwbQXtMOy5N7+oXxFc+QpWyjDajs5aF+p4VAo6ywFCmaqZfjJEv+uAAAAAKDXoPkFAAC0ioTk2bhA/qLZcld8ErPU9A5UYPwVChTMkJk4slOePmxamvNRhR56f1u7017umpatgqEDOuX5AAAAAAAAAAAA0H1KKhp0z8Jyra9qirp+7vgU/eCMkUqKc9ucDL2FEaqXd83L8hXPlatmfcxa05+iQN5VCuRdI3PAUJsSAgAAAAA6E80vAAD0c46GnfKVPCNfydNyNFXFrA2njldzwUwFcy6S3P5Oy3CgaS8zjs3QjScPl8/NtBcAAAAAAAAAAIDerDkU0YPvbdMzKypltj0PTekDPLrtnCydkj3I9mzoHZy718pXNFfetS/L0dL2/cWvask4Vs0FMxQaPU1yemxKCAAAAADoCjS/AADQH1mWXBUfy7/qydbR32a4/VKHS6HR09Q8YabC6cd06ujvA017GZns091MewEAAAAAAAAAAOgTPijfo/sXbdKOvcE2a4akq49J102nDFecx2l/OPRskRZ5yhbKXzRH7h3LY5ZaLr8CR1ysQEGhIqnjbQoIAAAAAOhqNL8AANCftDTJu26e/Ktmy7V7TczSSNxgBfKvVSDvKlnxgzs9Sll1k37+RplK2pv2ckyGbjyFaS8AAAAAAAAAAAC93Z6mFv3f21v0eml11PUxqX7dMTVb+RkJNidDT+doqJSv5Bn5Sp6Ro6kqZm14ULYCBTMUHHe5LC+H6wEAAABAX2N788vKlSv1zjvvqKysTPX19YpEIjHrDcPQY489ZlM6AAD6JseeTfIXzZV39fNyhOpj1rYMPU7NBTMVyp4iOd2dnuWLaS8Pv79NoSjTXjKTfLr73GxNYNoLAAAAAAAAAABAr2ZZlt5YvVu/X7JZe5rDbdY9TkPfPGmYZh2XIZeTA9HwOcuSe/t/5CuaI0/ZIhlW+58tsgyHQllnK1BQqJbhJ0uGYWNQAAAAAICdbGt+Wbt2ra6//nr95z//6fBjLMui+QUAgENlmXJvXip/0Wx5Ni+NXbpv9PdMRVLHdVmk8t3Nunv+xqjTXgxJhccy7QUAAAAAAAAAAKAv2FEX1P2LyvXBprqo60cPH6CfTsnSqGS/zcnQUxmhennX/Eu+orly1W6IWWvGpSqQe5UCeVfLHDDUpoQAAAAAgO5kS/PL9u3bdfrpp6u6ulqW1XrCe0JCgpKSkuRw8OFWAAA6kxHYI9/qF+Qrmivn3i0xayOJmWoumNk6+tuX2GWZIqalOR9X6KH3mPYCAAAAAAAAAADQl0VMS8+sqNSD725TIGy2WU/wOvW9SZm6uCBNDqZ0QJJz91r5iubIt/ZlGS1NMWtbMo5Vc0GhQqOnSk6PTQkBAAAAAD2BLc0v9957r6qqqmQYhr75zW/qRz/6kXJycux46n5h2bJlWrNmjcrKyrRlyxaFw2F9+9vf1uTJk7s7GgDARs6qUvmLZsu7bp6McKDdOkuGWkZOVvOEmWrJPE0yurYRddPuZt39xkYVV0Sf9jLj2HT9zykjmPYCAAAAAAAAAADQy62vatIvF5SptLLt+0KSdMbYJP3krFFKS6Bpod+LhOQpWyh/0Ry5d3wUs9RyxymQc7ECBYWKpI6zKSAAAAAAoKexpfnljTfekGEYmjVrlh5++GE7nrJfefbZZ1VVVaUBAwYoKSlJVVVV3R0JAGCXSEiejQvkL5otd8UnMUtNb6ICuVcokD9DZmJm10czLc39uEJ/jzHt5a5p2Zo4jGkvAAAAAAAAQH/kdDq7OwLQazgcjpi3ge4WDJt65P2teuLDHQqbbd8XSk1w67ZzsnVmTko3pMPB6so9x6ivkLf4aXmLn5ajKfbnWyJJoxWcMFPB8ZdJ3oGSJL57APoevs8BYBf2GwB2Ys/pGrY0v+zYsUOSNGvWLDuert+58cYblZGRobS0NL388st66qmnujsSAKCLORp2ylfytHwlzxzwReFwaq6aJ8xUcOyFkttvS74DTXu59ph03XQq014AAAAAAACA/iwpKam7IwC9VmJiYndHAPb5T9lu3fZSkcqro097ufaETN06bZwS/W6bk6GzHPaeY1lS+TLpo0ekNa9LVqT9WsMpjTtPOu4GObNOV5xhKO7wnh1AL8P3OQDswn4DwE7sOZ3DluaXpKQk7dq1S4MGDbLj6fqdCRMmdHcEAIAdLEuuio/lX/WkPGULZZjh9ksdLgVHn6vAhEKF04+RDMOWiB2Z9vKzadk6kmkvAAAAAAAAAAAAvVpdc4t+NX+1nl6+Nep6dlq87r+0QCdkM+2l3wrUSSufkT56VKpeF7s2frB0zNdb/5c4zI50AAAAAIBexpbml2OPPVavv/661q1bp6OOOsqOp+yQuro6bdiwQRs2bNDGjRu1ceNG1dfXS5ImTZqkm2++ucPXqqqq0vz587VixQrt3r1bLpdL6enpOumkkzR16lR5vd6u+m0AAPq6liZ5174if9FsuXavjVkaiRusQP61CuRdJSt+sE0BW23a3ayfv1GmooqGNmtfTnsZLp+bYeQAAAAAAAAAAAC92RvFFbrzlRJV1QfbrLkchm6aPFo3nzGG94X6q50l0vJHpFXPSS3RJwLtk3mydPw3pXEXSi6PPfkAAAAAAL2SLc0v3/3ud/Xaa6/p4Ycf1lVXXWXHU3bIDTfc0CnX+fjjj/XAAw+oubl5333BYHBfQ83ixYt12223KT09vVOeDwDQPzj2bJK/aK68q5+XI1Qfs7Zl6PFqLihUKHuK5LR3ZHzEtPTUJ5V68N2tTHsBAAAAAAAA0GG1tbXdHQHoNRwOhxITE/fdrqurk2ma3ZgI/dWu+qB+tahcS9bXRF0vyEjQneeO1ti0eDU37FVz1Cr0dIe050RCcm94Q95Vs+Xe8VHMUssdp9C4SxWYMFNm6rjWO+sbJR2gUQZAn8T3OQDswn4DwE7sOa2SkpI69Xq2NL+cc845uvXWW/XrX/9aN910k/785z/L7bb3g7kHkpqaqmHDhmnlypUH9bjy8nL98Y9/VCgUks/n0yWXXKL8/HyFQiG99957Wrx4sSoqKnT//ffrV7/6lfx+fxf9DgAAfYIZkXvLMvlXPSnPlmUxSy2XX4EjLlagYKYiX7wobLNNNc36xRtlWrUj+rSXa45J17eZ9gIAAAAAAAAgikgk0t0RgF7LNE2+hmAr07L00spdemDZVjWG2v7b87sduvm0EbriyCFyOgz+ffYxsfYcR0OFfMVPy1f6rBxN1TGvE04ao0DBDAXHXSrL8/nBefxbAfBf+D4HgF3YbwDYiT2nc9jS/PLkk09q/PjxOvnkk/Xwww/r1Vdf1fTp0zVu3DjFxcUd8PGzZs3qklzTp0/X6NGjNXr0aA0aNEi7du3Sd77znYO6xuOPP65QKCSn06k77rhDOTk5+9by8/OVkZGhOXPmqKKiQq+++qquvPLKNtd48skn1dLS0uHnPO+885SRkXFQOQEAPZsR2CNf6fPyFT8l594tMWsjiSPVXDBTwfGXy/IOtCnhf2UwLT39SaUefG+rguG2015GDPLqrmmjdeRwpr0AAAAAAAAAAAD0Zpt2N+ueheX6bHt91PWTsxJ129lZykj02pwM3cay5N72vnxFc+QpXyzDav8DXJbhVCj7HAUKCtUy7ETJMGwMCgAAAADoS2xpfvn6178u4ys/vFZUVOiBBx7o0GMNw+iy5pdojSgHY8OGDVq9erUk6Ywzztiv8eULF1xwgZYsWaLt27dr/vz5uuyyy+Ry7f/HvmjRIgWDwQ4/74knnkjzCwD0Ec6qEvmL5si79hUZkfb/W2DJUMuoM9RcUKiWzNMkw2Fjyv0daNrL1cek62amvQAAAAAAAAAAAPRqLRFTTyyv0GP/2a6WSNvD0JL8Lv3wzJGaOi5lv8+EoO8ygvXyrnlRvqK5cu0pi1lrxqUpkHe1AnlXy0xItykhAAAAAKAvs6X5RZIsq+0LIb3d8uXL9/36jDPOiFrjcDg0adIkPfXUU2psbFRJSYkmTpy4X83s2bO7NCcAoIeJhOTZ+Ib8RXPkrvgkZqnpTVQg9woF8mfITMy0KWB0THsBAAAAAAAAAADoH4p21OuXC8pVtrs56voFean6/uRMDfK7bU6G7uCsWi3fyifkW/uKjHD0fxNfaBl6vJoLChXKniI5+fcBAAAAAOg8tjS/lJeX2/E0tlu7dq0kyev1Kjs7u9263Nzc/R7z380vAID+wdGwU76Sp+UreVqOpuqYteHUXDVPmKng2Aslt9+mhO3bXNOsnzPtBQAAAAAAAAAAoE9rDEX0t3e26rlPdyraEafDEr267ZwsnTgq0fZssFk4JK2eJy1/RAO3/idmqemOV/CISxQomKFIyhE2BQQAAAAA9De2NL+MHDnSjqex3bZt2yRJ6enpcjrb/7Dv0KFD2zwGANBPWJZcOz6Sv2i2PGULZZjh9ksdLgVHn6vAhJkKpx8t9YDx8BHT0tMrKvXgu+1Pe/nZtGwdNXxgN6QDAAAAAAAAAABAZ3l3Y63uf3OTdtaH2qw5DGnGMRn61snD5PdwGFpf5qjfIV/ps1Lps1JjVczacNIYBQoKFRx3iSzPAJsSAgAAAAD6K1uaX/qiUCik+vp6SVJKSkrM2oSEBHm9XgWDQe3evbvTsyxevFhr1qyRJG3ZsmXffSUlJZKkcePG6ayzzurw9TqaMVbDD4D9ORyOmLfRB7U0ybPmZXlXPinX7jUxS834IQoWXKtg/jWy4gdLknrCDru5pll3vb5BK7fXt1kzJF1zTIa+MylTfqa99DjsOQDsxJ4DwC7sNwDsxJ4DAACA/qSmsUW/W7JZC9dE/6xAzuA43TklW+PT421OBttYltzb3pevaI485W/KsMz2Sw2nQtlTFCgoVMuwE3rEgX4AAAAAgP6B5pdDFAgE9v3a5/MdsN7n8ykYDO73uM6yZs0aLV26dL/71q5dq7Vr1+67fTDNLzfddFOH6p577rkOXxPA/hITGQPeZ+3eKH30qPTpXClYF7t25CnS8TfIMe4C+Z1u+e1JeEAR09I/3yvXbxesVTDc9oXtkSlx+u30iTo+K7kb0uFQsOcAsBN7DgC7sN8AsBN7DgAAAPoiy7L0Wkm1/vD2FtUFwm3WvS5DN5w0XIXHpsvlpCG8LzKCe+Vd86J8RU/JtacsZm0kbrCCeVcrkHeVzIR0mxICAAAAAPAlml8OUSj05Zhfl+vAf4xf1Hz1cZ3l5ptv1s0339zp1wUAdJAZkdYvkj56RNrwZuxad5w04Srp+BukIXn25DsIZVUN+skLq/Tx5tqo618/eZR+Mu0IxXn4FgIAAAAAAAAAAKC32rYnoPsWlWv55r1R148dMVC3T8nSiKQDHwaK3sdZvVr+VbPlXTdPRrg5dvHIU9WQd40CI8+SnG57AgIAAAAAEEWnfnL1zDPPlCQZhqHFixe3uf9Q/Pe1egqPx7Pv1+Fw2xNQ/tsXNV99XE/14IMPdncEAOgdmmqkT+e0TnrZszl2bfJo6bhvSkdeK/kH2RLvYBxo2ktmcpx+O32CTshO6YZ0AAAAAAAAAAAA6Axh09LTn1Tq7+9ti/qe0ACvU9+fnKmL8tNkGEY3JESXiQTl3bBAvuI5cld8ErPUcsfLOPIa6dhvSENy1VJbK0UiNgUFAAAAACC6Tm1+efvttyWpzQsgb7/9tgzDkGVZHb7WF/U99cUUn+/L000CgcAB67+o+erjeqqUlI59sLm2NvpUAABtORwOJSYm7rtdV1cn02z7YjJ6B+euYnlXzZZnzcsyIsF26ywZask6U8GJsxTOPE0yHFLAkgI9a//cXNOsu1/foM+210ddv+aYDN1yeqb8Hgd7fy/BngPATuw5AOzCfgPATuw5rZKSkro7AgAAADrRmp2NumdhmdbsbIq6fs4RyfrhmSOVGt/zD/VExznqd8hX/JR8pc/J0bw7Zm04eawCBYVqGX+ZktIzbUoIAAAAAEDHdGrzy+mnnx61WaW9+3szj8ejAQMGqL6+Xrt3x35xoKGhQcFg64ejO9pY0htEONUDOGSmafI11NtEQvJsfEP+VbPlrlwRs9T0JiqQe4UC+TNkJn7+orBpSepZf+emZemZFZX66zvRT/YalujVXdOydfSIgZLY93sz9hwAdmLPAWAX9hsAdmLPAQAAQG8WaIno4fe3a+7HFYpEObN0yACPbj17lE4fTfNzn2GZcm99X76i2fJsekuG1X4zv+VwKZQ9Rc0FhQoPPV4yDDmdThvDAgAAAADQMV0y+aWj9/d2w4cP1+rVq1VZWalIJNLuD/87duzY7zEAgN7D0VApX8kz8pU8LUdTdczacGqumifMUnDsBZLbb1PCQ7O1NqCfv1HW7rSXq44aou+cNkJ+Dy9sAwAAAAAAAAAA9FbLN9fpvkXl2rYn2GbNkDT9yCG6+bThSvB26sdH0E2M4F55V78oX/FcufaUx6yNxA1WIP8aBXOvkpkwxKaEAAAAAAAcOl69OAxHHHGEVq9erWAwqLKyMo0dOzZqXWlp6X6PAQD0cJYl146P5C+aLc/GBTKs9k92tRxuBUdPU2DCTIXTj5Z6+KQz07L07Iqd+ss7W9ud9vKzadk65vNpLwAAAAAAAAAAAOh96prD+uPSLXq1uCrqelayT3dMzdbEYQNsToau4Kwqlb9ojrzr5skIN8esDQ07QYGCmQplnS053TYlBAAAAADg8NH8chiOP/54vfzyy5KkJUuWRG1+MU1TS5culSTFx8crLy/PzogAgIMRapRv3SvyrZotV826mKWR+CEK5F+jQO7VsuLTbAp4eA407eXKo4boFqa9AAAAAAAAAAAA9FqWZWnR2hr97q1NqmkKt1l3OQxdf+JQff34ofK4HN2QEJ0mEpR3wxvyFc2Ru3JFzFLTHa/guMsUyL9WkZQcmwICAAAAANC5aH45DGPGjNH48eO1evVqLVmyRJMnT1ZOzv4vEvz73//W9u3bJUnnnnuuXC7+yAGgp3HsKZe/aK68q1+QIxS9MeQLLUNPUPOEQoWyzuk1JyF1ZNrLnVOzdWwm014AAAAAAAAAAAB6q8q9Qf36zU16p2xP1PUJQxN0x5QsZafG2RsMncpRv0O+4qfkK31WjuaamLXh5LEKFBQqeMQlsjwJNiUEAAAAAKBr9OtOjDVr1qiysnLf7b179+77dWVlpd5+++396idPntzmGl//+td15513KhQK6Z577tGll16qvLw8hUIhvf/++3rzzTclSRkZGbrwwgu75PfRXZxOJgMAHeVwOGLeRjcwI3JvelveVU/IvXlZzFLL5Vdo3KUKTJwlM3WcJKm37IBbapt19+sb9em2vVHXrzo6Xd+dNFJxTHvpU9hzANiJPQeAXdhvANiJPQcAAAC9iWlZeuGznfrLsq1qaml7EFq8x6HvnJapy48cLIdhdENCHDbLlHvre/IVzZFn01syrLZ/z/tKHS6FsqeouaBQ4aHHS/ydAwAAAAD6CMOyLKu7Q3SXv/71r1q6dGmH65977rmo93/88cd64IEH1NzcHHU9IyNDt912m9LT0w8pJwCgEzXVSJ/OkT56VNqzOXZt8mjp+BukiddI/kG2xOsspmnpiQ826ddvrFEgypscI5L9+s3lE3XS6JRuSAcAAAAAAAAAUnV1dXdHAHoNp9OppKSkfbdra2sViUS6MRF6io3VTbp3YblW7WiIun7a6EH637NHacgAr83J0BmMQJ28a16Uv2iunHWbYtZG4ocokHeNgrlXykwYcljPy54DwE7sOQDswn4DwE7sOa1SU1M79Xr9evJLZzn22GP1u9/9Tq+//rpWrFihmpoauVwupaen68QTT9S0adPk9fJCEgB0q4qV0vKHpaIXpHAgRqEh5UxtbXrJPlPqhSe7bt7dqB+/sErLy6OPOZ910kjdOm2c4r18GwAAAAAAAAAAANAbhcKm/vnhDv3zwx0Km23PPE2Jc+vHZ43UWTnJMpj80es4q0rkL5oj77p5MmK+tymFhp2oQMFMhbLOkpxumxICAAAAAGC/fj35BQDQx4VD0up5rU0vWz+MXesbJB09SzruG1LSKDvSdTrTtPTkB5v06zfWqrmlbYfwiGS/fn35BJ08unM7aQEAAAAAAADgUDD5Beg4TgvFV322vV73LihTeU30poiLC9L0vUmZGujjILReJRKUd8N8+YrmyF35acxS052g4LhLFSiYoUjy2E6Pwp4DwE7sOQDswn4DwE7sOa2Y/IIeo7a2trsjAL2Gw+FQYmLivtt1dXUyTbMbE/VtRkOlvEVPyVv8lBxNsd88DaflKTjxawrlXCi5/a139sL9bWttQHfP36AVW/dGXb/q6HR9d9JIxXmc7N/9AHsOADux5wCwC/sNADux57T66psyAAAA6H4NwbD+smyrXli5K+r68EFe3T4lS8dlJkZdR8/k2LtdvpKn5St9Vo7mmpi14eSxChTMVPCIi2V5EmxKCAAAAABAz0DzCw5Zf+w+AzqLaZp8DXU2y5Jrx3L5V82Wp2yhDKv9P1/L4VZwzLkKFMxUOP0o6YtR773w78S0LD336U79ZdlWBcJtP4QzdKBXP5uWpWM/f5ODf3f9E3sOADux5wCwC/sNADux5wAAAKC7Ld1Qq1+/Wa5dDS1t1pyGNPO4DH3zpOHyuR3dkA4HzTLl3vKufMVz5dn0lgyr/WZ7y+FSaPRUNecXKjz0uC/f2wQAAAAAoJ+h+QUA0LuFGuVb94p8q2bLVbMuZmkkPl2B/KsVyL1aVnyaTQG7zrY9Af3ijTKt2FYfdf2KIwfrltMzFedx2pwMAAAAAAAAAAAAnaG6MaTfLt6sxeuiTwQZPyRed0zN0hGD421OhkNhBOrkXf2C/MVz5azbHLP2y/c2r5IVP9imhAAAAAAA9Fw0vwAAeiVHbbn8xXPkXf2CHKGGmLUtQ09Q84SZCmWdLTndNiXsOqZl6flPd+qBGNNe7pzGSHsAAAAAAAAAAIDeyrIsvVJcpT+9vUX1wbZTCL0uh246ZbiuPiZdLgeTQHo6565i+YvnyrtunoxwIGZtaPhJCuQXKpR1Vp94bxMAAAAAgM7Sbc0v27ZtU2VlpZqamnTcccfJ7/d3VxQAQG9hRuTevFT+oifl2fJOzFLL5Vdg3KUKFBQqknKETQG73oGmvUyfOFjfncS0FwAAAAAAAAAAgN5qS21A9y0s18db90ZdP2HkQN12TpaGD/LZnAwHJRyUd+N8+VbNkXvnpzFLTU+CguMuUyB/hiLJY2wKCAAAAABA72Jr80t9fb1+85vf6PHHH9eOHTv23V9UVKTc3Nx9t5955hm99NJLSkxM1COPPGJnRABAD2Q018q3+nn5iubKWb8tZm0kcZSaJxQqOO5yWd6BNiXseqZl6YXPWqe9NLe0nfaSMdCjn03LZtoLAAAAAAAAAABALxWOmJrzcaUe+WCbgmGrzXqiz6X/d0amzs9NlWEw7aWncuzdJl/x0/KVPidHoCZmbTg5R4EJMxXIuVjyxNuUEAAAAACA3sm25pf169frvPPOU1lZmSzryxdpor0gc+KJJ6qwsFCWZelrX/uaTj31VLtiAgB6EOeuYvmL5rSO/44E262zZCg06kwFJsxUy4hTJMNhY8qut21PQL9cUKZPtrY/7eWWSZmKZ9oLAAAAAAAAAABAr1Ra2aB7FpRrXVVT1PVp41P0g8kjlRzvtjkZOsQy5d7yjnxFc+XZ9JYMtW1e2lfqcCk0eqqaC2YqnHGsRCMTAAAAAAAdYkvzSyAQ0Pnnn6+NGzcqPj5eN998s04//XRdcMEFUetHjRqlM844Q2+99ZbmzZtH80sP5XTyIWugoxwOR8zb+IpISO718+Vb9YRcFStilpq+QQrlXaVgQaHMxBGSpL60M5mWpec/rdSf3t7czrQXr+46d7ROGDXI/nDo0dhzANiJPQeAXdhvANiJPQcAAAB2aQ5F9Pf3tunpFZUyo/RLpA/w6LZzsnRK9iDbs+HAjMAeeVe/KH/xXDnrNsesjcSnK5B/tQK5V8uKT7MpIQAAAAAAfYctzS8PPvigNmzYoPj4eL3zzjs68sgjD/iYc889V4sXL9YHH3zQ9QFxSJKSkro7AtBrJSYmdneEnqduu/TJP6VPnpAad8WuzZgoHf8tOfIvl8/tl8+ehLbaWtOkH7+wUv8piz4KfcYJmbrtvPFK8No2xA29GHsOADux5wCwC/sNADux5wAAAKArfFC+R/cv2qQde4Nt1gxJVx+drptOHa44T186/q1vcO4qkr9orrzr5smItP37+6rQ8JMVKChUKOssycF7ewAAAAAAHCpbfqp+6aWXZBiGvve973Wo8UWSJk6cKElav359FyYDAHQry5I2vyctf1ha/W/JirRf63BLeZdKx39LGt53x3+bpqW5H27W/fPXqCnU9s9j2CC/fjN9gk4Zk9oN6QAAAAAAAAAAAHC49jS16P/e3qLXS6ujro9O9evOqdnKz0iwORliCgfl3fC6fEVz5N75WcxS05Og4LjLFSiYoUjSaHvyAQAAAADQx9nS/LJ69WpJ0pQpUzr8mJSUFEnSnj17uiISAKA7BRukVc9Kyx+RqlbHrh0wVDr2eumYr0kJg+3J10221jTpJy+s0gdlu6OuX3tCpn7KtBcAAAAAAAAAAIBeybIsvbF6t36/ZLP2NIfbrLudhr550jDNOi5DbqejGxIiGsfebfIVPyVf6fNyBGpi1oZTjlCgoFCBnIslT7xNCQEAAAAA6B9s+fRsQ0ODJCkhoeOnkgSDrWNh3W53l2TC4autre3uCECv4XA4lJiYuO92XV2dTNPsxkTdw1FbJu+q2fKWviAjVB+ztmX4iQpO+Jpass+WnG6pRVIf3XdMy9ILn+3UH5dsUnNL238X6QM9uuvcMTpx1CC1NNWrtqkbQqJXYc8BYCf2HAB2Yb8BYCf2nFZJSUndHQEAAKDPqKgL6v5F5Xp/U13U9aOHD9BPp2RpVLLf5mSIyjLl3vKO/EVz5N60RIas9ksdboVGT1VzwUyFM46RDMPGoAAAAAAA9B+2NL+kpKSosrJSmzZt0tFHH92hx5SUlEiS0tPTuzIaDkMkEunuCECvZZpm//kaMiPybH5bvlWz5dn6TsxSyx2nwBGXKFBQqEjKEV8u9OE/qx11Qf3ijTJ9vHVv1PXLJg7W9yZlKt7j7D//ZtDp+tWeA6DbsecAsAv7DQA7secAAADgUEVMS899ulN/e3dr1EPQ4j1OfW9Spi6ZkCYHTRPdzgjskW/1C/IVz5WzbkvM2khCugJ51yiQe5Ws+DSbEgIAAAAA0H/Z0vxy9NFH6/XXX9eyZct02WWXdegxTz75pAzD0EknndTF6QAAXcForpVv9fPyFc2Vs35bzNpI4ig1T5ip4LjLZXkH2JSwe5mWpZdW7tKflm6JPu1lgEd3TsvWCSMTozwaAAAAAAAAAAAAPd36qibds6BMJZWNUdfPGJukn5w1SmkJHpuT4b+5dq6Sr3iuvOtelREJxqwNDT9ZgYJChbLOkhy2fOwGAAAAAADIpuaX6dOn67XXXtPDDz+sH/zgB8rMzIxZ/8c//lHLli2TYRi65ppr7IgIAOgkzl3F8hfNPuALw5YMhUadqcCEmWoZcYpkOGxM2b121AX1ywVl+mhL9Gkvl04YrO9NGqEELy+WAwAAAAAAAAAA9DbBsKnH/rNdTyyvUMS02qynxrv1k7NG6cyc5G5Ih33CQXk3vCZf0Ry5d66MWWp6EhQcd7kCBTMUSRptU0AAAAAAAPBVtnyqdubMmfrDH/6gVatWafLkyfrrX/+qadOm7Vs3DEOWZenjjz/WH//4Rz3zzDMyDEOnnXaazj33XDsiAgAORyQo74Y35CuaLXflpzFLTe8gBfKuVCD/WpkDR9gUsGewLEsvrtylPy/doqYo016GDPDozqnZOnEU014AAAAAAAAAAAB6o0+27tW9C8u1pTYQdf3SCYP13dNHaICPQ9C6i2PvVvmKn5Kv9Hk5ArUxa8Mp49RcUKjgERdL7jibEgIAAAAAgGhseTXF4XBo3rx5OvXUU7Vp0yZdcMEFiouLk2EYkqTJkyervr5ewWDrhADLsjR69Gg999xzdsQDABwiR0OFfMVPy1fyjBzNu2PWhtPy1DxhloJjL5BcPpsS9hwVn097Wd7utJc0fW9SJtNeAAAAAAAAAAAAeqH6QFh/XrZF/1pVFXU9M8mnO6Zk6egRA21OBkmSZcq9ZZn8q+bIvfltGWo7kWdfqcOt4JhzFSiYoXD6MdLnn20BAAAAAADdy7ZP2GZmZuqzzz7TLbfcoueee06NjY371qqqvnzxxzAMXXnllXrwwQeVlJRkVzwAQEdZltzbP5SvaLY8ZYtkWJH2Sx1uBcecp8CEmQoPObJfvjBsWZZeWrVLf3o71rSXLJ04apD94QAAAAAAAAAAAHDY3lpXo98s3qTqxpY2a06Hoa8fn6HrTxwmr8vRDen6N6O5Vr7VL8hX/JSce7fErI0kpCuQf60CuVfJiku1KSEAAAAAAOgoW4+XT05O1ty5c3Xffffptdde08cff6xdu3YpEokoJSVFRx11lC688ELl5OTYGQsA0BGhRvnWvSLfqiflqlkfszQSn65AAS8MM+0FAAAAAAAAAACg76pqCOk3izdpyfraqOt56fG6c2q2xqTF2ZwMrp2r5CuaI+/6f8uIBGPWhkacokBBoUKjzpQcvG8HAAAAAEBP1S0/tY8cOVLf/va3u+OpAQAHyVlb1vrC8JoX5Qg1xKwNDTtBgYJZCmWf3a9fGGbaCwAAAAAAAAAAQN9lWpb+tWqX/rx0qxpDkTbrfrdDN582QlccOUROh9ENCfupcEDe9a/JVzRH7l2rYpaangEKjr9cgfwZiiRl2xQQAAAAAAAcjv77yWQcNqfT2d0RgF7D4XDEvN3jmBG5Ny2Rd+UTcm95J2ap5Y5TcNxlCk6YKTP1CElSf94ddtQF9Iv5G/Xh5rqo65dOGKz/d+YoDWDaC7pQr9tzAPRq7DkA7MJ+A8BO7DkAAABoz6bdzbp3Ubk+3VYfdf3krETddnaWMhK9Nifrvxx1W+Qrfkq+0uflCO6JWRtOHa/mgkIFcy6S3EzkAQAAAACgN+GTtzhkSUlJ3R0B6LUSExO7O0J0TTXSiieljx+T9myJXZsyRjruBhlHXiOfL1E+exL2WJZl6enlW3Xf66vVEAy3Wc9I9OlXl0/QpJy0bkiH/q7H7jkA+iT2HAB2Yb8BYCf2HAAAALRETD2xvEKP/We7WiJWm/VBfpd+dOZITR2XIsNg2kuXMyNyb1kmf9EcuTcvlaG2fydfsBxuBcecq0BBocLpR0v8/QAAAAAA0CvZ3vximqZKS0tVVlam+vp6RSJtRwD/t1mzZtmQDAD6sR2fSssflYpfkMKBGIWGdMS50vE3SFmTJU49lSRt39Os/31xld5ZXx11/apjR+j2C8ZroM9tczIAAAAAAAAAAAAcruKKBv1yQZk2VjdHXT8/N1X/b3KmBsXxXlBXM5pr5Vv9vHzFT8m5d2vM2khChgL51yqQe6WsuFSbEgIAAAAAgK5iW/NLU1OT7rnnHj366KPavXt3hx9nGAbNLwDQFcJBqfQVafnD0raPYtf6k6SjvyYde72UNNKefL2AZVl65qOtuve19qe93H9ZgSYfMbgb0gEAAAAAAAAAAOBwNIYievDdrXp2xc6oc0WGDvTqp1NG6cRRg+yO1u+4dq6Sr2i2vOv/LSMSilkbGnGqAgWFCo06Q3LYfiYsAAAAAADoIrb8lN/Q0KAzzjhDK1askGW1P2oWvUttbW13RwB6DYfDocTExH236+rqZJpmt2Qx6ivkLZorb/EzcjRHn1TyhfDgfAUnfk2hnAsll6/1Tr72JUkVe4P6xfwN+s+muqjrl0wYrB+cOUoDvC72S9iuJ+05APo+9hwAdmG/AWAn9pxWSUlJ3R0BAACg27xbtke/WlSuyvq2jRYOQ7r2mHTdePJw+T3ObkjXT4QD8q7/t3xFc+TeVRSz1PQMUHD8dDXnz5CZlGVTQAAAAAAAYCdbml/uueceffLJJ5KkE088Ud/61rc0ceJEDRo0SA6Hw44I6AKRSKS7IwC9lmma9n4NWZbc2z+Ur2i2PGWLZFjtP7flcCs49nwFCgoVHnKkZBitC3zNS2qd9vJyUZX++PZmNYbafuhlyACPbp+SpZOzBklir0TPYPueA6BfY88BYBf2GwB2Ys8BAADoP2oaW/T7JZu1YM3uqOs5aXG6Y2qWctMTbE7WfzjqtshXPFe+0hfkCO6JWRtOzVVzQaGCORdK7jh7AgIAAAAAgG5hS/PLCy+8IMMwdN555+mVV16h4QUA7BJqlG/ty/IVzZarZn3M0kh8ugIF1yqQe5WsuFSbAvYulXuDumdhebvTXi7KT9MPzshUgpfx6QAAAAAAAAAAAL2JZVl6raRaf3h7i+oC4TbrXpehG04arsJj0+Vy8pmHTmdG5N6yTP6i2XJvXiZDVrullsOj4JhzWw/zSz/qy8P8AAAAAABAn2bLp3O3b98uSfrud79L4wsA2MBZWyZf0Rx517woR6ghZm1o2IkKFMxUKPtsyUHTRjSWZemVoir9oZ1pL4MT3Lp9SrZOyR5kfzgAAAAAAAAAAAAclm17ArpvUbmWb94bdf3YEQN1+5QsjUjy2Zys7zOaa+Rb/bx8xU/LuXdrzNrIgKEK5F2rQO4VHOYHAAAAAEA/ZMunnAcPHqxt27YpNZUXHwCgy5gReTYvkW/VbHm2vhuz1HLHKXDEpQoUFCqSkmNTwN6pcm9Q9y4s1wftTHu5MD9NP5icqQE+GocAAAAAAAAAAAB6k7Bp6elPKvX397YpGG57ANoAr1Pfn5ypi/LTZDBdpFO5dq6Ub9VseTe8JiMSilkbGnGaAhMKFRp5huRw2pQQAAAAAAD0NLZ8Uvf444/Xtm3btHbtWh111FF2PCUA9BtGc618q5+Tr2iunPXbY9aGB2UpUDBTwXGXyfIOsClh72RZll4prtIflmxRYyjSZn1wgls/nZKtU5n2AgAAAAAAAKCXW7ZsmdasWaOysjJt2bJF4XBY3/72tzV58uTujgYAXWbNzkbds7BMa3Y2RV0/OydZPzprpFLjPTYn68PCAXnX/Vu+4jly7yqKWWp6Byo4brqa86+VmZRlU0AAAAAAANCT2dL88v/+3//TSy+9pL/85S+66qqrOBEFADqBc1eR/Ktmy7v+1ZinIVmGQ6FRZypQMFMtI06WDIeNKXsnpr0AAAAAAAAA6E+effZZVVVVacCAAUpKSlJVVVV3RwKALhNoMfXIB9s056MKRay264MT3Lr17CxNGpNkf7g+ylG3Wb6iufKtfkGOYPT3374QTstTc0GhgmMvlNx+mxICAAAAAIDewJZP7Z588sn69a9/rZ/85Ce6+uqr9dBDD2nQoEF2PDUA9C2RoLwb5su3ao7cOz+NWWr6khTIvVKB/GtlDhxuU8De7UDTXtIS3LqdaS8AAAAAAAAA+pgbb7xRGRkZSktL08svv6ynnnqquyMBQJf4aEud7l1Yrm17glHXrzhysG4+bYQSvByAdtjMiNybl8pfNFueLctilloOj4Jjz1OgoFDhIUdKHKgKAAAAAACisO0Vmx/96EcaPXq0brjhBo0YMULnnHOOcnJyFBcXd8DH/uxnP7MhIQD0XI76HfKVPC1fyTNyNNfErG1Jy1dgwkwFx14guXw2Jez9dtYHde+Ccr3f3rSXvFT94IyRTHsBAAAAAAAA0OdMmDChuyMAQJeqaw7rT0u3aF5x9MlWWck+3T41W0cOG2Bzsr7HaK6Rr/R5+YqfkrN+W8zayIBhCuRfq8D46bLiUm1KCAAAAAAAeivbPsG7a9cu/etf/1JdXZ1M09Qrr7zS4cfS/AKgX7Isubf/R76iOfKULZJhtZ1Esq9032lIMxUeMpHTkA6CZVmaV1yl/4s17eWcLJ06mtH2AAAAAAAAAPZXV1enDRs2aMOGDdq4caM2btyo+vp6SdKkSZN08803d/haVVVVmj9/vlasWKHdu3fL5XIpPT1dJ510kqZOnSqv19tVvw0A6LMsy9Kba2v027c2qaYp3Gbd5TB03QlDdd0JQ+VxObohYR9hWXLtXClf0Wx5N7wuIxKKWR7KPE2BgpkKjZwsOZz2ZAQAAAAAAL2eLc0vu3fv1umnn67169fLsiw7nhIAeq9Qo3xrX5avaLZcNetjlkYS0ltPQ8q9itOQDsGBpr1c8Pm0l4FMewEAAAAAAAAQxQ033NAp1/n444/1wAMPqLm5ed99wWBwX0PN4sWLddtttyk9Pb1Tng8A+oPKvUH9evEmvbNxT9T1CUMTdPuULI1OjbM3WF/S0izv+n/LXzRbrqqSmKWmd6CC469Qc/41Mgdl2RQQAAAAAAD0JbZ8mve+++7TunXrJEnTp0/Xt7/9bU2cOFGDBg2SwXSCXsvp5AQWoKMcDkfM25LkqN0o78rZ8q5+UUaoPub1WoafpODEr6kl+2zJ4RLnUB0cy7I0r2iXfvfWJjUEo0178ejOadk6bXRyN6QDDl9H9hwA6CzsOQDswn4DwE7sOQAORWpqqoYNG6aVK1ce1OPKy8v1xz/+UaFQSD6fT5dccony8/MVCoX03nvvafHixaqoqND999+vX/3qV/L7/V30OwCAvsG0LL3w2U79ZdlWNbWYbdbj3A7dcnqmLj9ysBx8XuGQOPZskr/4KXlXvyBHMPohc18Ip+WpuWCmgmMvkNz8NwwAAAAAABw6W5pf5s2bJ8MwVFhYqCeeeMKOp4QNkpKSujsC0GslJia2/sKMSOsWSMsflsqWxH6QO1468hrpuG/KPXi83F0fs0+qqGvWbS8V6e21VVHXLz96uH52Qa4S4/gTRt+xb88BABuw5wCwC/sNADux5wBoz/Tp0zV69GiNHj1agwYN0q5du/Sd73znoK7x+OOPKxQKyel06o477lBOTs6+tfz8fGVkZGjOnDmqqKjQq6++qiuvvLLNNZ588km1tLR0+DnPO+88ZWRkHFROAOgNyqqbdM/Ccq3a0RB1/bTsQbr17FFKH+i1OVkfYEbk2fy2fEWz5dnyTsxSy+FRcOx5ChQUKjzkSIkmIwAAAAAA0AlsaX7Zvn27JOn666+34+kAoOdr3C19+qT00T+kui2xa1PGSsffIE28WvLxQYtDZVmWnv9km37571LVB8Jt1gcP8Or+ywp01vgh3ZAOAAAAAAAAQG8UrRHlYGzYsEGrV6+WJJ1xxhn7Nb584YILLtCSJUu0fft2zZ8/X5dddplcrv3f4lu0aJGCwWCHn/fEE0+k+QVAnxIKm/rnhzv0zw93KGxabdaT41z68ZmjdPYRyTJoxDgoRvNu+Uqfl6/4KTnrt8esjQwYpkD+DAVyp8vyp9iUEAAAAAAA9Be2NL+kpqZq+/btGjBggB1PBwA91/YV0kePSkUvSJEYb0QaDinn3Naml+zJnIZ0mCrrArrtpVVa0s60l8uOHqa7Lshj2gsAAAAAAAAAWy1fvnzfr88444yoNQ6HQ5MmTdJTTz2lxsZGlZSUaOLEifvVzJ49u0tzAkBPtnJ7ve5ZUKbymkDU9Yvy0/S9SZlK9Nvy8Yi+wbLk2vmZfEVz5F3/ugwzFLM8lHm6mgtmqmXkJMnhtCkkAAAAAADob2x5dee0007TM888o+LiYh199NF2PCVsUFtb290RgF7D2bRLA9/8kVS+LGad6UtSKO8qBSfMkDlwROude/Z0fcA+yrIsvVpcpd8uLldDMNJmPTXBrTumjtakMckygw2q7fjBiECP5nA4lJj45aSouro6mabZjYkA9GXsOQDswn4DwE7sOa2SkpK6OwLQ561du1aS5PV6lZ2d3W5dbm7ufo/57+YXAOiPGoJh/fWdrXrhs11qO+tFGj7Iq9unZOm4zMQoq4iqpVne9a/KXzRHrqqSmKWmN1GB8dMVyL9W5qBR9uQDAAAAAAD9mi3NLz/84Q/14osv6ne/+52uvPJK+Xw+O54WXSwSaftBcgBtOWs2KP7V66UYY8Bb0vIVmDBLwbEXSC5v6518jR2WXfUh3buwXO+V74m6fl5uqn505kgN9LnYz9DnmabJv3MAtmHPAWAX9hsAdmLPAdBVtm3bJklKT0+X09n+SflDhw5t8xgA6M+WbqjVr98s166GljZrTkMqPC5DN5w0XD63oxvS9T6OPeXyFz0l75oX5AjujVkbTstTc8HM1vc13X6bEgIAAAAAANjU/HL00Ufr0Ucf1Te/+U1NmTJFjz76qHJycux4agDoVq6KTzTw3zfIEaxrs2Y5PAqOPU+BgpkKD5koGUY3JOx7LMvSayXV+t2SzVGnvaTEu3X7lCydPpqTSwEAAAAAAAB0n1AopPr6eklSSkpKzNqEhAR5vV4Fg0Ht3r2707MsXrxYa9askSRt2bJl330lJa2n/o8bN05nnXVWh6/X0YyxGn4A7M/hcMS83V9UN4T0mzfLtWht9H1m/JB4/ezc0Ro3JMHmZL2QGZF701vyrpot9+ZlMUstp0ehnAsUnDBTkSFHSoYhdvC+jT0HgJ3YcwDYhf0GgJ3Yc7qGLc0v119/vaTWkezvvvuucnNzNWHCBOXk5CguLi7mYw3D0GOPPWZHTADoVJ6yRRqw4HsyIsH9FxLS1VwwU03jp8uKS+2ecH3UrvqQ7ltUrnfL9kRdPy83VT88Y6QS/bb85w8AAAAAAAAA2hUIBPb92ufzHbDe5/MpGAzu97jOsmbNGi1dunS/+9auXau1a9fuu30wzS833XRTh+qee+65Dl8TwP4SExO7O4KtLMvS8x9v0z2vlWpvINxm3ed26IfnHKHrThkll5MPk8TUWC2teEL6+J9S3dbYtYMypWO/IeOomfLGp8hrT0L0QP1tzwHQvdhzANiF/QaAndhzOoctn/59/PHHZXw+0cAwDJmmqZUrV2rlypUxH2dZFs0vAHolX/FTil96lwzL3H9h2LHStc8pEHLIirSdSoJD88W0l98v2az6dqa9/PScLE0aw7QXAAAAAAAAAD1DKBTa92uX68Bv2X1R89XHdZabb75ZN998c6dfFwA6w6bqRt32UpE+KIs+7eW0sam695ICZabEPnizX7MsadtH0vJHpNKXpUis/5YY0pizpeO+KY09R3Iw4wUAAAAAAPQMtjS/ZGZm7mt+AYA+zbIUt/xPivvogbZrY6dKV/xT8sRLoVr7s/VRVQ0h3buw/Wkv5+am6EdnjGLaCwAAAAAAAIAexePx7Pt1ONx2isF/+6Lmq4/rqR588MHujgCgD2iJmHrknTL96c31CobNNuuD4ty68/xcXXb0MD6P0J5Qk1T0vPTRo1Llqti1/iTpqELp2Oul5Gx78gEAAAAAABwEWz4JvGnTJjueBgC6lxlWwtt3ylf6XJulYO6V8l7+oOSkAaOzWJal10qr9fu3mPYCAAAAAAAAoPfx+Xz7fh0IBA5Y/0XNVx/XU6WkpHSorraWg6KAjnI4HEpMTNx3u66uTqbZtiGkryipaNAv3tigdbuaoq5PG5+qH581SsnxHu3Zs8fecL2Ao7ZM3lVz5Fn9ghzBvTFrw4MLFJwwU6EjLpJcn/83hv253+tvew6A7sWeA8Au7DcA7MSe0yopqXM/w8unsAGgM7Q0a+CC78qz6a02S03HfUfBk34oL40vnaaqIaT7FpbrnfamvYxP0Y/OZNoLAAAAAAAAgJ7L4/FowIABqq+v1+7du2PWNjQ0KBgMSup4Y0lvEIm0PdgIQMeYptknv4aaQxE99P42PfVJpUyr7fqQAR7ddk6WTs0eJIl9ZD9mRJ5Nb8lXNEeere/GLLWcHgXHXqBAQaHCQyZ+ucCfJ9rRV/ccAD0Tew4Au7DfALATe07n4FPBAHCYjOYaDfz3t+Te+el+91uGQ42Tfq5A/rVyMmq9U1iWpddLq/W79qa9xLl125RRmjwmuRvSAQAAAAAAAMDBGT58uFavXq3KykpFIhE5nc6odTt27NjvMQDQF/1n0x7dv2iTttcF26wZkq46eohuOnWE4j3R98r+ymiqlq/0eflKnpKzfkfM2siA4QoUXKvA+Ctk+Xk/DQAAAAAA9C40vwDAYXDs3aaB874u157y/e63nF7VT/2jQtlTuilZ38O0FwAAAAAAAAB9zRFHHKHVq1crGAyqrKxMY8eOjVpXWlq632MAoC/Z09yiPyzZotdKq6Ouj071686p2crPSLA5WQ9mWXJVrpCvaK68G+bLMEPtl8pQy8hJai4oVEvm6ZKD5iEAAAAAANA78QlhADhEzqpSJb56vRxNVfvdb3oTtfeChxXOOLabkvUtHZr2cs4oTR7L6VQAAAAAAAAAepfjjz9eL7/8siRpyZIlUZtfTNPU0qVLJUnx8fHKy8uzMyIAdBnLsrRgzW797q3N2tMcbrPudhr6xonD9LXjM+R2OrohYQ/U0iTvunnyF82Vq7o0ZqnpHaRA7hUK5F8jM3GkTQEBAAAAAAC6Tqc2v3wxit0wDIXD4Tb3H4r/vhYA9ATure9pwOvflqOlYb/7IwkZ2nvRPxVJjn46Hw5OdUNI9y4q1zsb90RdnzY+RT86c6QG+d32BgMAAAAAAACATjBmzBiNHz9eq1ev1pIlSzR58mTl5OTsV/Pvf/9b27dvlySde+65crk42w5A71dRF9T9b5br/fK6qOtHDR+g28/J0qgUv83JeiZHbbn8xXPkXf2iHKH6mLUtgwsUKChUcOwFkstnU0IAAAAAAICu16mvjluWdVD3A0Bv5Fn3qga8+WMZZst+94dTjtDeC/8hMyG9m5L1HZZlaf7q3frdW5u0N8C0FwAAAAAAAAA905o1a1RZWbnv9t69e/f9urKyUm+//fZ+9ZMnT25zja9//eu68847FQqFdM899+jSSy9VXl6eQqGQ3n//fb355puSpIyMDF144YVd8vvoLodzgB7Q3zgcjpi3e4uIaenZFRX6y7Itam4x26wneJz63hkjddnEIXIYRjck7EHMsNzli+VdNUfuLe/ELLWcHoVyLlRwwixF0idKkthhcTj6yp4DoHdgzwFgF/YbAHZiz+kandr8ctdddx3U/QDQ2/g+fUwJ793X5v6WoSdo7/l/l+Ud2A2p+pbqhpDuW1SuZe1Me5k6LkU/PotpLwAAAAAAAAC63+LFi7V06dKoa2vXrtXatWv3uy9a80tWVpa+//3v64EHHlBzc7OefvrpNjUZGRm67bbb5Pf3rQkISUlJ3R0B6LUSExO7O8JBW1O5V7e+WKSVW/dEXZ+aN0Q/vyhf6Yn9fFpJwy5pxRPSx49Le7fFrh00UjruGzKOmilvXLK8tgREf9Qb9xwAvRd7DgC7sN8AsBN7Tueg+QWHjNO40K9Ypvzv3Cffp4+2WQqNPV+NU34vR4yx4XRwHphlWXq9tFq/ebNcewPhNuvJcW7dPjVbZ+akdEM6oHdhzwFgJ/YcAHZhvwFgJ/YcAHY79thj9bvf/U6vv/66VqxYoZqaGrlcLqWnp+vEE0/UtGnT5PXykWYAvVOgJaK/vLVBf1+6UWHTarM+eIBXv7g4T9PyM7ohXQ9hWdLWD6WPHpVKXpbMlhjFhjR2inTcN6UxZ0t8rwoAAAAAAPoJw7Kstq8uAQC+FA5JL98kFb/Qdu34G6Vpv+JF5cO0a29AP/1Xsd5cvTPq+kUTh+rnF+UpKd5jczIAAAAAAAAAAAAcqg/Lduu2l4pUVt0Ydf2a4zP1v+eOU6LfbXOyHiLUKK16TvroMWlnUexaf5J01Ezp2Oul5Cx78gEAAAAAAPQgtjS/LFu2TJJ03HHHdXgceyAQ0PLlyyVJp59+epdlA4CYAnulZwul8qVt186+Wzrl+5Jh2J2qz7AsS698tkN3zStRXXPbE6xSEzy655L8/n3SFwAAAAAAAAD0UbW1td0dAeg1HA6HEhMT992uq6uTaZrdmCi2+kBYf3p7s15cGf3gs5HJPt0xdbSOzUyMut7XOWo3yrtqjjylL8gRqo9ZGx4yUcEJMxXKuUBy+WxKiP6ut+05AHo39hwAdmG/AWAn9pxWSUlJnXo9V6derR2TJ0+Ww+HQqlWrlJub26HHbN++fd/jwuFwFycEgCjqK6W506XK/zplyeGSLv6rNPHq7snVR+yqD+j2fxVrUWn0Nz0u/HzaSzLTXgAAAAAAAACgT4pEIt0dAei1TNPssV9DS9bX6NdvblJ1Y9uDz5wOQ187PkPfOHGYvC5Hj/09dAkzLE/5YvmK58qz9b2YpZbTq+DYCxQoKFR4yIQvF/rTnxd6lJ685wDoe9hzANiF/QaAndhzOoctzS9S6+n+dj4OXY/TuNCXOWrLlPDyLDn3btvvfssdp4bzH1Q4c5J0EF8DdHB+ybIszS+t1q/fLNfeQNvmxuQ4t346JVtnHZEihRpVG2rshpRA78aeA8BO7DkA7MJ+A8BO7DmtOvs0LgAA0LdVNYT0m8WbtGR99PfQctPjdefUbI1Ni7M5WfcymqrlK3lGvpKn5WyojFkbGZipQP61CoyfLsvP92IAAAAAAABfZVvzy8H64o1Ep9PZzUnQHrrP0Fe5Kj/TgH9/U47A/i/Mm/4U7b3g0dbTlQ7z339/7eCsbgzpV4s26e0N0d/0mDIuRT85c6QGxbn75Z8P0FX6654DoHuw5wCwC/sNADux5wAAALTPtCy9vKpKf1q6RY2htt8z+d0O3XTqcF11VLqcDqMbEnYDy5Kr4hP5iubIu/ENGWbbKTj7SmWoZeRkNU8oVEvm6ZLhsDEoAAAAAABA79Fjm182b94sSfudrgcAXc1d/pYGLrhFRjiw3/2RxEzVXfS4zMSR3ZSsd7MsSwvW7NZvF29WXZRpL0l+l247J0tn5iR3QzoAAAAAAAAAAAAcik01zbpvYblWbKuPun7yqET97zlZGprotTlZNwk1yrtunvxFc+TavSZmqelLUiD3CgXyr5U5cIRNAQEAAAAAAHqvLml+2bJlS9T7KyoqlJCQEPOxwWBQGzdu1J133inDMJSXl9cVEQGgDW/pc0pYcocMa/8TqVoGF2jvBY/KikvtpmS924GmvZxzRLJuPWuUBsW5bU4GAAAAAAAAAACAQ9ESMfXkRxV67IPtCkWsNuuD/C796MyRmjouRYbR96e9OGs3ylc0V941L8oRaohZ2zLkSAUKZig45nzJ1U+aggAAAAAAADpBlzS/ZGVltbnPsixNmTLloK81a9aszogEAO2zLPk//oviP/xjm6VQ5mnaO+2vkife/ly9XEemvfzvOVk6i2kvAAAAAAAAAAAAvUZxRYN+uaBMG6ubo66fl5uqH0zO7PsHn5lhecoXy1c0R55t78cstZxeBXMuVHNBoSKDC2wKCAAAAAAA0Ld0SfOLZbU92SXW/dH4fD5997vf1fXXX99ZsQCgLTOi+KV3yV/ydJulwBGXquHM+yVnH39hvgvsbmzRr94s15L17U97+clZo5TU19/0AAAAAAAAAAC0y+l0dncEoNdwOBwxb9uhKRTRX5dt0dOfVCjaO/9DE726Y+ponZQ1yO5otjIad8lb8qy8RU/J0VARszaSOFLBCYUK5V4hyzdIksTOh96gJ+w5APoP9hwAdmG/AWAn9pyu0SXNL//85z/3u33dddfJMAz98pe/1LBhw9p9nGEY8vl8ysjI0FFHHaWEhISuiAcArcIBDVj4fXnLFrVZajrmJjWd+EOpH4xh70wdmfZy69mjdPYRKd2QDgAAAAAAAADQkyQlJXV3BKDXSkxMtPX5lqzdpTv+Vazte9pOe3EY0vWnZOkHU3IU5+mSjyB0P8uStnwgffSoVDpPMltiFBtSzlTpuBvkHH2m4hwOxdkWFOgadu85APo39hwAdmG/AWAn9pzO0SWvPH3ta1/b7/Z1110nSbrkkkuUm5vbFU8JAAfFCOzRwNe+JXfFJ/vdb8lQ4+k/U2DCrG5K1nsx7QUAAAAAAAAAAKBv2d0Q1C/+XapXPtsRdX18xkD9+vICTRg+yN5gdgk2SEXPScsflXaVxK71J0tHz5KOvV5KGmlPPgAAAAAAgH7ElmNXlixZIknKysqy4+kAICZH/Q4NnHedXLUb9rvfcnpUf87/KTTm3G5K1jtZlqWFa2v0m8WbVNfcdtrLIL9L/8u0FwAAAAAAAAAAgF7Dsiy9tGK77nmtVLVNbaeceFwOff/ssbrhtGy5nY5uSNjFqta1TnlZ+bQU3Bu7dtix0vE3SLmXSG6fLfEAAAAAAAD6I1uaXyZNmmTH0wDAATmr12rgq9fJ2bhzv/tNzwDtPf9hhYcd303JeqcDTXs5OydZt57NtBcAAAAAAAAAQFu1tdFfWwbQlsPhUGJi4v9n777D5KzL/fHfM7M1ye5mk0AqIY0euvQuLUCw16Pn/Gwcjwc59oKAICJiOZaDir33roQOUkRAEBCpgRQIaZCy2ZatM/P7g6+Bxw0hCbvPs+X1ui4vM/fnMzPvbHZvvfaZ+/lsetzc3BylUmlA3mvFhs646JrFccfjzZtdf8n0+jj35Nmx87jaaGvZ/J4hqdQblUuuj+r7fhiVy2/b4tZyoTq6d3t5dO3z71GcuPczxbaOiOgY+JyQgjR7DoCeA6RFvwHSpOc8o7GxsV9fL5XhF4DBoHL5HVF35Tsj392WqBdHT4qWl303iuN3yyjZ0FMul+O6hevjM057AQAAAABgOxWLxawjwJBVKpX6/Weot1SOn9+zOr5+6/Lo7O37YYy66kK859jp8fK5O0Qulxs2P8O59qej5qFfRM0DP49C++ot7i02TI+OuW+Orj1eHeWasf+vODy+DrAlA9FzAJ6PngOkRb8B0qTn9A/DL8CIULXoyqi79gORK3Un6r3jdomW078bpbopGSUbetb/v9Ne/vQ8p70cv+u4+MjxM2LcaKe9AAAAAAAADAULn26Pi65ZGg8/1b7Z9RN2HRcfPH7nmDC6KuVkA6RcjoqVd0XtAz+OqsXXRK7U92Zvm7ZGLrpnvDQ6935z9Ew/MiKXTzEoAAAAAP9k+AUY9mru+0GM/vMnIxflRL1n8kui5bRvPHtXJl7QdY+si0u2cNrLR46fESfu7rQXAAAAAACAoaCzpxTfun15/PiuVVEs913fcUxlfPiEGXHsnHHphxsAue62qH70j1Fz/4+jYt3CLe4t1YyLzj1fF51z3xil+mkpJQQAAADg+Rh+AYavcjlG3f65GHXPN/osdc06KVpP+mJERU0GwYae9e098ZkbHo8bHl2/2fWX7tIYHz1hptNeAAAAAAAAhoi7ljXHxdcujSc3dG12/bX77RhnHrVTjKke+h8rKKxfFDX3/ziqH/ld5Hvatri3Z+L+0bnPm6Nr9ikRFdUpJQQAAADghQz931IBbE6xJ8b86aNRs/D3fZY69n5ztB/18Yh8If1cQ9B1j6yLz9zweGzYzGkvDbUV8VGnvQAAAAAAAAwZLZ298aWblsUfH1iz2fUZ42ri3JNmxX7T6lJO1s+KPVG19Iaouf9HUbXiji1uLVfURNeuL4uOuW+K4o5zUwoIAAAAwLYw/AIMO7nutqi76t1R9eSf+6y1H/r+6DjwvyNyuQySDS1OewEAAAAAABg+yuVy3PDo+vjcDU/Euo09fdYr8rl46yFT4q2HTImqinwGCftHrv3pqHnwF1Hz4M+i0P7UFvcWG3aOjr3fHF27vzrKNQ0pJQQAAABgexh+AYaV3Ma1UX/526NyzQOJejlXiLbjLo6uPV+TUbKh5fqF6+KS65//tJePHD8jTtxtXOQMEQEAAAAAAAx6T7V2xSXXPx5/Xrxhs+v7TBkT55w0M2ZPGJVusP5SLkfFyrui9v4fRdWSayNX6nuNa9PWXD66Z7w0Ovd+c/TsdEREbugO+gAAAACMJIZf2G6FQiHrCJCQ3/B4jPn9f0SheVmiXq6ojbZTvxq9M18aWX3X5vP5LT4eLNZv7IlLrl0S1y1ct9n1l+46Lj520qwYP7oq5WTAthgqPQcYHvQcIC36DZAmPQcAGC5K5XL85u9Px1f+vCzau0t91kdV5uPdR+8Ur9lvYuSH4E3Pct1tUb3wD1Fz/4+jYv2jW9xbqh0XnXu+Pjr3emOU6qemlBAAAACA/mL4he3W2NiYdQR41oq7I371uoiNa5P1UeMj92+/irppB2aT63k0NAy+Y9Ov+MeqOO8PD8T69u4+a42jKuMTL58bp+8z2WkvMAQNxp4DDF96DpAW/QZIk54DMDDcaA223vYM5y5euzE+efXiuG9F62bXj57dGGefNCsm1Vf3S8Y05dc9FtX/+FFUP/LbyHW3bXFv7+QDomuf/4juOadEVFRHLiKzG+bBUOGGAECa9BwgLfoNkCY9Z2DkyuVyOesQAC/KY9dH/PI/Inrak/WxO0e8+bcRE+Zkk2uIWNfWFR//44NxxT9WbXb95L0mxkWv2Dt2qBt6Fz4AAAAAAABGmq7eYlx20+L46o2LoqfY9+MAE8ZUxfmn7xXzh9pNz4o9EY9cEXHXtyMe//OW91bURuzz2oiD3hExed908gEAAAAwoJz8Agxtf/9pxB/Piij1JuuT9ol4068j6iZmk2uIuPL+VXHe7x+IdZs57WXsqMq40GkvAAAAAAAAQ8bdT6yPj/7m/njs6c2fhvLaA6fFOaftEWNHVaWc7EVoXR1x9/ef+U/r5m/mtsm42c8MvOz3xojaxjTSAQAAAJASJ7+w3ZqamrKOwEhWLkfN374Wtbd9rs9Sz/Sjou20yyKqxmQQbPPy+Xw0NDRsetzc3BylUimzPOs39sRnrlsS1z6ybrPrL911XHzspFkxfvQQuvABbDLYeg4wvOk5QFr0GyBNes4zGht9YBQAhorWzp743DUL40d3PBGb+wTA9HGj4tOv2juOmDMh/XDbo1yOeOIvEXd+K+KRBX1vhPdcuXzErqdEHPyOiJnHRuTzaaUEAAAAIEVOfmG7FYvFrCMwUpWKMfrPn4za+3/UZ6lz15dH2/GXRBSqIgbx92ipVMrsZ+iGR9fHJdctjaaOvhcJGmoq4kPH7xwn7z4+crmcn3MYJrLsOcDIo+cAadFvgDTpOQADw43WYOttaTj35kXr4+JrlsTTbd19nlfIRfz7wVPiP4/YKWorC4P/5667Laof/l1U3/+jKKx7dItbS7Xjo2vuG6J77hujVD/tmWJzcwohYfhzQwAgTXoOkBb9BkiTnvOM/r7RmuEXYGjp7Yq6694f1Yuv7rO0cf8zYuPhH37m7k70sWFjT3zmhsfjuoXrN7t+7JzG+OiJM2KC014AAAAAAEiBwULYfqVSKZ5u6YzP/+n5r/3sPnFUnHvSrNh94uiIGNw/c4V1j0bNAz+J6kd+F/me9i3u7Zl0QHTu/ebomjMvolD9THEQ/91gOHBDACBNeg6QFv0GSJOe0z8MvwBDRq6rJeqveGdUrryzz1rbkedG535vzSDV0LAtp70AAAAAAAAweJXL5fj9P56KL974eLR09v3QRHVFPv7riGnxxgMnRUV+EF/7KfZE1dLrovYfP47KlX/d4tZyRW107fqy6Nj7zVHcYc+UAgIAAAAwmBh+AYaEfNuqqP/j26JiffJ483K+KlpP/Fx07zI/o2SD24aNPfHZPz0R1z6ybrPrx8xpjLOd9gIAAAAAADAkPL62PT72u/vjtsWbv/Zz8M718bETZ8a0sTUpJ9t6+banoubBn0f1gz+Pwsant7i3d+zM6Nz7TdG1+6ujXF2fUkIAAAAABiPDL8CgV1j3aNRf/tYotK1O1EtVY6L11K9Hz7TDMko2uP3p0fVxyfVLY/3Gvqe91NcU4sPHz3DaCwAAAAAAwBBQLpfjm7csjv+99tHo6i31Wa+vKcT7j905TttrwuC89lMuR+WKv0bN/T+OqiXXRq7c98SaTVtz+eieeXx07v3vz1wHzOVTDAoAAADAYGX4BRjUKlb+LeqvOCPyXS2JenHUjtHysu9GccIeGSUbvJz2AgAAAAAAMLx84y9Pxjf+snyzayfvPj4+cNzOMW50ZcqpXliuuzWqH/l91Dzwk6hY/9gW95Zqx0fnXq+Pzr3eGKW6KSklBAAAAGCoMPwCDFpVi6+JumvfG7lid6LeO3ZWtLzs+1Gqn5pRssHrxsfWx6eve/7TXj700hkxbw+nvQAAAAAAAAwVD61ui2/f1nfwZWJdVZx9wow4cnZjBqm2rLBuYdTc/5OoXvj7yPe0b3Fvz+QDo3Pum6NrzskRheqUEgIAAAAw1Bh+AQalmvt/HKNvviByUU7UeybtHy2nfSvKtYPvl/hZ2tDRE5+74Ym45nlOezl69tj42IkzY8IYp70AAAAAAAAMFd29pbjgqiVRfM4ls1wu4vUHTIp3HTEtRlcVsgv3r4o9UbXk2qi9/8dRufLOLW4tV9RG524vj865b4riDnumFBAAAACAoczwCzC4lMsx6q9fiFF/+1qfpa4Zx0fryV+OqKzNINjg9UKnvXzwpTPiFKe9AAAAAAAADDnfvG15LFnXkai99/hd4z8OnBDFYjGjVEn5ttVR8+DPo+bBn0d+45ot7u0dOzM6935TdO3+6ihX16eUEAAAAIDhwPALMHgUe2LMTedFzcO/6rPUuefro+3YCyPy2tY/bejoic//6Ym4+uHNn/Zy1OyxcY7TXgAAAAAAAIakB1a1xQ/vWpWo7TWlPv77uNnR1tKcUar/p1yOyhV3RM39P46qJddFrvz8gzjlXD66Z54QnXu/OXqmHf7M0TUAAAAAsI18ihwYHHo2Rv3VZ0XVEzf1WWo/+D3RcdBZfhH+HDc9tj4+fd3jsW5jT581p70AAAAAADAUFAqFrCPAoNXVW4pPXL0kSuVna5WFXHz+tftGZSEf+Xw+o2CtUf3Ib6P6Hz+KwvpFW9xaGjUhuua+MbrmvjHKdVMiIsJPPQwN/9pjMus5wIig5wBp0W+ANOk5A8PwC5C5XMe6qF9wRlQ+dV+iXs7lo+3YT0bXXm/IKNng47QXAAAAAACGi8bGxqwjwKD16asejqXrOhK1/3npLrHH5PqIiGhoaEg30FMPRdz1rYj7fhHR077lvdMPizjoHZHf42VRW1EVtekkBAZQ6j0HGNH0HCAt+g2QJj2nfxh+ATKVb14WDX98axSaH0/UyxU10Xry/0X3zOOzCTYI3bRofXz62s2f9lJXXYgPvnTnOHXPCU57AQAAAAAAGMLuWdYU37plSaI2d2p9/Nexs9MN0tsd8cjlEXd+O2LZbVveWzkqYp/XRRz0johJe6eTDwAAAIARxfALkJnC0w9Ew4K3R37j2kS9VD02WuZ/K3onH5BRssGluaM3Pv+nx+Oq5zvtZdbY+NhJM2MHp70AAAAAAAAMaZ09xfjQr+6LUvnZWmUhF//72v2ispBPJ0Tzioi7vx9xzw8i2p7a8t7xuzwz8LLfGyNq3MEUAAAAgIFj+AXIROWyW6Puqv+O/L8ci16smxotL/teFBtTvnPVIPVCp7184KU7x2lOewEAAAAAYAhqamrKOgIMOl+88fFYvCZ5/eydR+wUk2pLiVpzc3OUSsnai1IuR8Xy26P6vh9G5ZLrIlcuPv/WXCF6Zp0YXfv8e/TudHhELhfRUYro8DMNw0U+n4+GhmcH2vq95wA8h54DpEW/AdKk5zyjsbGxX1/P8AuQuuqFf4gxN3w4cqXeRL13/O7Rcvp3ozRmYkbJBo/mjt74/I2Px1UPbf60lyNnjY1znPYCAAAAAMAQViw+/4frYST6x8rW+NGdKxO1PSeOjje/ZFKfD0eUSqV++RnKdbVG9SO/jZoHfhIVTYu3uLc0akJ07vWG6NzrDVEaM/mfQV50BmDw66+eA7A19BwgLfoNkCY9p38YfgHSUy5H7b3fjtG3XdJnqXvqodF66tejXF2XQbDB5eZFTXHxdUtjXbvTXgAAAAAAAEaCzp5SXHDVkig/p1ZZyMX5p8yKinz/XxMqrF0YNff/KGoe/UPkejZucW/P5JdEx95vju7ZJ0cU3JgNAAAAgGwYfgHSUS7F6Fsvjtr7vtdnqWuX06L1hM9FFKozCDZ4bM1pLx87cWbsWOeiAgAAAAAAwHBy2a1PxrKmzkTtnYdPi9kTRvXfmxS7o2rxNVH7wE+icuVdW9xarhwVnbu+PDr3fnMUJ+zefxkAAAAAYDsZfgEGXrEr6q7/UFQ/dkWfpY593xbtR54dkctnEGzwuGVxU3zq2s2f9jKmuhAfPG7nOG0vp70AAAAAAAAMN39f0Ro/vXt1orbXpNHx5oMm98vr59tWRc0DP4uah34R+Y1rt7i3t3F2dM59U3Tt/qooV9f1y/sDAAAAQH8w/AIMqFxXa9Rd+V9RteKOPmvtR5wdHfu/I4NUg0dLZ298/k9PxJUPbf5CwxEzx8Y5JzntBQAAAAAAYDjq7CnGhVcvifJzalWFXJw/b1ZU5F/ETdHK5ahcflvU3P/jqFp6Q+TKxeffmitE98wTonOfN0fP1MMi3IwNAAAAgEHI8AswYPJtT0X95W+LinWPJOrlfGW0Hf+Z6Nrt5RklGxxuWdwUF1+7NNY+z2kvHzhu55jvtBcAAAAAAIBh66u3Lo9lTZ2J2juPmBazJozartfLdbVG9SO/iZr7fxIVG5ZscW9p1ITo3OsN0bnXG6I0pn9OmQEAAACAgWL4BRgQhabFUf/Ht0ShdWWiXqocHa2nfC16ph+ZUbLsNW/sifOueCwWPLBms+tOewEAAAAAABj+7l3eEj+/e3WiNnfy6HjzS7Z9EKWw9pGouf9HUbPwD5Hr7dji3p4pB0fH3m+K7lknRRRcjwIAAABgaDD8AvS7ilX3RP2CMyLftSFRL42aEM3zvxPFHedmE2wQuOHhp+Ls394fT7d29Vlz2gsAAAAAAMDI0NFdjE9cvSTKz6lVFXJxwbzZUchv5XWiYndULb46au//cVSuunuLW8uVo6Jzt1dE59w3R3HCbtsfHAAAAAAyYviF7VYoFLKOwCBUueS6GH3VWZHrTR7PXhw7M9pe8YOIhukxEr9zeksRH/rVffGru5dvdv2IWWPjvJNnx8T66pSTAcNRPp/f4mOA/qTnAGnRb4A06TkAwED76q1PxvINyZulvevInWLG+NoXfnLz8qi5/etR/cDPIr9x7Ra39jbOic693xRdu78yylV1LyYyAAAAAGTK8AvbrbGxMesIDDZ3fz9iwfsiyqVkfeqBUfi3X0bD6AmZxBoMzv7tPzY7+FJXXRHnnb5nvPbAaU57AQZMQ0ND1hGAEUTPAdKi3wBp0nMAgP5095Mt8fN7nkrU9pkyJv7twElbfuITt0Xc/tWIhVdG7b9ej3uOcq4Q3bNOjM693xw9Uw+NcA0KAAAAgGHA8Avw4pXLETddEnHzJX3Xdjkp4rXfj6ganXqsweLy+1bGz+58sk/9mF13iEtevXdMbtiKO3gBAAAAAAAw5HV0F+PCq5ckatUVufj4vFlRyD/PkEq5HDW3/2/EnZdu8bVLo3aIzr3eEJ17vSFKY15gkAYAAAAAhhjDL8CLU+yNuOL9Eff8oO/a/m+OmP/liMLIbTXL1m2Mj/32/kSttrIQn3jZXvHalzjtBQAAAAAAYCS59M9PxormrkTtXUfuFDPGPc/N0ordMeZPZ0fNwt8/72v2TDk4OvZ+c3TPOimiUNmPaQEAAABg8Bi5n0jnRWtqaso6Alnr6YjRV50VVUuv77PUcfBZ0Xno+yNaWjMINjj0FEvx3z95IFq7ehP1i14xN06YUxcbNmzIJhgw7OXz+WhoaNj0uLm5OUqlUoaJgOFMzwHSot8AadJzntHY2Jh1BAAYVv62rCV+ee9Tidq+U8fEGw/Y/Cktua7WqLvqv6Nq+W191sqVo6Nzt1dE595viuL43QYkLwAAAAAMJoZf2G7FYjHrCGQo19EU9VecEZWr703Uy5GL9mM+EZ17vyliBH4g4LkuvXlZPLCqLVF71f5T49UHToumpiY/Q0BqSqWSngOkRs8B0qLfAGnScwAGRqFQyDoCpGZjdzEuvGZJolZTkY9PnLpLVFX2vWyfa10VY/7w1qhY98i/LOQjXnpetOz2uihVjo6ICD9JQH/L5/NbfAzQn/QcIC36DZAmPWdgGH4Btlm+ZXnU//GtUbEh+Qv6cqEqWk/6UnTPPjmjZIPHbUs3xI/uWpWozZwwOi58xdyMEgEAAAAAwODihClGki/8/oFY2dyVqH1o3u6x3+wpfTevfiDiV6+NaF2ZrFeOinjt9yN2PTka+j4LYMA892RMgIGm5wBp0W+ANOk5/cPwC7BNCmsfjvo/vi0KG59O1EvV9dFy2reid8pLMko2eKxt647zr1ycqFUWcnHpG/ePMdXaLgAAAAAAwEhy26K18aM7nkjUDp4xLt56+Iy+mxffGPGLf4/obk3WR+8Q8W+/jJh6wMAFBQAAAIBBzKewga1Wufy2qLvyXZHvbkvUi2MmR8vLvhfFcbtklGzwKJbKcd6Vi6OpozdRf++xM2LuVFObAAAAAAAAI0lbV2986Nf/SNRqKvPx2dfsE/l8Lrn57z+N+ONZEaXkdaYYv0vEm38d0ThjYMMCAAAAwCBm+AXYKlWPXh51138ocqWeRL133K7R8rLvRmnM5IySDS4/uHNl3LWsJVE7avbYeOOBkzJKBAAAAAAAg1NTU1PWEWDAfeqaxbFiQ0eidtbRO0dDoTuamrqfKZTLUXPnpVF7xxf6PL9nykHRfvq3IpdvjOfeZq25uTlKpdIAJgdGsnw+Hw0Nz3YdPQcYSHoOkBb9BkiTnvOMxsbGfn09wy/AC6r5+/dizK0X9an3TDk4Wk77RpSr6zNINfj8fUVrfOMvyxO1HcdUxvnzZkUul3ueZwEAAAAAwMhULBazjgAD6q9PNMev//5UonbAtLp47X47PPv9X+yJMTd/PGoe+mWf53fNOTVaT/h8REV1FP7lwxGlUsnPEJAaPQdIk54DpEW/AdKk5/QPwy/A8yuXYtRtn4lR9367z1LX7HnReuIXIiqqMwg2+DR39Ma5CxZFsfxsLZ+LuOi0OTG2tjK7YAAAAAAAAKSuras3Pnn1kkStpiIfH583K/L/76Zpue62qLv6rKhadkuf52/c7+2x8YiPRuTyqeQFAAAAgMHO8AuwecXuGHPDR6Pm0T/0WerY+9+j/ajzIvKFDIINPuVyOS66dkmsbu1O1M84bGocsJNTcQAAAAAAAEaaL9/8ZJ9rR2cdvVNMG1sTERG59qejYcE7omLNg4k95chF+1HnRee+/19qWQEAAABgKDD8AvSR626Luqv+O6qe/EuftfbDPhQdB7wz4v/dkYqI39z3dNz4WFOidsC0unjboVMzSgQAAAAAAEBW7nh8Q/zuH08nagfuVBev3X9iREQU1j8W9Ze/LQqtKxN7yoXqaD3pi9E9++TUsgIAAADAUGH4BUjIta+JhgVv73uXqXxFtL3009G1+6sySjY4PbZmY3zhxicStYbairjotDlRyBsQAgAAAAAAGEnaunrjk9csTdRqK/Px8ZNnRT6Xi4oVf436K/8r8l0tiT2lmnHRMv+b0Ttp/zTjAgAAAMCQYfgF2CTftDQaLn9rFFqeTNTLlaOiZd5XomfnYzJKNjh1dBfj7Msfi+5iOVH/xLxZsWNdVUapAAAAAAAAyMqXbloWT7V2J2r/c/T0mDq2JqoevTzqrv9w5ErJ9WLD9Gg+/XtRGjsjxaQAAAAAMLQYfgEiIqJi9d+jfsEZke9cn6iXasdFy/zvRO/EfTJKNnh97k9PxOPrOxO1Nx44KY6c3ZhRIgAAAAAAALJy+9IN8fv71yRqB02vj1fvu0PU3vONGH3bZ/s8p2fiftEy/5tRrh2fVkwAAAAAGJIMvwBR+fiNUX/1WZHr7UjUi/XTo/ll7jK1OVc/vDb++EDy4sXuE0fFWUftlFEiAAAAAAAAstLW1RsXXbs0URtVmY/zTtw56m65IGof+Emf53TNPCFaT/pSRGVtOiEBAAAAYAgz/AIjXPVDv44xN34scuViot6zw9xoOf07UR41IaNkg9eTTZ3x6ev6Xry4eP4uUVWRzygVAAAAAAAAWfnCjcviqdbuRO39R+4Yu932vqheen2f/R17/3u0H3VeRL6QVkQAAAAAGNIMv8BIVS5H7d++GqP/+sU+S93Tj4qWeV+NqBqdQbDBradYio8tWBTt3aVE/ewTZ8b0xpqMUgEAAAAAAJCVvyzZEH98YE2idsJOpfj/Fr8vKp++r8/+9iPOjo793h6Ry6UVEQAAAACGPMMvMBKVijH6lk9s9nj1zt1eGW0v/XREoTKDYIPfV255Mh5+qj1RO32vCXHKnk7IAQAAAAAAGGlaO3vjomuXJGp7Vq2Or3Z8MSrbnkzUy/mqaD3xc9G9y/w0IwIAAADAsGD4BUaa3s6ou/Z9Ub3k2j5LGw/4r9h42AfdZep53Lq4KX5y9+pEbedxNfGh42dkEwgAAAAAAIBMfeHGJ2JNW8+mxwfkHo2fVn0xqtuaE/tK1Q3Rcto3onfKQWlHBAAAAIBhwfALjCC5zg1Rf8V/RuWquxP1cuSi/eiPR+c+/5FRssHv6dbuuODq5F27qgq5uHj+nBhVVcgoFQAAAAAAAFm5dXFTXP7g2k2PT87fGZdWfS2qersT+4p1U6Pl9O9GcdyctCMCAAAAwLBh+AVGiHzryqi//G1Rsf6xRL2cr4rWk74Q3XNOySjZ4FcsleO8KxfFho7eRP29x06P3XYcnVEqAAAAAAAAstLS2RsXXbt00+O3Fq6K8yp+HPkoJ/b17rBXNM//TpRH75B2RAAAAAAYVgy/wAhQWLcw6v/4tii0r07US1V10Xrq16Nn2qEZJRsavvfXlXH3k62J2rFzGuO1+03MKBEAAAAAAABZ+t8/PRFr23siF6U4t+In8faKq/rs6d752Gg5+f8iqtxMDQAAAABeLMMvMMxVrPhr1F/xzsh3J4c3iqMnRsvp34vihN0ySjY03Lu8Jb552/JEbWJdVZx38qzI5XIZpQIAAAAAACArtyxuiiseWhvV0R1frPxanFq4s8+ezj1fH23HXhiRd0keAAAAAPqD37TBMFa16Kqou/b9kSt1J+q9jXOi5WXfi1LdlIySDQ0bOnri3CsWR+k5p9MXchGfmj8nGmq1TwAAAAAAeDEKhULWEWCbNXf0xMXXLo2x0RrfrvrfeEn+0T57Og77UHQe9N9R6McbqeXz+S0+BuhPeg6QJj0HSIt+A6RJzxkYPr0Nw1TNP34Yo2+5MHJRTtR7Jh8YLad9M8o1Y7MJNkSUy+W48Ool8VRrcnDoP4+YFvtNrcsoFQAAAAAADB+NjY1ZR4BtduG1f4/ajcvj+1Wfjdn5VcnFfEXEy78atfu+IWoHOEdDQ8MAvwPAs/QcIE16DpAW/QZIk57TPwy/wHBTLseoO/43Rt19WZ+lrlknRutJX4qoqEk/1xDzi3ufilsWb0jUDppeH2852Gk5AAAAAAAAI9G1D66OxX+/JX5b9bnYIdeSXKyuj3j9jyJmHZtJNgAAAAAY7gy/wHBS7IkxN34sah75bZ+ljrn/Fu1HXxCRL6Sfa4h55Kn2+PLNyxK1xtqKuPDU2VHI99/x9AAAAAAAAAwNTe3dcdVvvhc/r/pijMp1JRfrp0a86VcRE/fKJhwAAAAAjACGX2C46G6P+qvfHVXLbumz1H7I+6LjJWdG5AxuvJCN3cX42IJF0VMsJ+oXnDI7dhhTlVEqAAAAAAAYfpqamrKOAFvt6p/8b3y++JUo5JLXkHon7B5tL/telKsmRwzg93Q+n4+GhoZNj5ubm6NUKg3Y+wEjm54DpEnPAdKi3wBp0nOe0djY2K+vZ/gFhoHcxrVRv+AdUfn0/Yl6OVeItuMuiq49X5dRsqHnszc8HsuaOhO1f3/J5Dhi1thsAgEAAAAAwDBVLBazjgAvrFyKNVdeFG9c+4OIf7nPXPe0I6L11K9GuaouIuXv51Kp5GcISI2eA6RJzwHSot8AadJz+ofhFxji8s1PRMMf3xKF5mWJermiJlrmfSV6ZhyXUbKh54oH18SCB9cmantOGh3/fdS0jBIBAAAAAACQmWJXVF/z4dhj6YI+SxtmvyJ6T/p0RKEqg2AAAAAAMPIYfoEhrOKpf0T9grdHvmN9ol6qaYyW+d+O3kn7ZRNsCHpifUdccv3jidroqkJcPH9OVBby2YQCAAAAAAAgE7mulqi78r+iasVf+6z9fcbbY9q8syNyuc08EwAAAAAYCIZfYIiqfOKWqL/6zMj1bEzUi3XTovll349S48yMkg093b2l+NiCRdHRU0rUzzlpZkwbW5NRKgAAAAAAALKQb10Z9Ze/LSrWP5ao95bz8f3Gs+Llp51l8AUAAAAAUuY4AxiCqh/5XdRfcUafwZfeHfaKDa/5tcGXbXTpLU/GwqeTX8tX7L1DnLT7+IwSAQAAAAAAkIXCmoei4Vev7jP40lauibNyH4kjX/FfkTP4AgAAAACpc/ILDCXlctTe880Yfftn+yx1Tzs8Wk/9WpSr6jIINnTdvKgpfnbP6kRt5ria+OBLd84oEQAAAAAAAFmofOKWqLv63ZHvaU/Uny6Pjbd2fzjecMrxMWFMVUbpAAAAAGBkM/wCQ0WpGKNvvShq//HDPkudu74s2o7/TETBL9u3xVOtXXHh1UsStapCLj59+i5RU1nIKBUAAAAAAABpq37oVzHmxnMiVy4m6o+VpsZbuj8cc+bsGvP2GJ9ROgAAAADA8AsMBb1dUXfdB6J68VV9ljbu9/bYeMRHI3L5DIINXb2lcpx7xeJo7uxN1N9/3M4xZ4dRGaUCAAAAAAAgVeVyjLrzyzHqrkv7LN1R2iP+s/t9kasZG2efOCNyuVwGAQEAAACACMMvvAiFgpMx0pDrao7Rl/9nVK74a5+1jUedG10HvCP8S2y7b92+LO5d3pqoHb/ruHjdAZMH5MJFPp/f4mOA/qTnAGnSc4C06DdAmvQcABghij0x5sZzouaR3/RZ+mPxsPhgz39Fd1TGRcfvHBNGV2UQEAAAAAD4J8MvbLfGxsasIwx/LSsjfvvGiKcfStbzlRGv/HqM2vs14YySbXf74nXxrduWJ2pTx9bGF97wkmgYVZlKhoaGhlTeByBCzwHSpecAadFvgDTpOQAw/OS6W6PuqndH1ZO39lm7rPf0+Gzv66Mc+Thul8Y4effxGSQEAAAAAJ7L8AsMVk8/EvHjV0e0JIc0oqou4g0/iZh1TDa5hrj17d3x3l/cG6Xys7VCPhf/98b9Uxt8AQAAAAAAIDv5ttVRf/nbo2LdI4l6MXJxfs9b4sfFEyMioqG2Ij56wszI5XJZxAQAAAAAnsPwCwxGy+6I+OnrIzo3JOtjJka86dcRk/fJJNZQVy6X44O/ui+eaulK1D9w0q5x4M5OMgIAAAAAABjuCmsXRv2Ct0WhbXWi3pWrjjO73h3Xlw7cVPvI8TNi/Gg3TwMAAACAwcDwC9utqakp6wjDUuXia2L0Vf8TuWJyQKPYOCvaXvGDKNXsFOFrv11+ctfK+NMjTydqh+zcEK/fZ9yAfz/n8/loaGjY9Li5uTlKpdKAvicwcuk5QJr0HCAt+g2QJj3nGY2NbhgDwPBSufy2qLvyXZHvbkvUOysb4/Vt74v7ynM21V66S2OcuNu4tCMCAAAAAM/D8AvbrVgsZh1h2Kl54Kcx+ubzI1dOXkjvmbh/tMz/ZpRrx0X4um+Xh1e3x5dueiJRGzeqIj5x6qwol0qR9le1VCr5GQJSo+cAadJzgLToN0Ca9BwAGPqqF/4+xtzw0ciVehL17vqd49UtH4gHyxM21cbWVsRHT5gZuVwu7ZgAAAAAwPMw/AKDQbkco/76xRj1t6/2Weqe8dJoOfn/IiprMwg2PLR19cbZCx6L3lI5Ub/w1NkxYXRVRqkAAAAAAAAYcOVy1N59WYy+43/7LPVMOiDel/twPPh08sZ0Hz1hRowbXZlWQgAAAABgKxh+gayVemPMjedGzcO/6rPUuefrou3YT0bk/ahur3K5HJdc/3gs39CVqP9/B0+OQ2eMzSYUAAAAAAAAA6/UG6NvPj9qH/x5n6Wu2fPiN9POjiuuWZGon7DruDhht/FpJQQAAAAAtpJP1EOWejZG/dX/E1VP3NhnaeNB/xMbD/6fCMepvygLHlwbVz+8LlGbO3l0vOuIaRklAgAAAAAAYMB1t0f9Nf8TVU/c1GepY9+3xhP7fiAu+eGDiXpjbUV85IQZ6eQDAAAAALaJ4RfISK5jfdQvOCMqn/p7ol7O5aPtmAuja+4bswk2jDy+riM+c/3jidqY6kJ86rQ5UVHIZxMKAAAAAACAAZVrXxP1C94RlWseSNTLkYv2I8+Jjn3fEp/6/aPR0llMrH/0xJnROKoyzagAAAAAwFYy/AIZyLc8GfV/fGtUbFiaqJcL1dE67/+ie+YJGSUbPrp6S3H2gkXR2VtK1M89aWZMHVuTUSoAAAAAAAAGUqFpcdT/8W1RaF2eqJcLVdF64heje868uPLBNfHnxRsS6yfuNi6O33VcikkBAAAAgG1h+AVSVljzYDRc/vbIb1yTqJeqx0bL/G9G7+QDM0o2vHz55mXx2JqNidqr9t0xTthtfEaJAAAAAAAAGEgVK++K+iveGfmu5kT9metw34jeyS+JNW3d8fk/PZFYHzeqIj5y/IwUkwIAAAAA28rwC6So8sm/RN2V/x35nrZEvVg3JVpO/14Ux83JKNnwctNj6+OX9z6VqM2eUBvvP3bnjBIBAAAAAAAwkKoeuyLqrv9g5IrdiXqxfqdoOf27UWycFeVyOS6+dmm0dhUTe84+cWaMHVWZZlwAAAAAYBsZfoGUVC/8Y4y54cORK/Uk6r3jd4+W078bpTETM0o2vKxu6YoLr1mSqFVX5OPi+XOipjKfUSoAAAAAAAAGRLkctX//Toz+y6f7LPXsuE+0zP9WlEdNiIiIKx5cG39esiGx5+Tdx8dxu4xLIykAAAAA8CIYfoEU1N777c3+wr176iHReuo3olxdl0Gq4ae3VI5zrlgULZ3Ju3V96KU7x+wJozJKBQAAAAAAbE6hUMg6AkNdqRi1f74oau77fp+l7pknRPsp/xf5ymeuET3d2hWfv/GJxJ7xoyvjoyfNGhLfi/l8fouPAfqTngOkSc8B0qLfAGnScwaG4RcYSOVSjP7LJVH79+/0Weqac2q0nvj5iEJ1BsGGp2/dtjzuW9GWqJ2427h4+d47ZJQIAAAAAAB4Po2NjVlHYCjr3hjx2zMiHlnQd+0lb4+qUz4bVYVnLoeXy+V43+/virau5A3UPv2qfWLmlB3TSNvvGhoaso4AjCB6DpAmPQdIi34DpEnP6R+GX2CgFLtizPUfiZrHLu+z1LHvW6L9yHMicqb4+stdy5rju3esTNSmNlTHOSfNjFwul1EqAAAAAAAA+l372oifvSFi+V191064IOKI90Y85/rQr+5eHjctXJPY9or9psRJe00a2JwAAAAAQL8x/AIDINfdGnVXviuqlt/eZ6398I9Ex/5nJH7hzouzvr0nzr1icZSfUyvkc/Gp+XNiTLU2BwAAAAAAMGysWxzxk9dErF+SrBeqIl5xWcTer0mUVzV3xCcvfyhR26GuOi542V4DnRQAAAAA6Ec+FQ79LNf+dDRc/raoWPtwol7OV0Tb8Z+Jrt1ekU2wYapULscFVy+Ode09ifqZR06LuZPHZJQKAAAAAAB4IU1NTVlHYIgprLonxlz+jsh3rE/US9X10T7/m9E77dCI53xflcvl+MCvHo7Wrt7E/nNOmhnlrvZo6mpPJXd/yOfz0dDQsOlxc3NzlEqlDBMBw5meA6RJzwHSot8AadJzntHY2Nivr2f4BfpRoWlJ1P/xLVFoXZGolypHR+spX42e6UdllGz4+unfVsdtS5sTtcNmNMSbD5qcUSIAAAAAAGBrFIvFrCMwhFQtuTbqrn1f5Ho7E/XimMnRcvp3ozh+14h/+Z76/f1Px21LNyRqp+05IY6c2TDkv/9KpdKQ/zsAQ4eeA6RJzwHSot8AadJz+ofhF+gnFavvjfoFZ0S+M3mXslLt+Gg+/btR3HFuRsmGrwdXtcWlf34yURs/ujI+ccrsyOdyGaUCAAAAAACgP9X844cx+pYLIxflRL13wp7RMv/bURozsc9zVrd0xRdvXJao7TCmMj7w0p0HNCsAAAAAMDAMv0A/qFz6p6i/5qy+d5pq2DmaX/b9KDVMzyjZ8NXW1RsfW7AoiqVnL3LkIuLCU2fHuNGV2QUDAAAAAACgf5RLMeq2z8Soe7/dZ6l7+lHROu8rUa4a0/dp5XJ88pol0d6dvJvmOSfOjPoal8gBAAAAYCjymz14kaof/EWMuencyJVLiXrPjvtEy+nfjnLt+IySDV/lcjk+de3SWNHclai/5ZApccjODRmlAgAAAAAAoN/0dkXd9R+M6kVX9lnq3OO10XbsJyMKm78h2u/vXxN/faIlUTt9rwlx5OzGAYkKAAAAAAw8wy+wvcrlqL3rKzH6zi/1Were+ZhomfeViMpR6ecaAf7wwJq4buH6RG2fKWPinYdPzSgRAAAAAAAA/SXXuSHqr/yvqFx5V5+19oPfGx0HvTsil9vsc1c1d8WXbnoiUdtxTGW8/7idByQrAAAAAJAOwy+wPUq9Mfrm86P2wZ/3Werc/dXRdtynnvdOU7w4S9ZujM/dkLxgUVddiE+dNicqCvmMUgEAAAAAANAf8i3Lo/7yt0VF0+JEvZyviLbjLo6uPV79vM8tl8vxyWuXRHt3KVE/56RZUVfj0jgAAAAADGV+wwfbqqcj6q59b1Qvvb7P0saX/HdsPOT9z3unKV6czp5SnL1gUXT1Ji9YnHfyrJjcUJ1RKgAAAAAAAPpD4en7o2HBOyK/cW2iXqocE62nfDV6ph+5xef/9h9Px51PtCRqL5u7Qxwxa2x/RwUAAAAAUmb4BbZBrnND1C84IypX35OolyMX7cdcEJ17vzmjZCPDF296Ihav7UjUXrvfjvHSXcdllAgAAAAAAID+UPn4jVF/9VmR601eCyqOnhgtp38nihP22OLzVzZ3xZdvWpaoTayrivcfN73fswIAAAAA6TP8Attg1O2f7zv4UqiK1pO+FN2zT84o1chw/cJ18Zv7nk7UdtlhVLz32J0zSgQAAAAAAEB/qH7gZzHm5vMjVy4m6r3jdo2W078TpbopW3x+qVyOT16zJDb2lBL1c0+aGWOqXRIHAAAAgOHAb/pgG2w84iNR+dR9UbH2oYiIKFXXR8tp34zeKQdlnGx4W9ncFRdduzRRq6nIx8Xz50R1RT6jVAAAAAAAALwo5XKMuuN/Y9Tdl/VZ6p52WLSe8rUoV9e/4Mv89r6n465lLYnaK/beIQ6bOba/kgIAAAAAGfOpcdgG5aq6aD79O1GsmxbFMZOi+VW/MPgywHqLpTj3ikXR1pW809eHj58RM8fXZpQKAAAAAACAF6XYHWOu/+BmB186d3tFtJz+3a0afFmxoTO+fPOyRG1iXVW899jp/RYVAAAAAMiek19gG5VH7xjNL/t+REX1Cx6xzov3jdtWxD9WtiVq8/YYH6fPnZBRIgAAAAAAAF6MXFdr1F31rqhafnuftY0Hvis2HvqBiFzuBV+nVC7HhdcsiY6eUqJ+3skzY0y1S+EAAAAAMJz4jR9sh1LjzKwjjAh3PN4c3//rykRt2tjq+OgJMyK3FRc8AAAAAAAAGFzyrSuj/vK3R8X6RxP1cq4Qbcd8IrrmvnGrX+vXf38q7n6yNVF75T47xqEzxvZHVAAAAABgEDH8AgxK69p74vwrF0f5ObWKfC4unj/HnboAAAAAAACGoMLah6P+8ndEoX11ol6uqI2WeZdGz4zjtvq1lm/ojP+7+clEbVJdVbznmJ36JSsAAAAAMLj4BDkw6JTK5Tj/qsWxbmNPon7W0TvFnpPGZJQKAAAAAACA7VW57Naou+rMyPe0JeqlUROi5bRvRe/Efbb6tUrlclx49ZLo7C0l6ufNm+UmagAAAAAwTPnNHzDo/OiuVXHH482J2pGzxsa/HTgpo0QAAAAAAABsr+qHfx1jbjwncqXeRL137Kxoedl3o1S/bae1/PLep+Ke5a2J2qv33TEO2bnhRWcFAAAAAAYnwy/AoHL/ytb42q3LE7UdxlTG+fNmRS6XyygVAAAAAAAA26xcjtq7vhKj7/xSn6WeyS+JltO+EeWasdv0kk82dcZXbnkyUZtcXxX/c8z0FxEUAAAAABjsDL8Ag0ZrZ2+cs2BxFEvlTbVcRHzy1NnROKoyu2AAAAAAAABsm2JPjLn541Hz0C/7LHXNOTVaT/h8REX1Nr1kqVyOC69ZEp29pUT94/NmxeiqwouKCwAAAAAMboZfgEGhXC7Hp65dGitbuhL1tx86NV4y3RH1AAAAAAAAQ0Wuuy3qrn53VC37c5+1jfu/IzYe/pGIXH6bX/cX9zwV9y5vTdReu9+OcZBrSQAAAAAw7Bl+AQaF3/1jTVz/6PpEbb+pdfGOw6dmlAgAAAAAAIBtlW97KuoXvCMq1j6UqJcjF+1Hfzw69/mP7XrdZU2d8ZU/P5moTW2ojrOOnr7dWQEAAACAocPwC5C5RWs2xv/e+HiiVl9TiItOmx0V+Vw2oQAAAAAAANgmhXWPRv2Ct0ehdWWiXi5UR+tJX4zu2Sdv1+sWS+X4xNWLo6u3lKifd/KsGFVV2O68AAAAAMDQYfgFyFRnTzE+tmBRdPWWE/WPz5sVk+qrM0oFAAAAAADAtqhcfkfUXflfke9uTdRLNeOiZf43o3fS/tv92j+/Z3Xct6ItUXvd/hPjJdPrt/s1AQAAAIChxfALkKn/vfGJWLKuI1F7/f4T49g54zJKBAAAAAAAwLaoevSPUXf9RyJX6k7Uiw3To/n070Vp7Iztfu3H13fE1259MlGb2lAdZx2103a/JgAAAAAw9Bh+ATJz7SPr4nf/WJOo7brjqPifY6ZnlAgAAAAAAICtVi5H7T3fjNG3f7bPUs/E/aJl/jejXDt+u1++WCrHhVcvia7ecqJ+/rxZUVtV2O7XBQAAAACGHsMvQCaWb+iMT127NFGrrczHxfPnRHVFPqNUAAAAAAAAbJVSb4y+5cKofeAnfZa6Zp4QrSd9KaKy9kW9xc/uXh3/WNmWqL3hgIlxwE71L+p1AQAAAIChx/ALkLqeYinOWbAo2ruLifpHTpgRM8a9uIsgAAAAAAAADLCejVF3zXuj+vEb+ix17P3v0X7UeRH5F3cyy+PrOuJrtz6ZqE0bWx1nHrnTi3pdAAAAAGBoMvwCpO5rty6PB1e3J2qn7jkh5u+1Q0aJAAAAAAAA2Bq5jWujfsEZUfn0P/qstR9xdnTs9/aIXO5FvUexVI5PXL0kuovlZ983Is6fNytqq17cUA0AAAAAMDQZfgFSddvSDfGju1YlatMba+IjJ8zIJhAAAAAAAABbJd+0NBouf2sUWpInspTzVdF64ueje5fT+uV9fvK3VXH/qrZE7Q0HTor9p9X3y+sDAAAAAEOP4RcgNWvbuuP8KxcnapWFXFw8f06MdpcuAAAAAACAQati1d+ifsE7I9+1IVEvVTdEy2nfiN4pB/XL+yxd1xFf/8vyRG16Y02ceeS0fnl9AAAAAGBoMvwCpKJULsfHr1wcTR29ifp7jpkeu08cnVEqAAAAAAAAXkjVoquj7rr3Ra7YnagX66ZFy+nfieK4Of3yPr2lclxw1eLoLpY31XIR8fF5s6Km0o3UAAAAAGAkM/wCpOIHd66MO5e1JGpHzR4br99/YkaJAAAAAAAAeCE1f/9ejL71U5GLcqLes8PcaJn/7SiP3qHf3uvHd62KB1e3J2r/duCk2G9qXb+9BwAAAAAwNBl+AQbcfSta4+u3Jo+n33FMZZw/b1bkcrmMUgEAAAAAAPC8yqUYfevFUXvf9/osde98bLSc/H8RVaP77e0Wr90Y37gteT1pemNNvOvInfrtPQAAAACAocvwCzCgWjp745wFi+I5p9NHPhdx0WlzYmxtZXbBAAAAAAAA2Lzezqi77gNRvfjqPkude74+2o69MCLff5eae0vl+MRVS6LnOReU8rmIC06ZFTWV+X57HwAAAABg6DL8AgyYcrkcn7xmSaxu7U7UzzhsahywU31GqQAAAAAAAHg+uY71UX/FO6Ny9T191toP/UB0HPiuiFyuX9/zR3etjIeeak/U3nTg5NhnSl2/vg8AAAAAMHQZfgEGzG/uezpufKwpUTtgWl287dCpGSUCAAAAAAAGi0KhkHUE/kV+wxMx5g9vicKGpYl6OV8ZG0/8bHTv/sro73+1RWva4xt/WZGozRxXG/999HTfI8+Rz+e3+BigP+k5QJr0HCAt+g2QJj1nYBh+AQbEY2s2xhdufCJRa6itiItOmxOFfP/eDQwAAAAAABh6Ghsbs47Acy2/O+JXr4vYuDZZr66P3Ot/HKNnHROj+/kte4qluPDHD0Zvqbypls9FfOEN+8fkHX1/bElDQ0PWEYARRM8B0qTnAGnRb4A06Tn9w/DLELd+/fq4/fbb4957740VK1bEhg0bYsyYMbHbbrvFy1/+8thll12yjsgI1NFdjLMvfyy6i+VE/YJ5s2LHuqqMUgEAAAAAALBZj1wZ8eu3RfR2JOv1UyPe9KuIiXsNyNt+4+bFcf+K5kTtjKNnxf7TDb4AAAAAAEmGX4a4q666Kv7whz/ExIkTY9999436+vpYtWpV3HXXXXHXXXfFe97znjj88MOzjskI87k/PRGPr+9M1N544KQ4arYLFQAAAAAAAIPKnd+KuOrDEeVSsj5x7jODL/VTBuRtH17VEl++4bFEbc6OY+J9J+w6IO8HAAAAAAxthl+GuDlz5sQFF1wQe+65Z6L+8MMPx4UXXhjf+ta34qCDDorKysqMEjLSXP3w2vjjA2sStd0njoqzjtopo0QAAAAAAMBg1NTUlHWEka1citq/fDZq7v56n6We6UdF26lfiyjWRgzAv1NPsRTv+/n90VMsb6rlcxHnnzwzOtpaomMLzx2p8vl8NDQ0bHrc3NwcpVJpC88A2H56DpAmPQdIi34DpEnPeUZjY/8enGD4ZYg75JBDNlvfY489Yu7cuXHffffFsmXLYvbs2SknYyR6sqkzPn3d0kRtVGU+Lp6/S1RV5DNKBQAAAAAADEbFYjHrCCNXsSvGXP+RqHns8j5Lnbu/KtqOuziiUBkxQP9G3719RTzyVHui9h8HTY49Jo7yfbGVSqWSrxWQGj0HSJOeA6RFvwHSpOf0jxE9/NLc3ByLFi2KRYsWxeLFi2Px4sXR2toaERHHHHNMnHnmmVv9WmvWrImrrroq7rnnnli3bl1UVFTEpEmT4rDDDouTTz45qqurB+qv8bwKhULiv2Eg9RRL8bEFi6K9OzmVePaJM2N6Y01GqQAAAAAAAHiuXGdz1F/5rqhc+dc+axsPOis2HvyeiFxuwN7/0afb41u3r0jUZo2vjf88fNqAvScAAAAAMPSN6OGXM844o19e529/+1tceuml0dHx7AHcXV1dmwZqbrjhhjj77LNj0qRJ/fJ+W2Pt2rVx//33R2NjY0yfPj2192Xk+sotT8bD/3KHrtP3mhCn7Dkho0QAAAAAAAA8V75lRdQveHtUrH8sUS/nCtF23EXRtefrBvT9e4uluODqJVEslTfVCrmIC06ZFVUV+QF9bwAAAABgaBvRwy/PNWHChJg6dWrcd9992/S8pUuXxpe+9KXo7u6OmpqaeMUrXhFz586N7u7u+Mtf/hI33HBDrFq1Kj796U/HJZdcErW1tQP0N3hWb29vXHrppdHT0xNvetObIp/3i2IG1q2Lm+Ind69O1HYeVxMfOn5GNoEAAAAAAABIKKx5MBouf3vkN65J1EuVo6N13qXRs/MxA57hu39dGY8+vTFR+4+Dp8Sek8YM+HsDAAAAAEPbiB5+ec1rXhOzZ8+O2bNnx9ixY+Ppp5+Od7/73dv0Gt///veju7s7CoVCnHvuubHrrrtuWps7d25Mnjw5fvzjH8eqVavi8ssvj9e9ru/dkn74wx9GT0/PVr/nqaeeGpMnT97sWqlUiq997Wvx8MMPx/HHHx9HH330Nv19YFs93dodF1y9JFGrKuTi4vlzYlRVIaNUAAAAAAAA/FPlEzdH3dVnRb6nPVEvjdohmk//ThR32GvAMyx8uj2+c8fKRG32hNo447CpA/7eAAAAAMDQN6KHXzY3iLItFi1aFA8//HBERBx33HGJwZd/mj9/ftx4442xYsWKuOqqq+JVr3pVVFQkv+zXXXdddHV1bfX7HnrooZsdfimVSnHZZZfFrbfeGkcddVScccYZ2/g3gm1TLJXjvCsXxYaO3kT9vcdOj912HJ1RKgAAAAAAAP6p+qFfxpgbz41cuZio9zbOiZbTvxul+oEfPukpluKCq5ZEsVTeVCvkIi6YNzuqKvID/v4AAAAAwNA3oodfXqw777xz05+PO+64ze7J5/NxzDHHxE9/+tNob2+PBx98MPbdd9/Enh/96EcvOss/T3y55ZZb4ogjjogzzzwz8nm/KGZgfe+vK+PuJ1sTtWPnNMZr95uYUSIAAAAAAAAiIqJcjlF3filG3fWVPks9Uw6JllMvi3JNQypRvnvHynhszcZE7S2HTIk9JrmZGgAAAACwdUxHvAgLFy6MiIjq6uqYNWvW8+7bc889+zynPz138OXwww+Ps846y+ALA+7e5S3xzduWJ2oT66rivJNnRS6XyygVAAAAAAAAUeyOMTd8eLODL527nB7NL/9eaoMvjzzVHt+9Y0WitssOo+Idhw38iTMAAAAAwPDh5JcXYfnyZz74P2nSpCgUCs+7b8qUKX2e019KpVJcdtllccstt8Shhx5q8IVUNHf0xrlXLI7nnEwfhVzEp+bPiYZabQUAAAAAACArue7WqLvqzKh68i991jYe8M7YeNgHI3LpXE/s7i3FBVctjuJzrynlc3H+vFlRWXBNEwAAAADYej6lvp26u7ujtbU1IiLGjx+/xb1jxoyJ6urq6OrqinXr1vVrjl//+tdx8803R01NTUyZMiV+85vf9Nlz8MEHx4wZM7b6Nbc245YGfhi+yuVyfPLapfFUa3ei/l9HTo8Dp4/NJtQQ8K9DaYbUgIGk5wBp0nOAtOg3QJr0HACGqnzb6qi//O1Rse6RRL2cy0f70RdE595vSjXPt+9YEYvWdiRqbztkSuw+cXSqOQAAAACAoc/wy3bq7Ozc9OeampoX3F9TUxNdXV2J5/WHNWvWbMrz29/+drN7dtxxx20afnnXu961Vft++ctfbvVrMnz84LbH46bH1idqh88eH+8/ZW4U8rmMUg09DQ0NWUcARhA9B0iTngOkRb8B0qTnADAUFNYujPoFb4tC2+pEvVxRG60nfzm6Zx6fap6HVrfFD/66MlHbdYdR8bZDp6SaAwAAAAAYHgy/bKfu7mdPvaioeOEv4z/3PPd5/eHMM8+MM888s19fE57Pgyub41NXPJyojR9dFV98/X4GXwAAAAAAADJS+eRfou6q/458d1uiXqodFy3zvxO9E/dJNU93bykuuGpJFMvP1gr5XJx/yqyoLDhRDQAAAADYdoZftlNVVdWmP/f29r7g/n/uee7zBqvLLrss6wgMQu1dvXHWT++N7mIpUf/86/aNifUvfPoRAAAAAAAA/a/6kd/FmD+dHblST6LeO3ZmtJz+3Sg1TE8907duXxFL1nUkam8/dErstuPo1LMAAAAAAMOD4ZftVFPz7If9Ozs7X3D/P/c893mD1fjx47dqX1NT0wAnYTD5+BWPxZK17Ynafxw8JfbbsdL3wlbI5/PR0NCw6XFzc3OUSqUtPANg++k5QJr0HCAt+g2QJj3nGY2NjVlHAGBLyuWovftrMfqOL/RZ6pl0QLSc9s0o16bfyx9c1RY/uHNlorbrjqPibYdMST0LAAAAADB8GH7ZTlVVVVFXVxetra2xbt26Le5ta2uLrq6uiNj6wZKhoFgsZh2BlFzx4Jq4/IE1idqek0bHu46Y6vtgO5VKJV87IDV6DpAmPQdIi34DpEnPAWDQKfXGmJs+HjUP/aLPUtfsedF64v9GVKR/U76u3lJ84uolUSo/W6vI5+ITp8yOikI+9TwAAAAAwPDhN4wvwrRp0yIiYvXq1Vu88Lly5bN3Nvrnc2CoeGJ9R1xy/eOJ2uiqQlw8f05UukgBAAAAAACQru72qL/inZsdfOnY963RevL/ZTL4EhHxzduWx5J1HYnaOw6bGrvsMCqTPAAAAADA8OGT6y/CbrvtFhERXV1dsWTJkufd99BDD/V5DgwF3b2l+NiCRdHRU0rUzzlpZkwbm81FEwAAAAAAgJEq174mxv7ujVH1xE2Jejly0XbkudF+1LkR+UIm2R5Y1RY/umtVorb7xFHxloMnZ5IHAAAAABheDL+8CAcffPCmP994442b3VMqleLmm2+OiIjRo0fHXnvtlUo26A+X3vJkLHx6Y6L28r13iJN2H59RIgAAAAAAgJGpsH5RjP31q6NizYOJerlQHa3zvhKd+701o2QRXb2luOCqxVEqP1uryOfignmzo6LgkjQAAAAA8OL5TeOLMGfOnNhjjz0i4pnhl0cffbTPngULFsSKFSsiIuKUU06JioqKVDPC9rp5UVP87J7VidrMcTXxweN2zigRAAAAAADAyFSx8q5o+M3rotC6IlEvVY+N5lf8KLrnzMso2TO+/pfl8fj6zkTtPw+fGnN2GJVRIgAAAABguBnRkxiPPPJIrF797If7W1paNv159erVcdNNNyX2H3vssX1e4y1veUucd9550d3dHRdddFG88pWvjL322iu6u7vjtttui+uvvz4iIiZPnhynn376gPw9slIoZHNkOgPvqZauuPDqJYlaVSEXn3nFbjGmtiqjVENbPp/f4mOA/qTnAGnSc4C06DdAmvQcAAaTqscWRN11H4pcqTtRL9ZPj+bTvxulxpkZJXvG/Stb4yd/W5Wo7TlxdPzHwVMySgQAAAAADEcjevjlhhtuiJtvvnmzawsXLoyFCxcmapsbfpk5c2a8973vjUsvvTQ6OjriZz/7WZ89kydPjrPPPjtqa2v7Jfdg0djYmHUEBkBvsRTv/MVfo7mzN1H/+Ol7xcG7Tsso1fDT0NCQdQRgBNFzgDTpOUBa9BsgTXoOAJkol6P23m/H6Nsu6bPUs+M+0TL/W1EeNSGDYM/q7CnFBVcviVL52VplIRfnnzIrKvK57IIBAAAAAMPOiB5+6S8veclL4vOf/3xceeWVcc8998T69eujoqIiJk2aFIceemjMmzcvqqurs44JW+XSPy2KOx9fn6idMndSvOmQ6RklAgAAAAAAGGFKxRj9509G7f0/6rPUNeP4aD35SxGVo9LP9S++/pcn44n1nYnaOw+fFrMnZJ8NAAAAABhecuVyufzC24CR4PbF6+JN374jcXeuqWNr48r/OSoaRlVmFwwAAAAAABh21q5dm3WEwamnI+qufW9UL72+z1LH3DdF+9HnR+QLGQRLum9Fa7zjZw/Fcy827zVpdHzn3/Zy6ssAKBQK0djYuOlxU1NTFIvFDBMBw5meA6RJzwHSot8AadJznjFhQv+eXO3kF7ZbU1NT1hHoR00be+J/fnZfYvClkIv41Pw5Uepqi6au7LINB/l8PhoaGjY9bm5ujlKplGEiYDjTc4A06TlAWvQbIE16zjOee1EGgHTkOtZF/YL/jMqn/t5nrf3wD0fH/v8Zkct+sKSzpxifuHpJYvClspCL8+fNMvgCAAAAAAwIwy9st5E4fTZclcvl+PgVj8Watu5E/V1H7hRzJ43ybz0ASqWSryuQGj0HSJOeA6RFvwHSpOcAkIb8hqXRcPnbotC8LFEv56ui9YTPRPeuL8soWV9fu3V5LGvqTNT+64hpMWvCqIwSAQAAAADDneEXIH52z+q4dcmGRO3gnevjPw6enE0gAAAAAACAEaRi9b1Rv+A/I9+5PlEvVddHy6lfj96ph2SUrK+/L2+Nn929OlGbO3l0vPklrisBAAAAAAPH8AuMcA+vbo//u/nJRG3cqIq48NTZkc85lh4AAAAAAGAgVS2+JuqufV/kil2JerFuSrTM/04Ux++aUbK+OnuK8YmrF0f5ObWqQi4umDc7CnnXlQAAAACAgWP4BUaw9u5ifGzBY9FbKifqF546OyaMrsooFQAAAAAAwMhQc98PYvSfPxm5SF6r6Z2wZ7TM/3aUxkzMKNnmffXPy+PJDckhnXcduVPMGF+bUSIAAAAAYKQw/AIjVLlcjkuuW9rnAsX/d/DkOHTG2GxCAQAAAAAAjATlUoz6yyUx6u/f6bPUPf2oaJ33lShXjckg2PO7d3lL/Pye1YnaPlPGxL8dOCmjRAAAAADASGL4BUaoKx5cG1c9vC5Rmzt5dLzriGkZJQIAAAAAABgBerui7voPRvWiK/ssde75umg75sKIQmUGwZ5fR3cxPnH1ksT5NNUVufj4vFlRyOcyywUAAAAAjByGX9huhUIh6whsp8fXdcQlNzyeqI2pLsQlL9stqqsG18WU4SKfz2/xMUB/0nOANOk5QFr0GyBNeg4AAyXXuSHqr3hnVK76W5+19kPeGx0veXdEbvANk3zlz0/G8g1didq7jtwpZoyrzSgRAAAAADDSGH5huzU2NmYdge3Q2VOMj/3wgejsKSXqn3n1vjF35uSMUo08DQ0NWUcARhA9B0iTngOkRb8B0qTnANBfxtzwkT6DL+V8RbQdd3F07fHqjFJt2d1PtsQv7n0qUdt36ph44wGTMkoEAAAAAIxEblcHI8ynr3w4Hl7Vkqj92yHT47R9DL4AAAAAAAAMpPajzo3SqAmbHpcqx0TL/O8M2sGXjd3FuPDqJYladUU+Pn7yrCjkB98JNQAAAADA8GX4BUaQax5cHT+4/YlEbbeJdfHx+XtmlAgAAAAAAGDkKNXvFC2nfSvKFbVRHD0xml/98+iZfmTWsZ7Xpbc8GSuauxK1M4+aFjuPq80oEQAAAAAwUlVkHYChq6mpKesIbINVLV3xoV/dl6jVVOTjU6fNjo62lujIKNdIkc/no6GhYdPj5ubmKJVKGSYChjM9B0iTngOkRb8B0qTnPKOxsTHrCADDUu/EfaLltG9EcezMKNVNyTrO8/rbsub41d+fStT2m1oXbzhgUkaJAAAAAICRzPAL261YLGYdga3UWyrH2X9cGC2dvYn6B1+6c8wYV+3fMgOlUsnXHUiNngOkSc8B0qLfAGnScwDobz07HZF1hC3a2F2MC69emqhVV+Tj/HmzIp/LZZQKAAAAABjJ8lkHAAbet25bHvetaEvUTtxtXLx87x0ySgQAAAAAAMBg9X83L4uVLV2J2llH7xQ7NdZklAgAAAAAGOkMv8Awd9ey5vjuHSsTtSn11XHOSTMj585cAAAAAAAAPMedTzTHr+97OlE7YFpdvG7/iRklAgAAAAAw/ALD2vr2njj3isVRfk6tkM/FxafPiTHVFZnlAgAAAAAAYPBp7y7GJ69ZkqjVVOTj4/NmRd5N1QAAAACADBl+gWGqVC7HBVcvjnXtPYn6mUdOi7mTx2SUCgAAAAAAgMHqyzcvi1Ut3YnaWUfvFNPG1mSUCAAAAADgGYZfYJj66d9Wx21LmxO1w2Y0xJsPmpxRIgAAAAAAAAarOx5vjt/e93SiduBOdfHa/SdmlAgAAAAA4FmGX2AYenBVW1z65ycTtfGjK+MTp8x2JD0AAAAAAAAJbV298clrliRqtZX5OO/kWa4tAQAAAACDguEXGGbaunrjYwsWRbFU3lTLRcSFp86OcaMrswsGAAAAAADAoPTlm5fFU63didr/HD09po2tySgRAAAAAEBSRdYBGLoKhULWEfgX5XI5Lr7u8VjR3JWov+2wqXH4rHEZpSIiIp/Pb/ExQH/Sc4A06TlAWvQbIE16DgAjyR2Pb4jf/WNNovaSnerj1fvtmFEiAAAAAIC+DL+w3RobG7OOwL/4xV3L4tpH1iVqB+7cGB+dv09UFlygH0waGhqyjgCMIHoOkCY9B0iLfgOkSc8BYLhq6+qNT16zNFEbVZmPj8+bFflcLqNUAAAAAAB9+TQ8DBOLnm6N8//4YKJWX1MRX37DfgZfAAAAAAAA6OOLNy2Lp1q7E7X/OWZ6TGmozigRAAAAAMDm+UQ8DAOdPcV490/vjc6eUqL+2dfsE9MaR2WUCgAAAAAAgMHqtqUb4g/3r0nUDp5eH6/ed8eMEgEAAAAAPL+KrAMwdDU1NWUdgf/n4msXxyOrWxO11+0/KQ6ZWuPfaZDI5/PR0NCw6XFzc3OUSqUtPANg++k5QJr0HCAt+g2QJj3nGY2NjVlHAGCAtHb2xkXXLEnURlXm47yTZ0Uul8soFQAAAADA8zP8wnYrFotZRyAibnh0ffzq3qcStV12GBXvOWYn/0aDWKlU8u8DpEbPAdKk5wBp0W+ANOk5AAw3X7hpWTzd1pOovffYnWNyQ3VGiQAAAAAAtszwCwxhK5u74pP/cleumop8XDx/TlRX5DNKBQAAAAAADBXr16+P22+/Pe69995YsWJFbNiwIcaMGRO77bZbvPzlL49ddtkl64j0s1uXbIjLH1iTqB2yc328cp8dMkoEAAAAAPDCDL/AENVbLMW5VyyKtq7kHSc/fPyMmDm+NqNUAAAAAADAUHLVVVfFH/7wh5g4cWLsu+++UV9fH6tWrYq77ror7rrrrnjPe94Thx9+eNYx6Sctnb3xqWuTN1YbXZWP806eFblcLqNUAAAAAAAvzPALDFHfuG1F/GNlW6I2b4/xcfrcCRklAgAAAAAAhpo5c+bEBRdcEHvuuWei/vDDD8eFF14Y3/rWt+Kggw6KysrKjBLSn75w4xOxpq0nUXvfsTvHpPrqjBIBAAAAAGydfNYBgG13x+PN8f2/rkzUpo2tjo+eMMNduQAAAAAAgK12yCGH9Bl8iYjYY489Yu7cudHe3h7Lli3LIBn97c+Lm2LBg2sTtcNmNMTL994ho0QAAAAAAFvPyS8wxKxr74nzr1wc5efUKvK5uHj+nBhT7UcaAAAAAADS0tzcHIsWLYpFixbF4sWLY/HixdHa2hoREcccc0yceeaZW/1aa9asiauuuiruueeeWLduXVRUVMSkSZPisMMOi5NPPjmqq9M/maNQKCT+m6GrpbM3PnXt0kRtdFUhzj15phurAQAAAABDgk/KwxBSKpfj/KsWx7qNyePozzp6p9hz0piMUgEAAAAAwMh0xhln9Mvr/O1vf4tLL700Ojo6NtW6uro2DdTccMMNcfbZZ8ekSZP65f22xtq1a+P++++PxsbGmD59emrvy8D4/J+eiLXtyetL7z9uekysS3+oCgAAAABgexh+gSHkR3etijseb07Ujpw1Nv7twPQudgEAAAAAAH1NmDAhpk6dGvfdd982PW/p0qXxpS99Kbq7u6OmpiZe8YpXxNy5c6O7uzv+8pe/xA033BCrVq2KT3/603HJJZdEbW3tAP0NntXb2xuXXnpp9PT0xJve9KbI5/MD/p4MnJsXNcWVD61N1A6f2RAvm7tDRokAAAAAALad4RcYIu5f2Rpfu3V5ojZhdGWcP2+W4+gBAAAAACADr3nNa2L27Nkxe/bsGDt2bDz99NPx7ne/e5te4/vf/350d3dHoVCIc889N3bddddNa3Pnzo3JkyfHj3/841i1alVcfvnl8brXva7Pa/zwhz+Mnp6ePvXnc+qpp8bkyZM3u1YqleJrX/taPPzww3H88cfH0UcfvU1/HwaX5o7euPi6pYnamOpCnHuS60sAAAAAwNBi+AWGgNbO3jhnweIolsqbarmIuOi02dE4qjK7YAAAAAAAMIJtbhBlWyxatCgefvjhiIg47rjjEoMv/zR//vy48cYbY8WKFXHVVVfFq171qqioSF7iu+6666Krq2ur3/fQQw/d7PBLqVSKyy67LG699dY46qij4owzztjGvxGDzef/9Hisa08ORn3guJ1jx7qqjBIBAAAAAGwfwy9st0KhkHWEEaFcLsfF1z0eK1uSF63ecfi0OGTmuIxSsa3y+fwWHwP0Jz0HSJOeA6RFvwHSpOcAabnzzjs3/fm4447b7J58Ph/HHHNM/PSnP4329vZ48MEHY999903s+dGPfvSis/zzxJdbbrkljjjiiDjzzDP1vyHupsfWx1UPr0vUjpw1NubvNSGjRAAAAAAA28/wC9utsbEx6wgjwk//uiyuW5i8MHHQjMb4yGl7R0XBRaehqqGhIesIwAii5wBp0nOAtOg3QJr0HGCgLFy4MCIiqqurY9asWc+7b88990w851+HX16s5w6+HH744XHWWWcZfBniNnT0xKevezxRq6suxDknzYxcLpdNKAAAAACAF8FvrWEQW7i6NT5x+YOJWkNtZXz5DfsbfAEAAAAAgCFu+fLlERExadKkKBQKz7tvypQpfZ7TX0qlUlx22WVxyy23xKGHHmrwZZj43A1PxLqNPYnaB166c+wwpiqjRAAAAAAAL46TX2CQ6uguxrt/ek909ZYS9c+9Zp+YMrY2o1QAAAAAAEB/6O7ujtbW1oiIGD9+/Bb3jhkzJqqrq6OrqyvWrVu3xb3b6te//nXcfPPNUVNTE1OmTInf/OY3ffYcfPDBMWPGjK1+za3NuKWBH7bfDQvXxTWPJP8Njp7TGC/be6JTX4awfx1KM6QGDCQ9B0iTngOkRb8B0qTnDAzDL2y3pqamrCMMa5+8enE89nRbovaGAyfFQVOqfe2HoHw+Hw0NDZseNzc3R6lU2sIzALafngOkSc8B0qLfAGnSc57R2NiYdQQY1jo7Ozf9uaam5gX319TURFdXV+J5/WHNmjWb8vz2t7/d7J4dd9xxm4Zf3vWud23Vvl/+8pdb/ZpsnfXt3XHJ9X9L1BpqK+PzrzsgxtW/8PcZQ8dz/78KwEDTc4A06TlAWvQbIE16Tv8w/MJ2KxaLWUcYtq59ZF389r6nErVddxwVZx21k6/7MFEqlfxbAqnRc4A06TlAWvQbIE16DjAQuru7N/25ouKFL9n9c89zn9cfzjzzzDjzzDP79TXJzsf/8ECsbUt+j1zwsj1jR4MvAAAAAMAQZ/gFBpkVGzrjU9cuTdRqK/Nx8fw5UV3hyCsAAAAAABgOqqqqNv25t7f3Bff/c89znzdYXXbZZVlHGJGuvH9VLPjHqkTtxD0nxiv2m5pRIgAAAACA/mP4BQaR3mIpPrZgUbR3J+8i+ZETZsSMcbUZpQIAAAAAAPpbTc2zJ3F0dna+4P5/7nnu8war8ePHb9W+pqamAU4ycqzf2BPn/O4fiVpDTUV8+LidYsOGDdmEol/l8/loaGjY9Li5uTlKpVKGiYDhTM8B0qTnAGnRb4A06TnPaGxs7NfXM/wCg8jXbl0eD65uT9RO3XNCzN9rh4wSAQAAAAAAA6Gqqirq6uqitbU11q1bt8W9bW1t0dXVFRFbP1gyFBSLxRfexFb59DWLo2lj8gShDx2/czTWFnydh6lSqeTfFkiNngOkSc8B0qLfAGnSc/pHPusAwDNuX7ohfnhX8ij66Y018ZETZmQTCAAAAAAAGFDTpk2LiIjVq1dv8cLnypUr+zwH/um6R9bF9Y+uT9SO26UxTt59+AxKAQAAAAAYfoFBYG1bd3z8ysWJWmUhFxfPnxOjqwoZpQIAAAAAAAbSbrvtFhERXV1dsWTJkufd99BDD/V5DkRErG/vic/c8Hii1lBbER89YWbkcrlsQgEAAAAADADDL5CxUrkcH79ycTR1JI+if88x02P3iaMzSgUAAAAAAAy0gw8+eNOfb7zxxs3uKZVKcfPNN0dExOjRo2OvvfZKJRuDX7lcjkuuXxob/uUa00eOnxHjR1dmlAoAAAAAYGAYfoGM/eDOlXHnspZE7ajZY+P1+0/MKBEAAAAAAJCGOXPmxB577BERzwy/PProo332LFiwIFasWBEREaecckpUVFSkmpHB69qF6+NPjzUlai/dpTFO3G1cRokAAAAAAAaO345Dhu5b0Rpfv3V5orbjmMo4f94sR9EDAAAAAMAg98gjj8Tq1as3PW5pefZmV6tXr46bbropsf/YY4/t8xpvectb4rzzzovu7u646KKL4pWvfGXstdde0d3dHbfddltcf/31ERExefLkOP300wfk75GVQqGQdYQha117d3zuhscTtbG1FXHOybMNSA1T+Xx+i48B+pOeA6RJzwHSot8AadJzBobffEJGWjp745wFi6JYfraWz0VcdNqcGFvrKHoAAAAAABjsbrjhhrj55ps3u7Zw4cJYuHBhora54ZeZM2fGe9/73rj00kujo6Mjfvazn/XZM3ny5Dj77LOjtra2X3IPFo2NjVlHGJLK5XJ8dMHdsaGjN1H/1Cv3idnTJmaUirQ1NDRkHQEYQfQcIE16DpAW/QZIk57TPwy/QAbK5XJ88polsbq1O1E/47CpccBO9RmlAgAAAAAAsvCSl7wkPv/5z8eVV14Z99xzT6xfvz4qKipi0qRJceihh8a8efOiuro665gMEn+8b2Vc8+BTidppe0+O0/aZnFEiAAAAAICBlyuXy+UX3gZ9rV27NusIQ9av//5UXHL944naAdPq4rLX7RGFfC6bUAyoQqGQuINdU1NTFIvFDBMBw5meA6RJzwHSot8AadJznjFhwoSsIwDwL55u7YyTvnhLbNjYs6k2fnRVXPu+o2P8GANSAAAAAMDw5eQXSNljazbGF258IlFrqK2Ii06bY/AFAAAAAAAYMZqamrKOMKSUy+X48O8WJgZfIiI+euLMyPdsjKamjRklIw35fD4aGho2PW5ubo5SqZRhImA403OANOk5QFr0GyBNes4znnuzuf5g+IXtVigUso4w5HR0F+Njly+K7mLywKULT50Tk8fWZpSKNOTz+S0+BuhPeg6QJj0HSIt+A6RJzwFIx0g8VevFuPKhtXHTY+sTtRN3GxfHzRnrazkClUol/+5AavQcIE16DpAW/QZIk57TPwy/sN36exJrJPj0r++Lpes7ErW3HTEzXn7Q7IwSkZXnTnMCDDQ9B0iTngOkRb8B0qTnAJC1tW3d8fk/PZ6ojRtVER85fkYmeQAAAAAA0uZ2dZCSP/x9Rfzyb8sTtblT6+Mjp+yWUSIAAAAAAAAGu3K5HJ+6bmm0dCbvDHn2iTNj7KjKjFIBAAAAAKTL8Auk4PG17XHO7x5I1EZXFeLSNx4Q1RWFjFIBAAAAAAAw2F3x0Nr48+INidrJu4+P43YZl00gAAAAAIAMVGQdgKGrqakp6whDQk+xFO/68f3R1tWbqH/spFkxttAdTU3dGSUjTfl8PhoaGjY9bm5ujlKplGEiYDjTc4A06TlAWvQbIE16zjMaGxuzjgAw4q1p647//dMTidr4UZXxoeN3zigRAAAAAEA2DL+w3YrF4gtvIr584xPx8Or2RO30vSbEybuP8zUcwUqlkn9/IDV6DpAmPQdIi34DpEnPASAL5XI5PnXt0mjtSv5v0NknzYixtZUZpQIAAAAAyIbhFxhAty7ZED+5e3WitvO4mvjQ8TOyCQQAAAAAADBIFAqFrCMMan+8/+m4dcmGRO3UPSfE8bvtkE0gMpXP57f4GKA/6TlAmvQcIC36DZAmPWdgGH6BAbKmrTsuuGpxolZVyMXF8+fEqCoXcwAAAAAAgJGtsbEx6wiD1urmzvj8nx5P1Haoq46LX7N/jB1VlU0oBpWGhoasIwAjiJ4DpEnPAdKi3wBp0nP6hxEiGADFUjnOu2JxbOjoTdTfe+z02G3H0RmlAgAAAAAAYLArl8vx0d/+I1o7k9eZLn7l3gZfAAAAAIARy/ALDIDv/XVl/O3JlkTt2DmN8dr9JmaUCAAAAAAAgKHgV39bHjctXJOovWr/qXHinq4zAQAAAAAjV0XWAWC4uXd5S3zztuWJ2sS6qjjv5FmRy+UySgUAAAAAADC4NDU1ZR1h0Fnd0hUXXv5gojZhTGW85+ipvl4jXD6fj4aGhk2Pm5ubo1QqZZgIGM70HCBNeg6QFv0GSJOe84zGxsZ+fT3DL9CPmjt649wrFkep/GytkIv41Pw50VDrxw0AAAAAAOCfisVi1hEGlXK5HBdetSjaupNfl3NPnBmjK3O+XiSUSiXfE0Bq9BwgTXoOkBb9BkiTntM/8lkHgOGiXC7HhdcsiadauxP1/zxiWuw3tS6jVAAAAAAAAAwFf7h/Tdz+eHOiNn+vCXHk7P69OyIAAAAAwFBk+AX6yS/vfSpuXpQ8bv6g6fXxloOnZJQIAAAAAACAoWB1S1d88aYnErUdxlTGB47bOaNEAAAAAACDi+EX6AcLn26PL928LFFrrK2IC0+dHYV8LqNUAAAAAAAADHblcjk+ec2SaO8uJernnjQr6moqMkoFAAAAADC4GH6BF2ljdzHOvnxR9BTLifoFp8yOHcZUZZQKAAAAAACAoeB3/1gTf32iJVE7fe4OccSssdkEAgAAAAAYhAy/wIv02Rsej2VNnYnav79ksgsSAAAAAAAAbNGq5q740k1PJGoT66ri/cdOzygRAAAAAMDgZPgFXoQrHlwTCx5cm6jtOWl0/PdR0zJKBAAAAAAAwFBQLpfjk9csiY09pUT93JNmRl1NRUapAAAAAAAGJ8MvsJ2eWN8Rl1z/eKI2uqoQF8+fE5UFP1oAAAAAAAA8v9/c93TcuawlUXv53jvEYTPHZhMIAAAAAGAQc8sg2A7dvaX42IJF0fEvd+L62EkzY9rYmoxSAQAAAAAADB2FQiHrCJlZsaEzvnzzskRtUl1VfOD4mSP668Lzy+fzW3wM0J/0HCBNeg6QFv0GSJOeMzAMv8B2uPSWJ2Ph0xsTtZfvvUOcvPv4jBIBAAAAAAAMLY2NjVlHyESpVI7//tVf+9xk7bOv3S+mT9oho1QMNQ0NDVlHAEYQPQdIk54DpEW/AdKk5/QPwy9st5F616mbHlsfP7tndaI2c3xtfOSEWSP2a8ILM8EJpEnPAdKk5wBp0W+ANOk5AAykn/z1ibh9ybpE7Y0H7xRH72rwBQAAAADg+eTK5XI56xAwVKxq7ohTvvzn2LCxZ1OtqiIff3z3EbH7pPoMkwEAAAAAADDYLVu3MeZ9+ZbY2F3cVJs6tjaufu9RUVdTmWEyAAAAAIDBzckvsA2+ftPixOBLRMTH5+9p8AUAAAAAAGAbNTU1ZR0hdRddvjAx+BIRce7JM6O3oy2aOjIKxZCQz+ejoaFh0+Pm5uYolUoZJgKGMz0HSJOeA6RFvwHSpOc8o7GxsV9fz/ALbINzTtszaioL8Y1blkRExClzJ8WbDpmecSoAAAAAAIChp1gsvvCmYeajJ8yIqkIuFjy4NiIiXrXvjnHQTnUj8mvBi1MqlXzfAKnRc4A06TlAWvQbIE16Tv8w/MJ2G4l344qI+K/DJsXeE6vjslufjI8ePz02bNiQdSSGABOcQJr0HCBNeg6QFv0GSJOe84z+vhsXABH1NRVxwSmz4/hdx8X3/roy3nOMm6wBAAAAAGwNwy9st5E8fXbozvVxyPQ9I5fLjeivA9vPBCeQJj0HSJOeA6RFvwHSpOcA0N+Omt0YR84aG7lcLusoAAAAAABDQj7rADBUuRgBAAAAAADA9nKtCQAAAABg6xl+AQAAAAAAAAAAAAAAYNAy/AIAAAAAAAAAAAAAAMCgZfgFAAAAAAAAAAAAAACAQcvwCwAAAAAAAAAAAAAAAIOW4RcAAAAAAAAAAAAAAAAGrYqsAwAAAAAAAAAjT6FQyDoCDBn5fH6LjwH6k54DpEnPAdKi3wBp0nMGhuEXAAAAAAAAIHWNjY1ZR4Ahq6GhIesIwAii5wBp0nOAtOg3QJr0nP5hhAgAAAAAAAAAAAAAAIBBy/ALAAAAAAAAAAAAAAAAg1ZF1gEAAAAAAACAkaepqSnrCDBk5PP5aGho2PS4ubk5SqVShomA4UzPAdKk5wBp0W+ANOk5z2hsbOzX1zP8AgAAAAAAAKSuWCxmHQGGrFKp5GcISI2eA6RJzwHSot8AadJz+kc+6wAAAAAAAAAAAAAAAADwfAy/AAAAAAAAAAAAAAAAMGgZfgEAAAAAAAAAAAAAAGDQMvwCAAAAAAAAAAAAAADAoGX4BQAAAAAAAAAAAAAAgEHL8AsAAAAAAAAAAAAAAACDluEXAAAAAAAAAAAAAAAABi3DLwAAAAAAAAAAAAAAAAxahl8AAAAAAAAAAAAAAAAYtAy/AAAAAAAAAAAAAAAAMGhVZB2AoatQKGQdAYaMfD6/xccA/UnPAdKk5wBp0W+ANOk5AAAAAAAAMLgYfmG7NTY2Zh0BhqyGhoasIwAjiJ4DpEnPAdKi3wBp0nMAAAAAAAAgW4ZfAAAAAAAAgNQVCoWsI8CQ4WQ6IE16DpAmPQdIi34DpEnPGRi5crlczjoEAAAAAAAAAAAAAAAAbI6TX9huTU1NWUeAISOfz0dDQ8Omx83NzVEqlTJMBAxneg6QJj0HSIt+A6RJz3lGY2Nj1hEAAAAAAAAgIgy/8CIUi8WsI8CQVSqV/AwBqdFzgDTpOUBa9BsgTXoOAAAAAAAAZMvwCwAAAAAAAJC6pqamrCPAkOFkOiBNeg6QJj0HSIt+A6RJz3lGY2Njv76e4RcAAAAAAAAgdU7Vgu3nZDogTXoOkCY9B0iLfgOkSc/pH4Zf2G4TJkzIOgIMGevWrYvXve51ERFx2WWXxfjx4zNOBAxneg6QJj0HSIt+A6RJzwFIh2tNsPX8/xMgTXoOkCY9B0iLfgOkSc8ZGPmsAwAAAAAAAAAAAAAAAMDzMfwCAAAAAAAAAAAAAADAoGX4BQAAAAAAAAAAAAAAgEHL8AsAAAAAAAAAAAAAAACDluEXAAAAAAAAAAAAAAAABi3DLwAAAAAAAAAAAAAAAAxahl8AAAAAAAAAAAAAAAAYtAy/AAAAAAAAAAAAAAAAMGgZfgEAAAAAAAAAAAAAAGDQypXL5XLWIQAAAAAAAAAAAAAAAGBznPwCAAAAAAAAAAAAAADAoGX4BQAAAAAAAAAAAAAAgEHL8AsAAAAAAAAAAAAAAACDluEXAAAAAAAAAAAAAAAABi3DLwAAAAAAAAAAAAAAAAxahl8AAAAAAAAAAAAAAAAYtAy/AAAAAAAAAAAAAAAAMGgZfgEAAAAAAAAAAAAAAGDQMvwCAAAAAAAAAAAAAADAoGX4BQAAAAAAAAAAAAAAgEGrIusAAGlqbm6ORYsWxaJFi2Lx4sWxePHiaG1tjYiIY445Js4888xter177703rr/++li8eHG0tLREfX19zJ49O0444YTYf//9t+o1isVi3HDDDXHrrbfGihUrorOzM8aNGxd77713nPL/t3fnQVaW6d2Afw0NgiD75jIMAkFUcIIo7oKgEwQXZkIsZ5w4atTRaJwlmhgrU5rCCVE0pSm30ZlopdQwuEZc46i4oLiPI6KiPSoKNIiArdKADf39QfX5uu2FbmyaI7muqq56z3me9z5PU3Xu85y+ud/36KPzrW99q1lxKioq8tBDD+XFF1/Mxx9/nCTp27dv9t9//0yaNCk77bRTi3434OsrKyvLq6++mrfeeisfffRRKioq0r59+/Tq1St77LFHxo8fn+HDhzc7npwDNGTNmjV59dVXC3ublStXpqKiIuvXr0+XLl2y2267ZdSoURk/fnyz3ptvv/12Hnnkkbz11lv59NNPs+OOO2bQoEEZO3ZsDj300Gav65lnnsmcOXPywQcfZM2aNenevXuGDx+eiRMnZtiwYc2KsW7dujz88MOZN29eysvLU1VVld69e2fffffN0Ucfnb59+zZ7PcDWd+utt+a+++4rPL744ouz9957N3mO/Q2wOSeccEKz5u2111655JJLmpwj5wAArUGtCWhLak1AW1BrAoqFWhOwNag1bV9Kqqurq7f1IgDaSlMfYi0pSGzcuDE33nhjHn/88UbnjB8/PmeeeWbatWv8JlsVFRWZPn16ysrKGhzv0KFDTjvttEyYMKHJ9bzzzjuZMWNGVq9e3eB4z549c8EFF2To0KFNxgFaz8UXX5w333xzs/MOP/zwnHXWWSktbbwnWc4BmvLHP/4xl1566Wbn7bTTTvm7v/u7/Pmf/3mjc2bNmpW77rorjX1N3HffffOLX/wiHTt2bDTG+vXrc+WVV+bVV19tcLykpCRTp07NX/3VXzW53vLy8kyfPj1Lly5tcLxz584577zzMnr06CbjAG3j/fffzz/90z9lw4YNheeaKkjY3wDN1RoFCTkHAGhNak32KNBW1JrkHGgrak1qTVAM1JqArUWtafvizi/A/1l9+vTJrrvumtdee63F586cObPwIbb77rvnuOOOS//+/bNs2bLcd999ee+99/L444+nW7du+eEPf9hgjI0bN+aKK64ofIiNGTMmRx55ZLp27Zp33nknd999dz799NPceOON6dWrV6NdoStWrMhll11WuMrP5MmTC1/MX3755TzwwANZtWpVLrvssvzbv/1bevfu3eLfF2i5lStXJtm0kTzooIMyfPjw9OnTJxs3bszChQtz//33Z+XKlXnqqaeyYcOG/PSnP200lpwDbE7v3r2z9957Z/DgwenTp0969OiR6urqfPLJJ5k3b15eeOGFfPbZZ7n88svzr//6rxk0aFC9GI8++mjuvPPOJEn//v3zve99LwMHDsyqVavy4IMP5o033sgrr7yS66+/vsmcdd111xWKEXvvvXcmTZqUnj17ZtGiRbnnnnuybNmy3HHHHenZs2eOPPLIBmNUVlbWKUZMmDAhhxxySDp27Jj58+fn3nvvTWVlZa666qpMmzatwd8HaDsbN27Mr3/962zYsCHdu3fPp59+utlz7G+Alvrud7+b7373u42Od+rUqdExOQcA2FrUmoCtSa1JzoG2pNZU//cB2o5aE9AW1Jq2D5pfgP9Tpk6dmiFDhmTIkCHp0aNHli9fnnPPPbdFMZYsWZLZs2cnSYYMGZJ/+Zd/KVyRYujQodlvv/1yySWXpKysLLNnz8748eMzYMCAenHmzJmTt956K8mmD9XTTz+9MDZ06NCMGjUq//iP/5jKysrcfPPN2WeffdK+fft6cWbOnJmKiookyXnnnZeDDjqoMLbnnntm8ODBueqqq/Lpp59m5syZzb7iGPD17LrrrvnBD36QAw88sF4397Bhw3L44Yfnl7/8ZZYuXZq5c+fmqKOOyl577VUvjpwDbM6IESNy/fXXNzp+8MEH54UXXsgVV1yRqqqq3HnnnTn//PPrzPn8889z2223Jdn0nzZ+9atfpVu3boXx0aNHZ8aMGXn55Zczd+7cHHnkkQ1eYWf+/Pl59tlnC+dccMEFhRxYk7MuvPDCrFixIrfddlsOPPDAdO3atV6c++67r1CM+NGPfpTjjjuuMDZs2LDsvffeueSSS7Ju3brccsstm73tLLB1PfTQQykrK8uuu+6a/fffP/fee2+T8+1vgC3RrVu3DBw4sMXnyTkAQGtTa7JHgbai1iTnQFtRa1Jrgm1NrQloC2pN24fG76sDsB064YQTMnr06PTo0WOLYzz44IOF2yueeuqp9W7FusMOO+TUU09NkmzYsCH3339/g3FqPgy7du2av/7rv643PmDAgHzve99LsulWrC+88EK9OatXr87TTz+dJPnOd75T50OsxsEHH5zvfOc7SZKnnnqq0ducAa3rwgsvzMEHH9zobQy7deuWk08+ufB43rx5Dc6Tc4DNaep2qTXGjBmTXXbZJUny5ptv1ht/7LHHsmbNmiTJSSedVKcYUfMap59+euG17rvvvgZfpybXtG/fvs78Gt26dctJJ52UJPniiy8avB1sVVVVHnrooSSbirvHHHNMvTl77LFHjjjiiCTJggUL8u677zbymwNb24oVK/K73/0uSXLGGWektHTz11mxvwHakpwDALQ2tSZ7FGgrak1yDrQVtSa1JtiW1JqAYifnFBfNLwAtUF1dnRdffDHJpi/Iw4YNa3DesGHDCl/6X3rppVRXV9cZX7JkSRYvXpwkOeigg7LDDjs0GGfcuHGF44Y+yGrHrvlS3lSc6urqvPTSS43OA9pW7SvZLFu2rN64nAO0ps6dOydJvvzyy3pjNbmmc+fOOeCAAxo8v3fv3hk5cmSSTVfdqqysrDNeWVmZ119/PUkycuTIRm+besABBxTW0lCueeONNwrFkbFjxzZacNlczgLaxm9+85usXbs2Y8eObfDKol9lfwO0JTkHAChG9ihAa1JrAtqSWhOwNag1AcVMzik+ml8AWmD58uVZtWpVkk23B2tKzWZ85cqV+fjjj+uM1dy6rPa8hvTo0SM777xzkuTtt9+uN97cOLXHap8DbFtVVVWF44b+4CbnAK1lyZIlef/995Ns+jJeW1VVVeFqVsOGDWvySjo17+8vv/wyZWVldcbKysoKea2pHFFaWlr4Y0Dtc2o0N9cMGTKk8MeAhnIWsPU9++yzeeWVVxq9Mk1D7G+AtiTnAADFyB4FaE1qTUBbUWsCtga1JqDYyTnFR/MLQAt89NFHheOvfpn/qpouzq+e19I4NeOffPJJ1q5d22CcHXfcMT169Gg0Rs+ePQtXvajpHgW2vQULFhSOG8oFcg7wdaxbty5Lly7N/fffn4svvrhwC9ZJkybVmbdkyZJs3LgxSfNzRFL//V0719TOSQ2pGd+wYUPKy8sbjdPUetq3b58BAwY0uBZg6/viiy9yyy23JElOOumkdOvWrVnn2d8AW2revHn5+c9/nh/96Ec5+eSTc9555+Waa67J/PnzGz1HzgEAipE9CtCa1JqArUmtCdia1JqAtqbWtH1ovM0agHo++eSTwnFjt1et0adPnwbPSzZ1dtbo1atXk3FqXqe6ujorV66s8wFZE3dza6lZz4cfflhvLcC2sXHjxtx7772FxwcffHC9OXIO0FJz5szJdddd1+j4lClTcuihh9Z5bktyRFI/17QkZ9UeX7FiRXbbbbd669lhhx3SpUuXzcb54IMPUlFRkS+//DIdOnRocj7Qem699dasXr06e+yxR8aPH9/s8+xvgC311SJBeXl5ysvL89RTT2X//ffPOeeckx133LHOHDkHAChG9ihAa1FrArYGtSa1Jmgrak1AW1Nr2j5ofgFogdpdlJ06dWpybs2tUb96XpJUVla2Spyax5uLUTvOV2MA28YDDzxQuPXzmDFjMnjw4Hpz5BygtQwaNChnnnlmhg4dWm+stXJES+LUHm8sTktyTU0cBQloG2+++WYef/zxtG/fPmeccUZKSkqafa79DdBSO+ywQ0aPHp2RI0dm1113TadOnVJRUZEFCxbk0UcfzWeffZYXX3wxl19+ef75n/85paX//0/ecg4AUIzsUYDWotYEtCW1JqA1qTXZ30BbUmvavnKO5heAFli/fn3huPYHXENqfyGufV6SfPnll60Sp+bx5mLUjvPVGEDbW7BgQW6//fYkSffu3XPGGWc0OE/OAVpq//33zxVXXJFk0/tv2bJlee655/LCCy/k6quvzimnnJLRo0fXOae1ckRL4tQebyxOS3JNQ3GAraOqqio33nhjqqurM3ny5AwcOLBF59vfAC11ww03NHiFzn322ScTJ07M9OnT895772XBggX53//930yaNKkwR84BAIqRPQrQGtSagK1FrQnY2tSa5Btoa2pN21fOabetFwDwTdKxY8fCcVVVVZNza39Y1T4vqfvh9HXi1DzeXIzacb4aA2hbH374YWbMmJENGzakQ4cO+fnPf57u3bs3OFfOAVqqS5cuGThwYAYOHJihQ4fmkEMOyfnnn59zzz03y5cvz+WXX545c+bUOae1ckRL4tQebyxOS3JNQ3GArePuu+/O4sWL06dPn0ydOrXF59vfAC3VUDGiRo8ePfKLX/wi7du3T5I8/PDDdcblHACgGNmjAF+XWhOwNak1AVubWpN8A21NrWn7yjmaXwBaoKnbpn7VunXrGjwvSTp37twqcWoeN+e2ZDVxmnO7M2DrWL58eS699NJ88cUXadeuXX72s59lr732anS+nAO0lsMPPzwHHnhgqqur89vf/jaff/55Yay1ckRL4jR1W9iaOC3JNQ3FAVrf4sWLc++99yZJTjvttC1639nfAK2tf//+2WeffZIk5eXlWblyZWFMzgEAipE9CvB1qDUB24paE9Aa1Jrsb6AYqTV9s2h+AWiB3r17F44/+eSTJueuWLGiwfOSpFevXoXj2h+UDal5nZKSkjrn1Y67ubXUXs9X1wK0jZUrV2batGlZtWpVSkpKcvbZZ2f//fdv8hw5B2hNNTln3bp1+cMf/lB4fktyRFL//d2SnFV7vE+fPnXGatazbt26fPHFF82K061btzpXyQC2jgceeCBVVVXp379/1q1bl7lz59b7+fDDDwvz58+fX3i+5o9v9jfA1rDbbrsVjmvnBDkHAChG9ijAllJrArY1tSbg61Jrsr+BYqXW9M1Ruq0XAPBNUvsDbvHixU3OXbJkSYPnNRRn0KBBjcapeZ3evXvX68Dcbbfd8qc//Slr1qzJ6tWr06NHjwZjrFq1KpWVlUmSXXfdtcl1A62voqIil156aZYtW5YkOfXUUzN27NjNnifnAK2pW7duheOPP/64cLzLLrukXbt22bhx42ZzTe3xr76/a+ea2jmpITXj7du3z4ABA+rFef755wuvN2zYsAZjbNiwIeXl5Q2uBdg6am6LvGzZslx99dWbnX/XXXcVjq+55pp06tTJ/gbYKkpKShp8Xs4BAIqRPQqwJdSagGKg1gR8XWpN9jdQrNSavjnc+QWgBfr165eePXsmSd58880m59aM9+rVK3379q0zNnz48MLxggULGo2xevXqLF26NEmyxx571BtvbpzaY7XPAba+NWvW5Fe/+lU++uijJMkPf/jDTJw4sVnnyjlAa2rstqylpaUZOnRokmThwoWpqqpqNEbN+7tDhw4ZMmRInbEhQ4aktLS0zryGVFVVZeHChfXOqdHcXFNWVla4RWtDOQsoTvY3wNZQ830rqXvlLDkHAChG9ihAS6k1yTlQLNSagGJgfwNsDWpN3xyaXwBaoKSkpHAb18WLFxe+TH/VwoULC92X++23X72u0F122aXQTfncc88Vvkx/1Zw5cwrHY8aMqTdeO/YTTzzR6Lpr4pSUlGS//fZrdB7QutatW5fp06fnvffeS5J8//vfz5QpU5p9vpwDtKbnnnuucDxw4MA6YzW5prKysnAlrK/65JNP8vrrrydJRowYkc6dO9cZ79y5c0aOHJkkef311xu9xerzzz9fuLpEQ7lm7733zo477pgkefLJJ1NdXd1gnM3lLKD1nXPOOZk1a1aTP1OnTi3Mv/jiiwvP9+vXL4n9DdD6li9fnj/+8Y9Jkv79+9cpSMg5AEAxskcBWkKtSc6BYqLWBHxdak32N1CM1Jq+WTS/ALTQpEmT0q7dpvR58803Z/369XXG169fn5tvvjnJpturTp48ucE4xx57bJLk888/z6233lpvvLy8PPfcc0+SZMCAAQ1+kPXo0SOHHXZYkuS1117LvHnz6s157rnn8tprryVJDj/88EZvcwa0rqqqqlxxxRV5++23k2zKHSeeeGKL48g5wObMmTOnXm74qvvvvz+vvvpqkk1Xpdhzzz3rjE+YMKFQBLj99tvz2Wef1RnfuHFjfvOb32Tjxo1JkuOOO67B16nJNRs2bMhvf/vbwvwaFRUVue2225IkXbp0yfjx4+vFKC0tzdFHH51k0x8OZs+eXW/OwoULC1/i99prr8LVxIBvBvsboLleeumlbNiwodHx1atX58orryxcTfQv/uIv6s2RcwCAYmSPAjSHWpOcA21FrUmtCb5p7G+A5lJr2v5yTunmpwBsP956662Ul5cXHldUVBSOy8vL63RNJsm4cePqxdhll11y3HHH5d57701ZWVl++ctf5vjjj0///v2zbNmy/M///E/hyjvHHntsdt555wbXMm7cuDzxxBN5++2388gjj2T16tWZMGFCunbtmnfffTd33XVXKisrU1JSklNPPTXt27dvMM6JJ56YP/zhD6moqMjVV1+dsrKyjB49Okny8ssv5/7770+SdOvWbYv+GApsmauuuqqwiRwxYkTGjx+fRYsWNTq/tLQ0u+yyS73n5Rxgc+64447813/9Vw444IAMHz48/fv3T6dOnbJ27dosWrQoTz/9dKE4WlpamjPPPLPwpbxG165dc9JJJ+Wmm27Kxx9/nIsuuijf//73M3DgwKxatSoPPPBA3njjjSTJIYcckr333rvBtYwYMSIHH3xwnn322bz00kuZNm1aJk+enJ49e2bRokW5++67s2LFiiTJSSedlK5duzYY57jjjsuzzz6bpUuX5tZbb015eXkOPvjgdOzYMW+88UbuueeebNiwIR07dswpp5zSSv+SQFuxvwGa6+abb85NN92UAw44IMOGDUu/fv3SsWPHVFRUZMGCBXn00UcL/5Fi+PDhDRYk5BwAoLWpNdmjQFtRa5JzoK2oNZ3SSv+SQFuxvwGaS61p+8s5JdWN3dcPYDt07bXX5sknn2z2/FmzZjX4/MaNG/PrX/+6yduGjR8/vsEv/LVVVFRk+vTpKSsra3C8Q4cOOe200zJhwoQm1/nOO+9kxowZWb16dYPjPXr0yAUXXJA/+7M/azIO0HpOOOGEFs3v27dvrr322gbH5BygKeecc04+/vjjzc7r3bt3zj777Oyzzz6Nzpk1a1buuuuuRm//PmrUqPz93/99Onbs2GiM9evX58orryxc/eurSkpK8pd/+ZebzZPl5eWZPn16li5d2uB4586dc9555xW+wAPFYdasWbnzzjuTbLoVfWMFTPsboDmau8854IADctZZZ6VLly4Njss5AEBrUmuyR4G2otYk50BbUWtSa4JiotYEtCa1pu0v52h+Af5Paa2CRI1XXnklv//971NWVpbPPvssO+20U4YMGZKjjjoqo0aNatZrbNiwIY899lieeeaZLF68OGvXrk2vXr0yYsSITJo0Kd/61reaFaeioiIPPvhgXnzxxcKHdb9+/bLffvtl8uTJ2WmnnZoVB2gdrVmQqCHnAA1ZsmRJXnnllbz11ltZtmxZVq9enc8//zwdO3ZMt27dMmjQoIwePToHHXRQdthhh83Gq7nCxJtvvplPP/00Xbp0ybe//e2MGzcuhx56aLPX9cwzz2TOnDn54IMP8sUXX6R79+7Zc889M3HixAwbNqxZMdauXZtHHnkk8+bNS3l5eaqqqtK7d++MGjUqkyZNSt++fZu9HqBtNLcgUcP+BmjKggULsmDBgixcuDDLli3LZ599lsrKynTq1Cm9e/fOsGHDMm7cuGbvLeQcAKA1qDUBbUWtSc6BtqLWBBQTtSagNak1bX80vwAAAAAAAAAAAAAAAFC0Gr+vDgAAAAAAAAAAAAAAAGxjml8AAAAAAAAAAAAAAAAoWppfAAAAAAAAAAAAAAAAKFqaXwAAAAAAAAAAAAAAAChaml8AAAAAAAAAAAAAAAAoWppfAAAAAAAAAAAAAAAAKFqaXwAAAAAAAAAAAAAAAChaml8AAAAAAAAAAAAAAAAoWppfAAAAAAAAAAAAAAAAKFqaXwAAAAAAAAAAAAAAAChaml8AAAAAAAAAAAAAAAAoWppfAAAAAAAAAAAAAAAAKFqaXwAAAAAAAAAAAAAAAChaml8AAAAAAAAAAAAAAAAoWppfAAAAAAAAAAAAAAAAKFqaXwAAAAAAAAAAAAAAAChaml8AAID/0wYNGpSSkpKccsop23opAAAAAAAAfMOoNQEAQNvQ/AIAAAAAAAAAAAAAAEDR0vwCAAAAAAAAAAAAAABA0Sqprq6u3taLAAAAAAAAAAAAAAAAgIa48wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAsN1YsmRJLrzwwuy7777p3r17OnTokP79+2fkyJH5wQ9+kFtuuSUVFRV1zhk0aFBKSkpyyimn1Hn+/fffT0lJSbN/xo0b1+i6nnjiifz4xz/O4MGDs+OOO6Zbt24ZOXJkLrjggixZsmQr/EsAAAAAAADQUmpNAABQvEq39QIAAABaw9NPP51jjjmmXsFh+fLlWb58eebPn5+ZM2emT58+OeaYY9pkTWvXrs2pp56amTNn1hubP39+5s+fn+uvvz7//d//nWOPPbZN1gQAAAAAAEB9ak0AAFDcNL8AAADfeOvWrcuJJ56YioqK7LTTTjn77LNzxBFHpF+/flm/fn3ee++9PPvss7nnnnuaHXPXXXfN66+/3uScWbNmZdq0aUmSb3/723XGqqurM3Xq1DzwwANJkmOPPTYnnHBCBg8enHbt2uWFF17IlVdemUWLFmXq1KmZO3du9ttvvxb+5gAAAAAAAHxdak0AAFD8Sqqrq6u39SIAAAC+jscffzwTJkxIksyePbvRq21VVVVlzZo16datW+G5QYMG5YMPPsiPf/zj3HLLLc1+zZdeeimHH354Kisrs+eee2bevHl14t50000588wz06FDh9x3332ZOHFivRirVq3KYYcdljfeeCOHHHJInnnmmWa/PgAAAAAAAK1DrQkAAIpfu229AAAAgK+rvLy8cHz44Yc3Oq+0tLRO0WBLLVmyJMcff3wqKyvTq1evzJ49u07c6urqXHbZZUmS8847r8FiRJL07NkzM2bMSJLMnTs377zzztdeGwAAAAAAAC2j1gQAAMVP8wsAAPCNt/POOxeOb7755q36WpWVlZkyZUqWLFmS0tLS3HnnnRkyZEidOQsWLEhZWVmSZOrUqU3Gq11Aee6551p/wQAAAAAAADRJrQkAAIqf5hcAAOAb79BDD83gwYOTJD/72c8yZsyYTJ8+PXPnzs369etb9bVOO+20vPjii0mS//iP/8gRRxxRb85LL71UOD7ooINSUlLS6E/Xrl0Lc2tfVQwAAAAAAIC2odYEAADFT/MLAADwjdehQ4fMnj07e+65Z5LkxRdfzEUXXZRDDz00PXr0yMSJE3P77bdnw4YNX+t1pk2blpkzZyZJ/vZv/zZnn312g/OWL1++RfHXrFmzxWsDAAAAAABgy6g1AQBA8Svd1gsAAABoDXvttVdef/31zJ49O7Nnz85TTz2Vd999N5WVlXnkkUfyyCOP5N///d/z4IMPpl+/fi2Of9ddd+Xiiy9OkkyYMCFXX311o3NrFz5mz56dQYMGNes1tmRdAAAAAAAAfH1qTQAAUNw0vwAAANuN9u3bZ8qUKZkyZUqSZOnSpXn44Ydz7bXX5uWXX87LL7+cn/zkJ7nnnntaFPfVV1/NySefnOrq6gwdOjSzZs1KaWnjX6d69+5dOO7Ro0dGjBixRb8PAAAAAAAAbUetCQAAile7bb0AAACArWXnnXfOqaeemueeey777rtvkuT+++9PZWVls2OUl5fn+OOPz5o1a9K9e/fMnj07vXr1avKcUaNGFY7nzp27ZYsHAAAAAABgm1JrAgCA4qH5BQAA2O516NAhY8eOTZJUVVVl9erVzTpv7dq1mTJlSj788MO0b98+M2fOzPDhwzd73r777pvddtstSXLjjTdm7dq1W7x2AAAAAAAAti21JgAA2PY0vwAAAN94Tz/9dN59991Gx9evX58nn3wySdK1a9f07du3WXFPP/30PP/880mSGTNmZOLEic06r127drnooouSJH/6059y8sknZ926dY3Or6ioyDXXXNOs2AAAAAAAALQutSYAACh+pdt6AQAAAF/XY489lmnTpuWwww7L5MmTs88++6Rv376prKzMwoULc8MNN+SVV15JkvzN3/xNSks3/1XoP//zP3PbbbclScaPH5+jjjoq8+fPb3R+ly5dsvvuuxcen3XWWXn00Udzzz335I477sgrr7ySn/zkJxkzZky6d++eioqKvPXWW5kzZ07uu+++dOrUKeeee+7X/JcAAAAAAACgpdSaAACg+Gl+AQAAtgsbN27Mk08+WbjqVkOOP/74TJ8+vVnxFi1aVDh+/PHHM3LkyCbnjx07NnPmzCk8Likpye9+97v89Kc/zQ033JCysrL8wz/8Q6Pn9+vXr1nrAgAAAAAAoPWpNQEAQHHT/AIAAHzjnX/++dlnn33y+9//Pq+++mqWLFmS5cuXJ0kGDBiQMWPG5OSTT87kyZPbdF0dOnTIddddl7PPPjs33XRT5syZk0WLFuXzzz9P165ds/vuu2f06NE5+uijc8wxx7Tp2gAAAAAAANhErQkAAIpfSXV1dfW2XgQAAAAAAAAAAAAAAAA0pN22XgAAAAAAAAAAAAAAAAA0RvMLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABFS/MLAAAAAAAAAAAAAAAARUvzCwAAAAAAAAAAAAAAAEVL8wsAAAAAAAAAAAAAAABF6/8BecvNJP6QqbEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(ncols=len(query_lengths), figsize=(20, 5), dpi=200)\n", - "for j, (i, grp) in enumerate(times.groupby(\"query_length\")):\n", - " grp.droplevel(1).plot(label=i, ax=ax[j])\n", - " ax[j].set_title(f\"query length {i}\")\n", - " ax[j].set_yscale(\"log\")\n", - "ax[0].set_ylabel(\"time in seconds\")\n", - "plt.show()" - ] - }, { "cell_type": "code", "execution_count": null, - "id": "391737ea-a185-4ac9-906d-90724a279017", + "id": "61dac86c-a1f3-4899-bcd5-33c8468e4c07", "metadata": {}, "outputs": [], "source": [] diff --git a/examples/similarity_search/similarity_search.ipynb b/examples/similarity_search/similarity_search.ipynb index cdbaa86948..f14cdb15a9 100644 --- a/examples/similarity_search/similarity_search.ipynb +++ b/examples/similarity_search/similarity_search.ipynb @@ -7,12 +7,27 @@ "source": [ "# Time Series Similarity Search with aeon\n", "\n", - "The goal of Time Series Similarity Search is to asses the similarities between a time\n", - " series, denoted as a query `q` of length `l`, and a collection of time series,\n", - " denoted as `X`, with lengths greater than or equal to `l`. In this\n", - " context, the notion of similiarity between `q` and the other series in `X` is quantified by similarity functions. Those functions are most of the time defined as distance function, such as the Euclidean distance. Knowing the similarity between `q` and other admissible candidates, we can then perform many other tasks for \"free\", such as anomaly or motif detection.\n", + "\"time\n", "\n", - "\"time" + "The objectives of the similarity search module in aeon is to provide estimators with a `fit`/`predict` interface to solve the following use cases :\n", + "\n", + "- Nearest neighbors search on time series subesequences or whole series\n", + "- Motifs search on time series subsequences\n", + "\n", + "Similarly to the `transformer` module, the `similarity_search` module split estimators between `series` estimators and `collection` estimators, such as :\n", + "\n", + "- `series` estimators take as input a single time series of shape `(n_channels, n_timepoints)` during fit and predict.\n", + "- `collection` estimators take as input a time series collection of shape `(n_cases, n_channels, n_timepoints)` during fit, and a single series of shape `(n_channels, n_timepoints)` during predict.\n", + "\n", + "Note that the above is a general guideline, and that some estimators can also take `None` as input during predict, or series of length different to `n_timepoints`. We'll explore the different estimators in the next sections.\n", + "\n", + "### Other similarity search notebooks\n", + "\n", + "This notebook gives an overview of similarity search module and the available estimators. The following notebooks are also avaiable to go more in depth with specific subject of similarity search in aeon:\n", + "\n", + "- [The theory and math behind the similarity search estimators in aeon](distance_profiles.ipynb)\n", + "- [Analysis of the performance of the estimators provided by similarity search module](code_speed.ipynb)\n", + "\n" ] }, { @@ -22,25 +37,34 @@ "metadata": {}, "outputs": [], "source": [ - "def plot_best_matches(top_k_search, best_matches):\n", + "# Define some plotting functions we'll use later !\n", + "def plot_best_matches(\n", + " X_fit, X_predict, idx_predict, idx_matches, length, normalize=False\n", + "):\n", " \"\"\"Plot the top best matches of a query in a dataset.\"\"\"\n", - " fig, ax = plt.subplots(figsize=(20, 5), ncols=3)\n", - " for i_k, (id_sample, id_timestamp) in enumerate(best_matches):\n", + " fig, ax = plt.subplots(figsize=(20, 5), ncols=len(idx_matches))\n", + " if len(idx_matches) == 1:\n", + " ax = [ax]\n", + " for i_k, id_timestamp in enumerate(idx_matches):\n", " # plot the sample of the best match\n", - " ax[i_k].plot(top_k_search.X_[id_sample, 0], linewidth=2)\n", + " ax[i_k].plot(X_fit[0], linewidth=2)\n", " # plot the location of the best match on it\n", + " match = X_fit[0, id_timestamp : id_timestamp + length]\n", " ax[i_k].plot(\n", - " range(id_timestamp, id_timestamp + q.shape[1]),\n", - " top_k_search.X_[id_sample, 0, id_timestamp : id_timestamp + q.shape[1]],\n", + " range(id_timestamp, id_timestamp + length),\n", + " match,\n", " linewidth=7,\n", " alpha=0.5,\n", " color=\"green\",\n", " label=\"best match location\",\n", " )\n", " # plot the query on the location of the best match\n", + " Q = X_predict[0, idx_predict : idx_predict + length]\n", + " if normalize:\n", + " Q = Q * np.std(match) + np.mean(match)\n", " ax[i_k].plot(\n", - " range(id_timestamp, id_timestamp + q.shape[1]),\n", - " q[0],\n", + " range(id_timestamp, id_timestamp + length),\n", + " Q,\n", " linewidth=5,\n", " alpha=0.5,\n", " color=\"red\",\n", @@ -66,66 +90,25 @@ " plt.show()" ] }, - { - "cell_type": "markdown", - "id": "7e06b213-6038-4901-b98e-2433625115c4", - "metadata": {}, - "source": [ - "## Similarity search Notebooks\n", - "\n", - "This notebook gives an overview of similarity search module and the available estimators. The following notebooks are avaiable to go more in depth with specific subject of similarity search in aeon:\n", - "\n", - "- [Deep dive in the distance profiles](distance_profiles.ipynb)\n", - "- [Analysis of the speedups provided by similarity search module](code_speed.ipynb)" - ] - }, - { - "cell_type": "markdown", - "id": "ca967c08-9a05-411a-a09a-ad8a13c0adb9", - "metadata": {}, - "source": [ - "## Expected inputs and format\n", - "For both `QuerySearch` and `SeriesSearch`, the `fit` method expects a time series dataset of shape `(n_cases, n_channels, n_timepoints)`. This can be 3D numpy array or a list of 2D numpy arrays if `n_timepoints` varies between cases (i.e. unequal length dataset).\n", - "\n", - "The `predict` method expects a 2D numpy array of shape `(n_channels, query_length)` for `QuerySearch`. In `SeriesSearch`, the predict methods also expects a 2D numpy array, but of shape `(n_channels, n_timepoints)` (`n_timepoints` doesn't have to be the same as in fit) and a `query_length` parameter." - ] - }, { "cell_type": "markdown", "id": "d1fd75ae-84c2-40be-95f6-bd7de409317d", "metadata": {}, "source": [ - "## Available estimators\n", + "### A word on base clases\n", "\n", - "All estimators of the similarity search module in aeon inherit from the `BaseSimilaritySearch` class, which requires the following arguments:\n", - "- `distance` : a string indicating which distance function to use as similarity function. By default this is `\"euclidean\"`, which means that the Euclidean distance is used.\n", - "- `normalise` : a boolean indicating whether this similarity function should be z-normalised. This means that the scale of the two series being compared will be ignored, and that, loosely speaking, we will only focus on their shape during the comparison. By default, this parameter is set `False`.\n", + "All estimators of the similarity search module in aeon inherit from the `BaseSimilaritySearch` class, which define the some abstract methods that estimator must implement, such as `fit` and `predict` and some private function used to validate the format of the time series you will provide. Then, the two submodules `series` and `collection` also define a base class (`BaseSeriesSimilaritySearch` and `BaseCollectionSeriesSearch`) that their respective estimator will inherit from. If you ever want to extend the module or create your own estimators, these are the classes you'll want to use to define the base structure of your estimator.\n", "\n", - "Another parameter, which has no effect on the output of the estimators, is a boolean named `store_distance_profile`, set to `False` by default. If set to `True`, the estimators will expose an attribute named `_distance_profile` after the `predict` function is called. This attribute will contain the computed distance profile for query given as input to the `predict` function.\n", + "### Load a dataset\n", + "In the following, we'll use an easy dataset (`GunPoint`) to help build intuition. Don't hesitate to swap it with other datasets to explore ! We load it using the `load_classification` function.\n", "\n", - "To illustrate how to work with similarity search estimators in aeon, we will now present some example use cases." - ] - }, - { - "cell_type": "markdown", - "id": "01fa67c2-0126-4152-98a9-fa0df84c4629", - "metadata": {}, - "source": [ - "### Query search" - ] - }, - { - "cell_type": "markdown", - "id": "8e99b251-d156-4989-b5a0-3a2c79cb75d4", - "metadata": {}, - "source": [ - "We will use the GunPoint dataset for this example, which can be loaded using the `load_classification` function." + "The GunPoint dataset is composed of two classes which are discriminated by the \"bumps\" located before and after the central peak. These bumps correspond to an actor drawing a fake gun from a holster before pointing it (hence the name \"GunPoint\" !). In the second class, the actor simply points his fingers without making the motion of taking the gun out of the holster." ] }, { "cell_type": "code", "execution_count": 2, - "id": "f8a6bb7e-b219-41f1-b508-b849c45672eb", + "id": "20d3b591-f275-4548-a7d2-75b16380b055", "metadata": {}, "outputs": [ { @@ -162,12 +145,43 @@ }, { "cell_type": "markdown", - "id": "5392f7f4-1825-4b15-9248-27eeecb1af3c", + "id": "01fa67c2-0126-4152-98a9-fa0df84c4629", "metadata": {}, "source": [ - "The GunPoint dataset is composed of two classes which are discriminated by the \"bumps\" located before and after the central peak. These bumps correspond to an actor drawing a fake gun from a holster before pointing it (hence the name \"GunPoint\" !). In the second class, the actor simply points his fingers without making the motion of taking the gun out of the holster.\n", + "## 1. Series estimators\n", "\n", - "Suppose that we define our input query for the similarity search task as one of these bumps:" + "First, we'll explore estimators of the `series` module, where you must provide single series of shape `(n_channels, n_timepoints)` during fit." + ] + }, + { + "cell_type": "markdown", + "id": "78f17f93-28b3-49c0-be5f-1d430a273b0c", + "metadata": {}, + "source": [ + "### 1.1 Subsequence nearest neighbors with MASS\n", + "\n", + "To perform nearest neighbors search on subsequences on a series, we can use the `MassSNN` estimator.\n", + "\n", + "It takes as parameter during initialisation :\n", + "- `length` : an integer giving the length of the subsequences to extract from the series. It is also the expected length of the series given in `predict`\n", + "- `normalize`: a boolean indicating wheter the subsequences should be independently z-normalized (`(X-mean(X))/std(X)`) before the distance computations. This results in a scale-independent matching.\n", + " \n", + "To parameterize the search, additional parameters are available when calling the `predict` method:\n", + "\n", + "- `k` (int) : the number of nearest neighbors to return.\n", + "- `dist_threshold` (float) : the maximum allowed distance for a candidate subsequence to be considered as a neighbor.\n", + "- `allow_trivial_matches` (bool) : wheter a neighbors of a match to a query can be also considered as matches (True), or if an exclusion zone is applied around each match to avoid trivial matches with their direct neighbors (False).\n", + "- `inverse_distance` (bool) : if True, the matching will be made on the inverse of the distance, and thus, the farther neighbors will be returned instead of the closest ones.\n", + "- `exclusion_factor` (float): A factor of the `length` used to define the exclusion zone when `allow_trivial_matches` is set to False. For a given timestamp, the exclusion zone starts from `id_timestamp - length//exclusion_factor` and end at `id_timestamp + length//exclusion_factor`.\n", + "- `X_index` (int): If series given during predict is a subsequence of series given during fit, specify its starting timestamp. If specified, neighboring subsequences of X won't be able to match as neighbors." + ] + }, + { + "cell_type": "markdown", + "id": "33105406-fc83-4143-9345-af589a06a00a", + "metadata": {}, + "source": [ + "First, we'll select a series from the dataset to use during fit. This is the series we want our neighbors to come from." ] }, { @@ -177,84 +191,93 @@ "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnTElEQVR4nO3de1hU17038O+eGQEVBRUGxgFEHEQYRYyDaHNiRURMc4ImUSRJDaka8jT29DTJieF588a074lHenJp89SmPSS20pNEStJGbKNUSeolRsVR1Cga0YAwCONwvwgMM7PfP7hE5KYOsIeZ7+d5fJzLYq9fdut3NmvtWUsQRVEEERE5PZnUBRAR0chg4BMRuQgGPhGRi2DgExG5CAY+EZGLUEhdQH98fHwQHBwsdRlERKNKSUkJqqqq+nzPYQM/ODgYer1e6jKIiEYVnU7X73sc0iEichEMfCIiF8HAJyJyEQx8IiIXwcAnInIRDHwiIhfBwCcichEMfCIiB/LX0wZ8rC8blmMz8ImIHITNJuJXeZex+0z5sByfgU9E5CCOF1ejrKYFSbrAYTk+A5+IyEFknyzDBA8FErT+w3J8Bj4RkQOob2nHvvOVWBWlhscY+bD0wcAnInIAfzt7HW0W27AN5wAMfCIih5CtL8Ms/wmYrZ44bH0MSeDn5uYiLCwMGo0G6enpvd4vLS1FbGws5s2bh8jISOzdu3couiUicgoXKxpwzlCPtdGBEARh2PqxO/CtVis2bdqEffv2obCwELt27UJhYWGPNq+//jqSkpJQUFCArKwsPPfcc/Z2S0TkND7WG+Aml2FVlHpY+7E78PPz86HRaBASEgI3NzckJycjJyenRxtBENDQ0AAAqK+vx9SpU+3tlojIKZgtNnxaYEB8hB8mjXcb1r7s3vGqvLwcgYHfTTIEBATgxIkTPdr8/Oc/x/Lly/Gb3/wGzc3NyMvL6/NYGRkZyMjIAACYTCZ7SyMicnh5F42ovdmONbqAYe9rRCZtd+3ahaeffhoGgwF79+7FunXrYLPZerVLTU2FXq+HXq+Hr6/vSJRGRCSpbH0ZVF4eeCB0+DPP7sBXq9UoK/tu3QeDwQC1uuc41I4dO5CUlAQAWLRoEVpbW/vdZJeIyFVU1Lfg8GUTVs8PgFw2fJO1XewO/OjoaBQVFaG4uBhmsxlZWVlITEzs0SYoKAiff/45AODixYtobW3lFTwRuby/nDLAJgJr5g/fvfe3sjvwFQoFtm/fjoSEBISHhyMpKQlarRZbtmzBnj17AABvvfUW3nvvPcydOxePP/44du7cOay3HhEROTqbTUS23oBFIVMQNGXciPQpiKIojkhPd0mn00Gv10tdBhHRsDj+bTWSM47jV2vn4pF5QzdhO1B28pu2REQSyNaXYYK7Aiu0qhHrk4FPRDTCGlrbsffrCjwcNRVj3YZnobS+MPCJiEbY389WoLXdhrXDuFBaXxj4REQjLFtfhjC/CYgM8BrRfhn4REQj6LKxEWfK6rBGFzDidysy8ImIRlD2yTKMkQt4ZN7wLpTWFwY+EdEI6VgorRzLwv0wxdN9xPtn4BMRjZAvLt1AdbN5WHe1GggDn4hohHxyqgx+E93xQKiPJP0z8ImIRkB1UxsOfmPCqnlqKOTSRC8Dn4hoBPzt7HVYbCIeHcJlFO4WA5+IaAT8taAc2qkTEeY/QbIaGPhERMPsyo0mnDPUS3Ir5q0Y+EREw+zTAgNkApAYJe1+3gx8IqJhZLOJ2F1wHYtn+kI5wUPSWoYk8HNzcxEWFgaNRoP09PQ+22RnZyMiIgJarRZPPPHEUHRLROTwThTXoLyuRfLhHABQ2HsAq9WKTZs24cCBAwgICEB0dDQSExMRERHR3aaoqAjbtm3D0aNHMWnSJNy4ccPebomIRoVPCwzwdFdgeYS/1KXYf4Wfn58PjUaDkJAQuLm5ITk5GTk5OT3avPfee9i0aRMmTZoEAFAqlfZ2S0Tk8Frbrdj7dSVWzPYf0XXv+2N34JeXlyMw8LuvCQcEBKC8vLxHm8uXL+Py5cu4//77sXDhQuTm5trbLRGRw9tfaERTmwWP3if9cA4wBEM6d8JisaCoqAgHDx6EwWDA4sWL8fXXX8Pb27tHu4yMDGRkZAAATCbTSJRGRDRsPj1twFQvDyycPkXqUgAMwRW+Wq1GWVlZ93ODwQC1uuenWUBAABITEzFmzBhMnz4dM2fORFFRUa9jpaamQq/XQ6/Xw9fX197SiIgkY2psw+GiKqycp4ZMNrLr3vfH7sCPjo5GUVERiouLYTabkZWVhcTExB5tVq1ahYMHDwIAqqqqcPnyZYSEhNjbNRGRw9pz9jqsNhGPOsDdOV3sDnyFQoHt27cjISEB4eHhSEpKglarxZYtW7Bnzx4AQEJCAqZMmYKIiAjExsbijTfewJQpjvErDhHRcPi0wIA5ai+E+km3lMLtBFEURamL6ItOp4Ner5e6DCKiu1ZkbET8rw5jy79GYP2/TB/RvgfKTn7TlohoiP21oBxymSD5Ugq3Y+ATEQ2hjqUUyvH9mb7wkWAbw4Ew8ImIhtDxb6tRUd/qEEsp3I6BT0Q0hP5aUI4J7grER/hJXUovDHwioiHSYrZi39cVeHCOPzzGSL+Uwu0Y+EREQ2R/YSWazVY8ep902xgOhIFPRDRE/nq6HGrvsVgQPFnqUvrEwCciGgI3GltxpMiEVfOmOsxSCrdj4BMRDYE9Z67DJgKPzHPM4RyAgU9ENCT+fq4Cs9UToVF6Sl1Kvxj4RER2qqhvwZmyOjw4WyV1KQNi4BMR2ekf5ysBACtmS7+N4UAY+EREdsq9UImZfp6Y4eu4wzkAA5+IyC7VTW3IL67BCq1jX90DDHwiIrscKDTCJgIJDj6cAzDwiYjsknuhEkGTxyFCNVHqUgY1JIGfm5uLsLAwaDQapKen99vuL3/5CwRB4MYmROQU6lvacfRKFVbM9ocgOOaXrW5ld+BbrVZs2rQJ+/btQ2FhIXbt2oXCwsJe7RobG/HOO+8gJibG3i6JiBzCPy/dQLtVRMIoGL8HhiDw8/PzodFoEBISAjc3NyQnJyMnJ6dXu1dffRUvv/wyPDw87O2SiMgh5J6vhN9Ed8wL9Ja6lDtid+CXl5cjMDCw+3lAQADKy8t7tDl9+jTKysrw0EMPDXisjIwM6HQ66HQ6mEwme0sjIho2N80WHLx8Awlaf4ddO+d2wz5pa7PZ8MILL+Ctt94atG1qair0ej30ej18fX2HuzQiont2+LIJre22UXE7Zhe7A1+tVqOsrKz7ucFggFr93dZejY2NOH/+PJYsWYLg4GAcP34ciYmJnLglolEt93wlJo0bgwXTHXMp5L7YHfjR0dEoKipCcXExzGYzsrKykJiY2P2+l5cXqqqqUFJSgpKSEixcuBB79uyBTqezt2siIkm0Waz4/OINxEf4QSEfPXe3212pQqHA9u3bkZCQgPDwcCQlJUGr1WLLli3Ys2fPUNRIRORQvrpajcY2i8OvnXM7QRRFUeoi+qLT6TjsQ0QOKe0v5/D3cxU49eoyuCsca+/agbJz9PwuQkTkACxWG/YXGrF0ltLhwn4wDHwiortwsqQWNc3mUTecAzDwiYjuyj8uVMJdIcP3Z46+W8cZ+EREd8hmE5F7vhLfn+mL8e4Kqcu5awx8IqI7dNZQh8qG1lE5nAMw8ImI7ljuhUooZALiZvlJXco9YeATEd0BUewYzvmexgde48ZIXc49YeATEd2BS5WNuFZ9c1StnXM7Bj4R0R3IPV8JQQDiI0bncA7AwCciuiO55ysRPW0yfCe4S13KPWPgExEN4ltTE74xNo7au3O6MPCJiAax73wlACCBgU9E5Lxumi3449FifG/GFKi9x0pdjl0Y+EREA/jj0RJUNZnx4vIwqUuxGwOfiKgf9S3t+J9DVxE3S4n50yZJXY7dhiTwc3NzERYWBo1Gg/T09F7vv/3224iIiEBkZCTi4uJw7dq1oeiWiGhYvXf4WzS0Wpzi6h4YgsC3Wq3YtGkT9u3bh8LCQuzatQuFhYU92sybNw96vR7nzp3D6tWrsXnzZnu7JSIaVqbGNvzhaDEenjsVEVMnSl3OkLA78PPz86HRaBASEgI3NzckJycjJyenR5vY2FiMGzcOALBw4UIYDAZ7uyUiGlbvHryCNosNzy8LlbqUIWN34JeXlyMwMLD7eUBAAMrLy/ttv2PHDjz44IN9vpeRkQGdTgedTgeTyWRvaURE96S8rgUfHi/F6vsCEOLrKXU5Q2ZEF3T+4IMPoNfrcejQoT7fT01NRWpqKoCOfRmJiKTwm8+LAAA/daKre2AIAl+tVqOsrKz7ucFggFqt7tUuLy8PW7duxaFDh+DuPnq/mkxEzq24qhkfnzJg3cJpo/6++9vZPaQTHR2NoqIiFBcXw2w2IysrC4mJiT3aFBQU4Nlnn8WePXugVCrt7ZKIaNj86sBluMll2BSrkbqUIWd34CsUCmzfvh0JCQkIDw9HUlIStFottmzZgj179gAAXnrpJTQ1NWHNmjWIiorq9YFAROQILlY04G/nruNH9weP6kXS+iOIoihKXURfdDod9Hq91GUQkQvZmKnHieJqfLl56ajd5GSg7OQ3bYmIABSU1iLvohHPLg4ZtWE/GAY+ERGAN/d/gynj3fCj+6dLXcqwYeATkcv76koVjl6pxnOxGox3H9G71UcUA5+IXJooinhj/zdQeXngyZggqcsZVgx8InJpX1y6gYLSOvw0LhQeY+RSlzOsGPhE5NL+cLQYau+xWD0/QOpShh0Dn4hcVklVM45eqcbjCwIxRu78cej8/4VERP3YdbIUcpmANbrAwRs7AQY+Ebkks8WGT/QGxM1Swm+ih9TljAgGPhG5pAOFRlQ3m/GEk9+ZcysGPhG5pF35pVB7j8UDob5SlzJiGPhE5HJKqprx5ZUqJEcHQi4TpC5nxDDwicjlZJ0sg1wmICnaNSZruzDwicilmC02fHKqzKUma7sw8InIpeRdNKKqyYzHXWiytgsDn4hcykcnOiZrF7vQZG2XIQn83NxchIWFQaPRID09vdf7bW1tWLt2LTQaDWJiYlBSUjIU3RIR3ZVr1R2TtWtdbLK2i92Bb7VasWnTJuzbtw+FhYXYtWsXCgsLe7TZsWMHJk2ahCtXruD555/Hyy+/bG+3RER3rXuy1kW+WXs7uwM/Pz8fGo0GISEhcHNzQ3JyMnJycnq0ycnJQUpKCgBg9erV+Pzzz+GgOysSkZMyW2z4WF+GpbOU8PdyrcnaLnYHfnl5OQIDv/u0DAgIQHl5eb9tFAoFvLy8UF1d3etYGRkZ0Ol00Ol0MJlM9pZGRNSta7L2iQWuN1nbxaEmbVNTU6HX66HX6+Hr63oTKkQ0fLq+Wbt4putmi92Br1arUVZW1v3cYDBArVb328ZisaC+vh5Tpkyxt2siojtSWn0TR4pcd7K2i92BHx0djaKiIhQXF8NsNiMrKwuJiYk92iQmJiIzMxMA8Mknn2Dp0qUQBNc96UQ0srJOlkImwGUna7vYvVuvQqHA9u3bkZCQAKvVivXr10Or1WLLli3Q6XRITEzEhg0bsG7dOmg0GkyePBlZWVlDUTsR0aDarTZk6w1YOsvPZSdruwiig94uo9PpoNfrpS6DiEa5fV9X4McfnsYfntZh6Sw/qcsZdgNlp0NN2hIRDbWP8ksx1csD35+plLoUyTHwichpldV0TdYGufRkbRcGPhE5rV35nZO10QFSl+IQGPhE5JRunaxVeY2VuhyHwMAnIqd0oNCIqqY2POmCyyD3h4FPRE7pwxPXXP6btbdj4BOR0ympasbRK9Uut2ftYBj4ROR0duWXQi4TsNbF9qwdDAOfiJxKm8WKj08ZEB/uB6WL7Vk7GAY+ETmV3POVqGk24wlO1vbCwCcip/LRiVIETR6Hf9H4SF2Kw2HgE5HTuHKjCSeKa/D4giDIOFnbCwOfiJzGRydKMUYuYI2O36ztCwOfiJxCa7sVfzltwHKtP3w83aUuxyEx8InIKez9ugL1Le140oX3rB2MXYFfU1OD+Ph4hIaGIj4+HrW1tb3anDlzBosWLYJWq0VkZCT+/Oc/29MlEVGfPjpRihCf8Vg0g9un9seuwE9PT0dcXByKiooQFxeH9PT0Xm3GjRuHP/3pT7hw4QJyc3Pxs5/9DHV1dfZ0S0TUwzeVjdBfq8XjC4K4feoA7Ar8nJwcpKSkAABSUlKwe/fuXm1mzpyJ0NBQAMDUqVOhVCphMpns6ZaIqIePTlyDm1yGx+ZzsnYgdu1pazQaoVKpAAD+/v4wGo0Dts/Pz4fZbMaMGTP6fD8jIwMZGRkAwA8FIrojLWYr/lpQjgfn+GPyeDepy3Fogwb+smXLUFlZ2ev1rVu39nguCMKAv0pVVFRg3bp1yMzMhEzW9y8WqampSE1NBdCxLyMR0WD+du46GlsteDJmmtSlOLxBAz8vL6/f9/z8/FBRUQGVSoWKigoolX3vGdnQ0ICHHnoIW7duxcKFC++9WiKi23x4ohQapSeigydJXYrDs2sMPzExEZmZmQCAzMxMrFy5slcbs9mMRx55BE899RRWr15tT3dERD1cuF6Ps2V1eIKTtXfErsBPS0vDgQMHEBoairy8PKSlpQEA9Ho9Nm7cCADIzs7G4cOHsXPnTkRFRSEqKgpnzpyxu3Aioo9OlMJdIcNj93Gy9k4IoiiKUhfRF51OB71eL3UZROSgmtosiNmahxWzVXgraa7U5TiMgbKT37QlolFp+xdX0Gy2chnku8DAJ6JR57f/vILfH7qKJF0A7gvylrqcUYOBT0SjyvtHvsUb//gGq6KmYtujkZysvQsMfCIaNTK/KsHrn13EQ3NUeHPNXG5QfpcY+EQ0Knx0ohSv7bmA+Ag//Do5Cgo54+tu8YwRkcP75JQBr+z+GrFhvtj+xDyMYdjfE541InJoOWfKsfmTs7h/hg9+98P5cFfIpS5p1GLgE5HD2vd1BV7IPovo4Ml47ykdPMYw7O3BwCcih3Sg0Ih/21WAqEBv/OHpaIx1Y9jbi4FPRA7n8GUTNn14GtqpE/HHH0VjvLtdK7lTJwY+ETmUU9dq8ez/nkKI73j8aX0MJnqMkbokp8HAJyKH8U1lI9bvPAnlRHf8acMCeI1j2A8lBj4ROYTS6ptYt+MEPMbI8MGGGCgneEhdktPhwBgRSe5GYyvW/eEEzFYbsp9dhMDJ46QuySnxCp+IJFXf0o6nduTD1NiGPz4djZl+E6QuyWkx8IlIMi1mKzbsPImrpib8z7r5mBfEbQqHk12BX1NTg/j4eISGhiI+Ph61tbX9tm1oaEBAQAB+8pOf2NMlETkJs8WGH394CqdLa/FO8jw8EOordUlOz67AT09PR1xcHIqKihAXF4f09PR+27766qtYvHixPd0RkZOw2UT8x8dncfAbE7Y+Mgc/mKOSuiSXYFfg5+TkICUlBQCQkpKC3bt399nu1KlTMBqNWL58uT3dEZETEEURr+25gD1nr+PlFbPw+ALuWDVS7Ap8o9EIlarjk9nf3x9Go7FXG5vNhhdffBFvvvnmoMfLyMiATqeDTqeDyWSypzQickA2m4hf/K0Q/3v8Gp5dHIIfL5khdUkuZdDbMpctW4bKysper2/durXHc0EQ+tx55t1338UPfvADBAQMvqt8amoqUlNTAXRsxEtEzqPdasPmT87h04JybPiX6Uh7cJbUJbmcQQM/Ly+v3/f8/PxQUVEBlUqFiooKKJXKXm2OHTuGI0eO4N1330VTUxPMZjM8PT0HHO8nIufS2m7FTz46jbyLN/BSQhieWzKDWxNKwK4vXiUmJiIzMxNpaWnIzMzEypUre7X58MMPux/v3LkTer2eYU/kQhpa27ExU4+TJTX4z1WzsW7hNKlLcll2jeGnpaXhwIEDCA0NRV5eHtLS0gAAer0eGzduHJICiWj0qmpqw+MZx3H6Wsetlwx7aQmiKIpSF9EXnU4HvV4vdRlEdI8MtTfx1I58XK9vwe9+OB+xYb2HfGnoDZSdXEuHiIbclRuNWLcjH01tFnywIQa64MlSl0Rg4BPREDtbVoen/5gPuUyGP6cuQsTUiVKXRJ0Y+EQ0JCxWG3bllyJ93yVMGu+GDzbEINhnvNRl0S0Y+ERkF1EU8c9vbuC/9l7ClRtNWBQyBb9aGwV/L65n72gY+ER0zy5WNGDrZxfx5ZUqTPcZj/ee0mFZuJL32DsoBj4R3bUbja14e/9l/FlfBq+xY/DawxF4MmYa3BRccd2RMfCJ6I61mK14/8i3+N2hq2i32rDh/un4t6Wh3Ht2lGDgE9GAbDYRBWV12F9YiZyC66hsaMUKrT/SHpzFSdlRhoFPRL20Waz46mo19l8w4kChEVVNbVDIBCyaMQXvJEchJmSK1CXSPWDgExGAjjVv/nnpBvYXGnHw0g00m60Y7ybHkjAllmv9sCRMCa+xHLoZzRj4RC6qzWLF6Wt1OHa1CkevVuNsWR0sNhE+nm5IjJqK5RH+WDRjCjzGyKUulYYIA5/IRVhtIr4ur8dXV6vw1ZVqnCypQZvFBpkAzAnwRuriEMSFKxEVOAlyGW+rdEYMfKJbtLZbIRMEp7i9sM1ixfnyeuhLanGypBYniqvR2GoBAIT5TcATMUH43gwfxIRMxkQPDtW4AgY+OT1RFFHTbEZFfStuNLaiqtEMU1MbTI23/Ol83tTWEYg+nm7wm+jR/cd/ogf8JrrDz6vjsf9ED3iPG+NQXzCqbTbj1LVanLxWg1MltThXXg+zxQYACJ4yDv8aqcKiGT5YFDIFvhPcJa6WpMDAJ6dQWn0TFysbUFnfior6VlTWt+B6fSsq61tR2dDaHXy3muihgM8Ed/h6ukM7dSJ8J7jDx9Md7VYbjA2tMDa0obK+FWfL6lDdbO718+4KGVReHvD38oDKa2zn3x0fBiqvsVBOdMeU8W5QyIf2t4U2ixVlNTdx1dSM4qpmXLnRhILSWlw1NQMAxsgFaKd6IWXRNMyfNhnzp01iwBMAOwO/pqYGa9euRUlJCYKDg5GdnY1Jkyb1aldaWoqNGzeirKwMgiBg7969CA4OtqdrcnGiKOLC9Qbsv1CJf1ww4htjY/d7bnIZ/DuDeF6Qd0cQT/SAf2cIKzuD/W4mI9ssVpga22BsaEVlfRsqGzo+VCo6P1Tyi2tgbGiFxdZzewlBAKaMd4OPpzt8J7hDOcEDvhPcu/+4dw4dCejcF7rzZ7p+VhSB63Ut+LaqGd92Bryh9iZu7cbH0w2RAd549L4A6KZNwtxAb060Up/s2gBl8+bNmDx5MtLS0pCeno7a2lr88pe/7NVuyZIleOWVVxAfH4+mpibIZDKMGzduwGNzAxS6ncVqw8mSWuwvrMT+C0aU17VAJgC64MlI0PpjQfBkqLw9MHmcG2QSTDrabCKqm82orG/F9foWmBrbcOP2YaOGVpia2tBuvbt/duPc5JjuMx7TfcYjxGc8Qnw9Md1nPIJ9xvNWSeph2DZAycnJwcGDBwEAKSkpWLJkSa/ALywshMViQXx8PADA09PTni7JBZ26Votd+aX4/KIRtTfb4aaQYXGoD/49LhRx4UpM8XSM4QqZTOi+cp8T4NVvO1EUUd/SDlNjG8xWG7ouuUQRECHe8riDyssDygnuDjVfQKOTXYFvNBqhUqkAAP7+/jAajb3aXL58Gd7e3nj00UdRXFyMZcuWIT09HXJ57185MzIykJGRAQAwmUz2lEZOoMVsxX//4xJ2flUCT3cF4mYpkaD1x+KZvhjvPnqnnwRBgPc4N3iPc5O6FHIxg/6rWbZsGSorK3u9vnXr1h7PBUHo8wrEYrHgyJEjKCgoQFBQENauXYudO3diw4YNvdqmpqYiNTUVQMevJeS69CU1+I+Pz6Kk+iaeWjQNL6+YNapDnsgRDPovKC8vr9/3/Pz8UFFRAZVKhYqKCiiVvTcpDggIQFRUFEJCQgAAq1atwvHjx/sMfKLWdive/Mc32HG0GGrvsfjomRh8b4aP1GUROQW77hdLTExEZmYmACAzMxMrV67s1SY6Ohp1dXXdQzRffPEFIiIi7OmWnNSpa7X4wTtH8P6XxXhiQRByf7aYYU80hOwK/LS0NBw4cAChoaHIy8tDWloaAECv12Pjxo0AALlcjjfffBNxcXGYM2cORFHEM888Y3/l5DRa263Ytvci1vz+K7RZbPhgQwy2PjIHnhzCIRpSdt2WOZx4W6ZrOFNWhxezz+CqqRmPLwjC//nBLEzg1/yJ7tmw3ZZJdK/MFht+80UR3j14FcoJ7vjT+gVYPNNX6rKInBoDn0bcN5WNeCH7DC5cb8Bj9wXgtcQILt5FNAIY+DRirDYR7x35Fm/vv4yJYxXIWDcfy7X+UpdF5DIY+DQirlU348Xss9Bfq8UKrT+2PjLbYb4hS+QqGPg0rERRxIcnSvFfey9CLhPwq7VzsSpKzWUCiCTAwKdhU1p9E/835zwOXzbhgVAf/PfqSKi8xkpdFpHLYuDTkGq32vD5RSM+yi/DkSITPBRy/Oeq2fhhTBCv6okkxsCnIVFWcxNZJ0uRrTfA1NgGlZcH/j0uFMnRQfD38pC6PCICA5/s0HE1fwMf5ZfiSJEJAoCls5R4fEEQloQpuRE2kYNh4NOAujb1qKhvwfW6Vlyva+l43LnL061X80m6QEz15hg9kaNi4A8hURRhtYlot4pot9nQbrF1PO7c5MImirCJHVtciKIIm4ger9tsgMVmg00UYbV13LdutYmwiiJsnY9FdLQXRbHzZzs2zeg4VsdxzBYbzBYb2jr7N1tsMFut3a+320RYrR3HvbWPW1+7abagor4VFXWtMFt77gfrrpBhqvdY3BfkjTXzA7EkzHfI920loqHndIFf02xG3FsHIQgCZAK6/5YJAmSdk4YyWcfzrgEH4ZbHENDjdVtn2NrEjgAWxa5QRPdji1WE2WrrDnZHJJcJcJPL4KaQYYxcgFwmQCGTQSYD5ELHc7ms4xwp5AI8FHJEBnhjhdYDU73HQuXV8fdU77GYNG4MJ2CJRiGnC3w3hQwPz53aeRWMHle+NhG3vN57KzlRFLsfo/PKueuDQi4TIAgd4SgTBMhkAuSdHxxj5DKMkcvgJheg6Hw8Ri50hqusI0wFATIZIKDjODLhu787hroFKLpCV9bxuCt8u/qXd/7M7T/fvQF253M3haw73Lv+5ng6ETld4Hu6K/D/Vs6WugwiIofDgVciIhdhV+DX1NQgPj4eoaGhiI+PR21tbZ/tNm/eDK1Wi/DwcPz0pz+Fgy7BT0Tk1OwK/PT0dMTFxaGoqAhxcXFIT0/v1earr77C0aNHce7cOZw/fx4nT57EoUOH7OmWiIjugV2Bn5OTg5SUFABASkoKdu/e3auNIAhobW2F2WxGW1sb2tvb4efnZ0+3RER0D+wKfKPRCJVKBQDw9/eH0Wjs1WbRokWIjY2FSqWCSqVCQkICwsPD7emWiIjuwaB36SxbtgyVlZW9Xt+6dWuP5x23Bfa+9e/KlSu4ePEiDAYDACA+Ph5HjhzBAw880KttRkYGMjIyAAAmk+nO/guIiOiODBr4eXl5/b7n5+eHiooKqFQqVFRUQKlU9mrz6aefYuHChfD09AQAPPjggzh27FifgZ+amorU1FQAHRvxEhHR0LFrSCcxMRGZmZkAgMzMTKxcubJXm6CgIBw6dAgWiwXt7e04dOgQh3SIiCQgiHbcI1ldXY2kpCSUlpZi2rRpyM7OxuTJk6HX6/H73/8e77//PqxWK5577jkcPnwYgiBgxYoVePvttwc9to+PD4KDg++1NJhMJvj6+t7zz4+00VYvwJpHymirebTVCzhXzSUlJaiqqurzZ+wKfEem0+mg1+ulLuOOjbZ6AdY8UkZbzaOtXsB1auY3bYmIXAQDn4jIRTht4Hfd7TNajLZ6AdY8UkZbzaOtXsB1anbaMXwiIurJaa/wiYioJwY+EZGLcLrAz83NRVhYGDQaTZ+rdzqi4OBgzJkzB1FRUQ77DeP169dDqVRi9uzvNpe50+WxpdJXzT//+c+hVqsRFRWFqKgo7N27V8IKeyorK0NsbCwiIiKg1WrxzjvvAHDs89xfzY58nltbW7FgwQLMnTsXWq0Wr732GgCguLgYMTEx0Gg0WLt2Lcxms8SVduiv3qeffhrTp0/vPsdnzpwZ/GCiE7FYLGJISIh49epVsa2tTYyMjBQvXLggdVmDmjZtmmgymaQuY0CHDh0ST506JWq12u7XXnrpJXHbtm2iKIritm3bxM2bN0tVXp/6qvm1114T33jjDQmr6t/169fFU6dOiaIoig0NDWJoaKh44cIFhz7P/dXsyOfZZrOJjY2NoiiKotlsFhcsWCAeO3ZMXLNmjbhr1y5RFEXx2WefFd99910py+zWX70pKSnixx9/fFfHcqor/Pz8fGg0GoSEhMDNzQ3JycnIycmRuiynsHjxYkyePLnHa3eyPLaU+qrZkalUKtx3330AgAkTJiA8PBzl5eUOfZ77q9mRCYLQvbZXe3s72tvbIQgCvvjiC6xevRqAY53n/uq9F04V+OXl5QgMDOx+HhAQ4PD/5wM6/gddvnw55s+f371a6GhwJ8tjO6Lt27cjMjIS69evd6jhkVuVlJSgoKAAMTExo+Y831oz4Njn2Wq1IioqCkqlEvHx8ZgxYwa8vb2hUHSsJ+lo2XF7vV3n+JVXXkFkZCSef/55tLW1DXocpwr80erLL7/E6dOnsW/fPvz2t7/F4cOHpS7prvW3PLaj+fGPf4yrV6/izJkzUKlUePHFF6UuqZempiY89thj+PWvf42JEyf2eM9Rz/PtNTv6eZbL5Thz5gwMBgPy8/Nx6dIlqUsa0O31nj9/Htu2bcOlS5dw8uRJ1NTU4Je//OWgx3GqwFer1SgrK+t+bjAYoFarJazoznTVqFQq8cgjjyA/P1/iiu5M1/LYAPpdHtvR+Pn5QS6XQyaT4ZlnnnG4c93e3o7HHnsMTz75JB599FEAjn+e+6vZkc9zF29vb8TGxuLYsWOoq6uDxWIB4LjZ0VVvbm4uVCoVBEGAu7s7fvSjH93ROXaqwI+OjkZRURGKi4thNpuRlZWFxMREqcsaUHNzMxobG7sf79+/v8ddJY7sTpbHdjRdwQl07NXgSOdaFEVs2LAB4eHheOGFF7pfd+Tz3F/NjnyeTSYT6urqAAAtLS04cOAAwsPDERsbi08++QSAY53nvuqdNWtW9zkWRRG7d+++s3M85FPKEvvss8/E0NBQMSQkRHz99delLmdQV69eFSMjI8XIyEgxIiLCYWtOTk4W/f39RYVCIarVavH9998Xq6qqxKVLl4oajUaMi4sTq6urpS6zh75q/uEPfyjOnj1bnDNnjvjwww+L169fl7rMbkeOHBEBiHPmzBHnzp0rzp07V/zss88c+jz3V7Mjn+ezZ8+KUVFR4pw5c0StViv+4he/EEWx499idHS0OGPGDHH16tVia2urxJV26K/e2NhYcfbs2aJWqxWffPLJ7jt5BsKlFYiIXIRTDekQEVH/GPhERC6CgU9E5CIY+ERELoKBT0TkIhj4REQugoFPROQi/j/99XdQ6wfDdwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "(1, 150)\n" + ] } ], "source": [ - "# We will use the fourth sample an testing data\n", - "X_test = X[3]\n", - "mask = np.ones(X.shape[0], dtype=bool)\n", - "mask[3] = False\n", - "# Use this mask to exluce the sample from which we will extract the query\n", - "X_train = X[mask]\n", - "\n", - "q = X_test[:, 20:55]\n", - "plt.plot(q[0])\n", - "plt.show()" + "from aeon.similarity_search.series import MassSNN\n", + "\n", + "length = 35\n", + "# We'll take a sample of the class with a \"bump\".\n", + "series_fit = X[2]\n", + "print(series_fit.shape)\n", + "snn = MassSNN(length=length, normalize=False).fit(series_fit)" ] }, { "cell_type": "markdown", - "id": "fcf10a34-930a-4fce-86f8-4dfa207cad11", + "id": "320ef728-ca92-4fd5-9686-2b9739fcab83", "metadata": {}, "source": [ - "Then, we can use the `QuerySearch` class to search for the top `k` matches of this query in a collection of series. The training data for `QuerySearch` can be seen as the database in which want to search for the query on." + "Then we'll take a subsequence of size `length` in another series of the same class to use in `predict` :" ] }, { "cell_type": "code", "execution_count": 4, - "id": "80eaab8f-204f-439f-84c8-ad3462f1575e", + "id": "98560db4-4289-4072-8662-2cde2ad5c44a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "match 0 : [195 26] with distance 0.1973741999473598 to q\n", - "match 1 : [92 23] with distance 0.20753669049486048 to q\n", - "match 2 : [154 22] with distance 0.21538593730366784 to q\n" + "match 0 : 27 with distance 0.3020071566139322\n", + "match 1 : 28 with distance 0.48913603040398357\n", + "match 2 : 26 with distance 0.889697094966067\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAE/CAYAAADCGZOXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAACndElEQVR4nOzdd5xddZk/8M9pt82902tmJpk0EtIrHSQiUpQIiBRRYVEQV3T1t66y4rqsa2HXLa5dVlesgIICKkVp0gkJpJDek0mZTL29nPb749xz7kwySSYzd+65c+/n/XrxcjLl3u9gOM85z/d5nq9gmqYJIiIiIiIiIiIqa6LbCyAiIiIiIiIiIvcxSUREREREREREREwSERERERERERERk0RERERERERERAQmiYiIiIiIiIiICEwSERERERERERERmCSiItPR0YGnn37a7WUUzH333YfzzjvP7WUQEU0YjBNERHQijBNEY8MkEZW8u+++Gx/60IcK9n4333wzvvSlL43La/f19eGqq65CRUUFpkyZgl//+tfj8j5EROWklOLEd7/7XSxbtgxerxc333zzuLwHEVG5KZU4kU6n8dGPfhRTpkxBKBTCokWL8MQTT+T9fWhik91eABGN3Cc/+Ul4PB50dXVh7dq1eM973oOFCxdi7ty5bi+NiIiKwKRJk/ClL30JTz31FJLJpNvLISKiIqJpGtrb2/HXv/4VkydPxuOPP45rr70WGzZsQEdHh9vLoyLBSiIqOm+88QbmzJmDmpoa/M3f/A1SqZTztT/+8Y9YtGgRqqurcc4552D9+vXO1/7t3/4Nra2tCIVCmDVrFp555hk8+eST+PrXv44HH3wQwWAQCxcuHPY9Ozo68M1vfhMLFixARUUFPvrRj6KrqwuXXXYZQqEQ3vWud6G/v9/5/g984ANobm5GVVUVLrjgAmzcuBEAcO+99+JXv/oV/v3f/x3BYBBXXHEFAGD//v24+uqr0dDQgLq6Otxxxx1D3v9zn/scampqMHXq1ONm8+PxOB5++GH867/+K4LBIM477zysXLkSv/jFL0b3L5qIaIJinDj+ru/VV1+NK6+8EnV1daf+L5aIqEQwTgwfJyoqKnD33Xejo6MDoijive99L6ZOnYo1a9aM7l80lSaTqIhMmTLFnDt3rrlv3z6zt7fXPOecc8y77rrLNE3TfPPNN82GhgbztddeMzVNM++77z5zypQpZiqVMrds2WK2tbWZBw4cME3TNHfv3m3u2LHDNE3T/Od//mfzxhtvPOn7nnnmmebhw4fNzs5Os6GhwVy8eLH55ptvmslk0lyxYoV59913O9//k5/8xIxEImYqlTL/7u/+zly4cKHztZtuuslZs2mapqZp5oIFC8zPfOYzZiwWM5PJpPniiy+apmmaP/3pT01Zls17773X1DTN/P73v2+2tLSYhmEcs8Y333zT9Pv9Qz73zW9+03zve997Cv+GiYgmNsaJ48eJwe666y7zpptuGvG/VyKiUsE4MbI4YZqmefjwYdPr9ZqbN28e2b9cKgusJKKic8cdd6C9vR21tbW46667cP/99wOwsuof//jHceaZZ0KSJNx0003wer147bXXIEkS0uk0Nm3aBFVV0dHRgenTp5/S+37qU59CU1MTWltbcf755+PMM8/E4sWL4fP5cNVVV+Gtt95yvveWW25BKBSC1+vF3XffjXXr1iEcDg/7uqtWrcLBgwfxzW9+ExUVFfD5fEOGy02ZMgW33nqr8zsdOnQIXV1dx7xOLBZDZWXlkM9VVVUhGo2e0u9JRDTRMU4MHyeIiMjCOHHyOKGqKm688UbcdNNNmD179in9nlTamCSiotPe3u58PGXKFBw8eBAAsHfvXvznf/4nqqurnX/279+PgwcPYsaMGfjWt76Fu+++G42Njbj++uudnxuppqYm52O/33/Mn2OxGABA13XceeedmD59OiorK53+3Z6enmFfd//+/ZgyZQpkefgRYM3Nzc7HgUAAAJz3GiwYDCISiQz5XCQSQSgUGsFvR0RUOhgnho8TRERkYZw4cZwwDAMf/vCH4fF48N3vfndkvxyVDSaJqOjs37/f+Xjfvn2YNGkSAOtif9ddd2FgYMD5J5FI4IYbbgAAfPCDH8RLL72EvXv3QhAEfOELXwAACIKQ1/X9+te/xqOPPoqnn34a4XAYe/bsAQCYpjns+7W3t2Pfvn3QNG1M73vaaadB0zRs377d+dy6des4tJqIyg7jBBERnQjjxPGZpunMS3r44YehKMqYX5NKC5NEVHS+973vobOzE319ffja176G6667DgBw66234oc//CFef/11mKaJeDyOP/3pT4hGo9i6dSueffZZpNNp+Hw++P1+iKL117upqQl79uyBYRh5WV80GoXX60VdXR0SiQS++MUvDvl6U1MTdu3a5fz5jDPOQEtLC+68807E43GkUim8/PLLp/y+FRUVuPrqq/HlL38Z8XgcL7/8Mh599FF8+MMfHvPvREQ0kTBOHJ+maUilUtB1HbquI5VKMflERGWHceL4PvGJT2Dz5s34wx/+AL/fP6bfg0oTk0RUdD74wQ/i3e9+N6ZNm4bp06fjS1/6EgBg2bJl+N///V/ccccdqKmpwYwZM3DfffcBANLpNO68807U19ejubkZR44cwTe+8Q0A1skBAFBXV4clS5aMeX0f+chHMGXKFLS2tmLOnDk466yzhnz9ox/9KDZt2oTq6mpceeWVkCQJf/jDH7Bjxw5MnjwZbW1tePDBB0f13t///veRTCbR2NiIG264AT/4wQ9YSUREZYdx4vi++tWvwu/345577sEvf/lL+P1+fPWrXx3z70RENJEwTgxv7969+NGPfoS1a9eiubkZwWAQwWAQv/rVr8b8O1HpEEy7po2IiIiIiIiIiMoWK4mIiIiIiIiIiIhJIiIiIiIiIiIiYpKIiIiIiIiIiIjAJBEREREREREREYFJIiIiIiIiIiIiAiC7vYDjqa+vR0dHh9vLICIqSnv27EFPT4/by3AV4wQR0fExTjBOEBEdz4liRNEmiTo6OrB69Wq3l0FEVJSWLVvm9hJcxzhBRHR8jBOME0REx3OiGMF2MyIiIiIiIiIiYpKIiIiIiIiIiIiYJCIiIiIiIiIiIjBJREREREREREREYJKIiIiIiIiIiIjAJBEREREREREREYFJIiIiIiIiIiIiApNENBFFo0B/P2Cabq+EiIiK2cCAFTOIiIgAoKcHSCTcXgVRUZPdXgDRKXvzTeC554CqKmDqVKCjA5g+HQiF3F4ZEREVkxdegLFmNXYKA5i2+J2Qpk234kUg4PbKiIjIDY8/DuzaBTQ1Wc8QHR3AtGmA1+v2yoiKBpNENPHs3m39bzgMrF1r/fOe9wDLlwMAdnbH8PquPmw4EEZa1QEArTV+TGuoQIVHhleRUO1XUFvhQV3Qg4CH/xkQEZUibed2bOzagP5UP1JdBzC3cS6ED96IzaEWrNrdi82HosjoBkRBwOTaADrqAwh4ZHhlETUBD2qDHtRVeOBTJLd/FSIiGitNA/bvtz7u6rL+ef114BOfsJJGWbphYn3nAFbt7sOOIzFohglZFNBRX4HJtQH4FAl+RUJNhYK6Ci9qKzzwyGzQodLBp2OaWDQN8V1bYagZhLyDKoc6OvDmvn7815+34aUdPaf0kj5FRF2FF5V+BdGUinBChQlAFIDGSh/aavxYNqUG58yoR7VfgSAIqK3woNInQxCE/P5+RESUF6neLmze8gLC6TAAoCfRgxf2rMN3Hr8Aa7p2nNJrBTwSais8CPkURJIqwkkVACBLAporfWirCeCsabU4c2odKrwSREFAfciLoJe3WURERePgQUBVh34uEAAaGwEAhmHi8bcP4b//sg07u+On9NIhr4zaoAd+RcJAQkU0pUIQBHhkEc2VPnTUB3D2tDos66iFVxYhiyIaQl74PdyEoOLDuxeaWDo7sadnB7oT3aj2VaO9sh3+qkn4p2cP4OG3DgAAgl4Z75jVgKWTa1DlV6CbJvb2xrGnN4G0qiOlGuhPZNAXz6A3nkFKNXBgIIkDA8lj3i6SimHHkRie39oN/HnbkK9VeCS8a04TPnL2FCyZXMOEERFRkUioCTz+5++iPpsgymgGdvXEsFlM4sXu59EauAArZjVi8eRqBDwyVN3A7t449vclkFYNJFUd/QkVffE0+uIZJDI6EpkkgGPjxEBCxZbDUTy9ueuYr1X5FbxnQQs+fNYUnN5SOd6/NhERnciePcd+rqMDEATsOBLDFx5ejzV7+wEALVU+XDirAfNaq+BXJCRVHbu64zjQn0RGN5DIaOiPq+iNZ9CfyCCa1hBNa8e+fhroi2ew6VAEj284fMyX64NeXLV4Ej501hRMqavI7+9LNEpMEtGEEtm6Ht2JbgDAQGoA+we68bi5A4/GgqiQp+Jj583Axy+YhuqAZ0SvZ5om4hkdfbEMwkkVIZ+MmoAHogiouomuSAq7uuN4eWcP1uzpR0Y3oBsmemJpxDM6Hl17EI+uPYjJtQFcNq8ZyzpqMWdSJSZV+Zg0IiJyQUpL4b6196Fm53YA1s35zu4YdMPEoSk1OOO0CG45I4WrTl84ouu0aZqIpjX0xTKIpjRU+RVUBRSIApDWDBwOp7D9SBQvbe/Fus4B6IYJVTfQHU0jnFTx69f34dev78OsphAumdeMxZOrMXdSJRpDvvH+V0FERIMdJ0n069f34e4/bERGM9AQ8uIz75qJDyxtH3ELmWGYiKRUZ1OhOqCg0q8AAFKqjkMDKWw5HMEL23uw+WAEJqzNiyPRFHpiafzvi7vxvy/uxsL2alwytwkL26oxp6USNRUje54hyjcmiWhC2b32OefjgUQG27qi2DI9iOratbhqcRz/b8UlUCRlxK8nCAKCXvm4LQG1FR6c3lKJ9yxoGfJ50zTR2Z/E/av24TerO7GvL4EfvbALP3phFwCgvdaP82c2oMqvQACwfGotzptRD0VivzIR0Xh6fPvjOBI/gqmHB9AdTWNndwwAUBNQsOTC05DqqMXW3o0YSJ2PGn/NSV9PEARU+hRU+o6NLSFYu8DzWqtw1eK2IV8zTRPbj8Twq9f24ndvHcDWrii2duVOWpvZGMS5M+rhUyQokoDzZtRjeUctRJEbDEREeTd4HtEg9x0E7n5tAwDg2mVtuOs9c1DlH/mzBACIooDqgGfYTepKn4LGkA8L26tx3fLJQ75mGCbWHwjjF6/uxeMbDmHd/gGs2z/gfH1eayXOnFoHRRLhU0S8c3Yj5rdWcSOaxh2TRDRhJJIR9G+3LuLRlIqtXVGYJuA/rRnXLGvD/Mbpp5QgGgtBENBeG8DnL52Nv3/3LKze04dnthzBpoMRbDgQxv6+JH79+r7cDzy/E7UVHlw2rxnvW9SK5R1sTyMiyreeRA/Wd62HN5ZC4nDYSRC1VvvRVhvAy+118Mt+fHjhh0eUIBoLQRBwWlMI//K+ebjrPXPwys4ePL+1G5sPRbDxYATbj8Sw/UjM+f7vPLsDLVU+vHdBC963qBXzWqvGdX1ERGVlmHlEb3SlcPerRyCIAr525Xx88MzJx/nh8SGKAha1V2NRezW+euU8/HXbEby4vceJE28fsP6xfevp7ZhaX4ErFrRg5aJWzGgMFnS9VD6YJKIJY/2ax61dAAD7+5IwTSBUH8TyM6ZAEAScO/lcV9YliQLOnFaHM6fVARh6IoJmmIinNTy18TB2dsfxq9f34Vev78PC9mp88bLZWNBWDVEEvDKH1hERjdUr+18BAFQe7sf+fmt+UFuNH201AUTrQvBWVOEjCz+CpmDTiV4m7zyyiAtnNeLCWdZw1IxmYM3efry1vx+mCfTHM3ji7cM4MJB02g7On1mPL1w6G9MbgpBEgSfnEBGNxZ496Ev2IZaJodJbCZ9UgQd7JKBKwDevWYhrlrad/DXGkd8j4dJ5Lbh0ntW9kFJ1vLqrF5sOWkmiw+EUnnj7EHb3xPHtZ3fg28/uwHsWtODvLz4NLVV+yJLAjgXKGyaJaEJQdRV73noezQBiaQ2RlApJFFA9dxK6RREd1R2YFJrk9jIBWEmjxZNrsHhybpf6Hy6ZhU2HInhs3UE8vOYA1u0fwHX3vuZ8vbbCgyl1AdxwxmRcs6SN7QZERKcololh3eF1AID01i5kVB1eWURrtR8AkGprxi2Lb0FdoM7NZQKwkkZnT6/D2dNza/ni5afjrf39eHTtQfz+zQN4cXsPXtz+kvP1hpAXU+sr8LHzpuLdc5vdWDYR0cS1Zw+6Yl3oiluHDBwOp7Cuuh2tzTU4ra0dsUw1gp7iqczxKRJWzGrEiuzmAgD88xVz8OquXjy29iAeW3cQf1p/CH9afwgAIAhAc6UPMxqDuGPFDGfzmmg0mG6kCWF913r4DlgnAhzKnkLWGPIi3mZdAM9pP8e1tY2EIAiYO6kK/3jZ6fjrP1yIv7toJuoqPNkjMAX0xTN4a98APv/Qelz7o1ext/fUjt0kIip3qw6sgm7qAIDUNuumuXnQIQJnX/DBokgQHY8oClg6pRZfed88/PXzK/A353ag0ifDK4uQRAHd0TRW7e7Dbb9Yg4/e9wZ6Ymm3l0xENDFk5xFF0lZVjmmaOBhOYne1jmmTDuN3m3+H/eFj5xUVG1kScf7MBnzzAwvx3OcuxNVLWhH0WnFCAHAonMKL23tw3b2v4e9/sw7x4U5bIxoBVhLRhLD6wBuY0RNBStXRG89AgHXzv665Gg2BBsysnen2Ekeswivjsxefhs9efBoAK1Adiabx0vYefOOJLVi9tx83/d8qPPrJ81AVKMyMJSKiicwwDaw5uAYA0NMVQVt/ApIoOCeI1fhr0TavuDcTBqut8OCfr5iLf75iLgCrjflwJIU/bzyM//rzNjyz5Qhu/flq3H/rWfApbFcmIjqhI0egphJIatZGc288gwFBgF4fwrQG69j5tkp3281O1aRqP/7r2kXOnzXdwMGBFH73Vie+//xOPPxmJ2JpFT+4cSk7FOiUsZKIil5KS6GnZx8kzXB2TuuCHsg+BYlKP85pP2dCD4EWBAFNlT68f2kbnvn7d2DupErs6U3gjvvfhKYbbi+PiKjo9SR6EFetCsz9O3sAAE2VPkjZG+PWqQsAr9e19Y2VJAporfbjb86dir/8v3egtdqPt/YN4EuPvA3TNN1eHhFRcQuHnSoiAOiOptEV9GPxFOsgmSpvFULekIsLHDtZEjG5LoDPvOs0/OGO8xDyyXhqYxe+/ex2t5dGExCTRFT0DkQOwJuwkkPRlFU2WRPwIF3hQ8BTgflN891cXl5V+RXc+5FlqKvw4MXtPfjvp7e5vSQioqLXGel0Po53W8fM12QrMSuUCtQ1T3NlXeOhucqHH314KXyKiIfWdOLXq/ad/IeIiMrZoCSRaZqIpTWEvR5Ma7BmEE20KqKTmdUcwnduWAxRsE5Ee27LEbeXRBMMk0RU9PZH9sMXTzsXdQAI+mSkKryYUjUFslhaXZOt1X5878YlEAXgB8/vxJv7+t1eEhFRUbNnSaRUHeZAHIJgtfYCQI2/BkJ1tYury795rVX4t/cvAAB87U+bsa834fKKiIiKWCTiJImSqg7dMKGHfAhm40SpJYkA4MJZjfjcJbMAAJ9/eD0GEhmXV0QTCZNEVPQ6I53wxlJIqQZ0w4QiifBIItIBL9qr2t1e3rg4a1odbj1/GgwT+Nxv1yGl6m4viYioaNmVRF2RFCrTKio8MsRsG3KltxKorHRzeePifYta8d4FLUhkdHzuoXUwDLadERENxxwYcJJEsWxXgqc+d5JZqT5PfPyC6Vg2pQbd0TT++bGNbi+HJhAmiaiomabptJtF0yoAIOSVIQgC0kFfSWb+bZ+9+DTMbAxiV3ccP3h+p9vLISIqSikthe5ENwDrZJdQWnV2h4Fskqiqyq3ljat/fd881Ae9WLW7Dw+t6Tz5DxARlaFod6dz+mU025UQaLRmEEmChOZgs2trG0+SKOA/PrAQfkXCo2sP4qXtPW4viSYIJomoqPUme5HUkvDF007mP+izbv4zQT9agi1uLm9c+RQJd6+0Trb5/VsHOJyUiGgYByIHnI8Ph1OoSqtOnPBIHnglb8kmiWoqPPj8pVY7we/eYpKIiGg4ke7c9dF+ngg1WhWmLaGWkhtdMVhHfQU+/g5rLt/v3zpwku8msjBJREXNbiHwxtND5hEBQKihDYpU2kfEnzWtDvVBL/b1JbDxYOTkP0BEVGbsOGGaJg5FrEqiUDZOVHorrdMvS7DdzHbpvGYokoBVu/vQHU27vRwiouKi64j1HgYAaIaBpKpDEIBgk1VJVMpdCbaVCycBAP6y6TAyGk9OppNjkoiKmn3zL0eTSGR0CAAqPNbNf30JnVZzPJIo4NJ5TQCAJ94+5PJqiIiKjx0n+hMqMhkNtZoOj2Td3lR6s8mhEq0kAoBKn4LzZzbAMIE/bzrs9nKIiIpLNIpoKgwgV0UkBH0QPdZGczkkiaY1BDG7OYRISsPLO9lyRieXlyTRLbfcgsbGRsybN2/Yrz///POoqqrCokWLsGjRInzlK1/Jx9tSGeiMdEIwTKj91sktAY8MSbSGkTa1nubm0grm8nlWS93jGw6z5YwmJMYIGi+maTpJosPZeUT23DogmyQKBACltKtOL5tnzdN4fAM3E2hiYpyg8ZLqO4K4GgcApytBrq5wvl4OSSIAuCz7PPEE4wSNQF6SRDfffDOefPLJE37P+eefj7Vr12Lt2rX48pe/nI+3pRJnmAaOxI/Ak8wgkbKGVtutZqpXQXtd6VcSAcAZU2tRV+HB7p44thyOur0colPGGEHjJZqJIqklAVgnm4UyuVYzAQJCnlBJVxHZLp7TBFkU8NquPvTG2HJGEw/jBI2XgcN7nY/jdpKozkoShTwhVHlLP0YAwOXzrc2EP2/qgqqz5YxOLC9JogsuuAC1tbX5eCkiRzwTh2Ea8MZTSGvWiQQ+xforq4UCqPZVu7i6wpElEe+ea13Ymf2niYgxgsaLfaQxAERSKipTKnyKBADwK35IolTS84hs1QEPzplRD90w8fTmLreXQ3TKGCdovCR7c2246ew8HrEmAABoCjY5laelbmZTCDMagxhIqHhtV6/by6EiV7CZRK+++ioWLlyIyy67DBs3bizU29IEFk5b/cO+eNq5qHtl66+sVFVbNhd1AFgxqwEAsHpvv8srIRofjBE0GuHsnAkAiKY0VKZVeLJxwif7rC+UQSURMChO7GGcoNLEOEGjkezLJc7t5wmh2koSlUsVkY1xgkaqIOf9LVmyBHv37kUwGMTjjz+OK6+8Etu3bz/m++69917ce++9AIDu7u5CLI2KmL1D7I2nEc9e1D2StUMs1dS5ti43LGirBgBsOBCGaZpllSCj0jfSGAEwTtBQgyuJomkNoUFJIq/ktb5QJkmiwXGCqNQwTtBoqX3WoGbdMKEbJgQBQJWVJHIONygTdpx4m3GCTqIglUSVlZUIBoMAgMsvvxyqqqKn59jJ6rfddhtWr16N1atXo6GhoRBLoyJm7xB74ynnuEbn5r+23rV1uaGp0ouGkBfRlIa9vQm3l0OUVyONEQDjBA1lV5yquoG0qqM6o0KRrCS6V84micqg3QwA5rRUQhSA7UdiSKm628shyivGCRottd/6e5LJjq7wSiLSQavStMpXHpsItvmt1u+7nkkiOomCJIkOH86dyrRq1SoYhoG6uvKqBKFTZ+8Qy9EktGzm37n5r210c2kFJwiCc2HnLjGVGsYIGi07TkSzxxo36IZTaVlulUR+j4SZjSHoholNhyIn/wGiCYRxgkZLH7Baq9LOhrOEdMCKD+VWSTSlLoCQT0Z3NI2uSMrt5VARy0u72Q033IDnn38ePT09aGtrw7/8y79AVa3TqG6//XY89NBD+MEPfgBZluH3+/HAAw+wXYZOymkjCFsn13gk0fl7469rdmtZrpnXWoVntxzB2wfCuGLhJLeXQzRijBE0Xuw4Ecsmier0XAVNuc0kAoD5bVXY2hXFhs4wlkyucXs5RCPGOEHjQlWhx62Tge2uBEWRkMkmicptJpG96fzKzl6s7wzj4jk+t5dERSovSaL777//hF+/4447cMcdd+TjraiM2G0Eop0kknOFbxX1La6syU2sJKKJijGCxovdlhxNq5B1A9VGLknklb2AIAChkFvLK7j5rVV4aE0n4wRNOIwTNB70/j5k9AwAIJM99l0LemGKVoKx3CqJADhJog0Hwrh4TpPby6EiVbDTzYhOVSQdgagbQNwqh7STRKYAhOrLr5JmQVsuSWSXXBMRlSvd0BHLxABY7WbBjAqPLDlf90peIBgExPK51ZmX3UzgUFIiIiDee8j52G43M0JW9UxACUCRFFfW5SbGCRqJ8rlzognFMA1E01F4EmmnPNSbPdlM9XlQGSi/MvqmSh+HVxMRZUUzUZiwEuaxlIbKtAqPZN3WyKIMSZTKZmi1bU5LJSRRwLauKJIZDq8movIW68klieznCbPKD6A8q4iA3Kbz+k5uOtPxMUlERSmatm7+vYnMMSeb6aEgPJLHzeW5hi1nREQWZ24dgGhaQzCjwWufgCmV18lmNmt4dRCGCQ6vJqKyl+zrcj62nyeEUABA+SaJJtcGUOmT0RNLoyuSdns5VKSYJKKiZM8j8g6qJLKTRHJV+VUR2VgiSkRksecRAUA0pSKUVp044QytLqN5RDbGCSIiS6q/GwBgmqbTbiZUW5VE5Ta02iYIghMnuOlMx8MkERUle4fYk0g7F3Uvk0SY02Ltemw5HHV5JURE7hpcSRRL2zOJspVEcnlWEgGME0REtkx/DwBAN0wYpglREGBWlne7GZCLE1sPs+KUhsckERUl++bfG087pxE4N/+1Da6ty20zm4IAgB1HYi6vhIjIXXacSGs6MpqBalWDnD2xplzbzYBcnNjJOEFEZU4b6AOAIc8SmYAVH6p85VlJBPB5gk6OSSIqSnYbgRRNQTdMCAJyN//V9W4uzVVTagNQJAEHBpJIZDS3l0NE5Bq7LTmWsq6FDboBQcjGCbuSqAzbzWY0Zm/+u3nzT0TlTQv3A8CQroR0hRUfyrmSiHGCToZJIipK9g6xGbFO8fLKknPzH6hrdm1dbpMlEVPrKwAAO4/EXV4NEZF77DgRzSaJag3D+Zozk6gMK4maK30IemX0xTPojXEoKRGVKcOAEbXixOD5pk4lUZnOJAKAGQ3WBsqOIzEYBk84o2MxSURFyd4hFiIpAHCONQbKO0kEDM7+c94EEZUvu+I0mtYA00SNnjvy3Wk3K8NKIkEQML2RrQREVN60yABUPQMglyQy/V4Y2WeKkLf84oOtKqCgIeRFSjVwYCDp9nKoCDFJREUpko4Apgkxmk0Sybm/qqH6SW4tqyjMaLBu/rd38eafiMqTZmiIq1Y1ZSylokLV4Mu2JAPZdjOfD/B43Fqiq5w4wSQREZWpaPcB52O73cwIWRsIQU8Qsii7sq5iYccJbibQcJgkoqKjGzpimRiUlApNtdoI7CSRpkiorCzfwdUAMKMpVyJKRFSOoulcJWU0pSGUzp1spogKREEsy1YzG4eSElG5S/Qedj62B1fzZLMcxgk6ESaJqOjYu8PeRDrXQ5wtDTWDzPw7mX8OmyOiMhXL5K5/8YyOUFpz4kQ5D6222XFiJ+MEEZWpVH+387FqVxJlk0QhT/nGB9sMtiXTCTBJREXH3iH2JjJQdWuYmke22gjEqmq3llU0pjVUQBSAvb0JJ4lGRFROoplcJVE8rSGYUaFkK4k8UrbFjJVEbEsmorKV7ssliexKIsFOEpXxPCKbnSTafoQzTulYTBJR0bF3iL2JtHNRV7I7xEwSAT5FQnttALphYk8vTzgjovIzuJIokcm2m0lHJYnKuJKorSYAjyzicCSFaEp1ezlERAWnhvsAAIZhQjdMCACQTRIFPUH3FlYkBlcSmSZPOKOhmCSiomPvEHsSaac81E4SKVW1rq2rmMxkiSgRlTG74tQwTCRUHSFVgyJZFafOyWZlXEkkiQKmOy1n3EwgovKjDvQCwJAN50yFFR/YbgY0BL2o8iuIpDR0x9JuL4eKDJNEVHTsHWJPPA01e2F3BpLW1Lm2rmJiH2/MVgIiKkd2nEhkdMAE6jQdgmAliVhJZHFaCbrYSkBE5ceIhAHAeZZQZBHpQO50s3InCEKumojPE3QUJomo6Ng7xGIkCROALAoQszf/3pp6F1dWPDiUlIjKmV1xGktbJ2DWabrzNc4kssxgJRERlSvThBEeAIAhh+BkskkiziSy8HmCjodJIio6zqyJaApArtUMAHy1jW4sqehMra8AAOzlTCIiKkN2nIhnrCRRjc4k0dE66gMAGCeIqAylUtDSSQBwDsERPRJUr3VCMiuJLB3Z54k9vQmXV0LFhkkiKjr2DrEUsS7udqsZAARqm11ZU7GZUseLOhGVL7viNJ7W4NF0VCA3dNMrewFJAgIBt5ZXFDoYJ4ioTGnhfmiGtYlgzyTSgj5AECBAYJIoq6OOmwk0PCaJqOjEMjFIqg4zlQGQqyQyBQEV1Q1uLq1o1Ac9qPBICCdV9Mczbi+HiKhgDNNAQrUSH/G0jmBGc042A7KVRKEQkG1TLld2kmhvb5wn1xBRWUn0HnY+tg/B0YM+AEBACUAU+AgM5Dadd/cwSURD8b8QKiqmaSKWiWVPNrNuau0Ta9IBD0L+KjeXVzQEQRhUIsoLOxGVj1gmBjNbORTPaAilVWczQRZl6+a/zFvNAKAqoKAmoCCR0dEd5ck1RFQ+Ej25JJFdSWSErCQR5xHl2G3J+/uS0A1uJlAOk0RUVBJqAoZpwJtIOxd1u91MD1bkZk3QoF1ithIQUflw5tYBSKQ1VKZVeGSebDYctiYTUTlKD/Q4H9unm5lVfgCcRzRYwCOjMeRFRjdwKJx0ezlURJgkoqJizyPyxtNOeai9QyxWVbu1rKJkZ/9ZIkpE5cSeRwQA8YyOUCZXSeSVrJNrWElksQ852MM4QURlJN3f7XxsJ4mEKuu+OeThJsJgTmdCDzcTKIdJIioq9s2/N5nJVRJlb/6lymq3llWUptTxhDMiKj/2ZgJgDa4ODmo348lmQ03JDiVlWzIRlZNMfy8Aa4yFfbqZEGIl0XA6GCdoGEwSUVGx2wi88bST+Vey7WZKTZ1r6ypGPLmGiMqRHSdM00QiW0nkYZJoWGxLJqJypA/0AYCTIFIkESpnEg2Lm840HCaJqKjYO8SeeOqYSiImiYay282Y+SeicmJXnCZVHYZpolbTIYpHzSRikghAro2AbclEVE708ACA3NBqRRKQDljtyKwkGmqqEye4mUA5TBJRUbF3iKVoCqYJSKIAKXvz761pcHNpRach6EXAI2EgoWIgkXF7OUREBWHHiXhaBwDUabrzNa+cnUnEwdUAcm0Ee3vjME2eXENEZUBVYSSsOOHMN5UlZPzWJgJnEg01ZVCcILIxSURFxd4hFiLWhH17zgQA+GsaXVlTsRIEYVCJKLP/RFQe7IrTeFqDaBioMgznax7JAwgCk0RZ1QEPqvwK4hkdPTFuJhBRGYhGkdbSAHKVRGqFF2Z205mVREM5zxJ9CRgGNxPIwiQRFZVYJgZBNyAkrIu7IgnO1wJ1TW4tq2hNZcsZEZUZp5IooyGU0YZsJngkD1BRAUiSW8srOs7JNYwTRFQGjPAAVEMFkDvZTK/wOl/nTKKhgl4ZDSEvMpqBQ5GU28uhIsEkERWVaCYKTzIDVR06jyjjUxAMVLu4suJkZ/95bCURlQPTNIe0m4XS6pDNBI/k4Tyiozgn13AuERGVgUTvYefjTLbdTM+ebOaTfZBF2ZV1FTOnNZlxgrKYJKKiYd/8exPHnmyWDnjZQzyMDvYRE1EZSagJGKYVH+JpDaG0Ck82TkiCZN38s9VsCLYlE1E5SfV3Ox/bp5sZldmTzfgsMawpPDGZjsIkERWNjJ6BZmjwxgclibKVRFqFHz7Z5+byilJ7jZUk6uxPurwSIqLxF1dzCfGEqiM4qN2MJ5sNr73G2kHv7OfNPxGVvnTf4CSR9TxhVlrXQc4jGl7ueYJxgixMElHRSKjWhcmqJLIy/0p2yBwqKyEIwvF+tGy18aJORGXEjhMAkMxY7WZyNk4okmJ9gUmiIdq4mUBEZUQb6HM+tpNERjZJFFACrqyp2LU5mwmME2RhkoiKRi5JlIGWPa1Gzu4Qi1XVbi2rqLVU+yAKwOFIyum7JiIqVcckiTKqU0mkiEwSDYc3/0RUTgYnibTsaV1iNklU4alwZU3Fro0Vp3QUJomoaNhtBEMqibIDSZkkGp4iiWip8sMwgUNhPgAQUWmLZ3LtZklVR2V6UJKIlUTDaqnyQRIFdEVTSGu628shIhpXergfAGCYJvRskshkJdEJtdda/172czOBspgkoqLhVBLF09COmkkkV9W4tq5i18pdYiIqE3acME0TKVVHMKNCzm4mOJVEHFw9hCyJaKnywTSBgwM83piISphhwIhGAQCas+EsIlPhBcAk0fE0VfogiwK6o2mkVG4mEJNEVETsHeLBlUT2rAlPTb1r6yp2LBElonJhV5ymNQOGYaBa1SFm59VxcPXxMU4QUVmIxaBqaQC5eUSaT4EhSwCACoXtZsORRAGTqq04cWCAm87EJBEVkYSaAEwTcjwFwzQhCNZFCwCU6jqXV1e8OJSUiMqFXUmUzOioUDV4Bp1noEgK4PMBHo9LqytejBNEVBYiEaiGCiBXSZQJ5GICK4mOj/PraDAmiahoJNQElJQKPVvmKIsiBEGALkvwB6vdXVwRs4833t/HHWIiKm1OkkjVEUxrTksykG03Y6vZsOzjjRkniKikRaNQdStJpGYPwclU+JwvM0l0fIwTNBiTRFQ04moc3mRmUA+xtUWcrvDyNIIT4A4xEZULuy3ZPtnMnkcEZCuJ2Go2LO4QE1FZGFJJlG03y84jAni62YkwTtBgeUkS3XLLLWhsbMS8efOG/bppmvj0pz+NGTNmYMGCBXjzzTfz8bZUYhJqAp5E2ukhlkXrr2fa72Hm/wR4UaeJgHGC8mFoJZEKRWQl0UhwJhEVO8YIygc9PADN0ADAmW+qBXOVRH7Z78q6JoK2WsYJyslLkujmm2/Gk08+edyvP/HEE9i+fTu2b9+Oe++9F5/4xCfy8bZUYuKZuHWymTG0kigT8HLQ3AnweGOaCBgnaKxM03SSRImMjlBGG1JJ5JE8TBIdR1stK06puDFGUD5kBnqdj+1NZyNkJYn8sh+SKLmyromAnQk0WF6SRBdccAFqa2uP+/VHH30UH/nIRyAIAs466ywMDAzg0KFD+XhrKiEJNQFvMpOrJMrOmkhXeFlJdAI83pgmAsYJGqu0noZuWonwlKojlFadmUSiIEIURLabHUdz9njjIzzemIoUYwTlQ6a/x/nY3nQ2QlaFDJ8lTqzdSRKxkogKNJPowIEDaG9vd/7c1taGAwcOFOKtaYLQDA1pPQ1PIn3MTKKM3wu/wvLQE2ErAU10jBN0MnYVEWDNJAoOmkmkiAoEQWAl0XHweGOa6BgjaCTUcH/u4+ymMyqtSiImiU6sMeSFIgnoiWWQzHAzodwV1eDqe++9F8uWLcOyZcvQ3d3t9nKogOybf2/82JlEQmWltUNMx8USUSoXjBPlyx5aDQAJVUcwozkziRRJsb7AJNFxcX4dlQvGifKlDUoS2ZvOqLSufRxafWKiKKDV2UzgpnO5K8iTd2trK/bv3+/8ubOzE62trcd832233YbVq1dj9erVaGhoKMTSqEg4SaJhTjcTq6rdWtaEwUoimugYJ+hkTlZJBIBJohNgnKCJbKQxAmCcKFvpNPRkbjNB1Q3oggA5xEqikbI3nfdzM6HsFSRJtHLlSvz85z+HaZp47bXXUFVVhZaWlkK8NU0Q9s2/J5GGagydSSRX1bi2ronCuaj38aJOExPjBJ3M4CRRJqUioOrOTCJFUgBBAIJBt5ZX9BgnaCJjjKCTikahGioA66ADzTAR98jweWQATBKNhLOZ0MfNhHIn5+NFbrjhBjz//PPo6elBW1sb/uVf/gWqav1Hevvtt+Pyyy/H448/jhkzZiAQCOCnP/1pPt6WSkg8E4eoG/CkVOfISkUSYAqAt6rO5dUVP7s89CBnTVCRYpygsYqruR1iKW4N6bcriTySx0oQiWxNPh7GCSpmjBE0ZtEoMnoGQG5odcLvQbVoxQmelHxyuXYzHoRT7vKSJLr//vtP+HVBEPC9730vH29FJSqhJuBJZi/sg2YSqT4P/D7uDJ8Mb/6p2DFO0FjZlUSqbsCfzEAQAEkY1G7GVrMTmsQ4QUWMMYLGLBqFqluJRXt0hRrwOl9mJdHJMU6QjVtuVBTiahyeRNopDwWsSqK038NBcyPQXOWDIACHI6ncaQ5ERCXEHlydzOgIpVUoomidaIZsu1llpZvLK3p2GwFPNyOikhSJOO1m9r2wWpFLEvF54uRaGScoi0kiKgoJNQFvPO0kiGRRgCAIyAS8zPyPgEcW0RjywjCBrghLRImo9NiVRMnsyWZ2qxnASqKRaKq0NhO6uJlARKVocCWRYSeJfM6X+TxxcuxMIBuTRFQUEmoC3mTGuXG1h1anK5gkGimnj5gnEhBRCXKSRNmTzeyh1UC2kohJohPyyCKaQj4YJnA4zM0EIioxgwZX2/NN9RDbzU6F3ZnAzQRikoiKQjxjtZvZPcRKdshc2u/hoLkRcvqIw0wSEVHpsQdXJ1Wr3UwWc5VEHsnDdrMRmFRt7apzl5iISo0ZDg+aSWQlOIyg3/k6nydOTpG4mUAWJomoKCTUBLyJYyuJ2G42ck4fMSuJiKgEDa4kCmW0oZVEbDcbkdYaK55y3gQRlRo13A8T2YHV2U1no9JKjCuiYlWc0klxLhEBTBJRkYircXgT6SFDqwGr3YyD5kaGx1YSUalSddU52jihWu1mg2cSyaLMJNEIsJKIiEqSaUIN9zl/VLMzicyQdW/MZ4mR4wlnBDBJREXANE0k1SQ8ifSxM4n8HlYSjVAuScSLOhGVFruKCABSac063SwbJxRRsU45Y5LopNoYJ4ioFMXj0NS080dNN5GWRHgCHgCcR3QqOOOUACaJqAiktBRM04A3kTlmJpEZClo7xHRSzPwTUalKarnrmpHIQDZMZyaRIimAogA+3/F+nLImseKUiErRoKHVgDWTKOpV4FckAEwSnYpWu+KUM07LGpNE5LqEmoCs6pA03Wk3kyURhiRCqeAg0pEaPJPINE2XV0NElD+DK4mkuJXgkAdVEiEUAgRh2J+lnFycSJzkO4mIJpBo1BlaDQCqYSLmUeBTrDjhl/3H+0k6ih0nOllJVNaYJCLXJdQEvHGrRNQ+jUAWBavVjD3EI1bpUxDyykiqOgYS6sl/gIhoghicJJJj2STR4Eoinmw2IrmK0xQ3E4iodEQiR1USmYh5ZPhYSXTK2JlAAJNEVASSmjWPCLAy/wAgSwJPNhsFnkhARKUoqeauaZ6YFS+UoyuJ6KQqfQpCPmszoZ+bCURUKqJRaIYGADBME4ZpIurzwCtbcYLPEyM3eMYpNxPKF5NE5LqEmoA3cVQlkSQiXeGFX2F56KmYxKGkRFSC7Eoi0zShZOOFXUkkizIriU5BK3eJiajURCJOu5k931QNeKxDDQA+T5yCUHYzIaUa3EwoY0wSkeuSahLehHW0sT2TSLHbzZj5PyU8kYCISpE9uDqjGwimVIiCAHFwuxkriUbMjhOcN0FEJWPQ4GrNsDacMxW5wwz4PHFq+DxBTBKR6+xKItM0oWeTRJIoWJVEHDR3Sux2M+4QE1EpsSuJUhkDwYwKWcoNqVZEziQ6FZw3QUQlZ1AlkZqtJNKCXufLfJ44Na3sTCh7TBKR6xJqAp5EOneymShAEDiTaDTYbkZEpchOEiVVHaG06rSaAawkOlWcXUdEJWdwJVF2dIUWZCXRaDFOEJNE5LqkloQ3nh4yjwgA0kwSnTLOmiCiUmQPrk6pOoIZzRlaDbCS6FSxkoiISoqqAsmkM7haM0wYggCw3WzUGCeISSJyXUJNwJvMOOWh9g5xOuDhoLlTxPJQIipFdiVRJqWiQtWGVBLJkgIEg24tbcJhnCCikhKNwjTNIYOr4x4ZXq/kfAufJ04NZxIRk0TkulQqDiWVyQ2tzs6aYLvZqWsMeaFIAnpiGaRU3e3lEBHlhT24GtEUgFzFKQDIoWpAkob5KRoOK06JqKREItBNHSays4gMA1GPDL9ixQVZlK2KUxoxp5IozDhRrpgkItepkX4IZq6HWBZFqF4FhiQySXSKRFFAc5VVXssHACIqBbqhI6VZySExal3Xhswkqq5xZV0TFTcTiKikRKNOFRFgDa6OehX4skmigBKAIAjH+2kaRlsNK4nKHZNE5CrTNGGEBwAgN7hask42A3gawWjkdolTLq+EiGjsnCoiAGIsDQDO6WayKEOsqnZjWRMWNxOIqKREIs7QasCqJIp5ckkiPkucuoagtZnQG+dmQrlikohcpRoq5Lh1k6oOGlyd9nsgCRI8ksfN5U1IuRPOEi6vhIho7Oyh1QCgxKzktz24WhF5stlocC4REZWMaNQZWg1YM4miXgV+T66SiE6NKApoqWKcKGdMEpGrEmoC3oS1M+xUEolWJZFf8bM8dBTanJt/VhIR0cRnD60GADmenUkk5iqJeLLZqePJNURUMiKRIe1mmmEi5pHhV6zHXA6tHp1J1aw4LWdMEpGrkmoSHjtJpOcGV3No9ehN4okERFRCBrebeZx2s2wlkcRKotFoY5wgolIRjQ5tN9ONY2YS0alrrbb+vTFOlCcmichVCTUBb9yuJMoNrk4zSTRqrTXcISai0jG4ksjeVLAriRRRYSXRKExixSkRlYpBlUSmaUIzTEQ9Cnwyk0Rj0cpKorLGJBG5KqEm4E1mAFinEQDZwdUBDwfNjdIkzpogohIyOElkxwuFlURjYm8mcHYdEU1opjmkksgeXZGp8EDMbibweWJ07DjRyeeJssQkEbkqqSVzlUQ6K4nywR5IeiichJENlkREE5U9uFrTdARSGQgCkL33ZyXRKE3iKZhEVAriccAwnMHVmm4iLYmQfLmDb/g8MTqcXVfemCQiVyUycXiSaac8FLAqiTIBLwfNjZJPkVBX4YGqm+jOzu8gIpqo7EoiPZaBbJiQRdE51EDy+gCv183lTUjcTCCikhCNAoDTbqYZQ+cRARxcPVo8BbO8MUlErkrHI5A0A3r2JlUSBUCWoHplZv7HINdKwAs7EU1s9uBqM2L9rz2PCACkqhqAp2CeMm4mEFFJsJNEdruZbiLmUeAflCTi88To2JVEh8Mp5zmNygeTROSqzEAvgFwPsSwKSPs9gCDwoj4Gk6p4cg0RlQZnJlEsmySSckkhuarGjSWVBGfeBOMEEU1UR1USqYaBmEceUknE54nR8SkS6oPZzYQoNxPKDZNE5Cot3A8AUO15RJKITMBqHeCgudHjCWdEVCrsJJEQtebnKGLu1kWuZpJotOzNBMYJIpqwhqkkinqHVhLxeWL0eBhO+WKSiFylRwYADK0kyvitYXPM/I8eL+pEVCrswdVizEoSDa4k8lTVurKmUsC2ZCKa8KJRGKYBw7Q2mzXDzFYSWY+4AgT4ZJ+bK5zQOJeofDFJRK7SI2EAVuYfsG7+0wEmicaqlScSEFEJME3TmUkkOUmi3K2Lt6relXWVAp5cQ0QTXjTqtJoB1knJMY8Cn8eqJAooAeegAzp1jBPlS3Z7AVTmsmWiWrbdTBEHtZuV2WkEqqqis7MTqdTYjyRuMQ3878oWKJKAzZs352F15Bafz4e2tjYoiuL2UogKLq2nnR1iOTtg2R5cLQpi2bWb5TNOLA7p+N+VLfArGuPEBMc4QWUrFnNazYDs4Gqv7LSblduzBJDfOHFpq46zVrYg6I0xTkxgo4kRTBKRazJ6BkIsBgBQB1USRf2esiwP7ezsRCgUQkdHx5h3PTTdgHAoAkkUcPqkqjytkArNNE309vais7MTU6dOdXs5RAUXTUedj6VskkjJVhIpogKEQq6syy35jBOJjIYdR2LwKRJOayqvf4+lhHGCylo0ioyecf6o6gZiSm4mUTl2JeQzToSTKvb2xlHpU9BRX5GnFVIhjTZGsN2MXBNJR+BNWBf2jK4DADyyVUkU8oYgCuX11zOVSqGuri4vZbGSKEAUBOiGCd0w8rA6coMgCKirq8vLbhDRRBRJR5yPpYSVJPLIVmzwyt6ySxLlM054ssk2++AImpgYJ6hsGQYQiyGt5U7eSusGYl4ZIZ9VB1HprXRrda7Jb5ywXiPDODFhjTZGlNdTOBWVSDoCT/amP61ZFx+vLCHj95TlRR1A3vqmBUFwdtvtKi2amNhLT+XMSRKZptNu5iSJJC8QDLq1NNfk65rAzYTSwThBZSkeB0wTad2KDaZpIiKI0EURQW/5JomA/F0TFG4mlITR/H1gkohcE04OwJvMVhJlk0QeSUQ64EGVly1SY6XY2X+NF3YimpjCaetwAzmlQtc0AIA3e9Pq8QcBr9e1tU10gzcTMtxMIKKJJjvXNKVZFRKqbiKqWPOI7AMO+DwxNtxMKF9MEpFrotEeiLoB0zSdMkbZK0PzyGWb+c8ne7d9pNn/PXv2YN68eWN+3+effx6vvPLKmF9nOPfddx8OHjx40u+54447TvpaF154IVavXp2vpWHt2rV4/PHHnT8/9thjuOeee/L2+kTlyK4k0sMJmKY1tFrMDq6Wq2vdXFpJsDcT1BFuJjBOjA3jBFEeZZNEdrtZRrNazYK+3MhdPk+MzWg2ExgnxqZY4gQHV5Nrkn1H4AWgGaZz869VeAFBKNuL+t3P352314qlNcTTGgIeCSHfsdPs774wf+812PPPP49gMIhzzjkn76993333Yd68eZg0aVLeX3us1q5di9WrV+Pyyy8HAKxcuRIrV650eVVEE1suSWQdv2snvwHAU6ZJonzGiUhSRVLVEfLJCHiOvSVknMgvxgmiPMoefmO3m2V0HXFFRsibu+fl88TY9ScyyGgGqv0KvNmB4EPei3Eir4olTrCSiFyT7D8CIDePyB5aDZTvRT2fpGz/6alUh2qahhtvvBGnn346rrnmGiQSCQDAmjVr8I53vANLly7FJZdcgkOHDgEAvv3tb2POnDlYsGABrr/+euzZswc//OEP8d///d9YtGgRXnzxxSGvf/fdd+Omm27C+eefjylTpuB3v/sdPv/5z2P+/Pm49NJLoarWMaZf+cpXsHz5csybNw+33XYbTNPEQw89hNWrV+PGG2/EokWLkEwm8cYbb+Ccc87BwoULccYZZyCa3VU6ePAgLr30UsycOROf//znT/p733///Zg/fz7mzZuHL3zhC87nn3zySSxZsgQLFy7ERRddBABYtWoVzj77bCxevBjnnHMOtm7dikwmgy9/+ct48MEHsWjRIjz44INDdiD27NmDd77znViwYAEuuugi7Nu3DwBw880349Of/jTOOeccTJs2DQ899NDI/88iKgPhlNVupg2TJPJVN7iyplJiV2XpxsjbzRgnGCeIikI0CtM0nUqitGYg6lVYSZRn9vOEbjJOnEwpxQkmicg16f4eAIPmEcnWPCIAqPKxh3isJPHUL+pbt27F3/7t32Lz5s2orKzE97//faiqik996lN46KGHsGbNGtxyyy246667AAD33HMP3nrrLaxfvx4//OEP0dHRgdtvvx2f/exnsXbtWpx//vnHvMfOnTvx7LPP4rHHHsOHPvQhrFixAhs2bIDf78ef/vQnAMAdd9yBN954A2+//TaSyST++Mc/4pprrsGyZcvwq1/9CmvXroUkSbjuuuvwP//zP1i3bh2efvpp+P1+AFYW/sEHH8SGDRvw4IMPYv/+/cf9nQ8ePIgvfOELePbZZ7F27Vq88cYbeOSRR9Dd3Y1bb70VDz/8MNatW4ff/va3AIDZs2fjxRdfxFtvvYWvfOUr+OIXvwiPx4OvfOUruO6667B27Vpcd911Q97jU5/6FG666SasX78eN954Iz796U87Xzt06BBeeukl/PGPf8Sdd9454v+viMqBM7g6bN1gegclifw1jW4sqaSMZjOBcYJxgqgoRKPQTR26aZ2QnNEMxDy5k81EQUTQU36HG+TbaDYTGCcmfpzIS5LoySefxKxZszBjxoxhe+buu+8+NDQ0YNGiRVi0aBF+/OMf5+NtaYJTw30Ahg6tzvitJBEz/2OXbSE+pYt6e3s7zj33XADAhz70Ibz00kvYunUr3n77bVx88cVYtGgRvvrVr6KzsxMAsGDBAtx444345S9/CVkeWffqZZddBkVRMH/+fOi6jksvvRQAMH/+fOzZswcA8Nxzz+HMM8/E/Pnz8eyzz2Ljxo3HvM7WrVvR0tKC5cuXAwAqKyudNVx00UWoqqqCz+fDnDlzsHfv3uOu54033sCFF16IhoYGyLKMG2+8ES+88AJee+01XHDBBZg6dSoAoLbWam0Jh8P4wAc+gHnz5uGzn/3ssGs72quvvooPfvCDAIAPf/jDeOmll5yvXXnllRBFEXPmzEFXV9dJX2uiYpygU5XW0rlTa6LWYFKPZJW6CxDgq6l3bW2lYjSbCYwTjBPjhXGCTkk06lQRAXaSSBlyshlP/hu70WwmME5M/Dgx5plEuq7jk5/8JP7yl7+gra0Ny5cvx8qVKzFnzpwh33fdddfhu9/97ljfjkpEWkvneok1awfAK4tIB7zM/OeJaF/UTROmaY4oUB79PYIgwDRNzJ07F6+++uox3/+nP/0JL7zwAv7whz/ga1/7GjZs2HDS9/BmTyMSRRGKojjvKYoiNE1DKpXC3/7t32L16tVob2/H3XffjVQqddLXHe49AECSJGjZU5Hy4Z/+6Z+wYsUK/P73v8eePXtw4YUXjun1Bq/VPIUHtYmEcYJGw6kiAiDYSaJsJZFH8kCsZMXpWI1mM4Fx4uQYJ04d4wSdsmjU2UgArHazmDdXScQN5/wYzWYC48TJFXucGHMl0apVqzBjxgxMmzYNHo8H119/PR599NExL4xKWyQdgSdhD5qz280kpP0eBD1BiAI7IcdKEIQhiaKR2Ldvn3Px/vWvf43zzjsPs2bNQnd3t/N5VVWxceNGGIaB/fv3Y8WKFfi3f/s3hMNhxGIxhEIhp5d3NOwLeH19PWKx2JC+2sGvPWvWLBw6dAhvvPEGACAajY7q4n3GGWfgr3/9K3p6eqDrOu6//3684x3vwFlnnYUXXngBu3fvBgD09VmVb+FwGK2trQCsXc3h1na0c845Bw888AAA4Fe/+tWwZbOljHGCRiOcDjsfS7GhSSKv7AVCIVfWVUqO3kwYCcYJxonxwDhBpywaRUrLPfRn9GMriWjsRrOZwDgx8ePEmJ/EDxw4gPb2dufPbW1tOHDgwDHf9/DDD2PBggW45pprTtjPR+Uhko7Am8gAGDqTKBPwosrL3eF8cbL/IywRnTVrFr73ve/h9NNPR39/Pz7xiU/A4/HgoYcewhe+8AUsXLgQixYtwiuvvAJd1/GhD30I8+fPx+LFi/HpT38a1dXVuOKKK/D73/9+2EFzI1FdXY1bb70V8+bNwyWXXOKUfwLWYLbbb78dixYtgq7rePDBB/GpT30KCxcuxMUXX3zKOwQA0NLSgnvuuQcrVqzAwoULsXTpUrzvfe9DQ0MD7r33Xlx99dVYuHCh0xf8+c9/Hv/4j/+IxYsXDwkiK1aswKZNm5xBc4N95zvfwU9/+lMsWLAAv/jFL/A///M/p7zOiYxxgkZjcCWRHLc2FeyZRD7ZxyRRHoxmM4FxgnFiPDBO0CkxDCAed9rNTNN0ZhLZg6v5PJEfo9lMYJyY+HFCMMdYj/TQQw/hySefdPqCf/GLX+D1118fUgra29uLYDAIr9eLH/3oR3jwwQfx7LPPHvNa9957L+69914AQHd39wn7/mhie+vQWzj8tX+EP5bCW/v6kdYMLGyvxoYPnIWpM8/AB+Z+wO0lFtzmzZtx+umn5/U19/UmMJDMoL0mgJoKT15fmwpnuL8by5Ytw+rVq11a0alhnKDReH7P83h+z/MwDQPerzwC0TBxRkctRFFAe2U7pn/zx8Cg8upyMB5xYseRGBIZDdMags4OPE08jBM5jBNlIBoF/vM/saVnCw7HDiOjGXj5YAT/e+F83HbBdADAZTMuw5ltZ7q80MIbjzix+VAEqm5gdnMIHlnK62tTYZxqjBhzJVFra+uQTH5nZ6dTOmWrq6tz+uQ+9rGPYc2aNcO+1m233YbVq1dj9erVaGjg0balLJIKw5vMWJl/fdDg6oCX5aF5pMhW9j8z0lIionHAOEGjYVcSqdE0RMOELArOKStKIFh2CaLx4sn2Eqga4wS5h3GCTkm2HceuJEpr+pBWM4DtZvmkZONERivNmWh0rDEniZYvX47t27dj9+7dyGQyeOCBB7By5coh33Po0CHn48ceeyzv2U2aeKKxXoi6AVU3YZqALAoQFAmaIvGinkfOzT+TROQixgkajXDKmkmkDiQA5OYRAYBSVevKmkoRNxOoGDBO0CmxD7/JDq7OaAbiHhlBn+J8C58n8ofPE+VnzHXFsizju9/9Li655BLouo5bbrkFc+fOxZe//GUsW7YMK1euxLe//W089thjkGUZtbW1Q4YzUXlK9B9BEIOHVovI+BRAEFDlYw9xvuQy/7yok3sYJ2g07EoiLZoEkJtHBAC+SiaJ8oU3/1QMGCfolMTjME3TqSTK6AbiHg9CgyqJ+DyRP9xMKD95aT6//PLLcfnllw/53Fe+8hXn42984xv4xje+kY+3ohKRCvcCGDq0WvVZM3OY+c8fe+dd1VkeSu5inKBTZSeJ9LCVJBo8B8FXVefKmkoRNxOoWDBO0IjF49BNHbqpA8hWEvlyQ6slQUKFUuHmCksKNxPKD88ZJ1ekBuwkkXVx90giMn4mifJNkazMv6obIz6RgIjIbSkt5bQRGDHrlBH7JlWAAG81k0T5onAzgYgmmlgMKS13AlVaM5DwyE4lUcgbgpA9lYvGjpsJ5YdJIiq4pJoE4tle4uzFxitLyPgUiIKIoCfo5vJKiiSKkEQBhmlCN/gAQEQTw0BqwPnYiFjJIrvdzCN5IAZDbiyrJHm4mUBEE008PiRJlNEMxBUZoexMIm445xc7E8oPk0RUcP2pfnhSKgAgpVpJIp8iQvV7UOWtgijwr2U+Odl/logS0QTRn+x3PjbtmUSKdS3zK36ggm0E+cLNBCKacI5KEqVUHXGPjKqAlSSq8dW4tbKSxM6E8sOncSq4/mQ/lGQGgHVkJQB4FQkZvwe1fg4jzbdcH3HhL+qaphX8PYlo4utP5ZJEiFuVRD7Fmknkl/1AkBWn+eTmZgLjBBGdsljM6kwAoBsmNMNE2iujwmPFCT5P5JfbmwmME4WXl8HVRKeiP9UPTzKTPZUgW0mUPd2s2c/MP+6+O68vV5tS4c/okL0yYJ/6cJz3+NrXvoaf/exnaGxsRHt7O5YuXYo//vGP+I//+A8sW7YMPT09WLZsGfbs2QNd13HnnXfi+eefRzqdxic/+Ul8/OMfx/PPP49/+qd/Qk1NDbZs2YLrr78etbW1+MxnPgMAuOuuu9DY2Ii/+7u/y+vvSUSlw64kSqk6lFQGoiBAFq2dTJ/sYyVRnuNEYyKDtGZA9CtANhnHOEFERWtQJVFKtTac5Uq/M4eohs8TeY8TzbE0NMOEWeEBshsLjBOli0kiKrj+pNVuphlWNloSBUiiANXnYXnoOJCyAdM4SXnomjVr8MADD2Dt2rXQNA1LlizB0qVLj/v9P/nJT1BVVYU33ngD6XQa5557Lt797ncDAN588028/fbbmDp1Kvbs2YOrr74an/nMZ2AYBh544AGsWrUqf78gEZUcu5IonFRRk9HgU0Tn5p/tZvknZhNwJ9shZpwgItcZBpBIIKlZlUT2hrNS6Xe+hc8T+SeJgvPspkjH/z7GidLAJBEVXH+qH/WpjJP598rWzX/G72HmfxxII7z5f/HFF3HVVVchEAgAAFauXHnC7//zn/+M9evX46GHHgIAhMNhbN++HR6PB2eccQamTp0KAOjo6EBdXR3eeustdHV1YfHixair48lERHR8diVROJFBq6rBmx1GCmQridhullcj3UxgnCAi1yUSMA1jSCVRSpYQDHqdb+HzRP6NdDOBcaI0MElEBdef7MeklIoBu9Usm47O+BRm/seBmL3510c5aE6WZRiG9f9VKpUbEmiaJr7zne/gkksuGfL9zz//PCqO2uX/2Mc+hvvuuw+HDx/GLbfcMqp1EFF5MEzDOd0sHk1DNkz4lNwIRZ8vBHg8Lq2uNI10M+F4GCeIqGDicWT0DAzTuuakNQMJRUaV39pMUEQFFQqrTfNtpJsJx8M4MbFwcDUVlG7oiMT7IGc0pAdVEpkCoHkVZv7HgX3zb5xkHukFF1yARx55BMlkEtFoFH/4wx8AWJn7NWvWAICT5QeASy65BD/4wQ+gqtZJddu2bUM8Hh/2ta+66io8+eSTeOONN44JAkREg0XSEeimFR/UgQQAwCtbmwmSIEEJVQHZm1XKD2cz4SRJIsYJInJdPO60mgGDTjbLJolq/DVOezLlz0g3ExgnSgMriaigwukw5KR1Uk1qUCWR6vPA5wlYbQTlLs+D5kTTxJGDEZimibpJVU656NGWLFmC6667DgsXLkRjYyOWL18OAPjc5z6Ha6+9Fvfeey/e8573ON//sY99DHv27MGSJUtgmiYaGhrwyCOPDPvaHo8HK1asQHV1NSTpBI3MRFT27FYzANAi1oOAN1tJ5Ff8EEIhV9ZVVPIcJwTdQNehCGRRRN2kyuN+H+MEEbkuFnNazQCrkiheMShJxK4ES57jhJ7W0NUdg1+RUN10/DjMOFEamCSigrKHVgMYUkmU8bGKaLwIggBFEpDRTGR0Az7x+BfVu+66C3fddRcA4O5scJk9ezbWr1/vfM9Xv/pVAIAoivj617+Or3/960Ne48ILL8SFF1445HOGYeC1117Db3/72zz8RkRUyuyh1QCgZ5NEvmwlEU82Gx+yKEAQBGiGAcMwj7uZADBOEJHL4nEkVSs2WCcl60goEloHVRJR/nlka7NG1U/ebsY4MfGx3YwKqj/VD08yAwBIqUMriZj5Hz8eyb6wn6TnbBxs2rQJM2bMwEUXXYSZM2cW/P2JaGKxK4l0w4QZsypPnUoimSebjQd7MwEAMowTRFTM4nGnkiijGzBNQK/wQcne69b6a91cXck6ejOh0BgnCouVRFRQ/cl+KKkMDNN0bkQ9soiw34M6Zv7HjTKKJNHdeSpTnTNnDnbt2pWX1yKi0mdXEsVSGgIZFR5JdGbm8GSz8aNIIjKaAVU3nAMlToZxgogKLhZzZhLZG85iMDeugpvO4+NUOhMGY5yYmFhJRAXVn7LazdLZi7pXtm7+ebKZxRzliQEno2RLRDNa4TP/NDbj9XeCqFjZlUThpIpARnOqiABrJlG5VxKN1zXBzYpTGhvGCSorgyqJ7NEVUuWgJBE3nRknaIjR/H1gkogKqj9ptZulNXsekZWFVv2esi8P9fl86O3tHZcLOy/qE5Npmujt7YXPx4HuVD7sSqJwUkWFqjnziAC2m41nnMhtJjBOTCSME1RutGgYGd0aXZHOXq/kKj8AQICAal+1W0srCuMaJyTGiYlmtDGC7WZUUP2pflQnM4PmEWUvNn5P2Wf+29ra0NnZie7u7ry/dkYzcCSaRr8kIFbJG8mJxOfzoa2tze1lEBVEWksjoVrH3oeTKlqOqiTyyt6ybjcbzziRyOjoi2cQUUT0B715f30aP4wTVE6SAz3Ox6lsJZFSFQAAhLwhyGJ5P96OZ5yIplSEkxriXTKqA0reX5/Gx2hiRHn/V0QFpRkaUloKnpSK6KB5RACg+jyo9B7/2N1yoCgKpk6dOi6vHU2peN/df4ZHFrHpXy6BLLGIkIiKT1yNOx/H0hoCqg6v17oR9UpeiIJY1pVE4xkntnVF8f7/fgGTawN44fMrxuU9iIjGxDShRnInYDrzTausDdByryICxjdOPLflCG598A2cNa0WD9x29ri8BxUHPilSwdj9w55kBrqRLQ8Vrb+CYjBk3fzTuAj5FLRW+5HRDOzpTbi9HCKiYdnHGgNAWtNRkVEhZ49jV6TsrmUZJ4nG09T6CiiSgH19CcTTmtvLISI6VjoNXc04f9QNE6ooQvZ7AAABJeDWysrCrOYQAGDr4ShnoZU4PpVTwdg3/0oqA023Liz2zb9UWeXausrF7EEXdiKiYmSfWAMAakqFVzcgZY9ml0UZEAQgwIeA8aBIIqY3WK1827oYJ4ioCMXjUA3V+aOmm0h4JHg91uw6n8yRCuOppcqHkE9Gf0JFdzTt9nJoHDFJRAWT0lIQdQNKWoVmWEki++Zfqgi5ubSykMv+R1xeCRHR8OyKUwCQ4tYNqL2ZIIuyVUUkCK6srRzM4mYCERWzSASakat01AwTcUV2Djjwy363VlYWBEFwNp23ME6UNCaJqGCSWhK+aBKCCSdJJIsC0gEPfL7yHURaKLN4USeiIje43SwQtRJGdluyIipAdbUbyyobjBNEVNT6+pwkkWGaMEwTEb8XSnbTmZVE44+bCeWBSSIqmKSahD9iPQDoem4mUTLkh19h5n+8zW62BoNvZRsBERUpu93MNE0Eo9b8tCGVRLW1rq2tHLAtmYiKWl8fVN1qN7NHV8QqfBCyFaZ8nhh/s7LPE9xMKG1MElHBpLQU/FHrAcCpJJIEJCsDzPwXwLSG3FDSRIZDSYmo+NjtZpphojKRhigA4uAkUV2dm8srebMGbSZwKCkRFZ3eXqeSyD4EJxHKJYbYbjb+7M0Ezq4rbUwSUcEktSQCkSRM08zNJBIFJCv9vKgXgD2U1DSBbV0xt5dDRHQMu90speqoTWYgibnbFEVSWEk0ziZlh5L2xTPojnEoKREVmUHtZvazRKIqt9HMTefxd1pTLkmkG9xMKFVMElHB2O1menZ3UhQEiIKARCXbzQrFvrBzeDURFSO73SytGahJZpxWM4DtZoUgCAJmNbHljIiKkGla7WbZ083sJFEqlDvxks8T46/Kr6Clyoe0ZmBvb9zt5dA4YZKICsZuN7N7iOXskLlkyM/Mf4FwKCkRFTO73Syd1lCdyjhxAmC7WaFwKCkRFaVIBNC0XCWRbiIlSzArPM63sDOhMBgnSh+TRFQwqVQM3njKKU20d4jZblY4MxutU+R29zDzT0TFx243E8MJiKbpnGwGAHKwEvBxQ2G82XFiF+MEERWTvj4AGNRuZqDf54FPkZ1v4aZzYTBOlD4miahgjL5eCOagodWigHTAC0OWWB5aIJPrrJLcfb0Jl1dCRHQsu93MM2Bdo6RB7WZSfaMrayo3jBNEVJR6e7NzTe3B1Sb6/R74lNzjLJNEhTG5rgIA40QpY5KICqe3FwCg6dZpBLIoIllpJYd4US+MybXWzX9nf5LD5oio6NjtZkrYuvEcMpOISaKCmFybvfnv480/ERWRQUOrAavdrN/vhVeWAABeyQtJlNxaXVmxnyf29rGSqFQxSUQFI/T3A8hVEkmSNbQaYA9xoQQ8MhpCXmR0A4cjKbeXQ0Tk0A0dGT0DAPBnK4kGzyTyNDS7sq5y01bjhyAABwaSULObOkRErjs6SeRUElmJIW44F86UbJJof1/S5ZXQeGGSiArCNE2IfQMAhrabJUPZJBHbzQrGyf7zRAIiKiJ2qxkA+KLWx/ZMIlmUIdTXu7KucuNTJDRX+qAbJg4O8AGAiIpEb69zshmQnUnk98CbbTfjs0ThtNb4IQrAwXASaU13ezk0DpgkooLQDA3ecMz6+Kh2M1EQoYiKm8srK7nsP1sJiKh42K1mAOCP2EkiIfu/MlBb68q6ypG9mcCWMyIqCqYJ9Pcf027W5/fCJ7OSqNAUScSkaj9M0xphQaWHSSIqiKSWhD+7M+ycbiYJSFYG4Jf9EAThRD9OeWQPJd3LYXNEVETsk80Ew0QgZiWMpGy7mSIqTBIV0BTGCSIqJuEwoGlDkkQJSURSlpzB1RxdUVhTeMhBSWOSiAoilY7Dm0gDGDSTSBSQDPlYHlpguWFzvKgTUfGwK4m8iTR0p+I0u4EQqAB83CUuFFYSEVFRGRgAAKh6rt2s26MAggBvdiYRnycKi4cclDYmiaggUv3dELKHaWm69YEe8MKQJZaHFpid+We7GREVE3smkTc+OElk3aaY1VWurasc8XhjIioqkQgAOJVEpmmiV5EBAD5ZzP4vnycKiRWnpY1JIiqITH+P87FmWDf/Wsi6mLM8tLDszD8v6kRUTOx2M288lTvgINtuJlYxSVRIU1hxSkTFJBwGkEsSGSYQ9siQRAGyxHYzN+QqTnkQTilikogKQhvocz62ZxJpwWySiOWhBVUf9CDgkRBOqggn1JP/ABFRAdjtZp5BSSIp224mVla7tayy5Nz898ZhmqbLqyGispetJLJPN9MNE1Gv4gytBvg8UWhsSy5tTBJRQaj9uSSRffNvVFoXc5aHFpYgCLywE1HRsdvNpKiVLBIFAWL2UAOxutqtZZWl6oCCkE9GPKOjL55xezlEVO6OajfTDANRjwKvknuU5fNEYdkH4ezrS3AzoQQxSUQFoYetJJFpmk4lkc52M9fkhlezRJSIioPdbiZGrCSRM7QagFJd58qaypUgCLl5E9xMICK3HZ0k0oepJOLzREFV+hTUBBSkVANHomm3l0N5xiQRFYTh9BLnWgjUCitJxMx/4TlJIs4lIqIiYbebyTErWWTPIwIAubrWlTWVs1zLGeMEEbnMbjfLnm6m2e1mgyqJ2G5WePYhB3yeKD1MElFBmOEBALkkkSwKSFd4AfCi7gZ7h5g3/0RULOx2Mzlm7UgOriTy1NS7sqZyxkMOiKgoaBoQtyrf7Uoi1TAR9cjwKrlKIm46F55zyEEvOxNKTV6SRE8++SRmzZqFGTNm4J577jnm6+l0Gtdddx1mzJiBM888E3v27MnH29JEkt0B0HU7SSQiHcgmiVgeWnDTG4IAgO1Hoi6vhMoF4wSdTFJNQtANyHErSSSJuVsUb22DW8sqW9MbrCQR4wQVCuMEDSuauwbZSaK4IsMQRXjlQZVEfJ4oOPt5YseRmMsroXwbc5JI13V88pOfxBNPPIFNmzbh/vvvx6ZNm4Z8z09+8hPU1NRgx44d+OxnP4svfOELY31bmkgMA4hZF3jNMABYbQR2JREz/4V3WnMIALC9K8ZhczTuGCdoJFJaCp5kBpqeixMAkPEp8PmCbi6tLM0aFCeIxhvjBB1XdqPZMA3opm59yiMDAHyDKom8srfwaytzs5qt2Lyti5sJpWbMSaJVq1ZhxowZmDZtGjweD66//no8+uijQ77n0UcfxU033QQAuOaaa/DMM8/wwbScRKPQtFwPMQCoPgWGZP31Y7tZ4dUHvair8CCa1nAonHJ7OVTiGCdoJJJaEt5EekhbMgCkA17uELtgRmMQggDs7I4hoxluL4dKHOMEHddRQ6sBYEDJJomylUQ+2QdR4BSVQjutydpM2MbNhJIz5v+aDhw4gPb2dufPbW1tOHDgwHG/R5ZlVFVVobe3d6xvTRNFJDLkNAIAyARy2X7e/LtjZpOV/d/K7D+NM8YJOhlVV6EZGrzx9JC2ZADIBP3wSB43l1eWAh4Z7TUBaIaJPZw3QeOMcYKOa5gkUTibJLJnEvFZwh1T6irgkUUcGEgimlLdXg7lUVGlXO+9914sW7YMy5YtQ3d3t9vLoTwxw2Hnwq5n280ywVyLGdvN3DHLzv4fZpKIJg7GidJkn2xmVRJZcULKtpuZoSAEQTjuz9L4sXeJtzJO0ATCOFFihkkS9TntZrlKIio8SRQwo8FuOWM1USkZc5KotbUV+/fvd/7c2dmJ1tbW436PpmkIh8Ooq6s75rVuu+02rF69GqtXr0ZDA4dUlgq1vxcmrJ1hp90sO49IFmUokuLa2sqZPZeIlUQ03hgn6GTsk8288WPbzYTKKtfWVe44b4IKhXGCjiubJFL1XKVKn2RVEHnlbCURR1e4xp5fxzhRWsacJFq+fDm2b9+O3bt3I5PJ4IEHHsDKlSuHfM/KlSvxs5/9DADw0EMP4Z3vfCd3BctIZqDH+dhuN9NCVsaf5aHucSqJeFGnccY4QSeTVLNJomFmEglVTBK5hZVEVCiME3Rcw1USyUMHV/N5wj2n8XmiJMljfgFZxne/+11ccskl0HUdt9xyC+bOnYsvf/nLWLZsGVauXImPfvSj+PCHP4wZM2agtrYWDzzwQD7WThOEOtDnfGzf/GshPySwPNRNM5tyJ9fohglJ5I0WjQ/GCToZp90snoZun26WnUnESiL3cIeYCoVxgo5rmCRRb/bwG6/MdjO3seK0NI05SQQAl19+OS6//PIhn/vKV77ifOzz+fDb3/42H29FE5DWnxsqaM+aMOxKIpaHuqbKr6C50ofDkRT29SUwtb7C7SVRCWOcoBNx2s0GVxJlZxLJ1bWuravcTa2vgCQK2NuXQDKjw++RTv5DRKPEOEHH0HUgZs26UQ2r3cw0TfRk282cSiI+T7hmZqNdccqZRKWkqAZXU2nSw/25j7M3/0bIupizPNRdzlwithIQkYuSahKCYcKbyBzTbsYkkXu8soSp9RUwTWDHET4AEFGBRaOAac81tSqJkl4FmiBAkUSnCp7PE+5prfajwiOhJ5ZGbyzt9nIoT5gkovFlGDAiYeeP9kwiVFoXc5aHumtWk1Uiup0lokTkopSWgieZAQzD2UyQRAGqV4bXH3R5deWN8+uIyDXZVjMglySKe6wDb+xWM4DPE24SRcEZYcETzkoHk0Q0vuJxaFrG+aNmmEjKEuSAdYFneai77Is6TzgjIjcltSS8ifSQBJEgCEgHvNwhdtnMJs6bICKXDEoS2aebRX3WM4TdagbwecJtp9mbzkcYJ0oFk0Q0vsJhJ/NvmCYM00TM54EnO3CON//umtFoXdR3dcddXgkRlbOkmoQ3fuzJZukKH2/+XWbHiZ2ME0RUaMNUEkW9x1YS8XnCXXyeKD1MEtH4ikSci7rdapbye5wjS1ke6q7p9dmLek8MRvbhjIio0FJayhparR+dJPIyTrhseoN98882AiIqsGGSRGHFOndpcCUR44S77Dixk3GiZDBJROMrEnHKQ+02glTA63yZO8TuqgooqA96kVINHAwn3V4OEZWppJaEN5ZyTsCUstWmbDdz39T6CggCsLcvgYxmuL0cIiong9vNsqebhYeZScTnCXc5SSIecFAymCSi8TW4kih785+qGJQk4s2/66Y3VABgKwERuSepWjOJjm038/Lm32U+RUJbjR+6YWJfH+MEERVQeNDhN9nniX7PsZVEfJ5wV1uNHx5JxMFwCvG05vZyKA+YJKLxNSRJZN38q8FcSSjLQ903vZHZfyJyV0pLDT+TKMB2s2Jg7xLvOMIkEREVULaSSDd0GKa12dzvtJtZj7GiIMIjedxZHwEAZElER30AALC7h3GiFDBJROMrEnHKQ+1ZE2oF282KybR6q5JoVw+TRERUeKZp5k43c2YSWbcnqQq2mxWDaYPm1xERFYSuAzHrmmNvOANAv2RVEHll6399ss+ZdUruseME5xKVBiaJaHwNOt3MbjfTQrldYd78uy9XScTMPxEVXkbPwNR1eBMZJ07IknXDrwcDUCTFzeURgOmN2bZkxgkiKpRYDDCtjQP7WUL1KohnR6PZ7WZ8ligOuTjBJFEpYJKIxo9hwBzUbmYPrtZDbDcrJjN4IgERuSilpeBJZiCYptNuJokCVK8Mjz/o8uoI4Mk1ROSCYU42S1d4kdZ0AIA3227GZ4nikIsT3EwoBUwS0fiJx6FpGeePmm4iJUuQfVbfsEfyQBKl4/00Fcikaj+8sogj0TQiKdXt5RBRmbFbzYBcW7IsCjzZrIgMThKZ2Z19IqJxNWhotT26IlVhncgLAL5suxlHVxQHbiaUFiaJaPwMqiICrMHVEa/iZP55818cJFHAVHsuEbP/RFRgSTUJbzybJHLazUQrScSb/6JQH/Sg0icjmtLQHUu7vRwiKgfDVRIFvEgdVUnE54niMC17WvLunrjTPUITF5NENH6OSRIZiHoVJ/PP8tDiYc8l2sXsPxEVWEpLOZVE+qDTzdJBH+NEkRAEYVCc4GYCERXA8drNVCtJxOeJ4hLyKWiq9CKtGTg4kHR7OTRGTBLR+AmHnfJQANB1E1HPoEoi7hAXjenZSiKWiBJRoSW1QZVEem4mEdvNigtPriGighqUJFJ163kiGfAgrVsVp3yeKD52nNjBODHhMUlE42eYdrOoV+FpBEXI3iHeepgXdSIqLKvdLAUAzuBqWRKQrmC7WTGZkY0T2w5HXV4JEZWFYSqJYl4PYAIeWYSYPfaezxPFg3GidDBJRONn2CSRzPLQIjR3UiUAYNPB8Em+k4gov1JaCt54GoZpwsgORZYEq5KIcaJ4zMnGiY0HIyf5TiKiPBgmSRT2yAByrWbWx4wTxYJxonQwSUTjJxJxykNN04RmGAh7PSwPLUJT64PwKxIOhlPoj2dO/gNERHlin242eB6RIGQribhDXDTszYTNhyIwOJSUiMaTYQDRXDWKPb4irFhJIvtZAuDzRDGZ6ySJuOk80TFJRONnUCWRYQKmCST8CmSR5aHFRhIFnN4SAsDsPxEVVjIdhzeRceYR2TGCp5sVl/qgF82VPsQzOvb0cng1EY2jaNR6cMjSDA2qV0Ei+6nBlUR8nigepzWFIIsCdvXEkchoJ/8BKlpMEtH4yGSGJInsHeJMwAch20PM8tDiMq+1CgDwNrP/RFRARl8vhGy1KQBIkgjVK0NXJMaJIjOv1dolfpubCUQ0nnp7h/xRMzSkK7xIqVac8A2qJGKcKB4+RcKMxiBM06o6pYmLSSIaH3v3AobhlIdqhoGoV4HkV5xv4Q5xcZnLPmIicoGyrxPAoKHVooBEZQAAd4iLzZxJ1mYCWwmIaFzt3j3kj6quIl4VQFrTAQBeZVAlEZ8nioq96czniYmNSSIaH7t2AcgNmtN0E3uqg/CyPLRozbVv/g/w5p+ICse39yAADGk3659UA4A3/8Vmnr2ZcIA3/0Q0jnbudD605ppqGGipcSqJvPKgmUR8nigq9qbz23yemNCYJKLxcXSSyDCxp7qC5aFF7LSmEBRJwO7eOOJp9hETUQEYBgIHugAAerbdTJYE9LdYSSLGieIytzVXSWSaHF5NROMgmQQOHXL+aJgGTJjom1TjVBL5spVEkiBBFmVXlknDczadWUk0oTFJRPkXiwFd1k2/fbqZZhjYUxMcOmiOO8RFxSOLOK0pxD5iIioY8+BB64EAuXYzU5ERabB2IrlDXFwmVflQE1DQn1BxKJxyezlEVIp27x4ytFo1VCQq/UgHfbmZRNnnCb/id2adUnGYk60k2tYVRUYzXF4NjRaTRJR/2SoiuzwUAHqDfsQ9ytAjK3nzX3RYIkpEhZTZvsX52G4362uqhimJ8EgeSKJ0vB8lFwiC4OwSM04Q0bjIPkfYNENzqktTqj2TyHqe4LNE8Ql6ZUytr4Cqm9jWFXV7OTRKTBJR/mUv7iktBd20Lua7qioAAAGPdcMvQIBX9rqzPjoue9jcet78E1EBRLascz5OZ3ccB+x5RLz5L0pzsyecbWCcIKLxMGgeEQDEMjH0t9YCAKIpq0PBfp5gV0JxsjedGScmLiaJKL9M00kShdO5C8Nar5UQaqmyLuYNFQ0QBf71KzZLp1gPZ6/t7OW8CSIaX6qK2PZNAKzKU/vmHzMaAQCNFY1urYxOYNkU62Ht1Z29J/lOIqJT1N9v/TPIQDqCgeZqZDQD3bE0REFAU6U1r45xojgtyz5PME5MXHxKp/zq6wMi1jybgdQAAEAFsE6RIQoCmqusi/qUqikuLZBO5PTmStRWeHAwnMKe3oTbyyGiUrZ/PyKJPgBWC4FmmMj4PZCarYrGKdWME8XozGm1EAVg7f4BxHjIARHl0+7dx3zqQMiE5pFxMJyEaQINIS8UyXqE5fNEcTpvZj0A4JWdPdx0nqCYJKL8GnRxD6esSqK9FT5kRAmNlYMu6rz5L0qiKODs6XUAgJd29Li8GiIqZfrOHU7FaSRlJRtibbUQRN78F7NKn4KF7dXQDBOrdnOXmIjyaM+eIX9Ma2l01ikAgIP91iEHbTW5FrPJVZMLtjQauekNQTSGvOiJZbCVc4kmJCaJKL+yF/e0lkZSsy7mW/xW9VBrNS/qE8G507PZfyaJiGgchbeuh2Fac4jsVjOtowEAIIsyJoUmubY2OjE7Try8g0kiIsoT0zymkiicDmMgO7T6wID1XDEp+zxR46tBla+qsGukEREEAefNYJyYyJgkovwZdHEfMo/I4wGQSxLV+mtR6a0s/PpoROyL+is7e6EbLBElonGQySC2O3eymV1JJE235ku0V7bzZLMidq5z88/NBCLKk95eIDq06mRAjSLcWAlNN3A4kgKQe55gV0JxO4dxYkJjkojyp7sbiMcB5OYRaYKA9aIECLnMP1sIitvkugDaavwIJ1VsOhhxezlEVIr27UM4YQ0nTas6MpqBhN+DQLO1gcCb/+K2ZEo1fIqILYej6I6m3V4OEZWCo1rNAKCzUoAhS+iKpKEbJuoqvPAp1gYCnyeK27kzrPEVr+/qhaobLq+GThWTRJQ/gy7u9jyifSE/MhBQP/iizpv/omdXE3EuERGNB2PXzmPmEUU5j2jC8MoSlndYp5y9spNxgojy4KhWM1VXsa/Wigl2q1nroHlEfJ4obi1VfkxvqEA8o2Pd/gG3l0OniEkiyp/sxV3VVcRVq6Jo8zDziHjzX/zsVoLnthxxeSVEVIqiW9ZDM7LJIXse0RTruiMKItoq21xbG43MeYwTRJQvpnlMJVE4HcZAczWAQUmi7PNEyBNCja+mkCukUbDjxLOMExMOk0SUH4bhXNwHzyNaZ88jqsld1Kt91YVeHZ2iC2c1wCOJeGNvH1sJiCi/kklE925z/mhXEokzmgAAk0KToEiKK0ujkbt4jvX/1zNbjiCjsZWAiMbgyBFnZIWtX4sh0lAJwzBxKDw0STS5ajIEQSj4MunUvHtuMwDgqY2HXV4JnSomiSg/OjuBpHUBt1vNNEnEuuxfscFD5nhRL34hn4JzZ9TBNIGnN3e5vRwiKiU7dyKcHAAAqLqBlKojEvCgstk6pYbVphPDtIYgZjWFEE1peHUXT68hojHYvv2YTx2sEmFIIrpjaWQ0A1V+BUGfDICtZhPFGVNrUR1QsLM7jh1Hoif/ASoaTBJRfmzL7QrbQ6v31gSRNoFqv4IKr3VRn1w12Y3V0ShcOs/K/j/5NrP/RJQ/5tatTsWp3Wo20FYPSbQ2EHjzP3FcwjhBRPkw6DkCAHRDx876o+YRcXTFhKNIIt51ulV1yjgxsTBJRPmRvbjrho5YJgYA2BCqAJA71QzgRX0iedfpTRAFayhpOKm6vRwiKgWGgeTm9cjoGQBAJGm1miWnNQIABAhor2x3bXl0ai7NthL8ZdNh6Ibp8mqIaEJKJID9+4d8KpKOoKfNGo5/oH9oksgn+9BY0VjYNdKo2XHiSbacTShMEtHYDQxYvcSwLuomrBvFNT4vgNw8Il7UJ5a6oBdnTK2Fqpt4dgtbzogoDzo7Ee7P3ShGUyoykgh5prXT2FjRCL/iP95PU5E5vSWEybUB9MQyWL2nz+3lENFEtGOHNbh6kB6fgUSlH6Zp4uBRJ5txHtHEct7MegQ8Et4+EMH+voTby6ERYpKIxm5QiahzpHFdENtTOgAOmZvI7Oz/o2sPurwSIioJ27Y5cUIzDMQzOvbVBNFYGwDAluSJRhAEpzX50XWME0Q0Cke1mgHA3iYvIAjoT2SQVHUEPDKq/NaBBowTE4tPkbBitlUk8BjjxITBJBGN3eAkUXZo9e76SqRUHRVeXtQnspWLWuGRRfx1Wzf29sZP/gNERCeybZsTJ2LZU8362uugSNbtCOcRTTwfWNoGAHjkrQOIpNiaTESnQNetSqJBDNPAtjrr4wP9KQBWFZG90czRFRPPtcusNvJfvbYXms7TMCeCMSWJ+vr6cPHFF2PmzJm4+OKL0d/fP+z3SZKERYsWYdGiRVi5cuVY3pKKTV8fsGsXAEDVVWdo9foKa1e4tZoX9YmstsKDlQsnwTSBX7621+3l0ATEOEGOffsQ79yNpGa1DkSySaLMjCbnW7iZMPHMbArhnOl1SGR0PLym0+3l0ATEOFHGNm4EUqkhn+oz4uiut54jOges9iS7K0EWZUwKTSrsGmnMzp9Rj6n1FTgYTuGZLUfcXg6NwJiSRPfccw8uuugibN++HRdddBHuueeeYb/P7/dj7dq1WLt2LR577LGxvCUVm5deAgwrI3w4dhgmTKQDHryatj43JdtCIIsyWkItri2TRu8jZ1vJvQff2I9kRnd5NTTRME6Q469/xaHYIQCAaZrojaVxMORH46QaAECNrwaV3ko3V0ijZMeJX7y6FwYHWNMpYpwoU4YBvPDCMZ/eWm3AlERkNAO7uq0qdvt5oq2yDZIoFXSZNHaiKOBDZ1lx4uev7nF3MTQiY0oSPfroo7jpppsAADfddBMeeeSRfKyJJoqBAWDtWgDWDb9987+5owkHwykokoiZTSEAwIzaGZBF2aWF0lgsaKvGovZqRFIaHll7wO3l0ATDOEEAgM5OGDu243DMGlodTqpIawY2T21Ge621QzyrfpabK6QxeNfpTWip8mFXTxwv7uhxezk0wTBOlKnNm4GeodeLjJ7BG+1WB8K2rihU3cCkaj9qKjwAgFl1jBMT1TVL2+BXJLy8oxfbu6JuL4dOYkxJoq6uLrS0WNUhzc3N6Ooa/gSkVCqFZcuW4ayzzjrhhf/ee+/FsmXLsGzZMnR3d49laTTeTBN47jmniiiSjiChJqB6ZTwZrAAAzGoKwSNbf8WWtCxxbak0djef0wEA+PYz25HIaO4uhiYUxgmCYQDPPovueDc0w7p+HImm0e/3QFmUO9BgcfNiN1dJYyBLorNL/M2ntkBnNRGdAsaJMqSqwPPPH/PpPdXAQKNVUfr2QWt+3bxJVQAASZCwoGlBoVZIeVblV3D1klYAwL89udXl1dDJnLS0413vehcOHz58zOe/9rWvDfmzIAjHPblq7969aG1txa5du/DOd74T8+fPx/Tp04/5vttuuw233XYbAGDZsmUj+gXIJa++CqxbB8AaMLe9bzsAYN/sVqzLlobObbUu8pXeSsyoneHOOikvrlg4CT95aTc2HAjj28/swJ2XzXZ7SVREGCfouEwTeOopaDu2YVe/Pb/OQH8ig1dOa8MZbdbNf1tlG5qCTSd6JSpyf3NuB3712l68fSCCX7++Fx8+u8PtJVERYZwgh2EADz8MHJXAS2tp/LktA8CDnlgah8MpeGQRM5uCAIDZ9bNR4alwYcGUL3930Uw8uvYgnt7chWc2d+Gi0xn3i9VJk0RPP/30cb/W1NSEQ4cOoaWlBYcOHUJjY+Ow39faamUNp02bhgsvvBBvvfXWsBd1miDWrQP+/GcAgG7o2NKzBbFMDJoi4bnaKiR7e1BX4UVzpQ8AsKh5EUSBB+lNZJIo4F+vnIervv8yfvziLlyztBUzGkNuL4uKBOMEHdfLL0N95SVs7N6ItJ4GAByJpDDgVRCfPQkhn3X6JatNJ76AR8aXr5iD23/5Jr751FZcNr8F9UGv28uiIsE4QQCsjYPHHwe2bBny6ZSWwqvCAfQ0TgMArN0/AMDqSrBPv2ScmPgaK3347MWn4V//uAl3/2Ejzp1RD5/CGVPFaExP7itXrsTPfvYzAMDPfvYzvO997zvme/r7+5FOWzeGPT09ePnllzFnzpyxvC25afVq4JFHYJomjsSPYNWBVehOWDsBq2a24sldvQCAhe1VbCEoMYvaq3H98snQDBN/98DagrSd7emJ47MPrsUN976Ga3/4Kn7/Fk/OmWgYJ8qUacJ45mkc/P3P8fqB152TL/viGezvT+LpaZMwf0otAMAjeTC3Ya6Li6V8uWRuM95xWgMiKQ1//5t1BTnq+O0DYXzyV2/i+ntfxQ33vobntvLknImGcaJMGAbw6KPWs4T9KdPAvvA+vH5oNd5c0AAIAtbtH8DbB8IQBGB+ttq02leNaTXT3Fo55dFNZ0/B7OYQ9vcl8c+PboRpjn978ss7enDrz1fjuh+9io/83yq8tW/4ExQpZ0yThO+8805ce+21+MlPfoIpU6bgN7/5DQBg9erV+OEPf4gf//jH2Lx5Mz7+8Y9DFEUYhoE777yTF/VikE4DW7cCmzZZQ+OamoCFC4EZMwBxmNyhaVonEDz3HGKZGLb1bkMkHXG+vK6tHv+TMKDpJua0VGJ+q3VRn1U3CzX+mkL9VjTO7rx0Nl7Z2YONByP4+9+sw/c+uASiOHxZ+FiYponfru7E3X/YiMSgE9VW7enDQELF35w7Ne/vSeODcaIEJBLWgNHNm60DC9ragEWLgClTgOHaQnQdR377M+x95mHEVav92DRN9MUz2NEdw3NTm1G7fCqm1lttA4uaF8Ers+KkFAiCgK9eOQ/v+97L+Ou2bnz98S348hXj89+yYZj40Qu78J9/3gpt0AykN/b04ds3LMbl83mi6kTBODEBRSLWM8SWLVaM6Oiw4kJLy/BxIZMBfve7IRVEPYke7OjbgZSWwqZ3zEGkPoT1nQN4bpuV6L1odhMaQ1ZXwvJJy4/bhkgTiyyJ+I8PLMQ1P3wFD67ej5lNQXzs/PFJAKY1Hd98cit+/NLuIZ9fs6cP/3fzcpw5rW5c3rcUCGYh0nejsGzZMqwelGmmPDl8GHj9deDtt62hcUcLhYDFi61/arLJnVQK+NOfgA0bMJAawIauDdBN68E9rel4Qfbg+62NMAUB0xqCeO/8FoiiAL/sx21Lb2OSqMTsOBLDVd9/GdGUhoVtVbjo9CZct7wdTdn2wrHSDRP/+sdNuO+VPQCseUjXL2/H+s4w/u1J6+biX983t+znXfAayX8H427fPmDVKis5pOvHfr22FliyxNpgCGXbT2MxdN73bexc/ReYsG4vkhkde3rjCCdVrJlUh653nI4VsxshCAKqvFW4fdnt8Cv+Av5iNN5W7e7DjT9+Dapu4uxpdVgxuwHXLZuMqoCSl9dPqTr+32/W4vEN1oybm8/pwLvnNuHZzUfw45d2QxSAH3xoKS6Z25yX95uoeI3kv4O8Mk1g+3bgjTeAHTusPx+tqQlYuhSYPx/wZ6/r/f3Ab34DHDrkfNv+8H7s7N8JANi5dBremNyI57YeQVckBQA4d0Y9lndY1aYtwRZ8bMnHIIlsSyolf1x/EHf8+i0IArBiViNWzGrAB5a15639LJxQcesvVmPV7j5IooA7VszAWdPq8MAb+/Do2oPwKSJ+9bGzsHRK+T6nnuj6yCRROXn9deCpp5wTyU6qpQWoqLAeFDIZJNUk1hxaA83QYJgmDg2k8Lys4Hez2gBZwvKOWizrqIEsilBEBR9Z+BG0V7WP7+9Ernhxezc+/os1TpVPdUDBv79/Ad49xhvyZMa68X/i7cPwSCK+fvV8vH9Jq7N79OvX9+GLv98Ajyzi8U+fV9ZzkXiN5L+DcWOawDPPAC+9NLLvFwSrukhREN62Hms718CECd0w0dmfwOFwCiaAt9vqEH/3AiyYUgNBEBBQAvjo4o+iLsCdvFL0uzc78YWH10PVrdvMSVU+/M8Ni50Hv9EaSGRw28/XYNWePoR8Mr59w2KsmGXNsDFNE//1l234zrM7UBNQ8OfPvgMNofKtUuM1kv8O8sYwgEceAdavH9n3SxIwebK1wdDZOeTZoyfRg7ePvA0A2Dx/Mn7p82PjIetI9AqPjPNPq8esphAEQUCtvxa3LL4FQU8w378RFYEfPL8T//7UFiffOKsphG/fsBizmsd2f39gIIm/+ekqbOuKoanSix9+aCkWT7aSQbph4s6H1+O3azrRURfAE393Afye8kxAnuj6yGnC5eLtt4Ennhh5ggiwMv47dgCZDDRDw4YjG6AZGkzTxK7uGJ5UPHh4VhumNVfiprM7cNa0OsiiCFmUce3ca5kgKmHnz2zAqrvehXs/vBTnz6zHQELFbb9Yg//6y7ZRv+be3jiu+v7LeOLtwwj5ZPzsljNwzdK2IeXFHzxzMq5b1o6MZuDvf7u+IPMuiMrOq6+OPEEEWEml/fuR3rYZGw+thwkThmli6+EIDmUTRF0Lp2DSTediYUctBEGAT/bhQws+xARRCbt6SRtWffFd+M4Ni7GwvRoHwylc96NX8evX9436Nd8+EMZ7v/MSVu3pQ1OlF7+9/WwnQQRY7W7/7+LTcP7MevQnVHzpkQ0FmXdBVNJME3jyyZEniAArObR7t7XRPOjZI5aJYXP3ZgDApqXT8R8ZERsPRSGJApZ11OKmczowu7kSgiCg0luJDy/4MBNEJewTF07Ha/94Ef79mgWY1lCBrV1RrPzuS/jLpq5Rv+ZL23vw3m+/iG1dMcxoDOJ3f3uukyACrMN4vnrVPMxqCmFPbwLffGprPn6VksMkUTnYtw/4/e9H/eOmaWJLzxYk1AQA4HA4hcdqqvDknMm4culkvGfBJFT6rRLy5mAzbll8C2bWzczL0ql4Bb0y3j23GT/7mzPwpfecDkkU8O1ntuP7z+845ddas7cf7/3OS9hyOIqp9RV4+BPn4Ozpwz883vXe09FS5cO6/QP4v5d3D/s9RDRKmzY5p1eeCsM08PaRt5HRMwCAfb0JRFIaZEmEcMViVF29FAGvFSc6qjtw65JbMSk0Ka9Lp+JTU+HBFQsn4aHbz8bt75gOwwTuemTDqA4heGrjYVz9g1fQ2Z/EwrYq/P5vz8Xs5spjvk8QBNzz/gUIemU8tbELf9pwaJhXI6IRe+01q/V4jFRdteKEZOLtC07H/xkSeuMZ1FZ48KGzpuC8GfXwyNaj6en1p+PWJbdyZEUZaKr04dpl7fjjp87DNUvbkNYMfPJXb+Kl7T2n/Fq/fG0vPvJ/r6M/oeKC0xrw0O1no7X62HZ2ryzhPz6wEJIo4Kev7MaavX35+FVKCpNEpc4+SWC4eRKKYs2TOOccYNYsZ2C1aZqIZWIYSA0gko5ge9929CSs/1D7Mzq+31iHF6Y2491zmzG5LgAA8Mk+XDL9Ety29Dbe+JcZURTwsfOn4b+uXQhBAP79ya34xat7Rvzza/cP4Kb/W4VoSsPFc5rw6B3n4rSm45eZVvoUfP3q+QCA7z23E9HUMLO1iOjUpdPAH/4w/NcCAWD5cuDss4Fp02CYBiLpCPqT/Yimo9h4ZCOiGatdoDuaxuFICmlFQv+1ZyK5fBogCAh6grhq9lW4aeFNrCAqM4ok4s7LZuPOy2bDNIHP/XY9ntp4eMQ//8zmLtzx6zeR0QzccEY7fnP72Zg0zI2/rbXajzsvmw0A+I+ntrLqlGi0BgaAp58e/mvV1cBZZ1n/tB/bPaAbuhMnYpkY1netR9hjYu2li/G4oGBHdwweWcQVCyahJuABANT6a/HB+R/EdfOuQ8hbviMFylHAI+Ob1yzAR86egoxu4Nafr8aavSM/hez+VfvwpUfehmECn75oJn5683JUZ/9eDWd+WxU+fsE0mKb17EJDjel0M5oAduwAenuP/fy0acD11wMe6z+evmQfdu9rQWTVi8isfRPe3qH/UZoCsKetHt9QJRzJzh+amX2Qbw214oPzP4gKT8W4/zpUvN63qBWxtIa7fv82/unRjajwyrh6SdsJf2bTwQg+/JPXEUtreO+CFnzrukWQpZPnrlfMasQZU2uxancffvbKHtzxTlauEY3Zhg1AMnns5+fPB668El3JHuzq34W9rf04WG+ibksvGncfgT+a+5l4WsP23jjenFQH5V1zMWtGAwDgtLrTcM2ca+CRjn/DRqXv9ndMRzSl4nvP7cSnfv0W/u/m5ThvZv0Jf+al7T34xC/fhKqb+Nh5U3HXe04f0SlH1y9vx/++uAt7ehN4bN3Bk8YjIhrG6tXDbzSfey7wrncNOcnM7OpCz8t/RuzN1xHtPYiB1AAM00rQ6rKE/fPasX9OG3ZE0nhlVw8gAJfNa0ZNhRUXlrQswXtmvocDqsuYIAi4+4q5iKU1/O7NA/ibn67C/bedhbmTqk74c79/qxNf/P0GAMCX3zsHt5w3slOQb79wOn752l68vrsPr+3qxVk87czBJFGpG24Y1aRJwA03AIoCzdDw2NbHsL4r22fcDqB9IQLhBIJ9MQi6AVMS0V0bxC+3dKM7msaUugqnFagh0ICPLPwIjy8mAMCNZ05BPK3h649vwT88tB6KJOKKhcNXlu3vS+Cmn1oVRJfMbcJ/jzBBZPvMRTPxwR+/jh+/tBs3nzsVQS8vZ0SjZprWiTVHO+00JN97KR7eeD929A1qJQ1IiCyZit2LOxDsjyMwEEc6peIPW7qxtb0FHR31eNd06+G/o7oD1829jjf+BAD43LtnIZbS8LNX9+LWn6/G/928/LjtxRs6w/j4L1Yjoxu4+ZyOESeIAOuY5U+umIHPP7Qe3312B963qBWSyCO0iUZM04A33zz288uWHZMgiqQjeLDzMRyoPQDhnXUI9XrgjyQhmCZUj4xwUxU0r4L+eAZPvn0IMIGzp9Vhar01b2h+43xccdoVPOaeIIoC/v39CxBPa3hqYxc+8pNV+NWtZw7bXgwAz289gn/47XqYJvCPl80ecYIIsLoTbjlvKr719Hb8z9PbcdZtTBLZ+FRVygYGrKMqj3bhhYCiwDRN/H7z77Gxe6PzpWhKxb6+BPb3JdETS6Mu6EGFR8DmtYeQVHVU+RVcNq8ZYnbw6A3zb2CCiIa47YLpiKY0fOfZHfjU/W9hX18Cf3vhdCfwR1IqnttyBP/9l23ojqZx9rQ6fPuGxVBOIUEEAGdPr8Pyjhq8sacfP3tlDz65YsZ4/DpE5aGzE+g6dlCkfuE7cP+mB7EvbA0bNk0TA0kV+/sS2N+XwEBCRUPIC0USsflICpnKCjRX+rBidoNzxP21c69lgogcgiDgn6+Yi1hax8NvduIj//c6vn7VfHxgWa5dpTeWxtObu/DNp7YintFx5aJJ+PJ755zyA+RVi1vx3Wd3YFdPHI+tO4CrFrOaiGjENm8GEomhn5MkYMWKIQmilJbCz9f93BlNYQjALr8X+5I69vclEE9n0BTXYZjAlsMR6IaJaQ1BnDE1d8T9ylkrmSAihyyJ+PYNi/Gxn63Gi9t7cM0PXsV3Prh4yEEFh8JJPLHhML751FZohonb3zEdH3/H9FN+r785dyp+8tJuvLqrl9VEgzBJVMrWrAGOPtWjuhqYYT1Mv7jvRSdB1NmfwDObj6A/kRny7T2xtPNxU6UPl8xtgk+xbvavmn0Vav1jO8qWStP/u/g0BL0y7nlyC7751Fbc98oedNQF0B1NY19fAkb2r+XpLZX40UeWwiuf+gOkIAj4zLtOw40/fh3ff24H3r+kDc1Vvjz/JkRlYpgqIrOtDX+KrnESRNu7onhhe88xc8C6B8WJ9toALpnbDFkUIQkSrp17LQJKYHzXThOOKAr492sWoDqg4Ccv7cY/PLQe33p6O1qr/TgwkMSBgVwL4/kz6/Hv1yyEOIoqIEUS8al3zsA/PLQe//bEVlw8p5lVp0QjNVw3wpw5QEVuvIRhGnho00NOgmhd5wBe39WLRGZoi9qRaMr6QABmNgbxrjlNzkmX1869FoqkjNuvQROTV5bwvx9Zhn94aD3+sO4gbrnvDbTXBNBc6cPevji6Irl7j6uXtOILl84a1ftU+RV87Lxp+O+nt+Erf9iEx+4495Q6G0oVI2Wp0nXgrbeO/fzSpYAoYmffTjy7+1kAQH8igz+sO4i0ZsAji2ir9qO9NoDGkA898TTCCRXTGirQWu13svwXTLkAs+pH9x8jlT5BEPDxd0xHR30FvvDwenRH0+iOWhdzSRRwZkcNLp3XjGuWtiHkG/2Nwbkz6nHJ3CY8tbEL//qnTfjeB5fk61cgKh+JhHWq2VG2TA3hzUNWq8HBgSSe3HgYumHCp0horwmgvdaP2goPjkTTiKc1zGoKobEyl6i9fOblaK1sLdivQROLJAr4p/fOwbSGCnztT5uHJIc8koizp9fhsnnNuGpJq3Pi0WhcvaQNv3xtL9Z1hvHtZ7bji5efnq9fgah0HTkC7N177OeXLRvyxxf2vuC0Iu84EsNzW44AACq8MibXBNBW60elT8HhSAoZzcDpLZWozc4gEiDg6tOv5glmdFw+RcK3r1+E6Q0V+P5zO7GvL4F9fVZ1m1+R8I7TGnD5gha8Z37LmCrRbrtgGn6zej82HYrgl6/txc3njrxlrVQxSVSqtmwBYrGhn5MkYPFimKaJP++0jjhOa7qTIJrWEMR757cM2a1rrRl6eogoiHj39HfjzNYzx/1XoInvkrnNuPj0JhwYSGJfXwL1QS866gOjqhw6ni9fMRcvbOvBn9YfwnXLunHBaQ15e22isrB2rTV7YhDd78Of5N2AabUh/3H9IeiGiYVt1bhwVsOQm7G2mqGVQh7JgytOuwLzm+YXYvU0wd145hRct6wdnf1JdPYn0VLtw5TaQN52ciVRwL9eOQ/v+97L+MlLu/H+JW2Y1cxTk4hOaM2aYz/X2AhMnuz8MZaJ4aV9LwGwTrW0Tyw8d0Y9lk2pGRIn2muHxomAEsD7T38/pteeensQlRe7c+BvL5yBfX1xHA6nMbk2gNYaf97mzPk9Ev75ijm47Rdr8J9/3obL57cM2fQqR6ylKlXDXdxnzwaCQRyMHkRX3Jo9sWp3H/riGdRVeHDp3OYhCSJRECEK1l+RCqUC57afi8+c9Rmc1XYW+4ZpxERRQHttAOfOqMes5lBeE0SAddTxpy6yWij/8XcbEDmqFYaITsA0h40XnVPrEDOt9oAXt/cgkdHQVhPABacNTRCJgggB1p+rvFV459R34jNnfYYJIjolsiSio74C582sx/SGYN5L/Re0VePGMydDN0x87rfrkNGMvL4+UUlRVWDdumM/v2zZkFlEG7o2QDOsDYZnt3RB1Q3Mbq48JkE0OE7UB+px6YxL8ZmzPsMEEZ0SjyxiRmMI582sx+S6QN4PIrh4ThPeObsR0bSGL/5+A8yjR7aUGVYSlaK+PmDXrmM/ny0RtU8yMwwTmw9FAQAXnd7klHMvn7Qc75z6TvgVPwzTQFpLwyf7mBiiovWx86bhiQ2HseFAGF9+5G186/rFbi+JaGLYswfo7T3m06tbTEAHUqqOnd0xQADePbfJuSm7aOpFOKP1DHhlL+METQifv3Q2ntvSjQ0HwvjW09vw+Utnu70kouK0cSOQSg39nKIACxYM+dS6LiuR1B/P4FA4BUUS8c7ZjU4cuHL2lZjXOA+yKEM3dKiGCp9c3tUZVLwEwao6feNbL+DpzUfwq9f34UNnTXF7Wa5hJVEpGq6KqK4O6OiAbujYcGQDAGBffwKJjIbqgAct2YG/S1qW4D2nvQd+xWozEwURfsXPG38qah5ZxLeuXwS/IuGRtQdx/6p9bi+JaGIYJl6k2ydho2G1DWw/EoNumGivDqAyOz9sRccKnD/lfOdkS8YJmggqfQr++7pFEAXgB3/d6cxOIaKjDDewet48wJdL8ByJH8HhmBUnNh+OALAGUtsbzlfOvhKLmhdBFq16BEmUmCCiotda7cfXr7Iqob/6p014+0DY5RW5h5VEpWZgYPiL+9KlgCBgR+8OJFRr4NeWQ9ZFfXZzyLm5P6f9nEKtlCivpjcE8eUr5uAff7cB//i7Ddh5JIYvXDYbSgFPKIikVLy+qw8DiQw0w4SmG9AME4okwq9IaK3x47SmEAIeCRndaneoHMPgbqIxOXhw2IHV26ZWwjAPAhgUJ1qsGS6SIOGM1jMKt0aiPDpjai0+uWIGvvPsDnz0Z2/g85fOxscvmFbQBGdvLI1Vu/sQTWvQdBO6YcUJjywi4JEwuTaAGY0heGURac2AJAo8kY0KZ8sWoLPz2M8vXTrkj+sOW1VEpmliS7Yr4fSWSgBA0BPEgqahVUdEE8UVCyfhua1H8Ls3D+D9P3gFX79qPt6/tK2gazgUTuKNPf1IZXTrecIwoBsmvLKECq+EjroKTG8MQhIEZHQDiiQg4MlvnGDUKSWmCfzud0A6PfTz/7+9Ow+OqzzXBP6cpfdutfa1JcuyLNnW5lUKhnDBYEPKxBTYTAykUkNCQcFM9sB/kztFEZshRRGmbnKrhhQEJnZcubmZssvONSkMlxiveAUExrLUsjZb+9Lq9fQ53/zRUttCMrbWbonnV+VyqTe9+lrqp/s95/s+RQFWrgRw7dTQSNTApW4/AGB5buxFvcBVgEx75pyVSzTTtq8rREjT8asDn+P3H3rxcfsg/uWxVch2zfzRKyEELvcGcMLbi886hvDZlSGcbRlA1Lj1Ocy1i9Px56dvm/HaiG5K04B//3fA+NLaLA4HTjgHgQAwGNTQPhCEqkhYmh1rEpVnlsfPNCWaj35ybxkMIfDb9xvx0n9cwLmWAfz6kepp7bR5I0IINHQN40RTLz6/6kN9+yA+bh/EZJa6eGhVAV79zsoZr41oHL8f2Lt3/OW5uUDBtZ0qDWHEZyW0DwQxFNLgsqjwjGx2U5VdFV/TlGg+2vFQFVRZwp9PteHn/3YeZ1v78T8eWDHj66oCgG4IfNYxhJPNfbhwZQiftA/iwlXfpB7jv929BM/dN7NTqNkkmg+EiL2hj0Ri/zQttsV9JBJ7Qff7gWAwtshcX9/4+69aBdjt6A/240LPBQCxbSqjuoH8VBvc9tgbI3b9ab6TJAlP3L4YVQVuPLvrDE56+/DA//4Q/2tbNe760oK7NxOJGtB0A4YQaO4J4MLVIXT5wuj2hdHU48cXV4fQOTS2IavIEmqL01GYbodJkaDIElRZQkQX8IejuNwXQGPXMDTdgFmRYTXNfNjQ19z1eREOj82L4eHYdvd+P/DRR7Hc+JLOysVoC3wK4NpZREuyrk0hYE7QfKfIEp67bxlqPKn4+Z/P42D9VVzs9OHXj9RgzaLJbcUdjuqI6gJRQ+BS1zAaOn3xnGjsHsaFqz70+SNj7mNWZdQtTkdOihWqLEFVpPjRYF8oCm+PH03dfhhCwKzIMM/h2bC0QBnGxJ8jwuFYLgSDgM8HHD06/sABAKxfP2bB6vquegyFY/kwurZpeV5K/D1WTW7N7P9MRLPIalLw8rYarC5Kwy/31uOPx1vwSfsQfr2tGmU5k9sdM6Tp0A2BSNTAxU4fGrqG0TMcRudQGJe6fLhw1QdfaOwOs3azgm+UZCDdYY5/nlAkCeGogcGghsbuYTT3BiBLgEmRocoznxNsEiW7nh7gt7/FpA47Xc/tBu69FwDwYcuHMIQBIQTOtPQDAFaMnBoqSzIqsytnpGSiRFtbnI79P7oD/333WZz09uGJNz/C2kVp+K+3F+POsqxxU7yiuoH+gIbjTb043NCN862DaOjy4WYnBaXZTfhGSQZqClNRnuvC6sK0eNOVaM41NQFvvz31++fl4d3cADAY+5s43xabiz+aE3aTHUvTl85EpUQJt6kiF/t+6MIzfzyNC1d92PqvR7FhWTYeqy3C7aWZsJnHNvEjUQO9/jCOXOrFhw3d+LhtEE09/pt+n2yXBbctyUC1JxXlOS6sXpQ649MCiG7o7NmJzw66VWVlQNW13SqFEDjcchgA4A9HcWFkPaLRnMhx5CDHkTP170eURLbXFmFFfgqe+eMZnG8dwH2/+Qe21OTjkTWFqF2cHj+ANioc1dE5GMY/GrpxtLEHH7cNoq1//AG5LytMt+EbizNQ5XFjWW4Kagrds3LW0mQwpZLcgBGATQtBkiRIkCBJ0pit6YHYaZ/+iB+haAi60KEbemy7SUlC8NvfhBruRktXC05fiS1Q6u3xo2c4DIdFxbLckSkEGeVwmB0J+RmJZkO2y4pdT9bhzSNe/Ot/NuLU5X6cutwPVZaQajfDrMQ68sPhKMITbIcsS4Bt5Eyf/FQrluelwJNmR6bTjKJ0O5bmuLAo3Q55hrfgJJqq9mAX3JFhmGQTTIppTE7ohg6/NpIThg5DGPEsMSkmKCYLTlY70TDYAACo7xhCIBJFtsuConQ7gNhZRIrMs99o4Vic6cBfn12P373fiDeOePHehS68d6ELZkWG226CSZYQ1HT4w3p8HbnrKbIEsyJDkoCidDuW56UgP9WKDIcFizMdKM12wpPGRd0pcd5vPQxPbwOsqhVW1QqbyQaLYom//l//uxk1ohiODCOiR6AbOqJWM3priyB3fQKHyQGzYsYHlz9Alz+26PuZln7ohkBJlhPpDjMAYGXuSv6+04JS7UnF/h/egVffvYg/nWzB3nMd2HuuA1aTjBSrCaosIaDp8Iej0PTxR5dNigRVlqHIEkqyHCjPcSHPbUWG04KSLAeWZruQ606+Rd3ZJEpiQgj8y7n/gzvajo27TpZkmOTYGQsRPQKB8b+Ul6uK4PUdBs4eHvOYJ7yxKWlritKgjpzGfHvR7bPxIxAllEmR8dSdS/BY3SLsOdmCv3/WiVPNfegZHjtNTJYAh0VFRX4K7i7PxrrF6ViRl8LpYDSv/FvDXqzsuLZxgSIpUGUVAgKark2YE6Mu3laGjnCsQaQbAqeaYzlRuzg9fnDiNg/Xz6KFx25W8Yv7yvHE7cXYfaIF737eifNtg+j2jZ9O7LKqWFmYirvKsrC2OB1lOa5xR5KJkoUhDHw+2AjJ137D26iyCkVSICAQ0a9NjTRkCfV3VaC37d0J7xfSdHw8crZpbXE6AMCm2rA6b/UM/gREySHNYcYLD1biqTtLsPtECw593oUvOn0IaWNzwqRISLGasK44Hf9UnoXVRWlYkuWIf96eT772TSJfSMNJbx8udQ3jymAIdrMCp1WFy6LCaVXhtJjgsCgwKTKsqoK8VCsyHOY56ZIbwoB+g1PNDGEgrIcnvC7gtuNyVRE6S3PHXK4bAp+0DaBzKASbSUGVxw0AKEkrgSdlbldtJ5pLTouKJ79Zgie/WYJAJIrhUBQR3YBFVeC0qLCaZB75ohvq80dw0tuHxu5hdPvCcMbzQYVr5H+7WYVJkWA1KfCk2eC2meb0d0rTNYTUsU0gXejQdf0r7+dLd6J51WL0FmaMPI6BEyM7L6U7zFiS5QQA1OTUwG11z07xREkgw2nBD+9Zih/esxS+kIZARIemG7CaYjlhUZkTdGNXB0M4dTn2eWIwqI35HDH6ucJqUmBSJDhGFnmejcXSr+cL+xAxffXvbNSIIoqx66EM5KaiafViDGVP/Jof0nT842I3NN1AUbo9fhZEnacOFtUyM8UTJSFPmh3P378Mz9+/DINBDSEtlhN2swqHRUn4FLGZtGCbREIIGCLWGDGEiC8Y1euP4MpgEBc7h/GRtw/vfdGFyARTTb5KilXFAzX5eKy2CBX5KePeNISjOgJhHf5IFIGIjkjUQK574uaSbgh82j6Ifec7cLypF/rIIihCAIbQ0BRuQUrHEMyqDNlqgqEq0E0KFJMCyaQgbFbhM6nojhro1gRanDY0p9ggXwlA6fTCalJgNSnQjdiaK/5wLAjWLEqLbw1+56I7pzrMRPOO3axyPQgCMHFOhDQdvf4I2geCuHjVh6ONvfjwUk/8tflWZToteGhVPrbXFsUbLdcLjZyaHIjoCERiixrmp1onbC5puoHTl/ux91wHzrUOQIhrOREn+zEc6UJujx+6KsMwKYDZBJgU6IqMsBDoNIAuISEgSfCrMtrTXOhx22G76oe5J4SoHsvIkBZrLNUtzohPdb6j6I7JDS7RPOaymmb9AzzND2IkGwyBeE4EIjp6/WG09gVxsdOHDy5246PmvkkvH1qQasO2NR78l3WFKEgdu2ukEAIhzYh9lhj5TCFJsftM9LsZ0nQca+zFvvMd+Hxk04GgcRWR7iuQWgegqQp0VYZiNUG2qIAiQ6gydLsFus2CiEnBgCThY5sVXlWF9kUv9As9kCUJJkWGzaTApMqI6ga6fGFougFIQF1J7ACDWTGjrqBuaoNMNA+5bSa4bQs3JxbcJ6Wf//k8/t/ZtpsuODtKkmINk6oCNzxpNoQ0Hb5w7EyD4ev+jxqx3YliWz1GsftEC3afaEG2y4K1xWmwmVQEtSjqO4ZwuTcw4fdymBUsz0tBabYT/YEIWvuCaOwennA9FAAQiGBQDeOFdeUQkzl6pRkAYo85GNTGXJXuMGPNorT4AnNF7iIsci+69ccmIprnHnv9OI419d7yG3pFlrB+SQaW56Ugz21FMBLLCV88JzT4IzqiemyNq7b+IHqGw3j9sBevH/aiMN2GlYVpMCsyfCENn7YPomMwNOH3SrGqqMh3Y1GGHT3DYbT0BeDt8U84z/16OvrhU4L4aU3p5PIiFMXAl3bVyEmxYl1xOkqzY82tyuxKZNgzbv0xiYjmubt+/T4u9wVuOSfMqoz1SzJQnutCltMCf1jHcFjDcDiKoVDs80QwoiNqxHYnausPon0giNcONeC1Qw0ozXaiMj8Fiiyjzx/GJ+1D46bGj8pwmFFR4Ea+24rOoRAu9wXQ3OMf99knInUiIMv4528sH7M72VcKG0A4Mu7i/i99XZRux7ri9Hhzq7agFjaTbdz9iGh+WnBNIgERf5GUJECRJMiyFN8iLsNhRrbLitIcJ5bnpeDe5dnIc0/uRe1ipw+7T7Rg/8cd6PKF8bdPro65XpElOC0qHGYFDosKRZbQMdJcGl0893oFqTZsXJGD+ytzx3Qkg1E/3jh/Eroh4Atp8IWi0I3Ro90GwlEdkhTbYjvTaUGWywKbWYEqSzCEQFQXCGo6wlEDqizBosrIclniR6nNihnfLvs2T58moq8VQ4j4G//rc0KRJJhVGRlOM3JcVpTlOFGR78a9K3Lii3LeCiEEzrcNYtfxy3in/ipa+4Jo7Ru7u4VJkeLT1BwWBUIgfhDiWFMvjjX1xm8rSUBJpgP3Vebi3uXZY86EG335vtTbhN2fnsVwOArDiG3JHRp5/Y8dCZaQ5bIgy2mBxXQtJ7SRnIhEdaiyDLtZQfp1Z706zU7cV3rfFEeaiGh+MsS1szVlCZCvywmrSUam04JctxXlOS5UedzYsCx7UmefGYbA8aZe7DrZgvcvdOFS1zAudQ2PuY1ZkeG0qrGlMCwqNN1A+0AQvf4I/nGxe8xtZQlYluvC5qo83FmWBbMq42QHcLKjI54TkaiBoZCGQFiPv/6HtNii7KP5l51iQYbDAosaW2jXELGZGEFNh6aLeHal2q9lYpY9i7MSiBaYBdckenlrNV7eWg1Flmat+VGW48L/3FKBf/72CjR0DaO+YxBRXUBVJJTnpGBpjjM+let6PcNhfNo+iJa+ADIcFuSlWlGa7Ry3HfcoXzjW/AFiR3anIm2CyyRIWJ61HBtLNiLNNtEtiIgWrv/7g7rYG34Js5ITkiRhZWEqVham4qWt1fisYwhfdPpgCAGrScGKPBcWZzqhfGlnPCEEOofC+KR9EFcGg8h2WVCQaseSbMdNp0hGZRVlOa4Z+xkUSUF1TjXuLbmXO18S0dfOoZ//06zmhCxLWF+aifWlmYhEDXzcNoDm3gAMIeAc2UijKN0+7nsLIdDWH8Qn7YPoHQ4j121DQaoNJVmOcZttXBiIIMs1do2gfMzc2T4m2YS1+WtxV/FdMCu3fiCFiJLfgmsSzeXq4ZIkoSzHdctvzDOdFtxVnn3Ljy8g4La4YwtYi9iWxbqhI2pEx+1SY1EsyHPlwW1xx3eziegRBLQAQtEQVFmFRbEg35WP6pxqTh0goq+tiZr4s0WRJVR53PGNAr6KJEnIdVuntBWqWTGjyF2EgBZAQAsgqAXH5YRNtSHflQ+n2QlVVmEII54TYT0Mk2yCVbWi0F2I6pxqpFhSJl0HEdFCMJc5YVZlrC1Ox9qRXcK+iiRJKEy3ozDdftPbri9cjyXpSzAQGkB/sD/2f6gfQS0IQxjQDG3cfZxmJ/KceXCYHVAkJb5Rjj/ih2ZoMMkmOMwOFLmLUJ1TDbvp5nUQ0fyz4JpEC0mKJQU/ve2n4y4XQiAUDSGshyFBgiqrsJvGH20gIqKvh7KMMpRllMW/NoSBUDSEiB6BLMlQZRU21cacICL6mshx5iDHmXPD6w1hIKAFEDWikCU5fqCAOUFEbBLNQ5IkwWaycYE4IiKakCzJsJvsPMpLREQTkiUZTvP43TeJiObuXEoiIiIiIiIiIkpabBIRERERERERERGbRERERERERERExCYRERERERERERGBTSIiIiIiIiIiIgKbREREREREREREBDaJiIiIiIiIiIgIbBIREREREREREREASQghEl3ERDIzM1FcXDyl+3Z3dyMrK2tmC5pBrG/6kr1G1jc9rO/mmpub0dPTk9AaEo05kTisb3qSvT4g+WtkfTfHnGBOJBLrmx7WNz3JXh+Q+Bq/KiOStkk0HWvXrsWpU6cSXcYNsb7pS/YaWd/0sD6abcn+HLK+6WF905fsNbI+mm3J/hyyvulhfdPD+qYvmWvkdDMiIiIiIiIiImKTiIiIiIiIiIiIFmiT6Kmnnkp0CV+J9U1fstfI+qaH9dFsS/bnkPVND+ubvmSvkfXRbEv255D1TQ/rmx7WN33JXOOCXJOIiIiIiIiIiIgmZ0GeSURERERERERERJOz4JpEBw8eRHl5OUpLS/HSSy8luhy0trbi7rvvxooVK1BRUYHXXnsNANDX14eNGzdi6dKl2LhxI/r7+xNap67rWLVqFR544AEAgNfrRV1dHUpLS/Gd73wHkUgkYbUNDAxg27ZtWLZsGZYvX45jx44l1fi9+uqrqKioQGVlJR599FGEQqGEjt/3v/99ZGdno7KyMn7ZjcZLCIEf/ehHKC0tRXV1Nc6cOZOQ+p577jksW7YM1dXVeOihhzAwMBC/bufOnSgtLUV5eTneeeedhNQ36pVXXoEkSfHtIhMxfjR9zImpYU5MHXNi+vUxJ2guMScmL5kzAmBOTBZzYubrGzUvckIsINFoVJSUlIjGxkYRDodFdXW1qK+vT2hNHR0d4vTp00IIIYaGhsTSpUtFfX29eO6558TOnTuFEELs3LlTPP/884ksU7zyyivi0UcfFZs3bxZCCPHII4+IP/3pT0IIIZ5++mnxu9/9LmG1fe973xOvv/66EEKIcDgs+vv7k2b82traRHFxsQgEAkKI2Li9+eabCR2/Dz74QJw+fVpUVFTEL7vReB04cEDcf//9wjAMcezYMVFbW5uQ+t555x2haZoQQojnn38+Xl99fb2orq4WoVBINDU1iZKSEhGNRue8PiGEaGlpEZs2bRJFRUWiu7tbCJGY8aPpYU5MHXNiapgTM1Mfc4LmCnNiapI5I4RgTkwWc2Lm6xNi/uTEgmoSHT16VGzatCn+9Y4dO8SOHTsSWNF4W7ZsEX//+99FWVmZ6OjoEELEXvjLysoSVlNra6vYsGGDOHTokNi8ebMwDENkZGTE/8i+PK5zaWBgQBQXFwvDMMZcnizj19bWJjwej+jt7RWaponNmzeLgwcPJnz8vF7vmBelG43XU089JXbv3j3h7eayvuv99a9/FY899pgQYvzf8KZNm8TRo0cTUt/WrVvFuXPnxKJFi+Iv6okaP5o65sTUMCemjjkxM/VdjzlBs4k5MXnJnBFCMCemijkx8/XNl5xYUNPN2tvbUVhYGP/a4/Ggvb09gRWN1dzcjLNnz6Kurg6dnZ3Iy8sDAOTm5qKzszNhdf3kJz/Byy+/DFmO/Tr09vYiNTUVqqoCSOw4er1eZGVl4YknnsCqVavw5JNPwu/3J834FRQU4Be/+AWKioqQl5cHt9uNNWvWJM34jbrReCXj38wbb7yBb33rWwCSp769e/eioKAANTU1Yy5Plvro1iX7c8acmDzmxMxgTkwPc2LhSPbnLBlzIpkzAmBOzBTmxPTMp5xYUE2iZDY8PIytW7fiN7/5DVJSUsZcJ0kSJElKSF379+9HdnY21qxZk5DvfzPRaBRnzpzBM888g7Nnz8LhcIybG57I8evv78fevXvh9XrR0dEBv9+PgwcPJqSWW5XI8bqZX/3qV1BVFY8//niiS4kLBALYsWMHXnjhhUSXQgscc2JqmBMzjzkxOcwJmivJmBPJnhEAc2I2MCcmZ77lxIJqEhUUFKC1tTX+dVtbGwoKChJYUYymadi6dSsef/xxPPzwwwCAnJwcXLlyBQBw5coVZGdnJ6S2I0eOYN++fSguLsb27dvx3nvv4cc//jEGBgYQjUYBJHYcPR4PPB4P6urqAADbtm3DmTNnkmb83n33XSxevBhZWVkwmUx4+OGHceTIkaQZv1E3Gq9k+pv5wx/+gP3792PXrl3x0EmG+hobG+H1elFTU4Pi4mK0tbVh9erVuHr1alLUR5OTrM8Zc2LqmBMzgzkxdcyJhSVZn7NkzYlkzwiAOTFTmBNTN99yYkE1idatW4eGhgZ4vV5EIhHs2bMHW7ZsSWhNQgj84Ac/wPLly/Gzn/0sfvmWLVvw1ltvAQDeeustPPjggwmpb+fOnWhra0NzczP27NmDDRs2YNeuXbj77rvxl7/8JeH15ebmorCwEF988QUA4NChQ1ixYkXSjF9RURGOHz+OQCAAIUS8vmQZv1E3Gq8tW7bg7bffhhACx48fh9vtjp9GOpcOHjyIl19+Gfv27YPdbh9T9549exAOh+H1etHQ0IDa2to5ra2qqgpdXV1obm5Gc3MzPB4Pzpw5g9zc3KQZP7p1zInJY05MD3NiZjAnaK4wJyYn2TMCYE7MFObE1M27nEjMUkiz58CBA2Lp0qWipKREvPjii4kuRxw+fFgAEFVVVaKmpkbU1NSIAwcOiJ6eHrFhwwZRWloq7rnnHtHb25voUsX7778f35GgsbFRrFu3TixZskRs27ZNhEKhhNV19uxZsWbNGlFVVSUefPBB0dfXl1Tj98tf/lKUl5eLiooK8d3vfleEQqGEjt/27dtFbm6uUFVVFBQUiN///vc3HC/DMMSzzz4rSkpKRGVlpfjoo48SUt+SJUuEx+OJ/408/fTT8du/+OKLoqSkRJSVlYm//e1vCanvetcvNJeI8aPpY05MHXNiapgT06+POUFziTkxNcmaEUIwJyaLOTHz9V0v2XNCEkKIxLapiIiIiIiIiIgo0RbUdDMiIiIiIiIiIpoaNomIiIiIiIiIiIhNIiIiIiIiIiIiYpOIiIiIiIiIiIjAJhEREREREREREYFNIiIiIiIiIiIiAptEREREREREREQENomIiIiIiIiIiAjA/wdUsOWiPcuCVgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "from aeon.similarity_search import QuerySearch\n", - "\n", - "# Here, the distance function (distance and normalise arguments)\n", - "top_k_search = QuerySearch(k=3, distance=\"euclidean\")\n", - "# Call fit to store X_train as the database to search in\n", - "top_k_search.fit(X_train)\n", - "distances_to_matches, best_matches = top_k_search.predict(q)\n", - "for i in range(len(best_matches)):\n", - " print(f\"match {i} : {best_matches[i]} with distance {distances_to_matches[i]} to q\")" + "series_predict = X[3]\n", + "starting_timestep_predict = 25\n", + "indexes, distances = snn.predict(\n", + " series_predict[:, starting_timestep_predict : starting_timestep_predict + length],\n", + " k=3,\n", + " allow_trivial_matches=True,\n", + ")\n", + "for i in range(len(indexes)):\n", + " print(f\"match {i} : {indexes[i]} with distance {distances[i]}\")\n", + "plot_best_matches(\n", + " series_fit, series_predict, starting_timestep_predict, indexes, length\n", + ")" ] }, { "cell_type": "markdown", - "id": "3dc402cf-80b7-4d0c-b07c-2f8e7822ac97", + "id": "fcf10a34-930a-4fce-86f8-4dfa207cad11", "metadata": {}, "source": [ - "The similarity search estimators return a list of size `k`, which contains a tuple containing the location of the best matches as `(id_sample, id_timestamp)`. We can then plot the results as:" + "The `predict` method returns two lists, containing the starting timesteps of the matches in `series_fit` and the squared euclidean distance of these matches to the subsequence we gave in `predict`. Now, you can then play with the different parameters of `predict` to customize your search results to your needs!\n", + "\n", + "It is also possible to get the distance profile which is used to extract the best matches :" ] }, { "cell_type": "code", "execution_count": 5, - "id": "23efe48e-8257-4ecc-93a2-d72f19024ab5", + "id": "7d2bd3f7-7eb9-4406-be1c-b6fcd9c76730", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAE/CAYAAADCGZOXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAACnOUlEQVR4nOzdeZicZZ3v//dTe1XvezqdpDv7vgAJOzGICKLEwCCoyARRcQOcmeNRRmb4MR4XRp0zjoOO5ojixqKgIKsKElkESQIBQvalk+50p/eu6q59eX5/VFd1d/al07V9XteViyRdqbqrSep+nu/9XQzTNE1ERERERERERKSgWTK9ABERERERERERyTwFiUREREREREREREEiERERERERERFRkEhERERERERERFCQSEREREREREREUJBIRERERERERERQkEiyTFNTE88++2ymlzFu7rvvPi688MJML0NEJGdonxARkaPRPiFyahQkkrx311138bGPfWzcXu/GG2/kX/7lX07Lc/f29nLVVVdRVFREY2Mj999//2l5HRGRQpJP+8Q999zD0qVLcTqd3HjjjaflNURECk2+7BPhcJhPfOITNDY2UlJSwpIlS3j66afH/HUkt9kyvQAROX6f//zncTgcdHR0sHHjRt7//vezePFi5s+fn+mliYhIFpg4cSL/8i//wh/+8AeCwWCmlyMiIlkkFosxefJk/vKXvzBlyhSeeuoprr32Wt5++22ampoyvTzJEsokkqyzbt065s2bR0VFBR//+McJhULprz3xxBMsWbKE8vJyzj//fN5666301/793/+dhoYGSkpKmD17Ns899xzPPPMM3/jGN3jooYcoLi5m8eLFh33NpqYmvv3tb7No0SKKior4xCc+QUdHB+973/soKSnhPe95D319fenHf+hDH2LChAmUlZWxfPly3nnnHQDWrFnDr371K771rW9RXFzMlVdeCUBLSwtXX301NTU1VFVVccstt4x6/S9+8YtUVFQwderUI0bz/X4/jzzyCP/n//wfiouLufDCC1m5ciW/+MUvTu4bLSKSo7RPHPnU9+qrr2bVqlVUVVWd+DdWRCRPaJ84/D5RVFTEXXfdRVNTExaLhQ984ANMnTqVDRs2nNw3WvKTKZJFGhsbzfnz55v79u0ze3p6zPPPP9+84447TNM0zddff92sqakxX331VTMWi5n33Xef2djYaIZCIXPr1q3mpEmTzP3795umaZp79uwxd+7caZqmaf5//9//Z15//fXHfN1zzjnHPHDggNna2mrW1NSYZ5xxhvn666+bwWDQvPjii8277ror/fh7773X9Pl8ZigUMr/whS+YixcvTn9t9erV6TWbpmnGYjFz0aJF5j/8wz+Yg4ODZjAYNF988UXTNE3zpz/9qWmz2cw1a9aYsVjM/MEPfmDW19ebiUTikDW+/vrrptvtHvV73/72t80PfOADJ/AdFhHJbdonjrxPjHTHHXeYq1evPu7vq4hIvtA+cXz7hGma5oEDB0yn02lu2bLl+L65UhCUSSRZ55ZbbmHy5MlUVlZyxx138MADDwDJqPqnP/1pzjnnHKxWK6tXr8bpdPLqq69itVoJh8Ns3ryZaDRKU1MT06dPP6HXvfXWW6mrq6OhoYGLLrqIc845hzPOOAOXy8VVV13FG2+8kX7sTTfdRElJCU6nk7vuuos333wTr9d72Od97bXXaGtr49vf/jZFRUW4XK5RzeUaGxv51Kc+lX5P7e3tdHR0HPI8g4ODlJaWjvq9srIyBgYGTuh9iojkOu0Th98nREQkSfvEsfeJaDTK9ddfz+rVq5kzZ84JvU/JbwoSSdaZPHly+ueNjY20tbUBsHfvXv7jP/6D8vLy9I+Wlhba2tqYMWMG3/3ud7nrrruora3lwx/+cPrPHa+6urr0z91u9yG/HhwcBCAej3P77bczffp0SktL0/W73d3dh33elpYWGhsbsdkO3wJswoQJ6Z97PB6A9GuNVFxcjM/nG/V7Pp+PkpKS43h3IiL5Q/vE4fcJERFJ0j5x9H0ikUhwww034HA4uOeee47vzUnBUJBIsk5LS0v65/v27WPixIlA8sP+jjvuoL+/P/0jEAjwkY98BICPfvSjvPTSS+zduxfDMPjyl78MgGEYY7q++++/n8cee4xnn30Wr9dLc3MzAKZpHvb1Jk+ezL59+4jFYqf0urNmzSIWi7Fjx47077355ptqWi0iBUf7hIiIHI32iSMzTTPdL+mRRx7Bbref8nNKflGQSLLO97//fVpbW+nt7eXrX/861113HQCf+tSn+OEPf8jf/vY3TNPE7/fz5JNPMjAwwLZt2/jzn/9MOBzG5XLhdruxWJJ/vevq6mhubiaRSIzJ+gYGBnA6nVRVVREIBPjKV74y6ut1dXXs3r07/euzzz6b+vp6br/9dvx+P6FQiJdffvmEX7eoqIirr76aO++8E7/fz8svv8xjjz3GDTfccMrvSUQkl2ifOLJYLEYoFCIejxOPxwmFQgo+iUjB0T5xZJ/97GfZsmULjz/+OG63+5Teh+QnBYkk63z0ox/lve99L9OmTWP69On8y7/8CwBLly7l//2//8ctt9xCRUUFM2bM4L777gMgHA5z++23U11dzYQJE+js7OSb3/wmkJwcAFBVVcWZZ555yuv7+7//exobG2loaGDevHmce+65o77+iU98gs2bN1NeXs6qVauwWq08/vjj7Ny5kylTpjBp0iQeeuihk3rtH/zgBwSDQWpra/nIRz7C//zP/yiTSEQKjvaJI/va176G2+3m7rvv5pe//CVut5uvfe1rp/yeRERyifaJw9u7dy8/+tGP2LhxIxMmTKC4uJji4mJ+9atfnfJ7kvxhmKmcNhERERERERERKVjKJBIREREREREREQWJREREREREREREQSIREREREREREUFBIhERERERERERQUEiEREREREREREBbJlewJFUV1fT1NSU6WWIiGSl5uZmuru7M72MjNI+ISJyZNontE+IiBzJ0faIrA0SNTU1sX79+kwvQ0QkKy1dujTTS8g47RMiIkemfUL7hIjIkRxtj1C5mYiIiIiIiIiIKEgkIiIiIiIiIiIKEomIiIiIiIiICFnck+hwotEora2thEKhTC9FsojL5WLSpEnY7fZML0VEROS00XWQHI6ug0REZCzlVJCotbWVkpISmpqaMAwj08uRLGCaJj09PbS2tjJ16tRML0dEROS00XWQHEzXQSIiMtZyqtwsFApRVVWlCyNJMwyDqqoqnaqKiEje03WQHEzXQSIiMtZyKkgE6MJIDqG/EyIiUii058nB9HdCRETGUs4FiTKpubmZBQsWnPLzrF27lr/+9a9jsKJD3XfffbS1tR3zMbfccssxn2vFihWsX79+rJbGxo0beeqpp9K//v3vf8/dd989Zs8vIiIip4+ug06NroNERCQXKEiUAZm+OMqUgy+OVq5cye23357BFYmIiMh403VQkq6DREQkG+VU42qAu9beNX6vteLQ14rFYlx//fW8/vrrzJ8/n5///Od4PB42bNjAP/3TPzE4OEh1dTX33Xcf9fX1fO973+OHP/whNpuNefPmcffdd/PDH/4Qq9XKL3/5S/77v/+biy66aPg177qLPXv2sHv3bvbt28d//ud/8uqrr/L000/T0NDA448/jt1u56tf/SqPP/44wWCQ888/nx/96Ec88sgjrF+/nuuvvx63280rr7zCpk2b+MIXvoDf78fpdPLcc88B0NbWxuWXX86uXbu46qqr+Na3vnXU78UDDzzAN77xDUzT5P3vfz///u//DsAzzzzDV77yFeLxONXV1Tz33HO89tprfOELXyAUCuF2u/npT3/K1KlTufPOOwkGg7z00kv88z//M8FgkPXr13PPPffQ3NzMTTfdRHd3NzU1Nfz0pz9lypQp3HjjjZSWlrJ+/XoOHDjAt771La655pqx+598DPGEyVut/ezsHKSlL0g8kcDAoNRto8xtpz8QpXswTDiWIBpPEImZJEyTulIXTVUeGquKmFLlwWmzYLMYlHsc47Z2ERHJrEgsQYcvRIcvxAFfiAPe5I++QJSJ5S4mVbgxTUiYMK2miLn1pZS5jz6hStdBug4az+sgkULR0hvgD+8cYOuBAcrcdiqLHFR4HJS6bVgMA7vVQoXHTpnbjmEY2CwGZW47pW47VotKPiW/5FyQKNO2bdvGvffeywUXXMBNN93ED37wA77whS9w66238thjj1FTU8NDDz3EHXfcwU9+8hPuvvtu9uzZg9PppL+/n/Lycj7zmc9QXFzMF7/4xcO+xq5du3j++efZvHkz5513Ho888gjf+ta3uOqqq3jyySdZtWoVt9xyC3feeScAN9xwA0888QTXXHMN99xzD9/5zndYunQpkUiE6667joceeohly5bh8/lwu91A8jTrjTfewOl0Mnv2bG699VYmT5582PW0tbXx5S9/mQ0bNlBRUcF73/teHn30US644AI+9alP8cILLzB16lR6e3sBmDNnDi+++CI2m41nn32Wr3zlKzzyyCN89atfTV8MQfK0L+XWW29l9erVrF69mp/85CfcdtttPProowC0t7fz0ksvsXXrVlauXDlmF0eRWII93X52dQ0yGI4RjiUIR+OEonFC0QRdA2Ge29pB92BkTF4PYM6EElad0cCFM6qZPaEEu1XJfCIiucobiPKnLR28squHrsEw3mAUTJNI3KRrIHTC+4dhwLtm1XD9OY1cMqcWSxbeeOg6KH+ug0QEovEE//K7TTy0vuWk/rzDamFOfQlzJpRQ7nFQ7rEzvaaYGbXFNFZ6sOlaX3KQgkQnaPLkyVxwwQUAfOxjH+N73/sel19+OZs2beLSSy8FIB6PU19fD8CiRYu4/vrrWbVqFatWrTqu13jf+96H3W5n4cKFxONxLr/8cgAWLlxIc3MzAM8//zzf+ta3CAQC9Pb2Mn/+fK688spRz7Nt2zbq6+tZtmwZAKWlpemvXXLJJZSVlQEwb9489u7de8SLo3Xr1rFixQpqamoAuP7663nhhRewWq0sX748PXK1srISAK/Xy+rVq9mxYweGYRCNRo/5nl955RV++9vfAsmLvS996Uvpr61atQqLxcK8efPo6Og45nMdiS8U5Scv7eE361vpD0QIROOY5rH/XGOVh8WTymkcygiKJ5LP5Q1GKXPbqS524nFYsVmTpwwG0NYfYm+Pn729AVp6A8QTJoFInK0HBrj76a0AuOwW3j2nlmvOmsS7ZtXqFEJEJAe09gX4y/Yuntl0gFd29RBLHHkjsVoMaoqdTChzMaHUxYQyF3WlLsrcdtr6g7R5g9gtFmIJkx2dA2xp97F2Wxdrt3Vx/vQqvvOhxUwsd4/juzs2XQfl7nWQiIzmD8f47K9e54XtXThtFt4zr45zp1URjMTo9Ufp80fwhaKYJkTiCXqHfg3J4JI3EMUXivFWq5e3Wr2HPL/dajC5wkOxK1mBMGdCCTNrS7BZDdx2K2c1VVBb4hrvty1yTAoSnaCDJ0gYhoFpmsyfP59XXnnlkMc/+eSTvPDCCzz++ON8/etf5+233z7mazidTgAsFgt2uz39mhaLhVgsRigU4nOf+xzr169n8uTJ3HXXXSc8+jT1GgBWq5VYLHZCf/5o/vVf/5WLL76Y3/3udzQ3N7NixYpTer6RazWPJ6pzENM0eeC1Fv79ma3JU94hhpEMAM2sLabUbcdlt+KyWXHZLbjsVjwOK+dNr2JefemYTA6JxBKs3dbJ05sOsLGlnz3dfp56+wBPvX2AxioPn14+navOaMDtsJ7ya4mIyIkzTZMef4T9fUHa+oPs7w/S2hfkgDdEfzDC/v4gLb3B9OOtFoMLZlRx6dw6plR5KHM7sFoMrIZBbamT6mLnCR0A9PojPLKhlR/+ZRd/3dXD5d99gZ/ddDZnTKk4HW/3pOg66Niy7TpIRA7vq49v5oXtXVQWOfjpjctYPLn8hJ/DF4ryzn4fu7sHGQjF6BoIs6trkB0dg+zvD7K7259+7Is7ug/58/PqS7nj/XO5YEb1qbwVkTGlINEJ2rdvH6+88grnnXce999/PxdeeCGzZ8+mq6sr/fvRaJTt27czd+5cWlpauPjii7nwwgt58MEHGRwcpKSkBJ/Pd9JrSF0IVVdXMzg4yMMPP5xOPS4pKWFgYACA2bNn097ezrp161i2bBkDAwPpNOsTcfbZZ3PbbbfR3d1NRUUFDzzwALfeeivnnnsun/vc59izZ086zbqyshKv10tDQwMwOpV65NoOdv755/Pggw9yww038Ktf/WpUf4JT0TMY5rYH3+DlnT0AnDO1kn94zywWTirDZbOMawqow2bhvfMn8N75EwBo9wb53Rv7eeC1feztCfCV373NN57awvsX1nPbe2bSkGWnxyIi+aatP8gb+/p5Y18fb7T0s7nNRzAaP+qfKXHZOHdaFZfOq+PSuXVUFI1dr7nKIgefWj6NVWc08KWH3+T5bV186eG3eOoLF2VNebKug3LrOkhEDi+RMPnD5gMA/Pyms1nQUHZSz1PqsnPe9CrOm151yNcCkRitfUECkThdA2E2t/nY2+PHBLoHw6xv7mNzu4/rf/w3PnL2ZM6ZWkVdqYv6smTmqcuug2PJDAWJTtDs2bP5/ve/z0033cS8efP47Gc/i8Ph4OGHH+a2227D6/USi8X4h3/4B2bNmsXHPvYxvF4vpmly2223UV5ezpVXXsk111zDY489dkjDxuNRXl7Opz71KRYsWMCECRPSadQAN954I5/5zGfSDRsfeughbr31VoLBIG63m2efffaE33N9fT133303F198cbph4wc/+EEA1qxZw9VXX00ikaC2tpY//elPfOlLX2L16tV87Wtf4/3vf3/6eS6++GLuvvtulixZwj//8z+Peo3//u//5uMf/zjf/va30w0bx8Idv9vEyzt7qCxy8G8r5/OBRfVjkhU0FurL3HxuxQxuvmgaT206wL0v7eHNln4eWt/Cy7u6eeSz51NXqhRUEZGx1OuP8IPnd/LnrZ2jTnhTSl02Gio8NJS7aSh30VDhpr7MTVWRg6piJzNqi097eXBNiZP/+dhZXPbdF9jROchPX97Dzcunn9bXPF66Dsqt6yARObzN7T76A1Eayt3Mn1h67D9wEjwOG7PqStK/vnRe3aivh2NxfvSX3XzvuR088FoLD7w23BfJajE4q7GCS4ZaU1QVOxEZL4aZpXmrS5cuZf369aN+b8uWLTzU8dC4reFwUz0kO23ZsoW5c+eO+r3ntnTwiZ+tp8hh5Q//uJxJFZ4Mre747ewc4H/9+k3ebPUyq66YX3/6PE1Ek8M63GdkodH3QE6UaZp8eM2r/G1PssFwidPGGY0VnDG5nDOmlLN4UvmYZgadqrXbOrnxp+vwOKw897/eRX9bs66D5LAOdx2kz0h9D+TIfviXXdz99FauXTqJb12zOKNr2dLu43dv7KetP0iHL0S7N/kjPtTzzmmzcPHsWtq9QfoCUS6bX8d1y6YwvaYoaw6/Jfcc7fMx5zKJdMEixyMQiXHnY+8A8I+XzsqJABHAjNoS7vv42XzoR6+wvWOQj9+3jl998hw8jpz7pyoiknUe3tDK3/b0Ulnk4AfXn8nSxoqsnjyzYnYtl8+fwDPvHGDNC7u5doZF10EiImPg5Z3J/kDZ0Atobn0pc+tHZzN5g1Fe3tnNwxta+fPWTp5550D6a//vxT38vxf3UFfq5LxpVfzzFXNVfSBjKnuvjEROwa/XtbC/P8i8+lJuPL8p08s5IRVFDn7xibNpKHfzxr5+Pv2LDURiiUwvS0Qkp/X6I3zjqS0A/Mv753LutKqsDhCl3PLuGQD87o39alosIjIGQtE4rw1llJ4/PfNBosMpc9u5YmE9P7lxGc/+03LuvnohD958Lg9/5jyuXTqJUpeNDl+YRze2cd2PXqGtP3jsJxU5Ttl/dSRyEtbt7QNg9fmNOXETcLD6Mje/+MTZVBU5eHFHN197cnOmlyQiktO+9sRm+gJRzp9exVVnNGR6OcdtQUMZCxpK6Q9ECUZ1YCAicqpe39dHOJZgzoQSakqyv9fPjNoSPnz2FM6dVsXSpkq+dc1iNt75Xv74j8uZP7GU5p4A1615hXavAkUyNnLv7lnkOGzc1w/AksnZMzb4RE2rKea+j5+NzWLwi1f3smFvb6aXJCKSk57d3MFv39iP02bh61ctzLkeDtctmwJAIDx2Y9pFRApVqtTsopnZmUV0PCwWg1l1Jdz/yXNZPKmMlt4gH//pOnyhaKaXJnlAQSLJO10DYfb3BylyWJlRW5zp5ZyShZPK+PS7pmGa8M+/fVtlZyIiJ8gbiPKV370NwP++bDZTq4syvKITt3LxRFx2C6FYgnAsnunliIjktDeGDpPPmXro2PpcU+ax87ObzmZaTRFbDwzwuV++rvsFOWUKEkne2djSD8CiSeWnfUzxeLj13TNpqvKwvWOQe1/ak+nliIjklB+9sIvOgTBLGyv4+AVTM72ck1LmtnPFgnoA+gM6JRYRORV7ewIAOX+YnFLucfCzj59NdbGDl3Z285OXdb8gp0ZBIsk7G1uS/YiWTCnP7ELGiMtu5d8+uACANS/swq9yAxGR47Z+qEfd5y+ekdMHB5ctmADAYEh7gIjIyQrH4rR5g1gtBg0V7kwvZ8xMrvTwH9cuAeD7z++kzx/J7IIkpylIlAViMV3wjaVUJtGSyeUZXcdYWj6zmjOmlNMXiPLAa/syvRwRkZyQSJhsbvMBML+h9BiPzm7nTqvCAAKROPFE/kw50zWQiIynlt4gpgkTy13Yc3C4zdG8a1YNF82sZiAU457nd2Z6OZLD8utfxjj5+te/zqxZs7jwwgv5yEc+wne+8x1WrFjB+vXrAeju7qapqQmAeDzO//7f/5tly5axaNEifvSjHwGwdu1aLrroIlauXMm8efO48847+e53v5t+jTvuuIP/+q//Gu+3lvMSCZO3WrxAfgWJDMPg1qExyD96YTehqHpSiIgcy77eAIPhGLUlTmpLXJlezikpc9ux2yyYmBnNKNU1kIjksn29fgCaqnKvP93x+PLlczAM+PkrzbT0BjK9HMlRtkwv4KTcdVfGXmPDhg08+OCDbNy4kVgsxplnnslZZ511xKe59957KSsrY926dYTDYS644ALe+973AvD666+zadMmpk6dSnNzM1dffTX/8A//QCKR4MEHH+S11147He8sr+3qGmQgHKO+zEVdaW7fEBzs4tm1zKsvZXO7j99saOWGcxszvSQRkay2qS15aDB/Ym5nEaW4bMmzPePf7gKX/fS+2GGug3QNJCK5rrk7GTiZUunJ8EpOjwUNZaxa0sDv3tjPj17YxddWLcz0kiQHKZPoBL344otcddVVeDweSktLWbly5VEf/8c//pGf//znLFmyhHPOOYeenh527NgBwNlnn83Uqckmmk1NTVRVVfHGG2/wxz/+kTPOOIOqqtzvuD/e8rHULMUwDD61PPn35ZlN7RlejYhI9ntnqNRsQUNZhlcyNpz25GVbpibX6BpIRHLdvqHsmnzNJAL43IrpAPxmfSvdg+EMr0ZyUW5mEmUhm81GIpG8aAuFQunfN02T//7v/+ayyy4b9fi1a9dSVDT6w+mTn/wk9913HwcOHOCmm246/YvOQzs6B4H8OTU+2EUzawDYsLePcCyO02bN8IpERLLXpv35lUnksFpIGAaxhEk8YWZNI25dA4lIrmjuSZabTanKz0wigJl1Jbxnbi3Pbunk539t5p/eOzvTS5Ico0yiE7R8+XIeffRRgsEgAwMDPP7440DyFGzDhg0APPzww+nHX3bZZfzP//wP0WhyZO327dvx+/2Hfe6rrrqKZ555hnXr1h1yQSXHZ0/3UJ1xdX6eDlQXO5lZW0womuCtVm+mlyMikrVMc0TT6on5kUlkGAZFzuT5XiayiXQNJCK5bl9PMpOoMY+DRACfflcym+jnr+4lENGAADkxyiQ6QWeeeSbXXXcdixcvpra2lmXLlgHwxS9+kWuvvZY1a9bw/ve/P/34T37ykzQ3N3PmmWdimiY1NTU8+uijh31uh8PBxRdfTHl5OVarMkROxt6e/G5GB8kJNzs6B3l1Vw/LmiozvRwRkax0wBeixx+h1GVjUh6NOS52WkkA0XgCN+N7raBrIBHJZfGESUtffvckSlnaWMGZU8p5fV8/T7zZzrXLJmd6SZJDcjNINB6Nq4/ijjvu4I477hhaSnItc+bM4a233ko/5mtf+xoAFouFb3zjG3zjG98Y9RwrVqxgxYoVo34vkUjw6quv8pvf/Ob0LT6PJRIme4dOB/I1kwiSQaJfvLqXv+3p5dZML0ZEJEu9s384i8gwsqMsayx4HDZ2/dPtuO1WSutKxv31dQ0kp8NNN93EE088QW1tLZs2bTrk62vXruWDH/xguo/V1VdfzZ133jney5Qc19YfJBo3qS1x4nHk5m3w8TIMg787axKv7+vn2S0dChLJCVG5WZbYvHkzM2bM4JJLLmHmzJmZXk5OOuALEY4lqC52UuzM3w/+c6Yls4fW7+3NWPNSEZFsN9y0Oj/6EaW47VYMDELROPGEmenljAldA8mNN97IM888c9THXHTRRWzcuJGNGzcqQCQnJdW0Ot9LzVLePacWgBd3dBOKxjO8Gskl+XsnPU7uGqOspnnz5rF79+4xea5C1ZzqR5TnH/ypvkQ7Ogd5q7WfpSo5ExE5xI7OAQBmT8ivIJHFYuCyWwhG4wSj8YweiugaSMbK8uXLaW5uzvQyJM+lmlY35nFbipHqy9zMn1jKO20+Xtndw8WzazO9JMkRY5JJdNNNN1FbW8uCBQsO+/W1a9dSVlbGkiVLWLJkCV/96lfH4mVFRmkugFKzlHOnJUcDv7KrJ8MrERHJTsNjjvPv4MDjSPbsCaoZqRSQV155hcWLF/O+972Pd95554iPW7NmDUuXLmXp0qV0dXWN4wol26WbVud5P6KRLhnKJvrzls4Mr0RyyZgEicYzRdQ08yO1WsZO6u9E6nRgagEEiZZNTWYPbWzpz+xCRESyVCq7NN/GHJumiXuol0YgovIBKYxr4zPPPJO9e/fy5ptvcuutt7Jq1aojPvbmm29m/fr1rF+/npqamvFbpGS9VO/SfNsXjuaSuXUAPLeloyA+K2RsjEmQaPny5VRWnv6SF5fLRU9Pj/6CS5ppmvT09OByudI3BIVQZ7ywITnOeVObN8MrERHJPv2BCL5QDI/DSk2xM9PLGTOp6yC3PXn5piCRjLwOymelpaUUFxcDcMUVVxCNRunu7s7wqiTXtHmDAHk18fJYFjaUUVPipM0bYkv7QKaXIzli3ArZUymiEydO5Dvf+Q7z588/5DFr1qxhzZo1AIdND500aRKtra1KHZVRXC4XkyZNorlnHwBNBVBn3Fjpodhpo8MXpmsgTE1J/twEiYicqvRpcaUnryabjbwO6uoPkjAh3uvCasmf9ygnLnUdlM8OHDhAXV0dhmHw2muvkUgkqKqqyvSyJMcc8IYAqCvN76DqSBaLwYpZNfxmQysv7uhi3sT86tMnp8e4BIlSKaLFxcU89dRTrFq1ih07dhzyuJtvvpmbb74ZgKVLlx7ydbvdnh59KTJSImGmbwoKoSeRxWIwr76U15p7eafNywo1ohMRSdubpxNsRl4HfePev/Hijm5++LEzuXxufYZXJnJqPvKRj7B27Vq6u7uZNGkS//Zv/0Y0GgXgM5/5DA8//DD/8z//g81mw+128+CDD+ZVAFhOv1g8QfdgGIDaksIJEkGyl+lvNrSyrrmXT79reqaXIzlgXIJEpaXDEcsrrriCz33uc3R3d1NdXT0eLy8F4IAvRDiWoLrYmdFJL+Np3sRUkMinIJFktZtuuoknnniC2tpaNm3adMjX165dywc/+MH0ze/VV1+t8cZySvZ25/8EmyWTy3lxRzdvtnq5fIGCRJLbHnjggaN+/ZZbbuGWW24Zp9VIPuoaDJMwobrYgcM2Jh1XcsbZQ71M1zX3kUiYWJR9KscwLv9CDhw4kO4jpBRROR1STavzcYrNkSwY6kv0jvoSSZYbz+EGIpC/mUQjzZmQPIDbdkA9JkREjqUQS81SJlW4qS9z4Q1G2d6pPUOObUxSLpQiKpnW3F04pWYp84dqijft92V4JSJHt3z5cpqbmzO9DCkgw2OO83dPmFNfAihIJCJyPDp8ySDRhAIMEhmGwdlTK3lsYxvr9vSmDxlEjmRMgkRKEZVMa+kbblJaKGbUFuOwWdjXG8AbjFLmtmd6SSIn7XiGG4gcr1R2aT5nEjVVFeG0WdjfH8QXilLq0h4gInIk6UyissILEgEsa0oGif62p5cbzmvK9HIkyxVWQabkrf19yZGWDeWFM9LSbrUwZ0LyJHlzm7KJJHelhhu8+eab3HrrraxateqIj12zZg1Lly5l6dKlmnQphxWMxOkcCGO3GtTn8c2A1WIwsy45ElzZRCIiR3fAl2xaXYiZRADnpPsS9abbwIgciYJEkhf29w8FiSoKJ0gEMH+i+hJJ7istLaW4OHmze8UVVxCNRunu7j7sY2+++WbWr1/P+vXrqampGc9lSo7YN9SPaFKFB5s1vy9zUiUDWxUkEhE5qkIuN4NkBUKFx06HL5zeJ0WOJL+vnqRgFGImEQz3JdrcrkwiyV0abiBjKVVqVgjlx6ls0m0HtAeIiBxNoZebGYbB0qZkNtH65r4Mr0ayXWHMCpe8Fokl6BgIYTFgQoF98M+sTWZf7OoczPBKRI5Mww1kPKWaVhfCtMvZQ0Gire3KJBIROZpCzyQCWDK5nD9t7mBTm5e/O2tSppcjWUxBIsl5B7whTBPqy1zY87y04GAzUkGiLj+maerGWrKShhvIeEql0U8uiEyiZDbpto4B7QEiIkdgmiYHFCRi3lAFwjuajCzHUFh31JKXCrUfEUBlkYNyj53BcIzOgXCmlyMiknHtQyUFhVB+XFPipKrIwUAoRtvQ+xYRkdEGwjECkTguu4VSd+HmSIxsU5FIqHm1HJmCRJLzUkGiiQVwQ3AwwzCYXpPMJtqpkjMRkXRJQaH0nRguOdPJsIjI4XR4h7OICjnjsrbERW2Jk8FwTM2r5agUJJKcV6hNq1Nm1KRKzhQkEhEptJICTTgTETm61L5QVyD7wtGksoneadPBghyZgkSS8/b3JyPhhVhuBjC9tghQ82oRkWg8QfdgGMNIlmIVglRvut1d/gyvREQkO6UmmxXagJvDmT+xDIBNbd4Mr0SymYJEkvPSPYkKNZNo6AZhpzKJRKTAdQ2EMU2oLnYWzCCDaTVDBwXaA0REDkuTzYYtaFAmkRxbYVxBSV5LlZtNKtRMolS5WadOkUWksBVaqRkMB4l2dw1immpEKiJyMJWbDUtlEm1u82rPkCNSkEhyWiJh0taf/OAvxMbVAJMqPDhsFg74QgyEoplejohIxqSakxbSjUBNsZMSpw1fKEaPP5Lp5YiIZJ0OX3ICsMrNkofqpS4b3YMRTUaWI1KQSHJa92CYSDxBZZEDj6MwR1paLQbTqlMnycomEpHClc4kKiuMfkSQnHI5nE2kPUBE5GCdyiRKMwyDeUPNqzftV18iOTwFiSSnpfoRTSwv7A/96ZpwJiJSkOVmMLwH7NYeICJyiFQmUV1p4RwgHM28+mTJmaZiypEoSCQ5rdCbVqdMTzWv1oQzESlghVhuBmpeLSJyJPGESddgMkhUKFMvj2VWXfK+YUeHgkRyeAoSSU5LNa1uKPdkeCWZNX3oBmFPt0oNRKRwDZebFVqQKJVJpD1ARGSknsEw8YRJZZEDp82a6eVkhZl1JQBs79DBghyegkSS09q9qabVhXVDcLAplckg2b7eQIZXIiKSOenmpAWaSbRbBwUiIqOk9oVaZRGlzawbblMRT2jCmRxKQSLJae3eZCZRfVlhl5ulg0Q9AY2zFJGCZJomB1LlZgWWSdRUVYRhJA8KIrFEppcjIpI1OtS0+hClLjv1ZS7CsYQOmOWwFCSSnJbKJKov8EyiyiIHRQ4rA+EY3mA008sRERl3vlCMYDSOx2GlxFlY0y5ddisN5W7iCZN9vcomEhFJ6RhIBYmUSTTScMmZ+hLJoRQkkpzW1j8UJCqwU+ODGYbBlKpkucHeHp0IiEjh6Rgx2cwwjAyvZvwNT7lUkEhEJGV4sllh3yscbFatmlfLkSlIJDkrEkvQPRjGajGoLdEH/5TKZMmd0kZFpBAdKNDJZinpvkQKEomIpHUOHSDUFujecCSz1LxajkJBIslZ6RrjEidWS+GdGh9MzatFpJAV6mSzlGnVySBRs5pXi4ikjbxfkGGp5tUqN5PDUZBIclZbf7JpdaHeEBwsFSRqUZBIRApQZ4E3J20cKjne06MgkYhISnrqpe4XRkn1JNrd5ScW18ADGU1BIslZqVPj+vLCnmyWop5EIlLI0plEBdqcdKoyiUREDtE5UNgHCEdS7LTRUO4mEk+wVwfMchAFiSRnpZpWT9TJAKByMxEpbIXenHRiuRuH1ULnQJhAJJbp5YiIZFw0nqB7MILFgKoiR6aXk3VSJWdqXi0HU5BIcla7N1VupkwigIZyN4aR/L5EYkobFZHC0jmQDBLVFmgmkdViMHlogEFztw4LRES6hvaF6mInNqtuew82s1ZTMeXw9K9Fcla7V5lEIzlsFiaWuUmYw/2aREQKRXqCTQFPu2waKjtuVl8iEZHhptUFmmF6LNNqUkEiTTiT0RQkkpyVyiRST6JhqZIz1RaLSCFJJMz0iXFNAU+waRrqS7RHfYlEREaUIRfuvnA0U7VnyBEoSCQ568BQJlG9MonS1JdIRApRXyBCLGFS5rbjslszvZyMSQWJ9iqTSEQk3bS6VplEhzWtJrln7O7yY5pmhlcj2URBIslJ4Vic7sEINotBdbFOB1KmVCWDRC0KEolIAdFpcdLUVLmZehKJiAyXmxVwGfLR1BQ7KXHa8Aaj9PojmV6OZBEFiSQnpbKI6kpdWC1GhleTPdLlZjpFFpECkj4tLvAbgabq5B6wR3uAiIgOEI7BMIzhbCKVnMkIChJJTmpXqdlhDZebqXG1iBSOzqEbgdoC7kcEUF/mxmG10DUQZjAcy/RyREQySo2rjy3VvHq3mlfLCAoSSU5S0+rDSwWJWnoDqi0WkYKhvhNJVouRLjtu1qmwiBS49AGCMomOaFr1cF8ikRQFiSQntfUrk+hwyj12Spw2BsMx+gLRTC9HRGRcdA4okyilqSrVvFp9iUSksHUMKJPoWFKZRLsUJJIRFCSSnKTJZodnGMOnyOpLJCKFIlVSoNNimDrUl6hZe4DkkJtuuona2loWLFhw2K+bpsltt93GjBkzWLRoEa+//vo4r1ByTSgapz8QxWYxqPQ4Mr2crDU1lUnUrXIzGaYgkeSkdLlZmcrNDjbcl0inyCJSGFKZRDothqahC/49KjeTHHLjjTfyzDPPHPHrTz/9NDt27GDHjh2sWbOGz372s+O4OslFXSMyTC0acnNEqSDRvp4AsXgiw6uRbKEgkeQklZsd2ci+RCIihUCNq4elys3Uk0hyyfLly6msrDzi1x977DH+/u//HsMwOPfcc+nv76e9vX0cVyi5ZjjDVPcKR+N2WGkodxNLmLT0afCNJClIJDnpwNAHf325PvgPlio3UyaRiBQC0zRHnBhrT0hlEjWrJ5Hkkf379zN58uT0rydNmsT+/fszuCLJdh2+VIapDg+OZVpNqnm1Ss4kaUyCRKojlvEUisbp9UewWw2qi/TBf7BUJpGalopIIegPRInEE5S4bLgd1kwvJ+PqS104bRa6B8MMhDTAQArPmjVrWLp0KUuXLqWrqyvTy5EMSWUSqQz52DThTA42JkEi1RHLeEo1ra4rdanG+DBUbiYihSQ1vUalZkkWi0FjlQ4LJL80NDTQ0tKS/nVraysNDQ2HfezNN9/M+vXrWb9+PTU1NeO1RMkymmx2/FITztS8WlLGJEikOmIZT21DTasnqmn1YU0sd2O1GLT7QoRj8UwvR0TktOr0qWn1wRqr1Lxa8svKlSv5+c9/jmmavPrqq5SVlVFfX5/pZUkWU6+645cqN9ulTCIZYhuPFzlSHbE+3OVktA81rZ6gptWHZbdamFjuoqU3SGtfkOlDpwMiIvko3ZxUNwJpqWk1e3t0wS+54SMf+Qhr166lu7ubSZMm8W//9m9Eo8lyyc985jNcccUVPPXUU8yYMQOPx8NPf/rTDK9Ysp3KzY7fVJWbyUHGJUh0vNasWcOaNWsAVEMsR6Sm1cc2pdJDS2+Qfb0BBYlEJK91pppW60YgrSmdSaRyM8kNDzzwwFG/bhgG3//+98dpNZIPUkEiHSof28QyNy57spedLxSl1GXP9JIkw8Zlutnx1hGrhliOR1u/ys2ORX2JJNtowIGcLp3KJDpEU3VyD2hWJpGIFKh0KbKmXh6TxWIMHy4om0gYpyCR6ohlLLV7dTJwLJOHgkT71LRUsoQGHMjpoj3hUKnSgWb1JBKRAuQPxxgIx3DaLJS6s6pwJmtNV/NqGWFM/tWojljGU+qGQJlER9ZYOdSPQplEkiWWL19Oc3PzEb9+pAEHOlCQY0mXIGtPSKsrceG0WejxR1Q6ICIFJ1WGXFfqwjA0Cfl4pJpXqy+RwBgFiVRHLOOpfWi6mXoSHZnKzSTXaMCBnKy2/lSQSHtCSqp0YFvHAHu7AyycVJbpJYmIjJvhptUqQz5eChLJSMq/k5zQ4m0hGAtiN4roDQzgtLqp9DgyvayslQoS7esNYJqmTlEkb2jAgYwUjsXpHgxjMdST6GBN1R62dQywp8evIJGIFIQ/7vwDjb94nL6glUt3BJmZaML/Ygj3+cuxWHXbezTTqpPlZru6VG4mChJJjnil9RU2d22mzx/BZ2um3O3innU7KXWWcnHTxTSWN2Z6iVmlzGOnzG3HG4zS449QXaybJ8luJzLg4OabbwZg6dKl47Y+yU7pxqSlLmzWcWmzmDOa1JdIRAqIaZq8ufsVHHs30dcfZHpvgNroG7za+xwvx1/kf53/RYocRZleZtaaOpRJ1NzjJ5EwsVh0wFzIdEUlOcEX9gEwEI4BUOQ06A320tzfTMJMZHJpWSuVTbRXzaslB2jAgZyM1LRLNa0+1NQqBYlEpHCE42GMgQEAovHkvYHDZiFU5MQwLHjsnkwuL+uVuuxUFzsJRRO0D5XrSeFSJpHkBF/YB6bJYCgZJCpxDf/VLXWWZmpZWW1KpYe393tp6Q1wVmNFppcjBU4DDuR00CCDI2usGj4VFhHJd76wD5c/mV0aiQ0FiawWwkVOSpwlar1wHKbVFNE9GGZ31yAN5dpXC5mCRJL1EmaCgfAAi//4Fg27u5gwGKFmUgVTA35a5zZQ4izJ9BKz0uQRfYlEMk0DDuR0SAWJ1LT6UFNT5WbKJhWRAjAQHsCZChINZRLZbRYCHiclDt0rHI/pNUW8tqeX3V1+LppZk+nlSAap3Eyy3mBkEBMTpz+EdTDExIEgMzu9TNrcise04bCqgfXhNFYpSCQi+S017VLlZoeqK3Xitlvp9UfwBqOZXo6IyGnlC/tw+pMHB6MyiYpdqjo4TqnDhT0qUy54ChJJ1kuVmjkD4eEPfVvyr66zQlHuI0lPONMpsojkqbb+oXIzpcUfwjCM9GGB+hKJSL5LBonCmKaZziRy2CyEPU4FiY5TU5WCRJKkIJFkPV/Yhz0cwxpLpD/0nTYLcZuFotKqDK8ue01RuZmI5LkDvmQmkcrNDq9JfYlEpEAMRAZwBsLEEiamCVaLgdViEBrqSSTHNq1Ge4YkKUgkWc8X9uEMJGuMw7GDTgZcZZlcWlarL3Nhsxgc8IUIReOZXo6IyJhr70/1JFIm0eE0pfoSdeuwQETyW6px9chSM4BwkTKJjtfkSg8WA1p6A+nvoxQmNa6WrJdKH40nTOIJE8MAm8Vg0OOkQh/6R2SzWmiocLO3J0BrX4AZtTpFEZE8ce+9RCNRzlu/h4CriJq3ymDZUnApo2ikqdVD5WY6FRaRPOcLeZkQCOONj25NoXKz4+e0WZlY7qa1L0hLX4DpNcWZXpJkiDKJJOulMolSEW2n1YJhGGpEdxxUciYiecc0ob0d/559zOhp4YKeXVifezb5+zKK+kuISKEI9XdjSZij+pfGHDbiDpumm52AdPPqLu0bhUxBIsl6qUyicCxZMqWTgeM3Wc2rRSTPhAf6MaNRBkIxAIqdNnA4lEV0GKmL/b3KJBKRPBZLxIj39wEHTTbzOAHUk+gEpPYNZaAWNpWbSdbzhX1M8IdGTCqwAqoxPh6NQ0GivcokEpE88btX76N+7wv0B0wiRoioUcLWiBtf2zrm1cyj2KH0+JSaEiceh5W+QBRvIEqZx57pJYmIjLmB8EC6f+nIyWahIidF9iJsFt3yHq90JpEyUAuaMokkq5mmmc4kGpk+CsokOh6p8cd7lUkkInki3NeFiclgOEjC8BM3+tkS3s9TO57CH9FF7UiGYdCYKjnTqbCI5KmByAAu/1CQaOSQG002O2FNChIJChJJlvNH/STMxKieRKkgUaKkGKfVmcnlZb2p1ckTdX3Qi0g+ME2TaH8vAJH4cAlyuCi5F+jg4FDp5tXaB0QkT6UOlOHQcjPtCydmWnoqpvaMQqYgkWQ1X9gHpokzECY8onE1gLOyBsMwMrm8rNdY5cEwko2ro3GNshSR3OaP+rEPJjMj08MMhkoKHFYHLpv6Eh1MzatFJN8lg0QhYHS5mYbcnLiGcjc2i0GbN0QwEs/0ciRDFCSSrOYL+7BFYlhjiVGZRHGbBU9pVYZXl/1cdisN5W7iCVMTzkQk53lD3nRJQTh9WmxNnxbr4OBQTWpeLSJ5biA8gNMfJp4wiSdMDANsFkOZRCfBZrUwJdWuolf7RqFSkEiymi/sG64xHnky4HFS6irL5NJyhkZZiki+8IV9w81JD+o7oRuBw0tnEqk3nYjkqdTeMLLUzDAMQkVOShzqSXSiplbp3qHQKUgkWS1VY5w6GbDoZOCETVMDOhHJE96wF6c/TCJhEhs6LbZbk3tCmVMHB4fTpJ5EIpLnfMF+nIHIqANl0CTkk5U+YFYGasFSkEiyWupkIBxLNSi1YhiGPvRPQOqDfrduEEQkx/lC3uSeEB99Wqy+E0dWU+ykyGHFG4zS549kejkiImMu7O3BMM1RmURRp42Ezaq94SQ0qQqh4ClIJFktlUk08kMfUCbRCZhWk5pwNpjhlYiInJrBvk4s8YN71FmJ2a2UqQT5sAzDSF/wN+tUWETyjGmahHu7gINaUxQlBxmUOFVudqKmac8oeAoSSVY7pMY4lT6qU+Pjls4k0mmAiOS4UG8ncNCI4yInGIb2hKNI9SXSBb+I5Bt/1I8jNdksNrp/qcPqwGl1ZnJ5OalJrSoKnoJEkrVM00xnEoVHjDoGZRKdiInlbhw2C50DYQbDsUwvR0TkpEX6upP/TZcgJ28EAPUkOopUX6I93WpeLSL55bADDawWwh6Hpl6epAmlLlx2C92DEXyhaKaXIxmgIJFkrUA0QCwRw+kPHdKILlbswW1zZ3J5OcNqMWiqUuNSEcltCTNBzNsLMOrgIFSUDBLp4ODI0plE2gNEJM/4wj4cgcNPQtZks5NjsRjaNwqcgkSStXxhH5jmYcvNXJW1Ohk4AWpeLSK5bjAyiGMwCIy8EbASLnLisrlw2lRScCSpPWCvys1EJM+kqg7g0FJk9ao7eVNVclbQFCSSrOUL+7BF41hjiVEf+gmrBU9pVYZXl1tSzat3d6l5tYjkJm/Ie+iNwNBpsbKIjm5kfwnTNDO8GhGRseMdmnppmibRoQMEu81CRHvDKVFfosKmIJFkLW94xA1BfLi0IOx2UKqTgROi0wARyXUj+06EDzot1o3A0VUVOSh22vCFYvQF1F9CRPJHcm+IEI0nA+B2q4HFMAh7nOpVdwpS9w4qNytMChJJ1krVGMcSCeIJE4thYLUYSh89CdMUJBKRHJc6OIgnTOIJE8NI3gyEi1y6ETgGwzBGNK/WPiAi+cMb6h/VmsJuHRpyowOEU6ID5sKmIJFkrdSp8ciyAsMwlD56EtIf9F0qNRCR3OQbKikYWX5sGIZuBI6TmpCKSD4K+HqwxBOjmlbHbRZidqsOlU/BVJUpFzQFiSRrJWuMI+kbAudQ02r1nzhxlUUOytx2BsIxugcjmV6OiMgJ8/d3JW8EYiNvBKy6EThO6dIBNa8WkTyRMBOEe7uAg5pWe5xgGLpfOAVVRQ5KhsqUe/26dyg0ChJJ1kplEo3sPQEQ9jhUWnCCDMMYnnCm5tUikoOCvR0AhONxYKhHXZFuBI7XtJrUHqAgkYjkB3/Ejz0QAhiVSRT2OHFak5Mv5eQky5R1uFCoFCSSrGSaZron0chTY1Am0clSXyIRyWWRvp7kf9N7gpWw2wGgg4PjMH1oyuUuHRSISJ4YNeRmxKGyWlOMjeEDZt07FBoFiSQr+aN+4mYcp//QIFGiuEgnAydBDehEJFfFE3Fi3l7goJKCIieAbgaOw8g9IJ5QfwkRyX0jp15GhzKJ7ENZpipDPnXKJCpcChJJVvKFfQA4g5FR6aMArooaDMPI2Npy1bShU+TdChKJSI4ZiAzgCBx0WmxLnha7bW7sVnsml5cTSlx26kqdhGMJ2vqDmV6OiMgpS/UvhUN7Eunw4NSpCqFwKUgkWckb8mLEE9hDkXRPIueIIJGcOPUkEpFc5Q0NlxSM3BPCHp0Wn4hp1cnDgp3aByQLPfPMM8yePZsZM2Zw9913H/L1++67j5qaGpYsWcKSJUv48Y9/nIFVSjYZmUk0uieRQ0GiMdCUDhIFMrwSGW8KEklW8oV9OIIRSJijTo2jTjulRZUZXl1uaqr2ALCvN0BsaCMVEckFvrAPZ3DotPigGwH1Izp+02vVX0KyUzwe5/Of/zxPP/00mzdv5oEHHmDz5s2HPO66665j48aNbNy4kU9+8pMZWKlkE1/Yh9MfJp4wiSdMDANsFiN5gKC94ZRNrRoqN+v2Y5oqUy4kChJJVkrdEMQTJgnTxGIYWA2DcJHSR0+Wx2GjvsxFNG6yX6UGIpJDUs1JD3cjoD3h+Kl5tWSr1157jRkzZjBt2jQcDgcf/vCHeeyxxzK9LMly3rAXRzA8fHhgtWDofmHMlHnsVBY5CEbjdPjCmV6OjCMFiSQrpW4IUh/6TtvQh75b6aOnIl1yptpiEckh3tDQjUAsDoBz6EYgonKzE5LuTacgkWSZ/fv3M3ny5PSvJ02axP79+w953COPPMKiRYu45ppraGlpGc8lShYa9PdhD8dG9SMyDYOoy6G9YYwM3zto3ygkYxIkUg2xjDVf2IcjEE73nkg1rda0glMzrUalBiKSewYGe7GHY6P2BNOAiA4OTsj0oT1gl/YAyUFXXnklzc3NvPXWW1x66aWsXr36sI9bs2YNS5cuZenSpXR1dY3zKmW8JMwEkd5uAKKx4clmEbcD02JobxgjTemSM/UlKiSnHCRSDbGcDslpBeFR/YgAIiotOCVTq3WKLCK5J9jXCYycbGZN3wio78Txm1jmxmW30DUQxheKZno5ImkNDQ2jMoNaW1tpaGgY9ZiqqiqcTicAn/zkJ9mwYcNhn+vmm29m/fr1rF+/npoaDTvJVwPhARzBwzetdtvcOKyOTC4vb6QOmPcok6ignHKQSDXEMtYSZoKByADOQGRU+iig/hOnSJlEIpKLwn3JbIDRNwLJm0Vllx4/i8UYcVigfUCyx7Jly9ixYwd79uwhEonw4IMPsnLlylGPaW9vT//897//PXPnzh3vZUoWSQ+5gVH3CzpQHlupTCJNOCsspxwkUg2xjDV/xE/CTOAcUW7mHMokMouLcdlcmVxeTptRo/HHIpJbovEoCZ8XYFS5WdjjxMCgxFGSyeXlnNRhwa5O7QOSPWw2G/fccw+XXXYZc+fO5dprr2X+/Pnceeed/P73vwfge9/7HvPnz2fx4sV873vf47777svsoiWjBiIDw0GiEQcIKkMeW6meRM09OlgoJLbxeJErr7ySj3zkIzidTn70ox+xevVq/vznPx/yuDVr1rBmzRoA1RAXMG84eTPgCIRHfegDOCqqM7aufNBQ7sZtt9I1EMYbjFLmtmd6SSIiR5UaZADDp8VOq4WAx0mxoxirxZrJ5eWc1IQzNSGVbHPFFVdwxRVXjPq9r371q+mff/Ob3+Sb3/zmeC9LstRgZPCwmUSDbgcVjuJMLi2vNFV7ANjXEyCeMLFajAyvSMbDKWcSqYZYxpov7AMYXW42FCRyVejvxamwWIz0KfJOnSLLONKAAzlZvrAP58E3AjaLRhyfpHTz6k6dCotI7kr2JDp8JlGJUxmmY8XjsDGh1EUknqCtP5jp5cg4OeUgkWqIZaz5wj6s0TiWaCw97thhs5CwGBSXK0h0qlKnyCo1kPGiAQdyKryhEZlEI3sSuTXi+GSk9wCVHYtIDkuVm5mmSTQ+oieR20GxMonGVCqbaHe3DhcKxSkHiVRDLGPNG/LiCEaIJ0wSJlgtBjbLUI2xbghO2Yxa9SWS8aUBB3IqfGEfjkCYWCJBPGFiMcBmMQgXOTXZ7CSk+kvs7QkQG7qxEhHJNalys1jCxBy6X7BYjGQmkXrVjanUwINmBYkKxpj0JFINsYyl1LSC8EGTzSJuB7UqLThlqSCRMolkvBxuwMHf/va3Qx73yCOP8MILLzBr1iz+8z//c9SfkcLlDXtxBsIjSs2sGIahCTYnqchpo77MRbs3RGtfkKahoJGISC4ZCA9QGzzMJGSVm425qUOZRHsUJCoYp5xJJDLWUkGig/sRRdwOnRqPAWUSSTa68soraW5u5q233uLSSy9l9erVh33cmjVrWLp0KUuXLtWAgwLhC3lH96hL3Qh4nCo3O0lqXi0iuW4w5MMeihwy5CaqcrMxl8okUpCocChIJFknHSQa+tB3pj70XRppORaaqoqwWgxaegOEovFML0cKgAYcyKkI9HVhmOaog4OY3UrcbtWecJKmqXm1iOSweCJOdNCLYY6ebBZ12khYLQoSjTFlEhUeBYkkqyTMRLoRXfgwmUS6ITh1DpuFxkoPCVMf9jI+NOBATpZpmgT7kxljqT3BabMQ8SQDisouPTlqXi0iuSzVjwhGT72MuBy4bW5sljHpqCJDJld6sBjQ2hdIf78lvylIJFllMDJIwkyMLjcbKi2guBinzZnB1eWP6amSM/UlknGgAQdyssLxMIY/GcwedSPgdmA1rDotPknpcrMuHRSISO4ZGSRKTTazD+0N6kc09pw2Kw0VbhIm7OsNZHo5Mg4UZpWs4gv7AHAEI/QdlEnkKKvM2LryzYzaYv60uUNBIhk3GnAgJ8Mb8mJPnRbHRweJSpwlGIaRyeXlrHS5mTKJRCQHpaoOYHS5WUT9iE6bpqoiWnqDNHf70/1NJX8pk0iyijfkBUg2oosl++WkehI5y6sytq58M0OlBiKSA7xhb/pGYFS5mQYZnJIJpS48Dis9/gj9gUimlyMickJGlZsdfIDgUCbR6TBtaBKmWlUUBgWJJKukM4kCEcLx4XHHAJ7y2oytK9+kRh7v7VHKqIhkr9QgA3Nk4+qh02JNNjt5FovB1OpUNpEu+EUktwyEj5xJpHKz0yN177CnR3tGIVCQSLKKL+wD08TiD2OaYLUYWC3JcgJPhYJEY6WpKjmloLnbj2maGV6NiMjheUPJTKJ4wiRhmliM5J6gTKJTp+bVIpKrUplECdMklkhex9qthsrNTqPUwcIeHSwUBAWJJKt4w15skRjRSAwYblodt1kpKVG52VipLHJQ4rIxEI7R41epgYhkp1S52chyAsMwNO1yDKT6Eql5tYjkmoHIAI5AeFQWUWpvULnZ6ZEKEjUrk6ggKEgkWSVVWhAZ0XsC0A3BGDOM4VKDvfqwF5EslcokCh9mT1C52alJ7QH7erUHiEhuSZWbReOjh9wok+j0aSh3Y7catHtDBCPxTC9HTjMFiSSrpIJE4YMmm0Vcdt0QjLHGqlQDOvUlEpHs5A17cYQio06LAZWbjYEplamyY+0BIpJbUuVmqb3BPmJvUE+i08NmtTA5tW/ogDnvKUgkWSNhJtInA5HDnAwok2hsTR3Rl0hEJNskzAQD/j7s4dhwkMhmwTQg6tTBwalqqhrOJlVvOhHJFQkzQSDgxRaNH7Q3GERddmUSnUaacFY4FCSSrDEQHsDExBGKjvrQB6C4BIfVkcHV5Z8m1RaLSBbzR/zYgmGAUdmlUacdh92F0+rM5PJyXrnHTqnLhj8SV286EckZgWgA+9DeMPJQOeK247S5dL9wGjVWaTpyoVCQSLKGN+wFGCo3S9a6Oq1WAOxl5ZlaVt5KfdArSCQi2SjVtBqGbwScNks6s9QwjEwuL+cZhpE+LFBvOhHJFQPhAZz+oSDRiFLkiEulZqdb41AVwr5eBYnynYJEkjW8oeEg0cGZRM7y6oytK1+lpxR0B1RqICJZJ9W0Ghi1J6hp9dhRXyIRyTUDkQE8viAwOpMoVOxSqdlplupJpIEH+U9BIskavrAPAHsgfEhPIldZVcbWla8qhkoNBsMxugdVaiAi2SWVSWSaJpGh7NJ0kEhNq8fEyL5EIiK5YCA8gNuXDGyPzCQKlHnUv/Q0m1KpTKJCoSCRZI1UuZkxGMI0wWoxsFqS5QSeitpMLi0vqdRARLJZKpMonjBJDO0JNosyicZSqnRgry74RSRHDEQG8HiTWfDREYfKwTIPJQ6Vm51OkyrcGAa09YfS33vJTwoSSdZIZRIxEAKSvSdSFCQ6PVKnyJpSICLZxhf24QhFh5tWjxhxrEyisTE8wEBBIhHJDQPhZLlZ6gDBYiQPlQNlHvUkOs2cNiv1pS7iCZO2/mCmlyOnkYJEkjW8IS+WeAIGk83oHCOCRCWVEzK1rLymCWcikq1S5WYH96hLNa6WU9c4VDqgbFIRyRWDQS9uX/CQ1hSBUrcyicbBZJWcFQQFiSRr+MK+5If+QafGYY+TsiL1JDodplYnP+iVSSQi2SZVbnbwjYDKzcZOTYkTt91KfyCKNxDN9HJERI4p0t2BYZoHTTazE3PalUk0DtSXqDAoSCRZIRqP4o/6cfsC6Q9958iTAX3onxYzapLf152dgxleiYjIsFgihj/qxxGMpMvNnMokGnOGYYzoS6TDAhHJftGuA8DoyWaBsuTnmDKJTr/UnqEgUX5TkEiyQqofkccXJBxPTbGxAmBWVWKz2DK2tnw2vXa4J1FMDehEJEt4Q8lBBqPKzYayS+2lFdoTxlCqN536EolItosn4hjdPcDoyWbB0qEgkQ6VT7t0uZn2jLymIJFkhVSQyO0NHNJ/wlKjptWni8dho6HcTTRuarqNiGQNX9iHNRrHGouP2hMSFoOiUpUfj6XGobLjvSo7FpEsNxgZxONLNkwe3huSTas9do8OEMaBys0Kg4JEkhW84eSpsecwQSJ7jZpWn04z64oB2NGhkjMRyQ6+sA/XYHLSZSSWzC512ixD/YjKM7iy/NNYmcwk0kGBiGS7gcgAHm/ysyoaNwGwWy1qWj2OGoeyT/f1BDBNM8OrkdNFQSLJCulMIl9guMZ4qLTAVdeQsXUVgpm1ySDRzs6BDK9ERCTJG/bi8SYvQMPpvhNWgiVu9SMaY01VmnAmIrlhIDwcJBp5qBwo86jUbJxUeOwUO20MhGP0a+BB3lKQSLKCN+TFHoqCP4Jpgs1iYLUYJCwG7pr6TC8vr82sTW6qO9S8WkSyRHLaZYBYwsQ0wTq0JwTKPAoSjbHGavUkEpHcMOjtwh5OBiZSh8o2h41QiTKJxothGMN9iZSBmrcUJJKs4A17R2cRDZWaBUvclLkrMrm0vDc9nUmkIJGIZAdf2IfHFzykaXWwzEOZqyyTS8s79aUuHDYLXQNh/OFYppcjInJE4Y42AEzTJDp0zxAv92BaDGUSjaNGBYnynoJEkhUOuSGwDd8Q6NT49JoxIkgUT6i2WEQyzxtKlpuFD9oTlEk09iwWg8kVbkAX/CKS3UI9HcBwFpHdaiGcmmymTKJxM6VKQaJ8pyCRZAVvyDs02Wy4QSlAoNStU+PTrMxtp67USTiWYH9fMNPLERHBFxrKLh0KEo3cExQkGntNQ41I1ZdIRLJZtK8bGNGPyGoQKnICaG8YR+lyM5Up5y0FiSTjwrEw4XgYjy84fGpstQIQKi+m2FGcyeUVhFQ20Q41rxaRDIvGo8T8A9jDsVElyAmrhXCRS6fFp0FqWo36EolINov19QCkS80cNgvhYheAys3G0RSVm+U9BYkk41KTzTzewCHlZpaqGiyG/pqebqnm1epLJCKZlppsBqSzSx02C8ESN8WuUqwWayaXl5eaqjXhTESyX6K/D4BILNkewW61pDOJdIAwftSTKP/p7lsyzhv2gmniHgge0rjaXjshk0srGMOZRAoSiUhmpSabAensUqfVqlKz0yh1KrxXmUQikqUi8QgW38DQz0dkEhW5MDAochRlcnkFZWK5G4sB7d7hfrKSXxQkkozzhX3YQ1Es8cTwDYHNQtxmpai8JsOrKwzTapIb655unSKLSGb5wr4RmUTDNwKabHb6DPckUpBIRLLTYGQQlz8MMGryZajISbGjWJUH48hhs1Bf5iZhwv5+9TPNR/rXJBnnC/tw+cPJcZYHfeiX6oZgXEyrTmYSKUgkIpnmDXnx+IKYpjnqtFiTzU6fhgo3VotBmzdIKBrP9HKkQD3zzDPMnj2bGTNmcPfddx/y9XA4zHXXXceMGTM455xzaG5uHv9FSsZ4B7qxh6PAcJDIbrcS8TjVjygDGjXhLK8pSCQZ5w15cfpDROMmJmCzGFgsBuFil24IxkldqRO33UqvP4I3EM30ckSkgPnCPtzeALGEiWmC1WJgtRgqNzuN7FYLkyrcmCa09umCX8ZfPB7n85//PE8//TSbN2/mgQceYPPmzaMec++991JRUcHOnTv5x3/8R7785S9naLWSCQOdremfh4f61ZmlbkyLQZlTh8rjTc2r85uCRJJxqUyig5tWh4qc+tAfJ4Zh0FQ9VHKmxqUikkG+YD/ugeCo8mOAQJlHe8JppL5EkkmvvfYaM2bMYNq0aTgcDj784Q/z2GOPjXrMY489xurVqwG45ppreO655zBNMxPLlQzwd7cBJLNMU31wypKfWxXuikwtq2BNTgWJdN+QlxQkkozzhr04/WEi8eSpgNOWnFwT9jh1ajyOpqWCRN1qXi0imRPs7cCSMEf1nIg67cScdu0Jp1GqL5HKjiUT9u/fz+TJk9O/njRpEvv37z/iY2w2G2VlZfT09IzrOiVzgj0HgGTTapNkBmS0xAVAuas8cwsrUCo3y28KEklGmaaJL+zD6Q+lT41TmUQqNxtfU9NBIn3Yi0jmRHq7kv8dsSeEipM3Ampcffqks0kVJJIct2bNGpYuXcrSpUvp6urK9HJkjIR6OgEIR4ezTMPFChJlynC5mRpX5yMFiSSjwvEwkXjksOVmkWI3xY7iTC6voOgGQUQyLRKPYHh9wHDPCactOcjAwNCecBrNqE1+b3d2KptUxl9DQwMtLS3pX7e2ttLQ0HDEx8RiMbxeL1VVVYc8180338z69etZv349NTWakpsvokMHCCNLkUNFTkBBokxIBYlaegMq+8xDYxIk0jQCOVnekBcApz+UDhI5rcm/lvaKagzDyNjaCs1UlZuJSIalBhnAyEwiK+FiFyXOEo04Po1SQaJdXdoDZPwtW7aMHTt2sGfPHiKRCA8++CArV64c9ZiVK1fys5/9DICHH36Yd7/73bpOLBCxRAyzvx8gPYHRabcSLlImUaaUexyUumwMhmP0+iOZXo6MsVO+2tI0AjkVvrAPI57AEYwcUm7mqqzN5NIKTqonUXO3TgREJDO8YS8ufxhg1J6gQQanX32pC7fdSvdghP6ALvhlfNlsNu655x4uu+wy5s6dy7XXXsv8+fO58847+f3vfw/AJz7xCXp6epgxYwb/9//+38MeTEt+GnmAcHAmUZG9CIfVkcnlFawp6kuUt2yn+gQjpxEA6WkE8+bNSz/mscce46677gKS0whuueUWTNNU9F+S/YiCEQxzdP+JiMtOaVFlhldXWCqKHJS57XiDUboGw9QONQMUERkv/aF+nIOjM4mcNgvhIhcTdFJ8WlksBtNri9i038eurkHOatQeLOPriiuu4Iorrhj1e1/96lfTP3e5XPzmN78Z72VJFugP9uEMpA4QkplErqEs0zrtDRkzpdLDpv0+9vUGOGOKJszlk1POJBrLaQRqNFd4vGEvzsFQcpxlfDhIFC5S0+pMSJecdakvkYiMP2/IizMQJnHInuBU0+pxMKNGfYlEJPv4etuxDO0JqUwiq8dOzG5VqVkGpaZi7tJ9Q97JquJ+NZorPL6wD5c/TDSeLG+yWw0shkGoyKkgUQZMU/NqOU3Uu06OR6rcLJVFZLda0nuCys1OPzWvFpFs5O9qA0geIAztD2aZBwyDCrcyWDIl3ctOe0beOeUg0VhOI5DC4wv7cAbC6dRRh9UKoFPjDElnEvUoSCRjR73r5HgN+LqxRWKjSs0SFoOI26E9YRwoSCQi2cjfnQwSpVtTWC1Ei9W0OtO0Z+SvUw4SaRqBnApvKFluFjmoabXKzTJj2lCpwY4OfdjL2BnZu87hcKR714302GOPsXr1aiDZu+65555TA/UCFOw+AIxuTBr2OMEwdCMwDtIX/JpwJiJZJNzbmfxvam+wWwgpSJRx04fuG/Z0+4kNlQNKfjjlIJGmEcjJMk0zXW52cJBI5WaZMbe+BIAt7b4Mr0TyyVj2rpP8lTATxPqT/88jqexSm4Xw0I2Ays1Ov8aqImwWg9a+YHrMtIhIpkV6k71qw0OfS06blVCRE1CQKJOKnDYmlrmIxBO09AUzvRwZQ6c83Qw0jUBOTiAaIJqI4vSHGBhxagwQK/ZQZC/K5PIKUmNVER6HlXZviF5/hMoijRSV7LJmzRrWrFkDoAEHeWYgPIBjMHmROZxJZCXsceKyuXDanJlcXkGwWy00VnnY1eVnV9cg8ycqMCcimRWNRzH7+4HRWaaDRcokygbTa4tp84bY2TmYblshuS+rGldLYekP9QMM9SQaHSRyVtWqJDEDrBaDOROS2USb25RNJGNjLHvXacBB/vKGvTj9qRHHw3uCmlaPr+macCYiWaQ/1I8rvTcMZRLZk3tDiaMEm2VMch7kJKkvUX5SkEgypj/UjzUSwx6OjfjQt2IaBkUVdRleXeFKnRxvbvdmeCWSL9S7To5Hf6gfpz8EMKoEOVzsUtPqcaRpNSKSTfpCfem9IRQdkWVa7FIWURZQkCg/KfQqGdMf6scZCGOa5ugmpUVOyj2VGV5d4Zo3MdkLSplEMlZG9q6Lx+PcdNNN6d51S5cuZeXKlXziE5/ghhtuYMaMGVRWVvLggw9metkyzrwhLy7/QXvC0GnxJN0IjBs1rxaRbNLn68QRigKke6W5HFbCbgeVbt0vZNqMGu0Z+UhBIsmYvlAfLn+YeMIknjCxGAY2i4G/yEm1uyLTyytY8+qHgkRqXi1jSL3r5Fi84eS0y1jCJGGaWC0GNouFcJFL5WbjaDiTyJ/hlYiIgK+zBTsQSySIJUwMA8wSF6bVoiBRFhiZfWqaprLA84TKzSRj+kP9OAdDo7KIDMMgXKT00UyaPaEEq8VgV5df021EZNx4g8ns0shBPerCRU6Vm40jjTQWkWzi724DIDxUauayWQkXuwEUJMoCVcVOKjx2BsMxOnzhTC9HxoiCRJIxqUZ0qX5ELnvyr2OoyKkgUQa57Fam1xQRT5hsOzCQ6eWISIHw93ViSQyXmjlsFmJ2KzGHTZlE40gjjUUkmwS62wEIpkrN7FZCRclplwoSZQf1Jco/ChJJRpimmW5SGh7RhA5QI7osoJIzERlPpmkS6u0ARkyvsSVLzUAjjsfbdF3wi0gWiCfiRHu7AQhHhw+Vw8XJvUFBouwwHCTS4XK+UJBIMsIf9RNLxHD6w6PKzQBixR6K7EWZXF7BS004e6dNE85E5PQLxUJYfcmAxPBks+RpsdWwUuwozuTyCo5OhUUkG4ycepmabJbKJHLb3Ljt7kwuT4ZMV/PqvKMgkWREf6gfAJc/TCh1ajxUbuasrFXTswybPaEEgO0d+rAXkdOvN9h7mBHHydPiUmep9oRxpiCRiGSD3mAvzsGhvSE2XG4WLnIpiyiLaM/IPwoSSUb0BfvANA9bbuaunpDJpQkws254UoGIyOmWmnYJjOhTlzwt1o3A+NOpsIhkg95gb3pvSGcS2SzaG7LMcJBIUzHzhYJEkhH9oX4coShGPDGq3Cxmt1JWVpfh1cmEUhfFThs9/gg9g5pUICKnV+q02DTNUTcC4SIXFe6KDK+u8Bw80lhEJBN6Az04/SHiCZNoPIFhJIcahItdVHmqMr08GTKxzI3bbqV7MIw3EM30cmQMKEgkGdEf6sc5GCKWMEmYJlaLgdViEC5S0+psYBiGGpeKyLjpCyYziaLx5J5gsxjYrDotzpSqIgflGmksIhnm62nDkjAJpZpW26zEnXZiDpv2hixisRhMr032k93ZpebV+UBBIsmI/lA/roOaVhuGQajIqSBRlpihcgMRGSepnkTDPeqGp13qRmD8GYaR3gN2aQ8QkQwJHWhN/nfEZLNQkRPQZLNsk75v0OFyXlCQSDIiNa0gNc4y1Y8oXKxMomyR6ku0Q82rReQ06x/owhGKpnvUuWwWTAPCbgcVLpWbZYIakYpIJiXMBJbdewAIpQ6V7VYCZR5AQaJsoz0jvyhIJOMuYSYOm0kEKJMoi+gUWUTGQzQeJdLXDYw8LbYScTsxrRb1JMqQ1AX/tg6VDojI+OsP9VPRetDeYLPSN7ESl82F2+bO5PLkINOVSZRXFCSScdcf6iduxnH6wwRH3BAAxEtL8Ng9mVyeDFEmkYiMh5GTzYbLzZIlBSWOEhxWRyaXV7Dm1pcCsO2AgkQiMv4623dS3JeclhWMDJeb9TZUUumuxDCMTC5PDpLOJNLhcl5QkEjGXXcgeSrg9IcIDX3oux3JIFFRdb0+9LPEpAoPDpuFA74QAyFNKhCR0yPVjwhGjji2Ei7WZLNMmj2hBEgGiRIJTTgTkfHV9/Y6ABKmiT8SA8CcUE64yEltUW0mlyaH0VhVhNVi0NoXTGd+Se5SkEjGXZe/CwDnYCidSeQeyiQqrZmcsXXJaFaLodRRETntUpPNgHSfOpfdqslmGVZd7KS62MlgOMb+/mCmlyMiBSa0dRMAgUgc00zuCwON1QBMKp2UyaXJYThsFhqrPJimWlXkAwWJZNx1B7pxDQSx+MPEEiZWi4HdamAaUFajD/1soiZ0InK69QZ7cQ6GiMUTxBImFiO5J4SLNNks0+bWJ7OJtqrkTETGUTwagV27ABgMJbOIip02ehuSe4KCRNlJE87yh4JEMu66A91UtvWNqC+2YhgGA1UlVJfUZXh1MtJMBYlE5DTrDfbi8oeHp9fYLBiGQajIqclmGTZnqORsa7svwysRkULSveNNjEgEgMFwMkjkLHbirSnFbrGr3CxLpXrZbdrvzfBK5FQpSCTjyjTNZJBof+8hpWa9DZVUe6ozuTw5yKy65A3CpjZ92IvI6dEX6sPpD40qNQMIFyuTKNPmTEhe8CuTSETGU9+m9emfp4JE4cZqTKuFiSUTsRi6hc1GZ0wpB+CNff0ZXYecOv0Lk3Hlj/oJhf1UtPUNB4mGmlb3T6rWDUGWObOxHEh+2MfiicwuRkTyTjwRp3+oJ1G6abU9eWminkSZl2peveWAMolEZPwEtr0NQDSeIBSNYxgQnZbMHlKpWfY6Y3Iy+/et/V4iMd035DIFiWRcdQe6KevyYY3F0+VmbruVmMOGbXIjVos1wyuUkWpLXDRWeQhE4jpJFpEx1x/qx+4PYYknCMWSe4LTbiVus2LzFOO2uzO8wsI2o7YYq8WguduvaTUiMj6CQaItzcBwFlGxw4Z3kvoRZbsyj53pNUVEYgm2qEw5pylIJOMqVWoGpC843XYrvRMrqC5WfXE2OqsxeSqwrrk3wysRkXzTHeimor0PYNTBQbDUTZXKjzPOZbcyrbqIhAk7OtSbTkROv+COLQQjAWC4aXWiqphQSfLQoKG0IWNrk2M7Y0ryvuGNfX0ZXomcCgWJZFylgkTxhEk4lsAAnHaL+hFlsWVNyZOb9Xv1YS8iY6sr0EXl/l5M0xzVp653YgU1RTUZXp0AzBlqRKqSMxEZDy1vrE3/3BeKAhCakrxHKHWWUuoszcSy5Dil+xK19Gd0HXJqFCSScdXf3Upx72A6i8hpt2IxDPomKkiUrZYOZRKtb07eyImIjJWugQ4q2nqJxk3iCROrxcBuNXRwkEVSE842tylIJCKnl2madL71CpCsOBgIxbAYYJk9AYDJpZMzuTw5Dqm+RGpendsUJJJxFdm5DWDUibG/vIhwkZMaj06Ns9H0mmLKPXY6fGFa+4KZXo6I5JFg807s4dioPSFht+GrLdOekCWWTC4HdCosIqdf+953iPV0AdA5EAagothJcHIVAAtqF2RsbXJ8ZtUV43FY2dcboHswnOnlyElSkEjGjT/ix97cAkAgMjzZrG9iMuJc5anK2NrkyCwWg7OG6ovX71VfIhEZG6ZpYu7cAYzoR+Sw0ldfTsJqUblZllg0qQzDgM1tXjWvFpHTavtffw9AwjTpGgoSORqriTlsFDuKmVU1K5PLk+Ngs1pYPKkcgNfVqiJnKUgk46bFu4/KtuSHRaoRXbHTRl99BeWuclw2VyaXJ0exdKgv0Wt79GEvImNjIDJASUsHMDq7tLehEpvFRrmrPIOrk5QSl52ZtcVE4yabNa1GRE6T7T3b8W78GwD9gSjReAKX3Up8VrLUbMmEJZqCnCPObCwHYIOaV+csBYlk3BxofgdnIIxpmsMjLd12+ieUq8Y4y10wI5nl9fzWThIJ9SUSkVPX3bWPkp4BYHQmUW9DJVXuKiyGLlGyRarkbKN6TIjIGDNNkw1tG3jktZ9R2uUlnjDZ35ecblZb4qS7KZlVemb9mZlcppyAZenDZVUg5Cpdgcm48W3dCCRLzRKmictmIVBfTtxuZXKZgkTZbGFDGRNKXRzwhXh7vzfTyxGRPDCw7S2MoZhzKpPIHBpzrKbV2WVJqhGp+hKJyBjyhrz8dONPeXz741Tu64KEyY7OAfyROA6bheKGCgJlHqaWT6XSXZnp5cpxOquxAosBb7d604dAklsUJJJxEU/Eie3cDsBAqtTMZaevPnnhqUyi7GYYBu+dXwfAHzcfyPBqRCQfRLZvASCWSBCNJ7AYEBgac6x+RNklNdJ4Y4tKB0RkbOzp28OPNvyIfd59ABTv6mB7xyD9gSg2i8HcCaX0T6sFw2B54/IMr1ZORInLztz6UmIJkze0b+QkBYlkXLR7Wylt6wFgIBQFoMRlo29iBQ6rg7riukwuT47De+cla8L/+E5HhlciIjnPNEns2gkMl5q57Fb6G5Inxcokyi6z6krwOKy09AY1rUbGXG9vL5deeikzZ87k0ksvpa/v8DeVVquVJUuWsGTJElauXDnOq5Sx9E7nO/zirV8QiAYwTZMtO7vYt66ZvkAEi2Ewe0IJboeV7inVXDD5AqZWTM30kuUEnT1VJWe5TEEiGRedm17DNlROMDDUj8hd4mKgupSGkgb1nsgB50yrpNRlY0fnILu7BjO9HBHJZX19xHq7gRFBIqeN/gnlANR4lEmUTawWg4UNZYD6EsnYu/vuu7nkkkvYsWMHl1xyCXffffdhH+d2u9m4cSMbN27k97///TivUo4lEo8QTxy7tKh9oJ3fbf0dCTOZRfrHdzoIPb8FI56gssjB4slllLjshD0OmuZfwHumvWccVi9j7eyhvkTrmhUkykW2TC9ACoP/7Q0AhGNxIrEEVotBYGoNpsVQP6IcYbdauGRuHb97Yz9/eKeDz64ozvSSRCRH+be8RTSRzCpN9SPy15YRc9gwMKjyVGVyeXIYZ0yp4G97elm3t5f3zFP2r4ydxx57jLVr1wKwevVqVqxYwb//+79ndlFyTKZpste7lw1tG9jdtxt/1A+Ay+ZiavlUzpl0Dk3lTaP+TCAa4MFNDxJLxEgkTH6/sY3eDi8faO9lRm0x1cXO9GNdi87iPXNWYRjGeL4tGSOpyciv7+0nGk9gtyohIJfo/5acdrF4lOiWTQAMpvoROW30NiZPitWPKHdcNtSX6LGN+zFNTTkTkZPTs2ld+uepfSE0JRkYqnRXYrPoDCvbpKZc/mVbV4ZXIvmmo6OD+vp6ACZMmEBHx+HL2kOhEEuXLuXcc8/l0UcfHccVysF8YR+/eOsX3LfxPt7ufDsdIAIIxUJs6d7CfRvv4/6376c3mMwkicajPLjpQbzh5ACUF3d209IXYEV7L2dMGA4Q2S12ZtXNZ/lHbtfI+xxWU+JkWnURwWicTRp6k3N0FSan3c5NL2AZSJYn9QYiABR5HOwd6j0xqXRSxtYmJ+biObVUeOxsPTDAO20+FgyVH4iIHLdEgsHtbwMQT5gMDpUgW2Ylg9DKLs1OZ0+tpMhhZeuBAfb3B2kod2d6SZJD3vOe93DgwKGDL77+9a+P+rVhGEfMHNm7dy8NDQ3s3r2bd7/73SxcuJDp06cf8rg1a9awZs0aALq6FNQca/2hfu7beB/9oX4AYvEEO7sG6fSFsVoMil025tWXYrda2N6znT19e7io8SJ29OygxdcCwJZ2H2/s62N+l5frYmE8zuQtaYWrgnk187Bf9C4o0zVmrjtnWiW7u/38ZXsXZ0ypyPRy5AQoSCSn3d5X/4ATiMYT9PqTQSLrjDriDhsTSybitutCM1c4bVZWndHAT19u5qF1LQoSiciJa2nB5+0EkoMMTMDhcTAwIXkBObVcDUqzkdNm5aKZNTzzzgH+vLWTG85tzPSSJIc8++yzR/xaXV0d7e3t1NfX097eTm1t7WEf19DQAMC0adNYsWIFb7zxxmGDRDfffDM333wzAEuXLh2D1UuKN+QdFSB6s6WfV3b3EIqO7kX02u5ezp1exYKJpUQTUf6858/pr+3t8fOnLR1M7/FxS3cvpSXJDKK6ojrmVM/BcDrhwgvH7T3J6XP5gnoeeK2F329s4wuXzFTpYA45pXIzTSOQY+ka6CD+zttDPw9jmlDuseOfkTwxPrP+zEwuT07Ch85KnvI/tnH/IRcFIiLHMvjWekKxEADeYLIvUWByNeZQv4KDe1hI9nj3nOTN+5+3aMqljJ2VK1fys5/9DICf/exnfPCDHzzkMX19fYTDycl63d3dvPzyy8ybN29c11noTNPkt1t+mw4QrW/u5fltnYSicWpKnJw3rYrzplVRV+rCH4nx3JYOHt7QijcQTT9HW3+QJ95qZ35bL7fs72RCsQOAEkcJs6tnJ4MIF1wAHk8m3qKMsQumV1Fd7GB3t5+3VXKWU04pSKRpBHI0pmny6h/uxeMLYpomHb7kTUFdiYvuyVU4rU4W1i7M8CrlRM2bWMrChjJ8oRh/eOfQ1HERkSMyTfo3/i39S99QP6LI7AlAsh9RmUsZitlqxZxkL8G/7upJT6UTOVW33347f/rTn5g5cybPPvsst99+OwDr16/nk5/8JABbtmxh6dKlLF68mIsvvpjbb79dQaJxtqN3B3u9ewHYuK+Pl3Z2YzUTfKzCwV1mhI/vO8DV4RA3LKjjfQvq8Tis7O8P8vNXm3nizTaefrudX6/bxzm721nd1klThRvDMHBYHSyoXZCcdDxrlrKI8ojNauEDiyYC8OgbbRlejZyIUyo30zQCOZKEmeCpbU9gfeFFAPqDUcKxBA6rBXN6LRGPk2V1i3DanMd4JslG1y6bzNv7vfzk5WZWLp6o9FEROT6dnQwcSN5kxOIJ/OEYGAaWucmLSJWaZbfaEheLJ5XxZquXv+7q5pK5mnImp66qqornnnvukN9funQpP/7xjwE4//zzefvtt8d7aTLCy/teBpKTindvbOGy/T2sJE6De/h2sra5ixmv7WRuQyVLG2t4xB9nc4+fnV2DuKMxrt2+nwtiESbXFGMYBlbDyqLU/UBTE3zoQ2BVs+p8suqMBu77azOPv9XGV66Yg01TznLCKQWJTnQagc1m4/bbb2fVqlWn8rKSZeKJODt7d9Lc30ynv5P+UD89wR4m7Ghnji9IMBJnV2eycXVdqYt9S5oAOGviWRlctZyKvzuzgf96djtvtvTz562dulEQkeOS2LI5XaqQyiLyTSjHUZQ8MJhaoSBRtnv3nDrebPXy29f367NfpEC0+lqTWUSmif3pt/jo+t2Uuuw0TCwFkmPvF9YuxGqxsqt3F0ZrF1WtPSy2WzlQVUJHX5DKTi/1HjsuexEAFsPCwrqFFDuKkwGij3wE7PYMvks5HRZPKqOpykNzT4A/be7gfQvrM70kOQ7HDBJpGoEczWBkkPvfvp+2gdEphCXdA8z8205C0ThbDviIJUzK3XZcc+vpn1BOY1kjE4onZGjVcqo8DhufXTGD//PEZv7jj9u5eHYtFouyieRQvb29XHfddTQ3N9PU1MSvf/1rKioOnXBhtVpZuDBZfjplyhSVJuepA+ueJxxP9hXpH5p26Z9eh2Po6+pHlP2uXTaJe57fwdOb2tnb46exqijTSxKR0+yvLX8F02Tq33bQ/XozUWBiuQsAA4PFdYvTg2jm186ny9/F9p7tEI0y6UA/kwDKXOnn89g9zK2eS4mzBBYsgFWrwKZ5SvnIMAw+dm4jX3tyC//74bdorCpi3lBwcSwkEibeYJRQLM6EUpeqG8bIMf81ahqBHEkoFuKXb/2SA4PJIGIsnqA3ECF+wMvM5zexfyBMuy+IaUKx08bMuhLePHMqNouNK2ZekeHVy6m6/pwprHlhF5vbfTy1qT1dcywyUqp33e23387dd9/N3Xfffdiy5FTvOslfZnMz+7dvAJLTLrsHk8Ei+8JJANQW1SZPlCWr1Ze5+eCSBh7e0MqPX9zD/1m1INNLEpHTqD/Uz5auLUx5ex/u13YTjSfwOKyUuZNZP4ebVFxTVEOlu5IOfwed/k68IS8mJh67h0mlk6gvrk/ezC9fDhdfDLqxz2s3XTCVN1r6efKtdj5+32t85Yq5vGduHUXO0aEI0zTxR+Ls6wmwt8dPc0+AA94gALFEsr9t10CYWMIcmpodpS8QIZ4wAZhaXcT7Fkzgo+dMYVKFmp+filMK2aamEdx+++1HnUbg8XhwOp3paQRf+tKXTuVl5TQJxULs7d/LYGQQu9VOhauCCcUTsFsPTf2MJWI8tOmhdIDonf1e/rytkwn9g1yzaS8tseGGltXFTpqqPPQ21TBQW86H532IumKlqOc6l93KLe+eyb8+uokvP/wW9WUuzmqszPSyJMuod50AYJoc+P39+KN+ANq9IRImxCaUUVyfbFS9qG5RJlcoJ+Dm5dN4eEMrv17fwj+8ZyZVxeovKJKvNh7YiMvrp+mNPWwaGkJTX5ZsOm1gMKlmGkyfmQz0HDgAPh8AVouViSUTmVgykYSZIJaI4bAO5Y06nXDVVTBnTqbelowji8XgPz60mK6BMK/t6eULD27EabPw7jm1nNVYwQs7unltTw+haOKknr/ElQxp7On284O1u1jzwm5WndHAZ1dMZ3qNDp9OxikFiW6//XauvfZa7r33XhobG/n1r38NJKcR/PCHP+THP/4xW7Zs4dOf/jQWi4VEIqFpBFlon3cff2n+C3v695Awh/5xmial3QPU7etliX0yc+e/C8uixVCTnGzy9I6n2dO/B4CdnYM8u7WDmV1ert3VTonDisVpxWIY1JY6KXHZ8ZcXse2C2Vw5+0pmV8/O1FuVMfbRs6ewbk8vv3+zjdU/Wce3r1nEe+dPwKrSMxmi3nUCEN+1k9a3k01PY/FEetqlef5MINnPYulEZRDnill1Jbx7Ti1/3trJf/95J3etnH9cf65nMMyuLj8tvQESponDZuG8aVXUlrqO/YdFZNwlzARvtL/BpC37CQRjBCJxbBaDqqHR9bZl5+D+1L+CYyj4k0hAczO8+SZs2wah5Ge9xbAkA0RWKyxdmpxgVlKSoXclmeCyW/nZx8/mwXX7ePKtdtbv7ePpTQd4etPotjZOm4XJlR6aqjw0VhUxsdyN1UiWrdWVOqkpceG0WbBZDSo8Dio8Dhw2C7F4gteae3loXQuPv9nGwxtaeeT1Vq5YWM/XVy2g3OM4wsrkcE4pSKRpBLlvZ+9O7n/7/nRwyDkYon5HOxN2deAaTH6wd9GMuXULc/8yF+ukyWyf7OEtYwu47LT1B/nDW/u5aE8H1w4OMqnh0BrTYLGLXe8/nw+dcY0CRHnGajH4v9cuJmGaPPFWO5/91es0Vnm48fwmPrR0MsVO1ZcXAvWuk6MKhdh5/z2jsojiCZN4dQmJRVMAOLvhbFw2BQpyyT9dOou/bO/ivr82c+m8Oi6YUX3Ex76xr4/vP7+LZ7ccGiS2GPCuWTX83VmTeM/cOlz2o082Ckbi7OsN0FTtwWnTFCSR02l33278vm4m7Gxn70DyvqCmxInFMGid28Dy6z87HCACsFhg2rTkj3gc9u2D3l4wTXC5kg2qi5XZUajcDisfv2AqH79gKu3eIE+9fYBN+72cPbWSS+fVUelxnHSPU5vVwvnTqzl/ejX/dOksfviXXTy8oZUn32rHbbfynQ8tHuN3k990B1fAAtEAv9vyu2QKaDzBwCu7mPHXbXQFInitFtx2K5Mq3XgcNroD3bzZ8SZNYS8HXtnE+Zh0VJXQ1uLl0z0+pjmtNFQf2rwyWlaC+8ab+PTCKzTuPk/ZrBa+e90SzpxSwU9e3sPengD/9vhm/u8ft3PThVP5zLum43boQj6fqXedHIkZibDr+/+H9t1vAuAPx2jrT/YXCK+Yi8Vi4LA6OHfSuZlcppyEBQ1l3Pbumfzns9v54m/e5KnbLqKiaPRJ7d4eP19/cgt/3JwMDjlsFubWl9JY6cFutdDjD/PSjm6e39bF89u6KHXZ+MDiifzdmZNYMrkcq8XANE329QZ4bGMbz2w6wLaOAeIJkxKnjUvm1vKF98xi6mGuP0Tk1L3e/jr1Ow5AJE6PPzlsoKbESdxmZeD8pUwum3LkP2y1wtSpyR8iB6kvc/OJC0/P343GqiK+efUiPnHhVC7/7ov89vVWPr18GjPrlL12vBQkKmBP73g6fbK7/fltnPHCZvxDXwsm4gSjcbyhKLPqSihz2/GFfbzV8VbyAaZJz1stTAvFKHHZmFpdlM4QSE0rMCfU41p9E9bSsgy8OxlPNquFmy6cyurzm/jT5g5++vIe/ranl/96bge/Xt/CnR+Yp5GXBUq96wrX/q7d7PrhN0js2glAwjTZ2TmICdgnVWIZali9bOIyPHY1mMxFn794Omu3d/LGvn4u/o+1fOqiaUyqcNMzGOGFHV28vLObaNzE47Cy+vwmbrpgKjUlow+MegbD/H6oNOCdNh/3/20f9/9tH267lanVRRzwhegdujmFZAZrQ7mb/f1BHt3Yxl+2d3Hvjcs4c8qhUxNF5OTt9+1na+dmzt7SSo8/TDxhUuy04XHYaJ05gcVN5xzXJKloNEprayuhodIzEQCXy8WkSZOw2w/tfTtWZtSW8OGzJ/PLV/fxH3/czg9vOOu0vVa+UZCoQG3r3sbbnckywL7NbSx6aQtWw2BqdRGlbhuxuMn+/iC9/ghbD/hoqiqitsSZ3gz29QYYCMWwWy3MrC3BMAwshoUlE5ZQ6ixNNqK76qpkYzopGFaLweULJnD5ggmsa+7lrt+/wzttPj77q9e5bH4dX7hkFnPrSzSesoCod11uiifiNPc30xXoIhKPYDEsNETdNBkVGPX14HYf8c8mzAR/2vhbIr+4j5LeQQAisQS7uwcJRuNYnTaiHzwTDIMKVwXLG5eP19uSMWazWrjno2fyDw++wbrmPr79h22jvm4Y8HdnTuJLl8+m7gh9h6qKnenyg60HfDyyoZWn3j7A/v4gm9uTDXBLXDbePaeWVWc0cO7UKtwOK83dfr76xGb+vLWTj/6/V/nJ6mWcf5SSNxE5fpF4hEe2PELV3i4cgyHa+5MBntoSJ6YBbfMmc1Xd8ZXvtLa2UlJSQlNTk67/BEhOMevp6aG1tZWppznT7LZ3z+ThDa08884BNrb0s2Ry+Wl9vXxhmKZpZnoRh7N06VLWr1+f6WXkpWg8yj2v3YM37CUcjmH7rz9QNBiiscpDfdnwhb8JvIaV7d4gpaEo8w2TKZUeBsMxtncMADCvvpTSoRGYs6pmMbG0AVasSI601EZQ8OIJk/v/tpe7n96KP5KceFdX6mTFrFpWzK7h/BnV6RGqcmL0GanvwenSE+jh1+/8mg5/B66BIBN2dVDT3EVRv59KdyVz6xZgnzMPFi+GWbOSJQVDTNPkmbU/xvKb3+AMREiYJh3eEK39weSIWquFwevOwTZnIgYGq5espqm8KXNvVsaEaZq8uKObhze0kjBNihw2ljZVsGJ27SGZQ8erzx9hd/cg9WVu6stch725jMUT3PG7TTy0voW6Uid//Md3aU8ZQZ+R+h4cL9M0CcVCBKIB9g/s5/k9z9MX6mPJ02/g29xOmzeI02Zh0aRy+hqriV93LdctuO64nnvLli3MmTNHASIZxTRNtm7dyty5c0/7a/37M1v5n7W7WDy5nN999vyT7nuUb472+ahMogL00r6X8Ia9AOx9eSeLBkOUuGxMGHHK56sp5Z13zSNc7MLf7uOxrZ1UeP0s6vIy1+enGJhS6UkHiOqK6qg/YzlccgnUq6xIkqwWgxvOa+KSuXX895938NyWTjp8YR5a38JD61uwWgwWTyrjQ0sn83dnTsJhs2R6ySIFrX2gnV++9Uvivd0senUHlft7SZ8lGQa9wV427t/AolgU59at4PHA/PnJYJHLxc6XHsP5p0ewJEx8oSi7OgcJx5KDEcqKnAysOhPb7IkAnDvpXAWI8oRhGCyfVcPyWTVj9pwVRQ7OKqo86mNsVgvfuHohOzoHeH1fP197YjPfVnNSkWNKmAk6BjvY693L7r7d7O3fSzgeHvWY4t5BLM3dtHmTfeRm1BZjtRjsnzuJv5tywQm9ngJEcrDx/Dvx+Ytn8NvXW3mzpZ8H17Xw0XOO0ktLAAWJCk5fsI+XW5JjiDt8Ico2NmMA06qL0yVjZ511JYMfvYad235DOOxjTn0ptaVOXtrZw59L3DzXVMd5DgsfnODBn4DyomrOv/TzGPWTMvvmJGtNLHfzzasXYZomm9t9rN3WxdptyT4Wrw/9+O/ndnDtssm8Z24dcyaUYLMmA0bhWByH1aILDJHTrGOwg/s23ofR388ZT75Od7uX9UOTyKyWZDlyVbETf9TPhvYNzK+ZTxnAunWwbh2DkUHa21/HYppEYgm2HxggljBx26001JbQfsUSApOrAFhYu5D3THtPRt+v5AerxeBb1yzmiu+9yG82tHLFonounn34BvkihcI0TcLxMAPhAfxRP4ORQXoCPXQFuugOdNMT6CGaiB79z7+wja0HkiWfE8vdlLjs+Ms8zF52OZNKc+eav7m5mQ984ANs2rTplJ5n7dq1OBwOzj///DFa2bD77ruP9773vUycOPGoj1m/fj333HPPUZ9rxYoVfOc73xmz4R4bN26kra2NK664AoDf//73bN68mdtvv31Mnn88FDtt/OsH5nHL/W/w789s5bL5dVQVqyXK0ShIVEBM0+TJHU8SS8QwTZO31+/lA/1+JpS50tOnppZPpeh9KymqnMynz/o0j2x5hN19u6kscrJy8UQGQzHavEGmVRdxwGrBZXPxd2fdjMN99NM+EUieGsyfWMb8iWV8/uIZDISiPLelkx+s3cn2jkG+++wOvvvsDqwWg9oSJ4PhGAOhGC67hYZyN9NriplTX8oHl0xkeo1GqIqMlYSZ4JEtj2AODrD4D2/S1tpHh2/4VDmWMNnROUg0nmBCmZtIPMLGAxuZXjmdSaWTSJgJtnRtIWEmME2THZ3JAFGZ2860pireec9CfDWluG1uLptxGYvrFivwK2NmRm0x/+vSWXzz6a185bdv84d/XE6pS2Vnkt+6A910+jvpDfbSF+yjL9RHX7CPQDRAJB7B5Pg6igyEouzrDdA9ECEYjTMQihLrGuCGjXtJmFBd7GRSRbIdhf/MBVx1EgH+u9bedcJ/5mTdteL0vNbatWspLi4+bUGiBQsWHDVIlCkbN25k/fr16SDRypUrWblyZYZXdeLev7Ceh2a28OKObn74l13c8X71vjwa1XYUkNfbX2dnb3LKzOZ2H5O2tmG3WmgY+uD32D00TFsM06YBUOQo4mOLPsal0y7FaU1GW4tdNmbVJbM8bBYbfzf376hUgEhOUonLzqozGnjmC8v56ceX8dFzptBQ7iaeMGn3hhgIxbBaDELRBLu6/Pxxcwffe24H7/vui/znn7YTjsUz/RZE8sKWri10DnYwb+07dO/rpcMXxjBgVl0xZ0+tZEplcvpYc0+A3V2DJBImJiY7e3fS6mulub85PS2ztS+YHmxQPbee11cuxVdTyln1Z3HL2bewZMISBYhkzH3yomksmVxOuzfEN57ckunliJx2a5vX8ut3fs2zu59lQ/sGdvftpi/URzgePmyAyDRN+vwRtncM8Ned3Ty2cT8/fnE39760hz9t7uCNlj62HvDR3uvn8reb8VgMZtWVMKO2GIthkHA6uOgDn8duzb0AbCwW4/rrr2fu3Llcc801BAIBADZs2MC73vUuzjrrLC677DLa29sB+N73vse8efNYtGgRH/7wh2lubuaHP/wh//mf/8mSJUt48cUXRz3/XXfdxerVq7noootobGzkt7/9LV/60pdYuHAhl19+OdFoMmvrq1/9KsuWLWPBggXcfPPNmKbJww8/zPr167n++utZsmQJwWCQdevWcf7557N48WLOPvtsBgaSvWDb2tq4/PLLmTlz5nFNgX3ggQdYuHAhCxYs4Mtf/nL695955hnOPPNMFi9ezCWXXALAa6+9xnnnnccZZ5zB+eefz7Zt24hEItx555089NBDLFmyhIceeoj77ruPW265BUhmab373e9m0aJFXHLJJezbtw+AG2+8kdtuu43zzz+fadOm8fDDD5/K/74xYRgG//uy2QA8+FoLA6EjZ9KJMokKRnegmz/s+gOQPDH42zvtfKqznylVHmyWZKxwRuUMLOeeN6rhtMWwcMGUC1jWsIx3Ot9hS/cWegI91BbVcuGUC2kobcjI+5H8YrEYXDy7Nl0iEI7F6fSFKXbaKPfYGQzHaOkNsqNzgL9s6+K3b+znv57bwSu7e7jv48vwOPRRJnKyTNPkxX0vUn6gn6K2PrYP9Z+YU1dKmcdOwmIQevc8tng8PLm3j0m9A1zoHeQDhonLIH34ADAYjrG/P0jMYmBfPpsty+eQsFp4/8z3s6xhWabeohQAq8XgOx9axBXfe4kH17Xw/kX1XDRz7HokiWSbClcF8YRJKBonFjcJRuN4g1H84RjReIJwLEEgEsMfiRMIx/CFkr9vmCaOeAJ7PIHFNJlowDSXjUkuGxWJOAv2dFJT6cJudacD+g6rg+mX/z11VY0ZftcnZ9u2bdx7771ccMEF3HTTTfzgBz/gC1/4ArfeeiuPPfYYNTU1PPTQQ9xxxx385Cc/4e6772bPnj04nU76+/spLy/nM5/5DMXFxXzxi1887Gvs2rWL559/ns2bN3PeeefxyCOP8K1vfYurrrqKJ598klWrVnHLLbdw5513AnDDDTfwxBNPcM0113DPPfekS8QikQjXXXcdDz30EMuWLcPn8+Eemii6ceNG3njjDZxOJ7Nnz+bWW29l8uTJh11PW1sbX/7yl9mwYQMVFRW8973v5dFHH+WCCy7gU5/6FC+88AJTp06lt7cXgDlz5vDiiy9is9l49tln+cpXvsIjjzzCV7/61VFlbvfdd1/6NW699VZWr17N6tWr+clPfsJtt93Go48+CkB7ezsvvfQSW7duZeXKlVxzzTVj8b/ylCyaVM45Uyv5255eHlrXwicvmpbpJWUt3VnlOdM02dy1mSe2P5FMPTVN/ri5gzn7e6h12agudgBQ7ammsmJiclrNYTisDs6oP4Mz6s8Yz+VLgXLarEweylyAZMbRvIl25k0s5YNLGrhu2WRue/ANXtvTy6d+vp57Vy/DZbce5RlF5Eh29u7kwOABFmxu5YA3RMKEco+dMo+dqNPOG+9bQqC8iKnAtbUlPPl2O7+sKOF5l5Wb6zxMbO3F4w2QiCd4tb+fzZOqCZ8zg7MXJw8RzphwhgJEMi5m1JbwhUtm8u0/bOPrT27hqduqNcVGclo4Fqd7MELXQJh9vQE2t/nY3TXIAV+Inf3bMTo3csW2/RgWA6dhUG0xqDAMTAMME6wJE2c8jjsaxxmP47JYKLZb8DhtFDmseBw2XPbD9H0cMUiktqiWGdOX4bjiQ+P87sfO5MmTueCCZLPtj33sY3zve9/j8ssvZ9OmTVx66aUAxONx6oeG7yxatIjrr7+eVatWsWrVquN6jfe9733Y7XYWLlxIPB7n8ssvB2DhwoU0NzcD8Pzzz/Otb32LQCBAb28v8+fP58orrxz1PNu2baO+vp5ly5L7Zmlpafprl1xyCWVlZQDMmzePvXv3HjFItG7dOlasWEFNTTJYfv311/PCCy9gtVpZvnx5evR8ZWWyIsTr9bJ69Wp27NiBYRjp7KejeeWVV/jtb38LJINeI7ObVq1ahcViYd68eXR0dBzzucbLpy6axt/29PLTl5u58fymdA/UbBKNJ2jvD9HaF2B/fzI7ezAcS7fhGAzHCIRjxE2ThAkfWFjPtcsO//fgZClIlGf8ET9tA220D7bTNtBGq6+VwcggkAwY/XVXD609flZ19DOtpgjDMLBZbMysnAlnnAEOR4bfgcixnTOtivs/dS7X/ehVXt7Zw//6zZvc85EzVMIicoISZoK1zWtx+4KU7+tmjy8EQEN58tRyzwXz+PilX+Lx7Y+zz7uP2lIXH142hYfWt7A/EOHegTjvOW8WBvDclk6ayyqo8Di4fkHyQrvSXcn7Zr4vU29PCtAnL5rKr17dy9YDAzz5djtXLs6+Hh9SeCKxBN2DYToHwnT6Qsn/DoTpGgjhDUaJxk2CkTjdg2EGQjESpkkgkswMOpKo4aAunmBCJILFMLBaDFx2Kw6rJflrq4HDYcFutWK3WnDYLNiPckNsYOCwOrBb7XjsHoodxVR7qvE4i+G6j4Izdxv9Hnx9aBgGpmkyf/58XnnllUMe/+STT/LCCy/w+OOP8/Wvf5233377mK/hHPr+WCwW7HZ7+jUtFguxWIxQKMTnPvc51q9fz+TJk7nrrrsIhUIn9D6cI/4fWK1WYrHYCf35o/nXf/1XLr74Yn73u9/R3NzMihUrTun5Rq41PSU1C7x7Ti3TaorY3eXnqU0HWDkOe4Q/HGP93j46vCG6BsN0DYTpGgzTMximPxBN//sNx+IMhmIc8CUP7I7XvPrSYz/oBClIlMMSZoJgNEhXoIu9/XvZ0buDVl/rER5r8pdtXbzZ2s+MvgHOLLanN4qZlTNx2pywTCe9kjum1xRz/6fO4arvv8yTb7Xznrm1XHVG9k3b2N4xQEtvgL5AlP5ABG8wSnWxk9kTSpgzoYRyjwKzkjmvtLzC/oH9TN+6n47+IPGESanLRonLTqjIyYwLrqSmqIbVi1fz3J7n+GvLX3E7rFy1pIGH1u9jX2+An7y0B6vFIJ4wcdgsXDZ/AjarBQODVXNW4bDq77iMH6fNyq2XzOSff/s2//nsdt63YEJWnhRLdvvFq3sJR+OUuu04bRZC0TjBSJxQLJH8eTROOJr8eSSWIGGaxM3k9XYiYaaDPJ2+MJ0DIfoCJ9f/xGoxqC52UFvior7MxZz6UmbWFjOx3E2RK8Qfnnmdxf6Bk3pui2Gh2FFMmbOMCncFZc4yrJbDZGVfeik05HZ7iX379vHKK69w3nnncf/993PhhRcye/Zsurq60r8fjUbZvn07c+fOpaWlhYsvvpgLL7yQBx98kMHBQUpKSvD5fCe9hlRAqLq6msHBQR5++OF0CVZJSUm679Ds2bNpb29n3bp1LFu2jIGBgXS52Yk4++yzue222+ju7qaiooIHHniAW2+9lXPPPZfPfe5z7NmzJ11uVllZidfrpWHo//PIkrKRazvY+eefz4MPPsgNN9zAr371Ky666KITXud4s1gMPnHhVO743SZ+/OJurlxUf9oOmXd3DfLNp7fyl+1dRGKJ4/5zhgH1ZS4mV3hoqHBT5rZT7LRR7LJR7LRR4rLhcdiwWQwMg3TfyLGkIFEWisajtPpaiZtx4ok4cTNOLBEjGo/ij/rp8nexf2A/fcG+I04uME2T/mCUTl+Y/f0Bdnb6CURiWA34FDEqipIX7TWeGmqLamHmTKhUA2rJLbPqSvj/rpzPlx55izsffYdlTZVMqhj7D8oTZZomL+7o5vvP7+Rve3qP+LjpNUU8979WjN/CREZo7m/mz3v+jDUap/ydVjb3J3sRNQz9G+qY18g1k88DwGqx8t7p78Xx/7d35+FR1mejx7/P7JklCSSZBJNAyAokJBAC1FZRsIIeFCqgorgigktV6oVWL4++nh4RjstrPbzWHlypVemrRVFBUFDUqqAkUJQ1QiJZICQhezKTWX7nj4EIskjWmYT7c11zzfo8c89vZp57cue36E1sKN5AhNXI9NwENu6rpri6GY/PT2qMnQsznNgtgZ8W5yaey8CIgcF5ceKsNmNUAs9v2Mu+yibe3VrOjFGh9w8EEdqWfr6XksMtXbY/nRZYJcwZbibGbsbpsOAMN+N0mImwmjDpA72Aou1mIsKM6HQaFoOOflbTKYdM+pWfT0+zBtHRnkFmgxmjzohJb8JqtGIz2bAarZj15tP/cRwRARddBNnZnX35QZeRkcFzzz3H7NmzGTZsGLfffjsmk4m3336bu+++m7q6OrxeL/Pnzyc9PZ3rrruOuro6lFLcfffdREZGcvnllzNjxgxWrlzJkiVL2l0QiYyM5NZbbyUrK4u4uLi24WQQmOj5tttuIywsjK+//pp//OMf3HXXXbS0tBAWFsa6deva/ZoHDBjA4sWLGT9+PEopJk+ezNSpUwFYunQp06ZNw+/343Q6+fjjj7n//vu58cYbeeyxx5g8eXLbfsaPH8/ixYsZMWIEDz744HHPsWTJEm6++WaefPJJYmJieOWVV9odZzBMz03g6Y/2sK20jm+KDjM2OarLn6OwooFrXthEVWNgIZCRAyMZHG0jxhE4BsQ4zETZzERaAxPB+/wKi1GP1aTHGW7GbAjuNBqaCqX+X8fIy8tj8+bNwQ4jKGpaanh207Pt2kYpRXVTK/sqm9h/uJlDDa4TKpaRYUbm6H2ctyvQ28husjMibgQGnQFmzQoUioToZZRSzHstn492VDB2cH/evPVXQZ2DYltpLY+v3snGfYHikMNiYNSgwBCcSKuRcIuRg3UudlU0kOa089SVJ58H7JeczcfIo6QNOsbldbHlwBbWF63H6/cSt7MU74p8Gt1eou1mUp12fAYdvvn3MDFr6nHbKqV4f8/7FBwoaLvN6/Pj8vjbikMA2bHZ/G7I79Bp0oNDBMeKglLu/e9/k9g/jPX3XojJcPZ9FuUY2fE2+Otne6mod1Hf4qXV58di0BFm0mMx6rEYdJiNesKMgesmgw69DnSadswJLEY9MY5AYSjKZkbfDb9N1r/7DAnrviHMGIbFYCHMEDjX6/SnPv5qWmB6CYPhp5PNBlZrYEiZ1RpY6TglBXSd/97s3LmToUOHdno/ou8J5mfjmY/38Oz6Qn47NJYXb8zr0n3/cKiBmUs3UtXYynmp0Tx9VQ6x4ZYufY6ucLrjo/QkCkEn7epJ4Me5TyncHj8V9S4qG9y0eHzUu7wcqG2hxXP8cuA2k4FYu4nEMAPpDjNDqutI2RIoEEVaIslyZgUKRP37Q2pqt78uIbqDpmksmjacgv21bCo6zIv/2sfccSk9HodSir9+to8n1u5CKYgIMzLvgmSu/9UgHJbet1ys6B2UUrh9blp9rfiVH7/y4/Mf6X3q99Dqa8XtdVPvrqeyuZKDjQepaKzApwL5wu/z4/p8Dy63F5NeR1JUoBdRfXoSl2RMPOH5NE3jsvTLiDBH8FXJV7h9bgx6HfYjw3msRiuTUiaRHZstc4SJoJo6Ip7nPv2BvZVNvJVfwqyxvXNVJhEct13Q878jOuKiS++A864Hrxd8vp9ORxkMYDQGCj8WS+C6ph23krEQZ6Przx3E85/tZf2uCvZWNpISY++S/R5qcHHjy99S1djK+WnRvHBDXq9cXKfPFYn+mV/Kv0trcTrMxIZbSI6xMyjKitmgw6DTYdBrR8bvBQ6OPr/C7T0yrvhn562+QE8cv1/R6PZS2+yhvLaF6qZWNA0MOg2PT+Hx+fEeOW89ctnr9+P1K3z+wO2B88B1r1/hPXqb34/fD2ajDpNeh8+vaPE28aNrLxN2l+JBwwN40fBqoI4c0/V+hc3nJ8brw+LxoleKMJ2OOIuB2DADkWYDYSiMbg/az/qKneM4h5R+KT8Voy65RJKF6NWi7GaemDGc2a9u5qm1ezg/LYah3TCJ26m4vT4e+Od3vLOlDIA55w3mrglpRFilOCQ6p6SuhJW7V7YVfrx+b9tQZIXCr858jPvP1Ta3suNfPzChrAaA5Bhb29wt2ZfPIcx48jkQdJqOC5Iu4DcDf0NRTRH7avbR2NpIfHg82bHZWI3BH/IphF6nce/FGdz5RgFL1v/A9NyEXvlDXYjTMpt79YTSQgRLtN3M9Nx43vymhOc++YH/vHpEp/fZ3OplzrLNlNW2MHJgZK8tEEEfLBJ9XljJyq3lv/g4nRboFuptz9ThPUTRSrPOw9CSqhPu047EbTPpsZkNgZUKjDrs5sDEepqmgfKDq/W47WxGGzG2wPxDx/2AHzMG0tO7+yUJ0e0mDInl2rEDeWPTfn7/RgHv/f48bObuP8Q1ub3Mey2ff/1QhdWk55mrRzApM67bn1ecHXzKR1XzibmgvZRSNLX6qGpwU9Xo5sfDzZQcbmbazjKMeh2pTjsRYYGiZnhGNilDf/2L+zToDKRFpZEWJUOVRWi6NCuOoQPC2Xmgnr9v/JE55ycHOyQhhBAh4o4LU3k7v5R3tpZx67jkTv2DWSnFgrf+zbbSOgb2t/bqAhH0wSLRzNEDyUmI5FCDm/LaFvZWNlJW24LHG+jZc7R3j//ICgQAZoMuMMbYqMNs+On86Ph1DbBbDIRbjAyItOB0WAJDv/wKg16HSa9h1Osw6HUYj17WaUd6LR29rEOv0zDqA0vcHdurSacFlrxze/0Y9To0zc/SjRvJ3V+OTgt079e0QBxn0n3fqDPSL6wfDpMDu8mOw+wIDCv7OaczsGKBEH3E/5w8lG+LDlN4qJEHVnzH/505oluHvNQ2t3LTK9+ytaSWaLuZZbNHk3lORLc9n+gaNU2tOCyGXrHikd+v0eT20nJkZZ2j526vHwjksqO9U4+et/Vw9f/U07XF48P1syHJ6TUN/NrtZmB8RFu+CzeHk3XZLUF4pUJ0PZ1O475J6cx+dTPPritk6oh4YhzS60IIIQQk9rcya+wgXv2qmCfX7ublmzq+0vdfNuxl9XcHcZgNvHzTaKLtvTvX9Lki0bkpUZybcvoZypUKFIv8SmHS60Ju3gSlFJEmwxlNsqjX9Bj1RmxGG+HmcCItkYSbw3/5NSUlwfTpgXHKQvQRVpOB56/LZcp/fcn7/y4nOz6CW8d1z3+OK+pdXP/SJvZUNJLQL4y/3zKWpGhbtzyX6FoPvfsdn+w6ROY5EQyJc+CwGLGbA70zbebA8qJWkx77MdcD9+m7NWfUNXvYebCe70rr2FZWx3eltfxQXUqjYV+X7N9s1BNtMxFtN5OmvMwoP4DF+dMY/Dh7HGlJo9BnDu+S5xMiFIzPcDI+I4ZPd1ey+MNdPH1VxxYLEEII0ff8fkIqb20u4ZNdh9i0r7pDK519squCpz7ajabBn2eOINXZNfMbBVOfKxKdCU0L9OgJVZqmkeRIpJ+lHzpNh04L/FGi03QYdUaMeiNWo5VwczgmvemXd2ix/DRmOTERRo6E+HiZh0j0SalOB/9nejZ3vbmFhat3AnR5oejH6iaue2kTJYdbSHPaee2WscRFhN6qBeLkDje14vL4yf+xhvwfa9q1rcWoY1B/G0nRVpKibSRFBU6Doqw4HebT9k7y+vw0uLw0uLwcanCxp6KRPRUNFB5qoLCikUMN7hO20Wt6wvUaSc0ujGYDRrMBk8mA0WhA6QIr6JiVwqIUNo8Pi9+PCYVRgUUpTH4/Ri1w2eH1YKpuxFjuwX64se05THoTKf1SiLXHwgUXdslqNkKECk3T+I/LM/nyh8/5Z0Ep14xJJC+pf7DDEkIIEQKi7WbmjkvhmXV7+N+rdvDenee1a5XkvZWN3PPmVpSCBRPTuWhobDdG23POyiJRbzBr9GywjA6sUHDsigVKBU7HrlYQFha4rtcHbjOZApf1+sD9Bnmbxdnl8pxzqG3x8PC737Nw9U5cHh93XdQ186bsPtjAdS9torLBTU5CBK/ePIZ+tjMo1oqQsXzuudQ0tbKtrI6iykaaWn00ub00ub00uo9cbvXSeOS2JrePptbAZZfHz+6KBnZXNJywX50G/W0mTHodRoMO45GCUYPLQ4PLS3Or74RtjhVm1JMeaycrPoLshAiy4iOIDvfw6vqtjH3nmy5tA72mJ9ISSZw9jihrVGCp5LQ0yOvaZWCFCAVJ0TbmXZDMkk9+YMFb/+aDu8/H3gNz1gkhhAh9t44bzPJv9/N9WT1v55dy1ejEM9quweVh7t820+D2cmlWHHeO7zurhUuGDFUmE4waFewohOi1rv/VICwGHX/85zae/ngPLq+PBRMzOjVUqGB/DTe/8i11LR7OTY7ihRvz5A+NXqqfzcQF6TFckB7Tru3qWjzsr26mqLqJ4qomio+c7z/cQnWTm6rG1lNuq9PAYTHisBjobzORGmMnLdZBeqyd9FgH8ZFhJ/z3qt5dj+4XFljQa3r0Oj0aWluv06Ono/cZdAbCDGFYjVZsJhthhrDjvwt2O/zud9LDVPRZd45P5eMdFew62MAjK7/nP68aEeyQhBC9lNfrxSD/hO8zrCYDD1w6hHuWb+WJtbu5dHgcDsvpp2Spa/Fw8yvfsLeyiYxYB09dmRNyU9h0hny6hRB91pV5iZiNev7wj6089+leaps9/MflmWc039fP/auwirmvbaa51cfFw2JZcs3IXr1qgeiYiDAjwxMiGJ5w4gTlrV4/tS2tgYmjvX48Pj8KcFgMOCxGbCZ9u39A2Iw2bs6+Advm44ce67SjCytonf9RYrXCVVeBTebUEn2Xxajnv64dyWVL/sWKgjJGDerHrLGDuvx5XB4f28vrKaxooKiqicNNrTS4vOh1GhajnrgIM4n9rPS3mYgIMxIeFigcu71Hh6MGeh7WNnuoaW4lJcbOJVmyYqboAx59NGjPsXDhQpYtW4bT6SQxMZFRo0bxwQcf8NRTT5GXl0dVVRV5eXkUFxfj8/l44IEH2LBhA263mzvvvJN58+axYcMGHn74Yfr168euXbuYOXMm/fv3Z/78+QA89NBDOJ1O7rnnnu5/naLLTck5h2VfFVOwv5aH3/2eZ64+9eI3h5taueHlTXxfVk98ZBgv3pjXIysq96S+9WqEEOJnpuScg9mg4643tvD6pv3sPtjAkmtHMiAi7Iy2r6h38dynP/DGpv14/YppI+N5YkZ2r1gZS/Qsk0GH09G1c1PpdXqizf3AeGaf13ZxOGDECBg9GsI7vuyrEL1FqtPB/5qSyR//+R0PvfM9Xp/ixl8ndWqfSim2l9fzya5DfL6nkm2ldbT6/F0TMIEcJkUiITouPz+f5cuXs3XrVrxeL7m5uYw6zWiNl156iYiICL799lvcbje/+c1vmDhxIgAFBQV8//33DB48mOLiYqZNm8b8+fPx+/0sX76cb77p2qHhoudomsaiadlc8ZcveXdrOelxDu648MThY4caXFz3YmDhmqQoK6/f+iviI7vhN1qQSZFICNHnTcqM479vO5fbXstn8481XPjkBm78dRLX/2oQif2tJ92mutHNXz/by9++/hG314+mwa3nD+bBS4e2a0I7ITrNaAysSHmyOergxDnqjs5JZzIFbtfrA4+x2QInkynwuKgomaRanHWuHj2QBpeXx1bt5D/e2843xYe5+ddJ5A7sd8bHdr9fsfNgPZ/sPMQ7W8vYV9nUdp+mQUasg2HnhJMSYyPGYcZuNuJXipZWH2W1LZTWtFDb3Eq9y0NdS6DnkMWoP9Lr0IDDbCTSaiTCaiQ7PrKbWkKIs8MXX3zBFVdcgdUa+L03ZcqU0z7+o48+Ytu2bbz99tsA1NXVUVhYiMlkYsyYMQwePBiApKQkoqKi2LJlCxUVFYwcOZKoqPavjCVCR0acgz9fPYJ5f8/nybW70Wsac85PRn8kN+w8UM8drxdQVNVEmtPO63PG4gzvmwvXSJFICHFWGJEYyft3ncfD737Pmu0HWfr5PpZ+vo+B/a2kx9rbDvKNLi+FhxoprGjAe2QumEsy4/jDxelkxDmC+RLE2So2Fm66KdhRCNFnzDk/GZvZwMPvfs+qbQdYte0ANpOetFgHJoMOn19h1GuEGfVYjjnpdVBc1cz28jpqmj1t+4u2m5mYGcv4DCdjBvcnIuz0c1kIIYLPYDDg9wd6/blcrrbblVIsWbKESZMmHff4DRs2YPvZsOw5c+bw6quvcvDgQWbPnt39QYtuNzEzjj9eMoTFH+5i0Ye7+GDbAXISIzhQ62L9rkMADBsQzmu3jCHKbg5ytN1HikRCiLNGjMPMX68fxbbSWv7fZ/v4orCS/Yeb2X+4+YTHahqMz4jh3oszTjr/jBBCiN7rmjEDuSA9htc3/ciKgjIO1LnYWlJ7xtsPiLBwXmo0/2P4AM5Pi5YhyEKEqHHjxnHTTTfx4IMP4vV6ef/995k3bx5JSUnk5+czZsyYtl5DAJMmTeL5559nwoQJGI1G9uzZQ3x8/En3fcUVV/DII4/g8Xh44403euoliW522wUpZMQ6eHDFd3xXVsd3ZXUAmA06rhkzkD9cnN7n/xkgRSIhxFknOyGS52bl4vMrdh6op7SmmYp6NzqdhtWoZ1CUlSEDwmXlMiGE6MPOiQzjvklDuG/SEKob3fxwqBG/AoNew+P10+Lx4fL4cXl8tHh8eHx+EvtZyYhzkNAvrE+tZCNEt+uJiatPIjc3l6uvvpqcnBycTiejR48GYMGCBVx11VUsXbqUyZMntz1+zpw5FBcXk5ubi1KKmJgY3n333ZPu22QyMX78eCIjI9HrZTGTvmT8ECcf3TuOdTsqaHR70TSNScNi++zwsp/TlFKnX1s3SPLy8ti8eXOwwxBCiJAkx0hpAyGEOB05RkobhIKdO3cydOjQYIfR5tFHH8Vut7NgwYJO78vv95Obm8tbb71FWlpaF0R3dgm1z8bZ5nTHR+kbK4QQQgghhBBCnKEdO3aQmprKRRddJAUi0efIWAohhBBCCCGEEH3eo1007G3YsGHs27evS/YlRKiRnkRCCCGEEEIIIYQQQopEQgghhBBCiOB46623yMzMRKfTnXb+oDVr1pCRkUFqaiqLFy/uwQhFZ4XoFLgiiOQzEdqkSCSEEEIIIYQIiqysLFasWMG4ceNO+Rifz8edd97Jhx9+yI4dO3jzzTfZsWNHD0YpOspisVBdXS1FAdFGKUV1dTUWy9mxUlhvJHMSCSGEEEIIIYLiTFY3+uabb0hNTSU5ORmAmTNnsnLlSoYNG9bd4YlOSkhIoLS0lMrKymCHIkKIxWIhISEh2GGIU5AikRBCCCGEECJklZWVkZiY2HY9ISGBTZs2BTEicaaMRiODBw8OdhhCiHaQIpEQQgghhBCi2/z2t7/l4MGDJ9y+cOFCpk6d2qXPtXTpUpYuXQogvVeEEKIDpEgkhBBCCCGE6Dbr1q3r1Pbx8fGUlJS0XS8tLSU+Pv6kj507dy5z584FIC8vr1PPK4QQZyOZuFoIIYQQQggRskaPHk1hYSFFRUW0trayfPlypkyZEuywhBCiT9JUiE41Hx0dTVJSUoe2raysJCYmpmsD6kISX+eFeowSX+dIfL+suLiYqqqqoMYQbJIngkfi65xQjw9CP0aJ75f1ljzxzjvvcNddd1FZWUlkZCQjRoxg7dq1lJeXM2fOHFavXg3A6tWrmT9/Pj6fj9mzZ/PQQw/94r4lTwSPxNc5El/nhHp8EPwYT5cjQrZI1Bl5eXls3rw52GGcksTXeaEeo8TXORKf6G6h/h5KfJ0j8XVeqMco8YnuFurvocTXORJf50h8nRfKMcpwMyGEEEIIIYQQQgghRSIhhBBCCCGEEEII0UeLREdXNAhVEl/nhXqMEl/nSHyiu4X6eyjxdY7E13mhHqPEJ7pbqL+HEl/nSHydI/F1XijH2CfnJBJCCCGEEEIIIYQQ7dMnexIJIYQQQgghhBBCiPbpc0WiNWvWkJGRQWpqKosXLw52OJSUlDB+/HiGDRtGZmYmzz77LACHDx/m4osvJi0tjYsvvpiampqgxunz+Rg5ciSXXXYZAEVFRYwdO5bU1FSuvvpqWltbgxZbbW0tM2bMYMiQIQwdOpSvv/46pNrvmWeeITMzk6ysLK655hpcLldQ22/27Nk4nU6ysrLabjtVeymluPvuu0lNTSU7O5uCgoKgxHffffcxZMgQsrOzueKKK6itrW27b9GiRaSmppKRkcHatWuDEt9RTz/9NJqmtS0XGYz2E50neaJjJE90nOSJzscneUL0JMkT7RfKOQIkT7SX5Imuj++oXpEnVB/i9XpVcnKy2rt3r3K73So7O1tt3749qDGVl5er/Px8pZRS9fX1Ki0tTW3fvl3dd999atGiRUoppRYtWqTuv//+YIapnn76aXXNNdeoyZMnK6WUuvLKK9Wbb76plFJq3rx56i9/+UvQYrvhhhvUCy+8oJRSyu12q5qampBpv9LSUpWUlKSam5uVUoF2e+WVV4Lafp999pnKz89XmZmZbbedqr1WrVqlLrnkEuX3+9XXX3+txowZE5T41q5dqzwej1JKqfvvv78tvu3bt6vs7GzlcrnUvn37VHJysvJ6vT0en1JK7d+/X02cOFENHDhQVVZWKqWC036icyRPdJzkiY6RPNE18UmeED1F8kTHhHKOUEryRHtJnuj6+JTqPXmiTxWJvvrqKzVx4sS2648//rh6/PHHgxjRiaZMmaI++ugjlZ6ersrLy5VSgQN/enp60GIqKSlREyZMUOvXr1eTJ09Wfr9fRUVFtX3Jft6uPam2tlYlJSUpv99/3O2h0n6lpaUqISFBVVdXK4/HoyZPnqzWrFkT9PYrKio67qB0qvaaO3eueuONN076uJ6M71grVqxQ1157rVLqxO/wxIkT1VdffRWU+KZPn662bt2qBg0a1HZQD1b7iY6TPNExkic6TvJE18R3LMkTojtJnmi/UM4RSkme6CjJE10fX2/JE31quFlZWRmJiYlt1xMSEigrKwtiRMcrLi5my5YtjB07loqKCgYMGABAXFwcFRUVQYtr/vz5PPHEE+h0gY9DdXU1kZGRGAwGILjtWFRURExMDDfffDMjR45kzpw5NDU1hUz7xcfHs2DBAgYOHMiAAQOIiIhg1KhRIdN+R52qvULxO/Pyyy9z6aWXAqET38qVK4mPjycnJ+e420MlPnHmQv09kzzRfpInuobkic6RPNF3hPp7Fop5IpRzBEie6CqSJzqnN+WJPlUkCmWNjY1Mnz6dP//5z4SHhx93n6ZpaJoWlLg++OADnE4no0aNCsrz/xKv10tBQQG33347W7ZswWaznTA2PJjtV1NTw8qVKykqKqK8vJympibWrFkTlFjOVDDb65csXLgQg8HArFmzgh1Km+bmZh5//HH+9Kc/BTsU0cdJnugYyRNdT/JE+0ieED0lFPNEqOcIkDzRHSRPtE9vyxN9qkgUHx9PSUlJ2/XS0lLi4+ODGFGAx+Nh+vTpzJo1i2nTpgEQGxvLgQMHADhw4ABOpzMosX355Ze89957JCUlMXPmTD755BPuueceamtr8Xq9QHDbMSEhgYSEBMaOHQvAjBkzKCgoCJn2W7duHYMHDyYmJgaj0ci0adP48ssvQ6b9jjpVe4XSd+bVV1/lgw8+4PXXX29LOqEQ3969eykqKiInJ4ekpCRKS0vJzc3l4MGDIRGfaJ9Qfc8kT3Sc5ImuIXmi4yRP9C2h+p6Fap4I9RwBkie6iuSJjutteaJPFYlGjx5NYWEhRUVFtLa2snz5cqZMmRLUmJRS3HLLLQwdOpR777237fYpU6awbNkyAJYtW8bUqVODEt+iRYsoLS2luLiY5cuXM2HCBF5//XXGjx/P22+/HfT44uLiSExMZPfu3QCsX7+eYcOGhUz7DRw4kI0bN9Lc3IxSqi2+UGm/o07VXlOmTOFvf/sbSik2btxIREREWzfSnrRmzRqeeOIJ3nvvPaxW63FxL1++HLfbTVFREYWFhYwZM6ZHYxs+fDiHDh2iuLiY4uJiEhISKCgoIC4uLmTaT5w5yRPtJ3micyRPdA3JE6KnSJ5on1DPESB5oqtInui4XpcngjMVUvdZtWqVSktLU8nJyeqxxx4Ldjjqiy++UIAaPny4ysnJUTk5OWrVqlWqqqpKTZgwQaWmpqqLLrpIVVdXBztU9emnn7atSLB37141evRolZKSombMmKFcLlfQ4tqyZYsaNWqUGj58uJo6dao6fPhwSLXfI488ojIyMlRmZqa67rrrlMvlCmr7zZw5U8XFxSmDwaDi4+PViy++eMr28vv96o477lDJyckqKytLffvtt0GJLyUlRSUkJLR9R+bNm9f2+Mcee0wlJyer9PR0tXr16qDEd6xjJ5oLRvuJzpM80XGSJzpG8kTn45M8IXqS5ImOCdUcoZTkifaSPNH18R0r1POEppRSwS1TCSGEEEIIIYQQQohg61PDzYQQQgghhBBCCCFEx0iRSAghhBBCCCGEEEJIkUgIIYQQQgghhBBCSJFICCGEEEIIIYQQQiBFIiGEEEIIIYQQQgiBFImEEEIIIYQQQgghBFIkEkIIIYQQQgghhBBIkUgIIYQQQgghhBBCAP8fB/n2YoDJK9oAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAACMCAYAAAAQn4wPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAAAg7ElEQVR4nO3dd3xUdb7/8deZmfRKGglJIIQklIRQEqoVWIrghkUQ6SBqEAurrm3v3fX3270KrOtey0VWQlFQmu2KC9IUVnoJCSAgECBAGpFUIHXK9/4RzOpK0WTCSWY+z8eDx8DU9+Ek854553vOV1NKKYQQQggHYdA7gBBCCGFPUmxCCCEcihSbEEIIhyLFJoQQwqFIsQkhhHAoUmxCCCEciknvAABBQUFERUXpHUMIIUQzcvbsWYqKin7x45pFsUVFRZGenq53DCGEEM1IcnJygx4nmyKFEEI4FCk2IYQQDqVZbIoUQtxYVa2VM0VXyC+rprzKTFllLRU1VmosVmosNmosVqw2hdmqrl7asFgVFpvCpuoulVKYDBouRgMuJgNuJgNuJiPuLgZ83F3w86j7E+jtSrC3G8E+bgR5u2E0aHovvhC/iBSbEM1QtdnKP09cZN03BWSeLyWvrIprndXVxajhZjLiajJgMmiYDBpGo4aLwYDJqGE01F1vMGgYNLDaFLUWG7VWGzXmukKsNtu4UmO5Zg5Xo4GIVh60C/QkrrUP3SL96RbpTxs/dzRNCk80T1JsQjQjuaWVzNtyin8cyqei1kqAlyv9OwRyf1IkMSHeRLTyoJWnK36eLni7mez2bcpqU1yuNlNeZaboSi1FV2r47nINeaVVnCuu4GxxJTtPFVNrtQHQxs+duzuFMLBjCP1jAvF0lbcS0XzIT6MQzUDRlRrmbTnFir3nQYNR3cP5dbc29I0OwGRs+l3hRoOGv6cr/p6utAv0uuZ9aixWjhdc5lBuGTtPFbEmM48Ve8/j6Wrk14ltGNsrkp5t/eWbnNCdFJsQOttwpIDnPz5MRa2V+5MimDUoljb+HnrH+gk3k7F+U+SUflHUWKzszy7l80N5/ONwPqvTc+gU6sPMuztwb2Ib2TcndKM1h/nYkpOT5Tg24XSqzVZeXneMD/acJzHCj/8e252YEG+9YzXIlRoLaw/ls2RnNicLr9A+yIvHB8Qwqke4FJxosIZ2gwz3F0IHhZeqGTV/Fx/sOU/qndF8/Gj/FltqAN5uJsb1bsuG397JO5N64ulq5NmPDjHy7R0cOFeidzzhZKTYhLjFzhZVMOadXZwvrmDJtGT+Y3hnXE2O8atoMGgMSwhj7ZO389b4HhRdrmX033fz9OqDlFTU6h1POAnZxybELfRtwSUmL96H1WZjxSN96Rbpr3ekJqFpGind2jCoUwh//+dpFmw7zfasIv4yuiuDOrfWO55wcI7xMVGIFuBIXjkPLNiNyaDx0aP9HLbUfsjLzcSzQzuy5vHbCfJ25aGl6bz4yWEqa6993JwQ9iDFJsQtcOLCZSYv3ouPuwsfPdqPmBAfvSPdUl3a+LLmiduYeXcHVqfn8Ju3d3Lm4hW9YwkHJcUmRBM7ffEKExftwdVkYMUjfYgM8NQ7ki7cTEZeGNaJZdN7c/FyDSnzdrL+mwK9YwkHJMUmRBPKLa1k4sK9ACx/uO91D352JnfEBrN21h10CPFm5vIMXtt4AptN96OOhAORYhOiiZRW1DJlyT4qay28/1CfFj2c397C/T34cEZfHkiOZN7WUzyxMoOqWqvesYSDkGIToglU1Vp5aOl+ckurWDS1F53DfPWO1Oy4mYzMHd2VP4zozPojFxi7YDeFl6r1jiUcgBSbEHZmsdp4cmUmmTllvDWuO73bB+gdqdnSNI2H74hm0ZRkzly8wn3zd5FVeFnvWKKFk2ITws7+suE4X35byJ9S4hmWEKZ3nBZhUOfWrJ7Rj1qrjdF/38W+bDlbiWg4KTYh7OizzDwWbs9mar92TOkXpXecFiUh3I9PZ/YnyMeNSYv3yohJ0WBSbELYyTe55bzwyWH6tA/gD/d20TtOixQZ4Mknj/ana7gfj6/IYPX+83pHEi2QFJsQdlB0pYbU99MJ8nZj/sSeuNyCOdQcVSsvV95/qDd3xAbzwiffsODr03pHEi2M/PYJ0UhWm2LWykxKKmpZMDmJQG83vSO1eJ6uJhZOSebexDDmrD/OXzcepxnMsCVaCDkJshCN9OZXWew6XcyroxNJCPfTO47DcDUZeHNcD3zcXXh762nMVsXv7+kkM3SLm5JiE6IRtp28yP9syWJMUgRje0XqHcfhGA0as0cl4GLUSNt2hlqLjf/36y5SbuKGbropcvr06YSEhJCQkFB/XUlJCYMHDyY2NpbBgwdTWloKgFKKWbNmERMTQ2JiIhkZGU2XXAidFZRX8dTqg8SF+PBfIxNu/gDRIJqm8aeUeKbf1p73dp3lpTVHZbOkuKGbFtu0adPYsGHDj66bO3cugwYNIisri0GDBjF37lwA1q9fT1ZWFllZWaSlpTFz5symSS2EzsxWG0+syKTGbGX+pJ54uBr1juTQNE3jj/d2JvXOaN7fc44/rz0m5Sau66bFdueddxIQ8OMzJ6xZs4apU6cCMHXqVD777LP666dMmYKmafTt25eysjIKCuRYFOF4Xtt4ggPnSpk7OpEOwXIOyFtB0zR+f08nHrwtind3nmXOehlQIq6tQfvYCgsLCQurO6NCaGgohYWFAOTl5REZ+a/9DBEREeTl5dXfVwhHsPlYIQu2nWFy33b8ulsbveM4FU3TeOneLpitNtK2ncHVaODZoR31jiWamUYPHtE0rUE7ctPS0khLSwPg4sWLjY0hxC2RU1LJ7z48SEK4L3+4t7PecZySpmn8OSUBs0Uxb+spfD1MpN7ZQe9Yohlp0HFsrVu3rt/EWFBQQEhICADh4eHk5OTU3y83N5fw8PBrPkdqairp6emkp6cTHBzckBhC3FI1FitPrMhAAfMnJOFmkv1qejEYNGbf15URiWHM/uI4q/bJGUrEvzSo2FJSUli6dCkAS5cuZeTIkfXXL1u2DKUUe/bswc/PTzZDCocxe923HMot569jutE20DlnwW5OjAaN18d25664YH7/v9+w7rDszxd1blps48ePp1+/fpw4cYKIiAgWL17Miy++yObNm4mNjeXLL7/kxRdfBGD48OFER0cTExPDI488wvz585t8AYS4FdYezmfp7nM8dHt7hiWE6h1HXOVqMvDOpCSS2rbi6dUH2XW6SO9IohnQVDMYVpScnEx6erreMYS4pjMXr5Aybydxrb1ZPaOfnAeyGSqvNDPmnV1cKK/mo5n96BQqE7s6goZ2g/yGCnEDVbVWHluegcmoMW+CnNy4ufLzdGHp9N54uZmYumQfeWVVekcSOpLfUiFu4KU1RzhReJk3HuhOG38PveOIG2jj78F703tRWWNl2pJ9lFeZ9Y4kdCLFJsR1fLg/h48O5PLkgBju7hiidxzxM3QK9WXBlCSyiyp4fHkGZqtN70hCB1JsQlzDsfxL/HHNEW6LCeS3v4rTO474Bfp3CGLOfV3ZcaqIP352RM5O4oTk7P5C/JtL1WYeW34Af08X3hzXA6NBziTf0tyfHMm54krmbT1FVJAXj94lB3A7Eyk2IX5AKcWzHx4it7SKVal9CZJJQ1usZwbHca6kkrnrjxMV6CWHaTgR2RQpxA+kbTvDpmOFvHhPJ5KjAm7+ANFsGQwafx2TSPdIf55efZAjeeV6RxK3iBSbEFftPl3MXzYcZ3jXUB66vb3ecYQduLsYSZuSRCtPFx5Zls53l6r1jiRuASk2IYDCS9U8uTKTqEAv/jI6UWZodiAhPu4smtqL8iozj7x/gGqzVe9IoolJsQmnZ7baeHx5BhU1Ft6ZnISPu4vekYSddWnjyxsPdOdQThm///QbGSnp4KTYhNOb/cW3pJ8r5S9jEolr7aN3HNFEhsSH8szgOP43M4/FO7L1jiOakBSbcGqfH8rn3Z1nefC2KFJk0lCH98SAGO5JCGX2F9+yPUvmgXRUUmzCaZ24cJkXPzlMcrtW/MdwmTTUGRgMGq/d34241j48sSKTc8UVekcSTUCKTTil8iozj35wAC83E29PlJMbOxMvNxNpk5MBmPH+ASprLTonEvYmv83C6dhsit99eJCckkrmT+xJa193vSOJW6xtoCdvje/BicLLvPCJDCZxNFJswunM23qKL7/9jj+M6EwvOQjbad0VF8yzQzryj0P5MpjEwUixCaey5Xghr395kt90b8PU/lF6xxE6e+zuDgyLD2XO+uPsOiWzbzsKKTbhNLKLKvjtqoN0DvVlzn1yELYATdN4bWw32gd58cTKTJmg1EFIsQmnUFFjIXVZOkaDxoLJSXi4GvWOJJoJbzcTCyYnUWuxMfMDOTOJI5BiEw5PKcVzHx/i9MUrzBvfk8gAT70jiWamQ7A3/z22G4dzy3lpjczh1tJJsQmHN/+fp/nimwu8MKwTt8cG6R1HNFND4kN5cmAMH6bn8sGec3rHEY0gxSYc2tYT3/HaphOkdGtD6p3RescRzdxTv4pjYKcQ/vSPY+w5U6x3HNFAUmzCYWUXVTBrZSadQ33ljP3iZzEaNN4Y1512gZ48tjyDnJJKvSOJBpBiEw7pytXBIiYZLCJ+IV93FxZN7YXFauORZelU1MiZSVoaKTbhcGw2xTOrD3KmqIJ5E2SwiPjl2gd5MW9CT04WXuap1Qex2mQwSUsixSYczltbsth0rJD/HN6Z22JksIhomDvjgnnp3i5sPlbInC++1TuO+AVMegcQwp42Hr3AG19mMbpnBA/eFqV3HNHCTbutPWeLK1m0I5t2QV5M7ttO70jiZ5BiEw4jq/Ayz6w+SLdIf14ZlSCDRYRd/PHeLpwvqeT/f36UCH8PBnQK0TuSuIlGbYqMioqia9eudO/eneTkumkgSkpKGDx4MLGxsQwePJjS0lK7BBXiRsoqa3l4WTqebiYWTErC3UUGiwj7MBo03hrfg06hPsxcfoD9Z0v0jiRuotH72LZu3crBgwdJT08HYO7cuQwaNIisrCwGDRrE3LlzGx1SiBuxWG08uTKTgrJq3pmURKifTEMj7MvbzcTS6b1p4+fB9Hf3cySvXO9I4gbsPnhkzZo1TJ06FYCpU6fy2Wef2fslhPiROeuPsz2riJdHJZDUrpXecYSDCvJ244OH++Dr4cKUJfs49d0VvSOJ62hUsWmaxpAhQ0hKSiItLQ2AwsJCwsLCAAgNDaWwsPCaj01LSyM5OZnk5GQuXrzYmBjCiX18IJfFO7KZ1j+KscmRescRDq6NvwfvP9Qbgwbj0vbwbcElvSOJa2hUse3YsYOMjAzWr1/P22+/zbZt2350u6Zp192Bn5qaSnp6Ounp6QQHBzcmhnBSGedL+Y9Pv6F/h0D+c0RnveMIJxEd7M2q1L6YDBoPLNjNgXMyjqC5aVSxhYeHAxASEsKoUaPYt28frVu3pqCgAICCggJCQmQEkbC/gvIqZrx/gDB/d96e0BMXoxySKW6dmBAfPnq0HwFerkxatJevT8pWp+akwe8GFRUVXL58uf7vmzZtIiEhgZSUFJYuXQrA0qVLGTlypH2SCnFVtdlK6rIDVNVaWTglmVZernpHEk4oMsCTDx/tR7tATx58dx9p207LdDfNRIOPYyssLGTUqFEAWCwWJkyYwLBhw+jVqxdjx45l8eLFtGvXjg8//NBuYYWom1vtMEfyy1k4OZm41j56RxJOLMTHnY9n9ue5jw4x+4vjHM4t59UxiXi6yiHCetJUM/iIkZycXH+4gBA3Mm9LFq9tOskLwzox8+4OescRAqj7wPX3r0/z2sYTRAd789cxifRoKyN0G6uh3SA7JkSLseHIBV7bdJJRPcJ59C6ZW000H5qm8djdMSyb3oeKGguj/76LV9Ydo9ps1TuaU5JiEy3CsfxLPL36IN0j/ZlzX1c5XZZolm6PDWLT03cyrndbFm7PZvDrX/NpRq7MDnCLSbGJZu+7y9U8vHQ//p4upE2W02WJ5s3H3YXZo7qy4pE++Li58MyHhxj2xja++KYAi9WmdzynIMUmmrXvR0CWVppZOCWZEF85XZZoGfp3CGLtk7fz9oSeWJXiseUZ9J+7hdc2npCZuZuYDN0RzZZSiuc/PszBnDLemZREQrif3pGE+EUMBo0RiWEMjW/NluPfsXLfed7+5ynmbT1F5zBfBnUKYUCnEBLCfXEzyZYIe3GYYnt69UEuV9dN4a5pYNDqzspt0DTcTEZ8PUz4uLsQ6OVKG38Pwv09iAjwwNfdRefk4nre+uoUnx/K5/lhHRmWEKp3HCEazGQ0MCQ+lCHxoeSVVfGPQ/lsOf4df//6NPO2nsLVaKBzmA9dI/zoEOxNVKAXbQM9aePngYerFN4v5TDFVlBeRXlVXbEppVAKrEphsymqzVYuV1u4XGP5yeMCvVxpF+hZ/4PULtCTtgFeRAZ4EOztJoMUdPJZZh6vf3mS0T0jmHmXDOsXjiPc34NH7+rAo3d1oKyylt2nizmYW8bhnHLWZOb/5H3K191EqJ87AV6u+Hu44u/pgo+7CU9XE95uJtxdDLiaDLgY6/6YDBqmq5cGg4ZR0zAaNEzGq5eGusvv7/v941yMGi4mA67Guj8GQ8t973Oq49isNkVxRQ35ZdXklVZxvqSS8yUVnC2q5FxxBQWXqvnh/4a7i4HIVp6E+XsQ7u9OmJ8HoX7uhPnV/T3cXz5NNYV92SVMWrSXnu38WTa9D64m2RUsnINSiuKKWs4VX31PKq+m8FI1F8qrKas0U1ZVS2mlmSvVFqqa+FCCf5Ve3eX3ZWgwgFGrK02DpqFRt5Xsh+6IDeaP93ZpdIaGdoPDfGP7OYwGjRAfd0J83Oke6f+T22ssVnJKqsgpqSSntJLzxXWXBeXVHMu/RNGVmp88JsjblYhWnrQN+P7bniftAr1oG+BJiI9bi/7Uo4ezRRXMeD+diFYevDMpSUpNOBVN0wjydiPI2+2mUzBZbYqKWgs1Zhtmq41aiw2LzYbZqrDaFGarDZtSWG1gsdmwXb20WBUWm6r/u9la95i6Sxu1V5/LbK27vebq89bdV119ToVVqfqtY0r9uNxa+7o18f/UjTlVsd2Mm8lITIg3MSHe17y9xmLlu0s15JdVUVBeTV7Zv0owM6eUtYfz+eHhKq4mAxGtPGgb4Enk1fJre7X8ogK95Nvevym+UsOD7+0HYMm0Xvh7yjkghbgeo0GrGyMgA4V/QortF3AzGYkM8CQywPOat5uttvpNnOdKKjlfXFH3DbC0koxzpVyq/te2c02DtgGexIb4EN/Gl15RAfRs5++055irqrXy8LJ08suqWPFIX6KCvPSOJIRooZzzXbSJuBgNRAV5XfdNubzSzLmSCs4VV3LmYgUnCy9z/MIlthwvxKbqPoElRvgxsGMIAzuH0CXM1ykGr1htilmrMuuH9css2EKIxpBiu4X8PF1I9PQnMcL/R9dfrjZz4Fwp+8+WsCOriL9tPsnfNp8kMsCDJwfEcl/PcEwOOt+YUoqX1hxh87FC/jwynqHxMqxfCNE4TjUqsqX47nI1/zxxkeV7z3Mop4wOwV48N7QTQ+NbO9w3uL9tOsH/bDnFzLs78MKwTnrHEUI0I3J2fwcS4uPO2ORIPnusP+9M6gnAox8c4IkVmZRXmnVOZz+Ld2TzP1tOMb53JM8P7ah3HCGEg5Bia8Y0TWNYQhgbn7qT54Z2ZOPRCwx7cxu7TxfrHa3RPj6Qy3+tPcbwrqG8/Bs5W78Qwn6k2FoAk9HA4wNi+PSx/ri7GJmwaA+vbTzRYs8UvuZgHs9/fIjbY4J4/YHuGOVYPyGEHUmxtSCJEf6sm3U7Y3pGMG/rKcYv3ENBeZXesX6RfxzK5+nVB+kVFUDalCQ58asQwu6k2FoYT1cTf72/G2880J1j+Ze4583tbDleqHesn+WLbwp4avVBktsFsGRaL6c9Zk8I0bSk2Fqo3/QIZ+2sO2jj58H099KZs/5bzM140+QnB3J5cmUm3SP9WfJgL7zcpNSEEE1Diq0Fax/kxaeP9Wdin7Ys+PoM49Ka56bJJTuy+d1Hh+jTPoCl03vjLaUmhGhCUmwtnLuLkVdGdeWt8T04XnCJEW/tYEdWkd6xgLqDr/9780n+vPYYQ+Nbs2RaLyk1IUSTk2JzECnd2rDmidsJ9HJl8pK9zNuShc2m37H31WYrT60+yFtfZXF/UgRvT+iJu4sMFBFCND0pNgcSE+LNZ4/fRkq3Nry26SQPvrf/mlPtNLXvLlXzQNoe1hzM57mhHXl1TKLDnhJMCNH8yLuNg/FyM/HGA915+TcJ7DlTzD1vbmfnqVu3aXLX6SJ+PW8HWYWXWTA5iccHxMjB10KIW0qKzQFpmsakvu1Y88Rt+Hm4MGnxXl5Zd4yq2qabcbfGYuWVdceYuGgvXq4mPpnZX05oLITQhRSbA+sU6svnT9zGhN5tWbg9myFvfM22kxft/jr7sksYOW8nC7dnM7FPW9bOup3OYb52fx0hhPg5mqTYNmzYQMeOHYmJiWHu3LlN8RLiZ/J0NfHKqK6sTu2Li8HAlCX7mPnBAU5cuNzo584uqmDG++mMXbCb8iozS6Yl8/JvusqB10IIXdl92hqr1UpcXBybN28mIiKCXr16sXLlSrp06XLdx8i0NbdGtdnKO1+fZtH2bK7UWLgnIZTUO6PpHun/s/eD2WyKPWeKWb7vPBuPXMDNZGDm3R146PZoPFxl1KMQwn4a2g12/2i9b98+YmJiiI6OBmDcuHGsWbPmhsUmbg13FyNP/SqOaf2jWLwjm3d3nmX9kQuE+3swND6UO+KCiA7yoo2/By5XRzEqpfjucg3pZ0tJP1fCP09cJLuoAn9PF6b1jyL1rmhCfNx1XjIhhPgXuxdbXl4ekZGR9f+OiIhg79699n4Z0Qj+nq78bkhHHr4jms3HCtlwpIAP9p5jyc5sAIwGDX8PF6rMVqrMVr7/Tu/uYiCpXStmDYrhnoQwOS5NCNEs6bYzJC0tjbS0NAAuXrT/gAZxc34eLoxJimBMUgRXaiwczSvnXEkl54orKKkw4+VqxNPNRCtPF3q0bUV8G9/6b3JCCNFc2b3YwsPDycnJqf93bm4u4eHhP7lfamoqqampQN12VKEvbzcTfaID6RMdqHcUIYRoFLt//O7VqxdZWVlkZ2dTW1vLqlWrSElJsffLCCGEENdk929sJpOJefPmMXToUKxWK9OnTyc+Pt7eLyOEEEJcU5PsYxs+fDjDhw9viqcWQgghbsjux7E1RFBQEFFRUY1+nosXLxIcHNz4QC2MMy63My4zyHI7G2dc7h8u89mzZykq+uXnum0WxWYvznqgtzMutzMuM8hyOxtnXG57LLOM3RZCCOFQpNiEEEI4FIcqtu+Pi3M2zrjczrjMIMvtbJxxue2xzA61j00IIYRwqG9sQgghhEMUm7PM/5aTk8OAAQPo0qUL8fHxvPnmmwCUlJQwePBgYmNjGTx4MKWlpTonbRpWq5UePXpw7733ApCdnU2fPn2IiYnhgQceoLa2VueE9ldWVsaYMWPo1KkTnTt3Zvfu3Q6/vl9//XXi4+NJSEhg/PjxVFdXO+S6nj59OiEhISQkJNRfd711q5Ri1qxZxMTEkJiYSEZGhl6xG+1ay/3cc8/RqVMnEhMTGTVqFGVlZfW3zZkzh5iYGDp27MjGjRt/3ouoFs5isajo6Gh1+vRpVVNToxITE9XRo0f1jtUk8vPz1YEDB5RSSl26dEnFxsaqo0ePqueee07NmTNHKaXUnDlz1PPPP69nzCbzt7/9TY0fP16NGDFCKaXU/fffr1auXKmUUmrGjBlq/vz5esZrElOmTFELFy5USilVU1OjSktLHXp95+bmqqioKFVZWamUqlvH7777rkOu66+//lodOHBAxcfH1193vXW7bt06NWzYMGWz2dTu3btV7969dclsD9da7o0bNyqz2ayUUur555+vX+6jR4+qxMREVV1drc6cOaOio6OVxWK56Wu0+GLbtWuXGjJkSP2/Z8+erWbPnq1jolsnJSVFbdq0ScXFxan8/HylVF35xcXF6ZzM/nJyctTAgQPVV199pUaMGKFsNpsKDAys/2X4958DR1BWVqaioqKUzWb70fWOvL5zc3NVRESEKi4uVmazWY0YMUJt2LDBYdd1dnb2j97gr7duU1NT1YoVK655v5bo35f7hz799FM1YcIEpdRP38+HDBmidu3addPnb/GbIq81/1teXp6OiW6Ns2fPkpmZSZ8+fSgsLCQsLAyA0NBQCgsLdU5nf0899RSvvvoqBkPdj2xxcTH+/v6YTHVnhXPE9Z6dnU1wcDAPPvggPXr04OGHH6aiosKh13d4eDjPPvssbdu2JSwsDD8/P5KSkhx+XX/veuvWmd7nlixZwj333AM0fLlbfLE5oytXrjB69GjeeOMNfH19f3SbpmlomqZTsqaxdu1aQkJCSEpK0jvKLWWxWMjIyGDmzJlkZmbi5eX1k33Ijra+S0tLWbNmDdnZ2eTn51NRUcGGDRv0jqULR1u3P8crr7yCyWRi4sSJjXqeFl9sP3f+N0dhNpsZPXo0EydO5L777gOgdevWFBQUAFBQUEBISIieEe1u586dfP7550RFRTFu3Di2bNnCb3/7W8rKyrBYLIBjrveIiAgiIiLo06cPAGPGjCEjI8Oh1/eXX35J+/btCQ4OxsXFhfvuu4+dO3c6/Lr+3vXWrTO8z7333nusXbuW5cuX1xd6Q5e7xRebM83/ppTioYceonPnzjzzzDP116ekpLB06VIAli5dysiRI/WK2CTmzJlDbm4uZ8+eZdWqVQwcOJDly5czYMAAPv74Y8Axlzs0NJTIyEhOnDgBwFdffUWXLl0cen23bduWPXv2UFlZiVKqfpkdfV1/73rrNiUlhWXLlqGUYs+ePfj5+dVvsnQEGzZs4NVXX+Xzzz/H09Oz/vqUlBRWrVpFTU0N2dnZZGVl0bt375s/oR32A+pu3bp1KjY2VkVHR6uXX35Z7zhNZvv27QpQXbt2Vd26dVPdunVT69atU0VFRWrgwIEqJiZGDRo0SBUXF+sdtcls3bq1flTk6dOnVa9evVSHDh3UmDFjVHV1tc7p7C8zM1MlJSWprl27qpEjR6qSkhKHX98vvfSS6tixo4qPj1eTJk1S1dXVDrmux40bp0JDQ5XJZFLh4eFq0aJF1123NptNPfbYYyo6OlolJCSo/fv365y+4a613B06dFARERH172szZsyov//LL7+soqOjVVxcnPriiy9+1mvImUeEEEI4lBa/KVIIIYT4ISk2IYQQDkWKTQghhEORYhNCCOFQpNiEEEI4FCk2IYQQDkWKTQghhEORYhNCCOFQ/g/dX0i5tKgubAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -262,105 +285,151 @@ } ], "source": [ - "plot_best_matches(top_k_search, best_matches)" + "distance_profile = snn.compute_distance_profile(\n", + " series_predict[:, starting_timestep_predict : starting_timestep_predict + length],\n", + ")\n", + "plt.figure(figsize=(7, 2))\n", + "plt.plot(distance_profile)\n", + "plt.show()" ] }, { "cell_type": "markdown", - "id": "877b1b32-d978-4c54-a4e7-b475496f710a", + "id": "b5240535-5123-4ac5-a5e0-e0502ef80b3e", "metadata": {}, "source": [ - "You may also want to search not for the top-k matches, but for all matches below a threshold on the distance from the query to a candidate. To do so, you can use the `threshold` parameter of `QuerySearch` :" + "### 1.2 Motif search with StompMotif estimator" + ] + }, + { + "attachments": { + "f492cb89-5bf3-4641-8be2-a77805f20b88.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACaIAAAO4CAIAAACleISpAAAgAElEQVR4AezdZ2wcZ4Lnf8/N3h2wuy8WWODeLHDYe/EHbnawc4fF7s3MFiUqy5JzkoPkIKexx/bY8riYSeWcs5WzlV1s5pwzKQaJFEWKFMWcc+rcfzR7hqYZmk2yq6ua/SWM3e6qp556ns9TojT96+d5nrHwgwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCLiVwDNu1VoaiwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFiIOXkIEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAzQSIOd1swGguAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggQc/IMIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAmwkQc7rZgNFcBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAg5uQZQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABNxMg5nSzAaO5CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAzMkzgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACbiZAzOlmA0ZzEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECAmJNnAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE3EyAmNPNBozmIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAMSfPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIuJkAMaebDRjNRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABYk6eAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQcDMBYk43GzCaiwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACxJw8AwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4GYCxJxuNmA0FwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEiDl5BhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwM0EiDndbMBoLgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIEHPyDCCAAAIIIOA6AY1G88wzz/ziF7/4zW9+4+/vHxYWlpmZmZWVFRsbu23btn/7t3/7xS9+8czIzy9+8YuFCxcaDAbXNY47IYAAAggggAACCCCAAAIIIIAAAggggAAC7iNAzOk+Y0VLEUAAAQTcX8AWc9qCTNv//eUvf/lf/+t/HXvE9trLy6uqqsr9e0wPEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABWQTcMuYcGhrq6ekZ5AcBBBBAAAF3E0hMTPxf/+t//cM//MMvf/nLidHmM88889//+3//p3/6p2+//Za/6dxtbGkvAggggAACCCCgsEBPT8/Q0JAsnx5RKQIIIIAAAggggAACqhRwy5hz06ZN//mf/7mMHwQQQAABBNxQ4Pe///0//dM//c3f/M2kMeff/d3f/frXv16yZIkb9owmI4AAAggggAACCCgpIAjCoUOHVPnpE41CAAEEEEAAAQQQQEAWARXFnFqttq2trbW1tb+/335fN2zY8Jvf/OYGPwgggAACCCCAAAIIIIAAAggggAACIwJeXl4+Pj72P1HhLAIIIIAAAggggAAC80lALTFnTk7OSy+99Otf//p//+//vWrVKq1Wa0c5JCRkxYoVdgpwCgEEEEAAAQQQQAABBBBAAAEEEPAogXXr1vn5+XlUl+ksAggggAACCCCAgIcLqCLmbG1t/dWvfvXmm28+ffq0s7Pz1q1ber3ezsAQc9rB4RQCCCCAAAIIIIAAAggggAACCHigADGnBw46XUYAAQQQQAABBDxcQBUx57fffrt69WqTyeTgYBBzOghFMQQQQAABBBBAAAEEEEAAAQQQ8BABYk4PGWi6iQACCCCAAAIIIDAqoHzMaTKZ/v7v//7w4cP3798/dOiQRqMZHBwcbd/oC5PJZPzrT3BwMIvWjsrwAgEEEEAAAQQQQAABBBBAAAEEECDm5BlAAAEEEEAAAQQQ8DQB5WPOpqamX/7yl7/5zW+WLl26YcMGQRC8vLw6OzvHjcSePXve/+vP//k//2f58uXjCvAWAQQQQAABBBBAAAEEEEAAAQQQ8FgBYk6PHXo6jgACCCCAAAIIeKyA8jFnbW3tM88887vf/c42Bmaz+V//9V/9/PzGDUlUVNTZv/68+OKLxJzjfHiLAAIIIIAAAggggAACCCCAAAKeLEDM6cmjT98RQAABBBBAAAHPFFA+5uzv7/8v/+W/+Pr6jg7Ap59++u///u+jbye+YG/OiSYcQQABBBBAAAEEEEAAAQQQQAABTxYg5vTk0afvCCCAAAIIIICAZwooH3NaLJZ/+7d/++abb0YHYP369QsWLBh9O/EFMedEE44ggAAC80zgcWPP1hsF86xTdAcBBBBAAAEEEEAAAfkEiDnls6VmBBBAAAEEEEAAAXUKqCLmlCTpV7/6VU5OTldXV3p6+j//8z/fvn3bjhcxpx0cTiGAAALzQyChuGFJQNj86Au9QAABBBBAAAEEEEDABQLEnC5A5hYIIIAAAggggAACqhJQRcyp1+t9fHz+7u/+7h//8R//9m//9rvvvjMYDHaYiDnt4HAKAQQQmB8CmpynC31D50df6AUCCCCAAAIIIIAAAi4QIOZ0ATK3QAABBBBAAAEEEFCVgCpiTpvI48ePU1NTHz9+bDab7RsRc9r34SwCCCAwDwR+SK0URGnavxHmQU/pAgIIIIAAAggggAACThEg5nQKI5UggAACCCCAAAIIuJGAimJOx9WIOR23oiQCCCDgpgJnYh8KoqQ3mNy0/TQbAQQQQAABBBBAAAEXCxBzuhic2yGAAAIIIIAAAggoLkDMqfgQ0AAEEEAAgUkEDmvuC6I0qNVPco5DCCCAAAIIIIAAAgggMEGAmHMCCQcQQAABBBBAAAEE5rkAMec8H2C6hwACCLipwPab9wRR6h7QuWn7aTYCCCCAAAIIIIAAAi4WIOZ0MTi3QwABBBBAAAEEEFBcgJhT8SGgAQgggAACPxMwWyxavdH/Yo4gSu29wz87xxsEEEAAAQQQQAABBBCYQoCYcwoYDiOAAAIIIIAAAgjMWwFiznk7tHQMAQQQcFOB2rb+r05lrAyOEESpqXPQTXtBsxFAAAEEEEAAAQQQcLEAMaeLwbkdAggggAACCCCAgOICxJyKDwENQAABBBD4mcDJyNLnN0c9tylSEKXatv6fneMNAggggAACCCCAAAIITCFAzDkFDIcRQAABBBBAAAEE5q0AMee8HVo6hgACCLijQH37wMqQiMj82uT7jcsCw6qae92xF7QZAQQQQAABBBBAAAHXCxBzut6cOyKAAAIIIIAAAggoK0DMqaw/d0cAAQQQ+JnA3rvF6/YldPQOVzb2PBsS8ai++2eneYMAAggggAACCCCAAAJTCBBzTgHDYQQQQAABBBBAAIF5K0DMOW+Hlo4hgAACbieg1Rs/OJgUcCnHZDZXNfWu3hj54Gmn2/WCBiOAAAIIIIAAAgggoIgAMaci7NwUAQQQQAABBBBAQEEBYk4F8bk1AggggMDPBLLLW5YFhktZTywWS3Vz7/Obowqr239WgjcIIIAAAggggAACCCAwhQAx5xQwHEYAAQQQQAABBBCYtwLEnPN2aOkYAggg4HYCh0JLPj6SojMYLRZLTUvfC1uicita3a4XNBgBBBBAAAEEEEAAAUUEiDkVYeemCCCAAAIIIIAAAgoKEHMqiM+tEUAAAQR+EjCazK/uiL2TWW079LS176Wt0ZkPm38qwSsEEEAAAQQQQAABBBCYWoCYc2obziCAAAIIIIAAAgjMTwFizvk5rvQKAQQQcDuBhOKGFzZH1bf321pe19b/8raYlPuNbtcRGowAAggggAACCCCAgCICxJyKsHNTBBBAAAEEEEAAAQUFiDkVxOfWCCCAAAJ/ETCbLR8fTt5wJlOrt65Ya7FY6tsHXt0eE19U/5cS/D8EEEAAAQQQQAABBBCwK0DMaZeHkwgggAACCCCAAALzUICYcx4OKl1CAAEE3E6gpXvoxS3RZ2Mfjra8sWPg9R2xUQW1o0d4gQACCCCAAAIIIIAAAnYEiDnt4HAKAQQQQAABBBBAYF4KEHPOy2GlUwgggICbCdyralsWGJ5f2Tra7qauwTd2xWlyakaP8AIBBBBAAAEEEEAAAQTsCBBz2sHhFAIIIIAAAggggMC8FCDmnJfDSqcQQAABNxP4MevJ0sCwgWHDaLtbugff3B13N7N69AgvEEAAAQQQQAABBBBAwI4AMacdHE4hgAACCCCAAAIIzEsBYs55Oax0CgEEEHAzAd+L2eL57LGNbu0eentP/I20qrEHeY0AAggggAACCCCAAAJTCRBzTiXDcQQQQAABBBBAAIH5KkDMOV9Hln4hgAACbiPQM6hbERReVN0+tsU1LX0vbokKupI39iCvEUAAAQQQQAABBBBAYCoBYs6pZDiOAAIIIIAAAgggMF8FiDnn68jSLwQQQMBtBDQ5NWt2xXX1a8e2uL13eO3ehLOx5WMP8hoBBBBAAAEEEEAAAQSmEiDmnEqG4wgggAACCCCAAALzVYCYc76OLP1CAAEE3EPAbDb/8USaeD5bpzeObXFn3/C7+xOJOcea8BoBBBBAAAEEEEAAATsCxJx2cDiFAAIIIIAAAgggMC8FiDnn5bDSKQQQQMBtBGrb+lcGR5yLGz9rs7NP++7+xDMxD92mJzQUAQQQQAABBBBAAAFFBYg5FeXn5ggggAACCCCAAAIKCBBzKoDOLRFAAAEERgXuZlYv9tc0dAyMHrG96OzXvrc/8TQx5zgX3iKAAAIIIIAAAgggMIUAMecUMBxGAAEEEEAAAQQQmLcCxJzzdmjpGAIIIOAWAttu3Pvq+/SJTe3q1753IPFUdNnEUxxBAAEEEEAAAQQQQACBiQLEnBNNOIIAAggggAACCCAwvwWIOef3+NI7BBBAQO0Cb++JD82pmdjKrn7t+wcST0aVTjzFEQQQQAABBBBAAAEEEJgoQMw50YQjCCCAAAIIIIAAAvNbgJhzfo8vvUMAAQRULVDfPrAsMKy1e2hiK7sHtO8fSDoRScw50YYjCCCAAAIIIIAAAghMIkDMOQkKhxBAAAEEEEAAAQTmtQAx57weXjqHAAIIqFjAbLHsuHXv06MpQzrDxGZ2D2g/OJh0LPzBxFMcQQABBBBAAAEEEEAAgYkCxJwTTTiCAAIIIIAAAgggML8FiDnn9/jSOwQQQEC9Aq09QyuCw09Fl5nNkzSyZ0D3wcGko8Sck9hwCAEEEEAAAQQQQACBSQSIOSdB4RACCCCAAAIIIIDAvBYg5pzXw0vnEEAAARULJJU0LvQNffC0Y9I29gzo1h9MOhx2f9KzHEQAAQQQQAABBBBAAIFxAsSc40B4iwACCCCAAAIIIDDvBYg55/0Q00EEEEBApQIno0pXhUToDKZJ29czqFt/KOmQpmTSsxxEAAEEEEAAAQQQQACBcQLEnONAeIsAAggggAACCCAw7wWIOef9ENNBBBBAQKUCX32fvvdu0VSN6x3UfXgo+UAoMedUQhxHAAEEEEAAAQQQQOBnAsScP+PgDQIIIIAAAggggIAHCBBzesAg00UEEEBAfQJ1bf0rgiMeNXRP1TRbzLlfKp6qAMcRQAABBBBAAAEEEEBgrAAx51gNXiOAAAIIIIAAAgh4goC6Yk6dTtfT06PVau3Th4SErFixwn4ZziKAAAIIqFngoKbks+OpBuPkK9ZaLJa+If2Hh5P3/UjMqeZhpG0IIIAAAggggAACKhIg5lTRYNAUBBBAAAEEEEAAAZcIqCjmNJlM+/fv/+1vf3vp0iX7fSfmtO/DWQQQQED9Au/tT9x+857JbJ6qqX1D+o8OJ++5M+WqtlNdyHEEEEAAAQQQQAABBDxTgJjTM8edXiOAAAIIIIAAAp4soKKYs6Gh4f/+3//7zDPP7Nq1y/6QEHPa9+EsAgggoHKBioZuQZTOx5XbaWf/kP7jw8m7iTntGHEKAQQQQAABBBBAAIExAsScYzB4iQACCCCAAAIIIOARAmqJObu7u3//+9+fPHmSmNMjnjs6iQACHixgMpsPSCWrN0bWtvXbYegf1n98JGXn7UI7ZTiFAAIIIIAAAggggAACowLEnKMUvEAAAQQQQAABBBDwEAFVxJxms3nbtm2/+93vBgYGpoo5TWN+goODly9f7iEjRDcRQACBeSag1RvfP5B0Nvah/X7ZYs4dt+7ZL8ZZBBBAAAEEEEAAAQQQsAkQc/IkIIAAAggggAACCHiagCpizoqKCi8vr/r6+uHh4alizp07d67968+//uu/Llu2zNOGiv4igAAC80OgvK5rZUhEV7/WfncGhvWfHE3ZdoOY074TZxFAAAEEEEAAAQQQ+IsAMSePAgIIIIAAAggggICnCSgfc5pMpv/4j/84fvy4xWKxE3Ompqbe/OvP66+/zmxOT3tS6S8CCMwbgY3X8r85nTltdwa0hk+Opmy9XjBtSQoggAACCCCAAAIIIICAxWIh5uQxQAABBBBAAAEEEPA0AeVjztu3b//t3/5tYGDg/v37d+/e/cwzzzz33HMHDx60MxIhISErVqywU4BTCCCAAAKuFDCazI2dA2azedqbdvQOL/bXXE2unLbkoNbw6dGULdfzpy1JAQQQQAABBBBAAAEEECDm5BlAAAEEEEAAAQQQ8EAB5WPOmJiY559//oWRn9WrVz/zzDO/+tWvXn75ZTuDQcxpB4dTCCCAgOsF4orqPzyU3DOom/bWEXm1i/01pbWd05YciTlTN/9AzDktFQUQQAABBBBAAAEEELAKMJuT5wABBBBAAAEEEEDA0wSUjznHittZtHZsMWLOsRq8RgABBBQX2HQtf82uuGm32zQYTZt/yH97T7zOYJq2zUNawx+OpW68ljdtSQoggAACCCCAAAIIIIAAMSfPAAIIIIAAAggggIAHChBzeuCg02UEEEDAmQJ6o+nlbdGv74jt7NPar7d3UPfajpi7mdX2i9nODumsMWfIFWJOR7QogwACCCCAAAIIIIAAszl5BhBAAAEEEEAAAQQ8TkBdMafFYuno6BgaGrI/DszmtO/DWQQQQMCVAoVV7UsDw17ZFtPRN2z/vrfSq17fEavVG+0Xs50d1hk/O54adDnXkcKUQQABBBBAAAEEEEAAARat5RlAAAEEEEAAAQQQ8DQB1cWcjgwAMacjSpRBAAEEXCBgNJm+OJG22F/z4tbo9l57MWf3gO71nbEHQ0scbNVIzJkWcDnHwfIUQwABBBBAAAEEEEDAwwWIOT38AaD7CCCAAAIIIICABwoQc3rgoNNlBBBAwDkCZrPF72LOy9ui4wvrn98c1dZjby7+laSKJQFhuRWtDt57WG/8/Hia/yViTgfBKIYAAggggAACCCDg6QLEnJ7+BNB/BBBAAAEEEEDA8wSIOT1vzOkxAggg4CSBuvb+pQFh5+LKq5p6V22MbJ065jSbLTtu3Xt5W7TBaHLw5tqRmNPvYraD5SmGAAIIIIAAAggggICHCxBzevgDQPcRQAABBBBAAAEPFCDm9MBBp8sIIICAcwQOSMUrgiOetvXXtw+sCA5v6Z5yNueQzvDV9+nfns10/MZavfGPJ9J8zhNzOm5GSQQQQAABBBBAAAGPFiDm9Ojhp/MIIIAAAggggIBHChBzeuSw02kEEEBgzgJltZ0rgsPTShstFktrz9CywPDmrsGpai2t7VweFJ5V3jxVgYnHdQZrzCkSc06k4QgCCCCAAAIIIIAAApMJEHNOpsIxBBBAAAEEEEAAgfksQMw5n0eXviGAAAIyCRiMpsX+mg8PJesN1kVouwe0i/3DmqaIOQ1G045b9776Pn1GjdEZTF+cTPvuXNaMrqIwAggggAACCCCAAAIeK0DM6bFDT8cRQAABBBBAAAGPFSDm9Nihp+MIIIDA7AUaOwcEUbqdUWWrYlBr8PYNbeycfDZnSU3H0sCwyPzaGd1Pb4050789M4N1bmdUP4URQAABBBBAAAEEEJhnAsSc82xA6Q4CCCCAAAIIIIDAtALEnNMSUQABBBBA4GcCJrN5950iQZRyHrXYThhNZi8fqaFj4GflRt6YzZYL8Y9e3BrdNEUIOvES2xG9wfTlyfRviDmnAuI4AggggAACCCCAAAI/FyDm/LkH7xBAAAEEEEAAAQTmvwAx5/wfY3qIAAIIOFegpXvo5W3RX5/O6OzTjta8wEd62tY3+nb0RVe/9sNDyd+czjAYrcvbOv5jMJq+/D7961MZjl9CSQQQQAABBBBAAAEEPFmAmNOTR5++I4AAAggggAACnilAzOmZ406vEUAAgVkKGE3mz4+nvrs/0WQyj61isb/mcWPP2CO21zUtfSuCw5809048Zf+IwWj66vv0P52a2Y6e9uvkLAIIIIAAAggggAAC81iAmHMeDy5dQwABBBBAAAEEEJhUgJhzUhYOIoAAAghMLnCvqm2hb2hcUf2408uDwstqu8YdtFgsOY9alweFG2c4ldNisRiM5q++z/jyJDHnRFSOIIAAAggggAACCCAwiQAx5yQoHEIAAQQQQAABBBCY1wLEnPN6eOkcAggg4FQBk9l8QCpZGRzRM6gbV/GqjZFF1e3jDppM5nf3J349qxmZRpP5T6cyvjhBzDkOlbcIIIAAAggggAACCEwuQMw5uQtHEUAAAQQQQAABBOavADHn/B1beoYAAgg4W6CstuuFLVHHI0onVvzClqjcitZxx3MetSwPCp94fFyxSd/aYs7PT6RNepaDCCCAAAIIIIAAAgggME6AmHMcCG8RQAABBBBAAAEE5r0AMee8H2I6iAACCDhHQG80fXYsdcOZzEmre3V7THpZ09hTeqNpw5nMdfsS+4f0Y487+NpkMn99KuOz46kOlqcYAggggAACCCCAAAIeLkDM6eEPAN1HAAEEEEAAAQQ8UICY0wMHnS4jgAACsxGQsp4sCQjLLm+Z9OI1u+ISixvGnqpr739le8ydzOqxBx1/bTKbvz6d8ekxYk7HzSiJAAIIIIAAAggg4NECxJwePfx0HgEEEEAAAQQQ8EgBYk6PHHY6jQACCMxQoH9I/8nRlHV7E0xm86SXrt2bEJVfO/ZUWmmjt1/osM4w9qDjr81m8zenMz45kuL4JZREAAEEEEAAAQQQQMCTBYg5PXn06TsCCCCAAAIIIOCZAsScnjnu9BoBBBCYmUBicf1zm6Kqmnunumz9oeS7P5+4GXg5N+hy7lTlpz1uNlu+OZ358ZHkaUtSAAEEEEAAAQQQQAABBCwWCzEnjwECCCCAAAIIIICApwkQc3raiNNfBBBAYMYCZrP5nb3xe+4W2bnys2OpV5MrRgv0DuoW+WkSS362jO3oWUdemM2WDWcyPzxMzOmIFmUQQAABBBBAAAEEECDm5BlAAAEEEEAAAQQQ8DgBYk6PG3I6jAACCMxIwGyxnI8vXxEcXlTdbufCr09lnI55aCtgMpu337z35q645q5BO5dMe2rDmcz1h4g5p3WiAAIIIIAAAggggAACVgFmc/IcIIAAAggggAACCHiaADGnp404/UUAAQRmJtA3pP/0WGrApZypduW0VSeezzocdt/2urlrcM2uuH0/Fk++jafD9//2bOb6Q0lTbAbqcC0URAABBBBAAAEEEEDAMwSIOT1jnOklAggggAACCCCAwE8CxJw/WfAKAQQQQGCiQFpp07MhEQ/ruiaeGnsk8HLu7tuFtiNXkyuf2xRVXj/NJWMvn/T1n89mrj9IzDmpDQcRQAABBBBAAAEEEBgvQMw5XoT3CCCAAAIIIIAAAvNdgJhzvo8w/UMAAQTmIFBW27UyJGL7zXvT1rHlesHGa/m2YkGXc7c5cMm0dX53LuuDg0n2Z5FOWwkFEEAAAQQQQAABBBDwEAFiTg8ZaLqJAAIIIIAAAgggMCpAzDlKwQsEEEAAgZ8J1LcPrNkV5+AWm7tuF/qcz7ZYLI0dAy9uiQ7LrflZXbN643M+2xpzmua49u2s7s1FCCCAAAIIIIAAAgi4mwAxp7uNGO1FAAEEEEAAAQQQmKsAMedcBbkeAQQQmK8COY9avP00+Y/bHOngwdCSL79Pt1gs+34sfmdvQkv3kCNX2S/je8EacxqJOe0zcRYBBBBAAAEEEEAAgREBYk4eBAQQQAABBBBAAAFPEyDm9LQRp78IIICAQwKVjT3PhkR8dDjZodIWy/GI0o+PpDR2DLy6PWb7zXtmsxOmYPpdzHmfmNPBAaAYAh4gMKg19A7qPKCjdBEBBBBAAIFZChBzzhKOyxBAAAEEEEAAAQTcVoCY022HjoYjgAACsgm09w5/fCRl7d6EB087HbzJ2diHa/cm3MmoXhkc0drjhKmcFosl4FLu+wcSDUaTg22gGAIIzG+Bm2mPvz2bOb/7SO8QQAABBBCYiwAx51z0uBYBBBBAAAEEEEDAHQWIOd1x1GgzAgggIK/ArfSqZ0MiHtV3O36by0kVqzdGvrAl6mj4A8evsl8y8HLuewcS9cSc9pnc86zZbGnqHBjWGd2z+bRaGYHDmvsvbIlS5t7cFYHJBLIftUQX1E52hmMIIICAMgLEnMq4c1cEEEAAAQQQQAAB5QSIOZWz584IIICAKgXu13S+sCXqcNj9GbUuLLdmgU/oy9ui69r7Z3ShncJBtpjTwGxOO0jueqqrX7tuX0JMQZ3KO6DVG09ElDrxqVZ5f1XevH0/Fj+3KVLljaR5HiWw/8fi785leVSX6SwCCKhcgJhT5QNE8/n0YzsAACAASURBVBBAAAEEEEAAAQScLkDM6XRSKkQAAQTcWKBvSPfhoeRPj6Z09Wtn1I3mrsE3dsZ9ejSlb0g/owvtFA6+kvfegUQdMacdI7c91dQ5sDwo/Gpypcp70D2ge2t3XFQ+s7VUMVA7bt17NiRCFU2hEQiMCGy/eW/DGRZS5mmQRWBQazCanLDTuSyNo1IVCxBzqnhwaBoCCCCAAAIIIICALALEnLKwUikCCCDgpgJXkyuXB4UXVrXPov1F1e1Z5c0ms9M+ktt4Ne/d/Yk6A+uazmI01H5JQ4c15rwQ/0jlDe3q176+MzYst0bl7fSQ5m3+IX95ULiHdNYtutnUOXA7o9otmipTI0Ou5n19OkOmyqnWwwV23S5MK23ycAS6PwsBYs5ZoHEJAggggAACCCCAgFsLEHO69fDReAQQQMCZAn1D+rX7Ei4kqCV52nQt/939iVo9MaczR1klddW19S8PCj8d81Al7ZmqGZ192le2xfyY9WSqAvP+eF17/5OWXpV0M/By7pKAMGUb09E3XNfmtKW5le3L3O+eWtro5SPNvR73rcH3QvZXp9Ldt/20XM0CHx5OvpJUoYYWmi2Wm+lVmQ+b1dAY2jCtADHntEQUQAABBBBAAAEEEJhnAsSc82xA6Q4CCCAwS4HiJx1/PJH25q64ho6BWVbh7Ms2X7fGnMPEnM6GVUN9T1v7lgWFH48sVUNj7LSho2/4hS1Rt9Kr7JSZ36e+PZu5/dY9lfTR53y2t1+oso3ZceveYn+Nsm1Qz92TShoEUXLeHH719MzRlnxzOuPL74k5HeWaT+XyKlsrG3pk7dEHB5POxZXLegsHK9cbTGt2xW36Id/B8iopZjCavo8qK3nSoZL2uKwZxJwuo+ZGCCCAAAIIIIAAAioRUEXMaTKZent729raOjo6hoaGpqUJCQlZsWLFtMUogAACCCDguMCnR1MEUUq53+j4JXKX3HK9wBpz6pjNKbe0AvU/aeldFhh+WHNfgXvP5JbtvcOrNkb+kPJ4JhfNq7JrdsVtVs1H2xtOZy70VTjm3HK9YLHSM0rV84TFF9ULoqQ3mtTTJBe35LPjqX88kebimzpyu/5hPds6OgI1uzJDWsPHR1ICL+fM7nIHr3p3f+L30WUOFpa12LDO+MbO2OCrebLexemVd/VrV2+MPKP6dSOc3nFiTqeTUiECCCCAAAIIIICAygWUjzkNBsMnn3zyH//xH//fyM+zzz6bkTHNDjfEnCp/qmgeAgi4nUBuReuK4HDfC9lDOoN6Gr/tRsG6fQmqapJ6cNy9JdXN1phz34/FKu9IW8/QiqDwy4mqWDbQ9VZms3mRn2bjNbXM4PniZLogKrxEasjVPMUXzh37JFQ0dCv4SzLmXp0gSp68tPj6Q0mfH1ddzKnVG787l5Vf2Tr2UeG1EwU6+7Tr9iX4Xcx2Yp0Tq1q7N+FY+IOJx11/ZEBreH1nbODlXNffei53tH1RSSVR8Vw6MtNriTlnKkZ5BBBAAAEEEEAAAXcXUD7mHBoa+u1vf5uWZv2AoKGh4d9HfnQ6nR1ZYk47OJxCAAEEZiowqDW8sDlqeVB4c9fgTK+Vtfz2m/esMadWRcmrrP31qMofN/YsCwzbdbvQrO5ut3YPLQkIOx+vimUDXU/VM6gTRClENTN4bJPOTYqukRpwKUdVMedCv9CiasWWZIzIeyqI0sCw3vUPp0ru+M6ehD8cS1VJY0abMaQzvL0nXpNdM3qEF84VaOgYeH1nrHhB3pjzrd3xB6US57Z8drX1Delf2xEbcClX0d++M257a/fQqo2RxyNUERXPuPVzuICYcw54XIoAAggggAACCCDglgLKx5xms9lk+mmpq9bW1v/23/7bwIC9neGIOd3yWaPRCCCgVoFT0WXefqHn48rVtgvmjluF6/YlDBJzqvXJmUu7Khq6lwaGbb95z6zuD01buge9/UI9cMk72+A+be0TRCn4iloWKvzgYJIgSsouxelzPks9Meew3iCIUl5l21z+MM7lWk1OjSBKvUP2vp44l/onXltY1a6qv6pe2x7zydGUie1U9sig1vDmrribMm8qrPLf3rIOQVVT7/Obo747lyXrXdbsitt9p1DWWzhYec+A7tXtMX4Xc5T9lomDrR0t1tw1+GxIxFF1zIgdbZULXhBzugCZWyCAAAIIIIAAAgioSkD5mHMcR0lJyT/+4z9O3KHTPOYnJCRk+fLl4y7kLQIIIIDALAR6B7XefpqUByraknO0F7tuF67dmzAwzGzOUZL586K83hpzbrleYDKpej5nc9egIEonI0tdSa8ekfL6bkGU1LNQ4dq9CYrvBLnhTKZ6Ys7uAa0gStmPWlz5fI69l5T1RBCl7gHt2IOyvl4eFP6wrkvWW8yo8uc2RX18OHlGl7ig8KDW8PqO2MtJMq62bTCa3twdV9HQ7YLuTHqLioburn7XPXjj2lBW27U8KPzbM5njjjv37es7YrfeKHBunbOrratf+8r2GN8L2cp+y2SmjW/sHHg2JOKQ6ncBn2m/pi1PzDktEQUQQAABBBBAAAEE5pmAumLO2traf/mXf/niiy+MRuM46G3btq3568+vf/3rZcuWjSvAWwQQQACBmQo8be17Z2/C58fTFNzazU6bd98pGok5PXc5RDs47n6qrK5raUDYxmv5Kv/M1Dad8UjYfZeBRxfU3sqoctnt7N+otLZTECX/Szn2i7ns7Bu74gRR0unH/yvRZQ2wWCxfnkxf7K9x5R3t3MsWw2eUNdspI+upOxnVgih19A7LepexlS/21+Q/Vmz26tiW2F4vCwz78JAaY85XtseciX04scHOOtLZN7zQN7Sout1ZFc6onvs1nYv8NHcyqmd0lRMLP3jauTQw7JvTGU6sc2JVr2yPUcma4R29wy9vi/E572YxZ317/8qQiAOhqlj4d+L4yneEmFM+W2pGAAEEEEAAAQQQUKeAimJOvV7/8ssv//M//3NX1yTf0c7Ly4v668/atWuZzanO54lWIYCAewmI57MW+2taVLYl56jhnrtF71hncxJzjpLMnxcPnnYuCQgLupJrMP60cL0Ku/doZDrjQRd+SLr1RsGyoDCdQRUsJTUdgij5XVRLzPnythhBlIZ1SsacfziWukg1MWdNi3VV4ZT7ik3Hv5lWJYhSS/eQy/7wLvQNTVMu1p3YzQU+0gcHkyYeV/bIwLDhpa3Rx+TckrCxc2CBb2hhlTIxZ1xhvSBKP6RUKuV8v6ZjSUDYn07JG3O+uCVaJd8yae0eemlrtHguS+V/ZY97Hmrb+lcGR+z7sXjc8Xn/lphz3g8xHUQAAQQQQAABBBAYJ6CWmLO1tfWdd95ZsmRJZ2fnuCZOfMvenBNNOIIAAgjMVCDlfuPqTZHl9YqtODdtg/feLX5nb0L/EDHntFTuV8D2GbH/xRy9OvK8qQSLn7QLorT3btFUBZx+fOO1fEGUGjvsbVLu9JtOVWFRtbX7Pheypyrg4uMvbIkSREnZ/Xo/PJTs7Rvq4o5Pdbvy+i5BlBJLGqYqIPfxH1IeC6LU1Dko941G6/cSpbii+tG3yr7QG4yCKL13IFHZZky8+8Cw/vnNUfslGdOdmpY+Lx/pXpUyM2uj8msFUbqarFjMWfKkY7G/5suT6RPxnXjk+c1RoszbfzrY2uauwRe3Rv/5XJZe3d9MGtedJy29K4Ijdt9x3d/g4xqg1FtiTqXkuS8CCCCAAAIIIICAUgKqiDm1Wu2aNWv+5//8nw0NDn1MQ8yp1OPCfRFAYN4IPG3rWxKg2XW70GRWzz6A43X3S8Xv7I3vI+YcDzMf3hc/sU6FEc9n6wxKzsybljK3olUQpZ237k1b0lkFgi7nCqJU19bvrArnUk/B4zZBlMTzaok5n9sUKYiSsjO81+1PWOCjlpjTlkPHFdbNZZTncu3lpApBlOrbXfS4Go0mQZQ0uTVzabMTrx0Y1gui9O5+1cWc/cP61Rsjd9yU8ReXbaZ7gUILCIfn1giidDlRxs1H7T8nRU86FvlrvjiRZr/YHM+u2hjxtcwTRh1sYUPHwItbor89m6nybyaN605VU8+K4HBX/g0+rgFKvSXmVEqe+yKAAAIIIIAAAggoJaB8zKnVaj/88MP/8T/+x40bN1L/+jM8bG+PH2JOpR4X7osAAvNDoL594JMjKe/sja9u7lVzjw6Elry9J75vUKfmRtK22QkUVrUvCQj79mymVtF9FqdtfOqDRkGUtt4omLakswr4XswRROlpa5+zKpxLPbaU98/qmE5ksVhWbbTGnMp+9eHN3XFeojQXVSdem/2oRRClqIJaJ9Y5o6ouJjxy5eM6rLfOnryRppbNa7sHtIIord2bMCM0FxTuH9avDInYeC1PvnvZVrTOq2yV7xZ2apayngiidDHhkZ0ysp4qrG739gv97HiqrHdZGRzxucxJqoPtr2vvf2Fz1IYzmSr/ZtK47lQ29CwPCt8uZ94/7o4qeUvMqZKBoBkIIIAAAggggAACLhNQPuZsbm7+xS9+8Td/8zd/P+bnyZMndgiIOe3gcAoBBBCYVuBs7MPnNkU2qGNVTDutPTQSc/YSc9oxcttTBY/bFvuHfX0qQ9l9Fqf1i7lXJ4hSyLX8aUs6q8B357IEUapuUsVXEGwp2rdnM53VuznWsyI4XBClHkV/J7wysj+oSubBJ99vEEQpPPfpHGFnffm5uHLr4+qqb8z0j8yevJioWLg1Dqqjd1gQpXf2xI87rvjb/iH98qBwWXfVzau0znTPLm9RpLO3M6ybwp6PL1fk7haL5V5V+0Lf0D8ckzfmXBYU/vGRZKX6OPa+T1v7nt8c9fXpDJV/M2lsmy0WS3l99/Kg8K03ClS8cMm4JjvnLTGncxypBQEEEEAAAQQQQMB9BJSPOc1m89CEH7Pd/y1CzOk+DxgtRQABNQoEXM4JviLjJA9n9fmw5v7be+KVjTSc1RfqGSeQV9lq29hsSGcYd0pVbyNynwqiFHg512Wt+uZMhiBKlY09LrujnRtllDULorThtFpizmWB1pize0Brp81yn7ItnGswqmK57+gCawwvZdv7dqCsIKdjHrrycbXNnjwZVSZrpxyvvKVrUBClt3arLubsG9IvCQjbcEbGP7npZU2CKGWUNTvO5cSSN9Ksm8KejXvoxDpnVFXB47YFPqGfHk2V9RfBkgDN+weSZtQwmQo/ae59blPkn1T/zaRx3S+r7VoWGL7leoH9zxbGXTUP3hJzzoNBpAsIIIAAAggggAACMxJQPuacUXNthYk5Z4HGJQgggMCowDt7Ew6Eloy+Ve2LI2H339oT3zPAorWqHaLZNyynomWxv+aPJ9IGtaqOOaVs69KIvhdctznll9+nC6JUXtc9e1znXZn6wJpkfH06w3lVzqmmJf5hgih19ikZcz4bEiGIks5gmlNPnHSx7fm8k1HtpPpmXM3JqDLr41rvose1fWT25EHV/P3V0DEgiNKaXXEzhpP5gr4hvbef9ResfPdJKLbOJE590CTfLezUfC25UhCl0zGKxZz5la1eovTp0RRZ8zNvP41KlkR+3NSzemPkV9+nq3wBhnHPzIOnncsCwzf9kK+S+ffjmiffW2JO+WypGQEEEEAAAQQQQECdAsSc6hwXWoUAAgjIJWAymRf5aRTc0crxjp2ILH1zd1xXv5KRhuOtpeSMBLLKWxb5az4/rvaY83a6dWnEP5/NmlHv5lL48+OpgiiV1nbOpRJnXZt837o16VffqyXm9PbTCKLU3mtvB3dn9X2qepYHWWeUquSz/uup1jltN9MV26vyaPgDVz6uzSOzJ3feujfV6Lj4+NPWPkGU3tgZ6+L7Tnu7viHdAp/Qjw7LuN5pVH6tIEpJJQ3TNkaOApcSKwRR+j5asXm9tn2LPzmaYjLJOJ9zgY9anq6Khu5VGyO/PJk+pO5vJo172EqedCwNDAu5lm+Uc5jG3VQNb4k51TAKtAEBBBBAAAEEEEDAlQLEnK7U5l4IIICA8gJ9QzovH0nB2T+OE5yOKVuzK66jT8lIw/HWUnJGAhkPmxf5a/5wLFXlszl/SLXOGXLldMZPjqQIonS/pmNGnjIVtk3Y+vJkukz1z7TaBT6hgii19QzN9EInll8SYJ1RqpLn9kL8I0GUfkipdGIHZ1TVYc19QZRKXPW41rf3W/fKvaqWRderm3oFUXpth+pizt5BnSBK6/YlzGg0Z1RYyrLOdI8vqp/RVc4qfH5kU9gTkaXOqnCm9WQ9tC7o/cmRFPnyM7PZLIjSy9uiZ9o2OcqX13c/GxKh/gUYxvW9qLp9aUBY8JU8+YZp3B1V8paYUyUDQTMQQAABBBBAAAEEXCZAzOkyam6EAAIIqEKgpXtogU9oRN5TVbTGbiMuxD96Y2esspGG3Qa6zcm69v6WbiWToYlS6WVNi/w0fziaOjCs6kVrL4/MGfrihOtyvvWHkgRRKqpun4jm+iOxhdatH7+Qc+lLxztlNlsEURJESdmHedHIjNL+Yb3jLZev5MmoUkGULidWyHcL+zUfkEoEUSp01eNaMzJ7UjznukWk7Xf/UX23IEqvbI+xX8z1ZztGVveVdZqpbXfMmHt1ru+dxWKxbQp7LOKBIne3WCxppdYFvT8+kmIwyrV+td5oEkRp9aZIpfo49r5ltV0rQyI+P542oI5ffWPbZud1weO2JQFhQZdz5RsmO3dX8BQxp4L43BoBBBBAAAEEEEBAEQFiTkXYuSkCCCCgmEBNS99C39CEYmVmYMyo21eSKl7fEatspDGjBqu28IYzGQp+HDwpS+qDJm8/zSdHU1T+men5+HJBlP5wLHXSXshx8L39iYIoFTxuk6PymdYZVWBdl/Lz4zLu8Od4kwwjH/oLotTUNej4VU4vucDHGrX2Dqpiz+DDYdbJlOfjHzm9mw5WuPdukSBK+ZUuelwfN/YIoqSe6cVltZ3qmW83dsiauqybhr64JWrsQee+vpRonUkcmV/r3GodrO1kpDXgPxKmWMxpW9D7o8PJ8uVnQ1qDIErLgsIdNJG12P2azhXBEZ8dS1XJNzwc7GxeZeuSgLCAS8ScDoJRDAEEEEAAAQQQQAABdxUg5nTXkaPdCCCAwOwEyuq6vP1C08uaZ3e5K6+6kfb41e0xTZ1KRhqu7K9891p/KHnv3WL56p9Fzcn3G739NB8fUXvMeTq6bGTKjoxb3I3Te2dPvCBKeZWt444r8jYi76kgSp+5MOW1080hnfVDf0GUGjsG7BST9dTojNLuAVXsGbxfKhZE6UzsQ1l7bafyXbcLBVHKedRip4wTTz2s63Lxn0f7jS+p6ZA7TbTfgKnO1rZZNw1dIWdCZptPGZarzMoQtk1hD2vuTyUg9/GE4npBlD46nKw3yDWb07by8CI/jdx9caT+4icdy4PCPz2W2j+kionsjrTZYrHkPGpZ7B/mfzFHL9ukWwdb4uJizOZ0MTi3QwABBBBAAAEEEFBcgJhT8SGgAQgggIBLBQoet3n7aVw2+WYufbuTWf3K9pgG5SKNuTReVdeu25e4606hqpqUWNLg7af56HCyyqeGHI94IIjS+weSXKa3ZlecIErZ5S7Kjez3S5NTI4jSp+qIOfuGrNsNCqJU365YzKkzGG1t6FTHnsG7R1LG76PL7I+jfGe33bwniFLWQxd9b+b+U2usuP6Q6/482qe7V9UmiNLzm2WcNGm/AVOdrWqyTntd5C9jQmYLGqXsJ1O1QdbjhzTW1ZIPhpbIehc7ldsW9P7wcLJOtpjTtvKwl49kpxkuO1VY1b48KPyToyl9bhVzZpU3L/bX+F7Ilm+YXDYEM7oRMeeMuCiMAAIIIIAAAgggMA8EiDnnwSDSBQQQQGAGAtY9Ef01D552zuAahYpqcmpe3hZT19av0P3nz23f2h234+Y9VfUnvqh+oW/oh4fUHnMe0lgXBV27L8Fleq/tiBFEKdNVuZH9fknZTwRR+uRoiv1irjnb1a+1RYwK/k4YHNbb2tDWq4rNbrfdKBBE6XhEqWuGYOJdNv9gbUBaWdPEU3IcKaxuF0TpvQOJclQ+izrzKloFUXpOHbsnjm1/+ci0V28/jdEk11zDfT9aZxLfyagee1+Xvbbdff+Piq1SYFvQ+8NDyTq9UaZeN3cN2n7bGE1mmW7heLX5lW3LAsM/PpKikvW6HWy57V+8PueJOR0EoxgCCCCAAAIIIIAAAu4qQMzpriNHuxFAAIHZCcQW1i/211Q29szucldeFZVf+9LW6Ketfa686by816vbY7beKFBV1+IKrTHn+kNJKl8Bz/Zh+pu741ym9+LWaGtuVOqi3Mh+v+5kVNsWZrRfzDVnW3uGbB/6K/g7oWdA5zWyN2dLtyoW0954LW9kh0LFlu60NSD5fqNrnoG8SmusuHav6752YL9fWQ+bBVFatTHCfjHXn7Wtpuvtp5FvSdWdt6zrFd9Mq3J97ywWi20e8567RYrc3WKxhOVaZ7qvP5SklS3mrGvvt/3Gk+8WjuvlVrQuDQj76HByjzq2JXaw5akPmhb5ab47l6UGQwfb7JRizOZ0CiOVIIAAAggggAACCLiRADGnGw0WTUUAAQScIBCaXbMkIKyu3Q2mSMYV1r+4JfpJS68Tuu3ZVTy/OWrTD/mqMoi5V7fQN/SDg0kqXwHPtvXgaztiXab33KZIQZRclhvZ79fN9CpBlD485LqtSe20p7FzwPah/5MWxb760NE7ZIs5VbJncMClHEGUDkiKLd0ZdDlXEKXE4gY7A+fEU1nl1ljxrT3xTqxzLlWllTYJorQyRHUxZ8Fj62q63n4a+dKdrTes6xX/kFI5F8BZX7t9ZLXk3cotxm6b6b7+YNKwTq7ZnE9aem2/8Qa1hllDOevC7PKWJQFh6w8l9wzonFWnC+qx7QL+7dlM+f4guKAXs7gFMecs0LgEAQQQQAABBBBAwK0FiDndevhoPAIIIDBjgVvpVUsCwpq7VDEVyX7rk0sant8cVdXkBhNP7XdE8bPPhkQEX81TvBljGxBVULvQN/S9A4kqjzlti4K+vDV6bONlfb0yOFwQpYTielnv4mDlP6Q+FkTpg4Oq2ArxaWuf7UP/6mbFvvrQ3DW4wDdUECWV7Bnscz5bECUF57T5X7TmrHGFLnpcbbHiml2um11t/09KUkmDIEorgsPtF3P92exHLbaYc1gnV0K28Vq+IEpXkipc3zuLxbJlZLXknbcU23PaNtP9g4NJQ7IJVzRaN1gVREkNax5kPLRucvnBwaTuAa0iIz67myYWW3cB33AmU740enYNk/sqYk65hakfAQQQQAABBBBAQG0CxJxqGxHagwACCMgrcCP18dKAsLYeVWwsZ7+r6WXNz22KdIv1de13RPGzSwPCAi/nKt6MsQ2IyHu6wDf0vf1qjzltH+U/vzlybONlfb00MGwkN6qT9S4OVn4luVIQpfcPqCLmrGr6y4f+j5X76kNdW/9C31AvUVJwf9CxY7fhTKYgSgqGPbacNbrARY+rLVZ8bUfMWAQFX8cV1QuitCxIdTGnLQ/29tPINxEwcGQi78WER4r4h1y1Lte8Tbk9p2+mWb8C8v7BJPmES2s7bTGnGrbDTCu1buv+/oHErn53ijltu4B/czqDmFORP6fcFAEEEEAAAQQQQAABlwkQc7qMmhshgAACqhC4llK5NDCsvXdYFa2x24icRy2rN0Y+qu+2W4qT0wss8JX8LmZPX86FJcJyaxb4hK7bl6CGD3Dt9Nv2Uf7qTZFmO4WcemqRn0YQpeiCWqfWOsvKLiVWCKL07v7EWV7v1MsqGrptH/pXNCr2O6G6udfbN9TLR1Jwf9CxqF99n24Ne5Tbeffbs9acNSLv6dhWyfc6rrBOEKWXt7ludrX9vkQV1AqitCQgzH4x159NLLZOM/X20/QP62W6u+8F60zic3HlMtVvv1rbb2YF95z+IeUvXwGRL+YsetJu+42nhmQx5X6jt5/mvf2JnX3uFHPalsf/06kM+Sbd2n9QlTrLbE6l5LkvAggggAACCCCAgFICxJxKyTt6X5PZbDS57MNVR1tFOQQQcF+BK0kVSwPDOt3h+/gFj9tWbYx4WNflvtpqaLnJbBZESTyvrphTk2ONOdeqPub0Gfkof/XGSJf9XWzb+jHSVbmR/Uf0Qny5IErr9iXYL+aasw+e/mVuk4JffXhU3+3tp/HykRRcOHes9mfHUgVR2qzczrvfnM4QREmTUzO2VfK9jsq3xoovblFLzBme+1QQpcX+Gvm6PLuao0fyV28/Td+QXDspfns2SxCl0zEPZ9fCOV7le8G6WrKCT/6VJOtXQN47kDggW5CcW9Fqizk7+pT/XlpSScNCX+s3kzpV0BjHH56o/NoFvqFffp8uXxrteGNcWZKY05Xa3AsBBBBAAAEEEEBADQLEnGoYBXttiCqoVdtn0/aayzkEEFC9wMWER0sDw3oG5Pro04kAxU86VoZElD7tdGKdHliV3mAUROnbs5mq6ruU9cTLJ/SdvWqfzWmbrLZqY6TeaHIBoMlkzaQFUQrLdVFuZL9TZ2MfCqL0zl5VxJxF1X+Z26TgVx9Kn3Yu8rfGnCrZM/ijw8mCKCm4865tOumPWU/sP0jOOqvJqRFE6blNrltE2n7LpawnI5MmQ+0Xc/3ZsFwrlLefRr6/678+ZU24T0aVur53Fovlu3PWkHXjNcX2nL4Q/8gac+5PlG++rG3lYUGU1LDLQHxR/QLf0LV7EzrcYS2Q0WfSujy+T+gXJ4k5R0l4gQACCCCAAAIIIIDA/BQg5lT7uJ6NfaietbnUjkX7EEDAAYFzceXLAsP6huRayM6BJjhapKy2a0VweElNh6MXUG4ygSGdQRClb05nTHZSsWN3M6u9fKS398T3DKo6cf/TKeuioKs2RuoMRhdg6Q0mW8wpuSo3st+pU9FlgmgdJvvFXHM2r/Ivc5tKaxWb4V1U3b7YP8zLJ7SyHzwIwAAAIABJREFUQbGFc8dqf3AwSRClgEs5Yw+68vUfT1ink97OqHLNTe9mVgui9GxIhGtuN+1dbmdY27PAR3Ux550RKG8/jXzrnX5x0vq78VjEg2mV5CjwzWnrasnBVxSLOc+MfAXkXTm3l04otu78KohSS7fym6nHFtaPfDMp3i22PBh95MJG1o34/ETawLBh9KAnvGA2pyeMMn1EAAEEEEAAAQQQGCtAzDlWQ42vj4Tdf2FzlHwtM5vNRpfMUJlLF+ra++9mVscV1vldzNn0Q/7R8Ac5j1osFovB5Fn/k3UuhlyLwKjAmZiHywLD5VtmbfRGc39R0di9PCi8qLp97lV5cg19QzpBlL76Pl1VCLfSq7xE6a3dcfJNNnJKf/94PM0Wcw7rXPE3zpDWmkkLonQns9op7Z9jJScjSwVRenO3KmLOrPIWG84D5WZ451W2LgkIW+ATWq6CPYNNZvP7BxIFUfJRbknqT4+mCKJ0I+3xHJ80By+/mVYliNLyoHAHy8td7HrqY0GUvERJ7hvNtP4bIw3z9tPIt5Pip0etCffhsPszbZtTytumEQdeznVKbbOoxPYVkJGYU65v6kTmW5dEFkSpsXNgFi107iW2ZZDf3hPf1qP8CrqOdy00+4mXj/TZsVS3+Eev4/2atiQx57REFEAAAQQQQAABBBCYZwLEnGof0F23CldtlGVtrsbOga9PZby9J/7lbdFZ5S3DOoNhJO806wbNpp/NWTEN9Ri7GhSU2nOnyMtHWugb+tLW6Fe3x9i2QYovqj+UeGx3YuCj1tLmXiWbp6AMt0ZgFgLfR5ctCwwfcklmM4vmjb3kSUvvssDwwipizrEqM37d1a8VROmPJ9JmfKWcF9jigTW71B5zfjKS4jwbEuGauSB9Q3rb59o301w0Pc7+IB+LeCCI0ppdcfaLueZsemmTDUfBGd6ZD5uXBlpjzjLlZpSOahuMpvf2W2POP5/NGj3o4hfrD1lXzb2WUuma+15LrhREaWlAmGtuN+1droy0R1BfzHl5ZOdIb79Qmebemc2WT45YE+4DUsm0SnIU+HzkCyj+FxWbx3xi5Csg6/Yl9sq2IMGPI0siC6LU0N4vh+GM6ozIs2aub+6OV8MKuo63/G6mdVnpT4+myLe2sOONcWVJYk5XanMvBBBAAAEEEEAAATUIEHMqNgp6gym+qL60trOhYyCppOFeVXt6WXNEXm3I1bwDUnFiSUNpbafJbA66krs82PlfWjcazTtvFT63KdL3QvYHB5Ne2RbzbEjEBweTjoY/SD27tefI6sHI7YOxe4fTTg9GbO3eu7B7x/8buP2dtlijLdboHsZri0KHsy8PJRzSV2cb6kuMLY9Mfa3DGWeHU04YW538jf6BYcN7BxI3nMmsbOzpH9bnVbRuu3HvvQOJXn7XXzj5yivnF9r+2xC6fn/ypuuF58/mHE5/kmgw6c0Wc2NPXWlzUV13TUljQUljwYOmouLG/Cv5pzbGfPvDvbP92j7Fhp8bI+CAgNFoqmrutX3/wIHijhY5EVm6LDBcq//Ztxkcvdi15erb+5cEhOVXtrn2tvPtbu09Q4Io/eFYqqo6dnUkHnhjV1y3ureJtS0K+mxIRL9L1nnuHsmkBVG6nurkv0xnN/qHw+4LovT6ztjZXe7cq5JKGmwxZ9ETxRayTn3QuDwofIFvqIIzSkdVdQbTupGYU8Elqd8dacDlpIrRVsn64lKCdUNEbz+1LBJ7caQ9giiZTGZZOz7Tys/FldugZAqljCazbV/YvXeLZ9o2p5S3TSP2vZDtlNpmUcmRkd+N6/YlyLfuuu3LQIIo1bYpH3OGZlt3e12zK65VBSvoOj5etzOs878/OZLimr/BHW+Y3CWJOeUWpn4EEEAAAQQQQAABtQkQcyo2Ij2Dug8OJi0PCl+1MdLbT7M0MGyxv8bbT2Nb/MrbT/PC5qgL8Y/+dCpjib/zv7TeM6B7/0DiyahSncHUM6i7EP/o8+Npa3bFeYk/Vm5b2r3j/03y387fdu/8XffO33bv+k/r/93x2+4d/69n78KefYt69i/pObLadqT/2udmg9aJrFVNvS9sjoouqB2t02gyt/UMBd0988p579GYc+yLNZeWfnzjNf+IL9Zff/ntyyvWXX3urcsr/vrfclvJ1y8uTq1Sxee2o/3iBQLjBAoet725O66mxcl5/LHwB8uCwvWqX63aYrE0dw0u9g/LrWgdJ8PbGQk0dw4KovTxkZQZXSV3YVs88PrO2O6B6f/KqGjo/vZspnyTZux0dt2+BNtegI7fPa6obtbRQnvvsC3Ju5bs0PS4lu4hWf8sHwgtEUTptR2q+OsyrrDOhuPgDO/Mh83i+WznbmuXUNywIjh8oW+ogjNKRx/XYZ1x7cjz+aVyS1K/sydeEKUL8Y9GWyXrC1t6t8BHLYvEnh3ZoFEQJad/IWmOjCejrMtNe/uGtnQPzrGqSS83GE0fHrZO5N11u3DSArIeNJstH4/MJRWVW6754MjvxrX7Ehz5K2x2GqMhutP/HTiL9ti2xX1jZ6xzf6POoiUzusS2zPVHh5PdYkP6GXXNfmFiTvs+nEUAAQQQQAABBBCYfwLEnEqOaVpp045bhdtv3gu8nPvegcQ9d4t8L2afiX1YWttZ/KQj4FLu8qBwQbQu1ur0VjZ2Dq4Mjnj0852lKht7zm31mSTgnDT1nOJgz+FVZq0zv3ScW9Hq7adp7x0ai2A2mzfH/vm1C4vHppszfX0+9+jYOp3y+kzMwz+fzRr3zW6zxaI3mJo6B4ufdBQ8bttyvSAi72luRevjph6z2WI2KzMDoKKhO6G4wS2m9DllaNyxEin7yXObIisaup3b+MNh95cHhRtVNvVk0j529A4v8tdkj+zFO2kBDjoiUN/eL4jS+kPJjhR2WRlbXPHajtiu/mliTq3e6HM+e5GfJr2s2WXNG73Rm7vjvXykZ0MiHPksu2dAt+3GPS8fKSr/p6/mjFblyAtbJi2I0qXE6afH5Va0LgnQLA0IczD2c6QB48rsu1ssiNKr22PGHZ/0bc+g7nJixbm48knPzv1gRH6tLeYseDz9DG+jybzxWv4Cn9DwvKdzv/VoDdEFtSuDIxb6hqphz+BBreGdvdYY/vPjii1J/cbOOEGUzso26KPythffj6R3Di4S2zekj75XJ+vuv99Hl9meSZ1BXQskHA23Lje90De0uUuWmFNnMNnWK95+8964MXLBW5P5L3NJ/3xOseWa9/1o/d24dm9C93R/hc0axLb9pyBK1c29s67EWRfa8sLXdsTK9EQ5q53j6vkhxbrM9fpDyY5/UWlcDW76lpjTTQeOZiOAAAIIIIAAAgjMWoCYc9Z0zrlwJOWy6Aym7gGdyWTWG0yjy14Nag05j1ptn54452Zjaqlr61/oGzqoNYw5ZjGZTANZV3sOTDGbc4pcc1ws2nNwuXnYmZPP0kb24hplGW1wz3B3YmXURzdenWm6OVp+c+yfR2tzygu90fTS1mhvP81357JGw0udwXglqWLt3oSXtkavCApfHhTu5RO6aGT+7stbo8Xz2RvOZKY+aDwUWtI9oDOaTK7JHbV64yvbYxb6hn55Mn3fj8U30h4/qu/u7te1dg/VtPSazObhGW7cqDMYD2tK1PB982mH0mQypz1oUufOlD0DuhORpaPzwE5Glq7aGDnu6wjTdnDaAgdDS5YHhY8+otOWV7BA35B+oW9oxkMFwi0Fe+30W9e09Ami9N6BRKfXPJcKbR/gvro9ZtqYs7FzwNsvdFlg2IV4ufIzOx15bUfsYn/NypCIzr5hO8UsFut3Vjb/ULDYX7PQN/REZKn9wlOdtQ2Wg9PjfC9kv7YjdnlQ+HnZZHbdLhRE6eVtDsWcJ6NKF/iGrpDtWxShOdZd1gRRyq+cfoZ3z6DOtm/lFaeupxqe+/TZjdaY855jewaX1XXJN9Oxf1j/9shkyk+Um6v9yjbrjumnoh9O9Ug797htFWUHF4kNz63x8pFORs3yD6MjLbdtXiuI0rDK1oE/IFnnYS/0DW3sHHCkIzMto9UbbQt6b7le4Mi1QzqD0WRypKQjZYwm04cjm8JuOJPpSHk5yuwc+d34zt6Eaf8Km/Xdj4ZZs2pBlCobe2ZdibMuvDaSF766PaZJnuDcWe0cV8+VkU1qPziYRMw5Toa3CCCAAAIIIIAAAgjMMwFiTlUPqMlkXrUxUhAlp8+7qmzsmWqSqKm3ZTjlRP/1r3pPvdF78rXuvd4/BZk7f9tzYFnPXu/e4y+OLFE7soztz+PPnv1LzMPO/NJxXGHdskB7y/a29TfvS9oYEPnFn35877ULi0ZTzNEXr573fuvyijcuLh09YnvxxZ21zh3+7Ecti/w16w8le/tptlwvSCtt+uxY6ivbYrz9NF+fyjikKbme+njX7cL9UnFUQe0BqfiPJ9KWBYa/vjN2gU/oQt/QFcHhz2+OWhkc4X8pZ8v1gpT7jWV1XQnF9SYZpntGFdQu9tccCC354GDS2n0JXj7SAp/Q5zdHPr85amlg2J/PZq0IDt9+894nR1NuplXlV7bVtfV39Wvr2/v7h/QlNR1VTb1VTb3Z5S0R+bW5Fa1Gk7mioXtJQNiPWdXOJZWjtod1XYvVN0Gwd1BXWN2+9XqBt1/oyuCIdfsSPj+R9uGh5GdDIh7WdTnXYb9UvDLE+Tv+OreRttpMZrO3b2hCUb0clXtOnVVNvdZJJ/sSVNXlE5HWNRVf2TZ9zJlV3vLS1mi/i9nBV/Jc3wXrN1SCI1YGR7T3ThNz5le2LgsMSyiqPyCVzHopxfL6btvn2mdjp8mNBrWGF7dG77x9b92+hKAreXL8TWE2m7fduCeI0ktbo6eVH9IZPj6S/Nbu+Oc2RV1KlGUJ0zsZ1TYcRxayrmruXR4U/vLW6MNh96dtvOMF7mZWr94YudA3NM+BPYP1RlPApdwlAWENHbJETb2Durd2W9eM/VC5udovbI4SRGnWub7j8raSu+8U2Z4BRxaJDbmaJ4jS85ujDEa5ls2wrVwqiNLQz784ONN+Ob387jvWLygs9A2tl+fZG9IZ3j+QJIjSxmv50za+d1D30tbob89kOusbZnqjaf0h692/Pp0x7d1lKrD5hwJBlN7eE9/ZN82CBLNugG3CqCBKj5y9qscsmnQp0bot7ivbYpo6ZZkfPIsmOXKJbeHf9w8kjltox5Fr3boMszndevhoPAIIIIAAAggggMAsBIg5Z4Hm0kuupz728pGcvhbWvaq2Z0Mi7PTEbNCZ+ttMfa36mvzByG3avBv6R0n6xxnGjqfGtmpTd4OuLE5flamvSBnOudK9Z8FoFNqzb5FzY87Q7JppP2A1mY1D+sGuoc782sysmpQdCf6f3nzjs9tvvXJ+oaj5tLAhr7ar+mFLybnco69f/Gmd209uvm5HYBanrqc+FkSpq1+763bhK9tiFo3stLp6Y+TFhEejE2fNZstoaD2oNZTWdjZ3DR4KLbmb+WTzD/kfHU7efadoRVD458dTF/trVo18llrX5sxFgG392nO3aPWmSL11GrG2o2/4dHTZ8YgHF+LL/S7m+F3MWRkc8eLWqFe3W6doLPCRlgSEvbo95p298a9si1l/MGlFkDWOfX5z1GJ/61ayK4LDd90uTC9r8vbT3EqvmoXbtJd09g1H5D111pfZcytaF/lr0suapr2vawqYzZbKxp5dtwuXjSxS7e0X+unRlA2nM/wv5XhZeSNKazud2BKz2bL3btFzm6KcWKesVb20NfpuphvE57IizLFyW3L29p74Odbj3MuPhN8fmSYY3Tndin9Xkir+cCw1NKdmnRJJ7XObrN//WBkc0drzs7XTJ2qcjyt/Z29CW89wWG7Nmp1xEws4cqSout2W4pyOKbNfvqKxZ2VwRGR+7f4fi9cfSnJkTV37FU48azKZN/2QL4jSC5un/43R1Dn4xs64q8mVgZdz1+1LkGNym235QUGUHFnI+lxc+UeHkzdezQu56sx0/Gb64+c3R3n7aRyJWhs7B5YHWTfyTCppmMg79yPdA9o3d1vXjH3/YNLca5tdDas2RgiidCz8wewun+lVW69bsyVBlHQOzJ5cvSny2ZCIBT5yLdxqsVhsaaIgSgPD+pn2RdbyW29YoRb6hta1O//fkBaLZVBreO9AoiBKQQ58+yTzYfMiP40jXxZx0ESrN75/0Bpz/ulUuoOXOL1Y4KVcW8zZMd1E/5G5/paa1r6JK9PYb9W2m9ZvmQiiNO3X3VIeNB6LeNA9oLNf4VzO2taZf3lrtEzzg+fSNjvXno0rF0Tp3f2Jsi5ebacBSp0i5lRKnvsigAACCCCAAAIIKCVAzKmUvKP3Tb7fuMAn1OlfEk++3/jajlhHGzFNObOhrng05uzes9A85MzZnNdTH7+zdzaTkPRGfUtfk9H008K8eqP+WPqu0TmdH15/ZZqezfD0pcSKpQF/mXha19b/Q+rjH7OqO6abADTuJmazRas36gxGnwtZi0ZyxKiCWe7xNq7m0bcmk3nr9YI3d0/5KXxT52DfkN42fbOhY+BOZrX/xZzlQeEfH0lZsyvui5NpIdfyfC9kfzaSxb6yLcbLR3puU6SXKF1PfTx6F2e9aOkaHJlNFb5qY2RUfq0jHyfZv3VSScMiP03qg0b7xWZ39kzsw5h7dRNnfTV2DhRVd7R2D/UM6jr7tJ192rzK1oTiev+LOb4Xshf4hAqi9OXJNCn7ydXkv2zIp9UbI/OfLg8Kv//UuTGnefedomm/OjC77stx1fpDSfJt9SdHg1VYZ2ltpyBKa3ZN+UdekTbbZkG9uDXa/lSYYb1x/aGknbcK69v7lwaEzXQ97bl3bXlQ+KvbY1cER9jfkExvMH19KuPLk+lavfF+TYe33yz/4s4ub/HykawrbU637G1SSYO3n6amta+4un3Vxsinrc5cLt7mZjCagq/keY3Mh5tWsrKx57lNkXmVrRcTHr26PaZFhoUNz8Y+9PKxfuifNd1C1kaTec2uuJNRZWdjy7886cwg5GpyxYtbrDFnVnnLtCZS1pM3dsWu3Zvgcz572sKzKNDZr12zK26Rn8bBudqDWkNuRWvfkDMDOdsu8oc1zpwya4ci8LI1W7IuEqubZi/M1u6hBT6hfhdzvHykoiftduqcyylbmiiIUt/Q9AmTzmAsedLhXP+pGm+bybrQN/Rp2/S/GfqH9Yc094+EP6hvd3Tacf+Q/t391pjT/1LOVG0YPX48ovT5zVGrNkbmOGmnbWvIOnL3L086uivtvar2G2lVTtwY4rtzWYIovbUnftp/5xtN5k+OpHj5SHGFM1uaIuRq3kJf678PH9j9d6DBaPK7mCOI0srg8Bhn/0+G0UG0rTP/4tZoB+emFzxuy61olWE9mtEWOfTi9MjuuWv3JcjxTSCHWqBQIWJOheC5LQIIIIAAAggggIBiAsScitE7eOPUB40LfUP7nfqZlMViCcuteXe/0/ZpMxu0P8WcuwXzkDO3kDkXV/7J0RQHuaYt1tRbPxpzvn/thWnLz6jA6ZiHL26ZfsqLg3V2D2gvJTxaFhTu9LXgbJ9cf3wk2cGWWCwWnd74qL67f1jf3DXYP6TX6o1avbG9d7i0trOuvf/e47Y/HEsVROlqcqXjdTpY8nZG9UtboxOLrR/oL/a3Lv87bnLzpLHHkM6gM5jae4dt/1U1945OBg3Pe+rtp0m+7/yY02A0LQ0ME0TpnT3xe+8WtfUMFT9pzyhr/j6q9I2d1u393tod/96BxHX7EtbuS1jgG7o0MGyBj3WxwTsZ1bfTqyamFLVt/csCw0qedDho5Ugxk9m863ah877l4Mg951Tmu3NZ+6XiOVXh8ReXPOkQREltg773bvECn9AXtkTZjznvVbUtCQjLfNg8MGx4dXtMRplLN2o1my1ePtK6fQkrgsPtT2Gpaup9YXPUjyMzj2ta+lZvjLT/wfRUT2Xy/UZvP80if82xiGmmx52JefjCliijybqV8kLf0DJnr25tsVj0RpP/pZwlAWGrN0ZO1eDR44XV7Yv8NB29w2mlTas3RpbXd4+ectaLI2H3l/hrvHykaffrrWjoXuyvSSttiiusd+485rOx5S9vi17k59CSAMFX84Ku5IblOPNfXGMxO3qH39gZtzI44q3dDs3VvpBQvsAn9EaaM7+QZFvX4YCrfkvbsqWR2ZM/fYltrMno65yK1kV+mruZ1oWOLyU+kmnV2qC/xq7TLolpMpkPSCVLAsKc/o+60S6PfeE/knst9A11ZNP01AdNK4LCVwSFO/5ltd5B3bp9CYIofXcua+x9J3399emMQ5r7fz6bue9H5/xt3j+kt939jyccijnLartWBIc78g2JSds/6cE/ncqwxpy74yd+s21c+dQHTV4j2fy2G/dmNKHT90L20oAwLx+ppMbevwN7B3UfHU7+89nML06mr9uXIFOyaFtn/oUtUQ4ug/zOnvg3dsYqvtzuySjr8viOb6Fa2dhzMUGWRdfHPRVyvyXmlFuY+hFAAAEEEEAAAQTUJkDMqbYRGd+etNImb99Qp6+0czW58g/HUsffbLbvzSbDTzHnzt87N+Y8GvbgmzOZs23a+Ot6hrtHY851V1ePPz2390fDH6yd1cTTqW7bO6hbuzfhYGjJVAVmd1xnMPleyNngPFWLxdLVr10WFC7Hfmwbr+W9fzBpQGvIftSyYORb7c9tivz8eOrNtKoPDiRdTHi00Df0etrjjt7hJy3WLDPnUcvFhEdeorTA17rj6WJ/azi6yBqRhgVcys0oa76WUuntp0ksdv4Sgveq2lYER5yOKXtzd9zqTZG2BgiiddXfRX4abz/Nun0JfzqVEXg5970Didtv3vvq+3RNTo2dQWzqHFwSEFb0/7P3Xs9tHF368M1W7d1ebtX+Abv17lt7t1VfbX3MWVQWlXOwLcmSbNmykQHmnCVSJJWzqIxBTsw555wzCZIgiBxn5leDkUYQwgCEIEu2hzds9JzuPn1m0AD66ec5k/6koYAglP6y88g3pl+KE4TM111fJSMjjkt/ukudE6s2eVjxN+V55uuuKJsCNj5F+2n12PZEweK61mQBf73TyHzS+kfOwmi2BpLZ312vjmby8CkszSMrYTSOXIkI2y5vIPKt/LYZH1wVdcyG07lRTB4+PW52VRNO5+a+60aH2Jsqln2BFLYmC0i+37wrSRiLq3KP+vC2cXJvKpLCc35Ni+Q/9oLsuNX4ZL7uQjVI6wY8qI4L2me3Jwgml1XD88oYFp5E/1Z9uMHtO2A7tuLxrAwEQbuTRXckQyMLSm8CuFVPYBheUer3p0v2pYkPZnjW59AYzLEJ/GAKcKG41o9ACKpGkPP2/aPobhZWEJpYUo0vbt4SDmIy/u6Mcep/KqtH2ZweOZEv6yYiGNxFhZb1pPWX241YvgCczn24RLrfjPqjxBXfRj55X3WGUDmn86vCaJwV20Lhw3DeN/n9XhP6JWRy2bPCSuKzdtqjFuaT1qTnnhNtoj5sapEvqAEk9i9eZMc8kC6p7lu8JRo86Kuat8PEN7WmY7bRvfktM7msimBwj+dURDF5+exefwHeF4trQ6jA4SzZ6iZe2ma90bIrWXi5tI58v/lcYbVK55n1i03219sN6IrXjXvcbVGh3ZUsbBlduSMe2hbP96gDj/W/pcINbl8IFdiZJJz3QgbZZEE+OgO9ezy25MZWjYt4/SjpdgP3HYp22z+jCKVyvrtevSU0eqsu/TH2BMz5x8SZGIWIABEBIgJEBIgIEBEgIkBE4NuJAAFzfjv3wrUnDYPLIVSOwou8L67bu6ktEQz4FeWCPsKc6f8fpPcnhyPrTRfzsd/2tbUmDQZzHn0S4yY8Plbnvus57z/wGIZh9Li6x93DrbprMFuv3WlMeObPdGUqnSmKybsvG96qM/j2IAhdKqm7XFoPwfC62kC+3wQ0T3FbppPLO8JsnB50ezGCwT2RW7E9UYBmMw20acAGkNj3pEOdE6udE6uNQ8vf2RR3t8XzT+ZVBlMAqb8hAQiCfiqrv1xarzNa5Er96IKytn+xfmDpec2YpHOO0zKd+bpLqTVq9GaTBUR3W8xWEH+veV1lCKNxOif8CXNaQSjlRefJPF+EoPFv1he6+rJ+4liOV0SlL+TAX6DbltGVABLbj1xzv8Qk9WXn7mTRjkQBDsyJ5IZ81n4kS2qxvVmKeH3RLJ7JAvrFAW86UelMwRTgckldFJOHnyb5Vf3EvlQx+o7e0BhPF1TdEnlIrunSgXfNU1FMRKMb54ALBEHMJ63nCqsxHd1LJXV3JUMuO/ycSqPZeu1u45EsWYwXMCfrSVtyeQcMI/mno5g8/DMcvnkV/7RtT4ooCEl16YGOf0c8tCdFtK42rKsNoTSOxn95EzNfdx3JkoXTuR5xZblSH0wBhB2zWoM5jMbZ1Bp9mzVOq4V17b5U8cm8yn1png8xiDvngigA43FrGI3jL4oVCELop3Dm6y4cP2EYlnXPxyYI9qdLAslsWc/WpDvte/7hRg06Ij57EoKgnHc9u5KEFiso7Jg9nlthtn6RdePq7YZg25kqnHUMhuG5VU0Aic143Ipg3gmCF3VfJJG5faB+vtUQTucGU4CJJQ8wp95kiWbxeK0zr+snTud7m+R1Q2M8mi0LILEve5KN1dhW0ZkVFbdlOpgCuFTgsPfcm7JCbTxiG/28F3Iv0q65YArQMLT8653GX+80+itt8LnC6ph4/uFM6Spu2uaxxc1wOlfQPjuyoIyJ5y8pdN5MELW5VFK3K1kYRAE6J1ZxWvVOraOK7lW9CxEMrn8TumPj5rN7Ylj87YkCb7K91g0sBZDYqJDJ101bW8hBsoAfzpJ6RH+ttrMIcWlij/RcLCbfcoGAOb/lu0P4RkSAiAARASICRASICBARICLwJSJAwJxfIqr+7LNxeDmUxsH/Ce3DeNlvuhn+ww5hGFZm/v8Y0gmfavVMAAAgAElEQVRq/InKJDxry3jV6cMcXTYxmg0YzHnoUaRLG58rU192/nbXs3iX9/1rjZaTeZUZrzzsHnrfIWqpM1qulNbn+Uk6DO1TYzBHMXl3xH7eZ7dYwYs3a6/ddaTzQhBc3bdYN7CU87ZnZ5Iw6033DzdqRB2zRbz+7Dfde1NEjMetzocDjGbrz7fqQ6icYAog7pzbatzw7U1m665koX/lVTe1xhAqp2Mcb3sL3yvnq1YQSi7vOFPg7Vamcw9/cM3IvDKUylnDZUv8wS796YZrHFoOICEJdL30XG+0rCj1X3prMul5+6FM6fYEAU5iM43BfLG4FlsDgeapYArgzR6rlzP1aCZX6kOonGt3GqOYPGdZafvmKS86MNqx3mi5VFLH8ol4Wl4zHhsv2JUszHG/RMu650OpnOc1YxgtKe1lp2/D2U/Buaw3WX6+1YCQWVk856sONUeyZW9smr0wDF+8WVvE8yC669Dcm5e/32s6nCUNpgD4ECMEwYm2p8tiBVU6065koW8Cwi5din/adiK3IoLOFXd4+BBpHlmJoHO7JteMZmtcmqR1VO6yw8+pnJGrd6eIfrxZtzsZ4dHi//1yp/Gnsoa5VU0Mi//CT4m0jWYrCjqmvcT7ngZB8OEsaTiduzNJGE7npr/q8nDGx/1MTuVXovlZ8blZRrP193tN1IdI2sgZuTqGxfNjUkZ7734sqQ2lISrTayqEye3yD4IgdvPU4SypzmixWMFjOTLmk9YvxC7FHPjxZm0MCyHvYor92CWHQs/UegyLPzCj6Jlcj2Rwvbw1CrXhSLYskMz2CDS+aZzcFs/XGMx1A0uhNA7+Qurgm7uXayr94UxpGI37/XXP+Rfygd6dSUIQgl43TB7NluHLpLsb0bn+RG7FnhTRoUwpSuJ3NkBramw65MNzSgiCwmicwdktZFv/7kZ1XJo4mAK0j+GtHo+rRr+zxWF2VRPiaXl056fHevTbdWyCYHZVg29stoDxT9siGbxifn8IFejy61k9/KGdr+aze22Aq9T5R4GDsdZoOVtQ9UD2V1CshWGYgDkd7i/xkogAEQEiAkQEiAgQESAiQETgLx8BAub81m8xqoO3tLGFw7/eTCn1RWfCM2+VqbzpUJkT8hHm3PRAs/CmQ8yGfL/5OrcPe/mZBYvVgsGc+x+EfmZvDs3jn7T5N6p6k+V0fiXKj3EY63Neag3m80U1t/0KSepNligmr0zoC3sJZy4ms/V8US26U+nSTKUzTSwhuWChD7xICEJoE+54FRq9mf6oBWXYuOzQ50qdwbIzSejfnX2dEUm514a7vbVVh602etz3N/yW73arDmzVfkWpP5gpZTdPbbUhYY9FoLZ/MYDE3uYFIQ9tclcyvD9dkvNBEBXrx78F1pO2U/mVsQl8HOaEXKmPSxNX9b6XmG4fWw0iA18CLnI3tblVTSiNQ33YEsXkTa3gkaJO5Fa8rH/P0AJB6Pd7Td9dr/6wLLnr3kX9fdnwziRhXJo4+41rFdDxpc0diYKM111608fchA8qRk75L9825pbOaLlcUvfzrfpIhgeY02SxhtI4bR+QvAKg15uMfdhAXhYuldSeyq8MoXLwz6ksb+iOZMtQfqHOdlroXZPfFpDf7zWdLayKZPB4nkSJn9eMb4vnLyp0Zgt4vqjmUeWol9P03mxiSbUzSUi63+zxEMOmTXFhdEFpNFt3JvntRI7GYEZhzuRyvK+Uar05jMZtGFyaWFIVAL3nrld7lJx1F4TDmdJQGieIDLj7lEcbqvXmk3kVbxomYRi2WMHtiQL/yr+jo0AQdL6oJpLBC6dzcbCu6RX1rmThpZI6FGrNetN9sbjWjwxjl7H6/kb1ziRBMAUYXfCgsFLVu7ArWTi5rJpf00Qxed5IksIwvKYyHM6SRtC55wo9AI3ni2roj1stVrB3aj2KyWsZWXHp8JYqkS8GGZLYBIHH0WEY3p8uQSXEF9a1EXTu7Kp6S2O5Mz6YKT2SJT2UKV1R4v1Ge1o9FkIB0OX6eE7FlvI+nsitOJwlDaEArbhBu3qrAU16arGCMfH8LQ3hbnbO9akvOo/nyLbF8z0C1dzW6QgG9wa3b2FdG07nep/w1XnQz6/JedsdQGIfSJfgrxhY9g0vn//Pd+xL90DAnF86wkT/RASICBARICJARICIABEBIgLfWgQImPNbuyOO/rSMysPp3Pk1reOFz3ud9Lzdv+DZZn4kBnNaFbOf590nra/dbSzhD3xS9RkvIAjCYM5994MhGCPDfEanH5qSHzT7Fxgwmq1nCqrin/pTXRaGYbXefKag6kWtPzXTjGZrNJN3k+9n+o7eZPn+Rk28XyH5JYUuiAL4ljbvw6128X9Ta9qRJLwt9ifQa7JYg8hAywjeKX4XruBWWazIKfuLN/2Wmhd3ND9c1Jssv9xu+P5Gjc/b4n5w4k/eRWXvQgCJHcX0gFRhszxbWBVEBs4WVH1ReVj6o9YLxbXb4vFgzrGFzVAqB7v1yxu6QDIbaMbLaIvNwi+FcZveYOKz9kgGD0f7UW+yhFCAvul1bNCMV4i0qQ85CEsEAyhDKN2NjEGpYOBica3JYsXGgmFY0jkXTuP4PZ2Y1mC+UFxLfdgcweDaD+dQhiCod3o9msXHABVh+6y/kvDZj3WmoOp8EUKew1/Ar3P79qaK0Bx4NhJ/Q87bHvt+Pqd8qaTufFFNFJOH/xxCEJT2snNvqshiBa0gRHvYQrMxCz9naOe2w/PK7QmC5PKOGE9024cVI6fyK802wecfimrojxDYybnDrdZsaIwozJng/osKCEGHMiUHMyToetI5sbo7RYTD4cb3YV+qKIrJC6YA+DInq5v6aBZ/egUBtCAIvnanMfUFoqjs3z+LFfz+Rs2OREEEnYspSDsMAcHwTX5/EBkoAHpRBie3dfpIlgzneIdDD769PJ1ftS8VIQIOz3uAOd80TsaliRfWtasqw4EMSYV3kv7yTf2hTOmOJMFJ3AMWK0p9CAV4XIVg/DNyTWyCAP+N4+VkFxU6NCvtaU/SFFqDOYQKYNzffaliaZfvmsn27u1JEZ0pqDqYIXV361Hj9FddGOE1/mlbIJm94vXR1YMZ0hO5FSFUTpP7VMcqrSmUyhG2v//lRb7fnOh1glX76XgsM5+0XipBKML4MKcVhPalibfF86dXVCAE7UgUZL/t9uHEj0d/vDTIfN0VQGLHpYk9rjldE2seF1IvB/0WzAiY81u4C4QPRASICBARICJARICIABEBIgJ/ZAQImPOPjLYvY7WNySPoXPyflD70y3zSmo6rMLbVPjevb/8Ic676Ez+7eqvBtwxn7qZw8GE4hnSarSZ3Zj7UX73VUOpXOqPZAp4trKI/QlTX/Pi3qTUdy6kQfNgT8UvPFisYzeL5kXeLeqU1mM8VVuOr4W3Vf43eHEQGuC1+RkrWVYbtiQL/HqKHICTtWbP77a2tzh3ltTCftP1UVu9D26/VpGVkJYTKSX7e4S+tua81ka81rrRrPoDEjqDjIVWYbyqdKZzOPVNQdThL5nFbEGvlQ4HyoPnq7YZoFh7M+bph4kTuxzyyVhCKZvL8u8zie94/o4hgcDNedUYyeDjaj21j8p1JQvvknfdlw3FpYnwkxuXQ+ezeuDTxsRyZS1RmRq4+mi1jPWlzULzsnlyLZPD8KM2K+qbRm7+/Xp1iy4Xs0lu0sqJ74UiW7GJxLYoswjA8PK8Mo3F8QHlxRoFh+FCm9Odb9WE0Dk7iTxCE9qdLHlW8p04iMt3P2w9nyQymT4Bh/IFwrp4pqLpcWh/N4qFMQXeWKp3p3PVqlFEKQVDuu559qZ7TZ7rrzV19/4wiJp6fz+6JxMWhYRg+d706ubwD1SMt5vf/cKPGL2zC1U19IJkdSGIz3Us0o2kpH1aMoFCHUmsMpXGWFL6c3oMgaGeSMDZBEELl4FPoqnoX9iK5ct8fZct+0322wAPp0F2QcepNZuu5QkRWNILBXXQzI5MF3BbPLwB6MdXciSVVNMtDrl+cQb28dCxHdjBDEkwBBuc28JvcEQ8dyZKtqw1qven7GzVenldbUeoOZkgOpEuOZOElz67uWwwiAz1TyBGQTa1pd7LILwv4/JpmX5r4WLbsVH4l/uxe10/uT5dgaxH9UUuKnwDv2ATBxeLagxkSfJjzVF7l85ox1MmeqfVt8XxJlwe9a2xGu5KE5wqrQ6mchqFlrNKhADRP7UwSjtt0TWAYflU/+YWyEvx2t4n2CBE2QE8POLiBveyeXLNPDEG630R50PxFj0xhQ7sspL3sDKNz96V6yLip0pmO51ScLfzTJHRwOVn7SgLmtI8GUSYiQESAiAARASICRASICBAR+DtE4FuBOS0Wi1KpVCgUWq0W25VwdwPi4+Ojo6PdXf2L1XeMr0YwuFPLeFp5PkyZ+rAF3X3zoa3LJqqbezCY07I87NLGt8orpXV3Jf7M+Hj0cQwGc+pMvmy0uZvIxeLap9X+VKWzguC5wmrSg2Z3I/pWv6ExHsqU1vT5U1sYhKAYFrKR55tL7lqpdaYzBVU4OercNcSp1xstgWS230VQV5T62AQBtpmF48CWLgVTgPrBpS01wTeu6FnYkyL69Y5julP8Vl/9KuNxaxAZ2JMi8svW/Fefzh/sgLB9NoDEDqVyvBlX1DG7O0VUJhzYnSKasnGhvGnlgw2yZ/qwOYrJW3WfeJXyoDn1xSc5/3693Rj/tM3j9wQf/HHZpH1sNYrJy2f3RjC4I660H2flmoEZxXVO3+n8KowwBMOwsH12V5IQX+fW5YjJ5R2HMqWnC6qSnBg5GoP56u2GABL7OrfvA3zzvg85IuEoLRH4mU+v1iMrcB67B+fhWVLoYlj8HYmCETvS2MK6dkeisNeGbbicpm+VO5MEpPvN4XTu2w9JQJ37qelbjGBw7VMaV/TMh1A53ZMfubbOrbyvOZQp/eVOY0w8/0XduLtWVhBKet4eTudieMAD2UgAia03ftQZdtd2S/Xdk2tRTN5t8WAoDe/dbbaAgWQ2plTfM7W2I1Eg33SbS9J7HxYV2mAKEEQBaO7PY1X3LgaS2fYYfAyL79vtMFvBHYnCPSmiUKoHoDS5vN3+iFiZaNCb/LLeTxy11JssZwqqjmbLIhm8hXXX3ycbh5b3pIjMn3Jn9ySLhB3+FD5x9vxghuRYTkUwBRjwlAwy6033ybxKjcFssoC/32v6+VaDc2/ONYsK7f50yen8yv3pEuerWE0xvz+czkVpxCAEHciQJD1vd1i+MGPvCzNy9d4U0bnCavtzMM7NFWpDEAXIeNWFnQt5Wj22PUHgFypzBIP7653GAxmSJYVb0dqldW0YjYN9NKj15sNZ0oRnjudUnD1Ha0KowKWSujAap27A9fdAKwiRHzSfyqvE+P1Ty6pwOtfvzH4Yhi+V1GW+7opk4Om3q3SmH4pqdiQJlFojOoXHlaPnCqu0Bj8vfe4i5lyfXN6xPUGwJ0WEf+qoZ2o9kMzO9/evGGd//rAaAub8w0JNDEREgIgAEQEiAkQEiAgQESAi8I1E4JuAOY1GI5PJ/Oc///m///u///d//ycQCPB3MP9WMGfnBELRwCGR+PYkke435bx1nffLtw5VZQc/wpwLfkulCcPwjyW1/mXInXy2E4M5Nw0etLy2FI3vr1e/tiWC2lIrHGMQgr67Xn3N34jUhsZ4IEOCczYcxyWcS7EJAjQ5EI7NVi9tak2n8itv+C85KwzDJos1kMzG2SXfqpOo/fyadls8/437zXffug2nc6v9CkgfzpQGkNik+37Gzn2bnfetVDrT+aKacDq3GTdDlfcd/q0sua0zASR2EBnwOGsQgigPmn8oqumaQOCTXjsVVo9tt2rwy+2GpOeIGKy7zUeLFWFBOXDmHleO/lBUg+1Zb3XQrdo3DC5HsxA57ggGd8iJFGWxgmcKqqKYvCgmz2HnuntyLZrFQzlMzoOOLCjfNExWdM9jBC/UxgpCP5XVnyusvniz1lmu/Le7jUezZTcFA12Taw59giBEutd0OEvqDmtxsPfy5abOdCK34pZoMJgCWKwgygW0b7umMpwpqLpSWq/QvN/URq8q1MbjuVvLQmffrbtyOJ3LfNIaQee++pAG1cHSbAFpD1tO5Vdi5C0YhmdX1UFkQOQnVGlnkpB8vzk2QfC0+j1Dy94HrdEi6Zp7Wj0WweDaj8hvR96Ds6sae+PPL7ePrUbQuc9qxoLIbJzeUD4lr3UGtTHb+IX2SDBOW/xLs3J1GI0TSuWQ3X+m3JEMhVI5WoMZ6+p8Ua1vx9cMJuv2RMFBW3rOhXW8YB7KlJYJP+Y7eF4zhsDMdulsMWc+p6A1mE/lV562LQJza679Id1vpjxodoCdEp+3O7/BP8cT57Z7UkSn8yuDETFthfNVtGZdbajuW7xqk4W3WJH3d8arrv1pYgwzc9fQ9rbS7E0V/3yrYU+KyJ2ZFYQul9Zn2/3cuHan8be7TQ7rnrvmOPVTy6rdyaJLJXXHcvC4pO+aphwgdvRkgF8SPAeRAdrDlv3pkkU3CDcMw3nsngufaoy/qp/YnSKyp/67m6bBjKQt+P1eUxiN6+5g4prKcDwHWaKxTtR6064koW/HCLBOXBbOFlaVCQci6NxJV0dvLVawcWiZfL/pdEGV/WfljFwdxeThIMEux/JjZcKz9v3p4t3JeDCnFYTuS4ejWXyXU/OjM39kVwTM+UdGmxiLiAARASICRASICBARICJAROBbiMA3AXO+efPm3//93xcWFmAYTklJ+c///E+9Hu+M+d8K5kR/kHvMrLPVh+na3cY8tj+Jd6o7xz7CnLOfkG+26puD/fmimie2pD4O9T6/PFu+F4M517T+zHp4trAKaJ7y2TGXDX+4UXPVu5P1Lpu7rFSojXFpkhZ/w0W7koR+T8CjUBtO5FaU+VUK2AoiSrCvG/wprQzD8PSKOiaez/2wj+wy8j5UxrD4Mu8SZXnT+eCsAs2j9iWyxHnjwOfYGM3WuDQxxd/k5s9x6c/S9l3TFHrfPTq8uqk/nCUt4vUZTJYgMlDvhkHisR9vDK6U1me96Y5gcN3BnGO2vJgO+9H904poFm9ajqTcw/4gCDm+sKLUOWAJmIHPhcqehW3x/LuSoQg61wEtsIDQdU5fIJkdacsU2PipqKBaZwqmAJU9yBcb7A+EoIqe+cFZRTAFCKFyAkjspk9boTLdzCetl0vr7bloMAxrDeYAEvtR5QjWm0MB1X64LxtG0EgI1hstyxu6t41T9oDfVklUSq3xaLbsSdVoIJm9N1XsfDpE1j0fQgGct4YtVpD5uHVfqhjLq+rgrQ8vQRAKJAOpLzoiGNznNa6ZlPRHLYEkdqng46Y/qtQdTGE/kLkNnffOQBAUxeQxn7RuT3AtUV7ZiwhEB5LZzE85xx3jq8jt9qsCOQzDzcMroTYJ3wASHszZPLwSQGLb45o/ldXn+CNh3sTSZiSDF07n/na3yWUYrSDEeNx6pbTO/mqJYOBgBh4F0N7YvqwxmLcnCI7nVITRODiYsc6AaDZwWz9K0/PaZgLJgN+xFpXOdCKv8kJRbTST5zK7hMkCBpDYdyWOGiePKkYOZUrtp+b38vYEwXfXq4MoAA6p+rZ4KIgMBJGBUsF7SPhx5eiORCG+IDDq6sSyaleykPWkbXuCwJ3zBpPFltV4EzMo4vX/UOSHTNvjS5s7k4TX7jYeyXYLc6KnRhy+7SwpdHtSRM9cnVHAnPSmYLaCgWQg/mnb/nSJu8MlRrM1jMa58Sn5HoKggxnSUjsM3t1wSq0xiAwkPGsLp3MdPkqwJvUDS6E0zoyd7oLBZL1YXOvf04HocEezZeW142F0LiaQi7kBw/Dqpn5nkjCMxnH4KIRh+HhuxbEcmf1BB/uGX7rMfNJ6PKdiZ5IQh7++qTPZeMlivxPuv/TscPonYE6c4BCXiAgQESAiQESAiAARASICRAT+khH4+jAnBEH//d//TafT0fhCEPTPf/7z9evXOOH+W8GcPVPr0SyeR8kpnHC5vPRzWUMhx58wp/rBaQzmNE/5M5fkd9er/SsE+sPLgxjMuaz6ZA/aZay8rzyVX8n3a8JLVCTqp7J6Zw6N9145WyrUhn2pYvsdT2cbH2ri0sSZr7vwqdhb7XZNZTiWI/PL9jQ2NATBAST2yzo/w5zjS5vRLL6k09uUS5g/+IUdiQJ7ShC+Mf5VlOeEwl2sp234xt/m1eaRlR2JAlT+7tv08Nv06nX9BHrfPYauZ3Itkvk+xeOBdMkLf79N7ONzobi2iIfoGbaMrEzL1Q4IHARBt0SDe1JE859ypAwm67EcmYPq8vDcxuFMaSSDV9O3ODCrcFgwQQjyWeuY0zKN8vaCyMDF4lqT+X1+x4V1Lfl+8w4bsUzWPV/Vu+CMsB7LkV0oruW2zvDaZtDEkCsbuhAqJ5TGOZot65xYu3qr4UDGJ1vk8k39kWzZbfHQz7cafiqrx/aFIQh6Wj0WQgXw1+1nNWM7EgUZr7ruy4aPZsuCqUAIFcCOiYAQ9Kp+omN81Wp9n7AQux0qnWliyYU2/rrasC9NLOxARI8DSOxfbjc43KY8ds8PN2qwfuwL9YNLkQxe14Qj8RS10RstneOrVhBaUxm85OYazdZAMpD7tjuSwXV5+EmjN0cyeFmvuzT6j8RBdLjTBVXOChZ6k6Vnat3habGfgnPZZLFGMnlpLzu3JwqcsSsYhu9KhlC6vD26DMPwusoQQGKX17pGZ50H8rKmbmApmAJUdM8HktnudDgtVoThGkhi2yePBJqnwmgceyFZL0d0MBueV8aw+JEM3i+3XQuhG83WE7kV75o+OQEm6ZoLpgCYkqdDnzgvN7Wm2ATBucKqMBrH4ayDfauhuY0wOrdp+GM6w9r+pSAKMDzvIUulfSfelJUa4/Gcip/KkFytLiW+p1fUgWS284c4cj6AyllXGXqm1jd1/kwSj7oNQlAojXO5tC6IArgj9kEQfO1OYwCJvS2ej6VKrepdiGZ69aNjZEG5PRHR8Ihi8tzFStg+ezBTav8GF7TNoHlA3TXxsh4dnf6oBQctNpissQmCgZlPyKw6o+VQpvTz03ZoDeYQCpBc3hGXJnYHc9YPLgeS2Q1OeQfeNEzGJnyMubspL2/ogshA1pvucDo343UXlvnY3p7+qIXxuNW+BgShtJedhzKlzh9J9mY+lPemIkrLwRSA8bi1omfBYeWUdM3tTBK+rBt3Xoi6JpDvFY+rRrEfCFYQcl6lfXDJmya0Ry3fXa9GZLqVbo9Qr6kMcWlid8rA3ozyDdoQMOc3eFMIl4gIEBEgIkBEgIgAEQEiAkQEvmgEvj7MKZfL/+Vf/uX58+fYPA8fPnzy5EnspXPhbwVz9k2vR7P4flcOvFRSV8TzZxIv9ePvP8Kc4/XOd83nmjMFVe7k6Xzr89LroxjMObfxydabbx1irY7nVvgd5bp6q+Fyab3zrgE2qA+FdbVhT4oI54C/D33CMHw4S5b2stNh48O3rrBWcqX+SJbsWY0LbUDMxodCCBVwRwbyoTe0yfDcRhST51+BWRiG96aI7CkpPrsHw3Dj0HIYjVPE7T+cJU0u7/icrr5W202taU+KaHuioHN89Wv58Gcct7x2HIWp9EZH+MdhOs+qxzAFQvKDZmdkyMH+c16ezKt8XjOO8BopQDAFiEsTX73VgO0Xa/Tm80U1CU/bnYco5vc7pNmLS5MEkNi7U0QBJLYzt2ZobiM2nt+3FQFekwV8XjM2saRiPG7dnSwS2BRHA0hslFo6vrQZTAECSOyqXryDMs0jKxF0Lhr5rDfdVhCBKjG80GwBRxcQiAiTEoVheHAWWUbaxuTX7jQGkdlxaRJ08VfpTHFpYo+f2iYL+K5pKsjmGzoQ4zGCb31/vVpntBjN1hgWP4DEth8RDe/jqtFgCrDmlKxRvqmPief3TK2j8w2mAPZb7aubehws3GwFw2hcd6eU8oHeQDL7vnR4e6Ig8Vm7y884ixUcX/zIA1OoDYFkoEw0GMngXSiudc5Zzm6a2pEodCnyn/S83Tl5ZMarrmAKINjK4SStAUFS89k9OxIF9kKRaBg1evOPN+v2p0uWN1zk6otLE2e96XL4iOycWL0nGXKodH7m3dUI2mdCqZzm4ZUgMmD4gME7GDOftAaQ2IcyJPawx4pSvztZhEHgDk28f9k/o4hNEESz+D+Vuf7ip7LRmje1nyB5nROrOBA4zujrasO2eP7F4tpwOl7SelHHbAyLb/8kdE+uBVOAZn+zadfVhqPZst/vNcWw+LdEgyNOMGrD4HIQGXAWrx6ZV8YmCGiPWrbF83+8Weuspts/o9iRKKjGXWFwAqXSmRBJ1UctQRTA3VGDhXVtXJqYdL/JPlDrakMQmf3YCw2VgRlFDIt/WzyEkxf2hxs1ic/aMXALhuGhuY3tiYLPp9UOzW1si+cnl3cccE8Lbh2V70oS2oOsaMQuFtf+cqfRZAHtAwiC0ITdamN/yWV5aUMXQedmvu6MSxM7nMVB7UEISnresTtZaAU/GQiG4bk1zb5UcVyaGF9VZWpFFUQG0MNAASS2A78fHeVojsz52yzCuaRxllytQi7n4mVlDIvXOLSMfrKcKajCsm/CMCxX6uPSxGkv3Wr5nC+q2Z4owFjCbWPybfH8z9cu9sZz8oPmy6V1sQmClQ8w54xc47BaLm3oophu0+t6M8o3aEPAnN/gTSFcIiJARICIABEBIgJEBIgIEBH4ohH4+jDn4ODgv/7rv3K5XGyeFy5cCA4Oxl6ihYSEhL0f/v7xj39ERkY6GPxVX/bPKGLi+e42KXye9fmimpIPElU+d2LfUPPsEgZzmkaq7C99ZvlkXqWzUN7n9Pnzu1MYzDm57k/87Gi2DH/X2we3r91tvFRSZ7Y67pL40BXWZE1l2JUsHJz95IQ7dtXnwoncipQXHc47Sj53CMPw0obuUKbUvxlPYRiOYAy5m+wAACAASURBVHCferGLtyXP+6YVkQxkD2hLrTwaH0iXOPBgPDZxabCuMuxMEtIetcyva88UVKW/crsb5bL5N1IJQlBt/2L807a9qaKGoWWHbcpvxMlv0I0nVaPo1qQ9RuXSzytl9ZjYXZlw0B104bLtViv3pYpl3YjCZwCJfSBDEhvPP5QpjWTyymvHFxXaRQWyBe/MgoJh+GX9RCCJnfCs/drdxhe1408qRwPJwHc3qofmNh5Xju5NFTEet66rDZg/v99rQlG6U3mVDtvrV8rqf77V0P1pqsvJZVVyeUc4nYu2Op5b0TT8fm/3UKZ0YEZxNFt28Wbdw4oRj7u0TcMrSbYkfJEMJH9nBJ2b/LwjiAIkPW+3gpDWYNmfLtmZJKzoWRic3XhZP/HzrfrzRbUWK0i634xG5jq3DwShfHZvNIvnpZ5eZc/CwQzJokK7vKHb1JqO51QEU4BIBu9KaX0QGUGUaY9aeK0zHeOrWqN5UaGdXdUcy6kIJLOTyztm5Gp28xQ20MK6NpgCLNu2gIPICBR9W/xeD3ZuTROXJo5kcF2S2NDgZ73p+qmsfmBGQX6AMF+f14yfLah6Vj324826faniK2WIP6E0zun8KpfEvt5pBF6Nf9qGfqxMLKsCyYjeeCSDF0Bin8yrxNjJepPl19uN2xMEv91tdJlW8GHFyMXiWuyRmFhSFQC9aIS3xfNpj1pc8hqdwdcVpS6czr0nHd6ZJNyVJOS2fJRFhWH4XdNUOJ3rTiogn917xe7Qks5ouS8dDiQjz39t/xLm25YK1zl9l0vr2sbkwRSga3LVga4EgpCkay6IDBTz+x2QVAiCrt5uuFRShzGG7cfd0Bjts+vZX3Iod02s7UwSbovnB5LZp/MraweWHN4U4s65w07qrIsK7c4k4W3xEATBIATNr2m8/OawqNDGsPjX7jaGu1LO3NSZEp62ke41JZV37EwSKu3yxU4sqUKoHFHnrIP/6Eu9yWIPxbm0gWHYCkIOYZRv6g9lShmPW9EDBHtTxQ5r7H3ZcAiVYw8IoZ1brNCvdxoDycjSF8Pi89vep01Fr66rDNQHyApw9XaDO2fw66dXVCFUIOt1VxDFLQUcaEao6tjJEqzDzNddv99zLUGM2cAw3D25HsngIasxmT23qnGIDAzDK0pdINlROUNrMIdSOc4y1/Y9e1Pun1FEs/jZb7vj0sTO9hqDmdMyfbG49vd7Tc539m3j5N5UkYPIcOfEWiSDdyKvMi5NfIPbh/LvnXvGajrGV3ckCq9z+qJZPMqD5luiQd2np4iMZuuuZKE7guDwvPK769XBFEch5fGlTQx1HpzbCCQD96XD4bbjMqFUjr3AOwRBwvbZUBqnpn8R8wotdE2sBZLZaS87sZXc3qCmb/F0ftWL2nF3b7oNjVH56bkEtHkwBRiYeZ/4YG+qCFONVuvN9EetUUwejtgA+knEetJWXjsu7Zq/we0LILHLhIN/wLe4a3cbSfebtsXzlzd0VhBqHFoOp3Nv8vvtPykuldSFUDnuAmIfvT9RmYA5/0Q3i3CViAARASICRASICBARICJARMAvEfjTwJz9/f11H/7OnDkTFRXll/l/+50MziIHltvH/ZlCEobhc9ernYkInxMNzYurH2HOAV9SLrkb/VhOBfDpTqI7Sy/rrwHnMJhzdPV9OiIv2+KbHcqU+j2VHeVBy8WbH5US8R3w8uqayrAjUTC6oPTS3kuzs4VV6N69l/bemC2saw+kSzh2Gba8aeXRZls8/1HFqEezLRl0TaxFMLg4uzxb6g0zPpole1U/ib30raDUGH+8WRubIBhb3NSbLD+W1GW/6fatq2+hlcmCgEAhVI7fH4xvYXZfwoeHFSMoorOuNuL3H83i1Q++h+qlXfMYsxO/lW9Xo1m83ul11LG6gSWDyao3WZLL24PIwN4U0dDcRiiVs6b6iFZio3RPrgVRgG3x/FAaJ5DEDiIDv91twtCapuHlYAqAaH2DiDTrjFwdQgVeN0yeyq/cniA4d73aYgVVOlPLyErbqDyUykHSKD5ptVqh9rHVMtHg8obuaLZsRyJiGUrlRDJ56a8628fkASR2bIIggMRGMTYHWALzzaEAwTAIQlYQWt7QtY3Ka/uXtAZLSnk7JlEwu6qhP2oJpiBoXyCZHUhio9vijMcIAy+SwQ2iIGyew5nS1BfeMrBBCMKgJgiCp1ZU6yo9CnVfKauvH0RkToPIwM4kwen8SjSxYiiVk/W6K5zO3ZMiio3nYxDXwIwiksFV6Uw7EgVhNE7Ki44YFs9gssAw/Ovdxgg6t3tyDWdreHBOgQKZKME0iIxQYAPJ7LhU8dSK2mIFBe0zbxsn96SIFta1DlDQps6IBsFGuERAoM6J1UAywqCNYiIwZwCJjZHzJJ1zaI0zURW9I9V9izuThBhnrkw0iNqfyKso4vUHktm/32uyBzXHFzd/ud2wN1WEDYH2g6ih0jiCtpmdScIAEvtMwcdDXXOrmmAKcDy3wkHXF3skuieRz4iNDwB8y4g8ksGNoHNDqZzLJXUuCWFYW3eF72/UlAkH28dWQ6iAM8F0XW2IZvEPZEjs0RGsK5vULcBx9f3qlzuNe1NEzvgQDMNrKkP80zaM+Ns0vLwnRbTLFo0AEjuczq3p+wR0oT1spj/6RFQThmEIhqkPWy6X1GmNlgKg13u994klVRSTl/SsPZzOHfv0OwxyOMB2oCGQzA6mAFc+ZZeubupDaZwXTqLB82van8rqY+L5JYIBDDXHQuRQeFgxciynwv6oBELLSxPnvuveFo/wpANI7MeVH79aWEGI+bj1x5JP8pJifXZNrIXRuJW9C0W8/hAqp/6DtOng7MahTGkMi/+kaiyYAnROuJAuaBtbVeAu5p3jq2E0TplwMIgCtI+5+AUxuazany5JcbWqNA4tb08Q4Lyv0Sm0jyFDiDpmA0nsfWniiWVH1WtZ13wwBXA+QLArSYh9ymDR2GqhbUweRuPclw3vSxU5t31ZNxFERt4RLr+SmSzWgxlSh8fyQnEtegcDSOwgClAAeMjrwWudOZAuuS1+v5KEUDk7koTJ5R3YMtI/o9gWz8cJ4/SKel+auPxDmmGrFarrX9ydLNqZJJy25drstKGVL+rGw+ncw1nScDqX9bQNW9uRr8cZkmjWe5F5+yCAEFTZMx9G42S86rKvh2GY0zIdzUIO3ARTgKu3GrClHjOzgFByeceeFJFDAk6l1hhC5Uwtq9AohVI/Sl4PzCoCyWzS/SZ3Sx/auaB9JoQKIB/ZNv2GnUmC7QmCkU/fxZgbn19Q60yTy6rBOcXFm7UZr7uiWbzavsUHspEY21s1iAxgHxZWKxREZv98yzUf/fM9+Vo9EDDn14o8MS4RASICRASICBARICJARICIwNeKwNeHOVHR2mfPnmEhOHjw4KlTp7CXzoW/lWgtoraXIMDXNXIOkcea0/mVdyRDHs28N9C8Jn2EOfv43jf0aHkkS4b9FvVo7I0BmXcBgzkHlv0J9uxPlzhsiXrjD74N80nrheJaj+fK8TtxuLq6aYhNEDgr/jmYbfUlojDpRntwq11h9nOrCGFI7IaBgZlttbAzSXhfNrzVVvj2baPycDp3S8KY+B2iV23Cnp/FOTaarZdK6k7mVdYPLoEQgri8bpjw+5LizVz8aNMysvLrncbdySIcJpkfh/uzd4XmCwwgsV1qaWKzW1jXRtC59lSSUCrHOYHWjFztkuqB9eOysKLU906tY/wJqxUMpgCLCi26Z2q/11nVuxDD4jMetx7MkLrsChV3XVMZlhS67qn1Yl5/k50WpVyp//5GzbGcioV17bnCqjMFVTsS3zOWnlSNhlCA9FedoTQOCrntTRWXCQf2p0uKeP2oJzEs/r408eyqxmQBV5R6jd5sBcHOiTU04SL7gySsH9nwSq3p+xs14Ta4K5zORVNxp77oQOmVASQEswmjcT7zPWswW6OYvMzXXSAIFQC9qS86f7vbGMHgBpER3PFYTsXyho75uPVMQRWqpdkxvmo0Wyt7Fw6kSzR68740cQQDSXYYSGbX9C0+qhzZmypyluJ0uF9ag+UGt++HopqbgoGs191pLzvLhIN3pUP2aoobGmM0i3csu2LfB+3HmVV1ztvuHYnCUBrnSdUo/RFy1geEoNcNkwEkds/UWhSTh4Yr910PBEFmC3j1dsPpgqqX9RMOGTExf9R609FsWekHEYufyurTX3Y+qxl7XjNmsYJvGia3xfOxD5rJZdXuFFFsguBsYXVsAj/jVdexbNnqJoK4Nwwuh1AR5GlXMgJzBpLY0ysIugPB8HVO3+5khGWODepcuFRSR7rXhCIfR7NlJ/MqN7WmtjH50WxZAImd9Lxdrf9E3BWCYF7bTCHQ6/I7wD3JcAyLPzKv7BhfDaVyAkjsa3c+Jsi0IiTgnhMI7OqYihVzrJDTeyRLigEnMAwrtcZS4UAQGQihckoEA85NBe1Icj5M6VfaNbc/XbLfphr9653G3+42XShGbhY6hNH21N2Tuvi0FXXMbU8UHM+pCKVxwunck3mVzrRCzE+s0DetiGBw89k9iCRD9Vh57Tg6lNZgZj1ti00QvGucTHvZebmkzj4xJwzDBpM1gs4t5vd/cA3pEoSg+KdtR7Nlp/MrA0js3Hc9K0p9/4yib1rhEp26eLM2kIxkssS+lI7a8lM+t+XE3Z4gOFNQdThLqviAZJss4KWSupt8t8fpdEYLkqTQYP75VsN316vVevOm1kR92BJG4/DaZtCkqqcLqtSf5prlt80EkNhZ7s8qLW/okss7IhgIsTiIDKBS22gM6waWzhVWZ7zqPJAuuVBcu7CmxWKLFZQa4+FM6Q1en9kKrqsMM3I1BMObWpP9cwLDcNPwSjAFqBtYCiIDgWT2XfEQ5UHzqfxKVJgUhBAO+o5EgfOj+/2NmqfVn3yrgSB4fk3TNLzicUnBnJR0zYfTufy2md3JQqwShuFFhfZp9Vg4nYt/LqRhaDmKyWM9bbvB7bsvG67sXYhk8N41TXVNrrWNyW+LB2MTBLzWaaPZqjWY+2cUq5v6hXXtilKn0ZtBCFpUaJmPW0/kVqA65AczJOeLavaliiPo3LdNU1qD2WC25rF7rpTW2z9v9n7CMGw0WxOetR/Jkq2pDB3jq99drw60nZyIZvEYj1ohCH5WMxZIYsu65yPo3IxXXZKuuT0pouuc9/jrm8bJXUnC2VU19naz7x+C4GJ+fwSDiz48epPVYgUnljZ3Jgl/vdM4ZMtmHUhmny2swk4Iwba7LO6c25UsjGLy0AdsdVO/bjtsVD+wtC9VLFfq0Q/KaCYv713P+NKmyWzNeduNzsLeAeeyFYT4bTNXSuuTyzvKa8cX1rVHsmTnrldLu+adjb2sGVlQzsjVDkC+Umsi3W9CT9iE07m7koT3pQipOoyGgLsJz9q5rTNXbzecu16l1BgNJuuLuvFQGsfvp1S9nMKXMyNgzi8XW6JnIgJEBIgIEBEgIkBEgIgAEYFvMwJfH+aEIOi//uu/WCwWGiAIgv7nf/7n5cuXOPH6W8GcI/PK7QkC/I0znFi5u3Q8t+K+q40nd/Ye67Xv6BjMaex659Hee4MDGRKXuoXe9+BgSRdcwWDO7oU2h6uf83JfqrjD1an5z+kz8XnHD0U1LoWnfO52dVMfw+LPrWl87sFlw8ul9cwnbdhJdpc2W62ckav3poiq+vAS4G21TxiG96WK/QvzY5kv7dEaHxxzbnKusPpx5YhzvZc1EATnvkN2hO1xIJxdby+7/epmkG2L8FxhdQyL783m+Fd3+Os6gHHX5tddbGpjvlX0LMSlibF4zsjVOxIFNiQJM0GSisXE83+6Va8xOKb5bBuVMx63Omg2oi2tIJT2sjOSwUPZVCqd+TqnN4LBVaiN6J4pJn+HAi2n8iuDyEDicxeJOT+68qHk8DxDMMxuntqbKnpWPRZIZodQgQcVI+hec6uNlBlMAY5kybgt0xNLm3KlzmiyxiYIUH3aAJsWrjPBpXcKYZ2mveq0WMGDGdIAEnsDl0r1wTVv/8/I1bLu+eM5FbuShShyn/uuJ4TKqe5bLOQg4n7f36h2uZft7QA2u7ZROUriByEIBCGd0bKi1Nf2L1b2LgzNbUAQsu2uM1raRuU7k4TIzaobz3nXc/V2g9ZgPpIt25EkRBP+PZANH8uW2Q61uMXPMMdAENKbLCYLiA6K1dsXCoDeX243hFA5qHYr9rjuShYtb+iWFNpoJi/hWfueFFE4nbum0kcxeXtTRD/fqv8R0Vy1CNpnIhjccieinv0QIASlv+yMoHN7p9bbx+QRdO7w/IbFCqJolhWEct52h9O5nGYkXbct+Su/omdhU2c6lInc7hAK0DS0AsPwm4bJQDJyXGBXshBFd9CPknWV4XhORXJ5Bw6qAcOwsAPBCNtG5UqNMZTGmVh6n3l0U2dqGERYyI3Dn6CkNX2LMTY92CJun/10UNzuYIYk6TkiFG/jBSIw586kj5DP3KomhMp504gnBtAztY4ppk6tqJtHVuKftgWS2HtTRcnlHTsSBXKndK1oQLA0sW8bJ49kyVCY9m3T5PjiZgyLjxETa/oXQ2xImIPzMAxrdCYUrh6Y3UCyM7B47KZPcqVPLqte1U/oTVb7tq2j8jAa9454KILBDbFRsVG54+7JtdgEgaRzDoQgsxU0mKwOywIMw/RHrRdv1trn5BN2zEYxeV0Taz3T63Fp4mAKcDRbFsngRTK44s45bFzIlkxRrTeF0jj0xy32WrIoQ7emb3F3snBfqriqdyGIAgC2pwi9R8dyZPZdYX06FNrG5CEUoKZvkfKwOYgMMB63ol+l+G0zgWQ2+0OHMAy3j8m3JwiCyEA0k9c5sSrunHOY6fKGLjYB0RDemyJqHZUHkYF3jQjwhi6t6J0KtDHFp2wIvYMnCGYPwWXCwVAaJ/N1V2yCYE+KaF1t2J8hOVdY1TIqf1473jWxZraC1X2LASR21wTCJA4gsW3MeEQTOx/oUesRTPRCcW3uux7n/pPLO375VIx3blVzKFMaRuNEMLhlogEHjHl5Q+f8HD6sGDmZWyHunNuZJHxVP4FCceymqW3x/BAqcDq/yh7cdfbBCkJoyupAGwU5Jp5/7no1huOCIJT9pjuUxkl72VnI6Y1k8C6V1H13vXpbPD8uTTy3qrlSWhdIBi7drBW2zwaQ2GcLqjR6s0JtOJ1fGUbj7EpGxGy3JwoKOY5vWwdPmodXticIuK0z0SzekSzZ48qRJYWubQw5M9czuRZB59IftczI1RGIyOoABMNA81QYjYMeRfr1TmPWG0eypn3/bWPyQDKSrDrrTXf6q86HlSNFvP4diYJ5G7Y9vrgZl4bgsnc/nHk1WawJT9tCaRzW07YCoPd4bsW5wuqdScITuRUVPfOn8iq/v1Gj1ptRnW3yA+RBPZVXmfisPYgCpLrPymnvEghBBjMCuKKVzcMrcWniAxmS+KdtVb0Lyxu6+sEl58/fyp4FWfe8s7C5XKk/W1gVw+KH07m1dsq9d2wU21P5ldG2XNQBJDaWXfuWaBD9PTU4txHJ4PVNr48vbobTudEspGzv6l+gTMCcf4GbSEyBiAARASICRASICBARICJARGBLEfj6MCcMw8+ePfvHP/5RW1s7NjaWnZ39z3/+U6vF24r9W8GcYwubOxIFtQOfiIBt6R67ND6SJX30GdiJc59absJHmLP9lbOBzzVxaWJp18f9Jp/7wRomiH/FYM722Y/UB8zA58LuZFHP1JrPzV02THvZ+f2NGvvT1i7NtlQp30S2iZcUeO+yLXWIGv9yu4H+uNW/aUQRVk2yyO8JLw9lSsqE7zPM+TBTl03qBpZCaX7IOOXQ+YWi2ru+nkhQqA3X7jYGkRH5Nf/eFwcnv9ZLdvNUkC3RILY7+bU8+cbHLeYjVMUgMntarsZxtZjff6agCtMOXVcbTuZV7k0VYSKNZgv4y+0GVLg19cXH9K4mC/ikanR7oiCEyimvHb8nHX5Zh3A1KA+aw+nc/emSlhGEr3YyryKMxvnxZl3Ki45AEnt3MgKboTDnmkqPOQZBcOqLjgASkoURq9xSYWReGcHgnsitOJghsU/SOSNXB5DYe1PEmHgp2u1t0dCxnIq6gaWRBaVL4cp+W0IylNz2qHLkcgkeR2dLrtobNw2v3JcOo6t9Mb8/nM5tGZUvrGt3p4i6XAlX2rf1b7lhcJn1pC2axYtkcp/VjOmMltP5VUezZTAMH8+R/XizLszGs/TXoBDyB2e86jqZV/mqfiIuTXy2sOphxUjuu26rTfIXfbpO5lUaTFYQgqKYvEOZ0ubhldgEPq91em+qKOVFB0YUducVt3UmislLft5xqaTOOYWnSodwai+X1km65sJoXEzddFNn6rKJzSaXd4g75w5mSH6+VQ9B0O5kEZpX9XJpffbb7gvFtdsTBeNLjrqdDs5sak3b4vn57J5HlaOHM6UOG/ek+83HcmSYyGfD0HIIlXMkS3YkSxbF5F28WctpmW4bW0WBuiUFArWirLjuybVwOjc2AREWbhhcRh+hlhF5BANRFXbwwf6lwWylPWw5nCXNe9cTyUDkcwNI7DAa95ZosHdqPZTGqR1YUusR7UcYhieXVbnvenYlCc8UVF0prUeJsw9kIydyK84UVNkyjC6q9ebzRTUp5R2IXDOEYEW7k0XuzmkNzm1gESsVDsSliadWVJtaEwTBw/OIZnUAiX04Sxb/rO0Gr39FqVtY18q650OonFf1E5EMLrp09E6tv22ajLYRfB1Yj/YzhWF4fk27I1HA+5AFc35NcyK34ueyevTjY0NjvCcdDqVyQqicaBbvdP7HzK8Ds4oQKudotuxEbkX35FpcmjiQzEbxYxScHl1Q7ksV70+XLCl0xfz+gxmSEsHAptakM1piEwQO4p8OXmEvr91pRHG+UuHAxyXXCgZRgHuS93TY2VXND0U154tqKnoWYhME4XRuGI3z272m1lH57KrmvmxYqTE+kI1EM3k3uH11A0s9tvMZAST2ldI6pdZ4NFuGstiL+f34zH69yfL99epAMgJeogrhJ3IrTuVVorBZJANRtw4gsXclC3unkefk2p3GXclC+qMW5pO2ABI783XXmsoQw+K7nLu0G9FT3Z8uoT1qGV1QSrvm4tLER7Nl2xMFV0rrQ6mcc4XVkQzuDV5/+5j8l9sNQWRgf5p4ekWFnap41zS1K0mY9rITy+7MfNKmUBuP51bQHrZIu+ZRxXIsti4LJgt4rrA6xHbHQ6iOdHmVzvTMRtKNsUm8BpHZEQwk2kgwy+oj6NxLJXWNQ8tNQ0jaZizvb9fE2m93m8LpCF4bRAY8aptvaIxhNE44jXu2sBpLrKszWo7nVEQxeT/fagBBCFFZYHCf2fivSxs6G6Gzr7Z/KZLJs8f2nOdoBSH089omUS6MSxMfzJCUCj9yi5VaY4TtfVQA9Fb0zLeNyvekiF7UjRtMlvYxeRidcyKvEuGYIox/YE+KiN00ZQWhYAoQmyAYmVfmvus5nCWNYHDvSYYcljJnZ9zVAM1TCHecgiDlYTTk3Ud72IIZz61pEp61BdrUzi8U12LaEiqdiWJLXrstnn++qGZ/uiQuTYxC3bX9i6gQ/ZJCt7Sh+6msPoDE7hxH9BgCSOyR+ffZOqwgFBOP5MS9Kxk6mVcp6Zpzph1jbvxJCwTM+Se9cYTbRASICBARICJARICIABEBIgI+R+CbgDlNJhOLxfq3f/u3f//3f/+P//iPmpoa/Pn8rWDO8cXNHYnCql4/s9kOpEscNKPwY+7xqk6QisGchtanHu29N9iTIqrs8ef0U6RkDOZsmq723hOPljuShH5UMkSHy37bfa6wGvtt79EHbwxWlPpIBtdlsi5vmruzId1voj5scQkSuGvisX58aXNHkrB9zEVuKo9tcQyO5chKPqgX4pht6VJ132IolWNPSttSc3fGV2813PTJ1Rm5+kpp/d5UMdAy7U7I0d2gf5Z6lc4UZtvndZnB8c8yiz/Az+ucviAyInw6vviePeZy0Ctl9VdvNWBvYUQmtH5iZ5IQBTlgGNYaLNsTBS/rJu5KhkKonNEFJYqJVvYuhFI5pYIBFKvYFo+wK45ky1DAIIDEjmLyAsnswdmNnqn1YAqicBhEZv9yu9FksaKbj1oDku4R+5taUcWw+F0TeAgNZuxcAEFof5okkMRmPEak/7A/ndGCMrEcmJFGs1WpNdpbYk3QwtDcRgCJ/awGEVo0WRAZQwcDv7+8Jx1GeGaTayAIrakMOL75fWi0Q7NNyhVontIZLXqT9YeimgvFtTAM1/QvokiJy6R3n+PM1LJqbyoCIB3MQHBxKwhhpB8rCE2tqLDncFs8/0RuhUZvTnvZGcHgHsyQ4GM272dkAYGWaTQHKtdVvudiXv/hLOm5wurT+VUOW97FtvydQWTgcJZ0ZUOHSAKkiU/nV1IftgQhzzMQxeRVe6c6gPocTudmvu5yYK2tbup/LKk9nlMxt6rW6M1J5e3o3r1CbazqXch60x3B4EYwuNV9ixq9WdY9H2oDNWEY7plaj2Bwv7tevSdFFMngodn+2E1TMSz+DO7JBhiG19WG2AR+NJPHa52Rdc9nvu4Sd86aLAjPNS5NfIPXd0s0eLmkTtgxuy9VbMs9OTK2uBlG46BcwBvc/rOFVeeLaoIpQMf4KghBzCetsQmCvun1NZX+QLoEXzsUe2DQI03bEwXHcmTMJ617U0XBFCC5vCMuTYzm0juQIdllY0wGktmijtlIBrKkBJLYz2vGT+RWkO439055JmOVCAYiGTyFBklRjEp559nRDXVGC+tJ2+uGiWfVY5FMHtbhXcnQoUzp8RwZp2UahBDY6WCGBEnoC0IoKo8mET+YIZVv6uVK/aFMaTAFyHvX0ze9HsXkYY8xNlmXhYrueYQy/hKhjNsb7EsVFwC9EASPLWyeyK0IpgADSPQtDAAAIABJREFUs4im7u/3mg5kSATtCCE1gsE9XVAVRAZ+Lmu4VFL3/Y0adInr+5D8OIgMCDtmES3c1pmWkRWHB89+OKw8MLsRw+I3DC63j6/yWqZXlPpNnaljfHVNZch6042u28nl7f0zinA6F2ieXt3U642WuVUN80lbOJ1byOk7lCl1uXCp9eartxtoD1v2pYpjE/hRTN4PN2qWN3QrSv262hDB4MalIU9aIBlJTnw4U5r+qisuTbwzSchrnanpW1TpEAHqMBqnZ3Kt0YYyonzr2v7FECoHAwuxieAUNrWm1lH5jFzdPbnm8KGAKlEjmUdtyZvDaNzLpXWpLzrQMxa3RINKGx7fNYngZ1c/kFNRTnzP1HoQIiTAwUA1HB/y2L0BJLa4YxazsVhBFC2+YeNwm8zWAqB3wnaEAgShU/mVKLy9O1mEf24J4UwbzA8rRkJsJwYQHJHOdfhUvcHtQ4HAYAoQw+JHMLjoeRErCC0pdJta06JCm8/uuVRSV/chd2wYjXMgXYLGZ2lD1z+jcOATYxPxpjC3pkGfpZy33S/qxmmPWiLoHHHnXBGvHwSh61xEzID+qCXvXU8oFRie20D7fNc4FULlPK4are1f1BjMgvbZIDJwk9+vM1rOF9XuTxNjahPPqseCyMD0CnLCyUG3P+l5+7Ec2b40sUtVbW+c/8ZtCJjzG79BhHtEBIgIEBEgIkBEgIgAEQEiAn6PwDcBc6KzUiqVU1NTIPjJz3uXE/5bwZyTy6qdScLPyVziMoZ7U0X4Cm8uW+FU6sTZH2HOpoc4llu9tDNJWNPnTzJrRiUdgzlrJxB6ir/+YuP5qCSgvzqEYTif3Xu2sMqlDqTPo6wo9eF07oYW2enz4x/9UQv5frPJ4vkt7P2gowtKdMPU+ybeWJ7Oryzi9ntj6b1NRc9CCJWz6G+OLOVBcz7bhewbvmPdk2sHMyQ7EgXSbt+THuEP8Y1cfds4uT9dcoPn57v5jczOX27kvesJpiBIjLMcHDoECEGDs4rdKSJ0XxUbd3BuI4LBbfugxd08vLIzSQhB0IxcjbJ5gsjAT2X1BzMklAfNBpMVoYDQuFFMXpwNBHrTMKnWm4t4/U+qRrETAOtqw4bGKOueR3EyNDekM/lGpTM5V2KOeSygBNbqXsfPjgPp4py33S4333H6HF1QBpEBLCEfjqW/Lj2rGdsWz0fzdPqrT5/7MZqtV0rrSfea0R44LdP0Ry1f4vDE6qZ+dEG5iCutDMPw7mTRuevVOqNFrtS/rJuo7lvw8oZaQSilvONd85TV1VdNhJGP5G/jXHeSmlTpTCdyK34qq78nHUbhkMNZ0os3a/um159UjVb3LXgPRVusYM7bHubj1k3dJ2k40dj2Tq0H2rbjdyUJ96WJb4s/yaHeOrqyLZ7/4826aCYvlMq5UlqPYhK90+uRDF7is3aGLV/gjiRhIaf3XGFVXJoYn+CIDtoyIu90RRd+UjW6J0UUGy+IYCA57a7easDUaM8X1RQAvSAIpb/qPF9U81NZfRiNiyZWrO5bjKBz3zVN3ZEM7U4RDcwovHnwdEZLyouOgxnSMwVVPxTVnMqvPJotW97QQTA8Mq+Udc8HkYFLJXWXSuqoD1vaRuWRTN6+VPHOJMHp/MrYBIGXZwHHFjejmLxCTl957XgUkxdAYmPkTnsnlzd0ZwurLxTX8tpmRheUJ/MqU1902MNgxfyB4zkVXRNrJ2z0weUN3eFM6ZEsmUJtgCCoshehWoZSkZyjzCet9j3jlBfWtSfzKu3l5VHjK6V18U/bavoWdyYh6WDz2D3owriuNtgQJnhqRZX0vH1bPH9Pish2ggR48CH1+MCsAkV3Akhs2sOWIDKwJRTQIVMs5rxab24cWi4TDXaOrw7OIuKf9pk19CYL9SEi7Zv1Gk9SFYbhDY3xJr8/n92LwVcwDCs0RrXedLm0/kiWrFQ4iDo8NLdBut8UQgUCSWzW07ZIBlfYMQuCUMf4aiCZHc3i70gU7E0Vf3fdnycXUf3epuHlDY3xBreP3zYD2ZK82hPHh+eVASQ2+cH7tRENkRWEOidWGwaX7Z8ZLHoOBYPJ2ooAz598c74rGQoks982fiLjjDZ8IBsOJCMnADrGVy1Wu1M8Dv1+eKkxmG+Jhq7ebpiVq7UGs/OnKmjT731UORKXJsZy7n5o7eJ/JIN3Mq/SxQVfq45kSSMZPFRxRGe0XCqp25mEJGYuAHpjEwSXS+t7p5E1hPygeVs8/2Xd+OyqJjaeb6/IotQaj+XIfr/XdE86vCtJiJGhYRgemtvYnihY3nifBdxeyGF0Qbktnh/N4vX+5eRq0VtBwJy+PpJEOyICRASICBARICJARICIABGBP2sEviGY0/sQ/q1gztlVzZ4UEafFxW9d7yPmbLkzSfiy3kc9QOfeYBjWVxRiMKe+7pZLG98qYxMEDR8OEfvWg0Or3KoEDOasHBM4XP2cl9Es3pRN2+1zOnFoe4PXfzq/alPrYj/UwdL7l8sbulAqx90Glvf9OFgmPGv7/V6Tf+VDh+Y2YuL5I/PvT3A7jOjzy++uV3vMmbTVzqVd88EUwDmD1Fb7cbBPeNqe8eqjOqjDVZcvJ5Y2D2RILt6snVhSfc4pe5edf4OVL+smwmgcj9DIN+j5H+ZS5pvuECpnO0Kxcg05vG6Y2JUsDKYCDhqDJos1hoXkaERdvVJaR7Ht50IwvLCuEbTP7rPRbgJIbBSQU6gN8U/buqfWlzd0GxojSkvCZw4FU4BoFs/voeibVhzIkDgvRzNytTfMPwd/ZuTqUCqnbmDJof7LvXzbOLkjUYDmYPtyo3jZs8kCku43ZdqBFvj31MtufTY7kI6sb/Yb1t53heO5Uotkit2OqIw6as9CMLymMuhNFiyz48m8yl/vNDqQPr10w2C2ujsPBIJQ4vN2RMWRiqQ5dBZdeFg5ggFXsg+nWPpnFFFM3m3xoFpvXlRov79Rg9rwXJFWvXQShuHVTf2+VPGJ3IpQKudsYbW9/vOTqjEkjaJw8Nrdxksldb/fa4pk8lC5XQiCL5XUZb3p3pMiKuZv4QCK1oDg1kqtUa03b2iMCMb5Ab5GcyWuKHVaA5LntWdqLYrJO19UWyYcROW4vTwKBkJIkuBgCoAykh9UjLhD6+fXtXtTRUFkJFtnIJldY5f5D01yuStZuCMRwR2fVo+tbuqP5ciO5VRgbkwtq4bnN5pHVhRqg5cBt4KQXKl3oHLCMJz5qiuahfA1D2dJi/n92HkR+27NFnB6RW37vSAMo3GwO4XS0HclCwPJ7Ag6d3eyCAupfXPfyqBNa3p4fiOaxXP4kra8obt2t8kevNzqEBsa46rKYP9u1Rot5wqr0Qd7X5oYXdt7ptZDqZxTeZUp5R1hdK6s50ud60JSC394Gu3nMiNHyIisp232lZ9f3tAYm4aXscfJvkODycptnd7qjwKtwezK/Y8dW6zgkkLn/Ph9tPhQimHxLxR5UF36YOvV/xm5GjvQA0HISju3pkGR8py33Vrje6WHFaV+b6o4iAz8eqcxLl08v6ax7728djyaxQujcRy07q0gNDKvNJgQ3YhwOtceFtabLNlvustrx/+SOR1gGCZgTvsnhCgTESAiQESAiAARASICRASICPwdIkDAnN/6XV7e0O1LEz+3aeX50dfYBP6bhkk/dmiou4PBnDpZgR97jmbymkdW/NhhUV0GBnPyh976secIBnfu0x/en995qXDwVF6lz2lvXDqwvKELpgC+7c+67BCtTH3R+eudRmdcAaeJx0sDs8ju7dQKXkJBj504G1wors3bOkXSuR/7GlHHbDAF8O+dgmE4/VVngtc7aDqj5UXdeBiNsy9V3DIqt3fvL1yeXFbtSxVTHjT799n7K0Xs/7F3H2BRXGsfwEnuzU31JtYYTSKJJkYTTUyM5SJgxd57T4wlJtHE6AICihUUVBQUjb33uEvvXZqoSJNeRHrbBZbtM/M9MNf59gLCArPLLvz3uc/NMHPmPe/5nRWRd+ec/bcejd3uMmtP41s8CsWyVbV7cHqn5P132yrlse+58dDiUlRemZAu5Nd72kOhIBfY+HDORyjf0qLjqdbu8+tWwGvRXao0bvS30qrc2GibhJxyTb7BwpIKfjoWpPxUSqNZaezk8zIhu2untyXzpXZ+m/+6z1Qc2xKq3r27rj1oers7pv3vf93ffT1GlaoAc4uKB6WV4o0nQoPi8xtdkVJBkEe4cUsO+tn/HcsszJj4rNxkhzuzREdhRc2TzNIT7v+/CZ+KXTds9ry0WiCUWl2Ozij4n/Wui/g1h+7FTt/lUbti51/3LS9HT9npnvxi37vbYRl162q6Riaz+cMbkx79GNamU2EFdT8h/3YyjLmkykFembCILyooFzbxJ5ogybvhmcvs/Q1NeYZmvIbrosdnl205E+7Ai6uRyMqrJCsPB6w4HFBv8W1Vkmm2jc+j3DGmvA1OIU1kywTJKqxUXv4kJa/2WcNfnEMXH/Q14HB3qvyzBBOw2YMqkcw1KkcdfxAadn0zNMP+79inuRXMyuoJOeUTLF3XOQZLZIqnuRXsfs9vmEDDM8UCkQGHu+9Wyz6L1jCODp2Zau3xx+lwdSdczBfllwvrTagDL46u2a92CKz3w3ZwQn7dxtteDf+o1j2VSxpwapdDV3faWhUfZU6tmg4kAwEIQAACEIAABCCgAQGUOTWA3KYuyirFC2x9zvr8z8JlbYpYd/MkKzduBJtPiEoeXP//Mqf7vrZnyESoXTKR1YLN2ahjTJnzViyb6+uO3e5SWF67axeLr7M+T1cc8mc+m89K5IKKmjGmXNZ/LWX/d2ztr56lClaSpIPEZ9f+Dov1B/V+Oxlm93csi3lSFOX+IMfQlKfKCoEt6teBF2d2IUqVW0oEIutrMcbmLruvx2QVdYrnOGkWgiRj0komWrqqsg+WKpIdr82eGw/Hba/d8Cw6pX7xWySVO7klGJnxrgSmNvqgDy8ye+5+7wU2PhMsXSdaujX8w5hTXNWWt/3PJ0J+cAjseOZtHJFMThRW1NT7JW8bY3aY21c7BHDYXiCdxpHIFMoPkDUhll8mVFMRmiDJEoGoiTQkMkUR/39+0kiqW/bA/UFOEwm35VKjf60TBHk1KM2AwzW7ELnn+kPlh4/LqyV1n5zwUlNpvLRSPGuP19azEVK54nmpsBXPZ6uiQRBksUC08+qDZfb+jX5vZJ7KFQilPzgErj4SqEolUpWuldvI5MQpr/+u3ap8XpXjtHxB7ZKq5yNPeCQYcLiNbkmrShwtaSNTEPV+cE1+zp+8w33zXy2rc7M4nCqR1IDDPaS0wyuLwbUz1IzdntsvqvRDKev510jk95MK6IW7Rf/7b43UvNq3+vkXyzU37HqMKffnuu2lG17qqGdQ5uyoM4txQQACEIAABCAAAQi8TABlzpfJaMv5yhrp4oO+9fZLa3ty47a7sPv7DkmcG1PmFN7b3vYMmQhjzV0eZZQyX7b94Pqjs0yZ80L08bYHZCIYNfaRf+Zq6w4uB6Yus/crFYhad3ujd+WX1+5S0+iltpx0dk/ceCJU9GKBqbaEYu6NzSwdt92l0U9nM21acbDlzH3lBRhbEaHhLS5R2WNMua1bR7FhNObMSY/EZj84L5UTVSLZeqfgCZauiw745pSw/PArk4w2H2w9F7H1bHgTtQFtTl6tuZEkaX0txmSH2wIbn3oLgCc/5y+w8TE05e28FvMyuqRnFWNMuZOs3M74PL3on9L0wnetGMgxlzjLy6puX9eK+Lil4wmsdwqxvBxdr+DR8Yap+oiSn9duMqfic6iqh222ZfjTwrHmLuf9km1uP5q1xyur6L+L/ZIk5fUwNygur9kIrWsgVxDL7f2trkS/7LtW68I2eleNRN7sTzXVItlPx4J+PBok/98dFhsNqMmTGQW1tR8nt4QivuiUZxLrP59ociyN9pWWL5hm7dGOf4PI5ESdcHyj6XXIk7P3eu258bC9hlYsEC2w9dl2LqLeJw/Kq8Sm5yMl/1v7VE7S2IzXju8T5Uw0dowyp8ao0REEIAABCEAAAhCAgJYIoMypJRPx0jREEvlSOz9bpT2xXtq0JRcMTbn11h5syd2NtJWlBDFlzuqbmxtp0dpTRma8J1llrb27kft48TeYMufxsAONtGjtKQMOly+UtPbuxu+7F5616IAvuw8rPCupNjTlNd5fG85eDkhd6xjM7qJtjzJKjc1dGt2gqA2ZUmYXIvfeZHmRsXsRWWM4XGYttbakp3zveb/kn0+EKJ+pd0ySpNWV6LWOQUZmvBsh6ey+Ver1pc1fBsbljbdwjc1k8yMR2jxe1XNTEKTl5ej5Nj6LDvg6eyT+Hf7/y5VbXo7+8WhgaGJBE3vKllWJlx+qrSjIFcrbWqnefzMtSyvFRXw2P8bRTH+4rPsCAU/yguLzWa+46y5Mar5g+i6PuGw2f1JSRSM1jz9jt2fis/KDdx7P3e+dW/I/u+WpEqHVbRJyylMbW2S71QHbcmONRL7eKXitY1BbgqjjXr5Qst4pWPNvDHWMpdGYWUWVM/d4sv5PpEb7etlJY3OX094sr7jzsr604fzc/d727ff0qlxBHLjzuNFdV5r+4Mu47S5HuHHaAKixHFDm1Bg1OoIABCAAAQhAAAIQ0BIBlDm1ZCJemoZcQaw45L/jyoOXtmj5BZKkDDhcr4e5Lb/1pXfIsh/8f5nz0k8vbdfyCwYcbmJOecvve+kdPikuTJnzYIDVS9u18IKcIMeYclkvyPk+zp233/s5q1t+ZhZWjjV3aeH4mm/+d3jm6iOBzG5hzd+gQouYtBJDM14TH9BWIUYjTXZfj2F9k6q79zMNONx6HzBvpO8WnroRkv6yJT1Jkiwor3mSVTZuu8t8Gx/NP8rTwqGot3lFde3uaD84BDZRsVNvBtoaXSpXbDsX8dOxoCUH/QzNeCsO+QuEUrFUcS04zdjcJTypsNnE5QqC9Td2s52iAQQgoKKATEEk5JS3yx9Smbx2mfpD954ssPXJLxeqmHAHayaRKTaeCN10qt2WTu1gnqoP51lJ9dx93ifcE1S/hfWWU3a6XwpIZT2s1gZcYOPDyr6/Gh7gBEvXSwEpGu60fbtDmbN9/dE7BCAAAQhAAAIQgIDmBVDm1Lx5i3v80SGQcz6CrQcXCJJ0i84Zw+H6PGKzzCkveMqUOStPL27xIBu7gZSK8kqrxphyk55VNHa9ledCMwOYMudOry2tjNLgNpFUbmTG/taM4cmFs/Z4ZRexuQxpah5/gqVrgxG09YTPo9xl9v5t2aWvYQbRqUXqqB3a3Y01Z3tvoZuhGcbm7D8jy43IWmrn11CGoqjnZcK5+7wn73Q34HAjk4vU8qhdox1r68mMAoHJDnfT85HammD75CWSyDedCtt2PmKZvb8Bh2toxvvFOZQXlT1uu8ueGw+ldVWK9skMvUIAAh1CwIEXt/igb3FnfSybIMlLAanKD8p3iFnVgUHklwkX2Ppcbtfy1dx93rdC03UAi6UUFx/wbWILTJY6YT+MyQ439e1ezH66bEREmZMNRcSAAAQgAAEIQAACENAlAZQ5dWC2fjsZ9sfp+02vxqP6MJ6VVC+09RljyvV9/Fz1u5ptqSjP/f8yp9PMZtvXb0ASpFREvajlEoJCUdCJMqe5K3deNjTjPc1ls8z58HkkU+bc6rK2fibNfa0gFGKZiCCJSrGAL6qoklQeDzuYVBgXl137UB27RT6KouKyy6bt8kgvEDSXVwuuJz2rMLFya8ENqjW9/7Rgoa2PoEaqWnOVWoUlFajjwVMnt4Q/z4SrlIHKja4GpU1Sg6rXw9rHeetloSDI5Of8beciDDhcy8vR9yKyNLBFWb0ctPPLO/czjc1dMgr/u0Wcdiap4ayqRbINx0Nsbz9acai2zFlb6TTlrXcK7sxlCQ1PAbqDQMcWOOYav9zev6xK3LGHidFpmwBfKNlyJjz8afNrEqgv80v+KQmsLjmjvlRZibzUzu9GiO6VdWfs9oxOLWZFQFeCoMypKzOFPCEAAQhAAAIQgAAE2BJAmZMtSTXG2XUtZsPxkLZseZhbUn0rNCOvTOgSlf3z8RBDM56hKc//CZtlTkJYzpQ5+YfGqcJRV9ckSJlY/jyuxsu2+tovNT72kpib4rCzlc5z6Ghndm42NuclP+erElDFNklFcUyZ8+c7S1S5K6s8LZefHZEd7JXMOxZqs9Prj0NBu/7g/vDb3yv+5K2Ze95ow+0lU/aen2DhynqZM7Ow0mSHG7sCcVllU609VBl4i9o8ySydvc+L3d1JA+Py1FGRPevz9De215e75J8yfZdni8RUaRwUnz9t1/9MllAsvxGSPt7C1ciMN32XR5WIzbqyKilpc5sifs2Sg36bToU9K2HzAWhtHnKzuQmE0h8cAk95Jq06EmBs7uLoGm9i5TbGlMuLzGr2XjSAAAQg0KyA18Nc62sPRFJ5sy3RAALsCoiltcsm46UxgY0nQtn996NmMg+Iy2N9VxHNZN7qXlDmbDUdboQABCAAAQhAAAIQ0FEBlDl1YOJuhaYvPuhXxBfRzzrSS1MSJClXEAqCVH6KSyYnJDLFGe+nBeXC7KKqkPj8+Owy29uP1xwLMuBwx3C447a7zN3n/ZNjkJEZLyAuj8XBkzLJ/5c5bUaS0hpSJqKo2mRJmYisqSClIlImqT0vl5A1FTXue/k2Iyud5/FtRyndOKLecdn+kQssrqSwWubMKktnypyrr8+sIyQYijpUgiAJsVwckR3Mjb9uH7iTad/EwZyz46buuVgtkjGhWDko4ovGW7iy+1HxRxkl03ezX5BLzxdM2+VRUS1hZeB0EK+Hz2aoIdXrwenrj4ewmCdFUed8k+c2eOyy7V1EpRSN2+5C1P3hF0sVxQLRjN2eRma82Xu9qkRSth7ybnue2hMhIrlwnIXr5r/uK39v1J70NJ9JeZVkqZ3frdDaTV4nWLrmFFdFpxYvt/fHm0fzc4EeIQABCEAAAroroCCwV7duzB7KnLoxT8gSAhCAAAQgAAEIQIA9AZQ52bNUW6SU57U7KV70Tznt/fRueOalgNSI5MKTHon7bz06cOexs0eiW3TOlcDUMz5Pt1+K+uNM+BhT7sw9ntOsPSZauo63cJ27z9vQjLf4gO8xl/ig+PxSgcg39rmRGS8oPp/NlAkF/8B/mCJl1aWfqq9sEEdcFIf+VX1lg+Do5OrLa6tv/Fb7/zd/rzqzVLkxc1fDg2f20/7Y4ZiSx+bTnM/5OfMvjKMLlosuTTwWuv/EfbuI7OCwTH/Pp/ccgvf8FXHEKcx2h+fmBRfHN1HXrHdp3tnpM2zOVotZLnMKxTIjM15sZhlbk0WQpO2dx7P2eLEVkIlTWCGcZOXG7rJ1rlHZDZdsZXps9QEvMutHh8BW397ojX95JS0+6NvopbacTMnjT7RyS3xWHppY8NupsNVHAqfsdOdFZSc+K29L2A58L0mSLlHZJjvc79zP1IZhiiTt/IRTMV80Z5+XX+zzNUeDTKzc6A8idLbHGrThnYAcIAABCEAAAhCAgAYEUObUADK6gAAEIAABCEAAAhDQKgGUObVqOl6ajNWVB7WPY5ry6J3VxnC4xmY8Y3MXo7r/H8PhjrdwNaj7//EWrn+cDnd/kPMgtVgiU6QXCBQE+Si9pJgvYqJHpxYbm7uEJLBc5hQcHt+wTtmGMyOFXIsrvvHjLVxT89ncmbK4uvDHG3PqFSnb+OXGO0v33wmbZu3BepmTJMkxptymd5QhSFIqJ8QyhUgiF0nkN0PTC8trZHJCKq993lcklddI5NlFVQqCTMwp33vzoQGHO3df/e0embdHqw+qRLKx211KK9ncnevO/cwlB/1andLLbvR5nLvc3v9lV1t3/oR74srDAa27t4m78sqE82186D/44y1czS9GZhdjOdYmwGovkSRpeTl6ga1Pbkl1M03VfLlYIFp80C/xGZu7C7coZZKktp2LGLfdpUQgWnssaMpOdzzk2iJANIYABCAAAQhAAAK6JYAyp27NF7KFAAQgAAEIQAACEGi7AMqcbTfURISCcuFZn6d37mfuv/XovF/ylcDUoPj8kMSCgLi88KeFVwJTU/P4Z3yeZhZWZhZVSmTNbFST/LxirLlLaGIBm6mTpPAupw1Fzbrlam1HVTpNr33o8+rPoqATpEjAi8qaaOmWxmqZUywX7/be2sa65sKLE7a6rN3h+btjqM3t2Iv5lbkX/VNm7PYUsv00J0VRy+z9rwal1UjkUvn/zKxMQbhF51wOTL0UkPLziZBl9v4zd3sut/cfa+6y6kjA73/d/8U5dM+Nh3P2ek3d6T7Rys3ySvSM3Z5rHYNn7vFcYOPD5uzXxVIQpKEpN79cyEpkmYJIyC7/82z4qiPs1w5DEwsW2rIscMw1/qdjQayMXTmISCI/4Z5o//eTHVceXA9Oo9esVm6A40YFsouqfnQIXO8UnFVU2WgDzZzMKxPO3uvF8qPzLUk9q6jSyIx3zCW+RiJf7xT8gwP7f5pakg7aQgACEIAABCAAAQioVwBlTvX6IjoEIAABCEAAAhCAgPYJoMypfXOi/ozyy4XjLVzDnxay25U8K4p/YLRqlc6RfJva/1WdWykOvyB54lp9lyO8Z04I66/DGRiXP8nKLb2Azac5KYqKzXsw78JY1Sud884bL740iRt/41l5pl+qe0R2kEhWU0/PLTpn1h4voZj9BSoP/R37x+n7s3Z7Wl6OevqsYv+tR395Je2+HjNtlwfzdO9ax6Dlh/xdorJ/OxW21N5v29lwqysP/jh9f7yF61Tr2mZGZrwJlq7HXONFEvmuazGLD7C/vCpFUTP3eEYmF9WTUa7MkWTtk3YkSUllCrmCiEguDIrPJ+s2mq39/7odf+QKQipX+D+pXVrZgMNd5xhcL2Dbv3yYXjx7L8vL9h7hPtl4IrTtuSECWwIpefyHCQenAAAgAElEQVSZezxNz0fSuxqzFbZFcZ6XVs/c7enzOLdFd7HSmKQoBUE68OJm7PbMKqqskch/Ph6y4+oDVoIjCAQgAAEIQAACEICAdgqgzKmd84KsIAABCEAAAhCAAATUJ4Ayp/pstTcySZIPUourRCzvIklKRUKXnQI7Q4GDSfXldZXOc2o34LQ3pguflSdmC+9sq/G0FQU6SWJ50jg3aaI3UdPMWo4xacUmO9wyCth/HitfkGvttYWudM6vK3nOvzDO2mvLfj/zfb6m+3zNdnn/ufDihJ9uzr8Xfz0o3fs5P6fpGY1KKZq7z7tGDfvwhT8tHLfdha5oTrB0XWbvP3mn+4pDAX+cDv/BIfDg3dh7EVkE8f/FxNoq4osXQZD55cKTnok+j3OZ8395JS21Y38lWIqifj4RuvfGQ5FULlMQCgWZW1KdWVh5mPvkrE/y5YBUZ49E62sx65yCfzsZZmjKm2rtMd7CdZKV29pjQZOs3NY7Bc+oLeVGz9ztaWjKm2btsflU2AQLV/u/n7wYDWv/Tcgpn2rtwVq42lVSqf23H23+6z6LMRGq7QJXA1MnWbm5P2jmD2/bO3pZhGcl1dN3ebhHazqBimrJoXtPvB4+m7vf28ktQVq3hLUDL87nUTsUXF+Gg/MQgAAEIAABCEAAAqwLoMzJOikCQgACEIAABCAAAQhouQDKnFo+QbqWHkmQMjEpl1KEnFLISJmElAjFIadqAo7VVjQJRW05qCWvlOf8KTvdMwvZL3NStY86KfiiiuhnYVViwePnUcXVhYravSz/+z8FoZDIJTKFjKRUylkmV7hF56hj3zuRRO7oGk8/kXkjJL1aLCuvFPOrJQqClCtqn39sNr96LdxjctSxEixFUftvPRpjWvv85VI7v61nw8eau4w1dxljyq3dWZbDpZ8rXXUkYIKl60/HghYd8B1jyrO+FrPBKeSSf8qsPV5GZrwxprXNTC9EOnskSmSKgnKhWPo/S/W25O3z0raZhYKJlq4vvdzyC395JRma8badi2j5rbhDjQIyOWF+Mcpkh1tYEqtrdKucck5x1ZSd7vcislS+g52GN4LTjMx4Rma8yTvcmWXM675bsBMfUSAAAQhAAAIQgAAEtFMAZU7tnBdkBQEIQAACEIAABCCgPgGUOdVni8gsCMjkhPejXKEaHpFkITkNhiBIMi6rjK1yr1gqzymuUkf6Rfya/bcerTwcMN/GZ5m9388nQvbferTnxkPvh7lxWWVyBZH8vEImJ3JLqgVCaY1E/iSrlKnBFPNFeWXC7OKqsMQCdVSLlcdbzBeNt3CNSqm/vq5yG4qiSivFgXF5F/xTLgWkzN7r9ePRwJOeiQfvxl4JTL0SmHrnfoaTWwIvMmv7pSh6fd2zPk/rRWjdl1u3bh09evTSpUtLSkpaF6Ed79q7d+/o0aPnzZuXn5/fjmkwXT8rqV5m57fAxied1S1+mfhNH2QVVZnscL8VmtF0MxavCmqke248nGjlttzef4wp9254JovBEQoCEIAABCAAAQhAQMsFUObU8glCehCAAAQgAAEIQAACrAugzMk6KQJCoFMLyBVEjUReLZbVSORimYKoe+RU20TkCsLqSvQCWx/lxX6rRbJTnkmVNVI656iUosk73WufRuVwx5jW7hJqwOEamvLo51PHmHLpp1QNzXhL7fzuRWQ5uSZU1khZGen06dP19PQGDRqUl5fHSkBNBlm9erWenp6+vn5mplYU2EiSeppbMX2Xx1GXeE060H1lFlZOtHS7Epiqsa5P1T1Y/DC9JC6rbPIO94Sc+hseaywTdAQBCEAAAhCAAAQgoHkBlDk1b44eIQABCEAAAhCAAATaVwBlzvb1R+8QgED7CAQ8yTM253HOR645GmR5OXr5If8Vh/wNTXlLDvpOqatuGpvzltj5zd7rtet6zG8nw34+EeL1MLeYL5LKFdnFVaUCkeXlaG5klqNrfDFfxO4YUOZk15OiKPcHOZOs3O4nFbIeuemA6QWCcdtdz/kmN92MraslAtH0XR5/v3iCM69MqO4Ho9nKHHEgAAEIQAACEIAABFgRQJmTFUYEgQAEIAABCEAAAhDQIQGUOXVospAqBCDAmoBcQT5ILf7FOdTiUtSKQ/6bT9034HAnWro68OJOez99klVaxK8RCKXlVRKJTFElklWJZPX6ltVudVjvHDtfoszJjqNSFJFE/sfp+0vt/Ir4NUqn1X6Yli8wNnc55Zmo9p4oiiBIi0tRy+z9SwQs1901kDy6gAAEIAABCEAAAhBgRQBlTlYYEQQCEIAABCAAAQhAQIcEUObUoclCqhCAgBoFHmWUaP5pv0bHgzJnoyxtPBmZUjTW3OV2mOa2yaQoKiWPb2jKc3RVdb3cKlHtmsktHSlBkO4PcqyvPZhg6fZ3eFZLb0d7CEAAAhCAAAQgAIEOI4AyZ4eZSgwEAhCAAAQgAAEIQEBFAZQ5VYRCMwhAAAIaEqDLnK+//vrAgQO/0rXXe++9p1V7czJzRpLUhhMhU63dy6rEzEl1HyTnVhhwuIfuPVGlo4pqyS/OoW7ROao0Vm5TIhDP2uM1eYe7W3SOTEEoX8IxBCAAAQhAAAIQgECnEkCZs1NNNwYLAQhAAAIQgAAEIEBRFMqceBtAAAIQ0C4Busypp8svfX39zMxM7WKlqGKB6AeHwF3XY1rxxGTrxhKXXWbA4drefqzK7XHZZSY73CZYukanFDdsryDIh+klGQUC+lLKc/7T3AqxVE5RVHRq8UQrt8sBqXLUOBvC4QwEIAABCEAAAhDoTAIoc3am2cZYIQABCEAAAhCAAARqBVDmxPsAAhCAgHYJoMyppvkgSepqUNp4C9fYzFI1dVEvbExaiQGHu/t6TL3zjX7pGpU9wcL199P3f3EObdigmC8ysXJbbu8vVxAF5cIfHQKnWntsPRteUin6/a/7Rma8wgqNbjvaMEOcgQAEIAABCEAAAhBodwGUOdt9CpAABCAAAQhAAAIQgICGBVDm1DA4uoMABCDQjAD25mwGqA2XhWLZlJ3uR13iSbLFW2C2otvwp4UGHK7l5WhV7t1786Hp+YgHacXjLVyTnlUo3yKWKkIS8o3NXcaauxy8G2vA4c638eGcixi3vbYsOsnKrV575XtxDAEIQAACEIAABCDQeQRQ5uw8c42RQgACEIAABCAAAQjQAihz4p0AAQhAQLsEUOZU63zY3n5sssMtJq2RhWFZ7zc4Pt+AwzU9H6lK5Pk2Pm4Psgsrahba+p73S2ZuEYplu68/XGrn9+vJ0G3nIgw4XENTXvJzvkSmOOWZZGjKs7wcLZUpmPY4gAAEIAABCEAAAhDotAIoc3baqcfAIQABCEAAAhCAQKcVQJmz0049Bg4BCGipAMqcap2YogrRWsfgxQd8y6vFau2Ioijf2OcGHO4fZ+4321FuafUEC9fsoiqZgvj5eMjvp8MVxH+fN80prpq+y2O1Q2D408Lc0up9Nx96P3pGByRJSiJTEK19MrWwsDA7O7ugoIAgiGYz1LYGxcXF2dnZ+fn5upi8tmEiHwhAAAIQgAAEOowAypwdZioxEAhAAAIQgAAEIAABFQVQ5lQRCs0gAAEIaEgAZU51Qyc9KzfgcK+HpKm7I4+YZwYc7q+N7bVZr+urQWnL7f3Lq2orryfcE5fZ+5dV1h7XiOW/nQybZOVWWSOtd0vbv1y0aJG+vv68efOqq6vbHk3DEdauXauvrz9lyhSBQKDhrtEdBCAAAQhAAAIQ0FoBlDm1dmqQGAQgAAEIQAACEICAmgRQ5lQTLMJCAAIQaKXA4sWLu3btOnLkyIKCglaGaL/bNm7c2LVr16+//jonJ6f9smi+593XY5Yc9Cvii5pv2oYW3MgsAw53nVNw0zHKqsQrDvlzzkdK5bVrz8akFU+19kjNq12W9rh7wngL11NeSU1HaN1VIyMjPT290aNHV1ZWti5CO941a9YsPT29IUOGVFT8zz6m7ZgSuoYABCAAAQhAAALtLoAyZ7tPARKAAAQgAAEIQAACENCwAMqcGgZHdxCAAASaEUhJSYmKioqLi5NK2X+Ar5m+23w5MzMzKioqNjZWIpG0OZgaAwjFsrWOwUvt/MrqHqBUU0+3wjIMONzVRwKbju/zONfIjPcwvYRuJpYpTKzczvo8vRGcNt7C1eJStFyhlkVlUeZsel5wFQIQgAAEIAABCOicAMqcOjdlSBgCEIAABCAAAQhAoI0CKHO2ERC3QwACEICATgrEZ5cZm7scdYlndsFkfRiXA1MNONxldn5NR95/69FaxyDlNofvPRlv4WrA4U7f5al8nt1jlDnZ9UQ0CEAAAhCAAAQg0O4CKHO2+xQgAQhAAAIQgAAEIAABDQugzKlhcHQHAQhAAAJaISCVE4fuPZm73zuzUF1Ltp72SjLgcJcc9Gvicczs4qqp1h7hTwuVUWQKIiyxYLVD4Oa/7iufZ/cYZU52PRENAhCAAAQgAAEItLsAypztPgVIAAIQgAAEIAABCEBAwwJaUeZUKBTV1dV8Pl8gEIhEze+UtnPnThMTEw1LoTsIQAACEOhgAjUSuZEZb+4+LwWhllVhj7nEG3C4iw74iqW1m242fJVXS6ZZu284HlItljW8+ry0OjWP3/A8W2foMqeeLr+wNydbbwbEgQAEIAABCECgYwigzNkx5hGjgAAEIAABCEAAAhBQXaD9y5xyuXzVqlVDhw4dPHhw//79jY2N/fyaWd8PZU7VJxgtIQABCECgCYGzPk/HmruEJBQ00abVlw7efWzA4S6w9akWNVLFpCjqflLh2O0u9R7lbHV3Lb0RZc6WiqE9BCAAAQhAAAIQ0HIBlDm1fIKQHgQgAAEIQAACEIAA6wLtX+YUi8XTpk1LS0ujKKqysnLChAlDhgyRSCRNDBVlziZwcAkCEIAABFQXkMgU8/Z5/+IcWlEtVv0uFVvuuhZjwOHOt/HhCxv/S83iUtTsfV5NLGmrYketa0aXOV999dXXdfD16quv6unp4WnO1k097oIABCAAAQhAoKMKoMzZUWcW44IABCAAAQhAAAIQeJlA+5c562VWUVHx2muvVVdX1zuv/CXKnMoaOIYABCAAgbYIJD0rNzLjmVi5FZTXtCVOw3vNL0YZcLhz93mXCOqvxy5XECGJBVN2uj/OLG14o2bOYG9OzTijFwhAAAIQgAAEIKAxAZQ5NUaNjiAAAQhAAAIQgAAEtERA68qcDx486NmzZ9M7dKLMqSXvHqQBAQhAoGMIrDwcYMDh/uIcKmxsj8xWj/GP0/fHmHJn7/VqWECNSik2Nnf59WSYRNb4tp2t7lT1G1HmVN0KLSEAAQhAAAIQgIBOCKDMqRPThCQhAAEIQAACEIAABFgUUHuZkyCI8vLy0sZeNTX1n5vJzMzs37//li1bCIKoN0hLS8tpL16fffbZxIkT6zXAlxCAAAQgAIHWCcRmljp7JE7f5WF9LSYmrZggydbFqXfXhuMh06w9Zu7xfFZSpXyJJEmry9HjLVwFQqnyeQ0fo8ypYXB0BwEIQAACEIAABNQtgDKnuoURHwIQgAAEIAABCEBA2wTUXuYsKir64osv/t3Ya+/evcocUql08uTJQ4cOraysVD5PH2dkZDx+8Vq/fv2kSZMatsEZCEAAAhCAQOsESJJ6mF5CVyXT8gWtC1LvrlVHApbZ+Rma8lYc8q+o/v/tORUEOW67Cy8qu157DX+JMqeGwdEdBCAAAQhAAAIQULcAypzqFkZ8CEAAAhCAAAQgAAFtE1B7mVMikQQEBHg09kpLS2M48vPzZ8+ePWXKFKFQyJx82QEWrX2ZDM5DAAIQgEBbBMRSxdZzETN3e0YkFymItj7TueiA788nQgw4XAMOd71TcHq+QCYnolOLLwekmOxwk8rrr1vQlsxbce+qVasGDx68dOnSpvfDbkVkDdzy66+/Dh48eM6cOY1+NEoDCaALCEAAAhCAAAQgoIUCKHNq4aQgJQhAAAIQgAAEIAABtQqovcypSvYikWjWrFmDBw8uKipSpT3KnKoooQ0EIAABCLRCoLxa8tupsImWbud9k4VieSsiMLfM2uNpdiHKgMOdtcdrjCl38k73HVcejLdwHWPKXWrnJ1O0c5mzqqqqoqKiqqqKZGmRXmbgGjiorq6uqKiorKzUxeQ14IMuIAABCEAAAhDonAIoc3bOeceoIQABCEAAAhCAQGcWaP8yp0QiWbJkSa9eve7cueP34tVw207lSUKZU1kDxxCAAAQgwK6AXEEc+jt2DIc738b74N1Y0/ORzh6J0anFLdpKkySpSVZuB+/EGpnx7oZn3grLWGjrU/tY5/GQYy7x1tdi2v60KLujRjQIQAACEIAABCAAAV0XQJlT12cQ+UMAAhCAAAQgAAEItFSg/cucJSUl//73v7t16/aB0isrK6uJkaDM2QQOLkEAAhCAQNsFcoqrltn51T15yTPgcMdwuBMsXM/5JjcRWV73dCZB/PfxwtyS6nHbXYIT8j0ePKuskVIU9TS34rT308C4PKlcQZ9pIhouQQACEIAABCAAAQhAoKUCKHO2VAztIQABCEAAAhCAAAR0XaD9y5ytEESZsxVouAUCEIAABFoqIJLKL/qnPM2tCEsqOOGeMG+/91GXuJj0koZx8sqEk3e4WV6OXmjrcykg5VZo+pKDfosO+OaVNb/hdMNoOAMBCEAAAhCAAAQgAIFWCKDM2Qo03AIBCEAAAhCAAAQgoNMCKHPq9PQheQhAAAIQ0JCAoEb6x+n7Bhzu7L1eoYkFyr1eDky1uhw9xpQ3hsM14HCNzXnjtrscuvckvUBAEKRySxxDAAIQgAAEIAABCEBAfQIoc6rPFpEhAAEIQAACEIAABLRTAGVO7ZwXZAUBCEAAAlonUFopDn9aOG+/91hzlzv3M6pEstJKsWtU9hgOd5KVm/3fsSnP+TdD0nddj9lx5YFQLNO6ASAhCEAAAhCAAAQgAIEOLYAyZ4eeXgwOAhCAAAQgAAEIQKARAZQ5G0HBKQhAAAIQgECjAiRFXfBLMeBwfzwauO1cxFI7v4mWrja3Hz3NrRCK5fQtEpmiGjXORvlwEgIQgAAEIAABCEBAnQIoc6pTF7EhAAEIQAACEIAABLRRAGVObZwV5AQBCEAAAlorEJtZuupwwIzdnmO3uyyz9zO/GFVZI9XabJEYBCAAAQhAAAIQgEDnEUCZs/PMNUYKAQhAAAIQgAAEIEALoMyJdwIEIAABCECgBQIkSVWJZOkFgpj0kvIqCfbebIEdmkIAAhCAAAQgAAEIqFMAZU516iI2BCAAAQhAAAIQgIA2CqDMqY2zgpwgAAEIQAACEIAABCAAAQhAAAIQgECLBFDmbBEXGkMAAhCAAAQgAAEIdAABlDk7wCRiCBCAAAQgAAEIQAACEIAABCAAAQh0dgGUOTv7OwDjhwAEIAABCEAAAp1PAGXOzjfnGDEEIAABCEAAAhCAAAQgAAEIQAACHU4AZc4ON6UYEAQgAAEIQAACEIBAMwIoczYDhMsQgAAEIAABCEAAAhCAAAQgAAEIQED7BVDm1P45QoYQgAAEIAABCEAAAuwKoMzJrieiQQACEIAABCAAAQhAAAIQgAAEIACBdhBAmbMd0NElBCAAAQhAAAIQgEC7CqDM2a786BwCEIAABCAAAQhAAAIQgAAEIAABCLAhgDInG4qIAQEIQAACEIAABCCgSwK6WuacOHGiHC8IQAACEIAABCAAAQhAAAIQgAAEIACBOoFly5aZm5vr0i+lkCsEIAABCEAAAhCAAATaJqCTZc6ffvqpZ8+e0/CCAAQgAAEIQAACEIAABCAAAQhAAAIQqBPo27fv1q1b2/ZrItwNAQhAAAIQgAAEIAABXRLQyTJnbGzsvXv3Huj4Kzg4+Ntvvz1z5oyOjwPpd0CBhQsXWltbd8CBYUg6LmBmZrZkyRIdHwTS74ACR44cGTZsWHBwcAccG4akywKXLl1644033N3ddXkQyL0DCri5ufXt2/fmzZsdcGwYki4LREZGGhoanj9/XpcHUZu7i4vL48ePdemXUsgVAhCAAAQgAAEIQAACbRPQyTJn24asLXdXVVUZGxuHhYVpS0LIAwIvBH755ZcLFy68+Ar/hYC2CDg7O2/evFlbskEeEHgh4ObmZmhoWFVV9eIE/gsBrRB48ODBW2+9lZubqxXZIAkIvBDIzc399NNPExMTX5zAfyGgFQJyuXzGjBkRERFakQ2SgAAEIAABCEAAAhCAAARUFkCZU2UqthuizMm2KOKxJoAyJ2uUCMSqAMqcrHIiGGsCKHOyRolArAqgzMkqJ4KxJoAyJ2uUCMSqAMqcrHIiGAQgAAEIQAACEIAABDQngDKn5qzr9YQyZz0QfKk9Aihzas9cIBNlAZQ5lTW07TgjI2PZsmWd87kxlDm17d2IfGgBlDnxTtBOAZQ5tXNekBXKnHgPQAACEIAABCAAAQhAQEcFUOZst4mTSqU3btzIy8trtwzQMQReIuDn55eQkPCSizgNgXYTiI2NDQgIaLfu0XGTApWVlT///HNJSUmTrTrmxYyMjOvXr0ul0o45PIxKZwUKCwsdHBywnLLOTmCHTbyqqur06dNlZWUddoQYmG4KEATx999/FxQU6Gb6yBoCEIAABCAAAQhAAAKdVwBlzs479xg5BCAAAQhAoO0CUql027ZtMTExbQ+FCBCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEVBdAmVN1K7TUqEBQUJBV3Ss5OVmjHbe5s5s3b1pZWR07dqy6urrNwRAAAhCAgLYLEASxdevWpKQkbU8U+UEAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIdSwBlzo41nx1oNLt379are7m4uOjWsBYuXKinp/fFF18UFRXpVubIFgIQgEBLBU6dOsXj8Vp6F9pDAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEGi7AMqcbTdEBLUIoMypFlYEhQAEIMCqgK2t7c2bN1kNiWAQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABFQSQJlTJSbWGwmFwoCAACcnp6tXr+bk5LAevwMERJlTfZOYmprqpfSKi4tj+pJKpVFRUSdPnjx//nxSUhJBEMylkpISV1dXR0dHHo9XWlrKnMcBBNoiUFpa+uTJE39//+DgYIlEohxKLBYHBwfT3yfT09NJkmSu5uXl3b5929HR0dvbm8/nM+flcvnjx4/PnDlz+vTp2NhYuVzOXMIB6wI+Pj5OTk4ymYz1yNoQUCAQJCYmBgUF+fr6lpWVMSnJ5XJvb2+l76Beubm5zFU+n+/m5nbs2DEul1tcXMycJ0kyNTX1woULzs7OYWFhYrGYuYQDCLRIID8/PyAg4OTJk46OjgEBAfWWx09KSrpw4cKJEyciIyOV/waXyWQBAQFHjx69fv16vR878/Pzb9686ejo6OvrKxQKW5QMGkOAESgvLw8LCztz5szRo0c9PDyUvwHW+7Hz8ePHzF1yuTwyMvLkyZNnz56tt/K5QCBwdXU9cuQIj8erqKhgbsEBBFokQBBEaGjo5cuXHRwcrly5kpCQoFAomAiFhYVcLtfR0dHNza28vJw5TxBEXFzc+fPnnZ2dY2JilH+eFAqF/v7+jo6O169ff/78OXMLDiAAAQhAAAIQgAAEIACBdhRAmbMd8CUSyebNm/v06fPnn3/OmjVr6NChJSUl7ZCHdneJMqf65sfc3LxPnz7jXrxsbW2ZAtJff/3Vo0ePjRs3rlixQl9fPyoqik6joqJi1qxZgwYNMjc3Hz58+PTp05lb1JcnIqtVQCqVqjW+isFXrFjRq1evHj166Ovr11vnedeuXfr6+hwOZ8qUKYMGDWJ+MVpTUzNmzJhRo0aZmpp+/PHH69atY8Zy7969999/f82aNWvXru3Tp4+bm5uKaaBZKwSuXbu2cuVK5d/9tSKI1t5y4MCBDz74oHv37m+//bafnx+TZ2Vl5WuvvTZo0KAX30HHMW8zgiDmzp379ddfW1hYfPfdd8bGxgUFBfSNqampAwYMWLx48aZNm957772DBw8ql6CY4DiAQLMC69atGzBgwOrVq1euXNmrV6958+Yxv7L38fHR19dfunTp77///umnnx4+fJiORpLkunXrPv/8c0tLy6lTp3722WeJiYn0pZKSkmHDhpmYmJiZmX322WerVq0SiUTN5oAGEGgocODAAfrtt2bNmp49e44dO5b528HS0rJ79+7M98ydO3fSt5MkeejQoY8++mjjxo2rV6/+9NNPQ0ND6UsCgcDQ0PC7776ztrYeNWrUf/7zH+WPNDXsHWcg8DIBoVA4YMCARYsWbdy4ccSIEX379vX29qYbl5WVTZkyZejQoebm5l999dWiRYuYIG5ubr179168ePHvv//+8ccfX79+nb4kFovXrl2rr6+/bdu26dOnf/311/V+dmUi4AACEIAABCAAAQhAAAIQ0KQAypya1P5vXwkJCe+//35wcDBFUSKRaMqUKYsWLULRqN5MMGVOW1vbUJ16jRs3Tsv35jQ3N1+3bl09cIqiZDJZ//79r1y5Ql/asmWLoaEh/bt4Lpf7wQcf0PX4kpKSgQMHnjlzpmEEnNEVgSdPnij/CrId0w4ODs7Ozvb399fX1y8sLGQySUtLe/fdd+lfRSkUigkTJmzcuJG+un///u+//57+npmfn//+++/HxsZSFEUQxDfffHPw4EG6mZ2d3ZAhQ5hfszKRcdB2gaysrK1btwoEgg78N1dcXFxSUlJMTEzDMuc///nPCxcuNGS8cuVK3759k5OTKYoqKyvr27fvyZMn6Xfm2LFjV69eTd/i4eGhr6+PX9k3BMQZVQQeP37MfFvz9fXt0qULvTludXW1oaHh/PnzZTIZSZJHjhzp2rVreno6RVEhISF6enpMs6FDh/74449yuZwkyQ0bNgwfPpxeoRpXBoEAACAASURBVCEqKqpr164BAQGqpIE2EKgn8OjRI+bbWmFhYb9+/Y4fP063sbS0nDlzZr32FEVlZ2f379+f/ltbJpOtWbNm8ODB9CPFzs7Ob775Jv18Z3p6eteuXZmyfcM4OAOBJgRIkmQ+C0JR1JIlS0xMTOj2V69e/eSTT+hn4ouLi/X19V1dXelLJiYmzL+VTpw40b17d/pZz4iIiO7duwcFBVEUJRAIjIyMVq5c2YF/FmoCFpcgAAEIQAACEIAABCCgVQIoc7bDdJw6derbb79lOrazs3v33XeVF3diLnXmA6bMqaebry+++EJrP95LlzmJupfyeyw4OLhfv37MgrQBAQFdunTJzMykKGr58uXr16+nGysUilWrVn399dfK9+JYVwSEQmF0dHRZWdmlS5eY35W3e/IBAQH1ypz79u0bNGgQU/j08vLq168fRVEkSfbu3dva2prJee7cub///jtFUYmJiT179kxNTaUvxcfH9+zZ8+HDh0xLHLAlEB4e3r9///z8fLYCam2c2NjYl5U5663WS5Lk5MmTJ06cyJzncDizZ8+mKConJ+df//rXjRs36GGSJDlw4EAPDw+tHTUS0xWBjIyMDz/88MSJExRFJScn9+nTx9/fn04+Ly/vtddeu3XrFkVR+/bte+ONN2pqauhLzs7O33zzTXnda+DAgRwOhz5PkuSoUaP27t2rK8NHnlorIBaLJ0yYQP/VTFEUXeYkCKJeNSgoKOjtt98WCAT0QNzd3d999116gdDly5dPmDCBaT9nzpy5c+fWW9lea4ePxLRZwMLCYsqUKXSGU6ZMYb4BymSypUuXjhs3jqIouVz+7rvvMgvSxsfHd+/e/fbt2xRFHTlyZNiwYcw7c/fu3R9//DH+Fa/NM47cIAABCEAAAhCAAAQ6iQDKnO0w0Rs3bly6dCnT8d27d998801mPUbmfCc/QJlTfW8Ac3Pznj179ujRo2fPnkuXLk1LS6P7srOzGzlyZFVVFf1lXFzc+++/T6/HOGTIEAcHByYlKyurbt26VVZWMmdwoP0CJEkSBGFvb//tt98yv6DRkrQbljkXL148atQoZgvDjIyM119/vaamprS09NVXX1V+mPjPP/8cOXIkRVFXrlwZOHAgU3vLyckZMGDA2bNntWSMHSMNoVBoaWmZl5fXSdZcfVmZs3fv3t26dfv0008dHBzo74RCoXDIkCFr165lJvr69etffPEFRVGBgYFvvvlmSEgIc2nSpEk7duxgvsQBBFoncO/evW7duj158oSiqOjo6DfffFN5E4QuXbocOXKEIIgNGzYMHTqU6eLhw4cffPBBfn5+Wlpa3759z507x1xav3798uXLmS9xAIHWCWRlZX344YfMNz0LC4uePXu+//773bp1W7VqFf35OYqizp8/379/f6aLtLS0N954w83NTSwWjxs3zsLCgrlkY2MzatQo5gdU5jwOIKCiQGJiYmRk5LFjxwYOHMh8HKR3797KPyVu27bt3//+t0KhePr06fvvv898NKSoqKhv37579uyhKGrdunUrVqxgOr1x40aPHj0SEhKYMziAAAQgAAEIQAACEIAABNpFAGXOdmBfvny58m9CPT0933jjjYiIiHZIRYu7ZMqcpqamt3XqNXr0aC1ftDYkJMTT0zM6OtrT05Pe45CuWFhYWBgZGdFrNzGPhtC70ejr658+fZp5v9ja2nbt2hUfXmZAdOLg1q1bJ0+erKmpSUlJ0baEG5Y5p06dOmbMGGadsaysrC5duhQUFDx79uwf//gHs7Qy/ZjI559/TlHU8ePHhwwZwjxFnZ+fP2jQoCNHjmjbYHU6n9zc3E8++SQwMFCnR6F68g3LnBKJ5OTJk0FBQdHR0WfOnHn33Xf//PNPuVxeUVExePDgLVu2MMHd3d0/+ugjiqLc3d3feustZqtjiqJmz569adMmpiUOINAKgZSUlEGDBh04cIC+Nzw8/J///Cfz0RCKoj766KN9+/YpFIrVq1cbGRkxXaSnp3fr1i03NzcxMbF37970E5/01W3bttGPIDONcQCBlgo8f/78u++++/HHH5kbIyMjvb29IyMjfX19J0+e/OWXX9Lrfx47dkx5aZD8/Px//etfd+7cEYlEo0ePtre3ZyI4OzsPGzaMee6TOY8DCKgosGbNGkNDwx49eowaNSojI4O+66233mIWWqAoaufOnW+//XZNTU14eHi/fv2YjYr5fP7HH39sampKUdTSpUuZPRQoinJzc+vatSsWDlFxFtAMAhCAAAQgAAEIQAAC6hNAmVN9ti+NvG7dupUrVzKXeTzeG2+8gX8gMSD0AVPmdHFxqXdJy79cuHChlpc5lQGrqqq6du0aHR1NUdT+/ftHjx7NfFg+ISGhd+/eXC6XoqhBgwY5OTkxN+7evbtbt27MJkzMeRxop4Co7uXk5KT8AQutSrVhmXPevHmjR4+WSqV0npmZmW+99Rafzy8qKvrHP/5x/vx5Jn8Oh0MvA37+/PlBgwYVFBTQl3Jzcz///PNTp04xLXHQFgGCIFxcXOLj45nac1ui6cq9Dcuc9TLfv3//4MGDi4uLq6qqvvrqK+Xfft65c+ezzz6jKMrPz+/NN9+8f/8+c+/UqVO3b9/OfIkDCLRUICUl5ZNPPlmzZg1T14yKinrjjTeU/17u3r27vb09QRBr164dPnw400V8fHyvXr3y8vJSUlL69Olz6dIl5tKvv/66ePFi5kscQKClAuXl5VOnTh05ciSzA0K9CA8fPuzevfvly5cpijpz5szAgQOZBllZWa+//jqPxxOJREZGRrt27WIuHTp0aMSIEVhEhAHBQesExGLxwoULJ06cSC9q0qNHD+Wdts3Nzbt06SKTyeLi4vr06cOUOUtKSj788EN6u4Qf615M73fv3u3evXtcXBxzBgcQgAAEIAABCEAAAhCAQLsIoMzZDuyHDh0aM2YM07GTk9Pbb7/N7P/BnO/kByhzauYNIJPJvvjii7t379IfSf7ss8/oj9hTFBUWFvbvf/87MTGRfvaIeUqJIIh169YNGDCgU1U7NDMdaurlxx9/3LFjh0KhYH4hrqaOWh22YZnT3Nx8yJAhzO9JQ0NDe/XqRZIkvWGSjY0N09fSpUt/+OEHes3G3r17M6vhJSUl9e7dOzg4mGmJg7YISKXSGTNmHDt2rC1BdO7eZsucHh4e/fr1o1fxNTY2njZtGvONcffu3ZMmTaIoKiUl5V//+te9e/eY4Q8dOlT5CRLmPA4goIpATk7OyJEjN23apFz1SUxM7NWrF/PQcFlZ2WuvvUYXk6ysrOjf3dPBr169Onjw4NLS0qKiov79++/cuZPpdPz48SjAMxo4aKlAUVHR1KlT58yZw/zd3TBCTk7Ohx9+ePjwYYqivL29u3Tpwuy4SW8JHx4eLpPJFixYMGfOHOb2lStXTps2TWt/hmHyxIH2C/j6+r7++uv00jUGBgbMN0CFQvHDDz/QH5sTiURdunRh3sbJyck9e/akC6L79u0zMDBghmlnZ9enT5+8vDzmDA4gAAEIQAACEIAABCAAgXYRQJmzHdgfPXrUpUuXZ8+eURQllUqXLFlCbyzXDqlocZcoc6ppckiSFAqF9KeYCYJISkp66623srKyKIqSyWTdunULDw+nKIokycOHDzN7JtGfuKc/11xeXj5y5Ejm9wJqyhNh2y5AkmRmZmZxcXFoaCj9wG7bY7Iegd4x1M/PT19fv6CggNnx8f79+z179oyMjKQoSqFQrFu3buHChXTvGzZsmD59ulwupyiqpqZGX1/f19eXftP26dPn9u3b9Nv7xo0bvXr1YmpOrGfeqQI+e/aMLp8wE9Thh0+/Mx8/fvzWW2/5+voSBEG/r2R1L3r4Uqn0xx9/HD58OP3pEDs7u4EDB+bk5FAUJRaLv/zyS7oeT5Jk//79t23bRkdIT09/7733KioqOrwhBqgOgaysrI8//njp0qU1NTVE3Yt+X5WWln733XebN29WKBQkSV6/fv3dd9999OgRRVEuLi6vvPIK/TyxTCabMGHC/Pnz6drSzJkzjY2NhUIhRVF5eXlvvfUWvSG3OjJHzI4twOfzp02bNmTIkPz8fOV3Jv39kB47SZKenp5dunRxd3enN0fo27fvrVu36O+3HA6nX79+ZWVl9Poib7zxBr05Qnl5effu3S0tLTs2IEanJgGJRCKTyejgcrnc2dm5W7du9A8z9vb2I0eOpL8ZlpWVDRs27Pjx43TLESNGHDp0iG528+bNd955h/7LPTAw8O2336b/3SQWi6dPnz5u3Dj6m7Ca8kdYCEAAAhCAAAQgAAEIQEAVAZQ5VVFiuU11dfXixYu/+eYbOzu73377beDAgfHx8Sz3ofvhUOZU0xwKhUJjY+MtW7bY2tpu2rTpgw8+WLNmDfPv8127dvXv33/v3r0WFhb9+/fn8Xh0GgUFBcOHD58xY8aRI0cWLlw4evRo7JCkpgliMaxcLh87duyZM2dYjMl6KHd397Vr106bNq1Lly7Lly/fuHFjfn4+RVH0QosjR460t7f/9ddfe/XqFRQURPeel5c3ZMiQNWvWHDp0aPz48dOmTWMWFnN2dtbX19+5c6e1tfWAAQOUN5RlPfNOFdDGxmbDhg2dashRUVFr166dO3fuP//5z6lTp65bty40NJSiKFdX10WLFllZWdnY2CxcuLBLly7nzp2jfxMqEAiMjIxmzJjh4OCwYMGCzz//PD09nUYLCgoaMGCAqampjY3NgAEDtmzZQtfpOxUpBsuKwIoVK1599dW5c+euffGi15YnSfLKlSs9evTgcDi2trYDBw7kcDj020woFM6dO/f7778/evTo+vXru3fvHhISQieTlJQ0cODANWvWHD58+D//+c/kyZOZFR1YyRZBOo/A7t27//GPf0ydOvXFG3Mts9nBqlWrtm7damNj8/vvvw8YMGDVqlV0YUkmk5mbm3/88cf79u3bvn17v379mMfcc3NzBw0aNH36dCcnpzlz5gwaNCg7O7vzYGKkLApcuHBhyZIl1tbW+/bt++GHH/r27evs7EzHz8vLGzp06IIFC44cOTJnzhxjY2PmieGLFy++++67ZmZmNjY2X375JbMLMp/PnzVr1vDhww8dOrRhw4aBAwdixVoWJwuhIAABCEAAAhCAAAQg0GoBlDlbTdemGxUKxeHDh8eOHbts2bKUlJQ2xeqgN3t7e2+ueyUkJOjWEC9cuLB58+b9+/czm1xqVf4KhcLZ2ZkuVc6ZM+fWrVvKj2cRBHHlyhUTE5NZs2bVW+2Tz+dv3brVyMjo999/pz9fr1XjQjLKAgRBWFpapqamVlVVMdtbKjfQnmNfX98tSi9TU9OioiI6PYlE4uTkRH+fTE5OVs45Ozv7hx9+MDY2trKyop9Doq+SJOni4jK17uXm5sbU75XvxXGLBPh8/qNHjwiC6GzPxT569Ejpjbnlzz//pJ8tzsnJMTc3nzx58ujRo9evX5+RkaHsWVFRsX37dkNDw02bNinvkkgvqjx79uyJEyeeOXNG+buu8u04hkCzAidPnlR+Z27ZssXT05O5KyYmZt68eRMnTrx9+zZzkj5wdHQ0NDRctWpVbm6u8qXc3Nw1a9YYGRnZ2trinaksg+MWCdy4caPeO/PcuXN0hAsXLsyfP9/AwGDmzJl37typ9yGPO3fumJiYzJ49OyIiQrlHmUxmZmY2evTorVu3Mh9mUm6AYwioIlBYWLh79+7p06cbGBisWbPmwYMHyncVFxf/9ttvxsbG27Zto58kZq6GhYXRf2vfuXNH+UcggiDs7OyMjY1XrVrFbJTA3IUDCEAAAhCAAAQgAAEIQKBdBFDmbBd2dAoBCEBAXQLFxcUVFRXLly9nNmlTV0+I2wkEfH19//Of/zB7p3WCEWOIEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgM4IoMypM1OFRCEAAQg0KxAdHd2rV68nT5402xININC0gFwuf/DgAUEQzKZWTbfHVQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACGhZAmVPD4OgOAhCAgFoEqqqqXF1dq6urjx8/Xm/dLbX0h6AdXSA1NRWbTnX0Scb4IAABCEAAAhCAAAQgAAEIQAACEIAABCCg2wIoc+r2/CF7CEAAArTAjRs3evTokZ2dDRAItF0gJiZGoVCUl5djf9O2YyICBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgoCYBlDnVBIuwEIAABDQkEBwcbG1tLZFIEhMTUZTSEHqH7qakpGT48OEODg4depQYHAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIKDzAihz6vwUYgAQgEBnFpDJZDExMcuXL5dIJJ3ZAWNnSyA3N7ekpCQ3NxfvKLZIEQcCEIAABCAAAQhAAAIQgAAEIAABCEAAAhBQkwDKnGqCRVgIQAACahfYs2fP6tWrFQoFQRBq7wwddAIBqVS6aNGixYsXo8bZCWYbQ4QABCAAAQhAAAIQgAAEIAABCEAAAhCAgM4LoMyp81OIAUAAAp1QIDs7OzY2Njs7Ozg4GAvVdsI3gDqGTJJkWlpaYWFhTk6OOuIjJgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABdgVQ5mTXE9EgAAEIqFeAJEmpVDpx4sStW7eqtydE72QCR48eHT58eGlpaScbN4YLAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI6KoAypy6OnOq5x0eHr677vX06VPV79KGllwud/fu3Y6OjgKBQBvyQQ4QaHcBkUj0008/8Xi88vJyPp/f7vkggQ4j8Pz58/Ly8sePH2MB5A4zpxgIBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQ6vADKnB1+iqmDBw/q1b3u3LmjW6NdsWKFnp7ep59+ihUUdWvikK2aBHJycvh8/vLly69evaqmLhC2cwokJCQMGDAgPT29cw4fo4YABCAAAQhAAAIQgAAEIAABCEAAAhCAAAR0VABlTh2duBakjTJnC7DQVD0Cz5494ym94uPjW9GPp6enUgxeRkZGS4Pk5OQoR/Dy8pLJZC0N0l7t09PT+/fvf+3aNbFYjOft2msWOmS/FRUVVVVVoaGhEomkQw5QOwclEAiUvx2FhIS04ttRUFCQcpDw8PCWDraiosLDw4MJ4ubmJhaLWxoE7SEAAQhAAAIQgAAEIAABCEAAAhCAAAQg0F4CKHO2l7zm+kWZU3PW6OklAufPn6cfKab/f9iwYS9p2NTpnj17KgdxcHBoqnVj106fPq0c4fXXX09LS2usoXadq6qq4vF4AoHgxIkTBQUF2pUcstFxAZlM9t1333l5een4OHQv/djYWOVvRx988EErnqb99ttvlYOYmJi0FCIyMvK9995TDnL//v2WBkF7CEAAAhCAAAQgAAEIQAACEIAABCAAAQi0lwDKnO0lr7l+UebUnDV6eolAvTLn0KFDX9KwqdOdtsyZmpr6wQcfRERENKWDaxBouUBlZaVMJgsMDCwrK2v53bijTQL1ypy9e/duxacuUOZs0xzgZghAAAIQgAAEIAABCEAAAhCAAAQgAAHdF0CZU/fnsLkRMGXOAwcOPNCp19SpU7E3Z3PTqxvXUeZs3TylpaUtW7astLQ0Pz+/dRFwFwSaEFi5cuX27dubaIBL6hNAmVN9togMAQhAAAIQgAAEIAABCEAAAhCAAAQg0HkEUObs+HPNlDmVV6XToeNPP/00Jyen489Thx4hypytmN6srKykpKTVq1eXlJS04nbcAoEmBEQikVQqDQgISEpKaqIZLqlPAGVO9dkiMgQgAAEIQAACEIAABCAAAQhAAAIQgEDnEUCZs+PPNcqcHX+OtX6EKHO2dIr27ds3bNgwFDhb6ob2KgocOHBgxIgRNTU1KrZHM9YFUOZknRQBIQABCEAAAhCAAAQgAAEIQAACEIAABDqhAMqcHX/SmTLnpk2bLuvUy8DAAIvWdow36M2bN5UfIG7d3pyffPIJE+SVV15xdnZuKc7p06eZCHp6eq+//npWVlZLg6i7fWxs7O3bt589e3bv3j2JRKLu7hC/EwqUlpZGRUVduXKFIIhOOHwtGXJGRsYrr7zCfEdq3d6cxsbGTAQ9Pb05c+a0dHSRkZHvvfeecpAHDx60NAjaQwACEIAABCAAAQhAAAIQgAAEIAABCECgvQRQ5mwvec31y5Q579y5o7le2ehpxYoVKHOyAYkYuiGgUCgkEsnChQsnTJhQUVGhG0kjS10T8PT0fO+99zIyMnQtceQLAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKC+AMqc9UU63tcoc3a8OcWIOp6ARCIxMzOzt7cvKyt7/vx5xxsgRqQNAgKBIDU1dfv27QKBQBvyQQ4QgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABNoigDJnW/R0416UOXVjnpBlJxaorq4WiUQcDufw4cMKhaITS2DoahTIz8/v1auXv7+/GvtAaAhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACGhRAmVOD2O3UFcqc7QSPbiGgkoBAIPj2229tbGxkMhlJkirdg0YQaKGATCYrKCjgcDipqaktvBXNIQABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhoqQDKnFo6MSym5efn90vd6/HjxyyG1UCoixcv/vLLLzt37iwvL9dAd+gCAhoWIEny/PnzxcXFXl5eeJNrGL9TdUcQxIwZM/76669ONWoMFgIQgAAEIAABCEAAAhCAAAQgAAEIQAACEOjwAihzdvgpxgAhAAFtFBCLxbm5uX369Ll796425oecOooASZI1NTW2trbe3t4dZUwYBwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBWgGUOfE+gAAEIKBpgeTk5I8++igxMVEikWChWk3rd7L+zp49a2Zm1skGjeFCAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACnUIAZc5OMc0YJAQgoCUCMpksLCwsKytrwYIFCQkJWpIV0uiQAiRJEgRx6dIlJyenDjlADAoCEIAABCAAAQhAAAIQgAAEIAABCEAAAhDo5AIoc3byNwCGDwEIaFTAycmpW7du4eHhMplMox2js84n8OjRo1WrVsnlcoIgOt/oMWIIQAACEIAABCDQYoHk5GQHB4fly5evWbPm6tWrLb4fN0AAAhCAAAQgAAEIQAACGhdAmVPj5OgQAhDolAIJCQnOzs7FxcWnTp2SSCSd0gCD1pyAQqEIDg7+5ZdfxGKx5npFTxCAAAQgAAE1CAwcOPCdd95ZsWKFXC5XQ3iEbETgxIkTXbp0eeedd06ePNnI5Y54iiAIe3v7V199Ve/Fa/LkySoO9OrVq+/UvZ48eaLiLR2mWWpqKj32JUuWdJhBYSAQgAAEIAABCEAAArolgDKnbs0XsoUABHRVwNHRsX///s+fP9fVASBv3RHIz89fvHhxfn4+HhrWnUlDphCAAAQg8FKB7t276+npLViwAGXOlxqxfcHBweGVV17R09NzdHRkO7aWxisuLu7SpcuLEmftfxcvXqxirg4ODvSNjx49UvGWDtMsOTmZHvucOXM6zKAwEAhAAAIQgAAEIAAB3RJAmVO35gvZQgACOiZAEMTp06c3bNhQXV1dVFSkY9kjXR0UUCgUaWlps2bNevr0qQ6mj5QhAAEIQAAC9QXUVOaUy+WbNm36/vvvTUxM6nfZ6b/uhGVOKysruly3YMGCjIyMmpoa1ddf6dhlToFA8H3dy8rKquGfDJQ5G5rgDAQgAAEIQAACEICAhgVQ5tQwOLqDAAQ6kUBlZWVxcfGtW7cOHz6M5w860cS331BFItFPP/10//79mpqa9ssCPUMAAhCAAATYFFBTmVMmk5mYmOjp6fXs2ZPNdDtELG9v72nTpk2ZMiU0NLRDDKj5QUyZMoUuc7ZiyB27zFlWVkbLLF26tKEjypwNTXAGAhCAAAQgAAEIQEDDAihzahgc3UEAAp1FQCQSzZw5c9WqVShwdpYpb+9xkiRZUFAwe/bsCxcutHcu6B8CEIAABCDAmgDKnKxRItDLBT777DO6mNeK9VdQ5tTT08OitS9/c+EKBCAAAQhAAAIQgIB6BVDmVK8vokMAAp1QQKFQODk5xcTEPHz4MCMjgyTJToiAIWte4Pjx4xcvXuTz+QRBaL539AgBCEAAAhBQkwDKnGqCRVhlgX79+tFlzsrKSuXzqhyjzIkypyrvE7SBAAQgAAEIQAACEFCTAMqcaoJFWAhAoJMKVFRUFBUVjR071srKCgXOTvomaI9h19TUrF69etOmTarvI9UeaaJPCEAAAhCAQCMCBEFUV1cXFxcXFhZWVlbW+7yO6mVOhUJRWVlZUFBQWloqFoub/kmspYvW0kkWFhYWFxfX1NQ0HbyRQTZ5SiwWl5SUFBUVCYXCesNv8r7aizKZrKKioqCgoKSkpLq6uhWJSSSS8vJyoVDYbF8NG7Sld7FYXFxcTI+6FWk3TEb5jFAoLCkpKSgoqKioUOWnI6bMWV1drRxHlWPVy5wkSdbU1DCJSaVSVeIrt6Hfh0V1r6qqKuVLzR6TJCkSicrKygoKCvh8vkKhaPYWiqJasWgtQRD0n8Ti4uJWeDadFUmS1dXVtEAratJNB8dVCEAAAhCAAAQgAAFdFECZUxdnDTlDAAJaKpCVlTVu3Dgul5ufn6/K71O0dBhIS9cEkpKS7OzsBAIB679I0jUJ5AsBCEAAAjomQJKkn5/f8uXLR4wY8dVXXw0aNGj48OFTpky5du2aTCajB6NKmTMtLe2XX34xNjb+7rvvBg0aNHTo0NGjR8+fP9/Dw6Nh1TAuLs7e3v7gwYOff/65np7eO++8Y//i5e3t3VCwsLBw+/bt48eP//777wcPHvzVV1+NHDly2rRply5dUrFQ1DAmfUYul9+8eXPOnDmjogHmFQAAIABJREFUR48eMmTIl19+OWLECBMTk/3795eXl7/sLuZ8eXn5oUOHjIyMhg0b9sUXXwwZMmTEiBHr1q0LCQlh2tQ7yM/PP3bsmIODQ25uLkVRubm51tbWhoaG33zzDYfDYRoXFBQ4ODjY29tnZ2czJ+sdlJWVtbR3OoJMJrty5crs2bNHjx791Vdf0aOePHmynZ0dn8+v10srvvT29l62bNmIESOGDBkyaNCgb775xtjYeOfOnampqfWiKRQKLpdLT37Xrl3ppzn3799Pn7l792699i/7UpUyJ0EQkZGRGzduHDVqFJPYuHHjbGxs8vPzG41cXV198uRJe3v7W7du0Q1iY2NXrlxJvw+//PLL4cOHL1myxMvLq9HblU8qFIqwsLCNGzeOHj3666+/HjRo0LBhw0z+j737jovi2v8GfpaO2MUasVfsFYmaqKiU2FvU2LsxGqOJokZji4kxaoyaiNHYO/ZeQGNDQREFBQUBpfe+hd3ZeV4/z3Mnk9llWfrs8tk/cmfPnPI97yH3Xv0wMwMH7tmzh8tKT506RTdOw1eZTLZr165NmzatWbOGynTs2PF//6Jsoj8/LMtqvpvz9u3bQ4YMof8mtm3btlu3btOmTfPx8eHXo+dxdnb27t27N23adOzYMTrkxYsXU6ZM6datW5sPn65du44ZM+bSpUt6TohuEIAABCAAAQhAAAJGKYCY0ygvKzYFAQiUtoBCoQgICEhOTh43blzh/hhf2hVjPSMSWLt2rZubmz5/H2pEm8ZWIAABCEDA4AXevn07cuRImqBo/rNBgwa3bt1iGEZ3zBkdHT116lSJRKI5A23p3bt3eHg4H8vDwyOvztOnT+f3zMrKcnd3t7Kyyqt/y5Yt7969yx+i/3FQUJCbm5uJiYnWyevXr3/gwIG8XvEul8uPHTtWs2ZNrWMJITNmzEhISNAs5ujRo4QQKysrb2/ve/fu2dnZcTMMHz6c63/48GFTU1NCiNbcVyaTHT16VPfqiYmJ3GzcgVqtfv78+YABA/LadcOGDY8ePZrXrrl5tB6o1erAwEBnZ2duR4KDypUr//LLL6mpqdxwuVw+dOhQQTfuq7OzM9dT90G+MWdMTMz8+fMtLCy4yfkH9erVO3LkiEwmE6wSExNTr149QkifPn1ycnI2b96s1U0ikYwdOzY2NlYwnPsaFRU1a9Ysc3Nz/qLccYsWLe7fv69QKBo3bkwbafCZkpJSv359rpvg4Pbt23R+fsyZmprq7u6eV5ELFy5MT0/nqtLnIC4ujlbVu3dvqVS6bdu2vCYfNWpUdHS0PnOiDwQgAAEIQAACEICA8Qkg5jS+a4odQQACZSDg4+NTq1aty5cvF+7vZcqgYixpFAIKhWLr1q3Z2dla/yrTKLaITUAAAhCAgHEKBAUF2dvbc/Fk48aNZ8yY8f3330+fPp1GO4SQ6tWrHzx4UEfMmZKS0qtXLzqJRCJxcHCYNWvWihUr5syZM3DgQC5V6tSpE/9/KI8fP968efNmzZpVqFCBEGJqatr8f5+1a9dy3FlZWSNGjOAmb9u27bRp05YtWzZ//vxBgwZZW1vT4KdZs2bv3r3jRul5EBMT06VLFzqDubm5s7PzwoULFy1aNGrUqOrVq9N2CwuLv//+W/Nprmq1evny5bR4qjRhwoQVK1YsWLCgc+fONAeSSCTdunV7+/atoB4u5vztt9/q1KnDZVempqaTJ0/mOuuIOfVfXZAusywbHh7erl07uqiVlZWbm9s3Hz4jRoyoWrUqt2vu1j2uHn0O/Pz8mjRpwu2oe/fu8+fPX758+YwZMxo1akTbJRLJ4MGDuR8GpVK5cOFCevG5gU2bNqUtP/zwgz7rsiyrO+YMDQ11cHCg85uamnbp0uXrr79etmzZpEmTatWqRdvNzc35P3t0XS7m7N69+5QpUywtLQkhdevWHTVq1OLFiydMmMBhSiSSESNGaK32zZs3Xbt25XZXuXLlXr16ffXVV19//TVXVaVKlXbu3CmIOdPT03v37t28eXNOtVKlSlSmVatWL168oMtxMaeTk9PQoUPpvy+NGjUaN27cd9999/nnnzdv3pzb45w5c7QWmVcjF3N26dJlxowZ9F+6OnXqjBgxYtGiRRMnTmzfvj23tcGDB+MPYnlJoh0CEIAABCAAAQgYtwBiTuO+vtjd/wmEhYVp/hkbNBAoLoH4+Ph169ZlZmaeOnVK8++himsVzAMBrQLe3t5t2rTR8UA5raPQCAEIQAACEChbgeTkZC7kq1y58vbt2/n1MAzj7u5OQ0ru5q1Ro0YJMgyZTDZmzBgacjRp0sTLy4s/Ccuyd+7c4V64OG/ePMHTa/N9N+fatWvp6tWrV9e8xTAkJMTR0ZGu3qNHD0Ftgko0v65fv56Obd++fUBAAL9DXFzc1KlT6b13DRo0ENwWqVar9+zZQ8daWFhMnDiR/35HtVq9f/9+7j7LcePG8c+yLEtjTnNz87p16xJCLCwshgwZcv/+fQFOXjFngVb/4osvBKuvWLGCECKRSDp16hQYGMjfdXR09IQJE+iumzRpUtAXhb59+5YLnhs2bHj//n3+5HK5fNmyZTY2NtRtwYIFgv2yLMv9qBTiFQA6Yk6GYUaMGEHXrVWr1p49e/hLZ2RkjB49mlZuYWEheCQMF3PS4dbW1rNnz05OTua2xjDM9u3b6e8BEEL279/PnaIHSqWSW93a2nrUqFFJSUn8Pv/88w/dePUPH7oQ9xhb2lPPd3PSsTY2NitXruSeOM2yrEql+v7777lU/uLFi/wCdB9zMSed3MrKavr06fx/IxiG+fPPP21tbWmHv/76S/eEOAsBCEAAAhCAAAQgYJQCiDmN8rJiU/8RcHBwcHJy+k8TvkCgmARkMpm3t3ezZs2QMxWTKKYpgMCRI0fS0tJiY2P5f19WgPHoCgEIQAACECgjgR07dtBAq2bNmmfOnOGHIrQimUx2+PBhLr8hhGjGnC9fvqTxRqNGjQSZGbetZ8+eVa5cmRDi6OgoeO+j7phTrVY3bdqUEGJra3vr1i1uQv5BaGgoLcDW1jYkJIR/Kt9jehda1apVtU6uUqmmT58u+fARxEJxcXEdOnSgYeGOHTs0Mzm1Wv3s2TPax8bGRhD40ZiTZkLW1tY///yzIImklecVc8bGxtLKJRLJzp07NcNIweoPHjzgU7Rp04YQUrNmTUE77SOXy8ePH0+35u3tzR+o+zg3N3f69Ol0U02aNPH19dX81UOGYbifKEtLS4FqycWcFy9epD/qrVq1evTokeZGFArFpk2baPH16tXjx5D8mNPGxmbnzp2a/5ePYZgff/yRDq9bt64gbueuY+XKlf/66y/N5+Kq1eqnT5/SnxY6CSGk0DFnjRo1zp8/r1lkbm7utGnT6PwDBgzQ/422/JizQoUKv/32m+bkarX6119/pZPXrl1bIKAJjhYIQAACEIAABCAAAeMTQMxpfNcUO4IABEpJ4MSJE61atZJKpfjjdCmJYxmeQE5OTrNmzTw9PXltOIQABCAAAQgYgIBSqWzRogV9WuyRI0d0VLxq1SruqbaaMefp06dptrFs2TIdk/Tv358Q0qJFi7i4OH433THn27dv6eRDhgyRy+X8gfzjyZMnE0IqV64sSBP5fTSPFQoFnbxRo0YxMTGaHViWvX79Or2fdcyYMfwO+/fvNzU1pa9j5LcLjnfv3k1frjlkyBB+5sePORcsWMA/xZ+Bi8cE7+bct2+fPqt7eHjQG2H5q8vlcrpre3t77rGx/EVZlj1//jzt88UXXwhO6fgaHx9PH8BrZWUluMqCUTNnzqTz9+rVSxCul8TdnOnp6S1btiSEmJiYHDx4UFAM91WpVLZt25YWxn9gLz/m/OyzzzRDSjpDcnIy1TYxMeG/oVOhUHDPdB0+fLiOH+OIiAjubsuixJyLFy/O6ycqNjaWFmlvb6//Gzr5MaeTk1NOTg6Hxj9ITU2lkxNC8IZOvgyOIQABCEAAAhCAQDkRQMxZTi50ud7mhg0bNm/eXK4JsPniFoiLi/P3979///6qVasyMjKKe3rMB4F8BG7cuPH27duYmBj9fx0+nxlxGgIQgAAEIFBaArdv36aJTpMmTSIjI3UsGxwcXLFiRdpZM+Y8ceJEkyZNWrZseePGDR2T0BsEGzZsKMg/dMecz549a9q0aePGjbdu3apj8lWrVhFCbGxstN6UmddAlUpFU6VatWpx7zgUdE5JSZk/f/6sWbOWLFnCnWIYplmzZoSQWrVq+fn5ce2aB8nJyfXr1yeEmJmZ8ZNULua0trZ+//695kDaojXmZBiG3uFaq1atJ0+e5DWWZVmtq6tUKvp0Vjs7u9evX2sdnpSUNHv27FmzZi1dulRrB62NHh4e9Idk5MiRWjtwjWFhYdz7HYOCgrj2Erqb88yZM/SFmkOGDBGkqvylWZZ9+vSplZUVIWTu3LncDYv8mPPSpUuCIfyv9LWaEokkNDSUaw8KCqL3Q1eqVOnVq1dcu+aBUqnknv9c6JjTxMTk8ePHmpNzLR999BH9hYO8Qm6uJ3fAjznPnTvHtWse0J9MQkhB76vWnAotEIAABCAAAQhAAAIGJ4CY0+AuGQousICzs/OIESMKPAwDIKBNQK1W5+bmTp061c7OTv/fRNY2E9ogUEgBhmH69es3evToQo7HMAhAAAIQgECZCnCP6Jw5c2a+hcyePTuvmDPfsQzDZGZmtmrVihDSoEGDqKgo/hDdMSe/p9ZjtVqdk5Pj4OBAY86bN29q7ZZXY6dOnei+hg4dmpiYqOejQQICAuiobt26SaXSvCan7WPHjqWdr1y5wvXkYs6xY8dyjZoHWmNObvXu3bvnu/rnn3+uuXq7du1o45gxY5KSkorrt7WcnZ31uTmYbnPSpEmEECsrq6tXr/I3XhJ3c7q7u9Nn8ApuiuWvS4+lUmnz5s0JIU5OTlwgysWcZmZmed3ISIcPHjyYLsRPzb29velvCbi5uWmuKGjx9PSkl6bQMaeVlZWOG0ZZlu3duzchpEmTJoJ/EwWV8L9yMWe+AsOGDaP1P3v2jD8DjiEAAQhAAAIQgAAEyoMAYs7ycJWxRwhAoHgElErl4cOHPT09g4ODfX19i2dSzAKBggi8ePHC29v73bt3+f71YkFmRV8IQAACEIBA6Qlwr1E8e/ZsvqtyT6bVvJtT69i0tLTAwMCrV696eHh8/fXXXJpYLDFnVlZWcHDwrVu3/v7776VLl/bq1YsmKzY2NgWNOfft20df2Uhf/zlz5szz58/rfuAqy7Lbt2+nK06YMCE1v8+KFStoZ/4NqVzMuW3bNq2AtFFrzPn777/rv/ry5ctp599++41baOfOnWZmZrS9du3ac+bMuXjxov739nHz8A/UarWNjQ0hxNLSUp//f75582ZagIeHB3+ekog53dzcCCFVq1b18/PTfbni4+NpZN68eXPu4bRczGlvb88vVfOYZrcSieT58+fcWU9PT/rcY91Pdab9X7x4QVkKHXN269aNW1rrAdVo0qSJjtuIBQO5mLNVq1aCU4KvU6dOpfX7+/sLTuErBCAAAQhAAAIQgIDRCyDmNPpLjA2yDg4OTk5OgIBAEQWUSqVcLp8wYcKgQYO4X7Iu4pwYDoECCahUqunTp1erVi01NbVAA9EZAhCAAAQgIBIBtVrNpYP6hFIRERE0vcgr5qR3VXp5ec2aNat27dpcVCM4KFzMqVarZTLZ48ePFy9eTJ8LKpiWfi1EzKlQKJYuXcplfnQeiUTStWvX3bt35+TkaL2/c+nSpVoL0N24atUq7upzMeeJEye4Rs0DrTHnkiVLdC+k9ewPP/zAzS+TyRYsWKC5awcHh3379hXuhfdZWVl0XWtr63fv3nFr5XVw5swZ2v/HH3/k9ymJmLNr165aTXQ01qlTh/tVNi7mdHR05Jeqeaw15ty9ezddSPe1prMlJydzVWVmZvKX4E6NGzeO306Pg4OD6UBnZ2fNs/yWosSc3bt350+leYyYU9MELRCAAAQgAAEIQKD8CCDmLD/XuvzudO/evYcOHSq/+8fOi0MgMzNz6tSpO3bsSE1NLa7naxVHXZijHAmkpaUdO3YsNjY2ODi4HG0bW4UABCAAAeMSyMnJ6dChA81F9Hl2JcMwtLPWmDM4OHjhwoW1atXiEhruwMTEpHXr1pMmTerWrVvhHlobHR29Zs2axo0bSyQSblp6IJFIGjduPHr0aJrcFCLmpFf12rVrQ4cOrVmzpmD+SpUqOTs779u3T6FQ8K//zJkzBT31+frtt99yk9CY08zM7Pr161yj5oHWmJO7DVefRbk+3333nWD+ixcvDho0yNbWlutDD6pUqeLq6nro0KEC/UJhXFwcHW5jY5ORkSFYS/Pr3bt3aX/BPY4lEXO2aNFCsMd8v1atWlUz5uzTp4/mRvgtWmPOn376iS4neDwvfyB3zDAM93NeuJhz2LBh3GxaD4oSc/bu3VvrnFwjYk6OAgcQgAAEIAABCECgHAog5iyHFx1bhgAECiYQGRnJMMyGDRsQLxUMDr2LVeCnn36ytrZ+8OBBsc6KySAAAQhAAAKlKqBUKrt06ULTl+jo6HzXTkxMpJ01Y87w8HD+HZYVK1bs16/f6tWrz58/HxwcnJubyzCMWq3+6quvChdzfvzxx1woZWlp2aNHjyVLlpw8efL58+fZ2dl08j///LNw7+bkNq5WqxUKxbVr10aPHl25cmVuRfqqxcmTJ/Pfd0jf9UgIGT9+/BW9PxEREdxyNOa0srK6ffs216h5oDXm5O4l/eKLL/Re/Ap/dW4htVotl8svXbo0YsQI+v5IbuMSiWTOnDn6/1pheno6HWttba3PT9SlS5do/7Vr13L1sCxbEjEnjdhr1qy5f/9+PcXu3LnDMAwtjLubs3Ax565du+hO9+3bx9+p1uPs7GzuEiDm1EqERghAAAIQgAAEIAAB0Qog5hTtpUFhxSaAh9YWG2W5nCgmJqZNmzanTp0ql7vHpkUhwDDMpUuXEhMTr169qlarRVETioAABCAAAQgUVmDo0KE0UNHnJrObN2/SzoKYU6FQDB48mJ7q3r37oUOH0tPTtVY0b968gsacSqVyxowZdPKmTZtu3749r7dm/vHHH0WMOfk1y+XyFy9e/Pnnn/3797e0tNTc+L59+2jjN998wx+o/3FRYs6///6brr5o0SL9V8y3p0wmCwgI2LFjR9++fem7JAkh48aN0/rYXs3ZGIahbzm1tLR8+vSpZgdBy7Zt2+gudu7cyT9VEjHnyJEjCSF16tR5+/Ytfy09j4sYc54+fZp6rl+/Pt8VQ0JCKEuh382JuznzRUYHCEAAAhCAAAQgAIESEkDMWUKwmFZEAtnZ2Tk5OSIqCKUYiEB6evo333wjlUpfv35doGdnGcj+UKbBCHh7e1tbWx8+fNhgKkahEIAABCAAgbwFvv32WxqobNy4Me9e///Mxo0baWdBzPnkyRP6jM26deu+fPlSxzyTJ08uaMwZFhbGvT/y1q1bOib/8ccfizHm5BZSKBQnT56k6Z1EIvnnn3/oKR8fH6rh4uLCdS7QQVFiTm51V1fXAi2qZ2e5XH7gwAG6QYlE8vDhQz0HtmvXjhBibm5++fLlfIfQR++am5ufP3+e37kkYs5FixYRQiwsLAIDA/lr6XlcxJjzn3/+qVSpEiFk6NCh+a547do1Ko+YM18rdIAABCAAAQhAAAIQEJsAYk6xXRHUU/wCp06dOnfuXPHPixmNV0CtVicmJoaEhPTr18/Hx8d4N4qdGYDAy5cvExISrly5kpWVZQDlokQIQAACEIBAfgK7d++mgYqbmxv3GkKtg5KSkho0aEA7C2JODw8P2j5mzBitY7lGR0fHgsac169fNzExIYR07NiRm0frAb0ztaDv5jx06FDHD58DBw5onZZlWYZhnJ2d6R737t1Lu6WkpJiamhJCmjRpovVhsNxsubm5M2fOdP3wefLkCddelJiTv3pkZCQ3p+YBf3XuDsu9e/fSXR87dkxzCG1hGKZ3795010eOHMmrm6B9/fr19Bm/CxYsEJwSfI2MjKTPyK1Vq1ZAQAD/bEnEnL/99hsN4wXvAeWvS49TUlJGjBjh6uq6fPly7oG9RYw5g4OD6QtQTU1Nnz9/rrko16JSqfivfcVDazkZHEAAAhCAAAQgAAEIGIQAYk6DuEwoskgCeGhtkfjK5eCrV682b978/fv3CJbK5fUX0aYzMzNr1669cuVKEdWEUiAAAQhAAAJFE4iOjqbZj42NjZeXl47J9u/fT1M9QkheMeeKFSt0zPDo0SM6Q4MGDaKiovg9c3NzBw4cSAipWbMmv51lWS7mHD9+vOAU/+urV6/oTZ8FjTmvXLlCk7zu3bvreGTI7NmzabetW7dy69IU0MTERPDMVa4DPXj8+LGVlRUhxMTEhP/E3aLEnCzL9urVi86pe/VHjx5prn7u3Dm6HScnJx0PpJ00aRLt5uHhIdhUXl/DwsKsra0JITVq1FAoFHl1Y1l2/vz5dPIuXboIIvaSiDlv3bpFU1ULC4vw8HAdhdGklhAyd+7c4no3p1Kp7Nq1K93v9OnTdbz4IDExsWrVqrQn7ubUcZlwCgIQgAAEIAABCEBAnAKIOcV5XVBViQsoFIorV64cO3bM39+/xBcT2QIRERHHjh07ceJEdHS0yEor+3KSkpIePHjw9u3bFStWpKSklH1BqKAcCyQnJ8fExDx9+vTdu3flmAFbhwAEIAABIxSg7ywkhHzyySfv37/XusOgoKBu3bpx0Ysg5uQys759+8rlcq0zPHz4sEaNGnQGOzu7vGLO6tWrC4Y/fvyY3s1Zv379vH7pLTw8vHPnznTyChUq3LhxQzCJjq/p6ek0BaxWrdr169e19kxKSmratCmd39PTk+tz4MAB+jDbRo0a+fj4cJEY14FlWZlMNm7cOJolC25wLGLMuX//fm71R48e5bX62LFj6epff/01V1haWhrdda1atbjH8HJn6UFCQkKdOnXori9evCg4m9dXuVzOvfB1/Pjx8fHxWnteunSJTm5qanrixAlBn5KIOdPS0jp27Ei3M2bMmOTkZMGiLMuq1eq7d+/Sp8sSQm7evMn1KeLdnCzLnjlzhibxtWvXPnXqlNakMyIiwsXFhRZJ/5nX3ZyjRo3iauMOgoOD6Si8m5MzwQEEIAABCEAAAhCAQCkLIOYsZXAsVwYCo0ePnjx5smDhhISEBg0amJqaLlq0SHDK6L8ePnzY1NTU2tpa8EIao9+4PhvcsWOHra1tXFyc1r+10WcG9IFAcQmMHz9+0KBBxTUb5oEABCAAAQiIR8DHx4cGkBKJpGXLlvfu3RPUduPGjdq1a9MXLtIQRRBzJicn03YrK6tDhw4JhisUir179zZq1Ij2IYTY2toKnvLKMIyrqyshxNTUND09nT9DZmYm927OZcuWcQ8RpX1UKtWFCxfatm1LkzxCiKWlZUHfkbF48WJaW+PGjUNCQvir0+jryy+/pPNbWlryf/cuJSWFi1dpdiUYGxsb+9lnn9F7WJs1axYTE8PvUMSYMzk5uVOnTrTy2rVr8/NXukpsbKybmxtdvXnz5oLV582bR8c2bdr0zZs3/MJYllUqldOmTaMdLC0t09LSBB10fL1//z4dSAjp16+fIKhjWfbAgQNVqlShfSZNmqR5O2lJxJwsyz548IBqmJqafvzxx/w7a+l2/vnnnyZNmtDCPv/8c/7dvUWPOVUq1eeff04nr1ix4tatWwV/xomNjeXu+OQABXpSqZSe+vTTT/nl0foRc+r4scQpCEAAAhCAAAQgAIHSEUDMWTrOWKUsBdzd3desWSOoID4+nv4y78KFCwWnjOArwzDPnj3z8fHh3oXD39ShQ4cIIRYWFgX96xj+JMZ37OXltWfPnri4uJcvXxrf7rAjwxLIzs5+//59WFiY7hcpGdamUC0EIAABCECAE1AqlevWraP39hFCKlasOG7cuF9++eXs2bOHDx+eNm0afYRmlSpVTpw4QQNRQczJsuzSpUstLCwIIWZmZsOHD9+3b9/58+f37NmzYsWKNm3a0GDmo48+oimORCJxd3f/448/+Ona9OnTabehQ4eeOXPG09OTu4Nw586dFSpUoCFo3759PTw8zp07d+DAgTVr1vTs2ZPe62lra8vdBjd27Ng9e/bkdZMit3HuICYmhssLLSwsxo8fv2vXrjNnzpw4cWL9+vXNmjWjhdna2mr+YuLDhw+5Gz0tLS1Hjx69Z8+e8+fPHzhwwN3dncbDhBBra+vTp09zK9KDIsacNLcTrL53716tq585c0awekREhL29Pd2alZXVpEmTPDw8zpw5c/z48bVr1zZu3Jieql27dl43uQom5H/ds2cPd/Nu/fr13d3dPT09z58/v2/fvuHDh1taWtLJHR0dtT4/toRiTpZlN2zYwP2o16tXz93d/dSpU2fPnt2xY8egQYNoVRKJpF+/foJAvegxJ8uywcHB7du3p6tYWFi4urru3r373Llzp06dWrx4cc2aNelrTfv160fjWEJIdnY2H5ZlWfpDVa1atV9//fXChQt79uzh/sSEmFNgha8QgAAEIAABCEAAAqUvgJiz9M2xoigEjDvmlMlkXbp0qVq1auvWrTW5EXMKTOhfKOzcuXPq1KmCv1wQ9MRXCJSOwJ49e1q0aCG4s6R0lsYqEIAABCAAgdIRyM3N3b9/f/Xq1WkAQ/9pYmLC3SJpY2Nz9uxZhmHyijkzMjJGjBjBH87lNLTRyckpODj4+PHjNA2ljQcPHuQ2eOHCBW64qampiYmJk5MTPatWq5ctW0bjTNpHMLm9vf0///zz6tWratWqcZPo/5wYtVodGBhIX7TJDedvnyas+/btE9x+R8t78eIF/4m+NOvl6AghLVq0uHHjhubYosecLMs+f/5ccAugmZkZf/WWLVvevHlXJePoAAAgAElEQVRTc3W1Wh0QEODo6Mhtmb7pkz/W1NT06NGjWh+vyl04rQdqtfr8+fPcLZs0vePuyqWeY8aMiY2N1Tq85GJOmUy2a9cu7rG0tDD+j5ZEIhk9erTgbmOWZYsl5mRZNjw83NnZWYDM//rFF1+8ffuWXhRra2vNCzdz5kzuktFrvWXLFsqImFPrjxMaIQABCEAAAhCAAARKUwAxZ2lqY62yEXBwcOD+woKrwOhjzubNmxNC6tWrx22ZO0DMyVHQgyVLlqxatUqlUhXi71MEU+ErBIoooFQqw8PD4+LiuLtJijghhkMAAhCAAATELPDy5cvZs2d37ty5QYMGNWvWrFatWoMGDTp16rRkyRLu8Z5jxoxxcXFZv3695q+jqdXqU6dOOTk5tWzZsk6dOtWqVatXr16LFi0GDRr0999/0wdsZmdnf/XVV507d27durWDg8OtW7c4EJpltmzZ0vbDp3HjxnPnzuWfvX379uDBg1u3bl2vXr1q1arVqVOnWbNmTk5OW7dulclkLMvm5ub++uuvXbt2tbe379Kly65du7jh+hxIpdKff/65Z8+e9vb2derUqV69up2dXatWrbp3775y5cqEhAQdk8hksq1btzo5OTVt2rRu3brVqlWrW7du69atHR0dv/vuO/5zbvmT3L5928XFZdiwYYGBgfx2wbGXl5ebm5uLi8uTJ08Ep+hXravb29s7OjouWbIkr9Xp2Ozs7LVr1/bs2bN169Z16tSpUaOGnZ1d69ate/TosXbtWt1jtRbDb5RKpatXr+7Zs2eTJk1q1apFWVq1avXZZ5+dPHlS81m13NgFCxa4fPhIpVKuUc+Ds2fP0rGhoaF5DXnz5s3cuXO7dOnSsGHDmjVrVq9evVGjRh07duzfv7/mDbt0kszMzAkTJri4uKxcuTKvaWn7pk2bXFxcXF1duX9rBP1zcnL++OOPPn36NG3atHbt2vTflFatWg0ePPjs2bM0UqVBZtu2bQVjWZYNDQ11dna2s7Ojnvb29sePH6fdkpOT6d5///13zYH8lpUrV7q4uEyfPl3/3+TLzs6eNm2ai4vL8uXL+VNpHm/ZsoWWIXhOsmZPtEAAAhCAAAQgAAEIGJ8AYk7ju6bYkVDg2bNnmg9+RMyJh9ayLOvv7y+Xyy9evHj//n3hzw2+Q6AsBHx8fFq2bHn79u2yWBxrQgACEIAABMpAQK1WJycnh4aGBgYGBgQEhIaGJiUlFeiXz7KysqKiol69evXs2bOQkJD3798rFAr+TugSMTEx6enpgplVKlVUVFTgh094eLjgrYQsy8pkspiYmJCQkICAgFevXkVGRmrGYKmpqTExMSkpKZpBLL+MvI6zs7NjYmJevXr1/PnzN2/eREdH658DSaXSyMjI4ODggICA4ODgmJiYrKysvBYq9vZCr65Wq4uy63w3kpWVFRERERQURFmioqJ0BJz5zlaMHVJSUsLCwgIDA58/f/727dvExES5XF6M8+ueil6vly9fBgQEhISEREdHcywnT56kMeeIESO0TpKZmfnmzRvux0zzJZ1aR6ERAhCAAAQgAAEIQAACpSCAmLMUkLFEGQsEBARo/rYyYs5yHnOqVKrc3Nw+ffrk+6vBZfzji+XLk0BUVFRycvLmzZsL95ek5YkKe4UABCAAAQhAAAIQ0CWQm5t7586dy5cvX79+nYsztQ5gGGb+/Pk05ly3bp3WPmiEAAQgAAEIQAACEICAaAUQc4r20qCwYhMo4kNrZTLZ69evb9++/c8//7x580b3HxG1Fs0wTHx8/KNHj7y9vQMDA7Ozs7V2y6sxPT09KCjI29vb19dXz4c4yWSygj60Ni0tzd/f/9atW/7+/snJyXkVYxztMplsyZIl79+/f/36dVpamnFsCrswdIHIyMgePXps27bN0DeC+iEAAQhAAAIQgAAEylwgMzOzQYMG9O2nV65c0VFPSkoK/cOjpaVlZGSkjp44BQEIQAACEIAABCAAAREKIOYU4UVBSaUhkO/dnLm5uUFBQfPmzatSpQr9zVb6T1tb20WLFr19+zavvHPv3r3Dhw+fOXNmUlKSQqHw8vLq37+/qakpN0mlSpXGjRvn5+fHMIyOrWZmZl64cMHV1ZU/1tTUtE+fPhcvXqRPsrp8+fLwDx8umDxy5Mjw4cOHDh1asWJFQoiVlRXtMHz48GPHjtHl+O/mVKvV/v7+48ePt7Cw4Cq0tLQcMGDAjRs36DuHdBQpOHXgwIHhw4fPnj07rzhWoVCMGTNm+PDhn3/+eUBAgGA4/ZqcnDxjxgw6j9YORWlUq9UpKSlZWVlubm6nT58uylQYC4FiFMjMzExPT1+/fn14eHgxToupIAABCEAAAhCAAATKrcDkyZPpH/E+/fRTra/tVKvVsbGxTk5OtNvAgQPz+kNuuTXExiEAAQhAAAIQgAAExC+AmFP81wgVFlVg+fLla9euFcyiO+ZUq9Xff/99jRo1uORPcFCvXr0//vhDMCf9+vXXXxNC6tevHxkZuWLFCho3CoYTQmrWrLlhw4a8ks7Xr1+7ubnxo0f+DGZmZi4uLqGhoevXr6ftUVFRdPUVK1bwe/KPV65cSftwMefZs2c9PDzq1q3L78YdV6xY8csvvyzQwzPXr18vkUjMzc0fPHigFefevXt0fhMTk507d2rtc/v27UqVKhFCZsyYobVDURojIyMdHR2fPn2akZFRlHkwFgLFKCCVSseMGbNo0SLBi8SKcQlMBQEIQAACEIAABCBQ3gSioqLat29Pb+js3r37/v37k5KSOITo6Oht27Z17NiR+wPatWvXuLM4gAAEIAABCEAAAhCAgKEIIOY0lCuFOgsvMHLkyIkTJwrG64g55XL5l19+Sf+wZ2Zm1qpVq3Xr1l29evXixYtLlixp1KgRvb3SxMRk7969mjkljTlr1Kjh6OhICDEzM2vZsuWSJUtOnTp18ODBRYsWtWjRQiKREEIsLCxOnDghKIxl2YyMDAcHB+5Pm40bNx4/fvyuXbsuXLjw008/tWvXjhZQq1atGTNm0G5czHn06FGtd3OOHDnywoULdC0ac5qZmfXo0YMQYmpqWqdOndmzZx89evTkyZOrVq3q2rWrmZkZnXnZsmX6J503btyoUKECIeTrr7/W3BfLsqtXr6bTEkKmTJmitc8vv/xCq7p9+7bWDoVrlEqlAQEBWVlZW7duzc3NLdwkGAWBYhdgGCY7O/vYsWMnT54s9skxIQQgAAEIQAACEIBAeRa4d+9e/fr1uT+CmZiY1KlTp0WLFtWqVaN/JqWnqlateubMmfIMhb1DAAIQgAAEIAABCBiuAGJOw712qLxIAjpizjNnzlhZWRFCzM3NV69eTR8Pyy2WkJCwYMEC+mfCypUr+/j4cKfoAY056R8XK1WqtHnz5vj4eH6f9+/fL1q0iHb4+OOP+adYllUoFKNHj6ZnK1asuGLFitjYWH6fjIyMn3/+uWLFihKJxMbGhvbkYk7aU593c9KBEolk7ty5ERER/CVSU1O3bNlCO9jZ2b1+/Zp/VsdxQkJC7dq1CSG1a9eWy+WCnjKZ7LPPPqPTEkLs7e0FHejXvn37EkKaN28u2JTWzvo3+vn5tWrVSnAt9B+OnhAoIYEdO3ZMmDAhKyurhObHtBCAAAQgAAEIQAAC5VaAYZhnz57Nnj27cuXK3B/E+AcVKlQYMWLE/fv3yy0RNg4BCEAAAhCAAAQgYOgCiDkN/Qqi/vwFHBwcnJycBP3yijkZhunfvz/NOD09PQWjuK9r1qyhSefs2bO5RnrAjzlXr16tebsny7LJycmtW7emjw8SxKje3t40vJRIJJs3bxZMTr+q1WoPDw/+r98KEkH9Y85hw4bl9f4V6iCRSC5duqS1DK2NXEbr5eUl6BATE9OyZUtCiKWlJSFEIpFoho4pKSn0RtKhQ4cW1z2XwcHBv/zyi1wu5z+jSVAbvkKgTATkcvnLly9//PFH/e+ZLpM6sSgEIAABCEAAAhCAgEELZGVl3b59+6effho2bFiPHj0+++yz2bNn79y5Mzk52aD3heIhAAEIQAACEIAABCCAmBM/A8YvcPLkybNnzwr2mVfMeezYMfpIWFdXVx33VyUmJtrb2xNCPvroI8Hr9LiYs0OHDnnNwDDMrFmz6G/R+vr68mtbtWoVzS8/+eSTnJwc/in+sUKh+OSTT7jfwy1czNmwYcPU1FT+tPzjo0ePmpiYEELyegspvzN3fPPmTVrVwoUL1Wo1186yrJ+fn+WHz8KFC2mfX375hd+BZVn6xFpCiIeHh+BUIb7KZLLs7OybN2/OmDFDcJkKMRuGQKB4BYKCgkaMGIH0vXhVMRsEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQfgQQc5afa11+d5rz4SPYv9aYU6VSffTRRzSBu3XrlmCI4Ku7uzvteefOHf4pLubcs2cPv11wvH79ejr88uXL/FMuLi6EEBsbm8DAQH675vGLFy+4N2gWLuacM2eO5rRci5eXF33R5oYNG7hGfQ7q1KlDCOnZs2dGRga//48//kgIqVGjhr+/P72hs127dvwoVKVStWrVit7kmpCQwB9buOOVK1e6ubkVbixGQaBEBVQqVU5OzuLFi2UyWYkuhMkhAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCBirAGJOY72y2Ne/Avo/tDYkJKRixYqEkMqVK+u4k5JOvW/fPppTLlu27N/FWJbGnFZWVrpzyj179tDhJ06c4A9v164dIaRly5ZxcXH8ds3jnJwcBwcHOkkhYk4TE5MdO3ZoTsu1+Pr6Vq9enRCycuVKrlGfg6lTp9LXc75584bfv3PnzvSVnDKZ7PPPP6dPr3337h3X58WLF1WqVCGEDB06lGss3EFAQMDr16+fPHly8uRJfpJauNkwCgLFKyCXy6dPn/7kyZPinRazQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAoVwKIOcvV5cZm/xXQejfnzZs36V2GPXr0iMzvc+DAARox9u/f/995/xdz1qxZMyIigt8uOD548CAdfvz4cf4pmiz26tVLcCskvw89zs3NHTFiRKFjTnNzc8HSgiWePn1qa2tLCPn+++8Fp3R/PXLkCH3wLz/Bff/+PS114cKFLMueO3eOEGJqanr+/HlutgMHDtCBV65c4RoLdzBw4MBPP/20cGMxCgIlLcAwzNy5c3U8MrqkC8D8EIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASMQAAxpxFcRGwhH4F9+/YdOXJE0ElrzHnmzBlzc3Oaxun/z86dO/Mnp3dz1qtXj3+fIr8DPdYac6alpdEXcw4dOjTfd0kyDDNnzpxCx5wWFhZnzpzRLIxrKXTMGRAQQPPRwYMHc7Pt3r2blurj48OybGJiYrVq1SQSyerVq7k+06ZNI4Q0aNAgJiaGayzowS+//OLt7R0dHY1XHhaUDv1LQUCpVK5Zs+bQoUO4ybgUtLEEBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgYNwCiDmN+/pid/8noP9Da48ePcq97VL/mLN58+Z8aBpz1q9f//379/x2wbHWmDM8PJyuq0/MybLsN998U5SY89y5c4Kq+F8LHXMqFIrWrVvTmzXT09NZllWr1aNGjaJPsqXpTk5OTs+ePenzabm8x87OjhAyaNCgwr2tkGEYlmXnzZt37Ngx/kZwDAHxCKhUqm+//fbatWviKQmVQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAwUAHEnAZ64VB2UQW03s15/fp1+tDafv36Bev9iY6O5ldTlJhTqVRaWVkRQpycnLKzs/nTah6rVCr6FkxCSCHezWlhYVFCMSfLsj/88APNX/fv30/v3ezYsSMhZOzYsXQjKpVq9uzZhBA7OzuVSsWy7D///EOHbNq0SXOz+bYolcoBAwbcuXNHpVJxuWm+o9ABAqUmwDDM4cOH169fL5VKS21RLAQBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAwIgFEHMa8cXF1v6/gKur66hRowQcWmPOZ8+e2djYEEI6deok6K//16LEnCzLNm3alBDi4OCQlpame1G5XO7q6irCuzlZlo2IiKCFDRs2jGGYwMBA+s5RDw8PblMeHh6EEIlE8vz5c5ZlR44cSYeEhIRwffQ88PX1zc3NvXLlCl52qKcYupW+gFqt/uOPPyZOnEhvOy79ArAiBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEjE0DMaWQXFNvRIrB+/fpff/1VcEJrzBkbG1u5cmVCiLW1dWZmpmCI4Gt8fPzTDx9BtFbEmLNv376EkFq1ar1+/VqwouBrampqs2bNxBlzsizbtWtXQkjr1q1jYmIOHz5MCKlcufLdu3e5XQQEBNDiv/nmm4SEBCrfvXt3roM+ByqVKikpqU2bNsHBwfr0Rx8IlInAs2fPFi5cmJycTO9dLpMasCgEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAASMTQMxpZBcU29FXQGvMqVQq69atS7O3P//8U8dcKpVq/vz51T58BA9ZLWLMOWfOHFrAsmXLdBTAsuzWrVslEoloY85169YRQipUqPDo0aPRo0cTQho1asR/wK9KpbK1tSWE2NraXrhwwdzcnBBy6NAh3bvmn42Kipo5c6ZarY6Li0N6xJfBsdgEvL2927Rpk5SUJLbCUA8EIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAcMVQMxpuNcOlesr4ODg4OTkJOitNeZkWXbDhg00OHR0dNTx2Nj37983b96cEFKtWrWUlBT+5EWMOT09PS0sLOi9j+Hh4fyZ+ceRkZH09kfdMWfdunX5o+jxoUOHCCEl+m5OlmW9vb3pE4BXrFhRtWpVQkj//v0Fj+v86quvaP3Dhg0jhNSsWTM+Pl6zYM0WlUoVGxsbFhY2evRoHZdJcyBaIFDKAikpKStXrnz37l1ubm4pL43lIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgYtwBiTuO+vtjd/wmEhoa+fftWYJFXzJmVlfXRRx8RQszNzSdNmiSXywUDWZbNysr69NNPTUxMCCGTJ08WdChizMl/FK2joyP/9kduodTUVCcnJxoQ6o45a9SowY3iDkon5oyKimrSpAkhpGLFirTI33//nauBHvj5+dFT9FZOFxcXqVQq6KP1q4eHR9euXZVKpUwm09oBjRAQiUBUVFSHDh2ePHkiknpQBgQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABoxFAzGk0l7IMNqJWq1+9ehUYGFgGaxdkyfv37/v4+AhG5BVzsiz7559/0tSNEDJgwIDHjx9nZWWxLMswTGpqqre398CBA2k499FHH/n7+wtmLmLMSe+DpLc/EkLat29/79497obFzMzMe/futW/fnhAikUisrKy0xpwMw7Rr1472efHihVqtVqlU3M1kpRNzMgwzaNAgWh4hxNTUNCIiQmAll8vr1avH9Vm7dq2gg+bXsLAwX1/flJSUI0eOaJ5FCwTEI6BSqY4cOfLs2TOtvy0hnjpRCQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABAxVAzGmgF04UZSsUirFjxw4bNkwU1eRdRIEeWsuybE5Ojru7O83eJBJJzZo1O3XqNGDAgN69e7dt27ZSpUr0VOXKlR8+fKhWqwUrFz3mZFl279691tbWdKEqVaq0a9euT58+Tk5OHTt25BLQVq1a0XdeEkISExMFZQwfPpwOb9SokbOz8yeffOLu7k77lE7MybLs4cOHaQ2EkA4dOmhaKZVKNzc3rs+jR48Eu9D8umnTJldXV812tEBAbAK5ubmDBw8+fvy42ApDPRCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEjEMAMadxXMey2YVarY6LiwsLCyub5Yu2qo67OenEO3bsaN68uZmZGRfCcQcVKlTo06fPw4cPtZawaNEiQoidnd379++1dqCNBw8epBOeOXNGsxvDMJ6enm3btuXuK+VWl0gktWvXnjNnTk5Ozty5cwkh1tbW3J2a3FQ+Pj5VqlThRhFCRo8eTc8eP36cEGJpaXnx4kWuv+bB06dPbW1tCSGrV6/WPKtPS2ZmJvfE2m+//VZziFqtXr58OS2yYcOGKpVKsw/XcvjDR6FQCF6GynXAAQTEI+Dr63vv3j2GYZRKpXiqQiUQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIxJADGnMV3N0t5Ldnb2mjVr/Pz8SnvhAq63YMGCJUuWCAYpFIo7d+5cv349JCREcIp+VavVERER586dmzNnzsCBA9u3b9+jR4+pU6f+8ssvt27doo+x1TowNDT0+vXrd+/e1f2kytjY2OsfPjpCu7i4uMuXL8+dO3fAgAHt2rX7+OOPx48f7+HhERgYKJfLFQrFkCFDaKSqNUq5cePGhAkTunTp4uDg8MUXX1y4cIEWnJSUdP369Zs3byYnJ2vdAm3MyMi4ffv29evXIyMjdXTTferBgwd0m1FRUVp7vnv3jnYICAjQ2oFlWZlMlpOTs2vXrr/++iuvPmiHgKgEVq1a9d1334mqJBQDAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMDIBBBzGtkFLdXtpKWlDRw40MvLq1RXLfhikydPnjt3bsHHlc0ItVqtVCp139dIK0tNTa1fvz4hpHPnzvr0L5v9FHlVpVL56aef7ty5s8gzYQIIlIZARESEt7e3XC7X+ssHpVEB1oAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUD4EEHOWj+tcMrtUq9WZmZmaj0stmdXKy6z79+8fNGjQkCFDXr16pXvPFy5ckEgkhJBRo0YxDKO7s4GePX/+fExMjJeX18uXLw10Cyi7vAmcPHmyZ8+eum/mLm8m2C8EIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgZIQQMxZEqrlZc63b9+2adNG/Lt1cHBwcnISf520wi1bttDwcsyYMTru0UxMTGzcuDEhRCKRbNu2zVB2p3+dCoUiKSmpUaNG+/fv138UekKgDAWysrIuXryYlZUllUrLsAwsDQEIQAACEIAABCAAAQhAAAIQgAAEIAABCECgnAgg5iwnF7pEthkXF7dly5YSmbpYJ718+fKNGzeKdcoSnMzHx6dSpUqEEHNz8w0bNshkMs3F3r175+LiQj58bG1t379/r9nHoFuioqKmTJkSGhoaHh6uVcCgd4fijVXA19e3fv36uPPYWK8v9gUBCEAAAhCAAAQgAAEIQAACEIAABCAAAQiITQAxp9iuiCHVk5mZmZqaKv6KExISEhMTxV8nV+FPP/1kZmZG79Ts16+fp6dnVFRUfHx8bGxsSEjIkiVLbGxsaMZpY2Nz7do1bqARHDAMk5qaKpVKBw0aFBwcbAQ7whbKg4BKpbp161ZmZmZSUlJ52C/2CAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEBADAKIOcVwFQy1hm+++eaLL74Qf/WG9dBalmUZhlmzZk2FChVolkkIsbKyql69esWKFenzbGl7nTp1jh49Kn7/AlX46NGjTp06vX//Hu98LZAbOpetQHR0dOPGjf/++++yLQOrQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAoVwKIOcvV5S7mzWZlZcXExBTzpJjufwJBQUHOzs6VKlWytrY2Nzc3MTExNTU1Nze3tLSsWrXqlClTjOz9fzKZ7ObNmwzDXLx4UalU/o8B/wkBsQtERETEx8fHxMSo1Wqx14r6IAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQgYkQBiTiO6mKW+lU2bNj1+/LjUly3wgtu3b9+9e3eBh4lggEqliouL8/X1PX369O7du/ft23f69Ok7d+4Y34MxGYY5d+5cnz59MjMzRQCPEiCgr4BcLh84cOCCBQuQzetLhn4QgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABIpJADFnMUGWv2kYhrG0tPzzzz/Fv/WePXsOHDhQ/HWW2wo9PT0XLFigUqnwoNpy+zNgoBtnGCY6OloulxvEW4oNFBllQwACEIAABCAAAQhAAAIQgAAEIAABCEAAAhDISwAxZ14yaM9fQCqVymSy/PuhBwTyEMjMzIyKijp16tSaNWtwM1weSGgWr8DmzZudnZ3xX4PivUKoDAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEDBqAcScRn15S3Jzvr6+zZo18/HxKclFimfuXr16ubi4FM9cmKX4BFQqVcuWLceMGaP+8Cm+iTETBEpDICUlRaVSRUVFlcZiWAMCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQ0BBBzapCgQT+B4ODghQsXhoaG6te9LHtt27bNIB6uW5ZGpbu2SqU6e/bs06dPfX19Hz58WLqLYzUIFINAUFBQ+/btMzIyimEuTAEBCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKFEkDMWSg2DGJZtVrNMIxarQYGBAoqIJfL27Ztu2zZsoIORH8IiEEgPT1dqVSGhITgvwDFcDlQAwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIFBuBRBzlttLX9SNL1++vEWLFqmpqUWdqOTHOzg4ODk5lfw6WCF/gfT09OnTp9+6dSshIUEqleY/AD0gIDKBzMzMzp07P3nyRGR1oRwIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAuVOADFnubvkxbXh5OTkp0+fMgxTXBOW3DxxcXHx8fElNz9m1lMgISFBJpNNnz7d399fzyHoBgFRCWRkZDAM4+fnp1AoRFUYioEABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUA4FEHOWw4teDFtWqVTe3t4+Pj7FMFfJT3Ht2rVbt26V/DpYQV+7x3YAACAASURBVJfA69evGzRocO/ePV2dcA4CIhaQyWRDhw798ccfRVwjSoMABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUI4EEHOWo4tdjFvNysrq16/fjBkzinHOkpsKD60tOVt9Zs7Jydm0aVNaWtr169ezsrL0GYI+EBCbgEwmUygUd+/ejYmJEVttqAcCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAQPkUQMxZPq97MexaqVRmZ2cXw0SYwqgFMjIyLl++3KFDh6CgIKPeKDZnzAIMw7i7u7u4uMhkMmPeJ/YGAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQMCgBBBzGtTlEk2xiYmJo0aNevz4sWgq0lXItGnT5s2bp6sHzpWMwOHDh4cOHZqYmBgVFWUQr3EtGQbMavACGRkZAQEBV65cwY+xwV9LbAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAwIgHEnEZ0MUtxKwkJCSNHjnz16lUprln4pebNm/ftt98WfjxGFlwgLS0tNDT00aNH06dPT01NLfgEGAEBsQicO3euZcuW0dHRYikIdUAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgMAHAcSc+EEojADDMLm5uWq1ujCDMcbYBdRq9VdffdW3b9+UlJTc3Fxj3y72Z8wCUqk0MjJyx44dOTk5xrxP7A0CEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAgAEKIOY0wIsmgpK9vLzq1asngkL0KsHBwcHJyUmvruhUNAGGYR4+fHjt2rXo6Og7d+4UbTKMhkAZC8TExNjb2/v7+5dxHVgeAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEtAkg5tSmgrb8BOLi4q5evZpfL7Gcv3v37sOHD8VSjVHXoVQqp06d+tVXX+EmTqO+zuVicyqVKikpaevWrbGxseViw9gkBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAFDE0DMaWhXTBz1hoaGvnv3Thy15F/F27dvIyIi8u+HHkUQkMvl48aN++OPPxQKhUqlKsJMGAqBshdgGGb06NHnzp0r+1JQAQQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCOQhgJgzDxg06xSYOHHizJkzdXYR0Uk8tLakL8aTJ08SEhJ++OGHa9eu4Y2tJa2N+UtagGEYhULh4eHh5+dX0mthfghAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACECi0AGLOQtOV64GqD59yTYDNfxBgGCYkJMTKymrz5s0IOPFDYRwCW7Zs2bhxo3HsBbuAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIGDEAog5jfjiluDWpkyZ8uDBgxJcoFin/umnn7Zs2VKsU2Ky/xNISkpavHhxZGSkp6dnXFwcUCBg6ALqD5/jHz6GvhfUDwEIQAACEIAABCAAAQhAAAIQgAAEIAABCEDA6AUQcxr9JS7+DWZnZ9vb258/f774py6ZGQcOHDh8+PCSmbuczqpWq3Nycvz9/atWrerp6VlOFbBtoxO4du3apEmT8HJZo7uw2BAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBgnAKIOY3zupbornJzc3NycvCE0hJFFvnkd+/e7d27d3BwcFhYGH4SRH6xUJ6eAgzDeHt7u7u7y2QyPYegGwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCJShAGLOMsQ31KUvXbpUvXp1X19fQ9mAg4ODk5OToVQr8jpVKlVkZGR8fPzgwYPT0tJEXi3Kg4CeAmFhYb169UpMTNSzP7pBAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAmQsg5izzS2B4Bbx+/Xr79u0JCQmGUvqePXsOHjxoKNWKvM49e/Y0bNgwOjpa5HWiPAjoL6BWq4OCgkaPHv327Vv9R6EnBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIlK0AYs6y9TfI1RMSErKysgyydBRdBIEXL15s3rxZLpc/f/4cD6otAiSGiktAJpP17dv3yZMn+KkW14VBNRCAAAQgAAEIQAACEIAABCAAAQiIWODNmzfu7u6LPnxEXCZKgwAEjF8AMafxX+Ni3+FXX31lb28vlUqLfeYSmhAPrS0ibG5ubkZGxo8//jhq1Kj09PQizobhEBCVQExMzLBhwy5duiSqqlAMBCAAAQhAAAIQgAAEIAABCEAAAhAQs8DNmzdtbGzIh4/4f3dcqVQ+ePBgy5Yty5Ytmzlz5rBhw/r27Ttq1Kivv/5648aNZ8+ezc7OFrM2aoMABHQIIObUgYNT2gWkUmlmZqb2c6JszczMxO2nhb4yUql04sSJkyZNkslkcrm80PNgIAREKLBx48bjx48rFArx/99xEeqhJAhAAAIQgAAEIAABCEAAAhCAAATKrYABxZzv37/v2LGjlZWVRCKhuazgn+bm5q1bt7537165vZrYOAQMWgAxp0FfvjIoXiaT/fXXX7du3SqDtQu7pKen5/nz5ws7uvyOU6vVT58+jYyM9PDw+Ouvv3Jzc8uvBXZujAIymWzatGk///yzSqUyxv1hTxCAAAQgAAEIQAACEIAABCAAAQhAoKQEDCXmvHfvXrNmzQS5prW1daVKlQSpp4mJyYIFC3JyckqKDPNCAAIlI4CYs2RcjXfW1NTUQYMGrV271oC2iIfWFu5ixcfHt2/ffty4cbm5ubjXrXCGGCVagZCQkG3btik+fERbJAqDAAQgAAEIQAACEIAABCAAAQhAAALiFDCImNPf379SpUr8jHPx4sXe3t4xMTFxcXEhISF//fWXnZ0d18HS0vLAgQPiBEdVEIBAXgKIOfOSQbt2AZVKlZWVhdBLu46xtGZkZPz888/Pnz+/fft2fHy8sWwL+4DAvwKbN2+eNm2aUqn8twlHEIAABCAAAQhAAAIQgAAEIAABCEAAAvoJiD/mlEqlbm5uNMKUSCTOzs7Pnz/X3FxGRsaWLVsqVqxIe1avXj0wMFCzG1ogAAHRCiDmFO2lEWlhYWFhXbp0efbsmUjr01bW6NGjJ0+erO0M2rQIMAyTkpLSpk2bo0ePajmNJggYuEBOTs5vv/3GMAzeLW/gVxLlQwACEIAABCAAAQhAAAIQgAAEIFBmAuKPOb28vCwsLGh42bRp09TU1LywGIbZsWOHubk57TxhwoS8eqIdAhAQoQBiThFeFFGXFBcXt2jRooSEBFFX+d/i3N3dV69e/d82fNMuEBYW1rZtW19fXyRA2oHQavgC9+7d+/TTT7Oysgx/K9gBBCAAAQhAAAIQgAAEIAABCEAAAhAoGwHxx5wjR46ksWWNGjVevXqlmyk9Pd3R0ZHLRNPT03X3x1kIQEA8Aog5xXMtDKOSjIyMmJgYw6gVVRZEQKVSXb58OT09fenSpXFxcQUZir4QMAwBhULx559/ymSytLQ0w6gYVUIAAhCAAAQgAAEIQAACEIAABCAAAVEKiDzmzM7OtrS0pLHllClT9CFctGgR7W9nZ/f+/Xt9hqAPBCAgBgHEnGK4CoZUw9GjR9u2bWtIFbOsg4ODk5OTYdVcytUyDHPhwoUqVao8ffq0lJfGchAoNYH4+Phu3brduHGj1FbEQhCAAAQgAAEIQAACEIAABCAAAQhAwCgF9I85VSrVkydPHvzvEx0dXQogb9++pZmlRCLZuHGjPitu2rSJDqlbt25oaKg+Q9AHAhAQgwBiTjFcBUOqITEx0eBewuzv76/1/dKG5F6Stfr5+U2YMCE9Pd3Hx0ehUJTkUpgbAmUjoFarjx49GhERER8fXzYVYFUIQAACEIAABCAAAQhAAAIQgAAEIGBEAnrGnAzDLF26tFq1ajYfPvXq1QsKCioFhqCgIJpZmpubnzx5Up8Vly9fToc0bNgQf4Okjxj6QEAkAog5RXIhDKaMq1evPnnyxGDK/VDo8+fPS+d/Pg2LhWVZuVyelJR05MiRDh06REREGFz9KBgCegqkpaU5OzsvWLBAz/7oBgEIQAACEIAABCAAAQhAAAIQgAAEIKBDQJ+YUy6XL1u2jGaHhJAWLVqI9i5JhULh4uJCS7W3t5fL5Tr2jlMQgICoBBBziupyGEAxU6ZM2bBhgwEUyisRD63lYfx7yDDMzz//3KtXr6SkpJSUlH9P4AgCxiXg4+Pj5eUVFRUllUqNa2fYDQQgAAEIQAACEIAABCAAAQhAAAIQKBuBfGPO3NzcefPmWVtb0+ywXr16Yn5b1v37921tbWmpS5YsKRtTrAoBCBRKADFnodjK8aDs7GyGYcoxgDFsXa1WR0REhIWF3bhxY+vWrbigxnBRsYc8BBQKxaRJkxwdHTMyMvLogmYIQAACEIAABCAAAQhAAAIQgAAEIACBggnojjlzcnK+/PJLmhpKJJK2bdsmJCQUbIHS6q1WqwMCAurUqUOrrVy5clJSUmktjnUgAIFiEEDMWQyI5WcKqVTav3//x48fG9aWV6xYsW7dOsOquUSrzc3NnT59uqura25ubokuhMkhULYCqampR48ejY+PxzOZy/ZCYHUIQAACEIAABCAAAQhAAAIQgAAEjExAR8wplUqnTZtmaWlJg0N7e3txvlBMpVL5+fktX77czs6OlmppabllyxYju1LYDgSMXgAxp9Ff4uLcYEpKysSJE/39/Ytz0pKfa8SIERMmTCj5dQxgBZVKtXPnzvv377979w4P8DSAC4YSiyawbt26pk2bvnr1qmjTYDQEIAABCEAAAhCAAAQgAAEIQAACEIDAfwTyijkzMzO/+OIL7j7Orl27ZmVl/Wfkf7/I5fLsIn8UCsV/Z83z27179zZt2vTdd99Nnjy5bdu2EomElkoIqVSp0pIlS5RKZZ6DcQICEBClAGJOUV4WsRaVlpYWHh6O/64X6/XJp67U1FSpVDpz5kwPD498uuI0BAxf4NKlSykpKb6+vngss+FfTOwAAhCAAAQgAAEIQAACEIAABCAAAXEJaI05MzIyxo8fb25uTrNDR0fH0NBQ3XUvX758QJE/33zzje5VuLOzZs3ick3+QYUKFdauXatSqbieOIAABAxFADGnoVwpUdR54MCBhg0bhoSEiKIavYtwcHBwcnLSu7txdoyLi+vQocOJEyeMc3vYFQT+K+Dl5VW1atVbt279txnfIAABCEAAAhCAAAQgAAEIQAACEIAABIpBQDPmTEtLc3Nzo9mhRCL55JNP9LnJ0tXVlR83Fu64a9euem5p7ty5Zh8+/Ps4uUU///xz0b5DVM8NohsEyqEAYs5yeNELv+Xw8PDLly/rfs5A4WcvsZEnTpw4c+ZMiU0v9onlcvnp06czMjJ27tz54sULsZeL+iBQZIGAgIDU1FQfHx88mbnIlpgAAhCAAAQgAAEIQAACEIAABCAAAQhoERDEnElJSSNGjDA1NaWRYb169cLCwrQM02gq5ZjTz8/v0IfPrl27vv/++08++cTKyoqLOSUSSZ8+fRITEzXKRAMEICBeAcSc4r02Iqzs/v37vr6+arVahLXpKEn64aOjgxGfYhjGz8/P1tb2r7/+MuJtYmsQ4ASys7NtbW03bNjAteAAAhCAAAQgAAEIQAACEIAABCAAAQhAoHgF+DFnUlJSz549ubCQEGJjY3P9+nV9VvT29j5c5I+Pj48+a2ntk5ycvGbNGn7Y+fHHH2dmZmrtjEYIQECEAog5RXhRRFqSWq2ePXv24MGDDe5Fd+X2obWvX7+eP39+fHz8gwcP8GR5kf57hbKKVeDdu3cJCQnPnj1LSUkp1okxGQQgAAEIQAACEIAABCAAAQhAAAIQgMC/AvyY083NzcTEhB9zEkIcHByys7P/HSDuowcPHrRo0YJuwdLS8vTp0+KuF9VBAAL/CiDm/NcCRxAwMgF/f/927dq9efPGyPaF7UAgL4EBAwZ8/PHHeZ1FOwQgAAEIQAACEIAABCAAAQhAAAIQgECxCPBjTi7gnDVr1rFjx7jIc8aMGcWyVulMcv/+fW4jEydOLJ1FsQoEIFB0AcScRTcsLzOkpaUtXbr00qVLBrfh/fv3HzlyxODKLkrBFy9e7N69e0pKikwmK8o8GAsBQxFISUkJDw9/+fKlni9+MJR9oU4IQAACEIAABCAAAQhAAAIQgAAEICBCAUHMKZFI5s+fn56enpGRMWjQIJoX6v/oWpFscNiwYbRyOzs7kZSEMiAAgXwFEHPmS4QO/18gKSlpxowZp06dMjiRcvXQ2uTk5JcvX4aHh58+fdrgHi9scD9aKFg8AmvWrKlcuTJeES+eK4JKIAABCEAAAhCAAAQgAAEIQAACEDBiAX7MaWJisnbtWu6dWWFhYRYWFjQvdHR0NCAET09PWraZmZlarTagylEqBMqzAGLO8nz1C7Z3mUwWGRmpVCoLNgy9S0uA/k/vxo0be/fuLZfLS2tZrAOBMhbIzc19+vRpRETE5cuXy7gULA8BCEAAAhCAAAQgAAEIQAACEIAABMqHAD/m/OGHH6RSKX/f+/bts7KyopHhsmXLuASU34cey2SyrCJ/cnNz+TPHxcWNGzdu8ODBQ4YMKdDfZvv5+ZmZmdGyk5KS+HPiGAIQEK0AYk7RXhrRFfbkyZOPPvooPDxcdJXlV5Cbm9uoUaPy62Xw53fv3v33339nZmampaUZ/GawAQjoLXD69Olq1arduHFD7xHoCAEIQAACEIAABCAAAQhAAAIQgAAEIFAkAX7MKUgZWZaVSqWDBw+meaG1tbWXl1dei40dO7ZmkT+DBg3izx8eHl6jRg26enR0NP+U7mM/Pz9TU1M6UKFQ6O6MsxCAgEgEEHOK5EIYQBnx8fHbt283xNsE161bt2nTJgMgLmyJCQkJubm5P/300+LFi/E4hcIqYpxBCgQFBcXHx2/atAn/19Mgrx+KhgAEIAABCEAAAhCAAAQgAAEIQMAwBfgxp9a/kAwICOCyxv79+2tGoXTfrq6uNFYsyj+7du3KV4yLi2vVqhWd8PDhw/xTuo+3bt1KR9WoUUN3T5yFAATEI4CYUzzXQuyVhIWF+fj4iL3K8lefUql0dXVdsGCBQqHQ8fyH8geDHRu/QFBQUN26dbdv3278W8UOIQABCEAAAhCAAAQgAAEIQAACEICAmATyjTlZlj19+jS9OdLExGT16tVayy+JmDM7O9vJyYkGlr169WIYRuvSgsb09HQ7Ozs6ysXFRXAWXyEAAdEKIOYU7aURXWF//PGHm5ub6MrSoyAHBwcnJyc9OhpYF5VK5eXllZaWdvz48RcvXhhY9SgXAkUTSP7wWbt2bWRkZNFmwmgIQAACEIAABCAAAQhAAAIQgAAEIACBggnoE3PKZLIxY8bQ4NDU1PTevXuaa9y4cWOfxufvv//WaNPV4O3tLZjZ3d2drmtlZXX16lXBWc2vUql00qRJXKm//fabZh+0QAAC4hRAzCnO6yLGqtLT02NjY8VYWX41vX79OiwsLL9ehnc+Ozu7c+fOu3btMrzSUTEEiiaQk5PTvXv37777Ts9fxyvaahgNAQhAAAIQgAAEIAABCEAAAhCAAAQg8B8BfWJOlmVDQkKsrKy4WySVSuV/ZimxL0+ePKGLEkJat26dkpKie6mdO3daW1vTIXXr1n3z5o3u/jgLAQiIRwAxp3iuhdgr2bp1q46XRYu5+gcPHjx+/FjMFRa0tszMzKVLl8bGxkZERBR0LPpDwNAFVCpVWlra0aNHb968aeh7Qf0QgAAEIAABCEAAAhCAAAQgAAEIQMAQBfSMOVmWPXbsGE06JRLJzp07tb7IsyQEZs2aJZFIaHJZqVKlLVu2xMTECBZSqVR+fn5DhgzhMlFLS8tNmzYJuuErBCAgZgHEnGK+OuKqbf78+SdPnhRXTfpVY2QPrc3IyEhLS5s0aVJUVJR+AOgFAaMSWLNmzZgxY4xqS9gMBCAAAQhAAAIQgAAEIAABCEAAAhAwKAF+zKm78Nzc3PHjx9McsUKFCg8fPtTdv7jOxsXFde/encsvzczMWrRoMXTo0OXLlx88eNDT03Pjxo1OTk61a9fm0lAzM7Ply5eX2i2nxbVTzAOBci6AmLOc/wDou32GYWJjY3Nzc/UdgH4lIxAQENC2bdt8H7NQMotjVgiUsQDDMJmZmf7+/nv37i3jUrA8BCAAAQhAAAIQgAAEIAABCEAAAhAoxwL8mDPfGzQDAwOrVq1KE8fBgwfLZLLSkXv27FmnTp3Mzc25sDOvA4lEUrt27dWrV8vl8tKpDatAAALFJYCYs7gkjXyeuLi4Tp06PXv2zBD3uWDBgqVLlxpi5fyaU1JSLl++nJaWdubMmez/x955gEVxdX08ioq9REMSC5pEk2h6MUYjvYmJSd4UU01i8lpiASsdsXcRBQugiEgvNtCgIBakiCIgAgosddmF3WV7Y5vfM3vi/eZd7AJSzjw8y+zuzJ17fnfm7sz933OOVEr/CteRQBchkJGRYWtrKxKJHnr33EWAoJlIAAkgASSABJAAEkACSAAJIAEkgASQABJ4JgQuXrw4YMCA5557bsCAAY9SgRMnTvTo0eO5557r1atXamrqo+zSIts0Njbu37//o48+Ii6bzZXO/v37L1iw4Pr161qttkUOioUgASTQlgRQ5mxL2h34WDweb/v27R00Survv/8+f/78jktfq9Wq1erw8PCxY8fy+fyOawjWHAk8MQGdTieRSFgslo+PzxMXgjsiASSABJAAEkACSAAJIAEkgASQABJAAkgACXRNArdu3YqKivLy8vrmm29sbGzMzMy++uqr5cuXx8TEoEtJ1zwl0OpOQwBlzk7TlK1rCIPBuHz5Mvrsty7l+5QeFxfn6ekpk8kqKyvvswl+jAQ6OQE2m/3ll19mZmaiH2cnb2k0DwkgASSABJAAEkACSAAJIAEkgASQABJAAkgACSABJPDIBFDmfGRUXXtDPz+/jz/+uK6uriNimDRpko2NTUesuUS/HDt27M8//9RoNB3RBKwzEnh6AnK5XCgUzp07F72Znx4mloAEkAASQAJIAAkgASSABJAAEkACSAAJIAEkgASQABLoNARQ5uw0Tdm6htTV1eXl5TU1NbXuYVqn9FOnTp05c6Z1ym7dUpctWwYCJ2qcrQsaS2/HBMRi8fz58wMDAzE7QjtuJawaEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJI4BkQQJnzGUDviIfcu3dvTExMBw0XyeFwuFxux8JeUFDAYrEKCgqKi4s7Vs2xtkigBQmo1WqJRDJ//vx//vmnBYvFopAAEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJIoBMQQJmzEzRiq5ugVqudnJxWrlzZ6kdqnQN0xKC1P/30086dO1uHB5aKBDoGAbVavWPHDm9vb8wD3zEaDGuJBJAAEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASaFsCKHO2Le+OeTSdTtfU1IRxU9um9RYvXlxSUoLA24Y2HqU9E1CpVBs3bly4cCGGq23PzYR1QwJIAAkgASSABJAAEkACSAAJIAEkgASQABJAAkgACTwrAihzPivyHem4TCbz+++/P3XqVEeqNK2uAQEBQUFBtA/a6Wptba1KpVq5cuWlS5faaRWxWkigrQhcuHDBycmJx+OpVKq2OiYeBwkgASSABJAAEkACSAAJIAEkgASQABJAAkgACSABJIAEOhIBlDk7Ums9q7ryeLyNGzdeu3btWVXgKY87efJkOzu7pyyktXevr68fNGjQxYsXW/tAWD4SaP8EdDpdUlKSmZmZQCBo/7XFGiIBJIAEkAASQAJIAAkgASSABJAAEkACSAAJIAEkgASQwDMhgDLnM8HewQ7K5/OzsrKampo6WL07SHWlUmlkZKRWq42NjRWJRB2k1lhNJNBaBBoaGlauXFlTU6NUKlvrGFguEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJIAAl0fAIoc3b8Nmx9C86cOdOnT5+O61ZlZmbm6OjY+pye8AiFhYVDhw6trKx8wv1xNyTQuQhUVVV98sknZWVlncsstAYJIAEkgASQABJAAkgACSABJIAEkAASQAJIAAkgASSABFqYAMqcLQy0UxbH4/ESExM7rml+fn779u1rh/W/evWqs7OzWq1mMpntsHpYJSTQxgS0Wm1AQEBeXp5CodDpdG18dDwcEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJIAAl0LAIoc3as9no2tU1LS4uNjX02x+6kR9VoNHK5vKamxsnJCeWcTtrIaNZjE1CpVLa2tikpKY+9J+6ABJAAEkACSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJdjwDKnF2vzR/fYl9f30WLFj3+fu1lj0mTJtnY2LSX2ujrERQU9NVXX7WrKmFlkMCzJZCUlHT27FmVSqXRaJ5tTfDoSAAJIAEkgASQABJAAkgACSABJIAEkAASQAJIAAkgASTQIQigzNkhmukZV1Iul0ul0mdciac4PIvFYrPZT1FAS+5669at7OxsDodz/fr1liwXy0ICHZzAggULvL29O7gRWH0kgASQABJAAkgACSABJIAEkAASQAJIAAkgASSABJAAEmg7Aihzth3rjnukuXPndugwkmfOnDl37twz56/RaNRq9aJFi/7+++9nXhmsABJoPwTy8/NjYmJEIhH6cbafRsGaIAEkgASQABJAAkgACSCBLkXg5MmTjrggASTwFAQCAgK6VKeBxiIBJIAEkED7IYAyZ/tpi/Zbkw0bNly7dq391u9hNWsPQWu1Wu2cOXPCwsJkMplIJHpYlfF7JNCFCPj7+3/44YcKhaIL2YymIgEk0OkI6B5t0T7+8mgF6zodUTQICSABJIAEkECbEti9e/dzuCABJPAUBObPn9+mFy0eDAkgASSABJDAXQIoc94lgf/vQ0CpAzy8EQAAIABJREFUVBYVFSmVyvt8jx8/nEBVVZVEIlm/fn14ePjDt8YtkECXIcDlcgMDA3k8nlAo7DJGo6FIAAl0TgJEjCQ6puZei/ruorrPcvf7//9vUAwpX6vVkoPqdChzds7zCq1CAkgACSCBtiRA/2F9lHUmkzl+/Pju3buHhITgb3FbtlQnPhY58cgtH9wK/v+toX6N3B/CZnj6deJTAk1DAkgACSCBRyGAMuejUOrS29y4cePNN9+8detWx6Xw119/LVq06FnVXyKRjB8/PjAwUKPRaLXaZ1UNPC4SaIcEzpw507dv35KSknZYN6wSEkACSKA5ARh4Mhh1Mhh7IvJlE21RNlsU91mabfj/H0B5pHyVSkUGvMhQF9xsoALavO3wEySABJAAEkACLUtAKpWam5uD55upqalKpWrZ8rG0rkZAp9PBTSa5t4R7P7hnlN9dZDIZfKJUKpuamuCGkNwBwk1gV0OH9iIBJIAEkAASQJkTz4GHEODz+UlJSR3a12rBggXLly9/iJ2t8LVcLj969CiHw0lNTeVwOK1wBCwSCXRUAk1NTREREQ0NDVVVVR3VBqw3EkACXYDAPSfUg7hI5EYYgQI1EkadRCIRm82urKwsKSnJy8vLzs6+dOlSamrqP//8ExcXFxYWtn//fl9f3y1btmzYsGHt2rU+Pj5r1qxZv3795s2bt2/fHhAQEBISEh0dnZiYePbs2fPnz2dmZl67dq2wsLC8vJzJZDY2NsrlcoVCQSRQGOSCKkH1iPBJ5vjjNP8ucMKiiUgACSABJNBGBGQy2dy5c/v16zd69Ohu3bq98cYbGAGrjdB3xsOQiXQajUatVqtUqqamJoVCIZPJGgWi8tqG/NLaK8XVWUVVGYWVWUXVOSU1+WXM8loOly+U6e8Jm5qa1Go13P6h0tkZzxG0qf0T0NzRKu7oNO2/olhDJNBZCaDM2VlbtsXsSk9Pj42NxbR5TwBUJBK99957WVlZT7Av7oIEOjcBBoMxYMCAmJiYzm0mWocEkECHI0B0TZhQT8RCGHKCUaempialUklm1vP5/Nzc3NjY2E2bNv39998zZsz47LPPPvjgg/Hjx7/yyisvv/zy888/379//169enXr1q1fv37Dhg0bNWrU66+//vbbb7/33nsffvjhxIkTP/roo/fff/+dd94ZP378mDFjXnzxxYEDB/bQL3379h00aJCJiYmpqenrr7/+7rvvTpo0yc7O7o8//vDy8jp48OCFCxeYTKZMJqNrn3TXTyJ8Ej9UMLPDtQ5WGAkgASSABJBAeyAgk8l++eWXwYMHh4eHf/vtt0ZGRnFxcRi6qT00TUesA7nnVKvVRN0Ui8W5t6p9E7L+3n36p03HvvCOdlwV7+iTMG1V/PTVR6f7xH+z/tgvWxMX7T27NS4rs7BSJJbI5XKlUqlSqcCzE+e3dcSTAevcsQnodHe0KHN27DbE2ndoAihzdujma4vKr1mz5osvvhAIBG1xsNY5xqRJk2xsbFqn7HuXymKxZs6cWV9fL5FI7r0FfooEuioBnU6Xl5fHYDAqKio0GrwF7KrnAdqNBNoTASJtGgQKMxA1xWIxk8ksKirKzMyMiory8PCYMWPGK6+80qNHj759+w4bNozIkFZWVrNmzVq5cuX27duPHDmSnJycnZ1969YtNpvdoF/qH7aQzRgMRm5ublpaWmxsbEBAgJeX19y5cz///PMPP/wQZFQQRHv27Dls2DAzM7MFCxbs27fv3Llz+fn5FRUVdL9PInzSJ/uT8LbtqUGwLkgACSABJIAE2ikBnU5XWlo6ffr0wYMHh4SEqFSq77//3sjIqENn+WmnrLtAtZoLnBKJpIbFOZtza/7ufxy846atirfzjHH0SbDzjLHzjLF2i7T3jHHwjrPzjJm2Kt7eKxZeHX0SZvsmncoqrmZxpDIZiJ1qtRrdOrvASYQmIgEkgASQwL8EUObEU+EhBPh8fm1tbYeemXjhwoXLly8/xM6W+7q0tJTNZru6ujY2NrZcqVgSEmhHBAwkAeIeRF8hLlAGKzKZbPLkyT4+Pgafw1t6CQbr5KAtCIKU+YgrBlWiv72nOQ/9kF6CwTqpUgvai0UhASRACJBLjD7ARKKEgbOmXC6XyWRFRUWHDx92cnJycHD44IMPRo0a1bt376FDh3766aezZs1au3ZtaGjo8ePHz507d/Xq1ZKSktraWhAx2f+7sJ50+d9iqHf19fUsFqusrCwvL+/SpUtJSUmRkZE7duz4+++/bW1tR48ebWxsbGJiMmHCBAsLi99++83Pzy89PV0kEhm4e5LsniSfEx0LYYUrSAAJIAEkgASQwJ07d+rq6pYuXfraa6+99dZb586dg9sGlDm7zrkBt0lanY760+o0mv/5U2m05M/gK+qtltrr7nLn36K0Wo1GAx6cEolEKBT+k12yYE/yF2soXRPkTGu3SFv3KPLW3isW1m09ou29YmEbO88Ye69Ye6/Yef7JxzNKhCKRQqGAMLY4oa3rnJ9oKRJAAkigixNAmbOLnwAPMV+tVs+bN2/v3r0P2a59f81gMCorK9ugjjqdLiQkZPz48Twerw0Oh4dAAm1J4O4jmQ7UOLqAZ5CmDpLDgduQwSubzS4qKhIIBPX19Uql0uBbkuiOnl6OeB21+Ci8gUVa/UMmyYZCKgPWNX8lG8CKgS3kLWTOI2/pKwYl0A9hIPqSqrZli+OxkEBnJUDGleCqJ9Fo4WoViUTV1dX5+fmHDx/+5Zdfhg8f3qtXr+eff97U1HTixInz5s0LDg7Oz88n3pb19fV0GbK5lFnXootB+fRDg/xZX1/f0NBQXl6ekJDg7u5uZ2f32muvmZiY9O3bt3fv3jY2Nps3b87IyCgtLeVyuRDcjOT1hP4WOnkMdNZZz3+0CwkgASSABJ6YQGRk5OjRo2fNmsVms6EQ9OZ8YpgdaEfdnTsarU7RpObwpSyepIolqKjl3yxvuFFaf6O0vqC0vuAW+3ox68LVynPZFeeyK9JyKnIKmdeLWQW32bBNYXlDeQ2vtl7I4oob+FKxrEml1mo0lMapUqnkcrlYLK6ua9gakzF99VFw4gTZ0sE7bvrqo44+CbYe0fBq4x4FSidsYOsRbecZY7nyiLVrhK1HtIN3nIN3nFfo+co6jlwub2pqgudKvK/rQOcbVhUJIAEkgASejADKnE/GravspVQqV69effDgwQ5tcNsErb1582ZoaKhIJEpJSVGr1R2aGFa+ixMw0ADg0YiIcAaqHggDkKOOZKqT6xehUMhmsysqKoqLi/Py8q5du7ZgwQJra+usrKycnJzc3NyCgoKSkpKqqqr6+nqxWAx7wSsUZaAREl0QKkOkVjJHFWr+0OYjBhJRk2Tak+kXqVQqkUjIq1S/kLx3dGMVCgWpdnN7r1y5kpmZCfZeu3YtPz//UewlAvAD7KWb/FB7cQMkgATAZZPM0oA+RKVSkR6Mz+cnJyd7enpOnz59woQJAwYMePnll7/44gsfH58jR46kpqYWFRWxWCyQFelaY3MRk3xroEHS34I4+oDItfSNDdZJ+SwWq/nR6+rqyAawI4PByMjIiIuL27lz56xZsyZMmNCnT5/Ro0dbWFjMnz8/LCyssrKSeHmC5EnvYzHcGV4+SAAJIAEkgASAgFKprKuroytGKHN26HNDo9EUFBRwuVxihU53h0qup9VptFq1Vu+dqdY2qTRShapRJC+p5BaU1mffqLmUW3nywu1jaSXwdzS1KCb5pn9E9o7DmTtCM/yOZB1JzI9JLoxPLYINTl68ff5q5dWiuvzb7OIKDrNBLJIqJTKFVCoXi6W8Rn7+rSrnwNQv15908I5z9Elw9EmwcY+atirewTvO3jvO3ivW1jNmxvqTEKUWtrHRu3jaecZMX33UzjPGxj3K2jWC2lIvdv7ldzr9RoVUKlUqlTCPjX7eEntxBQkgASSABJBApyGAMmenacpWMUStVjc2NjY1NbVK6Z2lUK1Wq1Qqvb29rays5HJ5ZzEL7ehCBIjsRzwaif4HShtRAhQKhUQi4fP5bDa7urq6rKzs5s2bSUlJAQEB7u7uv//+u52d3XvvvTdixIg+ffp069bNyMioR48evfRL9+7de/fu3adPn953F2Nj4549e/bo0cPIyKh79+4DBgwYM2bMhx9+OH369P/+978+Pj7BwcEpKSlFRUUMBqO2trahoUEgEMhkMoVCQVdAm8ddJCrgPVsRpA7IuieXy6VSqVgs5vMFdWxORS3rdiWzqLy6qLy2qLy6hFFTWlHDqKxhMCpKS0uLi4sLCgpOnjzp7+/v7u7+xx9/gL0jR47s27cv3V5jY2Owso9+gXVjY+NevXo1t9fR0RHsDQoKOnv2LLG3vr5eIBBIpVIi+oIzKLEXEq6AOShF3LOt8cOuTAB6NiJwkm4NpjXI5fLGxsaKiooTJ078/PPPAwYM6NOnz7Bhw95//31PT8/09HQiLhLV0EBTJJ8T+RP8KcHRk6NfuHcXHo/XqF/4j7zA9vDK0y9cLheK5XA4Bu6k9MoY1JMIn2BRfX19cXHxnj17HB0dhw8fPmDAgB49ekydOjUgIACyh0KfA/MtoLcxcKbvyicV2o4EkAASQAJIgE4AZU46jfa5rtVqeTxedHQ0xNySy+Vff/21qalpamrqiy+++Nxzz61btw5q3qTSiKWKep6kXO+sefUmMz23KvlyWeL5WzH/3AxPLAiKu7ovJmd3RLZfWObmg+mbDvz7tzH40vqgi+5+qa6+Z119z7rtTFmz7/z6wAsbgy/BNpsPpvuGZQZEXtkXnRMYm3PoWG54Ul70qbyY07kJZ64fPJbxn/UnwDuTEizdIsFl08o1wtIl3MYt0tYjGsRLe69YEDVtPaIhbSck7Jy2Kt5x9VFbj2gb9ygbt0iIYfufdQnp+eVisVihUKhUKrida59thLVCAkgACSABJPD0BFDmfHqGnbmEoqKiSZMmpaSkdGgjN23a5Ovr20om6HQ6d3d3b29vtVpdX1/fSkfBYpFAyxK45+g/SUoHGgBJTSeRSG7fvn369OmAgIDly5f/9NNPdnZ2H3744ejRowcNGmRkZPTCCy+89dZbZmZmM2bM+O233xYvXuzh4bFhw4adO3cGBAQEBgaGhIQsX758+PDhISEhUfolIiIiPDz88OHDBw8eDAwMDAgI2LFjx7p161xdXRcuXPjLL784Ojp++umnr7/++pAhQ3r16jV06NCxY8d+8skn06dPnzVrlru7e3BwcFpaWlVVFTghgfBJD71Ij74IEiAJUElPf8Lj8RhVzNhz11cfPjffL/G7tTE2K0I++WvrRz95THD867XPvnpjovWEDz4d//Y7pqamYO+wYcPGjx//2WefPcDesLCw8PDwiIgIsDcyMjI8PDwsLCwkJATs9fX1Jfb++uuv06dPnzx58htvvEHsfe211wzsPXfuXGVlJai8xF4D1ysSbRKauGVPGywNCXQUAqSLI87oMK0BujU+n5+amurh4WFnZ/fyyy8PGTLE3t7ex8cnJiYmNzcXtECiGoJkSN7CCpEziZYJMiRdyBToF6F+Ed1dxHcXycOWuxtS/+/uLYLSoGRQS4kICnIqXf5ks9n0ahsYAmbeunXr1KlTO3fu/Pnnn8eMGdO/f/+JEyfOmTMnIiKirq7OwMUTYJJJJNjJdJTLAeuJBJAAEkACrUcAZc7WY9siJZeUlLi6ur799ttGRka5ubl37tyRy+XTpk0zNjYeO3bsmDFj5s6ddzkjU63RqtRagVhRWy8sLKs/f7XyxPlbh0/kBUReWRd4wXN36uKNpxauT1q4PnHh+sRFG5Lu+bdwQxL83fNb+HDhusQFa08sWHvi7zXHFq076rzx6LItR7/yodJqTlsVb+0WOW1V/LRV8fZ6sdNiRRik4QS3Thu3SIhMC1k5QcsEBRTC2EJUWwfvOPjQzjPmh80nzl8voyudeP/WIucVFoIEkAASQALtkADKnO2wUdpRlYRCYUJCApPJbEd1evyq2Nvb/+c//3n8/R6+h1gsBkQBAQEYA+ThvHCLdkCA7tgEvk1E3QT/SLFYzOPxWCzWpUuXNm7c6OjoOGTIECMjI2Nj4379+g0ePHjcuHFfffWVu7t7eHh4dnY2m82GgX5wLWpoaDAIw1hXV5efn19ZWXn16lUYdievxLWIvgsph3hEVVVVnT9/PigoaMmSJXZ2diNHjhw4cGDfvn179erVvXv3ESNGzJw509/f/8aNG2w2m8/nQ3AecHwE6+gBKiH3CZ/Pb+BwGFW1ftFpNssPmjsHTvx97Tirn4a99n7PPv27deve3ainUU/jHr379hny0gvjPnplytdvzVg4+a9NrnuOZ+fdrKioqK6uZjKZxIuLmABGPeCVbAkrdHuBZHV19YULF8Bee3v7UaNGEXuNjIyGDx8+c+bM3bt3N7e3uZcnPse2g2sOq/AMCNCD0xK/bT6ff+vWrVWrVo0YMaJnz54DBw60srI6fPgwk8mEi5HognRvSKJr0qVNLpcLuiZojQKBgMiZIE8SEZOEvIao1yTGNT06Nz0OtsEG8BaCactkMiiNFA7HEon+X/7k8/mNjY1QN9Izk+yhYIuBdaQfbmhouHDhwuzZs4cOHdq7d++ePXv++OOPGRkZHA5HJpPd07lTq9U+g9bFQyIBJIAEkAASaDcEUOZsN03xPxVpamoqLy///fffu3fvbmxs/PrrryckJMAWIHM+99xz7773fmllfRGDc62o7uK1qtPppfEpRWGJeUHxV/3Cs7aEpK/Zd37t/vMbgi5uPnBpe2jGjsOZfkey9kReCTuZH3nqRtyZomOpxanZjKyC2vwSdjGDW1bdWFknqGGLatjCarawmiVk1PBLKrj5Jez03KqkC7ejThceTLi2NyrLLyxjy4E0711JSzbG27lFWLmEO3jHfb72OPho2nvFUk6ZkINTH4EWxE5bj+jP1xyzdY8CmdPWIxpkUXuvWAfvOMqt0zWCuH5au0Vau0VOX330x83Hb5TVkui1GAHof04UfIMEkAASQAKdiADKnJ2oMVvBlMrKypiYGJVK1Qpld/giVSqVjY2Nj49Ph7cEDejsBEDrIr6MBrqmQqGQSqUlJSUxMTGenp7ffffdRx99NHTo0MGDB3/wwQffffedi4uLv79/fHx8enp6WVkZfcScqALEZ4g+gA7rWVlZY8eOPXXqVPOvHvwJKZNIiSAzQMTF8+fPR0ZG7tixw9nZ+YsvvpgwYYKxsfHLL788ZcqUWbNmbdiwITExsbq6GlQByLIpEokEAsG/Iu7lyx7rfT+y/8HkzU8HvvRKzz79exj3GfDimBde/2T0pBlv2M9+77tlE2et+WyBn8WSIMulQeZOgRZLgiyWBJk77//C/dC6kNMZ124wGIzKysqampra2lomk/lgcx767f3sZbPZxcXFYK+vr6+zs/OMGTMmTJjQq1cvsPfXX39dv379yZMna2pqDLyvwKUVA0529ksc7aMI0OdwqNVqmOigUCjEYvH58+ddXV2nTp06aNCgt956a8GCBaGhodevXyc9GP3yhCuRiH8cDgdEzcbGRj6fD4omuFeKxWJI4gsyJPEsN4iqTWJNG2TbhekXD3gl28MKlEO87cEzFSRSuVxOF0GJA6hQKBQIBMTjE3w96X24QXZP6GwrKiqOHTvm4+NjZWXVu3fvCRMmzJ49OyIigsvlgo3EiZzet+BZiASQABJAAkigCxJAmbO9NbpSqYyOjv72228H65fZs2cnJibKZDIq46ZOp9HqxBKpvYNDr169du4JySqoOZFWEno8b8fhDPddKcu2/bNI75EJrws3JLnvStkRmhGccC0li3H1Zl1JBbe2XiSSKhVKtVrz2JO9tDqdQqniC6VMduPN2zVnLubP2U6l2yTapK1HtJ1njJ1nDISfhYC0th7Rjj4J01bFg/Y5ffVRG/coK5dwa31wWrqjJ/h6wifTVsUTn84Vwan1HC7MWoOkJ+2t1bA+SAAJIAEkgASengDKnE/PsDOXEBERYWxs3NFn60+aNMnGxqYF20mn0yUkJBQXFzMYDHq++hY8BBaFBJ6SAEibMO5PvDZhfFyhUMjlcolEIhAIrl69umLFijFjxnTv3t3IyKhnz57vv/++i4tLSkpKXV0dDPQT+Y2uBBisk20MVm7fvl1bW5uamno/70YYVTfYi7w1OAp5SzYgCmh9fX1dXV18fPy8efPGjh3bs2dPIyOjbt26vfvuu+vXry8sLGQymVVVVWlpaYsWLRo1atRzz1Eem92MevR/wXTM5Bkf/uQxdfFey6VB1ssPWC4NtnAOtFwabLZo79RFe82c95k57bNYEmjhHGi2eK/Zor2T//Y3c9r7H8/QS1fyy8rKKysra2troW6kYq1nL5gMQkVCQsL8+fPHjRvXq1cvYu+mTZtu374tFAqbJ9ij5/JEB/SnvMRw93ZCwGAaB/huKhQKmUzG5/MPHjz4xhtvdO/evW/fvt9999358+fh2oFLlXQpJHtlfX19Q0MDSJuga4KbJl3RJI6YBhmCiTs1BHclIV5J9lyDmNIPuAZJB06soxdCyid+6mA16KAk3jhd+wS/T1A9weMT0nyCG+v9aLDZ7IqKCg8PD+LTv2zZstraWgh9plAoQO8klpJqt5NzA6uBBJAAEkACSKC1CaDM2dqEH718tVodFxdnYmLSrVu3nj17zps3j8/nw+5arY4vkjMbRMUV3MzrFZ9OsezXf6Bf6Nm9MVe2HqK8NtfsS1u9N23TgUs7D2fuj7kadjI/Nvnm2UxGSQVXJFHqdI9eiwdtqdVq1Wq1QqEQiUQNDQ1J6XmQX9PGLfKLtccdfRIsVoRZrAizdou0XHnESp+VE6RNynHTNQJEUCqkrd59k2TrtPOMge2tXMJJkFsqgK17FPW5a4SjT8LekzkCgUAmkzU1NWk0mgfchT7IAPwOCSABJIAEkEA7JoAyZztunHZQNZFIdOPGjXZQkaeqwoEDB8LCwp6qCNrOcrmcz+dPmTIlNjaW9jGuIoFnT4AMMet0Ohh3hkFw4tUkl8vZbHZSUtLq1au//PJLU1PTgQMHTpw4cfbs2Vu2bDlx4kRJSYmBow/x9SECHlkh3k704KskUx2Xyy0rK5s0adLq1ashguI9XyGfHHmF3UmsRQiBSyRDcujmg/IgVzD1S01NTU5OzpEjR7y8vD7//PMXXnjByMjIxMRk2LBhPXv2HDLsxZffmvK69U8fzFwxZe42y6WBlkuCpi7eY+EcaOG8X++4ud9ySbDtyhBz50CLJYGWy4ItlwaZOe0zd9pvuTTYegUV4Xbq4r1mTvunuR4KPn6xvJxRW1vLZrOJOnJPS+FDYilJpEdMhui1hD/xM2tuLOFAyOTl5cXExKxdu/bHH398++23+/bt++abb/7444/btm07f/58Y2MjyeUJSgzKEs/+csUaPAUBel9H/NRVKhUofBwOJzo6evbs2aNGjXrppZd++OGHvXv3FhQUwPXSvE8zuHjBZVMkEhlIm+A3SWK3Nhc1m6uY9HqS9ce1m+x4z5V7yp9078/mqqdEIoE4tyTCLd3Lk97hwDqbza6trY2NjV20aNG7777br18/R0dHPz+/oqIimEtBd+4E/06o6uNaitsjASSABJAAEuhwBFDmbCdNJpPJJk6c2K1bt1deeWXbtm0VFRWU+6aWct/UaLQKpbqsmpd9o/b4uZLAmKwJ733au+/ABWuPUek29e6bXv6pOw9nRp66kVVQW8EUiCRKtfqxnTUfjAKe0JuamiQSCZ/Pv3GL8fO2JMjHSaLOOnjHOa4+SjliukfZ69067b2otJ2OPgn2XrEQ2xaUUcqb826IWnAA/Tepp1esnee/3p8Q1dbeK3b66qMzN524fqtKJBIpFAq4W3twbfFbJIAEkAASQAIdjgDKnB2uydq0wvv27fPz82vTQ7bvgzEYjAkTJly+fBlnwLXvhuqitSPj3eC+Cf49MMYtk8kuXbr0/fff9+zZs7t+sba2PnToUEVFBXGIJLpacw8nuqJJckmCPgfqHQRFhDR18MrhcHg83tmzZ1ksFrhDPeBVoF9AXYDdSXo5Ho8HXkdwOJBUiT9WXV0dk8msra2tqampurtUVlYyGIyTJ09+9dVXvXr16tatm5GR0ZgxY0aMGNGtW7fnnnuuZ+9+w9+3/HjWqikLdk2Z7zd1gf9nC/0/nec3eZ7fZwv8py7eo1c0gyyXBdusCNEHqg20XHbA3DnI3DnIzHm/zcpQq5Uh5kuCzZcEWS07EHYqo6amhs1mc7ncxsZGkqWvZe2tr6+HlqK3DqwTKYKoOLdv396xY8f7778PTrrPP//8woULCwsLZTIZ6J2ggkBIWzhtuug1g2Z3TAKgotEFzqamJoVCwefzfX19hw4d2r17dxMTk127dtG90unXDlxN0JtBTFq6uimVSiGVJj38LLlqDGJBE3XzGbIkQKAy93P3BPdT8EaFUN4Q3lYgEPD5fOhsyeQSogcTV1f4jTh79qyZmZmRkVGfPn1mzZpVVlYGrJRKpUqlIlMoMPPTMzwf8NBIAAkgASTQZgRQ5mwz1A8+kEwmGzNmzHNUxJ5uy1es4DYKhWJFJVNws5yTfr06+XJZ+KmC/XE52w5dXuWfPPatT/oNGLwj9HJA5JXQ45TjZmZeLZcv02pby8sRYiypVCqFQiEUChsaGvYczaDCz7pFWrtGgBI5ffVRO88YUDRhBfRLEEEh+yY4a0IwW2vXCEjACW6d1Fu9xyfooKCPWrtFOnjHwfruo5mNjY1SqVSlUuF92oNPJ/wWCSABJIAEOiIBlDk7Yqu1XZ39/Px8fX3b7nitc6QWCVqr0WguXbrE4XCcnJxu3rzZOjXFUpHAkxAwyEhHYjbK5fKbN28eOHDgt99+GzNmzMCBA83NzZ2dncPDw4nXJt1xx0AzIz4uR4YtAAAgAElEQVSa9NR09Ox0QqGQJKgDtydIUyeVSkUi0ezZs2fOnMnn8yFrHYyDw/A6eSVfkRVIpSm5u9AzzEG4Rcgzx+PxOBwOiJ11dXW1tbXV1dWVlZUXLlzYsWPH999/b2pqOmDAgEmTJv355587d+5MTk5OT0+PSEi0+e+asVY/vfT21AEmpkY9e/cbNuLldyxet5/94a+rP527c+qiPRZL9lsspXJwTl28z8xpv8XSA+ZLD1itOGS5PMR6Rajl8kNWKw5ZrzxstTLUxiXMcvkha5cwW9ewmJRr9fUNfD5fLBaDQNKC9hKPK5B7QZghfpx0KYKoEUS6zs3NDQwMnDNnzscffzxgwIB33nln4cKFUVFRFRUVcrmc+KVhMNsnufBwnzYnQBfzNBoN6evEYnFycvLChQtHjx5tamr6+++/R0ZGgo+1wQUC+X3B8ZrH4zWXNg10TXCIJxkoYUiotQbAWoEn+XUASZjMgKFPgiGxbYnk2djYSELagrRJFGLyk5GWlubi4vLhhx8OHDjw66+/PnjwYG1tLT1zJ4HWgXC1QgtgkUigqxCA/pn+Sp97R+ZekHkhZMuuAgjt7LwEUOZsP22rbGqKjIqaMePLfv37m7z44px5C/ccTIhLLtwRetnLP2X5tmSnTaedNp1asPboK29+PGDQkOSM0pvlDTyB/AmybD6u1UTmFIvFHA6nlFH5l28i6JEgUjp4x32x9riDdxxJqAmhax2840CnJJKnnWeMvVcs7GvnEW2llzatXMJtPaLBxZOKbesRDeFq7b1iP19z7PM1xxx9Er7feLysskYoFCoUCszQ+bgtiNsjgVYiQO6IYOUBt0/kURS2bKX6YLFIoEMTQJmzQzdfq1ceRsRa/TCtfABISfWUB4mOjh4yZMjFixc1Gs1TFoW7I4GnJ0C/ByIj1yQ4oVQqTUxMNDc379evn5GR0fjx4/38/EpLS6uqqgzGrA2kTbpvE13RhPiN9BCOdBmPxHIE2QxC8ZSUlKSnp0MwQ/CCesArhNUlr+ByBOZAJlEYiJfJZBKJRCwWg+8Rl8ttaGhgs9lMJjM6OnrKlCl9+/Y1MjIaN27c2rVrL126lJ2dnZOTk5mZefHixcRTyXaLdnz8+4aJv2+YMnf75DmbP/jRw3TS5736D+7W3aiHcd9h4z768EcPiyWB5k6BlNK59ID1ylDzpcGWyw/ZuBy2WH7IYlmorVuEtesRW7cIK5cwyxWh1i5HrF3DLVcc/mpV1M3SSoFAACEcH2ApfEUshZV72ku0B7rTFUmtR1yv7hdtkt6ydXV1lZWV169f9/LyGjlyZM+ePQcPHvzdd99lZmZCO0KOPbqig7fOT3+RYgktRQDORhgeMujuZDJZWlraBx98YGxsbGJismXLltu3bxO9n1wFMC2goaEBXK75fL5QKCSTEkDyh+6ruadmJ1Pp7vnbQU/bDB0OPaotdDL3dPevrKw8efLkRx991KNHj5deemn79u1cLpfuNU6mUGCX0lKXA5aDBNonATKpAhTNe2YObmpqIncaOBOifbYj1uoJCKDM+QTQWmOXJpWGJ5BVs4U5hdVH4lLe+2hyt27dehkbv/H2J4tXH/H2T912iPLdPHwiP/xk7keTzIcNe0Gt0bZU0s2HWgRZOSH/UW1tbVr2jWmr4qkQtT4JoGvauEcR1RO+AidOkpLTcuURW49oCF0LCqitR7TFijDLlUesXSOoOLce0fQd7b1iIZeno08C+fzgqStcLlcqlUKGzodWGzdAAkig9Qg0fy5Tq9VkNioZDSODbCT9EJFC8Qmr9VoHS+6gBFDm7KAN10bVtrCwuHTpUhsdrNUOk5CQcPLkyScuvri4eOfOnUKhMCEhQalUPnE5uCMSaCkC9OF+tVpNRqjZbPaJEyeWLVs2bty4IUOGWFtbe3h4pKWlkRCvxBEHZAASihZG/4kAAGFXm6emA08dkuWRLmHCuBW8hoeHf/bZZ/X19QaT98ndGFkhG5AVejlwk0fu80DvJEPwAoGgoqIiNjZ28eLFY8eOHTx4sLm5+YoVKyDDaHFxcWFhYV5eXk5OzuXLl8+mpC7aeHDynG2T/tr8yezNk/679dP/bp08Z/uU+b6T52ybMGPh8PdtBrz8qlGvPgNffvW1qd988KP71EV7LJcdtHENM18WYrbkgMXyUBu3cHvPaFv3SKuVR6xcj1i5HLFxj7DzjNbnTYmeuyuRyWqQSCQKhQJuQImZZIWYSVbuaS+YDM1K7m7pqidM3aDrECS0Lz3gJPFjo0e1rampOXbs2OLFiz/99NNBgwZ9/PHHPj4+586d4/P5dOdOGH+E++ZOJvO01GWI5bQNAfL4RwROiE9bW1sbHBxsaWk5cOBAGxubXbt2MRgMAymORKY1CEsLfud010O4EunD7p315Cd20cHS2SqVStLbiMVimFoBUcSJD33zvuXYsWM///zzyJEjx44du2rVqmvXroHYSU/bieHR2uaSwaMggTYmQL8pJTmSoRuRSCRCkZgvFPGFIqFILBJLIOIFiZ9PgufjnUYbtxoergUJoMzZgjCfoCitTqdPwKkVSpRFDM7Fa1WHT+b7R2S7+6V8N2/r+I9s+w18vkePnu9+YuOxfs+1ohquQCaSSKdNm/bCCy88weGeeBcIQyKTyTgcTmVlpfuBsxBIFlwz7T1jbNwiSUBay5VHbNyjiB8nydz5r7+mW6StXhO1p9JwUp6dDt5x0/TJO23co0AWJbtQnqCeMcRJ9K+dp2rrWGKxWKlUqtVq7HufuEFxx05PQKe3EGZC6O7cufsW/v/79mkgwLMYjAvB+I9CoZDJZFKpVCwWN/IFrAZeDZtbw+Yy63n1XL5QRIUNu+cdFF7IT9MQuG8nI4AyZydr0BY2JyoqisVitXChbV7cUwatTU5OnjBhQm1tbZtXHA+IBAwJGIwlgRIml8tZLNb69etfffXVPn36jBgxYu3atQUFBff03YRx//r6egjbaCBt0v01IbQsETXBDZEuyxGtjsh4Wq1WpVLxeLyoqCiVSkXG0w3NoL0n25Axd3pp9MF3usxZU1Ozbt26sWPHgr3e3t7Z2dklJSUVFRXl5eWlpaW3bt0qKioqKCjIycm5dOlSZEKS9aJdn83f8el/t02eu8N84e4p830/nr154l9bJ83ZMem/2z+d6zvpv9ve/9Fz+PtWRr36GPXq3e+FUW99Pt/a5bD+L8zKJczWPULvzRluvjzUYsVhK5cjdl7RDl6xDqtiHbxjrVzCgxOzIQoQ5DuhWfnvqoGxxPXBwGQAS0dNfEDB7xNQwE0wuLeKRCLIbwpqBD3gpIH/LkieLBaLwWBkZGQsXLhwyJAh/fv3f//99w8dOiQWi5vfOkP1mpuDnyCB1iZAejzoCkDglMlk/v7+I0eO7N2794wZMy5cuNC8ryPBaekZc8F9E9RN4rtp4L7Z1Z4S6b0Qvechs2fkcjl0MkKhEJzI6WIn0TsheHhBQYG7u3ufPn0GDx7822+/lZeXE7GTiBkodrb2VYPlI4G2IUB6DxJCXC6XQ9oCbiM/La9se3zWnF3/fLcu/tu18T9vTfppS+LPWxMX7E31PZqTfqNCdHe0DiZD0CdXtU398ShIoKUIoMzZUiQfqxyd7o5Wq5PKVcx60a1KblZ+zZnM8iOn8vfH5mw8kL5m34W1+85vCL64NyrbPzT525/+6tGjh7Fx7+vXr9+5c0cul7elzAkPgBqNpqmpSSwWs9ns4pLbDl4x1m6RNu5R4HAJr9NWxYO6CfolpN60XHnEYkWYxYowG/32dp4xsDGsOHjHwS427lHUNnpxdNqq+M/XHAOlk1JA9cWCJ+iP205dvVkuEAjkcjk8rT8WdtwYCXQyAtCTNKk1Gq2OL1KoNVqhWMHhS5VNmtJqnkAsr2ELmQ0ikaSpsLSe1SCu50luV/KEEmXBbTazQVTNEtawhDK5ulEg5wnkTSqNVNakUmvv3KE6qPs9VxrcQcEcU6lUKhQKSyqYB05d/ds/+YdNx/+zJu7rNbE/bD75w+aTP21N/HV7ktuhC/EXb9Y18EDvhCAZeAfVyc5JNOcpCaDM+ZQAO/PuAoHg4sWLCoWiMxv5QNsOHz78008/UTORhcIHbohfIoFWJ0CG+8HHEZz8eDxeYmLi3LlzTUxMxowZM3PmzCNHjtTU1NC9NulhG+vr6zkcDo/Ha2xspLtswuR6+ug/ccGhj02D3AWPavc0uLq6+pNPPmEwGPf89rE+vKe9XC43KSlp3rx5JiYmo0eP/v7770NDQxkMRm1tbU1NTXV1dVVVVWVlJRE7i4qKcnNzL6Vfnrs50nLJfvPFe6f8vctsUYDZooDPFuw2W7THfPHeqQv9p8zfNXVhwNRFe8yc9po57Zu6wG+czawhY97p2Xdg74HDxkz5zwc/eZkvCbZaGWbjFmHjTs2fdfCOtfeKsfWMsvOMcfRJgBmyv28/yahhSSQSiAJ0v/vaJ+AA5ImuTIKZECmCrgETBywS2Jbu4gnnA/2sKC0t3b17t6Ojo4mJiampqbu7+4ULFwQCAUSypYdGeUDTP5ZRuDESeDABONPIaU/mt1ZVVe3Zs2f8+PEmJibfffddYmLiPePTwhwO6OXAK10qlRr4bsLVRBKcPLg+XepbwA65POk/NyBgQPdC9E4IG04XO1ksVkFBwbJly8aPH//iiy+uWLEiOzsbgmMrlUqVSkV3me1SYNFYJNDJCEAvAe6bMpmMyjbHazx/vWxj1KXvN1DD6/o0ctF2ntRQvr2X3p1oVTzlveRNpZSbufH4joQrl29UcPlCmUxG7x9a5Papk9FGc9ozAZQ52751dDqdRqNVNKnrOJKMvOqElKIth9K9A1KXbf1n6ZbTK7Yne+5O3ReTczS16HYVVyRRanW6ysrKlStXlpWV3blzR6VS7dixY/HixW1Tc3iqVavVCoVCIBBUV1cnXcixcgmngs26RTquPgqSJESsnbYqngSYhf7TwTvOziPaxp166rTVr9i4RVIKqGsE9LS2HtGOd105YTOq+/Wgul9I6gkCp71XrI171Oc+8Scu5kPcWpiYi893bXMa4FHamIBOd0en06k12iaVRqFUi6VKkUTJ4UtZHHF5dWNlneDqTeb1YlZWQe3py6XncyqiThfGnrm5P+7q/tir+2Jy1gWeD4zLWbv/wvbQDN+wDDe/lK2HLq/df2Fj8EW/I1keu1J2hWeu3X9+88H0gKgrqwLSAiKvBMVdDYq7mpBadCQx/3haybkrFdk3mPm32BVMfm29qIolVKm1arVWrlCp9Q+i9Duo8mpW3IUbi/ckT6NGmag/cNS2cY+i1j2i4VqGuQtfrzvqE3YhNbeM20jdQaHY2canFh6unRNAmbOdN9CzrN7Zs2fHjRtXU1PzLCvREseeOXPmH3/88VglyWSy0tLSa9eu7dq1S6VSPda+uDESaEEC8OABI/JkrF8ul4tEooCAgHHjxvXr12/s2LF79+7Nz8+vra01GG6mZ6Tj8Xh8Pl8gEJBxf5KXsXm00ocqms1t1Ol0Uqk0IiJCJBI1//YRPzGY2gbOWwqFgs/n79mz58033+zXr9+YMWP27NmTn59fU1NDRDumfqG/raqqKisrKygoiDiRar38oNXyA1MX7zNz2m+5NMh6+UHLpcEWSwItlwabO+03d9pnuSRw6uI9Zov3mjnttVwaZO60f+rCgEl/bX7N7PuefQf2MO47aMTrb3+9xGJZiLXLERvXcMuVlDenrXuUvTf1wGnvSeU+sfeMOX6pUCgUyuVyyEj3iFY/1mZwStBBEdWTRLilO3qSmJN0F08DIZzFYlVVVeXm5q5Zs+aFF14YPHjw5MmT4+PjiXMn/e4ZnbEeq71w48cl0HyKAzgU7t6929TUtF+/frNnz87KyqJ3dyQsM0zjgNSbIpHoAdERu+wwukEHQhc1ifRL/5DonWRSBXQvJGg2j8eDiRQGvUphYeGOHTsGDhw4bNiwWbNmlZWVkXnHOHnicS8K3B4JtB8C0IdAkrmmpia5XE6FVmtsvFLImLPz1IzV8bae0XZelJBJpYVzj4Sccw5ecdSAnXecg3e8AzVgF2PvSY3ifbX22NLgc4XlTLjfoMf877K9dPtpa6zJIxJAmfMRQT39ZlqtrkmlEYiVlXWCwnIqPu3J87eC4q/tOJzh5Z/q7Z+66UD67vDs8KT8kxduldc0yuQqeu5NuL15+mo8bglwZ9vU1CSTyXg8HoPBOHjyMnhkQj7OaaviHX0SQMWkFA69PAlvrVzCbfUKB6TetHIJt3aNIHonfKufUwITSqh+1Vof/JbsRSQTkEit3SL2JqRXVTP5fGpKq0ajgV79cY3C7ZFAuyJAOWXq41er1FqprEkgVtTUC68V1RVXcJIu3jqdfntfzNWdYZm7I7LXBV7cHZHl5Z/q5pfi7X9u6dZ/VgWcc/E947M3bX3Qxa0h6Xujs7eFZkYk3Yg6XRh3tuh8TtWJ87fOXalIyWacySy/UsQ8dq4kJbP8bHZ57JnCM5llYSfz9sVePXA01zvg3M4jmRuDL3nuTl0beH751n9cd55dvS/NxffMusAL+2NyAiKzEy/eunqTef5KOZcvlsnk9ZzGBg43Ji3vp80niMBJzWyAKNb6yQpE8iTXMqx8sTr+L7/TmYUVkDUJhmvIFF68iWpX5ydWpi0JoMzZlrQ72LGkUmlRUVFTU1MHq3ez6rq6uvr4+DT7+L4fqNXqb7/99ocffujKnqz3pYNftCEB+nA/DDFLpdK8vLwtW7a8+uqrJiYmDg4Ohw8fhji09CFmEpnWwHcTYtLeT92kx7sgQ+GPaK5Go/nmm28uXLjwiNvfc7Pm9spksvz8/G3btr3xxhsmJibTpk0LDQ2lpxqleyWSSLwQU5HJZDIYjPz8Are9x61WHrJaGWqx7KAlpVOG2riE2bmHWy0PMV8SbO4cZL4kcMrCPZ8tDLBYEmTuvN/COdBs8V5qZWmQuXOg2UL/N2x/GzzqTaNefQaNeP2tGQsmz9tpuSLUbGmIlUuYtVuEtesRi+WHrd0iHVbFOe1LhemxLejQ2ZwVaR0gBjoERPWEXK1EkAAHLIlEQtckuFxuc/9OIhRVVFT4+vqam5sPGTJk8uTJISEhpaWlcrkcPC2Idy/eOjdvF/zkKQnQR89hVodcLudwONHR0RMnThw2bNiXX36ZkpLSPAEn+KlzuVwQOElwWhKZli7gkcvnKWvbEXcnhIl4CZybaAuJTw7Q4HcB1unOnTKZjASzpWfuJL9EsFJWVrZ8+fKxY8eOHDlyy5YtxcXFzcPYYmfSEc8lrHOXJQA6AdxsyGQyoVBYUcMKSrzy1bqjkEZuus9RakjOKwZG3u299HnjVlHeSJQCqk8j92/SOC9qipiNe+TnPnEhybn13EZw64SJYtBfdVnOaHgHIoAyZxs0FmgYSpWGL5KXVTdS8WkT89fuu+C28+ySzaeXbf3HfdfZrSHpx84V5xazBGI5Xd1sg+o9+BB631ONUqmUSCQcDqe0tHRrxLkvNyRCvFnoKsHzEpwy7fUzRSidwz3Kxj3KciU1s/b/c3Dq3T3BNdNgL8fVVPdr7UbNL4FC/vX+dI+ycYsEbzAbt0iPwNOFJeUsNkcmk6tUVHpOvBN7cAvit+2KAISZVak1arWWJ5DV8yS3qrhFjIacm8zzOZXhSQWRpwq2h2b47EnbEpLutvPs5gOXtoZc3h6aERyfG5yQG/1PYUJqUXZBbXYBs7yGX9sgauBJm1SaJpXm36ybT2GtQqlWNKn5Inl5TSOjlp+RV306vfSfy2WBcVd9wzK2h1723HV2yeak9fvPrdlzxvfQufCknEX+px3v+nCTHgBuk0DOhCkOdvqLGj6BV1uPaGvXiM9XxQadulbL5hK3TqJ0PoUduCsS6MAEUObswI3X2lU/ePDgzp07u5TUp9Vq/f39jx07VlVVVV5ejjd8rX2OYfn3I9Bc8FMoFOXl5b///vvw4cOHDh26bNmyy5cv19bWstls4sJI1M2GhobmGelI2EASkLalhv6hthEREZWVlfez6MGfw6gZSb8H+QlKS0v/+OOP4cOHDx48eMmSJenp6RCPt7m9HA6Hbq9AIODxeCwWq6KiIjPn+h9bj9q6Rdh5RNq6R1i7HLF2CbN2DaM8MleEWqwIsXUJs1oRarn8oOWyg2ZOgRZLgsyc9k1ZEGDmtM9s8d4pCwI+W7RnysKAyfP93vnO5YU3JnXr1r3PYJMxU762XBpk4xZuR3kqRNq4R9pQM2ejHX3ic0sqRSIRTI/VaqnEDG2wwAMqwUjPaQoungZ6JyDicDgQc5KevxPECQaDkZKS8vPPP/fq1euVV15xdXVlMpnNxc42M7ANGOIhni0BcvbC6LlSqZTJZKdPn/7oo4/69es3Y8aMc+fOMZlM4rBOhPmGhgZwVRcKhRKJBFwGDVR5KLwr/6aTLgKy6EGUJBLsWvq/yz1/LEgDkTx80LdAsEqRSEQi2ZKZKKSvzsvL8/b2NjY2fvXVVzdv3iwQCEiMSjJz4tmefnh0JIAEHoUAmSHR1NQklUoFAkF5dd2ywBTH1QnTVx+d5kM5JE3zjrfzjJm2Kn66z9HP1x6j0sJ5x09fc8zWndI49V6elAJq6xE9zSvOcVWCtT76ooNntHNgSnkN20DpfJRa4TZI4NkSQJmzVflTwWmV6kahvLy2Me8WOyWrPD6lKCDqypaQdI9dKT4B53wPZwbGXY07e/NqUZ1IolRr2ujh69GtJjKnWCyur68vLi72OZgMAiRkP5m++qidR7SVS7iDd5yjTwLVkeplD/JK1zZAywQFlGTf1GdUibP3irVYEQYf6p9MY6h0nnrVE5KAOvokTF9z7K8tR0MTLp65VJhbVF3N4kukyqYmzaObg1sigbYnoNHqtFqdRN7UKJLX1osy82uy8msOn8jfF5Oz5WD62v0XXHae8dmT5rk7dfXe83uirxw+WZBxveZmeUNNvaihUSqVN4mlyiZ96gzd04uZj2O/TndHo9Gq1BqRRMHlS6pZ/BulzLjk69tDUpbtODHDJ3766qPT1xwDl27w46Rf+NTd1JpjMMsBwlmDIzjk3LV1j6K8tz2ilgWlVtU1SCQSpVKpVv87d6ErP/k+ThPhtp2NAMqcna1FW9AeNze3v//+uxPInJMmTbKxsXkomUb94uDgsGrVKrVa/dDtcQMk0BoE4EGIjCMrFAqRSJSVleXk5ATxaZ2cnAoKCujqJmSnY7PZdHVTJBLBiH/zjHQwWt2C87w8PT137979BDQMRt4hRK1YLM7KynJ2dh40aNDYsWMXL158T3vBd5Oom8Re8DESCAQNDQ0VFRVn03O+Xhtv5xlt6xFp7R5hR816C7dyCbf3jLbziLJyOWy+NMRqeaiNW5j1ysNWy0OslodYLjtoviTIbPH+zygXTyqSrYVzoIXzfiq8rXPgp39ufPltM+MBzxsPeP41y58+nbPdxvWIrXuEnTsldtp5RocmX+Xz+XK5HPKdPAGWFtmF7uhpENUWEEHWYZK/00CZIBpSVlbWr7/+OnLkyFGjRm3atKmwsJAudhL1CG+jW6TVumAhpBMgIRAVCoVEIsnNzZ0zZ87gwYMnTZoUERFh0OOx2Wzw4CQJOCH7Jom/jQkg4VwieMkkEoVCAcIkt5FfzKi7XMA4eqkw5PS1XQkZu45m7zmRE3w6N+bCjdTcsrzSWmY9TyKRkEuePjMG1sEZFCamSKVS8BpvbGzkcrnNu5Tr16//+OOPQ4YM+eSTTxITEzkcDhE7ScnYk3TBTgBNbksC0CeQOwQSDQKuQXhV33+BWBEymUwkEnE4nNyi8nm7Tk+jhMw4B+9YO/coe30Af1vKAynSxjXC2j2CciFaRQ3c61+POqyKo9KZe1Jx/qmxeL3Tkq0HpXraeUYv3HOmrJotlUphnA7uMdqSDx4LCTwBAZQ5nwDaQ3fR3aHy6mm0OplSxeVLb5Y1nDhfEhR/zWNXyoptyc6bTq3ckbx6b9q+mJz0vOpKlkDT/tRNYiM83cNDfV1d3c2bN71DzoJySfWNVP9Jxaj8d4LI6qPgvEWSdM5Yd4KaKaLPymntGmHlQj3JUjNFVlECiaNeI7H1iJ6ud+U0XxEG5UCxEO6SBLAFseQr9/A5HqFr/E8fiMtOu1JWVcen/F+1eAtGWgxXnj0ByKkpkiobhfLC0oacQuap9NKwk/l7oq7sOHzZ1feMm9/ZTcEXt4dejjx1Izq5MK+EVVknEEmVGm3bypiPgApuvWB8D0L9czic1JyiH7ckwpwGytNan0+XivbvEU1mJxC3bJgAAZ0G8f+mPLbvBru2dY/6yzfpZlkNpACAWaR4ST9C4+AmnZAAypydsFFbyiSFQiEWiztB55ibm5ufn/9gLEwmc+LEiUFBQY2NjZ1A2X2wsfhtOyRwv8HoGzdu/Pjjjy+++OLrr7++a9euvLw84nhHhCgY7if+TCQjnVK/0LOgtaC0SWcYGxublpZG/+Sh6/e0Vy6XFxQU/PDDDy+++OJrr73m6+t7/fr1e9rL5XLBXnqeUbAXMkUJhcKGhgYGgxHzT7otJUBG2XpQf3djplGjabYekfb/3keGW644bLnikPnSELMlwVOdgyyWHjBfCvFsgyyWBJo7BZo77zd33m+2eK/lkuApC/w/+MVn9OSvjHoa9x70wuhJn5st2mPrHm5PlR/lcTC1oYGaTNeqcWsfSphsYICayBKgdpB4tqBMNM+xx2KxmExmZmamh4fHwIEDR48evWjRooqKCoVCAQ5zdH2iE/xeEG640gYEyFA7PPiBWtbQ0LBs2bLhw4ebmpoGBweXlpYSp0DisP7g+LQ4Mg5tRx6qwUFWoVBIpVKhUMjhcqPPFTjtO/vT5pOfr06w0+d8snGLtNcHmQTVwcE77rtNJ//rd3p7fFYho04sFoPYSZwv4deEuD5fv6QAACAASURBVHaBeyh4jYvFYoFA0NjYSPzFiQ9uVVVVamrq9OnTBwwYMH369Ly8PLr3rUHg9DY4A/EQSKBTEoBrn/z6Q5d4PyET4lQ3j19NC2VNrSr0C0ySgJlkeUWl8/yS7D2pOx9rl3Ab13A7jygbaiZZmOWKw+bLQ61dw229ovS3W9HWbhE27lQnAzdjIGrauEfZe0VTqqc++5S1G7XxnztPl1azpFIpyTLVKdsIjepMBLqCzEnvVR53/QnaWq3RKprUQomSxZGU1zbm32anZjMOHru+PTRj5Y4zrr5nvHanbgy+ePhEXkkFV6FUt7F71uNapNPp1Gq1QqEQCoV1dXU3btzwDjlDXDbBux2USL3jexQomqB2gDAJ8gYRPsFB08E7bvpqKlq4tSs1oQT8O+86zcfaukdBqFvw+oJXUD2/dA370y3UddvxLQfTYv4pyCqovlXJ5fClIolCpdZqWiBy5+MSwu2RAEVArdEqm9RiWVNZTePVQmbU6RvhSfnbDl322ZO2Ykeyu1/K6n3ngxOup2YzcovZ1SwhVyCTK9TteYrDHf10DXjgValUcrlcJBJxudyUK0XfrD9GwlPDZUt1Be5RMI8B4lGTQNNwmwS9Acic8Anx84a3CwL+KauuIz6dGHYLr6uuSQBlzq7Z7g+3WiwWT5061c/P7+Gbtvstbty4cfPmzftVs6mpKSMjQygUzpkzJysr636b4edIoFUJkMFiMlP+xo0bS5cu7dev36uvvrpq1SoGg0HPSAfD/cR9EzLSSSQSkneTRKaFFEdE4GxZISo8PPyXX35RqVSPBQdu9Yh3EQiThYWFy5cvHzhw4Kuvvurl5VVRUdHc3vr6eiJwQoBKur3gfqBSqRQKhUAgYLPZt2/f3h+fauUabrnyiI17JMQD0U9ujbXzpEbWpq2Ks6f0zihr13BqkM4t3GrFYcvlh6xXUqon5dbpHPTZ4n1mTvvMnQPNnfZbLAm0Xn7Q3Hn/1EV7zZz2T12wa8T71sb9hxj3H/Kmw+zPFuy2cglbsDuxqqZWIBAoFAqIGfJYcFpjYyImkdPMIMeeVCoVi8VCoZDP53O5XEhuSpQJIqiXl5fPnTt3+PDhI0aM2L17N4PBIEkg0HmuNRqu05dJTkgYQ+fxeCdPnhw/fryJicmiRYuqq6vJSVhXV2fgwUkScCoUChgNN1DgOj29hxpI8EIEYJFIxGRzEi4Vztx03I4SG6L/datyj7LziLHVd4nUrGFvKqmegxflWGDvGevgFfe5T/zWuKyiChak1SSc6SIK6c8hEC7MnyBiJ3h2glzNYrFqa2v37dv35ptv9u/ff8OGDZWVlcRhlP6D9VADcQMkgAToBIj2ANc+0TXhF58ImTAnDIJOwwULrpl1dXWVlZWlpaXFxcWFhYV5eXnXrl3Lycm5cuVKdnZ2VlZWRkZGenr6xYsX09LSkpPPzFsb9MmfWyb9d5v5In9zp73UPLDlB6xdDttQMmeo1fJQW/cIfeQMSuC0Whlm7UZ5IFm7Uh/auEXYukdQs9D0Q/P63ibGzoNyZrJxj1p1+Hwjnw83GBqNpmVvXOnEcB0JtAiBLiVzwrQJeidDd/8m3Q5sBp3SY0HW3bmj0eoEIkVpVeOZjDLfsMtr9qUt3568dMtp502nvHan7g7PikkuvFFazxXIHqvkZ7gxyJxyuVwoFDKZzIKCgjWHku29YsH/kjhf6mN6x4KGATN07Txjvlh7fPrqo1Yu4Tb69JwQtdLaNWKK80Hz5YdBy7T1iLb1iIasftauEeABBm5hsG7tGkHkT0efhOV7kvYcOePpe3LuqrjF608u3Xxq84FLh47lpmSWszgi9Ox8hqdKVzu0TndHpdY2qbRcvuwmo+FKYW1CSpF/ZPb20MsuO8547ErZdODigaO5wQnXcotZTLZIoex4IfdgHEatViuVSrFYzOVybzOq/txx0lofUBqmOxBRE65l/SSwWLjYYWoC5OKFy5m66vVTVIlbJ6Vx6qeL2bhHeYem1XOoPJ0qFRWi9wk64a52EqK9nY8Aypydr01bxiK5XB4cHHz+/PmWKe7RSqE/n5N7aPptNHEbot86P/Tp98FBa4uLi/v37x8TE/PQch7NCNwKCTwGATjn4cQGgVMul1dWVi5evNjU1PSVV17ZsWNHXl4efayfLnDyeDyhUAjxWmEAmqibRHYCgfMx6vQ4m6alpa1Zs6apqekRdyJ6G915q6KiwsnJafTo0SNHjty2bRvdXiKwEUH3ofbCbFk+n89kMouKinwjz1KPhR4xdl5URigImwZ3kPrpbzF2npRnp7VbhOXKI7aUY0EMFcx2ZZj5skOWyw/p03aGmFEJOwPNlwRSYqdzIBXGdkmgmdO+qYv2TF28d+Jva1+Z/KVRT+P+L4waZ/Pr75tiim6Xc7lcqVQK95et2gSPSJ5sRm8CokyQHHsgTjwgkm1dXV1GRoabm1ufPn0mTJiwefNmHo8HOhMxtl3ZSwzHlfZDAPo9iFILXoAymaygoOCrr74aPHjw999/n5aWVltbS1Qxtn7hcDg8Hk8gEIDDOl0Yo3d37cfMZ1sTuHeCaR9SqZTP51+8fvtv/+Qv1hy194qFsTA7LypopL1nDBVtUp8zD1wK/nUd8IyFScS2HtFWrhEzNx3bezKnUSCSy+XEy4rctpFw62QKhVwuJ2Inj8fjcDjENR9atqCgwMfHZ+jQoe+9915YWJhIRJVs4CP+bBni0ZFA+yfQ/DedhKkn7pjgiAmKJofDuXr16vHjxwMCAtzd3WfPnj1jxgwrK6tPP/30gw8+eOutt8aOHWtqajpixAgTE5OhQ4cOGjRo4MCBAwYM6N+/f79+/fr37z9gwICB1DKoZ9+BvfoPNh4wtO+QF/sNGzngxdGDho8dbDr++VfefemtqaYfO46z/vXdb5w/+WOd2aIASuZ0CaMmk1HTyA5brQyzcY1woDzII/WSZ5SVyxEbKo06FXVjmldMYOIVoVBI4v+jR0L7PxW7cg07scxJfuXJgAzEh4CHVuhb5LSFRNahBxMihTx4sEWr1anVWplCxRPKy6ob03Orw5MKvANSV2xPXrghcenWf7z9qTScqVkMFkfczv23DC4HInMKBAImk5mfn789/AyVkE8fZvbfMJV3Vcxpq6j0xo4+CZBNE+QNe/0nX6w9DhtTEumaYzb6tHzWrhHWrhEQ05KSPfR6J+gfkKQTdBS48YNH4J0x50tLy68VlB2Iy3Ld8Y/zpiTvgHNU8M/TBbnFdberuFyhTCxVqtXUI52BLfgWCTw9Aa1W16TW8ASyglvsy9erY5Jv+h3JWrv/vJc/db0Hxl+NTynOKWQymHyRVKl31+7A5yE8IkFGcx6PV11Ts2z/GRKclkiV4JcJsxnAn9vei+oHHLwoz2yScJdy3da/hVkR4MNNpefUJwKAzQJPZtPvoKAHfvpWwxKQQEchgDJnR2mptq6nXC4vLy+Xy+VteWAQL2HkHWIowSM6mXdM0m7BtEEysvlkleRyuU5OTjwe7+zZsxoN5l1/Moq415MQgLsNOOHJoLBCoairqzt06BCMLs2fP7+0tNRA4DSITysWi8GdES4N4mTTBjrTjRs33nvvvfr6+kexn24vETgVCgWLxYqIiDA1NTUxMZk3b15FRcU97eVyuaBtPNReuI+UyWSNjY01NTWFhYWbw/75Yt0J/VMf5a5EJTKhnDgpvVOfFEqfI4oKXRtl5UopnTbukfrYtlG2HpEOVP7OSBvXI5bLDlmtOGS9MtR6Rajl0gOWy4JtVoSYO1HJO82c9lksDbJcGjzpry0vjPu4h3Gfl0a9EhoWzmAwBAIBjNBBT/XgZ/tHwdji29CHR0kwWxJ2kjh3GuTYg1ywxcXF33zzzaBBg959992zZ89yuVziVNdu7W1xgFjgExCAsw5+6CFKbX19/f79+59//vkxY8bs37+fyWSSfuB+HpwghhHPvyeoRifehRAGR3mRSMSqbziWXvDV2qNfrDsBmZwg7RNEMJu++hiMqX2x7oSte7SdRww9TRT4B9hQLu9USDSPQ+crmQ2QOQ/SD9N/bkiXQn7X5HI5pPEjnp10sZPFYmVkZJiZmfXv33/OnDm3b9+WSCTNe5J22Hl24vMHTWu3BIhUQB6X6E9MMGWETFqqr68vLy8vKCi4ePGiv7//vHnzLC0tX375ZSMjo759+w4ZMuSll14yNTUdO3bshAkTzMzMvv/++3nz5rm5uW3ZsiUwMDA8PPzo0aPJyckXL168fPlyVlYWOHSmpaWdOnUq4MAR89mrP/jB5e0vF493nPO6zawxn30z4gM7kwlTBo9+q++wkX2GvNR70Au9+g/u2ae/Uc/e3bobGRn3GTj8teHvWLxiPvOdb1dM/HPjZ3/7mTvvt1gWYr7koJnzAcsVoXYeUVTCTn3aTkuXsCs3ykQiEQTGgH4Gu4J2e3J28Yp1bpkTBE4yf0IfAF/WKBBVs7i3q9k3K1iFjLqCMmYhg1VcyS6rbWA28AWifwPdw6Qo8lxwv0tYd+eOVqeTKVQNPMn1YlZ8ys1d4Zkrtic7bTq1YN3JpVv+8QlIC0/Mv13NkyoeL4BQOzkzicxJvDkPHk0lTpwwmQzefrH2+Odrj9vpp6M5eMfZuEVOXRICkS0dvOM+X3MMpqOBRAp3cbCjoz5FH0gdoGVSaTt9Eqatip+x/uTna487+iR8oX+184wOTbpcWVnJ5XIlEgmzQZCQcnPzwfRFG5OcNp9eti15Y/DFyFM30nIqGholYqmSStnZgTWmdnIKYDX0qXY1OoVSXcMWFtyuP36uZE/UFc9dlK7p5X9ua0h67JmbZ7MYPIFc3Y7z7D5uQ8KTETyRwSyHqLNX4YrWT8SnMuzaecZQgWr1+qWVftYCzGCAQBcQ9AIudri0/99dGyLcrjxi7RYJG4AD6MwNCfm3KsVisVKpRIfOx20y3L4TEECZsxM0YquYcOnSpVGjRmVmZrZK6f9bKBmSA/ESgtf9H3tfAh9Vea5vq5TNpYpatYreW71avV7qvf+W1ipZJjuoFVurxfa26tUilDUkk0lmskESwr4khC2QfZashOxAEpKQDbKvZE8ms+9rNvD/e7938nU6QUQMkMDMj1+YTGbOnO8757zn/d7nfZ7HaDQaDAa9Xq/T6RQqjUyplqs0SrVWq9MbDAYkrtFCJ82e/3XDlt8CAgJCQ0Nt/qTVahsbG1999dX29nabP9l/tc/ALZ0Bivkh4IcnvFarTUlJefPNNxcsWLB69erS0lIkMiLrhdb6qSElvQps1BppFeyWDuHrr79uaWlZuXKlWCz+1i+yHi+1iNPr9Xw+/6233pozZ86XX35ZUlKC4Bn+nDpe1OO1Zg3Sqx63j7tBYU7olRsYaGhoCIvNgYY4qJ0BgcmDkwp2Jn4pHmxAOjEXxJ/uIGALYrZkAQm0Tg+2wIUorQHJwDfRxTfB2Sdu2cZjzt4nHDcc/e2aaMcNR5atP0QEbA+9+VXUb7/av+QPPk+98qsHie3c2bNnsWQ/taP5Wyfttr3B+ujQgimCTxiB1Wo1kjulUqmNjPDAwMDp06dXrlz54IMPvvvuu2VlZUaj0QZxtz46t21Q9i+agTOAZwJeoVgsQ3fYkpISFxeXBx98cN26dXV1dRTgFIlE2NWhVCq/icFJtzkDx3undokmVGNjY0ajUaPRSKTSQ6dq3gnJ8AxMs/AGgL4pAI47i8dgEt9iEve8gjKADRBEWkDYAlRJwjU2tBiTcptbAO+LvTn1nQPWvi/WRCubkEI9O6/D7Ozp6YmOjn7++edfeumlgwcP6vV6a1onVe+4U1Nq/177DNzBGaBR7prQJiVUYX9Sa2trYmIik8l8//3333zzzRdffPHRRx+dM2fOSy+95O7u/sUXX2zduvX48eMCgSA/P7+ioqKpqam7u3t4eBibmZA3T2/0mIXiz6GhoYGBgZ6entbW1tra2i1R6Y7Q4HXkrbUgbuG06diyDTFv/+PQsnUxb/3j0JtfHXxz9f7ffLHrV3/d+t9/CvjFH7a8uuLvLzr96flfeT358i8f+snz9/9oPrE2f/zhp//98Z+98dP/dn3F47Nf/iXUcctJhk+Cm38KAwQ24gJPFkmkUq1WOzIyQtv46ITgkzt4aOxfbZ8BOgN3JcxJ0wlcu2GQUak1Fc29e9IqN8QU/ikiYwWbuzwoHQ0jPQPTlgel/yEs66+7c5ixxdGnauovD+nIDZ2CnVM1qC0MTtOYQmPsF6kbOsV55ZdjBDXbjpZujMzz3pnP2ncm/Oj5/LLLYrl+9qJt1JtTq9UODw83NzefLipFZ3RsLEMbThcW1ysoHVpyCfLhzEzG54BzMJMtBpyEtoViG/hZQER8k6iyJeKdy0MyATENzvAiBwg4YWzBO6FZ72499fuI7Kxz1f39/QqFApUtx8cn+oQqbm4za9+ZdRG5AfvPHEiu4uW3NHSKuwaVCo1RS5idds9Oesnbn9z4DFy9enVkdFxvHO0eUp6p7uEXtGw7UsqJOhd+9Pzu+AtH+BdrWoRCqU5nGL0rqcO48h0ZGdHr9VKptKOza92hQk9C42YQbBJWZISICaxN6LxPRvlZy4tk8cXwS8FqlQuLC2GBiNbSZRpEA3/Q/KdqPQy/lN2CchUR/8ee1NkbPG/8TLO/0z4DdAbsMCedCvuTf5kBs9nc1NSk1+v/5dXp/uWaCbROpxsSyy629R86VfPlgQIvDt/RO57hl+IVmO7O5i8PTP/f3bmRgsrS+t4hiUKrg8Z/qnJmzSqgO+vl5eXp6Ul//frrrwUCweLFi28EobH+lP25fQamZQao7A/Wf/V6fU9Pz0cffTRv3rxf//rXFRUVtMZEMT+pVCqTyVQqlVqt1mg0NqZ0txlFMxgMzs7OjY2NNzgbU8fb1dX10UcfzZkzZ+nSpZWVldccLzI46WApwElLXde82HEZaTQa5XJ5f39/fX39jvhccDsIAAYnJohu/nzMAnHhB7I/gbBE9+SkvbP1FJCc/IiGrU+845YER+iPA101dzCu47n6JQPhgJm4bOOxN9ceIszOY44bjjiAnm3M2/+IXrb+8KqQhG0ROxYvXjx37lxfX9/BwcGp5KQbnLrb9jYMxfRIWTOxEJzQaDRKpVIul1Ow01pQNCkp6cUXX3zggQd8fHwGBgZm/nhv28Tav4jOAD3HaK+DXC7ft2/fwoULX3311YKCAmuAUywWo061SqWiotw2CPo1IwD9unv2CS6nUauW8DglcfmXPAPTPDlpxPQOun1xFc3wS3bcEu9CWkBghczmu/hzGX7wBmsBJXzuybFgnwwmtIx8uT+vZ1BsMBioeq3NhNPDjc0T2M1jMpnQAxiDiUQisT7oHR0d77333rx58959992Ojg7sZrO+u9l8hf1X+wzcCzNgcylR3QX0IB8cHGxpaTly5MiHH3741FNPzZkz5+GHH/7JT37y0ksvffTRR7t37z579qxIJJJKpZLJBxofWEOY9DLE2/rUn0KhcHBwsLe3t7Ozs76+PjP/rOuWE4zNsdDj9Y9oh01HHDbELPvHIcbmY86bj5P2rxhHkPo/5LAOUiPnTcfe+kf0b9dGE2T06Jtron7z9/3//eegl90/f+YXjIee+re5Dz76wLyFP7x/zg/vn/PYv73+H05/+tXfQt9as9/L90RrZ7dCoZjaMWYnd94LJ/8sGuNdBnPSpgo0k0MJeqFEllvZ9tddpxFaQ19JzBCQSIQajFQrgsiupv59X05ZQ7dUAVa7NuUaCG5Xr2r1ZqlCX9Ms5OY2746/sGVXwcaIvA0RuYHRxVG8moxz7W09spHRWa+5RaEOrVYrFotbW1vLy8s/icyyCNIGgHGA45aEZZvjUI4SjfpwuUpRTCBy+aVgkkZTNXyCkpWIay4PznAL4C8PyUTKl6WXly3wIq+7sLgfhKaWV18aGBhQKpUIc9KMWqkxCQpath8vWxeesz4i13tH/tbDJck5jUWV3cNSrVY/MnHFTuycRZHpTu7qlStXx8avqPXmth7Z+Uv9J7PqAqPOBh8qDj5UHMOvySntlKqMpllotPld5xQtWkwmE1I5c85fXB4MNGuQpCbgJV6hsFIjSmOoOouhFSMAepZbehqYyY7E4xylaxHapMac7ux/uo14svld/cOU0GndkPpdh2B/v30GZt0M2GHOWXfIbtMOV1dXh4WF3dK+D8rqwPqXwWBQq9V1Hf07+RWf7s72CIAw7cLiuZPMzwXsCvjg18JJBUUjQCwEq3ZkByeWFTf0YO8/bRWkuRpO1s6dO99++21U15RKpXl5ee3t7Vu3blWpVLdpNu1fY5+Br0GpA8tV1iROlUoVGBj47LPP/ud//ueRI0e6urpovQlLUchnksvlyONEZ0qEOVGuFlkvNpac+F236PqVSCQffvhhVVXV9Y+q9XitgY2goKDFixfjeK1VeXG8aL+nUqk0Gg1e1zaYmc3VbbMPFOaUyWQIc0Zx8ynAaRH68ON6BKZ5Baa7Eg1bFz9QsoVaP4k5/2yPBcs6vjMzieGX7MEReHIELn7g2enkk0CcpU46+8Q5bznptPn4svVHlq0/7LD+sMOGww7rY/62LbGyqrqiooLD4Tz99NO/+MUvYmJiVCqVDUhzi46OzYTcxK/0LKVgJ7Lu9Hr9N8nYikSi5ubmsLCw5557bsmSJdHR0bNovDcxRfaPfNcZsFY8GxkZMRqNZWVlbm5ujz/+OJPJbGxspHEPmdxyuVypVNIgMPXambGXz3edmel9vzXGqdPpxBJJYuFFV1YK9guDjROTtANzAMgEZgAz2Y1YcmL0w+Ia9gi7B8B7YOU82SBM+kWg0dg1gOfCSvlHVP6QWGY0GkdHR5FbP3UseBdA82lrCq9Op6MattZgZ39//7Fjx/7jP/7jlVdeiYqKUqlUdlrn1Fm1v3IXzwBN3qxhBmto02QyDQwM8Hi8jRs3uru7v/zyy/Pnz3/hhRfee+89Fot1/Pjx/Px8jKg21Myp4KUN0ok5GP2U9ZPh4eHBwcGenp62traampqNe/kOG444bgAq59vrANF03nycsSXWceMRhw1HLJzOtdFvrYmCDrB1h9DLHFBP0hBGMiWAP8HpfB38/PX/7frFR6yXPb/897c//Mmrv134xOIfzpk79+FFP37u564r3t+zZ09NTY1Go0GYBJES6wYIO+H7Lr4iZsvQ7hqYk9616S1br9fLFMqMspavDhZ4EVlUpBA5+yZhhoC8Q3SVwz4qXElRoG55YOrmo2eL63s0RMmW2BKNj41N6AxmldbUNaho7BSfLu2MSqkOOVS8fnuu984C9oGzUSnV1c1CpcZ0d+R7FOa0MLo6OqqqqnbG5wIFNiTTMygdUzKcUgYzebl/0u+CoRSGU4pJGmIe0KlGXDwR4cB5ptgnsjZREhMZYxQpAVVMn0S3AP6Gg6eaW1qEQiG6q4yPj+Nxx8vt6tWrfcNqXl6z/74z68Jz/PYWHUiqSs5tqmsf7h5UKLUmvXF0fOLqXUm8my0BZ4bv55UrVyUKfVuvLKe0c09CRWD0ucCoc+yDZ5NzGxs7xYMSrcE0K6Wnv+u042V15cqV0dFRrVYrk8l6e3u/2Jttua7JVUxEdNKxBQEWXGTZhRAmBlJsH7G+2DECYxxAY04GwT4xLDCYyU4+iS4srjtbEH2qRq1WWyv/f9ch2N9vn4FZOgN2mHOWHrhbvtsHDhz42c9+dou+hvYmI5vNYDBoNJrBYfH+jCr3AD4S9t04qZjYoV4HBPdJX2UPQkqA8E0QUA9O6qZj5zr6RNbdvrjo/frrr6VS6csvv3zfffd5e3uPjo5+9tlnL7300sDAwC0amn2z9hm45gxYQ0eI6+v1epSGXrBgweeff25tS4nFJmRwKhQKpVKJPE61Wi1XKiVyhUiqEErkQoliWKqUyFUKtVaj0xuNJkp5xLLytK8Mr169umPHjpycnGuO0frFa473woULL7300vz58//6179OBXSlUqlCoVCr1ZSrOlWV+ltHhDCnwWBANmdDQ8OJ9Hw3Nh+kGkGQlodu7bAaDABxD2AvMVNcgKkpeGfrKXe2wMkHcE03f75HYKpbAN/RO+G3648Tz84Uhl8y/GMmuwfwnX0THTeDupoTMex02HjUYcPRZRsO/3Zt1NqdKTU1NW1tbT09PY2NjS4uLshPGhgYoIZ29AB964isZ/V2PqepuTUqjw3dCHbKZDLK7BQKhcg8bmxsZDAYc+fOXb58eW9vr8FgMJvNY2NjiIJcH6K+naOzf9ftmQF6r6eOvCaTSaVSJSYmPvzww88880x2djYFOKlKrXWXg00QsJ9C1z9w2DI8MjKCMbC+9fIfwjJA4IiomQFpgAU8APcAAYOZwvBLgSd+yVA+4wg8A9OwvoYraujwIGppy4lzJ3ICGMwUgoxCC4hbAH8Hv1ypUlOk07pMZrOf+CfK7ESoG8FOhUKBkYTCMJcvX16xYsXcuXP/9re/icXAGcVbG4ZN+zlgM7f2X2f7DODVYR0tqYUHGm0aDAasjh04cGDp0qUPPPDA/PnzFy1a5ODgEB4eXl9fTyVnEbmklxLelymcSZFLJHZKrR4y8pBPPhT/+pDL5SKRaGBgoLOzs7i86oPARGfvWKctJxw3HXfYdMxpcywDzMtPQMvXhiNOG485bgT6JuRFG486kD6wt/5xyIGI/L+99pADEbb97dropV/ufXP1gTdX739rbRQQPTccWbbhsBN86siv/2/Xq15fPPnKr+YufGT+/AX333//Cy+84OvrW1tbKxKJtFqtyQQZL71BWOt82EPEbL8iZuP+3x0wp3Xmj2tVnU4nFEtDk8s8SVkGde+pEyQuqSy0JBYXi+9Ymse+UsctCRQK9eSkRp2qkSvVRqNJpdFLFLpz1T3pZ1rDjp5n7S3aFJm3fnsOJ+rsgeSq7NKOPpF64spd5QaJTy5BaQAAIABJREFUMOfo6CgKDnV3d9fW1uYUnP0wLOPdIMHvOMmrguP/L+T4+pBo1rZ9W8N3hUXsWhMcheqUFhaXH6RtQNMMzkCfdYsPy2Q7GuZstDUNzTvxoCBdDP3/PDipqfllHR0dEokEzY+/ybpPox8RFLZujy1bH5GzYXuu757C8KPn+QXNxTW9UoVebwTPztl4tdr3+RbNwNWrX5tHxodluqomYXx2g8+uAuaewoADZ/PKLl9qGzaZxu+18wUj6vj4uNlsViqVQqGwtLoBL0YMnni1Wptu0vgJRSqCgxKVWoskNV7jCG06bI5zIrROVxJ7kQhEP46rtv/blzc4LDEYDFiKmbFFp1t0Qto3ey/PgB3mvJeP/vXGPjo6KpPJrveOm/0bruRpk6BOp1OpVEU17f+3N8cDZGkF7kQ90i0AcU3oYrP0qYFeeQppZuG5Et4VSd24zkwwcfljeGbCmQaSPQO3YHx8HJHO5OTkuXPn3nfffQ888AAKSFZXV9uj/M0ePfvnvvMMWJd3Edc3Go2dnZ1r16594okn3NzcsrKyaE0Kq1ESiQQxTqw4yWQykURSWtcRlVnpH3vmy32n/xiW/g6H+15I2h8isv8Umf33qEJmbPGBzJr8mstShZryO7Hugzvwnff7Wh8YGxvbtGnTyZMnr/VHy2t0vBTYMBqNXV1d69ate/zxxxkMRmZmplgsxiFTQJdyVacyOOnq60YuW1xGGo1GpVI5ODjY1NSUmnNm5VYwpZvsfUuhGj7QekyK9ZBHsnjohgJNr0HpKPiD73QDUDPJ2TfJySeRQAI89wAeg5nk4pfsxkpx9k1w3gKenQzfePDs3HRsV1z2pUuX2tvbe3p6BgcH+/v7jx8//l//9V/PPvtsREQEukx9E/X8OhN7+/+Eh5Iq2SKhBL15KBlLLpdbk7FEItHQ0BAdb1hYmFKptOHj3shxvP2DtX/jtM+AddUeQ5/JZOrt7V21atWPfvSj1atXt7a2IsaJcQ8bHVClliJbtHiNZ6P95LnOYaJFNIPBoFKp+gaH1hzMQ5oFg5kC3sOToQxWyGjyxALYEvBOsOoEfoDFF8oPhNGwoIaR08kn0XFLAvAASLMIUOQDU98PTatq7sEyGSZd1zlAeD5QA+DR0VFsm9BqtSqVCiMJvTX09fUdPHjwhRdeeOONNzIyMq6v2HGdObH/yT4DM3kGaFiz4W4iumkymXp6emJjYz/77LNf/vKXCxYs+NnPfvbxxx9v3749KyurtbUVYUtraJMimpSaaYNoymQyVAfBFjrsoqONdJrJh9bqgZL1EolkYGCgvb2dn1uygp3kvCWO4RPvtOWkk/cJh43HHTbHMnzinbecdNh4zGHjMcdNx4nWReyyDUedNsU6bDz69vrDy9YfeXtdzG9B5zZm2bqYZRti3lp7COFPp01HCa0TnM6B/Um0MeA962OWrYvafuD4jh07Pv/88zfeeGPhwoWvvPLKH/7wh507d9bU1Oh0Ohu807oZgk7vTD4H7Pt2d8zAXQBz0pwNBXjQ27uiqfvvBwuWh2S6swVeQRahRVqmB7wzEPw+kDuI2jmIa+L7XcFGLsmSY5Bu9Y2Hz9S29rd1DTd0CLl5DUcENax9hZt25PnsKmQfAIyzumlIozPfZejZlStXdDq9UChqbeu4UFmdl1/I5aUei43bfzAmZPu+kPA9YRGAa9r88912wDMo3UZXAxERpGyCmC0TOtWWB4OxOqZ2LsSn0zMwDXEUpHKiWyfafP59b/bFixd7enpkMpler0dBjm+6DK8QZmdybhNr35mNkXn++8/E8Gv5hS1NlyW9QpVKa9LZmZ3fNHf3zOtovanVjzR0itPPtkYcLwP6ZvS59DOtF1uH5WrjPUv8xaA6NjZmNBpRZuz4qXKMn1jfxr5SjJCW51bOu5TBicRNKEYRV87JihaokWFAwCiBsCginfjZD8Mya1thmTYyMvJNujv3zHlqH+i9NQN2mPPeOt43PtrVq1eHhITc+Ptv/J1YNB8bG0OXJplMllTU4E4sBDw4qWCSFwSytO5sPghLBgGL39Wftzw4w4MNnnluATxALFBtksX1Cszw4KQ6EhDClcXdllIuUyipX9T4+PivfvWr+yYfP/7xj8vLy298V+3vtM/A95wBLLJg2QUL/Xq9vqqq6oUXXpg/f/727dvRltIa80OMkxopDQmHs883fBSeTlQsuG5svisrxcMC2nGdfZMxxaE8xXeCM47lXRJJFXorIh1mNtcpQN/IMGtqaq4PcH49RZgX7dYrKiqef/75Bx98EMdrjemiJC+qUyKJkxJSaafCd2rMx0K/yWRSKpVDQ0MtLS15RcV/jiBuB2zi60464zw4qe+GZYOYjz8f1ooBAsctCW9vOkFXj8uDgALlGsADKSFOGqaMSPEkrjMp4PTO4jr5JjKYSR7QcJfkxkryDOC6MuNPFZY2NjZ2dnb29fUNDg4ODw+LxeLBwcHPP//8Rz/60WuvvdbS0oIsBGsI50YOwR15Dy18UHxiZGTEGp+gZCxryEokEq1evXru3Lmvv/56c3PzVEueOzIW+5fezhmgsBb6RBoMhqKiogULFjz55JM2JE504qRxwLpRg6oRfs/wdTsHfke+i66l0f1FAnK1l0AKKTCNAWtmLsSxAAG4N7GAyO7kkwDqRiwerpaxQObsm2Qt8U05AUADJSx2/KyLP9eDDVbHDGbKl3tPyxUKTLqwJeU6w7cJJoh0Go1GbJuQy+Uymcz6nlhXV/fqq6/+6Ec/ioiIQGk1JG9Nyx3tOvtp/5N9Bm7PDNAgSVUTkIqtUqkyMzOdnZ1/8IMfzJkzZ9GiRWvWrKmqqkLes/U1Yp1QIbSJP2265ZTkYQ1nIo6pIw89eRjIw/ivD5PJZDQaUWxtcHCwvb39cOoZR+84BjOR4Zvg7JPg4pfE8AUlf2f4d9LJ+6TD5hOAgHrDT1dmopP3CSfvk85bTry94ehv18c4bjru5H3CBQDRo44bjoGALYCgMQ7rD7/1j+i310WDHO6mI8vWxThsPOK06ZjTpmN7kvLb29t7e3uHhoba2tq2bdv22muvzZ079/777//5z3++Z8+ewcFB5HeOkgdyYe33jttzDtu/BWfgLoA5qbmA2WzW6XRKpbK6uXvlNgA4LRoPvkmw9oH8AbRPsS+KKqauCMmkBnJI5XT2TUL2J6JxJBWBj78XnOq/L4e5M2fdtqx1Ydmhh87tib+QVdzeJ1LPXrLXZDC/Mj4+MTY2rtPre3r7KqtqTmXnHouN375jrw2EOfXXbRG7tkXs2hqxe2v47pDw3aywA6uDoh2843GB784WUMAYARIQtg3OWBGS6cYGG07kdzp4x+Ns43s8OKkIiOJGwLkzKC02o7ipqWlgYEClAsPUsbGxGzHt0+pHknOaQmNKNkbmbdye67e3aNuRUn5By5nKHglhdk5MXLFHg3twBsbGr/QOqysaBsKPnvfbW7gpMm9/clX62Q7z2Pg9OBs2Q6ZLM71eLxaLu7q6OLEFZPH1L4YgFM6korUoP0t4nMkuBPjE6xqJm7hwQ2gTGliJBQl2puIiDsOyJzg0peZXtuIC6gavdJsh2H+1z8AsnQE7zDlLD9wt3+2jR49mZGRM+9dQtgFinBKJ9MjpmpXbsjwDUz0DQaWWltWImGSyMzMFbKX8uNiV5oG9aZBwC1z94Q7hQshYnkHpLn7khsHisk4W9w9LseiWlJQ0CXFa/v/v//5vkUg07eOyb9A+A1NnAIss1OAQHZXWrVv34IMPvvfee+fOnbNWa8RCPzbay+VyqVQ6KBzOPN+4JirXzR/QfTSPREM1zH5oIxhmM0g9xBc/2XH6ZEHDsExpMpmmizh4+PBhJpM5dZj0FWs6AiJhfX1969evf/TRR999992ioiLrepxYLEYbTlSpNRqNNpy/74Ru0n3ACGM2m9VqtUgk6ujoKCsrZ8aACwLaxkAWCF0U0JUMGGdQmqs/D0r//jyi30i4TaRXDvNF/CC2xOKSHsVvJzvpUryCIIn05Ag8AniufsmfRaZeulTX0dHR29uLGCcdtVAo5HK5S5cuff7557dv3y6VSlHQdVaAnYhhWzM78RAbDAZKxqIatjjkoaEhLpf75ptvLl68ODw8XCwW2xxiO3BFz9u77MlkuWeCMoDFYnFgYOBPfvKTd955p6SkhF4UGPeQzK3T6RAOn66QdZfN6vWHQxvIwEZLJuvs7v1HdAGWHZ0BoRRgEIPQF5zuTrw5kejpGgBIJxbCkBYA+CUrxdEHuJvOvsD1pGioG9H6Rt4G3mucmcm5lW3WhM7r7+fUbhjqzk4jiTVBvLe319fXd+7cuStXrmxvbzcYDHhTs+tgf+s8298wM2cAwyNFFKx9Nzs6Og4ePPjHP/7xueeee/TRR1esWBEaGpqTkzM4ODgV2kTiJhI6rUFNa6cD6uau1+utUUwTeZgnHyNWD0QKiXke/MBfDQaDQqEYHBxsbW3dHp/nuCXOYfNJJ58EN5D9T0ZlCxe/ZFdWsrs/19Uv2dk3wdE7zpFAnss2xi7bFAu+5oCDxjtuPuGw6bgjvAJMUEfvEy4+8cs2HH1r3WEQvN183An+egzAzo3gev72ukPMqLSm5ubLly/39/cLhUKRSCQUCsvKyvbt2/fJJ5/87Gc/W7RokZubW0hISFlZGcYitHO28e+0pxwz84q4O/ZqtsOcuHoaHx/H/lSFQnHuYvsHW9MhTwjgu/gRV2+i+kD9HbGejioRtCiPiQG6DtHaPWkPBUlbhD9d/XnvcASfBwnWbcvYHHk6KqWyuKZXqTHOoiv0ypUreoNBIpF29/Q2NDaXV1QWFJ5Nz8hOSOLFHIndtefgVBTT5pXInfv2H4yJOXz88NHYsL1HvwiN/UvQiT8FJ/w+MGlFQJIb8VIh0CaxFSD1MVSqpKgnrkk9A9NWhGahZBHOMELRSN/ElS/meF5B6e6c1M92ZpRX1nR2dopEIo1Gg6Z9NzjzE1eudvTJYzPqvHcWbIjIZe4pPCyo5RW0tPXIBkUatc5sGhmfmLjBjd0d1/29O4qrV6+Ojk3Ut4vyyi/H8GtZ+4pCD5fknL/cI1QrtaZ7d17+deQYV0dGRrRaLTTft7Ztisp2IvJgLiwobtPyFJrv4koN+0XgAid0bbzSMXiigy/GW6yZewSmIY2bCvBQm2R8Q1xejYJ0o9phzn89OPbf7vIZsMOcd/kBnlHDw1iPPE6NRiOVyk7k1npwQJaWZHIpwOBkg2WUEzPJwTvOmQlC5O6Bqe6cVFcWz5mZRDJm6AREf2bM5zwCU90DQMbWxQ/I+67+XE58iUyulEgk6Mppg3Q6ODiYzeYZNTP2nbmbZgAZnLToTAkrFy5ceOKJJ+bOnbt3796pACfKiGHHPcr3hcSdBe4yJxWXNFiSdif1aI/AVIYfF14hMoMWOg5RckZdC1AX9E36y87TvUIpIgdUUfAm1h/Dw8PR0dHfdIysx4tKR2az2Wg0Xrp06bnnnnvggQciIyMR1cD6FGVuqdVqrVZL7Rut0b6b2EncPSwgjo6O6nQ6mUzW09NTU1MTl57vyuIxiOS1C4u7zDsO3GL8ue4BAheAkC2enc4+IAZCgWRcq+O0W7RtyWy7BwiWQz9sBorcegSmOfkmAhTN4rqyUuJPlba1tfX394tEIvS9otVJHP7Q0NCXX3553333OTo6qlQqJK5R98qbHvg3HZ1pf30qQdlsNuv1emuIApUncbz9/f043mXLlikUiqnjnflDnvY5vIs3aF3BRxInCvV4eHj88Ic/ZDKZFOBElrNMJkMnTgpfWV8L9nPjBk8VWqCkRPaSmiYPjoDcKVJAsZYNMOeKkCxLxwYx3XRhcR23JKIxp3uAABo4CLnTjQ1q3h7sVDd/8OxksMALCvqIfZPe2hDr6JNIyBwg4g2hj833iS2WSGXWDp03vtv0RokqnXq9HhUyUc9geHgYfX/LysqefPLJefPmFRYWokylDRZuP1VucM7tb7tTM2AdG7H7DQF+1IGvra318vL6wQ9+cN999/37v/97dHT0VEFaarQpFou/CdfUarU6nQ5BTaPRaA1nIvJHUUykPNKfKDpCFV+xa4326tHA0tra6h+TBdc+M9GNzfOC3lOBmz/XmZkIhG9/nqN3vAszefKVJA+2wI2V4gqm5omO3vEO3icdN8c5bo53BrpnnCMo3yY4+8Y7ep9gbIl33BS7bOPRt4DNGevsHevscwIgz43H1u1NrW9sQphzaGjI+iaCufSpU6dcXFweeOCBH/zgB6+//npycrJGo8Hh46hxmJQFjmnMnToT7N97V87AbIc50dgbV6xqtbpvUPh+EBh2oL8jVuRxfQTLTCKUilgmrqE8A9OcfZNQXghZR5ZFK1uA7uCU3wk6+YSG+A6bK8i/WNc2aJ5UU5zJ93Gz2TwwOFRbe+l0Tn7siYTInftsYMvr/xoRufvQ4ePpGafKKyo7OrvkcoVKpRoaGurs7KyqqsrKPv1+MA8kzYj2LFpvAipJOnSdmcmIYlIsGTmaiGHgxHoGpoHsGScVERH8oKs/6J/hTzwcLn7JmfnFLS0t/f39crmc6nB810tSoxuJy6oPjSnZNMnsDI0pSclvPl/XL5Lrx8avzORD+V0Ha3//1BkYG7+i1o5knmv321e0YXvekfTaM9U9ppGxqe+8x1+5evUqGnNCUO3rq2toXLM3kzSHwbrMMwjExlBNB2maeFFbYE5mMq7dSKRNgcbTyS58jLEoD45vhpI4wURRt5b2oLgF8HfwzkskEp1Oh7q19mvzHj8n753h22HOe+dYf7eRPvPMM83Nzd/tM9d9Ny3Dmc1mrVYrlUrP1rT+LhjSYlcWd0Vo1j/bWNgCMIViQQ8LxHc2YXkCfsl39QfvKGwP/GcnC1Fgw/ju5s9zYfHc/LmHT1cnJSXNnz///vvv/+EPf/jEE098+umn4eHh6enp7e3t4+N2IYXrHi37H7/HDGAxi0qQmUwmsVgcEhLyxBNPuLq6FhYWWmOcqNpKu+9R/7O2uWttVIEHW4BmG56BqR6cNFcW4Jr4D9eWK0KzyLUAXQLYKosZD/IUseHro4hT+TWdOp0OiYO0yvOdxldSUvLuu+/q9fprfoqOl2Kccrl869atjz32GIPBmDpeuVyO6pQIbFiLECKD8/tkYLgzY2Njer1eoVD09/fX1dWdPXduzd7M5SGZRGUxGb3oXKAwB02yIF3L5hNVRqjmg2UCR+DJgeY4nE/aFofmdog6Y2KKHCko8wXw3AP4f92RWVF9qbu7WyQS2RxT6jmHRz8+Pn7JkiWLFy+OjY3F1JPSDmZ+Ae6bgG29Xq9WqxUKhbXyJDJOEhMTlyxZ8uyzzx47dgyZu7NovNc87e0vTp0BemJQCrtOp8vNzV2yZMkrr7wSGxuLkBUCnBKJRC6Xq1QqJHHSAEVj1PeJA1P37e5+BfOr0dFRg8EglUp7e3u3JhZblscgfWFRpvVCkyc/sHJBHVpcD8O6OsBCasdI6MriWTpmiCUnkUpLRt4nLsJhWU5MPV39eat2nG7q7L+JJTQ9Yejt0mw2I0FcqVTa+P6WlpZ6eXk99dRTkZGRMplsasPE3X2I7aObvTNgfZ6j9jsCnBqNpri4mMVivfHGGwsWLHBwcAgICDh79iyyma0TRUrctEY30VYTzTRtoE1kaVJcE6mZFOqbimXiHn7Tz4mJCZPJpFAoBgYGmpubWUdyPYPSUNYCYwumRu5EZQdjiwvYlic7eMc7+yS5EpMREFXzTSQyPCkufslOPiB4y/BLIpq3iQwm9Io5+RCS6JY4Z594hm88Y8tJR+Lr+fed/Iam5u7ubuoCgBOCeCc+F4lEFy9e3L179+9+97snn3zy+eef/+KLLwQCgVwupyro2ENjfYux32Vm72U10/Z89sKceOFPTEyMjo6iH2dX3+DaqHyLXiILOshRLgjr6RbAkiygyHqThwWZ5cEZzsxkFLPFxRSqKWJFHnV0JvvaYfHl6s/zO35GLIP2R7w27+D1ePXqVYPRKJXJ+/oGWlrbq2sunisuPZWdm5wiOHLs5O69387O3LFrf/ShYyfjkwWpmbl5haXnyy9equ/o7BIOizRa7cTEBJ6xmK0hu0sqlfb39zc0NJw9e3Z3XJZ7ACxFEY+EKWVxvYKATYskLdRtcvJJRCwZQU0L/Eka14ijEw+az3xOOvskYqsuHKDJHmh3f+7uxLyLFy9evnx5eHhYrVZj4n0jirVTL7fRsYnGTsnBlOpNkXnrInK8dxUc4tdknmtv65HL1SaDaXR0bOKedWScOl13xyvA4Byd6B5Qniru2BVXse1o6a6TFfUdYr1p9A5evDN5bhHmxEax3t7e2kv1a/dnLyd2bLiYwsuTrNdgXYYRkjpxMnyR4QPREiMAXtcYcvHNWKTyCEzDT1myMsL/hljtlxIcd1YsFlN7TvuRmsknjH3fpnEG7DDnNE7mXbWp9vb2kZGRaRwS9uxjGU4ul7de7lm5Ld0N5CJTXIBlhS7KfHdwe+Iy/JLJEzCUcuekLofanIWpSZLmJGdfMLT3YKd6BWUg/Onqz3f0TXRjcS2ZtD9vU8jeqKiojo6O//mf/3FycqIp5jQOyr4p+wzYzADF/NCJ02Qy9fT0/OY3v5k3bx6Hw6EqptQ8iYJhiA9JJJKWzp4/78zxAvdNS20aq8lEFyjZcUsCNHMRJWfSBCDwJJVrVxZcKSQNgjZbd06qV1A6ww/yGzdWSur5JjQuQmzpxpc0er0+PDx8dHR0bOzaPXo24zUajd3d3UuXLp03bx6bzbYZr1QqVSgU1iROa0bOzanU2sw/KiKOj48bjUa1Wj08PNzS0lJeXs7NzHs/FBZ7SGaCRgqUYAoQEEd36EH25KQhaQnYS8TpBFeYHuxUNLSja3vwiucIXAHaBPFbj8BU/OAe7tnW1tbBwUG5XK7VavV6vU6nQ3KSTCaTSCSUhSASiTo7O728vB544IFPPvlEo9FgRZLWH2d+GkorI1gcoYad1uO1LtR2d3evXLnygQce+OCDDxQKxVRYa+qhtL8yi2YAzwckBGD0MxgMycnJDz/88M9//vO6ujo8GTD0UcFqvV5vg1dNVxyYRVP3/XcVF9IjIyM6nY7ElssfhGUB6gBCFwBYkibfJAQ+XVlckkEluxMtDWdmElLbob+YENYtLcMs4LvjWtrNH5yfYGvgQ5yCT1D5Fqqf/rzCKov1C8oG3PiI6GljfeagFyC9J9IwMjg4uHnz5jlz5nz88cdyuZw6/iLnbObHzBufFvs7744ZwNMb69o2WH5aWtovfvGLuXPnLly48KuvvmppaRkaGqLtUNapgkgkougm6nsjA55Cm9aUTRuyJs0oKDvzu14mGFuMRqNcLu/r62toaNgSneUZaDEKAYDTn+fsC7LYnqCIKPBgC9wDeG7++A9CDS3PAd8oKIMs4hIZrGRIcUmDBTDD/FNc/VIctyQwmIlOWxKcfeOcfRLe3nhi2cbjDt4nvtwpaGoBkYzh4WGpVCqTyahCPg0OFPIUCoXd3d27du1atGjRnDlzHnvsMXT2tXZGmBbtkLvjFLWPYrpmYFbDnHj/NZlMGo1GIpEcOVXpCaJB0FYO1o8B/GWbQQXH2TfJYQuo2SNyic2geI1jdkERNctSCxQjUP0e0g98jwcn1dk3CS52v5T3QjNziOg9Ip3fv9X1xo+m2WweHBJeqmvIKyiKT0jZtefgjl37I3fu275jb0Tk7utTM8MidoVv3x0dcyw1Let8WUVHR6dSqbRez14nzNJmXKPRqFKp0F3lwoUL+QUFgTGWRShtsXX153kFpa8IybRAxQF80CJCzhYLtIio7BCY8AWlf+x/JDBsT0j47uUBMOHvbstGOJnhl7Jsc9za3anlFReam5sHBgbkcrlOpxsdHf1WS/XrT+nExBWxQh/DrwmKPue7q3DLzoKQQ8X7Ei/klnc2XhYrtaar1/+8/a+zZwbGxid0hpGzVd3B0cU+uwqOpF5s7JSMT1yZvX66t2HuaQalUCi6u7uray5+uQuKUXiNQ2M96RlFJgMatGGopHgnwpZYv8KuBVIGhHZVStrG3ggnXxBBdJ1sTEHePMMvhR1bdBMK1bdhcuxfYZ+BWzoDdpjzlk7vbN14f3+/QCCYRmVXSjVA7KF/YDAiucSDAzx9iyseG/JpR59EBkE9nXyTENrBv7r5g3AKwy+FtK2BhBqDOHFieufsBy3DmPlZ6G4gY8v/+76cQZEEzdW/Zxo3Ww+kfb9v4wxQ1IeSGtVqdXJy8ssvv7xkyZKEhIRrMpnQOUmj0ahUKrlcXt/e8+nubMhpSPrCYFrcULCp1sE73oXF9SDcTXdOqotfihMpIREGMxSgwcITGr64xLwWBHBc/GAh9F5IWmFtp16vp9jSDU5MV1fXW2+9deHChanvtx4vohpqtZrH47366quvv/56XFwc1RZDgTWZTKZUKqlK7Q0uCKd+77e+Qltl0aOuq6vr0qVLZ88Vb96f6uwLhCRkvhJ0E2znIHdkA0KM3cqoT+sZCEIi2CcLvARmMjRVBENuSkJTMkpkY0qKS80v952uvljX09Mjk8lQVtFsNo+MjBiNRkpzxNocVWIUi8WRkZFPPvnksmXLysrKbPCe66yTv3USbtsbKM5NCXw4Xo1Gg9Rk1OzFk39oaGjnzp1PPfXUsmXLzp8/j+O1Fxxv28G6dV+EpwFWyhDwlkgkmzZtmjdv3qefftrT00Nr0GKxGEmcWq12Kq/31u3h3b3lK1euoB2ASqUaGBjIL7tkaRP25wOESbibFjYGUb/AzOqfpTRYFUNBE+8p+ByWzYhrkmoawUq5JEMDH3Ts7cCFtwcndSe/DK1fRkdHb7yNxvqgWEcSFLA1GAy0Z4JKfw8ODu7Zs2fx4sUMBqOystJa89wOkFvPp/35jcwAhSEpCoibUc8uAAAgAElEQVRPEB28JkaIH7n+xmk8xC2gw6XZbDaZTJWVlSEhIUuWLFm0aJGXl9fu3btbWlrw9LZG7FCxFiE92gyn0Wh0Oh1abJpMJkwwro9r0gFef4ev81dapEOaeF1dnV9M9uTCTYApEHaAgeIi4R6BFFsgtH95EB1FWKmBawA0W4DPAhNWcJA1BYCqthsbBLHdOQJn30SHzXHg/stKYTCTGH7JzmAPDKTPdftPtXdcFgqFeO/AhFmpVKJ0BIU8KTaM6r5CoTAhIWHVqlXPP//8008//dVXX2VnZ1PlfOsU1B46rnMC2P90gzMwe2FO2oau0+nkcnlbV++fd57G4jtW4WHhScSEsKETkTOkEHkSWzgn3yR8gwu4eoN+NUKkmIfgRvA5CrHikhYjxuqD+SKJjKqn3kiAvZEjcuXKFaPRpFAoBweHOjov19U3lpVfyM0r5PHTj8XG7dkbFb79W7DMyJ37DkYfiT2RkMJLzTqVW3S2uKq6trW1fXBIqFZrbrp1Hgc4MTGBHqhKpRJZ8hcuXCgsLNy8D8ybMGfD9Sb4qZNuZgtxk+gMATkefZ2IJjBo2Aalewam/ZlzfFvErrCIXR9zYnF5i3aebv68f+xNKy4ta2pq6u3tlUql1n7q33+xaTCNldUN7DxZsSEid9OOvID9ZxKyG4pre3uFKp1hdGQU+t++/7fcyHG3v+dWzMDY+ITeOFrXLtp6pMR3T8HRtIsV9QNyFZjpXidlounHvXzocXWGjWKXL1+urK5Zsy8Ll2NUno3GSWrViX+iStSYYtHCOPK5SaIFhXRUpWb4gaotxT4xSuMqb1viOaFQ+F2NeG/FiWTfpn0GbucM2GHO2znbs+a7Tpw48dprrykUiunaY1wno1ytRCKpbWz7Y2Q2rG+BzZmM9pwEmwG9DifI3pJRoxzSaKjQEWNOdCVkA3MfEmgkbnJSLXcLUsgDRj+8zcJjy65o0Wq17u7uv//972+u9DZdM2Dfzt09A7RES0mcer2exWItWLDA3d29sbGR1l/EYjECfhqNBv2T0I1MoVAMDw9vOZzvTJzJ3dmCFSGZLizA5FCQGVYsBIrDnAZ/EntI0FbF1jBoiicXAlw4/rzJpSZUl94PTu0dFCPSOT4+/q1J59WrV/fv3z80NKTT6aYeOzre8fFxSuPz9/dfsGCBh4dHU1PT1PGq1erbxtyyLvoPDg62trZWV1dn5+StDIYCPcGGLdxND04qaUwGASVYWPrzgdvEsnTJARHKL8UrMN0rKN2Tk7YiNAt8UwIETr7g4olvw0L/h2EZBSUX2tvbhUIhCgFhEY1i3qjEiGA2StLhFAmFwrq6uiVLljz00EOHDx82GAyo4oukqNkStehSh44X+VgqlUqhUEgkEkpSEQqFjY2Nb7zxxkMPPXTo0CGKUqCOnL3aOPVam/mv2EQDo9EoFotdXFzmzZt34MCBgYEBLDqjKa9CocDQNxXknvkjnbF7eOXKFSqV0d3dfSyrjEG045x8k9xJdRKWwaSxzC2AD3VG0Nm22G3i2hiU0Ah1A4Meg5kCRTR/oubNSkHNAGwNISoCqR5sSL0srcQs3lcHc62tX25uorAmYu3WaTQadTodpXVSsPPMmTM//elPX3jhhQsXLlDxc2yYmK4i6c0Nwf6pWTEDtPqGJxsKyVK/TETZp+q+0o4crOtNPdPoCYybpa0/1K3cw8Pj4Ycfnjt37po1ay5dujQwMGANbVKRD6lUitr+yNpEu02DwYB9ISj8gMocuEu39O6Jyzeqhl1XVxd0PMeDnUr67QQu/tBa50Yc4LyCMjzY4HfuygISOTr7egZmeARCGxnNSEFTkSzTvILA19MVmlYhkhCjdJ4H8aly8+e6BnDBDoDFZfgmMY8WdHX3SCQSlUql1+uNRqPBYEBHcIQ8Kd6JyQadVZFIJBQK29radu3atXjx4vnz5y9ZsiQzM5NOJkqV0HTLnoHMiut3Zu7kLIU5MX8bHx83mUxILgxJOAcrI98kUAMiCQOuQ5EwRC5esHukpXl8QrupQA2CLJGwGcIV2N7QuY5+H8hMQt0IS/7gzzuZX6vRaEwmE16J37o+veYJMDIyIhQO1zc0FRYVJ6cIoqKP7N0XjRzN7Tv2fiuoGRaxKzrmGD81o7ikrKWlTSKRGgxGk9mMS7lpX4vhTcdsNmM/bk9PT1NTU2VlZfbpXJ/90HRLAWacMTRbQQwDjTkREcHlPxYEnHyTPgxM2BYB8O2XgdGIQOMH1+4WFJ0raWho6OnpEYvFarWamqlP49DMI+NNl6WRJ8q37Mr32V3I2ndm18mKE5n15fUDfcNqvXHEzuy85qk7w18cn7jaPagsuNAdFF3sf6DoXHWPaXRsnPRwoRI+NnJhxxW9pdokJzN8jLdu97AeZTAY5HL55cuXq2tq1x84hSgm9txj/LQ01pO4iqAmiLRNMuAnK1QQGTCuInsbOyEQy6T0UCR0YhsKbuFAWhnCnBhjby7A3ropsm/ZPgO3aAbsMOctmtjZvdmrV69qNJrpSn0whx4bGzMYDEqlcnBwcCe3ZEVIJkpBgqcdBxbMbgGC5SEZQPFEaXKwbQDwBlNqABWIyCSgFMQsCpAGXyRjwYqa3CcAwyA1OEBGXfy4f9udLZHJ2Wx2eHi4ndA5u0/KGbz3tMqPGKfRaGxpaXn//fcfe+wxFos1NDSENRdUHqNMJqyzIPVNqVQKh4ejMytgrQLd7gCh4T8sNOOaEG1OCJMGiIZELwjonkDBIc7k2NLlQbjR0MIJXfNgcIv/1h7MHxLJ9Ho9Em6mFums51gikbi4uERGRlq/iM/peBHjxPH+/ve/X7Roka+vLwqLUWBDJpOpVCpUcDVPrhhvtTcSZZXpdDqJRNLd3d3Q0FBSUhLHz/ooLM2VWMJMZpbpkDUSoQ/kdFpgzgCgKYBWNqDLfK/gDAhZRF0EP2hxDiZCwcsDU6P5RfVkASmVStGjjhbOaK3TumQvlUqtK3FNTU2rVq167LHHmEzm0NCQzURNPQQz7RXrqrHNeG1onXhi4HgXLVrk4+MzMDAw68Y70+b/Du4PHnrrg15ZWbl06dLFixcnJCRMbXdAjBOPOLoxYWXZvu76PgeRMgOkUmlnZ+f2pDNOPtCK4criegZBl4YH29IuY6lUolsnC/vMQDQJO3+Jf14SwTghubIstklaRRfS8Dr8idxZOAJiyMf7MCzTWhPppsdCgSJqYWgTNrFhQiQS1dfXu7i4PP7448eOHVMqlSaTyZqeZT+dbvoQ3AsftM5hKNUSwTOtTieRqwZEsn6RrH9YPihWSOQqrQ6gNWRPUldpm8Blc+rSzSoUCj6fv3LlykceeeT//b//x2azW1tbbeibFOCUyWQIcKrVasrdpF9tU0CkO4BffYsOnDXM2dfXV19fHxmf685JRWoRluBdWTxPTqob4RVhskq4XFyvQLAmwf4J/Ah2iTl6JyDLHN4MEj6wdsOAY+nYI+mrRR+bxY1IPtff3091MkbIw2QyWQ6ZVqvRaNRqNRr6SqVSCnbS3FskEnV3dx86dMjNze2hhx761a9+FRUV1dnZiXNLQweuE2/pfN6iw2Tf7B2fgVkKc1pTOSUSSWV9mwcHmj6RjomIGurWknwAVB8cyXoTsU+8YLEKj51P+DqsZEmqgDCbg3c8XuAMJuhvoWkIdI4SDuKH4Zk9g8N6vX5kZIQuD20O6NWrV01ms0qlHh4Wd/f0trS0VVXXFhadE6RlHj+RsGdf9LfKzEbu3Lf/4OGjx+MSk3ip6Vm5eYVlFZWNTS39/QMqlfqm2Zk2+3mDv1KRM5PJpFarhUJhV1dXY2NjaWlpdnZ26OHUlaFAjsfcDJfwCIRYMjFkxpMkzZ0tWB6cgYfsXXZKKIE5/bftR279u4H8wMOZZ86eq62t7ezsFAqFKLwxMjLyfUDl6wxTpjTwCprZB8+uj8hh7i0KP3Y+81x7XbtIJNMZzWNj4/ZmkutM3sz609WrX6u05ottou2xZT678uOy6povS0bHxrHYhf1b2HKk0elUGq1SrVFptDo9tGSh4ARNWr7pup5ZA74Fe2MNc3Z1ddXW1m6JzkYiJlaT8Bq3hE1CZqC5kFcwiPxjjwh+xC2A7+iTuGzzSXwRDZgw8EJ8JnQIFCez9K3689xY3JTC6uHhYdpKYl8f3YLjbN/kTJwBO8w5E4/KHd+nr776islkjo6Ofv89weUi1uDQ8qGl7fI7QUSRgxhzYnK8IjSTRHNoVCHxnee4mehzcoDxOZlGA4RJ+gGBpI++UG4BIIXEYKY4eMcv2xzH8IM+FyefRKct8S7+vOVB6UUXO3U6ndlsxlvs9x+RfQv2GaAzYF3YohhnZWXliy+++OSTT546dYoKt4pEIuzQV6vVOp2OpoBIehOJRKW1Le+FpGIN2pmZ7BWc4cFJddyS4OAd7+yb7OiTiEAmCHkxUfiLiAKxuB6BaRQKxbYAVxZ3shUg0ZVF2gg4oB7mHsATFDeoVKpv7ZktKysrLS1FrxE6WLS9pPVBOt7GxsZXXnnlkUceSUtLmzpelUqF46VQFmVCWG95ep/jAhJVHAFCFgo7Oztramry8wuiE9LfIYDl8uDM5cEZKLnmyuJZpB39geEEdARCfoLDQTQesX8CuucCLZ4K+H7wTeHw98ZnV1ZWIZUTpxfxG5vTY3R01Gw2WysxUrdOkUg0ODh44MCBhx56yNHRsa+vz2a6pnd+bt3W6OmBtE6TyYQ0VqVSie6ktOw4NDS0f//+uXPnOjo6CoVCOl57oL51R2fat0zVimg0KCoqeuqpp15//fWamhprmW7a7kD5u7QPwF5T/v7HZWJiwmw263Q6sVjc2toafLJweXAGqkG6+YMABhVHwpsF3mgYzBQnnyRgt0/6QMPCeJKjSRplkt38QdMbcjB/rmcQMRogSunYf4YYJ9TdWFyhUEhvLt/zmNqEkalhU0QenZ2dq1atWrBgwbZt21AnHCt39hjy/c+ou3UL9NRCp0ys06GiRnFd13behb/uzvkoPOODEMEfwtJXRZ7+U2T2X3blfrovPySpPL+mU6WxldqmWKM1MRRxOKPRmJyc/NJLL82fP3/p0qUCgeDy5ct46lr3fyDNHe2KqekmcpSpLC1yJvDEvg0ZlPXRp6K11JvzMD9/eTBo0pKCO4QXrMITyBMaTKFFFV7kvx+R68bmu/qBeAbhHllURhy94x2947GpAjvJwK4PQBHwmCdiJHw3Njipk4JdyonTF4aGhpRKJTKQrBkkSL1FvBOZ3yqViuYblP9NJ7yvr6+8vHzVqlULFy5cvHgxh8PBJgl75431Qbc/v4kZmL0wJ1W8HxwcPHLqgrUWIiULYs+TBdokZRlsD3Uh602s0iD8CRZCLO5bG2KhFENEFCcth6BtHf/hZqnrh1dganZFi1qtRodO7DYYGRkZHhY3NbWcKz4vSM04fPTEwegj+w4c2r3nYOTOfd/KzoyI3B116CiPn37mbEl9Y9MQUZrV6cAMHg0pb+IQT+9HKMBsMBgUCgWaCtfV1ZWWlubk5p5MSfvfMAikLizu++yE9wPiMJFDSMPVn+ewJQF91pHXhdUzVxY3MHxPWMSubRG7PP1T/hjKi+Vll5SU1tbWtrW1DQ0NKRQK6l9z6/DGK1evKtTG3POXg6LPbdyRx9xbGBR97qigNv1MW3OXRK01jYyNT+9k2rd2K2ZApTWfyKgLjDobdrS0tLZXpzehfNfkul595tLlSN6FLw/kfxSe8XF42v/uyf3fXbl/3ZO77vC5g6cuVrYOqDVaXPTRXqJbd9bdihn4/tukorXozXnp0qVtJ3KwBcHSNE/avDCJwn5TxCnRl3eyIz/NM+ifjp5oL0IzKPwsjdXYfIZGyGDQG5yaX16HMCcWw+0w5/c/rPYtzIoZsMOcs+Iw3e6d9PX1jYiImJbWNqwpjI+PG41GhUIxNDSUkFflTkhRAM8QFqZbAM8zMN2dzXdmgiynO+FxoqkARm20FnAP4AOHYNLcxZkJhuoMZjKk2rCiBkoostlc/LkMpkUHKTT5/C9+8YaTk9PY2Nh08VNv9/Gwf9+MnAE8tylx0GQy6fX6Y8eOPfroo8uWLausrEQLRuzTt6nyU3EPg8GAbmo7+GVQOeKk0r4tN1J69gi0+JNjCycuERF+c/ZNQp9OV5BaTQYOKKgOooAt1LUtHJ1JVxWGX8pfd2YPiyVI6PwmfvPIyMiqVas+/vhjk8lkPfHW4x0dHUUE6/jx4w8++ODbb79dU1NjbTmJ47VmblHBt+9ZAbfepes8pwtIvV6Pkaetre3ChQsFBQVHkjM+2goVOqIDzKcGnO4BAnc235UFqrYuLC4uHQEeIJJrIAgcYKm7OfkkLvOOY/ilrODwd8Znnz9f1tzcPDAwIJfLrfuRcffovGFdFd06sR4nl8utBWxFIhGXy33llVdee+21M2fO4KasGW/XGe/M+ZMNuIuLIqo8aUNjTU9Pf/XVV1988cWCggIq2IvFXHsiPnOO6TX3BE9sPKsx+iUmJj755JMMBuPSpUtYVrZu76Ca1dah4Jpbtr/4XWdgYmLCZDJpNJrh4eHm5mbm4RyvoAxYKhM1SBCY9QNmP6qcebAnbw2kWIniAXRhDLrcHIElPLKB1YFgA+pkINkd+kKIUjrwPolvOsMvpbdvAHEIFEX/ntfv1DCCLUE2ArYikcjHx2fhwoVr164dGhqaam/8PXfjux4I+/tn7AzQM4q24Oj1erlCWdvWG5Nd83FEJsJ1eGK7QuEJup2wsgztmByBG5v/QVjmnvSqqtY+pRokFikhBmMaZXCKRKL4+Phf//rXjz76KIPBSExMtEE3UdsDrTeVSuU10U1rWVqENu/IEobCnAqFYmBgoKmpiZt9ZmVoBlGXhe4HoGP6gbraipBMdw5qh6SCFLZvktMWSKU8AlM9A9OXB2cgUuIVnOEZnI70TVzoWYx+/fmgYQurQi7GKM+g9OXBmZ5BacXV4Ptg7SxFO2xQSGB0dNQa70Q3dNTMx/4qa7wTj8W5c+c++eSTn/70p88++2xERERzc/PUaizFsGfsWW3fsZkzA7MU5pyYmEDFe5lM1tXVvSkmH1eO/yy/gLUQWYf6pSCESYlH2KeO1zJR2EpyJetNWqwHIBN0cYCrTde2lpWpP8+LzXsnIOk9/7jfB5zcFZd9vqy8oPBManpW7MnEvTfEzty778ChmCOxJ+OTuby0zKyc4pKyuvrG3t5+hVI1Pj7TgTRMoVEVCdXOxGIxig9VVlaePXs2LSMr+BD/T6HJW7Yd3Bq+e23QQRdmIh4XxJVR9JLiGdgevT40ComtIQeTTufmVVRUNDQ0dHZ2YqcIxTi/qQIwvRdUW49sf1LVxu15a7adDokpjkqpLqnt7RepVYB0wlLvql3HdnpnfJq2Nj5xZUCkPpp2cXNk7rG02q5+udk8gkn4sERWUnc5PKXsd6EAvEEnE5iI8RlMkHiBeiwJF6DMx0ldFZl9IKumpm1ApdFap0z3DtiJGZTJZFIqlb29vfX19SfSCrHxFK9iypsHTjaWx4kdG2RQPomYgtJWBsQ+PQnPGxJU0paKazTMYCksip6+K0IyP9mZXd0ACiKU82NfFk3TVWLfzEyfATvMOdOP0B3ZP0RupuWrqS4H8gy6u7vZJ86A4Qr09IE+J+pwkpUwyNUSW3Vi4RCY5gq6nXDXdPHjuvgBJuHsmwzMA/IprEEAGhGU7mGpyhGYhwR92lb85YG8onPnGxoaUAvFHtyn5bDaN2Jd4kcgR6lUrlu37uGHH169enVbWxut8kskErlcjs6URqOR0k1wbaPVaqVSaUtH58qt6V5BGS5+Kc7MZOIvm+bJSQPGDDRwgQizzcLSHV1pSR89ep84+Sbi5ePCgj56olj7T/9IcsVBo33SmTo0j0Q2lc2h1Ol0aWlpWB6y/hMdLy0RajQab2/vhx566NNPP73meCmJ844AdXSHkeQkl8v7+/vR+6SoqCien/nnMChi4ioddZOcfcCKhuEHdHCGH5JlCU2BA/0T7hYZW94y7zhcZ360TZCUWXC+rKyurq63t1cqlWq1WrPZjB0VUyuSGAzpBCKDBGkH1LpSJBJVVVX95je/+clPfpKYmGiD/M2uhQEizXS8k+2fSqlUSmuOIpGopqbmN7/5zZNPPpmYmIgKcnjCUPk46/PQ/nyGzAAt0CBHWaPRhIaGPvLII59++ml7ezuNftSH2LqC/F1rxxSfoLV+Spwi7jAT1q/jm++1Gz0aa6H0WUNDA/t4nos/yJ6DhR4n1TMI6oxwZyHiZtjYgQJoHuzUFaGZUIgkyCX2yqCpM3Z1eASmeQanu/hxvYJAf/LtjSchGEJIxH4ayM3IF/H7+vsVCoXRaJwWmBPPcxrGrU2gNRqNUqmkupT9/f1RUVELFy585513ZDIZPdMo9e1eOxlmSIiYUbtBUbGxsTG0Q1Or1QNDou3csg+2QqkOb/FubD6uNTA3wK4yqtxgqSIF8FaGZgScLOkeEGu1QO7E4h16eWq12pMnT/785z9fuHDh+++/X1hYaG3AiU1vaNCuUCiUSqWNMq2Nwhvu9p2dScxbzCAXqUKfy7PF5/+yIwsmDUTSuAwga6Z6BaZ7BqW5BQg8g9I82AJnP2i8w4qbKwuMOUmjKteNLcDWPehzJeVREOkBn2ALqIxVvBUhILaxIjjDKyjjLzuy2js6JRKJVqul6zi8qOmtATWuEWbGhBzFrrVarVqtVqlUMpkMxWyt8eahoaGamhomk/noo48+//zzfn5+SqUSky56IOjNxR5G7ux5OPO/fTbCnFiCx1WSSCRqbm17PxjkarEjAa9fDIOW6Ec6P9Br09En0WFLguOWBHg/6aOyXO9kYYWEJM/ANCzWQ5JAbMKJG4ilDXd16NHA8H1B4XtCw3dvi9h1fdXZ8O27o6KPpnBTCwrPXrxY19vXL5PJVSq1Tq83m80zH9S85glME2kqWSEWi3t6elpbWy9dulRaWpqXlxefxAvbDgRN320HXYkNDaZwFoyEeNzgDQuwZN/EjRHHcSa5PEFVVVVzc3NPTw9q1VpjnLdtOTkyOt7RJ49KrmYfOOu7p3D78bLD/NrTJZ01zcIhsdY8Oj5x5co1J8f+4h2cgYZ28c4TZX57CpJzGpQavdFo0ul0KpWqpqV3zcG8FUEC0IlhcaGxCW7fKUT4CsQYLI6SAXzUesEay8rQDObJ0o5+aLLHIgldu93BMd6er6YxVq1W9/f3Nzc3nys5/7uQfzabkoZ7CIl4XSNmSdMni8YhcBigWQTnE1dnpDwOr2MGi4HaLYAPuRPJoLC0tXpvdlt7p0z2L5ZVt2fs9m+xz8CdnQE7zHln538mfrtIJHr88cf3798/LTuH5ciRkRG1Wj00NNTU2v7F7iyM1JY6Aun9cSG6amCoSSwJUaeIBG6+y+RSGT3tSYktFUhXJNtGsJPhBwAn2SzPIzCdcBF4UJ4LTPtjeFZsUuq5c+cwD7avVKflsNo3QmVRkdc4NDT02WefPfzww0wmk5pTohaZQqFAjNOaaIId6EajEd1q9/NLIHchCSJCaB4cwYrQLJQFc2GluBATNQfveLcAAYp6gW0ki1CfoWOAR5c9aInkzExi+IGSs5MP9H4ymMmOWxJQPuizffnDYinV7bG5IiIjI998802JRGJziG0gOhzvvHnz/Pz8qFDtdcaLpSKb77L5iun9Fetf2KdsNBo1Go1UKu3p6WlqaqqqqioqKkpPz2AfEnwQApk6VaMF4iZheSIXgcFMcWODyBL20wHPiS1w2JKwIiBp04H0tOy88vLyurq6zs5OkUikVqtRUe2byIjWJXsstlLkDwkHFBzq6+v74x//+OCDD4aFhclkMroquG3r0mk5FvQQ4FFAeUCtVqtSqeRyuTWyKxQKP/nkk3nz5oWEhMjl8pGREWto/HaeNtMy8Lt7I7SyTAFslUq1devWhx9++Msvv+zp6cHTGKOBUqnUam9es4h+F4XMKXeHEuKxHk0N83DxjB+8d84cCnMODQ01NDSExUOzMPb4Yy0MURwSwSCgufgBSImFS09ijgUJFTiaQx4Fdw1/KEouJ9rpWK9Ey4B/Md8iTTa4tP5ga3pfXx96PmGfx7RMvvUJgOcbVgOR04kNE3i+JSUlPfPMM87Ozu3t7daVlNkVM+/u0HGnRkfvvHjb1el0CoXiTG3HJzuzPTmgwwwXCwfKdqSEBAxmSuKkKhquAdDqhFcN9pP9LiQts7xVIlPoyEMmk2VnZzs4ODz66KPOzs5ZWVm0m4fe2TEqUvdNjI1oYYV3PWSF0hYfPP/v1Lzh92LuNzIyotFoRCJRZ2fnhQsXgo+dcmML8B+DmeLoA1AH2HMG8N04BCbxgwDiQmxEnJmgjI1EcEuRjvSNuQbwsBsPe8gsCpb+PPSZg18J7/xEVll3d7dNkc46vNAogcGfGkWbzWYqm6/RaDDxoO0RVD8fe8v+/Oc/P/300z/96U+jo6P7+/vxoNDbij2M3NmTcFZ8+2yEOamgIqoKnSmvQccT0Koh7h5Uj5oI20C0JPkD5AmosIVUJCzdOPvClU4L9G4BfK9gUJVARa7Jog1Q5DHGfhF8xBrajIjcs3vvwajoo0ePx8UncgWpmUVnztVerOvu7lEolLMUyPzWU5curlHpR61Wi8XigYGBzs7O+vr6CxcuHD4aGxaxK3z77iOx8TuOCTbv438awfvT1pSPQrkfbxP8JTLjT1u5n0WmbtjL336En8hLT0tLx1lNSuK1tLT09vaKxWKlUnln86KRsYncssv++8+sDctZF5GzO/4Cv6DlUptIpjIaTKNo2Pmtc2V/w22YAfPo+OVB5a64ii0788vr+1UaMNrUaDR9Q6IDGZWeINgAiwvPwHRwu/DnuwagRj1EBg9OGqZMFHuj1HBn3+T3QtK455okcjBOQkjZVKAAACAASURBVA1bvLFa381vwwBv81fQDEqr1Q4NDbW1tZWXlwcfybSgksQF2XFLAmqA03nDIIkkeCziYaSlwRM/jks2dzbfKygdhXDh0ASlA1mCtJW4swXrIrgNze3Tvjq7zdNo/zr7DNzEDNhhzpuYtLv8I2azubi4uLu7e1rGidVJbATu6+urutiwKjwN0mifRDdCxISqGQf0ZuEGSYBJrMo5MYFNBUabIImGTcHg/8QgrxAoiOTKJI6TokOKWwDoJhHNW4tVjAuL58nhP/bsfzg6OqIf4d19N52WQ2bfyPVngJbMkMZkNBpbWlqWLl369NNPp6SkDA4ODg8PoyKZXC5XqVTY72+D3CDwo9frJRJJ5+XuT3acJrU2gQcHaDcA3hPTTVd/6JS3SPajwCBps3X15yF+6RbAI321oA/GIIJCxMszCdeTluJdgKVsh9nn+1szyxsuo3iFDaGzsLBQp9P19fVZXyZTx9ve3v7rX//6qaee4vF4iOkiRwFJq1i5ozU7msVab/P6MzyNf8X4g1C0RqMRi8V9fX1tbW01NTXFxcU5OTlx3PSAg9zfBUF9E8twqLrmyUmjoiKYVhLmAc8rIIUZlR7HP3XmzJnKysrm5ubu7m40pbPBOK85Xut6HDIPTCbokVSr1Uol0Byx9DY8PNzT08PhcObNm/fZZ5+h7dxsdLaYOl5k0mg0GhvB3u7u7q1bty5cuPAvf/kLOvzNxvFO46k7YzdFeVF4Wcnl8s8///zHP/5xeHi4TYeHUqmcSum+8XoxjTzWZWv0YNP/68NggHU4FqYpCwe7DWbsNE7vjqEvADaTNTQ0HOQVWdtrYUnRnQNwDt4FQOSc3Eo8Ay1K6dh8hkHP2Tdp2SZwBAByG9yDSA8ZEfSGt5EOMyhrEg4HtGyzuH/fl3MrYE6cJRpG8EygvAekwmPMHBoaOn369DPPPLN06dLu7m7K6cR7HG5heufcvrVZMQM0jGC80ul0EqnsSE7tyq0ZIIhKFh1IMHJjgzIt3vpdWRawzc1/UreZGHgD/MlOdQ3gOvsmOvkkeLF5YcnFIrE4JyfHwcHhwQcfZDAYp06d6u/vp7dypA9SBifq0+r1ekoDHSMPSj6+8Qh5e+YfJ3B0dFSn08lkst7e3tra2uzcgpWhqV5B0FQKyzSfRCffZAYLdCmJay9I7LizBc7ExxejCoruYBsf5lSoz4avUKN0C00hALHntL9EZl2saxwYsAhiX998hAYKVCTCxghrcicSweVyOXZI0F4rNFyoqKhYs2bNj3/849dee+3w4cOICkxNZW/PtNu/ZdbNwCyFOfHSVigUPT09xzNLiFeupbqCnQe01QML61SiljKKJiVwgFeEbpHOk+3p+GZMPAD+JC50dG21KuiE99YDa0Ji/hZ49I/sWEFeaWfn5WHSM2o2m6cq4sy6U+IGd5ginaOjowgpyeVykUjU09Nzvqw8IhKonPsPxuTnF+Tn558+fTojM5Ofmp7MT0vipaUI0vlpGZlZWTk5OYWFhcXFxeXl5Tt37w+L2HUyLqkPOK8ytVqNGZF1/+gN7ts0vg0MOzWmgoruoOhizsFzwTHFB5KrEk83nqvuae2WyVXGiSt2BdtpnO+b3FRDhzjsSOm2wyXFVd0GowmdlVq7B7+KLlgelLYiONMjEMQbsI0JOYiYCbizBe+EZkG4CIAaLNRMyGIBGvE5aQwm1KncA3jshFKFCprCqeb/3Z2fW2dQYrG4q6ururo67VTOh9vSlgdnuLEhg0J+PBI3SQYFDSXuBAHFzjCMmbhqs3CESGUPF3fg10baVfFTGLexgW9lIPdz36OFpXUqlcX5+N6Jqzd5Adg/dhfNgB3mvIsO5jQNRaFQVFRU6PX6adkerjZNJpNcLu/u7i6tvPj7EGjgdWGleASmQe9JYCpq1UIoJ9IHJJMGgTU3f2BkIgKKDANw4gQpJBCzdWZabAhJYg1EfgYTQFBnP2KhRxq0MSnPrWxBKTPM8K4JP0zLYO0buetngJbMxsbGsE+8oaHhl7/85XPPPZeWlkZ79r9JqJZifuPj42azWaPRCIXC4uqmd4KJwwGh10AGAwKDAFWieIWTD6jRQvrCSSX0Zb47m+8CGoOQNaI1GiY3mP1gY5cbqD1DowBZoxKkk9gnuPnzkovqNBpwlrKGOWtqav7t3/6to6PD+iBajxeLy5cuXcLxpqamUvNROl5ENWjyescLdtb7j951crlcKBR2dXU1NjZWVVWVlpYWFBRkZZ3aE5exemfqx2GCD0IFy9lcjwCuuz/Xk83zYnPfC+J9HJb69z0Z4ccyMk/nlZSUVFZW1tXVdXR0DA4OSiQSCst9E4/Tekq//vpr3CuMjQiWU1on5ScJhUKRSHTo0KFFixYtX768u7ub9j/e4LfYfOkd/JWOF30c8UTSarWI7NJSo0gkiomJueZ47+5V0B08NN/1qxHjpDxOiUSyZs2aRx55JCQkxKbDQ61WIzxv3eFxI19HzxaKbhqNRr1er1SpO/tFlc09CWfqI7hl66PzvthzevXBgrXRBf5xpQeyarIr2uo6B4ckCixPI0xOUa4b+erZ+x5kc6I3J5jnnT7nyYH8ylJlmFTnhubrybsM1i6Xh0DNgkHMt5A+ZSli+iQ6eMeDei38g/KlV2A6tN0Q7BM6uCe3iTqfW+PODAwMUNHaWxH5rYM58h6QGk5j5vDwcElJycvkUV1dbYN03opdmr0nzD2y5/ScoeVjsUQac6r63ZAMADgJlROvEaQswwqCpEwuLFh9AOoZaCEwwRtAQgPkGQkSwHXekuDofXLpZ5H/w/jdQw89tGTJkqNHj1KHckpqx+xIqVRiSMSejJGRERqgZv4NndpzqlQqUOVpaiotLQ0/mbMiJAPiCdG7Jgsxgo4QkwXQsibmprQM584Grif4dZHynDV2gs89SZMfGEoFpyPw7B7A380tae/ooMacOFc3cvZii5u1mC3qSej1elSyxSYJSu6k2XtRURGDwXjkkUeWLVtWVFSk1VocxaiWvj2S3Mj834PvmaUw58jICJqnXL58eVtc/jtbTyE1E39irRzlgnCZibV4IG4SrSBac6ehEllH+EGs0XsRX17EPi1r1UnVHGyMgM5d36TDWRUSiYT24N5TtRqaWlOlH2zMPR4bj9TMgoKihoaGixcvVlVVVVRUlJWVnT9/vrS09Pz582VlZRcuXKiurq6vr29ubm5vbz96/GRYxK7DR06IRGLrfJjqBNzBy/Pq1a97hlT7k6o2RORu2J7ns7sghl+TX9HV2a+gtM576tDfwWNh89Wj4xM9QtXWwyW+u/MbO0VGkxktYy+29ny+Px8UUIPAahcqq4SQTRwroAkSrSuIZD10OHkFZrgHAEpHlGwhK8A4gIsLVxZ39f7crkEQsEUV+hu/rdvs8Kz4FcsXuEaTy+UDAwMNDf+fvfcAj6u6toC/PEJxgv1oJiE/eUBewuMn4f2EEEKz1UbdQCgJkJA8UiAJNu622qi627jJttxtrDpdXbKq1XuvMyojaXpvGo26+b999ui8eZIB2ZZlSZ75+MR45s6995x77rn77LXXWk0FBYWhZ9J9IyGCwhgJ51vMWturSIlBGzJ/7Do6pCyPUuqxYzF2xQ2wgIyk1oEy4R/O3XE6bUNk/HluscFowtSc8+ZaFMPGeZJz0gNOmHNOunFJ7SQlJWXZsmVtbW1z0iqqiKLRaEQiUX5p9Yf7Un0jQNYAl8e0HhAnehDkBIUTlntgouv2eEZQkmNizgezEsHwLT5l7dxNomnuFgjWejDLhwF06hUCErjwAH7/0w0bNgwODo6Ojs6P6fqcdJ1zJwutBzBlRgklg4OD6enp//Ef//Gb3/ymtLRUJpPJ5XJas28yma6ZZsWdIEqq1+v7+voSc6q8kDFDCl2JdDPJFoVy4TYh+mkkOoR0M94XYB4ZjMEleKhMxTosyDjDnQV3kNv2ONBcJVq4YKtGsktQERbO35tUhBZEo6OjWNhVW1trs9mEQqGjLtDM9mZkZDz11FMvvfRSaWkpzQqp1WoU5r1me2/7RaSJTuxzi8Wi1+uR1tnZ2dnc3FxdXV1SUlJQUJCTkyNIy4znpZ1npZ5OSDkZn3wqIflsUko8PyMl83Jefn5xcXFVVVVTU1NHRwc1O8ELjSnL68p/0RND27mhoSHM2ms0GhS7k8lkUqmUzWY/+uijr732mlgsRsIo6tpd17Fu+1VAcBdrlsfGxihKQVONmB2WSqUCgeDxxx//zW9+09HRsXiR3YXQ4XN7DrhUw6wxYvMymey9995buXLl+fPnUbkaWew4GzhSkGc/VulNQQcJuWENubXCgAuFf9yf5hdOcuVTha6UK4Cru7d3pXxyNOuIoFrYB8kdx/GD579UF3hYN2M2mxUKRVtbW1FJ6ZtRYPSCYRWVi/SPTEEROYJZsj2CEl22xlId2jVRKbhg9gmHkm3EMu1eAEQCFx40IeC4gz9Beih6wLBzqyQSiV6vp7IZt6Kr6fCgVp1oF4Si3wqFQiaTlZSU/Jy8mpqa6BjANMrsx+Hc3jvOvd2WHqCjZWxsbGhoCMUAT6ZWr4kAyTXwtkCjIyYYzaIYBoZMKPjsSZwCEASFrFMI0Jc9ghM9AhIYUG0Z77bl/JOvvnXfiofvXfGw7583VldXi8XigYEBnAyVSuVMgBOdCxyFChbFmKTmUmazGQRIRKLq6urUrLwP98BSjghg8Oxi18EsTwA4YaJgEPtekhLleIKxgsCX6KqBoVQwCwpSsRo1hEPJ5UBKCOeD5BoR+PndLkFZdb1YLMZC1etdweGcT/FO1M9wVLJF7Ws6e1DbTolEwufzX3vttQcffPCdd95paGigwS2lQ+GFuxWz3G25WZwHvfkeWHQwJwbkWHGrUCg6Ojq2xaRCGQfJz6AEItbRImeLKuEjtQijCyycQvUIiMdImQjm7oHPTSqoGMEs1+1xds85kqWBNSw5EMpIIBVpd3yBQqGgNbh32s1FY2w6U7W3dxz44ujuvQfPX4wbGBjo6+vr6ekRiUQdHR1tbW2tra0tLS2tra3t7e0dHR1dXV29vb0DAwNyuVyQnLZ778HDR06oVGrHQsOF06UjoxPtvZrjSdXbD+WEnyjcd770vKA+9YqwvkOh1FqsQ6NOYufNz0jXu4d2sWbPuZKIEwWXS7tGRkYQ42wV9f3tSBZG+7BAIAJjDFBuSHIPIHla8qD3Jv4+iHd6h4HsP+i+MNlEEgY0YDC76xUKRp5eTM7Ws/kaLThhU2X4hTM4r7ffvnl7el8PDw8bjUaFQtHZ2VleXs5Lu/xGOCj842wJQVFAAgKc9JOp5B7gxDgJY8UJJLcDE71J6htXwVQYnFI5Qa72eEZhaXXgPu7hLws6e+ROqs83Xynnt0uvB5ww5y2/pjS5tlhm8KtXr1qt1omJiTnpGhTntFqtKpWqs7Mzt6jyd7v4XiRNBrM2OOGx3QMSSWE1D0Jnsrj1IooHaJLnRfgHUOEbIcDcHGCcBLxBySMkvQFxLQAwTkYQi9gWsogZDNBGf+P/x48//thisVzvInlOesC5k6XRA46qMjabzWw25+fnP/74488//3xDQwMK1SLGiUK1mBbBAI46U9K0y+joqNVq1Wg03d3dJ3jFHgEJrqD6lQBiIASS9AmDijkfIBMI7GacgO4DxZOK9dtruGDkg7azFxPAUXCajBBgKOkemIR2U2RLoiIChGnW5lOX1Wq1xWLBSrrR0dFnnnnm4sWLjlcKU4TUDs1iseTm5j7++OO/+tWv6urqsL0KhUKj0ej1epPJ5Gj7QdkJC2HSo32OcxFycA0Gg0qlkkgkvb29HR0dTU1NtbW1lZWVJSUlV65cKSCv/Pz8goKCwsLCkpKSioqKmpqaxsbG9vb2np4eiUSCZicUy7mxJlP9TwR1qIDtNEHX0tLSp59++qc//WldXR1VeqFHdLxqC/y9Y94ZkU5EKbC9FDi/cuXK008//cwzz9TW1i5qZHeBX47rOj3HCcFms6nV6r/85S8rVqw4duwYVnhQpW5qReyYzZ/NVOB4CBQ31ukNlW3itcezsaAV136eIaDUjaWvmA2nvAF7+VQI+41IQUx6nVimtlqtWMG6GO+X2V+giYmJkZEREORUqTo6OioqKrafzADNKCY8ERC88cWHSwjY50CCkqA4xPgZnHUYweClhzwMVDvHVCZgFUS3k0RW8BBhEDNj/8hk/4hk/8hkvwjBB/vSiqoaZTKZ0QiySOPj4zjrzv78Z7ml42TuOGdS1z2cQxobG59//vkf/ehH5eXlM6foWR7Ludli7wGcT5Acg/hcWmmzbyjbjcRRfpHJVJAWMDnC0WQEJSHZCMe5F+EpYjoeJGTAdi7BIyDedfOF538f8L2HHrt72f0/et79tX8dff3zmEMJOZ2dQrFYLJVKabkbZXBSSe1x8qLT0Wwmxtt+ITD6xahVp9OJxeLGxsbi4uIjl1I8gxI8gpM8SXUdATmA2AErOJLoBDJHMISsOHUTdBnszzFY9Q3nr9mRAtokpLAV5qIQMDHB1N5vdwj4l0va2tpo/cSNJenopIH6GRRCoLadBoNBp9Op1WqVSkWlhrFm8YsvvnjiiSceffTRmJgYqVRKLyKagC4KiPq2D5475wQWI8yJHCODwSCTyVpbWzcfT8O7jwKZyC7yRfEtcm9iGt03nP/mzjSMGbDEAd2IMDzwDecToQgog/CLEHgEQkGVN8nU4wSLER21QMYytfAv86VSqdEIgpbfLE+9VAcVXSKh8g2Xl7J778F9B460tbVjSSiK30ilUolE0k9eAwMDEolEKpUqFAq1Wo3eMSWl5cgBHZBIF3Jd7OjYBDe3PehI3tqdGdsO5kSeusLJaWvpUil1gyNj4xOTi+LxuEQGo0ZvPcOrW7szvbJpYMg2jOLJXWLJZ8ezwUI7MAlhNg/iuu0DPtxsjwBQv/AmCvM4UaDMHij2BZEa/WAWFuLjeo2kc2HpAfJ7QUkhFwrVWqiMXNq5WYxAMAFFlf/r6+sLCwtjEpJ9iOiFnQHPBKICFouQMMlO9KT8eDuPMxisrGCKDuejgzJCpLAZ+Qqn0/d2CXKulHV0dB44e/mzSG5rl3x0bMwZtCyR29XZjNn1gBPmnF0/zWIrx6UUrR5F6gMuazHUcFzcLswHOIfD+ec//zmLFs9qEwpzYqlgbnHF73ZAKg3m6FAuqEKRaR21yLGGl+hEQTGvX2Syf1SynZQJT1nQT0PZExKCA/DpBWIIXN8IPjFwTvQJ43qRJ6gdASI1iclFjUql0glzzuqCOTe6Vg/MxDjPnDmDhd5CIqiF5pQajcZgMFgsFsyt07pvnBxwx7irkZGRwcFBpVLZ2dl5MKnQnkcLYhF7Wh6Kd3lAtsiuDYjj2c1udATxjWcwAPnwCcSRoKLmHpjgARg/gJ34WyJ+C6K1mLyDwJSUEfz9ULpSqcSa2ba2NrPZ3NbWNjw8TJvuiDcg9nb27NlHH3303XffbWtrc8R00X6PYrqO8xvd221/QydnykXDRhkMBo1GI5fL+/v7e3p6hEJhe3t7S0tLU1NTI3k1NTU1Nze3tbV1dnZ2d3f39fXJZDK1Wq3X669puXoDUzpd1lIh0MHBQSQZOFp1FhUVPffccz//+c+rqqoQ6XQcXbe9h2d/AjPbi9ak05DdkpKSF1988ZlnnikqKlrU7Z19zyzkLTGkoUNUKpW++eabjz32WHx8PMU4aYaFEl+oYOxs7guq2YXykmazuU+m2JVQ/O7uVMyL+Ucm4+QGGXMmmOli6hwlHDA3h4tArAVxC0j48xfpKWXtjhUYS3WNhzDn4OCgRqPp6uqqqamJT83zJdY4aCpMUpBx0D8Es8Quwu5yDyA+6AFgD4M9bK/Fhn4mvCuooeGgiyEK4a7ZARfFl5QSe4dyN5y43NreoVQqzWYzls44PvLmfGB/wxyCSUCZTFZeXv6rX/3qmWeeqauro5zO6xqQc37azh3Ocw8grIWkBK1WK+wR//mLdEwh0dQbzhukNB6gOI8giJeQmUQCJwDkwB1ge5zbtlj37XGMoIRX/r5v5dO//u5931/5Xy/98v2g1etPumw4vXrDKZ9t59IKKlHmgfqyW61Wio3h8KNFb/PcGzd5OOxMJH7J5XKhUFhbW5uXnx9xiu8bBowE6FJSk+obIXALTHDbnuAVCpMGkaOMx+wbseiDYNU7lOcfBUUSvmBcwvcKgaSne1ASSZhyocIvgr8v7nJ9fX1PT49KpXKcWG64IdPiQMS/0ewZy610Oh3V0sCCCblcXldXt23btmXLlr3yyisCgQAv6PVW8NzwOTt/uIh6YPHCnHq9XiqVNjc3b41JpwAnIhOMoCR89OM/kTPkWLiANCOMJVDGFjFRKEcLTERuKN0e8jk4VxBPFkzWIyvUM4Qdev4y1jTcsTAnjnaMcPr7JfsOHNm992BsXJLZbMGyDIvFYjKZjEajwWDQT73Q79lsNlOX+vb2TvxtVXXtAuedT05elanMyQWdO04VBRzO3XmmOIZVLchvr2iWiGWGoeGxsfHJRTQJLNJTHR2bOC+oj4gpPMuvtQ6NoMWPSqWKFpT5Et0LpJdgdQLe7B5BYLXLIEoYtIKBEUwU9YipJDW8QF0ZRjDkptwDIMRCjQefUG5SQSNWImJZwy1dONzeS4MRlM1mMxqNcrm8vb29qqoqNy+PeRJcTjHXh+sve+0IOlUROTd0NcbZkq7doNI0EswXkCWPSULcxovJeSuKd4Gf29jYKBaLr1S0bdyTIshvHRkBmPP29oPz6M4emM8ecMKcN9vbOCk7pl2wVnRkZGT4/75GyGt0dJQy9BcmJHDo0CFvb++b7Zep3yPMOTg4iDBnQUnlR/uSAeAkonOYoPRicvwjkwnDAKhmMNGTpyDw8cOIeBFBbkAwCqSiEmGFTDTiQd42ENIQpDQYqoCRpgDYJyGGQno0hPPgj59ZvXr1nKyTp5rl/P8d1APTME6j0cjhcB544AFvb++enh7MhiiVSkxsYcT2DSoxFOY0m80Y6xxIKHhzF6wtcfCj6ixdauIaEiMbu5LzlEotyfJz0F8KSTkQ4qCVFDEk9w7luhHaE8Sg4VAjD0ojQUl/2JMsl8uRebOGvBxxiGntNZlMbDb7wQcf9PX1FYlEjtq8iHGiDtuiQN0cJ+qREQjl0RQTyUBqtRqlUyUSyQB5YZGsXC6n6nO4kpzW5JvETuhZOVpXmkwmZBgolUrs887OzpdeemnFihUFBQWLndOJTaZcYavVStuLypNyuby5ufmll15auXJlfn7+om7vYp8rHTHOoaEhjUbzP//zP/fff/+5c+coARexf6rUfb2zAR4C+Xlgw6nXNwn7/hGdDRIOEeDT5kdkDFHS0C9CsCYqxYvJgW8jkzGDhvl0zMTh9u6BiZh0OySowpJh6hm89NbS1B0AhdAbGxvzrhR/vJ/vEw7StR5BiW4B8SgTh4CEX2SyTygPXDlBhxPKtNGGEGz2SHkNPIZCoZTYJ5SHmJB/BBA3QTGJoBdgvRMGBTfeodwv00t7e3s1Gg1aA8zPQppS4VFCGatDaLWEVCrt6Oh48cUXH3744crKysHBQcoLX6Q402KfRubz/PEGR+zfarUaDIb+AUnI+VwYrkzA5LzJ2EYSEkncA8YPlAViZ06STSAgRpYbHEZwovv2OLetsS4bzzzr9+l37/v+Pfc/+DPPv7zyr+hV60+6bDztuumM+5ZzLhtOf3aQ09XdLZfL9Xo9gus0FMTl3nx2wtweC3VrsQZFp9MNDAx0dnZWVlZmZGZtjIZ0mz2/RjqWlFOQddkUm9ODrOl8wrjEVx6ynD5hoFziCxMIxzOEhZJ33qFET5jJ3nw8raqqqrOzUyaTGQwGhD3mynOERlzoQDE6Omqz2WZ6djoyO8vLy1955ZW77777k08+6e7uHhoaGh4eplYFzillbgfbIt3bIoU5h4aGKMwZdDLNO5SLJWV4k9IVKKbR0brYi8l5c1c6LDCJPSdWQXkxOS5bY1/bcN51W5wdIiVcLhKBABWelu0iOQllObBYDWmd+xIKBgYG0FHlzmRz0pE/Pj5+4WI8MjJb29qRLOGYXbQ5vDDX6Oj3rFAoDx46tnvvQR4/le5zgb9p7lJFxBSu3ZXxrx3pUaeKLqbUlzUMaAxWy9DoxMTVyatXF/j5L97TGxufFPXr1u5KP8OpMQ/CaDKbzRqNprJJ6Ecogyit503k/YlOXqIHEU1FtXmcE7xDYTVBbMthaYZhFSrcIjjquj3OZWsssD8hTwXqfd5hvA/3JMuVamrSufSWZnRUYNRBJTH6+/vb2toqKioys7L+dZC7JhJy3Y56swh54pxpLyMjpSEU1MSIC1OFmDZHEicsjcM4B+Oyq6qrhUKhQqHo7VdExuSdYlUPWkccc3303JxvnD2wVHvACXPe+JXF6ZgSNzFDNzwMTH9cLym1+q4BZWuPrLlb2tYr75aoFRqDxQLZluHhYVz9OqpJLJDZZ4y8brxf/u8vKcyJxLWSiqq/HEgmqTfInWGACyEy0UIhWA5x0wxm+QCbUwDQZmAiRsA+4XzPYNbqLbEuW8BNCousSbgMybgpQwjQXmMEs4lKG5sRwn4rkrfz4AkWi0UlOhdIP//ffnL+a4H2wDTMz2AwHD58ePny5Z988klfXx9m+VUq1dfZ0c0cbI4uRzKZrLm5eU9sjicTNNNwnPuGg86PewBQk1EkBMlMJKaBOnfkH8C9w+QgARoLbPFuImqEQEfwYnJct8fjxriqJNaeIPb44R6BTCbr6OhoJi+5XE7Pc1p7jUbjkSNHHnrooU8++YRiutdsL2ag6H4W6OX86ivHeZvKl9FJ22g0ThXI6nU6Hb43Go1msxlJuqivgijO3NapYM8j0okEFLPZjDpFmG6TyWQ1NTWurq4/+clPCgoKZjKGF2yf2BMK+QAAIABJREFUX/PEaKoRSRWIdOr1euSwysirrq7O29v7qaeeysjIWOztvWYnLPAP6c1CrRDlcvkHH3zwwx/+MC4uzpHHifzmmazu2TQQRz7FOHU6XXFj19+jc5BDYK/0J5KqMDEGAiCBrtuwJiSlrOhW4lgPC4BohABzbV7BrIi4IoPRRMHym6xLmE2j5nkbR66VVCptb2+vrKw6EJtJCshIgUsIMRckxdfoaI7gJTx0QmEDz2AQpAWbPSD9E60ksjHKnlPFWiTR+oUD/Izr8E8OZzQ0Nff39+v1+vkkYTgOzplIp1wul0qlpaWl/01e7e3t09Rrl94YmOcht5APR8toKCkht7L1rZ0pGFyhPjOwnENAVw1ycFBDCYqpDqklltu2OGLeyWIEJbpu/fKXf2A+9ORz//bde378a9+X/rrHZcNpl41A4ly94ZTrprPuW8+7bDrnsuksJ69GoVAgMrfEOH+UHYsKwGKxuLm5uaSkRJCaEXgi2S8cEEqcH6aK6lhYeMoIYgFNNoSF9pwY0MLkTGidvuGgyuMWkOC6LQ7i1RB26Jn0krLylpaWvr4+jUaDazdKxZ6rgUcjECy3cqx70+v1Wq0WZWwprVMkEkVHR//kJz/5+c9/fvLkSZzu6ELeiXTO1XVZvPtZvDCnTqeTSqVNTU17LmbYi5nIShPT6xTFxDUmfugbzkfEwjeC7x+ZbI+1mBA5IBCCZVWYi8dsDybocYqgCX1qNefF5HyZXuaEOXH8d3X37CeunLFxSegCQJON01TiZsrFTU5O2my2I9End+89eCQ6ZuGvyuktbzDbiuv6D14q33m6KOrUlWOJVUlZrZnFXaJ+rUxtnnDaddKemrs3V69+1TWgO8mu2XmmqKFDTiuZevoGNp7OQzDSgziFwWOdiFsgqIY19BgyIcCGRBT8CbBQpnjbuDRDK3RMScECLYzvHcb1CEzamVBsMBjQpHNph+VYjYooskKh6OnpaW5uLi4uTk5NCzgBJV/YUZDZA4kLyGajcBGufKlzuR3aDIZsOW5MNDPA+ooRzHozghOdkF1aVtbS0tLf36/VamVK3dG4sv0XiuVq8yKaDeZujDv3dOf2gBPmvMFr75hhwfTc0NCQ2WxWqLVNXdKDvIr396ZiqZrrNhAKw5DON5z/3t60nayyirZ+pUY/aLUODw9Tcifu8wZPaO5+xmAwoqKi5mp/VLRWrVYLhcKq6up1x9KBmTElQQ5aRmFcoj0L+A1YuYAXFNsrjPvmrnT3oCQf0KQFDoGnXcE80W1rrNv2eJLuBM0EICWE8eyGnYTgD7E4MDt5jGD2n/YnF5RUdHR0OEVr5+qa3jn7oZgf+ggajcZLly7df//9v//97wcGBlC7FTE/NKe02WzTALCZfYUwJ2bfJBJJU1PTvoQ8T7KkhFmCCO5j4OgTBrLMmDBCUo53KPeNHWl+ZEkJtIOABLftyNEhSv3hfN8IAanDZeHScfXmS/aMHll8ksoAcEr468GMgYGBzz777IEHHlAqlXTmoclBzPiYTKaLFy8uX778d7/7HWK61H7Psb1Uim1RxE/YWGypI00NE+U2mw1FzKwOLxSdo/ks2l6MyOeq1fSZQpFOfKY4OrLI5fK+vj43N7fvfve72dnZi12Nk+YZR0dH8RajyC6KT8rlcpFI5Orqunz58szMTCfSOXM+uaWfOF6goaEhg8Hw6aef3nvvvTExMZTHSSdASnBB+H+W61Uc9gijWq1Wo9HY0CH+0xcZmApHjXoAJ8h057otzm17PNILMGWG5U1U9AwX2zjpobsealR6MTmB5wu1hv/1fJqr2/aW9v/sd46PqtHRUbTn7OrqamhoyM3L+3A3nzFlpcMIYiH3AkFigu4AruMdxkWAB/lV/hFA9MTwlQCfEEqBPpXdFhqon/BgIqVpb0TwU/PLkXRlMpmGh4dxepz9md/klvSZhZQs6vWLJHiZTNbV1fXcc8898sgjzc3Ni33CvMm+unN+jqNibGzMarXqdDqJRLI7ocifUMDdAxLJAoEQkZkkxAqF7BIsQ0gYRtJwbO9QjntAvHtgvGdQosvms0+tfv87/3bX9x95/Jcfhr7++UmXDadWrT+56vOYVetPum4867r5nNuWC25bL7puufinfYJ+iQwdAeYcmbu9V5By7pH+JZfLu7q6amtrCwsLk1NSA46xfUIh7+YTxveNACE1LybHbTsxUcaZh9DE0azE7ldCXDw9Q9iu0NVgu+DLZEeeS71ypaihoaGrq4sCxlQeYG57AMeJYxyIlcqoDImmBo6GnQqFoqWlhcFg3HfffR9++OHAwACNSei1XmJPlrnt8KW9t0UKc9psNmRzNjU3n2FnYTIdCVh2eCOM9+audN8IAcU7XbfFrdr8JWbbMR5AUQ00iqPlDlTtFqFNLLfF4MEvQvDGzjQ/smJFLrgXk11QUY+itRTzWNoD5htax+OnoiunVCrHzejSlc5aWFpB/9INcPsLX9rJoEaj6RsOtAC/Uumsx5Oq1u3O+GxnxqZ92VExV/KrexqEipHRCefsOufXS2OwXqntCz6SV944oDcNjYyMmM1mpVJ5uaL57V2pa6KSSZUSC5QYSMzvF5HsHwHiDd5MjjcRCcNSSCx8JFad8Ll7QKLLtli3bXFugfBwZ4QQDyYiaw+LDpBz4MMaLQSqnRpF/XcCEYVGUBiXSqXS7u7u2tragoKCtLR0ZgzHlwkJOkdDEGTKMoLJ2o1Yb2KtCdW5xYWY6/Z4mF2DWW+Gs08nZZaWlmIEhe5UZov1NKc6/HhBt0TnvIPm/A5y7nAh94AT5ryRq4NBhqPAIJjb9UiOp1T97XCGN5MUxYdy0YwEXfFw5sLgj/xlf3wo8xC/srFLOjgIYCc6MC+EglA+n9/Q0HAj/XKt31AtNbVa3dXVVVdXt/vLDAyOwb+aSBxgVL1mR4pnCBT/ejG5jKCk1VsvuQUkYCUgMBJIotM7lLsmKgXzEVPsN+AfoMitTxj4SBFFNSgr9o9MWROVsul0zrO/eM7FxQXl1OZK9ehabXV+tqR6AG9zLPTGFP8XX3yxfPnydevWDQwMyGQyR8yPGvZ8a4p/Jsx5OKnAXtkahrVyLJw6qBcdhi9kGWmfWzDQAVIOk4OJfp8wrj/RdQQ7BFJDB/cC2p+QkgIsp8Ubau3RdIFAUF9fn56ePjY2RldHWK2P1XxGo/HQoUMPPfTQ2rVrxWLxzPZO0+xapMETXTFOkBeVBkJSO9agONoqzxK8ueE7gT5cEPgZGhqyWCyOSKdUKq2rq/Px8XnyySfz8/NvjD93w6c35z+c2V5HpBM5nQ0NDW+99dYTTzzhRDrnvP+/YYcYjWChEibC1q9fv3LlytOnT+N1USgUarVap9OZTHaiJE1Gz3I2oFcflXyMRmNXn/TTIxkgFxmU5B+VgiETVAeHQlSAtR1YN2YvECazHAU7afkwpSr+75ugpJNp1Qg/4HnO8iS/oYsWzleUETs0NISSku3t7WVlZeeSkteEAkJJuFOQaKCApWcIKSxDRwAihA5PByIayQhhgSYtE4CfNVGpIKQRwgYlOgI24wIbweaQc9n1jU29vb1qNQhPYRw7zx1LR9HY2BiaLhuNRo1Gg/LXMpmsoKDgySeffP311/v7+2/MOHbhXGjnmXxrD9DxMDw8bDQaFQpFV3fP+7uT0XEWKQWwQIgCpwxSWwmpJXsiaUonBoVqPQLiXvxj2ENP/vye7//7U6/+9uVPDry+LmbV5zGvrzvx+rqY19Yef23dSddN51w3X1i96fzqzRfcA+LejOBcqRci5L/Elhu0Y9FaXq/Xo0lnXV1dUVFRZmbmoXOsP+1mezLBggsUxYkwCWjtBCW6BySCijhRBsYSFhQvwSh39dZYj4DEj/dyTyWlFxcXY4ZOLpcjycNRbPxbr/6NbUCbNk3hA13SNRqNI9g5MDBw8uTJ//zP/3z66afPnDkzTZ14Iazib6wTnL+6yR5YvDCnRqvrFffnFJYfPcv2ISksR2DSOxTKQRjBLFTIwOIziCUC4aZG4cr/dd8ketT4La46kb+FsdyaHaloKYdgJ4Z2b+5Kf2Nn2gf70ltaW6VSKRWpnh/1+5u86Lfi5wMSKTprJrF4o6NjN3aIgsJi1LwVibpvbA+38VfDI+PljQOH4yoCDueGROcfT6r+MrWxvHGgpUtlto4Mj4zfxnNbSoe+evWrZpHqwMWy6IRKucY8NjaGK4j+/v49CYUAZE5J5XkTwol/ZDIRwGB7gAcnyyM4CSndmJLCAn2ik8HGCQQ/AT+mYMj3ugUkuGyN9Qgkvw2EfyIf8UJ2vV6vt9lstFpoKXUybQsNMzCC0ul0MpkMbc6LioqysrKOfcn9617AgD2DgauAViyEsQMFZLj+pREsRlB+pPoEVmeBiZuj+eyUrNLS0qampq6uLrSmIm4dYxlFnczo/LZutVP7mV4O55s7oQecMOd1X2Va+InsE5PJpFSpeVca34qC+nckECC3AFNvOBPhV3QD+kjwDeOdzqjV6PQzs9XznCqiHaFQKOYwuKSuyzqdrre3t6mpSZCZD2kyMKJn4X/gpBUu8CJunWBVzeS4gYsD2ysE5nq70AF4dkKRCyiqMcGA0ItYeHoTyiZE2KEcj0CWTxhvTVSKf2TymijwkfILF5xJKR0YGNBqtVRO7XZ1LO1h55uF3wMYjlCM02QyJSUlff/738cKbqlUin6NqFV7XTevI8yJMkEnufk+TJBYJK5FbGJWxMU14VSMCMilF5PtH5niFyFAKjMylnzC+W7b419df271FiBuYk4fviICYogWUDwAdgIO8AmMTyLuu+++rKwsrJlFmJNinMg0jY+Px/b29fVNay/lxNCQdGncUxTuxas/rUh23gYtPTodfoh0opqrdOrFYDDuuuuuwsJCtLVw1D+ft1OdqwNhV1NkF5FOx/b29PR4eHgsW7YsLy8P+ROLur1z1W+3bj+OE6DNZjMajSEhId/97nd3795NMU6VSoVatVQM9nr952hxK9KDZDI582IhJsiw8B/TZLjMw+U0FLcCYQgIhYjewTo5jIfUdsy1ITkAQy8UVsKIyy+MW9fRe4skEG/dtZjlnh0lJZVKpVgsBkJnbt7O82l+kQIU/4eAiiQrPQITQSIymO0XLvBmct0DgXRl52qEQPrSMwQeN/5R8MSBqAxcuBKmlCcBHPIJ5X6wV1BWWYWGzQaDAbVJ5jB6nGXDvyJS5DiWHNVrNRoNksJlMllnZ+fjjz/+7LPPSiQSinRS1fHZH8i55cLvAZy7kMqp0Wj6+vq4udVESI3rG8ZHEM6TCZppyFjCfBwjKBGGN6TtEhiBCa5bL7lsOveM3yd33X3vPd//9+c/CHp9Xcyrnx17+R9HXl17/PX1J102nXPbdtFj+yX3bZc8gxLct8e5B8QxghK9mexTadWoaEoDpIXfabM8Q/pcQF19g8Egk8m6u7ubmprKy8tzcnJSU1OjTnPeCAPyBynCg6UZFkz4hJI6VJI5hdkmBFKoXkyudwj7rQjOvvOC3NzcsrKy5uZm9EeYN4yTth1bh5qQOJOgogYFO5VKJTXs7O3t9fPzu+uuu959912kdTqKM82t1Ac9Q+ebhdwDixTmHBqyqdTaNlHPJXbu1qgzvw2zOwdhfLV6yyX02sS8Fv71JQtPDNJoSAahBalssM+oxL0Pa9PRZJ0RzPKPTHYPTER0017FHpWC69zPjqa1t7fLZDKj0YjCSLcllrjtA2xiYuLUmQuIUHYKRTd8Pt09YtxJSUn5De/k9v7QNjJ+lle3/VDOv6LS1u/NPBhbEZvWJFGaDGbbpFPAdi6uzfj4ZHqJ6LMdaSX1/ePj41RPtaOz8/09qeQO5XqFcoCvCc9xDhBOgpOI4yZkcd0CElD9Av6GsAmVkwsMFgAyAQr1CExatfmS2/Y4t23xHoFJPpjCndqbW2Aigwj4bTmbL1coqeTeEr7xHSOowcFBjKBEIlFTU1NlZWVubm5KSsqB89y3I9k+4KoA2LCd1UCU3uh7pE7hTOsVwvp4Hy+Bn1lQUFBZWdna2ioWi6kSBlontHarN+/PahYpnTDnXNw3zn0smh5wwpzXcakwCU4VBVFgrVnUH3AOcDsqS0sr16gzMNbBYRbJPitNGewhDvHP6OyK1j6sCaW0TjzcdZzfXGw6Ojq6YsUKpVI5FzuDfWDqbXh42GAwDAwMtLe3l5aW/uMQ35M85+yOLFtjGeALBQ9RkndI8grh+IRC4pIQOIgXFzgXQhrOrl0O4rRg0wWitWE8v0hANL1DOXghvJigEuzN5LwVxa9ubN25c+fRo0exUGhp4DFzdXWc+7lmD9BABHXwDAZDTEzMAw888Omnn/b396MjHab4UbsV5UxpzvSbxxj15jSZTDKZrKWlhZNV9EaUAAyKSBW8o8cJXVgiodObqKthnZd/VLJ3KI8BJXVQXeEemOAeQP4LTKRi/QiF2m8ZqLG1C7XtuZhx4MABpVKJ2P+09ppMplOnTq1cufLTTz/t7e1FVEOpVCJti2KctL3X7EPnhzfTA3hFKPBMOZ1qtRo956RSaU1NzerVq3/2s5+VlZVR5bRFelEc2+uoXovtxRFYV1fHYDB++tOfFhcXL/b23szYmIffTpsQLBbL0aNHH3nkESaT6SherdPpzGbzzCKPWZ4hPcr/qiRVtr69M5lIpNqNihnBLNdtcUgXcCVK9VDQCmtjCAZQgtU3jIdiD1jkYRezDUpy2Rrrui3Og+TUqMnxezt4YinMe7eFdzjLnrmxzaYROhHbKysry8jKDjwhWBMFUrR2lTnyBl0AsPIaCs6IEydugD2JrFmMbO2AUAgEYNjDf9qfnHL5SnNzc19fn1qtvu0ZCjqc8KmNGQStVkuRTj6f/+CDD77zzjtIPEVMYpFOmDc2Qu6QX1HA22KxAJWzq2vLqRyisWaXpQXXKALkY3wFgVNgAllfsBmBCR4B8R4B8S9/sn/lf730nX+76/Ff+bz86UH04CRCtSddNpx233oRJWpdt1502x7rEZjgGZzkEZxI7qmkTSdzbiO5+ZZe5Wmr4MHBQWQkdHd3Nzc3V1RUFBYWZmdnJ/FS9p7jrz/MezdyStwohA2IJilm9Qxmg09nGO/9Xbz1h3lfXExJzsi+cuVKZWUlxTh1Op1j/da8LYdpA+lK32azDQ4OmkwmFNVwpHWKxeKjR48++eSTL774Io/HM5vNqHHiqGrwzcuBW3qxnDuf5x5YdDDn5ORVo3loQKYrqu6MTymPPMr7+7bj7wR+6RvORy0NJGvimhSNgZA8hBwvvJ0RrcSoDNNfmKjBUl1chGKlFAQPxEwdk/W+4XwgeBG5Re9QzsHEPKFQqFQq8T5CQ8p5voIL4XCdQtHe/Yd37z14KS5xfPzGaYvDw8O4H0Fy2uSiBTdGRsfr2hUxrJpdZ4ojY67sO1/Ky23PLe8W9emkKqdb580O2LYezfGkmrDjBaNj40jlNBqNEokko7gO71m4i4nuC7IJfUJ5XqCsw4IIiliGkbJUgOKm9PngK7cAADUJhMmmNZREFQZsMhhBxJiMFDyREgfWOzuTxf0DJpOJKjfcbMMW6u9prmNsbGx4eJiq1/b09LS2tlZXV1+5cuXy5cu85NSDF3hbjnI/2sN9IwLKTHFqxb+4QPttFO/vXwhCTwlOJ6Zm5+SWlpbW1tYixqlUKvV6PY2gJicn27rVETGF2WVdi3cqWKiX1HleC7oHnDDndVweR8bJ4OCg0WisbO1+Y0eybzj/jZ1pKOuBruz2XBLxJvFict7YmYZQBH6OFXBeTA6VMncPSFgTya9oAZ4BrYi/1eqIX9fyua2jwYzDyMgIgjoikaiysvIiJ80/gr9mRyojhO0WGO8GCA3w8V0D4oGnHwGJTqgMCkr0DuP7hPP9I0AngQTZoIbkRTRVfICFwCElLTyiagspPC9S8IL97B3O25eQ19XV9ctf/tLd3R1do5xrzq+77s7PsQdothT9KS0WS2Zm5vLly996663+/n6pVIryrVqt1mQyzeSFfOsAw2T0yMiIxWKRy+Xt7e1FpeV+oWysb/UMZmF9HKmBTV2zAyx+waqdKIe8sv4c6tD6hPPXRCVD6jmIBRh/RDKoixDjBFS6QGiT/IXKXEhVk+XlGzvT/MO5Ry5yUc6CioQgcRAV/1JSUu6///63335bLBZje5VKpVarNRqNqM3rTOLc6psFc204eVJOJ+U4UqRTLpe/9tpry5Yta2xsREad46W51Sc5t/t3jP6/DukUi8WrVq269957a2pqpjEIv/W+m9uzXcJ7o3leugyLjY39zne+s2HDBrlc7ihejROCo+T+dV0FLPhAuVqtVtvX1/f5yTx8drsHJNjnQyKpCgtpkg7DNR6mz7yYHCyEohk0jKyofgb1kUKuAIZbHkFJZ9JraB5tbqOd2zsq8MLRimzksdXX1xcVFaWnZ2yOBnl/zFmQbCPoALsFxPuGgYueJ5MkI4KAjeEfCVrBFAHyCoFI1SeU57o93mVrHGre+oVyOBl5VVVVQqEQtSWxYgZRw9vVD/TZTdVrDQaDI9JZXFy8bNmyv/zlL/jsxpTK7T3n29VXS/i4+NxExVqpVNrW3uEdChMIzgPeTC4QOolaDPhFhcAiwiM40QOczuM8AuLctlx67u1N3/m3u+75/r//8g8hqz4/uWoDmHG6bDjtsuH06o2nXTaDSq3LpnOuW7902x4LDE6o0WQzQpKw1PK3O5IxWT8yMrLEdGspc3p8HLKiw8PDFotFp9PJ5fLe3t7W1tba2try8vKCgoLMzMzU1FQej3cxgb37DGvToaR/HmB9vDvh072JGw+y9pxmx7H4KSkpWVlZ+fn55eXldXV1ra2tPT09CoVCr9fTtfD8FyLgNEJdDCitE31/dTqdWq2m3uFyubytre3Xv/713XffvWPHDovFYrPZaK72dq3il/DdvZCbtuhgzvHxyT6ZvrxBfORS0T8jWB9tPvv2p1/8bsvJNUTFAUOpKfQCJDSIqEM8xF2EuIlfgZxGKHfNjlS/SEjd4DbIQ2IEQzE68eu1q535R0LGDHmiWEGFSvhv7UhOK6zq7e3VaDQ0O39d8eRCHhjXdW5srmD33oN79x9WqzXX9cOZGyMr9FJc0sjIyMxvF9EnwyPjmcVdG/dnfbYzfe2u9MDDucn5HaV1/cOjNw4DL6Lm36JTHRubTCsWBRzOFfZpJycnR0dHBwcHtVptb2/vrth84BGGIvMEhPSw0pFwNEFaD4sesN4UUk/BbM9gEKr1CEh0DYiHjDepaQAaKLHMgPVaIJhHQj0EoayAQxlRdPALF/iE8XMqWgwGw5KncTvmdmgEpdVqFQqFWCxub2+vr6+vrKxEsDM1NVUgEHA43JOxnKgYVlA0e8vhpODopD2n2ecSuMnJKRkZGbm5uUVFRVVVVc3NzUKhsK+vT6lUGgwGnEVpRshqGwk5WpBR3GVzCj7fotvJudsF2QNOmHO2lwXBCUwhWSwWrVZ7pV74py8y/IgfnuMzAAM71PGAdfWUUQEWwVE+InxFmIhQGkOkWX1C2bySNqPJhBP9bUm+VFdXHz9+fHR0dLb98m3b4YpxbGxscHBQrVb39fU1NjZm5+StiwbzefIIBGI+yCAQW01IQJDeIBK1EBnT5ygG0PauJjkLfO6iSSfJygGz0y5YF8z6YE9yUWVdX1+fVqu9Xa5R39Y9zu8XVg/QBAcyQiwWC5/Pf+yxx95///3e3l5HzO/GME5MEk1MTKA0v0qlEgqF1dXV206APAigkgS5JIa+HL9wUGVEIzQPUFQDHTAGsbNFQWwUofUJ5aLgMwg4k28R4/QMAfomI5iNGs7+kcl+Ecm+4bz3dgkKS8pVKpXZbEaYEzNWWLSenp7+4x//+L333hOJRLS9Go2GQhpoV+mU5JqHgUtH40ykE23npFJpeXn5f//3f7/wwgttbW2LHfnD9lLtTdSL0+v1qF6LnM7y8vLnn3/+hRde6OzsdGwvLh7m4aIs7UPQIYcLsMHBwby8vB//+MfvvvtuZ2enXC5HQ2Iq1u1IZL/enkHfbpTIlslk3Pwa/6gULBTDeQ9ZgyiaSvkBGA+g9xtMg0TAFpidAQmu2+JA0JvYvdhLX4nlJC0yw4Dhr4cyVBoICZYkCIEkpKGhIfBTUCpFIlF9fX1xcbEgJS3oGNs/DNx0vELYWA1jdzwFAQAuMF+DIQ2BSDNKemI3+oTxiIlOInpx/f0LAT8TMM62tjaJREJ5V/MPSMwccnQA0ye40WhEpBPVJo8ePXrvvfcGBwdrtVpHUvidmVGd2YFL4BN8gqDFlFgsLq+p9wwGzpB7QIJXKBcMMgiNAMMkiLvIAsQ9IN51y5evrz3+45f87152/w/+35d//ecowDjXnXh97YnX1p5YveG0y6azLpvPewB9M95l65duW2MJ6s/yCmExgpPAzpYU3XuGsJuFvSjjjLq1S6BXHZtAn9QYyuKTGmmdYrFYJBK1tLTU1tZWVlaWlJQUFhbm5eXl5ORcJq+cnJzc3NyCgoKSkpLKysq6urqWlhZMz8lkMq1Wi3EpKq3dRp9LxzaiYSdGyGazGYsnHGmdIpEoMDDwkUceefPNN+vq6qjCAV59Z7TsOHiW8PtFAXNe/eqriYnJoeGxPrmhWaRMLxKe5dVEHM/5fCdv2x524O7YXUfjP9iT7DmlSImWAW5AeYcAAOUcqOYQRgiOYmZoIIepGGpAgDkuqgyBrADcMwR74fx/HklraGzu7+/X6XRWq3XpiW3McthLpTJ05eRwk2+GyomH4wvSdu89GHPqnNlsmeUJLNjNJiev1rbJzwvqAw7nBB7JPRJXeUHQgG6dVtvY2PjEgj3zBXtiSt0gN6896mRRn8yAj3Kz2YxZqX8eSac+IGiBZJdLZdqla6FcjKhikDqGRLft8W4B8TgtoA1aaiviAAAgAElEQVQn5KwCwWvJk4gX+oYLGEFQxO8RRNzHpiopMQDzDGEf5ZVqNBq895dS+ek1rz5dp1CnHpPJRCMooVDY3NyMFWPFxcWFhYW5ubkYQWVnZ+fk5OTl5WEEVVVVVV9f39LSIhKJBgYGFArFzAgKcyNDw2O7zxaf4dU52ZzXvCLOD5dqDzhhzlldWZySaOWFRqOpaul6M8q+WgbFyICEKTUeljtJt3kxAZ9AZA5l1ihih3EhlQUDtlY4nwAbXP9wbkVzj9lsptnDeU6+xMTEuLm5DQ0NzapfZrERdt34+LjNZtPr9XK5vKOjo6ys7CI305OkINFr0z0QHpOMYOB0wifA4QBVOuwrEE8DgyjwiPIC2gEI2HrbperAvNM9EH4I6rXhAp8IHmG2cQ8k5Le3t8vl8ldeecXHx2dsbGzJPztncUGcm3xtD9DIA7kgg4ODFRUVP/zhD1999dXOzk70p6S8xpnarbO8VfEoo6OjQ0NDWq22p6envr5ekHnZJ4xLBjaQlV23xbtsveQRZFdpxhuBrAnBsx3rZLGYDm8QO00hlIu1csRWLdkf7GmB8ekXkewJTkiwmPQO5e6Mze3q6kLsHynOdGYrKSl55JFHXF1dsb0ymWxme5ee3dTXDogF8AWOlmuq1yLSic5YP/3pT3/yk59IpVJU41zUvpWOqgnXRDrFYvGzzz77wx/+sLe314l0zuEgdZwAUU6npaVlxYoVnp6eEomEYpzUjxNnjxurx6KkdpQ97O7p/Wd0FmKZ7mSK8w7l+kelrNkB9R+4nPYMYbsQAVvMjgHBnVQ7IRqKuB0GXTgfegQlrd5y6bWNFzDv5gZkxFh0h7pSLzKZTHj+S4xwgx2Lzxej0SiTyUQiUWNjY3FxcXp6xrEvuW+EQz2NR2CiX7hgTVQKFaFFmSlQkCOpTO8wrmcwBLGgFhApWL011m1bvBeTvf04Pzcvv6ampr29vb+/H58jlL00y4fgHA7ambtyHMbIC0ekE2EJqVQaHh5+zz33JCQkmEwmOoE4oYiZPblIP8H6CavVqtFourq6couryMoClK7tawSiewFCtUxYPjCIGaf79kuv/it6xY9++m933f1fHh+t2nDytXUnXv3XsdfXnQCwc/2p1RvPumy+4LbtkkdAvHtAvEdQAoRbNPtPLDOwWM07lJtZ2ow4OlbTL4T7Ym6v5kxSwtDQEHpYqlQqiUTS29srEona29tbWloaGxvr6+vryKu+vr6xsbG5ubm9vV0kEvX29kokEpVKhZ4IFCCkNRO3vetoQIJx8jQNW0rrlMlkqPvygx/8oKysjHrQUDrFEnvQzO1wWhp7Wxww59Wrw6PjSt1gZrHoLK8u6HDOJ2GCz6IEm/emxMTnFxRXlpaWxiRlImUTwM7twM0iuReObzjfBWo7QKMSC3DR+xwzXbgxKatN8QnjgXRQZLJ3KFRQoaQtTo/UQQB3i9un5ZV0dHTc4cack5OTx2POoKGmSNR98zdFaWnF7r0HDxyM1mi1N7+3hbCHsfHJ2LTmoCN5/4xKW7crY+eZ4pPsGpnaPDg0umh1eW9Pv05OXu2TGyNjChMymxWawYmJCZvNZjQaQZ+gvf33O8E1jHhtcvyigIENNZHBUM7lEwZa04wQljeTSwgqSWAZFsYD4DOYDeBoQAIWRGJxgz3XzeR4EENuYn8OBROewSSLS37oFcLZdi5PqQR7ziVZfjrzGtPczsTEBFWMMJlMWJSJEZRQKMQIqqGhob6+vpa8aATV0dHR3d3d19cnlUrRRQtNZBxVahzDp8iYoktpTRKVaebJOD9x9sBS7QEnzDmrK0v5JVarVa/Xd3T3fXo0E+Zxgm76RggQY8PHADIMkECA9S8A3RF5VSAiEHoidQ+2oxTw8CCS5cGstyL5tR19WGY+/4jC4CA87WbVKbPeiCY0TSaTWq3u7e2tra3Nz8+POC3AImiAeMMglUl0D1iMIBYRlQLXa3xM0jIiwHsg9QZ5Ov/IZIyhURTFgyhHEUCI4x3KXRudUV5Z09XVpdFo9u7dGx0dvfTEo2Z9BZwbzqoHUOuM0phqa2t/8YtfuLi4tLS0oB/nN/hTOgYT33wwDG4QSTUYDP39/S0tLYWFhRuiU/yAcCnAiQXiyGAWsTdgEc1AIAqgE6dPKOgCgeMvKIfAghOnEVh5gnECxzME0nlQOUu8PL3Je1hhhnJ/tyeltKpWLBajcD8KTg4PDw8ODjY3N//yl7989dVX6+vrHdtrNBpvGNP95q5wfvutPeCYTLwmp1NOXtnZ2Y8//rivr68j0onpuW89xELbgEb/tM6RqvUiH0sul2dnZ//oRz/y9fVVKBQU2V2k7V04/U8lKxAc6unpefXVV5999tmKigqKcd6kHydtrKNFsVKpLK5p+d1u0ErFbBpOaLRKjEZTKI+GhE6QzSABGJknAcPwIPJoqzZdxDJkSuJEbihWh+CHm07nI2lg6YEQePvgXIG+L3K5vKenp6mpqbS0NDc3lytICz7BezfSnqnElCViyXYuGhilk3iMycZnjWcwyz+M/cl+9ll2ZlFRcV1dnVAoHBgY0Gg0jtqSs38I0mFwi944dgI+3aYRsP7xj3+sWLGCy+WiyCRyR5w4xC26HPO8WwpzIi8hq7BiDVFTtK8siO0FCMkwWUQ5JtEzONFt25e/eGv9sgd/cP+jT/zit+tXrz+1av3J1Z+fXL3hlPvmc66bzrlsOu+y+bz7tlhGUAIDpDUSvZhsr1BI6mGxBWbwkc3gEZTEzq+n1ISluvSYFpygywPaWOp0OpVKJZfLJRKJWCzu6enp7u7umnr19PSIxeKBgQG5XE4BzsHBQaw5WGi44LRmYkYSmzltVpHL5fX19W+99da9994bFRVlNptpFQVFbef5XnAebj57YIHDnJOTV622UbXe2tChyK3ojmHX7D5XEh5TGHYs71h8GfdyQ1NbT1dXV11dXUFBwadf8MEMiDgBkbpzMAwCvdmpuAuCBJSgJEbpVIoWqmyjUtZEAdJpDyRC2Bi5YUUarQXxixD4ERw08FRGQ0NDb28vmnzTqqn5vHYL4Vjt7Z2IcV6KTZyTRFx7eyfacwqFXQuhgXNyDmPjkzVtsqPxlVGnioKj83acLsoo6SqpH5CpzTrT0MTk1Tk5ypLfyeTVq3Xt8vV7MrNKunA5ZrPZDAaDVCptbmn5YG+KXyQweShICUBmKCRXPcE1DD2SIENFeN4JJKBC/X9YWeA9TnKzUKxP/jk1gZC0FSzEiNGSXZMvmPXpkQy5XE79RBbOauIWjQSMK3Cpgho8jgo0GEHJZLKBgQGMoKaip67u7m6MoLD4WK1WY4kYrayiZe7TVjQnkqpi2NVW29gtapFzt84eWIA94IQ5v/2iYO6PmjMrlcp9iUUQrpEIDzma+CTAPBouepGR4FACw/IL5xNnZiiQwbwb0ECJDAhsTAqNkRK67WyeVm/A7C2ukOdtxl+9evXatWvnJMCiPYvz+NjYmNVqNRgMEomktbW1vLw8M+vy50eTPUNYUAFERNvhORrGcwXz6kS0EiRE2AQw4yTUWCpSt2ZHqn9kCrDTgAjL8mKCASEREAYp+T/sS84uKG5ubh4YGNDr9ega5aRy0ivifDOtB2iogSkMq9UqEol+8YtfPP3007W1tTTFf8N+nI6Hw+AGIRyz2SyXy4VCYVlZ2Vl25puRpCaOqHlA1p5YnniH8dwDiV4QKaFFDhMQPUPYfpHJuJj0Cedjfo3QmOCHAIgSpwQvJhsWkxEQsHox2V8kFrS0tEgkEipCOzw8PDQ01N3d/fTTTz/77LMNDQ0z2+soo43n79gi5/tb2gMzs2xDQ0MWi0Wv12s0GkomKCoqWrFixYcffkgT94tXLg/vR0cOKyrFOba3qqrq4YcfXrNmjYnIvFOg4pZeiyW8c+xzCqVbLJY1a9asXLmyrq6OTgiO4tW0w28sOKFQhF6vl0ql3LwaP5BqsDvBgAjt9vipZzqoZeA/QfeCwJmYPsNJckoKwi7/gHOgH7GAohvQwjI0OfYJ44nEUovFsiS10eilRGl0vV6vUCh6enqam5urq6uLi4uzsrI4/ORdZ7i/38WjasD/WytDuG4MIi3lG8H3D+esP8yJ52fk5OZVVFQ0NDR0dXXJZDKNRoO3HoUlbmwk3KJ7inbCNX06u7u7f/Ob3zz55JOtra10wnRCEbfoWszzbnFusVgsSqWyo6MjPb/UZ0pL1juUa1fF2A7UZK8QlldwEiMg/mceH911970PPvHzVz45sHo9mHGuXn/KZeNpxtaLHlsvumw+77L5AiMgjhGU4BkCws7wH5Pttj0BLDOYbABQSSofeAzBSYwgVvzlapVKdSdQExwf1mNjYyMjI6gEYDabjUYjRikqlUrp8FKr1RqNRq/XGwwG5B/YbLbR0VE6kyxAajU2Ew07sRQSw7CZSGdfX9/OnTvvu+8+d3d3xzIs5/Qyz/PA/B9ugcOcI2MTMrWlrl1+JL4i4HDu2l0Za3dl7L9YFp/eKBSrrUNDer2+v7+/ra2toqLidFKabyjIOazZkYp/ie+JYIrUBaW0OOlhoS0U44bxMP2F4ZZvOJ8aomN5GRao4Q+p8IY/MzE1F6icUqnUYIDE19IrPpvNUJycnExi83bvPbjvwGGtTj+bn3zrNhKp7OChY7v3HswvKPrWjRfXBlbbaHqxaP2erH9EpW3clx12rKCwVtwkUjrdOmd5HSevXuXmtAdH59V3KhDmHCIzgEQiaWhofCeKjTKzkKwmJfKYuCbV81zvUOBuwtoBisY4yNUG+JMJhG+/SJglIBAKntKnRW0Y+BXHPQAS4HafshAO4YxCrdjHX6TKZDJcU4yPjy+o1cQsu/TGNqMRFM14DA8PU4V8DKK05KUhL61Wq9Pp9Hq90Wi0WCxWq5XagVOAk2Kojqd0uUx0hl83aJszTzrHnTvfO3tgYfaAE+b8lutCcyXoIKVSqS5XtviE4VIZ9I58SG4O6llIVS9M2QGw9PUg/4E42NQb3whw2oPyYTL1Y2hIBM3hJ1jwYlfzYLIzKtocp/t5m/H37NnDZrPn/HCUujE4OKjRaHp7e5uamsrKyjjJGX/7QuBP/E0JJAxCKN52dhrU/mAYTXqMA6AmsDmxOIjnF8Gn1YJeTPDXIY7W7Hd3cONT8+vr67u7uzHR8Otf/9rd3d0Jc37LWL9Tv6ZBBiYvrFarQqF45513nnjiiaysLJrinytNLYw/UKcCDWvFYnFdXV1uXt66I1AJgQtCrKJApjIwmMP501SvkaNJ7hoeIwiYTESfVuAdBlqO9v8CE0HLMYwPNwiT88d9KQWlNUKhELVBhsgLGT/vvffeY489lpaWJpPJ0H5Pq9VSKJT6JDkxztt1l9AsGwJRNpttJtJ55syZ5cuXb9myRavVYt5waSCdSC5ETqcj0nn27Nnvfe97mzZtQhe0mwTebteVXQjHRSIsNVrTarUbN25csWJFbGws0oVVKhVOCNOI3Td28jiYR0ZG0Ammp6dnf0I+VeG2S1yQpz+GSXTqYwSBr6RXCNu+riZvqMgtps9wY6whQ5gTBdbwW6ptm13ZvlTN82hhBBbTDA4OGo1GlUrV19cnFAqbmpoqKyuvXLmSm5ubkZFxLjF559nkLccEnx7g/GUv50+7WH/alfjXvex1h7mhp5JPxKelZGTn5+eXlZXV1ta2t7f39PTI5XIk9U4rf7mxwXDrfkXnTMcqaZxAFApFW1vbiy+++PLLLwuFwmmjes4D4FvXRueeZ/YABlcWiwWvckZ+KarpTLGIQO7CPSCeEZToHZzksv7E//P/ud51z31PvLzGZf1J9y3n3TefX73h1KoNp1atPw1CtZvOu2y56BEYD5goeJGAqAYWpLpsi7N7A5NkH+UleIawefm1SqVycHBwSRZSTOtzmlNDQRT0eke802azDQ0NDZKXhbwGBwet5GWz2VBNBO3eEQWcxj+YdqDb/k86peDUioCuyWTS6/WOBsAymezUqVOPPfbY66+/Xl5ejkq8zij6tl++W30CCxPmvHr16sjohEJj6RRrcyt6EzNbok5dCTySu/d8ybHE6swSkViqHxsbx3hMoVB0d3c3Njbm5+czY3jewNxCJSEon8U1Jua1aFEa8RtiIaiJKSxPEphh3MUIZrltj1+95RJUhJB5EhU7cLb8U/iFnYfPFhUX9/T0qFQqNGyafxmzWz0wZrP/gQEpunLyBWlzla0yGk3Rx07t3nvwUmzibM5hcW0zOjaRU94dnVAZcDgv+Gj+heR6Tk5ba7eqT26wDY9PTMBzaXG1aD7P1jYyfl5Qv+N0UadYe/XqVSSi6HS6/v7+urr63+8CZVpIRoVxfcMg1+pJKu9B9p8UNHgRRNMnHGTD1kSleMMGbFKECugmLNCI6ZIPUejxDuMxgpJ8w2GfLltjqYs5TgIewSxGCOtf0RlSqdQx7z2fvXF7jzUtgpqYmMA8Dw2iMGSifzF3Nzw8jPZ2FN3EhfzXDfv8yt7jSdVa45x50t3eTnMe3dkDs+kBJ8z5Lb2Ey7bR0VE0eunu7dt8Jh+lPEAwjZDxEbZ0FFijdfEo8eG2PR6LiD2DwYHZDl2QLB6tdkFIDx3aGcGs30bwpArVPC+Sx8bGBgYG5pbKSfsXK6wRLcZIuqmpqbi4mCtI/eywwAcEOdGPk+sbAc9CL1J27Q2GhWhkzfEHgXiBTxjE3Iji+ITxfcNBMdh1W5zrtjjvUO7vdnAEWWAcJRQKZTKZwWCw2WwDAwMymezrpn56hs43d2YPYGRAFTL1ev3777+/cuXKjAzQ0KCyWqjdSk1zb7LeHOu20AtBJpO1tbWVlZWlpGW8HwWe7SRGTPIJB5Nakq9PcN0Wj++9QqF0DlSypyzcGcFJvuECv4hk71COf1SK3Q1lexxhQkM+jpRQ8Pwj+eys4paWFrFYrNFoUCLMYrEYjcaPPvro4YcfzsnJ+br23pnLzoV2O2CKjVb8OSKd6NMpkUh279593333XbhwYVrifqG1ZZbnQ+9N9BqkSCdtb3R09H333Xfu3Llp7XXO9rPs4a+++oqmbikalJiYuGzZsp07d6IqDop1U/Fquqaa/SGmbYkKGcPDw+gEIxQKNx1Pc9se77oNZi3/yGSUu0DzJ58wnn8U6Nli7gwe/cTJG4uLMdZCQiem4bBMxD8yecoT3V5QjCEWchE8Q9gXsmq0Wu1SVXqYhnSix61Wq5XL5X19fZ2dnU1NTbW1tRUVFUVFRXl5ednZl9MzMlPSMpJT01PSMtIzsy9fzikoKCgpKamqqmpoaGhra+vu7pZKpWq1mpa/UNbFgr3dpo3twcFBg8GgVquVSqVCocjNzV25cuXbb7+tVCpnmgJOG7TOfy6WHkCY02w2I8yZc6XMjzhLeTFhiQHaGEEJjMAE75Ck19ceW/HDp+66Z9nP31r3+rrjq9efdN10xm3zWddNZ103n3fbetFt65cuWy66bbvkGcLyCwfRNgaJvrCWAh00UMYNJyKEBLyZ3Cs1zXeU0RQdG3TmcYQ8x8bGRh1eY+RFnyM3GUvTQ8/bGzqrIHsVaZ3oS0rnFplM1tjY+MILLzz44IM8Hg8F5aga5wJHc+etJ5fYgRYgzHn16ldj45Maw9CVGnFselPA4dzPdqav35MVfqLwcnl3t0Q/OjZB7VqGhoZ0Op1EIuns7KyoqEjPyNwczUejJcQ8sBwfaZ2IbmL6Bf0CaDoL34CGUAh79ZZLODei5u2aHalYuwbx27aLzN1Hd+89+MWhY/kFRVqtjsZjCzaiuEUjdmJi4sTJs6hY293dO1dHGR8fjzl1jjBEj9yizN5cneqN7efq1a/0ZtuhuPLgo3lrd6Zv2Jt1mlvHzW1TaC22kXGngO039KpEaTrJrgk/UWAbBuqkI8xZX1//0YF04FuDQRKPYTcUA243aOYxYS3mQRQskOvpFy4ARbEQ0BjzAEn/JNft8Z5Mtt8UsxPFxiB8IsZthMnNB51bgFEJMTSEwzyfhzJjNpvtjmJzTrtGMyMorBujQdTM8GmW4URTp3Lf+dKJCSf2P63Lnf9cyj3ghDm/5epiTnl4eNhkMsnl8sLq1rd3JvuRDBo1G0CAk1aoEU0kYBxitQuUq0ypTaKblJ33SWhb+C1osTpQPJGCkFTYZDQah4eH542R093d/cADD1y4cOFbOuWGvnYEjDGSFolENTU1eXl53OS0LdE8PxCeBSEUnwg+2jy4Eect6C6oDCKC7+B7D4VFECiDSScPdYDJEzfpky8ErNScioqK1tbWvr4+NI4aGRnJzgY6wp0WN9/QVbrjfoQJCyrVaDab9+/ff//99+/du1cqlVKM02QyzcRRbmZEYaJ/dHTUYrFotdqenp7GxsYrV66cY2e8t1PgCcZRU6YIZLS7BSRg6t8rhINxJCwaifcJunj6RQje2JEKVvAgMGL/LVlYAoncL4y7Nza7oaGhu7tbLpfr9Xqr1Yosn3379t1zzz179uzB9iqVStTmndv23nED6xY0mIa/tNbPZrNR5I+q1/7rX/964IEHkpOTBwcHHVH5W3BGt3yXeHtSZBfRGtTBQ59OhUKxbt26733ve1wudwm095Z36LUOQGX5UeO0sLDw0Ucf/fjjj7HoQalUolbtNG3Pm6k3xyPabDa9Xi+RSNrb2z/eL7DXdpCFNEZTlNqOiCZyCBjBwBvA6g1GUJLb9nhSCAVLa1TRYISAgCTOn1gRhRsQboHd+9OLyTnEq1Cr1VarlWJ11+qbRfwZThc4V1DDaaPRqNFoEOzs7u7u6Ohoamqqq6urqamprKysmHpVVVXV1tY2NDS0trYKhcLe3l6JRKJUKvV6PTWcowqTN/McnIf+pY/4maRwhUJx6tSphx56aM+ePSaTiRrpzTJrMA8n7zzEDfTANDZnUWm5XziPLNM4jKBET6iTiPcIiPvVH0K+9+APvr/yx8//PuD1z2Ne/zzGbdMZ9y3nV60/tXrTWfetXzIC47yCE922x63aeMGFsJGQpoDlFF5MNi7cyGKE2HwSpRlGCMs3lNsh7LpDRGtnXiCceWi4gks/lHulfyntgG48cz8L9hPaNLTUwokF3Tq1Wi1FOhUKRX19vY+Pzw9+8IOTJ0/qdIDiINI5z2Y0C7Ynl9iJLSiY8+rVr8bHJ82Do6J+XXmj5FJq46HYipDofGZ03rGEalZ2a5/ciGw3CtsjoVOj0fT397e0tJSUlPBTM/+6l4Wi3whPehBWFtqgYB0/hl5oK2APzIgHE/puYg06NS12UDhjbzrEij4OXMPdew/u2XeIxeZJJNKxsbE78Pnb0tqO/fBlbMLc4pF8QRruWaFULbHbjTZnyDaWWdIVHlMYEp2/93xpdEJVUW1fk1Cp0lmB1jk5Sbd0vqE9oNBYdp8t4eS0WW2jM2HO9ccA5sSFmL1MYcpYjdzLSaTaHrQJ7Ys1Sv0kqzO37QkuW2NB94LJBbGxIELuDAF5f0Yw5HIZIfCGJK/A6dMzhH1SUCKVSo1GoxPmpEERhknf8JduOZtVWFu3+hSnVqIy0THgfOPsgSXfA06Y82svMU4fuIwZGhrSarV9fX1fsIqpEAetXPOPSrFjEsGQXwNiAcHnqKaHXYWSpN4QBGUEw0OCEZSECrdAYiCoJyOY5UrSdl5MTvCXRUq1Zj6r20ZGRkQikcl0SyZBmmwaHh42m80ajUYqlXZ0dFRVVRUUFKRnZBw8x3o7EkQPvEM5ayKTkbXpY7cvTYISbFADBhwUO9YnnO8fmeIemOiyNdYrmL3rbHLm5dyKigrkq6lUKmoc9dJLL3l4eHztlXZ+cQf3AEVQkBvH4/GWL18eFhY2MDAgl8tpip+ae1N/ndlEFd/Qr3g7YPbZZDLJZDKhUFhTU5Obm3siVvDmjmQIMSMEhMFMcP1QDh38GBoyglk+oRCGIksJItEQNgoHTbmnEKN4EkEGn8ooKavo7OyUSCRqtdpkMlksFpPJdPny5RUrVgQEBPT39ysUimntdUxk32R7v6ErnF/Nvgcc82uUf2w2m3U6nVqtRuRPKBS6uro++eSTdXV1VqsVkU4MlGd/oIWzJd4peJ+OjIxYrVZEdml7u7q6XF1dn3rqqdbWVqvVitJweJ8unFYs2DOhExHmatvb25977rkXXnihtbUVJ0CVSqXX6ynGiUVXN5mHok4wNKH2pwNp/lEp6HGOfxHLRKVZKpvmHpjoui2Oop7IqaKoJ36OG9tpB1EpU5xOKIqiOTiPoKSdcVcUCgVC40s16ew4XSDxCB9zRqNRq9WqVCqZTNbf39/b29vV1SUUCjvIq7OzUyQSdXd3i8VifA6q1Wq9Xo9A4PDwsKPI5KJ4LlC2Cg5yFJlENEIul0dERCxfvjw2NtZisQwNDTm1rxfsZDXLE6MwJ3pzVlRUfrQ/2RdV12AdEee27dKza/5597L7H3riF7/5216QqP08ZhVQOc+6b72weuNZj+2xXkGJnsGJHkTblhGS5LY9DioqwJQEbAWoeI83qWdFH3TQ7AnleTHZfzmYjpYZ86zHM8v+mbfNHHNw13w/b2dyKw5EZ9dvELBVKBRisXjjxo3Lli1bu3ato5sAXUrcinNz7vO29MCCgjknJq5arCNdA7q4tKZ9F0o3H7i8+cDl3WdLzvHrW3s0wyPjjqQeGgcODQ0ZjUa1Wt3T09PQ0FBcXCxIzfj8EJvodUPuBf01wZAvIAEWoSQhgzpkU6AI6GfYMdHARAREMdnlFyHAXzGCEkNPCQqvFNfU1KZnZKFY6+69Bw8fjSkpLb/J8PK2XPqbOej4+HhCEgc5l3qD8WZ2NfO3NbX1CHM2NDbP/HbJfDIxeVXUrzvFqd20P+vzPZk7TxcdTaisbJIoNBbbyNiSaeYcNkSusWw/lJuY1TJoG3OEOQcGBhoaGg5cykKDD8LRBBgSl1SYffUE7T02/GWy3x3DlccAACAASURBVNiZhl5sfuECXIsB1zMw0W1bvOv2WPeARPeARA8QsIX0FFhyBiV5h3GByglqiOBT5hUKZmQFFQ13pjfnN1zTa0ZNjh9+w29nftWvMB2OrTBbR2Z+5fzE2QNLtQecMOfXXlmcSnABYzab5XJ5e0fnH/eno/wsSqghwICZOMDn7CteZO7bfQgw9eYZwnZD805C3HTZRtbMxE7PTtIihpSwW2Le6RnC/mBfWmfPgMVioWmXrz3XOfpCKBRevHjRbDbP0f6m7wYj6fHx8eHhYYvFotPppFJpZ2dnfX19eXl5Tk6OQJAccpz7+yiWH/jfsBhBRG6OKANjh8PTETrKLkPnFcJ+bwdnczSfk5JVVFRUU1PT3t7e39/viHEu1Qzm9M51/vs6ewBHI2bEhoeHBwcHS0pKHn744bfffhvtxxDzMxgMyGuktyHODNd5tGtsTgmdVCkIUf/c3Nyjl5LfiYJ8GaEps3zD+OhtABl8Jsc7jEsmE1hhAg4ahu6bHPdAWHbiUtMtAIrp3LYn+Idzw8+ml5WVNTc3462BJqMWi6WsrGz58uVvv/22I6aL7XV0dpyr9l6jC5wf3VAP4NB1RP5MJpMj0tnW1vbcc8+5uroODAxQAsFiRzodmRPYXpVKhchud3f3Cy+88PLLL/f29iJQMSdo3A1dnEXzI7yv6SjCWejPf/7z448/Xlpaip7EiG8hgW8OrcUQ5rRarWq1WiwWNzY2vhdl16LHMjIvJgdrxTB9hlkzXGA7+kKBYEaEAEVuHTFOrPPAwAwtP5FMAGVkBCVlBLMiLhXKZHLqBbW0ZzkaeqHwkc1ms1qtWOmi0+k0Gg29lfC6K5VKdGM1GAxYE4PTyDSAc1FgnHhD4uznWBqi1+ux1V1dXb6+vk8++WRNTQ2F850gxKKZyGacKBpk4PQiFAqrq6t3XkgHxdrgJPeA2NWbzv3M/aO77rnvsV+85vL5cZcNp902nXXZeHrV56deWXtiFcE4GYHxPpB6g/JKLybHP4KIZIAwD1SyAsZJdNtgRiJlZN6h4F/lHcb1j0peE5WyM66wt7dXo9Fg2Q2uQWacpvODpdADdB0xU8BWpVKhOLZUKg0PD3/kkUf+9re/9fT0DA0NoSkpTjJ3GqizFK7617RhgcCcE5NXh4bH1Hprfbsiu7R7/4XS0OMFYccL950vZV9urWyWjoxNTGsBHcbo0GQ0GmUyWWdnZ11dXVFRES85dcsR9m938H3C+YhfYp0Hohr26jRC5yI1uHafTtiSLEhpsRooXoZy347kRp0R5BcU1tXViUQiqVTa3NJ64cv4vfsPIyAXG5cokd5BNkP9/QPY9pTUjGnX5eb/qVSqsVczs3Nvfm8LfA9SpfkUp3bH6aKQ6LzwmMKkrJbi2r7uAb3eZBsZHV/gJz+fp3f16lcVTZKImCus7NbJSVj9jI+PDw0N6fV6uB+bm/lZ+aCBEc4noQ7LIzAJvDZDOWDDSdT7fcMFQNcJSATx6qAk0OEL5/lHJuNs4EfWZVgVAeoXIXY4E6FNwuZko+8SWnv+YX96cwtU1prNZpQwXESLi/m8cDdzLJnKfJZfZ7WN3sxOnL919sDi6gEnzPm114smhlBarb+/P6eklhICKIvfg0CVOJujV4GdTDBV/IKwJVhykto3yifAPWApHPFtBt1arJdB9qdPKDevug0p/Kjj8bXnOkdfcLnclStXSqXSOdrf9N3QvOrY2JjNZhscHESks7u7u62trbq6+sqVK5dzcjjJ6SfiBBuPcN+N4kBUTUxMoU+YHK8Qkmhgsn+7I/mzQ/wjl1I4KVkFhVcqKiqamppEIpFEItFoNEg7oLjU3/72t3Xr1k0/G+e/7+AewKGIwAlinHq9/pVXXnn66aebmpqQxqTVag0Gg8ViofwVzEfMYfiFLBNHpaC2trbKysrc3NyLrJSPdoEkiBcTRr5vhMAvAmxo3QMSvZkcVxJZUrsUwiHgEDtbrk8YHy3uPEPYb4RxjyVlFZeWNTY29vT0KBQKnU5nNBpNJpNKpVq1atWPfvSj+vp6TG1rNBps7zSM8w4eJgu36fh4wnwuchwdkT+ZTHb58uXHHnvsvffe02g0S+CCzmwvZaTJ5XKZTJadnf3www+///77arV6CbR3HkYeBX6o7ymTyXzwwQfj4+NlMplCoVCr1VgS4YiUz8nsR3EIlUrV09NTV1f3xz1gyI2xE60IRjMnvwgBxl3/P3tfAhbVdfbf1KYmmlijzVJtkzapJv26pEmbttkFBNySJp9pki9N/22+LmlromZRdhA1CCIgiIKi4sI6AwPIzrDv+zIswzILs+/7ygDD/7nz4vmmY0CUmWEG7n18fIa5d8495z3nnnvO+76/3w8+7DpC2nOsAHCclvkQEzvHuDFuUiqBkOf2wKxdR0hAmAarrFmEQWAWcE5+lVHH4XKtN9V2aZoTOu7uboFWX4jy2mg0GgwGnU6n0WjUarVKpVJaDpXl0Gg0Wq1Wr9eDRx4CnDBm3NFQ1hOIwWAAULhUKoU4RH9//9NPP+3p6SmVStEbH4903t1IW/JfwfSi0+nEYvHo6GhHR8eN0vJdIZleftdf/yxl0y89v7V6zZOv/Pfrn559/eD51w+cf/2zC68dOP/qgQseX1z2+PKKx+FrHpi0ebqXf7pXIDYpWRSqiDeZeLBtGhL6xaKeFu8eplcXTtp5JPeNo3nppS1MJlMqler1+pXJwbjkY8CZFYC5BeZVo9EISSRKpdKawJbH46Wmpq5bt87T05PBYAA9DNCl4POMMzvLofdykTCn3jjJFqha+zgnLzcEJVR+GlHsH1dxpaCnqpUhVxmmgan26wyBkt60Wi1ICw0PD3d1ddXU1BTcuJFwJeedcAvhpCUXH0NlhWDZabD0wuQ5LbrFwCoEiemwRYXv4fOfTxBSCYW1tbWdnZ1UKpXD4UilUozwWaVqbmk7ETUb6YyLP1tWXmk0Ln/g0eTkZNJ5TD4z8mQcnc74um5Z1HfT09PRMQkRkTFpGdmTky4X6puenqZSqS0tLYtqpNWPDcbJ9gFu2Nnqz06WHoopD0msIpYPtPdzxXKd1VUr/ePk1HRrP8f/dEVzH2fCNAVhToPBoFAoMEjP4GBdff1fTuZhiVxBmEAYPOzAFuYdRLhJVJvh5Y/hebYHZlsc3ZirytMfI6rdgYVCsSWTjwWyAglhXha+Q8gM2x2OcZXtCidh/46QAi6Rh4aoAoHAml9npXeSvdsvlGquFPQo1AZ7F4yXh1vAdS2Ahznn7BvYukBqm1gsptPpZ4i1XgFAJo6l9MIyDhAGQGALaSxIjN3TL93DEtrEJKMsnLSzwdFbhaNuinfCywMBRmOJjVKpFDKCFyOFNWcj//OE0WicmHBgogdytIEUImA6JRIJKEUNDg52dXU1Nzdjwc6yshs3bpDy8lIzck9dJoYlEQMSc748nRWUSIhMIV7IIOUVFJaWllZVVTU1NXV2dvb399NoNA6HYx3jBECP2Wz+17/+9cUXX/xnW/G/VrQFIL4I2A6tVisQCN57773Nmzc3NzcjGJNcLrc7jMnG6EgVT6fTQeiRTqdTKJTm5uaKiors3Pwvz+S+dYTgZcmVm1VDCcUC/yDPiVGoWdAGMBftCCFi0dCwXA+/NC+/a389mZNOKm5oaOjp6RkeHmaz2RC4lcvlfD7/o48++t73vtfa2urM9to0H//zri2A5lLrUD1E/pBIZ2xs7Lp16+Li4qx9au4LHUDOxImJCUhNkMvlEokEtffs2bPr16+Pj4/HAxULGVeIyROMWVRUtGHDho8//pjNZgN/NaREAJZ9cnLSjt5YiENoNBoU5vx7bAHEMm8SbmNLrF1HMBIkyCEDOCasuwDiCaspQA94HE7zCSbssuSCWKbHWS4NWJhhicahObPZYxbq2u2BWbHERg6Ho1QqUe6wO0bvFtLRNteg52jScgC+E0KeBsthtBwTlgOuAUU9mHPc1Eo2Eyak2cnlckCy8ni8GzdubNiw4dNPPxWLMakIkNCze2KTTV/gfzrCAuCsB3g6nU7v7u6urq7+W1TWawcvfP9572+tvv+Jl97+3cenX92fhMU4D154/bOU1z+76Hnoyna/669/ecUTI6dN8zychglKWXJPwdkHqyxP/3TvwKwdYZimAICTdmJcbZhTDwN0hhD/EEFq6ujjcDhyuRxUptz3neuI3ll+ZdrMLWh9gjg20BKloKDgRz/60a9//eve3l54seLCEMtpPCx5mNM0OSVX6Zk8RU07M6u0PyCe7BdXcSy55mxmW207UyjVzG9t2JDCvlij0UgkEi6XOzY21tPT09DQUFFRkZuXfzgha294pndQFlIQsJokMV7K3wdffyMMi3D4hhB3h2OREixfLZT47tHM4xdyy8rKm5qaenp6RkdHuVyuTCZDD8L09LREIs3IIp6IigUA4qXU6ywWx75alfNbwPlne3op0Nir1zKmphyiInn1ekZEZMyFi1c0Gq3zGwh3FAgEJBIpPz8f/gwLC9u8eXNmZuZvfvObe+6556GHHrJjxaampiua6fHXW4LOkA/Flp3JbCNUDHZTBQKJRmfACWxnLT3EkIQn1ZQ300yWMOfU1BQIigkEguHh4ebm5ojUIt8QoJYlegVkYnpqfuk3d1IY4AR0lCyC5ele/qAshlH6W7Zalg1XMNEnGAuRevpj2fnAarszjOQTTNhzLB9zWIXN5rBeLmwaHR2FtTcAVNx0o2HHYWz3okQy7ZnM1skpa7Zyu98ELxC3gGtZAA9zztkf4AwyGo1qtVooFA4PDwemlHkcTgOh9Z03HXCw9cWS2m5qRlom/QzMN3czuomBNS2fPf3SUbwTkAqzpyx0H/B6AGccLA0PJJWLRCKU3jJnXe10IiYm5oMPPrBTYXMWY+1ls8Yh8Xg8BoMxPDxMoVA6Ojqam5vr6+tramoqKysrbh5kMrmqqqqurq65ubmjo6O3t5dKpdLpdA6HIxKJEL+o9dZxznrgJ1aqBWAEQqwd4ovR0dGrVq1KTEzkcDh8Ph/k6CDGaTQaHUotBcEGAFQplUqBQMBgMPr7+9va2qqrq4uKii+k5X4Wl70rJNsnhODln+kFTM4hWLoc5r4PycH4bK2A4J7+GW98cebMVVJxWUVTUxOFQoEMAJFIBDhOqVQaGRl57733JiQkQIzTpr044ae7PBloLgWRV41Go1AoxGIxQJS4XG5AQMDGjRtLS0uRK8GtCfRs2qtWqyFQgdyIAQEB69evJ5FIIEqKgnPu0qFOqyfyZwGyjcfj/exnP/Px8RkdHYUYp/X7FG077bXzvDXM+VkiFubcdYQEwcvZvA1LbBKAm4DX9A0hYlDOwCzEjQHixK99cfXVz69st6SLWejuMy3SxURPgBeAoJRFMAZWWdsDMi8VtqzMMCeMMWvXPEQxAY1kHddEgW179bvThvdcN7J+9YNMqUwmgwmTxWKFhIQ8+OCDBAIBF+mcy4Bu8T2sqfR6vVwuHx8f7+vrq6urC4+/9PBTz3577Xf+a88/X/p3wsv7El/59Nyrnya9duD89sNXt/td2+6f5uF3zdMvzScIkx3xtbDRAvLbOxgTpkLaVKCagSVhhOb6hGAiAjvggwW+cPwaeXhkhM/nAyG2W79w3aK7XaeSaHpB6zGVSmW9ROFyuZWVlVu2bPnZz37W2tqq1WoBK49ScpfNTOs6neLMmix5mFOuMrT1c/OqqAGnKz4/WXowqjQipa6ylT7Kkk3cQlT7tZZBYxjS0GUyGZ/Pp9FoFAqlra2ttra2uKTkejbpxPnsPx9P9w3OBignBD98grL/HHYx7MTpQ1+d3RGMZaphUgL+6f+OISZcy88pKK6urm5ra4OsdB6PB6LvwJaEFhsGg6F/cCghMRmCf6dizxQVl+v1yxOBZJyYuJ6eFREZc/LUaalM/rU9svgvy8orIyJjTickSSTSxZd2pyXw+fyAgICf/vSn995778GDB+HngYGB3/72tx999NE1a9Z88sknBALhTou97fViuTa1oCfkbNWhU2VfnipLym67UUtl8hxl5NvWx6UumJ42k1voR5NrOwZ4MzMz8NQbjUZIbqDT6R0dHdmF5LeOQiSS6Omf7uGXBrpIXv4YpBtyvHzDcsCnDWkNNowXFiYMDPAN265d4XmWFNVcjJ/MQofra8lA/f2xvNauXiaTKZPJdDqdc8gLXao7nFMZgURDqBjAI/3OsTZ+FxexAB7mnLMjwA8I6S08Hm9gYGDfmWIEKdgRmoMgBYAY8L6Z9ovCnDDvY39ioCssL9g6qOlj2TkDURssB+ECQB7Apvp/ogpgtwxJwQ7dApnN5gsXLhw+fHhOi9jvBLxTUYAHmNMQ6SKHw2EwGCMjI4ODg/39/b29vT09PV1dXd3d3T09PX19fQMDAyMjI3Q6HXAnYrFYoVAAYgn0w9CKGar829/+1svLy37Vx0tybwuggQeOzs7OzkcfffRvf/sbz3KAJhnwHjsB0gHuZoi56vV6pVIpFovZbPbw8HBvb29LS0t1dXVpaSkhN/9Icu6fo0nvHCO+GZ7ja9lDzmbRBmXtDM7676PEP0XlHYjN/uCv+/7+9783NjZ2dXUNDQ2Nj4/z+XyJRKJQKFQqlUKhaG5u3rRp0x//+EcOh8Pj8azbizacUCv37uaVUXvklZiYmIDxLJfLRSIRiFZSqVQPD48f/vCH/f39CKLk1o5XaC9I6qJAhXV7X3nllaeffnpgYACJdLp1e+0+ilF8C3L29Xq9SCTau3fv448/DthugUCAYpxA/wvvUzvWBJHWikQigFtFXCkGTlqY02BNBasgCHPezBEm7j1ZBuFMwG7C91iu8aHroLuJIqA7QnM8/dJBSw9FTyEs6h2UXVTfDUowMMmv2BkPGj7X/3bsdBcpymbCVCqVMpkMJhA+n79r164tW7bQaDRcpNNF+usuqgF7N6PRqFAoWCxWf39/SUnJiy++eP/aB3/6xr9e3Z/02oHkV/cnvbo/+fWDKR5fpG77MtXj0DVPv+vbAzJ8grO2B2JJEhjxGiY3hQE0fUOJGEY8EMOI+wZjJI3w2ceCddgZmrsrHNOc8w7Kfu+rvI7uXgaDIZFINBoNzlh7F93n1j9B65PJyUnY2KJkLKFQCFuM7u7uZ5999vHHH6+vr1epVNYc+zjw1617fwnDnIaJSYFU008T5ZCHkggdn58s9YutiLnanFbUN8aSLhwmCCsBa5IYoP9hMBhDQ0Pd3d2NjY2VlZUlJSUkEulaBuF4cva+GMIHx7P2Hsn8n6NpX0WdhvDkvq9S9sdmR17IyibmFhYWksnkhoaGzs7OwcFBBoPB5/OtcZzIY4N8XDKZPCOTGH0qHko7c/b86BjdBTlXFzlcGQwmqHLeKCxdZFHz/Ly7pw9IcVlsRylS3Xp3o9E4MDDg7++/bt26NWvW/PKXv4yPjzcYZsPVgYGB3/jGN773ve91dnbe+lt7fSNT6tKK+o4l1xyKKY+8VH+e2NHUw+aJ1RrdhEWQ0l73cb9ypqbNVIb0UEx5Xde43miCpx7UxBQKBZvNplAojY2NX5wr3HV0FpDtHZiFsdda/rdszbJBqtwHUyvP3R6U5RWYZZFPwuKakBMGBIewj/Oa1TXPtSyiMBmmnWG5lo0eISm3bnh4mGvREEE+N/ezqcvXWCLX3agdMRhdjrna5S2HV9CNLYCHOefsPNgq6/V6hUIBmsx/i8nHkASW/DXwmsH0jZSfYKMLwE3Q6YQLLK+BWdo04FjzCbYIMlsShMHvhmW9WchsIS0O2HHfDCPyeDylUumEMOfMzAyXy0WrkDntYqcT8FqFgBPisAXBJMiv5/P5XC6XxWIxmUwGg0G3HAwGY3x8nM1m83g8pBwGAU6j0YhAnDZ7xdra2oaGBjtVHC/GvS2AYpxA1djf3//DH/7Qy8uLTqcjSU6FQgFoMBhRMFYd12zkGYFIlUqlArIgOp0OG8uWlpa6ujoymVxcUpKZW5iSWXDmWl7clbzoy6RTl3Ljr+ZdyCjIIBWHhR974403Kioq2traBgYGxsbG2Gw2RCyUSiVIr1Gp1Keffnr79u3QXohxyuVyZ7bXcZZcmSVbO+51Op1KpUKOey6X29DQsGnTpvfee+9WBmY3NRdqr9FoRO0VCoXwymhra3vyySfffvttGweio59idzGm9WwD1jt//vx9990XHx8PWHaRSCSTyWxGi31bB0owIJ7HZDL7+vouEsv2HMFSx4CiFpZJO0Jz3vyqEPSfsHVRYNbrX17bdui6r2X5tOsIaXd4HsCt9hzNRzLnENe8ya2EbblBFAokP3eH5+05VrD7SG7fAJXP56vVasDr48PDvl3syqUhKDOwiahUKqlUChNIa2vrli1bduzYweVygfsaIcKRB9aVm4bXDb0dQGiKw+FUVVX94he/2Lx585f+wdsOJL366TmQ5Hz1wPnXDqZs+yJ126Gr3oGZmBhnQAbmy5tlXSOCEpVl5sFkArwDMUpGDK9g0S6BPRrGVRuWC+Lou4/knCfVDg0Ncblca8ZavFNWlAXgVQKBIpDqhEinRCJBkc729vZXXnnliSeeKCsrQxkV+FTj7uNkqcKc5pkZrlCVVzl0ntDxZXTZ4Zjyo8k1F3O7hpkSudowtxbn19vbZgDrdDqFQiESiTgcDp1OHxgY6Orqamlpqa2tLS8vLykpKSwsJOXlZxFJadm5V9Iyo6KxSGdUdByBmFNeXl5TU9Pc3NzZ2Ql7UmDestli23hsoFqTk1ODg9QzZy9ApDM6JoGUd0MuV3x9pd3w28nJyeQLly1Qzngmk+W4FjCY4yctAeP2zi7H3cW65OLi4jfeeOPRRx9dtWrVe++9V1paKpX+B5A0MDDwnnvuOXbsmPWvHPHZODFV3zUen94alFB5MKo05mpTRnFf/5hIbzRNTjqEItgRrXBEmU09rKPJtVdv9MLzDpsyo9GoUqmAt7ajo6OorPIPx3IAjbMjFPvg4ZcGgJzZhNSALO/gWQU3C0Nhzs4juTuPkCAbzMM/fVahE9PszNgekIlR3QZm7QzL3RmGZYb5BBP+efpGbx+FTqcLhUKNRoOogxzR5BVeJouvLK4bwTcyK3wYrLTm42HOOXscJn0gPmKz2T09Pf8bjVGKw+QOaE4vC+e4ZcrGdr/gj4P/sQCnZbcMJLSgqwfOO+S2A7oPn6DsbYeuw9YaCvf0zwD05xtHiBwOR6FQ6HQ6oLWZs7qLPjE9Pf273/0uOTl50SXdQQHgkgApHZPJBAJROp1OrVZDlr1EIhGLxaKbh1gslkgkMpkMoGnWAU60Rbx1xcxkMlksBy4i76DB+KVLagEYbzDStFqtXC7/y1/+8sADD1RWVkKMUywWy+Vy52v7TVuOyclJyKcDt4hQKGSz2WNjY4ODgz09Pe3t7Y2NjbW1tVVVVWQyGYicyWRyZWVlTU1NbW3tyZMnf//737e3t4+OjrJYLABxKpVKtVqtshxisfjDDz/cuHFjeXm5dXtVKhXCcd76+Cxpj+E3v70FkFcCac0iZDygB0gk0gMPPBAbGwsZM7CRcOuOtglUKJVKax8igUB44IEHjh07BsqLy6C9tx8EC74CzYGQ5zE2NrZ58+Y//elP1lh25IRCb9UFF7+gC9HiSiqVstnsgYGB/LKqdyPyALgJpBe7wnIB3+kdlL37aL5PMAFSx0C8EyKX3phKcSbaSKMoKUo4Qwu2PUfz9xzN3x2etzs8b9cRUkBKOY1GA0UAtK/Gt38L6jz3vwhNmIhb0prrOzk5ec2aNYmJicDoAAQhbj1bun+P3UELYCmFcAkUCuXll19+6KGHYmJiMjIyPj2e8toBDMf56oHznl9e8fjyiqeFqNbDP207BtacxStsD8z0DZ4FJfjcTD/1CSHsDs/faQFuevplwO4PXHU+QRh17b6Eotb2ThqNJhQKccbaO+izZXcpvGQh0omSF62lxLlcLo1Ge+WVV7773e/W1NSghQrOXuvWY8H5YU6zeUZvxHCcnYO8pOyOyEsNX0aXhp2tupzXVdY0pl2EEqFNDjpSxOByucC2NTAw0N3d3dHR0dLS0tjYWF9fX1dXV1tbm5GZjQKTzc3NFApleHj4Vmkh9GKd/906YTLlFxQhWOfphKQh6ojJtBwUFru6e8FQ165nTU87MOQmEovjE5IiImMKbhQ79PlSqVRFRUXPP//8qlWrHnnkkffee29sbOxr7xgYGLhmzZry8vKvPWvfL83mmcZu1qkrjX6x5UeTa+OuNVc0j9E4UplSv2IxnWbzDIMrDzlTVdlC0xlm0ZxAkqTT6SQSCYPB6Ovra2hoiE0l+QTOkhECFAfbfGGYziwfC7E/2rUBghPzbwcTMaCnhbDQNzRnz7ECbEcWmGUJkWZ6BmT4hmLUFz7BhDePkjKK66hUKpvNlslker0eQQvsOwbw0mZmZvpGhO39GEcxfuAWWDkWwMOcc/Y18sSBvkt3d/e/EgoR4BJClRCb/L+cXwy8bxHMs8zsAMkH0lov/wwPv3SgYpsNi1oA+xYoZ9brh65Z4zvBN+cdlP1BVAGbzUZhToe64cxmc21tLZfLndMijjmBMonQqtpkMk1MTBgMBr1er9PptFqtxurQWQ6DwQDwTeSHBe/G15oIJ611TNe5WakolAggMKVSmZqaumHDhitXroBEJQAfl0qXy9ozYgNT43K5TCZzbGxsaGiov7+/p6enu7u703J0dXX19PTU1ta+//77ra2tsF4ErU1gctZqtYDZUiqVV69e/c53vnPu3Dkul8vn86G9NrCtr32C3KynV1h10RSKmKa0Wq1CoZBIJCBaOT4+/vHHHz/00EMVFRXLRqQTIp0QqLBpL5PJ/Oc///nd7363srIS2ovkZlfY0LBtLkwyKBzO4XBef/31X/ziF319fTAHAru19SCZ3wlle4OF/Q19ZzAY/uYLCwAAIABJREFU5HI5l8sdHh6ub2j8JD4f1lc+lszf17+8BiFMoMRAlP6YOLpFcdPDonQOKuYQ14TPcNY3hHhTCSbHOyh71xESJBFjojJhRHJTN5PJlEgkoAQDtMb41Lew3lsOV6G3LSw1NRoNcH0LBAIul/vJJ59s3ry5p6fHBhG+HFq+fNuA+hTlsXV0dDz33HNbt27Nzs6urq7Oz8+/dDX9j0cub/vs4rYvLnseuurpd907MNM7MNPj8PXZ2SaEYIFpYuQ6oH2OsOC7j+bvOpK3MxSjsbV4+mZ16TA0QzDx/0WRymsaBwcHORwOLjG1fEfZQluGRiMSpIBAEVqVcbncvr4+X1/f733ve3l5edaqK/DOxd9HC7W1y1zn5DDntNk8YZoaZUkzSykJaS0Hoor9T5Pj01tzyEN8scYwsVhyQjSGYUbV6XToRcnn89lsNp1OHx0dpVKpAwMD/f39FAqlr6+vu6fnytU0COClpWcxGAwg30IcIch1s8C15eTk5NgY/VLqdSgz8mQcMSdfKBS7TLffTUUMBsPVaxkA5ZRKZXdTxIJ/o9Ppks5fioiMSTp/acE/upsLQXHzG9/4RlRU1ODg4Dyx28DAwO985zstLS13c5s7/830tHmMJbtW2Hs0ufbTiOLwpJozGa1NPSy90WSanLrz8tz+F+aZGZ5IdfxC7SVSFxJrBMCJwWBQKpU8Hm90dLSzs7O4tPzLMxhfhVcAplnuE0SwoDZzPS0+bWDW8bGo8G4PygJyC++gLFhN7Q7PxzLDMBXzHJ9ggpd/poV9B1tZYYWEEmPSSjs7uxgMBp4Z5oQhVdfBbKVw7hTc74SK4bfALeA4C+BhzjltC2FOnU4nk8nGx8e7u7v9L5QgyCZKYNkRmgMeNJDkBCACxCzB9XYz2zcbsAhwvWXGx9KBoZz/u97CmISSYj5JLGGz2XK53AlozqmpqaKionnWJXNayn4nwF8P4agpy2G65Zi0HKDlgO8G7Wf75V8SoqvV6/UqlaqlpeVb3/rW//7v/0LMTygUSqVSiPkheQDnOxpsNpZ6vV6j0Vjrh3E4HGByZlqO8fFxJpNZX1+/bdu2kZERiUQil8vBY6K3HKAPpFKpuru7165dC+0FKKcrtHf5DztntdB65ABQTy6Xi8ViEOmk0+lPP/30a6+9JhaLtVotyqR2/gi3lz2gvciHiBSwoL1sNvv555//zW9+IxKJkEjnAr0q9qqhq5WDRsjExIROp1MqlTExMffdd9+lS5es8zysY5zwRrZ7Q6AmwI8kFAppNFpbW9u13JJdYbl7jhVgwE2/dKRo7uGXjq2awvMgt8zjcBrspQHrCWz/1jyTKOS5OzwPKZ3Dyg1IOP6VUDQwOMThcBCxpPs+BXbvmhVVILh1kKox4voeGBj45S9/+atf/YrL5aLwAx4Ld+WxgSY3FONkMpkvvfTSxo0bCwoK+vv7W1tbyWRyQUFBenrW/4Rf9wnM8AnMtIhrZvuGEnyCMJ4e32AMZAAYcZSTip0KysLwmiEEIK2dnWGCCLBx8w7O/sPx3NyS6t5eTJVTLBYjKuyl3U+5cn+tkLqhYQnpFCgfC3Hsj4+Pe3h4bNiwoa6uTqlUgngESt7FX0zuNU6cFuY0m2emp806g4kv0bT0sRPSW46fr/syuvRock1mKaW5l20XcKC1QwaohiABV61WKxQKqVQqEokgMYjNZsNWlMlkjluOs0kpEJVsbmmVy+WwswbSoLsb3kbjRHFpeXRMAhR78tTp7p6+iQl3hXWO0egnomIjImOKSxyOaDSbzRBSjYiM0ev1jnumTp069dBDD91zzz0vv/xye3u7Vqud616BgYEbNmzo7u6e6wJHfM/iKxMz2w7FlAfGk8POVufXUFkCpVyln5rCRroj7ujKZY7zFXHXm6/kdxuMs4FeSD+F7aFUKuVwOFQqtampqbi4+N8xxD1H831DiTvCZmkLIVQJqaX/R2NrSQ4Dxh2fIMKOUOKuMNIOS2YYlsMalO0dTPANJviEEH2Cso6llra0tAwPD/P5fBBOwrXMHTpg8quplFGBQ2+BF45bwNUsgIc55+wRFOaUy+UsFqu7u/vktVIMInAEo64FKloQ3cT+tIQngZPWOzALlKI8/dLhMhCF8vBLf/Wz1G2H0yC0idSnsMiofwaUCacA0+AVkBmRVuU00lqRSPTMM88YjcY5LeKUE7Cwtl5eQ9Tz1v/hmoVUKjIyMi4ubiFX4tcsVwvYYL8EAsGuXbueeOKJjo4OJMmJvAxosbUka1/kGUEbS71er9VqEZOzVCoFMmf4/9ChQw0NDZANB9hNyJadmJgAZSCNRsNms3fu3PnUU0+1t7fzeDyhUCgWiwEmbh3TXZL2Ltch5/x2wcixoT4WiUQQ+aupqdm8efO+ffsUCoVer1+WkU6ZTAYORB6PRyaTN23a9I9//AOiWUi5ecUOcsjzAPyrWq2mUCjf//73P/30U5DktM7zcMLYmJ6eNplMGo1GKpWyWKyenp7q6urPz97YFY5R1wKhxXbLsgoSxTA9PIt+ubUGJ0ZXG4aBq+Af5I1ZBypA+Nw3hAghTzh1saCeRqMJBAKcWNL5c5RL3RFNmCDSCa5b0M+7fv366tWro6KigMDZYDDgfJIu1XfWlUFLJhTjHBgYePnll3/yk5+QyWQajUalUnt7e5ubm6urq4uLiy9dJ/z5qwzvwEyMqDYw0zeEgCluBmYBcNwnBNORAtHf3UfydoTl7AjBXHsgKwVuPk//9G2H0zwOp/kEE/4YQcy4QW5rax8ZGeHxeLCsQlTY1vXEP69AC6BJBgYnYDpBDJjH43G5XAqFsmPHjk2bNhUWFgJ83GQy3V0oaAWa16Wa7LQw59TUtM5gGmZKssv6z6S3HjpVFppYlZTdnl9N5YnUBuNicZw2VkUTLOJhhvRZjUYD21KFQiGXy2U3D7lc3kfpB5HO6JiE4eERawTnXaenm81mOmP8eloWgnVmZBJZbI7bLelNJtP5lNSIyJhTsWdYbI6NtR3xJ7myBoxGozEcUT4qs7+///jx40899dS9997r4eGRnJysUHyNnOqShDnN5hmOUEWqGjpxsf7TiKLj52tTcjobu1lKjcHujwwyiMt+UGmNcdeaY642SeQ6VEkE6FSpVCKRiMlkAltYTn7hgXiSr0WaDcPhBBN2huZiCWH+mVgKqUXNzZJymrXrCGnXEUx30zeUuP0mrHNnGMknKNvDL33boTTvwCzfoOyjl4pq6pt6e3uZTKZUKgWhKLTGRvXBP9jRAnHXWxgcuR0LxIvCLeD6FsDDnHP2kTVpLZvN7u3tzbxBBr5ZaxY1bMa3TP3AcQSOuR0WQlqfoOydYbm7w/OQQJRPCBHDKFj+wS4a3HDbLfpS4IObRXZa3hwkciuXywWv9OTkpEMXc+ADndMcTj9hHe/82s8Lr5G3t/dbb7218OvxK5eZBZCjAdHVnjt37r777qutrQUYE0hyajQa2IwBVnjhcXS7mwtuDY8k2lhCzNKaxhl2mK+++mp9fb3BckxMTCAXCcQzgLH2woULq1evLigocM322t2AK7NANGwA4whdb+1QCwgIWL16dU5OjjViz60xjrcyUdu098EHHwRGOGv12ZU5PGAHC9OIWCz+1a9+9dxzz4FrHuU9IDSJo0cFWl8pFAo+nz80NNTU1JSRX/7mEYw0EmCXnn7pQF2LLZZCiIjMH+gufIIJu8PzQDJglh7DP8M3NAfWVBh17c1Yxa4jJJDt9Akm/CWmsLunl81mSyQSrVaLMlpW5pBY4a1G3lsU+7dGwH/yyScPP/zw+Pg44nVHC4MVbjdXa77NWwC4uB966KHS0lI2m81kMlGks729va6urri4ODub+MmpLO/ADNh8wc4Oc9v5pfuGEDwPp3sGYJFO32CijwXEiSVb3IRvWoDmmASJd2DWR1G5uTdKQIJufHxcLBbDMhJ32LnaIFnC+kCSJdIUADAcsNdyuVwOh0Oj0X79618/8sgjvb294PC1zjRy6MZ/Cc2y/G7tnDCn2Tyj1U+whYraDubJ1KbQs9VfnCw7kVJfUDPcPyp0nFXhdQnbUkimhFRao9EIGkNAIAT/G43G2vpGACxeunxNrVbfdXTTpkVms7muoelU7CysMyo6rqGpZXLSzpFdm5va98/2ji4IOqZnZDvn6R6ijsAd6xua7NuWry1Nq9VGREQ8/PDDq1at2rRpU0ZGhlartW7pkoQ5oaoqrTE1v+fQqTL/uIrgM5XZZf1jbKlErjObZ1YUpFOlMWaWUIITq/hiNepEhAfQ6XRyuZzP5w8PD7e3t1dWVubl5R2Oz/INzt4ekLkjBINpIgAPloEamL3tEMb8P4vtCc3ZEZYL6B1wmG/D1EawXNWdwZlRqQV1dXVdXV3Dw8M8Hk+pVALlEs6YgjrC7h8mJqaiLtWLZBq7l4wXiFvAlS2Ahznn7B2Y7oGmHDIua2vr3jmei8AEwJa2IzRn99F8mO7Bv+bpn7Ht0HUsY8UCMtgdngexz50oycWS+QKc5hDaRDRrsNneGZa752j+e5E3Wrso8A7Q6/WODnMSicTw8PCpqZXIUz/nIMBPuL8FkCsTcdNVVFSsW7fu4MGDiKoRVEMA4uZSrkwUuAIOZ9hbApGz0Wi8cOFCXl6eSqUCnwhcA/UHl4per1er1bW1tQ8//LBNe5VKJdJ7d3RIw/0Hkdu0AAYM9L7RaLSRgxoZGXn11VdfeOEFoK61BvK6TQtvqSjamAFVr0KhEIvFIEpKp9N9fX2ff/55Lper0+mWR3tvMcDtv0CjAviI1Gr16dOnV61adfnyZS6XKxAIIM8DHKwI9nr7chd3xdTUFAxRiURCp9M7Ozura2qDz+UA0QXkgc2miAVlw58A9PS2KMEgbn8L0MqSU2wh29hzrABIkwCSBbtu+P/9E/klVQ3AkoSyx3BiycV1o3v/+tblAUKEDw0NPfvssx4eHlwu18mPhnvb1Lm1hx4EvWGdTsdkMnfv3v3UU08VFxdzLQfHcoCS3PDwcF9fX1NTU0VFRW5ewYkUwvvHs70Ds3xCCLuP5Fk4bAm+wUQv/4ztgZhLDnZ5SH8EkiosW7y0t49kHb9YUFRa0dTU1N/fD3S1KpUKgL/gsHOuJfC7ua4F0DxjrSaOFiocDqevr2/btm2PP/54TU0NIspGmuLWEQLXbeSKr5kTwpzTZrNxYopKl1wv7I252vRFdNmRpJoUUldxw6hAqnGC0CAsJtF4RjtTkBOCzSn6TMovhOhaYVGpHZ1LZrOZzeYQc/IjT8ZB+dfSMkfHaG4xAHU6HeiMRsckSCQS59RZpVKDobIJJKdNJjweLykp6aWXXlq1atXPf/7zI0eOMJlMaO8ShjlnZmYkcm1xw2jstaYDUcVHk2uSstvru8YNE9h065zucIW7TJimssv6QxKr+v4zNwLyGIDgRC6XA3VtR0cHpm5+48api8QPvsryCcneHphpAW7meQdl7QjJ8Q7M8vRL97IIdoIwJ+zCZgVHgolYxqp/+t+jc1Kyiurq6np7e0dHR5F0CErrcQXLLMs60Diy9GKKWDYnj/SybDXeKNwCeJhzzjEAzlOj0ahWqwUCAXCUB1+4Mau1GYxhDjCao6DsXUdIXgGZOy0ITsv2GAtwApIA+zMAVJcxWiSMYw2kmOG3FvLbWX2XoOw9R/N3h+fBvx2hOQeTyigDg0KhEAm9OHR1kpKS8tlnn9lxJTqnZZ1+4re//a2Xl5fTb4vf0CUsAJn+4FzQaDR8Pt/T03Pz5s2Dg4NA3yqTyRBdrUvFOG3Mh7aXsMOcmJj4wx/+cPjwYZskWZRsC1EfPp//yiuv/PjHP6ZQsJwJoKaE9gKvGh7jtLHzMvgTxoDJZII4t1wuB+paLpc7NDT06KOPfvzxxxDnRmPArVsN7UV5DDKZDERJuVxuZ2fnpk2bPvzwwxULyYLpAkhiYTxIpdLHH3/8/ffft8nzAMArTJgOXWzAYENVUiqVHA5ncHCwra2tvLz8k/h8H0tcc3aJFUzYfTTf43Da64euIyl0Dwv5P4h0evphyCqfYMIbx2/sPpoPSFBQi/H0S4cUNJ9gwq6w3CRiVXd3N7AkAehqWS543PpZdn7l4QFBcTKVSgWIcD6fn5yc/K1vfevs2bMgHQRkD/gb0/l9NNcd0ZsOiDqEQuHvf//7Bx98kEQicblcnuUQCoUSywF85kwmc2hoqKOjo6GhoaysjJhLCkjM2hmSvSOEiE0aAdj2zSeEAFmqPsHZmLcuKAvyJHxCCN4BWTtDs79IyC0oKq2rq2tvbx8cHBwfHxeJRGq1Gk8dm6un8O9nZmbAq3CrTiePx+NwOENDQz/4wQ+2bt0Ku34EcIFdCW5A17eAo8Oc5pkZvXFSKNXWdDCPna8LOE3+PLr01JXGssaxMbbMyfax2ZDCutH6f7PZLJfLTyecgwBba1uHfWs4PT3d3tGFIp0RkTElZWTXV+scHhkDkGtpGdm+Bpm/tDOJ5yMiYy5evmYwOFWaanp6urCw8KmnnvrmN7+5f/9+qOTShjlnZmaME1OE8gH/0xV+cRV+ceXZZf18iVqpMawcTOf0tJncQt93vKiyhW4zchDxj1arBZHOkZGRnp6exsbG8vJyUl5+6DnizuBsbJkUSvDyx7LELI7xbN9QLN6JCZmHYjLns6mowUTvwKzfHyGeulxQVVUN1BcMBoPP58tkMq1Wi2KcTth12rR05fzZ2M1OK+zV25vPfOUYEG+pm1oAD3PO2XEolqDRaEQi0djYWHt7e1p+xZ4wAszd2wOzth26jgE3g7LRhO5tIardHpgFWcCWbTOG4t9uAXdaXwZ6nLvC8wDl6R2UvftoPoQ8ISCanIcpSAG1Gjij56yrPU7Q6XSlUmmPklyujJSUlKtXr7pctfAKOcUCaMWm0+mUSmViYuLGjRtv3LiBJDlvFd9ySr3u+CbWu8rq6upz585JpVLrL6FEaC/AtpRK5dmzZ9evX5+VlQXtFYvFSqUScZbiHts77gZ3+AFy3FtH/sDJy+VyQ0NDV61atZyoXK3ba0PVy+FwQkND165di9qLVK/coSftUEdkHASd3Lt37zPPPDM0NMTn8wUCgUQiQXkezuRaBN5ayBoWiUQMBqO/v7+xsZFAKvxbDGn30XxMCj08b0doDqyIkHgeJmd+M1HM+hRIp8P1cDFICXgHZe8KJX6VWtzS1k6lUhFLEjDW2sHEeBFubgEIP0xOThoMBq1WC9S1AoGAzWa/++67P/nJT9hsNsjmgUcGXrtu3mi3rz6a2WC1I5FIPv7448cee+zy5csQ4OTz+SKRSCqVKhQKpeWQyWQikWh8fBypdZLJ5KKiogxCXuTFnE9jif/zFWF3WA7QrFn2axjWc3tg5o4QwvsRpH2xuV9dzMsgFVWQyU1NTd3d3UNDQ0wmUyQSWUty4ssqtx9bDmsAWp9DGqJcLpdIJKAHzOVy29rafvnLXz777LM9PT04gtxhneCogh0a5gQc5+i4NKdiMCG99fOTpUeTaq4V9Fa1MsQy3eSUs4Fo1nvPeT4zGMyYuDMRkTEJick8vsDupheJJHn5RRBJjYiMuZx6fWCQOjnporRkSJUz9vRZLpdnd2vMUyAxJz8iMibx3AWZbAn0+TQaDYFAyMnJgRrW1NRERUUJBPYfD/NYwOaUQmWobKWfyWjdH1kckVJ3rbC3uY9tME6aVgam02ye6R0WBJ+pyiUPTZj+43mxZkhSq9USiYTD4YyOjvb29ra0tIDAeQYh76sLufticv47HEsF88UAnVhcE9zj3oGY03vXkdz/icg9EJ9z6kp+flFpbW1te3s7hUKh0WgQ4wQMD2zJ8Rinzfi0459ms/nqjd68qiHcyHa0Kl6UW1gAD3PO2U2whTaZTDqdTiqVMhiM7u5uclXN32PzsdhkWC4wGgEXuad/hk9Q9u7wPEgBBoI1AG5iV950yc1mBAdjyE5gYwPkAfwK3HPwknjzGKmzGxNnlslkkCDsaGq1Rx555PDhw/gkOOeAwE+4oQVQsj/AmLq7u++9914b+lbEEOUuwgBTU1N+fn4//elPtVpbAgrwoSAY38jIyNq1aw8cOGAN2wLMAWRO4O5aNxzUt68ydOvU1BRAlLRarVKpBC0oHo83Pj7+5JNPvvrqq5BKiahcHf2KuX297/YKeFkj7SutVqtQKFB7uVzuc88997vf/Q4kQKC9KwchgeZAg8GgUqkyMjK++c1vRkVFoTlBLpejvAcnz4Goy0Chk0aj9fT0VFdX5+Tl/zkKY7+AtdP2wCxgy/DGds6kHaE5nv4Znn7pkBy26wgJeDK8AjI9/TMA8ekdlP36l9de/fyKBRiacfzSjebmloGBASaTCaljRqNx5YyBu32wVsrv0AQCeSEA6AQE/MjIyOOPP/7BBx+gdChgdcZfnUs7OKxjnDCz7d+///7777948aJNjBNyOHSWQ6PRKJVKsVgMgogDAwPt7e0NDQ2VlZUlJSV5+fnEnNzMbMLZ1KyjSZlBiVn+celHz2XGpxIyCbmkvPzi4uLKysr6+vq2tjYKhTI6OspisYRCIYwNRI2Aj42lHRuufHeUUQGYTmudTh6Px+VyGxoa7rvvPh8fHxhUgCDHOZBduU9R3RwX5jTPzBgmpsRyXX0XK/pKU0hi1Rcny+KuNde0MzgCV09Pb21tB/xi0vlLjhDRNJvNNDojLv4sBDtPRMWS8m444kaoo+/6Q2tbB1QyKzvXyd62hsaWiMiYU7FnOM4Nr1rbyslNtr71136enJrOqxryi6sISqgMO1tNrBjkS9QqLYbpXPaH2WwWSNR+cRXpJRSd3mTdXrQeRixoUqmUx+MxGIyhoaGurq7m5uaampqysrIbN27k5JJSM4gRF4gH47L+GZ39l68y/nEy84vT2dEXczKJ+TcKi8rKy2tra1taWnp7e4eHh5lMpkAgUCgUsOvEidmtLe+gz3rj5Jn0ViZP4fxsGAe1CC8Wt8ACLYCHOec0FOxUIb9bqVRyudzBwcGWlpYL2SV7wkmQtAKhSsBl+gCN7c2I5o7QHKBNA141YE4DMluE6UThT8B67jqCSTpj+IMQQmoBpiDF5XJVKhVyQ89Z10WfMJvNqampLS0tiy7JFQvASWtdsVccXyfkUADAEJ/Pf+utt370ox+1tbXx+XygMrOGaEAOvqstxG3sxGazo6KixGKxVCq1PoUiWyaTCdrL4/HefPPNLVu2tLe3o/YiqlIE23Lx9lq3Ef+8cAvculEBiBKfz+fxeI2NjY8++mhERITN+F94+S54pXU8T61WI6peHo9XV1f32GOPBQcHo/aukBCXdVou8FK88sorL7zwwtjYGMwJUql0CW2CugzIkbhc7sjISHt7e2VlJYFUsD+WYIFSZUE22M6wXJ9gAvBnePqne/ilQ5IZUGjsCM3BeDUCsYu3B2RuO3QduDT+O5wQfa2orr6BQqHQ6XSBQKBUKoGeF/cdu+BTvFRVQmEzoD9VKpVAXcvlcsPDw7/5zW+SSKQlAT0vlUFc+b7o7YboChISEjZs2BAcHMxisVACB2iugyoziMbB6giIPaRSKZ/PZzAYw8PD/f39XV1dLS0tDQ0NtbW1VVVV5JtHZWVlTU1NQ0NDS0tLZ2cnhUKhUql0Op3L5YKksXWOCI7jdOVh4yJ1sx69AB+HrCzg2+DxeCUlJd///vffe+89Nput1WoNBgOelegifTd/NRwX5pyammZw5UV1I8nZ7Ydiyo8l114idZFb6GK5bmra1WMyer0hMzsHwnuFRaUm03/EVOY36cLPSqTSouKyU7EYcjQiMuZsUkpvL2Vy6j9gagsvzRFXajTaCxevRETGRMckiJ2lyokaMjpKOxEVeyIqdnCIir7EP8hVhvJm2tmsts9Olpy4WJ9W1Nfcx9HqTa7/WC2+76QKXXox5fj5WuEtko3gUEJcaChVmsfjMZlM0Djv7Oxsbm6ur6+vrq6uqKgosxylpaXl5eVkMrm6urq+vr6lpaWrq4tCoYyMjIyPjwN7ENpy4m6oxXfiQkoQybSX87pHx6XTKyGAvxCL4NesGAvgYc45uxqFDSYmJsA/CFCDmtraL+JzgZN2R2gOAAgw7eUAjJx2h0WhExGmAQntzrBc8NDBxUCthoVF/TNAvBMgCADx9Akm7Eso7OmlMBgMkUgExOWO9sepVKry8nK5fAm4LObsAPudUKlUarXafuXhJbmBBaxdCcBjWVhYuHr16mvXrnG5XFhsuaPg1rVr19avX0+l2m5UbNqrVqtJJNL9999/9uxZ6/aCIh1OEuIGI3jRVYQhMTk5iXzBQNkHoIGDBw/ee++9jY2NKKfS0W+ZRTfoNgXYtBdp7IHw1SeffPLAAw/U1tbCI7BCIFlom6rX65VKZUxMzHe+853+/n6Q6ZVIJMC1uFTQRjRrAaGuVCoF+diOjo6ampr8ghtRF7PfDMdUXrwt4uWwjsLQnH7p8M/jcJpXQCYopgPoc8+xAu/ArFc/v+Lhl/5BRE56blF9fX1vby+IwUB7offdF758mycBP31XFkATCPBJIkQ4g8F4/PHHfXx8JBIJctA4TcL2rpqynH8Elp+cnASogVqtvn79+urVqw8dOsThcCDGKRaLIcap1+sRfH/q5oHEEQHZyefzWSwWnU4fHh4eHBykUCg9PT1dN4/u7u6+vr6BgQGIbkIYVSwWAxwBBBRxRMJyHnAOaBt68aG4u02kMyUl5Z577tm/fz8CkeNjzAH9YOciHRTmNJqmVFpjWz/3TEbr0aSaz06Wxlxtqmymj/MUdm6Aw4ozGAwJickRkTFR0acHh4YddJ/p6Wk6g3kqNgEinZEn465ey1CpXMX5MzBIBVRreUW1gywwT7F8viD2dGJEZEx1Tf08l63AUyYThun88lRZwOmKsHMYppMn1mj1JldPH1h0V5nN5sLakejo6yGpAAAgAElEQVTUxrLG0a8tDL2n0JJJoVBIpVIQdKDT6SMjIwMDA319fV1dXZ2dnR2Wo7Ozs6enp6+vb3BwcHR0lMFgsNlsgUAASzJI3EFbMDzP/mstb98vx1iy6CtNIpnGvsXipeEWcH0L4GHOOfvIOplFp9PJZDI2mz00NNTc3EzML/5jBBHilADEhP89/TMg2AlONy//DG+LJCfEL8EZtzMsd0dozp6j+bPQBIuTzisgE7AIPsGEt47l5ZTVDw8PczgcYKxFCS9z1nXRJ/r6+p544onS0tJFl+SKBZBIpMLCQlesGV4nh1kA1mdA36rRaGg02jPPPLN3717kBZPL5eCydJf1ltFoTElJAfzBrWazaS+bzX7uuef27NnD5XL5fD7ADtyrvbe2Ef/mjixg/QoDgC9AlAQCAY/H6+jo2LRp07vvviuRSADv4oQXzR3V/y4uhqcAaexZU/X29vY+8cQT77//PlDXgsbe8gbf2MwJnZ2dDzzwwL59+6znhCUXAEOYe4gtyWQyDoczMjLS09PT0NBQVlZ2NTvv8/ict49k+YZg8U5P/wwg+fcJwcj/kRAA5JbBNb7B2f8vMifiUh65sqqlpYVCwZLGgFsSwhKA5cU32HfxiC3vn8BotM4LAYgVmUzesGFDWloaBLcQwwo+hJw8HmBOQ2TXGo2murp68+bNb7/99vDw8Fw4TvS8W//caDTq9XqgsZXJZGKxGBJiWCwWk8mk0+k0Go1OpzMYjPHxcTabba30Ccz/iFAUxbzx8eDk8eC+t4OpBkYyZPmABxl0Onk8XkRExMaNGxMTE1fOisV9exNq7ogw59S0eXRc2tzLvl7YG3iafORcdXx6c2HdsECicS8GwrExOoh0xsWf4ztApBMNHr3BUE6uio6ZDXaeOXu+s6vHYDCgC5bkw8SE6UJKakRkTFz8OYFA6Pw6KJWqc8kXIyJjMjKJzr+7i99RKNVklfXHXG06EFkcndpYUE3tGxbYKFa6eBPuonrTZnPnIO/IuWpyC12rn7i1BORDQO8pkH9CSTlcLpfFYjEYDBqNNjo6OmI5RkdHaTQag8GAnDChUCiVSpVKJWRUw9YblmTLewN+qz2X6htyCz0hvWUlAJSXysL4fV3WAniY8zZdg8AQKpVKKBTS6fTu7u7q6uqLWQV7jpB8QrBgJ0ANwOPm6ZcOPjjvoGwMqRmY5RNMgIjm9sAs76DsXeF5EOMEfxwQ22IwUAvJ7e4w4pXc8q6ubiaTKRQKVSoVIqu5TUUXd9pkMonFYqPRuLhiXPTXOGmti3aMw6qF8v0huqNQKPbt2/fd7363oqICYEzWbGbIBeaw6tin4IGBgY0bNxYVFd1anE17lUrl/v37H3vssaqqKmgvrDK1Wi2CbeH+uFvNuMy+gS0KinUhiBJozvF4PBKJdN9995HJZBTrcvddBzR5amoKAhUajQYArHw+n8vlFhUVrVmzpqioCOR4TSaTu7d3nhELpgBxVp1OJ5fL//a3v913333t7e02c6C1pNw8BTruFGLWhelaJpPxeDwajdbf39/a2lpbW1teXkHIu3HiQs6HkRZW/5vS5sD/D9oB2OLqCGl3OOnfsTmXsotLyskNjY2dnZ1DQ0NMJlMkEuHOYsf14HIq2UbSWCwWCwQCLpf74Ycfrlu3bnh4GIjfUXbUcmq767fFZq5gsVhPPfXUiy++ODY2BjFO8KmpVCrEVWuzwIMXItBlw/RoMBh0Op1arVYqlXK5XCaTSSQS8c1DIpFIpVK5XK5UKtVqtU6ns0GIwksE5lvXNyBeQ9exgHXQHS3PkKY4h8PZv3//6tWr09LS8AxF1+m1eWpi9zDn9LTZaJpq7mUTKwZirzZ9GlF8LLkmq7Svb1TodlCz6elpclUt4CwvXb6m1ermseQiT01PT4vFkpSLVxGs88rVdNmS0pU1t7RDZXJIBUvCIzIxYbp8JS0iMib2dOIizbssf67SGFPze/59vDAwnnw6raWimabRTkxNud1zdmedw+IpIi/Wh52t0ei+JswJZaH3lHWwU6PRqFQquVwulUrFYjGkA/Ith0AgEAqFoKykUChUKpVWq9Xr9RDgtKYlwN1Qd9Zbd3v1ycsNFc00PMx5t/bDf+fGFsDDnLfpPJjfJycnwVHI5/NHR0fb29vJZPLZtPw/ROSBatQOC0YTMdPeGsLcaSGzhZiobzCGQkCxTwiFYvS2IYRT10ubW1qoVKpAIJDL5Tqdzjmu2JqaGn9/f5VKdRtz4KdxC7iDBZDkG6Setba2bt68+d///jfQtwLhGFBnWC+5XLlldXV1o6OjLBZrcnLy1npat1elUjU1NT3yyCP//Oc/ORwOQDmtma+AmxRfX95qxmX5DdqiTExMAHszaM7xLMfbb7+9ZcuW8fFxCIEvJ0AntBdp7PF4vPHx8bfeeusHP/gBjUZb3iF/1Okmkwk6va2t7ZFHHomKioKNKCJdNBgMS97p1rU1Go1qtVomk/H5fCaTOTQ01N3dfTPYWV5UVHydUHAqNT/wHOnT07n/isn5W2TWxyezD8QRw87nJabdyC8sIZPJ9fX1bW1tfX19IyMjLBYLYpwoOLGMY9vLcgZzcqMQoBPBiyEvpLy8fM2aNV9++aVUKl02eSFOtu0ib2eTzsVgMLZt27Zly5bGxsb5Y5w297VOAIKotslkmpiYAHynTqfTWg6N5dBqtRDaNBgMAN8Ezn8cwWljVfzPu7AAevehxCyFQgFeYx6PR6VSvb29f/zjH7e3tyMoDArb42v4uzC4Q39i3zDntNnME6uGmeJLpK6jybXhSTWRlxqIFQNMnsJNcWaTk1NZhNyIyJgTUbHkyhpHD2CdXl9VXRt/Jgnii6diz7S0tut0DgyvzjW61GpNUvKlWVVOsWSuyxz9fW7eDTCFVCZz9L3csXwaR5aU3R55qSEgjnw2q62xh0XnyCYnp92xLQuss95oSi/ui0ipGxgTzf8TWDWh/DBYMhkMBr1er9PpNBqN+uYBCye0apqYmDCZTDarpvnvhZ+1owVUGmPgaXLfiMC90P92tABe1Eq2AB7mvH3vg9cDaUex2ezBwcHW1lYymXwuLe+NcAxegCE1gzEwgW8I0SsgE8KZPsEEj8Np2wMxQtpdR0gotAnEtjvDsB96HE7bdui6l1/6niM5F7JLG5ua+/r6xsfHZTIZSIihLc3tK7qIK4hE4ssvv7xcBSzfe++9jz76aBHmwX/qThaABxby9DUajUKh+NOf/rR169axsTE+ny8UCmUyGXCOIai0o7dbizSfwWB49tlno6Ojv7Ycm/YCbGvTpk1UKhXaC25ZSKbDY5xfa8Pl/aXNCEGaczwer6Cg4P777w8NDbWBKLn4EzF/f0F7QbkNZgCAZPF4vOLi4nvuuefo0aMwAyBIllu391ZrgPMU5kC1Wi2Xy1977bWXXnoJqBfRHGgwGMACSw5FQt5eRDgM3l4Oh0Oj0YaGhnp7e9va2hobG2traysrK8vKykpKS4uKS4qKS0pKS8vLyysrK+vq6pqbmzs7OykUyvDwMJPJ5PP5aPaDnTYe47x1tODf2FgASFwg8AB5EiKRiMvlfv7555s3b6bRaEjRFlIEbH6O/+kIC6A5DeXr7Nu3b82aNcXFxcDCLRKJrFkrkFtt/spAsRCzhJAnqH6CFw88dDZOOnwOmd+k+Nk7sgB694H+GbyvET5mbGzsxRdffOqpp+h0OkQ6l+ui5Y6M5poX2zHMaTbPTE6Zh+iiui7mVyl1n0YUhSRWXiR1Nfeyp9057CKVys4lYdSpUdFxXd29ju5Hs9ksFIpSr2IoxojImMiTcRdSUtkcrqPva1N+Ty8FVDkrK2tsTjnzz5bWWURpb1+/M+/rLveaNpupDEliZtv+E8XhSTWZZQOt/Vy9YXKZbQ+tu2Nqarp7iP95dGlDN2tqYRMLindahzzRemni5mGyHKCHji+ZrG3u5M/lTbTj5+voHLmT74vfDreAK1gAD3PevhdgEwIifyqVSiQSMRiMvr6+5ubmsrKyS+k5fz6RDeRpviHEnWG5O8NyvQIytwdk+gRlYyHMgEwk2IkEOHeE5uwIzXndctY7KPu9Y9nns4obGxt7enpGR0cFAgHiqHHO60Emk8mXlNDj9t2wiCsOHz4cGhq6iALwn7qTBcBHiR7Y/Pz8NWvWXLhwgcfjCQQCiUQC7IXuIq9Fp9MpFIpSqZwLbG3tk1WpVGQyed26ddBeoVAokUhsfLLLeMnuTsPUiXVFfjR4KMCPBhAlLpf7wQcfbNmyhUql2jjRnFhB+9/KGt8M6EBE1fuPf/zjqaeeYrFYy6m9NhaEQC+K06Slpd17773JycnWc6Cr4XfR5nlychJqrtVq5XK5WCzm8/ksFmtsbIxKpfb39/f09HR2dnZ0dLRbjo6Oju7u7r6+voGBgeHhYTqdzmazBQIBinlANHfJQas2fYT/6bIWQKhBayZJGIRbtmz5+9//LpVKVwLxtet0kM0rTKFQJCQkPPjgg2fPnkU4TljqAEvHHYWCYOaBW0DXz/X/kqeDuE6P4DWxowVQIhq8+FQqFYjFgox6aWnpI4888u6774pEIkRCAwnQdqwDXtTiLWCvMKfZPKMzmGRKfS55MCG9JSSxOiC+8nJeN2VEoNa5vbTQwODQyVOnIyJjTick8fnOUKmcnp5uam49c/Y8BDujYxJqaxtUavXie3whJZhMpvMXMFXO+DNJYol0IT9x0DUsNgcsUFRS7qBbLINi2/u5Jy81hCfVhCfVXC/spbFlMpV+enrZstf2j4kiUuou5nbqDKYFdt+tSyYIZ6L/rVdQ6OIFFo5fZkcLTE2ZzxM7zxM7hFKtHYvFi8It4C4WwMOcC+op2AAjp6FAIKDRaBQKBSKdmUTS0eScPWGYGCcAN0FrE8lzevqle/ln+AQTfEOI2wOzMFinBdzpcTjN0y/NPzEnp6Ckvr6+t7d3dHSUy+UCXS1SzFpQFRdx0dTU1IEDBz788MNFlIH/FLeAq1gA6elqtVoWi/Xiiy/+6le/GhkZAfpWhJN2Dh304o3y6aefvvPOO/OUMz09DcA1rVbL5XKff/75F1980bq9wLAH4AY8xjmPJZfrKdhmoHC4DXXtyMjIj370o4MHDwKgE/QzlkQ8xo72R4EKo9Go0+mUSqVEIhEKhTweb2RkZOvWrX/9618hl8hp71k7tm7+omC5YjKZQOqSy+V6enr+/Oc/p9FoAoFAJBLBHAjBP+fkUc1fYZuzKEQNKy6NRmPNPMxms5lMJs1yjFkOGo1Gp9PHx8cRRzdILyM9GBdBrNo0E//TZS2AgmrWUQeYPb766qv77ruvtLQUqT9OTmLJ/viL1XG9iboDAfQLCwsfeuihv/71r+Pj45C6Yc3Cjab0O+0XuH6e/x3XRrzkFW4BGORISxtkz0QiEUQ6CQTCgw8+ePz4cZh20CINn3ZcatjYL8xplin1LL4iMaP1cExF8JnKr1LqCutGFh6HcCmz2FTGbDY3NrVAvO1aWpZzxrDZbJbJ5Dm5BYCqPBEVeyHlysjomE3dHPFnU3MbNLagsGRpN1YTJhM0/1Lq9aWtiSPsbK8yDcZJYsXA8fN1+44XnkptbOvnsviKZUz4qdQYIy/Vh5+rYQuUd2rDeRZLd7r6utNb49cvxAJylf7UlaZLpE7jxNfIXS2kBPwa3AJubQE8zLnQ7kOuN51Op1AohELh+Pj4wMBAa2trTU1NSUlJambuvlOZ7xzN3hmK8dZ6B2WDQueO0BzfECL8AxlO7HMw4fehmfvicq4QC6urq1taWigUCoPB4PP5MplMq9U6cxszPT2dm5ublpa2UFu423W//e1vvby83K3WeH3v2AKwrrL2FKSnp69bty4jI4PH4wFVI4rlOIcO+o7bYPUDmUzW3d2tUCik0q/PAL21vampqWvXrr18+TK0F/BMOp3O2vFndQf840qxAAwVFBHXaDQIJ8fj8Y4ePbp69eqmpiZrgKNzvA+O6wAb6lq5XI4AnaGhoffcc09NTY1Ne929yTMzMygkgKRJ8/Ly1q1bV1paaj0nIAprF3R2wFiFvGAI1hoMBq1Wq1KpYDIEQj/BzUMoFIpEIolEIpPJFAqFWq3W6XQGgwEIJ6EcKNNxgw0veZlZAEUdYOwplUpAFff19X3/+99/5513hEIh4lwBKvhlZgEXaQ6a0FAu19jY2M9//vPXXnuNwWCgGKdcLkeCqThu20X6Dq/GHVkAzTmQmwUsFEKhUCAQ8Pn8oKCgb3/721lZWQqFAl7f+Di/I/M64WJ7hTlNk9MN3eM55MGwc9WfR5deye8pa6IxuAonNME5tzAYDBmZRAj+lZRVTE46yQU/NTXV0dl9LukiCnaWlVfKFQ40rEqlPpOIoUijYxIkSwrlhJ69ePlaRGTM2aQUtVrjnL52x7sYJibzqqh+sRUhiVXnstpLG0cVaoNpmYp0GiYmu6j8kDOVbRSOaXLKHfsLr/NcFuCKVMFnqnqogrkuwL/HLbC8LYCHORfav2izDd5DhUIhEolYLBaVSu3p6WlpaamsrCwqKkoj5CVczT0YR3jvq9xdYbkQ18SUOwOztgdkbg/M3Hss50BC3ulrBRm5RRXkyubm5q6ursHBQSaTKRQK5XI5SHI6cwMzNTXV3NwsW76a5J2dnT09PQvtafw6t7UACmzo9XqNRiOVSn/xi1/s3bsXpJtQvr/RaHT9GOfMzMz169e3bt2qmHsPZt1eYCL93e9+t2PHDhaLJRAIUHsNBoMz5xO3HT7Lv+LWyTpAjAYQpZ6enk2bNr377rtisRi4TN3iAblth0F7kZabVCqF9lIolA0bNvzxj3+UyWTLKQkABQhRSEAoFD7zzDPvvPMOzIHA6wjBXVeGd0ND0KILaGwNlkOn02m1WrXlUFkOtVqt0WgAu4mim0iZzwXhqrcdt/gFrmABeL0iwTyZTCYUCvl8fnJy8vr169va2pZkue4KlnFmHWxw+Xw+38vLa+vWra2trUBXC/B0pLaOL3Wc2Tv4vexoAevXN0Q6VSqVRCKB9KyRkREPD4+tW7f29/cDY7Z1MvQyyNCyoyWXqii7hDmnp806gymjlBKV2nA4pvzLU2XlTTQmTzG1vGgzJRJp7OnEiMiYk9GnBwaHnNllMpn8RlEpBFlPRMWeS77Y00txUMJfR1c3hFSrquuc2ca57lVSWhERGRMXf5YvcAZd8FzVcP3vx3mKExfr/eIqDsWWp+R2ckVqncFkXo7MteaZmZFxSdy1poS0Fp1+oby1rt+DeA1nZmYaulhBCZViuW5ZDl28i3EL3NYCeJjztiaavQA8btZ8mCqVSiwWs9nssbGxgYGBjo6OxsbGysrK0tLSwsJCEomUkZ2TeDXn1CXiifPZJ1MIiVdz0rNJN27cKC0traqqamhoaG9v7+/vHx0dZbFYIpFIqVSCixnRaTpn66LT6V544YXS0tKF2sLdrqNQKIODg+5Wa7y+d2wB8EsCVaNSqTx16tRDDz1EJpMRlBP5wgB+4Zzn646bMTNjNBq7uroUCsXo6Og8P4cojtFoBF7H8+fPr1+/vr6+HiAOwNyIojg4nmkeS66QU/AWQ3SmCoUCIEo8Hi8mJubhhx9uamqCZwTxfLq1ZWBCAHi3tdAjj8dLSUnZsGFDT0+PDaDT3duLYjNA1RsfH7927VoikYjmQMR65+JzIOoI62Dn5OSkyWSasBxGywGfAbg5aTkgQu8gpxWqFf5hJVjAesGvUCgkEglwSL7wwgtvvfWWWCxWqVRA/owDOh0xHuDZR2K9arX62LFja9euTUlJgbwNkUiEKCuQ2jqe2eCIvsDLdIIF0IBHiUow7UB61vDw8JYtW3bv3s3n85EGLeQBuOxexglGc51bLD7MOTVtHucp+kaEMVeb/E9XnLrSdCGnc5AmmjAtQ5TV2Bg9OiYhIjLmzNkLSpXKyf1IHR49f+EyCnbmFxTJFQr7Pkemyclkyy0SEpMdihlduOl6+ygRkTFR0adHx2gL/9UKvNJsnukc5J3Lbv/sZGlESh25hbZcH8OZGUwJ+CKp0z++orWPY99HYAWOHNdpstlsjk9rSSvq4widPbu6jhHwmqxwC+BhzjsYABAnQIAYiKaAp5jH4zEYDCqVSqFQurq6WltbGxsb6+vra2trqy1HTU1NXV1dQ0NDa2trV1cXhUKhUql0Op3L5YpEIsgKtyGicdrLZnp6GvJD78AWbnUpTlrrVt11l5VFD6bBYFCpVFQq9emnn37zzTeZTCaocqI0AtcX02ptbd20aVNDQ8M8trBp78jIyBNPPLF3797x8XEE5YS0CWjvPEXhp1aIBVDEyGQy6fV6a0Dn+Pj4Cy+8sHfvXqVSqdPpkMvYaa8hR3QBai/S2ANAJ5/P53K5L7300vbt29G0sAwArAj5ZDAYNBoNk8n87W9/u23bNjQHKhQKcI+6HeYJrb5g3gMqWuv/kbcXz+dwxKO0MsuECQRJQspkMlDLS0xMvP/++/Pz8+VyOXrJ4pF1uw8SeNiRRm9FRcXGjRvDw8NBhVcgEAA8fUnSQ+3eWLxA3ALWtPOwSAOaFpRgkZWVtX79+s8//9xm5sEnH1cYPIsPc5omp9sp3JK60ZAzlQdOFKfmdZc10tTaCVdond3rMDU1VUGuhkDjpdTrOp3O7reYv0CFUlldWx99Kh7qkHjuQmtb5/w/uaOzSIK0uLTCRZ5QLpcXFX06IjKmrd2eLb0js7jLxdPT5uo2xucnSwPjKy6SOsktNK1+wq13xHNZ3myeaehmHYwqyakYMC3HjIq5Gr68v9doJw7FlOdXDWuW6RtkeXcf3jq7WAAPc96xGcHxAVnesP1Wq9Uo2Mliseh0+sjIyODgYH9/f19fX6/l6Ovro1AoAwMDw8PDdDqdxWLxeDxglQT0jNFoBACN8zORZTLZyZMn79gQ+A9wC7iSBdAjqdVqFQrFuXPn1qxZU1FRwefzQZUTwbac/4gt3E5ms3l0dFSpVNbW1s7/K5v2nj59evXq1QUFBdBeqVQKxFbLA5Y3vynwswu3ALy/EMAR3lwAUUpOTr733ntLS0uXGaATnhTrtCQ+n8/j8RISElatWkUikZCom1tDslDPTkxMaLVapVKZl5e3du3a6upqNAe6C5x9rvEMIcx5/p/rh/j3uAXuzgIo0qbT6RCyanBw8Mknn3zjjTf4fD4odIL69bJ0gd2d3Rb5K5jNpqamUIx5aGjoscce8/X1pdPpgE2XSCSQpAKAWlde1y3SGvjPV5QFrAe/Xq+HSCdQ1/L5/P3792/cuLG0tBQRM7hd0tJy7c1FhjmNE5NKtSGrhBJ3rTn4TGXImcraDiZXqF7GrxWTyXTJohZ5Iiq2pna+vF4HjRmz2UyjMZKSL0WejINg5/W0LLFYsnibK1WquPhzGCvvqXipVOag+t9psTKZ/MxZTCu0sGjZ8rfdqU3muV4i153Naj96vjY8qfpyXtc4V6lQGyanliF3rUCqOZPRmpjZKhCr5zEIfspdLGCemSGWDwYlVLZRuO5SZ7yeuAXsbgE8zHmXJrXeh6BcY6VSKZVKxWKxQCDgcrlsNpvFYjEtx/j4OIvFghxk0JJRKBQQh4AAJ2xUlmSjTqVS33zzzbs0hDv8LDg4+Pjx4+5QU7yOd2kBoGoEj5harRaJRD/5yU8++ugjoG8Vi8VKpdIaLX2Xt3H8z7hc7tatW+Pi4ua/lU17pVLpc8899+6773I4HARxALpamFjmLw0/u3IsAG+u6elphBVAmnMDAwPPPPPM7t27BQKBVqu1Vn5ya/sg3DN4DBGgk0qlPvnkk2+99ZZIJLJ+WBbv4FgSc1lDOdVqtVgsfu655/bu3YvmQIByIpzuklQSvyluAfeygM2rVi6XQ7whISFh48aNTU1N7ouQduWOgPcUSsdRKpUfffTR+vXra2pq0IQml8utM1RcBC7jylbF6+YuFrAe/zqdTqVSoXULg8HYs2fPf/3Xf42NjdmMfzddurhLp9y2nosJc5rNMyqtkSdWx1xp+iK6NPRs9cnUxlGWdHp5SXLeakOpVHYu+WJEZMyp2DPDI/OptNz6W3t9o9Xq6huaUaQzIfF8TV2DwWBcTPmtbR2gylldU7+Ycuz7W51OB3Hli5ev2bfkZVma2TzTPyaKvtK0/0Rx5MWG7iE+W6A0TixDBmmDcbK4YTT4TFX/mHBZUmQvy/E5T6M0+okLOZ3Hztey+Mp5LsNP4RZY3hbAw5x32b82FGqgdmYwGHQ6HejkKRQKuVwutTrklkOpVGo0Gp1OZzD8f/a+PD6KKl1bRQQEZBERR2H0Xq9zv1HGcXQUt3FkC4s4zuA44qjjnXHUO46joMiWALIknaWTkJ0Q9kD2sIUkZN8hKyH7RrZOd/VWXb3v3fl+nRfP1A0QOkmnu7r69B/Qqa4657zPqTpVdZ7zPK8OKTiRXZ5L/NZ0Op1Wqx0jEO5w2O9///s///nP7tBS3MYxIoCkjSC54HK5Dz74YGlpKZ/Ph1UFSMrJZMGWTCajKCo/P1+pvMN6OiRQg3jj4uJmz55dV1cH9rwkSdKnP/DcxxjPKjYehu5cZrNZr9dDBkdkiQZz9yUlJUjQCeSZWyOB1iQhQSeK99ixY7Nnz66trUXxwr3YHeNFY6BWq5XL5UeOHJk+fXpycjKSd2PZmTt2K26zaxGAAdNsNiORNBo9nn766U8++QTutlqtFhsnOLCn6GtTFApFUlLStGnTEhIS+Hw+0qbTBzQmP9c5EBZclOcggBZY0J9bhEKhQCAoKSl57LHH/vCHP8AKLVi6hC8Bl58b46E5TWbLtQ5hYVX3zsj8rzmZx89fzS7v1OqMLg/KCQ24evUaMIL+gaESicQJNd6yCpKUHT0WDy3x5XCPHIsXSyRjWz1jNpujDx4eSjt6UKlU3bI6l2y0WCwJSam+HC4nIMRkMrmkDfP6Rd8AACAASURBVG5XaWFVz+agSz7h+Scv1ude6ZIpdG4Xwh0bbLFaW7sl3mF5oScvq7XsdMm+Iwhs2qGfUPjGlUQmVOoM+DJnU8fiWEaHAKY5R4fXsL3RlDG8k5tMJqPRaDAY9Ho9cIcajUY99NEMfbRarV6vNxgMRqPRZDLBjCooOF1IRQQEBGzdunVYaPhPjIAbIQDmZlqtVqVStbe3P/XUU++8805PT88waSNaT8DA0AwGw1tvvfXZZ58ZDHd+xIRZV1CndXV1LVq06I9//CNk5ZRKpaAvYY0aj4Gd5dZNQrctpH4GiRKfz+/t7f3lL3/58ccfo4yV7FADoxlDnU6nVCohxx6fz+fxeC+99NLvf/97yEiKLhm361+gcpHBY39//29/+9sXX3yxs7MTjYF0ha7bBYgbjBFwFQLDLi40WnK53BkzZpSVlSGdNJMfMFyF3hjqpQ/XKpWqrKxszpw5H3/8MST7EAqFUqn05hzSLnyHGkOM+BCMwB0RQGQ/JNsG02xIMRAWFjZz5sxjx46BdS0yacBXwR1RnbgdxkxzWq2DeoM5q7Tj2Nmr33MvfeOfWVh1fUCksLLQHfMW8JvN5ty8QvCMTUpOd+E5rNFoqqprwyJioDHckIjcvMIxyABKyyqghEs5+WMjSm8Bk4M2Iaj7+nkOKpLlxUhkGv/DpVuCc/YeLDqcXssXKy1svDIVKn18xrXtB3Lbex1g2szyc4Lx4dW0CL4LulR+tY+V5yrj4ccNZAoCmOZ0WE/AVAi8lpjNZtOPH+OPH9hgHvqARMaFD3P0sFNSUo4ePUrfwrLvL7300rJly1gWFA4HEADOhm5uFhcXB1kqkZSTLm1k2isHRGEymRQKRW9v79WrV0fu2ZvjjYqKuvfee5OTkyFeupObS0ywR24//pUhCCDxH+RxBInSwMAAnE5VVVX0q4Yht6rxQIcE0BAv8pY/cODAvffeCxJqyPEGqgj3ChmIAYPBAPLcvLy8WbNmHTt2TCAQgJwdlE9YcDaeUwgf65kI0OXgYCAJo2VVVdVjjz32ySefSKVS+vXFzGcMd+k7eDkCgxy1Wk2S5Pr16x944IGrV68ODAzQF23QRWzuNVy7S1/gdrocATrTCUk64dGFz+dv2LBhwYIFPT09SqUSXPfxMgvX9tfYaE6rdVCl0QulqkNDHoO7o/L9DhU3doqMJhZ6Y96ug0wmU/ypJKAGC4tKXDuek6Qs7sgJmodtTH8/z/7bulyuCOSGgWKSJGW3C9lV2xubWgDnsvLLrmqD29V7+RrP/0jZ98GX/I/YrGvFpNpotLhdFHdscFOXaEtwTsqlJlYa894xfNbsYLEOpuQ0bQ3JGRAqzBYWnqis6SkcyEQjgGlOxyOM+E54Xb/5X8dXOb4Si4qK+Hz++Mpg9NEJCQmpqamMbiJu3FgRgMvNZDKBlFMmk/32t79dvXr1wMCAQCCQSCRIl8Zk9iIyMnLVqlVqtfqOMEC8KLGiTCZbvnz5a6+91tfXd3O8mOa8I54euwM6kYYJHOvq6v7jP/7jgw8+IElSrVbr9Xp2zJ0hhRBooJGgs76+/tFHH/3oo4+kUinoHd0uXjQG6nQ6tVpNUdSHH374/PPP9/f3g4s1JAJHXemx5zwOHCMwZgQgnzHIqiCfMZ/P/+KLL5544on6+nqZTKZSqdAl5tpZ2jHH6PIDYShDZhUKhSIqKmrevHnp6elgVysSiegLuZj8UOdyMHEDWIAA/YqANRYomfqVK1eefPLJt99+e2BgABalIY8oPP64pOvHRnNaLFZComzrEe+LLf6aczHwaNmh1BpWGmOO3Cm8AX5g0AFg4Fpa20beeaJ/NZlMtXX14ZEHoT3ckPDM7FyKsivLXXnFFXC+LSwqneh2jqF8iUQKQSUkpozhcM88xGS2pOU2f8O56B2Wd6mis7VbrNay0FB6QKSISan2P1zaw6c8s6PZEbVcpQ88VnbkTB1PqGBHRDgKjMDYEMA059hwu8NRoLi63b93ONi5P5vN5smTJwcGBjq3WqfWph/6OLVKXJmzEEAyJhBp5efnT5kypaCgACVwQln3XO4OfTtIwMU6NzfXnrkJerwURdXX1993330lJSU3x4tnAG8HON4+ODiIuDEkAUQ557755puFCxfW1NSoVCrIOccCvnxYvOD/Jhj6bN++feHChY2NjW6RwffmsxdCQ0sf6uvr77333ujoaD6fTxAESM2Q2sOeQebmKvAWjICHI4Dk4JAPGzRV7e3t06ZNi4yMRPmwweUbX2VjO1vg8cZkMgGdXFNTc/fdd3/22Wewag3sasGlExmMY6jHBjU+yi0QgGkEMIhCy5hg8BEIBFFRUVOnTj158uQw1318Ubikc8dGcxpN5spG3sWSdu/wvG84mYlZjZev8TyzBzs6u4AgjIqJ0+v1LulEeqVGoykpOR1l6ww9EHW9u2fkrrFarZHRcb4cbkRU7Bjcbum1T9B3q9UKYtOIqEP2pMiZoGa4XbEDQoVPeP620NxDadWZpe1SSuN2IdyxwQajOSGzwTs8r+DKdbPFMyyz7wiKG+7AEym3hORklnTgNKtu2Hu4yY5EANOcjkTTHcsym835+fnd3d3u2Hg724xNa+0Eyu12G2boJBQKX3nllddff72jo4MgCLFYjKScJpMJ5guYFmNnZ+eSJUskEok9DRsWr1gsfv3119944w3IygnxAp8B8dpTJt7HYxGgzymjjJUCgaChoWH+/PkcDgfNnYHA0d2BgngRHYhUER0dHQsXLty3bx+aQHcjQSdSe+j1epVKJZPJPv3008cff7y6uhoca0HKCX689vtuuXtf4/ZjBByLABo9QP4ulUqFQqFAIPj8889/9rOfCQQCiqK0Wi2i3xxbuyeUhlai6PV6tVotkUjee++9BQsWVFZWwooNujkHEq55AjI4Rg9HgD74wF1eJBIRBMHj8TZs2PDUU0+1t7eDb7bBYGDH05o79vjYaE6d3nQmvyUqsfL74EubudkltT2kQuuO4Y+/zVarNftSHmgNT51O1ukYwXQ2NDYfOnwcWuUfGHL+QpZYIr1dsCgrZ15+0ciE6O1KcML2hMQUXw43NCxKKiWdUB07qjCaLKcuXtsamrMnpuhQWg1PyMLUuVbrICFR+saVhJ2+3CvAgk63PHPNFuvxc1f3HSy+2kYwdghyS2Rxo90QAUxzumGnObTJ/f39ISEhAwMDDi2VWYWxQIrELEAZ0xpE+2m1WoqisrKypk+f7u/vT5c2ovl9Zt7vrVZrZmam2WxXFhYULwhKLl26dNdddwUEBKAMfCzLp8iYE42dDUFCAYPBQM/QyefzN23a9Oijjw6zB2QBCnAFwTQ6RVFisVggEPD5/M2bN8+cOVMoFILzpNFodJe7BhoTtFqtQqFobGz8z//8z48++ojP5wuFQolEgmY/McfJghMYh+BCBOj5jEEOThDE+fPnH3jggaNHjyJBpxuNHi4Ec1jViOMEdwGFQnHhwoVJkyZduHABOE6xWIzMtwFhdxmih0WK/8QIjAEBNPjAjV4qlYpEIoFAUF1d/fjjj69btw58s+nvO8x85RlD7O5yyBhoToPRLFPoDiZX74ws+CG60P9IaWuPxJM7TqfTB4dGAqdYUOjiJJ3oxNPr9WfPZUCrfDlc/8DQaw1NN3cTRcmR9FMmYy5LVFJa4cvhBnLDenr6UIz4yx0REMs0oScvbw/L4xwuqW0RSGQag9GuqZs7lsycHSwWa3FNz3fcS9llnTo9C415mQP1BLWEkKh2RxfGpFRLZSwUHE8QaLhYtiKAaU629qy9cVVWVr766qs1NTX2HuCG+x0/fjwhIcENG46bfAcEkI+cSqUiSXLTpk3z589vaWkBKadMJoNke8z0kdNqtV5eXhUVFXcIkvaz2Ww2Go0g25JKpV999dWMGTOuXr1KEIREIpHJZEjKiWcAabDhr7dGAGhOlHOOLujMzc198MEHIyMj6YLOm9/qb10ug7ciVQSaKwRJVmZm5uzZs7lcLgg6jUaju0gihhG3R44ceeCBB8rKytDSB7VajaY+GdwzuGkYAaYjMGz0gPy+HR0dL7zwwtKlSwcGBtCSAnCMZ3o8TGqfZehjNBrBrraxsfGRRx758MMPUUpOkiTp8MITDgtuSUzqBNwW5iIAN3qTyYQWaUGWgYGBAT8/v+nTpycmJsLTi16vZ6x7DXPxdUTLRktzWq2DKrWeL1L6Hir5p28G90TF0bNXtTpPpxYkEml4ZKwvhxscGtnd0+uInnFMGW3tHUePnwKykxMQkpp+js8XoHuQ1WotLimHX4uKyxxT5cSUcr2715fD9fMPrm9onJgaWFvq5Wu8rSE52w/kZpdDhk4Dy0K1Dg529JF7YooiEyv7CbuS0bIMAXcPp76N8D9cmpTdpDOY3D0W3H6MwDgRwDTnOAF0+8MtFoter2e3zgOb1rr9aXqrAIbNOUokkoULF+7cuRNkTJCRDjILMnPO0WKxJCYm2p8bA+I1GAzA0AwMDDz11FPffPMNn88XiURoEhAYGvTqdSvk8DaMwL8RQGsF1Go1Ejj29PS8+uqrzz33nEAgUKvVMHHGgtsE0gzBXKFMJgNBZ39//69//etXX32Vx+NBvCAY+jdMjPyGwgEjTZIk33jjjT/84Q90j0f60gdGBoEbhRFwDwTol5tKpaIoCqwjuVzuvHnzioqKKIpCoyW+BdvfqQhYkHKSJPn3v/99+vTpxcXFw4YyuBPhvOP2Y4v3ZAcCcI3ASke43aOnFx6P99prr7344otgv6HVapGlMx6FnNn7o6U5LRYrIVG19kh+iCr8x74Lsak1BVfYnD/I/r6ou3oNZJFBweEKpdL+Ayd6T5PJVFhc6h8YAnRmUHDY5StVUKnZbI6MPuTL4UZGH9IbGM1+SUkZNyTCl8PNLyyeaMRYVj6l1O09WLQl+FJqXnNV04BcpWNZgIODgxqt8Ux+i3d43rV2gdHENrkq+/qLHpHVaj129qp3RF5jp4i+HX/HCHgmApjm9Mx+/3fUx48f/+ijjzQarG3/Nyb4m1sgYLVaYWkzOLiGh4cvWLCgvr5eIBCIxWJwcEL0DKPe9g0Gw+effx4UFDQqnK1WK2gdNBqNTCY7fvz4vHnz2tvbBQKBRCJBfm5ulFZwVOHjnScIgWHLBSDnHJ/Pj4mJmTVrVnZ2Nl1Dw6jraGyADFsugOKNj4+fPXt2YWGhUqlk8vIIetR0IzuKooqLi0HVgaScSqVSr9fjpQ900PB3jMCYERg2epAkSRBEV1fXI488snv3bvCthdEDGyrYDzIo1WAJl1KpLCkpmT9//p49e0DKiR7nQJXOzFVr9geL98QIjA0BxHTCagCw3wA7isLCwvnz5+/cuRNZ1yKmc2x14aPGgMBoaU6D0Vxa15eW37olJOdrzsXimh6pHE/F2IA3Gk1nz10EKjEl9az9q4HH0GujPcRqtV6/3hN/OpkTcIPsPJ2Q0tvXX/KjlLOwqJThL0oqlepg7BFfDjcpOW204Xv4/haLNSGr4dug7OAT5UnZDQIxgzh4R3WN1ToIEnPO4VKxTM3wk9lRUbOjnF4BFXb68u6oAr0B89Ps6FIcxbgQwDTnuOBjwcEZGRn/+Mc/7EwN6Kbxrl279r333nPTxuNm3w4BWNes1WqVSiVBEAsXLnznnXf6+voIgiBJEsw2mWk+abVaT58+3dDQcLvQbrmdHq9UKn3iiSfee+890DrIZDJktolnV2+JHt54OwSQkgbMkJGgs6+vb9GiRZs2baJLlFgm6FSpVDKZDHJc8Xi8Z5555quvvoJ4DQYDmF3fDjcmbEeGwxDI+++//9///d/Xrl0DF2tkOMz8QJgAJm4DRsAeBGBtAXirIkHnt99++/jjj0skErlcDoJOvN7IHjAHBweBOYYla5B94LnnnvvNb37T398Pzhx08thdvMTtjB3vhhEYFQL0pzWNRiOXy8VisVAoHBgY+Oyzz+bMmVNSUjLsvo8nqUeF8Hh2Hi3NqTeYM8s6jpyt2xKas5mbXdPMZ1+qvzHjaTKZjp2wOcRyAoKvXKkeczkTdKDBYLh8uQqIWMhziSSeMorpVp8GgyH+dJIvhxsRFTtB+LC42AGRcseBPL/DxUfO1Pby5WazlX3B6gymswWtmwKzUnKazGYL+wJkZURWq7WgumdPTGFxDYO8vlkJNQ7KXRDANKe79NSEtNNisXR1dfF4vAkpnTGF7tmzx9/fnzHNwQ1xAAJIVKHRaBQKRVpa2n333RcdHQ0OrhRFKZVKnU7HtKycFoslNDT0448/1ulGZ3UC8YLTpkKhOHfu3KRJk2JiYvh8vlgsBiknxAsJFx0AMS7CMxCgSwRQxkqCIPh8/p49exYtWjQwMABXE/i4uvusGZooBPGQXC6HHFd8Pn/v3r3z5s3r7u5WqVQonyWT4zWbzUgCde3atUWLFn366aeIGwAZLpZyesZ1jKN0EgLoXgw0A4weOTk5s2fPPn78OPhGMvDZw0nojL4aupRTLpeHhIRMmzbt9OnTsIRLLBYj5phpj3OjjxUfgREYLwLo3QdWWkCGYIFAUFdX95Of/OSvf/0rSZLoAQZLn8cL92iOHxXNaUvMqTFEJFzZFpq7K6og4GgZX6waTW3s37evjwfeqpyAkM6u6wwMmCCEScnp4K8LlOfphFTmywasVuv5C5nQYLVazUBgGd6k7LKObQdy9h4sqm8jlGo9K4nAbj61L7Y4+HjFgIiFilWGn2Bja55Ypk7NbdkVWcBno8h4bJjgozwcAUxzevQJoNVq33333X/84x8ejQIO3t0QQEQFvOfLZLIvv/xy1qxZXV1dBEFAVk61Wm0wGJiWw8lqtRYVFXG53FG9CEG84FirVCqlUunf//73GTNmtLS0oHghAx/T4nW3M8tD20s/wegCRzAPDA8PB32AXq9nx6wZTBSiCwomCvl8fl5e3kMPPeTv74/0EEyOF7l2Q1LV+Pj4yZMnl5SUgGMtfekDVnh76IWNw54YBJCKGvlGdnZ2Pv/882+88YZYLEbOClh6eEf4h916Ojs7Fy9e7OXl1dvbC+MYoo2RMweT153cMV68A0Zg/AgMM6uXSCRCoZDP5588efL+++8vKyujKEqr1bqFI8X40WBOCfbTnFbroE5vEss0QcfKvw3M4hwujUqs0ulNzImFCS2xWq21ddeAjTt46CijknQifAwGQ1NzC2I6A4IOXLiYPaoXfFSUM79cvnJDitrS0urMetlRl5TS7IzI94nIv3ytXyxVsVKErdObKur7vMPyL5V1Go3YAdUNzty2Hsm+g8VRCZUkNj93g+7CTXQGApjmdAbKjK3DbDaXlJRUVlYytoUOadhLL720bNkyhxSFC2ECAmhqDKScEonkqaee2rFjh0AgAMdalUqF8mMxocHQhvLy8pUrVxIEMdomIVZGrVbL5fLe3t6f//znX375JcPjHW2YeH9XIQAXFEgD6RKl69evL1269PnnnycIAvQB7LA/hXjBJhGuKbFYLBAIenp6Xn311VdeeYXP56tUKmZm9oWTBI2BWq0WmOn33nvvtddeAwkULPWgL31w1amF68UIsA8BWGEAGfLA5ZsgiG3btj3yyCMVFRXD8oKzL3xHRXTzOLx379758+fX1taCJF0qlaIVJ1jK6SjYcTnujgC8ESCfZ4qiJBKJQCDo6up68803Fy9e3NfXNyzFOF4c4IROt5/mNJut1wdk1c38nRH5X/lePHXxWmktthm8dRdlXMwGEvHs+YtGIxOZ4KLiMuBiOQHB8CUqOq61rZ3JZGd3dw80NSs799a44623R8BkssSm1mzmXkrNbalu4lPK0blz3b5gBv1itQ62XBcHHisLOVnBEyrwHYRBfXOrplgs1rKrfRv9s/KruvGKmVshhLd5IgKY5vTEXkcxa7XaY8eOCQQCtIWVX9ra2jo6OlgZmgcGhSgZlErw7Nmzc+fObWhoQDImjUYDFAWjnsw6Ojo+/fRThUIxql6jTwUCn5GZmTljxozm5maBQACOtcyMd1Rh4p1diwCdNkMSJT6f7+/vP3fu3IKCgmGzZq5t7fhrR0sHdDqdQqGQSqXg0xsWFvbQQw+VlZXRHV+ZlpEUjKkRLa1QKLq7u2fOnBkXF4ckUMi2jmmNH3/f4RIwAq5FAI0ekBpcKpUKhcJr165NmTIlOjoaFhnAQismy8FdiyHKymk0GgHGmpqamTNn+vj4wFoNiUQCknR4lsNOFS7vL9wA5iAAVs9w7SgUCkgxzufz4+PjJ02aFBERAVbP2D3bmV1mP81pMlmaukRFNb3bD+R+5XvxXEFbN0/mzKa6UV0KhTIqJs6Xw/XzDy4uKWfUS/3g4KBUSgYEHfDlcP0DQ2tqr3KDw4E+DOSGJaWkj/Z932n9olaroZ0xsUeYBqnTQBhPRVcaeJu5l05cqC+s7pFSmvEUxdhjTWZLUlbj1pCciyUdJpyhk7H9NNQwQqo6ndkQFn+5V0BZLCzMF8ts+HHrGIoApjkZ2jHOaRZJkkuWLGloaHBOda6q5fLly1VVVa6qHdfrWAQQHwP8hEQiefXVV1euXNnX1ycUCiUSiUKh0Ol0yLHWsbWPrTSSJN99992WlpYxHI5mVBEfs3bt2hUrVoDcAcWLM/CNAVt8CEIAMWeQ/xVJlJqbm2fOnOnn50dRFKgD2SHoHBwcBOc3WC0hk8lA0Nnd3f3QQw8FBAQMUxEhoJjwhb7UAxxr9+7du3DhwsrKSoIgbs5mx4Q24zZgBFiDALopDxs93n77bS8vL7gAkWkknkO8Zb/T12+p1WqxWPzBBx8sWrToypUr9OzCkCMZ7H8xkrdEEm/0QASGXT70FOMrVqz49a9/TXfPxq71zjlD7Kc5dQZTdnnH8fNXvw3K3uifdbVVoDdgW8jb9hKPNxAcGuHL4YYciOrt67/tfk7/wWKx5OQVAF9YUlo+ODio0+nOX8gM5NqIT18ONyIytqm5Va83OL1pd64wIuqQL4cbHBqJ03PeGayb9jAYzftjS/wPlx47W9dPyG/6nSUbBBIl93h5wJHSHj7FkpDYGIbFYm3rleyNKbpY0k7KtWwMEceEERgLApjmHAtqrDnGYrHweDyj0ciaiG4ZCDatvSUsbroRrWLWaDQURVVUVEyaNGnPnj0gYyJJEtwmjUYjc97tKYr64osv2tvbx4A5xIv88Wpra6dMmeLn50eXbaEcPHgecAwI40NAWANz93CmgcBRKBQKBIKPP/74lVdeQTnSWGMeSI+XPkv4+eef/+IXv6A7TzJNkjVsqYdAIFi8eDFa6oHFZPiKxghMNAL0+zIaPU6fPj19+vTm5mb66IHl1LfsC/QgB1LOioqKBx98cM+ePXQpp1qtZrJz+C3jwhsxAk5AAK1LA0EnGL3AA1t1dfX8+fODgoJwfm4ndAS9CvtpTq3elJ7XHJVUuSU4Z2tIbku3GOtv6Eje/L2m9qp/YKgvhxsTe0SjZco8vkqljoiKtbXq4BE0k2YymXr7+mPjjgHT6R8YkpiURpKMY4nOZ2T5criB3DA+n+WObjefTg7ZcqWBt/dgUVRiZTdPxtbrV28wnS1o3RKSk57XotGyfK7YIWeFSwoxmS0XStq9w/IzS9uNJotL2oArxQgwEAFMczKwU5zXpIaGhi+//NJ59eGaMALjRmCYBovD4dxzzz1FRUUEQYDLGcpIx4TpRYvFsm/fvoKCgjHHbbFYjEYjqEZIkvTz85sxY0ZeXh49XpByMiHeMYeJD3Q5AkgfoNPpVCoVSZIikUggEGRlZU2bNq2+vl4ul4NECbQ1Lm/w+BsAF5dOp0M+vQKB4OzZs9OmTSsqKqL71jJqAQFiCEDKWVhYOGfOnICAAIIgRCIRRVF0emD8KOESMAIYgWEIIEEnsHRgGlldXf3444/7+PhIJBJw+TYYDPi+PAw6WFUDD3LoXvP+++8vXryYx+Oh9VtKpZIu5by5ELwFI+DhCECSYL1er9VqFQqFRCIRCoU8Hu+vf/3rtGnTGhsbmWxKwb6+s5/mVGkM4aeubDuQ6xtbEnbqCl+sZB8ajo3IYDAmp54B4jAl9azBwAjGpbCoFNx0Ky5XDotXo9FmXLwUHBoJbQ4KDqutq9fp9cN2c+Gf9fUNvhwuJyCkpbXNhc1w36q1OuP+Q8U/RBfWtxNavZGVTKfFaiUkSu6xssjEyusDMis2Q2Xk+ao3mLzD8iITqzp6SUY2EDcKI+AaBDDN6RrcGVJrfX391q1bGdKYiWvGN9984wlhThyAjCrZbDYbjUZgJkQi0dtvv/2rX/2Kx+OJRCKSJMGxljkOrhaLZffu3dnZ2WPGEDLwwVwqn89fs2bNL37xi76+Pnq8rBHYjRklfKBDEIC5e71er9FokESpsbHx6aef/vLLL+mZ0tgxd49mCYEvFIvFBEFcvXr1qaee+tvf/sZYvpC+1IMkyeDg4KlTpzY2NoJrN57ZdMi1gAvBCIyMABot0ejR39+/atWqZ555pq+vD3LjMTBH+MhBOeFXWE+DHmwUCsXFixdnzJhx6NAhkHJKpVI0iGG7Wif0CK7CfRGgr4ME732CIAoLC+++++4dO3ZIpVJkb8M0Uwr3xfx2LbeT5jSaLKRcG3Ss/Nug7KBj5XGptZSSQezX7aJz+Xa1Wg0SSciC6fL2SCTSQG4Y+L5S1C1sS61Wa29v/9Fj8T/KOkNPxCfweAMubzk0QCyW+PkH+3K4N3O0DGkhw5thtliPnr3qHZ5f2TggU2rZqqIzGs0V9Tzv8PxzhW1KDRPtlxl+njihefVtxDeczOyKLp3e5ITqcBUYAXdBANOc7tJTE9JOqVQqk7E/7/1HH330+eefTwiCuFCnI2A2mxEN09PTs2DBgsOHDwsEArFYjJziGDI1dv78+YSEhHEihOKlKKqxsXHhwoVBQUGQgY9p8Y4zUny4yxGgS5SQby2P64NDBwAAIABJREFUx3v//fcfe+yxvr4+kCjBMgKXt3b8DYB4DQYDXQwxMDCwfv36n/3sZ9evX0eKIkbRunQRqlQqXbNmzdtvvw0qKHCsRSooRolQx99fuASMAHMQQKOHRqOB0ZIgCC6XO2fOnLy8PLg763Q6k8kEDpPMablrWwK4mUwmyANNEMSyZcsWL17c1NSEpJwqlYo+iOFxzLVdhmtnLALI2kGr1crlcqlUKhQK+Xz+p59++rOf/ay3t1ehUCCHG3wdTWg/2kNzWixWEalq75Xsjiz4yvfikbN1F0raTdhm0L6O6bcl6bTpIwODDggEQvsOmpC9LBZLZnYu8JelZZdHqMNqtRYWlYYcuCHrDOSGVVyu1DLAd1elUodHHPTlcC9kZI3QfvzTCAiU1PRuDso+X9Ta2ClSqFm7WEEoUYWevLwtNLe6aQALOkc4H1z10+H02uAT5Q0dItw7ruoCXC8zEcA0JzP7xUmt+vzzz7HM0UlY42ocgQAyOgP9xNGjRx955JGenh6CIEABoFarmSPljIuLCwoKGk/cKF5IvRMfHz937tzOzk6IF+YvGJWFdDzB4mNdjsAw31oQBwgEgri4uOnTp2dkZNCnzBjF/I0NOnqSS7jEwKf31KlTs2bNunTpErrEmOPTCwpUoGblcnlvb++sWbNOnz49bKkHKLzHBgs+CiOAEbgjAvTRQ6lUymQyoVDY0NAwderUAwcOgLeEVqvFN+hhSNLTmioUiuzs7AceeCAqKkogEAiFQizlHAYX/hMjMAIC6JkNEltQFCWRSAQCQVtb26JFi7y9vWUymVqtRosGRigK/zROBOyhOc1maz8hr28nvMPz/+mbkZDVUFLbO856Pedwi8VSXnEFyMVDccduqaF0DhqUXB4eaeMIDx46irJy3q5qi8XC5wuSU9JBPenL4R47cbrrevft9nfOdr1ef+z4KV8O9+jxU86pkX21iGWabwOzki41VjbyZAqmpIx1OM4Wi7Wmib8tNOfEhXq5Sufw8nGB40FApTF4h+en5bdIKdaegePBBx/ryQhgmtOTe3+wuLi4vLyc9RC89NJLy5YtY32YnhAgyJjAwVUqlb7yyivr1q0bGBgQCoUymQxJzVwunqivrw8NDTWZxmUfgWZRNRqNUqmUSqVvvfXW2rVr+Xw+0+L1hHPPQ2KEOWgkmJZIJARBtLe3T506dd++fcN8a1kgDkC+tRqNBqYICYLo7++fO3eun58fA31r6Y61MpksPDz80Ucfra2tRUs9WJY/1UOuOxymOyKARku1Wi2Xy8H1evny5evXrxeLxWj0wHaRqHMRK4Oycq5fv/75558Hu1o6aJgeRqDhLxiBERBAJhwgK4f1Fnw+/+uvv548eXJjY6NCoYB03TAQseCxbQQ0XPiTPTSnwWiubuRnlXZuCc75mpNZVN3LF+HEnKPrtJTUs8AXZmXnumq1ZX5hMWTlrKqutbP1ZrO54nJVyIEooGl9Ody8/EK1RmPn4Q7fzWw2p6Wf9+VwuSHheEwYM7y+h0rCT185m9/C7gy7Wp0po7j928DsopoelRZb1475fHHwgRaLNTm7aVdkQWFlNyuzwzoYL1ychyGAaU4P63BauFar9dChQ11dXbRt7Px64cKF8SRHZCco7hkVcnBVKBRXr16999579+zZAzImIGAY4hGXm5v7xz/+UTO+FxiYvABjN7lc3tbWNn36dA6HA/EOS/2F31Lc84xmXKvRlBn4uJIkSRAEn89/9913V6xYQZIkWkxgsVhYcNYNi1cqlUK8n3zyyWuvvQbxghKCIfEix1qVSiUWi5csWbJ06dLu7m5I1gsuuzhZL+OuK9wgNiIAo8cw1+u4uLh58+YNDAzQfWsZMnq4thMQx2kwGICSyc3NfeCBB44ePQqLt5AE1mAwYG7YtZ2Fa3cXBNBlhV4WxGKxQCAoLCy87777tm/fjh7b8IPBhPapPTSn3mguq+1Nz2v5PjhnY0DW5QaeXMVar8sJQpuSyw8eOurL4XICQiorqyeolhGKFf+YlTMsIkYuV4yw580/CYWiM2czgOn08w8+fOREU3OLy8jaAhtZ68vhisTim5uKt9iDQEFVN/d4eUJmQz8xujPBnsKZs4/JbOniyfYeLOIeL+/qZ3+yM+YgP3JLBkSKL/dn+B8ulcqxlHNkqPCvnogApjk9sdchZoqi5s6dGx8fz3oIJBIJSZKsD5P1AYLuCkQAFEVFRERMnjz54sWLBEFIJBKlUknPQOMqAoYkye+//16lUo2/O1C8YIgXExPzwAMPMC3e8YeJS2AUAvQpM7qPa3p6+owZM/h8Pt3H1VVXmWMRM5vNRqMRBhaZTAa+tWlpaZMnT25vb1coFOA8yZBpd7PZjEiC2trauXPnbt68+ealHphWcexJgkvDCNwSAbTsQKlUkiQpFAqrq6vnz59/8uRJIO2QXSQ7RstbgmDnxmE3F4lEsmLFCsjKSU83zqhlJXaGhnfDCLgKAXCvQQ8GMBARBCEQCN5///1nnnlmWIZOV3EqrsLHafXaQ3NqdcYzBa0HU2q2hORuP5DX0UuaLVantZA1FXV1XfcPDAElYn8/z5lxWa3W8xlZwA6Wl18ZW9XNLW1hETGI7LyQka3T6Z3/hNDQ0ARtuOIKtnhs0DHtKJlC+0N0YWj85c5+lk8z6gymrNKOPTFFhVXdBqOZaR3hme3JKG7fGJCVlN1kMls8EwEcNUZgBAQwzTkCOCz/yWQytba2ymTsX5WDTWtZcCrDBJnRaATHWolE8pe//GXBggXd3d1CoZAuujKbXfn41dTU9OKLLzY1NY0Tc3q8CoVCIpFs2LDh8ccf7+jogHhVKhVIV10b7zjDxIczEAGUOw2cGMG3trGxceHChZGRkciJ0WQyOf+1fCLgQrJp8K0FJURlZeWiRYvAt5a+fmIiGmBnmTCbaTKZUBau+Pj4KVOmXLhwAZZ6yOVyhjTVzojwbhgBd0cAmUhDvnCRSNTZ2blkyZJ169ZJJBKKotAlidkFuLMYjUaQchYUFMydO3f//v0oKyesKQEpJ4bL3S8N3H5nIgDrLSDdAEVRsFrr2rVr8+fPj46OhqQe8MqAl0BNUL/YQ3NqdMak7MawU1e2HcjdGVHQM0BZMcs5pv64fKWKE2BjOo+dOG0wOM9FUyolgaE8eOiowWAcU9ttB0kk0qzs3EDuASAaow8errt6zcmvVAQhhNoTk9LGHIiHH2g0mYOOlQUeLW3rkTi5+5yMvNU6yBcro5Or9sQUDoiUZsyrObkDbqpObzTviy32PVTS2CG66Ue8ASOAERjENKfnngTV1dV///vfe3p6PBcCHLn7IIDc4TQajVwu7+/vf/755z/77DOBQCASiWAyUa/XgymTS8KyWCx79+7l8RyzsJRONVEU1dXV9dxzz/35z39Gsi2NRuPaeF0CMq7UCQigyWjkWysUCru7u5cvX/7qq6+iJQUuvNYcCwIaWyBe8K3t7u5+7bXXXn75ZZIk0ZIC184P0pc+gML7+++/nz17NqS1Q/OYRqORIcJTx3YTLg0jwEAEYPSABVgKhUIqlYpEor/+9a/z58/v6OiA0UOv10OmSQa235lNAkoY6eY3bty4YMGC/v5+kHLCAhrMxDizR3BdrEEADUQ6nU6pVMJAJBAI/ud//mfevHkCgYC+CgqvIZiIfreH5lRqDBEJV3wi8vfGFAafKBeIcWLOMXaF0WhMTEoDli4l9YzTTum8/ELIyll39doYm047rLPzOjc4HFKN+nK4x08mKBTOOyVMJhNUHRQc7jQAadGz4avZbIlKrNx2ILe2ha/VG9mdH9FgNOdXdn8XeCk0/rJSjd22XXwCN3QIv/bPjDh1RW8wubgpuHqMACMRwDQnI7vFKY2qqKj48MMPr1+/7pTaXFlJZGRkXFycK1uA6x43AkgzoVKpKIpqaGiYOXNmUVERkjFptVqDweBChZlQKHz55ZdPnDgx7lhtBdDjlclkly9fnjNnTlpa2rB4MZ/hELRxIXQEkLUgmo8WiUR8Pn/Tpk0zZ85sampimo8rvfFj+47m35HzpEAg2Lhx409+8pP6+nqGxAv9ghxrpVLp66+//re//Q2WeshkMrVajUiCseGAj8IIYARGhQB9tITRQyQSHTlyZPr06efOnZNKpZAuFy8+QDQMrCZpb29/+OGH/f39bynlZLcqYlQnGN4ZI2AnAmaz2WQyGQwGtVotk8nEYjFBECkpKVOnTo2IiEBLLnCGTjvxHO1ud6Q5rVarQqUPOVGxJSTHL64kMrFSKHVAfpPRtpM1+0ulZERULCTprK2rd0JcEokkkBvmy+FGRcc5io9UqlR5+UX+gaFA2UZGH7pSWa3XO4lDOnbilC+HGxAYSpLst3abiDPEYrWeOF+/JTinspGnUOtZ7x0qV+lOnK/fEZ5f10pMBJ64TDsRMJosO8LyfMLzy+v77TwE74YR8DQEMM3paT3+f+L1kKmEJUuWLFu27P9Ejv9wKwSQjAnWKZMkGRoa+sQTT/D5fKFQCIk5UQYsl0RWVlZ25coYs3Tc3GD6hCCsyz548OC8efMg3mEzpzcfjrdgBMaDAD3VEzgxwnxZcnLyfffdl5CQIJfL1Wo1WAuy4yaCVhXQ483IyLj//vvT0tIY4jyJaE5kjzlt2rSMjAxQeEOn6PV6s9mM12WP5/zHx2IERoUAGj0gmbFYLG5vb7/77rsDAwMlEolcLoc1WB6+JglyjQMHQ1HUN99889Of/rSyshKt0gDRPMhe2XFbGdVZhHfGCIwTAboPh1wul0qlQqGQx+P9v//3/5YtW9bf369UKpGHNr7Exon2zYePTHNarFadwSSSqvbEFH7lezEmuTo1pwkrom6GcVRbBAQREGTzfeWGRGg02lEdO9qdrVZr+pnzQEZWXK4c7eEj70/KZNEHD0PhvhzukWPxKrV65EMc8mthcSnwxF3Xux1SoAcWcja/9bug7EsVXdd5MrXOef7JLoHaah3sFci9w/ODjpYLSTX23HZJLwwODjZ3iT/74dy+2GJ2C4hdBS+ulx0IYJqTHf04lih27dq1Zs0ao3HsqQXGUis+BiMwegTotJ9cLpdIJG+88cb69ethgmzYIuXRFz/eI4xG4wcffLBp0yaTyTHGETfH+8477/zud78DPkMmk6lUKpCuYj5jvJ2Hj78VAnAG0oWDQqGwvb192rRpPj4+FEXRfVxvVYCbbaPHCyMMQRC9vb3z5s3bu3cvXHEu94hGklNgU06ePPnII480NjaipR5arRZ7Y7rZmYeb6/4IwIUJoyWwCwRBvPLKKxs2bBCLxRRFabVaGD08llpAK9VAytnc3Lxo0aIPP/ywr69PKBRKpVJ6Vk6PRcn9LwUcgSsRgKvMbDaj7N0SiUQgEKSkpMyePbukpISeWN21DvyuhGnC6r4DzWmxqrXGAbFyV2TBP/dnHD1Td6GoTYfNBsfXHRaLpWiIqPPlcGPjjjlKYXnLRglFogPh0b4c7jizct6y8MHBQZVKXVRcdiDMVoUvhxscElFaflmr091uf4ds7+7pAQ/empqrDinQAwsprOr+LjD7Ykl7a7dYpWE5zTk4OChTaPMqunaE5WWUtGt0eA7ZBae8yWyJSa7ezL2UXdbpgupxlRgBN0EA05xu0lET0MwrV64cO3ZsAgpmXJFvvPHG2rVrGdcs3CC7EaCTEBRFdXd333PPPXv37gUHV3h1dxXtp9PpcnNzjUajozjOwcFBpHvQaDQURQmFwunTp3M4HBQvWpGNaU67TyK84ygQgPkyk8mE9NPgW7ty5cp169ah9JxsUt5YLBaj0YjiFQqFfD7/vffeW7NmDYrXhW5vaOmDTqcDKuWdd955/fXXr1+/LhQKhyUQHUVP410xAhiB8SFAvzYVCgVJkkKhkMPhPPnkk/Rr05OXICDBKyjRjx49Onny5JycHPrKLZzBdHynIT4aI2B7dzCbzWiBGoxFfD7/hRde+Pjjj0mSHObAj5cUOPCkGZnmNJgsQqmqtVviHZ7/L7+L6fkt5df6sBBn/Pibzeajx+OBGsy+lDf+Am9XQk5uATCCDY3Nt9tn/NslEmlUTByE4+cfHBEVKxAIx1/s7UrQaDQgh83NK7zdPnj7yAjUtgg2BmQlX2qqbODJFBNLS4/cEuf8arUOCsSKo2frgo6VtfdKnVMproWOAKXSfxeUzT1e0UfI6dvxd4wARoCOAKY56Wh40HeTyVReXt7W1uYJMQcHB0dERHhCpGyNkT5HRpJkYmLi1KlTk5KSQAcAagnIfeV82i8iImLdunUGgyNX8AHjAiuySZI8f/78jBkz0tLSYM4UTPBcFS9bzzEc1zAE6BcdRVFisVggEERHRy9atAjEN4hrZ8dMGYoXtJIikUggEBw+fHjevHlCoRBNDrpKA0GfvpTL5X19fQ8++ODf/vY3Pp8vFotlMplGo3G53nTYKYT/xAh4CAIwesAiCZlMJhKJKioqpk+fXldXJ5VKVSqVJyutkZQTkj2TJLl69eqlS5fy+XyUaxzdTZz/COchpygO0xMQoC9QU6lUFEXBk8z+/fthOBpmbs+OhzeG9OzINKfeYOrhU3WtxI4DeV/7Xcwq72jomED6iiGYOKcZCoXyYOwRW47JoANNza0TUalEIoWsnAcPHVUqJzajqslkrrhcGRYRA2QnNySisKhkgoSqer3+4KGjvhxuUkr6RODmCWV29Eo3+mfGX7xWVNMrkWk8IWST2XK5vn9fbHF0UpVCrcfLNZzZ6VarNTm7aWtI7pm8VtbngnUmsLgu9iGAaU729aldEVEU9dprr/n4+Ni1N94JI+BSBOhCK6lUunnz5lmzZtXV1YlEIhBaabVaEFo5s5lms7m0tNRkMqlUDn7nGRbv999//9hjj1VVVYlEIplMplQqdTqd8+N1Jra4LpcjAHmekBOjRCIhCKKpqen++++vra1F7mesSTg3LF5IR1peXj579uysrCwkGXdVvMCjQGY7mUxWUFAwderU0NBQoVCIjDHZlC3V5ec/bgBGwH4E0CIJtVotl8vFYnFLS8tTTz21f/9+iUSiUCgQjWd/mazZc9jQWltbO2XKlPPnzwsEAli5BY80sHIL8y6s6XcciPMRgMTqJpNJr9drNBqFQgFPbqWlpQ8++OC3336LrCnYZMXhfJxvWePINKdaY7jaIsi73LUlOOcbTmZRTW8/FuLcEscxbWxpbQdS0D8wdIAvGFMZtz3IarWmpJ6F8q9U1tx2P8f9YLVa1Wp1YlLaDVknhxsVHdfb2++4Gm6UZDKZoJbog4cdXriHFMgXKf/ld/FQak1GcRshcfB0EGMxJCSqC0Xt20JzK6/xTGYrY9vJvoaJZZov9pz3PVQiU0xsNmL2QYcj8jQEMM3paT1+I16z2dzW1tbf7/hnJgYC+tJLLy1btoyBDcNNshMBs9lsNBohq5NAIFi3bt3ixYuRjEmlUun1erPZ7GQdwLVr15599lmKouyMwv7d6K5TBEGsWLHiueee6+vrAz4DxYsnBO2HFO85WgSQBAeuO6lUKhQKu7q6nnnmmV27dslkMrVazSb5IHKepMfb2Nj4zDPPbNy40eXxIh5FpVKRJBkTE3PvvfcWFhbSl3p4sivmaE9vvD9GwIEIDBNbSySS3t7elStXvvbaa2KxGCmoTCYT8BAOrJrhRQEy4H+uUqmkUumGDRueffbZ5ubmYVJOF1qCMxxD3DyMwKgQQAslwZoCHPjXrFnz/PPPX79+Ha3ZwmslR4XqHXcemeZUqPQVV/vOFbZu5l76xj/z8jUeKceT1HcE1d4drFZrfkGxn3+wL4cbfzrZsQZLfL4g5ECkLStn7BGj0XnJCI1GY3VNXcyQUNWXw+UEhGTn5MlkMntBsWM/q9WamZ3ry+H6B4Y6FjQ7KmfJLpRS9zXnYkTClZScpgGRgiVR2REGX6SISa76IbqwoUNkxUSnHYiNfxerdfBcQevWkJz0vAm0zh5/O3EJGAEmIIBpTib0ggvaIJFIvvvuu4GBARfU7fQqBwYGBAIHL+5zehCeWyEkqoS1yXK5vKOjY/Hixd9++y2aI1Or1U6WMVkslvLycovFIhaLHd4xw+Jtbm7++c9//sUXX7gwXofHiAt0CwSQEyNQayKRqK+v75133vnlL3+JVNRsotbok4MkSUK8Xl5eixcvlkqlSHLk5OUUcKrQl3pIJJKNGzfOnj2bx+OBwhuWPuBZS7e4rHAjWYkAGj2USiVJkgKB4B//+MesWbPa29tlMplKpdLpdEaj0TNpTuQKUF9f/9BDD/3v//4vn89HUk7k6OuSoZWVZyMOypMRgJcIg8Gg1WpBXE4QRG5u7tSpU/Pz8+HhDa1Rw8slHXWqjExzUkp9YVVP8qWmbwOzNwZkNXaK9AaTo6rG5QwODprM5qSUdEifeTHz0u0wgVswrOO0DH3MQx8T7QNbYPG0xWLJzMrZ7xfk5x/c3OyCTE8KhSL9zIUbsk7/4APhMQ2NzeO8bOkgXL5SBYV3dF43m80IBgQCwgHfoG95UukNpk2B2UHHyo6cqe3hU57D95nNlqKqno0BWTHJVXKV/pbg4I2ORUClMfiE55+8cK17wJHLHRzbSFwaRoAhCGCakyEd4exm8Pn8FStWEATh7IpdUV9OTk5BQYErasZ1OgABRPup1WqKourq6mbNmnXp0iWCICBHoFqtdrL/kkwme/bZZzMzMx0Q3k1FQLw6nU6tVstksuLi4gcffDAhIYEgCJIkwf7OyfHe1Ea8wSMQoBulovScmzdvnjx5cmdnJ/ucGJFiEi49SGq1cePGhx56qLGxkZ6e0/ndDwpvmLWUSCReXl7r168XCAR0hTdoxZzfNlwjRgAjQF8UIpPJhEJhdHT01KlTMzMzhy0KGecEpXtBTR9UKYoCTHJzc9HYBa4AMJHqUci4Vz/i1roRAsiaArIFgxWHQCB46aWXPvroI6lUKpfLYW2Bq0z43QhM+5s6Ms0pU2hzKrpOXWz4Nij726Dsjj6p2eI5hIj9KI5rT0IoCjkQBaRd/bXGm28owG4iXtM49DEYDHq9Xkf76PV6g8EAvwqFIk5AyD7fwLjDx1Uq9c1ljqvFdh/c2NRyKO4YhMYJCDl/IVMsloytMYjiBRza2zug2OxLuXQcAASEg8lkQrdpT1utNXIvWa2DW4Jz/A6VRCVWXufJPOqqVqr1WeWdu6MKrzQM6PTmkYHCv44fgZpmvk9E/qXyLoMRoz1+OHEJLEcA05ws7+DbhWexWBQKxdiekG5XJmO3Y9NaxnaNPQ0DkYRWq1UqlTKZLDk5ec6cOTweTygUokSVzhRJ1NTUaDSa3t5es3lCHjLo8ZIkmZSUNGXKlOvXr0O8IArBfIY9Zw7eZ5wI0J0YKYqCJE9xcXH33HNPZmYmsj5jzUzZLeM9fvz4jBkzLl68SFEUSrDn5FsnWuqh0WgoihKJRE888URUVJRAIIApS1c1bJwnGD4cI8AaBIbxeSKRqLi4eNKkSVFRUfSL1GKxOHn0cCHCiG6B5zeSJH/3u9/95je/GRgYEAqFkLVUq9UiNw7PQcaFnYKr9gQEYDgyGAzgWysWiwUCQWBg4P3339/a2ooeZrADhANPhpFpTgmlSc9rjk2p3hqSsyMsr49PYZtHB4KPiurp7fMPDPHlcCMiYxWKfzuIIoLTZDIZjUbg8zQajVqtVqlUSqVSoVBQlJyi5HK5QqlUqlQq9dDnZHzCnn3+e/cHVFyuQrpGVJ3TvlitVpVanV9Q5B8YCqxkWERMVXXtaBuABKwmk8lgMOh0OkIohAKjYw4rlUo54CBXKBQ2HAAErVar1+uNRiMiOz3qSeaOIAceK98fWxR8oryjV+pR17XVahXL1FGJVdwT5S3XxR4V+x3PCofvYDRZfogqjEmubrkucXjhuECMAPsQwDQn+/rUrojOnTv33nvv2bUr3gkj4DoE4M0EHM+USqVUKv3Xv/718ssvCwQCkUhEUZSTaT+VSrV69erPP/98giChx6tQKKRS6ZYtW5599lkUr1qt1ul0mOacIPxxsXQE4GxEaXGlUilBECUlJXffffeBAweA5gTrM9ZMT9O9YSHe2trayZMnR0dHD4vXmSHTGRSZTNbR0TF16tTa2lpwfVQoFOCHyRq+mX4S4u8YAbdAACg95K4vkUh4PN6MGTO+++47kFyDu75HTQ5aLBaUaFwul3d1dc2ePfv06dPwPIO8fHFWTrc4w3Ej3QiBmx/ehEJhfn7+vHnz9u3bh0z4YYWBG8XF5KaOTHOKSHVC5rUD8Zd3hOX+EF0wIFIyORa3bltBYQkk6Tx+4rRWq4VrAexYwclZrVaTlLypayC7si0kteLzAxlv70pavTtt1c7UVbtS1+xO//2+c5+FZfkmlB3PvLJtf5j3D34HwqJVQ8ZRiOdz5isA6g6r1dre0Xn4yAlOgI3K9eVwE5PTBIQQ7XC7LwAC3JGB5dVoNCqVii+SVjb37OXcKO2d3Ulrdqd7+aSs2Z2+dnf6nzjnvonJjTxflVfT0dojkCuUiO90IeN7uxhduP1weu3eg0WcwyVtPRJPo/qMRktRdc+WkJzErEaV1uDCXmB31RartbaF/zUnM7O0w2z2KM0wuzsWRzeBCGCacwLBZVrRRqOxv79fq7UlvW9sbDx+/DjTWjhB7fn000+/+uqrCSocFzuhCCB9lVqtVigUEonkueee+/TTT8HxTC6XI8ezCW0GFM7n8zuHPiRJTlB1aKpUrVbL5XKJRPLmm29+8sknBEGIxWK5XK7RaPR6/QQJSScoKFysmyIAL8Ymkwmsz0iSFAqF/f39M2bM+Oqrr0iSRIsMWJOyBWhOerx8Pv+nP/3ppk2bwHkSFhk4maugK7ylUmlsbOzjjz/e2dkJiTkhaSiWZbjpVYabzRoEhl2nQqHQy8vr7bffRtcp3LtZM1qO3HHyx5e3AAAgAElEQVTo9qHX68EG3Nvb+8knn2xqakKJxrEMfWQMb/6VnlMNdDkj/4v2v7kot9iC2o+m6dkdr6M6BeAym806nQ4JOvv6+pYsWfL666/39fWhtwm8aNJRmI9McxIS1ZH0Ws7hkt1RBf6HS/liTHM6Cvjh5Wi12rjDx3053P1+QVnZuaBBBPmmWq2WkrLMK61fx+S8zzm3amfKSu/k1TvTlm9PXOmdtGxbgtfQlpU7klbtTF2xPXHVztQ13gnrd8YHn84RkzKNRqPT6QwGA1qa4xKyU6PRlJRVAJXry+EeCI8uKCoxGI3DgRj6G42cQPTCSiylUkmIpLEXqz8NzfzDvjMb90YCabre58Ty7YkrIPyhf718Urx8UlbvSv0g4MJ3h/KK6jqUSiVMRBiNRkx2AuZpuc27Igt2RuQ3d3miolFKadLyWvYfKq5vF5pMllueh3jjOBFQag3+R8oCjpa1dmMp5zixxId7CgKY5vSUnh4cHNRqtStWrLjnnnsWLFiwZMmSP/3pT99//31kZGR2drbxNo9Hbo3O66+/ftdNn6VLl7p1UJ7WeET7qVQqiqL6+vomT54cGBgI02TOzA5oMpn++c9/Pv/883K5fOJ6YVi8QqFwzpw5oaGhKF7k8DZxbcAlYwQQAsguFWbKIF2ll5fX2rVrRSIRPV2lS972UTsd9QXpJlUqFUmSEO8HH3ywevVqEEBARisX0pwSiWTDhg1vvPFGT08PSsyJFd6OOgFwORiBMSMANCc9H56fn9/TTz8tEokgrzZaJDHmKtzoQHiYATMApVLJ4/EeffTR999/v7+/H2TosD4DJxofVZ8C7QeiHJi2hgRyw/41DX3QHLT73p09Ld5RnQwj7IxoTlhkAIsmCYIIDw+fP39+WVmZTCbD3jAjADiGn0amOfliZXRS1Z6Ywj0xhcHHywmJagxV4EPsREChUIZHHtznG+gfGNra1g7cnpSkSq9d/2dk9krvpBXbk7x2pq70Tl629bSN2NueuGpX2sodScDqrfRJGSI+k1d6J3v52HjQFTuSPvA/d+Fyq0Asg9dwxHTa2SSH78YXECdOJiCy80R8ooAQ3rwGGoYCZFGrVqv7BeJTefXr959ZPsTjevmkfLwrbq9f8C7f0A27bTSnl08KMJ1Aea70ToY/YfvGg7mVLX0KpRIYX7jLuO8txiH9klPR5RORvzUkp6FD5GlqzsHBQYvF2nJd7BdX4hOR39YtseCsww45q/5vIdc6hDvC8opqe0i5Ta2EPxgBjMAdEcA05x0hYtUOsbGxNxF/d3322WespDmTkpKmTp1Kj/f+++8/f/48q3qU1cHABAeIyYBlycnJmTZt2qlTpwiCkEqlKpUKsQ4TioTFYqmsrOzv76+rq5u4p3n0NgLzpDKZrLKyctq0aenp6UKhEOIFd0oPkYNMaJ/iwu1BAKaqDQaDWq2mKAoyPO3bt++ZZ54hCAIEAQaDwcm0nz0tH9s+iOakxxsSEvLkk09KJBKI1/nz8sj4ERTtjz322IcffjgwMAAKb2cq2seGKj4KI+AJCNBHD5lMJhKJioqKpk+fDo8rcrkcHlc8xFwalshAxgGKos6ePTtlypTY2FiwpgCWBTzP8fPMHa8OxPbBOWY0GiGtmlarhfRykEEN/tVoNFqtVqfToWxqaEZ+4h5f7xjCqHbwtHhHBY6dO8MLBVpnIJPJCIK4fv36ww8/zOVywZ0CvUC5y4lhZ+wu2W1kmnNApAg7fWVnZH7AkdLo5CqxTO2SRnpIpVar9VpDk59/8J59/oHcsO6enh4esetk8e/23nBkBerOy8ZiptgUnDuSV+2yaToRsQc/rdhhk3i++X38ih1JK3ckrd2d9nVMbm1bP8gZwcDWhdeORqOtra0PORAFWkxuSEROboHJZIJehhEAPZZoNBqFQlFY2/FFxKXVO1NsDr07U21xeSe/tTPxTz+cWrfj5JqdNkZz+baEFTuShn6y8b62LdsT3/w+ftnW0yuGmOD1vuf2nS7jCaXDGF8XQuHaE7u0rm9HWN6mgKyrrYTJ7Iksn8lkKaru3hqSc+riNbX21sJi1/aRW9eu05tDTlYcO3e1e0Bm8UAi3a07DzfedQhgmtN12LuiZqVSOWvWLDrz9/TTT7OS4xwcHCRJcvHixfRgX3zxRYqiXAE8rnMsCKC3dOQhGRoaOmfOnPz8fFADgGcmsA5jqcDuY+Li4h577LHW1la7jxjLjvR4FQoFSZIxMTEPP/xwUVGRUCiERFYwb4WnBceCLz5m9Aigc1Kr1SJBQFFR0axZs/r7+yFdJaR3Ysf7LVIgaTQaerxTpkzh8XiI1nUyUWEymUCTQVFUS0vLpEmTtm/fDtyJMxXtoz998BEYAQ9CYBixJxaLOzs7Z8+enZeXR18k4eTRwyUdgG4c6OFt27Zt999/f1tbGxq4kDUFfp65XR8B2wdggkBTr9drtVpbUgOFoptH1Lf3ZV5pO5pVG5BYtje+yDexLCjlcmxm7bmyltq2vi6ekFL822DQtVnlbhfjsO0QLEzNw43vRrxyRc+A8Gp7X9aVtqPZtQGJpbZ4k8oDUypiL9acK2upae3r7BfK5P/OHucW8Q4L37F/IjcOtGyLIIi//OUvS5YsGbZGih3Pb45Fb7SljUxz8oSK4JMV28NyD8RXHDtbS6l0oy0f728PAmiFhMFgSEs/t3uP387d+3YHH/ooKGPtnrOrdqXZck/uTFm+LXHVrtTVu9LX/nBmpY+N81u37xwoOFcNqTyB8hzKUnlm+RDTabO0HeL81u1OPV/RIqNs65bg9ce1Cz1FIvHxE6cDgkKB7IyMPtTT0wsiS3oaDqFYklhQ/y4nA1JvrtqZCmrO1UOYrB5ied/ae+5HgjMZSFDAwYaSd/KbW04t3XIKGOKV3sn/G5Hd0s1H8zCeLOusaRZsP5D3L7+L1c0Cg9HsmcOpSmNIz2/5jnvpfEGrRneDa7fnmsX7jIyAdXCwoUO0KSCrsKpbb8DAjowW/hUj8G8EMM35byw85Nu//vUvxPxNnTo1KSmJxYEnJiaiYO+66660tDQWB8u+0NBMmVarBdrv888/f+SRR1paWoD2AxkTLFSfuPDb2tpEIlF2drbBMLHJ1RHFApSSVCr94osvnnrqqYaGBpFIBJQSVj9MXEfjkm9GYNg1KJVKCYLo7e2dNWtWUVERot5Zk96Jfg2CdJIgiPr6+ocffvjMmTP0a9Bp77FophIU7VlZWffcc8+hQ4cIgkDpQp2w1OPmcwNvwQhgBOgIIO07WhTS09OzePHi3bt3g7+0Wq1Gs6L0A9n3HW4cBoMBHt6kUukrr7zy0UcfCQQCeHjDjrV37HQ0Xw9T1UBwKpVKmUxWfLVzz6mS/wnOePuH9JXeQ86K3snLtyXYJqC327LKDSWcS/ko6OLmuPwzZc2yH9PYo2xqiEC9YzOcuQOcNsPipSiq+GrnD/Elfw3JeHvPjXiH3CYTvHySIX/eSu/kNbtSPgzK+D4uP72shaIU8HbA8HidgC1YQWi1WqVSCc9vJ0+enD59enl5OTy/ISdtpz3SOCFql1QxMs3ZR8j94ko2BWaFn74cn1GPBU8T1EeQuxdcoEhSdiju2Jc7Q3+3yzYqQrrNG6as2xOXbT29dMupZdsSlm9PWOmdsnpXmi0T524bn7dyR/KKIafWFT/62Q7JOhOXb0tYti1hhXfyut2phzJr6A4NrmU6jUZjfX0jNyQCyTrPX8iUySgQ/dtM4wXC4LQrb+1OW70rbaV3MhKtLt+euHTLqaVDzr3LtiWs3pUGJOiN28oQrQtqTts9ZXe6LfwdSSDrXOmd/D7nbHF9F9zNPXlZSVOXyDs87yu/ixX1/Uq13mT2xPyUZotFRKoiEyp/iC6sbuJ7pKh1QkY1jc4YmVgVeLSsV0BhJeeEQIwLZSkCmOZkacfePqzq6upp06YB+bd27VrkbnH7I9z7l5dffhmCff311907Es9rPZo0BGWVUChcvXr1008/DaZnFEVpNBqDwTCh53Bra+v8+fNzcnKcAD89XjAI/e1vf/vrX/+6v78fJkmdEK8TwsRVuBECiOZEohyhUMjj8Z5++umAgACSJGEl70QvNXAaYhAvTJEolUqSJIVCYWtr6y9+8Yvt27c7f1pwGP4ymSw2Nvbuu+/OyckhCGJYe5yGEq5oBAQQfzDaLyOU6fKfbo4FJhNv+S99Z5e33MkNgPSciNvj8XheXl6rV68Wi8Vg0wpPLKzXL8LDDGREk8vl7e3t06ZNKyoqEggEiPHV6/WerP+445lJ5/y0Wq0tXbSMqmzq/ioqe2jeOclmtDhkt7h8a8Ly7TaPQRAb3Ugvt8NGAcJs9fsB57OrOkhKQZcfuXZe/pbhQ85Ro9Go0+nUarWMoqpber6KyoJ4V9jiTV3pnbQM4t2euHKnzVBxKF4bs/vveP3PZ1b+O154PmFgvLcEwbEbUcJgSDcuFAqrqqp++tOfbtq0SSqVIp7GM8FxLNQj05w9fGpXVMGX+y9EJlQmZjXqsCjHsej/WBqMIZBogyTJs0V1a3elePmkLN+WAApOIPbe/D7+ze/jV+64QX9Cks5l2xJWArE3xHHahtOhRJVePqkrtiet9Em27TD005DuM+lgRjVJySGVDBNMGnR6fUrqGf/AG7LOiMjYtrYOiqJEYknYmcu2m4V38tKtp718bF+A5f3Nt8dhfQzQwGBOCzEOyTptdxDQd4K408snxQbCkKUtcKXr951p7OKpVCq0CNsDF0x09JE7I/K/8r1YUtsrpdQGo/nH89Hj/m/oFPoeKo5OquwnPMg8D731wDuR+aYPuHHY/y8qwGKxXGsTfMO52Not0huMqCKPO7FwwBiB0SOAac7RY+bmR0il0hdeeOGuu+76r//6L4Ig3DyaOzc/NTV12rRp999//8WLF++8N96DSQjQX1coiuru7n7ppZc2bNgANKdCcWPKZuJoTqlUKpPJzp8/7xyvY/DpgtczmUzW3d29ePHid999VygUSiQSiNdoNE5cvA7sfPQoNuwLfVp82E9u/Wp0cyywZeR4mR8yREHPjysSiQYGBlasWPHHP/5xWHonB54/LiwKLkOdTgfqSZFI1N3dvWzZslWrVg1TTzqh+xDNiRTtO3fuvOuuu1pbW0UiET2/nRMa48JOcaOq0VCAXnfRm63xxw9sgfdY2I3J3UcfysxmMzQeQjHc9EGhobiYHJrDzys0esAiCYIgPvnkk/nz56Ps2mgq0OFVM6rAYThs2bLl6aef7urqAhzQwwwTpoYZhRtqDDz9mkwmUMRSFNXVx99/unj9/jNePimrfFJW706DuWYgMlf4JHt5D83mb09csSMRMq6t9LZthPRyXt6Jm2Lzqlv7kAkKozhmGC5QvAqFoqufv+908bv7z3r52PLnrdmdvtIb0sXZ1KsrbfEmew35LiKXRVu8QyyFzV5yR8LGg7k1bf1oJRaj4kUdPdFf0GuFRqOB1ZM8Hm/58uUvvPBCb28vGFQgzetEN4bd5d+O5rRarXqjub1Xuiuy4J/7M+LSa88WtHqm3muiTwA422F5jUwmK6lre3dv6tKtp1fvTh8yZU1atSvVa0jLuGxbwrKtNs5y1dBSCRvtN0Rhgq5xaGCx0aIgfISRB1i9oeH09NBKi8Tf7T2bmF+PXFthrYBrH3gMBmNzS+vBQ0dB1ukfGJqYnBZ0Knf51tMrdyS9tddmzLtqZ6qN6RxKO4q8eWHwhF+Xb09EhC76AsOsbcXJkKDTxhZvPb1sW8Kqnanvc85VNXejOwsTcJjoM21Y+X0C+e6own/6ZuRevs4j5FoPtmxVagzFNT1bQnLS85rlSu0woNz9T/R+B+/m8NwCT2vo5chkMv34qmfLoX7Lj572ueUOqASNVh+bXHUopUqvN5pMN9hP+usVvUnuDi9uP0bAsQhgmtOxeLpHaRs3brzvvvvi4+Pdo7njayVJkr/85S9ffvlluVw+vpLw0c5GAL2xAN/Q2Nj45JNP+vn5IdoPLaKciJYZjcZf/epXwcHBE1H4Lcukx0uSZG1t7eOPP+7j44NmBic03ls2acwb0YMXev6DpzM04w/+NjDxhJ7Yxlydyw8cxgSghXgjxOsWy+chLph8ROmd+Hz+J5988sQTT9DZd9bok5BJLMQrEon4fP6GDRt+8pOfiMViNEHvnO6DVymDwQCKdrFY/Omnny5YsABEUZArFERRrp1bcfkFyIQGIPUVmC4ajbZXXLCa1Gq1Go1GbfuoNEMfrVar0+ng/RZGCWYOg2hkg3d4FBGEo1Sq5AqlXKFUKFUKpUqtVkNckEPaA03MkIoRLZLYsWPHpEmTWlpapFIp3amVCWfsBLUBQDAajRqNRqFQCIXChx9++IMPPhgYGIDFGR6u/BgZdjSMgKhRpVJJpWRzR+9nBzJX705b88OZVbvSVu9KX+mTsnx78qpdqWt2D6WX805etStt7Q9nl29LXOGdvMon1TYrvT3R5tC4M3X1zrSlW0+/ufXU7/ek5dd0UPIbWeVA5gjX+Mitmrhfh8UL3qpt3f2fH8i0JdL7MV5bOr3tSbbYd6e/ZUunB/GeWTZERazamYbiXbXTlnJv6ZZTb2499bsf0vLrOmWUHFmheNoUPDKJQU7aQqEwJCTk4YcfLi0tBUMOD1l7MXHnMJR8O5rTbLaqNIamTpFPuE3vdTLjWnZ5J/YedGx3oGEEnpYpimru7PmT39nl2xKWbrX5rAJJOSRkTEJblg1JG1fvTrfJPYdGy1W70pZtPf3m9/HLtp1e6Z2EEnl6+dh0kJC80yYfH1JDrt6Ztu6H1KbOfuTa6pz3ghGgAxwUSmVySnpA0AEgO/f6Bf9u+3HgKcGzF0SZ4FIL6TZX7Ux9a89ZAAHIXZuZ7ZZTy7cnQvJOiN0m9xxKz4loUVDEbozJEYklYMuPbisjtJNlP/Elyj0xhf/cn5FR0t7eK1Wp9SwL0P5wrNbBHr4sLq1mT3RBU5eIZes50AsRmtpCpCa8zSH6EhwpFAoFRVESiUQkEgkEgoGBAR6P19/f3zf06R369PX19ff383i8gYEBPp8PM5wkSSoUCpVaXVzZuTP8Ul0LD8oH+nPYclJPe6qx/2zEe3o4Apjm9MQT4OrVq6tXr1YqlR4SfHx8PLtTkLK1H4H2A1kVSZKVlZVz587NyMgQiURoxnCC3DKBzMjOzu7u7nYavChemOgpLCx88MEHT506BfGiNelM5pPQIyAiNY1GIzz2aYc+MMVPn+jX6/UGgwFUqm633P6W8UI2lBHiRc+pKF6Gc1SQ3gmYNolEQhDE9u3b77nnnt7eXmDaIOEcw6Ow80JGRAWidQmC2Lx586xZs1paWpwcL5qjhMYQBLFmzZq1a9eCoh0c59gEvp19xKjdYBCAnoI3Xr1eD6+4SqWSEg/IWgsllSclRaHSPF/xpb2SXI60JIKsS6a6LispqUplIz4RL4jeV117NdFHNghKp9NpNBqbSFFG1bT2JeQ3BKVc/iG+aMeRvJ3Hi344Vbr3VGlAyuXojJqcms4+gW3CC3hcJBVy+QygE04bNHqoVCrQTkVHR99zzz25ubn0RSFmM5s9zYaNWjk5OZMmTQoNDUWLM+g5Sl17njvhlBhtFYAejeOUFtS0fRSUsWZX2ppd6eAcuNJ7yJ92SHOzbJtt8n35dpuqBtLL2fKrDSXsHGL+klZ4g71t6vLtNn3Smp0pxy/VkbIbSR/QQ8ho2+mo/enxKpVKiURSUNP+F24minfljsSVO5K8dtoMJG0aLBSvje5NW7XLRmp6+dgknjCPP/Svzd7WZlO5PXG1T/LR7FrEdLo8XkfhZn85sOwG5R0QiUQtLS0zZ86MjY2FQQktoMQXo/2o3rzn7WhOo8lCyrV1rQLI3peU3VRS23fz4XjLeBAAes9kMgGdLxKJ/BNLhhSctkFg1S7bMojfbj5pS8a5NeHNLfGQlfMGc7njBoXpZVPJpw8RojcWiNgIv20Jv9180nbs1lM2Jb1t1Uiq185U20IKGxua8Pew7Os8QqVSIUd6F15HwL6AKVRNbV1kdJwvh/vtvogVW095DYk4/z97bwLfVJm9jyObqLiioqijjs7o6N9xwZ/zVRDapntBcQXHZZwZxxlRWQS6JG26sAoIspVSttI1TdONHVpaoHSh0Ja2dN/bJDf7nu6U/+e8J7zGlhbapmkp6YcPn+Tm5uaec+9973vPc57ncfCKslsRwfKONqG5hJHp4B2NSDAs94lxD0gwvSUMVxxaHbyiZi8Pt/eMdLqm9OtGsoryv65cwbbk8+glhFM+nEMO5pjeQt+VqQyrdp3+YfXh5PSyy9VSrf72hTmvXr3a1dVVWS/fdCDzl7DMRon2FjqO3XaVPgddF9TEB70W8mc0GqVSaX5+/tGjR/fu3bt69eoffvjh73//+7x585ydnWfOnPnGG2+8+OKLf/zjH//whz888cQTjz322MMPP/zggw9OmTJl6tSp06ZNe+qpp5599tk///nPr7322jvvvMNisebOnTt//nyW2yfuH/170+atiYmJ2dnZDQ0NRqMRfxSrZ1hAw4sOpze0ZXYYB6JumbS9tWVgWDJggzmHJe3D/6PNzaNNSWD4c2rbA0tngJrKIOx3+vTp8ePHV1dXS6XSoe5B/v7779977z1LB3SD7dFihFarVSgUycnJkyZNOn/+PNp6mRMgbrCh4fiYTgcp6aelpaW5udmg12tUCrVcrGq4LM+Pl5zZLju1QZq6QX5ut6L4qFpUqVPJ9FqouGFNnBKARnJNHIOl7cNIdsR49Xq9Vq3EeBUFSdKzO6Sp66WpG+UZoXISr1Yp1WvVyHnqBu6O2CkpnplIzZHL5RKJZMuWLWPHjs3OzkbRs9GEtNEavTmsu2XLlnvuuefMmTPm8Vqh4QB3prW1FWFOkUg0ffp0NpvNMIxcLscW8tGU/OEYugb7m3QcwJYOo9Go1+k0Sqm8/KwkYZF4x4y+/oXYSU4EKRsu6zQqCnYOeyEexzdsVaFBaTRaISOLSs3/csMhAE6I8hv+D23+HIAZUDHS1U/g7i8IiDhbVitSa7QYFx3Y6eA52LyPyO/T0QMvWLlcnpycPHbs2IiICJlMZt6XMCJ33zI7Za5LoVKpVq1aNXbs2PPnz1MdDqPReBtWQm8yuebZUyqV5bVN89cddPWPR2c4sKLkxrG8Yxy8ocjuQIrOLn4CF+K7xvKJQTM5AvWBdC2wlDg8Vz+Bi5+A+HfyWT7R7ty4g1mlGuL7QLsQbnL3LL4anfeieeTlyvq/rz/k6h/v4hcHpCt2rIu/AJAJEq+9VxTJAMAMTr6xGK8zl1BXiVQvIX3yXAkawfKBDDh4R7ty4w5nlyGHtb29fSTPLS2e3qtXr+IZ1dbWhhRzuVwuFovd3Nw+/vhjuVyuVsN0FBGaETsFHYq0WHybvcGcbe2dYrkup6iJsyV10dojiWllBeWj3zDI4unte4P0zqvX6+VyeW5xpUdAPLLYnf1AzRt7IACxI3xEc16mC1eARpU47BADSyCA4vjp5BvrRHjktJHCDUdjGISj3fyBBBmRWqjRgEknznOG8Toy75YWi5mgiPRvV+7xYIMBJ1pygp458eZEjPY3eXPCZ7X3jESTTkpvxRWgawTUbiGTOOsDSNgfRAIQKvYITPQITMy5XKvT6W5D122lrmXN7jPfrz4cn1pyqZxR61r6Pl1H/ad6Y9vB9LLlv5wIP1SoNbQN4xXRr1TTxxNECulDENXmwTqPVquVy+Uikej8+fNbt279/PPPn3/++bFjx44fP/7OO++86667Jk+e/MADDzz33HMzZ8784IMPvv32W19f361bt4aFhfF4vMTExGPHjqWlpZ07dy49Pf348ePJycl8Pj8iImLnzp1BQUE//PDDp59+am9v/+wf/3T3PfdOnjz57rvvvvPOOydMmDB27NipU6fOmTNn5cqVKSkpDQ0N+GSBz1ndaAMU9cS4+pUK28q2DIyCDNhgzlFwEG0h2DIwOjOAMCea0ikUirCwsKlTpyIhQKVSYe8k3sUtGH9LS4tWqz1L/iy42ZvZFJZ7MF65XL5///677rqrqakJYU5zAsTNbM1q6+D8CZvdqLUS0JjUamV1ruxssCT+e/HeOdev9e+cxRz4SHpwhTw7TN1UptfpmpubkdhEa/0jbX5sHi9iAEg4VqvVipoL8oxgSfwPzL651483+F3mwIfS5OXy7P3qpjLdrRDv1atX6ZmJDQcSiSQmJmbcuHHx8fF4JaLo2Ug7UgO7BLBc0t7eTkceiUQiEAjuvPNOgUCAMCd9jB/YT9z8t/Cyam1t1el0KpWqqanpySefjImJQSHr20QD8+bTZeU1KcBJxz3oUBHXS8+FMtFfXX8EuC7qGWInif9RUZCgVSt7goLWD4peAuhxpdPpqhuYnYdyv9xwECt9plKXDzAesApmXixz5vCdfGNdfOPc/eN8wk6n5VdrtTrzLhZaSrByaFb4OTwlcPTQaDQKhSI3N/eOO+7YsGGDVCpFrsNoGi17ppSePDh+ymSyjz766NVXXxWJRLRBDdljVmgT6bl7I3kJnjwdHR2tra2I+V0sqf5sbRJaoIF8IjFUI85qfLBPA+ZNNBKM8MIE2I8TyyIijdfq1FCsR7dOqNeT2r0TO9adyz+UVarVaoexNN8tXoVCkV9S/eWG5N/iJbZ5NF4sqUN5nSvAeNElDuJl80i8MQTKBbVeMiJdi5cT6+IbezCzRHMt3tsK6cRZhPmgxDDMli1bpkyZ0tjYaO7wbbskBzM+9AZztrZ1NDKacwUN7C0pi9YeTU4vK62VD+aHbN/tlgF60zEajUqlsqa+8dutR90DEgCB8+G5cIGC6ezLd+Oa5L5dwJIT+J3g8suJdQ+Id2JDzwSo0UJ3RbTdighoIvGKQnlbBPYo8HkNLwRyOX7ls3VJjT4gmUYAACAASURBVELx8PYi47Sqs7MTbx8KheLMxdJPfz4ErR5EZhYtOV384jwCEzEh+D/mAWFLFhHmRVDTzjMS+a9UrRfGVSLtiz1tmAc070QgOTDitEyuMBgMtI2p25EarW/VehPMyT95+UKJUKW93WHOq1evqnUtSWmlvttSz+TVt7WPaP0S+khC0U0qRYuUzebmZr1eX1BQEBUVxWazP/nkk9dff/3++++fPHnySy+95Obm9t///nfVqlWhoaECgSAtLa2goKChoUEikTBmf+Kb+6PfEArFgdsP7whPuVRYdPbs2eTk5P37969fv37RokXz5s174403Hn744bvuuuuFF17w8PBYvHhxaGjouXPnFAqFOdezZzP96CjUjNaRxBaXZTNggzktm8+RvjVaoKdDOfWQ6/YCV8BHwVt3TOwWL5Ud6BYsbXi51eMd6edfP/cPpTJRgkYmk3E4nDfffFMsFsvlcnwyHwoa0549e55++mmpVNrPnbXA6rRWjmJ3AQEBL7zwAsZrziEbadcjfbjq6OhAYUOtRiNvKJckLu5HoX/HDCbEXpLys0Yp1ev12F1OkU4LJNdym6DYBsrKGQwGrUajaCiTJCztZ7x2stSf1XIRyhFTUsUIrDTRBmGsvUokkrS0tPHjx2/fvl2lUmH37hDJR1vuuPVjSzRehHWlUml2dvb48eNDQkLMYV0rHKlue1JfXz9x4sSioiIEDAwGA/YEWGFP+pG+22PVbuMAEGWUSqYsi9n3fr/GAfOVGd6/FE0V2P2Adzcrl+NpUIi1GAwGlUp9qbz+s3XJRAkzztVfgLKZWPIzoZ6+QJUAU0AOKGQCxokt/xweiKGxYzbGZWvMaJ04vRxpNzJLnbZXrlxpa2tDkE+pVDY1NY0ZM2bFihUIc+I129HRMYrDpyLnarVaLBY/99xzGzZsoDMZBPIt3qBmqcM3jNvBJxT0llMqlY2NTZy9qc4AW4KQIFxr7Bi4uEC+FRY6c/gsosvq4idwDRC4+IK9HNAfSaXe3hvkGZ39Yt39E50JmcmZy3fwIvZyHL6LL//LDQdLqhvNS/NWPidxHEB9RaVSWVvf4L3npLMvhObgbYqXyNUKnNhAysR4WT480I0MiKdUcvCZI86jEK8vxAtcT6CBxpni9cV4kytqTfGOzLnlEJ17FE5G3VqVSiWVSlNTUx988MHY2Fh0AMEpt20iMZhD0BvM2dLWUSdUn7lY50NgzoNnymqFysH8kO273TKA8+S2tjatVisWi5PPFLgRFWsH7yhHMh66ByTMXZlMhgWYkziyeXaekfaeUYjzYUeIibsJiqxxbkQeHKVunX1h8LFbHj5jyV4HL9B6tfOMnL08nOUd7RaQ8N6qgx4BgBoGJ+eoVKDJQWdu3XZyqN/Sy5xM21RCoXADLx0BS4pEzl11EAVp8Z7C8ol596cwJ04s8FOJzjkluToB+guNNahM6+wL9xoH7+iZS/a9u+wAJJAI+c5eHu7iFzcnKGnuymRXrmDeysTq+iZKbLXy9HWoM9zH9rX6NmRzRh8ryipsVGiMfax8+3zUyGjX7j27bOPxk1nVHZ1dIzZwWitGNTLkbiJxU6fTFRUVeXt7P/HEE3fccce4ceMmTpw4ffp0X1/fjIwMqVQqIX+ITXbDMUWD+4s9lL0m+EjWxRK6WYqA4o9KpdKioqLNmzc7OTlNmjRp3LhxY8eOve+++7766qv09HQsG7a0tFBLFFrrtvJMb8Qed9uOjfoM2GDOUX+ITQHiIG5ew8JeFfQ0bmtrQ/88+haVN27dMbFf8dJul1s33lF2HlPkDMuFCPstWLDg/fffR7XGbg4QlgqfYZjCwsJt27ZZ3zqrq6sLYU6j0Yjx/utf/3J2dmYYRqFQoCPgCJTbok9WWJsD/oqwWpK2Sbzbzbx8f/OvmfCPZTnhGqWMQjidnZ14PljqKA9mO9g1TI+URqORC6uZU5tFe9xvPkbzNSHe7DCNQoLFXwp2jqhpKAXbUPRMKpUWFxdPmDDBz89PqVSOPk6hebxKpVIqldbV1Y0bN2716tU0XuvAulS4G5lhGRkZ9913X1NTkznMaZ09GcxVMyq/250iwzQy6VvFoY7mV/cAXjNhH8nyBOa0TquViuj8EG+7Op1OKpPvO573XlCCe0AC8cADMzxs5CdGgLDQicP3CEykeKc5CAqv2TyoDPpE/7DjRF5FE3WYHlGjumXPz66uLuyAQQa2RCJ55plnvv76a4ZhsEkCuYwjaoS3YAZw8ESdbZVKde7cuXvvvffy5cs4c0PX89uN6nEz6cWrj1LuGIZJOJ3vERDvcs1jEmvx9p5RLB9APQnTCK4s0knAc/Hls7xjwKHTT+DqHw+2lITZiWK2jmyTvRzLJxo1CZEiuTrqjHlp3prnJJ06Njc3q9VqhmGSTufPDTTFe42dySPKihAv2OlB4L/FS+AKcCT9LV42zwVoW7GOPjGzSRWeBYq10JmBTCZu2CmlEqCI2+0MxIkr0rzw+eLy5csvv/zyF198gfactPngZs5V2zrXzUBvMKexpb2iXp6SU+29+eTidUdPZlUzcv11t2BbOLAMUL0ZpVLZ0NCwKjIdZatxWgIzFl8gdII5sWmIAMdNZ04sonowS/GOdvHjO5HGLBNR3hsgQDSedOLwnIEAKnAiyvyI+ZHvAkCIjsjvBwoSD584cfLUqbQzp89knDmbmXEuy5r/zmZknjl7Li397ImTqYcOH+ULkuavTUSuv4nET+BMoPtfE7Alps7QnYZ5QAAYu0YgCWCEHGPvGTlr2QFg2HtHYxKQuEl8T016HpgE6ITzi9skyFQoFBTuteY9ZWAnj0W+ZWhu/3lvxverDocfunTmYp1MZYM5Ia8dnVcuV0nX7c3YwTtf2aAYUTgnzkAo5wdL4sjd1Ol0ubm5v/7664IFC/785z9Pnjz59ddf/+c//7l58+YjR45UVFSYg5rXhTIpMDngF+VV9ZxNSYdOXayqacCN9PwhsViMeyKRSBobG9PT00NDQxctWjRr1qwpU6Y88cQTHh4egYGBqampKpWqN7zzNrlCLXKZ2zZyy2XABnPecodsIDtMR3Nqm9fa2trc3Gw0Gg0Gg/73fwaDoZn8oca3uaPSQH57OL5zw3h1Op1er8f/MV7k+KOT823V5zscx+fGv2kOcyLsJ5VK33777f/973+o1ogeVwj73XhzN7fGuXPnpkyZkpGRcXOrW3gthDlpcVAqlbq4uPz73/+WSCRKpXIo4h1kAPQYYUkXeX5MTYk48jNx8MwB1PfNvjJTkrBILm5AVtMIQf6uG6+wrkIc+bnoukKU/Vg4U5KwRC4RUrxwpA1B3SrXMplMKBROmjTpu+++UygUKHxn2YtxkCfnIL9O46Wwrlgsfuyxx5YuXYrUB6uJLtLyDQDqRMj62WefFQqFMplsJDO8B5n/kf/1bhinVCoVHeKIdwxy3Lvm4rlztjQ7HAEhqzEDKOpA5ZplMtkmQbZHYCLUsALiQYqWE+vqS5yZOCCY6QiwCtS53AISXP2AX4UCblg1A/9ODrh1unLjgUzAif10TWJlPZDXKQV5VD5gU5hTr9er1WqJROLs7Dx37lyxWIye4lYbPYblOqKdGTglWLx48ZtvvtnY2IgzGbzHYWfGqDz6A845bXRDb7mSypp5aw65EHyOuEsCUOfIgcsNYTx7r0h87UJ4S0A5IkxNN3+BSUvQ2yTcCvgox8TydIarEqRc3bjx4G3pHXM6D+jjKF1rzSOCwFtbW5tOp5PL5ZU1dZ+sP4x4JI3XCeMFpni0nVekow+ADdfi5Tt4RbHYPKytE+CBxAvepQIQ6WXDC2eOKV53/wQnX76jd8yx7JJhiXfAJ4ZFvkizDeojxFdMLBbPmzfvxRdfrK2tpbQP7D6xyC/ehhvpDeY0GNuKKiVHzlZ4bjqx5OejZ/MaNLe9dZ8FTw/zc1sqlVZVVX2+HtT1YZwk4tUwUPhEIxgJXMwVESyfGCQpAkecDCksUOAHtiJ+itRGVHN1D0hwD0wkehWwAkKexN4Sxk/klDsAdT76f+yNfv6rAoLWrly9ftWaDWvW/WLNf6vXbly5en3Qqp/9uCu92dxvvddTR1KaB0rcBFVeryhzoVpAN4k2gIN3tL1XlAO6IKMMACF6zglKwlYbB68onPghVRT9j0158Ipy8eU1CsXUodOa9xQLnlT93VRLa8eG/ecWrjq0LyH/5LkaRq4fUZBef8Ox4PpXuq4WV0r9tqX+vC/jcpXMglse2KawknNddBM7rqKjo1977bUJEyaMGzfutdde27hxY3l5eVNT03WxRlzIMNKqGmFxWX16dvnBtMtxJy7tT7ywK+785ohzq0LS1+/LYG9JWb/vHHtbyprdZ9buOfvzvozVu8/siM7ZEZMdc7Qw/njx6fPVeZcbiiuaKmqZukYJI5ElpxaExp69VFIjlcqk5M9cApeip+bYp/nC2trayMhIV1fXO++8c/z48dOmTVu9erVYLDYajdfFO63WTTuwo2b7li0DA8uADeYcWN5ujW/R0ZzS8FtaWgwGg06n00ibFCWp8sw9kmP+TNxCJupL8YFPmIgFTMw/JMnLZKnrFXl8Ve0FvRb6Xqmp0giXGusWb1tbG0poQryyJnlJqhTiDWAEEC9z4FMS79eSpJ+kKesUF2PVNbk64ox1q8R7a5yFA9pLPJRmunkgsvTEE0/4+/sjzGlxZEUul9fX1y9dulQmG555WDeYUyKRvPLKK1wuF4uDFo93QIfld1+iZXF0plSpVEzhCfG+98zQymtV+34Afr99hYn7n7wm3xz5G97nJfN4kaYjLjzB7O3Fg7P/IUv4/1HU5JuTXUbOvJNSASjVmGGYF198ccGCBVKp1ByP+d0pcsu+ofEaDAakPojF4hkzZnzxxRcI6zY3NyP6PqQh4m5Qfo9cLudwONOnTxeJRAhz0o7pId0N28a7ZYCW1YxGo0ajkTRWi5K8LDXu4XaYnbMlGaEqpZwe4iEdDfCGa6412iQS/xqfhaZWKIYJ2AkHOBDXCoXRKPLmYlKsJSKTBEEBCgVxAQRbLGJ2RdkPH69KOF9SO4w6md0O5VC8xVs5NWyWyWTff//9jBkzhEIh1YccTU0h3XJIvQa0Wq1UKv3DH/7w9ddfozGnlRW/u+3YSH5LZxfNzc0qlUooFO06mOURBB0GDj7RTmyeKxdM45w4fGgp8I93JtCmCxfwS6zIA7eGMDgJxhln7xU1e0W4vWcUSNcSNWkkNlF7OVd/MKtzZPN+CjnBSEE8w8piIRQOJ57TwpCkTIyXZYoXwFoUToR4iYUeEFsB5QU7PTf/BCjKIy3JD+K1M8Ub/ft4oTmD2nk6smOW7TopkZnc44Z0UB1R5xueYO3t7UajUafTKZVKhmE2bdr06KOPnj59mrLMR7GYthUOR28wp97YVlDOHDxd7rnpxNKfj2bkNxia26ywP7fDT9ATG91thELh8YyLJolvDnj0mgOWTmzo8EDMD22MiZNxNBLfwfqXeFgS4FOA5r7A/vTjO3jDUEOlX2FEgnaKODduPJGvgEHGzT/+a24Ixy/IP3BN0KqfV65eb2WMc9WaDStXrw8IWsP2DVzhxZnntYvGaJ4EHEIxCYhWIquVILiQHIIKg8cztsvgbQLzhq7JuAWUtMXAUeQDUeE5K5NTcstQJGAUz3O6XVyt7Z2/hGUuXHVod3zesYwqG8xpnh+tvvXImQrfbam848X6YR36ulWJUZwWh47k5OSFCxc+88wzU6dOnTt37rp1686dOycSiRiGoQBnQ6Oo4HJNxoXyxJRL0Ycv7hac3xKZtWb3mZ/WH1u9+8yKTSc2hp3zD07bGpWzdvfZ0LgLv0ZkhR8q2B5zPlRwMST2QjAvN5h3fhdZHn2kaN3ejNC4CxvDzrG3pvgHp3F3pLG3pKzde9bzlxNBIek+v6Zwd6T9EnZuc3hmeHJeRPLF+JOFR04Xp2eXZedXFZbWVdU2icSMic5JdpJCntfAV0YikRQXF4eEhHz55ZfPP//8ww8//Omnn4aFhTU2NmKhG+sYtLEe82N+7GyvbRm4pTNggzlv6cPX187j5A9ZKShBptfrgREirpecXCvZ48KE2PVBumKC32V2sSSRf5dfOqTRaFBqrK2tDbuw8eFweFGHbsH3Gq+ojoF43SDePsgWwe+KQxyYyM9kBUkatWrkx9st/FH2Fo8mwpxIqBKJROPGjQsODjaH/Sz1TC6VSp9//vk9e/ZYX6uWHjha9KH2hw899FBoaKhEIkH7Q+u329N96/kCD1BnZyeqYCmVSkllrni3s4Vr/RGfKRrLqXrtMNakusWrUCjENUWigQrz9pqlyL8rhNWUaoBtJT2Tb/0l3XAduVzOMIyHh4eLi4tIJEKqMdLORtRNYcCJovGaw5xffPGFi4sLKrxR79ghjZfuBkWX58+f7+zsjC53lOE9jKPWgDN8i36RPiRT7BnEgo6t7WMq1evFfqNOCPAqviBAefah5nTimUZ5nFKpVJCW7wICblHOvvw5gUmOHJ6rn8CFG+fiG4eamU64xA+WQNmLA5CJIxuqY05ENJLqpJnKhT48YI+xY/696bBIYtIkH5XSteYdSxqNRiaTbd68+S9/+UtjY6NcLqcSBaPSBo9SEg0Gg0ajyc7OHjt2LBpzymQyjUZjMBhG053CIuOY+ewClKKl0vLKqu+2HsbatIN3lBM71tUvziMwEfk0ThyQE3Tk8IBz4w2qrc7EDReK+PgCKtQAE7r6xblwQYmRVPNjZi8Lf/enMJY3dCrYe0XaeQIf9ON1SbkltdZ0UzOPV6/XQyWurPK/v3aP1z0wcS7hDzlDvDyna/ESsiaU4LFSj2gojE5+Ale/OGcSLzH4jJm97ADE6wPUc8BBPSMcfWI+WpNUVNmg1WpbW1vxCWJIb+IWOUMGvxHMeUdHB+1KlEgkeXl548ePj4yMVCqVWq0WtXyHcZo9+DCHdwt9wJx5ZeKk9DITzFnQ0NzSPry7Omp+nU6SDQaDQqGora0NCjsBF/vycAfvaI8gUG0l3VrQKuHKFXgEwhIi3Ary147X1L/pdMXBO8reMwpZnjgCewCVE1RtWb+1bcWi5SfSzRECZPnwlgQfq62tYxiJSqXW6/UGg9FoRHG0lubmof1nMBiJeoRGKpXW1NScv1jwHtdkn+nsF4d+nJT47h6QgMCkIxtUwRHaRI4m5gGWeEfbe0ZSrBdBTUCCTfxXouoBGDC8oHgqyuHuTM6WyWR6vZ7e60f9GNvWfuWXAwBz7hJcPHy2Umxjc/5+iGlt6+QdKw7YmR51uFCla/79h1Z6RyceKJKE+rRGozEmJuaZZ5658847H3nkkQ0bNpSVlTU2NorFYooa1tY1HT1TvCM6m7MtxWvzye0xOQHB6Ttjc4N5uecKGlKyq8trFWcu1lU3qSrqFWK5vk6kVmqaGxi1QtMsU+mVmmatoUWpbVZomlXalkZGo9a2NIq1jFzXwKibJNqSamllg+LI2YqiKkniqbK03FresSL+ieJdcRd4x4s37D+3Oz5vdejZzRFZ/jtOef+awgaP58P+O055bTq+cX9GKP/8wbSSnEs15VWNQpHIfM9F5C0uqamp4fF4b7zxxoQJE6ZMmRIYGGgwGCirh1q2jcoHEyudYbafGXkZsMGcI++YWGiPcPJHPeS0Wq2ioUSS9ot4j0t/626SmH8o8hO0Sim6d4xMGVv6FIeyn+BkBvFuYvrvmcdEfyWHeE1ueSMzXgudJiN0M3g0zdVQCwsLJ06cGB4ejqZ0FAoa/Oy5ra1NKpX++OOP2dnZw5gOc5hToVA0NTWNGzcuMTFRKpWONJiTXmttbW0osCYqzRTv9ejvwHJT68d9r2Qah5f9Q+NFTBckW0syRbsHaMZ5g6j5/5URpBNrcCOn5GTO0UGYc+HChW+//XZTUxMax9IH2mG8iCz405TZhmqxDMP4+Pj87W9/k8vlVoN1zSs4KpVKJpO99dZb8+fPp3691iGVWjCrt/qm6FDQ0tKi1WplUmlTNo/ZOfsGF/WNEM1ev77/fWlNgTmVf/D3u56HoFtQUqk07ULJe0EJpNQVBXUuUhY01bPYJk4DGDVx+EhoQLwBu/5ZxMOJxQb0xYUL9UT0gqJ1QydObGDkGSkhVLW1tY1wjZCe6brhErxsW1tbjUYjnCQyWXJy8mOPPdbQ0EBt8DDwG27qllvBnMmqUql27tw5fvz4Y8eO4ZBlrlUwFGfyLZcu3GF6AaJmmlAozMorfi8IhKABwiRXkJMf1Ohd/YDOSHg2wGh08Il2JrRpk2CgTzRQq9lgvUagUChJz1oW5uAVhbVsZ19oSrgGhfJY3jEIoEamFiiVSqPRaB0xYRovjqJNTU3pOYXzViYQOz2gSeGYgwK2jj489OmEeL2jXczjRTs9dqwDcSGF9gvvmFk/Qbx2npGEyIUUWKjFO7GJzjYAwPzwlAKVStXc3GydeEfIadmz/UIsFr/00kuLFy/GWY2tBWGQR6o3mFNnaLtYKkpMK13xC7A5c4qaWts6Bvlbtq9jBujdFhtEQLF2XQLyEV1849wInkdaImBIRF1WAt0RXQqQriVjLPRMxAC66RWFrE20pTSf2DiTdZDOCCMwkRNHHBRbLhx9eH9fl9jY2KRUKq0/tiCloaWlRa1Wg0tfdoG7L7SzgKeAfzx4q4OUdywLxkyYlSEjE/RmQWYWbi64HNFNCJ9gwJgNU8bIrQc3giugVgfODCne6cjmccNOiRkGW0lGZStbz6uvo+PK5vCs71YeCo7NTUorE0q1XTbVWrM0dXVdvVwl3RqZzdmamnWpsbPzitmHQ/sS5xv4oIElcdT5q62t3bp16+uvvz5lyhR3d/ddu3bV1dUJr/2VV9VnXCiPPpwXzMtZFXp6W1RO0qlS/vGi/FJhbnFjk1gllmkUKp1aqzcYm5tboImhpQWs3tDurZ38UR80eNcBf6itCP934t+V9o5OuDV3Xuno6Gxr72huaZerDI2MWqtvNba0SRR6lba5ukFZ2aDIKxWfK2jIyG84nlUde/wy71hxSBwwRFfuSvffkRawM33ZxuNev55cGXJ6X2Je5KGLR9KLz5wvP3+psrq2sb6hCSNrbGxMSkr68ssvn3766ccee8zX1/fixYuo2oj7SJmdQ3tUbFu3ZcAqGbDBnFZJs9V/BIf19vZ2LLWoVCppfjKz10Mc/G6vBbW+K3E7ZzNx/1MzoDaGxkIjZyg0J1igKq9arZZeOiLeN7cv+uaN4pXEfaeWNtB4R18xzupnZT9+kJ7ALS0tqLB06tSpe+65RyAQyGQyCvsN3kjmypUrn3/+OZfLbWsbZhGhK1euIOtap9MpFIq8vLy77rrr2LFjqE6J5+Hg4+3HMeh9VcoRNxqNSqWyoaFByP/fAAeWvi/DHTOAJnWYrVTIh7EzFH342traTPHWVQv5C4cq3h0zxId9FTIJIrsj5xERYfjm5mbomFEoGIZZvXr1K6+8Ul9fj4Sz1tbWEXJ+9n7m9uMTjBdVSTHebdu2vfDCC8hJwo6foY6XWoQaDAaEOadNm/btt99S4W5aTOlHYLZVB5EBOhTo9XqFQiEszxXumTOEQ8GOGUzkFwrpb0ZHQ9Fpi0FhD4dcLq+orl204xihiPEByyS2TEBxAIOrGJZ3DLwAZgO8BiVM0vhPHDrjEdF09IHlKGYLkMPycKQFIG5BkBueIL1QrVajRMHIaeYYxKnxu6/SJgm0wcvPz7/77rvr6+vNYc6hHj1+t0NWedNt2qZQKBYuXHjXXXfV1taiCAdOY24rbOlmEk/zZjAY5HJ5XV1dSNI5N3+BM4dPBQMdvMEOzY2b4OwXxyLiio7sWLRGYwHYCaqJUJJGeznPSCLDyHPmEMiTHevuD1K3yLcmTNBYZ2KyS4jXvKUhJ6VSqV6vpz7oN7PbA16HxosTqtra2j3JmW7ASQXfTUINj7X3BrzB3T/BhXstXh+eq388oJXX4iVOcjEOXtFASyVIJynBxzhBZR/oSoBSQEJiHNmmeNHW9L/bYF5ttXgHnCiLf7Fns9oPP/zwf//3f/QpY5TN4iyewL432AfMmVssik81wZwXS0XtHZ19b8r26U1mAGHOlpYWjUbDMExJaalHQPyclcnIs0ScEqVlcUpDyJ3QLIJ4nj1xoAQYjyB/yIB39uUD0ZNQFcHfFyYzfGLPCd8Ch/JrGKcjG2ZBJo1cNs+FHV1H7vLYMWDNiQ0WEHBEraurO5ie+9HaQ27+YItOQU1kcyKcaUI9fUx2pBTQxb40U4sJaQ1BFix+C/xN/eOvNc3wqVYti2zHBJR6Rf24/XB9Y5NarcYnlNtBCbPzSteWyOzvVh7aEpkVe7yokdHYYM5ul3Bn55XcYuGvEdmbw7MYuf6KVWBgnGxQ+ia2HioUitDQ0GnTpk2aNOmTTz5JS0urqKioJX91dXVFpdU7eVmbIzJX7TqdkFqWmV9XUSuRypVKpVqtBmlDA6FpI1O7hfwhtImgJkEzTf+ZoMzOTiwgm/+PFwX93/yjsKT8Mxdqr+GgsA3cXHt7R1sbYJHNLe3tHZ0afYtW3yqU6vLLxEUVTOzx4oTU0l/CM7fH5GyLOu+77ZTvtlSfLSmem44HhaStDEnbHp0tOFGQlVdeXllTXV198eJFDofz4IMPPvTQQ8uWLVMoQMmfkjvp/nQ7iLa3tgzcWhmwwZy31vG68d7SMR2L8iCZxQhFp7aIdtpboBh34GNZySmNBuYuVMB2eJuyzeNFgXW5lBGf2iK2CMEi7AP55RQtiRf7XKw5bb3xwR69a9A6SHNzs06nk8vlsbGxDzzwwNGjRy34QN7V1WUwGFavXr1///7hPY2vXr1qDnPK5fKjR48++OCDaWlpVOpthBQgzA+NVqtlGHFDyq8WGFt6xztFISzJpaOIpWEZzpoHq0e8TH1ayMD7J3oP+ULvBwAAIABJREFU87cc7nIUFx5Ha5ORQ5GkbGOE4SUSyYEDB5555pna2lqVSoXCwqOpcN8N1pVIJPHx8VOnTsXxxzrx0gZtFLJmGGb8+PErVqyQSqVo8kdRotF7KxhBkWFBDZVd1Wp1U1NT07G1QzsU7Jgh3jmbOc9DrtUQ2cHSU12tVotEouQzBXODEhFBcURSJupDAmYAvf8s72j0uHIC8ABgCdS2Rbc/gkOAoiYpHfJZRMYWGFq+8M+VK3Djxjv68P675XCDkEFHwNE0buD5ag4nKBSKxsbGCRMmlJWVjbS7uWWvLrxX4qOHVqsVi8VOTk4osi2VStVqtXWGTcsGZYWtUUISJq2iouLbTYdY4CpHaDccAtFxeGjDCWVoE1/TxMhx5pCrjFBtTPZyhLOIhWwnDh++6BcHzp1Qto5x4vChmg88Ub4LuR7fX5lQ3wCqDDjJHIpeCvM0mscLCr3l5Yu3HyFQAZiPAswJNsA8dMUj8YJIL4whJmNO1EiEEcbBKxoGn9/FC2m5Rtv6LV6AKzixLv4w/rj5x1fWNlotXvPYh/c1VnuxeVShUEgkEh6PN3ny5Pr6eto8autCGPAx6g3m1OhbswoaY49fXr7x+E/rjxVWMB1WJDMNOJxb4ovIUUZL46ampoJLRY7e0dAbQQyJ3QhJ0YFgmQDREXgSeYfYv0XVVp19+W7cePfAROojbhL9JiROV8KAtAfnThheEBREbVvQxCYOwcRCOLawpEIikeh0OhRssNqzKu2skslklZWVUUcy5gQmIMAJzsSk58PBK6pnEgCbZPOwTYQ0moA6uqmBhlA/TTcL0u7m4hdHnTsxdSyfGHvPSGh6I3gqbv/bzYeqauqoQsBtAXN2Icx5cHNEVvTRogax2gZz9hxAmls7TmZV+20/tYkgnUN9deCMlDI4UXvs8OHDjo6ODz30kB3LafveiCOnLySkZgtSshNTzh9JL9gdl+OzJSXuROGZC1UlFY1SmVyhUODNEQHO5mu0TXPWJsKQJnomRQivXKEoZrcXPTODSzqvXEk+Vc4/WazWtdCvmG3vCv7ENdQTCaKAh8JDXEdna2uHUmNUqI0Sha6iXlFSIzuaUXk8s2pbdM5uwcU1u8/4bT8VGJLuuenkrxGZewU5R04XRcSdnPvxl8/96aUXXnxxz549EomEukSNHC5Tb+myLbdl4IYZsMGcN0zRrbSC+ZhuNBpVKpVEVC9KWi4OnvVbDf1m6uy9r8PscWMKDnfzixquSQzGS6d3arWaETaIk5ZbBuPEJOx2lVw6SlUZ6RPgUN+eb6XTbgj21bygjDBncHDwI488cvr0aSwUmnPdBvz7ycnJ33zzDXJZBrwRS32RnsbI/wgLC3v88cczMzNHVGEUr/TOzk4slMjl8vrCdFGIg6WGl163E/0PqVSq0+molKul0t73dmi8lOrUUHzOMi0jvY+xkITwTyWMCMUqcczpez+t8CmF3JBdLZFIUlJSpkyZUlVVRWHOEbKrFskGxX5ovFlZWZMmTTKHOYc6XlqURJizoqLijjvuCAoKQuFuc2qURUK2baTvDNBLQK/XS6XS6rJCUYhjr0NW3xd4fz4V8f7FMIy5eV7f+9mvT/FWi/LjMpmstrbuX5uPzAlMgmIfSEQCHOLiC9qPYGrFBR8mqBJygD2GorUu3DikOGApzc4zwm5FpAO4BgIfAtdEigDQAojBJ6Gp8U7klAxRUP3KwFCsjFcuNmkB61cofPDBB0+dOiWVStGfkvoCDsWvD9c2KXyFlsa1tbXPPvvstm3bGIZBVUyj0ThyGneGK0s9f5dW6lFvsLi42MWXT5RmI1hsnntAAl50yEaCRoGABBc/cNwEBUVvoOPYe0YSC09A/kCulixEjpEzEZ12C0xAwo0Tm+fKhcsZCaBIuXZix2bklZtrLfbcSQsuwfMEFXpFIlFxcfEHQVA9t/eMYLFjwEaOiCiax0t0s0F19nfxkl6K7vH6gsi2+7V4HbvFC3AFZOlEzmWlUnm79QlRfQicUUgkkszMzIcffjg2NlahUAy1OroFT6GRuaneYE6VriU9tzbi0KWfNgDMWVIju2IdKtPITJNF9woHT6PRqFAoGhoacvMKEKJDDiLwF4lYK4wD/gLUbnX2jYUX/tDu8N6qgyhpCwOLF4jWokUlAqIeQUlIgncPSHDwjpq17IALzn8I5oceyaTHwjScunIFmXmXxWKx9VsoOjs78SlVIpGUl5eHH85wJYgsMjjd/EFpA4VqqTGnKxcS4uIXN2dlskdQEnL9sVEGsUzMoat/PH4KEKZfHHE7BksCop1u0r81Ab1koStX8M3mw2WV1XK5HPvYbgd6QGfXVcLmPPjLgazIw0X1Npizl8tcrWsRnCxhb0k5dq5SbxxCETVaD0eRP41G09TU9PXXX997771PPfdnp28D3/Pe4+65x3HpLtaSnZ8HxHpvObk/KT9wb9pnQfz//JIUnJhRVl2PplFarVav15sru6L8LAKBCENapCZcUafYxb9QUa/oQ9QXq1IU+6TAZ3t7e1sbSOYajc0Gg0Gr1Wk0WoVSJVOoSuuktSLwDb1QIjx1vkaQUhJ+8NKG/Rnr9p712nzSa/OJH1fG/ctr94JvOP/4z5KCS4U6nY7O1W+Hi7eXU9W2eDRkwAZzjoajSGOg4BAqeEjEQtGJdQMXqu2lEicKdZGXpms0aqPRSMlVFhniaSA3+YLGi1KKUglD4p1p2cojs4slKz6pNYvXNu7f5AEa8Gp4ZFHEFWG/tWvXPv7449nZ2VgvGyTM2dXV1d7enpCQwGazh+XU7ZkZfEpBSQ25XL558+ann346NzeXuuaMBDYnThzb29sNBoNSqRQKhXWHV4p6GSgsexk2ZcVgc6g166Q94m1qOBRo2bh621rT2b1y+e+kenueM9ZcYo7xKJVKiURy6dKlu+++u6KiQqVSjT7IDWFOKpotkUguX748bty4pqYmhHWtUCGlMCcyaC9cuDB27NjNmzfjo5e5Ye3AzgS9Xt/ZaRNPu9nkUVkwpHLWJfuJd8woXPv/eruELbY8eGZTYSpqClmWIkDHN6PRiEHFn7qAmAoQv4j2rCtX4LEyCSEHJ3asI2FZ2XtFwmrE5w8JnciNANs/QkFD9VqsrLG8o+1WRNh7gs2now8UE4EP6hv7/Y4TcjkIJVlzSL/Zgz249WiTBMIJQqHwD3/4Q1RUFJIa6ZU7QuYeg4v1t2+bgygqlQqF90tLS81Fttvb223z599SRl7Rs0WhUNTX1+deLABIklwm2F4ApWpfMJPDyjJSGynryI0b70IUaB3ZPHtgN0ajPy4IKvoA8QivTfIilkUInYTTGevCjUNJRmdfPi81Xy6X4zPdULM58Txpbm5WKpWNjY15+QUsHx4W1l38BB6BoDcL2MO1eB0IldMULycG4iUwLYkX2ilQQ5vYyJF4CbIL8YIELojWgrw22On9Fm/EyYtWi7fb4R7Gt4gJId9arVbLZLKSkpJXXnnl22+/lcvlw6WYMowJsexP9wpzaltOna89cOjST+sB5iytlV2xUb0slHocPFHuu76+/vyFPA/iQ4m2kZR5Cf6U/tAvQrBJQscknG/UszV5TxK+u92KCGdfvntAAvaXAEmRzXMiqhXoYenqBwgfmSaZ/Cxd/WjjCO9sbqFIJFKr1dZhxtMsYgFBp9MxDFNWVhZ+KGNOAIyTOFQi1dLZl+8RlORCMFpcgncHaJ3xjzdN4XCSRnrUYO5HmZ1kNoj9aiZSLFFKN7fnxFmiI5v39cbk0ooqKgx+O9zxrxCY838rD/5yIDPyUGGdDeakp+bvX3RdvapQGyMPFfr8evJUTo3O0Pr7zy3wjgKcWEIEUUOZLCkp6dVXX51070N/mv3prEUhdktCZy/Z5bB092eB/CUbjvoFn/INTfkogGe/fL/98v0srwgHz3APP96qiPTMomqZQmku6EppjpadwLe2deyKu1haK9f1E/2l8aJRncFggJDl8rzSmuDEzA+DYh08w1leEZ+s4i8JPrqRfy42vSjqRGFKblViWsmJzKqElJIdMee3x5xf8cuJlbtOs3898WtExvGz5XmXGxvFSp2hefTJ7VjgJLNt4hbJgA3mvEUO1I12k/Z3oKKaTqeTSCTC1F8tyWs0BzP2vS+rvmjeiW/Z4f5G4cLntELX0tKi1WplMllT+s6hinf/B/LaS7TXFW9yN7OTtnUGloGeMKe3t/eTTz6Znw+1GORDDKbg29jY+OWXX+p0uvb29oHtocW/RWFOnJNxudw//elPBQUF5m5ew/60gMeF+qDU1tQI9861WDXffITp+TriM6axVqfTWQFeogcX421tbUXfl7qKYuG+D6wTrzDqK6ahGp+Wh5o1SOPt40W3ErZUKm1qaho7dmxZWZlSqRyVMGdHRwfCnGBuLZWWlJRMnjy5oKDAarBuN05Yenr6uHHjdu3ahf7Eg2n16OrqOnXqlJ2dnUQi6eOg2z4yz0BnZ6epoUoqrSnNF+52F++YMfOF+xc6PlG+8W9DOiw08f4jFotxBmLBZ046vun1eplMVl1dw96XQrTaBC5c6NN38oVynqneR5w4EdREKVqsebHQxcrXpIqJ+KiDV9Ts5eFgIkgQTaigEaNBFJM06ZtxBecv14wozrr54R7Ma9okgTCnSCT6y1/+smXLltsB5qStIVu2bHn++efFYrFEIqFjpg3m7Hle0Uq9TCarqak5l3MRivIBCY5E8JlIQ8citgd0ahBojQMRWjbPwQt4nCwfsItz9gVNV0cin2jySKP2coR+DdKFsE3gejr7xrqAfmOciy8fgE+fmJDkTNQrs0LPAc4lDAaDTCarr6/PPo/xJmK8xEcz1s0faEaoNOtqFq+dZ6SDTwyOS+bxOnNif7PTAxAUOZ2wTQcTxilwAWI6iOKyfGK2J2RKpdLRKprd8xzDJeYPVhqNRi6XC4VCZ2fnV155BS9S2nQy1FB3b3t4Sy+/SZizrFZm/YLJLZ3YPnbefPCsq6vLyb2AbHUyaQHHTWRzYj8H9l2ZdCZ8Yz2IagUxHYdeEIT67JaHz1y634EMqoiSIiOcmJETF2QiD84Cx1+T+bEJTSS/dfHSZaFQiL7j1qwU0acVhmFKS0sjDp1x40JEyG2FPSQ8VMwGdqERb2NQCwCuKpHfQNtRN/94B+/omUv2zV4ejnM8yMO1OwvM90gDCgy/18w7cUZH+ff/2XyopLyS+j0Pe+Gij/PHUh/ZYM6bz+SVK12V9YqNYed8t53KvSy8+S/ecE0sC9P+YJx+NzY2cji+U6ZMeejZV976epXdktB3F+2cvXiX07K9y389tir09Dc/J30YGOuwPMx+xQGHFQccfaIcPCOc2DFO4LwbPdef7x9xuqaJwSoH9S+37BjeeaWLf+LygeSC1rb+dR7TkDs6OgiVEzpWJVJp6OHzC9YkOnPIGOUd5egdZe95YPZPe+2WAY7r5B3+Hifi08CYL1fHLt95dFt81qFz5ecKGo5nVfOPF+/g5awOPeP168mgkNPr9p7lHS0qrZba/KRvePrZVhiBGbDBnCPwoAxkl2g3B8X86i8eFe0aSkW1xKUSsdBcRtKyg37fWaDxtra2oqhpU8EJi/NWf1e4FPwoFTdptVoqm2nNePvOxuj7lJZfkd0ok8kWLlz4zDPPlJSUUNhvYPWyjo6OwsLCb7755rPPPmtpaRk5qUOY09SHJZMtWrTo5Zdfvnz58iDjtWyA+EhpNBrFYvHmzZtzDu3+3TXSE5u04JJQp6ZLqUjoHCKPup656kY7qMlOYHZYmCxunsCsgDd83nsal4hCnZuKT48cwkFPmFMsFt99993Z2dkjB+YsKSk5cuSIUqnseSj7uwTjbWlp0ev1CHOWl5c/8sgjKSkpVou3G8x56NChcePGRUREIMw5MKM7vV6fmZn5/vvvjx07dsyYMUKhJR8y+5vkW2V9bCNrb29HLwChUFh5Lk600068Y8azj941ZsyYR+6bEPjRs+eDpptfzpZ8HeLQWJGPhM6Ojg5LzT3wPottK2KxOK+w5F+bj5CKWJwJ5uTEghwZEa1FiTZHHygIEp03nhMHXkOxjDgzmYRqiScWyycaKl/sWJNhJ/jqkbIg+S7Wzpx9+buPXkAT4oHdzUfs+WMOc6pUKpFINH36dD8/P8QSsFmnvb3dUsdxhOQBo8ZWAIVC8f7773t4eIjF4p5C36Ms8EHmH2niKIVdWVmZlpHN8uFBeZrgeSAPSBSksRCPJXXCyCF+t0SiFi4oQqR28yckJA65KjlgUQky0X5xjhwekpAcvIBIjd5yTuxYexSX9onZKshgGIY+0A3pAaLIhFQqrampycjKYfmACiKhj8e6EmVsB1DMhjK9C9l/wjRCKDcWuOCgzRsLK1DSFUEdqJ0eC7RqIW8OXtFopwd2wuxYQEkB/Y3ZxM9AC72RoJIyyPOnX1+nFylKREil0sWLF0+bNq2oqEihUFCiuQ3m7FdWceWbgjk3HKuoUwxg47avXDcDdDCRyWR1dXW5Fy66ozgtcaPE5g8YPQj/G5q0yNCBdMz3Vh0CpiYHNGyxlwu5ng5eUXYrIlDAluXDc/ED204EBREmJPL7cWjGidAgtJ5wYucECEpKy4YR5kR355KSktijZ98LgqBwqDQNmNeSgG/xLoCUTbTtRFFfXO7oE0OTQF0JTF4GZDuYQ2R2oh0y4sQufnGLth8pq6hCo5nB9KNf94iPzIVXuq5ui875YfXhTeFZNjbnDY9RV9dVoUS7ds9Zv22pmQUNre39w/Z62z6tDOOTu1KprKqqWrR48aS7Jz/1huOsH7bZLQl1+GmP3ZJdn3F5G8Oz2CGpc3yj7Jftd2FHA/63IpzlHcXyjnKEpxV4rnFk8+xWhDt4R3+6NvFUfpVOp29paRkKFcOM/IZd/AulNbKu3mK73nJKcEKME+uHhRUNi4OPu4L/OjQ3uHLjSCzRzuwYF1+ek080yzPciR01e+ne2UtC7ZbumU2IrbMWhzgs3fWvn+P8956IOXEhJPrk0VPn9ydc2JuYt3LX6YDgNO72U+HJBflljFCqa24ZKfyQ62XFtsyWgd8yYIM5f8vFrfsKRzqqWSGXyxsbGxt531qyytYTrgieKTyz2/oykniYaFMqimc2NjQ08RcObbw7ZopO70CzAex3tj0HDt0lYw5zIrvxq6++eu6556qqqtBChopr9ascU1xcvGDBgkfJX2ur5bUyBpMQNLzEaYpUKv36669fffXV8vJyjLe5uXnYC8H0otPpdNXV1RMmTPjTUw9zP3imces7Q3zpzSDbn9mYHoIPTi0tLVYQ26Txmqz4qqvrY78bokjzVr/59azHnnzozrF3jDH9RPDMhrQQsVhMSXuDObsG/93rwpxTpkw5duyYUqnU6XT0FB38bw14C4mJiZMmTXr77bcjIyP7NTL0/MWeMGdFRcWTTz7J5/MxXnzaGdK7AIU5Ubibx+ONHz8+Pj4e9eX6C3N2dXWdPHnS0dHxnnvuGXPtzwZz9jz0PZfgw3N7ezuyHuvq6iqPbRKTjgeEOceMGTNu7B1PPzxpoeMTl39+y+KjhCh4Vv35RBz9LHgjwJPcaDQqlcqGhobUzLz3A+GR2GSo6QvumyhrhiUt0sWP/n8AMzj6QI8/NvU7eEUjqwxF0qCOxgYmqBlvIAaIoUQ4zpnDd/UXuHIF7H1pEqlMr9ePsloYquKjJ5BKpRKLxbNmzVq4cOEohjnp7ZLOYR588MGlS5cyDIP+4tTsp+f1dZsvoTCnRCKpqKhIy8ginOkY4N+AEydoDwK3gBPrSliewEr0g0sJzNX8E+YEgZMukhSxvQCoSGwerMYVuAcmYlOCGzfezjPSbkUEFarFq5tF+hJCkjKRL24F11hEJui0KiMzG3BcaKfgu3DjfouXNEmAe5xZvG7+CXNWXovXO4bGC3V283h9eNeJ15QlGMG2J0C8COtakB8/8s9kOrFB03GpVLpv377777//2LFjCoWCdmBYYYI98nPV3z28GZhz2Ybj1Y2q/m7Ztn5vGegGc+bl5X22BoZHNzLTAOHua/qrc1cdBGASPgKjSjvPyNnEaxOAOv94D+Lm68zhewQlApWcTF2IkzF8ivMfFxDB5jmxY1FV2z0gYe7KgwQiTXTlxjtxePNXx5eWDSfMiaK1paWlh1Iz5gYQY3VwI45Fw1EQrQ1MnLMy2ZHNQ0iS5RMzY8k+7DJx5QrmBCWh3oabfzzeVvDOgmq9KBKAXW7UjBOtPeesTEbLTxc/cGrn7D1ZVV2NbM5RNrXr9TzsuhoquLB80/Etkdk2mLO3LJkvb23vzCxo8N2auir0dEmNbPAy3jgFRcBPr9fL5fKysrL33nv/zrvvfdn9Pw7Lds9evMv+p92uK8K+W5O8NuzM/MBYR88w++X7Hb0j3f3jnHyiXeCRJ9YVzuEoBPtxrEAXgHkrE0OPXlSpNc3NzVT0YpB1BkyITGPcGplzPLOqvZ9w75UrVzo7O2nIKpUqq6j6601H5gQlgjy1Xxzwuf0FLG9o9iJPajEs7ygndowbN87RO9LRK4LleYC1Yv+sxbtmLd6F+Zn1484Z3+94+yu/F/76ppOz6/kLBTWN8rJaWfSRoj0JAHmu2X1m3Z6z8Skl1U0qm/q6+Sltez0CM2CDOUfgQen3LtEGlubmZiypNJyLtHihrecGmT1u0triYdEco49qJjHJ88ni4CFkWZli3/8BUw3Stc3NzSNBRrLfJ8qt8wWcr6ACA8Kcn3zyyZ/+9Ke6uroBwJzt7e1lZWVLliyh9f2pU6eOtGSg5ozBYFCr1VKp9NNPP50+fXpVVVU3DMkik6qBxY4XXWtrq1qtLi0tvQaUjHniwTu3ffWnonWWL+53G3MaBEuFQqFKpRIKhXgBDmk2aLwajaa+vv5S3nkx4W9126tBvj0fNJ39/tMP3jOe5pNusIH/Q0NDg1qtpgPOkMbb91lBs6HX69HVSSwWT5s2TSAQYHUMYc7hrY4lJibSNL755pvHjh1Tq9V9x9Xbp/QWQ+OtrKz84x//uG/fPqvF29nZieYiCHPu379/woQJR44coTAnfdbqLQpcrtfrc3JyPDw8aHLoCxvM2Xfq8FOcYlHx6qqqqqq4FXidUpiTpvTheycEffzsxVVv0gvZEi9m1p3aKRKJNBoNPeiDHw0o3oBqmQmpWU5g7xfp4BUFvCgueFC5+gmc/fgmJhloZgIggcaB9p6R9p6RAHYS+TIT0EK4VghwgsamL9/eMwptPoGIRpYgFOrM4f9v65HaBqFGo2ltbR1NymbogUdhToZhnJycvvjii9ENc9KOcpVKlZubO27cuK1btzIMg4oUI+EGcTMXu/XXQZgTK9QVFRVnz2VDGZ0rQMs3bCNw4kBt3R1NOqHUDlidsy9wH938E1xJLRtaCohRpb1npLMf3yMgAWr9WJoHu0o+UrGRf4PeulTLMeJYjkgkonI1gx9b+kgj3tf0er1EIqmqqsrMykEsE+LlxkFoJooV2Om5+PFpBqAE6Q/xItfcGZis0SzvGHvPSBeirU3iBTlfIJqTeE12elyBM4dPYNR4glXEhh3JuZ1hztbWVnzWkMlkeXl5EyZM2LsXzODx8RZvMX0cQdtH181AbzCnUtt8Mrt6X1L+0vXHlm083iDWXPfrtoUDyACFOeVyeX19fX5+PjskGacuJmtwwhTHcr8jG4ibzhw+whiA4RHCFqqwOnhDp4UrNFXEuXHjQRgcDSl9Y7EXBN0r5wQlzQuK/+fK8K9WRpgGaq5g3prD760+uCT4WHlFBXpzYjPukPZBmqcLb74U5jydkfXRKtD9ph0wpjsI4XfiLQDgT+9oBC+xHQ0xTnSARtkA1LxFsiZO83Ad9wBorwHQNDCRApzvrTo4b+2ROUFJv/LP1NTU3F7enFev7k246LX5xK8RWQeSC2qFqsHjdubHd1S+vtJ1tahSErgzfXN4VnWTsl9Exp4Joc2F2I1aUVHx1T/+MfHue19y/8+sxSGzFoXMWrTTbdme5ZuPrQ0/w1q2590le+yXh4FvpXckCOazY9z9BcTRHDoy6egBDQHEI4DlHe3C4e07lq9Wa5BoYRFVao2h1WfzyeT0crnK2DOoPpZgmRT9ODHktAtlH6876G7msws8bPJ0Zrciwm5FBHBVfaIdTf+iXDk8hxUHZv+03375vtlLdr+7aNfMH4Ltl4bOWhzy7o87p38ZePdDj/9/f3214NIlUoZqNba0ldXIiiqloXEXgnm5PptTft537lhGVaNEa+inn2gfcdk+smXAghmwwZwWTOawbYoOdtgeW19VItpvFQO54HdFZ/colWDObE3lHxov2s431FSK9r1niUoiksZ6/z/43aaze6mwz23VAmzlkxurhOYw59y5c1944YWmpialUqnVaimb84Y7dunSpS+++GLq1Km0DD1mzJiRD3POmTPnb3/7W21tbTeY84bxDt0K+DzZ3NysUCiKi4vN8zlh3B0vPXGP3wfP1Gz+v6G7EoVhn1RVVa1cuXLmzJkWpDT1ljGMF6lOmZmZLg4zDy3/q2h77+NDT8p7n0tyg6b/c/bjf5gy6Y47zHN5jc25Y4Zot3tNTQ0qVVoh3t7ygMuxbbC1tZXCfmKx+Nlnnw0LC7Ma7Nf3Hl69etUc5hwzZsykSZNmzpwZHh4+gKItBSpovFVVVS+88MLWrVutFm9HR0dbWxsV7g4JCZkwYUJKSgr6EyM7qm9wqKur6+jRo66urrTD43enmk209oanFFkBT/6WlhaVStXU1FRWVlYT8S8c6HrCnGPGjBl7xx1/fPSuhY5PXFrz/yw1HtYfXt3Y2KhUKi0om4/4ilarZRimoqIi8vBZBwKTYLM/wgmIa/7G0YSm4FgH7yhs6jfxNb0J8OkDzAmqYQswjB8pFnAAkgFrKyJv6+zHByFN4v351caDZdX7wcKeAAAgAElEQVQNKpWqubkZJ1QDuFRv7hhadS3zCYxKpWIYxsPDY968eRTmRMxvdASLmaV9ITqdTqVSRUZGTpo0KTExUSKR0AHT1h143bPwypUr6L6Bl2FWVrY7F5oM3IFFxHeG64ioznIFcLmxeSygKJkkoN0DEqFaDfRN8OxE8sHs5RHEVo0Heq2Eco2cbNRdJNcsQIloqIZt/imZBcMFc2ZlZX24Mt6VG+fun/BbvGyeSRMSinTgr4kh0Hgdr8XrzImdvSJ89vIDjkRD+7d4/fjwLR8eELMI8EniJTlh8w6dzb9tYU6EmRHmVCgUIpFo6tSpfn5+KC6N8woLSqNf95wflQt7gznlauPBtPJgXu6Sn48u33icketHZfjDEhTeao1Go0KhaGhoKCwsjEo6QWFOBDJnLw+394py9gXMD2csThyeKzcevcMdr7VtOZNmEfwurgkfESDQPTDBPSCejK78eSsTlq3euXrdL/5rfp3rFwPdJ4Qx78oVrI1IqaysZBgG+0UsgoLcZFZRzg17RyoqKnJzc7/bnIw8fozF3jMSvTZpEkx2m758ey/grrG8wemZytvSF8QEOsok7UtATZDlICFf0xWPc/GLo2CnK1fAP5FVX1+P4mfD/uh6kwkc5GpdV6/uS8zz2ZKybk/GjpjzlQ1KG8x5MynVGloTT5VytqZsjcquF2kGnDRKjdDr9QqForq6+osvv7rznvtemvOdHRFlffeH4A99ooJ2p3+zMRkgvSW7WV4RzhxAN51QmdYL2jER0Tep1xCAEF/Dtc8Gkw4P/7gDJ/I1GvAvo+q1NxPpddfp6roacegSZ2uKWtvSr8cBym7CjiWFQnGhuPLz9QfJyAbXI3EUFkCXqi94E9h7RqEju4sf35nDs1sRYe8Z4eAVae8Z7ugdab88zH552KzFobMW73p30c5Zi3baLYEXb34ZcNeDj82YMbO4+DJBOoHh09HRaWhuU6ib80rFaTm1G/ad2xKVs+lA1qHTFU0S7XXDtC20ZWC4MmCDOYcr85b8XSzHYw2uoaGhNjNWFDzbUsW1vrcjjPqnSCQqLS1du3atFfhVmDWspzQ3N6vV6sDAwOzknX3vpAU/FYYvEIvAXt5oNFotXkueK7fItmiVkLIbnZycXnrpJYZhKOzXd8msvb29pqbmxx9/nDRpUrfK/i0Bc7JYrHfeeae+vv4m47XCgcWauMFgkMlkly5d6pnVMWPGTHtg4rZ//HkoZBtL1v9t579fmjZt2pgxY+677z4rKOHQeOVyeWpqKupSfvzWI+f836jb8vaARxXR9hl5q95kv//0/Xf/xuA0T6b5litLL8nl8pEg6ohIT1tbG16ScrlcLBa/8MILO3bsoFVsq3mm9na2d4M5aVb/+te/njhxQqvtxxScPjVR0kN1dfUrr7yyZs0aq8VLYU5ktG/dunXChAlnzpxRKBQaDfST9nEVGAyGCxcuODk50STYXlg/Aw9NBmZngSXAztoEn7q6OrlcTtWS+/VUfN1LBuvdGo0GZ3EHDqa7ByS6gJULPM8jkAkApx/fxRekz9DeD8pe3vDYjN6cCGECAwCcYIAAAeZ5vgC6YEkR6RH2KAPle40eygGDwPlrEovKa9D7YDRNqOgEBs1cJRLJhx9+6OjoiBMYpEyNMm9O2gWl1WoVCgWXy508eXJubq5UKlWpVHo9eBr1PWe77il6OyzEmQZWqCsrK3Nycr7ekOgWkODKjYcrkQO9AqaryTfWiYOgHahGu3IF7685TNaJdfdPANoBfAocHbvl4eCs5h1NrCiB2ujKFTiAXhnPRIUkLrlQ02fHenDjLpeUUdhvqCEuyuZEb86cnJzvfk0itnAkXkKkoKMHspFMNXdu3AfrjmK8bhBvAsF9Y+1JvPa/xQty2WbxAiudjGZ80J9kA/B5sbCUYRjqCDD4sfRWOVGpALvRaNRoNAqFgmEYd3f3+fPnS6VStVqNXctDfQ7cKunq1372BnPKVIaE1NJt0TmL1wHMKesna6df+3C7rYy3Wix/iUSiy5cvnz59ev6aRLScBA1VryiTazg7Bpx6/eI8AuFTFy5qOYLvppt/vJu/gAyVJqV9VLNAJ06C8CW6cUFmH+me36/ctWbdL2vW/fLTqh1OPtHYTuHqyw8/BCzGYRFrxUHVaDTK5fLq6ur8/PwQ/nFXrsDNP94jKInlEwM2zATIQTUO98BEYLjC+A/9LvjaI5A0zYDEpcmtAFtn8C0AunBXArYr5gdfu5L+G8ieDyirO/tE5+Zdwp48FCJCX63RfWZSmHPN7rNbI3Mq6hUDRuxGd6J6RtfeceVEVjVna+q+xDyxTDeAvOEJhtUJhUIhFAo3bd486a67n3nnw3e+M/lxfsiOXLf/7KdBsbOW7rVbHoY2nODFS+RnqDs4PvvANeIdjSc2PsWg7DMq1szxjztTUElvlANmbHde6Yo6XLx+/7ncy6KeaeljCd7EsbPBYDCoVKrymvq/r0vGsc4NnA4SnNgwP3QmjG3gYfvEOJNppMl5lw2Ww2T9SEefKDvC6WR5HrD7aY/d0t3vLgp5Z+HWmd9vf/fHna9+6jX+zru/W7jQvHuDzpeudF3VN7dfLBHxj5eE8C/4bjsVzMstqZFp9a10nT4CsX1ky8BQZ8AGcw51hod8+1iNRc6HTCarrq6uOxhgXigf0tdZQW/9+1//eOaZZ8aPH2+dpi0aL1I577jjjj9Oe+A7xycurLSsRlwvnK3gdxsL0+RyuU6n66PEPORHfbT/AK0SIsbAMAyLxXrttdduEubMz8//5z//2Y3BaV7jnjRp0t9H2N+CBQvmz5//6aeffvzxxx9++OGjjz76yCOPvP/++x999NEnn3wyf/78BQsWfPbZZ8O415999hnu4Ycffujq6mqeT/PX48fd8cpT9/jNe6Zi498sMvhU/fJ/AR8++9c/TJ4wzkR7vO+++5A+PuD55c1cQObFuOPHj9MY7797/LzpDx9cNhBmZ3bA9G/sH3/64etA73T7H7z5CP03x9Xxww8/xBPgM/I3XCcA/rr5KfrBBx/cf//9b7zxxsg5RWfNmkXT2O3FpEmTZs+eHRYWdpOTb3OYE1HG6urq1157LSAgwNwud0hFervBnBs2bJg4cWJWVtbNwJynT59+9tlnuyXB9tb6GRg39o5v7KcJtw3WwLhOsBx1wKgJ7k2eyX2MdficrFarm5qaLl++vDchFcpevgBAuviCgCRSo7AEhiUthD8JSYLn6MNz8kX8II6gMqaSGWKcpI8YsFJXroDwOIHTCbKZHD4LCo7QOv3xqvhLZdWjr+ufTmCMRqNarZZIJAsWLHj77bdHMcyJt8vm5matViuTyb744ovHH3+8sbGRUsQoC7mPE/L2/IjCnFKptKqq6sKFC2v2HSZqtPHOvnwWlKGjSZO+YO6qg7TE7Mjm2XlGgD4tucTcAuLdAhJYPoRwEAR1fFRdA1TPL87VH5r6sXHBkY0QKVh+ovbgouDjFRUVEokEG6qGWqiG6mTIZLLa2trc3NwNB464cuMIfdNkMopchLmrD5F6OniUEsqFebwJ7jRegltcizeGxBsPRT0C5ZrH6xGQOCco6ZsthysrK60W70g7q6m4n1arValUEomEy+W++uqryDXHjgR8nB9pez7C9+cmYU6lpnmEB3IL7R6FOdHAqKysLCMjwycU3OncAxJx0Ls2MvCcfeNciA0wyxsAOTKWwoCDFC6c5+AAi8xv7K5Ajhdx34wFU+SAxLkBcb5rtqxZ98uqdZs+8z+AMOq8lYk5FwuQxajX661TEKNHqrOzs729vbm5WalU1tXVFRYWnko/vWAd6MriuIpoDSKRSPbCuLBdBpNw7VYCare/3UFIjwiugP0iqH/rEZho3sfmyObNXh7u7MsP3He8pKSEKvdiw8TgJ6s00pH5wgZzDvi4dF29KpbpYo8Vc7am7E/KF0l1/TpbKK+R9jpkZmZOe+KJJ19nzfxhx4zvt89atHOBH4+769QH3GiHFQfsVxy4RmSMcASAH2ZKqGzhEZSESCG4bJDOMGdfwALtPcHIA68OfA7639ajCqXSaDTSSlS/9vnq1atdXVfP5tUv+fno6Yv17R2d/cqeea+SWq1mGGZzXIZbAFgIY1ubIxtoqdeGL+hjYPnwQMCWw3MDzQyI15HNcw9MsPeKtFsRbu8Z4egd5egFtM53F+2a8UPwjO93zFocYrdkl93S0Jfc/zPpnnuDd+6kPfc9p4idV7rkamN1oyr8YMG2qJz1+zIST5XUCtUDAK37lQrbyrYM9J0BG8zZd35ugU9pNVav14vF4tLS0oYDf7cIutDHRoTb3yla+5bX3D/cO2kc1g3Hjx9vHXclGq9Op5NIJLRq+cDd4wM+fLZ43VsWVJW8bgYaj65kGGb0uUmNqHOdVgkR5hSLxQ4ODtOnT+8Gc/acWFy5csXLy2vixIn0xLC9GK4MPPnQnbwfXh7M9Vi+8W87//nnxx/ofjTvvfdeKxifdHZ2trS0oNnJ0aNHe6Zx3vSHzwdNr785Zqdo+zs/L3iuNwZnz43blgxRBl5++eWioqIbDnf0RmMwGBDmrKmpeeONN/z8/IYL5ly3bt3EiRNzc3NvBua8evWqRqP57rvvpkyZMnbs2N6S+dRTTz1j+7uJDDxN/p566qknn3xy2rRpTz58z1NT7nxqyp3jr/Ve9MzwxPFj/78n74n6/qXBjIF0ElIjWFFVVSWRSPpm8d7wxKYr0PqgSqVqbGwsKiraG59KjDYJTsAVADRCIEns6Cc+eYCX0MZ/0wMzm6jREjAGiwVYI3PzB24WVhJnrwh38gEaGfZKQ8mMOHp+tjbxUmmVTCYzGAxWLgvSPAzFCzqBoTDn559/Ticw1ACv5wRmKHbGCtvE0RK7LTUaTVNTE4vFcnV1RWNOSj3vWRyxwr6N/J+gsJ9cLq+pqcnLy0s6mjqHFK0c2bFYsXLzT3D3ByaNEzGhdEGlQcKeceKAAi1oz4JErQnkI9cskB0dOUS1lcMDezkgg0Kl3iMw0SMo0SMg0QNECBN3JmRUV1dLpVKDwUCtf4cubzRehUJRX1+fl5cnOJL6XhBU3xzZsSwyOJjiJS5TIJBI4oXiI5JZgeQK1qQsH56rH3A0zVlHwATFeDkYbyx4yF2L180/YUd8BpKuqMPWqLkSb+ao0ZEf9aWlUmliYuLkyZPFYjF6slDBgJvZmm0dmoGbhDnVuhb6FduLQWaATtR1Oh22ieTk5ITyj88JgNGP5R3jAu7F8UBwXxGO5X7CagJ0k0hQgBI4qLAGJECnCCGIo4wtUiEB5yA8RZjbsHluATAOO/vFfcoNX7V205p1v/is3upM1C9WhR0rKSlBYx3ry31RNQW1Wt3Y2FhSUpKZmckhNqXoMIqwJQI2iFmi7ybCvTgxA6X0AJDndfePc/ONYXmB5zHmAXERlAegtE4EfsDulLA/nTix7wUK0s5mVVRUdON+jfoB1gZzDvJCbhCrE1JLOVtTY09cFvVH1ptOPlGWpry8fJad/eRHnpzx300zf9gxa9HOz1cKAnenOyzd/e7i3bOXhb27dJ/dcmxNMKnUIlMTH1twNMAnFzyr8ZJBmBPXIUIR0SEHs9UazYC7Tmsa1ZxtpwQpJQp1/7peKJWzpaVFo9FIJJLC0sr3gsDN3QTWEkHp2cvD7QCdjQZ9Wq8oUNkBaBPQTYRCnQknG+aNgHoCAuroHeWwInzm4t3vLg6d+ePO2Ut2zSYw56xFwVOee/2pp57Kz89H6VqUornuRX2lq8tgbE/Jrok9fpm9JSUsuaCB0fYXxx3kuWT7ui0DNAM2mJOm4lZ9QR1x1Gp1Q0PDpbxc8U57Whobihfn/N/4H2taN0LS+PHjUZ6ib6uwwWeZKtaiS1a32uJzj971o/OTOYHThyJw3KYw4u+NDXUKhcI68Q4+Y7fiFmiVEAUZRCKRnZ3dW2+9xTCMSqXS6XRUC6VbdF1dXTk5OYsWLXrggQe6nRu2t9bMwF+euPvnBc/lrR6gNV3Zhr8FfPTsa09Pvi6KgDDnUCvgIcyp1WrFYvHhw4evm7377hr30f97JGnpKzdEMkTbZ5z2e32Z+1MP3zvhupuyLRzqDIwdO9be3p7P5yuVym7jRs+3tHpiDnNOnz7d29sbYU5aIe35XUst6cbmXL169cSJEy9evIgwZ3Nz8w0VBbq6ukpKSrhc7qOPPnrd9AqFQkvt7SjeDs46DAaDRCKprq7Oy8ur3v85zgeu6805ftwdrJcf3PftixUbLeZVXJ3giwykoYM5DySeMimScYneLLC+gNYJSmVEgRZrYdSrhlDE+ICdsAFfAWNOdoyrH1TKEI/B+ho8P/sg3hmHD9WAfRKjrH9sPFhcXi2TyazPfhjS05VWXlAZUiKRfPnllyhHYX7xXrdMMKQ7NkQbNx8t1Wo16nv7+PgwDGO1ppAhCs0Km6UVaqVS2dDQUFRUdCr99L83AuznzOE7+8WyvGPsVgDzAC9DU02ZyM/CRUf+EXo0iA2CAxMxmXMGEyb4Lotgn0SYEVQKgcRJgEO3AEAHP1wZf/JcHgpiD7hm168s4fS+ublZpVIJhcLCwsLjqWlfrwcuAhYZSbzhEC+RQ6TxYnnRwRuGGogXxLEhRtSW7C3e/5+97wBr6zrf98B2YjdxtrOa+WvS5p82qZu2iScbDLazmtjZaZI2TWLH2+yNMY6N48X0YCO02GD23ltISAgEEghtMcTe/j/nfvhEwZiAkWSMpcePn4t0dXW/c+8595zv/d73NXNAsK65A2UbgYa+5xmTXYJIV7CIW0zVFbO8ClN6q1wuLy0t/d3vfldSUgJKRTC10KpSxSxP9c7abZYwp6pv6M6KayGfLX7U9vX1dXR0CASC6urq9KycL07FG9tEmdhFETqTUepgHsFqIhN1EkgPHNdmgVC2iR0Sq7RwQhK12z3iJ9FBmwiASIkSCjTAWrtQD3j6g3Tt/9wvfvxTfF5hMRhzdhPgh45ln2GOOjw8DCvWxsbGysrK8JjU7c5kcNwEc3QUDgHKAuyBh1yi8gyVyLzjQvrOPfDwMT/bY+c+cg03d6Rsd48DJ06jo6gRwKwUBmqMBJs7otHV0plmezG1qrq6paVFnfi1kO8fTZ2bHuacZ0uOj0+0SroDKRUO5zIjk+skit6J2R0R85iVSmVLS0toaNjq1av/aPb51n0Bm/b4fuAYtedEkrVduJltBDhxmtgiuw28lrFyjTG1jzY6GgEQpokdmmsZEbMLqITAJE4gR1q5Iq6zqX30DhcKiye8NQEMTovS4XxmAKViaHhsdGx8doFO7gUwJyj0KhQKvqD14MUsa/c4C0cqmukRwtqm9tEw38PuvLinb5sSr23U1iPhhoRPp4ltpIlNhIlNhKltuPGR4K37kVWn8cFLW/cH/O0T5xWr7vXw9JTJZLPRMhwbG+/pG2Y1ySlprNOhxUHUymq2ZGhkbqTVOTWLfmd9C0zbAnqYc9pmuZPehBVyX18fuC4zcmO0hPC1X9jYcPKfh61/v3rVJINTPW1qYGCgm/o1HK9CoWhpaVE/B7x9373LQTPzN7GHW2gr4aWd/IZaKHy+C1fIuukbN8KcW7duffPNN0FVaQaYE5+eUCh85513Vq9evXTppNIpvj0Wsjdnb28vqEi98cYbW7duFYvF6r5WtzcrOjo6Ojg4qFKp2tvbi4uL1dsTby9btvSJB1Ye3/Wi6MItijTyTr/p/++X162dyuDEP7EwN6xef7jC4422c78dteDMW18bPrFm1fLpbkwUnPqgxKrIaW9HZsBgbHYbbwD1bEJ3dzd4c/71r389duyYQqFQqVSAvtze1NjNvDkNDAxefvnlhISE2TegeioQsznfeOONI0eO4Hi17UU6Beb08PBYuXJldXW1OlIyS93mwcHBPXv23HfffVOYnXqYEz8yZtiAFBKY5wHM2RDx3bQw54rlS//45Gry3nmx2NVHALzdmPQTJNGAcTX/ejLM6cFszqjELCuCxGnpRIMsAKhcIrk2QugSMmWgJ3ldivY69ZMoJd5yONToKBJ3QjRQuyikaksQqgi8E1UNm9pFm9iTTG1JxD7k/51NamhquRtgzi+++OL//b//B3IUkAYdHh6e/XA0w825ED6CDjI0NNTb29vR0cFisR5//HEqlSqVSsHJWM8Pm+EywbMGavNFIhGHwykuLj4ekmxJ4JHmhIUSclYjygiMET+JqCRwQYClsS2hpeZCt3ShWThTJ8UYwc7TmWrpjIBMlNcGRzq0D7KXs3CmWToiWUILF9p355KY9WyhUAh1+tquHiPk2iZwDZlUKmWz2UVFRceCkU6vlVssjtfINsrUnmRkE2Xp8ku8RmrxoiGIEJ8E7UQUlDPiNEAen1BrpBLxIhzUkqAlWbjQ95xPZLE5eFo1NjY2y2foDFfwzvpIfS4HEtO1tbXPPvusP6FKB3M50OK7s+K67Wc7S5izt3/4tp/qojkBLFkJeungMl5aWhpBT9nmTN3hmWDpTEVEdkKZ1tyBbOUWAwwn4H+b2Ucb20QCx93KNZagOZLMHCjbPeK3u8dZEn6cZgRrHOA9QD1R+YUT9R2nCE9vROj08D7tH5VYU1PT2toKfGjgxOuykaFTj4yMgD2nQCBgsVh5eXl7TiMv0u2EPSfCdNGgGg0ytlA6A7ANmAiYO1L2eAQAduvl7fMfz5AdnglQtTY53yOaEeibAP+A5u0kFOpIoaTksdns9vb2zs5OzATQZTvcrt/Sw5zzb/mx8XFlV190KtM9MJeaylR2DcxG8hSsN0DOkMPhfPrpp6vue3Drj/4bv79gcfDS3uNJHx2jmdshAM8cFVwiTrYlgVPC2gRKqTAKiHRfYa5FIPqwj9HRCESItI8GArQ5kp1AhwrNqOnu7p6r63z/4Mip0KLzpFJGo/QWGg1PtlUqlUgkSi9mWDojr1ygbGJiOu6exAayJIdYLJBhJyrvQGxOwgcdUbSRcS/639Q+ysQ2csvBK5v3XzI8eNno4KXNP/pv+TFg817/J183efnlP7W1tc2pa09MXJN39V+OqfIllXkG5rWKuuYK695CE+m/om8B3AJ6mBM3xZ26gQ3k5HJ5Q0NDXeIZnBfT4EaB8/ofzJ565uFVN8MYli1btnfv3n379h0gXge18zpw4MD+/fv37du3Z8+e//3vf1999dXNzmfJkiUvPHbvfsunS1w1zOxsD9rWwsgXi8U9PT2Q5r7bFsk66CoY5gTYTywWGxkZ/f3vf58Cc858JsPDw5988snu3bsffPDBKffJunXrZv6u7j8FEBHDnG+++eaWLVtEIpE6zKn7s1L/xdHR0YGBge7u7pvBnK8+vcZr1wu3zOAU+25sP7/hR4unVxncVGNzynVcUH8++8g9cQf/PMtRN8/prwe2/f6x+6dBc/ERRP5GjNpq9RXjbUyLq6fGMMz5l7/8xdvbG8N+ul/bq9+f165duxHmNDAwMDExiYyM7OzsnLLzzH9CvENDQ+pszvXr19vZ2eF4dQBzDg0Nge6lXC53d3dfuXJlTU2NOkFqTk+f+vp6R0dHddNiPcw5820An8LCsq+vTyaTNTc3V1dX10U7QD/FbM6VBktNX33w4jcvN53WGIMTDwViv83s9CAQrdUGzCkUCplMZmxqzvueMdsIoUhYEhOLYQowL0HxEgqct7nEICNA2yjIFULuz9SeZGwbaXgkHKcJIAWGtOMIPhlCI64bBKIqY4do24vpfEHrovTmhJk5sDllMtmXX375yiuvALsRi7jexvF8Nrf97PeBDgIa7x0dHWVlZatWrWpoaJDJZB0dHeD2pwP8bPYnvKD2xM9WcOIAe8645IwPvOKsXGOh30Ga3tQBWW8Cu3HSZc2Rao6ATEKdFeGaCPskaElU2MGMSGkBYwns5RB66jpp3rnNmUpLL25qahKLxSqVChtNabV9MB2ht7dXLpc3NjaWl5cnpKTvPo5oQzDygKwiFFtYEIqIk6QrHK892cIZoZigvWbhhKgM5kRRBWZoWRI2VBDvJOPTkRJ1tYjH44GmIsxY5vQM1WrL6ObguP37+/tVKpVCoeByuX/729++/fZbuVze3d3d19cHd8KiGaB007CzhDn7B0d0cz53ya9AumB4eBjGEx6PV11dnZube/hCDGiuWhOApRVyqUQcTZiuALBhhtStkU8n8ptERRIIE0VETyckdQv7IxDUAb0JdE9Ml7d0pv3bPfiYt4+Xt8/lK2HYkBKEXnQ/quCncFdXl0gkamxsLC0tjUlI2XWMYPC7oqkd4l8SdDRAd0CcE7xLTe2jP3O5DMAtIJ0/eASCfzM8VnDpG8Z6gSMLLHlT+2jHwPjKyiqYpvb09IAb910yhuhhTo2MNuMTEw18xZXYasfzWVHJdb39v1ELCH0flCH4fH5VVdW6dY+/ZPa54YEg4/1B33klfOZFN7UNt0SSGEj3gpgURSM1V1tE2sazKbwB0ycoCECFZbZRRkQZBNQBQE8xPBKOJhuOlANBWXjxMktHBllH3yV6lVdQbgNfeWv1LmDl3t/fr1Qq+Xz+aUrudc/1SRVuS2eatTvyzYXFmpkD2fAokr6wJER6iOUY8jiAHXC8xraRRjYRxsiqM9zEJmLroeCtB68YHry8ZV/gW9+d27TH941PnVfcs4ZGo8lkMuCwzn6IGxkZE4i7aRn1noG5IfE1tQ2S8fFZknU1clvpD3L3toAe5rzjrz0kU1QqFVTFsmLcf0mN+W6c/3b7+Q2HrH5/z4o7EnhYsmTJmlWI2XnL3LIbG7A9yJxXldHe3g72nHdhLbAO+syNMKexsfH69evnBHNWVFQ89thj+fn5MpnsvffeMzAwwKjYwoc5N27cuHnzZqFQuKBgTmBzikSikpIS3JhLly559L4VPp/8n0Z6mejCxsgfXnn2kXuWTcPCxb+55B4dvlatWkfSkzwAACAASURBVDWz26vB8qUf/POxRp85wxvt5zd8a/zkPSt+FSsecwRXPmQwGOq0g9u4YsSpWID9gM355z//+dSpUxj2W1Aw57Jly1544YWUlJRba7RpYc6//vWvTk5OOF4dw5yenp4rV66sqqrq6OgAez9wyJjrgDw+Pr5///577rln6dKlephzNq0H+aP+/n65XN7S0lJbW1sZf07kt0Xsu/H5x+5dtnTpi4/dS9//Ku65Gt8Q+W2tK0gA/zwNCkvC7BEqV+rr69Nz8j8/EbvNFeXCCDomkrs0IwgQ1q6xpg7R25yRsKSJbdTWw2Fo2eyEfDqt3WNBGQmJvLnHA34JEIulE8qvmTmSLQjqGMqpOVIROOFE3e4WZ+0WGxBX2NbW1tHRgTODt9ZbZ3MRdbkPHi0xzPnFF1+8+uqrixLmhGBHRkaAT6NUKkkk0rp160QikVwu7+zsBNRED3Pe7A4E2GlkZARUeQQCAYPByMvL842It3Aim9qRUZbZmW5sE2l0JAKZ2l7Py0/mnZ2QUK25E9jLxWxzibFAXGqkLohy+i40xEYimJFEd6YgezlXBACYO1LsAlMYDAafz8eMah2saHC8/f39nZ2dfD6/trY2JyfHLyLe0pliYos4E5Yuk6QrxP8m4gUKhQWKFElqmzuSrZGdHhEvYcKH4nVC5sFmjmSUoLQjEQ31q3gP+ibV1tYKBALQVLw7C1XV27+npwekPs3MzDZt2iSTybq6uvr6+m67fMjNOstCfn+WMOfg0OhCjuJOPDdI/Q8MDIDud319fWlpKSU26R03xLsixk+kMwn/trlMTmMA9kOSlTYRZg5kazdUZoHGEGeaqR3JyCYSQD5zB8q3Ln4eXj6HPC9YOSD2PIyfiCPuQDrqeR5AwcLCYrlcjuG92WMAmmpwPOsAirZAIKipqcnJyfGNiLd0QKgM4DownIJEJzwjoB3ecQjGPE4Pwnb0gKcvUrC8LoBpZBO55VCo4ZFwqCmxJiwAoSrO1D76q59ohYWFTCYTKK2a8lbQVONo+zgT166FxNbYn830uph/LqKUK1DOhomo7bO6E48/ce2aWN6TkNvg4psdnsRok3bNEMXExMTQ0FBPT49cLudyuUFBQSvuWfPWNyeMD1764USifWCG4aErxkfDzOyRfjXoUQOiae5IMTwSDrCl0dEIwPygRnPr4TBT++jNB4KBxAk8ZrjP4btYCdbaLaalVQT1YbOZ346OjQdSK44F5RXWtPbNvdhlgniNjo5CyBKJpJ7N+eHCVWLIols6oyEOMdcJ/3WidAMNfeic0RSRgoR2CB4qipfYILRqIw0h3oMhhkfCDY+EmzuSjWwizR1JJkfDjI+EGB68ZLgfWXVu+N/p+5944d1/fYBTUqDLPaclWxlTSM+o//F4SlQKc3R0fE7fneE20H+kb4GbtYAe5rxZy9wx7wNhv7u7WywWM5lMJsVRsyk20YWN9P2v7n5r3f33TqNV+wvssCC31q42+GzT4wmHfts5b/aNJgo0b6pIbWtrAyVJHSQF7ph7UXMnOgXmlEgkJiYmr732GsCcmBwwww8mJCQ0NzeLRKLRUbSkBM/O77///qGHHrojRGu3bNmyadMmDHNCXeQM8ergIyxaKxaLy8rKoMf/5fe/8/jX8zVet+jBebN+x/V589znf9j8xwdWLJ8G7QRvTm13PdBV6+npkUgkKSkp045wD60x+I/Rk2m2r81HHzvP6a/7LJ5+8oFJZidukwaqPZPJFIlEoIsyy2pBLd0JeAkNiXuAOV955ZUzZ85g2G+BwJwrVqwwNTUNCwtTqVS33BpT4pXL5Twe77XXXnNzc8Px6hjm9PLyWrlyZUVFxTxhTmgTNpttZ2c3G5vSW27DRfNFDHMqlUqBQFBXV1eUShb6G4t9N3619YmAr15u+fkt3G21sdEatKOmsgwcjzQOc4KZU0NDQ3Fx8WE/hFOClhEUPlsSCplI+5FI/5nZT0ImqFLYHuUQcdUw8CQQkHldEgo8AtGq2xGtwFGVsVustVusFQG0WLvH5pWhMg51EaTFse6dMnrIZLIp3pyQBFxMwYJcHhD9XVxc1q9fLxaL5XI5oCYwgdF95veOGIIAdoKlnEqlkkgkQOhMz8j4/hTV2C6KoHKiPLWZA8XUnvSLs5Qj2Qy9iYBAqOgnavMpJvYk1A2RX1rMZOWBXbSxbSSR4EYuuQQsSv30p/jUXOQnJxaL1Zcz2r4tcbxA/5VIJI2NjRUVFSmp6f87RTYh4jWxV493cpxBmTv1eK9TV02JeAl/uJjtHkSlBYo3alLCF5EYEHcBxZtTxOVyJRKJ+pxK2/EuwJsQE79AZVosFu/evfvpp5+G0RhWWHpPlrleuJlhTl9S2RGfNIezmcOjeouyuTbtb+wP9zOopstkspaWFgaDkZubGxQV974HDUjegHEi/YnrjEYjAsMzsYsGehbwO2EaQzh3ovoSxIU6En7I84KXt4+T19l3XAmMkzA/RoUUNhGeflGADv581re1tQ2mZ7fFvAOXL4DqkkQi4XK5ZWVlaemZjv6I3YWJ8ki30xnVqG1zoYMxoZUL9bAHwmuPefv8xy3I7tg5L28fm2PnrZyQiamlM82IIMAROAryKUB4MIGgmDkg788dTqSohIzq6urm5mapVDp74Oc3rusd9XFUCsMjKPfElQI9zDnP6zY2Nt4oUAbH1ThdyIpIZnT33tTMGLI03d3dIpGorq7uk08/u2/dc5u+O/OhU9Ths6kWtuFGh0OMjoSZO0TDNMnwKILtgcII5Gz438SOhKxnbZGJr7qeDfCYQZAGPoXv4ulWZEZVZ2fnbEwZhobH0ot4bv45ibmcju6BW2uiiYkJmGl3dXUJhcLq2rq33ZExAaZmmtlHm9iiHmruhNicRr+O18KJQuyMDImNjkaiuRZisSMoFAaHyU5tj1rD8HCI0eEQhHQeuLh1f+DWHwMefenvzz33PI/HUyqV4FIHyOucYunuHapgibwu5v0cVlzBEumrAebUevqd59oCephzri224PYH7AFGeQaDwaB5aCPLJrqwscrzDaNXpop/4tS/gYGBUqmEItCRkZFRrb1gIqtQKAQCQW1tLT6BGzesX3+YdeIf84Efpm1JYaB5Q1laa2srPNtmU8Kz4G6aBX9CU2BOmUxmbm7+pz/9SSKRdHZ2Ym/Om8UxPDz8zDPPnD59esoOExMTnZ2du3btWvhsTlNT0w0bNsBtNhtYd0qk2vgT0nAA+1VUVDzwwAPH92wXnv9tN8pp+9Fs3mw/vyF67//7/UNTtbLvu+8+HairYZhTKpVevXr1xhHmow3rWn5+S6QJ0rzId2Pr2bf2mD+10mDZZMv4ba5ND2GxWGKxGBPHb2M+bkriHmDOl156Sd3PaSHAnM8++2x6evr88+lT4gWY89VXXz1x4sRtgTllMpm3t/fKlSvLyso0AnNC8Yc2BorFd8zx8XEYDcDGsr6+Pi8vr/nyh2LfjRqfYEw7MNbRjjEYjNbW1o6ODiwFNv/RYGxsbGRkBEtllpeXX6FdBf4lrHsNbSKMjkaAaC28YwK2mo4UIxuEmhjbRCEmhH20qQNiaqJ9CETBxB59ZOaIUgZWLoQQrgMFxM0QXErYCn53JqmhoQEgBwyDzT+ohXD7TRk9ZDLZJ5988re//W0RszmHh4ehAkYul+/atWv79u1isVihUGCF3ttbprMQ7ooZzgFnqPv6+jo6Otra2lgsVlFRESUu+e1jCZBlI9yVUFXBNhc6wTOIADq1KdjLOZItUQafbopYjNEWztQdHgmEPyXdkshlE/zOSMSlJvrpNmf65ZgsTG3s6ekZHh6ev+PvDDFO+Wh8fBwYwEqlsrW1lclkFhQUUOOS3vdKMHegGNuSCMk1FK+1awxKuh2NQAG6xJgh9hXiJVgikd4Y8AC2cEI+fDhelOyzIxnZIj4WyusRuctAWmZ1dbVAIAD/vLsZxoMV1uDgILbJOHjw4MMPP8xkMvEK625unyn36iz/nBnm9Isusz2T7nQha3RMr9c3yxad7W7wwAVfla6uLrFYDB7qmZmZ58PjLOxJFkTSH+quTOxIUGtl6YzGE1NEfI80tkF6+yZ2JEtixDC1QwaWRM0EZfPBUMdjZ7y8fWyPnbN0iLJ0poNJubkj2c4vtri4mBRNBaQzNS3zNupgA+QwPj4OXht4slpaWpqenn7wDCr1ACgXPVAIrv929zjwHdjjHgghHHA/b2ITsd/D18vbx9HrzA4XspVrzHb3OMMj4VsOhSJklyDFAgBsTMBCVk5kakJqRUUFl8sFnx1w5bzbnvjkNObxy/k/XSlEMCdfz+acbeeddr+JiYn+gZGkvAb7c5kX6ZUNfOW0u42OjoJ8q0AgqK6u/stf//bQ83/e8sP5/3rEbzsaango2OhomCmhZm9ihyw2oAsATXPLoVD4Z0wY1gLOB4r3wNo0sSOhuZZNJPA7oSzAyjUGm3GYO1L2+acC5gcd/2brl4mJa/RMtv25jMS8BkVX37SxzOZNmDX19vaCYu3V/HJYheGOaYZ8DYhKUwc0IZyM1yYSRQHxHg4ztkGu56bI6QBRP5FMtyPFnNiwdEZzyy2HQ02QCXq0uX2kmW2E4YFLgHQ+8w+rRx99tKysTF239mYhzxxOPU8WmlDrcC4zLpsz8576T/UtMJ8W0MOc82m9BfHdKTBnRezZadNkGnlTdGFjzP5Xd7352P33/qL/Cdl/AwMDKAcGGrv2mgayjV1dXe3t7Uwm80bsYe1qg083rks8/Bct5R/bL1pxKnMEAkFHR8dcrae11yyL7MgY5uzr6+vs7JTJZDt37nz55ZeB3TgzzFlVVVVdXS2XywcGpi+YmpiYYLFYC63Fpnhz7ty58x//+EdLS8vCEa0FhcO+vj65XM7hcFJTU/NSY9v9DDUytsxwkOaf3zz7+R+2/PHBlStXQH+///77dZCSw/EqFIr09HQ81Dxy34qvDZ/IsHtdGyNMvtN6aIrWizurClLB3kz3Kcgbe8eUxD3AnM8991xYWBiG/W47zAm2Ujee/C28MyVeuVze1NT00ksv+fr64nh1yeaUyWQnT55cuXJlcXGxpmDOW2iWu/MrcDMMDQ11d3cD16q0tLQgxk/st3mGgUtTH7UGbSvOz2az2UDsxsvpW1teql9B4EBgqcza2trsnJyvTsYQBk50Uzsk5gZw5qTaG2FeBWRNsNucpHg6kE2JpbK69aY5YQqIyKBuMYBrIp4EkUNE8rZudGpaYUtLC9Z50yXEot4I2tieMnrIZLJdu3Zt2LBhEcOckFrt6uqSy+Wvv/76t99+C8GCvDa+abXR2ovjmJhgBxYk2GHuSnT8h8foVqAQeN1WDaShURfDvpUEr9rSmY7q+onOaOlEs3KlAw/b1IFM7Ey2dEKV+9tdqGci08rLy3GdgQY54rO8HJiAhQfV6urq7Ozs4Oj43V50UERE4pAEiXySII6qKBBHAZJ6kzKMThTI01mgeNHYZeFEA5Y5QVpCmT5rF6pPeGp5eTmHw4G6MUjEL6YxZ5bNjncD7bu+vr6uri6ZTPbzzz/ff//9ubm5MLtYZCriOGqtbswMc/qTyx0vZHoE5Izpbck0fRmgTARuacAA2tvb2Wx2SUlJenrGqSsx77oRNKbrtKdJGMM2apKVdV3QFaoiCKiA2J+QdrRyInseRwachz19LRwpBChCsnAguQTF5+bm1tbWNjQ0+Ppd9PL2OX3GVySWaFtnaIbGw+UyQJSXSqXNzc11dXWFhYUx8UmHzlItCcsAGE6B1mZiR/rE+QpgnO7Hf37fBVWQfOeBwnE//vPbzohVj4AiRwrUjhgTjUZgw1Gm9tE7nUiB5JTi4mIWi9XainzW1WV75z9HnSHYhfYRLb3+ZHDhiSsFp8OLG/Qw57wvz+joeLOwIyK51vF8Zkh8taKr/8bykNHR0d7eXiBwl5aWPvvC/6176e//caf/cCrJ0iHSzC7S1C4SVWHakZAzJdH9gfiIChqcafARSNcSeCGCA0HVGVDPbQSoCVMOVGdmj3BBsKQFBPFfXvESiRS8Km+G64+OjRdUtzr7Zocl1MzATP3NBoPejUV6Gxsbg2OzjAg3TVP7aGv3uMlCUqKaAfEyCa1aiNfUDlE8p8ZrG4U5nVAAMSnoTVgemNhGGh8NMzocYnjoitHBS1v2BTy/6f0HH3ooPTNLJJqU6r3lGdTExIRY0ZtXJdjvnULPYA+P6BUOfvP663e4lRbQw5y30moL6juAjoDlOIPBKEylaiq5drPjCM9vqPR8w/I1JP6JX7qEOQcGBm4Gc77790eZ3v/QKsOs7dJOdm050OzwUnlB3RKL4GRuhDl37dr1hz/8gc/nd3R0YJhzWs7Whx9+aGZmdsc1AnRkgHWlUunu3bvXr1/f1NSkDnNOG6/OIsXO5x0dHWBQl5+fz77yxc0GCs2+zwzfExgY+MwzzyxZsuT+++/XQaU5Zht0dnbm5OQsWbJk+fJln299hnvqn+3a5LBCuzVE7a2urmpubl4gxnU4cQ95MYA5n3jiCTqdjmG/2w5zarAvYGQLvEjlcnljY+Pzzz8fGhqqVCpVKhXkAbUqTgVZm/7+fgAPzp07t2LFCpyIHBgYALBfg1HrDzVtC0CZ/PDwcG9vr0Kh4PP51dXVmRkZ3CufanaUm/Zo9VTHioqKpqYmmUzW09OjQQEJuMkHBwfBnpPNZhcXFwfTru70RAvmyepmlCMAuxcqMuy0J5nZEdxNQrftF7vN6wKS5khXM9rcgTK5sz1yDUSitQ7Rls4IvUCrbofo788lVVbXtrW1dXZ2Lr6UOh4tsTfnu+++a2ZmtrhhTmCGyWSy+++/38XFRSKRqBdk3HJCZNouufjehHsGFMk6Ozvb29sbGhrKy8uzsrICI+O2uyPTODOidACRCVwQkgeuaRbOVIKpSTJzJG93iwNoEOzTIJdnRTAgDY+EI1ICUZFwPCS5pLSUyWQCtRHMU2+WpNNSU+N4YdLb3t7O4XDKysoyMjICI2K2E6KIeAgiCKmISIScR52pJrYkY1tkG4zs9BAUSrEg7PRMbFE2c5tLjLkD2fAooh+ZOZCNbUnHriSWlKB4+Xw+yA7pcXc8u+ju7pbL5dHR0atXr46NjYXpTV9fHzTR7V10aOne09JhbwpzdvTFZLL9yeXOvlmeQbnjep0+LVyAKQgf2KgzGIyioqLU1DS/UOrbLtFIapWY2AC9G0ooCK78L+gFwXOKBgNjQEN3eUQDCrjX8yJRfkGzdCSfuByTk5MLFEaxWJyTWwD7XPALGhkZuY3wHkiPAFEeEmVNTU1g0hkXn+DqT7Z2oW73iIfQkEu6C8XJC3FVj3n7fOAcBhDOv90uQzi7PJDCp6l9NDIaIEptzBzI293RqGtiR/rALZocm1hQUFBbWwtytd3d3bhi5m574tMz6k8FF3lfyT8VVsjhK/S9fP69fOLaNVXv0NXCRpszGbZn0lOLmsbGx9UPOzIyAjr/XC63sLDwmedfen2DlbNfpunhK8ZHQs3sIswdSEjvgZgsXS9iAMlWZMcLCtUmtlGGR8InsXwHMjJBt4mcnHsgjiMBiDogtw54E741ue1EaRYIVSoVJr1M6fsTExPxOVzbMxmxWfWtkm71k5/rtvp6TSwWs9nss6QMM0KD1xQ5g1AsnenImxzRNCexWPAfAUleouoLWXhOidfIBnHZgdkJZFaiy4OKb4TRkVDjo6HGh69s3Rf4/Mb31j7wYELKpGvbwMDAPCeNo2MT7Ga5Z1BuEL1qZOxXV3aujaPfX98C07aAHuactlnupDcxm1MsFtfV1eVkZ7UFmE2bLNPsm6ILG2MP/Plf/3j0/jVIUtLAwEA3yorqUuz19fWAsz6w2uCjt9YlH9EWg1O96VrCv2Qx6/SitVrtJOowJ9Qaf/nlly+++GJjY+MMMGdra2tmZqZMJuvuntdkQquh3ezgU2DOr7766rXXXuNwOB0dHb29vQsBUMfV911dXW1tbfX19SUlJcWUkyLfTeodRBvbwgCzkqxEFovF5/P9/Px27NgBuf4pE8qbte2tvY/ZFV1dXRUVFR9//HF4eHgJ9aQ2ApxyTKGfUWk6ta4OjTNdXV1w9W/BBeHWAp/2Wzhxrw5zPvTQQ6mpqXcJzMnlcp966ik6na5LmBOkIAHmDAgIWLFiRXp6+hTwYNrrpX9Tgy0AXU8dgWAymXl5eUX080It09nbAi1KM+kMBgMEJMAQRVOpZ+jUUB0sk8mampoqKyuvpmd+/3OMmT3Z3HHSmwq53BEmLlD+T4hJTgqgQVIMvDZR+TDKBSD4ASxtQNsNqFfAEAUy2TYXWkRyATCrgO2nQexWg9f9lg+FR0sMc1pbW7/77rsY5oQaBa0+v2755Of0RUyjwQKYPB5v2bJlZ8+elUqlMFubjXHRnH50se6Mp1hQTtHa2lpfXw+Sg0ERtE+PowICwuOWivTTnOnmDhRCMhr5WSJnKcLPEkQICVFBZNuJwFHCogl1RlvSe27kn8MTi4uL6+rqIDHd09ODL5COb0jIyKsbkcCsMj09/Qop5nNvKkAO2Ebul3gRCyFi0pGUUPEFEUUiXpqZw6TZnold1PvulJNhiYWFhUwms7m5WSKRzJCRXKz31bRxjY6OqgtN5+bmrly5MiQkBISmMfKtqWfNtOewyN68GcwpUfZGJNb6hBY6Xsg8FpS3yKJeUOGABs/AwIBKpQKOF4vFgiE0jBzzw2mqFeFOB/wtc0eKlQvd0hmVjFgQOvzGNpGIrUjUkRBDCrL4/dT5EmB+X7petnCifOlNuRSNsL3q6uqGhgaws+3s7AwOjYDdysordTyQTrkEGOkECXSQ8K2urs7Pz09JufpzMP1TL4olwfSydCAdJmxHvbx9vnMPAHTE8Ej4R05XPL1Pe3n7/NsjBBRuiUngpGIt4sc7kw+cpcckphYVFTEYDB6PJ5FIYK0KIje3d7k6pUF08ycBcxa6++d4BuayeLLbew/oJmQd/Mr4xIRA1B2TyT56Ot0zKK+CJVIX/R4eHgbLNg6Hk5eX98r6tz78/tR79uFbD1w0OhxsfDTMFImvTtptqsOck1Afwc4ESjdQIbFoLa6BQE60rjGI0Elo28JB4E80A7EncZoEgO7fmJUaGBrNr2p19c/2J5dLlL1j85Mrh2XFwMBAZ2enSCRisVjeoVe3e8SDvD90XjMHRENH1WCOaOO6TDcax8CnE1ibsI+lMxXFSxiRTMbrQDa/Hi8aDG0iTGzCjY+EbNkftGmP/1Ovmzz48CMpGdngnzJ/mBPun9oGyUVaRUwmR8/p1EGHutt+Qg9z3vFXHAzzoJ6FxWLl5uZygz+fkjTX3p+t5zZkBLtv27bNwMBApVLpoEIWw5xisZjD4SxbtvTDjU/Xev297ZwWPQLVG5AT781ms9va2rq6unRgEHjH36C3FMCNMOeePXueffZZFosFibNps73Hjx9/7LHHZDLZLf3mbf6SOswpk8kOHDjwpz/9iclkLhyYE6due3p6xGJxY2NjVVVVelpyY9Db6h1E89t+m+pobqWlpVwuVyqVqlSqrq4urbLo4FaYEi+Hw6mqqspIT+UEfaD5GH9t8FlLciwuLuZwOFgbRAfxztwBYOU8PDysDnOuWrWqrKxMZ7DfzGeo2U/h6oMSI9AdOBzOww8/nJOTA/FCzbJWr8uURGRwcLCBgUFSUpJSqYRllQ6kmzXbqnfo0SBlA0M0pM+4XC7KnaVdZV3+t1ZHgzLaT6UlJTAUwEWfZ/2s+iUAjAo6tbpDXiQt3swuCsGThBUTiB1BZhDpuTlQEBWAYHZiNie8Y06ssRFFwCMO5J6MbSJN7ZDIJPjiIJ1JJ5pbcGpVVTWPx5PL5b29vTCPWkxZIfzsAJhTKpWamZl99tlnixvm7Onp6ejoKCgoWLVqVUhIiFQqVdeiWEzXV70TaXBbHTOGcUYgELBYrJKSktTU1Gha7B6faKTIivog2dotdpsrkqi1dKKZ2EYZEfZyILlmQSjTmtmTCXu5WDMH8uaDIcY2UR97UUmxyfkFBQwGo7m5WSwWqyemdQ9oqROwVCqVXC7n8/lMJrOkpCQjI4MSE7cXxYvAWqAQbXOho9qLX+JFxsCTYwtCc4l43Yl4D4QY20bt8qRGxV4FYUmIF3PHb6OwpAZvmPkcSh0QUigUHA5n+fLlZ8+elcvlXV1deFjW/V0xn6Bu73dvBnOKFb1XYqu9Lxc4nM/0vpx/e09ycf86XqeARoVUKhUIBGw2u7y8PDs7OzEp+UIo7X03BNeB4fHWSac69CeYHyMdC3vyNlc6okY5U63dYn/wmPSt/MQl5KcrsUkpqYWFhYDttbe3g9zO0NBQZ2eXz8/nvbx9fP0vDQ8P38Z2hnEVcoMgsSAWi5uammprayeHVnqcky/FzC7qW7cggGadvX62tI+cdPI7GvGha6QHAXPu9QxCMI9bLNA3QSTgQ3fS5ej4jMysUkISoKWlBTDO/v7+u5kCTs9AorXOvlkuftnMJj3Mqcke0D84UsIQOp3POuyTlpzfODQyCkcfHh4GLUM2m52Tk/PRD8f2uIYa7r1gePCyuV2EuT3J6EiY0dFwCyeKlWvMNqKmAbiYUDsFnGYACLFeKwwOgBEa20SiMgg70tbDYaiO05ECkrZoXUPUnJnZk+obm7u6um7UpBkZHY/NbnA4lxWZzKjjSuffHJAXBZizvb29rq7OKzjZ2BadCWHZjgI0sYsytkGW5NtckFcIDhbFi87/F4NeKO8gilCRJDUs0IxtkYOpqR3J8HCYuSPZ1C7S8FCI0aErG/cGbNpz4eEXX3/86WdzCstABaS/v18jq9HRsYmCakFEMoOWVj//VtIfQd8C6i2ghznVW+OO3IapTE9Pj0wm43A4BQUFNWQXsfb5VZDaaw8wqSjNb2xsTElJAQM5jYx6M1wJ2QmTywAAIABJREFUDOtKpVIulxsSHFxLstdqnlH94CI/w8qCtIaGBoAf7uYp3QzXaP4f3Qhz2tvbP/3005WVlRjmBNlS+K2+vr6EhAS5XF5ff6c+JjHMCexVNze3F198sbq6GrNX1eOdfwvfwhEgdQuUJoVCIRAI6uvr8/LyUmnBrQHm6t1Es9stF98tyUqsra0FPhNW07qFEOb0FZyDGxgYAAyAxWKhelhaMN/fUrMxqh+t+eJ7hZmJNTU1YFyHl45zOnmN74zTBwBzyuVygUCwfPlyDoejM9hP40HNcEB1mBPIlGw2e/Xq1XV1dTqLdwrMGR0dbWBgQKPRAOaEG+NuE4aa4ZJp+yOs2t3Z2dna2lpXV1dQUJCSGNMQ+J56/9Xc9iZm2N68vDwGg8Hn8xUKBQx9mr3i+FHb09MjlUrBETA7O/tsWNzb7nQgboJVFfDDDI9GIDgBFvy2USaEURNe/5s7oGyCNZEUQ8XRzlRTO8Q/A3VNWEt/+3N8SVkFh8MRCoXd3d2YSabty6fL4+PRA2BOiUSyefPmPXv2qOu4Dg8PLwLkDyNzAwMDPT09SqWSRqOtWbMmJiZGJpMBzDk0NDQ6OroIgtXBLYRnWQMDA93d3TKZDJDO4uLirKysxMTEM8H0r7zJVo5ISxAZVdpFm6OafVR5QJQjgEY0BdXsO5EhdWXpSP7Yi+IeRE9LzygsLKytrQXyTUdHB55NjRMvHQR440+MjY3BrLK7u1sqlfL5fCBgIVgiMfFsCP3rE0S8zjQzIslIxEs1d0TRIdI50LMIPhbEa+EY/bEXxSMoJjMzs6ioqKamhsfjicXiBRLvjS1wW96BZoduq1AoJBLJvffe6+rqqg5z3rkkex6PR6FQHBwcviJeTk5OQUFBeXl5vb292mvt2cCcPqFF2jsB/ZHx8wjroADSWV9fX15enp+fn5qaSqHFeAaQv/CMtHZAwpVAbwL9CQvC6Bd0IAECMbWPPuqJwEsvb59oWmxWVlZxcTEMoSKRSKlUQkHAyMjI6Ohodk4+7BmXkHwb6wOgLE9dGwBU0JuamphMZmlpaVZWVlJS0qWQCE/vn728fVyPn3nb6RcNT0tn2g7HSLfj6CMbz/NAlDe1I73rRv7+NP10cExiUlJOTk5ZWRmLxQKMs7OzE/jfo6Oj2s4BLtibXA9zau/STExc6+wZKKlr840udffPSchpkCr7JiauDQ0NdXV1CYVCFouVkpbtcDZtg8l7//jSw/hwsIlNmKlthCnSoYlG6hcudJBfhp6ObnLPBAIXJIGmq7FNpOGRcDMHRP3c5kIHn2+Qa0aw39EIQhWWBvAnHArJ5rvSm1oEN8Kc8o6+hNwGpwtZIfE1yu4BjQiVw2Ktv79fqVQKhcLa2lqfiKswTEFQsI0hTzRBAmUdZyqK1yMeif8TVadGNhGT8SIjgF/Fu82FbmqPFGvNUTldtIlthMmREKNDl9/876k1jzz16ta3C0orBAKBQqHQFMx57dq1sfFrLJ6MllGfUyEY06vXaq8j3X1H1sOcd/w1BwO5vr4+hULB5XKLi4sLEy63a1lIDSfyGiP+V1lZ2dzcDFX5ujHMA4ssuVze1NRUUVFRlBiCz0fbG9zQrysrK5uamiQSSU9Pjw7iveNv0FsKAOdeseabt7f3448/XlRUNC3MGRsbu2bNmszMzFv6tQXxpSkw59mzZ5955pmysrKFA3Neu3YNrsvg4GBXV5dYLG5ubq6oqEhNTS2NdBP5btZG7xP5bS1OCi8vL+dyuWKxWF1wTAeXDbA9qAuWSCQ8Ho+I92pJpIs2ghX7bpT4bS6Kv4T5W0AZXwjJphthzqqqqt/97ndcLlepVIJdLqgV6eC66OAnMFCBYV0mk7ls2TJIbegm3ikwZ2Ji4vLly8PDw/Uwpw5ugBt/Ao9+vb29Uqm0qampqqoqOzs7lRwo8Nd8nQfv0r9y0xMrKioaGxvFYjGYAtwoi3Tjec71HZzvhlwYl8stLy9Pz8hwC0Il/JYuNAsnmqUL3dKJZkFoHCEyGWZzEj6d+CPQsEU5ApcYWHgTzDOEwVg60cwcyO950JMz88AUUC6XA8qyEMa3uTbazPurT2C6urokEsn69eun2FUuJpgTnMBUKpVSqQwMDFy7dm1GRoZMJuvq6sLql3qYc+Z7Bj7FRBwsKIqRzsrKyoKCgrS0NHpsfGA4bf9p8g5XVJ4P2B6oTCOXSsJKDWXrXOnWrvRvTlDPh8fFJqbk5OaWl5fX1dUB5geXBhtK3SwpjzPmMAEYI16AicL/87+seGoBLtQQL5vNrqqqKigoSE9Pj4lLCIqg7z9D2eGGxhCI15RQ1QZlNlSNQRCwrFxjvvqJciEiPjbxak4ucs5jMpkQrzqxWLOVIrO5rAtwH0gdDA4OAglbKpW++OKL+/btk8vlnZ2dIGV8J47Mw8PDrq6uTz75pIGBAZjawP9Lly697777Xn/9dRqNpqXLMRuY82xkiZZ+XX9YaAE8hA4NDUECQS6Xt7a2crlcBoMBIF9KSgo9Ju5KBOVEYPR3P0W974GonMaEKOWk+68daacr+SvvKJcLkV4/IevKEyfP5OfnV1ZWYvlrWJvDEArs8J6e3lOnz3l5+xw/cZrNabi9VwTaYWRkBDRpOjs7xWIxn89ns9mVlZVZWdk/nTpLnKrPef9LzhdI/z5O2u6MnAiRGaFjtNtxFLXH8dPvu5H2nIw6GUgKi6bFJSRmZKBamerqag6HIxAIpFIpfspjjHP+D4Xb23S39ut6mPPW2m323xoZHeMJO06FFO4/kXIppkregZRgAOasr68PjEx38c144IkXnn9rJ/KSPHjF6Eio0ZEwRG10RooXSGmWuL2hOhODgsB0tHCiXh8BEMaJXL1tIrHvxvUysknpWsI7AHElPzgeJ2htxSoRMLXo7hk6G17idCErMY/bKu7WlEsrLCvUYc6L1FTgaxIUTFROCk6iAN/+Eq8dEuL+dbwI9DW2iTK1J1kSmO5kvLao+xMytmQze5KxTYThoeCtBy5v2R+0/mP7pcsNzPecqqiqBo9zDcKc165dGx4Za2xVUtPrm1o7Zn9L6PfUt8DMLaCHOWdunzvgU1irAI2dz+dXVlZmZ2VwL+3WUhZe/bAivy21yQFgIAfCHdrIwU25BhBvf39/R0eHQCBgMBi5uTkNlz9VPzEtbbf7ba1ICgSXLMjQ6WHOKVdHU3+qZwlBMTIwMPCRRx7Jzs4GXzosEDE+Pp6bm6tQKJKSkjT167flOKOjo7AaATZneHj4unXrCgsLp4V1b8sZAswJUlfgHdXW1lZXV5eXl5eSFF8d/L3IT8NIp9DPqITiDb5K6nwmnZWL4oUi1JEIhUImk5mbm5uUGF8V/IPIb4tmhxqhv3Ex6ThorAGVUzcU+dncTpCLBBstYDdevXr10UcfbWxsXKwwJ1QegOiTXC7Pz89fvXo1NpzTvWhtTk7O8uXLAwIC9DDnbO5Yje8DyPfw8PDAwEBHRwd2zktJSUmNON0SYK2x0cBvE/fSR5nJ9KKiIhaL1draqlAoent7tWQKgBH9np4eYGnX1dUVFhampKQ4+dN3uiGA0xycnJxRLTNaSDuhDTBtMrWLtnCmWrvG4oJi5FjjQAGFKCSnaROB0gpOlM9P0GOS0ysqKpqamkQi0e0VzNT47aF+QPUJTGdnp0Qi+eMf/3ju3LlFyebEbDyVSqVQKLy8vB566KHi4mKghWG+4N2Z+lS/K2a5jdP0GDyGNH1jY2NdXV1ZWVleXl5GRkZycjI1Ju5sCN3BL+aHn2O+PE7+4jjlY4+oz46RvjkRfeQC/VRwDDk2KT09PTc3t7i4uKamhsvl8vl8LDAILFtIzE17dfCZjI6Ojvz6NUq8ILk/Txs2/CswtIJ6rVAobGpqqqurKy8vLygoyMzMTEpKotJjz4bSHfzoe87Q/+1N+eI45ZPJeMlHL8ScCo6NjklMT0/Py8srKSmpra1tbGwUCATq8eqXbPgmVCd7dXR0SKXSTZs2ff7550DCvkNhzr6+vo8//njJkiXPPffc3r17k5KS6uvrMzMz9+3b9/jjj2O888CBA52dnbgpNLUxG5jzAqlUUz+nP87NWmDKkAJAvlgsFggEAHaWlZUVFBRkZWWlpKQkJibGxcVFU2iXI6kBYVT/MOrlSFoUhR4XF5eYmJiQkHjSByGXfgGX6uvrm5ub29raZDJZd3d3f38/DKGwIIUhtLmFD/BhWDhpaOh2Stdeu3YNVm1QLtnX19fd3a1QKNrb27lcbmh4FBBP/QMvX01NTU5Ojo+Pp9PpEdG0ixFU/1DqydMXYAcajZacnAzPkZKSkurqajab3dLSIhKJFAoFeKsPDw/j7N+0j5KbXanF9P78Yc7W1lYG8RIKhYupZTQYy8TEREf3QEIeIkp6BObmljUKhLJ2kYjN5pwOyQ2ITHzurbdX3Pu7t771MTocbGobbmoXZe6IGNtgukFotKIyzZ3HEi2cqEY2kZjMbe5IMTwasXH/la2HwwDdxDo0pnYkY5tJSWdzR2SRbk4c0Ng26lDAVbAwg5zk6Nh4NVtygVTmdCGLnsVW9Q1pkJsIywpYfgqFQgaDQU/KtHCiWrshUBZXvAGJE8cLYjwoXmeasU2kmT3Zwoli6YIEeG8WL6K32kSY2ZNMbCJMjoYZHry8dV/gI/+3/sFnXvnP8aja2lrNenPi26NvcITJk/mRK4QyFX5Tv6Fvgfm0gB7mnE/rLYjv4hRVd3e3UCiE/FRWfFi7r4ZT8Dem8FouvltWlAsKriA+pgP4AQZ64FeJ0LONXVRUlJkQJfQ3uvEMNfsO//KHxXmZHA4H/BgGBwd1EO+CuMl0fhI4oYyLMWk02tq1a8GXTqVS9fX1QcKCw+Hcd999Fy5c0Pk5avgH1WFOuVyelpa2du3arKwswJAwrHt7lxCQzxoZGYEOKJPJgFGdk5OTGB9Tful7zcplF4e7ZGWkVVdXNzU1AZ8Jkw900w4Q7+joKFaQ4/F45eXlWVlZCfGxZZe/02y8JRGOmRlpQF0FGAB70Oom3hnuafWkWGdnp1wuv3Tp0gsvvMDj8RYU4XiGEOb0EcQ7ODgIMKdMJiOTyU8++aQ6zKltrsMUNmdFRcWyZctOnz6thznndCk1tTPkzmCgBpsAPp9fV1eXn5+fmJiYHOXH89+ukSlH/aVP0xMoeXl5tbW1LS0tYEiMhz5NhYOPA09bwFSAesjj8Wpra1FcSUnHL1ItnMigXouqnpFnFc3EnmRMyNUaHUXeeCDyZuGElJEQ/OmANDNREgH5BUaZEDafX/8UE5OUXlRUVF9f397eDmpvWPb/to9vuDU0sjEF5hSLxb///e9JJJI6zDkyMrIIosY3D0zVFArF4cOHH3vssbq6OrlcDrlgLcHzGrlSC/AgmEAJJWXwDFIqlRKJRCAQNDQ01NXVVVZWFhcX5+bmZmZmpqWlpaSkxCckxcYnxsYnxScmXb2ampGRkZOTU1RUVFlZyWAw2Gw2n88Xi8UKhQL7OuPE9I2NgHECeAYNDg4ODAz0E6++3t7+/v6BgYGhoSHIbmOw88bjzPId/HMwtwRYAuJtbGxkMplVVVUQb0ZGRmpqanJKSlxCUsxkvMlXU1G82dnZhYWFM8erX7LhK6I+o+vo6JDJZB9++OGOHTvwDEd7Txx8DhrfOHr06PLly19++eWGhoYpo2tmZuajjz4KSKeBgcHevXs1/uuzgTn9yeUa/139AadtAQD5YEgBURalUgmMRi6Xy2KxampqysrKioqK8vPzc3JysrKyMolXVlZWTk5Ofn4+Si5lZZ8kWI9kCr2trQ33joGBgZthe/EJyUDoLCoum/bEdPmmOtI5MDAA7ZBfUOj9E9Kk9fO/WFVVVVlZWVJSUlhYmJubm52dDY1wJTgUYM6EhKSSkhIYVzkcTnNzs1AoxNLWYDqAHwFTOp0uI73tvzV/mPPbb799jHgdOHDgtocz+xMYHR0tKSmhUCh+fn7BwcEpKSkCgWD2X5/rnuPjE7LOvvhsjqtfttOF1NgMRmUtNym72isoM4pM3fCl24p71jzzDysEzh26Yngk1NSORNhSEqIy12mdAPIRHpb07e5xgGgiG1rXGBPbKGPbKFjaAFcSQ6GwDkLiNM40qOMMSSoG942BgYHBoZHcSoH92QzPoLxSplCi1LBAOoY5QXeHyWRmZuW8fyxumyvdwhGtuTAR04pQ6DV3pCIjc7soZG3gSDG2iYB4rd3izBwQ9dPCGeJFqzmjoxGmdiQLZ0RRBZdic4do46Nhxkix9spr7x9YvmLVqzu++ykkgcFgtLW1dXZ2aiMH3tUzWFEvIqXUqXqH5npj6PfXt8CNLaCHOW9skzvsHQxz9vb2SiQSDodTXl6ekZFRGbxHpE2HznZ/o/y4y1VVVc3NzTKZDFhHOtACUo8XhOMqKyszMtKrQ38U+W7USJJx2oO0+20tjgsoLy/n8XiQdhwaGtJBvHfY7aih04WrjGW75HJ5bm7u6tWrKRQKGOMBzAmJm6tXr3Z3d2vol+d8mNHR0dLS0qKiorq6urGxsWvXrg0MDFRXV584ceLzzz83MjLavXv30NBvP7DBdBYqLuVyOYPBWLVqVUpKCsS7oGBOyL5BWlMkEnE4nIqKipycnDg6pezSd21+Gig4EPib5Ud6paWllZWVNTY2ikQirAqiy0QVTjhi7ygorSgvL8/Ozo6LoZVd1Ey8rf5mBVEe6enpZWVl4FoH/PiFkyBWT4p1dnbKZDJXV9fXXnuNz+ffJTDn6dOnX3nlFZzm0EESEFLMALHL5XIul7t06VJ3d3dIVWPT1rs5szDn8Xp+X8BIJ9R5SKXSlpaW2travLy8q1evxlMjqoO+EM7DMqDVz7Qs9HBKclJ+fj620ANYAhShtXSt1cEqdaSzsLAwNTX1CinmS28KWkjbR1s606zdYtGynxBBMkZMTVTpbGIbNakn6YBkM7e5IrsXoyPhRkcjdrqSnQLjwMyJyWRCIXBPT8/Q0BDOjs3vsiy4b2OYs6+vD8TiHnzwwezsbIlEAoKQwAXX0tXUZXPAc2F4eBiTRb766qsnnniiublZP0zN50Jg5A8XwAEXRyQS8fn8pqYmNpvNYDCqqqrKy8thClpEvIqLi8vKyiorK2tqaurr65uamvh8Pk5MA0sPJ+in1aqF0QBrWaOlJY9bERYY/58PI9/eFG69gfKRZZ6PexujqlelGhoaAl+6ea6GcLxYZRHiFYvFra2tPB5vhnjLy8srKytra2tZLFZTU5NAIGhvbweUvbe3FwMSMNrM56Ispu/iGR2MUTKZ7Mcff9yyZQvMcICkdWfZEGRmZi5ZsuT1119XqabnguTn569atQor2YaGhmr2gs4G5gyiVWj2R/VHu1kL4CEFT6R7e3tBLUkkErW2tjY3N3M4HBaLxWAwqqurK4lXRUUFDJ4MBoPFYuXmFZw4iRDBnNw8nHzAgx6sRqc8xyUS6anTyM7T+6efZTL5zU5PN+/jNSyM50NDQ7zmFuCbnvQ5V15e2dLS0tjYyGazmUxmTU0NoJ4VFRWJiQis9fL2SUhIZrPZjY2N8BzB4wOQWWGImEESQDdhLoRfmT/M+dFHH8Ho9PXXXy+EiGY+h66urrS0tA8++GD16tV4UMUbr7zyipeXF4fDgbTYzIe6hU/HxibaJN3HL+bsOxZ7LizL/kx6VHxBbGzsbqdLT683u+f+h9/4wmPLgUsmNhEWDuTtbrGWzlQA+cwdyEZHI7YcCoWizElo045k7kixRrshnA+7Wlo60xB30xFBpLBh5RoDzp07PBPe9oyrrGWKRKLu7u4mgTQsvtrFN/tYYC6DKx0ZRclAzb4wyQdMo+rr63Pz8v7jg84ZTs8EUVeRjs52z3jwIrV0oUO8Ww+Hgak5itclxgQBn2Rrt9htk/EilBRiJ6DcaDNkzxlufDTM3DZiy94La5/8v7VP/p/RjxcS03KgUBVcVOY567uxfcbHJySKntwKfmwWZ2R0/MYd9O/oW2BOLaCHOefUXAtxZ5jJQSU+6LgymczCwsK02AhBwLZpETsNvOm3qYZkl5uby2az29vbsfiYxoe8G1tcPd7Ozk6hUFhfX49q7hKjW7XgjwVtJfLdVEtyyM9HnlJCoRDs1vXyRzdeHU29ow5zghIai8VasWJFaGgo5M76+vp6e3vXr1+/b98+Tf3orR2nvr7+/vvvX7NmjZGREUibvvvuu48++ujSpUthwvf3v/99cHDwNw+uDnOCsIyBgQGdTgdZmAWl/Kaew1UqlQKBAJDOzMzM2BhaZvhxvr/ZfAYZbtB76ZTA9LTU4uLi+vp6oVAI1B9Ii09ZUv5mw85/B4gXMrkQL5vNrqioyMjIoNOo6WFeAj+TecUb8HYGxT89La2kpKS+vl4gEIDVMQgi6T7eaVsMJ8WAaSGTyb755ptNmza1tbV1dHT09vbqAPab9sS09CbEq+5cdejQoQ0bNshkMp3FC/UEAwMDMAaKxeIVK1YcPnxYoVBgOxxdov5aauo767B4BgJOchKJpKmpqaampqioKC0tLZZGTg070RDwzlwHBJHvZsalL9OoQWmpKYWFhTU1NUBh7+rq0gGeDUFBNhAjczwej8FgFBcXZ2Rk0GITTl2mf+iBpJ+w+R/o1sL/5gS6iXmckCawcCTvP0OLoCfl5OaB1hmfz5fL5djadrFmx3A+AhpTKBQaGBhwuVypVIp97xYHm1Md5gQx8w8//PDpp58G4iAGS3SwNLizhpHZnC30StzCAwMDkKZXKBRSqbS9vV0gEPB4vMbGxoaGBvb1F4fDaWxs5PF4OCutUCgwuA4JegD8boZxqv+iSqXi5qTTv3o/bPuGyJ0bo3ZuDrV6M9jyH1cs3oh4z7giLAge/Rg3nc90ZUq8QGPt7u4GSdVp4+UQL4i3paVFKBRKpVJ4PsIgox7vfM5tNtfrztoHL7IwzOnm5rZ+/XqpVApyETqQ5ddgiw0ODu7cudPAwGBm8BIDCUuWLFm/fn1XV5cGz2E2MOflmCoN/qL+UDO3wBSQD2Sxe3t7YVSRyWQikUgoFLa2tvL5/ObmZh7xam5u5vP5ra2tQqEwv6AI0D42p6G/v39wcBCPdTd7qE1MTJSWVkwqvtLjR0ZGZj5JHXyKh9bubtWVkAg4t6zsvI6ODvw0aWtr4/P5LS0t0Ag1NbWTIcTEtbe3w7gKzxEMcIIewLTPER0EtdB+4q6COdva2kxNTe+55x6Ma0678fTTT/v4+GjpyTs+MdEm7qSl1RwPynI6n+XtS4sg0RzORGzZc37tU39Y+/TLm/b4GR4KNrYJ3+ZMNbGLskT/T+rQEM6UkcY2k/+Q0YYjKtAEpib4cahbeCKOowN5u0e8tVssQgcJuuSPvikNDQ28ltYqJt/7Ys53HvHRV+sE4q6h4VFt3JzwyB4aGlKpVDKZjMvlFhUVeQYnWxAILviJmCLHEDLI2Fq60JHcLtLdQas2Y9uoX+K1RfFaEvFaOCGUlGCCIpTUzCEa6dzaRxMIMcnMJuyFTe8a3LPmjc9cvjgWUVJSAguZ3t5eLeXAJyautUpUtMz69JJmTdmaauNy6I95R7SAHua8Iy7Tb5wkdk1TqVQikaixsbG6ujojIyMj+nybv+lc022z2b/p0u7ctITy8vLm5mackddZvhWjLD09PVKptLm5ubq6Ojs7O5US1Do/fOVmsXOvfFKQmVxZWdnU1ATUVW2w9X/jMt9NH+MVuHqKf+XKlefPnweYEyzEGhsb6+vrb2/DVFZWwvTuzTfflEqlH3zwAQY44f1//vOfs2RzAnsVIA2JRLJu3TpfX9+FCXOOjY0ByUClUkmlUkA6S0pK0tPT4+LiqJFXKoK+EvjNbfAR+W5q8bcsDT4QRyenpaUBQRYsKnG2VGeDjPpNBUtEIBnAmMPn89lsdklJSVpaWlxcHCUytDzwK77vLcUbciCWTk1LSysuLq6rqwONSh3wt9QDnM32FNhPJpOZmppaWVm1t7d3dnYuSpgTiocA1oWubW1tDc5VuolXHeYE0cLf//73//3vf7Hp3e0C/mdzwyzWfWA0UEcE29vbGxsba2trJ5HO2FgyKTL9shMn4H2+n+nMohrtvptb/C3rAj9OCTsVG0NPT0/HGCdo4/f29qpb6GmvVceJF4zqvb29HR0dIpGIx+MxmcyysrKcnJyUlBQqPcYrgPLVT9T33MjbnNDKGa2KHckW1xMESAfJifKuB/2jY7SD52iR9KSMjIz8/PyqqqqGhgaBQCCVSnFVHKZyaikJor22+s0j49ESIITKyso1a9bw+fxFD3NKJJIdO3b86U9/ArAEP7hvlhH+zZbU7wADDsy4hoeHh4aG+vv7e3p6IFOvUChkMplEIhGrvaRSqVwuVyqVXV1dPT096tl5DHACAHBj82KlR1AR4NdURe0yj9ixMXLnxjDrt9C/7W+FWr0Zsu2foVZvhm/fUBkWpOrqwtKF8+/L6vGC4GR/fz9GJm4hXjzO3Bjs3fwOXmRBvY5cLr9w4cJLL70kkUjgzgEWrJa4OBpveblc/tRTTy1ZsuSRRx755ptvlErltD+Rnp6OU/Nr164tKiqadrdbe3M2MGdwXPWtHVz/rfm0AAxr6qMoKLjCQNrZ2akkXgripVQqOzo6Ojs7u7u7MzKzvbx9Tp0+LxKJgbY+y/EkNAyZX544eYbX3DKfM9fgd8fGxjKzcglBXR8yhT48PDw4OAijq0ql6urq6ujoUCqV0AhyufzEyTNe3j5RJCo8R/r6+gYHB3HhyCzbQYPnv8APdZfAnASKX7pu3TqMa957772vvvrqzp07d+3a9dZbb73yyitr1qzBny5ZsmTPnj0DAwPauHyjY2MyRdfJK/lnwgv3Ol/6av+p753OG+3ze+1fh1fc+7sn/mL41nfnN+2/ZHw03NSeZGpPgvrLbS50pEC3WQMZAAAgAElEQVRDQJuIvIiWLVRTQqsG9GlhN9hhu3uclWuMlSvyv7R2izWxIwHr0dKJ6kvPKypjBEXneQZkHAvMjkqu6VT1z38KNENDjY+PDw8P9/T0KBSK5ubm8vLyqPgMC8IoFAidWw+HGR5BwRKAJSJoEsAtiteYgDZxvChqQp8W8F1C8xZJ8li50C2dqBYO0cZHQk2Phv5x2zfLlq94yfgTowNBJ4Pjq6qqWlpaFAoFGCrNcKrz+ah/cKSyXhSZwuCLNFmHNJ9T0n/3Dm0BPcx5h164X502zrv19fUplcq2tjY2m11cXJycnJwbcWw+EmrTwn7cix9mJ9NKSkpYLBY2kNNSWcev4lT7Y3x8HGQkQaOcw+GUlpampaXlRhwT+WnYlLQp6L2cFGppaWl9fT0oki8QBVG19lhsm7ACxzAD1Bs+//zzjo6OAHPa29tbWlreFtBrSlurw5w//PADxjhXr169Y8eOAwcOxMTEzKbaESvBwgxGIpGsX7/ezs4Os1cXFKSBDT+womZbW1t9fT0kxJOSkqhkUkzImfygvTw/i2mHEfU3Rb6bGvx35ly2iY8KSkiIz8rKKi0tZTKZ2JcOJ1y0OoOccmXV/8S5v8HBQVA9am1tra+vLy0tzc7OTk5OppJJsSFn84N+bJ5FvBLfTVz/HbmXbRNJv8TLYrEgD67O35rNnaN+ntrbhiFXnd343HPPffLJJyDDqA7GaO8cdHlkiBfKLIBN8re//e3LL7+Uy+XA5tcBexXLBqpUKqVSKZVK33zzzV27dmGodUGNCbq8Orf3t/CMCyAHQARbWlpgQMjJybl69WpsbCw5KiIm5EzKJdeigP8y/D/g+Vm2+hq3+xnyfU0a/ayq/XYXXPwxJdgrLjKATqMmJydjWdfm5maxWAy3mW4wzmvXrqmjC0NDQ4DP4RKWmpqakpKS7OxsFFpcfEh0zPkQmmcg9eCZ6O9ORX/zU/R/vKP2nIq2O0/+OSTmCjmeFpeUkZlZWFhYUVFRV1fX1NQkEokAnseD+SKGvjDMCYBxbGzsk08+yefzcc+F0eN2Pc402H0w8w88jIVCoZmZ2aZNmwDmnELb1eDv3lWHwpwkPO8CvBMy9X19fT2/fvX29vb19SGzKIJ7pJ6dn7nTwSCAJ97tTVz6l+9G7NgYbv1WxI6NETs3Rr29GQDOqLc3hyPscxP1423N5cWgQT2D2eecrteUeEdGRtTj7e3txeGqVKqenp5bjndOZ7XIdr4R5oyKinrqqafuUJiztbV1+fLlOLd+4sSJaa9XXV0dTtAvX748Pj5+2t1u7c3ZwJxhibW3dnD9t+bZAnhUAbATjyrYeLhP7QX2w4ODgzGxCV7ePr7+Fzs6OjGwN5sHdxOv+aTPWS9vn/O+gX19ffM8eY18vbqGAZac5y4EyGRy3A5DQ0PTNkJA0BUvb5/g0MhulWp4eBg/R+bUDho58zviIHcJzCmRSF5//XU80j7//POpqakKhQKu0ejoqEwmy8zM3Lx5M86G3XvvvZcvX9bGRRwfH+8fGPzpSkFtfUtgRMruH37613/ct+07b3zo0p8sv16+8p7nNrxjdCjY+GgYMum0RwgloioS5EUQpwX6prFtFPbdBIDQwgmJ3BKFm9RtLnTQrbV0QWYcIGnztnvMqUuJ7ufjj/wUdzokt7peODA4rI0Y1Y+pnvpubW2tra3Nyc3dezbO2j2O4GuSkHuIPaJjAqhJnC1S3DWxQxAvpqsa25LU450U43EkE+Yj0RaOZBObcOMjIa/969CK1fc98eqmzT+c22kfHH81k8lktrW1dRGVbdorgZq4dk2q7CenMf3IFSNjeula9VtAvz23FtDDnHNrr4W5N85PDQ4OApldIBCAX1RSUlJuqGurn7E6qDCf7cag99PjIgoKChgMBrjv9PX1YXHF2Uz+NNKGsNofGhrq6ekBYh+TySwqKkpMTMwK9dBgvNygf6XHRxUWFgLoIpPJ1BP6OotXI412Bx1kCswJKX5DQ8Ovv/5aIpFwuVyRSJSXl7egYM5HHnlkxYoVS5YsWbt27d69e+eqhoSZWwBzSqXS7du3f/bZZwuTuYXHHCi3B8Zbe3s7l8tlMBhFRUUZGRkJCQk0Gi0qMiLxyrGSwP80BOzk+W9r9jNv8TVr8TNv9rNo8rNiB/yr8OK++NAzFAo5ISEByEzV1dUNDQ2tra1yuVylUmmQKHDLXQDiVYe+lEqlUChsaGiora0tKSnJzMycjDcqKuGKV3Hgtxy/nU1+U+NlBbxfGLQ3PuwMhUKJj4/PyMgA8haXy21ra1OXc1wI97Z6c2GYEyA3oVC4atWqPXv2qN+fkOVU/9aduz3lWkskkoceeujw4cO6jBdgToCWYQz86KOPzMzMgBOGn0T6x5DubzMYELDnU3d3t1KpBPoji8WqqqoqLCzMysq6evVqYmJiTEwMhUIhk8kkEimaeFGpVDqdHh8fn5KSkpmZmZ+fX1FRwWQyeTxee3s7MPixpdzMyIRmYwdOJ34YQWcXi8V8Pr+hoYHBYFRUVBQXF+fl5WVlZaWlpV29ejXl+is1NTU9PT03N7ewsLC0tLSmpobNZvN4vNbWVplM1t3dDT55UBKny6A020SzORoeLQHmPHXq1CuvvALt0NXVtZh6LsCcQ0NDAHMKBIKtW7du3759njBnf3//bNr5LtwH99BR4gXJ+mHiNUS8ABHs7e2FHSAlPZt6KTym4YVkaUhA9LtbSO9sprxvSHp7c+SOTZE7N0Xs2Eh+d2vkzs2kd7ZEvb0pbPuGdOeDCoUCRMzg5zR4XfBUc4Z4IQWPs/DQRBo8h8V6KDzOd3V1KRSKlJSUBx54QCKRgOovrke5I8JnsVg4875kyZIvv/xy2nteIBC88MILeE9/f38NRjcbmDMymaHBX9Qfaq4tgJdyY8QLjyojxAsGUtiG8SSYkHi9Ehze14d4WvCazY+Oj49TaXGg+5qaljnt3Tib42hqH5lMft430Mvb56dTZ9ichtm0A5ka4+Xt4x94uaurG5oLhtbZN4KmTv6OOM7dAHNOTEz88MMPePx89dVXWSzWtFdnYGBg9+7deM+nn366p6dn2j3n8+bExERORcvP4cVyuaKpqSkzK8/peNCOL52N9wdu+THgD0YfLzNY8dyGdzbvCzS1jTS1i9p6ONTYJoIQsL2u1Ergf9bucWDMCWK2Zg5kQAEB/sTAJ8jVmhHsyd12Id87hbiciY/NqOE0S4ZHRnXQx7EdhkqlEovFICqWkJz2nicimyLg9rr8LAI1HSlGiLQaZWoXTWC6yF4UgFtEUSWMSC2cqEY2kQSVM9rULsroaITR0XAT2wjDQ5df/+DwinvWPPbS3zfv8du6L8DFj1pcXNzQ0CAWi1VE3YP2YE64Jeqb5adDizJL9dK18+kid/t39TDnYrgDYM4BiRXQn5FKpY2NjVVVVbm5uYmJiWnhJ3n+1vNBN8W+G0W+m2uD/5cWF5WTk1NTU8Pj8UQiEYAQmqrhnf3FgMkWFB13d3dLpVIej4cKW3JyEhISUsN+ava3mm+8fpsZV75Nj4vKzc2tra0FggXUsOiYujr7Zlk0e8IUHENokOL//PPPrays4uPj//znP7e2tmJw/fZGjdmcMJ979NFHExISbuHxjxOjPT09EO+3335raGgIsMoCTIzCsIORGKxzCIKuFRUVBQUFWVlZKSkpcXFxNBqNQommRgXHRATEhvvFRvjFRl2kkULpNGpcXFxycnJmZmZBQYF6rl+pVKpjnDqYQc58I90Yr1KpbG9vb2lpYbPZlZWVEO/Vq1eRbC+VSiFHUyOvXI/XPyYyiE4Ko1EpsbGxSUmTWo6VlZUsFqu5uVkkEikUip6eHozpLjQYAGfEQFS5trZ2xYoVrq6ucH+CWctCg2ZnvqAzfwriMP39/d3d3QqFgsfjLVu27Pjx45AB1IFd4rVr19Q7F4wJTk7/n73rjovi2v4UFYi9G5NofGqMPzXGJPbeC7aYxBgTU15i6ks0ybP3JCIWVFQEC4L0JgoqXbr0IgtLr8v23jvL7wMn3jdZ2gLLsrvO/AGzM3fuPed7Z+7cOd97zjn2zjvv0Gg0bH5QnOZsvyt76Cyyv8M8BGgeGo1WV1dXUVEBZGdGRkZqampCQkJsbGxMTEx08xYTExMbGxsfH5+cnJyenp6Tk0MgEMrKyurq6lDPorxoBh4H0GRSpVLB+1csFkPORQqFUlNTU15eXlxcXFBQkJubm5WVlZGRkZ6enpaWlp6enpmZmZ2d/ezZs6KiotLSUpQqD0ZylM8JRgnzvmnR2xxei99///2iRYvq6+sZDIa50pxCoZDL5VZXVy9cuHD79u10Op3D4cAbTaVSwX2ly5Oo0WhiYmI2b96sS+EXswyAicYfMEBj/7JYrO3btz99+hSV1AUoFLLi77BAdbUPf/3aZ+MC741NXpu+mxf5b10S8P5Sv6b9xd4bF9zdMM/Lfp73pgVemxZW5mXz+Xzkeq5Lc50qg8YlrJrYfdz+3ik8oTCa1MEkJykpyc7ODtGcaJLThZoNfwmNRhsxYgSyqp88ebJVGaqrq19//XVUzMXFpdVi7XxutPNxh9OcrYJptAfR8Ig4PxhG0F+NRnPpsouDo5N/QIhK1el8e2KxxPWGu4Oj0yXn6zQavRdxUKvVfv7BzeFqLyYmpWBnX+2AEBuX0Cy8C5vNwV7Si4oYc9MvAs357NkzFPT71VdfpVAo7fQIh8OZN28eGmyvXbvWTuGunVKqGk65JTzJqOTz+SQSqaCgID4h0eWG164Dlxf+eGXhj1cmLdth3c92zIyli352Xfq756pDfmuPBa086LfyUFOAVghRC0FowU0TkneuPR6y8Y8HKGPlqsMBKw/6QT5OcOXcfNjnmwO3bvrF5hdV0plchUJpGOsHeIBAuB0mk1lZWZmfn5+YmHjUtSksbVPc3WMhq440SbvioG9zVs6gdSfurT78N2urpe+ao4ErD/kv3++79mjQhpP3mmjOfd7LfvdY9rvH5JW7+tr1HzV13vxvLyzde+OLP71jYp/k5+fX1NSw2Wz4Pu3pMUGmUPlHEE64xDM4RuEN37VbFL+qdxHAac7exV+fraPhD5hOMplcWlqal5cHTGewn2fBjZ31Lku7QP5RXBbVXV/11Ovw40fhCQkJkKKSQqGgwU7vC3h1wQU5/IG+VCq1oqIiJycnMTExPDw8yNcr/8aurulLbdY3zetQxOOHiYmJubm5FRUVVCqVw+FAuNpe0VcXTMymDHx1YPOE0en0U6dOTZs2rbq6OjAwEGs+612ttWjOM2fOdO3djwyjiOY8ffr0+PHjjTnMHTK0Qd5KMIizWCwymVxZWUkkEp89e5aZmZmSkpKYmBgXFxcdHR0VFRUZGRkVFRUdHR0XF5eQkACuP3l5eUQisbKyEtmCwU1cqfx7+tg1VPV4b2ANbVh9mUwmhUKpqqoCfbOysoDY0NI3KioK9E1OTgZXJ6Qv1kEQ9DUwt6ELSloWsdjY2D59+ri5uUFQZWQR6/Vu0kUXXcqAvojmTElJ6du3782bNw2pr1boSwaDcffu3fHjx8PLCI2B7ZjkdNEUL9M1BNCAgBhBSCDHZDKpVGptbS0wgoWFhXl5eVlZWZmZmRnPt6ysrJycnIKCAiKRWF5eXl1dTSaTmUwmn89H457hV48BDsjkByy7XC6XSqVAYjEYDCqVSiKRampqKioqSktLS0pKiM1bcXFxSUlJWVlZVVVVbW1tfX09+POBEycEz1SpVDB3Aui6BrtJXIVGS3ibr1q1asuWLVpdbBizSE/DBfMWCKzC4XAqKyvnzJnz1VdfMRgMraUYHb4apFIpgUBYv3492MV6WnIzqB9rocbu0+l0CwsLS0vLnTt3VldX65IbvrGxETnmQsL1ipKSgA9W+G5pct/03bLIr3mnKYDtxgWe6+Z4b1zos2mh5/o5d9bOvr363ZQbl9hsNpoG9BC2WB1b3e+hds21WjRMAc2Zm5trbW1NpVLRjFShULTD6hkVLGq1+tKlS2PHjh09evT8+fPp9NZZpby8PMSGWllZBQUFYbWQy+UXL14cN25cv379Zs6cGRcXh8gtGo3m6Og4b948GxubwYMHf/jhh4WFhVpTL11oTr8IArZFfL8XEWh1DMEeFApF4I4ZFh7RNTmfPSNAnFgvn4DeepQaGhogw6iDo5Onl69E8o8siVh9tfZzcvOBGaVSaR2+vruGjzld9SLQnEeOHIHpGaz67bD74uPjUZ7OlStXag2YHV7eYYFaCv+/FyIJZVSxWMxgMMrLy7Ozs+Pi4m7c8dqy323JHrcFP159c903fW37D3ntzUXfX1q81/1vsvNo4Jqjgcv2e0M01+ZgtoErDvhuOBm68Y8H646HbPwzzP7U/bXHgpft82726fw7r+e64yGbTgT/eT0kPPppRVUNh8uVSqWGDGSFTIU8Ho9EIpWUlGRmZoY9ivzkr+A1Te6bPqsOB6w/3hRld/2Je03CH/BdfTQIHD2XN1Oha48FrzsWvPpI4PL9vuuPh9ifvNdMc4asOxa0+qDPvO+dX3lnjZV131dnrVr8y/Vlv960P3jHMzA8LS2tpKQEXDkhXU6HvdP9AjyR7OydlMiU8u5XhdfwYiKA05xm1e/oMxVW49bX15eXl+fl5SUlJT1+/Dg0JDDq7pk8151kl05kr6x1XZVxZ09E4K3IyMiUlJTc3FwIGQomDPgK6i2jPKw+VigUkEeKQqEgZvfRo0f3ggOivM7ku33aKX1Jrqsy3H955H8zMjIyNTU1Ly8Pqy8M7r2lr1ndrO0q0yrN6efn16dPn6CgIA6Hg3UjbremHj+JpTnHjx/P5XK71iSau4D/B51O9/Ly6tevH6SDRZSGsX1swHcRehKlUil4NTEYjPr6evD+IRKJBQUFeXl5OTk5YO4Hv5/c3Fww9JeVlSHXHy6XCwm9FAoFmMWNSuVW9YVsnWQyuS19s7KysrOz8/LyCgoKsK5OwGFr6av3L4Gu3ZDYq2BNiUKhQLSfj4+PtbX1gwcPtGg/7FWt7pNIpIiIiDt37pw5c0ZH82ur9fToQay+4Mrm7+9va2sbGhoK+homnht6ocOYwGAwnj59OmDAAKA5jWcM7NG+MPLK0VIPRHaKxWKBQMDhcBgMBoVCAVKwsrKyoqKivHmrqKiorKysqakhkUgUCgXRgWKxWIsO7EXdsWQnis0LPC6Xy2Wz2QwGg0ajUalUSvNGbd7odDqLxeJwODweTygUggcnjORYD4le1MswTaNFEuD7Pm7cuC+//BKykyIm2yxpzrKysnfeeeenn37qFM2p0WgiIyPff//9gQMHorX/hukps2yFwWAgGAcPHvzpp5+mpqZ2OI+CKahUKuVyufX19YUZab6bm9hN3yZqc77n+rl31s72sp8f+P4y740LmrjPzYvguOf6uY/2fU+n07FBRzpsziyRNy2ltGjOZ8+eWVtb19bWogTkJkRzQnppMplcVVXVDp/04MGDfv36wdMxatSoZ8/+lylTo9Hs3bvXxsZm586du3fvtrKyGjJkyNGjRzUaTXBw8NSpUwcNGrRr1y4nJ6ctW7ZYWFi88soreXl52B7Xheb0j8RpTixmRr1fUVkFNGfq0/SuCSqTyT29/KCSzKycrlXSzavKKyovXLzq4Oh0+cp1BoOpe21lZRVnz192cHQiFBJ1v+qFLWn2NKdUKl2zZg0MnsOHD6+uru6wr8lk8uTJk+GS6dOnCwSCDi/RvYBGo3mcXHb2TqpY0hSvn8fj1dXVEYnE9PT08PDwqzfvbj14a9mvN5f8cv2tD34bMGp8/xGvTF2/e8mvtyGA7cpDfhDAFsK9gu/m6iOBiOmEWLVNTp+HA5qowaa8noEbjgedvROWnJpeXV3DaE6rBGZhg014kLVNJBLR6fSamhoCgZCUlOQTFPbZmZB1J5qC8YLk64437a865P/8SMDKppSc/muOBq5tzlEK9O2648EbjgevOey38oDXOzuPDnltal+7gVNWf7HkF5fFv7iu+O3m2dtB8fEJz549A1dO8PYxjJ1KpW5IyKo55ZogkvR43lPdbzy8pAkhgNOcJtRZHYsKwx/ygQO3qoqKivz8/NTUVMge5+/vf9/zcvaNL2qvr66/vozisqiFf+cisssS0vXlVW4bktz3hwT6hYWFxcTEpKWlPXv2rLy8vL6+nsvlikQimUzWWw4HgIWWvhwOp76+HvRNSUmB7IABAQGhns7Zbl/WXl9Vf31pq/pSrjfpW+26PvnOf+8F+4eFhUVHR6elpRUUFFRUVJDJZC6XCybI3tW34zvAXEoAmQTWVeCwa2pq4uLi+vbtSyQS2Ww2n8+H8J6Gede2gyuW5jx9+nQ7Jds/BTH3IRgFl8tlMBjh4eH9+/dPSUlBtC5ES26/HsOfxTJ/kCkKyE4ejweRNslkcl1dXU1NDdj6K5q3ysrK6urquro6CoWCwmQB4SeXy43WqRGMKYjbaKkvg8EAfaurq1vVt76+HvRFhC6EekN+TobvwQ5b1AoVwGQynZycLC0ts7KyICIlxDDBPowCgWDu3LlTp05duHBheXm5RqOpqKj497//jSLeWFhY8Pn8DpvulQJIXxh8mEzmhQsXBgwYkJKS0pa+PSEnojmRGNXV1ba2tgQCwZBi9IRqZlYnGgOB7FQoFDKZTCQSCYVCPp8PvCCLxWI2bywWi81mIy5QLBZLpVJ4naEJBlTYuyiBDIjvBNXkcrlMJpNKpWKxGBQUNG/C5k0kEkkkEqlUCmM4GsZhZZjBDAG9ixuEm4ZFIQKBoL6+3sLCYv/+/VQqFbKuIqc3MwAELc+C/NwlJSUzZ878/fffW0ahaFVZuVxeWFi4YsUKRMuhnV7vRNMVAEtzIjw//PDD2tpapVLZll7gvS2RSFgsVk1NTU5ctJf9fO+NC5v/LvCyn39n3ezmQLXz726Y1+zNucBz/VzP9XN9Ni0I/vojbBITYxi+2lITP44QgB6XSqWQg7mgoMDGxqa0tNREaU6kVzs727dvR0/E7NmzZTIZKpycnGxhYfHpp582NjbKZDI7OzsoeezYsZdeeuntt9+uqqpqbGxMSEhA/knnz59Hlzc2NupCcwZGFWIvwfeNGYHk1DRgKItLSrssJ4PBArLQxfUWl8vrcj1du1Amk7lcv+ng6HT2/OWSkrJOVVJPpjhdauJH454kdurCF7OwwWhOtVrt7Ow89fm2Zs0awwDOZDJnzZoFo+Ls2bN1aVQsFqNLJk+eTKPRdLlKxzIqVcP1gMygaCKkmAGHTqD94uPjQ0JCLt/w3nTQfeneGyv/6770P1dHTJxl1afvmOmLF/7ksvpQU6rOJt/HQ/4rD/ltOBm6/sQ9yMcJf9efuGd/6j5wn5DPstlLMuiid0R6enpxcTGVSuXxeIjza3V+q6MinSoGX2QqlQpWpFGp1MrKyuzs7Ojo6Ft+Dz5yaHJFbU41+mD9idB1x4NXH26KTAuU58pD/quPNKXnbI7TG7zygN/KQ74rDvisOOC94nf3KSt3WfXp23/Eq+/tOrV0741FP7uu/PXGadeAmJiY7Ozs8vJyGo0mEAgMTOsWVTIuej+NSWt6+eIbjkBnEcBpzs4iZuzlWzJ/VCq1qqqqqKgoOzs7OTkZUseFBAcH+9556Hk+1v1Y8u3fn974IfPm7oyb3z+9+Z8E9wPRnn+G+7iEBAWGh4fHxMQkJSVlZWUVFRVVV1eDHwlwfsZAuoA9GphdsVjM4XBA38LCwqysLKRvMOh790LsnWNJt39Lu/lj5o1vM25+l3qrSd+YZn2DApsITtA3IyOjqKiopqYG6dtzWWeM/ZbqDfnASgI0p0Qiqa2t3bhx42effTZy5Mh79+4BzYmYFYNNL1pFAtGc1tbWxcXFrZbR5SCW5gTvwISEhFGjRt25c4fD4fD5fCPRtx1d4GEE04lCoQBTuFAo5PF4HA4HrPwMBoNOpzMYDCaTifx+BAKBSCRCxnFE+Bm5saxT+jIYDNCXy+WanL4tab/9+/f37duXRCIB39ZyzUF5eTl8Do0aNaqwsDApKWnSpEnIwAQ7xk9zgmsyk8ncu3fv4MGDS0tLUcI5A7z+0LJNiUTC5XKZTGZtbe24ceN8fHyQUykwSe08lfgpwyAAgxV0GRoDgRGUSCRACoqeb2KxGNGBwAhiA7oaRmDdW9FSDVG5TSuomzdZ8yaXyxUKhVKpBF1MZRjXHQfdS6rVarlcDr7vWVlZlpaWTk5OsLoF+e6bkzenTCZDNOeMGTMOHDiAaE6UQ11rnqbRaCIiIj788EOsByf2BaE72nhJLQRapTktLCwGDx78+eefJyUlafUFXA43rVgsptPplZWVGdER3k2JORd42c9rdtxc4LFujk+TH+cij3Vz3Fe/57luTlPQ2jWzPdbNCd69nVRXh6apRj5z04Lrhf2J/HeB5iQQCLa2tkVFRYjmNFhsOsN0QXl5+UsvvQSDjK2t7aNHj1C7KpXqu+++s7W1TUlJgbWMgwcPRsPRW2+9VVFR0djYqFAoVq5ciY5rZQDVheYMisZpToS6se8EhzwAmpPOYHRH1qTkp2fOXnRwdIqKjutOPZ29ViaXBwTeAxUePopsZ41LqzVzuFznq64Ojk5+AcGtFsAPYhHQJ83576/USrlS2Uo6WLVa7eDggGZNI0eOjI2NxYrRc/tkMnnKlCkw+n3zzTe6NCQSid5++2245M0332SxWLpcpWMZgVh+1iOVTBcgA4VAIGAwGNXV1bm5ubGxsffv33dy9Xz/gNui/7gs/Ona4v9cm27/Xf/hY20Hj5i09OOle26sOOC95Nc7Kw76rjkauP54yLpjwetPNIV7XXmwKXPnuuMhqw75Lz/gu/S/XisP+m0+GXTR62FK6tPCwkLwa0ThKwwc4Q/01QpkmJ6eHhsbe9v/wS6HoKZkosS6xR4AACAASURBVM1OnBtOhq49FtxE3B5uSkS66nDAsn1Nuqw9GrTuWNCaIwFrDvuv2Oc1dcN3g1+Z3K//4PHzNs/+6sy8768s+una6t9vnnLxjYiMysjIKCkpIZPJPB4P2SF17KPuFxNLle73c10CMpSqhu7XhtfwoiGA05zm1uPIIIWYPz6fT6fT6+rqKioqCgsLMzIykpKS4uLiIiIiwsLCQkNDQ0JCgp5vISEhoaGh4eHhkZGRsbGxKSkp2dnZBAKhrKyMRCIxGAxYvYLcj1r9WjYkpkhfCL8D2QHpdDpkxiIQCJmZmcnJyXFxcZGRkaBvcHDwc3WDQN+HDx9GRETExsYmJydnZ2cXFBSUlpaSSCTIlQWB15AV0pDavbBtQbdCnwqFQiaT6ezsHBYWNmXKlOPHj7PZbLSKqtdthYjmHDx4MJPZiYAwWp0LNCe4gECczLy8vH/961/79u0DWhflhe31h05LcvQTeg1L/kEOS5lMhgz9yOlHJBJhbf0oRC02tqHRagoqI33R4hKFQgHeTp3VF1WFwDSqHXArBAc1LpdLp9M//fTTadOm0en0tmg/LM157949a2trZBvq27evjY3NkCFDJBKJUamJhEH6gu2eSqV+9NFHEyZMAH2xkQzQJT2xgz5mUKzg+vr699577+DBgy8gzQmrXoBQ7wm09VIn8n1EY4KyeYOR4Tkt2EQHwoinat5g0INBQC9i6L0SNECh8Rl21P/csGeNWR2944OtELtiic/nh4eHW1lZeXt7Q3RioDkNsEgCK1LP7Wt5cxYXF0+fPv3w4cNaNCdWAJVKRSQSFyxYgN4I+I6BEdi0aROJRNKK7Qk0p0gkotFo5eXlaXExd9fPDXx/acDWpb5bFnltmOe5fq7v5oXIv9N74wKPtXM8183xsp//cN93tbW13OY8VUql8oV99rH3ufHvt6Q5X3rppWfPnpklzalSqdauXQsPmqWl5R9//IHtIC6XO2PGjKlTp0JIEi6Xa2NjA4WHDh1aXv53bjCRSISck+zs7KKiorCV6EZzFmEvwfeNFgGNRuPiegs4QkXbTvC6yC8UCl1vuENVlVUdh/rUpU5dymTn5AG96nL9Vmc5zsbGRrlc7nK9CQHnq666NPeCl9Ejzbnr4y2U0mxiUdPSCuymUqlQdkwLC4vRo0fX1NRgC/ToPpvN/vrrr1c1b66uOt0SNBoNMaMzZ87U7yd/URXjxNUnoDJ8LENkAiaTWVFRkZOTk5iYGBYWdtPdc8dht6W/uC7++fqSX9yW773x6tsrrKz79rHpP33LLwt/dl32X89l+7yWH/BZfSRgzdHAlYf81h5rSmy59mjQ4t88Vx8JXHsseNsfQT73o9LS0ggEQk1NDYPBAI6zV2byML9C69K4XC6JRCoqKsrKykpISAi49+BLx8C1R5t4zTVHg+xPhm44Gbp8v8+Kg34rDvgu+d1z2X7vZf/1Wr7Pa+X+u3P/fXrAyHGWVtaDxkyY8+XpOd9eWvzz9aV73Dbuv3njbmB0dDRwnPX19RwOByXrMbBpLptIPnolrp6mz4jHPfqk4JUbDwI4zWk8faE3SWAEBEMtCpzFZrNpNFpdXV1paSmBQMjLy8vMzExJSUlMTIyPj3/y5ElcXNyT5i0pKSk1NTUzMzM3N7eoqKi8vLy2tpZKpbLZbEi2hDItGXikawsgrL5oBT2LxaJSqbW1tWVlZQQCITc3NzMzMzU1NSkpKT4+Pq5509I3JyensLAQ9KVQKGC+h2EdhZJrSwb8eE8goFarpVLp/v37d+3aVVdXV1lZuWDBgi1btqCPcMgc07v3IaI5x40bx+FwuoMDSoHG5/OZTGZ1dfXMmTM3btzIYrF4PJ5YLDYGfXVUED2VarUavH8gvivY98H0D34/yPUHLtGxfmMr1ll9EbFhbIq0Kk9L2m/58uVffPEFsmWjAObockRzDh48ePbs2WAwGjly5L59+x49epSXl8fo3vpo1FBP7CDzH9CcNTU1S5cu3bZtWzv69oQY8OWmVCoRzUkmk+3t7devXw9jAkS/VKlUvTsG6ld3Eol07do1Z2fnyMhIqJlGo7m5uW3btm3hwoVvvvnmkSNHTEJfNCZgyT/sPhQwCV20uhhJ3uqOVuEX7SfQnLAohMfjubq6WllZxcbGokUhhl8Q3XNdoEVzEonEadOmHTt2DA2VsCYSCaDRaB48eDB27FgDE3t4c1oIvP766/Hx8ahfINKyXC5HNGd2Wpr3liXemxYEvL+0idFcN8d74wLfzYt8Ni302bjAf+uSJhfPTU1JOn02Loi9fAZoTsPHcMOqgO93CgE0zwFvzsLCwgEDBuTm5qIvLHPy5rx//z4KNrtq1SqtNalEItHGxubChQsAYEpKSp8+feCR+e2331Sq/7lVhYWFbdy40d7e3s3NTSqVYgHXheYMxL05sZAZ8b5YLLl85bqDo9N1t9vdF7OwkAg0p7uHt0gs7n6FHdZAqidfcm6S3/mqWz2Z0mH5lgU0Gs0dTx8QWyL5x63esjB+RI8058a5r/seev+3PY5YVJVK5dGjR5E/+oQJE1JTU7EFjHA/KSkJOZ5u375djx87Gk2jo3tKcMz/Vo1gU01TKJTS0tLc3NzExMT79+97evkcdnLfcsBt4X9clv16a/lvt97efuDl6Yv62g0Y/MrkySt3Lfjx6vJ9d1cf9m+KYdvs3LnuePDao0HL9/usO+Rz6HrovUfRT58+JRAIlZWVNBoN+TVC0BrDIw8LapVKpVQqFQqFLBarurqaSCRmZ2c/efLkQdhDh9uhH/8V1ETZHg9e1+TQ6b/2aOCqg77L93ut2O+1aM/NaZt+GjVldl/b/kPHT5u26cflv95cuvfGgh+vrdzjsvesh4dvcHR0dHp6OpFIrKurY7FYWNdVA+vL4knv3M97mk8ycLt4c2aAAE5zmkEntq4CWNMgeJpMJhOLxXw+n81mU6nUurq6qqqqsrIyIpFIIBDy8/Pznm/5+fkEAqG4uLisrKyqqopEIkGgLT6fL5FIZDIZEC0G9tBvXcN/HoVBH+krEon4fD6QnUjf4uLidvStrKxE+iKnVZRcSo+v538Kjv9qEwHozfj4eGdnZ+jKTZs2TZo0CSxoRkL7IZpz+vTp3QzCCXSgVCqFW5dGo61Zs2bWrFmQDddI9G2zt9o40b6tH1nJ27ja9A6bpb7IHCYUCtlsNoVCmTx58pUrV8C/v9XpL6I5kXV17ty5QqHQJHoU6SsQCFgsVmlp6dSpU//880+s+Q/WvvSoOojmhDEBXt/ffPPNiBEjmEwmWvpgZjSnu7s73DM7duxobGwsLCzE5nO1sLD46aef8Ndxj954eOXdQUCL5jx8+DAEtMf6gvfKGvDuKNXWtYjmBKakuLh42rRpR48eRZO0VpmSqqqqxYsXo1cDvmNgBN5///2W4eOw3pwVFRXZWZkB32z3tm+KW3t3wzyP9c0RazcvCvpgGRCfkJjTc8PcW6veyX4Si6U5YRbU1j2DHzcSBLQe3sLCwv79+8MSNA6Hg+Z1RiJtd8RQKBQTJ06Ep2zKlCktnYqcnZ0tLS3ZbDa04uLiYmlpCeXLynTNaKgLzRmA5+bsTkca8FoGg+l06ZqDo9O9++F6aTYs/DFQhrm5+XqpsJ1KRGLx5StN8WYdHJ2SU9PaKdn+qccRMVAJiURuvyR+Vo8057p3xt7eu+bnXy8hVFUq1Q8//IDmCa+++qrWQg1U0qh21q1bh2S+d++eHmXjC2VHrsQlZteiOrG+PRwOh0wml5eX5+TkxMfHh4eHBwYGurvf+d3BdfVvbkv2uC386dqiX1zn7T47bPy0JgktLSct+WjFPs/l+73WHPFfddh/xUHflfu9914KDg4Ni42NTU9PB44TJTLrdYcflNQGfFjpdHpNTQ2RSASfzsjIyHv37p1wCbA/6r/ykP+yfV4r9nuvPuy3cr/XW+/v6de/KSS7zcChMz/at+y320v33mhydf3ZZfcf7rc9vEJCQuLi4tLT0yF3G5PJFAqFKDOR4b++1eoGr7D8x8l/x1RAPY7v4Ah0iABOc3YIkakWQPwBGvrB01EoFHK5XDabzWAwqFQqmUwmkUh1zzcSiUQmk6lUKoPBgNCg4MEJAxysWzFCjhNyaSCCAbzisPqyWCwz09dU78vOyP3w4cOtW7eSSCQgV+h0+p49e0aPHl1UVAQf4Wie0Zla9VwW0Zxz584ViUTdqR2R9EjfX3/9deLEiQUFBVwuVyQSGYO+nVUQDUTt73S2WqMt376a6KzRyt+qYHBnwmSaxWLV1NT0798/MzMTS7ZphY/WojmnTJmiu7WoVRkMdrBlqNhnz54NHTo0KioK9AUfSsOs4kR+tMAi0On0EydOWFhYlJaWcrlcsViMUt8ZDJ+ebghLcxYWFk6ePBl9J8POL7/8YvgPrZ7WGq/fbBDQaDRKpRLSVbJYrC+++GLs2LEUCoVOp8MzC77v5nEPazElxcXFM2bMOHjwYPs0J8zYY2NjP/vss0GDBmk94PDTbO4HwyvSVm7OoUOHfvvtt2lpaa3ee+AMIZFImExmVVXVs/z8h2dPNTlrblrku3mRl/0CL/v53hsX+G1e7L1xgef6uU2ZOzct9NowL3TvN4WFhfX19QKBAN3brTZheCjwFttBQOvhLSwstLOzIxAIDAbDnGhOFou1Zs0aGFUWL15cXd1K1NCnT586Ov7tO6XRaL799lsoP27cOAhj2w6M6JRONGcknpsTAWbUO9XVtecuODs4OqWmputFUAaDeeWqm4Oj0+UrrizW34S6XmpuWUlEZAyEq70XGob1RW5Zsv0jObn5QHPm5Re0XxI/qw+acwcMO0unDrv4/eoTbn9ncpXJZL///jsKoz19+vS8vDwjB1wqle7ZswfUsbCw2LhxYxfCJrejY1o+6b8Xoooq/5c0F+vrIpFIuFwujUarrq4mEAhpaWlPnjwJDw/39/e/defuH5fdf/jr5idHb246cGvFXrdZOw6NfXul3ZDRfe0GjJm28N33f/r86PW/3AJ9gh9ER8ekpKTk5OQUFxdXV1dTqVT03Q0WgF6c52D1hZXQTCazvr6+tLQ0Ly8vLS0tPj7+0aNH/kH3LtwO/OGv24s/2z9u9jq7oWP69R888s25/7fxh8U/XVv3u9tHR25++9ftw07ubh4+oaH3IyMjk5KS8vPzy8vLSSQSm83GhuftLX1ziZQT1+M1mnbuCPwUjkArCOA0ZyugmNkhNBSCqVoul0ulUolEIhQKBQIBj8fjNm+c5o3XvAkEApFIJJFIIGQr1qMRzPTGDFGr+orFYpFIpLu+KEqt8etrzH3RTdlIJNK+ffvgbuRwOAwGw9XVdfDgwbGxsfDqbRkqs5stduFyRHPOmzev+zSnSqWCYHewEMHT03PEiBEJCQnGo28XIMIvMXUEkAEUwik/fvx4xIgREMkEHP1bhlPWojljYmJMBQREc0IIBCaTGRMTY2trC5Hb29K3h7RDNCeEz2UwGDdv3rS0tIQxUCgUyuVys/EMAwwRzfnxxx9jXb6GDx/+22+/ubu7k0h47Joeut3waruLAMw/IZaUQCCg0+lr1qzZtGkTrB1EYULMxgNbiykpKSl566239u3b1yHNCUCr1erKysrVq1cjcxja6W5PvMDXt0pz7tixg8lkauXjxIKEFjNxOBwSiUQkElNion22LWuiM+2bHDq97BfcWTvby36+35YmpvPOmvc81r7n/f7yp2H3SktLaTQavI/g3u4tcxhWI3y/fQS0Hl4CgWBra0skEs2M5jx48CC4Zs6ZM6ediDvojlWr1SjPwt69e9vHEHtWF5rTP5KAvQTfN1oECouKHc9ddHB0qqio1JeQiUmpwBr6+Aa2HIo1Gk1WVlZ6erruzHqrghEKicBx3rzl0c0AuWQyBQSOjf1HhPNW233BD+qD5vwY5j/zJwx3+Nz+YkBWY2OjTCbbuXOnlZUVnJo6dWqH2ZHi4uIiur1101v06tWriJcdNWpUfr4+PZg1mkbfR88OXI5hcP4R/xkMtmgmA9GYSCQSJC9LT09/8uTJ48ePHzx4EBAQeNfL+47n3dt3PG+6e151u+PidmvPnj2vvvaalZWV3UsvLVu2zM3NLT09vaCgoKSkpKamBvw4hUKhkeQyQ8qCfQbZK+rr68vLy4uKinJyclJSUvz9/bdv3z5kyFBra+tBgwbt2LHjylWXa27ubrc8bt/x9Ljr5evnHxwcHB4eHhMTk5ycnJ2dDU6cEJtXIpFARJZuDkrdHBx4ItlZ95R6umnEA+umsvjlekQApzn1CKZRVwXGF3Byh3eAQqGQy+Wy5k2K2eTNm0KhAHYTeXAatXothNPSF/l3tq8vpAmEeL8tqsQPGA4BMpn88ccfl5eXq1QqSBfE5XKZTGZCQoKNjY23tzeLxYKV43CXGk6yFi3pkeYESgP0BVo3Ly/PxsYmJCSEzWYbib4tAMAPmDMCMJOGx1AsFvN4PCaTefDgwXfeeae+vh5uS5RqDtmJGhsbsTTnwoULTQgj9BiKxWIul8tgME6fPj1t2jQajYbVV8t7tYcUhFe2XC6HMAwMBiMyMtLKyurWrVssFgsbSaaHBDB8tYjmHDVqFHzYz5w5MygoqKVVyPCy4S3iCLSPAFokAfl0yWTytGnT/vrrLyqVCr7gyESCHS3br9OYz2oxJSUlJW+//fbevXt1pDlBNY1GExcXt3PnTqxnpzFrbeSyYWnOoUOHfv311xkZGR3eb6gr+Xw+lUotLy/PzMx87Hnb9+M1XvbzwZWzaWfj3/tNxOfGBY/PnizIz6uqqmIymSjOAb481MjvEBAP9TjEiiAQCP369SsvLzcbmlOhUJw9exaybH788ccoJm37vcPj8SCLp6WlZaey3+lEc0bgNGf78BvL2bT0TAdHp7PnLunR81KhUEC2yzNnL8bF/U0cBgYG2tjYFBYWzpkzx8LCYsmSJXK5vMsokCnUCxevOjg6OZ67VFKqa7zltpqTyxXAmAYF3+/wDdJWJS/I8W7TnA2f7PgAPnmmDHzll+W7owhMkUj0ww8/9O3bF47PmzevtLS0QzxHjhwJ5bvz96+//uqwoVYLFBcXf/LJJ4iXtba2PnXqlH4/3+QK9RXfdM8HeQ0N//Dvg4kHNporyrNTU1NTXFyck5Pz9OnTxMTEqKiohw8f3r9/PzQ0NDg4OCQk5N69e/ebt8uXL+/ateudd94ZNGjQ66+//sEHH5w+ffrhw4fV1dU8Hk8kEkmlUlheDBZjZCSHSIcgg94fFlQtSkinbt4g1xUELxQIBFwul0QixcTEXLp06fPPP58+ffpLL700ZcqULVu2nDx5MjAw8P79+yHPt9DQ0LCwsIiIiLi4uOTk5KysrMLCQnDiZDKZsKQb4kX1ehBHqUzpHZ4fk17V6i2HH8QRaAsBnOZsCxlzPq5FAarVatXzDcZNGEZ7fVzTVx8gddBb4bm6KrPUV1+49WI9crl83759VCoVLVPi8XgsFotMJtvY2Jw5c4bFYvH5fLAY6nf+1Fmt9UtzaulLpVLHjBlz7tw5pG+v07qdxQcvb9IIwNwau9qAwWAsXLhw69at4N3YFtOGpTm7/L3UK9AhB0qRSAQ056ZNm7Zu3Qqp9bD66v1LpqW+wJrI5XLEMRcXF1tbWx86dAgt9VAoFL270LKl2N05gmhO+ER/++23+Xy+AaDujsz4tTgCgIAWzVldXT148ODExEQajQaGA2OYtOixs7SYkrKysvfee+/bb7/tFM0J8igUioqKik2bNsGDr0chX7SqgOa0tLT84osv6HS6jsHikHFQJBIxmcza2loCgZCYmPjA9YrP+0v8ty72sp/vu2VRUxjbjQv8tywO2LY8/NwfmenppaWlkD8eFjz17oT8Revr7uir9fAWFBRYWlqSyWSzoTlv377dr18/CwuLn3/+WSqV6ohVYGAgDEEvv/wyj8fT8arGxkZdaE7fx3jwT90R7c2SEZFNaSmvXHUTCPTmQkSlUv/7330n/zjj4Oh0ydkF5u1+fn4WFhYTJ04cM2bM6dOn8/PzuzPd9fENBP/L1KcdL23RBV+X67ccHJ087/p2h3zVpSFTL6MHmvPjbTDy/GvY5O83HYl9Vr9x40bEF86dO5fL5eqCUm/RnBqNJiAgYPTo0SixsY2NjYuLi44zEF1UgzJiqfL0raSI5NZZfDBxo/iFEokE2Q+rqqpKSkoKCgqysrJSU1MTExPj4+NjY2Ojo6NjYmJiY2MTEhJSUlIyMjKePn0aGxt78uTJWbNm9e3bt3///qNHj96+ffvdu3cpFIpUKpXJZIrmTalUapmU2yI+EVXZqR0sr4kaUjZvIIBMJpNKpUKh8NGjRz///POkSZMGDhzYt2/f8ePH//jjj/fv309MTGxV2fj4+OTk5LS0tNzcXCA46+rqwLADbC6E6TIGLqChQROeWHrx7lPdbxK8JI5AY2MjTnO+iLcBGmER/6e1gwqYBzpIHS010U9UwDz0NWktGhoa9u3bl5SU1NjYCGYXpVIJjhFsNptGoy1evHjXrl0MBoPH4yHHiF5UWe80p1KpBEqDxWLRaLSNGzd+/PHHWo4gvagv3vQLhQCMjRBLGeKm1tbW2tjY/P7770D7iUSiVmNHI5rT2to6ODjYhEADmhM+GzgcDoVCGTly5KFDh8Bwj+LyGWbqDx9sCoUCOyZMmDBh586ddDodlnpASJnuWEaMqnewNOegQYMSExONSjxcGByBdhBA6xJgkURCQsLAgQPJZDKdTtfyBW+nEhM6hZgSWDVfWVk5b968zz77DEtzdio3mEajSUhI2LFjhwmBYGyi8ni8r776Kjs7u1MvBbh1VSoV5Hmi0+mVlZV5eXkpKSlRIYH3Du/x+3Kbz4crPbcs8ftsY/Debx7dup729CmRSKyrq2MwGEKh0BSTxxtb3xlSHvTwgjdnZmZm3759Ibw2h8NBmb8NKZK+2tJoNI8ePRo2bFifPn2OHz/ekqFRKpUPHjyorGwlHqm9vT2QDStWrJDJZLqLpAvN6fPome4V4iV7EQH/gBAHR6fb7nclEl0J8rakFYlE0dHRX3/99cCBA4cPH3Hk6AlgIqOi4xoaGoDmHDRoUHp6t5KAqtXquLgEqDkg6J6+uCX/wCYc3G7eEQj1Rve2BZRJH+8uzdmg2vHBZhh5Rr+5cvuBe9u2f2ptbQ1HLCwsDhw4oCM+mzdvXtxiW7JkSYtj7R3w9/fXsbnGxkaVSpWamrpt2zaswGPGjLl161anpn86tkii849ejWPzJe2Ub0l2wmuORqPV19dXVVWVlpYSiUQCgZCXl5ebm5uTk5PbvD179oxAIBQXF5eVlVVVVdXW1mZnZ7u4uHzxxRcLFiwYN25cv3793nzzzR07djg4OPj5+T158qSoqIjFYslkMhQNEQIiAhmJuEnwq2nnLyoJO3C5UqkEOhOFYOTz+RUVFSkpKSEhIc7Ozrt37549e7atre2oUaPefffdDz/88MyZM3FxcVVVVeXl5SUlJUQisaCgIC8vL+f5lpubm5+fX1hYWFxcXFFRUVtbSyaTwcwIJh00lzOMoaOdfkSn8ktpFzyf8oSdeCOja/GdFxYBnOZ8YbseVxxHwBgR0Gg0p06dIhCaAvvANAWlueJwODQa7fDhw7NmzQKaE32Hd8qao1+19UhzYvXl8/lA6546dWry5MlIX5h89KK++kUPr83IEcDek/CREBcXZ2lpef36dawhu2UEV0Rz2tnZRUZGGrmaSDykr0QiAX3T0tL69et369Yt9AwaklZE8kilUvSRtmvXriVLltTX15tfqr/GxkYszWlvb98TH8mou/EdHAH9IoBCXgPN+ddff82YMYNCoQDNifUF12+7vVUbYkpgEUx1dfWiRYu2bdsGbweRSAQxrzo7Y2lJS/SWgqbYrkaj6ZqNGzl0wqoaCoVSXl5eUFCQkZER/+RJ9MPwyHvBESFBsY/CU5KSsrKyIIcTg8GABTcqlcp4jGKm2HEGlhkeXjS1ePLkyYABAyC8NpfLRZ9XBpZKL83FxsaCR4u7u7tCoWhZJ5FItLGxuXv3rtYpoVCIQkT+9NNPnRq4dKE574brM0edlvD4Tz0i4HrD3cHRydc/WKFUdrlapVLp7+8/c+bMl156yc7O7rvvvisrK2Ox2BBX1unSVVI9GWjOTmWBbVWewqJiCDDreO4Sk8VqtUwXDkbHxjs4OjlfddVj8N4uiGH8l3Sb5lTv+HALkJrjpy8ZO2kW8uOEgzY2NvHxOmVIFYlEwm5vun95aTSaPXv2YDMOWFhYLF68uKSkpFPjp+5d/DS/7vTNRIVS1eEl8AWNMrVJpVKRSATmNTqdTqFQ6urqampqqqurKysry5u3ioqKysrKqqqqmpqauro6EolUX19PpVLJZHJlZWVRUdHTp0/Pnz9vb28/ZMiQvn37Dhw4cOTIkePGjVu4cOF33313/vz5+/fvEwgEmBRBojT4CyRoW3+xJdE+JJSrqKiIioq6du3a3r17169fP2nSpDFjxgwZMsTW1tbOzm7BggVHjhyJiYkpKCiAkLNkMrm+vh5Uq6qqqqysrKioKC8vLysrKy8vr6ysrK6urqmpIZFIFAqFyWRyOByBQABvfCMkOKGXiyoYDreTaiidiK/Q4e2BFzB7BHCa0+y7GFcQR8BkELh586anpydWXI1Gg/Uko9PpDx8+HDBgQF1dHYfDgWVHSqWyF2M26pHmBAdWpVIpk8kEAgGHw6HT6aGhoTY2NiUlJVwu1xj0xfYOvm/2CGjFYGSxWNevX7e2to6Ojoalf2KxGAKbaH3PIJpz8ODBKSkppgJUS31v3LgxaNCgqKgoCBzdlr49pKAWzQlLPe7cuTNu3Ljq6mqsLVIL/x6SxwDVYmnOsLAwA7SIN4EjoC8EtGi/lStXbt26lUKhaMWB7MUZpBNc6wAAIABJREFUi740hXq09K2trV2+fPnq1atb0pxmM0DpF0Cjqg1eNyhGPYfDIZPJEOctPz8/MzMzo3nLyckhEAglJSU1NTUQVAD7WsQ72qj6tB1htGjOsLCwESNGaNGcphiCuLS0dOrUqf369bt48WJb8nt5ednY2ERHR2vhk5ycjNynbt++rXW2/Z+60Jwe9/ParwQ/awwIqNXqs+cvOzg63Q971LWXNZlMdnNzmzVrlrW19fTp0/ft21dW9r8Ym4TCIqg/MDgUaM78/G7x3wKh0O3mHQdHpwtOV0pLy/WIYU5OXlOO0vOXyWSqHqs1v6q6S3M2Nn6y42MYfKytrVHc1zlz5gwbNgyOz5gxg0ajGQ90DQ0NycnJkFMWDZuTJk1ycnLqlB98ZzVyC8xyC8rW5SoUqw8WICqVSrlcLpPJxGIxZLJks9lMJpNGo1GpVAqFAgRhPWYjk8mU5xuNRqM/3+CqvLy8gICAP//88/PPP1+1atXs2bOnTJkyduzYAQMG9O3b9+WXX542bdrChQvt7e0//fTTn376af/+/UePHj116tSZM2cuXLjg7Ox88eLFs2fP/vnnnydOnDh06NDevXu//PLLrVu3Llu2bObMmePHjwcuc/To0ZMmTZo1a9ayZcu2b99+6NAhDw+PlJSU+vp6BoMBQoEWWoqQmjekEIVCoVKpdDqdxWKx2Ww+ny8SiSQSCcTghWyjCDRdEDZYGZFEefHu06xCssFaxBsyAwRwmtMMOhFXAUfATBC4du2ah4cHVhlEc4pEIh6Px2Aw8vLyRo4cee/ePTabLRQKIW5t175DsA11eV+/NCdWX8gLmJycPHr06Nu3b3M4HPAFMbNUfF1GHr/QAAhgaT8ej8dkMn/55RcbG5vq6mrIDYnScWkZNxHNOWLEiG5+wBtATdQEfAuhILFMJvP7778fPXo0kUhE+rZK66Ia9LsD3xuw9EEoFHK5XDqdXlFRYWNjk5eXZ5ZLHxDN2a9fP9ypS7+3E15bTyOAZQ5oNJqdnd3+/fu1mANweutpSQxTvxbNWV9fv27duvfeew/RnBDSHMYxw4iEt9IdBMChEzGdbDabTqeTSCQI8lZSUlJaWlpRUVFTUwP2NT6fL5FIwGcXd+XsDvKGvxZ8XJA3p4eHx/jx47UGq7ZoQsNLq2OL5eXlr776qq2tbWBgYDs+zV9//fWIESNycnK0qr148SKy1xcUdC6Ppi405+3QXK0W8Z9GiACdwYDor/EJTQl0urCdO3fOyspq1KhRgYGBdDpdy0ahUCggiabjuYtXrrpYWFgIBIIutAKXKFUqj7u+KBCu1rdYl6uFC8srKh3PXXJwdCIWl3SzKvO+XA805yefoMEHdnbv3s3lci9cuAA/ra2t//jjDyOBUalUHjlyBFGwFhYWdnZ2Bw4cIJFI+r0DtfRVN2j2O0U/SCjVOt7hT+TZCSFhge+USCQikUggEPD5fB6Px+Fw2Gw2i8ViMplAH9KaN+AOge6kPt/gFFCMDAajvr6+oqKCSCTm5eWlp6fHxsbevXv3woULhw4d+vbbbz/44INly5a99957M2bMeOONN15//fWxY8eOGDFizJgx48ePf+ONN6ZPn/7uu+8uWrRoy5Yt//73v/ft23f27Nnbt29HREQ8ffoU1paVlZXV1dU9Z1rpiNfEigdEJsgGvCyDwQBSk8PhcLlcPp8vFArFYrFUKpXL5ZBbFPKJGvNEXSJT+kcWxmVUddjReAEcAYQATnMiKPAdHAEcgV5D4MmTJ6dOnWq5/gtYFrlcLhaL+Xw+k8ksKyt79913d+/ezWQyBQKBRCIB1qG3RNc7zalWq+VyOdC6TCazuLj4rbfe+uyzz1gsllAo7HV9ewtn/bZLp9OJzRuTydRvzWZWm1YMRjKZvG7dumXLltFoNLTOANyptT5sEM05atSowsJCU4EF9JXJZCKRiMPh1NXVrVixYv78+ZCIFNZVtKpvjyqIjM6w9IFCoUyaNMnZ2RnbBSZnjmwLMURzvvLKK22VwY/jCBghArBKSaFQSKVSHo+XlJTUp08fV1dXKpXKYrEgxDRMV7SMnkaoi44iadGcVCp1y5YtEydOxGlOHQE0wmIw64aXDuSo5vF4LBYLGdcgyhmPx9NK46Q1BzBC1XCRsAggmhOC+Dk5OU2fPt2kaU4Wi7Vy5UpLS8s9e/YQicTif25EIrGwsDAvLy8iImLy5Mmvv/56TU2NFiBffPEFMArDhg1rhyXFXoX2daE5b4bo5ISE6sR3egWB/GcEYA3znnWO6kbS3r9/f+bMmX379v2///u/mzdv1tbWolOwU1tHAofO4ydPjxgxssuDp0ajSU5JA2ldb7iLRGKthrr5k0ymOF265uDolJSU2s2qzPty/dKcVlZW33zzjUgkgihfGzZsAP/O/v37Z2f3/hjCYDA+/fRTRMr2799/3bp1mZmZXb6Ndb83WDzJQefYbCJF90talgTKs6F5U6lUyMtTKpWKxWIgPnk8HpfLRaynlsdkS2YR2E+gHrVYRsY/N2aL7Z/n//bORC1Cbc/Z1ab/z/1L//5PpVJRiwwGg8lkslgsDofDa96EQiG4bAKviahNlGXAAL3Wsgs6e0Sj0fg+LvB+2MUBubPN4eXNAwGc5jSPfsS1wBEwbQTCw8O3bt3a0ncHOZNBiAkWi0Umkz/44IN//etfNBqNz+eLxWKZTNaLJv6eoDnBmQxoXQqFYm9vP23aNBKJBPpCakDT7u9elV6tVv/6669jm7eLFy/2qixG3TgKYSeTyYRCIZvNrq6uhog0dDoduRKiuTJWGROlOcHwB1Gj2Wx2YWHhG2+8cfz4cS2rvYHdVmDpA1rqQaVSN2zYsHnzZnAwNbOlD4jmfOedd7B3FL6PI2DkCADNCauyeDze9evXbW1tIyMjaTQahLxuy/fdyPVqRzygOeVyOeTmpNPpO3fuHDt2LJlMRmkFVCqVMS8Sb0e7F/YUevUrFAqZTAa2P5TtSyQSYV0BkB/ACwuXiSqOpTlZLNbhw4fnzp2LpTl7dwlpZ1EVCATLly+HhHajRo2CGb7W3zFjxowYMeKll16ysLCYMWMGsAioIalU+t5774Ht/ttvv0XHddzRheZ0DczSsTa8WC8iEBEZA8RhTW1d18TQaDR0Oj04OHjGjBl9+vSZOHHib7/9xmAwUG0ajSYhMcXB0en0mQubt2zrMtNApdIuXm6iIZ2vuPJ4+k9cx+Zwr1674eDoFHIPTyGBeq+VHT3SnNbW1seOHcOOTgQC4bXXXoOhaebMmdgbqRVRevgQmUx+7733rK2t0YqQoKCgll4KPSRFQRl9z9lIQsX/HqUuNAQzUvQXBbHA8p3g6CkUCsHRk8vlcjgcLUdPxC+2pB4RE4mlJxEViljJlhQmlEGXY3e0qkJBdLHUJrCb4LKJ2E2ZTIbYTZiwgREDIdAFDA1/SWEl/ZJXmuHbxVs0XQRwmtN0+87cJG9oaKipqals3iQSibmph+vTBgIkEumbb75hsVitngdri1KphEXlkJru2LFjgwYNysrKQsvJlUplb9nR9E5zoqh3YDek0WgnT558+eWXMzIyeDwe0LpgN2wVMfxghwio1erPP/8cJuinTp3qsPwLWwAWGcDTJxAI2Gx2Xl6enZ0dkUhEiTkhWl3LT3RTpDnRogqpVMrn81ksVlJS0sCBA5OSklrq21LlnrtPgOaUSCQgFZVK/e233wYNGkShULBLHwwpUs8pi2jOdevW9VwreM04AnpHANGc4Av+ww8/DB06tKysjE6nQxYcmUymVCrVarV5PKoomzjEn+BwOAwG4/vvvx8zZkxFRQVOc+r9BjNkhTD3BiYMbH8Q5A3+Kpo3yOSE7GWGFA9vq/sIqNVq5HrOYrF27969atUqoDmxrufdb8gANSgUim+++QZm9Tr+XbNmjZZgbDZ70KBBFhYWlpaWycnJWmc7/KkLzXnNP6PDevACvY6Au4c30JzdiSULWjQ5Ifn6LliwYMCAAYMHDz527FhRUZFKpWpsbJRKZbfdvRwcnU796UjtUs5FgUB4pZmDPHP2YnZ2j6R9lUilkPXT9YZ7r/eLMQugR5pz27ZtCoUCq6xGo4EwyBYWFtbW1o6OjtizWvvh4eHB3d60PN1REzQabcWKFTDGWltbf/TRR91/RlDluuzEZVT9dTOJwdGb1zIYD8GzU928KZs3mOrAGi+xWCwUCiG2LfCdyMsTOWLS6U1RZLG0JZah7M7+81qb/tPpdGgRXDYhGi2Xy+XxePzmDXw3YSEasJsKhQK+OxDBaeCF2rp0qy5lcoiUS95p6gaNLoXxMjgCjY2NOM2J3wbGggCTyZwyZcr45i0hIcFYxMLl6GEEnj17NnHixLZmVMiOBmEkITXdgwcP+vXr5+3tDekqwUOit17biOZcuHChWKyHiReW5uRyuTQaLTY21s7OLjAwkMvlQtjMVv3nerijzKd6nObUsS9hhSPWt/jMmTNvvPEGck5CfoQtrfamS3MiZywmk3np0qXXXnuNQqGAMxbSV0cA9VUMOyaw2Wwajebm5tanT5+EhAS01MNslj4gmvPjjz/WF4B4PTgCBkAAnlPwfadQKKtXr16xYgWVSmUwGCi1tjkl5oTpmVZI7SNHjkA+ZmOYnhmg0824CWA6YRoA5j+tv7016zZjzA2pmhbNaW9v/+GHH8LszuRozsrKSltbWx0JTii2f/9+LbTT09Ph1JgxY6RSqdbZDn/qQnNe9sadUToEspcLKJVKCNN6wemKvsLLCwSCuLi4Dz74wMrKauzYsR999BGBQNBoNAWEIuBTr7ve7uwtp1KpHoQ/hsvvhYZ1Nsayjig3NDTc8fRxcHRyPHcJ2FkdL3zRiumR5vz6669boieTybZt2wYD1NChQwkEQssycGTkyJGdGglbLXz69OmW9atUqs2bN4PHvLW1tYODA5/Pb1ms545oNBq/x4Q/XBOE4n/QwHppUYvvhBSeSqVSoVBgKU+RSIQoT5TRE5J6tsp9YulPLGEJ+62eRQkCEKMJpCa7eYMUmxCQVtC8YcPSYqlNWIiG2M2Whhq94GawShhc0R9uCVR2UyRnfMMR0AUBnObUBSW8jCEQoFAo/fr1g9dtZGSkIZrE2+hVBKRS6dGjRysrK9t/9SIPCYlEwuPxGAxGTU3NSy+9dPjwYTabjdJzmo3BBekrFoshFR+VSh09evTx48fNUl/D34M4zakj5igxJ9yKTCZzzpw527dvh8ScAoFAKpW2FdbMRGlOMNkjfdeuXfvhhx+CMxboC4k5dQRQX8UQfQJeYnQ6PS4uzs7O7tKlS4g+MXzGUH1pp1UPojl37NihdQr/iSNgtAhgfcGFQmF5efnEiRMvXLiAvKNEIhEEnG9/wmO0CrYqGHpHiEQimK44OTkNHTo0JSUFpzlbRcxED6LgZr0VN8VEcTNasbHjFeRenTVr1u7du02U5iwvL3+3k9vDhw+1eodEIo0dO3bEiBEnT57swiitC8153gNPcKiFutH95HJ5552uODg63fXy07twOTk5GzZsGD58+IkTJxobGzUazVUXNwdHpzNnL6aldy6gcWEh0fHcJQdHp5u3PXuUgAx7GAFkKo1O1zsgZlNhT9OcjY2NlZWV48aNAzPpjBkz2opRrBea86+//tLqmoaGhnPnzkHr1tbWR44c0SpggJ8KpfpmSI5/JEGlbujR5tqnPOVyuVQqlclkEolE3LxBOk8gHcHpE2hI7vON07wBT4n+InIU8ZdQDIhMuBS5aWIZTRSNFsSQN2/gtdmS2uzCu6xHse1y5UKJ3D00N7Owvss14Be+aAjgNOeL1uPGqy9Ocxpv3/SMZCwW6+23346IiOiwelh0DDEbmUwmlUrdvHnz+vXrwcXK/KyHKEYlj8cDfXft2rVy5UrQVywWA7dkNnOXDm8A/RbAaU4d8UTsGsRPJhKJ/fr1+/PPP5FzEnKkblmhKdKcWvrW1NT079///PnzSF+ZTNYrzliw9EEmk4nFYh6PR6fTq6urR4wY8dVXX6H0nDjN2fImxI/gCBgMAaAN5HI5TFTS09Pt7OwKCgqoVCqLxYKA8+b34sbSnDBd8fDwGDhwYGRkJKzKQu8IfLpisFsRbwhHoEMEtGhOJpM5ZsyYffv2oQjbKJFwh1WZTYGGhobi4uKcnJyu5c1pi+aksUSeYfnnPFKPXo1zuN3pWLhmA6+pKEIi1Z89f9nB0Sk65klPyKxQKLKysvLy/o4xW1tbd+36TQdHpyvXbuju0FlbR3K6dNXB0encBefKquqekBPVmZ6RBTQnoZCIDuI7WggAzXnSNf6UW0JhBaMLE55PPvkESMRWvTkbGxvVarWzszOU6dOnz/nz57VkgJ+ffPLJhm5v4eHhWpVTKJSpU6dC64sWLTJwrFoQRiJTXvZO93tcYJi4pWh1FzakrUqlgqi2ELofKEZIYS6VSiXNG+I+Rc0beH/CX0SFav3EHgfvTEiCLhaLoU6ovCWvqVQqwfEUgm2AyweSXKsTTfqnXKHyfJD/OKnMpLXAhTckAjjNaUi08bbaQwCnOdtDx7zOaTSa6OjojIwMHQPCQH4gSM/JYrHodLqHh8eYMWNoNBqXy0U0p461GT+WWvrSaDRvb++BAweSyWSIUWl+TiGG7BSc5tQFbZQWVyKRQGJOT09PGxubkJAQBoPB5XLFYjEk5mz1uTM5mhNZ/UBfFosVEBAwcODABw8etEzMqQuAeiyDPLylUil4tFOp1I8++mjBggV1dXV8Ph9F0+3Cp7Ue5dRLVbg3p15gxCsxMALoIYW1CKdPn546dSqFQkG+7xKJxGzWIiBsgeaEwOZAcz569MjOzi4oKAinORFK+A6OgLEhAOOVQqGAMDlUKtXKyurMmTMvMs3ZzT5qi+ZkcMUh0UUu/hnHXZ78dTOxm63gl/c0AsTiEvCSLCAU9nRb4NCZlJwKPKJ/QIhare6wUYlE6nnXF3xA4xN6nDivqq4B8Z7EJ3Uo2wtb4F4s8YLH0zO3k857pJRUszSdJ+I6pDnhblm7dq2lpaWFhcWwYcPIZLLBAI+MjIRwtTY2NkRi7xDefKHM8XZyQbmhvYoRa6jFd2pRnhDeFiLcyp5v0ucbsJXt/31etslVFG3ApMrlciBWgWTVojZBMJDTYLeEgRuSK9X34ohugTkGbhdvznQRwGlO0+07c5McpznNrUfb1ketVn/55Zfnzp1ru8g/zoApDdJzstlsOp1eWFg4fPjw8PBwDocjEAhkMpk5GRCRV5lIJAJ909PTR48e7eHhYZb6/qOze/4HTnPqgjHWOQmote+//37IkCGlpaVaiSpbpdZMkeZUqVRYe/3u3btfe+01AoGgi766QNrlMoiClUqlfD6fyWTSaDQ/P79Ro0aVlJSgpR7mkZ4Tpzm7fJ/gF/YiAuitDSGvZ8+e/emnn1IoFDqdjpJqm9MsBaDG0pwwNGVnZ/ft2/fWrVvm52jei3cX3jSOgH4RwC7L4HK5+fn5ffr0uX79ulaIfl1IF/0KZrq1tUVzMrni0Lhi18AsoDm7wH+YLiamKHlmVg6wenQGwzDySySS6663oNFCHTwmo2Lizpy96ODodO9+uAGeUJFIBLIFBocaBhBTbCUklnjeI/XsnZRLXk9La3qK5mxsbKyoqJg4cSJ4Vc6dO7et0LV6x/DQoUPIlVPvletYIYMj/sMtsZZm0ISgbckGnCKW+ETJy1FeT6Aksd6fQFW29RdbHipBf5GzJtZfsy3ZzPK4St0QEkt0uIEvtjDL7u0RpXCas0dgxSvtAgI4zdkF0EzxEhKJlJTU9JZq1QmsVY1QYDSUrrK6unrhwoUffvghhIND4ZVaZVxardOYD7bUt7y8fO7cuRs3bgTGBQ8E153uw2lOXdBDNyEkXautrV20aJG9vT2kbsIm5mz1oTM5mlNL36qqqjlz5qxevRo5Y/XuIINIFKFQCEsfyGTywIEDw8LCOByOSCRCSz106VxjLoPTnMbcO7hsrSIACxGUSiX4gpeXl1tZWV24cIFCoYDvO8ScgIUIrQ6YrVZr/AfRCgyxWMzn81ksFolEAt2xq0PMJnW68fcILiGOgC4IaNGckZGRtra2fn5+EKIfLR41AImii7QmUaZDmvPo1dg/3OLVDZ338zIJ/c1FyNi4BAdHJ6dLV8ViicF0otHoECnX3cNboVC21a5GoykoKATS8co1NxaL3VZJ/R6/5Ozi4Oh0x8NHqWxTNv22aHK1BUcXnXVPOXcn1dknvayG3YXVDLp4cwIsly9fBodOKyury5cvGwarjz76CGjOJUuW+HV+S0hI6L6cNRT+0atPxBL8Juw+lqZXQ0ODJiWPdOBitELZscu76amHS9wDCOA0Zw+AilfZJQRwmrNLsJneRW5ubp9//nmn5EamNIjZyGKxqFTqd999N2TIkKqqKoifqVAoeiVtXqcU0bEwCicF+kJ6zn//+9+vvPJKSUkJNsuX7lSxjk2bQTGpVJqSkhIYGHiteQsJCcnIyMB+m+E0Z4e9jCLWQqRoDodTWFg4cuRIX19fOp3O4XCEQmH7vJpp0Zxa+rLZ7IyMjDFjxri4uIDVD3jEXhxhsCwsh8NhMBhUKnXZsmW7du3CBodUq9WmTqLgNGeHjydewNgQgCkKJOYUCATu7u4DBgwICwujUqlMJpPP50OIbzN4PLWQ1+J3WSwWjUZ75ZVXDhw4ALG+zSmetpbu+E8cAdNFABZOyeVykUjE4XA8PT0HDBjw+PHjXs9EbrqQtk9zXg/IPOQce8IlXqluMF0dXwTJQ0LDHByd3G7ckclkBtNXo9E8jogG/jIhMaWtdlkstkuz3+fZ85dLSw2Xo87LJ8DB0cn1hrtQKGxLthf8eEAkweFW0rk7qVd8Mspqe5bmlEql77//PpCOr732Wn19vQHAnzVrFrTYtb9r1qzpvpCpeXUXvZ6q1fhKke5jaXo1qBs0selVf7gmCsUK05Mel7g3EMBpzt5AHW+zNQRwmrM1VMzqGI/HS0lJUavVXSDn4JtcKpVCmkAGg+Hu7t6nT5/Q0FAgXeRyOUSEMw/ItPSl0+ne3t79+/d/8OABOG+1kxbRPBDorBYajUYsFv/555/Dhg1rOQsfNWrU+fPnhUIhmGU///xzKHPq1KnONmT25SESi1qthrxN4KPj4eExfPhwsNoD0d7+HWhyNKdarQaWAvT19va2s7OrqanRSszZhbFLLzcM0JwQU5fL5cLSh4MHDw4cOJBGo/F4PKlUqlAozIBHwWlOvdwweCWGRACtQoDEnF9++eWYMWNKS0upVCqK3QoZtQ0plQHaapXmhOUX2JHTDMYlA4CJN4EjYDAEUHwIoDlPnz49ZMiQtLQ08D4XCoXtT/AMJqcJNdQ+zXnNL+O381EHLsXIcU8U4+7UO57eDo5O3r4B2NWxBhCZw+GCQ6eDo1MdqRXiqqGhwccvEFJyJialGkAk1EREVIyDo5PzVTcmk4UO4jsIAU1j493w/KPXnjjcTu4yzblz506wS3zzzTeo5rZ2WCzW66+/DuXffvttlUrVVkl9HR80aFBL04ruR/RCc0alVFz1zdSXRng9JodAdhFlv1M0nS02OclxgXsFAZzm7BXYX8RGWSxWQkJCUFCQm5ubl5dXdHR0SUkJ1mSM05xmf1ukpaXNmTNHIBB0QVMwI8pkMqFQyOVyGQwGkUi0tbU9dOgQi8USCoVg5TeP7HQQ0VelUoG+4LxVWVk5bNiwEydOsNls5EtnNvp24ZbQusTX1/fNN99sf849adIkT09PlUqF05xa6GF/gmsj0H5gtWcymStWrNi6dStErOXz+R366HC53LPN27Vr1zgcDrZ+I9xvaGgAfSFCL4PBeP/99zds2IAi9EokEqVS2YvGekQnQHpO8Jry8fGxtbUNCwsDj3bzsEviNKcRPiC4SO0gAAMmel/X1tbOnTv3gw8+oFKpkOhOJBKhOPPt1GOKp1r6wdPp9O+++27FihXAl4AbKz5RMcXOxWU2YwQQzSkUClks1vfffz9y5Mjy8nImk4nN9o39SDdjNPSiWvs051W/jD2OEf+9ECWV9zghoRd1XthKLjlfd3B0Cr3/UG1wv9u8/GeQdDMwOFSp/Md9olar454kgrun511fsdighv6s7FwHR6fzTs6k1vjXF/ZWQYprGhvv3M895BzrcKvrNOeTJ0/gqzk+Ph7V3NZOQ0NDVFQUlD937hyXy22rpL6OX758GZrr2t+goKDuS+ISkBXztKL79eA1mCICDRpNJoF8+mYSidYVM7IpqozL3E0EcJqzmwDil3eMAIlE+uqrr/r06aPFQFhaWs6fPz8qKgqSf+A0Z8dQmmwJtVodHx8P39VdUwIlkhGJRDweD+LWbt68eeXKlQwGA5yZwMpv6jEbAR/kHQK8Czhvff7550uWLIEgeGZG63btroCrNBqNj48PZKqAQcbKymrChAkffPDBf/7zn82bNw8bNszKygqNP3/88QdOc7YDONZqDyv9iUQipFuj0WgcDgcSc/Yu7deO/J09hSz1MpkM9K2rq7Oxsbl69SqK0ItYit4aXrCdIhAIOBwOnU7PyckZNmzY77//jl36YOp2SZzm7OwNjJfvXQRgkYRSqYRoE/n5+cOHDw8ICACaE+v73lujR8/hg8YlFN6cTqdfunRpypQpWklJTX1c6jkM8ZpxBAyPQENDg0KhgMeWTqdv3bp10qRJNBoNnLBRLmH8sdW9a3SkOSVSPLGc7qAauqRcLgcqMTrmiaHbbm4vMOgeCFBeXokVoLaWdN7pioOj07kLzvwuLRbH1tbZ/YrKKpCqtLS8s9e+COX1QnO+CEB1U8c/biQkZNV0sxL8chNFQKNpzC2m7LsYXVqD+5SbaB8aWmyc5jQ04i9Ue1wu9/Tp06NHj0YEQ8sdKyurzZs3Z2dn4zSnGd8bNTU1//c4nOfZAAAgAElEQVR//5eS0mbCiQ51R1SERCLh8/kcDodGoz148GDo0KGVlZXgzCSTyXoxeV6HKnSqALKcgr5sNptGo4WFhQ0aNKiwsNCcnLc6BUurhR88eGBnZwdji52d3VdffZWamqpQ/C92v0AgCA0NXbRoEZTp06fPq6++Cvt40NqWkGLvPYgRfenSpUGDBkVFRSHLtTk9a+AoCRF6BQIBi8VycXEZPnx4bGws0hc5SvYWUQEDINbllMlkksnkxYsXL1u2jEQiAfcMcWtb9qkJHcFpThPqLFxUFHoBAkrzeLwbN26MGTOmrq4OOAM+n2/Ga5IQzYnWiNDp9IiIiAEDBsCamF7PaozfojgCOAItEYCsBLAyo66ubunSpZs2bULhOsRiMcwlcJqzJXRtHdGR5hRK/vdt0lZV+PHeQqCqqhr4vMysnF6RobqmFkLXXr7iyuH87aLH5wvcbt5p9qe8UkAoMrxgFArV6dJVB0en1Kfphm/d+FvEaU4D9JFC2XD82pOiCqYB2sKbME4EiJUMR/eUgjK6cYqHS2VsCOA0p7H1iFnJ8+OPP2JdrCwsLKZPn75z587du3fPnz8fS3na2Nj4+/v369cPDkZGRpoVEC+2Munp6XK5XCAQdIchQDQniltLp9Orq6snTJjg6OgIzkwoO50Z4K2lLzhvEQiEyZMnHzx40Pz07U6XvfPOO2gwuXDhAniHt6xQoVDY29ujkrCD05xaQCE6DVntqVTqpk2bJkyYUF9fD57EyATWnSdaq91e/In1nObxeDQabdWqVdOnT6+urmaxWLpE6DWM8EDHyuVyFEmYRqO5urq+/PLLz549Azkh/59J9wuiOb/44gvDAIu3giPQHQSwAwiXy12yZMn27dspFAqdTofEnGhmYtIPZqsQIZpTLpejiN+5ubn9+/fPzMyEvOkymQzyppuf+q1igh/EETB+BLDJ10tLS6dNm3bkyBGc5uxOx+lIcwpE8u60gl/bowgkJT8FmrOsrNdiY0ZENiXCdHB0evQ4CmYXPr5NKTkdHJ1C7oUZPpRuY2Mjm8O56nLDwdHpQfjjHsXfRCvHaU4DdByFKTpwKaaOigcsNQDYRtoEnSM65ZqQXUgxUvlwsYwMAZzmNLIOMRdxlErlvn37EMc5fPjww4cPFxcXY/Wrr693cHAYM2YM8A0TJkxAgSVxmhMLlEnvc7ncRYsWnThxovsWLhS3Fln5yWTyJ598MmHChP9n703Ao6iy9nFWSVgCAWRXlEEdGQcER8cdPx0WHQVmGLcZHRVGnHyKoo4oiyiDNE2gQxYgCQQIO4SEPWHLAiH7QvaQfel09b539d5d/X/g+N1f/TskNL1X9+3HBztVde895723blfd95738Pl8lUoFWaB8mD/PvT2F/AWdXpFIxOVy//a3v02ZMgWCt+6aH9G99vhnbTExMTCB9O/ff/Xq1b3vPVepVC+//DKd6cQ0p123omVrFJ1TXV09ZcqUdevWCQQCqVRKjxp0/aa2a937f3bfT1BWVvbQQw99++23kFfPfxR6kalarRZ0awUCQWtr68iRI/fv3w/5tBCj4H0kcYsYgeBEwGKxIMXampqakJCQuLg4giBEIpFUKgX5R+D5AhIfu+0XkDf9oYceSkhIQL8XmOYMyK7HTjEXAbPZbDAYtFqtQqGorKwcO3ZsSkoKykqAXy6c6FkHaU65Wu9E5biIdxA4ejwVCEWhyGdBY0ajcfeeZBabExW9vYtHlJSUQ3znnn0HSVLrHRzsWiFJ7a7dt0zas++g3Sn8p81mwzSnF4ZBQ7sk6kB+lxDTnF4A2x+boChbY4c05nBhYVWXP9qHbfI/BDDN6X99EhAW5eTkDBs2DOiE8ePHl5SU3JF+sFqtXC73kUceoRMPffr0wTRnQIwCm0AgaG9vFwqFBoMbtq9215YUCASxsbF9+/a9ePGiQqFA8mjU7Q/TMUT+kiQJWpoCgSAuLm7w4MHp6enIX6B1A4BwcqK/dDrd6NGjYfaYNWuWTCa7ayVHjx6lzzaY5rRDDEYdWrWXSqWpqamDBg1qamoSiUQoOgfUoQNg1HX399ixYwMHDiwrK0OKtX6i0AvTmslkAgZaLpeLRCKCIN5666158+ZBzlStVhswOVPtRib+EyPghwign2mdTqdQKCIjI0eNGpWZmcnn88ViMcjLB7b8I0IA7T9rbm5+5plnPv30U4iG93liYz8cNtgkjIAPEUB7KEmSlMvlBQUFAwYMaGxs9J9k5D4Ex+mmHaQ5pUrfMFVO+xVUBaOidwDN6ZZVC6ehq6mpY0duY7E5O+KTgOOMit5BEHynK3SxoMVi2X/gCGQGdbGqgCyOaU4vdGtOSTtr9zU1iUW/vQC2nzYhkpE/bs/KLm7zU/uwWX6GAKY5/axDAsWcd999F7iEgQMHHjt2rPfV8KysrAEDBtC5B0xzBsBAMJvNS5cufeutt7Rat73UWa1WIGA0Gg2k5ywtLb3vvvu+//57WOUPpAU1FLyl0+nUajX4W1NTM2zYsLVr18rlcrVaHUj+OjHms7KyBg4cCFPHxo0be59noH69Xj9jxgw022Ca0w52kEhCirUSieSNN96YP38+5JlTKBQQM202mx1B265yP/wT1vuQv2Kx+J133pk9ezafz4c1elDo9RN/6auTCoVCLBbz+fxt27aFhIRUV1erVCochOGHYwybFMAIIMVakiSFQuG8efNmzpzZ1taG5B/RzoM7bvULAGQQzQl5xCUSCZfLffPNN5966imxWKxQKPCkFAC9jF0IJARg1kL7pfbs2TNhwgTQ2YY3CyQLERiPed7pu55pTu2prPrtR4q/Ymf8Z+tFkYz0jj24lXtFgCS1mzZHsdicuB2J91rWvdcbjcZDR34VqgXaNS+/0Gql3NvKPdV28vQ5sEQmV9xTwWC4+P/RnEm5cYeLmjqklC/7KjAhv3C9af+ZChXphqiJwAQo0L2iKFsnX7nzePHlwpZA9xX75x4EMM3pHhxxLXQEFApFaGgoEAnLli276+KO1WpdsmQJIh5wNCcdTOZ+r6urUygUnZ2dbnTBbpVfJBLx+fxFixY9//zzBEEABwORE4Hxcn5Hfz/++ONnnnmGzsEEjE7vvQ6V7du3I2Xs6upqB4uXlZWhUpjmpINGV6wFZr28vHzQoEGxsbF0xVqIF6QXZOh3tJMAMv7KZLLm5ubQ0ND4+PjuirV+4qPFYgGtOYjw5vP5WVlZo0aNYrFYKMIbYm39xGBsBkYggBGArVcwgVRWVj744IMbNmwgCAImTKVSCYRBAP9G2wXESyQSgUDw2WefhYeHt7W1QTwr5Ay+67tAAI8T7BpGwE8QQI89aANlRETE7NmzQWcbPUWYTKbAeI3yGuw90Zwyle5ifnPSyfKvIy/8Z+tFQqT2mkm4oXtCQCAQAs2ZdvLsPRX0xMVqtRriOFlszslT5ywWiydacbzOvLxCoDlvNjQ5XipIrgSac3XMlW0HC/adutHGk2Oa0+1df/Bc5Z6T5SaL1e014wqZggBPpFoTk3m5oJUpBmM7fYsApjl9i39gtr5x40bgLEeNGtXQ0OCIk1KpdOzYsYjpxNGcjoDmz9fs379/xowZAoHAvUai0CudTqdSqcRisUAguHr1alhYWFlZGWSnMxgMAbPKj/yFOAnk79ChQ4uKimA9IpgXEL/66iuYNMaMGeP4igxJkpMnT4aCmOak36EoLgfuL6lUunr16vvvvz83NxcUa0EXOpBoTovFYjQa4f6SSqU///zzxIkT8/Pz/U2xFnUTnVaRyWRCobCjo2PWrFl/+tOfIEVxwNMqCAr8BSPgWwRgwkTbDg4fPhwWFlZXVweKtYgwsFgsVqvV8V8o3zrlROtIZgM2x4hEoq1btw4ZMiQ3NzfwnsqcwAcXwQj4DwKI5tRqtWq1WiqV/uEPf1i2bBmatUiSBKH+AJ6yPNEdPdGccpU+q7ht/7nKbyIv/mfrxU6+0hOt4zpdR6CxsRlozoLCYtdrc6UGiqKqa2rBGBabc/rMeZ9vEmpobAKa81puviuuBWTZX6M5Y6/EHSk6dK6qna/ANKd7O9pise47fePYhRqzGdOc7oWWSbXxxeq4I0VnrzrELDDJMWyrZxDANKdncA3uWp9++mmgEF5++WW12qF9ixRFff7555jmDIyB09nZqVQqq6urPbH90GKxQHY6eD8XCoV8Pn/WrFlLly6VSqVKpRJ0XAMmeAL8hW3XUqlUKBS2tLQ8/fTTf/vb32QyWTAEi/R0U1AU9f7778Ok8eabb/Z0WffjBoPhtddewzRnd2ToAowKhaKtre3ZZ5+dPXt2V1cXyA8iBVefv3J3N96JI3b+tre3P/nkk6+++iqXyxWLxUql0g/9RTZrtVqFQgER7Ww2e+LEieXl5UqlEklEBkYfOdGtuAhGwDsIoJsRUtzNnz//rbfeglBOutxCYHOcNpsNcEAx8SKR6MyZM/fdd9/hw4dlMhlKmo5nJO8MS9wKRqAXBNBuNq1Wq1Kp+Hz+oEGDtmzZgoT6tVot7BbFNGcvMHY/5QjN+e2WC82dsu5l8RF/QKC07AYwee3t7pShcsI1HsHfFvNrllAWm8OOjKqurXOiHjcWkcnkAM6J1FNurDYwqqJstp3Hir/anB59sADTnJ7oU6PJkpRWdg7zW54Alzl1EmL1pt25F643M8dkbKkvEcA0py/RD8i25XJ5eHg4UAifffaZ4z4mJyf369cPCuJoTsdx87cr29vbp06dWltb6yHDYEENcunJ5XLITrdy5cqQkBCQyfVDZsIVKOwWUsViMUEQ33zzTWhoaEVFBSS+gui6YFtDpCjqzTffhBljxYoVjoNsMpkWLVqEaU47xNAefyRllpmZGR4efuTIke4KrgGw/tXd34yMjOHDhycmJgqFQplMplar/TBDFZoAdTqdUqkEicjm5uaRI0cmJibi2Cm7UY3/xAh4DgF6FGNVVVVISEhiYiKkuIMJJEiSZ6OoVqB7xWJxfX39gAEDNm3aJJVKVSoVmkg91xdeqxkURHJychobG6FRmUyWlZX1n//8Z/Hixc8+++yePXu8ZgxuCCNwrwjQ71alUpmVlRUaGnr48GFIJ4wzfN8rnuh6R2jObyIv3GyT4EgvBJpffcnOyb3NKW4jSa0PDTOZzEePp4IlZ89dAOna3UnJGtKXWV2tVmvklmgWm7N7z35PbGH3IeCuN01RtphDhf/ecJazPx/TnK7j2b0Gjda4/WhRdklb91P4SPAgwJdotibnpV2pDx6XsaeuIIBpTlfQw2XvgEBTU1NYWBhQCFFRUXe4oodDhYWFAwYMwDRnD/Aw47BEItFqtcXFxXq93kMWwyu6yWSCVX4IcMzIyAgJCYmMjJRKpUhXMzBCKNDOa7q/mZmZ/fr1i4qKQv6CTm8AkE+ODxuKoubMmQMzxg8//OB4QZPJtGDBAkxz0hGjbn/oCq4SieTLL7+cNm0ahHLa8WcBMNLQBgJQrJVIJN9+++2DDz7Y0dEhFotRSjl/u7PQBAixUzABEgTxwQcfPP3001KpVK1WB1hEO32g4u8YAT9BAP00wwTy/fffT5w4saCgAFLcwYQJ2o+B8SjSC+wAhcFgIElSoVDA5rPHH398yZIlENWKQswD4Idjy5YtQ4YMGTx48FdffWWz2erq6p588skhQ4bAE0WfPn0iIyN7wQqfwgj4FgHIhWEwGDQajUKh4HA4o0aNysnJgXTC8PxgNBoxk3Gv3eQgzVnfJg6AafBewfH/6ymKOnM2ncXmxG1PNJpMvjKYoqj0jEsgV3vk6Am93pBx8QqLzdm0Oep6XoGvrIJ29+w7yGJzdiYkaTQa31rib61jmtPTPaLUGHallhVXd3m6IVy/PyPAl6g377l+OuumPxuJbfMfBDDN6T99ESCWVFRUDB06FF74jx8/7rhX9fX1AwcOhII4mtNx3PznSoqinnvuuWPHjnnUJFhQM5vNer1epVLJZDKRSNTV1TVjxoy5c+fyeLwA24xs569UKhWJRARBPPfcc/Pnz5dIJCqVSqfTwapEUL08UxT11ltvwYzx5ZdfOj7qDAbDSy+9BAVxbk7ADUIbzWYzLH7J5fLW1tZRo0atX78e9vj7p4Kr453e/UpEc2o0Grlc3tnZ+eCDD65btw75i5bm/Y2lsFqtQEiD5UAqHDx4cNCgQTk5ORDhjUXnuvc4PoIRcBcCaMLU6/Uajaazs3PmzJlz5szp6uqiB0VB5mzYROKupv2wHjvGF0LMIyIiXnjhBYlEgmYkyFHqh/bfk0nr16+Hh4eIiIiampqpU6fCn+jfrVu33lOF+GKMgDcRAJoTSUx/+OGHkydPbmxsBBEL+j5Rb1oVAG31QnNml7QdOFf5zZaL30ReqG8VW3E4p//1t9VqPXj4OIvN2Zd8yGw2+8rAurqb7MhtLDZnW/QOoVBks9kkUlncjl0sNidyazQc8ZVtZ89dYLE5MXHxYrHEVzb4Z7tAc0bgaE6PdY9IRm7cfY0ncigPmseswBX7EgGKsjV3SvecvJFyyVN6gb50D7ftAQQwzekBUIO7yuLi4sGDB8ML/8mTJx0Ho7a2FtOcjsPlb1fK5XKLxZKXlyeVSj1tG6zyo83IsKZ24sSJsLCw8vJyhUJBkiSs8geGjiudj1EoFBKJhM/nZ2RkDB06tLq6Gq0hQtiZp8H3n/opinrvvfdgqnnnnXccN0yr1T766KNQENOcgBvcUxAkDVlvf/nll/vvvz8rK8tOwTUwst7Cujz4q1KppFJpVFTU2LFjc3Nz7fz1N44TMuFByl4II5NKpQKB4MaNGw899NDHH3+MkuGZTKbAmAAdv7XxlRgB7yBAnzBVKlVWVtawYcOOHDnC5/NB4psuee0dk3zbCtLvhelUKBSmpKSMHj1aJBLZRcb71k7XW6fTnK+//jpiN8eOHfvhhx+uW7eurs7HSdRc9xHXEKgI0LX6VSoVj8d76aWXXn31VZi4AuxW9XIn9kRzKjWGvArusYs1/9l6i+asbhJaLFYv24abuysCFotlZ8IeFptzIu20r56c9XpDfELSbUYzpqnp1/xzFEUVl5RBXsxDR1IMBuNdffHQBYVFJSw2Z2tUbEcn10NNMLRairJFHyyM2HA26mDBkYzqTr4C72Rwb1fyxerYw0WEGIcRuxdXhtUmkGjWx189drGGYXZjc32EAKY5fQR84DZLj+a8p8C+69evY9Fa5o6LZcuWffzxx96xH1EUWq1WrVbLZDKhUEgQxPTp0z/99FN6TqzAkF2i+wsBrEKhsL29/Q9/+MPbb78NurVIptI7XeAnrSxfvhwWGX/zm984/l6qVCqHDx+OaU7UiSgyCakOtra2zpw585VXXuFyuWKxWKFQaDSagNk6YOevXC7v6OiYNm3a3LlzQbEWbZUATtffgqQRxUKPaCcI4p///Oejjz5aW1tLj/BGvYy/YAQwAu5CAKXI1Wq1CoXiyy+/fOyxxwiC4PP5gUfsOQIa0JwoREwoFNbX1w8bNiw3NxdtvAiMnViI5kRxnA899FBSUlJgPG060tf4GuYiQH+bUCqVtbW1U6dO/fnnn/l8PjzpgYiF2Wz2t8ce/8e8J5pTRRqKa3hpV+r/w7n09eYLN27yzWZMc/pdf5pMpsitMSw25+KlTJ8MfoPRuP/gUaAzL1y6Qn+lpSjqwO1Tm7dE19b5LC9dc3MryOfevPlrXmq/60UfGYRozuhDBccuVncKMM3p5p7oIJSRe68bzRY314urYw4CFGXr5CsPnqs8nF7NHKuxpb5EANOcvkQ/INtubGwcNmwYUAjx8fGO+5iSktKvXz8oiEVrHcfN51fCwlZ+fn51tZd+eEACDglsKhQKkUjE5/N/+umnoUOHVlRUgMBmwOjFIVYG9PHAX4IgVq1aNXDgwKKiIjt/fT4kvGZAdHR03759YdJobHT0vev48eOoFI7mtNlsaOULLVKnp6cPHTr0+PHjEJmkVCqRgqtP3v/dO6KQvzqdDvYNnDx5csiQIUlJSeCvnwtfw4RgsVjQhAC6tXl5eYMHDz527BiaEAKDV3Bv7+PaMAKuI0CXWOByuaNHj960aRNBEAKBANgCUJIPHrYAAIEZSS6Xi0SilpaWGTNmfPfdd1KpFDZemEymAOACEc0JDx5PPPFEfX19APwsun5T4Br8HwHYI2U0GiGN7vXr1wcPHpybmwsTl1KpRCkw/N8Xf7OwJ5pTTRrL6ohT2fXf3aI5M4preAYTXqz3t96zCUVioBjzC4q8bxxFUdfzCsGAxF37NCRpZwOX27UtZgeLzdm+c5dWq7M7650/+QLhFk4si80pKCzxTotMaYWibJz9+REbzu08Xnw6u54nVOFoTvf2XW2zOPZwkQnTnO6FlWm1iRXan3dkp2b6bKsH0wALdnsxzRnsI8Dt/ovF4vDwcHj///bbbx2vPyYmBnEPmOZ0HDefXxkdHT116lS5XO41S4DmtFgsBoNBq9WqVCrQcc3Ozh4+fPjq1ashoFOv14NsI9NXoOi0LkmSSqUS/M3NzR0wYMCPP/4ol8vpEnlM99fxgZSRkYFCwL/77jtHllBJkhw3bhxMUH369ME0J6I5jUYjiKBKJJIPPvjgySefRJFJ9NHleO/47ZVopQ/5u2TJkilTphAEIRaL5XI5pKcCjtA/7yZgOk0mE0yAoFtLEMTcuXP//Oc/0yPa/VB0128HBjYMI+AIAmifBEwgbDZ77NixOTk5MGEG2OOHI4DQf0TgEUUsFnd1dS1evPjxxx8Xi8X0jSMOVui3l9FpzlGjRpWVlfmtqdgwjIAdAvT9GXK5fMeOHePHjycIAm3wCk5hGDuUnPuzJ5pTozWW3yRO59SvvE1z5ldy9QafpX50zrVgKHWjogpYxtpaH6yhi0TirVFxLDYnOnanXKHsDrjVaj17/lZqTBabc+ZcBj3Ws/vFHjoik8njdiSy2Jzz6Rc91ARDq6Uo29bkvP/dcC4htexcbhNfrME0p3u7sqiat/M4JtfdCyrDaqMom0RO7k4rP3i+imGmY3N9hACmOX0EfOA2a7Van3jiCWAR5syZo9VqHfGVoqh//vOfiHvANKcjoPnDNQKBoLq6eu/evWazt1/bIDudXq8nSVImkwkEgq6uroULF86cObO1tRXizyB6wCfvA27vHfBXp9NpNBrwlyCId999d+bMmQKBAJYRwV//JGbcDojNZpPL5aNGjYJ5Y8KECS0tLXdtZdeuXWiewTQnLE/bBeIUFhaGhYXFx8cLBAKJRBJgyV8RQYgCj2pqasLDwxMSEsBfeuiq304dsPXBZDIhLyCifd++fUOHDr1+/bpdQGfwzAl3nQHwBRgBFxFAVAFJkh0dHbNmzZozZ057ezufz4cJkyRJo9FosVj8dgJxEYHuxYH6pe+V4fP5q1evvu+++2pqavxcBry7O70codOc7733ntHos0xpvRiJT2EE7ogAetiDFOyLFy9esGAB7M+QSqUBtqHtjgh47mBPNCepM9a2iC7kNX+/7fKKzRnXyjq0OpPnzMA1O4dAesZFIBG53C7nanC6lFyu2LFzN7ReUlre0+M6SWp3xN+6jBMV197R6XRzThckSXJ30n4Wm3Pg4FGnKwnIgrdozn23aM7E1LLzmOb0QB9n5DaduIyznnsAWUZVKZGTm/dcP3GpllFWY2N9hgCmOX0GfQA3vGLFCiAShg8fXlFR4YinUqk0LCwM0Q+Y5nQENJ9fk5OTM3jw4Koq32yroSjKbDajZTWxWCwQCIqLi0NDQ0+ePIkCHM1mMyTY8zlcLhoA/kIAq0KhAJnKhoaGIUOGpKWlMSIEzUUE7lh81apVKAp80aJFOl1vYj5CofCZZ55B8wymOW02m11oo1gs/sc//jF16tTy8nKhUBhgkUlI/xnuI6VSKRaLP/nkk8cee6y6ulokEqE0cv4fCI4mBBQ+JRAIKioqHn300ffffx854s8xqXe8o/FBjICfI4C2HKnV6vPnzw8bNuzQoUMQESWTyegCrcFDc8JPiclk0ul0wKAIBIKjR4/279//6NGj9OcT2KLh513ci3l0mvPMmTO9XIlPYQT8DQE0dymVSqFQGB4ezmKxIDEn3KRGoxFr3TvXaz3RnFq9ubFDmlnU+sO2Kys2Z+SUtKk0BueawKU8h8DupGQgGpUqleda6V6zxWI5czYdmj58JKX3Z4aGxubNW6JZbM7Bw8d6v7J7Q64fMZlMBw8dg5BT12sLpBowzenp3jyT05ByEZNbnobZ3+uXKnTxx0uOZHgpRZq/w4HtuxsCmOa8G0L4/L0j0NLSct999wGX8OKLLxoMd3mgpyjq3XffpXMPmOa8d9S9XUIul3d0dPz000/elKu1cxIFdMKyGsQzLV68+KmnnhIKhfQ0M95/H7Az1S1/WiwWo9Go1+tBp1coFPL5/MWLFz/66KM8Hi84V1fVavWMGTNg9ujbt++SJUskEskd0a6srJw9ezZciaRug1m0Fpab0e5+kiTlcnlxcfHEiRM///xzUHBFUTiBsfKFaE4UBFlUVDR69OjPP/+cx+OhSCyDweD//oIvRqMR8QpCoZAgiIiIiAcffPDGjRswAQZbhPcd7318ECPgLgRgXwgSzP/kk0+mT5/O5XIRVQARUUG4vQD9lIDghFAorK+vHzhw4Jo1ayBQDPQwmS6jjWjOgQMHajQad40rXA9GwNMIoJBrnU6nUCguXLgAuySRbgdJkoEkgeNpPO3q74nm1BnMLVxZdkn7D9FXvmJnXMxvEcnsMy/aVYX/9DICZrOZHbmNxeZEbo22WKzebP1GRVXk1hgWm7N330G9Xt9700aj8djxNOBECwqKe7/Y7Wcpijp56iyLzdm0OcpBqTa32+CfFVKULXJv3v/+ci75TEVWcZtQRlL+aShjrUpIKblS2MpY87Hh7kFAINWw91w/iXNzugfOwK8F07EihlMAACAASURBVJyB38c+8fDVV19FtOW2bdt6J5kyMzPRxfAF05w+6TXHG5VIJJMmTTp58qTjRTxxJSyrGY1GjUYjl8shwPHIkSOhoaH79++Xy+WgHef/jIWD4Nj5C7Tu/v37BwwYkJSUBIxUsGnl2Wy2Y8eOhYSEoDnk/vvvP3HihFwu1+l0er1eq9XKZLLt27ePHDkSrpk2bdrixYvhe5DTnNbbHxSCI5PJNm3aNHjw4JqaGnquJhhUPSkpOTh6/eEyur8qlUoqlW7YsGHgwIFFRUXgr1qtRrmp/N9fNCGQJKlQKGBCuHHjxqBBg+Li4iA4gxGUrT+MDWwDRuCuCCDJa9hb0NzcHBoampCQQBBEd8lr/59A7urvPV2ACGD6dPTiiy8uXLgQ0nMGGM05adKke8IHX4wR8C0C8MBgMBhgT9vKlSsfeOCB4uJigUAglUpRpg+mb0TwFcg90Zx6g7mNJ79a1r4q+sqX7Ixz1xo6BQpfGYnbvSMCMpkcuMN9yYfueIGHDhKEANrdvCW6udkhFkcoFAEjuy1mh0gk9pBhPVV79VoeGNza1t7TNUF4nKJsm/dc//yX80cyqvIrOyUKh9J1BSFQTrsce7go43qT08VxwcBAoKVLvjut7FTmzcBwB3vhaQQwzelphIO0/lOnTg0ePBiIhPvvvz8xMfGOuRspikpPT586dWqfPn1QfFWfPn0wzenP48ZsNovF4vXr19fV+VgoH5bVgKRRKpVSqVQoFDY2Ns6aNeu1117r7OwE0iKQSBokOaVQKCQSiVAobGlpmTFjxrx583g8XoD56+BdYDab9+zZM3z4cMR09u3bd+LEiS+88MKcOXP++Mc/3n///XCqX79+r732WmtrK8oEjGlOs9kMy14KhaK9vX3y5Mnfffcd5GqiKw32vlXFwZ7y7WUolBMt8xEE8eijj37xxRcoEkuj0SBe0P9ZCnpwhlKplEgkAoGAIIh//etfTzzxhEgkUqlUer3e/wV4fTswcOsYAUcQgAkENBW0Wq1SqVy6dOkjjzxSXl4OirUglR8YZJ4jgNhdg6YjAAfyCMTExDz88MN8Ph8JAzA9iQCK5nz22WftEMB/YgT8GQGr1YryeQsEgldeeeXZZ5/t6OgAuX54WgjCMHR3dVlPNKfRZOGJlAWVnatjMr/clHEm52ZTp9RdjeJ63IJAe3sHsHeXrmS7pUJHKtHrDQcOHYV2r+cVOP6SVVBYvGlzFIvNOZd+0ZGG3HhNbW09GOz9WFI3euH2qijKxk7KvUVzXqguqOJKMc3pbojXxmVWNQrdXSuuj0kIUJStna/YmpyPozmZ1G0+tRXTnD6FP3Abt1qtCxcuRDnz+vTp8+KLLzY0NIAejsViMZvNMpns008/Bfqhb9++n3766cCBA+FPTHP689B47733IiMj/cFCtOxoMBg0Gg1krBQIBIcOHRoyZEh2djZaWQuMV3fkL5LchJXECxcuDBo0qLCw0M5ff+gjr9lQUlIyadKkfv36IbLT7suAAQOWLFmi1+stFstHH30EZ4OW5kRjCXYJQGjjqlWrxo8fX1BQ0D2U0/E3cK/1+D01dEd/N27cOGbMmKqqKrq/DBJtA17BbDbr9Xq1Wi2TySCgMysra/jw4RDhrdVqIduW/7O299Sh+GKMgJcRgDkE9oVoNJrKysoJEyZ8+umnEMopFotBQIJB+yTcCyDgQ/9BEQgEbW1tISEheXl5dptmmDsdIZpz8eLF7gUQ14YR8CgCaJekWq2+cePGww8/vHr1arSnDdS2mb4LwaMA9l55TzSnyWwRyzSltbw1sbdozlPZN2uaRL1Xhc96GYGKympg72rrvBQnRFG2S1eyoNHUtNP35K9Op9ubfAjKdnK77qmsixcLBCJo99Tpcy5WFUjFKcrGwjSnx3rUarN9v+1yaR3fYy3gihmAgNVKNbRL9p+tOHu1gQHmYhP9AAFMc/pBJwSoCTqdbunSpfQYzf79+0+bNm3evHlvvPHGM888ExoaCkzDoEGDlixZUlNTgzJ6YprTPweF1Wo1GAzbt29PT0/3EwshoNNoNJIkqVKpZDIZxDO99NJL8+bNC6SMUAA43V+lUon8fe2111588UWRSMQs1U33jiK5XJ6cnLx06dJZs2ZNnjw5LCxs2LBhU6dO/Z//+Z9169YVF/+ayASCyH++/bl69ap7bWBKbYj2Q6GcFRUVDz744N///nculysSiexWpZniV0920ikK0FSsrKwcM2bMhx9+CP4qFAqNRqPX65m1JQJNCBBBBQGdLS0tr7322syZM9vb28EpCOjsCRx8HCOAEbgrAnT1CJVKtXXr1rCwsIKCAj6fLxQKJRIJUlMIWtVHUMWEbVgymUwoFHZ1dT3zzDOffvqpTCajpw8PAJrzs88+u+uYwRdgBPwEAdgUBUmFlUrl2bNnBw8enJ+fj9S2SZI0GAyY5nS6v3qiOc0Wq1ylq2wQrI3LXL4pPeVSbWGlV6kppz0KnoLXcn/VYpXLvaEnTFFUVXUN8IUxcfFOaM/W1TdA8Z0JSSqV2ms9ZTQaIZB0V1KyH25+pSiqpaVFJpN5DRBoiKJsGxKvfrHxfFpmXcVNvkJ9lxyrXjaP6c1p9eZVMZcb23EQPNN70iX7b93dXNl/43PScxtdqggXDhoEMM0ZNF3tC0fNZnN0dDSK0bQLroI/Bw4cmJycTFEUQRCY5vRFL91Dm4cOHVq2bNk9FPD8pYi9gFxZcrlcJBIRBHHo0KGQkJATJ04olUoQorRYLAGw+EgPmFCr1cjfpKSk++6778CBA0qlElYrzGYzdfvj+U7wrxZQiJv5/z5++DLmc8gAJXpWzsjIyP79+xcXF8OSPSRqQpFJPjfYRQPoFIVarYasnH379s3KyqL7iwSumbIKjyYECOiECYHP5x88eDAkJCQlJQVNCDABuggjLo4RCE4E0JMGSEfI5fKpU6dGREQQBAGS18EspYCGBEVRZrMZtp2hbMHLli0bOnSoSCRCyf8YTaWgaM6IiAjkOP6CEfBnBOjTFyTm/P7776dNmwaR6FKpVKVSabVarG/vSif2RHNaLJSaNNY0i36My1rOSj90vupSQYsrDeGy7kWAoqjz6RdZbM7WqDjvPPkrVartO3cBT9nW3uGcO6fPpEMNefmFztXgXKn4xD0sNiduR6JW67MMlBRFFRQUKJVKm81msViWLFkyatSo2traRx99dMCAAatXr3bONadLUZRtfXzOFxvPn7/W2NAuVZMGp6vCBbsjIJRp1sfndPJV3U/hI8GDgMVqbeqQ7kotu5DXHDxeY09dQQDTnK6gh8s6hEBdXd0vv/zyxhtv/Pa3vx07dmxoaOiIESMee+yxuXPnbtmypbn519lKr9evWrXqu9ufhgYckO4Qtl67CEiCU6dORUdHe61RRxoCJg+ly1Kr1RDP1NDQ8NRTT73yyitcLpceQ8B0xgv5C5uyVSoV+NvU1DR9+vQ//elPPB4P+Wu9/XEERnxN8CAAQwjCblAoZ3t7+29+85vly5cjBTN6FKB33vw91wX0NT5QtyYI4vHHH//kk0968pcpLoNrFosFuhJl6ORyuc8999ybb76JonLxCqbnBhiuOeARQPtC9Hq9SqXasmXL2LFj8/PzISunVCpVKpU6nQ72STD9McPp3gSUjEYjPbg8Pj6+X79+GRkZIOoLGtrMhQjTnE4PD1zQVwjAcwJ9W9u0adO+/vpru6TCIGXhKyOZ3m5PNKeVsun0pptt4nXbs7/YeD75TMX53EarlWK6vwFjv9lsOXY8jcXmJO7e54Unf4PBePR4KovN2bQ5Kiv7mtMwKpWqnfFJLDYnJjZeJpM7Xc+9Fkw9eYbF5myL2SmW+CC6jiCIhISEV155ZeDAgUVFRTabzWw2v/POO3369Hn66afHjBmzYMGC06fvTQT4XhHofj1F2X7akf0F63zG9aYWrkyjM3a/Bh9xGoEOQrEmJrOTf4vVxp+gRcBqperbxD9EX8ksbAtaELDj94QApjnvCS58sfMIwP5utVqtVCpVKhVJkkaj0QsPlM5bjEvSEKiqqlq4cCFJkv65OAUpZ1DGSkhQd/DgwdDQ0HPnzgVexiw7f4VCIZ/PT09Pv++++y5dugTymygOD99ltIGMv9oQMYaSqMlksq+++mrSpEnFxcWgYAZb+wNjyR75C4vvkIV07dq148aNq6+vR1k5IYcl40Ie0b4H+gqmUCgkCOLs2bMhISFXr15FgRqMDqLCty5GwIcIoH0hWq22tbV10qRJf/nLX7hcLuyTkMlkkNnObDYH+V1Gz/8nlUqFQmFZWdmAAQPWrFkjk8lAWoPRbAqmOX14G+KmnUMA7dLQarUqlSo3Nzc0NDQtLQ2mL4hEB8V+/L7gHMI2m60nmhMqbCcUP+3M/nzj+cQTJWlXak0mq9MN4YLuRcBoNCXtPcBic44eT/X0+Kco6vKVbIjCTNi1R6dzSd00L78Iqtq9Z7/FYnEvLD3Vdj2v4FbkKye2o4Pb0zWeOK5SqX744YewsLD+/fsPHz48Li4OXEY059SpU7lcrslk8nQndveOomy3Y7XPXy5o6eQrtXpT92vwEacRqGwQbNqdK8dSwE4jGBAFrVaqpIa3PiEnu6Q9IBzCTngcAUxzehxi3ABGgOkImEym0tLSiIgIjUbjn77AEqTRaNTpdBDPBAv98+bNe+GFFwQCQYBlrLTzVywWQ0bSBQsWPPnkk11dXSigM8iXXP1zuPrWKqD9zGYzCuUsKCgYNWrUv//9766uLpFIBIvRer3eZDIFwPjp7m9hYeHgwYM///xzHo9Hz0LKUH+7OygWi/l8fkNDwwsvvPD8888TBMHEtKO+vU1w6xgBQACFv8NOAo1GExcXBzuokOQjyLEGxr4QF/sd8cEajQZpaD///PPz5s0TCATwZAJAudiQr4pjmtNXyON2nUYAaE4k+bBixYqHH364tLQUBLfp29q8zxA47ZS/Feyd5uzgKzckXP1qU/rO48XHLtboDGZ/sz9o7dHr9dGx8Sw2Jz3jkqdBaG1tj4rewWJzYrcnisRiF5szGAx79h2EwNCKiioXa3OweENjM4vNYUduq6v3hu6ayWS6du3aihUrxo4dO2TIkLlz5yYkJIBcLRiMaM7ExEQHXXD7ZRRlWxubuZyVnl3SJpCo9fjudivEpbW8DYlXJXKfiSS71RtcmZMIWK1UQ7vk+22Xr5U5KfTtZMO4GGMRwDQnY7sOG44R8AoCAoHgrbfeamxsNJv9960MbVWGgE6ZTAYL/WfOnBk+fPi2bdsgQR3T1dJQh9P9hUSDEMB64sSJoUOHbt68GXZnB4y/yHH8xUUE6KGNkM5WKpWuWLFiyJAhVVVVEMppl5WT6cteILgNeyBA5PmLL77o379/SUnJHUNXmegvTAjIR6lUCimKd+zYERoampqaimkYF28cXDxoEUBzpl6vJ0lSqVROnz79vffe4/F4SPIaQjmxLrTNdkstACURUCgU8CSWnJw8duzYtrY2hUKh1WoNBgPj4ubR+Mc0J4ICf2EKArD5ABJ4d3V1zZw5EzJcgJoFffpiikd+aGfvNCdXqNqy7/rKbZdiDhXuP1Ohwtn7/KYLVSr1ps1RLDYn93q+R43SanWxcQksNmfzlujq6jq3tCWRSLdwYllsTkLiXu+obYnE4s1bollsTmFxqVtc6KWSq1evPvPMM0OHDu3bt++iRYuqqqq6JwQFmrNv374tLT5LeUtRttUxmV9uSs+7wVWo9CYzjtXupVfv+VRWSVvM4SKNFksB3zN0gVSAomxXS9vXbc8qrPZqHHkgYRhsvmCaM9h6HPuLEbgHBMxmc0dHx+LFi2/cuHEPxXxxKSIzICkUqKW1tbVBUtj6+noI6IQwAiYyGXagooBOrVarUCggQ2dHR8f8+fOfeOKJhoaGAPPXzn38p3MIwBo0PZSzvLx8zJgxW7ZsQUv2KCtnYIRyWiwWs9mMFK0rKysnTJiwYcMGO38ZrTYJTIzJZIJwDblcDuxCR0fHzJkzFyxYgIS7MRPj3I2DSwUtAujmgn0h0dHRo0ePLiwshFBOsVgMm6gQdRcATxeu9DWiOXU6HWwrEQqFXC537Nix+/btg1TBSFHflYZ8VRbTnL5CHrfrHAJwS0IwulKpzM3NHT16dGxsLJ/PFwqF6NmA0VLSziHj3lK905xdQtW2g/mrY69w9uclpZXJlDr3to5rcxqBpqaWXwMiK6udruSuBQ0G44nUU6Axe+rMeZPJPbqmVqv14uUsqDb9wmUvMJ0KhTJ2+y2y9sLFK3f12ukL9Hr9ggUL+vbtO2bMmP/93/+tqKjoqSpEc6rV6p6u8fRxirKtic1csTmjqLpLozVaLDjzrjshv5jXEn2oUKkxuLNSXBfTEKAoW1kd8UP05ZIaHtNsx/b6BgFMc/oGd9wqRsD/ETAajUuXLj137pxOx4D3MViLRHwGCiPIy8sLDQ1ls9n09DNWqxWU6Py/F3qyEPFViL8BYqOiomLEiBEbN26k+wt8VZAvv/aEZPAcR2FJKEulSCR68cUXZ82a1dDQIBQKJRIJXVTQCy/MHgXfzl+lUimVSl999dVZs2Z1dHQgf+lZOZl7j6B9D0i4G4Ss09PThw4dmp6eHkg969FhgyvHCCAE6HMISZINDQ1jx4597733Ojs7CYIQCoUg8a3T6dAGAubOIchrF79YrVaTyQShY3K5HDII/O1vf5s1a5ZUKqVnEHCxIZ8UxzSnT2DHjTqNANoDSpKkQqGIjo4OCwtrbW0FxVoIsAbpFzx3OQ3yXXNzEiL1zmMl6+NzNiXlxh0pEkr9NAWMKwgwtOy13HxQYW1pbfOcC2U3KtiR21hszu49+w0Gd8alqVTqyK23wis3bY5qbvGgCwAOSWp379nPYnOOHD3hObh0Ot306dP79OkTGhr6448/9kJhIprTh9PXrdyc27O+j7pU1SS0WjHH6eZxcfxSbdzhIlLnzrvGzSbi6jyPgMVKXSpo+SXxWn2rq3LfnjcWt+AXCGCa0y+6ARuBEfA3BCiKkkgk7777bkJCgg+fHR2HBdGcRqORJEmVSiWTyWCh/7vvvhs/fnxdXR3KQGO9/WGEXz0hYOevUqlE/v7www/h4eFlZWXIXxCIY7S/PeGAjzuOAIwZWICGxGkHDhy47777oqOju4c2wlYAxyv3wyvv6G+/fv1iYmJggQ9Ci/R6PcQxMHrrA5oQDAYDdC7se2hpaZk7d+7jjz/e2dlJkiQ4a7FY/LC/sEkYAX9DABgCs9kMsYkbNmwYMmTI5cuX6aGcoMKK5hB/c8H79qD0nECrwEQUFRXVv3//goICRKswVC0A05zeH1G4RVcQQPejRqORyWSzZ8/+xz/+ATOYRCJRKpU6nS5gdG5cAcrFsr1Hcwokmt1pZazduf9NyNmanCeQYJrTRbzdVvxYykkQkhWLJW6r9P9fURePAGnZqOgdndyu//9JN/xVf7MRhGSPHDvh6QRDRqPp0JHjLDZnR/xuN5jecxVGozExMfHFF18MDQ2dNGkSi8Wqra3tvvvWT2jOdTuy18Zm1raIKMxy9tynzp05dK5qx7FinM/YOfQCppTVShVUcf8TdakO05wB06kedgTTnB4GGFePEWAmAnv27ImJiVEqlQxaEKezGiRJyuVyyFhZVlb2yCOPLFq0SCKRgCAnrEh2f1xmVl/R/QViAxLylZaWPvDAA3/9619FIhFKusPcVFjM6hR/thZt6gdhZ4lE8sLtT3t7O4Q20jM4BgApjgIcwV8ej/fyyy/PmDGjtbUVUlLR9wEwmuOEUUfvX/o+j6NHjw4YMGDnzp3gL1LX9Oexim3DCPgcAfrWAZIkxWLxgw8+uGLFCpSVUyaToV/YANgX4i7AkUimVqsF3VqBQJCbmztkyJCffvrJTreWcT80mOZ01zjB9XgHAYvFAoq1KpWqvLx88ODBKSkpsLMNoqvR5ifG3YzeAdDBVnqnOUUy8kh6ZfTB/FXRV37akc0TqhysFl/maQRiYuNZbE7k1mi9Xu+JtlQqNYQ/sticvPwiT6w8WK3W1LTTEJNaVtajvqtbvKMoKu3kWQge9TSlarPZFApFdnb2q6++2q9fv/Hjx//9739vamqiO+InNOd/E65u3J3b0C7BNCe9d9zyPf5YScKJUr3R7JbacCUMRcBssWYVta7dntnBVzDUBWy2lxHANKeXAcfNYQQYgIDRaPziiy8iIiI89NDvOQjoeaHUajVk6OTz+f/973/DwsJOnjyJIgkCIPYCiBmLxWIwGCBtGPJ38+bN4eHhZ8+ehbRhIEiF12E9N/D8vGY0VGC1S61Wy2SyLVu2jBw5Mj8/XyAQiMXiAEvRZDcVyGSy7du3jxgxIi8vD/wFVWdGZ4mzG3V0VkatVqN9Hnw+//XXX//DH/4gEono+zzwmqYdgPhPjAAdATSH6PV6pVIZERHx8MMPNzY2olDOQHqcoDvu4nc0EYFurUwmA93a55577tVXX+XxeCCgjWR+XWzOy8UxzellwHFzriBAURTkYtdqtQqFYvny5VOnTi0vL6c/9aEXBFcawmV7pzklcu3JK3UJx0tWci6vjsnsIJQYMX9AQKvTQWLLuB2JnrCHoqhLt3NnbtocdSLttOeeurldPAjo3LwlWiKVesIXVGd2Ti6ARhB8dNDTX65cufLGG2+MGjUqJCRk2bJlhYWFQLL6Cc25cfc1zv78pk4ppjndOxIoyrY7tSwprdxowipE7oWWYbUZzZbUK3Uroy5xhfjXk2F95ytzMc3pK+RxuxgBP0WgtbV1/fr16tsfPzWxV7MsFgu81UNAp1gsFggEbW1ts2fPfv7559HmZZPJFBgBjnb+ikQigUDQ0dExf/78WbNmCYVClUql1+sDxt9eOx+fvAMCwHEi4TIQErx27dqwYcM+++wzLpeLQhsDRruMvs4O/hYUFAwfPvzzzz8nCEIkEkEYFmTUY6h2YveeRmQ2yr0K+x4IgiguLh4/fvz69evpAax430N3DPERjABCAM2ZWq328uXLISEhq1atoody4t9WhJXdF4gsNxgMdN3a48ePjxgxorq6mi4bwLhZCNGcK1assPMa/4kR8DcEUKJcjUbT0tLy6KOPLl68mMvlCgQCqVQKdyJ+O3BLr/VOc8pVuiuFLUcyqr/devHbLRdvtkksFqtb2sWVuIIAwRcAY5d28qwr9fRUtry8EtjHhMQ9crkHg5Aoisq9fivJKIvNOXsuw6NCXJVVNdBQWblnI0ftUNXpdKWlpREREQMGDBg5cmRVVZXNZvMTmjNy7/XElJK2LjnWrLXrNRf/tFqp2MOF+05X4AnTRSSZXtxosqRcrFkTmymRa5nuC7bfOwhgmtM7OONWMALMQICiqPj4+Pnz50s9vBnQc3Ag5Ua9Xq9SqaRSKUjXZmdnjxw58pdffpHJZPRkWp6zxDs1I2VO8FcikYC/Fy9eHDly5Jo1a6RSaSD56x1UA6kV4PwsFovRaERRvx9++OHIkSNLS0v5fL5EIrELbfTcjmPvAIsmAVBNFAqF77///tixYwsKCgQCQeD5i1Dtzu/CbMDlciMiIgYNGlRcXKxWq3U6ndlsDox9Hsh3/AUj4C4E6DsGICvnu+++O27cuPr6egjlBIaAJEnIacc4rs5dQPVUDwqERQLpkCh9ypQpSLeWnhS5p3rwcYwARsAVBOgPfqdPnx46dOiRI0dgs5dcLsea265ga1e2d5pTqTFcLW0/caXu262Xvo68UN0oMhhxcJIdhD74s66+ARi7wqIStzfP5wu2xewERdz6mw1ur9+uQoqi9uw7yGJztnBiuFye3Vk3/snl8gC0c+cvuLFax6tqa2v76KOPgOa0WCw///zzyy+/7Hhxt19JUbat+/P3nrrRQSgwzeleeM0WKvFE6a60MpMZ7wtxL7QMq02m0iWmlK6KuSJXeURdnGFwYHMdQADTnA6AhC/BCAQHAhaLJTIyUqPRSCQS5nqMFvqNRiNEEkgkEj6f39nZuXTp0jFjxly7dg000yBHHSxoBpi/END5r3/9a/z48fn5+fQQLqYzWMztKV9ZDivOZrNZr9drNBqFQnH69OkRI0YcPnyYz+fTQzlhUz/TRwj4azKZwF+5XH727NmwsLBdu3aBvwEZyolGF3If6BkkZF1aWhoWFrZs2TK5XK7VapFOHdO7GzmOv2AE3IUAeoqAOeTKlSvDhw9PS0sjCAJy2gFDAOHgmOPsDjsACJMwaKQLhUI+n798+fJx48bxeDzYbBEYvzjd3cdHMAI+RwBNYhBUrVQqv/jii6lTp3Z0dPD5fLFYDCktUK5u/CTgYpf1TnOqSENRNe98btN3nEsrNmfkV3JlSp2LLeLiriOQV1AEjF1nJ9f12ug1WK3Ww0eOQw7LvLxC79xf9Tcb2JHbWGzOjvjdOp2nBhhJagG03Un76S5787vl9sebLfbSFkXZ4o4UpVyqwTl3e0HJuVMGk2XbwYJD5yq9cwc5ZyQu5QUE1KQhIaV0bWymzmDyQnO4iQBAANOcAdCJ2AWMgHsQqKys/P3vf9/Q4PEth+4xt+daIJYLLbHJ5XKxWMzn8+vq6iZOnPjee+9JpVKNRoPWKJm+TNmTvy0tLb/5zW8WL14sFouRvyDRiZ8Xex4+AXWm+1JXfX19eHj4X//6Vx6PJxQKJRKJnYQgo/2381ehUDQ3Nz/wwAOLFi0iCAL8pbP+TL/3u3cWIhgMBoNGo0GzH4/Hg+yk5eXlKIYDB3R2BxAfwQjQw8G7uromTZr01ltvdXV18fl8CAdHDIHZbGb6TikPdTeS/EW6tQKB4MSJE4MHD96zZ4+dfoCHbMDVYgSCFgH0JAAaHgKBYPz48Zs2bULx6PAghLcauGuE9E5zarTGGzf5l4taVkZd/oqdcbW0vUuoclfTuB6nEci4cBmYSKPR6HQl3QtabAvdVgAAIABJREFULFZIyclicw4fTdHrvRR+dJtbTQEOMjsn13Nv+ttidrDYnOjYnQaDobv7wXaEomwJKSVnsuv5YnWw+e5pfw1Gy7YDBYknSq1WHCjrabD9uv52QpF8pmJrcp4Zx/X6dUf5kXGY5vSjzsCmYAR8iMCBAweEQqFYLLZaGa8LAa/3INYEqpVSqVQgEPD5/JSUlJEjRyYmJqJlSljoZ7TXPflLEMSRI0fCw8OjoqKQv2az2Xr748PBhpv2DgL0gQFLXRKJJCIiIiQkJDMzE3b0y+VyjUaDsrd67q3YCy6Dv2azGcnzCoXCzz77bMSIEZcvXxYIBGKxmO5v4HGcADJ93wMIdwuFQoIgOjs7X3311WnTpnG5XCxk7YUBiZtgIgL08HeVSrVu3bp+/fqdPXsWZeWUy+UkScKcyegnB4/2DsBolye4qanpkUceWbRokUAggM0W8EDC6N8dj8KIK8cIOIcA/QZUKpXR0dHjx48vLCwETQv0IAQbNZxrApeiI9A7zak3mNu65GV1xOqYzC83pafnNlY3CenF8XfvI2A2W1JST7HYnNjtCe5t/ebNxsitMSw2Jyp6u0gkdm/lvdem0Wi279x1y6m4BKlM1vvFTp89eiyVxeZwtm2XSj3VhNO2eb8gRdkOnKvKLmkXy0nvtx7YLer0pq3J+QduRXMGtqPYu7sgIJBoIvdc/yXxGh4Jd0EKn/4/BDDN+X9I4P9jBIIYAYvFMn369L179wYGBiixFgR0kiQpl8tFIhFIub7zzjsjRowoLS1VqVSI3WH0YqWdvyBMivz961//OmHChJKSEpDqhb3bjPY3MEapp72AUWEXUpObmzt8+PDIyEgkV4tCOQNguRloTnTXKxSKrKyskSNHrl27FvkLd0FgZ9RDdC9Sq4N9HgRBHD16dMCAASwWK7BDWj19c+H6AxUBdO8AP9fU1PTAAw9EREQQtz90iW+YQzA/19NIoM/GEFYOeYJZLNbEiRMrKyvRTw+OKe8JQ3wcI+A0ArDbCWS3+Xz+Y489Nn/+/Pb2dhSPjrY64UnMaZDpBXunOY0mC1+krm0Rr427RXOeyq7Pr+rE6/Z0AL3/3WAwJO8/zGJz9h884sbW9Xr9zoSkWyk5t0Q3Nbe4sWYHqyopKd+0OYrF5hw9lmqxeGTnenZOLiQB7XC32K+DPvrVZRRlO3axJr8KK1G7v1tInSnqQMGprHr3V41rZBQC9a3imMNFe0+VM8pqbKwvEcA0py/Rx21jBPwBgUuXLlVWVgoEAovF4g/2uMsGiqJQXBcKaeLz+UVFRRMmTHj//fdhO7PBYDCbzSDl6q6mfVIP3V96NqyysrIpU6a88847MplMo9EYDAasUuWTDvJyo7DKDDHNJEkqlcra2topU6b8+c9/5vF4sNQFyoEoLInRq13IX8TtNTU1/e53v3v99dc7OzvR0h5JknDLQygno13uZUTRAzrVajXs8+Dz+Vwu96OPPpoyZUpraytduhYLb/YCJj4VPAgguVqdTieXy994440nn3yyvb0dlB4hHBzmEJPJhHcL9T4wEJharVahUEgkEoFA0NTUNGnSJDabTY8nw0j2jiQ+ixG4JwTQAwCk6D5z5syQIUMSEhLQfi9Ijov3atwTqr1f3DvNabFSatLQKVSu25H9xcbz+89UZOQ2Gk0B9dLdOz5+eJbUanfE72axOafPpLvLPL3ecOjwrZScLDYn48Jlsy/WVbRa3a6kZLDhRkWVu1yj11Nf38Bic9iR22rrbtKPB+d3irJlXG9qbJNqtO6UPg5OMO28VpMGdtL1Q+nVdsfxn0GFgMVCVTUINiRcTb1SF1SOY2ddQQDTnK6gh8tiBBiPgMViWbhw4Z/+9KeAXO5HoWxolQ3EG0+fPh0SEnLgwAGFQqHVavV6PQplYzQOVqvVZDIZDAatVqtUKiUSCfh78uTJ0NDQuLg4uVwOO7gR08lofxl/+3nMAcT5mUwmJFe7dOnSYcOGXb58GcnV2hFdHjPHGxWjJXXwVywWf/TRR6NHj7506RLyF8nzBqpcLQIaBoDZbEakL3AMfD6fIAjQjZTJZFqtNrADWxEg+AtGwBEE0DMDSZLx8fEDBgxITEykh3IqlcrAEIFwBA0XrwHZTPgNQlvNCIJYvnz5uHHjBAIBPbYe77RwEW1cHCOAEIB5zGg0QmbciIiI8ePHc7lcJN2P92ogrNz1pXea02ql9EazQKr5b3zOctb5xBMlaVdqSa3JXa3jepxAQKVSb+HEsticnKvXnSh+xyL5BcUQSbl9524f5q3kC4Sbt2xjsTmJu/ep1Zo7murKQYlEumnzLSq3qLjUlXoCoyxF2bKK2jr5Sq0e39Fu7lK11hh7pOhivg+iot3sCa7OBQQom63ipuCXXdeyStpcqAYXDS4EMM0ZXP2NvcUI0BGor69PS0sjCEKjcf9DML0hX31Hq2x6vR5CmsRisUAg6Ozs/Oijj8LDw69evQqbmg0GAyinMXqtrSd/29raPvzww7Fjx167dk2tVgO3ERjMrq+Glj+3CxQXcN4gWaZQKFJTU0eOHLl161aCIJD0In0k+LNHd7WNPvJBIDE1NTU8PPyXX37h8XiB568jgMAwQBK+KKCTIIjt27cDf6NUKnU6HRayviue+IKARwBtDYF9Qu3t7dOmTXvzzTfb2toglFMqlSoUClBEQE8LAQ+LKw7SN1vAtCwWi/l8/pkzZ8LCwnbs2AFyAiikDG+6cgVtXBYjAAjYPQ51dHSMGzcuOjoanv0kEgn87qP7DuPmFgR6pzltNpuVopQaffTBwlUxmeyk3J3HisUyrVuaxpU4h0AXj8diczZtjiovr3CuBrtSPB6xLWYni82J25EoEIrsznr5zytZOZs2R23aHJWVfc3tTavV6ujYW55eupzl9soZVyFF2QqruxRqvcnsEYlgxgHiRoPVpGHz3rxz15rcWCeuinEImMzWwuquDYlXKxsFjDMeG+wrBDDN6SvkcbsYAR8jYLValy9fHh4ezufzfWyKx5qnr7JBgCPKUVdbWztixIg33niDLuVqvf1h7lob8hfyiimVSplMBgGdTU1NEyZMmDdvHviLdEoDPqzNY4PLfytGw8BgMIBk2c2bN4cNG/b222/Der1IJEKCgSiu13/9uZtldH/hNm9raxs7duzChQuR1CTwE/Rhf7daA+E8LHcajUbY5yGVSiE9XldX1/PPP//EE0+0tbWRJIlgYe7UFwi9hX3wHQIwh4DEt16vV6lUS5cunTBhQmdnJ0EQfD5fJBLZzSH4Zrlrd9FR1el0oDDB5/M7OjpmzJjx0ksvEQQB+8xAARhDeldI8QUYgbsiQFe2UCqVq1atmjx5clVVFUEQIpGI/goQANk67oqG1y64K81ps9k0WmN8SsnPO7N/is+JTM4jRGqvmYcb6o5AWXkFi83ZvCW6sbG5+9l7PaLRkBAbymJzCotK7rW426+XyxWx2xNBupbL7XJv/Vrdr7q4x1NOurdmJtZmpaiyOkKrN1msON+umztQozVuP1p8OrvBzfXi6hiFgMVC5ZZ3fLkpvUOgZJTh2FhfIoBpTl+ij9vGCPgKAbVavW/fPpFIVFNT4ysbvNMuokD0ej1kKATxRoIg0tPTx4wZ8+OPP6IQDUjSyeg0UXR/NRoNLCwKBAKCIM6dOzdmzJiVK1ciZjcA/PXOKGJKKxCLTE/LpFaru7q6Fi1aNHHixNzcXFivl8vl9MxMATDggZ8AudrOzs6FCxdOnjw5Ly8P+YvkamFdL3jW0+kinCg9HkEQlZWVU6ZM+eSTT5CQNQrvZspox3ZiBNyFAOxwQiLPycnJISEhUVFRwHHSw8Hpwg/uaj2A66E/kICihlAo5PP5+/fvHzFiRGZmplKppEtnBzAU2DWMgHcQQNkrSJKsr68fN27cxx9/DIq1EokEhVDDL753TAqGVhyhObV607ELNTGHin6Ivvzj9sx2ngKzIj4cG+kZl1hszhZOLEG4utuboqhz5y8Ap5h26qzJ5BfipTcqqsCkg4eO6XR6N0JtNJoOH0lhsTm7die7sVqGVlVcw6trFVssVgrfz+7uQjVp3Lzn+pkcTHO6G1lG1acmjZcKmlfHXFHj9LeM6jjfGotpTt/ij1vHCPgGgbi4uJCQkMzMTN807/VWLRYLiDeCchqENPF4vJUrV/bp0+fEiRNorS0A1vrpilWQmAeU4ng83tdffx0SEpKWlgZJSY1GYwD46/XR5L8NougZGO2wrJyQkNCvX79Tp07x+XyhUCiTyVQqFV2ulrmc3x39jY+P79+/f3JyMnCc4K9OpwvOJJSI84YYNZlMBrMfQRCxsbEDBgzYvXu3XYpW5o4H/70zsWX+jQA9/qm1tfXxxx//4x//yOVy6aGcKO452LZKuNh1gC0kCVYoFPA0QhDEzJkzP/jgA6QrgB9FXMQZF8cIwEY3+q6v7du39+/f/+LFi6BYC49DOLuwJ4aKIzSnzmA6m9OQlFb+HefSyqhLTVwpJkY80RcO1rl330EWm8PZtl2pUjlYpKfL6upvAqG4KynZZDL3dJn3j59IPQ3CvDW19W5s3Wq1njpz/hZJvDXGjdUysSqN1hh9qKi5U8ZE4/3fZqVGv3V/Xmpmnf+bii30HAJGk/XA2cpvIy96rglcc+AhgGnOwOtT7BFGoDcEKIpKT08Xi8VXrlxhdBRXb052OwchTSDlqlKppFIphBTU19e/8MILM2bMaG5uhrV+lK6GuWv9KH7CaDSCZinyt7Gxcc6cOdOnT29qaqL7i6Vruw0ZRh6ArjeZTGhN+dSpUyNGjPj6669BvhX28qPQRohhYqSrt43uzuinp6fff//9X331Fd1fkiQNBkNwxi4jJhjNfkjIurm5ef78+b/97W9v3rwJQwKYhuD5XWDuyMeWuxEBurazUqn85JNPpkyZUlFRgThOtFUCZ7F1AnY0S0O0PXoaiYmJGTZsWFFREWy7CQD5dCfAwUUwAm5EAD38wxOgUqmcPXv2vHnzYCoTi8VIeRvvKnAj7FCVIzSnwWi+Wtp24nLtd5xL30ReKKsjSJ1fhP25HQ3/r9BisURujWGxOTFx8WaLxRWDudwuqGrT5qimphZXqnJ7WR6Pvy1mB4vNid2eIJcr3Fh/ZtZVYHal0uBl+Cib7cZN/tGMKq7QVabcjV0TSFWptYbIvXkXrvvXbRVICDPCF4mcTLlUs3G3+9MMM8J9bKRzCGCa0znccCmMAFMRKCsrGzRo0O7du5nqgFN2QzwBSNJptVoQb4SklR0dHQ8//PCLL74ok8m0Wi09TR2jmU4IYDUYDHb+1tbWPvLII0899ZRIJEL+uh6eArvInfjXqf7Ehe6AAH2FCxaUb968+bvf/W769OmNjY0otJEeusd0ehspsmq1WpVKBWP76aefvnnz5h39hfF5B+wC+pAd+a1UKlFAVWtr66RJk/7yl79AODuQwUwfFQHdmdg5dyKAgp/Q1pDt27eHhIQkJiYStz8gVxtIYg/uhM+xuug/TCRJyuVymH/Kysoeeuih9957Ty6Xo50oeI+FY6DiqzACd0AA/dZrtVq1Wn3hwoXQ0NCCggLY9SWVSpGSh+vP/HdoPrgPOUJzGk2WkipexrWmlVGXv2JnXC/rFErI4IbNZ97L5Apg6Q4cOuaKESaT6cDBo1BVfkGRv60bUBR14dIVMC/lxCmL1eqKs/Sy5TcqodrqmuCNtDNbrGmZdem5jQKJhg4O/u4uBNS3gmULz1zForXuQpSR9Yhk5J608oSUUkZaj432EQKY5vQR8LhZjIAvEGhoaODz+bm5uSqXFVp8Yb5LbdLFG0G6Fq3179u3b9CgQWvWrJHJZPTlNkYv9yN/DQaDnb979+4dNGjQ6tWrlUqlu/xFBCe0a7FYzLc/JtoHwuksFgsEEQYn5+TSIO65MCxv0cXK+Hz++++///DDDxcUFNjJ1QYAm4WWzlHIskgk+uCDDx544IHs7GzEcapUKpCrDebYhe5jgy5dm5SUNHjw4C1btigUCjpWPY81fAYjECAIoGkE9gOVl5c//PDDixcvbm1tRfFPkMlYr9ejcHB/W8f0/86gB3QiOQ2CIL755puJEyeWlJTARI0DOv2/K7GFfosAms2MRiNJkgRBPPHEE6+//np7ezs8EcF+ArSV028dYahhjtCcFivF5SuqGgRr47KWs9LTMutLangM9ZfpZre0tgFLdyUzx2lfLFbr5SvZv5KIqaf889lAbzDs3rOfxeZsjYprbml12lm7gm3tHeD4xUvBkv/IDgGbzVZczTt+qba4hidX6bqfxUdcR4DUmbbszTt6ocb1qnANzEVAINXEHy89cLaSuS5gy72PAKY5vY85bhEj4BsEjEbjlClTvv76a9807wet0rXpIG0hpKnr6upavXr1kCFDLl26BMwfSNcCIeef7y2OwImkeiG2Ty6XI383bdoUGhp68eJFpVKp0WggSadz/sLaCoqXNRqNBoNBr9frdDrt7Q95+6PVanW3P3q93mAw2LXIXJAd6QiPXgNsMWK1dTqdRqORyWQrVqwYNmzY4cOHgeOUSCRobMN6PXMxt+PtgMX/5ptvwsLCUlJS6P5qtdoA4HRdHD9ohEA4u06ng4BOgUBAEASXy33//ffHjRtXVlYGmx5MJhOjd3i4CBcuHjwIoGlTr9er1eqXX3552rRpbW1tPB4PUtkBx6nT6QwGg3O/j8EDZi+eIgIGbbqCR5HW1tbRo0evXbtWoVDQd1z1UhU+hRHACNwRAfQQDnm4Dx8+3L9//6SkJCTgj6LSIZTzjpXgg04j4AjNaaUohVrXQSjWx2d/wTqffKYy/XqT2eK2ADunjQ/CgqWlN4ClcyVpZWVl9abNUSw2Z/OWaIlE6rcwtrS0gazu7qRkd736KRRKAHDfvoN+67hHDSN1pjWxV85da6xvFatJg0fbCtrK9Ubz7tSy09k3gxYB7LjFYq1rFW/dn3/2aiNGAyPgOAKY5nQcK3wlRoDBCEil0s7OzoaGhs7OTga74Zrp9LU2ULmUSqUCgYDP5xME8fbbb48ZMyY3N1etVut0OpSFy12vBK7Z7kxpur8kSdKjKDo7O999992hQ4fm5OSgQIp7jXiD+tFKMbCbJEmq1WquQFJ6s/NSaePJ3NoT12pO5tWfyrt5tqAhu6KtspkQSZXAedqRnc44GfRlUC8AiUWSpFKpPHz48MiRI7/99tvOzk6BQCAWi+VyOUrJyehFLrq/er2eJEmFQnHw4MFhw4Z98803yF+UgwpFCDH3RnbLGEcBVXq9XqPRgHA3MJ2tra3PPPPMSy+91NHRYUcMBzlobkEeV+KfCCBWwGAwyOXy77//fvjw4ampqSBXKxAIkMYj3irhYg+iRxEIvlcqlZChkyCIn376aezYsfX19ei5C++xcBFtXDw4EUD7GrVarVwuX7Bgwe9+97u2tjYkbqHRaAwGA3oiCk6UPOe1IzSnzWYzmixShXZrcv53nEtRBwr2nrqh0mCCxHPd0mPNl/4vCtPp1JIymTw+cc/tKMnYhsamHlvygxMmkyk17TSwkjlXc90iDm+xWIE63RoVZzab/cBLr5pAUbYrha0/bLucV9EpkpNGk0vpXb1qOqMaM5kt0QcLDqdXMcpqbKw7EbBaqeom4Q/bLueUtLuzXlxXoCOAac5A72HsH0bgNgIREREvvfRSkIMBUU0oaSVKEwVMZ0VFxeTJk5977rmOjg46IcTcRTfkLz0pqVgsBn+rq6snTpz4xz/+USgUgr8Qw+rg+w8Iz4I4LSj+aTQapVJ59UbzyqSs99hnFqxPnbf2+Ks/HPmf7w/PX5c6b92J139K+/PPaX/dePqDrec3Hc+vaSFIktTr9UajMQBIZZ/cXHaBekDel5SUjBo16oMPPujo6BAIBCKRSC6XB4Z8K53jNBgMQN7X1NSMHz/+7bffbm9vB05XJpPBovk9DWmf9KA3G0U7EiB2DZLkAamTnp4+evTof/7zn5CiGOHm4GzgTS9wWxgB1xFAxBv8eKWnp4eFha1cuZLL5ULwk1gshhBD0HjEqexcxNxumwXSligsLJw8efInn3xiF9CJN1i4CDguHlQI2P24X79+ffDgwVeuXIGodIlEolAotFot7CzEP+ueGBsO0pw2m02jNcYdLVode2XDrqvRBwv4YpzVzxMd0ludVqs1Ne0Mi83ZsjXGud8ai8Wyb/9hFpuzaTMnO+dab435xzmlUrWFE8tic7bF7OTzhW4xKvk2ApFbY+QKhVsqZFAlBqOFk5y/NjbzRoNAqzdZrBSDjGeQqRYrlXii7MDZSitGmEHd5lZTDUZzUU3XfxOuVjQI3FoxrizAEcA0Z4B3MHYPI0CSZEtLS1dXV1UV3gx1azjQlwNQ0kqIarp27doDDzzw/vvv83g8YOCQfqNzL0L+MPzQ8iLSiwOmkyCIkpKShx56aOHChZ2dncjfu67nIvbUZDLBGrFareYJxKdya5ZFp89Zc2zu2pR5P56YuzZlzprj8348MWfN8Tlrjr+26v8dn3v77Ly1KT/szblW2SaRK+lJAZnLK3u5u+kcp9FoBI6zqqrq97///dNPP11RUYF28Qcex0n39/HHH3/66adra2uB0+3OcTL35nXviIKtCSjqlx7ezePxWCxWeHj4vn37UFgVqHS61wZcG0bA5wgAx4kyGdfV1U2dOnXBggUojlMkEkEoJ+zCuVedA5876J8GoEcvrVarVColEolAIODxeJ9//vn48eOLioroMw+etG02G/zEo39hAkc7zCy3P+ggugxD55/j36NWQSgnPJALBIIZM2bMnTuXy+XSHwJRgmE8QjzRF47TnFq96Uh6VdT+gh+ir6yNy2xok+AVfE/0SC91GgzGA4eOsdicXbuTe7msp1MWizU7JxeCI/fsPaDRkD1d6VfHS8sq2JHbWGzOqTPn3TIJXLycCYK9ndwuv/LUC8bUNAt/3pkTfbCwqVNqtlgpzHJ6BnSKsm0/UrT/TAWeJD0DMANqNZosmYWt33EuNnX6rzA4A3AMPhMxzRl8fY49DjIEjh49+uCDD/J4vCDzuzd3YUXAZDLpdDqVSgVRTSBdm5ycPGzYsM8//1wqlQLzB0ucjObeevF3//79AwcOXL58uUwmQ/72koQMLRCbTCakfplX1bIsNuONn1Lnrk2Zv+7Wv3PWpvxp9bHXfjgCrOfctSlzb5Odc9YcR/Tn7S/H/rwu9fu9OZ18CZ1nBbTd8hrW2zhg+DnEWoESoFqtlslk8+bNGz9+fGFhIaSolEqlkJIzAHQX7fyFO3fBggXh4eHXrl2D5Tzw1055leH97DbzUSws3Lyg94vCu7lc7r///e+RI0cWFBTQb0Z8G7qtA3BFfoAAsEEg6qDX63k83uzZs6dOnVpSUoJoTjSNoOAnfBe43nUoghaiyWUymVAo5PP5N2/eHDNmzHfffYcDOu1ARjM2MJrm2x/T7Y/x/z4mkwmO01lPu3rwnwGMAH1Cg9Tse/fu7du37549ewiC4PP59LzsvTzbBzBE3nHNcZpTbzCfv9qQlFb+TeTFrzdn3KgnDMag0/z0Tqf01IqGJBN372OxOSknTvV0TS/HO7ldnG1xEBmpYE4go06nhwhUduS2quraXhx08FRVde3teNao2rrgSp1oMJo37r7KTrq+9+SNTr7SQbjwZc4hcOBcZeKJMpMZ5zB2Dj/Gl9JojeeuNvy8I0cgwcoHjO9NbzqAaU5voo3bwgh4FQGLxdLY2CgWi8+ePevVhv2+MbTcBnufVSoVrLgRBMHj8dasWRMeHp6QkKBUKgODL0H+ohg4uVwOK4wEQWzYsCE8PDwxMVEulyN/e0rfaMeY8oXilKs1C9envv5T2uvrUuff/m/u2uPz1qbM/yntjZ9PzvvxxLwfT8xfl/an1UduBXeuTblFed4O9IQoz/9Zeei1H478dcOpy2XNKrUGKQQymlf2wh0AfYoW6zUaDUEQS5YsGT169OnTp4HjBKUyOwVmL9jmiSaQv8Dpgr8RERGjR48+c+YM8vf/Y+87wKOssvdxbSAIqEhR1LWvjZ9r27UAKZMK6uq67trWXf+6rquiICnT0sAQgQCh95I2mUwanSSEEAIJJQ0kDdKn9z7pyf859yTXMSCEQJKZyZfHB5OZr957v/ude97zvi9iuswo+q0uoCnR1tZWLFPAIg+kVZWWlr788sszZsyorKzEqYDS2X/rgMznTAs4UQvQaQSRfqPRyGaz7777boFAQDFOigpQ8hOj8Xijuhjjh9bWVvSQRkKnVCpdsmTJ3XffXVZWZk/oHMnNTgcqNVlobm622WxWq5XYn5v1BqPBaDKZzGazxWoFr3Oq/9/e3s6gWTdqxDr+cXCoUJEGtVrt5ub2/PPPNzQ0oGKtTqfDx4oZGIPam/2HOVvbOvJLGtNyKgKjM79bsj/3TL1Cw2RvB7Vz+h5crzesWr0+Mio66/CRvt9d7W+Dwbhu/WZkMZaWnbva5o71/cWa2p+WrYqMil69dpPBYLzOi1MqVUhpLTx55joP5Vy75xc3BK7I3CA8vftIJQO9DHbfibLKt6eXtLYz7qeD3dIOenydqXlHRmnY+lyLrc1BL5G5LIdsAQbmdMhuYS6KaYEb0QJFRUVPPPFERkbGjTiYqx0DUwOU1WQwGDQaDZpWNjU1zZ8/f+LEidu3b3cNtU9UP8MMI3U0pPcrFou/++67cePGbdmyxWD4lX5sHwoLFZ1DFqxKpVqRWjg3PH1OeDoimn4hqT4hKSwCZwJxkwucTt+QFP/wdAJ2Ag7qwxexOEmoZ4vUT0+2gMVJejsiNS77lywnUvf6XICrjcKB3g8Fq+gA1uv1YWFht912W0xMjFgsRotKnU5nNpttNpsLWJ/SsUc5xOHh4bfccsvy5cslEgner16v74PpMuPnskOMgg02mw1JwEqlEukpvWtKAAAgAElEQVTs+fn5U6dOff/9941GIy16YNjVl21G5kOnawGcRigkEBMTM2HChJiYGMQ4ZTIZWnLSaZN5Dd3YLraPu8xms1arxZnn7NmzTz/9tL+/P6poUO2BG3t2xz8avtnpyw6LUaxWq8lk0mh1BefrN+8vDtp25KvV+/+7ev+8jYe/3ZD9/aacsIQTO7PPll4Qm81mnLSRhcyAnY7f49d/hRTmxHGSmJg4ceLEwsJC9BhWq9VGo9FisbS0tDDj4fpb+wpH6D/M2d7RebFJe+q8hL8m59vIfclZ50/9zOgtXaFpb/xXSqVqyU8rIqOiT58pvqajt7a2ilIzENtLS9/b1u5kNNyurq7sw7lIwTySe+ya7v3Sja1Wa/TKtYAWZ18zWnzp0Zzlk9a2jrWJpwKiM1MPlxdXSA3mZme5cie9zrwz9WsFpyzWVie9fuayr7MF9KbmTaKiHzfndXQw2tDX2ZYja3cG5hxZ/c3c7chpgaamJp1OFxMT09LSMnLuuv93iqkBWimP+o2UW1BdXT1nzpz77rsvKysLkU6ad8M8VP9P5CBb2gNjyGHV6/UqlUqhUEil0osXL/r5+U2fPj0nJwfhDXuxPtwXPT6Rh6HX6+ubJEsEx/zD0vxCU715QtSk9QxOJFq1AvfAeA/yuzcHjDmRwekbkoIMTi/C5gSwkyP0C0v17lW4ZXGSdhwq1mh19sicgzSg41yG/dBFzE+j0WzZsmXcuHF8Ph9zWyqVipbwU4zTcW7hmq7k0vvVarVxcXETJ04MCAjoc78Mj7M/bdsH7KFFHgj2CASC8ePHc7lcrVZr/yQymHF/2pbZxpFbgNb6WK3WrKyse+6556OPPqqvr5dIJFT1+rJvQEe+Kee6Npx8UFgCHToxCFm8ePGECRP27duHERe+tkbanENnZgQ4LRaLVm8oqW5am3HyH1EZPTIYnCQWJ8k9KIFUiQl9IQADN3TfkJSPl+2NO3yuqlHBCGM410Mx4KulGCfWL9bX10+ZMuWjjz5CuVq5XK7VamnRBmq0jLRnasBte6079h/m7OzsUmktFxs1izfnff/TgU0pZ1IPl7e0Mlyla23ygW9fUVEVGRUdtXRlZWX1NR2lpPQs2ltu2bartc0pqUUmk3nDpm2RUdHLolcrVapruv0+G7e0tGzaDNq/otQRVE/fKDfw1uSwY7KyC2trmrQMw6zPqLjhfx4talix64TRfGOSmTSjxbwKb3hPDdIB66X6lXGFaxNPDtLxmcO6agswMKer9ixzXyO6BaRS6Z///OdFixYxb/ErjwNMeiIlzmw263Q6tVqNSbfy8nJvb+9HHnnk5MmTJpPJarW2trZiNbTz6qlSqJLqVdoju/7+/g888EBeXh69X+pLSukFNptNr9fL5Yo16QUsjtCLA1k2IGhyhUSxVuTFFQLGGZRAfDqB3OnNFQLkyRZ4siE9580XeRE2JwuydUIWB0BQHz7s6MVNfissZe+J8pGc6LzyiLXH/DCxZTAY4uPjJ0yY8Nlnn9XX12OyXqvV2hORf0uC+MrncoRvaRaP8lYNBkNsbOzYsWM/++yzxsZGer8oy0ZZLMzUd4Xusx9FlB1Lp4KGhgY2mz127NidO3cy7NgrNCN+Zb9mtv8diYCUDmj/FTM4r9qqg7EBBdhsNlttbe1TTz3l5uZWWVnZR67WZrPZVzUNxpWM5GNiEILzuclk0ul0SOisqan54x//+NZbbyEp374LXP55wcnh0nC0qKJ+wabsdxelQcjES4ZoipfMYgu8uEIWJwmjJuILAFEWq7ee7O9Ru6OSCxukKnuLZZyIRvLAc8l77xOZ83i822+/ff/+/bT8S6/X91FlcMl2cISb6j/Mifo6Jmvr6oSTQSuzwjbkLt91gpG+HMpOzD2aHxkVvXzF6sZGcf/P29jYhOTFFavW1Tc09n9Hh9qyq6vrTFEJElK3bNvV3Dxw9KitrT0+URgZFb1tR5xD3ePgXUxHZ9eu3aVBKzIjNuSWVsqN5pb2DsYzcvDaG45cVa9etDFXpbVc02nomouuxew9zu0dzanOAe5yTWdhNh6CFqhp1EZsyN2bd20lKUNwYcwpHLwFGJjTwTuIuTymBa65BZCYuGbNmsrKkeUJf80t1d2NGbf29nY0/DMajehUJ5PJJBLJ6dOnZ8yY8Yc//KG0tNRkMrkAUeyy94vwhkQiOXny5NNPP/3ss8+ePXvWvgCcZlKam5uNRqNcLj9y+rx/SLJHUIJncKJfWBrSNH1CAKr0ZCd6cZNZ3B5ZWh+eCKmc8C1hIXhxkjzZiSzAR1PQqtOLK/QISiDkziQWWzAnVFRW3YANjjiry2c5+zl0MQSnFGSr1WowGPLy8qZMmeLn50etmDQaDVpUYqaYRvD9PItDbUZz4khBNhgMJ06cuO+++2bPnl1TU4OWnK50v0PW+PZjiSKdKpUKpWtlMtkHH3wwadKk48ePo96ds3OCB69hETPGSbKjowMXz+3t7W29P/QT+yoZZk4bvB659MgU18cXfUNDw4svvvjUU0+VlpYixqlQKDQajV6vR2QITeyYPrq0Ja//E1q5QgmdGo0Ga8v27Nlzxx13CAQCSqh16pdX/9vKvk1QSFwsUyZmlby9KA2LwPzD0lEwA4Mo0M/oKQ6DQAsEM/gQaPXgoByBJ1vw1qK0vQWVeoPRZrPREj1mSPe/U5xiS0pPt1gsVVVVjz766L///W97brp9oRLT+4Pap9cEc3Z3d1ub2+L3li3bns9fczh8Q25lnZrBSwa1g+wPLkxOi4yKXhmzXq3R2H9+hd/NZvOWbbtQ7vVo3vErbOn4X3V2du6KTUQ+a1Fx6YAvuLOzM2P3PtKS60bI9FJWLY/cksdfm7MytqCyTt3c2tbZyQhpDngE9WvHBqk+atsxjcHan637oJu4/mpra2ttbW0hP7ben+bmZvyktbUVV7jMGq0/LTzE27R3dh45Vbt409HKevUQn5o5nbO3AANzOncP0tmc/oJFK1ixgv/SMha6zQiJRZy7awd69W1tbZ988smXX35ps9kGeoyRtR9NgLa0tFzWqe6pp57685//XFNTQ/MFTo290fvFJCMiu9SZr7Cw8Pnnn3/ppZcqKioosothYmtrq9ls1mg0JeUX/haZ4UtgS2KrCcQCT3YScjSBskmIm57BiV5coV9ICsE1Bd7cZN+QFI+gRABH2UBEQC6Ce2CCe2C8Z3AiYX/2mHd+vzFTIleZzWbGT4g+jbTjkAdjtVqNRuOBAwemTZvm6+tbUVFBrZgQ47RH5elBnOsXiq9TjPPAgQNTp0719/evrq6WSqUITtD7RXDCecnWQ9w7GBLQIo8+Jp0VFRVubm6PPvroqVOn7JFOJn7AbsLnEYcotmFLS0tzc7PNZrNarRa7H6vVarPZcEWNy2lmoA7lUKczZ3t7OyL6//rXvyZOnLhnzx7K46SWnC4wbQ5l2w7sXLR4hapKYARSV1f35ptvPvbYY5WVlTTccnkaIt4g9YvV6/WNEgVnxxEwNSc1ZH6hqRBHcYU+ISl+oalzIjK8iUTtnPB0z2BgdvryU7x5AHZSy3P3oASP4IQ5IaKIhHyJQm2xWOxtCAbWa8xejtYCiHHSGs1///vfTz755IULFzA0UqvVSOVkun5oOu5aYc7Wto4TJY0ZOZXBK7O+izqQX9LQzzz+0NyOU58Fg9tLE2I0ObZm7abIqOg1azdZrVbc7KqR7cFD2WjnmbF7X7uzWXJe2ptKlSpmzYbIqOh1G7Y0Nw/cXfJwzlGEfs3mayPbXXpJjv9Ja1vHJtGZhcsPRe86ITh4TqoyOf41u8AVmq2twauy6iX6K98LferxMW9ra8O0nsViMZlMYM6i1dWKFaVVDafL609XNJRWNVU3ypVqndFoxMr+lpYWqgiFmYSrTgtXviTm2+tvgc7OruOlTexV2TrjwKep678M5gjO2AIMzOmMvfbLNVPk0p5J0Esh+OX/iFLQsmhm1v6lBV3rt66uLpPJlJOTk5iY6Fp3Nrh3QzmOfZBOuVwulUqPHTv2+9///pVXXrlw4QKm3uyzBs74NGHaF9NqVqvVXjhOIpHk5OQ8+OCDr732WnV1NY38mpubrVarTqeTSKTLhccQpPQkyrT+YWleXKFbQBxk1oIS3ALiPIITPXslalmcJI9gYGrCLkRyzZsHsCiQD0B4TUDycbA9shOA4skXeXMEBwrL9Xq9zWZzalD5Rg1cmqm31279+eefH3/88aeffrq8vJxifpSQ5NTeZvb3S7V5S0tL//CHPzz++ONlZWU0kUd5q/R+nfGRvFHj5FqPYz8V2Gw2apWHnM7i4uLp06fPmjVLKpUywne0bengRHQT50YoAdHqGqXKijppfllNWt65uENFuzKLE3POpub9nFtac65GXC9VanQGqiRJy4cxkKPHZ365sS2A/YUpD71eHxgYOG7cOKFQiJoNqHqt00GmA6XpqVT7jb0M5mj2LUBLWFCTQKPRYLh16NChMWPGLF682GAw2HeHC8/qnZ2dODjBiVOrLa9p/DzmkH9YWq/xOfHdDE0lHgFQQwZq/2yBX1gaCGmEpvqFpvmEQNQEYRUv2ZtPtueLPIJhSy9OEnvHESlBOpmiMfsR6AK/I8zZ3NxssVj27dt38803L1u2DF05qTt7c3Mzw00fmr6+Vpizvb2zvEZ1rKiRu/rwN5H7dudWllXJh+ZSXfgsNDxDaQ1MhCGRq5n8QKBrNKJk66Yt2ymqcYUUWVdX19lz53GX9Ru3aXU6F2jArq6u7MO5eFMpqbs7OweovHqmuEf/tvrCRRdolivfgkxljthwNGB55vb04uzCGo2+X/zCKx+T+bY/LRC+HvjuV9jSHuPE7JbNZjObzSqN7mKjXHC47PtNh31CIEzyCE7wCEzwI3ZLvmEpvvyUT1fuX7+vqLxWplDrLBZrc3Ozs2f5rtBQzvVVV3e30dIizPx5ZWwBQ5p2rr5zhKtlYE5H6IVrvgb72RwFDFtbWy9LI0BGgdUKszZWqbS1tTFMgmtucSfZYdeuXe+++67JxNSXXVuH4QPVRwtUo9Egw0AikWRkZNx///0+Pj5isRiRPyoC5ozUsUvv12g0qtVqer/79u17+OGHWSxWbW2tyWQykx+DwaBQKM5VVH8cvX9OeDrRpxUAJMlLBtZmaJpfaCr+Tv/15iX7haYCuTM4ER2kPIMTAQcFQmci5OCIm5QvSdLh73gQFifp39F7FEogdGJTu3CW86qDla7baTLUYDAcOXLkkUceee2114qLiymPU6fTURIMXbRf9fiOtoH9/WIKz2Aw5ObmPvHEE6+99lpJSQm9X3RxsydgjeRxMrB+pHxEhJP1ej016ZRKpTk5OY888oi3t3dDQ4O9P/HIbGcaeqEmLQ5Oo9GoVGt2Hz8fFpf37xX73wxPRbwB6ewo2U34WKJPovcHb8+NzS6rlShpBQkF1fDgA+tEZq/LtsClb7ro6Ohbb7110aJFYrEY8QClUqnRaBDjHFF+kJdtsSH7ECd5yq+lZgFSqTQoKOi+++6z15PAd9mQXdtQnshedFSn01XVNH67IdOPFHthgOTDF3myoQ4MasgC40nFWDLOKqifgZYBPdK1vGQy+YAjAO7uAToZwqBtORKFmk7gI3P2HspuHYJzYXUmirJIpVIPD49nn30WK97kcjm6syOL14UfnyFo5/6f4lphzq4uSOCKFcYfN+d9vXhv9M7j29KKzda2/p+R2dK+BejCAcMzVNewWq1ms9loNKo0ugaZqqZJfqFBdrq0B7NMSdttsVgwRUbxTkrupPOkXK5cvXYjSrxWV7sOmGc2W9au23yd93Wxphax0iNHj9l3h+v93t7emZ5TGRidyVudnXemoVFmsLW0u95tOuYd/bQtv6TyN6tALg31TSaTUqXZe+J8wJbD70SkevGEPiEiH5KtAoNzLtSEQTQFH4q8uRBT+Yem/G9t5s7M0ia5But629racDZwxkSfY/bjAK5KqbXs2l22Lun0APZldhnhLcDAnE42AGgYR9FNm80GXowGg0yprhXLjxRd2HGwOCL2SNDm7MBtR0Jijy0XFSQeOXeqvKFJptLoepyHsMCNoUk5Wfdf8XKbm5ulUulPP/3kAmoqV7zRQfmSPlmULYfpfoVCgZyPw4cPT5069dVXX62vr6dqrk6KJNFkPUV2LRaLPZFLIpGgOujMmTNra2v1er1Wq1WpVI2NjetS83yIKVQPR5Mn8g9Lh7I4XrI3kbFF1ygvDrAzvYllFNVSQ/iTED0FnsECj2C0lUpyD4x3C4z34gLFk8UGETZI1XGTdx//mSF00vCdsm+NRmNNTc3TTz99//33nzlzhibrtVqtyWRCIy6nntuppCFq1RqNxvPnzz/zzDMPPvhgYWEh9Z3S6XSucb+DMqP1+6B9pj6z2YxTAZKrpFJpfHz8mDFjvvrqK51O5wKjq98Nc5kNcWR2dHRQnUCFSpN1uuqDqAyctbBiAwAGjpDFBQq7J5kJYY3NB+tib26yD0/0dkTa9kNlclI47AIGupdpKQf46NKBfejQobFjx37zzTc4tpHHeVmM0wEu3/UvARG+trY2m81mNBqxsEwqlVZUVMyYMcPNzU2tBrVVij27WIvQ8dna2gqLOL1eLJHO33TIMxiiI//wdF8yY/iGpPiS+MojCLT9ffgioG/yRV68ZHfiaO4RDBVjviE9uCY6CIAvAEnqYdDFYgt+Ep7QaGECp7IHLtaeI+p2KBkajTZiY2NHjx6dk5NDqZy0AsypQ0Hn6tMBwJzNLW1qvSUmvjAgOnPRxtwVsScuNmkZq79r7XecS+kLBQU29AajRKHOLbkYKch/d1GKe2A8zKUhIt+QlE8jwGIzMip63tLY5aLC42drZSqtyWym8S0u7ZHg2NHRkSBIRl3W/OOF13ptDr59Q0NT1NKVkVHRsXGCgRE6VWoNNmZcfJKD3+z1XF5Xd3dZlXyt4FTwqqzFm48WlUvVOmtr+wApsNdzJSNzX8GBn7MLay977/ahFA0mK2oaA7YeRpEwnxCRFw8WX55cCK5gacYjrknkQ7o68wmBqn0WN+mDqN3Hymq0Oj0VMXLSXN9lm8u5Puzq6tKZbCt2FezNqx6yK29ubjaQH4vF9YW4h6xVh+VEDMw5LM0+wJPSqdyej6/X68uqG9ftOf31ukPvLErHNS2p/xVA3QqHFLAQfci/Re1ZuCVn1+GzNWIlyqZRVj4jQT7ALnGY3err6998802pVOowV+R8F0KfL4p0gpR/r5aaWCwWCAT33nvv3Llzm5qaLsVXaOGns9w5vV/KqOhzv8nJydOnT/fz86usrJTJZE1NTecrKt+PTEMgk8UFkNKHD3xN1K1F9oAXRwicA3YP0ROUadlESw3K6CC4JDV0QiB0Bid6BCWCuRQnyTM4kcWGA7I4gHqiyG3w9lyFUmW1WrGkzula+PpHgn0fUcwvNzf3ySeffPnll0+fPk2zWi6D+dmTC1HP8OjRozNmzHjppZcKCgokEolcLkdBNsqrpvoE19/gI/MIdJghemc2m3U6nVKppEjn5s2b77333nnz5mk0GpoJGmn1rTSz3NLSYjab9Xp94bmLAVuy54anga9waApSrCiXHTzziKOeF5kqaWyGRcQewYn/XrE3Lf+88ZLShBE40d3w544OaRQWtlqtKSkp48eP/+ijj5qammQymVwup86+9gx4pvFveF/81gGxj3A5gzgf8sglEsmaNWtuvfXWHTt2GI1GnHBcL81E5xOr1arX62Vyxdr0E15coUdwokdwoi/JuNE5hJAykz2CE72I/r8v6P8L6cRCSscSPdnEDT001RsrKnjJHkEJXlAxJvTiJM0NS9lXcJ6W6I202fu3BqEzfo78EpzZLBZLWVnZtGnTvvrqK4wG5XK5RqOhK5SOjg4slXPGO3Wua75WmBPvztbSLso8vyquYMHSg/OXHjxR1qg12pzrxofxavu86FFgQ63V5RRVR8TnfbR0jw8fFp7evGQsOMPis/9GbEFk7v3QWNAZ4iV/umJ/eHxe/lmQL8I3DpaDtLW3Z2bl4MbxCUKbzdW6pqOjI333PgRxj58YCIjb2tqGlqXLolcPDCgdxvHT/1MbzS1rEgrZq7JC1h3ZIDzdKDd0djEimv1vv+vdMqug5sCxywBdNIzE1SsW6cZnl7wfmUFU/VNIcQOxNieO5v6haSDsHyLyD03zJFX1PjwCgvYSPb15QvegBB+ecIkgv0GqvBTpZNYI19uX17J/V1f3uQuKH7fk5Zc0Xst+17XtihUr/o/8fPrpp9d1oOHeub293UZ+Ojo6hvtahuf8DMw5PO0+sLPaOwgC+8pobJIpF8cfI+hCEosN9bwAcIIxHjiyYIqNuLaAWQuLI/AixPy54albD5QqNVCoYi/TwczdA+uXYd8Ls/xcLvd6bOSH/S4c4QIoc+63kM7Dhw/fe++9zz//fF1dnclkogEQVblxhLvo/zXQ+0Wk02q1onqtQqGQSqVisfjgwYOTJ09+4YUXiouLq6urMw4XepNFI+bgkJcJ/CR+MhhHEQVab54QWQgeQZB082SD+2bPL4EJ6N/J4iTNJl6ewEKAqUkItp29uyMO6s1L/mT5vnMXGoxGI3pKjbQJyn4BT/0pq6qqHn/88XvvvffkyZP2mB9dnFMNzP4PAwfZkt6v/dNXVlb2xBNPTJ8+vQ/Geen9jrThcQN7DecBrIVHETyTyaTVaqmKtUQiWbRo0S233BIeHk79iV0PePitJqUjExfSJpNJoVDuOX5ubljqnIgMvxCo80A2FeFapc4JB4I7i5s0NyKDxU5CDVtCwIJJksVJ8g9NY3GhnsMzODEyKV+h1lLW2shp1d9q7RvyOc19IFmwurp6ypQpr7zySmNjo4z8IMZJOU9UhZ6ZRm5I+/fzIBTqQ1IazjlS8jNr1qwZM2ao1WoKQjtplHXZpqCruebmZqPRqFAozvx84f0lu/1CU73AOyqRxYGJAn4hmTh3KAhL9AANDORuprqD8r/Al5/iH5aOBufI6cQZxm1h7KwFOz3ZiX6hqb6hqZjp8+MK6sVynGpwnrnstTEfOngLUNaazWbTarXvvffe1KlTCwoKUMxfqVTq9b+ioTj47bjM5Q0M5mxt7Thyqi5x/7nA6Mx5S/bvzasqq5IzCEp/RgUNzNDOg9SLGOqaZN9vzMJwCwAMUjiCNbjgsUKSYPMXr0fkcg5PSGSHIEWGZWrzN2XXNMlplFtVdWHp8pjIqOily2O0On1/rsrptlEqVUjojIyKlsl/Uxf0Cve1cdM2bE8Xtkw6X6PkrckJWpG1KrYgOfNnhcZ8hQZhvrrhLVBVr10RV9DnsPYzAPI4ZXLlUuEJv7DUueHpfuFpvrwUEBsDpTEhFtkjX9MvLM0/PN2HcLt7NHjYICGGn0DCigRan6040CRT0dUZwwjq0/5D8Gdbe2edWMtfk/PzReUQnA5PsXDhwlHk5/XXXx+yk97wE7W2tr7//vt4Ix4eHjf8+E5xQAbmdIpu6qYpm1+ybCr1rkNFH/60ByZoXrJfGPAJiCSa0BsoVhDMAczJgRRbL/wAkZwXD4AHj6CEL2IO7Cus1BtNjNmycwyC37jKtra2zz77LDc39ze+Zz6+thawf9aam5uR2KRSqeRyuUQiaWpqEggE06ZN8/HxQaTTnmrgjAXyFOlEf18kVdD7bWxsTExMfPDBB2fPnp2Tk7Ms/pBnYJwXJ5HFEbA4Ah8eZOI82USflpfMIhMLiwPrRh/+L+tGXGe6B0JWzvsXhhNk/Km1JynOEBDEFNalqIv7dkR6XnGlvW7ttfWlM29tH74jj9NgMGRmZj766KOvvvpqUVGRvVYtNZajThJOl6yn49DefzQrK+upp5569dVXT5w40ed+bTYbFTN0xufOAcem/dSHK0aKdEql0sbGRh6PN2nSpOXLlxuNxpHjh2r/JGKzqNXqrfvPvLUoA4js4SChgcpIqM7tyRZg0AVwZng6Ap9QPkwoVtRCD3fxDE705Sdzd+bWihXoo+a8ZQoOMqTpTIJsJ5vNduTIkfvvv9/Ly+vixYuIcSqVSrVajRin/Rvc6aZNB2nzAV+G/ZyD3H1qDFxUVPTQQw998cUXOp2OppmQmjbg0znOjghzYk2JRqNpbGzk7zqKgooewQm+oEyb6sVFvBO0LqAkokfPH+vJhOAawBZghg4J4kDcJKEXjcqwwAIs0skK0SM4cZkwX6c3oHStCzNvHKejb/iV4MjBMMlsNqekpNx1111r1qyhARJSOekLmpnTbngX/NYBBwZzdnZ2SZTG87XK8A253/y4b8WuEzvSSzQG62+dhfm8u7snJ4ZVMjQtJleqNu07887idN+QFOBs9QZmvsTq2Icn8g1NZbGTfLiCwB/XRkZFhy1ZidvAEjUIplNYe4aIPvhpz47MEoVaq1AoNxAAb3n06vPlFS7c8idPFyEjMy1j7wDeC3v2HkCYUyxxTUUxudq0NbVo3pL9nJjs/fnVP19UmG2tLjweHPDWpErTithCe0FvujSjPE65XLFEcGxuOFSdYkGDN8l4k4go0T2oJ4gCAVsyOUBoBIEWOIzgJ6hS5hcCVaq41+cr95fXSUwmE1bbY7GdA7aPq15SW3vHvryqsPVHZGrTkN2ja8CcQqFw3LhxCHM+9thjQ9Z6DnUiBuZ0qO64/MXgrEqTvzqdTiKTsbcd8Q1JmbsIin/nklSaZ7DANxQKe+dGZBAGp+jNxXtwYUzlj8iiV+gfls5iC0AZki1Yv+e0Xm/AJILzpsgv33Aj4FNc8QYEBKjV6hFwu0N0i/apN5vNRiUcUbi1qanp1KlTU6dOfeCBB6qrq7Hqk8pmOmNO4dL7RSdOmUzW2NhYW1ublZU1derU6dOnf8LbMHv+ttk/7HQPjGNxBJ5soBr48FO8iRQtllwABSEIAsrZhIu3Ce0AACAASURBVE/gFhDXS00A5TQvLvDOSU0GsX/ng2OKW2AcWV5C2Z1faKo3eMUDMd2LJxRkndFoNBaLBWenIRoBw30a+0w91aotLi6eNm3a9OnTy8rK0J8SCUn2GKfzUsHsk3fIKj516tS0adMee+yx4uJier9arfay9+uMz91wj7LLnJ9OBRRZt0c6JRLJvHnzbrrpppiYGBSTbGtrc3nrLxyZyHc3mUyIcfqGpviFwPLYkw1ueWTSS/BkJ84OiEXpSCjg4IPLC4AWRLoW189YjsbiAqET19VEtVs4b2OWVAEC3dRK4DLdw3x0tRagiQ8MmK1Wq0QieeSRR6ZOnVpeXo40QYVCQTFOCgYwpRJXa9pB+d6+v+yrymQymVQqDQ0Nvfnmm1NSUpC7jyqCA0jCDsqlX99BkZCHVE6pVJpTeHbuot1zIzLAOIqT5EuiIM9gwdyIDP9QkrPjAc8AYUsvrnBOWHqvtm2KT0iKW0Dc7B92uQXGYSIPNf9BjJFMTT580RxSjeHFTfpgSXpNo8xsNiN9mXlvXl83DvXefV7QSqVy2rRp7733Hj4vlKFuXzHDdPGQddLAYE7wHjPaGmT6mPgCTszhHzfnrYorqK5Xt7aNUJW5q/YXro/s1UcMBmNto/SLVYfA0jgEFpIYdAGLnZ8ChgJcsBWYG5HhzU9+MySJG7k6Mio6cPEaUlMrQtcVLBzpKUfjCQO2HF67cTuidxm797W3t7vwo9TR0RmXIMSbbWwUX7UL+mxQVFyK+5ZXVPb5ygX+bGnryDhSuXzn8flLD0Rsyj1e0tgo0ze3trvArTnRLWj01sWb8/TmHnSZho5YK6bX6+VyeWRiHhaS+oakenOB+YMzgDdX6B4Y7xGc6MMDrVpfPmjYugdCZQOYJREjAJgKuCLyJ6kk4yfjZt7c5H8t3ydXqsxmMy2tduGpwNGGhMnSkl/S8OOWPKOlZciuzQVgToVCceeddyLGOWrUKAbmHLLBw5zo2lrAflVjsVh0Ol1lXVPgtlz/sLQeSIDbQ4piEeImkqJYHIE3D0I3KGoLSwNqFGh3ULonEq2A1unNE0YKjjfJgZXPyHZdW98M99bt7e0RERGrV69m3rg3vCtoCIWSdyaTSafTqVQqmUwmJj+7d+9+7LHHXnnllaKiIiqqRjP+Ttcjl96vXq9XqVQSiaS2tra8vHzXrl2PPfbY+GmPvPBx6Kz5Wz0C43z5yeAOBQZR8B8xiwJWE+rTYqINviJschZbQCTXEnElSTylAOwkSo9ACQX+EycJy2nhc6Ig5MUVxqScUCqVmJVzjfzmVceqfV+g04xer09ISJg6daqPj8+5c+eoNNlvYX5XPYVDbWB/v6jNq9frBQLBgw8+6OXlVVRUhNq8SqVSq9VSpWia8na6Z82hGr/PxdC+oIZ56NerUCgwkVpTU/Pf//53ypQpGzdupLpedN7rczQX+JOi7whIKJVKYU6pDy/JMxgo7P7h6aAbGQLuL95E5gjM8AhJ3Ycv8uWn9BCwenVrUU+SzIo90ybiEGQWTVoUn6fV9VgJuAxrbYjHANI7qB/n8ePHn3zyyVdfffXs2bOIccrlcrVa3cfJmBHwHOJu6nM6SsrBAhetVouy+VVVVS+//PJrr72GMUBLSwtO+84+5+M029raarFYNBpNbV1dyM4cVFSjE4h/eDowxfnJ3nwRxkUQRBHLc5xhqAwjqvVgGEZnGE+2wC0wbvbCWNwMFobEzcQ3JCUtv9xeIcPZG7PPWHLhP+nbGckrarX6s88+mzp16pEjR5DKiZ7l1H6VmdaGeDAMDObs7u7u7Oxqbmk/kF+9I6M4cEXm/KUHs0/W1kv1zLN52R7EB4F60+p0utKq+q/XZfqEiMgsSledSR5BCSg+iXAmbMAXvRsmDF2yKjIq+ttFG3qmTZ4Qq9aQB4/z7ecRW3+Mio6Mit6ydadWq8VCWxfukeoLNQhVrl670WAwXrblf+tDmUyO+xaePP1b2zjv59UNmpC1OT8sPxiy7sim5DNihaGDEZUe8u60NrdtEhUVV8jwzJdbmpX48pM9gqHeFGBOfnKPqCGpRvXiQMabrs5IqgpyUDT7BDI8XPB6g694IIuINWcYU3F2HKF1qMzqbCg7v16qXxVXsCbx5FA+c84Oc+r1en9/f4pxMjDnUI5Y5lzX1gJYsEapFRKZ/L9rMpHqhItewAmIVqR7UIJbACFFEZtlXBvDqpgwCRBvwDo1VFEDgSN4JST68kVLhQW47qW542u7Smbr4WiBzs7OiIiI5OTk4Ti565+T5hTQKdBsNiPyJ5fLpVKpRCKprq5+5plnxo4dm5+fbzab7Yk4zkgNsb9fymFVKBT19fWVlZVnzpxJSUl96PcP3zp67Esfh7ot3OkZHOcNQh8QOxIN2ySqQOtBNNYI0gmkTPgzKAGp5N48CEPdgxIR/oQIkp3kQyYxjEFR1RasOgmAGrrzsFwuHwn2nLRCmRovIbtFr9enpaWNHz/+9ddfr6qqQl4jxfxQcZES8Z3rscQhR4uycdQZDAaRSDRhwoSZM2dWVlYipkvzd3i/VNjThZMOw9WVlElMHVL1er1araZIp1Qq/fLLL2+++eaNGzdSHQhc+Lled+DgxCdRpVJVXax7d3EacjeBi8lP9uQIgDXFE3kGAwhBoM1EkI4MEfmFpVLRSEif9SANgjmkRg2+4iez2EnuQQlYd+zDS96077TBYLBarRTOcb0mHbyBbZ/9tNlsDQ0NTz/99OTJk7FUglI5KcaJpdnOy4AfvJYc4iPTjqNlLiibL5VKKyoq7rnnnq+//hqfC/taTOd9NLq6upAdjq6cp8vOf7p8DxRGhALJAIrGgCye4huaigrYPkRgzS0w3rvXQI6oLAKP3JsnBEUNkq3zCBbMWrDTIyjBbWEsiy0ASyoilI3EJphniFbbl6sPqdVqqpDhvM04xKN02E9HazjwfXTw4MGxY8cuWbKEzmy07s3+MRn2yx45FzBgmLO7u7utvbPwbNPeo1XsmOx5S/YLM88fK2mw2NpGTuv1807pywLLRHQ63c8X6t+OIPRNsmYkgkAksgqMdw+M/4XRxUsGyJMteCckftGSFZFR0Z+Hb/HhAUW+R2mDCxEdBGbc5Lf58YuXAMa5ZFnMhZo6eyKXq5bbdnV1paXvQbQyK/vINb0XWlvbfloGyHFmVs417djPTh/GzVpaOzILagKiMwNXZK5NPJWaXaHSMYLSw9AhHR2dG5NPnz7XQzXGtyFGjBqNpq6h8W+RGah4gZUNsObiAK7J4oGzEosNxakewYne3GT/UFjEQXqcJ/ILS/MITIR6CFzK8UUsbpJ7YJxbQDxK9YDkdYjIPzQlI/9nWkLkjCm+YeizG3HKBql+2Y7j+/Kqb8TB+nsMZ4c5t27devPNNzMwZ3d3NyNa299BPyzb2dc463S6ukYxe9thIlUEBAJIorGh9gSZ9ShhhASpXjG0RGQY9DCren06sbzXmwvq5KQQGOpW1mWc1Or01KbIxSKVYem+wTtpV1eXUCgMCAgwmxkX9MFr5st44iKnE6kGEonk2LFjr7/++sMPPywSiVBXzV7UwrkeIgqzUUszVGhsamqqrKw8derUgYOZ/1i49O6Hnh494d7n/vKd+8IdHoG7PIPivblJPvxkL24SYY3DlNITUPZAm0DxRB0hUnLRI1oLST1SN4e/eBKmghcxSPAiNp9ITA/akimVSg0GA/oiOFeTXtPQpPASEumsVqvJZJLJZJGRkXfeeeeHH3544cKFxsZGsVgsk8lUKhUay6GzsjNm6inG2dHRQX1hFQrF0qVL77777g8//LC6uroPxmm1WvsgEy48Hq5p8NzwjTH26IN02ld4/POf/5w8efKmTZvows8ZB+GV2w3rhWk2rba+6T+r9oMAGsmXYbEwIaknEAVvsDxncWAhjaQr2AxW1wL/sLRf1thgngf2w1iX9ksajlBC349ML6lqsLeBYUb4lfsIv7V/eWFR4PHjx5955pkXXnjh9OnTKMCAk4k9I9yFWcj9aTSH2sa+Nt9kMlGtbLFYHBYW9rvf/U4oFGKI5ewQDo7VtrY2i8Wi1WqbmpoO5Re9tQhEd5AU7s0VEp3/HmIB6KoRSQxEK0F4DVWyg6FWzCM40S0wHmssvLhJ8DvxSvcNSfEk7gAsYoiOS8IeDDUkpbSqDkvH8BFwqJHAXMxvtQAtCLNarRcuXHj66af/8pe/iMViGiYZDD0GNHRmY14fv9WYg/H59cCcXV3dBlOzWG78advx76IO8NfmLN2eX1Wvbu/oHIxLdd5j0rSYzWYzGAw1DeKvVu/zDEqEVBgpE0FOJ5bewmRI7DaB5UkgTC+e8H3+jsio6B+joj/kb0NsA+vMyNJV4MVNeouXwI8E0A6g0IhtCzdnNcmUWMfselGu/UhoaWnZuBl0eletXq9Uquy/uvLv7e3t6zdujYyKTknb7UowsK2lff+xCytiC775cV/klrySSmmTQt/SyqhJX3k4DNa3u3OrVsUVtrV39lmaNTQ2sbfnQL1piMgzGMpM0drcPRDI3J4YI7EToaCBnYRREIFCf1Hi8eJAeRms6bBiDFjgsHbz4QH/249wQz9Ykl7bKMWKB4bQOVh9/OvjdnZ1F5Q1ha8/UivW/fqbwf3LqWHOoqKie+65Z9SoUWPGjJkwYQLjzTm4Y4U5+oBbALPAqJmp1+ulUmnswVO+UP5PClIIQgn4JZjYASmT6EDC8pgUBUNpG5LxfWC5Cwk4so1wDrEuYHHAaL2ntoVUCvuFiPadOI95BGaNNOBeG7IdBQLBO++809HBxFuD2+T2paM2mw3Va9VqtVwuRxXH2trav/zlL6NHj169ejX61VFzNWcM9+3v12q14sxTXV19+vTpAwcPfRq+7U+fR096/MXf3XLb036fs4Lj3BbudAuI9eYm+YWIfAG5BEaCb2gq0BHAX4oI2xLwEnNzQNnkgFQI4WtC5axvaIonO9E9IA6z/8jpRKiAxUnibMmUSCR6vX4kwJwdHR2UOmwwGFQq1bx582699db//e9/FRUVNTU1dXV19fX1UqnUBdiN6Dltj3EaDIagoKBbb731q6++qqurw+SdUqnU6XSMH+fgTnOXHB3nATogLRaLXq/XaDS0wqOhoeGrr766/fbbly9fbjQa0eOQRg6XHM/5PqAzYXNzs8FgUCqVCVlFWJNBgAeBXwiQpQCQICtn90A0IQYqACqkYdyFkrYwueFCmoRbPnyyGgdN71/Ua/1CUj2DBYvijup0OiR0MiXD/Rk32FOIASDGWVlZ+fjjjz/44IOFhYVNTU2IBPRxMqZjlUEC+tPIg70NfdzQaYlqZUul0rq6uueee+6Pf/yjTAamkvaVZIN9VYNxfLzT1tZWk8mkUqlqa2s3p+V5BguwfgIiIiLAg2gleJkTLJNERyCYQfJ3UKLqw092D0rAOgkfcCdJ9eJg6SqUncHaEJQzYGGIsxaymvxC0/xC04RHSnU6nc1mG1GW54PRm0N2TJzfMCGg1Wrfeeed6dOn5+fno1wtynuYzWb7SmVmZhuy3sETXSfMaWtpU+stm0VFYety2THZIetyCs+KVVoL04/YvLQSFJ8Co9GoVCrDduUCtT0Y5IJ6K/gBq0DBSSifDQakE1ajoF0J7K7PFwPMuWjJivf4O314UG4LahzsREyIeXGF8xZtRIzz+4i1Plzgev6UdFyr1dk7eQ/x0Bqy0xUXly75CaiuW7bt6n8Go6OjIy4+KTIqeseuBFfKStWItZuSz0RuORa4Mmut4OTFRo3GYG1vZyoPhmw8/upEZ6uVm0Rn1DorVdkxGAxyufzgibN/idw7Jywdi+x7hGc5Qv+wdHjwoQpfCMZtRM3Cmw9sTnzY4dkPEZGS01j3wASP4AQvDpgoYWm+Twis2mD78DSYUjiCZcLjzOrsV10yyH+0d3TllzQujM5s6+ga5FP96vDOC3NqNJrnn38eoU0/8sPAnL/qWuYPx2kBLFdpaWnBxfCpc9XvLE73DUlF6zvvXkKARxCocACVMyjRk43/gooasqO8eUL/8LQeVUl2j6okiwM1v7MXxroHJeACmMz1Kf9ZtV+h1KANnqtq0DlO/w74Ss6fP//ll1/K5fL+x6ADPhezY3f3L5xOXFyZzWaag0N6U2Vl5aeffjpp0qSwsDCpVGq1Wu05dk6XqrZPOJrNZszElZSUZGZlf/7jrtnfbXzjfzH3P+9+65g7H5n515nfrvcMivPhCry5SSQlB5Z1JEZMnRuR0VNswQaLFI+gBCLPCAvOHl9hUqvhF5KKMxiZi6DkFlihZH7z4goXxx0Ri8U6Haww29vbXXLBT4ksKMCCAGdJScnf/va30XeMe+uT/61Nzl4We+CnuIPRgsMxybmb9xQmZhcfPlNVUSfR6Xvq99va2trb251i3qbZCmqhZzKZqqqqPvroo7vuuisiIkIikSDGeamLHoKjLjkMHGqypdAR4tCoJ4yq3VjeIRaLL1y48P/+3/+bNGlSTEyMwWCwn/RcoINovXDPHFhXP29D5puLdoPsdlAiZscI2CDyD0/3CRGBDQw/BTBOspaGag++CJ32cBp0Ax2kOBBHIvQsnCd7FTWAyIWyHN5c4ZnztQzXqv+PA9I76GSSm5v7xBNP/PnPfy4qKhKLxQhzoiWnXq+3l1l2uldz/9vEGbek70Gq1o5u6FKptLS09KGHHvrss8/UarW9O4AzzjM4tba0tOj1eplMVlVVFb79IERHgQksYvSLXptU6wK0Z3s0aRPRDsAtIM4dWJsQcUFWDpQwgEGO6TwvLmT3PIJ6nAJomQVhNRHfKa5wqTAfW5KBOR3/SaHxEhVX2LZt24QJE6KjozFSUigUarXaYDDYS/rjXo5/d650hdcDc5KVZndbW0dhWdOe3Cru6sPzIvfvyCg5eOKi3tTsSq004HvBmbOjo6M3LaYW5pT4hcL6kVaHuMNKEyZD98B4+IUDVgIsLhSfoT6QD1/03eJNkVHR4UtW/oUfh47IUEoSCCUjnuzEf4bvREtOzo+rfdgw07I4SX+N3H209AIql2CB1IDvwsF3bG5p2b4zHlHeU6eL+vmG7ezsyti9LzIqes3aTW1tLqK0rDM2px+p/GHZIU5M9qaUM5kFF82W1k4G4hy+EWw0t7BjspvkBizARWvzhsbGRXFHIIkNVadQ7uDLS/ELS/MNTQVidwho5+Bqq8dDhCvESjL06fTmJrO4oGeL6zKshACdDJgQAPX04gHwiezw95dkVNZJRoKJ0vB18q/OrDPaYuJPbko+86tPB/8P54U5w8LCbrnlllGjRj388MP19fXvvvsuA3MO/nhhznDtLUAX/Khr1NDYFLzjKAg/hqR6gMMKUTcikmhougmhGKlTw9kcuQIeQQkw0fNFPvxksiQG3gC6uXgSyJOQ90Ft0o+UtHgGJ27eewpNOhFR6GeIc+33x+xxDS2gUqksFgvdoaSkZMaMGXK5nH7C/DLYLUDXV1RdE5FOpVKJSGdjY+PixYtHjx793nvvyWQyi8VCCz+dUeUG77e9vd1ms6Gu2rlz544cyf3fT/HuP2ydPX/LrHnrH5n1t1E33TT5yVc8A3exguPcA2I9guLdgyCP7xGcgJrYkFmDyQrI5ch8Qvs6P7BGAOo5RJbE2hPdp4hfAtRtsMhM5cMXbUg/7sIwJ23n1tZWm81mNBpVKpVUKs05dvyxJ5+6dfQd//fXBbPnrZ/93caZ8za9MW+j+8Id7gt3erETPIPi54QkvxeZPm9j1sHT1SYTWMPSIYfpe8fMc9FHqa2tDalXJpOprq7u5ZdfvuOOO+Lj45uammQyGWbuUJjXPnnHIBODPdfR42NPUaE86terVCplMplEIhGLxQ0NDQsXLrzjjjuCgoJw7UftvZ03eMAHB2/cZrPpdDqJRHLk1FlffrIvyakBP4DEYFjJQSw2e4QlwT+PGHOC2BGxffImhk9ApSKETrTzhKJjTpJHUOKsBTvdiH2URxDYw7gHJ3jxhCGxeWqNBrlWjDgSHZCX/aXPFHr8+PEHHnjg2WefLSoqaiI/VOVbp9OZzeY+k+Rlj8l8OCwtYP9qQOUMKl0rlUpjYmJuu+221atXo+SM884zuLhrbm7WarVisbi8vPzbVRkkOw9Vp3MiMvxCU3xQ75owO3v4mnwRLPGAoJDmQ6TV0J4TdgwG+NMLBNlgFsLaC3SYA61sNnyLH/oRmwBvXjJne65crjCZTKgA7JihwrAMQgc8KZ3iMF6qqqqaNGnSF198QeVqsRqMEp2ZV8ZwdeJ1wpzd3d0dHZ0VtcoTJY0/bslbsPzQ6oST8fvP1jTpWtsZ3SYoOEZ4w2q16nS6qtrGL1YfJERM4o9OTPVQuBJATSJXizVnXjwANghfM9EnRMT+cU1kVHRI5Cp/Dkh8Qx4MS9NCUv4WGrc4CriMkVHRH4TuApQ0GAzX/cPSPlt1QK3WUula541vr/p0GAyGZdExkVHR6zdutU89XXnHwzlHwcr0pxU2m+3KWzrFt2Zb6/HSxh0ZJfOXHgjfkJt2uOL0z5Lm1nanuHhXvciuru5V8QV5RfUdHR3Nzc1Go1Eul1dVX/hHVIYvD1JMwOfmgVShX2gqeIUQMQxvoprjFhjnxcEEeDLMDxwiSMsTsTAZDh7nSVAbAZQh+JfMIaBzizxON1Lu4B+asregApUwqB6Mq7b2sN9XV1e3xmDdmHxm79EhNebs7u7uP8yZm5s7Z84cX/Lz3nvvKZXKYWy33Nzc0aNHjxo16o477jhw4EB3dzcDczLenMM4IK90appbxHk85+TZvy3ZPTcig9TtCnxCQGfDC4Q40vzD0kG3lmAJtGjFPyzNmwuCRSTjluIRnDh7YSyUAJMlMcoZUW9OJHQifcqfn1xdL8HVL5NQvlIPDeF3P/zww4cfftjU1GQwGHg8XnV1tSupggxhQ17XqWiuobW1lbLuNBoNRTolEsnatWsfeOABT0/PU6dOUR8pGgw50bqIJvpRsFEqlVZUVOTn5wesSnL/YZv7gq0z522YNW/j03O+HD3+nokPPPnyvxa7B+z0CIx1D4zzDE7w5gnnRuz24gkJmSmZiNmmePGEbgFxb8zf4RYQh1xzEkHCJEaScYAc4AzW+2+SNzdJlHUSRWtdj81JR1RLS4vZbNbpdDK5vKC0ImBxzIRJ08ZNfvCFDzizv980a97GWfM2zp6/dfaCbe4LoZFZbCJRzhGwOAJvsj7/cvWhfSerZCqQoUPNZAcE1+mgwlQFxTj37t37+9///rnnnsvMBB9We4wTHyLGj/O6Zq7r2Jl2GfXrxYGqVquR0ymRSOrq6hYsWHD33XdzuVylUklHIPJur+Pkw7Yr3jWtF1apVHV1dUFbs3oiJV5PdTCwplDLiJjhEZ00sIGBUjNSPgwZNCIjCaq2RJyWkAwSgNMJyAQgmjjpIQgKZR/BkHT7ePn+8pommrZ2ohfHUPYZ7SY0MzabzWlpaVOnTmWxWBUVFcjjlEgk9k7GFDlmgtuh7Kn+n4u+E9EQl8pmSKXS+vr6d95559FHHy0pKXFquBqT9TabTaPRNDY2nj179r+rdvfQC0gIhPMMYYfDVAMlYuRztOEEvyi+CGYbouKDv3vzQMAWdW7plOIfno6ewUSxDUpjUfmWxUn6fsOhJnEPKYEpae3/+Bz6LfGJQE0Fq9Xa2Nj4xhtvzJgxo7S0FIMle/8C58X+h75hB+OM1w9zdnd3t7d3mi2t8fvKlmw9FrgiM3BFVnZhbb1E3zaypTLpqwHXpHK5fNfBU36hoPOPQAWw3klmzLfHLaXHZg8FNmCCJcR3H77o3dCEj0J3fBK6lRVMrPsQ6eQKvdmJgYvXom3nF+GbvblCFqHLw8wZAlPujoNFyJmmi/rBGEWOcMzcvHyUrj1wMKuzs19ykWfOlCA8XF/f4Ai3cD3X0NXVXVIui9ySx4nJDlyZuTWtWKYy25rbu/rVEtdzZmbfq7TA4ZN1aYcr2trarFYrRlB7jhYjn4dYm0MSCRZcPCGq4yAdE4pNSRCFCzQ0AvDigYq1W1C8J1mOsTiC2QtjPYMA2sR8OP7bq7sDs4E3L3lxwjGlUmk2m+nb9ipXzHw90BZo7+gsKGsKWZtTUase6DEGuF9/YM6urq4jR4488MADSJccPXr0smXLhpHL3tDQ8Oijj+LF/Otf/2puBhEIBuZkYM4BPgODtxvN3eA8rlar6+vrlwpyUciRyG70GLTMXbTbp8fEBeZlj2CQ6cBFL87OyN30IiYuZIkLfngILcDkDpDDdvcg4Pi7B8Zj6s03JDXuMLi2IKjAJIMGr6P7f+Rnnnlm1KhRL7744qlTp954442CgoL+78tseQNbgC60qHiU0WhEwgFyOqVS6aFDhx566KGHH3744MGD6JTT0tKC8RA+2jfwegb7UJ2dnW1tbWazWalUXrhwobCwcMWOdK+gWI+F22d/v2nmvA2vf7Pu+b+zb7vzrtETJv3xAw4gcMHxQOsMgMDRk2hi+4elzQknlgmcJNCqDUv1ZINCiEcQ8A8gMCX6tIR0DrV43jxCAAVh27T3IjOOFEI2ByUxXalKHYUWcSAZjUa1Wi2RSDamHX1pzj9vGT32nkf/7/Uvl8/6DrDkWd9tmj1/i9uC7R6BsZ7B8R5A3E9kcQRevY6nPTLmnKRv1meW10sdU5URnx28a3tK9NKlS++6667Zs2cXFxcjJkF5nPaFAg6I2g720+c4x7fPtCLLSq/Xoz+xVCqVSCRNTU0rV6688847P/zwQ7lcTpFO2mvOBdThRI3gmdFolMlkpecq3lqUQREFKBmGiKtH89+Lk0T10IiQBsRUQDIIhsCsRz8tGBQpEZzwgt2F/uHpXjwQ2CDPco/SBqTVuEL/EFHWqQp0PHVthbQBD3I6JrGbrFZrfHz83Xff7efnV15ejsMSha8RUuuWagAAIABJREFUBkB9BYa7NuAGH7IdsTwC34xohU4ryS5evPjSSy+98MILCoWij3StE80wXV1d7e3tVqtVpVLV19eXlpZ+tgyYB8grwrWbZ3CiLz/FLxSIm758EWhdcIWQduckuQclEBke4CX4hUJwRWYVzM0BkAmrQhJZEf0MKJvArJ8XV4hkBU+2YN66Aw2NYoPBgCVETheaDtloHPYTUUVuVHLm8/m333777t27peRHLpdrNBqDoce5AF8WjJvJcPXaDYE5u7u7W9s6Dhyr3ppSxF6VPX/pQWHW+cJzTWKFYbjuyxHOi9Uhra2tZrNZrVZXX6z9649phL8FmrRoWjw3PAOFu2EhyU12BwADikKwnqzHubO3lARnWozQULLyA/72H5cAj3PB4nXe7ES3wHhPDlA550SkzyEmf/+JOVAvlptMppaWFhrcOkLj3PBrMJlMq1ZviIyKjlq6sqr6Qn+OX33hIsKcJwpO9md7h92mq7tbrjHvP1bNXZ3NXZ29dHt+2uEKg7m5g9GrdYA+EytMizflWZuhNFyhUFy8eJG9NdObm4yFCDgV4EONZpye7ETQyCHenL/4IvFF3sTQ1z0IdBBBmycUyiBINSqs3UitKvH3ZQuQHurDFSFT/ONlezElRScBB2gV17yElraOw4W1izYelalMQ3yH/YE5U1NTx48fj7DiHXfcIRQKhxHj7O7u/vrrr3/3u9+NGjXqscce02q12GIMzMnAnEP87Fz9dBTmRIqPXC6vrKr+eOkeZER59zIJgL4Zmgpy4ewkH6JEhC5QmDgjluyEVcATehB+AIsD/p2zftjVa+tCVD56JYyoprk3V8jZmStXKC0WC8Vmrn7RzBaD1gKNjY033XQTzqR/+MMfjh8/zlA5B62xr35gml3FNJzVajWZTFqtVqVSKRQKZDj9/PPPPj4+48aNi46OVigU9gK2zuUsSGUbNRpNfX19cXFx6t5DBObcMXv+lpnzNrzx7brZ32+c+fWaSY+/cNPNtzzu8RFwPQN2zlywffYPO8E4CrRnk334pLqCL/IPS0OnKCQ8AQ0dZEYgyvQG/wPI3KFp/Jzw9LmLMr6IOVB89rxcLncxLwSK9lmtVjToKiu/8MNK4QMvet9y+5jpf/Sc+c1at/mbZ3+/yf2HbZ4BO72C4z0CYr2JASpkOTm/uHCRFgbDLSBzBCe+HZGaUVCh0xsdyiiRPjWISWDCrqGh4ZtvvhkzZsznn39eV1cnk8nkcrlSqdRqtZi2Q3lJmrlzokT21ecRp9oCu89+0JpMJnufTgn5Wb58+eTJk//+979fvHjRZrNhAt25ZjzsFrxfdGLWarUNDQ1pOacQWsCKYMQ7MWuGimdoCdMDPxBMAgDLXh2kX7yjenBNKArGRTWqdgNnKxS5VkDe8g1J2brvlFartVgsra2tTNq6z+OCQTK+nlpaWjQazfLly8eNG/fxxx83NjbaY5zU3BfnQ5cnYfRpKGf8k74sqJA7la6VSCRpaWkTJ0783//+pyGqzohbO1c5JoU5lUplXV1dcXHxf6LT0YuExD8QI6FNlG8IiCUiCxO8pkJS/EJTEdfE8gicgrD4FZR7eMlAaeKDkI9fKPibuAXE+YWkomgbrgqJy5Rw/oZDjU0Ac1KRDOb16oAPC0I7KKVgsVhSUlLGjx+/ZMkSinGqVCr0G8Z+dAprdgds5xt1STcK5uzo7GqU6c9dkEfvOrFw+aGw9bnRu05kFly0NruI6+EAGhxf90jllMlkcQdP+fIhUgIwg4hSUqzCk6woewI2bjLAGMR+D+ZY/IW4pSC0OeuHWFL8QWxWuMJ/hW/nRca8GwrWA2SqhDUstTeeG5ZytLhar9ePBBpARWXVT8tWRUZF79yVYLNd3R1WrlAizClKyRhA/zrOLmKFMXH/uWU7Tsz/6eDynSeOlTRcbNK2tnUyVE5H6COztXVlXMGJ0kaDwUBkxirfiUiFECi4R7EfxMC4ybQm1ZefAk89lKWC1g4ERYFxUABBFP7xGSd1q3bKOqGggAjgKCcJJxnggvMgPYWHPV9dZ88FcoRmcclr0BtbtqYWL91+3NY81GLRV4Y5Ozs7Dx48OHnyZMzMjx07duPGjcO4Tu/q6kpJSbn55ptHjRp11113HTt2jI4HBuZkYE46GBzlF8zgYIrNYDA0NTXtP1YMIrSABAAfv5c6kEiUNFJYbIEHUStC2xVQQgPBNCDjQ0lLMClJ630BYL0wOA0QfhUcCvQ6oPANiaEsdtLfl2TUNooprjCMj66jdMmwXsf69etxJsV/p0yZkpKSMqxXNNJPTgsR7M0FdTqdWq2mSGd1dfXChQvHjBnz7rvvNjWB/CBNs9IiUMfPK9GFpV6vF4vF586dO3r06Jc/JXkG7nIP2Om2YNsb365//Zt1s+ZtmPn16odfe+fmW0dPeuyFV/+7yjMo1jMI3DrdAmLdA2IxpiS0cqiSo3wF1FjDCjuMIOdGZPiHgRA3Se2lRMblVFdXo0IIpvsdv9Gu+nhgq6Ion06nk0qlZT9XfMJdN2HaI7fdMf6ZOV/O/Gad2/eb3eZvmf395tnfbyU8zl3uAbE+IMMCsDHQO4hsHWY5oemIaDlO5nNDRZv3FxmNRnuFxqte1SBtYA9I4POCFqSFhYXPP//85MmTt23bVl9fL5fLFQoF8q6MRqPVaqUcaOdKYQ9SMw77YSnSaa9ei0gnJbJLpdKUlJRp06b96U9/On/+vPMinXizyBtQqVQ1NTXr0/I8gxPdA+PdgxK8+T2WAb58ACa9uclAuiKaZiAjCdUGoKvhHthr+0T4miDTTexegHrFEfiFphJrPfDV8+GJcC3d4xzDhzCPuz1bqVRS3sCwDwDHuQAKg9H5ZN68eaNHjw4KCqqrq0MAAHmcGo2GmvtSgSkXeIM4Tl8M0pVgF1Oerr10rVgsXrFixbhx45KSkpxUuhZhTovFolQqa2tri4uL56/bA1EQEjFJcZg3OJIAxRODJZTxRz9g/3CwKcHEnAeILgrcAuO8+ckkcEr1DREBWZyb5MsX9Sz3QlN9Q1Ix7vINhYooFieJtyNHLBbTfD2+pgepN5nDDqwF6FOA6heFhYX333//22+/XVdXh7oXSqUS/YZRPoHBOAfWzjdwrxsFc3Z1dRnMzTKVcdfu0h835wWvymLHZMfvO1sn1pltrTfwgp3oUKgtZLVatVptbV39go2HgHRFgqUeSJINdk5oiO4RlIC8Lsyb9WbPQEYInZu8enUpQcmWkEFRNpzFFvhz4lEIje4LmkM8gEu9uMLo5BMqlcpsNlNlCCdqw2u61K6urt17DyCh89Tpoqvua7PZEOaMWb3hqhs77AatbR0nSpuW7zwRtj6XG5OzLa2kukGj0Vv7qdzrsPflMhfW3t4Rv+9s8qHzKpW2qamppOwc6uXA0oyXPCeC5I6w9IE48qLqFSCdbKB9g5ItJ6m3PgzIPx5BCTBdcMBhBGVpoc6MWAIREBS8gTAAg1UeF3w99+afxTK7trY2JkM+eENLY7Ct2HUift+5oV+1XQHm7Orq2rlz55133ok5+YkTJ+7fv3942Ufnzp2bOnUqXs+CBQvsSaUMzMnAnIP3hA7wyDTFZrFY1Gp1TU3NTwk5SKsnDABQ58CojtTzQq2ZR3Ai/k6WwSKwgyK2yVCQEggRmzcp8sXqNiILmUwonqBz60W2JGYGhEoFZp+pBWd/VbA2wDthdrvuFujs7HzrrbfsYc5Ro0bdeeed2dnZ131s5gADbwH7TCvlHKCQI0U6pVLpli1bHnjggWefffbw4cMWi+XSvP/Qv7yv6Z7pXGQymRQKRXV1dWFh4Y7kvd7seI+AXe4/bJ/53eZXv1rz2tdrZ367fta8DU/5/2f0+EnjJj/44kf82fO3uQfEstgJnsEQQRIr+F/cN6lekA9fNCccoE3gHPDANx7Wn4TPNDcsJedEUV1dnUajsVqtLhBQUoAcERStViuVSgvOlPr8P97oO+8ZO2n6/723cNZ3G2d/t+mNbzfMhH83vvHdFveFO1nsBC8iVOtJXDmx3oX+68kGchhZioOonSdsmbRlf5FGqx9epJNinOgs1dzcbLVa1Wp1amrqQw899OSTT2ZkZFAzTopxUtFdhnp1TU/rYG9Me7MP0qnRaBQKBYWXMjMzn3jiiaeeeiovLw9ROqdDmJBDg3IaCoWiqqoqMi4bSv6Jwr8fUeHGMMyTLcDnDqMsDMaQfQWOUFyoNnMPBJo1ABIkTUZLE2BKJP+hUTHUfADxHSoYvLjC/8bsVygUVLd2sDvXKY6P7yPKKm5ubq6trf3rX/961113LV++nMLtMplMqVRqNBqj0YivXacbgU7RHYN3kfbxFVL/dTqdSqXCLpbJZP/85z/vuuuu/Px8fFk415vCHuZENmfo1n3I1CQrO1ivebKhEqInfU+qUbFuFT4k0rX4xvcLhfpX98AE90CgHyENFFgLYAaMNaxwtB5hRlL5ihPXcuExBuYcvAF8/Ue2jxWbm5uVSqWPj8+jjz5aVlZGQyaUq8WaMOd6BK6/fRzzCDcK5gSHzo7O5pb20kp5VmHN4s1H50XtD9uQu2t3aUFpU3vHiHMIpCGZyWSSy+Wny8o/iExlsSGC6gm9eEDhgjURT4jYJ0ZfAFRg8Rmx3GOxe9ZHuDHadqIVHxaiebIFUHYWkgIilsTeD8M5zJ75hqR8uuKgRNLjooIPnWMOxRtyVXK5YmXM+sio6GXLY9QazVWPiRtHRkXbiC3cVbd3tA3M1tZDJy5sTD69YNnBxZuOJh44W1DWaLK0to9sW1yH6qbOzs6jZ+pWxRXUNsrr6uoKThf/UgrGTe55eImbGy1TwFRJD0GTK6Q1qUQZCyYQ4HqitXmvhacXBzjchCnUQxIltCJCHOcKN+8tQJ02l6916NP1GJZc9d8+ew3sz47OruzCGt5wGHN2d3f/FszZ3t6OijKYlh8/fnxCQsLwJnI7Ojr+8Y9/4PU8//zzJtOvBH4ZmJOBOQf2AA7iXvbxnFKprKqq+jpmn0dQgntAHCoRwTKVn+wbAtpEqHGEszxJpQErHzkHmE3DUA8qVoJRwxZSb/5hab3TOoCmRDoSVsJwZJjxhdv2n3IZaGEQu2rwD61UKp988kkKc950001ubm7JyckSiWTwT86c4UotQDNx9jqclHaA+TixWHzs2DEPD48pU6aEhoaq1Wqr1YpSnMjpdPBCMLzHtrY2i8WCurWlpaWZWYf/szzVj5/sGRg7a/7WWd9tmfXdppnzNr7xzfpZ8zb+6dOIu3//3G13jH/49XfdFmwFWic7wZvQykkxLAByIKEGYrZQruGFriq96tl+YalkeQkzW/jOrPPnz9sn4xy8ua40XLq7Ub0TAT9sT7FYXF5e/rrXmzffetvUZ96Y+dUKxDjdF2x1X7Bt9vyts+Zvc1u4g8VO8OYBP4NIlENdIWY8IX3Jhhid/gftCUwO+MQ/RLQ7/2fK6Rx6TqT9A0LNODUazRdffDFmzJhPPvnk7NmzNGFHtSX7PCDDGz5euUNH5re0W7FPzWYzTnpKpRIlu6VS6cmTJ2fNmjVlypQdO3ZQyW6ah3X8PqUxGBpznj9/Pnxntn94mjchSGEqrQfLJBobCDD0gJpQGpxIc23kUQWDAIQusCIN/2RxknxBYVKEzANvLqAUtP7jgyXpUqlUr9dbrdb29nbHb7TBfhzowKMo+/nz5//0pz9NnjxZIBCIxWIq5IgYp8FgwMmEZiKYNhzsPrqBx6fdjcI2aA1AJ5nS0tLnnnvuxRdfvHjxYh+Tzht4DYN0KCpaS7051yUdANtycCHpCZBouQOsyNhAPvAmIdO7Sw+ySFbOLwS29yFkJo/ABGJHEkuk26DICcmg7kHgB4wsJUz5QXDFhbx/YuYpiUTCiNYOUhdf52H7DH6dTvePf/xj+vTp2dnZdJZTq9VIVbfXvbjO8zK7X2cL3ECYsxuWDF1iheHni8q1iaeCV2VzVx+O2paffqRSpja3tnVc56U60e74OLS3t9tsNp1OJxaLs44X+3JBqIzFSfILJ7LevXZ6doEZLJSgeowLVSMQicEaKonFBvlKj6BELDvrpQGksbhQF4KTJ3xIAA9EROBPPrgMQMwWIjp1rlqr1dISUheOK7q6uo7lFyBHM1mUbk8Suuz4EaVk4MZyueKyGzjyh11d3WVV8k2iM1Hbji1YdmhlbMHR03UXGjRtDMbpSN3W2dmpN1p/WJZ59NTFmpqao8dPenGFc8LT8XHG6lLUxcFCsZ7VFnn2IT0Opj9CUKAl1Qx+YanI/0ala1ToIfq0IIgNutZA64SozIcr8gwWeLBh3lglypPL5WazmVqbO1IL3fhrobgmzWJ1dHS0X/JDs5p0++u5FGtzW1ZhTdDKzJbWYXjZXRbm7OjoWLNmzdixYzEnP3Xq1KNHj145LVlcXFxw3T9qtfoKLbl8+fJbb7111KhR06ZNKysr67MlA3MyMGefITH8f2KKjToQ/Hz+/EdRacQ8INGHl+wfno5CRsim9w0BUfKecjbCxPcPS0WFDS9ukkcQQJ4If5Lte6j6WN5L/gXOvmcwLIyRQYWvhEVxuSqVivGFGvbRcObMmXvuuefmm2++//7733nnnZMnndvafdjb84ZfAD6t9mQ1o9GIVp2UXHLhwoXPPvtswoQJ77//fnl5uclkQlonpZgMPQTVz3bAYIUuLyUSSXl5+fHjx1fH7fbhCjyD473YCR4BO2d9t/mNeRvd5m+e9d2G179e9+qXK6bNmH3L7XdMfvJPf/p8mdsPO7zYCb4hyb58MOCEeQmFtUlFBSmhJZIg3CTiRAWSI95c4d9+TM3OP11dXS2TyaiAtpOuJ+2TVshN0Wg0jY2NIpHovgcfuu2O8Y/M/vsb36ybTcw4Z8/f4r5w++wF8B+LneC+EBix3lBWTMToULecIJ0Qc5PiFUh3EriFxUmCIB6BT47wrfCUs9WNJpNpiI1kcNhgHIxgmNVqNRgMeXl5M2bMmDx5ckREBMISaMaJpITLCjv3c6Aymw1ZC+BgpsLLNpvNbDZfSmSvr69/7733xo4dGxUVpVQq7Ws7HP8pto/BUKybt+XAnIjdkC/jAGbpywezABY7CRbJhH/ZA09yYT0MPp2EuAnwJzEIAHSBA0k35Gv2GL2QZTYm4KhcUo/sLVvwToRILBajPWdbW5vjN9qgjkCcUuioa25uPnjw4NSpU5977rkTJ05QfB15nNTc1x4AGOENOKi9M0gHp9ntlpYWq9WKkRUSxyUSycmTJ++7776PP/5YqVSiaKezFFJQmFOtVjc0NJw9e1awJ+vtiHQCW8JbnpjGQdXpm4t2e/fUoYJbJ1S7BiUCchmaipxyzMvPiYBVIYvMMBASEMHbHlyT0BrAYgrkHJP9w9JRPONkaTmNrLCKgnlABmkYD+CwSFhvb29vbm62WCwrVqwYM2bMsmXLEOOUyWRYFuakos0DaBBn2eXGwpzd3d0tre0mS8vRM/WCA+eid51YsOzQT9vzM3Iqz11QjhxGJ74I7MttRVmFmNEiFWZQGgshGScJlMx6l0gYrXkEQX0/Yp9kfRTvSTTMCN4JCyjkA6B7Hx4EPiTxG7FTAblaqFoj9n4QrXEESdlFND+GStHOMj4HcJ1dXV3bd8ZHRkUvXR5z4WLNlY9wouAUwpyVldVX3tLRvm1r7yypkO/aXfrDskMha3NW7DqxL69aqbXYmttHzoPmaJ1y2evp7OxsbW1NPXx+TeLJCxdrcvMLCUUbkkhA+wkFnX/MaYNCRlgqCFmHAD8b/8X0ODzO3CTgC/FFLA7UQPQCn0RCgxSHeQSDSAYtPGWRzBXWnK0SHcPwiVqbX/ZSnf1DuuyiAUlbWxumdGzkx9r7g382Nze3tLS0trYiAIqYKB7kWpuiq6tLpbWs2HVie3rJte57Q7a/FOZsa2uLjY2lGOekSZP27dt31XPdf//9lKc04F+++OKL3zrRiRMnbr/9djxyRETEpZgrA3MyMOdvDZ5h+xxTbFi2JpFISsvO/nPZ7jkRGd48KCUjiCaw6TG5BjUmJIYj4EEPj7MH9YQqYFCJROSSCBkJfHr/9OIK/cLSvHsFbyGe65VI8mQLvlt/gNaquHwYN2w93Y8TJyUlvfTSS+vWrausrLx0/urHAZhNBr0FaDKOWnUajUb7vL9MJmtsbExISHjssccef/zxHTt2mM3mPqw1RDodLdNE8aqWlhaTyaRUKmtqaoqLiw8cOjQvWjg7YJdHUDx4cC7cMWv+lpnfbZr57Qawk5y/+Y1v1j/z1jdjJk6+466pz8z9Lyso1is4wZsj8ATlRmJHFyKCxBxXCBk90FgjrgnA6RQRSC9leULW2XPn6urqkAKLirWO1j5XHVs0TETMD5tRq9XW1NR8//33kydPnjj9iRc/4L7+9bqZ364nOPGmN+ZtmjV/m/vCnbN+2AG2pmAHGA+cV4BPoKFw8vcIJqE54cISWqfALSAOi1qwYAU24yV/vWZ/k1QxZEYyfe4X9ZxRfT00NHTq1KmvvPLKwYMHKSNBpVJptVrUlrQ3rx1YZHzV7mA2uCEtYN/L9jC2RqOhdCupVFpXVxcSEjJ69Oj3339foVDY969jTne0cRCHsNlser2+qamprKyMv+0gUgHQRNMvjDhrBieinAZWDaPspC8/ZU54ui+x3kStSFSPxFpjTJz5ETkN3Gvmgp1oE4Ulw5h9Y3GS/r4kvampiYE5u7u78Q1Lp1Cj0bh48eIpU6a8/fbbp0+fRoxTJpNhzYROp6PzCS0kcroXBx2KI/wXTJRQvIeqZUilUolEEhsbO3HixO+//x65NZhecfC5BcdzR0dHc3OzRqMRi8Xnz58/kH3kn0vTiRgD4W6yBX4hKf6haf7h8CEWtnoEQ+D0C9mILP1AYpGs3Xz4IPhPjpDUq8kGJRc90g5haXMJFDrn/7P3HuBxVWf+MNUGFwgkhLpgsiTff5csBAKBBLC6Rg0TCIEsWfqSGIMXY6tr1Nyb3JssV7Up0qhLVi9WsXrXqI6kqRpNr2q2pO95zzs+mcjGOLYljWTN40eWRqM7955775n3vL8WnuwZnrzmUGZ3dzcu8Ra0zrZ2i2EHADXrZrM5IyPjkUce8fHxEQqF1P1CrVYjXRJPn80SJW1tbKd7f245zDk5OXlpfIIvUJTU9J1KqveOyA49XHiUXZ17oUdjGLo0fltAMHhHjI6OGgwGzEo/kVLiuTHZheQCuAB3FtBNOgdicwyrL0c/yN5zId62+DILm4T0xxAawQnTNRhC1kHT6Q+rUQaTxAdYGYbjdOroH7ebXSKXyzGR4XZw2ugR9O7ec3Dr9oijkSeHr+lG2y8UIcx5obJ6uu+1W7v9rn4V+1zLnuiKtVsztxwvictsrmqRzIqM7NYe1/zbGsKcfWLlMU51dVNvcdkFEngEjFK4kYFMD2WPG4E88VeW25zUSF4bUxgAbbKdAlkOfrGoBcJYN3TUsPx5SKITEW5aINJgCP1FyNMliHM8rVwqlVIG+fxbX1iv8bEUwcgho9Go1+uVak1zjyS3ppNT2BCX38gqbEk835pX093ULVFptAaDgfroXLx4ESWe/2pLZ2JysrlrYHNkSU2rdFau4Skw59jY2LZt2+677z4EFFesWFFRUXE9531aYc6JiQlHR0fcJRcXlyl2tThuCzDnAsw5K3fQtd6UUn3VaghYrqmt+8tmrkc42Mzi3A0uZ0QOhatfRDFxagYlAYmPItM6FG2eZE5Hzi+0v4OB1YLbcQ3mgqkR0YCSFhuHkIUhQWr1/szbgatyrdNgG79TqVQXL160jX1Z2IsfHAHah6VIp8Fg0Gg0SqXSOqqzubnZ2dn5/vvv//LLL3t6eigX+4ZLgR/coVv6i0uXLqFxnEajkUgkfD6/vLw8LSPzr1vYzgHx9t5nHX3OOvlGO3qfcfA+9Yc1h9745pDdd5H264//4e97Hn72hbvuvveJF+zeXLPfwfuMo280g8lxD0kgNSjPHSzUOA5+cUCwRRtbMkGt3Z9WU1PT1dWFto1oDDLnYH68KmiSHEb9KZXKqqoqOzu7JUuW/OI1N7t1kXbfHXvjm0P230c5ep+y+/4EZJp6n7HzPmO34YyjX6wzKbWxWQnTPhpdXtZuInkZ2ItgyoR2tcRfBQp6YLG4BrEzytuoN920jqF1ZYw3wtDQkF6vr6+vd3JyWrZs2erVq6nuamBgABUJFJPAJjWtiW/pJbywsVs/AtaTHopOrhSyy2QyDofzxBNPPPfcc5WVlZgiRsEnm23OToE5Gxoawk/nIr3AYpURSGy3mQkelw3TnEk+riuTEIrDkjzCkvCeJWr1eAffOGeiVgcElBh0E/8Mi5MttuewkLNwjZnczyPShUKhSqUymUzzIJb4hq8/CnSNjY0NDw/LZLI1a9YsWbLk73//O/b9kTMhl8upwolmYCNF73rWoje8ewt/OK0jQCcZapFtHdIplUp9fX0feOCBs2fP0mrK9j9BqFhco9FIpdL29vbS0jL/o2kgOyDaTUf/OPRjxGmEEZKIcZvu0HpjgcgAZJ2xmCwFck+S5otfkQuFbTtImIPZhuO1MQVk5UTo4BaSEJdVIRAIBgcH0bDnNrxNsFa5ga/TerXjxq016xcuXFi6dOmqVav6+/spOUypVKIjNxbGt+Hpm4GzcGNvMR0w58TkpHloTK01VzaJD7Ortxwv8dmTsy/mQkGloFuovh1wTpwwR0ZGdDqdTCZrb2/fx8qFRD2y5EEpp5M/9LIsVLPLMgAqBgCAE01ogRSSiDa2UIMR6AIXUIyQBJdAWI2iP61TIKxJwduWsEvRxsM9lOcWnBh8Op86ft8OThvj4+OJSamIX57LybvGKnJ0dGzbjj1bt0dk5xbc2B008381PjEhkutYWc2+ETnMA/mbIksSctt6pVqtYfj2YBHM/JDZ775QAAAgAElEQVTf1DuOj4+PjIyotbr9MeX5VYILNXUwA6Bekwn4JSGkstxJtYNwJlrmOAeQXLZgruvlCE8smbAN7haa6B4Ccb9EzE3crTFBAEBT8PmHDjyT40aQ1OTCWqlUqtfr56Wak3ZyLl68iMsuNFMRSgeLG7qZZ4ve2ZSEA2KJRQgF2RXS7LzCkwPPlBTW9wgHlEajyZrcjJu9znNvHh5LKWwPPVw4oDJe55/c2pdZw5yjo6NHjhyhosk77rhj3bp11/l2L7/88hM3/fD397/y7S5duhQcHIwY57/927/JZLIrXzM5ObkAcy7AnFe9MGbzyfHx8bGxMbPZjMaG1TW1f91usR13C06EMisElARE1pPgGQa6AcuaNhS8O97elIbJySDkJ/WZIyioLPWce1gSBMAEsDzCkpwCWG+tP4MkOKS5WcQHQZzvj2ZjGTc0NHQ7sNVm83wvvPe8GAHaj6PUJ5PJpNVqVSqVQqEYGBhAgKe3t/fAgQOPP/74Cy+8cObMGZ1Ohz1ZSsq2wdY/Nv0RpaNpUiUlJSfZaavCwIfW2T/OyS/W0TfayfeM/foTEDC57rjdd8feWnvk96v3/X+un9/3wM+WPfJv/+n5d7vvTzj5xTCYkBzpyuS4MiFvEvEARjCUqi5BnC8jUrILzre2topEIqVSaTQaEReZW93qKdfD0NCQwWCQy+VhYWFPPPHEiy++yNy8i+Fzwn591JtrIdPUwfuUo/dpB5+zroEs1yCWMyCaLFeSx4nuc+6hPDRTgjw/JjBU7H1icBF+WeUPNEaae+oWQtxXAtlrDmbhMOI1Nk13G5aw1ka1JpNJLpdv2bLl6aeffuWVV7hcLrbqZDIZYhJarYX3N8Vbcm6d6GkazzmxWXqRI6ptMpn0ej3FISiknZub+9prr61YseLIkSNIgMU72mYBiSthzt2xubiQcwsGZgayyvAZvPsQXSBJeJAaAMQyAnwi0uDoH79yAyTnwbqaeTkyCpJ0ieUGESVYEc6AjLz+aNbtDHNSBMJ6SikrK3vjjTeefPLJyMhIoVBIdZwU46SG8HPFv3RO3Oazu5M4ydCyCrkUVDUuEonWrFnz85//PCUlxWQyUeDnGq3Y2T0cqk4eHR3V6/XokFFVVcVKOecBHmtJ6Hrt4BuD3TfidA0tJEYwlxGc6OAbC4Swy318+tGPLDFKoXBlcpFRgatFeD4ITIDcQhI/2ZVa3dCCSnGz2XwbUijwirpqytSY1QON1y6RB7Vfm9aLhxZRaIOhUChee+21559/vra2ViKRSKVSJIdptVq81OdiYTytAzjrG58OmBMP6uKl8R6ROjmffyCuct3OrI3HiqPTGs/X9usMI/Ne00l5IVqtFpNTdsfluASxIc4clo2JAEySqgz1WJQxBr8NTQSSRwhY2hIMIw5SnHwhnw/nQwqHwGsCWA5+caCPDwavWvyH61P6IyMk0fd4rkgk0mq1GM9py581t+qO0OsNBw9Hbt0esXf/YYn06v10fK8Dh+BlvKTUS5dmIVHvXz3eiclJoUyXcb7zQHzlms3poYcLT/Dqztf2G4fG5v1t9a+OlY28HtWcRqOx6EKHT0ROZR3/3U2QzutBpNh4n1orL2lbmxGcsGpLOjbP0VYHV3N2PjFvrT/j4BvrjAm+SJ4g3DI0RIQZACXjENDLdgliVzW0zFchkPWiHhWcer1eIB44mFL5eUQGgxB5cdxwYnQhNpNAqSd6eqqt/3h3xt6kqg7hwJSy/DrBTpXGdCal4WB85WylUFOY87e//S2TyVy0aBECivj1wQcfLC8vv547or+/X3DTD71ef+V7paWl3XPPPbg/hw8f/qGPoQWYcwHmvPLimeVnEOY0mUwqlaq/v7+6pubTXakWJQGQdtmo2nEPTfQIIzZHAHmijgeYJljn4QREWm/x9j4xgIOGJXmGgWs5LIwD2a7I/2VykcMCjGD4nrgeBXFCT+ctwJyzfB0svP0cHIEpLTnkQFkb2CIju7293dHRcdGiRZ9++mlfX591cxZb/zZlvIYHhYJOrVYrlUr5fH51dXVubu6JWM6fNoNcwC2Ey2ByXALinP2i7defgoDJDSfsvot881uwY339q50Pr3j+rnsWPf5fK9/65qD9htNOfjGuQWx3WHxC4pSjfxzgc4HsD7cmpWYX1NTUoKma9UpyrqBftH1GO7Mmk0mn01VXV//ud79bsmTJu+++W1hU9MWWGLt1x1f+37E31x512HDS0ecMIzDeNYjtEhjvDHnJcTAyEBIDDERsYjoBcAItTvwRJ3nS6IT53ykAfGvtvKMvr+fj0ePOLSSxqL5Lq9XShM5be2PRshipfyMjI3i8jY2N9vb2S5Ys+fDDDzs7O9FvDY0laXieNdfvh6q0W7u3C1u7tSNAr3YqZL8S6UTX7g8++GDRokXr1q2jUZ0Ui7q1u3TzW7OGOcVicWNj44mkfJIcDJ5m2FDDwCcMbQJhASERuwZxPTeCLaSjXxwWY2ie4RTAsvOOXrnhLDDP4B9wO9xDeS5MsNCg3TRLxEAw18mftSOu0Dqb83a7O3BWocImvV6fk5Pz85///KmnnsrLy6O518iZUKlUlDOxIAq/+evf1rZAP2JGR0fNZrPBYFCr1RTp7OjoWLly5VNPPVVZWTlX4J+JiQmMmkPPnsbGxuLi4oDIDK9NKahSoua06GjtyoQ5AT/xSRMf1OQkVopDG0wIeTKIaRuAo0wOEYNC/YCic7TF3sUq7urulslkOp2Osuts7YxP0/7QWQUdSkZHR0dGRoaHh4eGhsxms8lkMsLDZCLf07ip0dHRGeDlWF/kw8PDAwMDr7322jPPPMPn8611nFqtdopweZrGamGzNzAC0wdzTkxMDg2PDaiMxbV9u06Xhx0p8t+Xd4hVVVrb3yfR3sCuzqE/oTCnRqMRi8UtLS27Y3MQpMQ0TdBvBbChJxbKcw3iYL4AdrpQ0In0MjpzUv2WB6GVQHIKoduCPJTJQYyTSEUt1jhYmEFzn6Ad3seyhUKhWq2+rWgizS2t23fu3bo9gs1JvEY5ejY6fuv2iLPR8aOjYzZ+jU1MTAwojaxzzYH784MO5DMP5sdnNgskGoXGfGl8rvQbbHyMb/3uUZhTLh/cFlV8JqUu4HiGR1gSqLSJXa2FYwoe1DzwsAV+WIJFjhnEdfKPh6VZGM8jLBlXbUQ7lOjkD/0WMLgGxyyQJ7oEgjcPg5kAKZ6E9OAewnMP5f3PrnQ+ny+TyeafbTXN4BwdHcU2jnxQkVHW8udtqbDgBdUsSOFJjcoCDDjIEoqHS2BqKgnKeKK2f2cjL+l8q1KtQScnNK67HqSzvn1gw65zGSWzFvFLYc67yQPRxIceemjJkiX4/aOPPqpUKm/99X19WzQYDK+88sodd9xx5513urq6XmNCXoA5F2DO67umZvBVU2DOmpqa1XtTQTcQloScNex6I/AJ03QgqOzRlhaMCmE9DAkuDDLLM4ITHHxjob9GcjqR2IIUFchShuBl4KfA8/6gymeQH48lly7AnDN4zhfeav6MAO1W0L6/0WhEWefg4CCVdXZ3dx86dOiXv/zlr371q/379yNBewrqQxUtsz461HnVZDKp1er+/n4+n19RUXHu3LljsbwPN4Fw3IE4rLoGxjv5RdtvOLVyXZTd91Fv/d+xP6w59NbaI299e+g/3P53yUOPLXn4sV85f2L3/QlH32hn/3gH3xh772g777NOAfF/i0hMPZdfXV3N5/MlEolGo5lDpmr0ZOFYUddWo9HY19fn6+v72GOPvfLKKydOnGhsbEzLKXJYHwVGtRtO2a8Hl1onv2gG0JPZxHU8nmTJwPfY2YT0TZjnIVwZC0oX8oxzINveB1Ri6F+HL7ZE/RH3Ffg+JJEZXaJSqeia/JYs4K48XprEKRaLAwICHnvssVdffTU+Ph6FCAhIYBinTqczmf7Jz8QGRcyzftPNlR2YMuMNDQ0ZjUaNRqNSqawtuwUCwd69e5988kk7O7vi4mJbNrBFmHN4eFin00kkkpaWlqyCEtRuYvWFBALXIK5HWLJHOPjTAmYJFDSWnU+MMwbmhYCMAO9cN/I93Lkk+cmFGNjiUhAXiqRgI5aVwQme4Slvb0zm5FbiHGg2m283Rw28oihtQqlUfvvtt4sWLfrss89aW1upSpjqwnE+QV8Ea57QXLmDFvbzR0eAXhJIo9Hr9XR6kUgktbW1v/vd71599dXOzs5/tZ/yo289HS+gRAqdTjcwMMDn8y9cuJCUmfvBZlAUkcVdInysE+0mrvJwmYZCJQylcw/leRB/bFfCXnX0Bx0Sg8jNcUnoEgTuDvgybPH/9/bkipqG/v5+hUIxY4nd0zGA/9I2aa2C0nDr2kyv1wtlisL67rN5jbu55dtY53clVO7mVUUkVp7Mbsys7OoUyg0G45SsKbrBf2k3rvFi68/Q4eFhrVb7xRdf3HfffWw2GzFOmUymUCg0Gs1CJOc1hnHWfzV9MCce2sVL463dgyd4dVuPl6zdmrE5sjgpn1/TKhkauTg+MW/9a+lsqdFoRCJRc3Pz3rgcRkiCR6glGsAi4QqGFABsr2NDzJXJfXszdM+c/OOJCB4ym1yZXAff2LfWn4XZlURvIgTiFgwmHNgooxRS2tO3UNCIYol5Mre/v/92gzmHh4ejY9loXVtdW/dD91pySsbW7RGHj0ZdO8Xzh/58Jp+XKY35VYJDrMrVG9P89ubuPF2WXdZtGh6dLQHZTB773H0v6neoVCobmrsOxFawsxtWbUrGpRnBOFk4OXiGw5MWFDOA5eAb6+gfDzcyE+YBot5muzITACK12PtzIVskmKjDA0GeiLc/MFzDwQfRMzzZa2NKWHRBV1eXXC63bk/N3fHEPceSBulfIyMjZrNZo9EIhNKt8aWrNia7hwG+i5OnazAXBwQjFQhTBFKTcCVLZ06i+GTjHMs8W9zZL7PmIF674TM6Ns7JaQ06mK/QmGdrYCnMiaDmHXfc8cYbb7S2tkZEROAzd955Z0BAwKzs3sWLFz/99FPcjV//+tdyufwau7EAcy7AnNe4PGbnV9Ywp1AorKurCz+V6R7GcwvlIV0XpTw4p2MTzULjZXLf2ZqBMQMeYUnuRLvpEgTNcTufGLsNZx39QTWFPF/3UB6WdLhsBj3W5dhO50B2TnkdOo8vmNbOzkWw8K5zeQSsexYjIyNDQ0NXNbBFWaSLi8uiRYt+97vfNTQ0GI1G7NUieXxmnLKuZ6TpEVHrWpFI1NbWVlFRkZ+fn5KS+tUONgO6/PHO/rFE1hm78nuEOSPf+Obgm98efuObQ298e/jNr/c98svf3nX3PcsfXfHG33Y5ep99cx3gnW5Mtu+hxIKCwtra2vb2dnRUo2YX1y6Jrmf/Z+A1dIioiBMrxYKCgmeffXbZsmUbNmwQCARtbW11dXUH4zId1p9wWH/SyfcswThj7L3POvnHuTI5LoEswlMB6QYIN8k63JK+Sfgrjv4sB79YJ79450AgpoBvbQCLzN4JzoGg7cCPA9fLa36XIM5HO9M7ekXIPcQkp5sfEHq8ly5dwuA0s9ms1Wrz8vKeeeaZZcuWrV+/XiaTWWOcSqUSdZzYNLS1i/zmx+R23gKi+/RiMBqN1F7SWnuXn5//2GOP/eQnP+FwOKgwRkWRTRnYUvWAwWCQSqVtbW3l5eWf7UoFnhkTEqGc/FmuTK4HgRlQ1oksV3IzQkMN221QZRGVAKyiCRMWIgMINRjvaOQLY6aUZ3iyJwFNPcOT/7IjreBCvUwmQzn7bQJz4pRiTSgeGhqqq6t79tlnly9ffuDAAUoSov6NarVar9dPgcxxxX4734zz79jpxw1mBSF1DLPPEQeqqqp69tlnX375ZaFQODQ0RGeVW8LpueXjSdPmjEajQqHo6empq6srLi4OO5oAUeXQM4I5hHJYAb+EYgAmH0A9kUhBUjndIFAKqgXnQLZHWJLXplRXYvDjCJ19yKnCP3QN4ryzKTkp9zzlkFHHRdscols45lMsB5CIo1Cpy5t7faIK3IMTSNUENuP2YFmZ6BacwCB6Dhz2T3enp5a3D6q1JpN5eHiYKjtv4bjh9XDx4sWRkRGDwRAaGrp48eKkpCRrX261Wm0wGKyr4jlRGN/C82j7m5pumHNiYsJoHu2TaQuqBLtOl4UfLQ7cl38grrKgStDRN2vKkuk+LxTmRO17c3PzEU4u9LiAWwa6dlReglMliTfGGE54kkyJ4F7G5BJGSLLFYpHJdSUxnI6EIYqWOWh1ZnHpIFmeFCPBJ1HXxWAm7GYV9vX13W4w5+TkpEQqQ0HnwcORarXmque9oKhk6/aInbv3m0ymq77AFp6cmJiUq01xWc0g4gQdZ0FcZlN7n2JAZRgHHee8ZQzYwuDf5D5QmBMJ9zGplccTa/xOFDJIaqYreOHEOwUAnIl+OZAh4s9y8mddpqjGgX8YsRCDYBGi9QTskwgQSV/Fot10Y4KmkxGc4LUpxTMMVmfuITzPUB47t0ogECgUCrPZjHXmPLhgsMDGCsRsNut0unaBaPWhHER2UVXlEZoEU+vlVTCKozw3pqCFJOYiYyFKQkxh9EgEQ7xrEPeT3Rm9EgCGMVcCS7IfuhIUmqHD7KpDrKofesEMPD8F5nz++edFItHk5OT4+Pjvf/97hBiXLl3a398/Azsz5S1iY2Mp+BoUFNR2zcfKlSvxxU8//TR9IZ/PNxgMUzY7X39cgDlt7szSkg6Zaw0NDTEpOf9QEhDtJoo1vTalYpQLmJJDvzsOHQtJT43nuREk+S6BHI/wJM9wsLd1xiCoy+a0l+lpsDzGWcw9lOe1KfW/d6TVNc1b53GbO98LOzRPR4B2LqxDvFHWKZfLrTu2Z8+eff311x999NF169a1tbVRoRvFgWyhb4uHg9a1Op1ucHCwt7e3ubm5srKysLAwKSVt54nEv25mQX0ZxHYJiIeoTr8Yhw1gYLsS3GuPvLX2yMp1kW+tPfL829/85KlfLV72k6dfdX/9y+2fbYw+EpOcm5tXWVnZ1tbW19c3ODhoneFny0Xkla15zDMwGAwVFRUfffTRgw8++Mc//jEtLa23t7erq6u5ubmqqjrgcOLK76Mcfc44+kY7+sY4B4BLrVMAijhJK5M0LgEvwWV8IItkQnDAVgX8bMGJDqt2ss6HH0n3E5BmsLMLScSqHT4LghPe3ZxcUteBkMlNwpzWx4s5VgjkGwyG8vLyv/71rw8//PA777yTlpYmFoupUS0VcVIgH91LsE9ny+d3nk5O03JYdKWEsDdGdarVaoVCQWWdMpmsvb199erV99577yeffNLV1YWYxJTrYXYvCWsQQi6Xd3Z2VldXR3LOYXgwmmo4+MY6+MYiv/Uyj5gwhYMTkHng6AcOSBYKGvGdxooLSzWIlSLYJ1JiYa0YAsnrJIQvYc3BzFZ+u1wu1+v1w8PDN3nPTsvJvtUbnTKxjIyMqFSqHTt2PPnkk2+++WZGRgZyJuisMjg4qNFo9Ho9flyOjY1RD+TZvXhu9cAsbM8yAniFIN98eHiYIp2URZGUlPToo49++OGHKpUKMTzqkWWDg4jdOpSMi8Xi9vb2mpqa7Jzc7w8kMphcACkDOQwm9Ik8wpPtfWMdSWgcqsYd/EhCJ2GmYqAU6sU9wpNp998pgOXoB2HAbqTZ5BaSuC06u7auvre3V6FQ6PX6kZGRORGfdpPnDhtqSD7DiHTZoDK+oGnNoXMMEulnKaUIFuIcxGEQdBmfpHbijGDux7vTD2fU9koszc0pH1g3vJNTVBQGg2Hbtm333nvvpk2bZOSBPv9KpZLyORYmuhse7en+w+mGOUmbdWJ45GJL12BUYt2W4+e/3ZIRdqQwPqu5tE5oGh4bH5+HCM2Unlhzc3N0Sr5biEWaSbP3cA5kwJKHSLUC2Q5+cfY+/5gqPcKgUeYSBG7eWGhhUx6D+hAxRXIJiXkC9RIQR6CPn+QeBlounBZiMstvQzUn3jvFJWXbduzZtmNPTm7BVe+mmtr6bTv2bN0eIZZIr/qCWX9yYmJSojDkVwn2x11YvTHNn+g4c8q7DaaR4ZGLs757Cztw7RHA2QA9DyQSSWVt8+4zpSfTGv64EULZ0M7Q3ifaYoVFRJnY32aEJKAnLZJQ8X4HNjna0hK8E5hkgQCIeoaDhBHWd2h+GwSWrYyQhL9sSymvaUTPalQBXcMv9NoHYju/pSt3lDFoNBq+QLj2aI4n8fTGsAMwK4IQJRDFguk3sYfEAumf+lFMooK9XERhNjww8gNYn+xOb+gUGY1GinRedaU2MnqpqLqPeSC/vXc2iTsU5rzzzjs9PT2FQiE9XwKB4Nlnn0Xs8P/9v/83ODhIfzUz32zevJnCnDf2zT333JOcnDwzezvr77IAc876KZi6A9aTuFQqbW5uLioq+vOWZGxnEwkmG+XzGKvuQVSbTgHxjkRhgGUc+haiySG2vKGqIzHsDDAZh3a5MziPg8WHZ3iKFwRKwVePsKT1x7Lb+O2Dg4M4H90OLbap52Dh54URuBUjQBtzVOGHfvdTWv+IBoWFhd13330/+9nP4uPj0cPWppSdtBJC136tVjswMNDT09PS0lJdXV1UVJSZmcnj8XZGsf+0keUSEO/gEwMAnn+Mo+8ZwPO8TztuOGn33bG31h6x//64/XfH/n3l+3fffffy5ct9fX0zMzNLS0sbGxu7u7slEolarUbal01pvKyvCBwNa5UAVTQaDAaZTObn53fXXXc9/PDDZ8+elUqlYrG4r6+vs7Ozubm54sKFbyM4b60/ufL7k06+Ma5MtpNfPIRukhqdQdAOquRwhIV6jL1PjCORb2JpDp1NfygcqabfLYTnABRFtGaCRT6Z5y3BCa5BHF5xA/rW3pgyDJtx9Hjp9Ww2m41Go1wuDwoKuvfee5cvX37q1Cmq4MQOnXVyHhVDLAgRrC+n+fE9vUjQbnR4eJhOd0qlkqIRON2lpKQ89NBDy5Yty8jIsDU1Ht7dGASoUql6e3sbGhoKior/sgUWuu6hSU4B4NFt7xODlhhOASz3cGJ8FJoIKGZAvHsIj7wS1AbAI2YCCwGJw1i2OQexQbsJrhuQHwNLaKJFwAV5XGapQCBQqVRYg82DhfSPXuH08wUtJSUSiYODwz333LN27dqBgQGJRCIWi0UiEcKcAwMDKpVKp9MhbYJGDF512fyjb73wgrkyAniRINKJmjytVqtQKOjckpWV9cADD7zzzjtqtdqaP2ELRLEpg4xcCpxklEplf38/2mOkpmeu2ZMMokwLIRWWaaQ24LgSKTlp68eToG6uW0gCg8klDj1ct1CeV3gyATWRugrxSLj6c2Vy1h1Kqa6ubm9vx1ROhIHnN8xpfbXgh5FGo+noEX21PxPwY7CzI0EwTBguEn1KovhCQNyJhRbWV0QmgjQyllc4L7Oyw2Aw0oCJm6lkcA8R8EY3Zh6Pt3jx4m+++QZ5kLSC0ul0qB2xZeR+yhV+G/44AzDnxMTk+PiE3jTSI1LnVfbsPF0WTnI6d50pSy/qqOfL5t+w054YzebknStaFQb2s/gPJsBAmOswa9M9DMxsHf0h8oPBBENFYJFCjx5iBWBeDYa/RemnM0lrsqTKBYGhJfTENiZ7hadQqAMYaSG8VVvSVm1J99qUcr6y7jbM5sTrymAwRkadRutaqfQqF1tHZxcqPqtr6m3zUuwVa04m1TEPFqCOk53d0ilUDqpNly5NzEuWgG2ehRveK0pC1ev1AwMDnZ2dOQUV+2MvRKU3QLQ5ExZczv6g8CGRvdAkcQtJJJRxrnMAkfQQ9hgjOIE4XsBnPUwjQWDVAzwGslhDbSIasboRvBNtFLfG5HV0dIjFYvQiwg7VDR+LLfwhXXlhZ0+lUvX0i7/ck+lEqPYe4QA9INYLHDuISYpBXJNgCjC7OvrF4kIYBpDMn0g9Qedw0IASo2DnQPYnu9PkSsuqFtlaV46AyTwan9m0JapEZxy58rcz9gyFOf/rv/5Lo5mqXN+7dy/FF5lM5jUWnkKhsPemH0NDQ9YHvgBzWo/Gj36/AHP+6BDN9AtwEh8eHtbr9XK5nM/nl5WVBUdCyBNErYBqh2XvE+PgF8sgtRo2xJ0DIdDFhWg6AfIkqnzI3UTnQ5zHyXoY3cnRaxuzPL02pWKQJzbHjyaX9vT0KJXK+STJn6aziN2T6/w6TfuwsFlbHgG8NjATiCJher0es+us0zplMllRUdFnn322dOlSJyen+Ph4jQaCu2k/hWJ+1/hMnb6hwAOhIZ1DQ0M6nU4ul4tEou7u7sbGxgsXLhQXF+fk5KSkph2JTgw9wv12N/vjTbHvBZ99O/CMu+8JT5+oVb6RfwmK/HrLicA9Jw9GRUdERHh6ei5evPi1116LiIhoaWkRi8UoNbBZPIze7NSlk0Y9mUwmkUi0b9++3/zmN0899ZSPj09DQwNa6kkkEqFQ2NXV1dLSUnGh8ottLPsNZ+y9z7oEsUinEjqYuAKHzlqgpcvmGAAiToQ/kXeMmVvwlRDraAKNKynNiX0TwJ9kU6Rkh8R4KOJPZlZhHNcPFZfXuHKsTz0NzEMrZpFIdODAgZdeeunxxx/39vZuamqiUVIDAwMo4tRqtRgoNTIyYi26usY7Lvxq7o6AdXMZlb40nJhqOhHpLCkpef/99x9++OHVq1fz+XxrWOJmesc3P3R04Tc0NISmGq2trWXl5RtPpnuGJ7sRqzQMzMOv2GtDvTUuhqFLDjQyaKajfTR2zJEYizUbvhL/FvPzsNf29f6MxqYmoVCI8//Y2Ng8hjlpo5+mwmg0mgMHDqxYseKll146ffp0b29vf39/X19fb29vX1+fUCiUSCQIc+LEQjFynNlm98q5+WtvYQvXHgF6b2IUtMFgUKvVWEdJpVKRSHTw4MHly5d///33RuM/sCjbJGtSQadWq5XJZAKBoKGhobCwkNHPVIgAACAASURBVMVLX7s/BQqDEGKbRqKkcKrBNZqlqQSyJNAcEJk4ONyiMQ8KxB384hx8Y0HcEMDyO5pWVFLa3Nzc29urVCqtCfXXHu25+1s6saABCV4n7ILG97ekuIcluYUmuofw3EN4rkEwS7uF8DzC4UlXJsg4IAY1COsujguTtEHJy9BLwyOYu4dXKR6AsPObJFjgYp961Z4+fXrZsmWrV6++EuPEi5lKSOfueZnfez4DMCcO4MVL40bzaFOnPIpXtzXq/Ddb0gP25UUm1GaXdRuHRi9eGp9P40x7YlqtFqNecgpL/2cHWJS5MsHVximAZe8d4+AXZ7lbCfxJel8J4FcJyygQaRFvW7idLfQFgna4BJKVVxAX4/fcQ3guTI47Sf0kXjgW48rLvh3cv25PxoUquuPM7/LsqldRY3MLwpxRJ89e6UwrlQ7s2LVv6/aItPSsq/75LD45PjEhEGvSijq2nzi/emNawD7I4yyo6h0aGRu7eGkWd2zhra9/BPCTfWxszGQyqVSq/v7+hsbGyPjCKF5d8OlSBknPJWVPPPa6nSFNCe59BOfAjIcgoG6hwIqgqm4nEtuJSzAASgOBDwFEsdBEz7BkkjTJ+StEm9cLBAK5XG4wGKjd2vXvvA2+EmdXLKdxgt2bUO7KBHtIl0A4fJwwLcFJhFtPW1WIH8M6l4QmYOsJ/YHdQ6EutfD1YVMgo3cOZPufKpDK/wlcmNLPrOMPhB4pzCjunF3raApzvvHGG1eeNaPR6Orqikjno48+2tLScuVr8Jknn3ySAqI3/M3XX39tvf1z5859c92PZ555Bt/3wQcfpH+0du3axsZG623O4+8XYE6bO7k4iaN4XKlUdnV1VVVVxSRl/3Fjokd4snsoDyFMiGcjrkQuQRyvTSnuIRDeibaHYH0WluQRhumbQFDFXjmhpMGchQpO6pCGa2lMGHYL4ZVV1/f392s0GprdYnNjZAM7ZI12WIucLl7xsEanpkzoNnAcC7swEyNAe3MUErPOrrPu/kskkurq6pdffvmuu+56/fXX0cN2aGjIGvabxU4uXvaI2g4PD9Mmo1Ao7OzsbGlpqaurq6ioKC4uzsvLy8zKSk1NS0pOSUjksTlc8o/DZnMSE3kpKSkZGRk5OTkoA33xxRfvuuuuV199taGhQaVS6fV6ajqHN5ft3Di4P9YBctSlNjs7+xe/+MWdd9759ttvt7a2oqiRwn5isVggELS2tlZUVn25i+fKhAxO1yA21NOX+YboPcsIAa4x4SPHA3XusmoTycjAQb78W0ydwRdjFoUjFPQk15O41VnMbAPZ+7jnsTSnYRLXOaS0XWgN1aOSpqSk5Je//OWdd97p5eXV0dGBR4oIllwuVyqV6Co5pd2MV+91vvtM3JwL73GrR8D6mrHmdqCKHXu4FP6PiopaunTpE088kZubaw1Z4efmrMx1dJYbGRnR6/Uymayzs7O2tjY1M8crnAdrP2D3g3DTwTcWe2cYBoPfM0JA+oNSKo8wiAxA9QDaTiK5GM2lic4ACGoEPYXa7O3QRF5uBZ/Px3D04eHhG+Al3OrzOV3bw+uEApzDw8NCodDOzu7OO+98//33+Xx+b2+vQCDoJI/2js4LdS0F5Q25F5pKatorW7o7+kRKks1pMpmo84E12LkwyUzXmZvV7eJHMI0RohnAGGQolUpPnTq1aNGi7777jhoaXyIPW7sesIqgDTuJRNLR0VFZWZmfn5+ckvp/e6A17xTA8iCyb+wo2fvGEvcwsA4jhQEIOt1Dk9xIUwnpTS5BHDC5hQxvSPsOjUopKCiorq7u6uqSSqW0Oz8PhAjXuAxphYZlqkqlOpRaDfnH4cke4UlYcbmF8iDOHALRSeJpIJsRkuC1McUtlOcRmswIBRdxIKaQPCoEmJ0RFGFy/u9onnQQvJFHR0dxzvlXry5rjNNsNhcXFz/44IMMBkMkEslksoGBASyiFjTr1zjLtvarGYM5ycUzrjeO9Eo05+v6D7Eqt50477s3Z0vU+YTs1tJ64djF+eNei3cKFmMDAwMdHR0VFy58dygdUpY2pqAqC5MCUJaNlrOYEYDoBYM43EJKXwALazNswVNvaiSIIOaBSZxgsAGJyCAFcw6EuRTlTduic6eUZ//qjW9rF+0N7A83MXnr9ohtO/ZU19RN+XODwbgrYv/W7RGRUaen/Gp2f5yYmKxpkR5hVwcdKIBIzoMFnJzW9j7FoNq4kMc5u6fmX3p3umpAw3+pVNrZ2XnhQmXwgXOxmU2f7EpzCQT1oXMQG3JDiIzbsl4LYpO8XqAuMZgJ7sE8t2BgOzkFEWq4PwvIpuHJAIv6QXPGKZDlEsRmhIIRrguT4xnKO5VSzOfzxWIxmoXc2Of+v3SwM/Di8fFxrKUxJz6vssUjlEcaR+AZhhMm5dPDM4Es5HsxmAluoYlOJEfJQq2DbIV4qul08o9fueGsnXe0SxCH5nd6hPJ4xc0YSnXlAJqHL2aVdgUdzB9UzXKy77VhzsnJSYPBQCHMZ599dmTk6tpT+pobxjjvuOOOr776asqVQAGIH/3m3Xffxbd+7rnnrF88ZYPz+McFmNPmTi5eiGNjY2azWaPR9PX1NTY25hUUfrs/lWQDQPvbGeU+pJUGUSKErkKk99CAQ1YvFnCoBKLNblT2OAWwXYJAvA80DSbXHSgtEFrAYHIj2EV8Pl8ikeh0OuqgbXNjNHs7hGeH4ppjY2Ojo6MjIyPDw8NDQ0PmKx4IUI2OjqKMyRrynL2DWHjnWRgBWpxZG34aDAaUdaLxGu3TCQSCw4cP/+EPf3jooYe++OKL/Px8g8FgC8pOev1bG8fpdDqFQiGRSPr6+lCwWF9fX11dXVFRcf78+aKiooKCgrzLj9zc3Pz8/OLi4pKSkrKysurq6oaGhrq6ur179/7hD39Yvnz5J598kp2djUFENqJknZyctEZupigaBwcH2Wy2l5fX0qVLV61alZCQQAE/9BxTkIdcLu/v7+fz+RWVVV/sSgKvOX8I40SQ0jkA0A53XFqDcQrM80SdiXZqlsADaMCRvASy5LYkdCI3GenGaMNyOU2Bg4t/pwDWTnYJutVdJ8x55fFSvEqhUHC53FWrVt17771eXl5cLhedJK0BTrVardPprOGHWUStZuFuv73fkhbTuILCKwejOjUajVKptCZ2yGSy4uLi9957b9myZV9++WVTUxNCVlS5MvNaRtx/nOLMZjNaSra2tpaWlh6KSWEEAMuV6APg5nUKiIeKK4DtSux6LLct1mZANYBmmQuTA71yclNDGz0EzGwdfJGpFod3LrqoBUSdq2toEggECoUlBM42hWg3eYFP+RwZGRkZHBzctWvXk08++eKLLx47dqy3t7e7u7v4Ql1kYsGGA0nvh8bYrTtu9/3Jt9ZFOficdYGsYpZbcIJHCPdvB8/tSryQVdUpkoO+akEyfpOnZk78OX48WSOdKpVqcHAQP3lFIlFYWNjixYuDg4ORZGObLgK0JkRWq1qtlkgkfD6/pqampKQkLT1j41H2h5sslYAXIbk6Ec4TtJn84vArPoNLPEKYSHEJZL+1/oxzAOvj7YmH4zKKi4vr6uqQh4QCcapBnBPn+gZ2kgoUqCvS8Yxqr/Akd7Lmhd4lk+tMCGGgAwNI2FKJAfhB6i6iRQD404U8AyvuQDaRe8LpAC+NQLb/6UKhdNBkMlGk8zp3lc5+Y2NjmDKbkJDwyCOPvP/++/39/XgNy+VyhUKB6RVYBtPF43W+y8LLZn4EZgzmxEMbn5gYGbvULVRzzrXsj638dmuG9+6c3WfKE3JaVbqh4dF5IlDDeXJ0dNRoNA4ODvb09NTU1BzlZHuFp0B7/XLeB6GBxmOhRUoyQDSJPTW0yMBdAxghlvhzrNzQrxLuaAJ/ouMiIzjBAwTfUKQh5OkaDIs1R/94j2DO2oCtu3bvjWdxi4pLW9va5fLB0bGxmb/SZvcdlUrVwcORW7dHHDgUqdXprXdmfHx834EjCIKO2czIXLw0XseXnU1rCDtS+PXm9KAD+btOlxXX9i3oOK3P3Zz4nq7OcEJQKBR9fX2QKlJYvPdMUXx2y9/3ZyMjAeFJRnACiIJIpptbCHhlQeOFTBqWbnkAxMAhmQx8qkN5CJFaGBJMWL65hST6HM0sr6zu6emRy+U6nW54eBiXZnOX5UBHktafrZ2CzyLSCSsXRsmNzJYkogVIHg5+sbhoxcUvmoeRLhaMD2INMNOieSTMmQQlJWJ6JJ0Q21vOxztTRdIBo9FIm1F44U1MTvIFii3HS3j5/Fm/FH8U5pyYmDh8+PCdd96JIOLGjRuvmgHh5ub28k0/du/efcMD8t5771GY84Y3Mqf/cAHmtLnTh1PPxYsXcYWG697y8nJuyjmP0ATshoNw059l7xPtRJT4oOkJ5kJYC0jsSXEWxEFBJyZ3OoPuMw6Jach9Q5qwcwAbktXDkhnBAHl+vjulpq6+u7tbLpdfOQfZ3EjN7A5N6fvTpr/RaNTpdBqNpksoK6zrjMurj8qojjpXG5PXlFreVsMXKpRqvV5v3fGnDdy5+wE5s2M/r96NUvjRTctsNuv1eq1Wi306a6lTb29vVFTUo48+ev/993t6enZ0dBiNRrPZTCnkqFGgeseZuZysbwQqTqWyTplMJhQKe3p6Ojs7+Xx+c3NzY2NjfX19ndWjvr6+sbGxmTz4fH5nZ2d3dzeqdk6dOvXUU0/dd999Xl5eXV1deLzY5UGHEGu0bAaOlx4sAjaU1oByRr1eX1VV9dprry1atOjFF1/Mz8+nXSpKxtdoNFryUCqVIpGovb29orLqsx2JDn4xJCQGFt6X47U4YJ4WloRudR6hkPZHpvFkCOUKZONsT2MPkI9MjMfht+6hPHtfKEMZpJQHjQKs3kEt6hLE2cMuQfIKrSyvOnq0AYfHi5A8Wo+aTCaDwVBbW/v666/j8RYUFAiFQuzKyWQyquDU6XSIyltDDrMiy5tXE8ccPBi8fVAHPDIyYjabkdhxJdIpFovj4uJ++tOfPvjgg4cOHUJbRdo+vuq1Ot3jQROhdDrdwMCAQCCora3Nzc0NOZ7uGZ4EqzvS+8Zbz5nYprkEcjxCk0iJFedMUqDQugeXgqAl2piC3miMkAQHX1g6OgUCiRh9gT7ekVJRWdXZ2SmRSDD6ZV5aotFJlTJ+amtrf/3rX993331r165tb2/v7u6ua2jxO8RzXh9p912kw4aTjt6n7NefcvSNdvSNcfKPdfAFjbsLWVHjoto9NPGDbakx+U0GIyg78cpZAAam+x6Zxe3jVUSRTp1Op1KpKH9CLBZHREQsXrw4NDSU2gnQ62FW5pOrjpX1UZhMJrVaLRaLOzs7Gxsby8rKsrOzubxU34NcRhAbPR7AEIzYOViMaskkgxgn+K9isymI4xHK3RSVdC4nt6ysrLGxsauri0aeU4zTdgbhqiNzY0/Szh31NAYWWl4dAzOSSfA5mBuFJLqF8tyYCY7+cY6+cQTM4LmFJLgGc1G2RTp08DKYXsByA6ov4AczucBKIZwVpwC2z4n8QeU/3GuvZ0jpZyJinCaTqaSk5JFHHnnrrbfwNEmlUjT812q1+DlIzfHw6G5sZBb+agZGYIZhTpLTOWkaGhMP6itbxEfYVdtPnvfenR16uPB0cn1maZdSY7qea3IGRuZm3gJvGap6v4xqFH641SqDE1Y9bLh5/YlNDrlPIZwP1djkhnULBRMOzIoDTNQ/nhGSCNpuoJxCR57ot0B4BB6VBAiBci4E0jrRnGNV4Klv1vl6+wYGMcPDN23bsm33jl179+w7zOHyqqvrlCrVPBjt6zlTExMThUUlaF0bHcuawkSMi+fir5RK1fVsbbpfYzCNZpV27YutCNyft/FY0e7TZVmlne19SoXGtKDjnO7Bn47t0wkBU0WkUml7e3tVVVVqRm7o4YL4nJa/7s7E9gjctuRedg6EkE70TSWetNAzx1sbKKrBXLI6S7ZgdYFAYEWFNxRXQezPdyaXnC9raWkRiUQqlQq5TXO9p0GLT5RUyWQyVl7Nu9vS3UOT0JbWLRhEU4zgBK9Nqe5hPKSMIBcE+R8eoUmOROaOoqmV3tErvc86EE0nzqXILKFEfI9QYKU4B7CPpFZptVqz2YwrXJw2TUOjp5Lrd58p1xqGp+Oy+Ze2+aMw5+Tk5NjY2Ouvv44g4s9+9jORSHTlW1xV/nSFHupHnrgZvsgCzLkAc155Wc7yM9brNJPJpFAoBAJBfX19QUHBxkieS0AcijVBmE+VBBYbcaBRoAAIqRMo6CQm4wmYYUBiOIHPgpZHWOehosgjjHcyBaScGK4+NDR0paJ8lodm9t6edv9RyDU8PIzalC6hLKWsLTS6+C/bUyEWIpDtEkiq52AwOkCGi0dY4teHc49k1JU29yo1OuquRqlAt0llPHtnz7bembY5qCjQbDYjWK5Wq5VKpXVgp1Qq7ejo2Lhx429+85uf/exnX3311RSlozX4N8NNEHogFOzEm0Kr1eJRyGQyiUQiEomEQmF/fz9+xW9E5NHf34/f4FexWIysjk2bNr300ksPPfTQl19+ee7cOayHRkZGUBVNwd1pPV56y1P3M9RtYyalVCpls9nvvPPOokWL7O3tjx071tfXZw34DQ4OqlQqTI8zkodWq5VIJJ2dnZVV1V/vTcUp2o1U3jhvU6Ix/ohlOso3LxfowLADWrFfHDKO0WSJutQ6+QOiaSHWBXGpI5NrECcytQKxk5GRETrzTLkx8IRe9XgHBgY4HM677767aNGilStXHj58uLe3lx4vilZVKhW61KLsGM0AbLCzPOWoF36c1hGgswQCEujwrNPpcK6Ty+V4FaEUuLa29rPPPvvpT3/q7u5+7tw5vV6PSLk1uWFa99Z641QSZDQaVSqVSCSChM6ysuT0rDV7k9zDeHijIbSAvGDoiQej3wboO52JZ4aFMgxABagE4A9JqrqF9ErqBJcgzkfbeEnnCpuamvr6+qz9pae0kKz3cG59T2dUa/vrtra277///uGHH37rrbeio6M7OzvrGpv3x+e8E3B65XfHHNafsF9/wtH7tIPPGQfvM46+0U7+cS7E6Jt6luAw4gzpEsj+cl9mZmWHwSqXccEle25dJ9e/t5QxhgW5Tqez5k+IRCJ/f/977rknPDwcPbKopYpNldzWR2EwGBQKBc07Lysry8/Pz8zMPMPiMY8kfrEj4e0QtlswxNHRwCRCUYWln3to4vubEr/albApKik5/VxhYeGFCxeampq6urrEYjFGcqIJ9g8VANc/8jb7Svy4QZawwWBQqVRFNW1vhyY6+hOmL7hQEhOjEFiggSiTACHYA8VYL7Q1IllTLBeANuOdAsD6yA0CqCxSThSLAMElOCEuv8HaB/hHLy38WMGa2Wg0JiUlPf74415eXt3d3RLykMlkg4ODtJSyvmh/dOM2e15ukx2bYZiTjurE5KRYrufltR5hV63dlvnd9sygA/lH2dXtfQqFxnRpfG4b2NKbemhoCNPj2traysvL98dmuIJME2Y/xwAQZNOJEW5tMNiARRDGf+CEiaUX2H1fVnZ6bUwBnhnT4nyDAU+W1VlIIuGUgG+teyjPMzwl5GDsvv2Hdu3et3nrrvBN2zdt2bl56y6E9PDr3v1HYuM4ObkFdfWNAkGfUqW6mQ41Pb82+M3Q0NDxqNNbt0fs2LWvta0dqzv8Wlh0Hkejs6sbn5nF/debRrLLug+xqgL353+7JWP7ifNnUupbuuRjF8fn+n0xi6M6629NjaxxdSYUCltbW8vLyxOTMo+ySk+nNfz9QA6hjJNl2uUYEZgNmBbptgtEmwOVHHvpkMZN1mLIOnX0j0eozyWQ89nOpIy8krq6uu7u7sHBQb1eT8NE5vQnMs6ro6OjWHb29/evPZSFy1XwniWtJIhTIeQ5RIgJ6MC6nFxumV1xaiWWRdgDhxEGEnAQx9E/3s4n2t4nFtFNi74zkP3B9tRuoQxZXBQtFsp0h1iV3Jw2W7gxrwfmnJycHBwc/Pd//3dEOleuXKnX/5O0fdZvk8nJyQWYcwHmtIXr8Cr7gGKa4eFhjUaDrf8LFy6kZ2V/vS/NnazZqGzcIyzJwS/O3ieGEcwFZU8QB6KDSco65KgDC5XlEsT12piC9RyGuMCqDyKXoSeO01loVEZ1TY1AIBgYGNDpdFT0c5Wdu82ewkKNJkihJEWuUB5MvvDeJjCfJHYoiQxmAginIOuezSAx1xRmILgF9+0w3t8OZJ9v7rNODKJSvNtsUG/rw8Xygra3qDIYZZ1qtdoa6cSIx46OjsjIyCeeeGLZsmVvvPFGSUnJlUpHei3NWO1F1zbYuaZ4JwK3er1eRx5arRZFjZp/fqhUKqVSqVAoUISBnr14vJ2dncePH3/mmWeWLl36xhtvnD9/nh7vlcjHdBwvNaa+UtHIZrNfeOGFxYsXv/LKKzk5OT09PRTwwxaVUqlE11aj0Yi21UNDQxjy19XVVV1T+93BVEZIIlioXTa3JG1KoBVD8hY014Bc7MoEZjF6g8DCmyy2XYM49j4x9j4gBgWmIXkxutQSQT/hIRIRJ24BXhbEYeVWUyvyq3Y58ZqkCAQqOPE8crncF1544f7773/11VezsrKmHC+KOK2PFwFpypKZjrNzW08fc+3gcZag0x2VdWq12ilznVQqFYvFBQUFL7zwwrJlyz799FOFQkGJQXhF0VluuoeBNtcwA2ZwcFAgENTV1ZWUlKSmZ6zZw4MWGACWoAHCpaCjPzjQQk3FhAUeuGVAdww4wrTd5hrExdU1lm0Y6rkqjMNNy6uqsuTnqdVqJLoivjvdRzqt26dnHy8AquDU6/X79+9/9NFHly1btmfPntbWVj6fX1ZZ++nmWMcNUU7epxy9Tzl4n3L0AXTTOSAOBG3BXEc/GGFUtCMRBL8i6RiMlXxj3ZicTXGlskHgXFt/WCxMRNN6omd+4/QzC6V7RqMRKVYDAwNSqVQikQiFwu3bt99///2+vr7WVbdN3Vb0KFDep9frlUqlVCoVCATNzc01NTWlpaV5eXkZGRmJSSnRrIRDZ7jMQ5w1u9lf7OB8tDHusy2sNTtZYUe4kbE8Ni8lLSOzoKCgvLy8tra2ra1NIBBIpVKVSkWB3qt++s/8uZumd8TBRDs7lUolkUi8j+eCpD6IgJokgxOLKyi0AtnQzSRrYedAllsIJHES5T1oO5zAAwl6nTB7E0NyR784uw1nHQjJDMSgZKr3Ckng94gNBsP1hLzg7mGdbDabz50798gjj9jb27e1tYnJQyKRDAwMqC9HDltzxaZpxBY2ewtHYLZgzsnJyaHhMcmgvqFjID6r5RC7ynt3TuD+vAOxF1hZzc1dcpN59BYe5sxvyhrVQN/aurq6rJz8z3clYTWFiQDIEEVLM/ScBFVWENzUhL4AYXKulnhdrkd4MvTEQiCIDkjqQRyXAABK0ZsapEtkheURmuRBSri/7Umprqnt7Ozs7xeCvUdvb/H5sugY1s7dEEV55b+du/fv2Xf40JHjnISkqurawUHF/KhAaEUnFkvx2KNOnLlo9eC3d+BoVFbW0HJ95o99fGKirk16JqVhS9R5/31520+WHePWlNT29Um1OuPIxMTkxNxG/2f+LrStd6RNcr1eL5fLBQJBU1PT+fPnE5MzI86eP5pQvfZInjOhKIGpIbRnwdrKNYgLUbu+cc5BbPcQsLCGfyGkQiDeGOhQ7eAXa+8T4xzI/nwXLyu3sLa2tqOjA5niZrOZtsdn/qq+VeeAlp1DQ0NqtVoqldY0tbqHQBoxSFpJHjmDCcRcRnACtJKIFS0x+QeswbLsIiwxXNsi6OAcwHbwj7Pzjnb0j7f3ibEgoBgEEJIItRaBJzxCEzPK29CyCNf1k5OTxxJqfPbk6E028VF1nTDn5OTk8ePH7777bkQ6N2/ebGuXxALMuQBz3qpJ4xZvB1tCyLMYHBzs7e1tamoqKSnhJKd/sYvkrhPXHZySMOoJqaZIcsfwTmi9hSQ4gWsHB9Q/oTyMVSf8dxCDXu6+sb0Pp5WWlra1tUkkEpTkW2vJb/GxzanN0Q8D7KTo9XqFUpVa1vL53gxc/SITEANdINw+2DKwWHCj1OAf6RGBbEYQewurtFUgubIHZ2vz45w6UXNyZ/E2RwSdgp0GgwEBgCn4n1Qq7e3t3bFjx+uvv/7AAw8wGIyzZ8/29/dj/45iS1T5NAMqFgpz0tsEjwXNXTGwdujyA+12L/8E/5tMJqPRiMerUqno8VKBV09Pz86dO3//+98vW7bM1dX1zJkzAoFg+o4Xl2S0HY9HgaYTBoOhqanpwIEDL7/88vLlyxkMxunTp60tW1HRqFQqkYaPoCw22XE7NFemrr6eeTwTnJFIvx7dZcFBhWlJ73MmVAlSICau2pIGYs1AjltIghuxt3UOAmsmO+9oEpMA4k4kIGMavHMgTPVUKAZSj0COZwg3o6ROKpVi4jJtdOJZu+pFqNfrm5ubDx48+Nvf/vaBBx5wdXU9efIkteRF7d3g4CAer06noyA0NVijHL05eWcu7PQtHQHaGaEGtmj7jLJO6xtfRh69vb1hYWHPPffc448/vmfPHqFQOMW5ms48t3Q3r7KxS5cujY6Oms1mrVYrk8lAbkiQTnZiytq9CW5MNjU6s0irSaPcLTjR3ifW8qsQuNPxt5Y2XEgiaa9D2pOjX9znO5MSM/MvXLiAzW61Wo0sV5zJ53pVQD8a0L1gdHRUo9Gkp6c7Ojo+/PDDH330UUVFRU9PD5/PT8sv/2hjnMP6KGef02BU63PG2S/Gweesc0Ac+QcutY7+cZ7hybR2RZYeHVXsdRICHzfoTFGPSIZVFqVcXOUELzw1l0eAspFozCFFOiUSCUJHwcHB99xzj5+fH3ZVZtcK+6qDTT+IUfJuMpkw71wkEgkEAj6f39DQUFlZWVZWVlRU8GpTIQAAIABJREFUlJeXl52dnZWVlUkeWVlZ2dnZeXl5xcXF5eXl1dXVjY2NfD4f7RYUCgWGZFPAbK7PJ1cdQHwSsZCLFy9SL7u0840eoYluoYlgIR7Edg9LciVUCUQ37X1jgIwC3U8gpxKTfyioAOoISaS6fOzoWTRhEMPMgsBOJrwGiq4A1obI7IFBJSWmXHWE6ScgnmKDwcDlcn/+85+vWrWqq6sL7UwQ41SpVJhMT3HThVLqGifdpn41izDnxMTkpUsTgxrz+TohO7vVd0/O+p3nvHfn7DhZml8paO9VDI9cnLuwDs6QY2NjZrNZrVajeKusrOxQbLpbMDSyPIjqCFdVcP+SGCZssgPSielOIHkHSMNqfQSgJiYLWFAQyOKFhRgmpiOVwZXJfTuUzc0saGlpEQqFSqXSZDLhSmdiYmJs7KJsQN7Y2JyTW8DhJp04eXbPvsNXop5bt0dE7D0UG8fJyy9qamrp6xeq1OrR0TmT60lnMLpAHh4eTknLxCPNzi2gC3yFQolPZp3LpfEBtJrF7Uz3bTsydqlXojmdUh92pHDDrux1O7IOxlcmF/C7ReqLl8avOkVP9y4tbP/WjgB+3OPqTKPRSKXSrq6u2tragoKC5JT07cezWeeat7AqPMMgNtIjHISbQH0I4joGxEPzhOg1rZ1pGcGJkPUbyLbzjnYOZHmEcH0OJ6dn51VVVfH5/P7+foVCgUuzebCgwNFDJ3CEGHZzS7DsgcYUCQSxpJMGgwEksSokze0QQD1R6oo8MJcgjoNfHKTF+4HZJCGbxjkFxOMUCipPoO/DVwsZJRBMj3Zzy/8xkY6Pt3Yr9kZX1LbKbu1FcsNbu36Y02w2u7q6Isz59NNP8/mzHyxqfdQLMOcCzGl9PdjW98hVoTYddAaPT0z5fCePJLUQAhop3VyZwHPHIo+sx2C68QhLtigJiGzI0T+OEQxKAgaTa+8bY7ch2jmA5RzE+XZfcn7R+bq6OoFAoFAo5o0k/+ZPJ63n6EepRDawNf782xvBwITkM0Nyg3MAiGI9QpOobsMzPAUNJJESCG044vbuBv3NOAe/uA+2JOfVdBoMBpojNQOg1M0PyMIWpmMEcAlHu8DUEvmHwM7Ozs7U1FQnJ6f777//6aef9vf3xzBdahZKfa4objcDZb31Kog2H60onpZvEeegyC6Cu9TtVq1WU8wDxZ1YvGZkZDAYjCVLlqxYscLX13dgAALM8XjRyZbm3eJbX//x0t1GL1x6FqwDKRsaGj799NMnnnhi8eLFn3zySXl5OYokEO27EuC01p9RnavZbFYoFL29vY2NjXvjs2H2CEnEBAinABZwjUMSvcJTUGHPCIaVOYQc+Me7gKYz0TM82SMsmag2OTDPkCkdojcDWOi1gmw74sECDTvw0mRy8SPgw+2pVQ1tMplMr9fTaK5rHG9zc/Pnn3/+5JNPLl269OOPPy4tLb3q8aLmACcxaxQKT8F03CkL25zTI2DdzaesDr1er9FoaDIxpThIpdKWlpYNGzYsX778ueeei4mJofe79c1+/Xf6jQ0d1gAjIyOYnIe+0/X19YWFhSmpadsiOV7E/9A5ACI2vTamuBKzaLLwi3XyZ2HSG7kfgXyAabueG5ORpuAaxPE5mJh+DhbSra2tfX19SqWS6q7mQXcbzzjFtkdGRjo6Otzc3JYsWbJy5cri4uIe8mhra8ssLH83ONppwwm776Psvj/h4H3aYcNp+w2nHX2j7bzPOvhQu1pQq7sEgo0kXTwjzAkNC5BigCQLQItA9lcHzgnEcszRoZThG7sMFv7KZkeAXmNXIp2oDu/r6ztw4MDSpUs///xznU6HH1U4h8xMy/V6ho7WIVTubDKZNBqNQqGQyWT9/f3d3d3t7e3Nzc0NDQ21tbXV1dVV5FFTU1NbW9vQ0NDS0tLR0SEQCIRCoUwmUyqVCHDS450H88m1RxLnapRyyuXyjm7BBzvTvTalgpST2FSi+wUq7GECCeIyQkgDLojrwoRYZWzYYVSnk3+8nXe0vU8Mpk85kWiYy8xg6Nldzu1jvx2aUN7UTQWdV34kWV+i+FESGxv70EMPvf3223w+3xrjxLNmNpspxmk7l+i1B3/htxjW9ec///nuu+/u6OiYlQEZHbukUJu6her8yp74rCb/fXl+e3O3RpVEcmuKa/t6xOrxOWtgay3eGhgY6O7urq2tzcvPDzkKlQBSE9BZkcHkuofxEN10xSZ7IDTiQb8VynMPS6KNMoQ9kG9KyKMxYH7G5DCYCbgFEIGBvw5r44m0ysqqrq6ugYEBNKm+KtRx8eJFs3lIq9MJReLSsoo4FndXxIErIc9tO/bsijiw/+Cxo5GnEhKTq6prB+TyK+eNWbmEprwpzj90BqMfT0j/FYsl23fuRevagvK6C629NXxhY5do156DW7dHsDk8bCfSzyBKwp7Wg1XpzHEZzftjLgQfLPCNyDnIquLmtta2ScRynXHIJrRiUwZ54ccbGAF6TY6OjtJc846Ojurq6oKCgpS0jK1H0qKSaiPT6j0JIQk5kYxQWIihWb2THxF5Y/gusTYEJXcQ5HP/KZx1nJ2Wk5uH9NP+/n65XI4XM2Vy38A+286f0IWtTqeTSCQdHZ3/vT2ZLlSR5wGjBHnkFvtZhDZdmVyUwDKYFo8iUiOB/797CASyIESKizJscDn6Ax5BayeYfkMT1xzKxnAWqIiGRtjnWg6zqkbHxm1kiK4f5pycnNRoNCtWrECk087OzqaCZhZgzgWY00buqavsBuWq0Bm8vb29uro6Pz+fnZjy990JjCCWMzHZIDJNcN4g6zHw1CZye8hpYwQnWCT5VnwKIgNiOfmz3JjsgCMp588Dxtne3o5yH5Tkz/sl8VVG/J+fwg9RrOpQzNHZK2aeLfYI43lCwhagxVhbIxHYORCwCvA+CoZYeyrggKU1sSkHwVYwGNzBywJYq8J5qWV8tRbSOukH57QWf/98fAs/2dAI0IoNYTZMsEPwDzEABP8GBgYo+CeVStPT099///0VK1YsW7Zs9erVmZmZIpHIZDIhzDZbPMrJyUm6NLrGN5RDQC28jEYjxTwUCsUAeVDYQyKRZGRkfPDBBytWrFi6dOnq1auzsrJEIhEFd6//eK33yhqRxT2hg9/V1cXhcP70pz898MAD//mf/7lmzZqKigo6/jKZbGBgQC6XKxQKtVqNMZx0Z6zvaEpYUalU/f39zc3NCZkFxOWSRD0FsACqhIk6ySMcfGtRtQlKL/848KElTrZImMBikSjDgG6MnrfY8UffWmeS2ewRBpQL/OoZnrz28LnOri4s0+koUUAXRbdms7mrqyshIeH9999ftmzZf/zHf6xevbqsrOyqx0tjR+nFRpF1OrY2dHct7IrNjABeHnhHULU0JhNjTx/9q+ldL5PJsrKy3NzcfvKTnzg7O6elpVGggt5i0wqr0zJgZGTEaDQqlUqRSNTZ2VldXV1YWJienn4qPuGbCO7bwbAaJP0yFjbdsPoijtOWyCiAOYOBWewaxPEI5vzPFs7BmJTc3LzKysq2trbe3l68Q5H5RMnvNnPqrndH6AyARAo8y2azuba2dt26dYsWLXr55Zf3798vJI/u7u7W1tbckgt/Djm78rtI+/Unnf2i7dafcvaPdQmId/aPcwBC3lli7QvDix1J5IVg3YWdTbqoRiwZJkNilMQ8XahQqVHTOXeH9HqH/rZ8Hd6hOKVQ91qcTKh7rUQi2bVr17Jlyz7//POBgQFKLrSpS4LOjZQWgAEZWq0WyyGxWNzf39/T09Pd3d3Z2dlx+dHV1SUQCPr7+1EOqFQqsRqhdCu8E3H78/gaoUCIRqMRiUTs3GqcimnOlnsoD/0nyaIM2GCuJKkLHTWIdyWkBlhkB0yOJRoGXC7hxc6BYKRh7xMDHFYmQKdAFCahMPuSKzUaDQo6r2xyUZkpatmPHj364IMPfvTRR/39/Sg4FovFAwMDeOKs3ZUXluFz63KdRTUnDtTExOT4+IRpaLRPqimt7w8/VuQTkbN2a2bg/rzYjKaimj61fsgWks9u4LRS+REKOsViMZ/Pt2Q5RUBMANZa8NGP+s6wJLfQREeCZDgTN3vUb2Fhhosmi2oziGvvHQ3pnkS0hFw0JFER5+rYb/fySsvKWlpaxGKxWg3lBHWt/NEDuXjxklw+2NDQlHUuN46VcPzEmb37Dm/bsedK7HNXxIHYOE5BQXFrK18klmg02tHR2cfkrFsTlJSs0mgbOkUJJS3MM0VfbT6zZTsczoYtRwAeDoVWZMBWgDk374k8mFxR3NDTJ1XgtEaXn1dOkj86ktfzgvHxCcmgIb+qJ/Rw4bodWet2ZPntzeFkN9e0SuRq06VLCw226xnFOfMa+sGKqzO1Wo081Lq6urKystzc3KNns84k1R5JrFl7JM9ivkratlAYhIDmmxFiidzG2BGPYPbHW7mbo5LSMs+dP3++trYWeUjoijGfWrW0K6XRaIRCYW1Di2coBN4hHQQLJJweEfvECROd/B38Yu28o8GZ1i+O+NmSnjbRcWKHyjIJMxPAMMMvDreDonkER12DuW+HJaIJ8OjoaE559/pd2V1Cte1ceTwe713y2Lx58/XsVWJi4nvvvYd/0tfXdz1/MjOv2bNnD+7V119/PTPvaGvvsgBz2toZ+af9wZloZGTEYDAolUqhUMjn86uqqgoKCpJSUsOOcDzCgJniFMDCjjaZTXjOkCkS5+hHhPkB8YjGIf/dc2OKW0jiSsgXiX0vnHssPj2voLC+vr6jo0MkEqFd7cjICC7+/2lXbrMfsCNADet0Op1YIv3+eL5HGCRyoccRfGqSWBdHfxhqsEVicl2JazmKCS47quFy2rJ+xrA9skiO9wpN5BQ36/V664/P22ykFw7XMgK0W0eVjog/WYN/g4OD1jGWGEBVU1Nz8ODB559/ftmyZb/+9a+DgoK6u7tpKiSa2VpDArQNPbtDT493fHwcW+EooKSYh7WNLQXbxGJxbW3tkSNHnn/++aVLlz7//PMBAQFdXV30eEfJY4rey7rBZ/2+VGo5OjpqnUZZV1f3xRdfPPvss4sXL7azs4uNjW1qasLQUFRwWmdwYktxCuBnLSql3Te1Wi0Sifh8/vnS0k+2A90Y/+EEgtbi2JjDPj5xWWE5Ad4J5pZEIE7W8ISzgpUoyD0JUc7CsCMrfCBhEIKLWzAEzMRklvX09AwODqJQDIdoyvH+7//+7y9+8YtFixa99dZbcXFxVx6vNaCr1+uvcbyze10tvPucGAFkOeAnLBILMFrPWs+NYKdMJhMKhenp6W+++eby5ct///vf5+bm0qYJ4ut4u01TU/jKtbRMJuvq6mpsbKyoqCgoKEjPyDzNSgo4mPDuJrjd0KOeuvRYWAiEkeYexvMKTVizmxvFzjiXm19WVlZXV9fZ2SkWi6mRBp2r51ZLBufYKawR7IvJZLKvvvrqsccee/rpp6OiojAcQSgU9vb2trW11dXVfRPBWfnd8Tf/L9LB+7RrQJyDT7RLYLxrIJvUsbFgVQJB8sAScydiTfTlRtUmuiQhAopj7kz+0AJ8BrEjuGUajXZ+BOrMiVt75neSfqYjK3FoaMhgMFCkE91rAfdis3/605+6urpKJJIpSOfM7/MPvaP1sdCwc2vGGwa3I+PNmmulUqnQMJ/OjWigMa1z4w8dxcw/j7M0CjsUCkV3d0/omXwQEKBWA/wtwGbWPRwkmyDNJNaU0NQjMzNWYsTbFqoyZ6CXcVyYHOcAtr1PDPhq+MVCwy6YS/gTFigUIr6I/OuvuzIGB0GIfyX+QeEZrLi2bNmyZMmSNWvWCAQCmseJ6lutVms0GoeHh2n5Orc+Amb+pNvaO846zIkDcgmQzrEBpbGiUZRS2L7txHnmgYKwI0W7z1Yk5rWV1Qv1phFbG7of3R+cGKnn8+DgYF9fX1NTU2lpaUJKxn9vAU4/3tQoIcIFkYX2BLIklnMgdMYwbRdfQ8joQC21942FHg7xgcB73znAkkfw1a7E3MKShoYG6zXUjYU6Xbx40Wg0qVTq3t7+0rKKeHbCD2k9d+85eOjw8aiTZ3lJqVXVtVLZwKXxWdA5WXOR0WVKq9Xl13SuPZLz/tZkdAZ2Y3J8toBJ75bte/4n9BRmOa3bfGTr9ojgrfu9gtlvhyd9vDtjT2K5UDaIOnVatFsvzH/0AvjRF4yOjZfVCw/EVW47cT5gfy7zYH50ekN+ZU9nv1KlNY+MXvzRLSy8YG6NAF10ULd/jJns6elpa2urqak5f740Patoz+miHadLk0ta1u5Pfm9zMmnhQlfWEh0SEO8Rwv1sZ2L48eSz3PS0zOyioqKqqqrm5ubu7m6xWIzR5tiktW7szK2xmrK32GYcGhpSqVQCgaCwvJYRGIcKKDfiS+QWDL79lmxySzwnrG2d/FmMkASSZkqYJYT7Bfgo8R5zJcUVIKNMCDymMypQTHARR9z+kWvSyO+B8zWoOxB7oapZspCVO+UcLfx4S0ZgAea8JcM4jRuhkxGkQioUiHRWV1cXFxdnZmaeYfG+JkoC0gP6x5QEHfMQYqhNBJ3Y8YEqkPh9/Smcs24vNyk9u7i4uK6uDqNBqO047bJN41HZ/KaxvKOhXP0iCfN0ATqSgzCfhOrRzho040igizsYRcIgY+KLkz96UQIUTXjBZNInHuVuzAQXcD/neoUmFNV3WpshLKxsbf7qmN4dxOUcInDYJsYYS71eb21jO0XZiV28d9555+mnn16+fPmf/vQnNpvd2tqq0+moxPCq/q7ThA1c/xhNOV5sBplMJprZqVQqsbVHwU7Ed7lc7h//+MdnnnnmgQceeO+991gsVmtrq1YLHe3h4WGK72LPCAUN9Cv2Q0dGRqiWUalU1tbWRkZG2tnZ3X///b/61a8++eSTgoIC+qaYGohoH7YUdTqdwWDASBIcW9w+Dim9kfEAR0ZG9Hq9TCbr7u6uqqo6wclwD0mAsCgm18E/zsEHYqJciEkIaMRDeYhQOhAqHNp94MocW/lYJoJ1eRAw6RjBCZ4bk2kyDcAA8CSXweT8z3ZeY2Njb2/v4OAgDg5eTkqlsq6u7vjx4/b29kuXLv3lL3/58ccfX/t4sQ1nDXBe9Xiv/9QvvPK2HQG6QMUKB+9E2s1XKpVyudx6isO7LzIy8qWXXnrggQc++OCDwsJC67A95GZNufVuyfDSXcW1tNFo1Gg0MpmMonTl5eWFhYXnzp1LSU09eJYXcCT5bxHJH23lfriJ8+dw9vvhrL9sZH26nbv+QHJEdBovNSsvL6+0tLS2tralpaW7u1sikaD/szXbic4et+QQpnsjdIis+2Jms7mlpSU8PHz5/8/el8C1VaXtj1Vbu9nW1qV1Gz8d7biNf0dHHT9bIOy0jlXrVh119BuXau3KlrCWbtKdtnSnZQsJYS8Q9n3fIRAgAbKThKyEsIP/3zkvPXMHatVKW6C5P3+Yws3NPe+998057/M+z7Nw4WOPPbZp0yY+nw8EO8A4W1paauvqAkOTbZBE7fnVW87ZuIbauIZau4bZuIbTPCJpHqi9A9UjLlcnnXxixqZhGO+EqddYMsRLcQxIIOwBurOxmwAns6LZ4sVwve+Bm358ArEDpxPmD8CDlOFNLpeHhYU98MAD1tbWPB6PSna8HnnjmgMCTxN1XkR0JqiO5t2XN5PJBF/KRDoeBBVnTEnu10RydHQUXDlhllXXwPvs4CU8cUIEesL0gmkVIYLDotjGDWkg2WLrX7xSY1rhmh1Qwax2IIATUoqtB7KVsvNkgUcAquVhqR5H7+iscj5VzRJETSAfgpyyQqHYsmXLggULXF1dYVYpk8kUCoVSqSQKw+DmTtzTf83ALftMnQhMEZgT33s/DQyOaPVmnkB1hlOx81Tuln2p235M3Xu24EJ8Db+9y2QemHZzDPI0mc1mcONraWkBNz52TPwXe1GDAnqisWIWNC4gEVpcBANGEeISeUeDFO0YrwjX4rFYJep+AK8+mGPYeTK/2MdO4mZUVFTw+XyJRAKMbWL88fsDODIyqlSpq2vqLiVzQ8OYJ0+fP/jzXM+w8Kis7Dx+c4tC0anXG64r1xO+g8jkHDFodfpKvsgjJNvJZ6zMBQtSWw/m+94XgdC5c8/BN71QL8g3/qd37z3gv+fQWgaav9nTkXDRuoBYZk69TKUhotyTSKgwmQei0xtPsCq2BXI37U72Csr6MaSwoEokUxlNvQMWN86pkyQn8UyoMyWCdOr1eqVSKZVKBQJBQ0NDZWVlfkFx0MWsYFYZh1vDzciNik0KDos7cjHuYEjM8dC4UHZi4qVLXC43OzubuJu3tLSIxeLOzk6tVgu9R6QwDh86iaO4KYeCDuOenh6VStXa2pqSU7rWL8aeEY2bPFAihQUUKTch0g7u+rJ2C7fGizJoIMNQMeJrQtZFjV/YoA0KU/ZebEcvDs0DiQNDHoauX9DJSCup71SqmSn1zNT6gYHB359Ob0okLR86xSNggTmn+AX6CVaqsEzq7u7WaDQymUwoFNbV1ZWWlubk5CSncC+wErxPxr6/e8yiwB6rpMIkDy/wkFORozfHxTf2n3tj9p6L5ySl5efnV1RU1NfXt7W1kVROtQOZ6nG5nudH2m97e3sNBkNnZ+dFbrmTFxsaUvDCmGVHx+5QdPTLyygmFh9HSgjROKejtl+YLgMNC1m54PW2PYNNc4uE+bcdnfVuQGw1XwQt2Ff0e7ieY7UceypGACpcpGRMuIYAAxgMBq1WC+AfIXdC3UQsFpeWlp49e9bOzm7u3LmPPfaYi4vL+fPnoYkBALmJ+B+p8ZFZ4w0Oys+NF5isAO6OGy8wvch47e3t58+fT8ZLzEphyH1468cbvAZnEZPJ1N3dLRQKAwMDV69evWLFikWLFn344YdsNrumpoaqnAkGnGq1mnAmrmgOesUZMIxucHDQZDKp1WqRSFRTU5OZmfXVoQQXbMZJWt6g9cHBC60JcQ65rJ+GeyMQqOkV7YA5oERUBJaaNDSJRPkHc8pZ2PWTRXOPcGBEnYjOamho6OjoUCqVgKYIhcL9+/dbW1uvWLFi8eLFH3zwAZPJrKmpodJVJ46XALpQibMQDm7wMzIjP448+FSxbqB1Usnc1CextbU1NDT0hRdeWLx4sZWVVXx8PEiSUuWwIKFNYsTguQbeeX9/P4jYq1QqqVQKjcM1NTWlpaUFBQVZWVnp6ekpKalxicnsuCRWXBI7LikuMSU5lZuZmZmfn19SUkIATlhI63Q6+PanLqQn8eSv96HgIkLHA2kfEQgEX3zxxcMPP7xixYrdu3dXVVUR0FoqlXZ0dIDXIDe3ZJ1XOM31ovWOC6u3XbD3ZDowWNau4UjsyD3SekcYplthOwBcr0RSJe6R9tiQfgy9gEU1zoowQ4OZ1X/Ynx7MLcFckCqBCFuW09f7lrhZx4dbkXA6IZN0dXVR1WszMzNXrlz55z//uaCgADqiyHM36Xnjd8aBpB3ycBGpeZjMwE9osYJRjOv2uHVudUjOgH+IxeKSimonDHhA9Q3gzLF1GQY2sAwG4mtCRQ/Wy2hphvUtsSUV29kHS26gGn0UsBPA5pPmibCTMd1LL8RscPTmBLILIckMDAzAjUTEQvr6+vR6/bvvvnvXXXcdPnxYIpFAox5gnBqNhjQjkgR161y43/mMTKm3Tx2YE5DOwcERfXdfY5sqt6LjbExVYEgR/Uim97GsU9GVMRlNPKGqt386UdxIegeDW41GA9K15eXlGRkZkdFxPxyMcvFFD+OYqAZuOncCrXvUVs5CNh9Igxo/vz4cpKNIZ6EOBuwmgLNBtLNvLCZts3cERSelcEtLS5uamkQiEWECXKcqzeDgkNHYrVSqBIK2/PwiZhRnP3a4HCdvu2ffwQOHgk6cPBtyMSIuPqm8olImVwwNTeZ1HNcwZDKZtFrtqUvl7+1JhOZ+wDzAswli+O3OM3CeG3eedGCwP/M7B/98xycMtL6RMwsj2tmH800Qt5IvMplMpKXjdwrYDg2P5FW0hyfV+gbnMI5l7T6TfzC0OLOkrbJRrujq7u0bHB4enVJZwnIykxgBUrMC0SxocTMajVqtVqlUisVigUDQ1NRUU1uXmlV6OKxgf0hBbllTTl5RzuWtoKCguLi4rKyspqamsbGxtbW1vb1doVCQ72UojMPMasZ8Lw8PD0MWVSqVfD4/Lr3wzZ1xjj4xY0IX4K3micyMAe9Eqy08cYKuUxv3sfYFxOz0i3X2jUVET6xoCBIaMONCqZg+RvuxxXYAoLVDc2fSPJixOdXcgibPIxlKTTe0dk3ijWE5lCUCEAELzDnV7wRSQqIinROZBFwuNz4+/mxk7M4zcZuOxH2yJ/qjXez1vpEf+DM/3s3+4TBnz7m4yJjktPT0nJyckpKS2tra5ubm9vb2zs5OnU5HbVe5YqV+qodpUs8P4CXixVXZ0Pqmf4yDD3LCg/kxytTuCKcEwTScspGwJCgD0/BuyKjZNxZUEUAWyYHBtvVkWu0IQz4Q7hHA2XLwRurwvmG5OsxCIyvkGfNtOqlX5hY62LgKF8i6AvUQwM6J4B8BA0BYtaKiYsuWLc8999w999yzePHizz//PDExkcfjQUcq8e8cxBuh5RHI8wbH+ufGazabf+V4y8vLt27d+vzzzy9dunTJkiX//Oc/Y2Nj6+vrQQ3SaDQC+cGIN7lcXlVVdeHChbVr1y5cuPD+++9/7bXXdu3a1djYSOibEMZxgJ/BYCAA50TA74rJE345NDQENTiZTMbj8fLz849FXnLCfQ+wLLfB1CUotAHMCTRNtDjHMCeYdzr5IFdgJKnkEWmPTODZNA9kGWXtFm7rEWlHZyKVcmQrFWnrEfnJnuis/GIej9fQ0FBUVHTu3Lk333yTjDcgIIDH4wFPDm6eiSJ4ZLy9vb19fX3Eg5PcJ5ZMdYOflJn3caSqAvgNlZuiAAAgAElEQVQEaNgCGQv6OSYyO5VK5cmTJ1944YWFCxfa2tomJSWBEOW4R5Lcpb8/aPAUE5I9CGPCWloqlba1tTU3Nzc0NNTU1FRUVJSWlhYXFxdd3kpKSsrLy6uqqurr6/l8vkAgkEgkYMYGBW5qxeeKOeT3n/+kHwGmptRenIGBAb1eX1ZWtmnTprlz5/7xj3/8/vvvGxsbqX6roCAKMCePxzsQme7kxbLziLTefpHmHmGPFtJMO3qUky9yN4cWYJIAocRm7RoOGIMdHQGiSGcJT8ZgN0J8h31A5NbWIyq/qhlcXaFGOenRsBxwKkSA3JMTkU7qTVhYWPiXv/zlkUce4XK51LUPpIupMBDqOZBBkTwJs7VxP+Gvk5jxqOcw9V+PjIwMDAyAvUtbW1tMWiHNI9LaNQKk0oBOhJID0lLDTAUkqINk65De2o5wq+2hVkhRAylbAtXA1pNpizw4EQ5q6xnl5B1L80AsT1Svx8AJMMBwOQ9VAL88lKxUKru7u/v7+8mVAhouj8d75ZVXli9fzmazyfQSME6tVmswGKBTh8DtljnV1L/frniGUwrmhDMcHf1pcGhEpe3JKGm7kFDjfjj9u12Xtu3n7jyVm5zfUsNXdE83AVvi5WQymQDpbG5urqyszMnJSUq6tPNU9Nt+LAfsHYDmD55IPhE6osBmiOYeCULTRI7L1gMxAWw9mKh9wRM97+t3sg9djM/OzgaMUyKRqNVqeLSvE8Z5xdtpdHRUpe6qrqlNTEo5fyH8RPDZg4ePXdHX88f9R0LDmdk5+a2tQpVKbTR2DwwMXvGYv/hLaskRGv0FYrn7+WwXvziIGHjsoTYyHFh7rAq+dmcsY/fR3XsP7Nxz8F3fyI98LgRgw87P/S+g4OOKGdA67ensf+yMSS7hg4XK72zs6OkdrOYrAk7noRt796Ut+1JPsiqiUhtkqm5z3+CQxYzzF6/3jNgBFk2E7Q2tqATslMvlYGrO5zeHJ5YeCi06ySrPL+dXVtfX1dXzeDw+n9/S0tLR0UFMsuFLGeQx4JGfmpPDa756AHOaTKbOzs6mpqa49AIHpGaBzEGQBA6yPWKDlA5yNMfLMSzxjVBPZ99YaG6AOhXYGIPKN6QFtHbDoKaDV/Tq7aE0LK6DV3aofR9RgzzRi0hu1e4zeVKFFpzyLNOea76aljdeJQIWmPMqwZkqf6JOO6D/Qq/Xq9VqKK41NTXV1taWlZXl5+dnZ2dnZGSkpqYmp6QkJCXHJyUnXUrhctMyMjJycnIKCwsrKipqa2v5fH5HR4dcLgdfZaqCxHQpsV2/a0MsXsDovl0kdjuXDbYuNHfkvonMNRksGnK2Z44526PeQNwqiNAIFhTdUAuMNxKwtfUYQynQApuOlM1xPS4KWbwwWEji3IvtxGAV1LSCSefQ0JDlKly/6zvtjkyKXCAgQ2V2dnd3GwwGnU7X1dWlVqvHgQEAXAkEgvT09MDAQCsrqzlz5jz66KPW1tYMBqOgoAAq7ABfEYonFceCYg3cjTdsCnL18RqNRhgv2JQShhCo0oH/PJfL3bdvn7W19bx58x555BErKyt3d/eMjAzA82JiYr755ptXX331/vvvX7JkyT/+8Y9jx47l5OS0tbURaTtA+wDg7Orq0mq1xIAT+B9E/pcaop+7tSCAQ0NDfX19RqNRpVIJBILy8vLUtPTvDiA6OLA5QVEcXhOpEKjdgwwIaonAdTrcbMG282Q6+XCcfTl2nkxr1zDEfHINtXWPsPWIoLmF09zDHRmRZ6IST5w48fnnn//tb3+D8b711lsnTpzIy8trb2+n4uKdeFOpVF1dXRqNRq/XG41GAuj+pvH+XBwsv7dE4OciAM8IwcyIhi1RrqbmN6gUg/4zk8l0cnKaP3/+X//61927dysUCtLAQQjHk1X6p54k1K/NZjNkJJVKpVAoJBIJAHgtLS18Pr8Rb01NTc3Nza2trW1tbWKxWC6XE141IXGSU71hafbnLsTVf0++C+BKEdAXlMZjY2OdnZ3vvffep59++tChQ9XV1VRsCdKvQqGQyWQikUggENTVN7yDKpJRNm7h1jvCgI+O7M+9kIsegS2ht4x0BwP2SaicpNsMfo/IWJgDShTVYId/HU5Wd2l6enpIWe3qI7X8dZpGgDp/gNZ+wumk3o3V1dXvvPPOfffdFxgYaDAYSHvEFC9mkQfwii+m6SWblNMeGRkBXwClUtnc3BwcnQW9X3b0KBe/ONQ2cRn5QLkFS6ihFIFN+xy9YxAugvvJaB7IwM/GLdIaKe6g1lWcWFDtD63ycHkOISK4yRXXBDF0Smd9tC+xXSw1GAy9vb3gigqWE0VFRc8888xjjz2WnJxMZlxg7g7qGuRbYIbxRSblsk6vg0xBmBMC2DcwJOk01LUqk3JbQuKrvY5luR5M23e+4ERUWUp+S0Orqm/60DqJ2lZfXx+0NUgkkubm5qqqqry8vJTU1AvM2O2HWQ4M9JAiTQiseA89o/a4awEmDwDaOXhxUL/CZY2cNV5M+vFoVlxyXl5eRUVFY2OjWCyGQhnVU+DG35aDg0MGg1Eu72xuac3LL2SyOIeOIEfMif8dOBR08tT50PCoxKSUiooqqUw+OPgbIE8qK85gMLR2SH84mYn1gZCUJQI2PBAYbOMeAVLeZJ72T9/zcDKM3Uc+8Lmwc8/B3XsPbPQ/6eDFdvSOgYUtzOUQ0ukfcy61Sm8wms3ma2vvGBkZbenQhMTXHA4vcT+U5nkk41xcNSutobpJ0SLSmPuGRkYsZn83/j69mZ9IFmgT+2U1Gg1M/6RSWX1TW1xG3c5TORGX6tIKm2TyTrlcDl2n49zNqXfmFF+a/da4E5hToVDweLykzMK1/jHQuICWWlhlGnN1Ypx80IoM+j/skRES4ru7+MfDCguMRXCzKdPBK9rZDyGgDmiKhcySUWcJoniiQjcqiYNmOLbP+3hv4v6LhcXVAmgfsbA5f+sVtOz/KyNggTl/ZaBu/m5QTx/XpKxWq+VyORDzGxsb6+vrq6urKysry8vLy/AGHIKamhqgEQiFQrFYTPj4ZH0FVbYZlsev7ZrBJK+vrw/kajNK6tbvTVzjFw/tfo5jvg4sZ984Z1/kZY26V3A7G0yUnX1jgZWPOFXeHGu3iNWoTTjc2j2C5h5FOlzsQb3Wi+3ki75abD2jPt2f2KlUmUwmQui8tvO3vGumRoB0iINwGeiV9fb2grIr4J2g9AhOliDURi2s8Pn8gICAl156afny5XPnzn300Uc3btwIFE+5XN7T00MkXsehnlC1IXpoVGzvOiUNarGSjBdoXiaTyWAw6PV6jUYD6AKUziUSiUgk6sBbO96qqqoYDMaTTz45e/bsP/zhD/Pnz58zZ85tt902d+7cv/3tb0eOHGloaIA9Ozo6RCKRRCKRSqVA4gTDJJ1OBwacVENKyJa/dVpGRNX0er1UKgV6ZWoq99MfY1H3A+ojxhK1uMSPiAVukWhOiciakdauYXaeTHs66o1Ai3b3CHsvlpN3tCOD5chg2dOZ1q6h1jsurt4WQnO9uOr7E6/9X+Bz63549hXru+++e968eQ8++KC1tXVQUFBLSwshE8CNAYCuSqVSq9VarZaMl+gbE9gbrv5Mfbgs47rpERj3yJN+DnjedTodPO9UrAKQM6VSmZmZaWdnt3Tp0nvvvdfb27uurk6v10MSIwjiJAIYcKokL0ESBi1xOElov6C2TUA+Ae4O6D9fv9O7TpeSXCDSND0wMNDT09PR0cFkMp9//vl58+Y9++yzx44dg55oaqohNHHI2ABzXkwqsPWItKdH2XoyEaKAu8Rc/OMdvDlQDkOJ0YO5ensokZSE9mEoUwJfEyZmSNvWMwrV3XCzMFgJINtjtwhgf7r4xZU0tFlW1Nfp3phqhyWTJVDBgRxCJgzw3ScUCjds2LBw4UIfHx+VStXb2wvC12R6M9UGZTmfn4sAIB+gDatQKJqamg5EcKEn7PKa6zKYQWcjgiYuwEF6scJ08LGSnCcSxoAmM3sGGwtsRNpiLQ3IPI7eMbiTFfWq2jNYQOvEhf6odwNiea3tWq0WqJnQkRwZGTl79uzXX3+dz+eTfNjZ2QnTLfJFQChi12k6/XNxs/x+ciMwZWHO0dGfhoZHenoHO+T6klrp/gtF2w+kbdqTsmVf6uGwYja3oaldPTg0PXAhmIdA129vb6/RaFSr1WKxmM/nV1VVFRQUpKWlxcfHh0awvg+MeMs7wskL28IxUO8UTCRgzgCQJ+5EZzp6Rr4XwN5xlBPBjk1JScnPz6+qqmpqauro6FCpVEYjQuMm0ZJzUu660dFRjUZbXVMbn3Dp9NkLQcdPHTgU9DNcz8MXQyNzcvOFbe1arc6Em70mphoS2IGBAbPZbDAYmtskXxy6BM39CCfGKAUId1u5htE8ELABKAjqF3GPcN+FCJ279x74zv+k/55Du/cecNt1FMBRPGcbIwMA5OnsE83JayB9Ib9pgTk4NFJSKw2/VLd9P/f73cmuB7j+J3MKaiQNQrWpd2BweGRSImw5yLSLAHWRAtVyaMHs6ekBVgCooGk0mtY2WVhClc/xrKDI0qxSoUyhNRi7wdKIGKCQxiMAUKddNK5ywgBzdnd3A8yZllP4ph9CIkFm1hbzdpA5iG8sdHqN+a+hxq8xe3LktemNHn8n3xg7T1SYsvVkOuFefFAxhLfYeqIsgRk+kUj4EAv+v7MrPuB8QVwasjKxLMqucpksf/r9EbDAnL8/hjfoCKRRheoKDlyHrq4usFwWiUTt7e0CgaDl8tba2ioQCIBGIJPJoNYGfHwgPVDbVW7QSKbqx0CEIbw9PT0ajUYsFu8Kz8ZgQ7SNB6qgOTCinXxjXfzigFtA80DzNqxhi1I5gTzRFwADdcSMlecwcfMy2yDKekf46m0XgdYJzYbIUc+bnVnRAsVZsuidqqGynNfNiQDcolDTobo09fb2wjQOqEVU504ouJMKCyCCpaWlTCbTzc3tjTfeWLhw4fLly1977bUNGzYcPHiwsLBQr9cDjW8c6kksoAjqSWTToDJI6oPkPK/5BSlTwkeAZi9MWM1mMxX5uNyjJxWLxR0dHe3t7UKhsL6+PjIycseOHS4uLs8+++yCBQsWLVr04osvvvDCC/Pnz1+8ePGLL764bt06Hx+fhISEpqamtrY2QDoB5gRS4zgSJ4F+Ccz5m8ZL+ie6u7uVSqVQKKyurs7LyzsfFf9OAMcJtUpEOaBeOZYD9kWwcUezRluPSJp7hLVrGM09wg4gAbdwYG3aeUY60Jm27uG2bmFvbDr14of0x99Yf//KV+5+4LE75y6YN3/B3//+982bN587dy4/Px90MmUyGeFUjRPjJfTNiYDuZJHhbs4zY/nUaRUByBiE1gmEGHjkIblRPTvHpbXMzEw6nf7EE0/cf//9a9euDQkJ0ev1fX19hKpFbdSYWOX5TXEiy2kqcYeahw140+v1BoMBFLMncqPJ+fzOk/lNZ34NO5P6F1VRoKenJycn59///vdTTz21ePHif/7znxwORygUEoY99IsAwAmuxlqtFqAmVJRsbv4uKBm3bkSBnj+gDuAEgyZL+D80p8IdweD7YoOZGZftYS4bB7hHom5iXHSjAqIwJYN5lz2DfT61UqfTAdfqd9pBXUMMLW+5kRGgphFAOnt6eqARAZrAIHWIxeJ9+/YtWbLkzTffbG5upgrbWL71buT1+p2fNTo6OjQ01Nvbq9PpZDJZQ0PD7pBLzn6xQL5ETnsMREICJxFANMEBHZfwEH0TZQlgemFNNlDMvuw1xUHsBDrqOXPy5tCwviXZHxhjNu7Mdf7RNY2Crq4uAEU0Gs22bduWLVv2xRdf1NXVwf0GQrVdXV3AGqHeb3DH/s44WN5+cyMwZWFOCMvQ8IjO0Ncm1SXlNp+LrQo4nccIygw4nXcorDguq6msXiZTdU/xqQgMhExIBgcHwT5Ao9HI5XKhUNjQ0FBeXp6Xl5eWlpaQkBDKjD50NooRFPn1j8wPA5hrvZiOXshwbo0vZ60386OAqG8Cmd5BkYfPRUVFx6Wmpubk5BQXF9fV1QmFQqlUCo4n1A6YqfmcDg0N6fUGiVTW2NSck1vAZHGOHA2eSPTcvffAgYNBp86ERDKjk1PSKiqrpVLZwGWuJ6HJglatSqXyOJuBFp70KOS9R8f0LG/E68I0d/QTpmcAY9jTWWsYkT4Y3dyy85jfbgRz7txz0P5ymwg0n9lhAj30sb2zKz6tDKnXUl0bfvERFisMhdWSU9GVB0OLPQ5nMIIyz8VWRafxBBKtoqt7yIJx/mIEb4EdqDNA0pAKrk/my1tPT0+7tCsxpynwfKF/cG58dlNZvaTH3A8t7FPzSZ+sS0dgThCtLSgs/sdOTMT0QqwbPGVCKy/oUYClGfo9ne3sG7s2INHGDbWlgswh7hSJWrXt4htbL+AufARn2tKjwPAYF7IuW5sj0jzr3d0J/ufyvjmQ3Nra2tnZCTa9v5U2MFlxsBxnxkfAAnNOs0tMLa4R2TTwrruii1VnZ6dSqYSqPSlkw6SN0HQs63m4CcjU+T/aRy2t7+6OQ8katQGy0HQNdQEj43qEQCDUk21PZ1m5hdthIXK8DxvWxvZ0ZOiCvySibNwRI4H4SKEvD6QJgL9LkL8UWmPb01mHYks1Gg2IeEwi9WSa3eKW0/0VESD36jiwk+ABxLlTrVaTuh5BBQiTT6FQCIXCkJCQ9evXP/LII/fcc8+cOXMWLVrk6Oi4b9++4uJigUAgl8u1Wi1AnkThFjC/qwCfpIJPRUB/8TXBTQE8gJ/gHgo6lr29vQTmJITO9vZ2Ho9XVlbGZrM3b9788ssvz5kzZ+7cuffcc8/jjz/+0UcfhYSE1NTU1OKtpKTkyJEjb7755ooVKxYvXjxnzpy7777b2tra29uby+VWVVU1NzdLJBKNRgPURqPRCMgfEcOEzEnATnLOvzi6oaEhMI3Q6XQSiaSpqamsrIzL5Z4Lj16/M9oBkTWj7FBiQcRNG9cwW48IezrT1iPCekeo1Y6LNm6hDmiHcOutZ1dtCn713wf/+pHn//zvO0sefmrWHXfOumM2QjeXPPDQX6zXfeUZExOblZVVWlpaX19PbCdAmwXIBCDGS+ib1DFSvxosiehXPI6WXSY/AvA0gSwqTHUARDQajfDgU2VsCWe9s7NTIpEEBQU99dRTCxYsWLp0aUBAgEAg0Gq14/BOaoL6PaW9cecJJFSg2kNrMHzuFZskpuxCmtQICN5MknBPT49EIuFwOK+88spdd9314IMPbty4EQw4xwGc1EYKmHxCW55KpRKJRGXV9esD0DwKFtIEzoRZ0xhtHSMT6E/4v7Elt2cUELBsseMLWYfDEUBJCXALwDNsPaOAxuEdmqtSqUEwY3h4ePJvWcsRp1IEyFppeHgYuiUA6YQ+Ceq9GhUVde+9965cubK6uhpuD0IBn7JP6FSK9M0/FwJzgldfbW3tvospNthYxAH5jKD6na0ny8YjEkmu+cQ6Yl01RETwiXFE1lO4b5XOQiQGT+RuDrK0sKxz8AbttUgHb1QBXL09FKejaCTeiN09kYCtR+TbftFVDc2dnZ16vV4sFq9fv37u3Ll0Op3MuknDB1HGI6wRyyzr5t9Dk3EGUxzm/Omnn0ZGR4eGR7pN/RKFISGHfyq6kn40c+OupB0H0vyDc+Kym5pFmt7pIGALmZk0/ff09Oj1epVKJZVKhUIhj8erqqoqLi7OyclJS0tLSUlJSEiIjY3lcDjRl7eYmJj4+PhLly5xudzMzMyCgoLKykpYLonFYpVKpdPpwLmZ+nUwGbfJjTjG6OioVqerrqmLjU86cfLs4aMnAg8cvSLXc8++gyEXI7Jy8gTCNp1Op8OdeUqV6lRiqT0Dm6p4XBbrxkwsW+zhh1vNImmeTEcvxABDwIZnlINX9Jf+57/0OWXrHvGZ79lPfC+85YOcUEEGHE3YvLDxCq6A2SAAlfWWfwxPKCUNH1fvP+sfHG4Sdu2/UOhzPPv73clbfkzdf6HoXFx1h0yv1ZuHhlAevRHBtXzGNIkAmQRSl2nUshK87usfTC8R/hhS4Hoo/RS7Ij6brzH09vUPzWDVYyJaq1Qq+Xx+aWnpVwcTkQenF6K823ogn070dOOuL4Ru+iCdQpp7JGbmhNvTkYz/Gv8E9OzjRdzagET0GumEjxmiExNfZPSGHQHsGey3/GN3HMtc7xu/9RRXIBCoVGMShhaYc5o8UtPvNC0w5/S7Zj/99BPJ3eO8kQAA6O7uNlK27u5uoBEQ+iaZtFkWV9TLD1GFpmCtViuRSGKyykFUFoBJW3oUOLKgbwLMuML/RC0t9mi5G2HHQDacyGyPHkVzZ0IxDtrWwMYAWbngjI+ai5E9DKJ7gmennSfrm6BUqUxBynBXn/BRz9zy+taMAClGEzCAKD0SvJOI2XZ1dVH9LEnxhUCeHR0deXl5oaGh/v7+H3zwwbPPPnvXXXfde++9f/nLXxwdHb/88stdu3ZFRUWVl5er1eoevFGxT6jpQ30ffg5c0zYOIYDDArpJ8ptEIsnNzT137hydTv/oo4+srKyeeuqpRYsWLViw4K9//etHH33k4+Nz9uxZLpdbXV0N6GZNTU11dXUN3mpra+vq6qqqqhITE4ODgz08PN55551nnnlmzpw5y5Yte+655+zt7T///HN/f/+IiIjS0lKlUmkymYioL2C91zBeIp+i0+kAYK6vr8/Pz09KSjoZyv54Z6T1jlBr11A7jwh7z0g79wiaa+jqrSE2rqGvfxv04gavZ1y+eXzV+hXPrVr62HPzlz10x13zZt05Z9GKx5c/t+p/Vr3/7Fub/vqJ3+ofTmz58TwrOiY9Pb2oqKi2tra5ubmjowNkJAlLdRy6OQ4BInjt74F/bs1H0jLqSYwANb8RmI2AnSBje0WwU6FQdHR0JCQkbNu27fHHH1+6dKmDg8PevXubmprGNStAjwJMhK4Z0oA3UmdlcFhqr8a4D5rEKE3WocgoYCDwnULtg9bpdBERER9++OGf/vSnhQsXvv/+++fPn6+vr58oIzzO1Zi4/ILkgFqtbm9vT8mvdPFCMrM27rgvGJqIMXcT1GjtcSsxkKWQ4yaWn7XFlnggegY/QWESSmx2WNPbxj3Sns5y9EbtaEDuBLzzy0OXZAqF0Wjs6+uzwJyTddtM5eNQH0lolQCkE+y9qUhnXl7eqlWrHnjggaCgILDfhl4fkhmm8jAt5wYwp9lsJjBnUGQaeuqRUmW0nReylLPHbCRUyPNGyzfQXsPmmhxnv3jAQcc859wjrVxR66oTQkBjnbB1H+qW8OLAGhDMg4HrAE6fth7M93bF1DU2S6XS+Pj4F1988YknnmAymTKZjEywlUqlWq0mWin9/f0g22NZhs+YG3jqw5y4fPTT4NCw3tRfze/MLG27EF+9/0Kh74ls+tHMYFZ5XBa/uFYilhsGh6ZBJxAhIEL/qNFo1Gg0nZ2dYrG4tbW1sbGxpqamvLy8uLg4Pz8/JycnKysrMzMzIyMjMzMzKysrNze3sLCwtLSUAJwdHR0ymQw42cTUCVripu9qaGhoSKfTi8SS+npednZeFCvm6LGT47ieAbsDd+76cd+Ph06cPKNQdGZXNL21Mw5gTkh3eA4WDpgliGeA9q8drmUBZom6RrCNH5DdIUOCex+UzmAmhmAPrHJp4x7p6M3ZE1Wk1+t7enpAFviKcR4ZGe3sMmWUtDFTGryPZ9GDMnadQSzkxNzmvEqRzohAqRmTRiwDuR4RIMtJUt+gvhgdHe3tH2pq70rIbt5zpsDvZE4wqyK9uK1BoOobGL7iPXk9TvKGHROa/8xms0qlamlpqaioCIpMgQcW4Ew7Ouvy/Ad5c4I2NQ1PjUDXELSsgc+DV1uxjl7Rjj4cWJHheRGqckPjKdh8frjv0g8H0t7fmbjGP/4IJ7+9vR1qiVd58G9YQCwfNFMjYIE5p/eVJQUpUpMiyALBG+A3hKADM7bpPezrc/YwYx4YGDCZTCqVSigUep1PQ2ka2ltw4Qz5sngw7eks0Cu3cY9AFE9YPyPXFqxS68VGDS+uYUiFkoHcN6GT5T8Zn86ycWOiXmBs7mKP1JBQi/FbO+NahCLQ2YMF8PUZqOWoMy0CZAJ3RbwT2N7gZwkFPqB4KpXKTryNgzxBbBDWigkJCe7u7qtXr77//vvB6PHOO++8/fbbH374YUdHx61bt548eTIjI6OlpUUkEkmlUoVCAVgaFUi7rBFy5f8DYkocRgkrXS6XSySSjo6OxsbGpKSkw4cPf/PNN6tWrVq2bNmsWbNmz549f/78RYsWPfDAA87Ozn5+fqmpqW14EwqFLS0tzc3NfD6/qamJd6WtsbGxqampubm5tbVVKBS2tbW1t7e3trbGxMS4urquXr36vvvuI+OdNWsWjHfLli3BwcHp6enNzc3XNl4o9Gu12s7OThhacXFxamoqh8O5cOHCp17Bq7479tr/Bf6/912fdvz84ZfsFz+88s65C/9w222zbr/j9jvn3DFn3uz5i5Y98f+eWP3+ix/Rrbeepm0/97/fHXv1qyNvfH/cacepwODQ+Pj4jIwMUF5qbW0FM2bwggL9TNL10tfXR+XjTvfF/Ex7qi3jwRGgYhXEbYW0cRBmJ7HpJcxOYM90dnaGh4e/8sorCxYsmDNnjouLS0pKCpHKofJpYNH7exa0VKTwiq+n7CUlZ0ulbw4MDPT29mo0mubm5s2bN8+bN++uu+5avny5l5eXWCyGrw8QwSalfJAPAYlaIh8CuBE0eZhMJrVaLRAIWGnFdm7hoHHk6BPj4odqakgrEmvPEhstQC7RzIqOZCcvewREorZitwgbbKSHO8YQromqchgHhd1gf2B52npGrd8VJ5bKDAZDX1/f0JClKDZlb8ZJPjGSQAgp3GQyQd6gIvQSieTDDz+880NFD1oAACAASURBVM47P/vss87OTsIvsXwtTvL1uA6HmwhzhsSmI+NMH1Shg/yAyd/Rjt4xkCIue00h7qY9Ay3o0DrOh4O4nl4cGw+mjSvqW3XyRhV5xGzwYNI8UJ8rUDyxUwliNoCoo51n1Cf74uobGk6fPr1o0aInnniipKQE5tUymQzaPjQaDVTzYd5FrEl+zzfOdYil5ZDXHoFpAXPC8EZ/+mlweKS3f0ik0Jc3ys/HVXsFZW3fz/1hT3LAqdyzMZVl9bLBoanucUgqYDAzJC7parVaoVCIxWKhUMjn83k8Xm1tbXV1dWVlZTneKioqKisra2pqGhoampqaWltbOzo65HK5SqXSarXd3d1E8wzy/wzrRRgdHdUbDDU1dbFxiUeDTh44FLT3x0MBuwP9du49dPi4SCRiXMjBYCTicSLEAgvPQo8Ipryjhv4xlW/sc4wc0D1RX4g9nW3jFmHlFo7a/VGtDKmagaknNPQ7eKNiF8hgIijFN8bZJ6a0oQ1MOgcHByeGenh4tKRWEp5Uu20/9/s9l7b8mOpzIptbJCjnybrNA9MCj7/2nGJ55yRFgKxxfu4F9XMa29RHIkpdD6Z5H8/eezY/Lqu5Ta7r7hkYGh5Bb6fuOj1fAw8e1ndtbW21tbV5eflv+iEDY1hJWbtGWLuGg4cISOYg23LPKCdfNIOywV2nVjvCkY0IuG9izX8MajIhG5CeBnsvJHX7wb6kTYHct7Hj2xpfTlJuhVgs1mq1vb29V3zqp2dcLWc95SJggTmn3CW5hhOCrA31KaKgOO4F6UqeESn6GoL0y28BmBMUaxUKBZ/P/3x/IgYs/8v2CfcCozZh3N6C2oRtxoj8EVauYdZu4bZY4oM4EGBYFO2GOAr4GwJ5NXtEoc4XbNcMngdopU1nZZbxqHn/l0/asoclApQIUFd9E/VsiX+nXq8HLlRXVxfQoag1a2LfSMzVgB1VXl6elJR09uzZ3bt3b968+b333nvjjTeeeuqppUuXzp49e8mSJY888sgzzzzz6quv0mi0tWvXvvfee59++um///3v7777buvWre7u7p6engwGw8fHx9vbm8FgeHp6urm5bd68+dtvv/3yyy8/+eSTd99919nZ2dra+uWXX165cuWDDz64cOHCO+644/7773/22WdtbGw2bNiwY8eOwMDAixcvcrncmpoaqVQqk8mkUqlEIhHhDRw629vb29rahHgTTNjg94BugiunWCyWSCRwNLlc3tHRQca7Z88eMt6VK1fCeBcvXvxz4924cSMZr5eXlw/eqOP96quvPvvss/fff3/NmjWrV69+6aWX/vznPz/88MP33LN09py5s2bdPmf+ogX3Przk0WceePr1R19d+6Ttx8++ufHFDz1f+dfeVZuCV28+9cb36Cf8t2pTsNP2Uz/sPXcmNCoxMTErK6ukpKS+vr61tVUikSiVSo1GYzAYuru7gZAK3E0AOIn0LvmCoNxNlpeWCEyVCFAnOYRiSJidRKN7okA3ZDOZTJabm7t3714nJyfQsv7ggw+OHTtWX18PeAbB+wnt8lZ4Ikg7M4waKLMgCdDZ2clisTZu3Aga4H/961937NgRGxsrFoupNDjyZUHMEaiWxkB8BywZJLuhh6y5uflCUiE2JEYNv7AeJq6csKgGwydbzygEhWL1WvgNDUELyBSKQJ5jOrcMXFDDRTcQrQW5WuhQRgU1b3ZbB1pXgy8A3FFT5f62nMf1jAB1XkQ0FYjoPWnzEolEhw4duu+++1avXp2fnw+ZYRyt07KAup4X6hqPTURrtVqtTCarr69P5GY6+XLAUg7V6JHrOWonRaV5XHnH2CeiGry5K9HRJ4bmjvRsUQryRn5UNPfIVdsurt5+EQOZqF6PE0gMEB2QcxVe0MFBbD0irXdc/GZv+HvvvXfXXXd9/fXXfD6fdNsAxqnVag0GA2hgkp5jSwq6xus9Vd82jWBOCOHIyKjO2CtS6LPK2kITa/dfKPQ8muF9PHv3mfyI5LrCanG7TD805cFOmMaQOUxfXx+09hLWPrTMikQiWBVS132kN5c8oeMAzhmf8IeHhzUabatAWFJanpiYnJBwKa2oZo0fQiKRMAZuPnPyjUGELW/UNQKQJ6Jyoj5+lFEdvZBYJXj1oVmZBxK3RKmS0nNmjZrSIkHwDJEEPKJg4oeQUS/2ZwcuyTtV3d3d43hdIyOjHTJ9YbX4NKfyUGix+6F0xtHMYHZFZEpDfWtnh0w39W/OqZqrLOf1yxHQ6M31raro9MZjzHK3g+m7zuSFxFVzC4XlPLlM1T00PI3hzpGREWJnLhaLeTxeUVHRjuPx6HHGjExrtwirHWE2+EG2xeq1gIDaMVg2bhGwZCPsT7QcwxVs+D0szZxw96qTb4yLb8xn+y79a1fSWoyhOnpxPt+fUMdrlMlkhNUz49PsL99tlj2uTwQsMOf1ievNOCosma7y82ac1HT6TMj7fX194JxXW9/wfgDHegciHDh4Rbv4x2EBW1RKs/WMcsIq5KSx144e5eIb58CIBrTSxg31swDbAO8P5H1k4W6L7A2iaJ5I+hyZx9CjkPULxjvtGeyzSaVdXV0g32ERrZ1Od8+UOVfIAOMWflC5JgbsP4d3ElVbKGST8h8p2RDWDlS3YbfOzk6RSFRYWMhisQ4cOLB169YNGzY4ODi89NJLjz322LJly+bNmzd37ty7fmabO3fuggUL7rvvvj/96U+vvPLKmjVrPv30U3d392PHjsXFxZWXlxNHSVJSn3hiMsomnbBJJmywC+CaAG2CvBgRGaMOmXwukF9hvEVFRSwW6+DBg1u3bv3444+vYbyPP/74Sy+9ZGtr+/bbb3/55Zeurq4BAQFHjhw5f/584NEzHzJO0baeXr0p2GrzKavNp1b9cBJATastp9/4/sQbm05Ybz1js/W049ZTm/acCbkYzuFwUlJScnNzy8vLGxoa2trapFIpVSRtolwnoa9Zym1T5vG1nMgvRICKWAwODoLrHpXcqdVqqYbE4x5kpVIpFAr37t37xBNPzJ49+/bbb3/xxRdPnToll8uhnZxqokltAiCI4DRdj1G/F0hLHMjqguBHX1+fyWTS6XSZmZnr16+/A28LFy784osvampqSB/MuHgSA06tVguec4QsDsgxgY2JGYxCoWhsbDwVk0PcXEAGA9BKEEcCCiaslhGh0xW1mkF9DUmoYVM94G5Clxhhf8ILWJzDn4ijDM2D2Spsh/nV4OCgJen9wpM2s/4MeQMm+UBTNplMBoNBo9FAbwSZ29TW1j799NOzZ88+c+YMwaVmJKdnxlxhAnPqdDq5XM7j8TKzcj7YHY+WbBjapLkzbdyRfI6LXxy0UzhhWif6vVskZi2gvtU1/vE45zAdvWNcdsbbebJo7kxr9wjEBPXhOHhzQHrHwSua5hlp78m0QzbqLAd61Gtf7lt0z7IFCxacPHkSPALgdgJ2u1arBeFuQFBISpymXyUz5raZ9IFMO5gTLJCGR0ZN5gGlxpRb0X42tsovOPvbnYmb9iRvC0w9EVWeUdym7+6b9FhN+gFJhgdNo/7+/r6+PurMUKfTabVazeUN+rFIA+itbOoE1C6z2azT6cQSyb8OJiEAg45b0BjRiH/pH+/owwFsEvBLqx1hY5M0sGqCRjQGAkHBLABZeCJ35Cga/MTyG9AXAuQBxJX3iXHxR1naxTc2paQRMA8in9DbP5RS0LrzZK77ofSNuxCJ88CFoosJtR1yvUZvHhwcGZ7OONOk3/+WA17XCGiNfSn5re6HM+lHM7cHcvedLwgMKeIWCURyXU/v4PDwRBLydT2d33twIl5oNBplMhno1p7npL61K97ZLw7NfC4vuBBvB7QM6bi1lI6aw5DsP1YxtKcjBR20NMOqhGgRR2djHze2LR3p/L/pH7vtaPqGnfEg2IOK5z4xbG6hQCBQKpUTOxt+78As77dE4L8jYIE5/zseln/dwhEg7S0ajUYkEpVX1Xy0Lx6sNJGPCx1ldkzlZCPXKJziEWyJJ3NQhoPsD2U19B3AAM9OpHdEvhjQFwa256RhSyp76CBGx0Fzyj2R2URPz+LJfAvfjJMzdKjkwoRmnJ4tFfIkgrFAitJoNF14m6htSwC/iUAjKX9T9yGiuCKRiGjJNjU18fl8EIxta2uTSCRkN/JeUnMkhyW/IfsQ0BGIRCqVSo03OPmuri5Yz0L9XXulDXYg+0/ieEEuqbW1tbm5uQlvRCBXIpEoFAqZTAaSvK2trQ0NDVVVVcXFxVlZWcnJyXFxcSwW62Jo6NGT53wOnt20+8wXvqc+8Dy53uPUOtfj77oHb2Cc/GrnGY+DF/efDA2NYMbGxnK53Ly8vPLy8vr6eoFAIJVKVSoVuEBRV+/EldlS4p+cB8xylJsRAYLYkZw2saQFSYz0bVDzFYjZSqXS7OzswMDA9evX//GPf1y0aNHrr7/+/fffh4SE1NTUEJ1VwvIcB3mS1Epe3IxIXPkzySmRQFG7XoALCwgxMNtEIlF8fLy3t/eaNWtWrFixaNEiGo3m4eHB4XDa2tpA2JMEENIvlO9BnxzEGI1GY3d3N8QNgkbNNj/99BOwObu7uxUKRUNDw+nYHMApoVgGvCtoE3bCKCaV4ul0WfcCqWIgkzxcg8NcgbHd8JwKXlvtCAOiAHCwQF4SY6isFkFbV1eXyWSyqCRd+daZ6b+FUjg8AlTSj1qt7uzsJJONmpqar7/+etmyZR9//HF9fT2gU9QMMNPjNM3GB1Pcvr4+g8EASjx5+fk/BCWQYj3NA4nT4qp6HBKzxf/htRsWvr6st4ZFs6Ps8J5oHx8OQkk9UX+qgzcSv4UyPV7QsZy8ox28WLY7Qp60+XD2vLtff/11FovV3Nzc3t4ulUrlcrlSqezq6oLmD8IMtuDl0+ze+i2nOx1hThjf0NBIT+8gv0OdXdYWllS773yB97GsrYGpe87mn42pSi8Wtkt1vX2DvyUYN2FfMuEhzE7S4AuOKeCQQn6azWYiODE4OEjtP4BD3YQx3PCPJMnTaDSqVKrssgYXX5T3QKsWWs1gZoWzH1IdQ1ZNDGRvjPQqGdEgAI7Yn25YxxvpezNpHpFWO8Iul7mwnRNW4ICcbOeJjvMfk2M6a29UgUql6unpGRwcNPcO8Nu7UvJbT0SVexxJdz+UvudswZHwkoRsPjhx9vZP9Vvxhl9GywfeiAgMj4yotD0lddK4rKYj4aV+J3K2BnJ3n8k7FV2ZUiAob5CL5Hp9d9/A4FQ3NoaZ8ODgYE9Pj1qtbm9vr6ury8zO2Xw0AYrV8PgjXRxcvkZY5tj8Bz22KC1gvNPZN9YFW5ujYjisyBjR9l5sW48oZ2/2v/enbNyf+rZPrItvrLNvLJLBYLC3nkiur68XiUQajQae92kGEd+IG83yGZMWAQvMOWmhtBxoukdgZGQEkn5XV1dbW1tRacX6AI6LXzw0s+CmYKRlZM9gO/vEQm3OAbW3IO0OO0+mlWs4mgUyELrp5Bvn4h/3n7zvzXH0Qr3AoO/h4BWNvDmxcAd0waCGYvcImkekV0i6QqEwGo1gH2Xp9p3uN9XUOX/qChBIPKTSTUCCcTaZeryRBlhQuCVYoBJvExFKAkPCC1I6vPqLce+i/pMKZ05ENDUaDQCZer3egLfu7m6TyQQCrcQOtPe/N7PZTNa6VJSXAL0AkwBuCmAJdbyE7Uo9z980XrlcDlq7HR0dAoGAz+c3NDRUVlYWFRXl5eVlZGQkJycnJCTExMSw2WwmkxkZyYyIiIyMZDKZUWw2OzY2NikpKT09PScnp6ioqKqqqrGxERicVICTyKNRiZtT5560nIklAtccgXEJjTA7wZ/JaDReRcmW9ExAblEqlfn5+V9++eXdd999G96WL1++ZcuWkpKSnp4eEHkmLE9SDiMF66kmb0toDVTWJlWQlqCbhw4devnll++4447bbrtt1qxZNBotIiICcuw4dJMImFPdN3U6HTHghPza399PzTlwjWAaQ2BOuVxeX19/PiHPCbtpEvomkDUB44Q1NhTXkJaGX9xlohXSQ7N2iwAlW2Rq7hsLbwGJWkdvDrKQwZQCVFDDSpWgcLvGj9MiaFOr1RaY85ofuhnwRrgnCePHbDZ3d3fr9fquri7w9wVFB4VCERERcfvtty9fvryoqAjyALHypd7YMyAm030IUKkHwxGVStXa2lpcXLw/NNnBO9rRO9rBB7lJWbshRjhqp2CwHLw5NHckqAMpwtodafZYu4WjdlV31JPq4DVG3LRjIEKnjXsE9Lk6eLEdUAkvEmGcdKbVDycXrXj8tlm32771cWFhYV1dHZ/P7+jokMlkSqWSyHdTYXLLmm6632xXOf/pC3PCoIaHR/sGhhXq7roWZVQqz+9kzo6DaRsDkhhHMw+GFl3KbzGY+q8y/Cnyp3HzH9LXRaZAIF9BmrFgOUxdIt1SDykxNgYq/InYAmjit8fkLXsv7HfugZwFMJA5pj1L5mYIFMH4JZKlBeK7F0JJARNFuRS1g6B/wl9R+kVtavj3DDYoZNp6Rn0SmCiTyYxGo7rLcDGh2j84e/PelM37UnYc4O45k1dUK21s6+rpHZz6ANIUeQosp3EDIjA0MtooVLO4vC17UzyOZHy/59K+cwX7zhWExFfXNCtK6qU6U39P3+AUFLclDX+9vb0g9d/c3FxcXJyYnOpCR71fqKyNuxls3NEjj2BLbKuJJKkvEz3HyuC4CYzmjmraNE/mGv8ERx/Oh7vifE/mfOIfb4tr5rgYjmig63bGxaUXNjc3y+VyolhrUS68AffqLfsRFpjzlr30loGPjwCBOdVqtVAoLCwpf29XDM0jEprOnHyQOYGdJ+pTc/RGpi+O2KgAFel8Ypy8Y1zwdwD0vsEMz8aDaeuBMruDFxJEcsRTPSfvGBv3yNXbQxElFDfE2dORPgDSA6FHBYRmE/W8oaGhW2q2Pf56WP59HSJAsAGogFPxTtL32tvbS1pfu7u7jXgzGAyAelKVfwgKqLq8ARYICocEnvytL+Aglw+J/k9omgBqAq4JRXaDwQBEIgJtQn9uX18fdTULS1zyE/4E+C4Zr8lkGjdeHd4I0Du54wWClFQqFYvFHR0dQqEQwM7q6ury8vKioqLc3Nzs7OyMjIy0tDQul5uamsrlctPT0zMzM3Nzc4uKisrLy2tqang8nlAoBBtOkEcjDE6i/wPX/TrcUJZDWiJwkyNAqloAXUAeg4caOhhI78IVyZ1UAE8ikaSlpQUGBn766acvv/zykiVL7r33Xisrq++++y4oKCglJaW1tfWKwCckUirfi4jcTjoISs3h5FOAiEDoraSi14+3vr4+hUKRn58fEhLi6en51ltvPf744/PmzVu5cuW6desYDEZ0dHRLSwtRpiXcTWpwlEqlWq2GDKzX64nXL8k248qF426LoaGhvr4+o9EIMGfkpdy1fmhORUgDsKhGiknY9w6MnRANCxMLwAyPrKsxbhFhhxWQkIakBxN4A9BxDOgF6T6Gd324N65VILTAnOOuyy34T8gYoNQHkL/JZJpo1alQKMrKyt5+++077rjju+++6+jogFt9HE35FgzgFBwyLN9MJpNGo+no6KisrExIzVzjgyrsiIjpwbTeEYZQTKQ0i0XYfJCerSPCO5H1JlTe0YqMgR1GcE0f7DztGSzMC49y8uEg0BQBnxE2288/afvJXXcvW7TiiRff+eFkZGJpaSloaYA8CRiim0wmIlRLcJQpGD3LKU1KBKY7zIk1bH8y9vTLlMaiGklUasPRiFLvY1nov+PZJ9kVqYWCBoHKZB6YlHDdgIOQfhQyU5r44lZeHMFX4cDAgMlk6urqEovFO06l0tyQAhmaj2FpSpg+gSilPZalBcUyWw8mkp/F7SM0T6YtJnH+h/GJsU8AQTECGmnnyUIGnzjxomNi+BPAVDs6y8UvtqiqsbCiOSSufNepHO9jmYxjmfvOFZyOrmBzG1rFGkVX98jIFASMbsBdbPmIqR6BkZFRlaanslGRWiA4G1N54GLx1kCu74mcXafzjkaUhCbWphS0VjTKW0XoNtYYegcGb3J1F5IeOIl0d3er1WqRSFRTU5OdnX00PPFNvxgCZyJyjjfHjs5evT0Uqt9o1uSBeNtgZw6dEPZ0trNv7Ad7L/37APervclf7r30D+8xnrejFwc974xoZ9+YQ5EZNbW1HR0dsBAb58U71S+z5fymYQQsMOc0vGiWU74+ESAwp0qlEggERaXlG/YloHZgtE7mgFEB+LG7IIwT0/Y9oxxQLxv6GnD2jXfyiQFdIzDmtN4RjqifvjHOvrGIyomb4xx9kAiSHSMKvcUnFi3CGchrCkw9j0Tny2QyMAmzwJzX5zpbjjoWAWq5nFTJJ9bHx8nbduMNyFJ6vR6wxnFwIJG9JQRQAAiv8pMox1LFZqlwJpA1AXMlfE2gbBJcExhX1C5dwrgat9yF8ZI+X4BGAPX89eO9bPKC/k/O/ypjpP6JRAbQXKCHEryzpaWFx+PV1dXV1tZWVVVVVFSUX94qKyurq6vr6+ubmppaW1tBIU2lUmm1WhCN7O/vJ3iDpU/C8rTfIhEYB3YODQ2NwzuBs6XVauHRI+TscSRsws+WSCRCoTA+Pv7LL798+OGHZ82aNXv27Hnz5j3yyCPvv//+8ePHeTweiJ5B/gFAkZqCIJcSBJT6guTbX/+C+naSuEi6pmYwIFaazWaZTMZms7/77rsXXnhhwYIFc+bMuf322++66y4XF5fg4GAejycWi4nzMZVtD0EYp0xL5W7CwGGwBPWBAuLP3W+EzalQKHg8XkJGwT/8ULuYPQP5nVPJAYB3AsxpR2c5+8au3Zlg5Rpuh3cD902aB/ONLSFvbL0AgmlQlQPXPRs3BH8CwwBEbrF+RsRXhxKFbcib08Lm/LlrdOv8fhzSCca0BoNBq9WCVSdB+qVSaWho6KJFi5YuXZqcnAzqo/Awwuzi1gnaVB4p4STp9XqpVFpfX19QUBBw7pKLfzwwCSBFoD5UD7Rqc/DGCzHwn0NluDERRQBBEZ8Jl+lRLqKzEKfTI9LWk+nIYNPcI1Z9H7zk0advu23W8uet/vfboA98Q7kZWZWVlU1NTe3t7QqFoqury2AwEAXvoaEhC8Y5lW+eyTq3GQBzErfO/sEhc99AfYsyPot/OKxk057kTXuSf9ib/GNIQVxWU0tH17RYXJB13y++mKx7YHodB9qdidx3a2vr+wHR1m7hNm4Rjl4cZ/84VPIC4W7sr2QH+t7/MeRDLSBA/MKtZkwbtwgbNyRsRiz9xtKvJ8JNL+t+I83bsQyMDwjJ+au9nE0BnG/9Y7/2iws4lR1+qbawRixXdesMvYNDFifO6XVn3bpnOzwyMjg0YjIPtkm1ibnNx5hljKOZWwNTvYKytgWmBkWW7TtXkJLfkl3WXt+i0nX3Gnv6R0ZHbzyED3NgpBFtNuv1erlc3tzcXFpamp6ezgjmOPnEOvnGjHG1cYMCrMts6WOPNnrePVF/GHqQ6az3dsVtP5rhdijtXwFJLrhgThw9wazXnsHyPXupvLycUDl7e3st7iG37nNyo0ZugTlvVKQtnzPlIzAyMgJNbQBzlpVXfLIvHrrPUAsbEqRF9TgnTOIEM3aaOyJ3gloa6vlFncJo9ubkjb4erFwjrF3DEQjqxUHtbx6oa9gOcTfH1ADwFwbicdrRUZnPnsFmpZVZYM4pf6fMwBMki0Cic0glBhHuIxUIJCRIInULbEjAQam0SNCSvfpPgl+St4/DMqmIAlVGkmqeN45NBYO64tWa9PHC+RuNxqsPk/yVOl54F2DGAMMQ9TyJRCISiTo6Otrx1tHRIRaLJRLJFZ2fQFLPUlC74hW3/HLGR2DcQw1YIOB/fX19oFPd3d1tMBiAkg54J1A8CbpJ9GypUJ9SqaytrWUymd7e3hs2bLC2tn7yySfnz5+/ePHiF154Yd26ddu2bTt06FBYWBiXy62srGxvb9fpdH14Gwd/Qi4FePI3/STcdELQBGxGJpPV19fn5ORER0efOHHCy8vrk08+ef311x988MG5c+c+9NBDr7zyyttvv71ly5bTp08XFBR0dnZSWa0wTOqoCbqpVqu7urpAehEY8z09PQTTBXFaSLkk8lcpfQLMaTKZOjs7Gxsb84tKPtgTB639GHtAbABoI4N2MeSTh81gxmiadNRM5uKPpmTYaBP1DuNpFaIU/If0iRQyUA8ZUEIBPXVCwrYc/4uZ7R0dxA/mKt8OM/5JsQwQqvnwXUlonWaz2Wg06nQ6ImBLnovMzMw1a9YsXbr022+/raurIwxmah+VJao3MQIAcwJfvLOzs7m5uby8PCMz85/7YqE9wgGtwlAVHpBLVFjH6QUom3aeLFtPJGbr7Bfr7BcLvRTQMIF8SZApSZj1jtBVP5z6E23D7HmL7n7gsef+8d3qzadpW0+fCI8rKCioq6sTCAQymUyj0RiNRnKHAMZpyTY38d64YR89M2BOarikSmNZnSw6jXfgYqHvieytP6b6BecEs8pjM5vqBSqVtufGV+eppzc1X5tMJqFQ2N8/DQR+R0ZGhoaGent7dTqdVCpt4vOdSQc/JrtD6xjMuOwvexiDAi2yKEYi3gjkoLkjdhfuKkNYJqLI41Yz6DYDPijw5lG5zAtpeMAbcTZGhTWaB3OdF/NbH+b2HxN8j2ecj63ILm1r6egymQf6p7zT4dS8Dy1nNRUiMDr6k6l3QKTQl9RJYzKbLiRUH2eW+p/MdT+c4XUs0y84Z+95JHIbllSbWdqeXtzGE3a1SXVtUp3G0Gsw9Q8NjwxfNxIzUfsHGQyRSFRfX19cXJyamup+jLPGF8vtYCFD9MBiduaYuA6D7ezN/nBPwgc7491P53gcy/p696X/C0xeg1ibyNbNacwpIAIbmaMH3DX4UlZeYUNDg0gkgmbT/v5+ojc2Fa6ULG5+CwAAIABJREFU5RxmZAQsMOeMvKyWQV1LBAibE0RrKyoqNh5JBNsnmmcUmK5D1Qx5L9NR4h4z4/SK/sfuS/ao4Zfp5B3jiEU57Ogsa9eIVVsvWG0PtcFTQBCwxdk/kgauMHTEBMV2L6hyZ+cZVVJZJ5fLYZFsYXNey1W0vGeSIkAq16QUSIhHQGWYSCQiICjU9//bDXNMCJeYZVJfUPeE944DMgk2QChN5GQIqkdO+NoCQN4+brzUwYL/HyFO/f7xksGSFwAe9/T0ENwU4E/gy+p0OgBKjUYjMFlBm5dKF7gK0nBtkbG8yxKB6RUBeJbJg0zwTnjKzGYzseMdh3eCvDYV+SMcR4J6yuVysVgsEAgaGxu5XO6ePXvee++9J5988o477rjzzjvnzZsHxK/777//mWeeWbNmzTfffBMQEBASEsLlcquqqsRiMYCFJOmRZ3/cC7KD2Wzu7Ozk8Xg5OTksFuvAgQNbt2597733/va3v61YsWLZsmWLFy8mZM377rvP3t7ezc2NyWRWV1e3tLSAV9yvGRogoATdhGxDFaeFbDPRffPX3B7Dw8MDAwM9PT1KpZLP55eVle04kQhwAq6aoRoZ2AE4YYonIKCg8A90T3sG28UP0QtQt5kPFsnAlTjoMiawKBhBYSGNWHDuXOMfv2Zn/PmkIrFYrNFozGbz4OAg3CS/5swt+8zsCJCu9oGBAXD2NRgMGo0GaJ0kA4hEonPnzi1YsOChhx6KiIgY59YJ2tQzO1BTeXRQsBsYGDCbzRqNpq2trba2tqCg4OCFOBssq+iASZl2dGTJSUN+UawxWzgPvI7zRPRNVMLDKQW1sXpEgmWJi2+srUek9fbQFz/xm7/sodvvnPPH1958/ZujqzedtNp8esfBiPSMjLKyMj6fL5VKAeOEPAlzVMuNMZVvm8k9t5kHcw4Nj/QPDOmMvdJOY3ZZe1BkqX9wzve7k7cFchlBmSfZ5dVNilvWLnF4eDg1NXVgAEn4CoXCJ5988tixY3FxcU888cSSJUuysrIm9+66HkeDbmaz2azVakUiUUVN3eWSFxPJyTJYdp6IeQkgB6CVqPaFGV0or7pjbVvInNjLyZ6BvTyR8AZKpw4M1L4PoKYNxj7BBAq3+yOjAeBxAuPTzi3c7UfOxbjS0toOkVzbbe4fGBwetejUXo8LbznmTYrA8MjowOBwT++AtrtfINEmZDdHXKp3P5TBOJq5PZDrcThj56lcxrHMI+ElR8JLOJlN0emN2eXtuZUinlDd3KExdPd1GXqHh0eHh0cmZQSk0aG7u1upVAqFwrq6uvz8/ITERK8T6OHFcyFkau7sg6R33g2I++FY2raj6b7B2Zt/TN0cmLr5cPrbfnFr/eKcfDhY94LpwMBevG6RyPLcNdyRwfY+k5idk1dTUyMUCjs7O6HEbaFyTsoVtBzk6hGwwJxXj4/lr7dQBADmNJvNXV1d7e3tVVVVB8JSnHywlwAj2haxMJEPswMj2sUPUQrsvdiO3jE0jygbt0gbN9S0gqifvjHOfnG2nixbLLbmhAgHSNYDFsyOPhwHLzY2eGfb428C5NDpxQZrz3/uT6qp5ykUCqPR2NfXZ4E5b6Gbb2oPlUCARBmSkD4J7nhFHUXCQPpNLwjJiRx8HKhJ7O6oJzZZIaQe8waPlwwcwkVgVAJ4wAugcxFtXtIQR858skJhOY4lAtM6AvBETMQ7wZCvt7e3p6dnHOSp0WjUajXhO4KaNFGwJOwugnoS7qNUKi0rK4uJiTly5Iinp+e//vWvt956i0ajvfrqq88999zjjz/+wAMPLFmyZO7cubfddtvcuXOXLFmyfPny//mf/3nyySdXrlz5zDPPPP/8888+++yf//znJ5988vHHH3/ooYeWLVs2f/78O+64Y/bs2Xffffd999336KOPPv300y+//LKVldWaNWs2bNiwZcuWffv2hYWF5ebmCgQCOHPijgznecXzB+BTqVSC+TGYbgK0aTQaweqYcDfHZZtrqN0DzGk2m6GNrLq6Oiop0xGLWAByCaRMEDgCcQsilQHkAMAnSF0M9JQA1LRBuAUbynBA5XT2jXXxi0OLc2QxgBqTC8prZTKZXq8nkytLR8i0fron6+ThW544+/b19UGbkVarVavVSqWSPD4KhaKysvL999+fP3/+unXrcnJyQMMWgH8yLZmsE7Mc5zdFAAp2/f39BoNBLpe3tLRUVVWlZ2TuOBrj5B0NRXa04GKwnXxikascaO34cBwYbBu3iDHpbEQEj7Jxi7BHKziOoxfb0Yv1xsajj/39rTvnLlj00JPPr9tsteX0qs2nVm85/aFPCDvuUlFRUUNDQ0dHh0qlgvod0dWwTMl+0xWc7jvPPJgTrsjg4EiPeYAnVMVnNZ2OrvA9ke15JGPbfu7us/mstIa8SpFc1d0/MDzdL9+vPP/h4WEej7d///6nnnpqxYoVnZ2dP/30U1NT0x/+8IfXXntt1qxZTzzxhLOzc11d3a884E3cDb71oPmsra0tv6TCFsl6I/DSwSsaTcboLGTCh19D5xnQuXBHCJSz2KCcgdydGNFg6UdmYmhWhg8FFp4wWwP1Wki54OWJj4mcmw6eTU3JrW9t79TpTcPDI5YZ2k28NywffSMjYO4b7FSbGgSq4lopi8uL4vKCWRVHIkr2nMlnBCFrZMbRrCPhJfvOFZyNrToVXRGRUh+X1ZRdIcqrFFU2yhsEKpHcIFLoxQqDSmtWa83mvkGTeWBgcBgJPo8gWBSkccf1DUApb3BwcIzSLZO3tAorq+sysguSUjL3nk/5+lDKxsNpW46kBYQUMI5ne5/I3nyA+21gyicB8eu8OQ5Yp9DOE6UL9LB7sZ18Ylz84qxdw61dkXj1uzvZgReScnLzqqqqWltb5XK5Tqczm80wR7I84DfyHrs1P8sCc96a190y6itEgHS1aDQakUhUW1t7KS3b2Q/NvTDGidRlMdsgzskn1g4tlWMcwWPZPQJ8COwROxOJ1iIJNbwDsvbEIrd29Chc0fuPYi0yncLfB1CPc/GLcz+b0cRvViqVJpMJ6PyW74ArXCfLr6ZSBEgdh4oIEhCUwJO/8gUAEtSf5PhTZNDkfK73eEkQJoaO/AlewClNkfhYTsMSgakZAXhMSGqClgLoJAAKNWhug4I0sDzBcxfcc4mXJwE+CfhB+F7jsE+5XC4SiYRCIZ/Pb2hoqK2tra6urqioKC0tzcjISEhIYDKZZ8+eDQ4OPnbs2OHDhw8cOHDw4MGjR48eP3789OnTYWFhsbGxXC63sLCwvLy8qqqqpqaGmPICR5Oc1RXhzImgLOwPuCa4IIP/scFgINAmyIMDnx6iBCkIss01X1yYX/X19el0OpFI1NDQUFBQ8EUgkvcHYNLaNdxqeyhAm5eNAMb+ZOMWgU3QUckMeABUMTTccYwKcwTaRMdEfudIQAmYBO6nUppbWqCPGCZX1zwQyxtnXgQmIp0gYKvX6ycK2IrFYi6X++yzzy5evPibb75RKpVEU4Fo2M68EE39EQGhE7ymNBqNRCJpbm4uKSlJTuFuOYo6HlAlDhfjgGmEHXwRXQkkE6F/wt6Lbc+IorlF2npE2jOiHOjMZ1y+uuvuZbPuuPMp+0//d+PR1ZvPWG0588amE2vczoaz4/Py8mpra9va2pRKpcFgALspi1Dt1L9brscZzlSYE0t8/zQwONxtHhDJ9cV1UnZ6o19wjtvhjK0/cr2CsoIiS+Oym1S6nusR1Sl1TD6f/+GHH957772zZs168cUXL126NDyM8F2AOWfNmkWj0aRSaW9v77So3oBgO1gJtLa2ZhWUgpYszJocGNHIjJPOdvThOPtgKW865mh6RyPnTtxJBpglzQPpgVu7RWCiPC6OYYYAKG04eEdbY8f0scNeZnmOOQt4R4+VzryiS6p4coXKaDT19w9cQy/dlLpVLCdjicA1R2B4ZHRwaKS3f6i7p19r6O3U9LSKNJWNisyStrgs/qnoir1nCxhBWVv2pfgcz/p+zyX/k7mMoKx95wt+PF944GLx/otFZ2MqD1wsTsptCWaVs9IaUgtb2WkNl/Ja2Gm86DReSkFrbFZjSkErJ6OJk8mLTKk/FV1xklV+nFl6JKwo8Hy+74ks7+OZW/al7AzO3vJj0teByR/tin/bL9aFEe3kxXb2iYFH286TZeMeAT2mqDcCO/jae6HWB2u3iI0H2Ky45Pz8fBAWAkl/qG+TOdI1h8jyRksEfk0ELDDnr4mSZZ9bIgKkDKfX6yUSCY/HKygo+PpALFkY0zyY1m7hth6RTt6Im+/gFU3zQI4C4MAMyrTWyIA9ws6TBTuAJq09nU1zRw5SUNFz9OZg7JO9xj8eTR8x28DRK/pMYoFAIFCr1T09PQMDA8PDw9NionxL3ByWQf5MBKiw33V9/TOff6N/fV3HSD04mIdRfzPx9Y0evOXzLBGY5hGAhwgQO2I/TPw7iWQ0WAsbDAaQjNbgTY03QAon0iWpqCcBHX/uBTApCZ+SHJP6grrPzx0Hfk9wVrlcTvYkb/85aFOv14MyNhA3zWYzVSp8ojIthO6arz+VayWVSvl8fmlp6ZGwxLU747AABppK2WKncxDwBz1bIHoCOQDTsBB4CQvs/yytMXRBpGuhrRj0b2GftwNi84rK2trawBJmYABV0K55IJY3zsgIkMxAaJ1EwFan06nVauhvIK0DLS0t27Zte/TRR1euXHnu3Dm5XD4R7LRM4G/krQJYNXgAGwwGpVIJ7aq5ubnsuKRvDsY5+8Sg5lTsKoLSC51Nw62rDgzUmWrjEUHziHREAoxsW/cI6+0h/+8Dz3see/722XMfeObvr/7fj69vPPH3jcdWfX/ije+D13mePRMRk5mZWVlZKRAIFAqFXq8HNWyirnEjx275rKkQgRkMc5LwGk39bVJdQbX4XGzV/guFHoczPA9n+gbnHGOWpRULG4Qqg6lv5umM6vX69PT0DRs2zJ07d9myZW+++WZcXBzVfRNgzoceegg0bEm4pvgL0Njo7u5WKBQtLS2ZecUIicQoJky9YFrl7IvMAlCHmScTuTV5MO0YyGIAza+guR8hl0iuFsGZdBbmAHBonkyaO9p/zAUZo5sAi8JhAUZ18MbatlgLt6lFoNFoTCaTRdByit85ltO76REYGRnt7Rs0mPqlKmObVN8gUJU3yItrxCn5rWnFbczUemZKfUh89YX4mjOcyosJNaeiKy7E1wSzykPia05zKs/H/X/23gO+qiL9/7+hiiCWYFms6666qD9d111F3RWBBAK66goquut+ddddFVGKUtIDAtKLQJAmJZDeSe+99977vTe5vfd783+dOzj/s0mI6STkc168wrnnzsyZec85586ZzzzPU/Sjf96FsOJTgfm+0eXe0WWRqTWRqdXJOXVpeTWZeRUZ2YUZmdmJiYlh4eGnvQLXH/Z/f6f/chc/En+N8UfNeDQMXGG15CGxeJmoba7+73j4fHU46KxveHx8fGZmZklJSV1dHdE4FQqFVqs1GAxkmHTDGaICNz0ByJw3fRejgQMlQKMxy+VyMubLycnx9I1e4RbAvBi7BSzZyrg5YpxvMKM3X3sX/2sKpVsgE33diRn2WQeIjF9yO2usFztnv2VMuBcm3Dr5GXhje+gKD/KmzRgcMNYGTOGMU7WcwpKWlhaxWEzeljETN9CeQzoQAAEQAAEQGDABqmpQ+04awpNt4km82hLVU2rdxNZNaN2oe1uqehJxkWqNbO2TLUb22B9gsh652KImj8dj65rEXpNE2aTeaKVSKbHaVCgUbGmTqJtst7R0pn6Y0ia7N6itFYkB09TUxDjMiI775/5QomISMwLiyoxEeKIzYg5ugddsrayDrpXbQ4hZAD1oXXPGTKgRY9DlrgHEXa21ZP+dF+PKysra2tokEolGoyHriNl1wz4IUALUstNgMGi1WrVarVAopFIpidZJfNh2dHSQmzE7O/uTTz6ZOXPm888/Hx4eTtYKEH9c1LITYidlO9o7pO+IQadEIuHz+bW1tfn5+UlJSUGh4d8e8V/m4rfU0WeZC/N8IEonWZ9q5+Sz6JuLS7Zetnf0Xubk/Zevjt/zuxemzrjl9gee+MOHzq9+deKVdSdeWXvi5bXH/rzOc7XL2fNXAuPimJCcNTU1HR0d1A8bfXKOdktR/jgkMBlkTvO12HIGsVxT1SgMTaw+5Z+/7XD8twdiNx+M3fFj8qXw4qTcRp3eOA47aAhVUqvVp06deuaZZ2699da5c+du3bq1trZWq9X2KIrInB999NHEetqzZc6amprkjGzGP61HkINrIJmwIvE1GT3S2ZdZF2KVORkh0yP4zZ3h1kBOPtSNrZ2T76vfXPjLpgvEQ/i1wZhLwHLXAOvqf1+ilRIjzmWu/oxc6sT4SFtuTePgFtDQ0MBeizaxYPa4JPARBMYDAUt3N3FXazZbTGazyWT9Z7aYrf/YL8JkiZhKpZJIJDwer6GhoaqqqrCwMC0tLT4+PjIyyjsg5KRXkNOJwE/2Bf3VPYB5QWOitjG2PQ7Ofh99H7DteJDn5VD/kIjY2Li0tLT8/PyKioqmpiYejycWi4kdJ1nBgPnt8XBtTIY6QOacDL2MNg6IAJmG0+v1SqWyq6ursbGxsLAwPDrhn/tCX98eYh2T+Vqd0/raOftafZEzjsgZx0dWR2rLmZgujAckYtxJzAiWuTK/BMwA0eq13Dpw9HNwYwIeLHcJWOEe7OAeZG+N1n7UL6mqqqq9vZ3GjsLPwIC6DYlAAARAAARAYBgEqCNo4qCVLXlS1ZP6tmW7tyXmnmwnt0KhkNh9sr3dEh2ULX8Odp+omNTckxTOljPZTmglEkmfoiYJ7svWNanVJluVGY3ZJWprpdFoxGJxR0dHTU1Nenr6GZ9wBycmMN416wEnX2aOzGrWyYyOnBmXkmRejMaLIhqndTEZ89Xr20Mc3IPsrBkZq6xt3laHGVZTAxf/978PiUvLrbV6rFUoFDqdDlHPh3Gj3PxZybwPeQ4YDAYSx1epVMpkMrFYLBQKyb1MZE4ej9fZ2RkeHr5o0aLbbrvt/fffT09Pl0qlOp2O3lmI2TlmFw3tO51Op1KppFIpDdKZlpYWfjVi+0n/d7b7LXPxs3fyXeER/LpHMDNT7+S9ZOvlRd9ceO3b8y/8a+8jL701Zer02fPu/+2Svy9a/+PSb869tuH0i58feeXLE/abTq3dc8EvMCQxMTE/P59onGRlKnHAg74es74ehyeaDDInG7tQos4pbQ9LrD50MWv7yeRvD8RsOxK/96f04765OWXtrXzZRBc7pVLp448/zuFwfvvb37q6uvJ4PHbz2ftE5ty8eTP74PjfZ8uc1dXVmVnZK9wY/7TMLJYLM/Riprxc/BxcA8lgjKxFowE1yeL+lduDV1gHYMTEk1E+tnkv2epNHNgSo89r0fucGZNQRjq1Bvsk4zQSs8DO2fef+0Ihc47/awY1vCkJ0Bc0vV6v0WhkMplQKOTxeM3NzVVVVSUlJfn5+ZmZmUlJSXFxcdHR0RGRkYGh4T5B4VcCwwNDr0ZFRcfGxiYlJaWnp+fm5hYXF1dWVjY1NXG5XKFQKJfLaTxOOKO+Ka+fcdsoyJzjtmtQsbEmQJ/yarVaLBa3tbWVl5enpaUd8QpnxnzXjDUDl27zXryFcUtLTAfIehbGaMCNKJqMv46VHsEr3IPJCjgSv50ZHbr4L93mfW1uzsnPwRqY04E57vevA2F5BYX19fV8Pl+hUNAX5rFGgPOBAAiAAAiAwGQlwF7cypY8DQYD8W3bQ/Wk5p7E4pOE9qTaJ5U/idtbEuyTWIJSNZRoon3+pSmJhEkLIQE1JdaNyJnETFMulxNLTWqsydY1ifRC1Bej0UgjbpImj0GHsx1mdHV1NTc3FxQUxMfH7zoXutKdsde0GloxE2EObowxwWubvUiQTsYaYJs3+ZbMmpF960Ar6PXtTOA9B7fAxVuv2FkLWUECc7oGvLk9OCA2vby8vKWlRSQSwU/GGPTyTXAK+hCgfq21Wq1KpZLL5dSsk+3Dlsvl1tXV+fv7//73v7/zzjtXr15dWlqq0WjIHUcXEGDl4thcG2azmejTKpVKLBa3t7fX1tYWFxenpaVFR0d7+YdtOuK3zNlnmQujdy7ZdsXe2cdu25W/bDj10Auvz5xrO/O2O3+37P8W/mf/ovWnXttw+rWNZ15d/+Nfvjq5xvn0D2e9w69GpKSkFBYW1tbWdnR0iMViGmQE/Ts2/TtuzzLZZE6jyazS6EVSdWO7JKe0/WJ48aFLmd/sj/76+0jHI/E7fkwOS66ubxVNXB+2XV1ds2bN4nA4zzzzTFxcXD8XHpE5t2/f3k+acfgVW+asqanJzc392w7GdRkzYeXEGL4Ta0vGN8b2EKJNMp4ztnkzYzNHH2KFucI9mDEDcPIlMZjIwWtuad0CmOVr1oX+ZLHaz/NjQW/sYOwHmOAC20Pe2BG63DXQ+WxMj8gCo7Hebhz2AqoEAuOBAJkDJ88EErJBKpUKBIKOjo7m5ub6+vrKysri4uKCgoLc3NysrKyMn7fMzMycnJz8/PyioqKKioq6urqmpqb29vauri6JRKJUKmlAB2ic46GjJ1UdIHNOqu5GY/sjwF4ILJfLu7q6GhoaCgoKEhMT1x70X7Ltsr2jr72z1bDAyW+J4xU7J59l1njsds6Mi1qiXzLRNxkvtQEOboyXWiZIp1UffX1H6DKrT/Ml25iZODsnJqKn1QyUCeZ8LjSlurq6ra1NJBJRp2oY4fXXW/gOBEAABEAABEaBABkMULWD7diWGnqyVU+tVktsPdVqtcq6Ka2bwroR7VP280ac37KlUCJY9vhLk5Gdn3Mz/xM5k61oqlQqtVqt0Wi01k3380Zc0faWNon1KmngKPDru0jyFm0wGIj8wOVyKyoqMjMzr0bFfH2E0SnJun7qw3bpNm+y9p+ZKbPql0QBJSIoUUBf3xG60iOYxOMkJqEkNJS9s99K94D9XtGFhYV1dXVcLlcmk2m1Wnis7btvcLQvAnTeh7jzIj5se4id1JU0j8dra2vbvXv3ggULZs6c+dVXXxUVFcnl8h6WnZjo6Yv0SB4jj2uidCoUCoFA0NbWVltbW1RUlJ6eHh8fHx4efu6y/9cH/d7d7rNs26WXPzvyhP3/zZh9+8w5d85/ZtErnx9atP7UX74+uWjDKbtNp1duPvUPtzN7T14KCAiIjIxMT08vKioisaaIxqnT6eCrdiT7b8KWNdlkTtJRJpNZpda38KRxWfWXr5bsOJnseCR+/Z6oTfujj3lnXwgrqmwQSOQak3lCyp319fUff/zxgw8+OGXKlCVLlsTGxorF4t5XKJE5d+zY0fur8XyESBpKpZL69/70wLXRlNXk3Y8Zgzn5rnBj4i5ZZ7eY5WiMwMmEYWLWpVnXnzGGm8zYzBqeicicxAyARO5c5upvXejvt8Lt2qK017eHMGH83Jkh3+vbQ/66M+yNHaHekenNzc0ikYgsHMEP5Xi+clC3m48AfeE1mUzUkYlCoRCLxV1dXTwer7W1tbGxsa6urrq6urKysvznraKioqqqqra2tqGhobW1lcvldnV1icViYsTJDsaJm/rmu2zGeYsgc47zDkL1xpQAnYZTq9USiaS9vb2ysjIrK8svNOrve5i1bEu2+VhDFPiR6bbXmFCdV6zuZxnvakz4AWdfa6ACxhUtMxZ0C3hjR+hKxtogZIXVAxszKNzmvczqBoS4+PA4G5VfUNjU1NTZ2SmTycg7MzTOMe14nAwEQAAEQAAErk+Aap9EI6S2nkT4JOaeVPskRp9E/iQmlWrWRqRQ+pdoovQvPU52WPkYIZNubEVT//NmsG5G60btNW+IqNknSIvFYjQatVqtQqEQiUSNjY3Eyio4PGLDkcAV1mkvB/cg6s1sqaMPcVFr78zYFtgxHv6ZuHpk0o34uaUO0MikG0lj7+y7+3xEWkZmZWVla2urUCiE0VWfPYKD/RNgK51k6ketVlMftgKBgPqjpm5sS0tLPT09H3/88XvvvfeDDz4oKCgglp1kzQGVxMZ4kUH/zbyZvmV3GX3UcLnc+vr60tLS3Nzc1NTUmJiY0NDQ46fOvWz/1q2282fNvu33i9+0+8/2Fd94rvzG8+3NJ/7penLT3jPfHz9/8pyXf0BgZGRkUlJSTk5ORUVFY2Mjn8+XSqXEDxvt0JuJIdoyBAKTU+a0WLpNZotWZxRJNa08WWEVN62g+Zh3zp6zaVsPxW05FLv7TOoPV3KyStukip4hLYcAeeyzWCyW2traffv2PfDAA7fccsuLL7544sQJnU7HrsnElTkNBgOROevr6wsLC11OR1xTNK1hmBZvvfzaZq+lzMQXM+tFviJ/FzPzXX7WxfrMgn6yyGyZs7+9y7Vkdo5MgCciba7wCGJ81boFOLgy0QTIoI4IosQR7hvuAbl5BS0tLRKJRKVSkQB+mAdjX2PYB4GxIUBGUOTFlh21QSKRkBEvl8vt6Ohos27t7e0kVj2fzyfqpkwmUyqVarW6xwo/jHjHpvtwFjYByJxsGtgHgW6z2UwWbhODTjINl5qaesYn7C2PgJXbmfk1OtRzsDqqXeZ8LRQzM6qzRjJY7saM5OwcfZe5MD5sX9/OWCosd7GGJXDx/9lYgYnluf5YeFZWVmVlJZfLJUuDMbzDVQgCIAACIAAC45kAVT3JOyG1+CSOLonQSBVQKoL+LEcy//9sctnf/+z01DSTWmey5Uy2b0x23cYbQ+JSUqPRyOVyHo9XV1dXXFycmpoaHBr+9eHAFa7+RM5c4R5EVoYRLXOFe9DiLZcZL2rOfsRF7Qp3ZuKMeNEgZqBLtl5ZvOXy4i2X39oRtP8SY3dVVlbW0tLS1dUll8upKSfmzsbbJTHO68O+wcmNTH3YSiQSkUhEpn54PB5VOvl8fnNzs7u7+2+95Z8NAAAgAElEQVR/+9upU6d+9NFH+fn5IpGIOo6md+s4b/sErR7tMvI2p1QqpVJpZ2dnc3MzMesMDg7+7LPP5s6de9dddy1dutTT09Pb29vr5+3y5cs+Pj5BQUHh4eGxsbGpqal5eXllZWX19fUdHR0ikUgul2s0GoPBQPpxglJCtUeWwOSUOdkMDUaTSKZq5UuDEyrPhxa5Hk/cfCh2w96ozQdjzgYXBSZUtfBkKo1hQtp1dnfL5fIdO3Y8+uij06dPf/DBBy9cuMDj8chwYoLKnGS+S61WCwSCpqamkpKSU/5xr28PXsn8C7V38qOB0q3OyXyZiSzGDxnjh5asJ7Mu6w8kTmuXWWe3mL9WP2fLXJkpL3sXxoiTxBpwcAskwzaidC5z8SdjNjtn33XHrpaWlra3t8tkMrg0Y99T2AeBsSdAR1DkfZa8rmo0GhqlhbgXIjFTpFKpXC4noVKISyH2kj5YcI599+GMlABkTooCOyDAECDhowwGg0ajkUqlXC63trY2Pz8/ISHh2MWg1buCHZi4BYHLXAOWu/iTqOzE4ICM836ehgtZ4RHEjPZY03Ar3YOXufgv3nrltS2XmcGfk9/nh4NjkxgPSE1NTQKBADNxuARBAARAAARAYAIRYGuKdJ8YULK1T2JbOVJ/afnkHZKel+yMZ3p0iEWCoHd0dNTW1hYWFiYnJ4eGX/3+TOBbHtbZMWeyRCzEGv6ccZJGZE5m3s2JiR1AJs7ILNtKj+DXNnsxsTmdfNfs8j8XEJOWnlFcXNzQ0NDZ2UnsrrCAbDxfFeO/buTOotE6ibk2MeskATuJWSefz6diJ4/HKy0tPX369PPPP3/HHXc4ODh4eXkR58lkpQLb3hrq+8heA2Sezmg06vV6EmhKLBbzeLywsLC33377V9btyy+/9PLyio2NjYyMvHr1aph1u3r1amRkZGxsbHJycmZmZkFBQXl5eX19fWtrK3mYqFQqth82dNzIdtzELQ0yp8XSrTeatDpjp0jZwpNlFrfFZjYcvJC148cU56MJzkcT9p/PPBtUVF7XqdUZJ2hHc7ncS5cuLVy4cOrUqa+88opIJOru7p7QMqdGoxGLxW1tbZWVldEJKau+D7vmMMOqVjKONKyDLrLgzM7Jh1nNbx2AERPPZS7+JOImCerJrDxz9CGSJ3Fde83QkyZzCSAWn4zBgLP/Eqt7sx8CkisrK3k8nkKhICvSxv9QdoJewKg2CAycABlH0XEv8WhCRr/EsRDxKqTVaukaPqPRSF1cYHQ0cNRIORoEIHOOBlWUObEJEL9qer1epVKJRKK2traqqqqcnJzo6GhPr8B3dgbaO/ky0qZrwEp3xkxzmbPfkm1XrJE7/RZv9rKucfNf4cbYIqxwZ8ROaxRPP7Jybck278Vbryxz8tl4LCQ1NbWwsLCmpobH48lkMuoBCcO7iX0BofYgAAIgAAIgAAK9CFD5QafTKZVKEjmvpqYmLy8vOTk5MjLyvHfgJ3v9HJyvGW4SV2nEcJNInla3/9ZoT1YvasTDrZ2jzwqnK+uPBIRFRGdkMBpnbW1tR0eHRCJRKpVarZa+ePeqEQ6AwEAJ9Jj0IR69VCoVCdgpFAoFAgGfz6eWnVwul+xfuHDhueeemz179oIFC65cudLa2qpSqXQ6nV6vp7NCWPY+0G64fjrSQWQVCNE4yXOmo6MjJibG3t5+xowZ999//8aNG7Ozs/Pz87OzszMyMlJTU5OtW0pKSnp6elZWVl5eXnFxcWVlJRE4+Xw+iTWl0WjYXYaXtet3xaT7BjInu8tNJjOvS1HXLL4SWerpm+t4JH7T/uhN+6K3Ho67fLUkJr1eKFXrDSZ2lgm0bzQa/fz8Fi9eLBAIuru7W1paHnvsMU9PzwnUhO7ua97LtFqtVColC86ysrI8zoQ7uAUu2eq9lKVWLtl6xRqVkzHovKZ3OjNiJxmerXBnAm2ucAuyapy+dlaXGyvcmY+MRLqNieJ5ze7TavHp4BZI1v2T7G99FxKbml1bW9vZ2Ul+Fo1GIx6tE+taQm1vVgLkTiRjKrIyj7gRIhFSqG+hHov2IHDerNfDxGoXZM6J1V+o7VgQoNNwWq2WuK5taWkpLy/PyMiIiYm55B+ydr/vMqsHWnsnxn/aSo9gMlazc/RZvPUKETLJqI5EHbBGWWdMORd9e2nJNu+3Pfz3XQiLS0giGmdbW5tYLCZ+zDETNxYdjHOAAAiAAAiAAAjcCALEyJUdpLO9vb2mpqaoqCgzMzM+Pj4kNOyHCwHrD/n/bYc1IoA1JOfP3v4DHKyBA4iJAAnytHq7r7Nn8MWAiITExOzs7PLy8oaGho6ODhIIQKfTESUJE2c3ordvtnPSSR/qzkur1dKAncSNbVdXV2dnJxU7edatsbExMDDw448/njt37hNPPPHZZ58lJSUplUoidlL7TrZ99s3GbjTbQ/qFTsNR98K1tbXu7u4vvvji7bffbm9v7+npWVRU1NjYWFtbW1VVVV5eXlpaWmLdSktLy8rKKisra2trGxsbW1tbeTyeQCCQSqVKpZIEWKWOavEwGc3OnJBlQ+Zkd5ulu1urN6o0ho4ueUObOC67ISihcs/ZdLfjiS7HEtyPJ53wyfWLLW/hSo0mMzvjBNrX6/Vm80StPJE5TSaTXq9XKBRdXV1NTU0FBQURUTHv7Qy0c2KEyaWOjEJp7+K3zNl/mSvjjXbx1sv21vHYtW8ZW8xrsTaZIZnVCccKj+DXt4es9AhxcAskJTATYm4By10CSOJrrjjcAld6BK9wD9pxIba0tLSpqYlMhU10qhPoAkZVQWBQBMiwp5+/gyoNiUFgtAlA5hxtwih/QhIg03DEda1MJuvq6mpubi4tLc3KykpISAgLCzt0zn/1Dv9ljr6M2w23QDtH3+XXom8yCqjdNl97Z+YrJkK7i6+DqzWegZPfClffj3f7BoRGpqSkFBYW1tbWtre3CwQChUJBZ+Im9KB5QnY2Kg0CIAACIAACIDAmBMhLMgnSqdVqlUol8SfZ1NRUVVVVWFiYnp6ekJAQFRUVGByy92zA2kOBq3YGv+Hmt9LV18HFZ4WLz0oXn9ddfVZ/F/DN8RDPK6ERkZHJycnZ2dnFxcXV1dVs95JkZAU7uTHp2MlyEnoBk9hm1DOqSqVSKBQymUwsFguFQuLGlviwJWadPB6vs7Ozqalpw4YN991334wZMxYuXBgcHMzn84k3Fxptl6ydx4r4gVxS1IKTulbT6XQikaikpOT999+fNm3a7bff/te//jU9Pb2zs5PL5ba1tbW2tjY3Nzdatybr1mLd2traeDxeV1eXUCiUSCQKhUKtVmu1WmLBSTsF/TKQfplsaSBzXq/HjSZzXauooJJ7NrjwwMXMLQdjN+6J3nwo1vV4YkhiZVZpm1JjMJknaMjO6zV6AhwnT06DwUAjCFRUVKSmpu69cJWJ0OkevNw1YLkbmcjyX+7C7JPQ6cxxF387R58l27wZB7bWOS47RyZgJ7Osf0fo6x4hRNcky9Hsnfwc3BkzUGaxmtVpLWPQ6cG4Q3t/Z2B+fn5NTU1HR4dMJqMDtgmAD1UEgUlGoB+Bk3w1yXigueOdAGTO8d5DqN8NIUAGf2SZm1qtlslknZ2djY2NFRUV+fn5qampUVFRvoGhe84E/He/3+segfbOjLrJ6JpOfsuZHX8H69DQzomJILXCLejd7/w3/xB41i8iPiEhMzOTelQTiUQ0JCcx5bwh7cVJQQAEQAAEQAAEQGAMCJBXYpPJZDAYtFqtSqWSSCSdnZ1tbW11dXVlZWUFBQVZWVnJyckkcl5IaPiVwNCffELOXAk5fSX4gl+oX/DVyKiouLg4EkKvqKiIeJhsb28XCoUymYx6P4PGOQYdOjlP0UNg0+v1xLKTiJ0SiYSKnTRmJ9E7+Xx+WVnZqVOnVq9efeedd/7ud7/79NNPAwMDJRIJEdWocSd5L8A13OMCI4ojtQun/mnVanVaWtrWrVtfeumladOmLVq0aN++fZmZmXzrxuPxOqxbu3Xr6Oig3SEQCEQikVgslslkSqVSrVb36Z8WAmePjsBHSgAyJ0XRY8di6Vaq9VKFppknrW4SRqTWXIkq234yaduRWPcTSTtPpZwLLoxKr2vly8wQO3uwG+WPJEiTVqslC/rr6upyc3OvRsf/YxcjSTKhl6xi5Ar3oOVugcR5hp3jz/Ndzn5U9VzhwWiizMp+Zya2uoNroIN7oINrIA3PSeIOkBKoA9vlLn7HvKOJKWdnZ6dSqdTr9SaTCY/ZUe52FA8CIAACNz8ByJw3fx+jhUMgQBdrk2k4jUZDhoCtra11dXUlJSXZ2dlkAi48PDwwKGQPY3AQvGpn8ApXvxWufnZMqM4ry52ufLArYMuxwDM+jLVBfHx8enp6QUFBRUVFQ0MDl8sVi8XEFZLBYKDLhIdQW2QBARAAARAAARAAgYlCgC4mMxqNOp2OrCcTCoVcLrepqam2tra8vLyoqCgnJ4cEz0tKSkpMTExISEhMTExOTk5NTc3MzMzNzS0qKqqoqKAh9EQiEbHBoh4ysMp4olwSE7ee7IuZiJ0ajYbG7BSJRAKBgLix7eHJls/nNzQ0bNmy5a677po+ffodd9zh7u5O7Fq0Wi31Z4u4R93d3eRGZqMmnmlJ9M2urq6LFy8++eSTU6dOnT179qpVq4qKirq6uojA2cOmls/nd3V1iUQiiUQilUrlcjmVNnU6HQ03RcVUPEMm7r05ZjWHzDkQ1AajuaKhM72o5ZBXpvuJpI17o7/+PtLpWMLOM2l+MeWVjQKtnonLOJCikGZECJAF/SqVSiQStbS0lJaWpqenB4Rc/au7v70LI1jau1yTM5lV++5BJCQnCdW0xBqnyZ74qnUPuhYo3cn3WtgmF/8lW71f2+y1eLMX4/PWxX+FG5NmuUuAnTOTZu2hwKysLBJGXSQSaTQao9GINT0j0q0oBARAAAQmOQHInJP8AkDz+yNAX6f1er1Go5HL5UKhkMfjEddqJSUleXl5GRkZSUlJcXFxUVFR4eHh/sFh3oFhVwLDfIPCwq5GREdHx8fHp6amZmdnFxQUlJeX19fXt7W1dXZ2SiQSlUql1WpJrBe8RffXE/gOBEAABEAABEDgJiJAhj00RgARO+VyuVgsFggEPB6vra2NRtGrqKgos27l5eWVlZXV1dXsEHpCoVAqlSoUCmKDxQ6hdxMBQ1PGLwHyvkDd2Op0uuvF7OTz+b3FzsbGRm9v77Vr1y5YsGDWrFmvvfaas7NzbGysXC6nYmcPE08q+93EqgBtI3lKULe0euumUqny8/MPHjz49ttv/+pXv7r//vvff/99T0/PsrIy4jG4N2fikFYkErHVTeqWlsjJ9KQ3MdjxeyNN2JpB5hxI11ks3TKlVihV1zSJiqp4AXGVP4UWuZ9I2no4zv1E4r6f0s8GFabkN/OESjPEzoEAHXYa8pul1WoVCkVnZ2d9fX1hYWFKSsqhC6GvuzGmmfbOfnZOvtYYTEwYzpUewctc/Jdu8yahOpds8166zZskIBIm8W22wj1o8dYrr225bOfEOLMlUijjAtfJj9E4t3r/Z39AfGJKaWlpW1sbDd4EU85h9ycKAAEQAAEQYAhA5sR1AAL9EaBKJ3GtplQqpVKpQCDo6Ohoamqqq6urqKgoKirKz8/Pzs7OzMxM+3lLT0/PysrKyckpKCgoKyurrq6ur69vaWnh8/nEUa1GoyGrhuGrtr8OwHcgAAIgAAIgAAI3LwEy0CKBCXU6nUajUSqVcrmcuv0kcgV1NdnR0UFC6BF7LLlcTkLoUQtOuMe4eS+W8dsyIo8RqcxoNBJbQ2LWSd3YUsvOPsXOzs5OgUCQmZn5t7/9zcbGhsPhzJo166uvvmpoaCCvDHq93mDdjEYj9Wd785m/UKGRrW5SpFqttqur6+DBg7/97W85HM6UKVP++Mc/Xr58mc/nE6tZNlvqlvZ6Aid5aBArIjw3xu/dNe5rBplzUF1kNJnVWkNhBTchs2HPuXTHI3Eb90Z/tSvC6Uj8wYtZgXGV1c1CvdE0qDKReAgEyDOWrOaXSqUdHR21tbWFhYUJCQk7TzGWl8vdApY5+y9z9mfUShc/InMSLdPO0cfeyXfpNp+l27ztXfyu+a118XdwZ+w+7Rx9X9vitWQrE79zqZMP8XBLQniu3uEfEZdcUFDQ0NDQ1dVFgjcRx2ZYXDKETkQWEAABEACBHgQgc/YAgo8g8D8EyMs2tTYgA0GlUklm3/h8fnt7e1NTU319fU1NTWVlZfnPW0VFRVVVVW1tbUNDQ2trK5fL7ezsJAIn24gTL9X/gxsfQAAEQAAEQAAEJhMBaglHDAuoL0q1Wk30TplMJpVKJT9vMuumUChUKhWVf4jwQ7QfKpNMJopo63ghQNdHEutDvV5PxHuVSkX1TqFQ2NXV1cOTLdXkOjs7q6urz58///nnn//pT3+aOXPmU0899fHHHx8/fjwzM5OE8KRWnuwrn0ieE3GmmL5tsaVN+ijQarVlZWUXL15cv379yy+/PHfu3Mcff/zDDz88fPhwVlYWn8/vTZLA7OzsJP5pSdxN9kODWsdSaBOR23i56Cd9PSBzDuoSMFssJrNFItN0CpWldfzssraw5JofAwr2/pTudDTB42Ty/vMZZ4MK0wpb+UIlbsxBsR1UYrrIjHj/FggEra2tZeUVPoFRW3Z4vrPhh2WO3kw0TfdAxqzT2ZdomXaOPstdAxgR1PX//8eYfrr4LXdjjts5+S53CXBwC7R3YnzekmRLHX3snX3/vdcvLDohLy+vsrKyvb1dKpWSSOp08Dao+iMxCIAACIAACPQmAJmzNxMcAYE+CNBpCxJHSqvVkgkLoneSADBcLpdYG7S3t3d0dHC5XBIAhr5dq9VqGveFCpwYvveBG4dAAARAAARAAAQmBwEqTJKhETGJY4scmv/dSOTC3pZtpJzJwQytHO8E6IuDyWQyGAzEky0xViZSPX2DICodDSFJJDqedWtvb6+pqdm5c+fjjz8+ZcqUGTNmzJs376OPPoqKipLL5RqNhkbxJLaePVRP9rvGOHnd6K1oEj2Y2mvqrBu544uLi7ds2fLII4/MnDlz6tSpd99999q1a9PS0trb24nVJvVMS+jxeDwSj1MgENDom1TdpM8NOqWOJ8Z4v4smSP0gcw6toyyWbo3OKFNqKxq6rqbWevrlOR6NJ5adjofjD17MDIirrGoS6vSw7Bwa4F/ORVaWGI1GjUYjk8kqa5qO/hSzacfFv/1nz+v/t33Fx9+tcPJe6RFM9EtitUnsNZe5+BMntHaOVmNNR5/lLgEr3IMYTdTqnHa5K2MJau/it8I9iMT1/OpQYERUbG5ubmVlZVNTk1AoVCgUiN/0y52EFCAAAiAAAoMhAJlzMLSQdnIToG/m7PAwJPqOSqUiNgdyuVwmk5G/CoVCqVSq1WpqbUDjRZF5h8mNE60HARAAARAAARAAgf8hQMdabLsu4tKW/iU6KPXbOU70m/9pBj5MegLkSqZiJ1Hl2WE7FQqFVCoVi8U9nNlS6Y4oncRasaurKzc399ixY59++umf//zne+65x9bW9tVXX/36669PnTqVkJDQ2NhIzGJI6EpirUhVT3LLkLcPtv3i6Ol8tPmEAD01FTWJrklWMxCb187OzqysrMuXLzs7O7/xxhsPPPDA7Nmzn3vuuTVr1uzatSsuLo64xqGhN3uD6urqogIneR0jNt8kAGefFpx4ekz6O3UEAEDmHDJEo8ms05u6JKraFmFOaXtEau2l8JKDl7J2nUl1O5G0z2rWGRhflV/B5SNm55Ap95vRYrFodYbSGm5ATPGh80lb9gVv2On9pdu5De5nXL8/s233qc/3+a50ZeJ0klCddk6+y1wYT7YkZueSrVfIcQc3xl2tvQtJ6Utc1C518rFz8v1gp/+BC2Hx8Qk5OTlVVVUtLS3UXS35kcJzuN8uwpcgAAIgAAKDIACZcxCwkBQEKAHyuk7f1dlv6WQZMnEn1XttNS0BOyAAAiAAAiAAAiAAAtcjwFZKeu9fLxeOg8C4IkB1PrpKkhosqlQqsjJSIpGIxWKhUMgOMEllPGrfSRS+1tbWurq6iIiIdevWPfroo1OnTr311lvvuOOOJ5988vPPP/f19W1vb9daN/oyQt9HrrdWoLf22fuOG+AR+opEI5WSkxKhl6iwhIBWq5VKpbGxsS4uLgsXLrzrrrtmz549ffr0efPmrVmz5uLFizU1Nc3NzTwejzS8R9xNtptfgUAgFArFYrFUKpXJZEqlkgqcfZp9j6srBJWZ6AQgcw6/By2Wbr3BJFNqKxsFV1NrfwzIdzwav2lf9LqdEdsOxe0/n+kXU17VJFRrDcM/F0pgE2jmSs8GF7ifSPjMI/i/7oGfuQVs3hN04HTEWe+YmPjUq5ExYeFXz1wO+vA776WOPku2eS/ZemXpNm8idhKTzWshPF38HdwCHdwDyd9lzv7L3QJed/N3PhEQHhmdmpaWn59fVVXV3t4uFAplMplGoyEap9lsZtcH+yAAAiAAAiAwHAKQOYdDD3knLwH2qz41OOjxPk+tDdiJJy8ytBwEQAAEQAAEQAAEBkyAPXzqvT/gYpAQBG48AXoBUyeBxJMtO3KnXC4n9p1E7yQRMYhNZ2+XttTKs6SkxMvLa9u2batWrXrxxRcffPDBGTNmPPDAA0uXLv3ss8/27dt3+fLluLi4wsLClpYW4iSQqIzU7pMIgfQvlUJ7GIPS9xq6ypOdkmbvsfSTCK48Hq+8vDwlJcXf3//YsWMbN2588803n3jiiZkzZ95zzz3PPvvsypUr161bd/LkyfT0dC6XS2KX9uOZlsTdJLabRN2Uy+VU3WTHLqWGpDAYuvG3wU1aA8icI9KxJrOFWHZWNwmyStrCkqovhBUfuJC56zRj2bn/fMZPIUVBCVV5FR3tnXKTCdrYsKirNPryus7QxKqjl7Ndjye6HU9wP5Fw8ELaheBc/6iCuNSSlKziguLSrOyc1NTUuLi4sLCww+f81+7zfne7j4MrE4nTwTVwmStj1mnn7Gvv5MsIn87+y1z97Z18X3e+/MkeP49Twd6BYbGxsZmZmcXFxdXV1a2trQKBQC6Xq9VqvV5PfXIMqyXIDAIgAAIgAAIsApA5WTCwCwJDIkBnLq63M6RSkQkEQAAEQAAEQAAEQAAEQOCmItDDvpPIjVqtVqPRqNVqhUIhk8mkUik18aSaX29zRmroyefzOzo6GhoaKioqCgoKLly48OWXX/75z3+eM2fO9OnT58yZY2tr+6tf/eo3v/nNokWLPvnkk+++++7KlSvp6elNTU0KhYLEwiSSJPsvdVHD3mEnYO+T+nO53Ly8vODg4IMHD3755ZcrVqx4/PHH77///nnz5s2dO3emdXvmmWf++c9/HjlyJC0traysrK6urq2t7Xomm+w2dnZ2EsNNEnqTeKbtM0QIDcB5U106aMy4JACZcwS7xWLpNlssxLKzulkYmVZ3OqjA6Wj8N/tj1u2M2HwwdvfZtIvhxYWVXIlMM4LnnTxFmc2W8vquc8GFHp7JX+6MWLcr4qvdkbvPpF4MLYrPqmvni/kCiVgi6ezqamtrq62tLSkpyc3NTUlJiYmJCQ0Nu+IXePqir8dx77X7vD/Y6fM3D7/X3fxX7QxevcPvk+99Nh/xPXzW98IV/+BQRuBMTk7Ozs4uLy9vaGhob28XCAQKhYJonEajkXoRmDzw0VIQAAEQAIHRJgCZc7QJo/ybn8D11E16/OZHgBaCAAiAAAiAAAiAAAiAAAj8EgH6gkD1ThKokoSo1Gq1KuumVCqJ3knid7Jd2vbQO4nFJzuWJzF2JLEqS0pKQkJCjhw5smnTpvfee8/e3n7hwoVPPfXUQw89ZGtrO2vWrOnTp999992PPfbY888/v3jx4rfeemvNmjUff/zxF198sXHjxm+++WbLli2Ojo5OTk5bt2799ttvN27cuG7dun//+98ffvjh3/72N3t7+xdeeOF3v/vd/Pnzb7nllhkzZtxxxx3333//E0888cc//nHx4sVvvvnm2rVr9+zZ4+3tnZ2dzeVyBQIB0W6ptNnDcJPdok7rxlY3pVIp23ZTq9VS801ickpnz2HB+UsXI74fAQKQOUcA4v8WQS07q5oEmcVtwQlV50OK9p3P2Hkq1eVY4p5zaWeDCvxjK7JK25u5Uq3e+L+58akPAmaLRShRF1bxAuMqj3nnbD+ZvOPH5O9OpRzzzrl8tTQ6oy6vvL22WSBTahRKtUajUSgUYrGYx+O1tLTU1taWlZXl5eWlp6cnJSXFxMRERESEhYWFhIQEBQUFBgYGBQWFhISEhYVFRkbGxsYmJiZmZGQUFBSUlpbW1taSVSxisVipVGq1WhImmTyl+6goDoEACIAACIDAMAhA5hwGPGQFARAAARAAARAAARAAARAAARAAgcETIJIncaxKY1hSvVOtVqtUKoVCQUJ49nBpS/S/HgIhdW9LVU/i3pYk7uzsbG9vb2hoqKqqKikpyc/Pz8rKSkpK8vPzO3ny5K5du7799tt///vfa9aseeutt+zs7F555ZWFCxf+6U9/es66/fGPf3zxxRdfeeWVJUuWvPHGG++9994nn3yyfv16Dw+PH374wcvLKyYmJjMzMy8vr7i4uKKior6+vrW1lZ6aipqkbrSqdIfWmfqkFQqFIpGIBt3sU90k3Kj/Q6oiD743kAMEhkIAMudQqA0gD2PZaWYsO+UqXW2rKDK97lxwodWyM3rdrohv9sds/zHlpH9+SkFzK19mGUCBkzaJXKWLyWzw9Mtz/iHxy10R6/dEfXsg+tClTJ/o0tyydoFYpVTrTWYL41PdbCbLbsiCG5lMJhQKidhZV1dXWVlJfzjS09NTU1NTUlKSk5NTUlJSU1PT09Ozs7Pz8/OLi4srKyvr6+tbWlq4XK5IJMWEpFUAACAASURBVJLL5SqVSqfTGQwGmNpP2usQDQcBEACBMSAAmXMMIOMUIAACIAACIAACIAACIAACIAACINA3ASp5EpNEo9HYw5+tSqVSKpVsr7YikYgG8uzh25bH41H5kO5QK0kijvL/dyN6ZNcgN6pi/m9hzCd6un50TZKLnlpo3YhPWqlUKpPJFAoFCbqpVqvZhptE3SQKMUHXN1YcBYFRJgCZc1QBE6VTIFFXNHSlF7UGxFacDyliYnaeSXM/kbj7TKqnf553VFlyXlN1k1Cq0JrMUDyvdYhSrW9oE8dmNpwPLdp/IWPHjyk7fkzZeSrF0zfPO7IsNrO+oLKjhStVafR6g4nkIT4GTCYTiR5N/KhLJBKBQMDlcltaWhobG2tqaioqKsrKykpKSop+3oqLi0tLSysrK2tqasgCFxJlmRhxajQavV5P4j1Ta/tRvWxQOAiAAAiAwOQkAJlzcvY7Wg0CIAACIAACIAACIAACIAACIDDuCBDdjuqdBoOBmniSOJpU8pTL5VLrJrZuPVTPHgaUVHekwmfvHZpm4Du9C6FHehTSQ9QUWDdirymxbiTcJpE21WrGd6JGo9FqtUTxJd4OexhujrvOQ4UmGQHInGPQ4WzLzqYOSVJuk09k2Y4fk7cciv36+6gNe6K2Ho7dfS4tMKGqoJKn0hjGoErj+RRavamiQXA6sMD1eOKGvVFf7Y74dn+M45H4Ez65QfGVJTV8sUyj1hrMZuanpkdDqDd1KnZqNBqlUimVSkUikUAg4PF4HR0dra2tLS0tTT9vzc3Nra2t7e3tPB6vq6tLLBaTRSpE4ISj2h6Q8REEQAAEQGCUCEDmHCWwKBYEQAAEQAAEQAAEQAAEQAAEQAAEBk2AKJ3sGWcawpMteRLHtsTKk/q2lUgkNKInW/i8XkRMKkZSeZLukK/ox352aCFss05q60lsRGmITSptEpNNuVyuUChIUFKibvY23KSuDimZ3hP0g6aMDCAwbAKQOYeNcKAFmM0WncEklmlqmgS5ZW1hSdWXwosPe2XvPpPm9EO8m2fSoUtZZ4MKw1NqMovbOjrlao2hl4o30HNNxHQ6vbGjU1FQyb0cUfqjf77HyaRtR+J2/Ji696eMc0GFPlFlCdmNhVW89k65Vmc0msz9t5FadlI3thqNhvhRJ3GjyQ8NWWFDXIvTJ7lGoyEhk6kFJ4Jx9k8b34IACIAACIwIAcicI4IRhYAACIAACIAACIAACIAACIAACIDACBMgwh5x0EpNPKnqqdPptNZNbd3Yhp4y60bMPXtrnwKBgO2hlkqSbJ1yIPvU5SzVMomcSSJrUkVTIpEQUZNY+fSpa5KZcWL6w54fp85pR5gsigOBYROAzDlshIMrgFh2mkwWg9HcJVZll7UFJVbuPpO29XD8lzsjPt9xde13Vzfui/b0zYtIqW3ukOr01zyyDu40Eyq13mCqqO8KT6nZcTLlm/0xX+68+gUDIcrxSNyVyNL47IZmrkSu0mn1RlNfFpzXayv96TGZTD1+cYipPfnRYVvekwCcJAYne23K9U6B4yAAAiAAAiAwggQgc44gTBQFAiAAAiAAAiAAAiAAAiAAAiAAAqNFgJozUuGTTEAbrJvOuhHhk85EE+2TGH0qFApi99lDBCVuY8lfaqBDrEJFP2/s42SfnYvoqaRY+c8b8UCrVCrJhDhxQkuMNUlV9Xo99UZLHdIifttoXT0od6QJQOYcaaKDKE+lMTR2SAqruRGptT5RZZ6+uQcuZLqdSHI9nvj9ubTDXlk+UWURabWF1bwOgUKtvamMOy0Wi0qj5wmVeWUd4cnVJ3zzDl7I9PBk2r7nbNrBi5kXw4oCYityytqrGwVimUZvMA0hcClVOs1mM3uRDYmOTH50yF9yhL08hf5UDaJHkRQEQAAEQAAEhkEAMucw4CErCIAACIAACIAACIAACIAACIAACIw5ATqJzPZtS2eiydQziWrZQ/ukJjjE5y3xFqtkbQrW9rNeee1/1jcKVg4lKUSlUlE5k4isvRVNtrEmqS011mS3aMxx4oQgMBQCkDmHQm2E8lyz7DRbjEazXKVrbJfklXf4RJWd9Mvbcjh23e6IL3deXbc7YuvhuJ2nU8KSqstruxQq3Qid/IYVY+nuFsk0xTX8i2FFe86lf70nau3Oq59/d/Xr7yP3nEs/7pMbm1WfW94ulmkMRrPJNGL+YtnPZ/LQ7vGXJrhhaHBiEAABEACByU0AMufk7n+0HgRAAARAAARAAARAAARAAARAYCIToPPL1MST6p3UyIZa3hDtk8T4pD5viQEo2wyU6JT9/GVn6SFnklPQM9I6sHVNOkVOKj+R8aPuk5cAZM5x0vd6o1kkVTdzJdmlbQlZjZfCSzz98r4/k+bhmexyLMH1eNIRr+xzwYVhydXpRa2tPJlCpfvF+JTjpGnd3d0WS7feYJLItXUtotTClssRZWeCCnedTiHmmx6eyUe9sk8H5IcmVcdlNVQ0dDVxJRqdcfzUHzUBARAAARAAgTEgAJlzDCDjFCAAAiAAAiAAAiAAAiAAAiAAAiAwpgR6yJ/U8SCJtUbVR/YO1SZ/cYedi71PtMweiiatyZi2HycDgVEmAJlzlAEPonirXbvFaDJbFUFNR6c8Nb85MK7ywMVM5x8S1u+J+uK7q2t3Xv1qd+TuM2lngwpTC1oa2yVqrWEQ5xjzpGaLRSzXlNTyQxOrD13M3Lg3+stdEV98d/XLXRHfHoh2PZZwPrQ4JLG6oU3cJVZqdQaj0WwyW8xmy5jXFCcEARAAARAAgRtMADLnDe4AnB4EQAAEQAAEQAAEQAAEQAAEQAAEQAAEQGBiEYDMOQ77y2Lp1uoNMqW2ulGYU9oenlxzOaL0uHfOvnPpHp5JTkfjt59M3n0m7aRfvldEaURabXZJewtPqlTr9QaTxXLjBUKTyazVGcUyTXWzKCGn0Te24kxQwYELGd/9mOJ4NN7ph/hdp9P2n884F1TgHVmakt9cUMEVSFRKtR7q5ji8GlElEAABEACBMSMAmXPMUONEIAACIAACIAACIAACIAACIAACIAACIAACNwMByJzjthctlm6T+Zpxp1praOXLyuq6rqbWnA8t+u7HlI17o7/aHbF2J2MWuW5XhNPR+H0/pQfEVeSVd7TxZRqdcezlTqPJLJFrqpuEyXnNl66W7D6TtmFv1Je7ItbujPhqd+TGfdEensk/+udfjijNKG4tqeUrVXq93mQwmY0ms8XCOLbFBgIgAAIgAAKTmQBkzsnc+2g7CIAACIAACIAACIAACIAACIAACIAACIDAoAlA5hw0shuRwWy2SOSatk5ZfmVHYk6jT1TZKf/8Qxczvz+T6nY8cdvhOOcfEtw9k/afz/jRP/9KVFlkel1GcVtTh1Qk1Wh1RoPRxCiJIyckWrq7zWaLwWjW6Y0yhba9U15UzYvPbgxOrD4fUnTcO3fPuXT3k8lbmYrF7ziZvO+njBM+uZevlsak16cWNNc0C9v4sgkUW/RG9DnOCQIgAAIgMOkIQOacdF2OBoMACIAACIAACIAACIAACIAACIAACIAACAyHAGTO4dAby7w0cqdVXDRpdMYWnrS0rjMqvfZCWNHBixmOR+M27oteu5OJ37luV8RXuyO+/j7S6Wj8oYuZ50OLItPqMoraqpoEHV1ypVqv05sY5XPADTCbLXqDSa01dIlVtS2i7NL2qym1pwML3I4nfbM/5uvvI7/aHbluV4TVdpOJHrpxX/R3P6b8GJAfEFeRUtBc2SgQyzUqrUFvMBmMZpMJ0TcHjB4JQQAEQAAEJg0ByJyTpqvRUBAAARAAARAAARAAARAAARAAARAAARAAgZEgAJlzJCjegDIs3d1iuaaVz9h3xmc3BMQx8S+PXcnZdy5j56lUt+NMCM9vD8Y6/5Cw63TKnnNpBy5kHLmcfTa48HJEaXRmfVx2g/VfY0ZxW1ENv5kr4woUfKGSL1R2ilR8kZInULbx5VVNgtyK9uSClrjsxrjshujMev+4irPBhUeuZO88k7rtcML63ZHr90Rt2Be9+WCc89FEjxNJu06n7j+fedw7xyu8JCq1NqOotaKxq6NLrtUzvmlvACmcEgRAAARAAAQmCAHInBOko1BNEAABEAABEAABEAABEAABEAABEAABEACB8UEAMuf46Ieh1MJkNhuMJq3OqNLo5SqdRK7pFClbuNKial6sVfg8HZB/xCtr5+kUl2OJX30fuW535NffR23YE/XN/phvD5B/sd8eiNl8IHbb4bhtR+J7/9tyKG7zgdhvmX9M+m/2x2zcG/31nqh1uyPW7or4kjEbver8Q/yBi5k/BReGJlan5DeX1vGbOsRCiVqq0CrVerXWoNMbjUZE3xxKFyMPCIAACIDApCIAmXNSdTcaCwIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgMFwCkDmHS3A85TcYTSqNnitQlDd0ZpW2xWTUBSdUXgwrPh1QcOBCxp5z6d+dSv3uZMqOk8keJ5K2HY7fOrB/jkfinY4kuB1P2u6ZvN0zecfJ5F2nU/f+lL7/fMahi5nnggsD4ysTshvyyztqmgWdYoVCrRvBOKDjCTDqAgIgAAIgAAKjSAAy5yjCRdEgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAI3HwHInDdTn1os3WazxWg06/RGtdagUOtlSsbKUyzXCCTqji5FeX1ncQ0vt7wjrbDFP67CJ7psAP/KA+Mqw5Ork3Kbcsrac8ra8yq4NS1CrkDRKVIJJWqxXCNT6pRqvUZr1OlNRpPZDOe0N9NVhbaAAAiAAAiMFQHInGNFGucBARAAARAAARAAARAAARAAARAAARAAARC4KQhA5rwpunFAjdDrTR1d8hautLZFVFrbGZlWF5Zc84v/wlNqotPrknIa8yu51c3CmmZhXatIIFHrDZAzB4QdiUAABEAABEBggAQgcw4QFJKBAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAhMRgKRkZFPP/20o6NjQ0MDaT9kzsl4HaDNIAACIAACIAAC448AZM7x1yeoEQiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAwLghIBKJdu/ePXv27Iceeig9Pb27uxsy57jpHFQEBEAABEAABEBgUhOAzDmpux+NBwEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQGAiBxsbG119/ffbs2RcuXIDMORBiSAMCIAACIAACIAACo00AMudoE0b5IAACIAACIAACIAACIAACIAACIAACIAACNwMBmUy2bt26OXPmnD59+t133506daqfn5/JZLoZ2oY2gAAIgAAIgAAIgMAEJACZcwJ2GqoMAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiBwIwhotdpPP/10+vTpjz322JQpU5588kmdTncjKoJzggAIgAAIgAAIgAAIdEPmxEUAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAgMlIJPJ7O3tp0yZMnXq1EcffdRgMAw0J9KBAAiAAAiAAAiAAAiMKAHInCOKE4WBAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAhMKAJKpbJtkFtJScn8+fNtbGx27tzZ2to6yNxIPrEJtLS01NfXV1VVlZeXFxcX5+fn5+TkZGRkpKSkJCYmxt+4LSEhISUlJT09PTs7Oz8/v6ioqKysrLKysra2trm5eVShSySSCXXTo7IgAAIgAAI3DwHInDdPX6IlIAACIAACIAACIAACIAACIAACIAACIAACgyVw6dKlxwa/3XbbbTY2No888sjgsyLHxCbwm9/85uGHH54/f/69995ra2t7xx13zJkzZ9asWdOnT58yZQrnxm02NjbTp0+/5ZZb5syZc/vtt9va2t5zzz3z589/6KGHfvOb34wqdHd398Hed0gPAiAAAiAAAiNCADLniGBEISAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAhOSgLe39++xgQAIDIPArl27JuTNj0qDAAiAAAhMfAKQOSd+H6IFIAACIAACIAACIAACIAACIAACIAACIAACQyVgNBpV2EAABIZBQK/XD/X+Qz4QAAEQAAEQGBYByJzDwofMIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACY08AMufYM8cZQQAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEhkUAMuew8CEzCIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIDA2BOAzDn2zHFGEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEACBYRGAzDksfMgMAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAw9gQgc449c5wRBEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEBgWAQgcw4LHzKDAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiMPQHInGPPHGcEARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAYFgHInMPCh8wgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAJjTwAy59gzxxlBAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAASGRQAy57DwITMIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgMDYE4DMOfbMcUYQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAIFhEYDMOSx8yAwCIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIDD2BCBzjj1znBEEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQGBYBCBzDgsfMoMACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIw9AcicY88cZwQBEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEBgWAcicw8KHzCAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAmNPADLn2DPHGUEABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABEAABIZFADLnsPAhMwiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAAAiAwNgTgMw59sxxRhAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAgWERgMw5LHzIDAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgMPYEIHOOPXOcEQRAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAAARAYFgEIHMOCx8ygwAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIgAAIjD0ByJxjzxxnBAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQGBYByJzDwofMIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACIAACY08AMufYM8cZQQAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEhkVgXMicFoslNDR0w4YNe/bsGVZrWJnNZvPevXs3bNhw/vx51uHh7ppMpvPnz2/YsOHw4cPDLetG5zeZTK6urhs2bAgMDLzRdcH5bzABPp8fHx9/5syZn376KSsr6wbXpt/Tc7nczZs3f/vtt5WVlf0mHPSXWVlZGzdu3Llzp0KhGHRmZACBG01Ao9EUFBT4+PicPn06ODhYLpcPoUYymSwpKeno0aPu7u6bNm1ydHTcu3dvQEBAS0uLxWIZQoHIAgK/SKCoqOibb75xdXXl8/m/mHggCSwWi6+v74YNG44ePTqQ9EgzGgTMZnNFRUVgYODp06cvX77c0dExGmdBmeOcgMFg8PDw2LBhw5kzZ0a2qkaj0cnJacOGDXFxcSNbMkoDgYlFQCaTZWRkXLp06cyZMzExMROr8qgtIaDX68m0zLlz50aKicFgcHR03LBhQ1pa2kiViXJAYJgETCZTeXl5QEDA6dOnvb29eTzeMAtE9uETEIlEYWFhQdYtJCREJpP1LtNoNHZ0dNTW1tbU1NTX16tUqvr6epIlKCgoODjYaDT2zoUjo0FAp9N1sTaRSGQ2m/s5kVqtbm5ubmhoqKysbG5u7j9xP+XgKxCYKATGhcwpFAofe+wxDofz6aefjiC49evXc6xbQUHBSBVbVlZ233332djYuLu7kzK9vLzmzZtnO6Tt/fffH6mKDa2c9957j8PhzJ49u76+fmgldHd3y2Sy+fPn9wPgvvvue+KJJ959991z5861tbUZDIYhn6ufjD/88APpiJ9++qmfZEP7KjMz89577yVtfOSRRwYrBJrN5jVr1lBEq1evHlo1hpzr73//Ozl7bGxs70ISExOnT59ObhYOh2Nvb987zTg5YjabV65cyeFwbG1tW1tb2bX673//S9qoVCrZxwe+n5CQcOutt3I4nJMnTw48F02pVCr/8Ic/kDpERUXR47+409HR8cADD/TTQb9YAjvB/v37SVFNTU3s4zfTvr29va2t7d13361SqQbVrl//+tcEjq2t7SeffDKovN3d3S0tLb/61a9ICfPmzevzbhpsmQNPz+PxyJO2zx9Kg8FAnufkRp43b15xcfHACydP8j179tx22230UcDemTp16gcffCAUCiF2DooqEv8iAZPJ9PLLL3M4nBdeeEEikfxi+gEm8PT0JBfwcO7TmJgYcr97enoO8LyDTfbQQw/Rh9KuXbsGmz0kJOSee+4hJTz11FO1tbWDLWE46UnlFy1aJBQKe5RjNBq3bNliY2NDesHGxuby5cs90uDjZCDg6+s7xboFBwcPub0BAQFkEF5WVsYuZPny5RwO54knnhjOConW1tbnnnvO1tZ25cqV7MKx34PAgw8+aGtra2dnN4IP6h6nGL2PpPLkUXngwIHBnujKlSt33303yf773/++ubl5sCUMJz2p/LJly6RSae9y+Hz+888/TwdsCxYs6J0GR8Y/gYsXL3I4nClTpkRGRo5gbV999VUOh7Nw4cLh3LZpaWn0RZWOWNg78+bNe+CBB5577rnPP/88ICBAIBBA8BhOJ7788ssU79tvvz3YorRaLbu/RlA4H0hNXnrpJVL5PqfLjEbjxo0b6eBw2rRpAQEBAykWaUaVwI4dO2in3H777VVVVfR0Foulqanpww8/JLNkdFR//Phxf39/movD4Vy8eJHmGuyOh4fHQtZG5hwGW8gvps/Nzb3vvvvu7WvrZ11sbGxsXzmYYzfq6t24cSP90edwODNmzGhvb+/dfLPZnJmZaWdnN3PmTHZ6Oma2s7NjN+3//u//eheCIyAwEQnceJlTp9O9++67HA5nzpw5g52W7Z+4Uql85plnOBzO0qVL+3wx6D9772+1Wi15o3700UephLBnzx72U2NQ+zf8jbqlpeXhhx+2sbH517/+1bu9AzwilUpvueWWATZ85syZDg4O4eHhI76KZO/evaQOozEdmZqaOm3aNFK+jY2Nh4fHAOGQZI2Njb/+9a8porHXEf/617+Ss4eHh/eouVKpZNeNw+G89dZbPdKMk49ms/mHH37gcDhTp0718vLqUaunn36atHHItpgGg+Ef//gHeRb1OTTvccYeH81m87Jly0gd/vWvf5lMph4JrvfR19eXXF133HHHcN5CSflr1qwhdRjO2oXrVXWcHH/44YfJXMBgJe3bb7+dwOFwODNnzuyhlP9i6zZt2kSz29jYXL169RezjGCCjo4OMkjtvT7GZDJ9+OGHtG4cDufee+/tMR3cf02ioqKef/559ruKjY3NLbfcwj7C4XDuuuuuU6dO9V8UvgWBgRMwGo2bN28mT/VBrQ75xVNotdrFixdzOJwHHnigrq7uF9P3mSA8PJzcVocOHeozwfAPzp49m965f/jDHwb7E0DGz6SE+fPnj7iTg/4bSCr/7LPPCgQCdkqLxbJ7927aLg6HY2Nj4+fnx06D/clAQCaTPfvssxwOx8HBQafTDbnJp0+fnjJlCofDKSoqYheSlZVla2s7depUJycn9vFB7VdUVNx1110cDueVV14ZVMbJlpjc73/605/EYvGEazv7SfvKK68M1t3FW2+9RR9oDz/8cENDw1gSIJPLL774Yu8fCIPB8NJLL9G6cTicZ599dizrhnONCAGBQPDUU0+Rd/CBvz8O5NRRUVFz5syZNm3acFymJSUlsRUO9vXW5/7MmTNXrVoVEhIy4rM9A2nyTZDmySefpGCnTp1aUVExqEYdOHCAZudwOCdOnBhU9mEm/t3vfkfOnpqa2qMoi8Xi4eHBrtu0adNCQ0N7JMPHMSZQVlZ2991303756KOP6IDNYrFcvHhx7ty59FuyY2Njc/z4cbPZ/Nprr9Gvnn766a6urqFV/u2336blcDicxx9/vE/dbmiF01zx8fHss7D3P/zww+stznB0dGSnZO8PzTSC1qfPHY1Gk5eXl8HaWlpaeqSk1lykMtOnT+8T16lTp/pcv05lTvK7Q1s0snPUer2+sLCQ1Y6MMR479YCGj5OKwI2XOU+cOEFurd27d484+itXrhAztdOnTw+/cGdnZ1JV9jyvl5eXra3tXX1tRLqwsbG5/fbb+/r+rt6z1cOv5KBKsFgspFE2NjZJSUmDyksTU5lz2rRpvZvJNhOkz9CZM2f6+vrSEkZkZ8xkTrJyfFB1DgsLIxM0hMDI/oR0d3drtdr33ntv1apVX3zxRZ8V60fmPHz4AcyRugAAIABJREFUMKnV008/nZWVJZPJBmsh1+cZR+NgS0vLgw8+yOFw3nzzzd7lD1/m7O7u1uv1ZJy3aNGiIcilMTExBOYzzzwz8HHe559/TnKtW7eud7sGewQyZz/E2DKnjY3NoH4XVCrVjBkzSE+RWfsRlzljY2NXrVr14Ycf0mU07Lb0I3NWVFTY2tqSum3fvl0mk/F4vIFPLmRkZNBBsI2NzeLFi0NCQjQaTXd3t0gkio2NdXBwYDd8ZOUo0kaDwfDVV1+tWrXqP//5D7vV2L+5CaSkpJBr77PPPhvxltbX15PCv/zyy6EVPsYy59y5c7OzswdeVZlMxh5ijbjM2dLSsmrVqtWrV1/PIvZ6MqdUKn3xxRfJQ+M///kPl8ttbW0dJU8eA8eFlGNP4J133iGXwTD9yl5P5jSbzR988AH5Rc7JyRlaAyFzDpDbTSNz3nnnnaWlpQNsNfF1QZe6cjicEZc5zWbzoUOHVq1a9fHHH/dZq35kzujoaHKL3XrrrefPn9fr9SKRqM9CcHA8E3jzzTfJeq+UlJSRrafJZLK3tycPyR7LRAZ+IipzTp8+vfdUz1133TVnzhz6msDe+f777wf+MjLw+tz0KdkyJ4fD2bRp08CbrNPpHnroIXYvjLjMWVdXt2rVqnfffTc5Obl3xfqROYVC4R/+8AdSty+++ILP57e1tV1PW+pdMo6MBgG1Wv3AAw+wLxj27yOfz++hhJGURObs7u6+dOkSe5Lzv//979AqecNlzhdffLHP9U8Gg4E9DcIGNWQPcP0jKisru/fee9kn6m2PNBCZUyqVzpo1i10O3R8bmbO5ubmHLc0777zTf9vxLQiMFIEbLHNyudzHH3+cw+G8/PLLo/EjJ5VKFy5cyOFw5s6dO+SxHWFdXFxMnjgODg4DXGdH1lfOmzdvPK9c4PP5RDoacj2pzLlkyZLenWg2m0UiUXV1dWho6EcffXTnnXeSJ+z999/f51T+kK/sixcvPvnkkwsWLAgLCxtyIdfLyLbmJPW/3qxfnyWwVwGPhldYpVJJ5joffvjhPiuwadOmBdat9zTQqlWrSIuG40+sz5OO7EGTyUTmy2677bY+XwJHRObs7u4+evTo9OnTZ8yYwV7NMMC2mEymRx99lMPhzJo1a+D2oOQZOGvWrEGZ312vSpA5r0emu7ubLXNyOJx33313gA9zMo6no8NRkjlPnjzJ4XBuvfXWPn+tBALB888/v2DBgm3btvVoY0JCApl/XLNmzWCdyppMJroSc8GCBVevXu2tRpjN5vT09EWLFhECs2fPZnuz6VGZoX3UarVPPPEEh8OZP3/+0EpArglHwGQykYvqkUceaWxsHPH66/X6//73v+SeSkxMHEL5YyxzcjgcV1fXgdezx6L4EZc5S0pKiN389VYrv/zyywsWLFi9enWPKD5cLveRRx7hcDivvvrqYJ9IA28+Uo5zAr6+vuQn41//+tcwZ7qvJ3NSZ/IcDueZZ56hEzeDIgOZc4C4XnrppQULFnzwwQdDWAU4wFOMXjK2NSeHwxmUh/AelhwjLnOaTKb333+fxOPok8DChQsXLFjw97//vbcLk4MHD5K7zNHREQ/bPumN/4PEXS2Hw/n888+H+ajss7ENDQ333HMPh8P5y1/+MjRTbCpz9rnOmJxUq9Vyudzo6Oj169ffcccd5LK0tbXNzc3ts1Y42A+BHjLnc8891zs0wPWyp6am9njcjbjMmZ2dTVT5Cxcu9K7Gu+++Syadek9rNDc3k1nHJUuW4HnVG90NObJv3z62Tvnee++xqxEbG8teT0nuazINcvz4cbIeev78+ezjISEh7BIGuH/DZc558+b1GSaWz+f/v//3/2gDe+xc7/1ogK3uM9lIyZzUQKtHnTkcDh0t99CwR9YUBzJnn/2Lg2ND4AbLnDt27CA/k+fPnx+lBicmJpJ7+5133uktwg38pOvWrSPqRZ8Ll/osZ0LInN3d3T4+PgSRm5vbEMYc/cucbDImkyk9PZ2aDf3jH/9gfzvMfZPJpLNuo/GGQGVO6p731VdfHWCFuVwuGT1MtW43ROY0Go0ETu/+pSPpjo6OAbbohiSLjo4m/jNfe+21Prt4pGTOtrY2MlybO3du7wmFX2w79Wu6cePGX0zc3d2dlZVF2vXCCy8M4XS9TwGZszcTeoTInDY2NmTIfueddxKbRZrgejsGg2H16tVkWE+W1Y+G09r+ZU6LxULu4t4/ZAEBAaRF/v7+12vC9Y7Hx8eTK3Du3Lm930jZuVpaWuibs4uLC/ur4e9D5hw+wwlXgpeXF7n2vvjii96/TSPSHCLUcTic+++/X6vVDrbMMZM56fBg/vz5A0ShUCjIIlkbGxviznrsZU69Xq/T6fR6fQ+wzc3NZJZzy5YtPb7Cx0lCQKvVEhOiu+66a4C/s/2Q6Ufm7O7u3r9/P3mXHFpcKMic/ZBnf0Xu994Lodhpxu0+Gb1MmzaNvJHdf//9A3zSyuVyssqZPmnHXubshzwN0NX/+G3c9gsqplQqSfhMW1vb3sP7keLj5OTE4XCmT58+tMCfA5E5aVXNZnNhYSF1crtmzRr6FXYGSIBOzpB5p1tvvbX3OvXrFbV9+3YyrUcNucZY5jQYDNebdKquriZv4m5ubterP46PJQGz+f9j77vDqji6//deuHQuCiIIRowFLFhQBBS7RsWoiUZjiRorJir2EmuCLfb42nuMJUZRLLEjNlARCygiiHSRIl063Lvze56c53ue+c3uXS5W3rz3/nGf2dnZ2TNnZ2fPnM8p6kaNGiEMZmxs/Pz5c5oAUE1gA47j9PX1O3To0KNHj3PnzkHL3bt30w26d+/+FhqtTw5zchwnquSPjIxELx16mFCuzjDnl19+yRBsaGjYtm3brl27orGaDuakZ7uu/G/iwKeEORMSEiDSd+3atauaI61KzwAcOm1sbGgf/Cr1EB0dDeE4XFxctI8G898CcxYWFoIbjZOT01t8lrSHOQkh5eXl8+bNgzXX3t7+3XUfVXqOb90YYc6BAwfWqVMHctRpmQQLTWlGjBgBEO/7tZQhhFTqzSkxcHC54DjuveSvlbjRu5wqLCz08vICNdatW7dEu3pfMCchZNq0aTBFly5dKgqpihIAlefPn4d9hY2NjTbhf2FcHMfNnDmzqvcSJUMHc4qyBSphc2VoaAhZljmO27Rpk0R7PIXOSR07dmzatOkn8eZEYoSFo0ePQkS1gIAA4VnpGkzqOXr0aEzFoemSGzduAJ76xRdfaO8Iq6k3ul4Hc9Lc+F8oZ2ZmwtZaX18/PDz8ww0ZY8EdPXq0qnf5aDBngwYN2rZtC98dLY0Vrl+/DnLpN998A+mKPz7MqYmfcXFxQNvy5cs1tdHV/7s5cOvWLUDfx4wZ8+6yjTTM+fz5c7BOa9u2rRB0r5TPOpizUhb9CxoAzOnk5ATJYjmO09Lj5OLFi4A0DBs2DPyQPj7MKcH/yZMnw4fj1atXEs10p6otBy5fvgxL5YcI3Y+jDg0NhQzEHTp0eAtLhSrBnHDTHTt2wH7BzMzsLYzMkPL/zQLCnMOHD4eEKVoaTxNCICqsk5NTu3btYHH4yDCnxCOLjIyEpXjdunUSzXSnPhoHli9fDpME/vv27VtUVETfHdWY2Ozw4cN0A0JIRUUFaJKhjYmJyVuoI6oDzCkaHfr06dNgkoscoAufCuZ8/PjxIep39OhR5sEVFxczebvNzc2FOK4O5mQms+7wX8OBTwZz8jyPFojTpk3T0qby7fi+f/9+MN58u/xMPM9jdpkqJRD9b4E5eZ4HFzSZTPYWCeqrBHMSQtC7wtra+oPC2283W0SvQphz1KhRP//8M4Rx0yaxX05ODgQ6MDAwwCRk1RPmfAuEW5RXH6LywYMHgBBLRMB7jzBndnY2QJVNmjQRTegtMcbU1FTMcHDy5EmJloSQpKQkPT09kJbeMXMV3kgHcyIrhAWAOY2MjDZt2gRst7Ky0kYr6ufnJ/vnt27duuoMc4rGcxbyga7BF2fPnj10vWi5sLAQ2jdo0OAtFCWifUKlDuaUYM6/8tThw4cBm//6668/qAT47NkzUBJ5eXlVlZMfDeZ0cnLaunUrLEpdunTRxoZgyZIlYPpz/fr1agtzVklmrurT0bWvthxQq9XwodTT09MSTJIeizTMWV5eDgqyqqbchpvqYE5p5v87zoJu3dnZedu2bbDSenl5abPSzpkzB1ba0NDQ6gxzvn79+t/xpP6nRqFWqwEeMDQ0/BBp75GZpaWlHTt2BBvNI0eOYL2WhbeAOWNiYqysrOBdS0hI0PJGumbAAYQ5169fD4k2LSwstEGLHzx4ADrPUaNGYULBaghz/vbbb7pn/ck5EBcXB7YI8J5yHLd//36Gqh9++AHPgv5T9LuJPsTQ2MXFpao7u+oAczZu3JgZPiHEx8eH5gBTrhTmLC8vj42NvXHjxunTp4OCghITE4W3YGq0CVrLXCI8zM7OdnFxoam1tbXFWLXYvqowJ8/zqampr1690sY95q2D1lZUVERFRYWFhVVn7TTyUFeonhz4ZDDnq1evQLCzsLAQDYTN8KuwsPDq1at79uzx9fWdNGnSjz/+uGLFiv3799+/f79SM+HY2FgAHoyMjGJiYpieKz18/PgxpDSwtLSs0i5Ce5gzIyPj4sWLa9asmTVr1pgxY6ZPn75y5Up/f38JubC8vPzBgwdBQUEIwxQVFQUGBv7222/Tp08fP378vHnzNm7cePXq1ZycnErHGBISAuugqalpVYOXVhXmLC0tBZ2jhYXFw4cPRWlLSEg4duzYf/7zn3nz5o0fP37OnDkbN2708/N7+fKlpq9mfn5+cHBwUFAQkyMqLy/vzp07t2/fBvf83NzcgICADRs2zJ49W3vfDhrmfPbsGYAlX375pSjxdGVQUBA0Hjly5OPHj7Xx5oyLi/Pz81u+fLmPj8+4cePmzJmzYcOGy5cvZ2Rk0D0TQnief/78eVBQ0JUrVwAts7W1Dfq/H/1avX79GqrB0ofn+aioKKixtbWFR3/lyhWoefr0KXOjT3743XffQZSMffv2aSIG0Rp40KWlpQ8fPtyzZ8+iRYsmTpw4derUFStW+Pn5xcfHV7piEEImTZoEeo23iKc9atQoYOmwYcOkAxAdOHAAWtra2jJGWGAcFxYWdvDgwXXr1s2YMWPixIkLFy7ctm3buXPnJGQLTTBncnIyPF/gT0FBQUBAwJo1a3x8fMaMGTN37ty9e/fGxMTQ79ebN2+uXbu2cePGmTNnjh07dtasWYcPH3748KE0vlVaWhoWFvb7778vWbLkhx9+8Pb2Xrhw4c6dO+/evSsco+jTTEtLO3fu3Jo1a2bMmDF+/Pj58+dv3bo1ODgYZR3Q6cvlcqwR7UdYiTBnUFAQCnaVahbUarWnpyfHcebm5iEhIdrAnLm5uTdu3MAVbMqUKb6+vkeOHBF1AS8qKoJHA9o0IyOjffv2Qc2DBw8QhVWpVOHh4UFBQZjFEC/8+eefYQXYsmULXBgSEqKNMzEhpGXLljAJDx48KOQYU1NaWjp8+HDwPNM0DVQq1ePHj/fv37948WLvf36LFy/+448/NEVTSExMDAoKCgwMhJ18rVq1YAjCzQDP89HR0UeOHFm/fr2Pj4+3t/cvv/yye/fuwMBALQfLDEd3+Ak50LNnT0gEEBwcXCkZPM/Hxsb+9ddfy5YtmzJlyoQJE5YtW7Z///6AgIBKV5Xi4uLu3btzHGdgYKBJ5NBEgDYwJy6tQUFBGAVIU4fCevQxiouLgyC0tra2lX6F1Wo1rGDNmjVLS0urFOYsLCwMCQnZtWvXwoULvb29J02atGTJkn379omu56WlpfAO/v7776AVnT17Nr6VNMOjo6ODgoIeP34MWo+SkhJoduzYMTAVmjRpEl4olJ+Tk5P9/Pw2bdo0c+bM8ePHL168eMeOHRcvXszPzxcySlfzX8SBkydPwmelXr162jzN0tLSe/fu7dixY8GCBRMmTPDx8fn1119PnTqVnJwMMok0zEkIuXTpEtyxYcOG2ucwA5a+X5gzLS3t/Pnza9asgb3YrFmzNm7cGBAQoE0oILVa/ezZs8OHD2/cuHHWrFkTJkyYP3/+5s2bT506JdwC4HyIi4sLCgrCBHivXr3y8/NbuXLltGnT8LNbWloaEhISFBQUEREBF7569ero0aM///yzt7f3Dz/8sHTp0mPHjr148QK7FRZg4xAREUFL0YWFhfCOw7WwMdmzZ8/ChQvHjh07derUZcuWnTlzRqhcE/avUqkiIyOPHDni6+s7derUcePGLV269I8//oiOjsY7Pnr0CEZBC6vCroQ1CHMmJyfDglmvXr1KdQIqlapJkyYcx7Vu3To7O1sbmFPTjj4+Pl5IVWZmZlBQ0I0bN3r06MFxnIWFBS6YUVFROEYh59PT06HlwIEDYeb//fffUCP8zMGe+rfffpsxY8aECROWLFmyc+fOS5cuafNuCmnW1bxHDmDaIEdHR23kh4KCgps3b27atGnu3Lnjxo3z8fFZsWLF6dOntbEaP3XqFEyVdu3aMaqSSkf0FjBnamoqaM84jtMUsUOtVkdFRVVpxauoqICtUFhYGJCdnZ196tSp5cuX//jjjxMnTly0aNGhQ4eYZUp0gKCvP3/+/Lp162bPng3qpm3btt2+fRvlnJiYGHitJLbz8MqvXbsWNq0zZ87csGHDlStXqvoloolEmNPPzw9ypnAcV6k1Ks/ziBWdPHkSQ1ZKwJyFhYV3796Fjy9+C/bv3//o0SPhkFHG27VrFyBeCxcuxCULI7SlpqZCJeKyeOGhQ4fAOX7atGnQJjg4mGFUYWHhhQsXdu7cuWjRonHjxs2ePXvTpk3Hjx/XZpLTPNSVK+XA2rVrYU2Af7lcnpycDFcFBgau/ufn6upKtwGXGDh1+/ZtvAWGPcDGFy9exLPaFHDqQg+Ojo6o4obLk5OTlyxZMvv//61fvx7FA23uEhAQgBRCoXXr1nQNcgB7A7UPtBEm6dQEc6ampu7YsaNv374QupK+haWl5eDBgw8dOiTMlPzHH3+sXr162rRpILHgVa1btwaeY7wfPz+/UdRvwoQJqPA/e/bs6tWrlyxZgjpe6Mfc3Hzx4sXQD2r7URsGbURdcVQqVVhY2OLFi93d3cFAGdxbzczMOnfuvGbNmsePH6O4Anw7fPjw6tWr582bh3maoX8nJycg4MiRI8wlBQUFJ0+e7N+/v6OjIyaJ4ziuZs2arVu3Xrx48e3btzWpnvBh6Qo6DiAHPhnMeePGDVDLDh06FKnRVDh16lSLFi1MTU0Zn3GZTFazZs0vvviCCSPO9KNWq9Ed8y0yiu3fvx/uO3XqVKZn6UNtYE61Wn348GF7e3sMoI8rmqGhoY2NzYoVK0QDCSYkJNjb2yuVSrCHunHjRsOGDSFKGPbAcZypqWnjxo0vX77MLCUM5SqVCpe5quI6VYU5CSEAcyqVyvv37zOUZGZmzpw5s06dOox5EaSUqFev3ooVK5hL4PDo0aMWFhZKpfLmzZt0A6ivXbv2vXv3UlJSPD098cvBJNmmr2LKNMz55s2bLl26cBxnaGiYnp7OtGQOly5dCtrVy5cvVwpzFhcXL1y40MbGhhm7TCYzMTFxcnI6e/Ys3b9KpfL29lYqlZjuVC6XK//vt3fvXmy8cOFCqI6OjiaElJWVjRw5EmrA6A8gHKj56quv8MLqUMjLy4MJU6dOnaioKE0k0TDn69evvby8atasiaODl8LAwMDe3l6bOKUXL16EV1L7JKxI2IMHD/Bbzoho2IYQolarx44dCy1XrlxJnyKEvHjxYvDgwZaWlswQOI4zMjJq3rw5CjrMhZpgznXr1sHzDQ0NffLkSZMmTfBFABpkMlmdOnUwtVVsbKy7u7uZmRm96urr61taWi5ZsoS5KR7m5OQMGTLE0tISvVShc7lcbmFh0bVrV1FFD15OCDl16lSjRo2Y9VAmkymVSldXV4AJ3x3mvHv3rr+/P9A2ZcoUaRH50aNH8BScnZ3Ly8srhTnv3r3bqlUrc3NzmnWA09eqVWvMmDEoicLAo6Ki4NGAVCeTyUxNTaHGxcUFF5nMzMwmTZoolUpMdxcZGQnNkF0mJiZQU79+fS0TNX311VfAB9FQLfSjAdOKnJyc9PT0169fi35TsrKyRowYYWVlxUwAPT09Kyur0aNHC1W9K1asgEUMmAzPGkZBR7wsLi5eunSpra0t07NMJjMzM3N3d9cGLWOGozv8VBzIysqCz5yrq6twm8dQVVFR4evra2NjAx8CmK4Av5mamrq4uAQEBEi/witXroSrBg0axHQufVgpzJmUlARvpVKp7NixI6rGpLulz8I67OTklJycvGrVKtAcSRj0wLWBgYGwvHz//fdqtVoa5nz16lXPnj0tLCyYr4lcLq9Zs2a/fv2YaIfJycnwAuI3wsjICGqUSuWzZ8+Qfnd3d6VS2bt3b7AzSExMhGb44TA0NMQLjx07hheWlZVt2bKlbt26jLQDyHeTJk1OnDiBjXWF/y4OqNXq8ePHwxunjcdGampqnz59atSowXwxDQ0N7ezs1q1bx/N8pTCnSqVq3Lgxx3EmJiZVjY3xHmHOM2fOODo64hcZmADfdBcXl7t370o8yuTk5O+//97a2pr5xsF2o3HjxqI67vLy8kGDBimVyoYNGxJC/v77bzs7O1wqkf8pKSn169dXKpX9+vUjhFy4cEH49ikUChsbm9WrV2tSJLVr106pVPbv3x/V2YSQJ0+ewDs+bdo0QsiuXbtsbGyYpcbQ0LBu3brHjx+XWKiLioomT55cq1YtZk2Qy+XW1tYTJkyAmzZu3BhGoYlITRyG1czZ2Tk9PR22Znp6epVau165cgWm5eTJk9VqtTTMqVarjxw5IrGjX758ObOjP3nyJMg/MGpa/vn+++/RacbV1VWpVH799dfI+UOHDgHb8Vmbm5tDTbt27ZAJpaWlGzdutLe3Z7gK+0pnZ2dmX4kX6gofgQMqlQrTRmzdurXSO4aFhbm6uuKWH2UhIyOjunXriq4PdJ8VFRVgSmVpaRkaGkqfqrT8FjBneHg4KriFyAEhJDk5ecyYMRIrnmjQrPz8/B49eiiVStieh4SE1K9fn9aJg41yrVq1Zs+ezbxuzDCPHTvWsGFD4XKtVCo7deoE+/evv/4aXitN5sUXLlxwcnISdmJiYtKyZUtGJcUQIHGIMOfJkydv3LgBz7pTp07SI8J8AVZWViUlJZXCnImJid26dRMVDi0tLQcMGEBbzBNCUMZD4dDY2Bj4o1QqURk7evRoqERvjfj4eKhBXS5KlTVr1qRDPty6datly5YMP0EHWKdOnYULF2pjDSDBWN0p5EB5eTkk9cCVxN3dHbf2YO6Pp0QLtFL91atX+L5D43HjxmFveFOJgjTMWVRU5ObmxkiJMplszZo1VbqLEOaEKH04QEa9lpKSQsszmHkN24vCnHfv3m3SpAkggtiSKejr67u5uTFaESGMylzVtWtX4OH06dPpUwqFAlWOiHrQDZjypUuXoB/U/0MDUZhz7dq16JrP9AOHNjY2O3bsoB8E5mERbc9xnLu7Oy0QxsXFdenSBeK3i14ik8ksLCx69erFcExiRulO/Y9z4JPBnJD9TiaTbd68WeIZlJeX79ixA5cJKyurVq1adejQwc3NzdHREaX2rl27apI/oPNDhw7BO+Pp6YmbBIn70qdABpXL5VXdDFQKc+bn58+bNw9Hp1QqW7du3alTJ1dX1zp16sBSLpPJvvnmG0YJRQiJjY0FIWPVqlW7du2CjAsKhcLJycnDw6NVq1b0PtPMzGzLli24X6JHh+X169cDiyZNmkSvO9hAU6GqMOfz58/hRlZWVozh8Js3b/r37w9nZTJZ/fr1XV1dPT09W7dubW9vj9+2FStWoIcTUoWhia9du4aVhBBwRzA2Nj558iS95srl8pEjR9ItJco0zEkIwcgMM2bMkLiqrKwM1C5OTk4vX76UhjkzMjL69euHY7S1tYWxu7i4YOJruVy+YMEClPBUKtWPP/5oaWlJN7D852dlZXXo0CGkDZNNgoKyvLx8/Pjx0BK4DcYyUDN27Fi8sDoU/vzzTyCydevWEi8vwpwnT56E/Kkcx9WoUcPFxQWmEHjyQVcjRoxgjAeZkcbExIALuEKhQJyJaSNxCLl/jIyMAgMDNTUrLi6G1HTm5ubMLcLCwsCzDdRbTk5O7u7u7du3d3Z2RiFSoVCIrkiaYE5U9O/evRsSsurr6zdu3Lh9+/YuLi62trYw9/T09I4fP/7w4UPYDMvl8rp163p4eLi6utavXx8WK7lcLrohv3Xrlr29PXBYX1+/UaNGHh4eHTp0aN68OW5Bzc3N//rrL1GeFBYWolciKCudnZ09PT3btWtnY2MD3ZqYmOzfv/+9wJwVFRXQj7OzM75TQsJ4ngcnS47jAHuQgDlLSkq2bduGUpqJiUmLFi08PT3d3d3r16+Pb7eHhwftQxAdHQ2vHizpIMlBjbu7O07UjIwMmNjTp08HOmNjY62srCwtLXHDqVQq4cImTZpI2ATQw9y/fz/w9vPPP5dWwtJXiZYjIiIgJQxguo0bN+7QoUP79u0bNGiAm4Tu3bujIA6drFq1ChYx0O3K5XIYgqWl5dq1a6FNaWkp2gRwHFe/fn03NzcPD4/mzZvj2E1NTQMDA2khW5RIXWV14MDGjRtxKRYajNMUpqSk9O/fH94dmUxWr149ePSNGzdGCdDMzEw6CNv169fhdgYGBtKyIn1rQog0zHn//v0GDRpAzx07dtQmEhHTPyEEJjDAnOHh4fA179Gjh7Al1qhUKswuDObSmmBOtVrt7+9vYmICRBoaGjZr1qz9Pz9HR0cUPuvXr0/na0lOToZ3ED+apqamUFOrVi167QI/p44dO4Jj/atXr2BFwguNjY3hQivTZ8DDAAAgAElEQVQrK/qDtXz5cry7vb29q6trhw4dWrRogVbPRkZG0qAIckNXqG4cyM/Pd3d3B70koyQVkhocHAzCBgD8Dg4Obm5u7du3b9KkCeA3Mpns66+/Xr58OXxEHj16JOwEaubOnQvWD2vWrNHURrT+vcCcxcXFtP6rVq1a7dq18/T0dHFxwVmtr6+/f/9+0RUvISEBv556enqNGjVyc3ODl8La2hreXwgox2zlysrKwDPexsbm3r17KP0C/1FUe/nyZa1atTiO69Sp0/bt24Ekc3Pzpk2benh4ODs741309fV/+eUXUUY5OjpyHNejRw/aniMsLAzIGzZsGApLlpaWLVq0aN++fdOmTXE1qFGjhibzhRcvXsCWGboyMTFp0KBB+/bt27RpA9tbjuO6dOmSmJgI/mHdu3cXbgNFacZKWGkB5rx79y5woE+fPthAWFCpVJ07dwaSrl69SgiRgDnz8/Pnz5+Py5rEjh69KAgh/v7+sELibIdDS0tLb29vfNawl+zVqxdugo4fP05fCPsdqOnWrRuOZdGiRYia161bF1ZaZ2dnnJPGxsb+/v5V2vVj57rCO3IgMzMTggoqFIpK3Z0PHTqEG0BTU9OWLVt27NixXbt2tWvXBgFJLpf/9NNP0h66P/74IyySlZpSMUN7C5jTz88PdkMGBgZCo4TExETUyUisePv27cO3AEjKy8vz8PDgOK5Vq1b+/v6wVTc2NnZ0dHR3d2/VqhUq0DiOGzduHL4y9IiKioogWxO83QqFws7Ork2bNh4eHg4ODsBPS0vLEydOdOvWDdow9qmEkNLSUjptoZWVFeht2rRpg4uenp7erl27qrpYEUJomJPneVBx2NjYSBuw7tu3D953MBKVgDlVKpWfnx8tHDZv3hyEw8aNG+Oi0bBhw6CgIGRdUlISLDK4gNDCIYYaQvNZtGx++fIlIxyamJhAV7Vr10bE5fbt27jg16xZs1WrVvANRac0PT29GTNmiH5DkUhdQUsO5OTkoHYFJjnt9VtVmJMQAk4g0BXHcS4uLsIgLhK0ScCcBQUFaBGC/RsYGEybNk24tkjcghAihDnPnDmDelSO42bPnk33gEpIsJ8QXi6EOa9fvw7Z4pFUiUK9evXQMZ0Q8tFgTvS1lYY5i4qKZsyYIUE/fWrZsmX4OHB5pxvQZRrmfPr0KQhXdAPRskwmGzp0KPNRoJ+XrqzjAHLg08CcarUavlimpqawc0CCmIK/vz+arc2cOfPp06evX7/Oy8vLzs5+9erVuXPnGjZsCBKbdATR3Nxc2HtoE6OGpkGtVsPO0MbGhrZhp9toKkvDnBUVFTNnzoR9u0wmGzVqVHR09OvXr/Pz87OysuLj41etWoXq8n79+jGSK8Kcbm5usDsyMjI6ceLEq1evcnJyXr9+DbFP0fjCyMhI2tAvLS0NxBp3d3d6B6tpdFhfJZhTpVKhZNmwYUP6RiUlJX369AGGNGjQ4NixY8nJyVlZWXl5ea9fv37x4sW8efPgrJmZmdBYWxrmNDIywqAEjo6OO3fuDA8Pp7eaOBzRAgNzvnjxAhbf2rVrS3zCz549C7Ly6NGj1Wq1BMz55s2b1q1bQ2MjI6MNGzbExcXB2DMzM58+ffrtt9/CHRUKxa+//gpE8jyflpYWExMTHh4O09vOzi7m/350PE8G5iSEpKenQ0P8EoeFhUFNtTKT4Xkex+7j4yP6dKASYU6Y8zKZ7Lvvvnv27FlmZiZMoSdPnmBwJ7lcDobnmjosLS1FlZOoPammC6H+119/hec1efJkTS2vXbsG8/mLL76gt0Bv3rxp2bIlTIZu3bpdv34dXurc3Nz09PSwsLBBgwbB2YYNGwpBnUphThDmzM3NDx06lJKSkpubm5mZGRUVhcZfDRo0ALWjQqFYuXJlfHx8Tk5OVlZWYmIi7ugsLS2ZeZKWloZJSS0sLPz9/VNSUnJycnJzc9PS0u7cuYOClIWFBR3nBPmzdetWNEt3d3cPCQlJT0+H1T42NnbJkiUwyS0sLKDZuwStvXv3Ls/z3t7eILbSKn6kBwpZWVlubm4cx9na2kL4HQmY88iRI7hpbNeuXUhISEZGRl5eXk5OTlJS0smTJ1GT+NlnnyEoUlZWBq8e2E8YGRmdPn0aapKSklD9JIQ5VSoVNNu4cSOs3ocPH4aahIQElDWZETGHJSUloLvkOA48OaSNhZnL8TAhIQHfQWtraz8/P5hdubm5ycnJx48fhy8p6Cbo1SkrKysmJiYiIgJmXe3atWEIMTExqFY4ffo0fA1r1qy5d+/epKSk7OxsmFpBQUGohmjatKkuqBE+kWpb4HkeNTjobCRKbWFhIS7aenp669evT0xMzM7OzsnJSUlJuXz5Mq4qSqVSQpgsLCxETFQoPIjeGiolYM5nz559/vnnsBR37ty5Uh2lprvQMOebN29AblQoFBJmCtHR0aDu/Pzzz+HboQnmjIiIwPfOysrq8uXLaWlpuf/8Xr16dePGDUSYatWqhfEtKyoq4B2E4cvlcl9fX6h58eIFrWBiYE61Wv3ixYuYmJjAwEBYCWfPno2vM2obQ0ND4ayJicmKFSsSEhKysrLwA4efMCsrK52LtqZpU53rk5OTIbRM8+bNpelMSkpC0yhTU9ODBw/i2p6amnrmzBm0YkEllATMGRwcDDJV3759pe/LnH0vMOf69etxy/bdd99FR0dnZ2fn5eVlZmY+fPgQMbwaNWoI/agKCws9PDxgMXF1db106VJKSgp84zIyMp4+fTpmzBg4W6dOHeYbhzCnlZUVbHPkcnnv3r3Pnj375MkT9JVHmNPY2BjMzjp37nz37t3U1FSI0PD8+fNx48aBIGFsbCwqpEnDnKampgqFQk9Pb/To0TExMRkZGbm5uampqZGRkT179gT6GXdweBC5ubmA1MJ2ftCgQc+ePXv58iVIpzExMd7e3nK5XCaTderUCZa+d4Q5c3NzwRhRoVCgBxIzKwghERER4FTUsGFDEKg0wZwVFRWzZs2C6SeTyUaOHIk7+uzs7Pj4+F9//RWnx5dffok7+jdv3sTExERFRfXt2xegSlww6TDFQpizsLAQWqLyNyQkBGpwb3v37l1Yac3MzNauXUuvtA8ePPjmm29gn2JraysMrSTkhq7mvXMgOjoalriWLVtKd37+/HnUhnXs2DE8PDwjIyM/Pz87O/v58+eYPE8ul0v7Np06dQpm6ZAhQ6TvyJytKsxZXl6Oi54wikZhYWH79u0lVryxY8fiiod7JSAJYU5DQ0PgXtOmTS9dugQ75YyMjNjY2Pnz54PIZ2BgIOqxvWHDBtxv2tjY/P333/Hx8ZmZmbBZO3LkCHzC7O3tQbjiOA73I8iZzZs340s9ZMiQqKgo1NuEhYUh5KNUKm/duoVXaVlAIfnkyZOEkE2bNoElEA1ECbsaOnQoLCPwmZCAOR88eIAawjp16gQEBKBwmJKScv36dbCH5jjO2toaQ52Xl5fDInP8+HHYPq9evRpqaOFQCHOq1WpoduHCBVhUFy5ciBfC5vrly5dopjNgwIAnT56AyjczMzMuLm716tUAHisUCl3Sd+Gjf4uao0ePwlsGHwJjY2P8dmDyJjil6Z/25iSEoNk0tDc3N6cBvEoplIA5Fy5ciJs46Fwmk02dOlVLRQd9ayFOee7cOXxbOY7z8vLC3QohBDRFcFMnJ6fIyEiGGwzM+eLFC8AmmGYShz179sTwztUN5vz9999xlZMYApwyMzM7d+4ccLtKMOeIESPoqSh9I319fT8/P/qZ6so6Dohy4NPAnHfu3IEZXKdOHUZ8YajE6KC+vr7MKTi8desWCPHGxsaMayDTvlOnThA+FO0XmAaih1euXAFS27Zty6j1RdvTldIwZ2hoKJgsGRsbe3t7C1OLqdXq3bt3g6GNgYEB7ZxHe3PCttDFxUV0q/b06VOweuM4ztHRUTRsCNCsUqlASW1mZkZ/5+gRiZa1hzkrKioOHjwIsqNMJtu+fTvd4d9//w0bbMjNRp/CMjp7MbY28HEF2V3UmxMeokKhGDx4MK1hx56lCwzMSQjx8vKC6eTv7y96bUVFBeR+l8lkQJImmJPn+bVr18L6rlQqt2/fLrRSUalUc+bMAYHe3NwcJU64dUFBAXz+HRwcRIkRwpzYDAXZt2ALdvLhChkZGYidSGixCSHYDJ7L9OnThe9USUmJt7c3SNhGRkaYykiU/vnz58O06d+/v/CJiF6Clbdv3wZxvFatWkIyIPgnTA+O45iItYsXL4b7duzYUVR1XlxcDAoRjuNQnsBbo46YWQ/Rm5PjOCcnJzS6xAsJIbhWcBxnZWUl7JwQMnz4cPASoF1zCgsLu3btCmQ3a9ZMmBmIEPL69Wsku169eowDa2pqKmxvFArFl19+KVxsy8vL169fjwaksN+r6qSFh2JkZARui35+frDm9O7dWwgYA2dCQ0Nhyfrxxx+hRhPMmZGRAfthhULRr18/VC/SHL58+TK6f02fPh0hTGizY8cOcGMV1eQKYU7s+ejRo4AB37hxAyu1L1y7dg3xV7lc7ubmtmbNmuDg4JcvX2q/hVi3bh2swG3btn3w4IHw7sHBwaAklclk//nPf5gGJSUlkK7bzs6OOUUI6devH+yohRdCFO4+ffrI/vmdOXNGeLmuplpxICYmBsQ2juOktat//PEHTOzatWtjPG16LC9fvgS/MY7jOnfuTBtO0c0IIWjGsWzZMk0vO3OJhDdnUFAQJp3q1auXhLWTsE+mBj7r4M1JCFmxYgUspJMmTdJE5549e4AtCBKLwpx5eXkAA8tksvbt24t+TSIjI5GB3bp1Q+U7EBkeHg4rLbONxyEwMCfWY+Q0UW3UhAkTYIw+Pj7CFaa8vHz06NGwmGhKUoA30hWqIQd2794Nz/f777+XIK+4uBi1WvXq1bt8+bKwcVxcHJMXSvTjCBcmJydDGIwaNWrQWipht0zNu8Oc8fHxICcYGxtjEAL6LiqVysfHB15bZ2dnRnTZsmULcMzJyUmTfQMinTt37qR7RpgTelAqlQsXLqQt56AxwpwgIY8bN0701Zs4cSL04+rqysgnhBBpmBPypPj6+goF5tzcXMwCPmPGDGZlO3DgAHBGqVT6+voKn11JScn8+fNp8e8dYU5CCEra06dPZ+hB9m7evBkWIlwANcGcDx48wB39xIkThWK/Wq3es2cPWHgbGBgwqdBVKhXgE1ZWVnh3uiCEOfHs5MmT4ZEJP0MjR46EU3PnzqXNU+Da8vLy4cOHA368ceNG7FBX+Ggc2Lx5MzygSZMmSdw0JycHUHmZTDZmzBjh5kKtVm/btg1moJ2dHQ2QM91GRESA6GJpaYmKdaaN6KH2MKdarX769CkCbGZmZsK99tatW2HgEiseIp349gFhCHOCcDJgwADhckcIWbt2LezvGjduzCxlkZGRoAfQ09MbOHCgcL8JYb1RPQKkMjBnYmIiAM8GBgbMLh7oBLN+AFObNm3KrPmiTKYrGZgzLCwMTNZoFyi6PSGksLAQ2vTu3RtWUXwKDDiam5sL/ctkso4dOzL7cej28ePHCFT06dOHof/u3buwKTtw4ABDBiFECHNim8jISBB6UXzFU/7+/vAhaNasGcNtSPSzbds2UHY1atSIoQc70RW05ADP87TOh+O45s2b06Gt9u/fP/CfHwPayWQyqB84cCAT3zUzM5MBq1avXq0lPYQQFAjhjYPcnOXl5bhOQj16N1UpNg+SIQpz+vj4YOfNmjXDN6KoqAjNNTiOGzVq1LNnz7AlFJgFatasWQwTIDxhly5d+vfv7+npifoW7Ecmk+EbOm3aNC8vr44dOzLgYt26db3++S1atAjGIhG0duPGjQMHDuzXrx8GAIB7GRkZeXl5weND3y00F4Y2dNDa1NRUWu6CBlZWVt26dYOxwEKKA+E4rmHDhrCRnD17tpeXV9euXZk2NjY2MJA5c+bAypyens4M1sHBYcGCBWfPnj116tQvv/zi5OTEsNTZ2Vko0uAj1hV0HAAOfBqYE+OVtWvXTrgdwmeTmZkJHzxXV1dRKQTQAkjNbWBgII2CLFu2DN5D0S0o3pQpINTx7bffMnIS01J4KA1zosZf2uN+37598FH//PPPaV6hNyekMhJVKwNJycnJYLGlp6cnEdiN5/lRo0YBi6qkKdYG5iwpKfnzzz+9vLzQGnHgwIGMhL1gwQK4u1D0Qd7GxsbCJtPLywsroSDtzQk9Dx48mNHiMZ1oOhTCnNevX4fdL4IfzLVRUVGwoW3RogWsxZpgzvLyctRF+vv700+Z7rO0tBQRrC+++IKejf9imDMiIgLYqFQqpZ3MaJhz+vTpzOxCTpaWlmLWKGdnZ03cJoTcvn0bpo2zs7Om9Qe7ZQq5ubkAhnEcJ2pJmpCQAIsbx3H0DrC4uBgUxxzHSRhkHDx4EGgT5lPESaIJ5jQ0NGQEUyR+y5YtKEmIqkUIIdHR0bAi0fu6CxcugH+Anp5eeHi4Jp1RZmYmeA/L5fJdu3bhfQkh48aNgxF169ZNuIeHliqV6sCBA0jhO3pzEkKysrJgRdLT00OBj6aKEDJ79mxYYxHW1QRzopTcoUMHiQkTEREBN7W2tmb2aZ8K5lSr1RcuXECvGthCKJXKxo0bd+7cef78+UFBQZqeKbArNzcXUGo7O7vw8HCGh3gYHh4O+FbHjh2ZV08C5qyoqAAJ2MzMDLILY4dYCAwMBK6OGTMGK3WF6smB8+fPwxpiaWkpVLUjzTk5OaC2MzAw2L9/P9YzheTkZLAGq1u3Lh1PlWl26tQpWGG+++47Zu4xLelDUW/O0NBQDCo+YMAACZUi3ZWmMgNzpqSkwKehXr16wmwF0AlAtrVr18aAYKIwJ6wnHMeZmZnFxsZqIuDVq1ew6zYxMWHsJD4EzKlSqTA20Z07d0SpSkxMhDa9e/cWbaCrrM4cgAgcouYsNNn37t2DF1wul4eEhNAyLd3s2bNnsFzA+ysBcxYUFKC5lagzIt0tXX5HmLOiogIFmB9++EHTmpafn492+ocPH0YCysvLcT8oKi5CyytXrsDXk/nG0TCnoaHhtm3bRDlJw5yenp5CJTLcBVV4xsbGQkmsUphz2rRponcnhAQFBcET7NOnDy3Mq1QqgBNkMtncuXORLUxBrVYvWbIExb93hzmTk5NhpXVyckKdJnNTsK+ytbVFGxFNMCfCCaKmG9jt/v37RXf0HwLmVKlU6AMtdCAGkqKjo0Fyg4ytSKeu8HE4AMEq5HK5dNCgo0ePAlrWrVs3TbZcarV65syZ8IrNmzdPE/1ZWVkY2krTrBC9FmHOnj17Jor9oqOjAwICdu3a9dVXX9FhYxctWsTAkOXl5fBmadogAwFXr14F6YhZ8WiY09bWFrM/MmS/fPkSBBuZTEaLUjzPYzTOzz77TJNZP8/z9+/fx306482pUqmmTJkC3B47diwzQKSkoKCgXbt20ExCiMX2dIGBOcH/FZDFkJAQuiWW//Of/8C91q5dC1s2XJcQRIHG2LJWrVqaGEgISUlJAdzUzMyMuemHgDkhOT3HcYwpDw5QpVKB94ulpaWE2hPb6woSHMjKygI1JswZCEcvtDEihKAmHFrK5XKJbjF+DDTu2bOnRGPmlCjM+ffffzNYHcdxX3311dupc0WD1p47d27nzp3IDVNTU3Qcio+PR9t0juO2bNmCMhLyjYY5MzMzMWA1NujSpUtkZGRxcTHP8wUFBbdv30YfcWxjYWEBKYr4f36PHz9m4gmPHTsWTqE2RgLmBMYWFBRANDK8i52dnVCuk4A56UQM0EmrVq3CwsJAxVpQUHDz5k3cDuNdwB4dqI2Pj8egQdBg4MCBzED27NmD18ISd+HCBXpuhIeHM50YGhoycU3o9rqyjgPAgU8Dc0ICFY7jRo8eLfEkQkJCIGH1Dz/8gG+1sP2aNWsgExidwlrY7MiRI/AWYWIzYRthDWIGCxcuFJ6VrpGAOaOiooAYMzMz6d34y5cv0Y6GRh9pmFPaYpoQ8ttvv4Gs9tVXX0nQjMuZBNAovBxhTmNj427dunWnfp06dWrevLmNjQ0tKerr63fr1g3Vc9Ahz/M//vijUqm0trbG/aTwXhkZGSCgu7u7M2crhTn19fVFncyYfkQPhTBndnY2yKAODg6iAi64ochkMkyNownmxLRhbm5uohIGknT37l3gpJWVFY3K/Ithznv37oHE0KpVK+SDaAFhTjs7O+mP371798DG08DAQGKbl52dDS9po0aNJNygRYkhhOAq179/f6HN0c6dO6HzBg0a0Dr39PT0pk2bKpXKunXralKWEUKCg4Ph8m+//ZYhAJcsTTBnvXr1aHs9+nJ/f3/YSysUCnpbSLfJzMwEW+A5c+ZgPQpbEydOxErRwr59+0CU/Prrr7FBWloaqDs5jmOM3LENFPLz89G3491hTkIIUr5ixQrhV6agoABsRBwcHDDHmCjMmZ6ejsF2pHez5eXlGCuMSU39qWBO4G1mZuZPP/3k6OjIWN7BTLO1tZ08efK9e/dElSwYMmvatGn0fGYeX3l5OWjAFQoF805Jw5ygGTQzM9OUliY9Pb179+7NmjXr2rUrc1PdYXXjwOHDh2EF7tixowRtiNLVr19fuDGjL5w/f75MJpPL5efPn6fr6XJCQgLMZC8vL4mllb5E1JszICAAVG8cxw0aNOitd9p4IwbmJIQMGTKE4zgIXo3NsJCXlweIft++ffFlFMKctNM/E1cKu8IC4gdMZPgPBHNiqHwm9gbSU1RUNHbs2GbNmnXo0AErdYX/Fg6AYkWhUEjHlVq7di28kpWGT0THO47jJGDOiooKdNqWFiQYTr4jzIlY0eeffy5046Pvde3aNfiWff3117gK5efn9+zZU6lU1qlTh8b/6AsJIU+fPgVlH2PlScOc9erVQ0GFuZyGOaWZAwKeoaGhMNiSNMwpGo+XJgOE+S5dutAi6LVr12Aa2NvbazJjgk4iIiLQDeLdYU70HTE1NRX1JM7NzQUP3UGDBuEuTxTmjI6OhiGYmppKx9lOSUlp1KgRND59+jQy5wPBnKhv1RQz882bNyNGjGjWrJmnpycSoyt8NA6At5yRkdHff/+t6aY8z8OKWqNGDdooVtg+KioKLAKNjY3pV4xuWVZWBrHNOI6TXp/pqwghCHPC7NXm38HBYcuWLUw/hJA3b9706tWr0hUvMjIScHomgS4Nc4qGi8A7Qt5TjuPoCFiYD1VfX//PP//ExqIF3FAzMGdCQgIuBYy5KtPPzZs3Yc3v3bs3LiNMG9FDBuYkhKCLyMiRI4XWJCUlJbAJ1dPTw5AAojBnYWFhjx494AlqCpWHJIF0zXEcY1T9IWBOjGWyYcMGJIApHDx4sFmzZi1bthRdtJnGukMJDjx9+pR5i0eMGCHUVlUV5kQVDXTeoEEDCRqYUwzM2bhx45MnT6KxDlLbunVrCWye6VN4KOrNee3aNTDWh7ugU9Ddu3dBDIBQW5cvX5aGOWlhFbpq0qSJ0O8iPT0dXDhwUBzH7d27F6l98uQJA3OOGzcOz0IB9VfQiUKhePnyJd3mHWHOvLw89OeGW4huS7dv3w47ehxLv379UL5NSEhgEEphDHN0c8IeVqxYkZaWhqtcWVnZlClTWlK/Nm3aREZG0oPVlXUcEHLg08CcGEflp59+EtKENcXFxffu3QsJCWHeW2wABVCb6uvrQ/x65iweXrx4Ed7DoUOHYmWlBU9PT3jrNm3aVGljpoEEzLlt2zbotmvXrtJyD8/zP/30EzSeMmUK3gJhzpo1awoj1WAzKERFRYGnzueff86cog/RkGrGjBl0vXQZYU5cnjQVIHLanj17ROMMJCQkhISEPHr0SEJLHhcXB2Yj7dq1Y6iqFObs0aOHEMZgOtF0KIQ5VSoVBnf666+/hBdCyA5bW1sUNzXBnGPGjAGOrVy5UppCtVoNJpCGhob0DvlfDHPeuHEDtm10FAUht+mgtRMmTBAV1PAqlUoFMYf19PSYWNDYBjzFQeipW7eutPKFvgrLsbGxgOd9/vnnDKhfXl6Oe6fff/8dLyGEVFRUhIeHh4SE0LsyugGUDx8+DHNGKC5gz5pgTqGohP2jBl8CfsjJyQE1jbe3N14IkU9q1qxJo+94li5kZWVBbFI6wPLt27dB11+/fn1pLSHP8+vXr4exvxeYMy0tDZ5yt27dhJvVAwcOwL28vb3x3RSFOW/evAnYQ6NGjRB7oAdOlzGhvYeHB13/aWFOoOTly5e3bt1avXp1p06dYHMOHIB/c3Pzr7766unTpzTZubm5sOHnOE7CnQ4uwW8f484rAXMSQoDncrnc29tb9O3meT4zMzMtLU2TWwZNsK78aTmwdetWWBuHDRumiZKKigrMyoymQpoaJycnHzly5NChQ8xKS7cvKCgAG4727dtLYAn0JUKYMzAwEJ2ex4wZA7a3zCVVPRTCnIGBgfDqiQayw8AktDmaEOZMT0+HOId16tSpFIt99OgR4AdNmzal6f8QMCchBF3u+vbtq8nxHTLv6l5n+nH8t5RBfWNoaHjp0iUJmsHcx8TEJCAgQKIZxOJDg3oJmJMQMnbsWPhUVSnc8TvCnH/99Rd4GVZ6U57nQf5p06YNrh5qtfrZs2chISGYHFeUG1evXgVvzl69etENaJhz5syZKKjQbQghCHPKZDLpPSPkujY0NBSKc9IwZ/369YVCFE0GGCN6eHjQe0D0KxozZowm4qETlUqF26X3AnOePXsWLEdFrZ9RX0m7FiG2QfvHb9++HWZdly5dKt3RL1y4EBrToYA+BMxJCEFPjq+//jovL49+FlDmeT4nJ0cnOAk583FqQJFtamp6/fp1TXfEvWTnzp2l90eEEIQwJQBRhL6qpNd6C5hz5MiRoqbbarU6Kiqq0hUvMDAQpCNm+48wp0wm0+SLCcz87rvv4F2j40agHqlly5aoRioicPUAACAASURBVNfE/AsXLgANDMx55swZWPMxgKSmHjAVvbOzs4QRv/ByIcyZlZUFxDg4OAhtUAICAoAkOgkLPmvamzM5ORmAB3t7e01wONITEhICVsjOzs5YSQj5EDDn3r17YWtgY2Nz584d0c9BaWlp2j8/IXREk6crV8qBwMBAeDvwf9q0aaI8r5I3J8Yrhm4NDAwklLoMkQzMaWJighbwSKSLi4tw8vM8P3LkyGGaf7Nnz0bhRBTmTElJQasgCE4LtO3duxdjSIBGVwLmVKlUGJwfCNbT0xPNt6JSqeiUn9DY29sbV6TqAHM+f/4cdTtAoaibRGJiIiLB0Ixe67SBOTFrA1wOrmvOzs7Dhg3bs2cP5NgqKCjI+v9/yCtmFukOdRxADnwCmFOtVmNSOlE7LyROtFBRUZGfn5+enh4XF3f//v1Zs2bBW1EpzHnz5k3YImrv7aFSqdCTEi07RKkSrZSAOXErznjziPaDn6JOnTqhfQTCnBKABPaWmZkJApO+vr6ojhhabt++HVZzIXaCXQkLCHOampo2adKkKfVr1qxZq1atOnXqNGzYMF9f30o14EznPM+XlJRkZ2enpKRER0efPXsWtt8cx70FzCma1I25o6ZDIcxJCDl37hzMvWbNmuFzgR4yMjIQnMNtiSaYE82TAwMDNRGA9ZCFnuM4en/yL4Y5kckjRoxAJogW0JuTtocSbYnPTiaTSYewBky9Vq1a0po1TXcBZa6BgQGT5DI7Oxv2GLVq1ZJ4H7FbtVpdVFSUmZmZlJQUGRn5+++/47okfFUrhTn37NmDPTMFjBE0bdo05hQe5ubmgqpr1KhRUMnzPIg4rq6umiKh4eUlJSWAMctkMmyMXqSV7hhpT9b3AnMSQuB7pFQqMUoJUFtWVta7d2+Qt2irMVGY89ChQ2BGI8E6ZEJERAQsHXK5nMZEqwPMiUSCzfWpU6cmTpzo5OQEX08g29zcnEY6Hz16BF4m9erVK6vsh7FDGUdkaZjzt99+g90vx3F2dnYHDx5MTk6mWUeTrStXcw5gnmBhjm2kPCcnB3JG6uvrSyuO8RLpQnFxMQRTatasmfb6EQxau2HDhjNnzuAkNDAweOvgEAydQpgzLS0NggjVrl2b0RIWFBSAwGBgYEBv9YUwZ2xsLBhwaBONMD09HYKly2QyGhP9QDDnsWPHMMJHrVq1Nm3aFBcX9+bNG1ENC8Mu3WE150B5eTnsI0xMTGjlspBsCM3i6OjIePYLWxJCMASCtDCGUTRoMyzRDunKd4Q5IQSigYHBqVOnKvsAloG8UbduXdH86EgVz/PFxcVZWVnJycnPnj07fvw4hpqUgDkl4vghzOno6Ih3ES2MGDEC8nfSX3loKQ1zMm6mws47d+7McZybmxvKfoQQjLRJo4nCa6HmxIkTIIS8F5gzKSkJbEFsbW2ZlfbNmzewMhsYGNCW1qIwJybC0GabiTt6T09P3Dl+IJgTAydwHGdtbb1169b4+PiCggLdSqtpgn3MelwqLSwsJJKUYxpLb2/vSpcX9O+hw2Izg8II2xIxoplLaG9Oa2vrWWK/6dOnjx49umvXrvXr10cTSS8vLy2tyoQrHvpiaoI5P/vsMyGddM2cOXNguQgKCsL6J0+ewIZFwswOG7948QLj9NCrFuQoUSgUf/75Z6UPpX///hzH2draCg1H8EbCghDmJITAUmNoaOjv709fwvM8fPv09PRo121RmPPp06egoRIqEOg+oZySkgI2RjKZjMZEPwTM+eTJEzAXhkwxkydPjoiIyM7O1uEZwufy7jUY4xDeEY7j5s+fL9ptlWBOtC3AbqVtEeg7MjAn9oAFPT09xjcALlepVNhGtODk5ITpRURhTp7n6ditNjY2gM5iNjeO45o2bVpUVCQBc6akpDAumHZ2dujrQo+UEHLs2DGG1C+++ALVGtUB5gwJCcH3EUg1NzefLPhNmjQJbIhxOHZ2duhooQ3M+ejRI9xcYyd0wcHBwdvb+8aNG6mpqbrVgJlIukMJDnwCmLO4uBi2OhzHSftfIt08zycnJx89etTHx6d///4dO3Zs0aKFvb09fKfhTagU5gwNDQXP9yZNmmDP0oW8vDwMOV2pubGwK00wp0qlGjBgAJAtnU8U+kxKSoLGbdu2RQ0UwpzDhw8X3pqpqaio6NChA3SCSw/ThhDy559/wkLTtm1b4VlNNQhzdu7cOSsrK5f65eXlvYWCUqVS3b9/f+PGjaNGjerVq5ebm5ujo6OVlRW9CL4FzKkpH6GmcdH1ojBnUVEROHbo6+sz2hw016U3vaIwZ0lJCTwXjuO0kYDPnz8P7ekwdP9imHPv3r0w3ko9jBHmlLCKxWcaGRkJ3c6cORMrhQVIqmFubi4dWVp4IdSgFdj48ePpNufPn4fJzCA9dBtCSEFBwdWrV319fYcMGdK9e/c2bdo0aNCASQYu3KVUCnNKLGUIc65bt44hBg+FMOebN2+AmbSIhu2ZQkVFBXrzo75y165dwBDp/DTQVUpKCtzufcGcW7ZsgbszkcmfP39et25djuMYyxhRmHPz5s1AVaWeZ4SQzMxMaMxxHK1Bq24wJzCc5/m0tLRLly5hNh3gCa7taHNds2ZNSCwv8Y/uBcwaLg1zvnnzBqcNAM8NGzbs0aPHrFmzLl++jLpCZrLpDqsnByDfLcdxtD8iQ2pqaioAb5VqspgLNR2WlJSAdYidnR3uJDU1xnqEOTt06MBsX5s2baoplG5MTMwEzT9m1EKYU6VSod6cUf1fvHgRFIjMt0MIcz58+BAWGVGXUBwgFAoLC9u0aQPt6T35B4I51Wr13LlzcWMsl8vr1avXpUuXKVOm+Pv706o0hk7dYfXnQGpqKkwkMzMzIU6G9PM8D8JMq1at0K8RzwoLCIah2CBsQwjBQLhVyur6jjAnmkO5u7tLfPvgFLi6agp9UVpaGhQUtGrVqmHDhvXs2dPV1bVRo0ZMYioJmFPCTRNhTiaGhJCNbw1zjhw5UtgbXSOEOXmeh/SEHMdJpJDATlDD+F5gzoqKiuHDh8N03bdvH96FEHL69Gmo/+677+h6IcypUqlQOSshXWMnuKNv06YN7ug/EMypVqunT5+ONiV6enoODg5dunSZOnXq6dOn0QYXadMVPiYHXr16BXPMyspKImIQIpeNGzeudHkBQwSO42jlAzMojBCojfoIr0VvzgEDBmClsFBRUZGUlLRgwQKcdQcOHBA2wxpY8X799dfhw4fTKx56UHEcpwnmbN68OfYjWhCFOTH7z9KlS0Wvoiuzs7MhczDjzQnwoZ6eXrt27Sp9KBCl38LCQvrjRd+XECIKc167dg2yiqCdMVxVVlYGIlyLFi1oiw1RmPP27dsw8bSxyi0oKED4hzYF/hAwJ8/zf/31F+LKHMdZWlq2a9duxIgRO3fu1MYciuGh7lCCAxgDGSYDx3G//PKLaPsqwZwY6A67ZRSkoreASvyS4rXCQvv27YVA17vDnIQQDJ0INwXxlXZnBAkHhRCkDXNzRkVFQZ4jPCVhxnfz5k1sBgUPDw8UCaoDzHnz5k3cpjGkSh9aWlqiQlsbmLO8vBxj/Ej0rK+v36xZMx8fH222DBLTTHfqf4cDnwDmLCgoQMitUpCvtLQ0PDy8a9euNMSF74CxsXGdf36g95QGTR8+fAi2/HZ2dlo+4MzMTFBzcxzHJN/WpgdNMGdpaWmvXr1gFNp8tnmeh+G3bNkS322EOekMeRJUYRiBK1euaGrm5+cHDklViqWOMGf37t21cU3TdHdCSE5Ozq5du+i4Afis5XJ5jRo1PvvsM5DwGBU5IUQ6aK1cLtcG/dJEmyjMSQjB+Jm0cJCXlwffRUNDQ1rpIApzvn79GseoSWdKU/XkyROQ/mnx9F8Mc2IoAxrWpRmCZYQ5JYB8bJyRkQHK4uHDh0vYNUP8HyMjo7ebPBEREaAZr1GjBvoP8TwPSjG5XM7E7QTywKpj5syZtBkHThKFQmFlZYXr0lvAnBISJ8Kc27dvR14xBSHM+eLFCyDv22+/1WYFmDp1KrS/ePEidO7r68vUMDelD9VqNTR+XzAnGpBaWFjQep/Dhw9Dwj8GfBWFOTGnCA6Kppkp45LOGDdUT5gTiS8tLR09ejROS7QWP3v2LJ3TAp5Opf8NGzbEngkh0jAnBJHesWNH3bp1kQC8Ra1atWbPnh0dHS3c/NC30JWrCQdwBRA1ywUik5KSALqrVCmv5aBKS0sBN61Zsyb9mktfjjAnrjkjR47Efe/cuXNFwzHdunULJ6ewwAAwQpiTEHLlyhW40MnJiXaGAIRYX1+fcdsSwpyXL1+GHmjhRGKwHTt2hPa0Tc8HgjmBjBMnTtSvX1+YCdjCwmLixImhoaGivJUYgu5UdeBAfHw8TCRzc3M6sCdDW3p6OjTz8PDQ5n1cs2YNtJfWFGO8Ezc3N+aOEofvCHOiiQBQqM2/mZkZk5ggLS1t2bJlol9SfX19S0vLzz77DDZommBOAwMDiTEizNm9e3eJZoSQt4Y5K/WgFcKcpaWlGKQHnS0kyKuoqIAd0HuBOQkhaDnapk0btNxSq9WTJ08GxQJq64AqIcxZWlqKEaqSkpIkiIdTKP45Ozvjjv4DwZxwx7/++svBwUG40taoUeOHH354+PChbqWt9Kl9iAaxsbGwVlhbW0ukmhs6dKg2SwrT5tdff9VEM264KnW/pnvQEuaES9RqNWjAOI7r168f7n/pDtPT05cvX67NiqcJ5qzUIl8U5vT39wdeSexzkU61Wg1yIwNzMgkIGeaLHpqYmEhEEsY7YkEU5kxLS2vRogXHcWZmZoiIEEIeP34MesJp06bR+yBRmPPMmTNA4erVq/F2mgo8z+Ng7969i80+BMwJnT979qxt27ZKpZKGujmOUygUvXv3PnHihDYCA9KpK2jiwM8//8xMVE2LRpVgTtzfYecSiYcZ2rSBOTmOW716NT3JCSHvBea8c+cO0sxx3I4dO2JiYugayHIlAXNiaCu8qlWrVpoSc6C7BTZ2c3PDl7o6wJy4D0UKtSxYWFigjaM2MCch5NatW/Xq1WNeeU23a9u2bZUCgDPTTHf4v8OBTwBzlpeXY+7rSrN/z5s3Dz2m9fX1GzRo0Ldv3ylTpqxYsWLv3r0XL16Mi4s7ePCgNjDn7du3oauWLVtq+YBLSkrQjOvChQtaXoXNNMGcZWVlELaR0XHjhUyhqKgIXvVWrVohEoYwp4+PD9NeeMjzPCZskAA59u3bB3KSNoFw8S7vC+YMCwvz8PCAbTzHcaampm3atBk+fPi8efM2btz4559/3rlzJzY2FrIAVhXmNDIyopV3SLyWBU0wZ1paGmDnHTp0wI3i5cuXIcDj2LFj6f5FYc6cnBxcx1NTU+n2ouV79+5Bezob/L8Y5sSoDpMnTxZlCFYizMkoj7ABXXj9+jU8o5EjR0rAnLC9sbCwoIV7uh/pclFRESb3xej8cXFxYOVqaGhI+81gVydOnGjcuDF+7K2srDw9PceOHbt48eKtW7eeOHEiLCwsNDQUpsFbwJwSY3k7mDM5ORmIGThwIOqJcDhMged5iPDGcRxGaUaM8ObNm0x74SE6QL8vmLOiogIDDCB0Rwjp0qULBBp68uQJTYYozLl69WpggrS1DfRTVlYGjZlkltUc5iSElJWVobtw+/btYTgXL14EDVqDBg3maP3bsGEDzdVKYU5AOuPi4s6ePbto0SJPT0/Ah5CTNjY2a9asoQ2Z6f515erDAcx5JqFkSUlJgRzArq6u74Xy4uJiiL7g4ODwFt6cEMVx1apVBQUFjx49gtAg1tbWoqCLNMw5ePBgekSiMGdZWRnk8DM1NQ0ODob2GFWpTZs2jMujEOa8fv06vBo//fQTfTvRskqlAsmK8an6oDAnISQlJeXixYsrVqzo0aMH47JmaWk5a9YslHhFydZVVkMO5Ofnw8QzNTUNDw/XRGF2djY08/T0FFWCMxcuX74c2ou+cdh46dKl0Oyrr77CykoL7whzgphnaGg4YsQILT+AS5YsofPOBgQEODs7ozmvhYWFu7v76NGjFyxY8J///OfYsWP3799//PgxOApogjmtra0lRlo9Yc6Kigq0+mUELdGxFBYWwvN9XzBnaWkpfGhq1qyJ7qQlJSUg/Ht4eDAyrRDmLCsrQyyBwURFh4A7+pYtW6IC9IPCnISQ5OTkCxcuLFu2rFu3bowlsZWV1fz58+lsqaJk6yrfOwfy8vJgMltaWtJ5MZgbYZKjrl27arm8zJkzR2IzhTgEo6Ng7sscVgnmJIQgZtC6dWuE87HPq1evtmjRQnrFe/LkCShY3i/MiRZglaZSJoSUl5ejgywdtBb2jAqFYujQoVo+lEWLFtHBe5AVmgqiMKdarf7hhx9g2tCgFOJD58+fpzvEpYnOzXnx4kXowdfXl24sWq6oqGjVqhW0pzM1fDiYkxCSn58fFBS0ffv2b7/9Fq26gQaFQtG/f39tzNlFh6OrRA5g6AtgLMdxmtwJqgRzYv5s7FZiLUJioIDTGK8VLVhbWzOJzN8LzFleXg47O7jpqFGjtm3bhgTI5XKA1iRgTpQk8aqmTZtqUu2GhIRgMyi0a9cOU2hXB5gzMDAQdfIMqdKH5ubmqInVEuYkhERFRf3000+w5kv3L8x9wEwk3aGOA8CBTwBzEkLQs1AiMR7P84BfchxnaGj45ZdfatoCHT58WBuY8+rVq+B8zWwRpacCxmqQcDvQ1IMmmJPn+UGDBsE7fOLECU2XYz0mcnNzc0MjJoQ5Bw4ciC01FYqLi8HcWCaTSaiNNm7cCOBKpXkQ6Ru9F5izoqICshdAkIply5aJKj7y8vKAq1WFOY2NjT8EzFlWVgaTWU9PDxPtgEBgYGDAJNsQhTlVKhUCWrQESXOYLh89ehRmzrJly7D+XwxzBgQEwEbom2++wfGKFhDm1MYi4enTp8BGieRwhBBIfl67dm1GohIlQLQS/X27du0KQDhGN0WUiL4wKiqqdu3aQJuTk9PRo0fps1hGMas6wJyYYKZLly6M8h0JxkJ5efmQIUNggBimaffu3fCURd1b8VoooAX0+4I5waIfXsOBAwdCBFS0s6MzIgMBojDnzp07YVCrVq1iCBYeIjDMcRztwfDxYc7g4OAhQ4YMGjQIYXghtUyNn58fjNTMzAxOhYaGguKsSt9WplttYE7mkqKioitXrowePZoOaT5z5kwJwwWmB93hJ+HA+vXr4XWbMmWKJgKysrLAhFz78BuauoL6oqIiSCHcsmVLUelC9HL05lQoFLRSydfXF5asli1bCpH14uLiKM0/pr0ozEkI2bZtm+yfHyrjcFc8Y8YMZpILYc7IyEhgMhPcTHSYeXl5LVu2hPeaTvn5oWFOmpjy8vLg4OAZM2bUqVMHt9aDBw9mRkpfoitXTw6Ag46xsTGdJExIKnw1tAxa++OPP8L8lIY5wQmP4zg63onw1kwNKqc8PT2ZU9ocfv/99xzHWVhYoEWCNldhm9TUVHDQ4Tiubt26GAANG0AhKSlJGua0sbFhLqEPqyfMSQhBrag2ovv9+/dhGrwvmJMQsmHDBo7jZDIZhhNHG5GFCxcy648Q5uR5fvDgwUCVn58fzXPRMu4+XF1dcUf/oWFOmpKysrJbt25NnTrV1tYWV9oRI0YwI6Uv0ZU/EAdgqVQqlRIBw9atWweza82aNe+FjG+//RY61IRqiN6lqjAnIQQkLjs7OyZuWVpaGiJn0iseZCJ/vzDnw4cPwcp5+vTpoiOlKzMyMjB3FQ1zQmROU1PTSoPS0b1VqSwKcwJ+DKJdo0aNYAFJTEyEB2phYcEIt6Iw54MHD6D9hAkTKiUpOzsbTO44jqO91T8ozMlQ9eLFiw0bNjg6OmIsH2tra3QXYxrrDrXkACgcYCbAv4+Pj+hXoEowJ2r4sWftFWiiMKeFhYUwdCqzeVSpVHXr1rXT/OvcuTNqv0VzcwLT6NCp7du379mzJ46iadOm0Ab1b3gKZbaEhARYsvDUZ599FhMTI/pETp06hc2g0LVrVxQJqgPMGRwczASB6N69e7AWv5CQEDQm1h7mBC5VVFScOHGiV69etWvXNjMzQ1MYhldyuXz//v2ijNVV6jiAHPg0MKe3tzfMVwkh4/Xr1xiffdWqVYxBJQ6AEAL65Upzc54+fRokg++//56+XLqMdqYSbgeaetAEcxJCpkyZAhzQJp7Yn3/+CY379OmDfvoIc7Zu3VoTAVifmpoK9mjS1r4YwWDBggV4baWF9wJzhoaGwnarSZMmErJLdnY2pEusJjAnIQSjqkKWC57ngdVt2rRBQ13goSjMSQiBhGEcx509e7ZSbkNSDblcTgfS/BfDnEFBQbAh6dSpkzRzEOakjRY1XfL777+DXkNi31hWVgbf13r16r215WBqaipICXZ2dtHR0SUlJSjGiep0li1bBsuUl5cXbezPDOTRo0ewJlQHmJMQAuZXzs7OzJxnyCaEFBYWghmskZERqvv9/f1Biq006Bkh5Nq1azD29whzVlRUwGvr4OAAGzm0dz548CAzClGY89ixYxAGWRtQATOjKJVKOq/kx4c5jxw5Ar7FPXv2ZIap6fDq1avAf47jIEZxfHw8SPbvgki9BcwJFKrV6mfPni1cuBBeNENDQ2k9uKZx6eo/GgfQrEEiyVNRUdEXX3wBFmwYxkcThbm5ucePHz948KCErjA7OxuW1s6dO0vIk8wtEOYcP348HTwWQ4dxHLdo0SJtgnUzPeOhJpgzMTER0viBPyvP87gDF2rWhDBnfHw85D7s1q0b3ktTITExsUGDBhBFgx7mx4Q5gTae5xMSEn777TdYUhQKxY0bNzSRrauvnhwAmdbAwODcuXMSFAKy7uDgIBHbFi9HO0iJ5Z3neUy1yEQLwH5EC+8Ic65atQq8vc+cOSPav3TlH3/8AaKmp6enhLvPixcvwPCOMScqKysDZdx/Kcy5cuVKkCgkpHFk4O7du6Hxe4Q5o6KiYLWBAOk8z2N4DyFOL4Q5CSE+Pj5AlTbZ/tBWtXfv3hgE6GPCnMBMnufj4uLWrl0Lk0qhUAQFBSGfdYWPwwH47JqYmEhkdUXfO21AqUrJVqvVGFCNyfwtfe1bwJwwOktLy/j4eLrzgwcPworXoUMHBgGlm8XGxoJhx/uFOZ8/fw7axX79+tG3Ey1HREQgbkHDnJDXUF9f/6+//hK98N0rNcGcKpWqbdu2ELcW8umgGkq4hIrCnFFRUYBAM4wVpfnFixew6JmamtLC4ceEOYGw/Pz8kydPgkmQTCbTJk6J6Ih0lcCB48eP414eCmPHjsVPEs2lKsGc+PXEzunsXXS3wjLqx/BaFxeXsLAw1JljvZmZGeO7UlpaWqL5R09dCZgT0oLAXSwsLED9CIfjx48HgiVgzqKiIlj0kE5jY2NRXR/P8xjWCBuPGDEC95LVAeZ8+PAhiAdIYZs2bRCGED4+0ZpKYU61Wp2bm5tD/QoKCgghr1+/Dg4O3r1795gxY2AJQjKgUCWoQpQ2XeW/ngOfBubEd1vCQys0NBQ+w/b29tKPYcaMGdp4c+LuaN68edId0mcxWsjMmTPpem3KEjDnkSNH4C1t2rQpvfgKu62oqOjevTs0Xr58OTZAmFMmk4WFhWG9aOHKlSugAu7QoYNoA4gHiInuqyT7vheYEwNSoeOCKJ0pKSlgVlZ9YM74+Hg0NklJScFQ5lOmTGGsojTBnChAzJs3j7mEYUJpaSm4+pmammLAT0LIvxjmfPDgAXxlHR0dGW4whwhzVho6lef50aNHcxwnl8sPHDjA9IOHSUlJ8N45OjqmpKRgfVULYOitr6/v5+eXmpoKlqEODg6i/XzzzTccx5mYmEiA/XQ+oWoCcwIgYWhoWOlalJCQAGp92j7j1q1bIE22aNFCVMhGXvE8j+/Le4Q56eTzx44dy8jIACzTysoKhU6kQRTmvH//PgRdtLCwABEN2zMFnufRoGTo0KH02Y8Pc54/fx7MY/X19dHUkSZJWD506BC8FyYmJnD2zZs3EA6U4ziJ0FvQODg4eN4/Pya5oATMefXq1QH//C5duiSkB2rUajWGgtfG0EFTP7r6j8CBY8eOAbhOLwLMfXmeR58DOnQB0wwOr1y5AgvIt99+K9oAchfBvB0wYABtW6CpPdQjzLlx40amZXR0NIhV1tbWlU575lr6UBPMWVxcjCqqx48fR0dHA/116tQRLpJCmDMzMxNgJBMTE1o9R98ayxcuXABDEwYT/RAw5+PHjwcPHjxgwIAjR44gAUyB5/m5c+fCeOfPn8+c1R1Wcw4AHq+vr08HgRfSPGDAAI7jlEqlRCB9uKqwsBAjbUrAnGVlZYiGahMpB0l6R5jz5MmTMFd//vln7FO0wPP8mjVr5s2bt3nzZrR2hzD+BgYG0paO9+7dg8Qr/zKYE5Wtjo6O6Mogyr2ysjKwc+U47j3CnIWFhbjLjoiIwEge9vb2Qo2eKMyJtshMKmXhKFQqFYJM9HftQ8CcDx8+HDhw4IABA44fPy6kBGp4nkcNsjYYraZ+dPVvxwFIiW1gYCCR7QKjv3Ts2FE6Xg7P81u2bAEBW9OmtaioCHRTHMdJm6EwI3oLmBPQOGNjY8afCcKuKhSK06dPM3ehD0NDQ8FUi0Hj8vLyIMb+2+XmTElJgU2cvr6+pniSSMbvv/+OHs+0HHXhwgVY8yvVKPI8v3btWsi+JL03xJtCQRPMSQg5cOAAGO0tXbq0tLQU/OeUSqXQgA9lSHpblJaWBp2bmppWGq365MmTYMLL2MJ+CJhzzpw5AwYMWLBggYReNDw8HL6DzKxguKc7rJQDDx8+hDmM/0OGDBHdHKHWBVrK5XKJzjE0BTS2tbWVaMycYmDOOnXqQNCv3NxclACRWgcHhyq9UHgvCZjzwIED+L7jjaCwb98+6EEC5iSEQGwP+lovLy+hIJGfn49Kn9k35gAAIABJREFUS2xM+1MJYU5hjHFU2kMPCoWCsZMrKChwc3PD/jmOs7OzE6p6MG4ltMQ36+XLlxiyG05ZW1szizmEmD5w4MBe6vf333/jRBLCnEwQyocPH8JWGun84osvGK/0kpIShGOwmXTSMXzcusL/Mgc+DcwJrlQcxzVp0kTTrub69eugt+rfv7/EE8rIyABLq0q9OceNGwfvRpUwPIxd3qdPH4nvriiFEjBnamoq6LaMjIykkzPfv38fzNn09fUx1DUhBGFOjuPatm2riY1AGBo409sqhma1Wt27d29gkdCClWlMH74XmBMDUkmrRc6ePQtK+eoDcxJC8MO8bds29LcQ8lATzPn06VPQMDZq1AjDstMcxvL27dvhAX322We0q9+/GOaMiYkBXNDAwIAeMvIECygxWFlZSWOE169fB6ldoVBI6NcwaLaLi4v03hJpEC2cPn0adPojR4709/cHUFxTqlHQgNSrVy8hIUG0N8i1jr6G1QTm9PX1hU1Xjx49hCp4eiAAMHMcR4ccSUlJQZOx3bt3S4D9OTk5GD/n/cKcAQEBsCZ7eHgEBgZCec6cOTTxUBaFOfPy8pAwX19fiSEUFxe3bt2a4zg9Pb1r167R/X98mDM2Nhb0CBzHLVu2TIjp0uQRQtRqNQrW+GnmeR4U1hzHjR49WrjTxk7KysoGDhwIjtSnTp3CekKIBMyJUJO7u7sEhT/99BMsj0uWLKF71pWrGwdu3LgB33FDQ0PhjgupxYjf9vb20tooCHKgp6cngW2gz9CECROEe068KVPAuSeEOQkhK1asgLW9a9euCFowPVR6qAnmpGNF9O/f/7fffoPpLRrZWwhzlpeXjxgxAi4ZOnSo9JD79u3LhG0Esj8EzHn//n0wYWzQoIHEWrFr1y4gftiwYZXyUNegWnEAIsfKZDLp1F+Yk7t///4SYgPP8xjXlOM4CZgzMzPTxcUFpo02WRKRae8Ic4aHh4ORk42NDWRvwp6ZwqVLl0BS8vT0RGkfjNtq1Khx584dpj19uHbtWpAe/2UwJ26HTUxMJCyZCCGXLl2C1fL9wpyEEIwLOmTIkF9//RWmkKgRpCjMiUMwMjKS9uh98OABxD5hdvQfAua8ffs27HQaNWqEOkd6RkEZ82gItajCxrqa98uBCRMmwJdXIoWTWq0G/3hTU9MrV65IEPD06VNYIuRyuaYFMCkpCZLRchwnVFhLdP4WMCfoQ+RyeVRUFN0z2P5aWFgw/lh0G3grAXJAtTs0eEeYs6SkpF+/fvCOjx07VmKzVl5ejh8UjuNomPP58+ewabW2tn716hVDOX149epVeCht27atNNwRfaEEzJmQkAAZK5s1a5aamgrm7998841wLKIwZ2lpKWbOGj16tLRwCDHt5HL59u3bafI+BMwJSsiaNWsyaA1938TERBB3Jawk6fa6siYO5Ofnw8yEd4HjuD59+jDwElxbJZgTjZ6h2759+2oiQFiP2lS41tHREWfC3r174XOG1Orp6W3evFnYSaU1EjBnUFAQgOh4Fyj8P/beO6yK4/sfn72NKkivIlYUxY6oaESs0WjsHTWaROwlxpqoMWosIAoaI1YUFTviG0sUCyp2BUUREUWK9C7lcu/d+T2/nOczz353770ignXuHzrsTjnz2tnZmfM654yhoSFR6mqnOe/evSuUc8mSJWS9hzFOSUnx8vLigS8Wi7mqSyHNyWMHMcZEGwNCVjvNKZfLSUhLaIJhmO+//563cVuwYAGvL56enmRHLKQ5u3btyn1GcXFxZF0HrTg4OAi/TREREXCX/Pvzzz8LZzxuzTRNEfg4NGdqaioMU3Nzc00nbt68eRNUIU2aNNE0jsvLywmB91aaE76LtWrV0r6T5I2Jly9fgqhNmjTRZBzHK0L+1EJzYoyJrfrgwYM1LTJUKhXY+SKEeJ6vXJpTIpEcOHCAtMtNsCx7/vx52FebmJjwTovk5lQoFFZWVgghKyurt5p3cQtWC825dOlSwNnHx4dbOTedmJhIPj8Qxo17d9euXTDP8pgD4NRr6GxOEIB885o0aQKEpVrXQ000p1KpJPHf//zzT02jPSMjA9gRhBBPj09oTnt7ey4mJD1z5kyAV7jzcXR0hFtVs4oiTdRQoqSkxM3NDSQktlRq2yI0J7wsmt6pkpIS4vXl4OCgKRvGmBwhSUJVqG33rRdfvnwJUSwMDQ27du0Kwc00HeEDizxjY2PhkyINXbp0iRxQ8YnQnHfv3iXvpha7jStXrsCjlMlkvO36iBEj4FaLFi008dngCQHZwBn3XQct2APq6uoK6e3CwkJyBAsEXTEwMFC7CVdLc2KMiV7e2dlZ08cCrK2hC66urjzdE9Ccenp6ao/pzczMhFBLwmDvBw8eBLqlCgEeiWW3kZHR7du3yTBTm0hOTia0KPdLeuPGDfjKWFpaavFsi46OBuslZ2dnHmFJaE5h5L3s7GxAzMDAQNMnjGVZ8l5v2rRJrfD04ieCQG5uLqzutPsTZGRkwKASi8V+fn6avozx8fEwH2o5BAVjTHRGmzdvrjwO2mnO/Px8YutaZVcYLTRnZmYmICCVSkF+CwsLsnvk9kJIc2KMicOBjo6OpnC+LMuSE2JsbW15Ly+hObmuANx2mzRpghDq3LkzbypOTEyERyw8q7iwsBAU/dqf/vz58+Gtnzt3LrdFmv70ESBHG/br10+LtNevXycW+mopJSh7584drn29FpozISEB6EZN0TI0CfOeNGdhYWGnTp1guGrRGnPt99evX0+EAapDV1f3zJkz5CIvERsbC59OhBBP6f+5B63FGBM7/X79+mlak6tUKqKyr3aaMz09HWZaPT09mNKF6xB4ImppTowxma8GDRqkpQvgx4YQ4i3dCc1pYmLCe/TwZ6NGjRBCvXr1Imc9kGzkPFpebMCCggLiJMFbb5Oy3DN0aAg4LiwfJk2+0UIVNleAJUuWwPTSoUMHTRYhSqUSYpsJ9UXcqohurWHDhtzrb01XgeYkp/TxYrfAwZa6urrh4eGa2tUy470nzQnekIBn7dq1b926pVYGlmWJxQNk5tKcXBfw4cOHa3rli4uL4Yx5hJD2WGVCGciSVejpW15eTiZDsBwViURqDeBINt4Sjqxsa9WqxXs6RBKWZY8cOQJ9F57dQ2hOtSfkkUfPi1eMMX78+DEseslZyKRFohfVYiscGxsLa0tPT09SkCaqhgAZnPCUmzVrptamv/I0Z05ODnxJoUKE0F9//VV52bTQnDk5OTxpEULalXia2tVCc6alpYEmnMhPxj85W4GofEkecjYntAhmo+QuJNq3b+/n5xcWFrZixQqid+XmgYPPiMxCmtPS0vLkyZMJCQnEWqKmaU6MMdkeckV1dHQ8depUSUlJdHQ0iU7BzcCNayKkOQ0MDI4cOZKQkAArFrlcDoYa3BqsrKz+/fdfhUKh/O/3+vVrUJ+SPAzD8OY0Ah1NUAQIAh+H5sQYQ8QJmUymSd2fnZ0NqhCGYQIDA3kLO5Zlnzx5MnPmTGI0IRaLtYTAIlFonJyctBteEWhIAgJ/GRoaalKwkpy8hHaak5jUMQzz3Xff8YzdMMZpaWkjR46EV9ra2pqngObSnAghU1NTPz8/oRnO1q1biR7By8tLmIHIfOvWLWjrXf1Wq4XmJMET2rZtK2QIKioqTp06xeWxnJ2dieSQ+Ig0p0Kh4H191apsNNGcGOMjR44AR8swzJw5c4TrjHv37sErgxBq164d1ywIHKHgRTAwMOBZ2QA4ny/NiTGeN28ejMwBAwZo0nRjjMnwACQHDx5MrMDIUImNjR09ejRQ0QYGBnCsBbnLTeTl5YECFyGkRffELaIpLZfLyYofOmJmZiaUDYqvWLEC8owePZqnOIbQEIGBgYRQRAjxYgxijMmkwTtPlDgzCRk+IvmFCxdg+8Ez2yQZMMZEs889hFKpVJLTiaytrbdv386bsWGQEyu/UaNG8eaily9f2traAnnZo0ePyMhI3r6xqKho1qxZDMMQq7Hq9ebEGP/+++8APvzbokWL7Oxsbt8hrYnmlMvl5FCK9u3bX7lyhTdcy8vLicchwzC7du3iZdixYwcEYL9y5Yqw3RqiOePi4iBgAOwZDh48KBx4GGOFQnHy5EnylrVp04bHU5IQo46OjiEhITwGV6lUhoaGgvkzwzBr1qzh9V0ul8Mbp6enJwycQFjwrl27qnXsCwoKgq0vz0lCCCO98ikgQHaz2kO1r1mzBhgOPT295cuXC6NWREVFkYl61qxZwpEDnSVh3xBCam0INGFClEFqvTkxxrdv34ZRbWtrGx0drakeLde10JzCCEgjRowQTq0YY7U0p0KhIG9lo0aNTpw4wZtUMcZbtmwhhgvz58/nvbZxcXHga8INpsTtSxVoTowx0cY2bdpULWgRERHwsRCLxVo+WFxJaPrTQSAzMxN8TSwtLdUOVxD1zZs3ZB6wtLTcuHEj7/0FDh58j8h3XwvNeejQIfh2v6tf2nvSnBjjQ4cOgYRSqXTy5MlchTh0Ni0tbcyYMZDH2dk5MzOTPC8SOOTbb7/lre0xxuXl5fv37yfnwyGE3NzcSFmM8RdAcz558gQGDELIw8MD4tRx+/j48WMSVxYecTUGrYWGiO871D9+/HiuACStieZMTk6GgcowTL9+/bTv6K2srHjkikqlAgF0dHSERCbGuAo0J8aYxElq0aIFz4QFenTmzBk4AVosFvOUDKTLNFFzCLx69QqMF62srLRMlY8ePYLHhBDq3r071+kHZMvLy1u5ciWw2jY2NkJXGNIFMKZECAnNJUketYkq0JxAZyKEeERdcHAwvGVaZjyu4ps3470/zVlWVkaMy+vVqxcaGspbGsnl8oULF4KuAETleXNijElwJrFYPHHiRGFgktevX0+YMAFWsE2aNNFkv6sWba5lHg89yA+7RSKbnp4eb8sP2TTRnAqFAqIIQFy9sLAwHgIY402bNsHqFCH022+/8XZ8oLVjGEatXSlRerwTzfm///0PdFlisXjnzp28FjHGL168cHd3h0XpkiVLNEFHr1cSgX/++YcMIYSQrq6u2kBilac5Scw5qFZfX/+dFvBkQQjFud6cGGNyYg5X5vHjxwvHifbua6E5VSoVT50LbbVt25Z8l99Kc165cgXs7bhyak83btyYx03Ex8eTRRGvLNH7fQCaU6lUkneZJ4amP93c3AgRizFOTU0lm3RekQ4dOsC0s2XLFh47DspAU1PTxo0bN2zYkDcVw1iNiYnR/qDpXYrAR6M5SQAuLefuEG5GJpONGzfu1atXLMsWFRVdv379xx9/1NfXh7fCxMQE3px58+ZlZ2erPc987dq1kKdfv3487epbBwExLwoICHhrZm4G7TQnxpgs9RBC9vb2mzdvhi1uaWnpvn37SAhEhNCqVat4YhOak4TUEIlEvXv3jomJgVnjzp07/fr1I0bQ9evX1+6jScJgLl68mNuLt6arheZUKBTEVdHIyCgwMLCsrEylUiUlJR08eLBZs2bQEYlEApOdRCJ5+vQp1+PtI9KcLMsuXryYTN92dnZql7NaaE6WZcnB1wzDNG/ePDQ0FBSOsHshPISRkZFahy3YKSGE9u3bB68JlyslrxIXMXiyxKpILbfx1qf/ATJcu3YNsG3QoAFXN8RrmhAwJGCanZ3djh073rx5o1Ao7ty5s3TpUrJxYhhm9uzZvBq4fz548AD0SkZGRlo2n9wiWtJBQUFkeCCEhg0bpilzZGQkKJ0ZhmnWrNnFixeVSqVCoXj8+PGGDRvMzMxATUbs+mUyWVJSEldj8lFoTghnCid0wupkwIABRH+dkJDg5eVF5qJWrVqphXTr1q3gkogQMjQ0nDFjxsWLF8vKyioqKsLCwlq2bAkT/sCBA8Htstppzvz8fGI3gxDSdB6zJpoTY0wiksGRY4sWLYKpQKlUnjt3zs3Njehqhw0bJtxVHjt2DBAYOHBgRUUFy7LJyckEqxqiOYHqIMiLRCJHR8fg4OCkpCT46KSmpp44caJnz57kCYrFYqGJQGxsLLGClMlkXl5eT548YVm2oqLi5s2bPXr0IMW7du3KY1PgdYBjihBCvr6+KpWqrKyMKIszMzNJoC1dXd2lS5cmJSWpVCp4tfv06UMq/+233zS9XPT6p4NAeHg4TIm9e/dW654IohYVFZE48AzDdO3aNSoqSqFQsCwbExMzY8YM8sK2bdtWy16XHJ5namoqfO+0wPJWmhNjvGHDBpiaeGcXaamWe0s7zfnkyRMythFCO3bs4JYlabU0J1ilkJWVWCz+4YcfiBbj7t27ffv2JTNS165dhcikp6eD5tTNzQ0oqMTERO7LWzWaU6VSkQNjpFKpt7d3XFwcGO3Gxsb+8MMPZDoaO3Ys6SNNfC4IlJaWkiMw1JrskI5kZGSQVZlIJGrbtu3evXvBkCU5OXnixIlk8I8aNQrGqhaac8yYMbD8UOtfQhoVJgjNqa+v71LpX0hICKmKZdk5c+bAnMYwTJ06dQ4ePAgzUkpKyl9//WVgYACzhIWFBY/Ge/bsGdFn2dvbHz9+HGzYnz17tm3bNktLSwBBV1cXEJBKpYmJieQc9C+A5mRZloSNheOj/Pz8YMdaVFTk7+9PNjitWrUCNKqd5uQ6DYvFYk3np2iiOTHG+/fvJ+t8Ozs77o4+ODjYyckJBgBCSG3YHrIHnzVrllKpZFmWu9+pGs2pVCrbtGkDUslkshkzZsTHx8NM+/DhwzFjxpCZ9j2D1pAXgSbeCQHuCufq1ataynJprdq1a69duxZ4tdzc3KNHjzZo0ABGF8Mw2g9mAuc/iUSiJe6OWjGqQHMSy1Fe9PLnz5/DewS6L96MZ2VlJZzxnj9/Tma896c54eAnIoNMJps4cSLoGDHG58+fJ/tNCwsLEnqE7EcAH5ZlCf3DMIyNjc2+fftgzk9NTfXx8TEyMoKHYmZmRrbDarFVe1GLNyfGuLi4mER1QghpCg2qiebEGGdmZpIz+aRS6Y8//kjUp7du3erduzdZHHp6egoXhy9evNDV1UUIubu7y+VylmWfP39OFoeEGnknmpNlWeLZLxaLv/nmm6tXr5aWlrIsm5qaunnzZhIIxNraWguXrxZPelGIQF5eHjxE8uVSO3uQcQ7ZtJzN2a1bN1IVQsjJyUmTTb9QGO4RYFAJj+ZkWZZXP5z+c+7cObW1abqohebEGHPVuaQvP/74I6ntrTQny7J//vknKVuZxL59+0j9kMjMzOSyANxKPDw8IM8HoDnB54roV7liqE1bWVnx7C3y8/OJlw6viJubG0wsLMuq9Qrl5ef+6e/vz6NFeADSPykCGOOPRnMSyqd169bCzyc8G4VCMXr0aLLLBfae7BMQQmZmZsuWLXv27BlZhSCEhAcvlZaWEv2pJiWRltFAzoPs0qXLO71Ub6U5McYhISFw6AK8vSKRqFatWmRtgRCytrYOCAgQQkRozr/++isgIACUXFCJjo4O0f3BlW7duvH21bz+FhYWEl3Du/quVQvNiTG+cuUK12CZYRjuGk4sFrdv3z4sLIyc7QddI+eVfkSaE2N86dIlMlCHDh3Ks0kHtMmY54Wcgrssy65YsYLrqCcWi4lmBIzXmjdvHh4ernYQTps2DQBBCBkYGEgkkp9//pk85c+a5lQoFEBrGRkZkeD4pGskQT7Dz58/nz59OiECRSIRdyABhTZlyhTtrH9QUBDs/8eNG0eaqHIiPz+fWGOIRCIuK8mrk2XZrVu3cic0yX8/8nBlMtmAAQPu378Pvo/kOvGB/lg0J8b41atXI0aM4FpdyWQyLvhisbhPnz6a5qLy8vLVq1eTiQi6JpVKiSJGIpEMHTr02bNnMN1VO82JMYYzY8ClUq3xO8ZYC80J85irqyuZwxmG0dfXJ11ACOnp6c2fP184pWOM79y5Q84olUgkurq6NjY2RIyaoznLy8vXrl1LfG3JoNLR0SHGvHCRYZi2bdsePnyYN27hz1u3brVv3570HT7Z3L5LJJLhw4drsqggrswIIX19falUOnToUKgZoieRAKFkbJBZF2bIn376iWveoVZIevFTQKCiogLedAcHB+3b4JcvX/bv3587jUgkEu4Kh2GYb7/9VovKQ6VSEffBd2XBK0NzZmZmksjP69evV/tqa8FcO81ZXFxMGEGZTEb0ULwKNdGcGONHjx717NmT+xrq6upyAZRIJGPGjOGq1EnlBQUF5MMKUxlCiKserRrNiTG+fv06z2haLBZzpYLHyjNwJoLRxKeMAMuyJMri0KFD1S5Zifz37t0jBxOQrwx3FdGkSZODBw9u27YNviyaaM7c3Fz4etauXftdQ+8QmpN8+yqT4AW9KC4unjt3LgkTCp8kng7Ryclp//79vCmCZdlDhw6RuDvA1HLfBalU6unpGRkZSSgrEA+iqH0BNCfYya1fv567/GMYxtDQkLuc6N+/f0JCAvS9b9++PBjJiNKUgJm2efPmau1Qc3NziUWIkZERWVHzatNCc4JTL7HHgudYq1Yt7irF2tra399freRca0gdHR2ZTNapUycSnqdqNCdsTkm/ADrengJO21KLCa/v9M9qR4Bl2blz58JzGTt2rPapMjAwkPh0wvSir6/PfUFsbGyWLFlCxoxQ2uzsbHAzsrOzEzocC/Nzr1SB5gwODoZ5rGnTplw/dZZlDx8+XJkZj7dIgBmvWmhOjPGFCxdatWrFVSrytGdNmzY9ePAgvHoSiUQIbGlp6YIFC7TP+Y0bN96zZ4/aV54LrzCtnebEGBPFjlgs1qRV0EJzYoxjYmI8PT21LA6lUun48eO5vllEzqysLOKkJRKJAARCOFWN5oTgZMOHD+eKxDCMrq4u9zE1adKEup6TB/E+ifLych5xqDYUcCVpzuzsbKLBgDlt5MiRhPmujJzavTkxxvfu3SNeH9AEcPzEHLwyrWinOYlnBakfIXTw4EFS81tpTsjp5+cnFJVbJ6QdHR33798vnPlZlvXz8+OuhEnZD0xzYoyfPHkydOhQ7jacCEMSDMO4uLhcvHhR2JcdO3aoLUtoTozx06dPv/vuO+66l9TMS0il0nnz5pHHQRMUAS0IfDSas7i4GIz0GYbRwquVlpbu2bOHy37BcJfJZMOGDUtJSVEqlRUVFeQAS7U0561bt2DmtbGxUcs/aQEILJ6AiRSJRNqt7Xj1gObLzs6OmM/zMmCMWZbNysqaPXs2YWXI+yyVSgcPHgw+K8KChOZcu3Yty7KJiYmjR48WziNmZmZ+fn5avCWg5sOHD0O7devWfadvEgTSBHg9PT21uFMIu8C7wrJsTk7OhAkTuKt2kMrKysrX17ewsBBjnJiYSHyGGIYhZ7tqpzkNDQ01nU3FE0Ptn1FRUfCAuIE6uTkrKioI7bR9+3buLZJ+/PgxWKKppTkxxkqlMjk5+fvvv+fuigEBfX39BQsWqF1rQv1lZWVEHQlFKklzurq6Qn5N3AOR/yMmNm/eDEJq+bZB9yUSSUlJiUKhuHLlCk8lBDW0aNEiMjLyrQMVVn56enpaiNV3AoQbPEq4COBWpVKp7t+/T1TbIDb827Rp0/DwcJjErl+/TkhxhmEIVaCJ5gwICIBKtFiVVjloLZFfLpdHRESQzQ9XeBsbm5CQEF6sWlIQEiqV6vHjx7169eJuaaASBweHkJAQ2GdWmeaEQ1LVns0JAoSEhMD+qkePHpoeU5cuXUDFwFX3cztSWFi4YcMGQmwTEBiGcXd3j4uL0zT8lEol2bhCqUrSnCdOnIDJX62rN1c2TWmWZRMSEsaOHSucfIj8tra2Bw4cEAYO5dZZUFCwcuVKYd8RQg0aNLh69aqWT3B5eTnP6I/QnPCtzM3NnThxIpGHm+jcufP169e1VM4VkqY/BQTAELUyB2yUl5eHhIQQhyfuczc3Nz9y5Ij2WaWwsBAURiYmJm9dC/GQIacM7t27l3eL++fjx49hO9q4cWNNTCQ3PzcNKwcnJye1BVmWJQFFRo4cyS3ITcPZCsLDNSFPWVlZSEgIl0IgGDZp0uTixYuaXhwwuyGZIcGd9zTRnElJSbDaEZ7NCSKxLPvmzZulS5eq3cY3adIkLCyMBIni9pSmPwsE4uPjYbTo6OhoMmzijoTVq1cLw3zp6+tPnToVCKfAwEDtNOemTZugRXd3d01fWE3QVQvNiTGuqKiIjo7mfcXI6zN37tzc3Fy16wpwhenTpw/JTBJ16tQJDg6Gd+HRo0fk28owDI/mdHBw0NRBjHF2djbMAN99952WbBhjEj1V6IgDlkbdu3fnTqQvXrwAabWHSMEYQ1T/Ll26qLVGUqlUjx496t69u3APWL9+/f3795eVlaWlpUFbEydO1N4L4V2giDTRnCzLkkMuNUWsxRiD/1PdunXJSV3chmBHP2fOHLU7+kGDBmna0cPgIeeLQx8rSXOSoxB4Z3OCYCzLFhcXL1y4UK0C0cXF5fTp09o/oNwO0nS1I0CU5kZGRjw/GF5bKpUqNTV12LBhaj+aPXr0SEhI0E6nER+jAQMGvBMxgDG+du0ahBqqvO1vbGwszFcMw/CO8oEZjzfgYdjzZjxCnJAZr6SkBM5p69SpEw8i3p/kyBtN4Q3z8vIWLFggfDWkUukvv/ySk5NTXFwMCsA6derwKoc/IdgScaWALpB/p0+fnp2drXbOV1sb9yLsNIUhf0meuLg4MKNp06aNpia8vLxAGE3n2JWWlgYHBwu1rAihZs2aXbt2TUjuggAsy5JvLunv2bNn4a4WmjM+Ph6eqfBsTigrl8vDw8PVrldNTU3XrVundqIjsNDEOyGwZs0a8vjAOZJrkQBVLVu2jJtHV1dXbRORkZG8D9/p06fV5tR0cdSoUdyGmjZtyrN0VCgUZEiTnGKxWPsik9fc1atXeSqmixcvkjwqlYrraQCtcIdcfHw8T08SFBREipOEUqlMSkrq16+fcD1gX0iXAAAgAElEQVQDdYrF4rFjx/I6SIqDTvj06dNCn05Ccy5atIiAADb0PPOskpIS3nLU3t5e+HxJVEiorX///lwxIC2Xy0+fPs214uI2LRKJli9frsl7RKlUXrlyxcXFhVsEzl/gfrDKy8tDQ0O1cMMMw7Rq1erixYvvylMIu0OvfCUIfDSaE2N84MABGPFubm7aF9l5eXmXLl3avXv3unXrtm3bdvLkSd7pXCzLxsXFXbp0KTo6WljVsmXLGIaRSCRqnfEr86QJQzBs2DBNn/zK1KMlT35+/pkzZ7Zv375mzZq///772LFjvNmKV5ZLc5JbaWlpJ0+e/Pvvv9euXbtz586zZ8+q3UyS/JAAr1mEkEwmi4iI4N39wH/CqathYWEBAQG+vr579+4VasbLyspu37596dIlQu18YCFrurnU1NTQ0NAtW7asW7du+/btZ8+eBYpXe7u5ublHjhzZsGHDli1bwsPD1R4rqL2GT/YuOcjWysqKFzdGu8z379/fv3//+vXrN2/efOjQIeIYp73UzZs3YV3i4eEhXBBoL1tdd1Uq1d27d+GBbtq06eDBg4TRJ01kZWVFRkZGRUW9EyakeI0mHj9+HBISsnHjRl9f36CgoJs3b77TpjopKen48eNbt25dt27d7t27r169+q6KyxrtXWUqLysri4yM3LNnz/r16/39/UNCQuLj4zXtRbkV3rp1659//vHx8dm/f39MTMwH7nhycvLhw4eXLl06bdq0KVOm/PLLL2vWrAkODr5y5YqmJSxXeEiXlJRcvHhxz549Pj4+AQEB4eHhcXFxwk+zsGBxcXFYWNjGjRsDAgJOnjwp3ACwLJuenh4ZGbljxw4fH5+goKB///03Li6uMsAKm6NXPiICN27cgM2kg4NDZRYqLMveuXNn//79mzZt8vX1DQ0NjY2N5WrbNfXl+PHjzH+/adOmacrzNVxnWfbevXvBwcEbNmzw8/MLDg5+8OABd5OpCYTY2NidO3euWbNmz549N2/e1MSJaiqu5TrLstnZ2Tdu3AgKClq3bt2uXbvOnDnz8OHDykilpVp661NAAIK4wknMlZGnuLj4/Pnzu3fv9vHx2bx5c1hYGG+jp6WSwsJCUDTr6el9dD8PlmXj4+MPHz68ZcsWHx+fAwcO3Lx5k6sm09QRlUr14MGD48ePb9y40c/Pb//+/UK31Pz8/KioqKtXr6p1v9ZU82d0naAXEBCwbt26ffv2Xb16ley7N27cCHqDZcuWfcqd4u3ojx49mpKS8tZVikKhuHDhgr+//8aNGw8fPpyYmPjWIpUEAfjXqKgoWJHCTPvo0aPqqr+SYtBsahGAeMUikUjtMYfCImlpaaGhodu2bYOP5uXLl9XaSPEKZmdnA0mvr69PAsDy8nzgP1UqVXR0tPYZr6CgoKZnvIKCgvDw8MDAwPXr1wcGBp45c4asSB88eAAGW507d9YCDtiJHjlyBOb8/fv337hx4zOaolUq1Z07d/bt2+fr6wufHnIAlpZeY4wfPny4Y8eOtWvXBgUF3bp1qxoXhyUlJQ8fPjx69KiPj8/ff/994sSJ27dvf8rm+NqB+mTvPnnyhOs7C0dfVU3alStXculDZ2dnSkeBG1JQUNCyZctmzJjx448/zpo1a8WKFSEhIZVf3yYlJd29e/fSpUuRkZG3b99OTEys2gN6/1IKheLmzZsbN25cuHDhlClTfv311zVr1oSFhVVGRw0h3+7du0c6otasB4wFg4KCFi5cOHXq1NmzZ8+aNev333/fvXv33bt36Yh6/4f4VdXwMWnOiooKiEdhYGCg/fiW93kkSqUSjOWbNm1aZVZMLpfD6tDOzk54uuH7iFflsmppzqrVlpeXB6ZVPXr0+MAq9aoJTEt9bQioVCpilbl8+fIa7T7LsuRYqSNHjtRoW7RyisCnjABVgX3KT+dzl02pVBKL7yqcJlDJ7qtUKrA/lclkN27cqGQpmo0iQBF4TwSysrIgELqbm9s7GTlVod179+6BzcTo0aOrUJwW+bgIFBYW5ufnaw8UgTFWKBTE7aDmPhkfFwra+leIQHJyMpw+6+7uXnPdP3fuHEQWnTx5cs218lnUXFpamp+fXxnVfFBQEHhuaQrl9Vn0lwpJEdCEAMuykyZN4rrZDRo0qGp0dcuWLUk9IpHo+PHjmhr9aq9TpcpX++hpxz8KAh+T5sQYR0REgIf7nDlzaqj/xPZz6dKl7zO/BAUFyWQyhmF8fX1rSNR3qra6aE5yiDrDMGr97t9JKpqZIlBDCKSmpkJYFQcHh/T09BpqBWN8//59iJng7u5OfUpqDmdaM0WAIvCVI5CYmAiRKj09PWvITDs0NBQ23oMGDaLz+Vc+3mj3PyQCSqUSAlOLRKILFy7UXNNET1erVq2PHpCm5rr5pdb88uVLcAGpW7eu9rU9ObxcKpVqOQvmSwWK9utLRUChUMDRSyKRqLrOSeFhxbLsiBEjEEJmZmb37t3j3f2q/iwpKYEzs8RisfbDjIgpnkgkOnTo0FeFEu3s14NAbm4uOQsMIWRpaVkFf8GzZ88SjhMh1K5dOy3HbH092NKeUgQoAh8RgY9Mc5aVlQ0aNAghZGRk9OrVq2oH4vnz53Xq1EEINW3alMSgqForeXl5cIqhqalp5T3Nq9ZWZUpVF815+/ZtONTN1dW1MvHfKiMbzUMRqAkEgoODxf/9/P39a6J+qHPKlCkMw9SuXVv7/qfmBKA1UwQoAhSBrwSB5cuXi0QiXV1dcqhPNXa8uLi4R48eCCF7e/vc3NxqrJlWRRGgCLwVgZcvX4Ilq7W1dc2F1j9//jwcVjd48OCqeSG8tSM0Q80hoFQq4dB0qVQaGBioqSGVStW3b18gRAcNGqQpG71OEfgcEUhMTARXyzp16lT+eIjK9/TUqVNwAuWkSZO+8rh/LMtOmTIFKJlOnTppUnyxLPvHH39APE9HR0dqV1H5wUZzfl4IsCw7e/ZsLkk5a9asd+pCaWkpHGFLKvHz83sfz6J3ap1mpghQBCgCahH4yDQnxjgmJgYipnbu3PmtIWvU9kHLxUWLFolEIlNT0+vXr2vJVslbUVFRxsbGCKERI0ZU5pixSlZbtWzVQnOWl5cPHz4clICfAndbNShoqa8EgaKion79+iGE6tatW5mDjqoAS1RUFLD+M2fO/Mq3glVAjxahCFAEKALvhEBqamrz5s3BFq3aiZADBw5IJBKpVLpt27Z3kopmpghQBKoFgZMnTwLTuWrVqppwp87Ly+vYsSNCqGHDhjW0LKwWHGglWhDYvXu3gYEBQkhPT2/Dhg0JCQncKMe5ubkXLlxwc3MDFaqVlVVsbKyW2ugtisDniMDhw4f19PQYhtmwYUP1MgQZGRlNmzaFVRa198IYR0dHw2lWIpFo5MiRDx484DpClJaWxsTEzJkzB4hhhmGWLl1aEx+vz3GUUpm/SATi4+O5Dp0SiSQmJqbyPd2/fz/EdoZvdOfOnT+6krzywtOcFAGKwJeKwMenOTHGhw4dAiet4ODgagQ6Li6uVq1aCKFZs2ZV15GTfn5+IpGoVq1aly5dqkZRq1BVtdCcFy9e1NPTE4vFAQEBVZCBFqEIfGAEHj58CDTkkCFDqn3XkZOTQ7aCNWFO+4Gxos1RBCgCFIFPH4Hr16+DOmn+/PnVqN1LTk6G8OPdunWrdhO6Tx9VKiFF4FNAQKVSTZgwAazTakLDDueJGBgYnDhx4lPoL5WhCgiUl5dPnToVNKRisdjBwaFjx46DBg0aPXp0t27dnJ2djYyM4C7DMPv27eOSoFVojhahCHyCCFRUVIwaNQohVL9+fU0uhlUT28/PTyKRGBsbX758uWo1fHmlIiIiTExMEEIMw1hYWLRq1apv376jRo369ttvW7dubWVlJRKJ4O60adNq6EiFLw9V2qPPF4HTp0+D7zJ8aseNG1dJW3+VStW9e3cohRCytbWNi4v7fHGgklMEKAJfDAKfBM1ZVlY2atQoc3PzAQMGVBeyKpXqu+++Mzc3b9GiRTW6CGRnZ3fv3t3c3Hz8+PHVJWrV6nl/mlOpVLq5uZmbm3/zzTd0DVe1p0BLfXgEtm3bZmVl5eDgUO1BZQ8fPmxtbe3o6Hjnzp0P3y/aIkWAIkAR+DoR+P333y0sLNq2bZuUlFQtCLAs+9tvv5mbmzs5OWVkZFRLnbQSigBFoAoIPH782MHBwdzcfPHixVUorqWIUqls3bq1ubn56NGjqfeAFqA+/VtyuXzFihX169eHsLREZ0oSMpnM1dU1PDz80+8LlZAiUDUEHj58aGdnZ25uvmzZsqrVICylUChcXFzMzc2nTZtWSd5CWMmXd0WlUp06dapVq1YQK5jMMyQB9hbLli0rLS398rpPe0QRECIwffp0YPcRQlZWVpVkKyMiIkgphmHWr19f7U4IQlHpFYoARYAi8FYEPgmaE2OckZERHR39+PHjt0pcyQwsyz558iQ6Ojo1NbWSRSqZLTk5OTo6+smTJ5XMX0PZsrOzf/nll5kzZ169erVqTahUqocPH0ZHR1MlYNUApKU+CgJyufzRo0cxMTHV7nCZlZUVExMTHx9fXc7fHwUf2ihFgCJAEfi8ECgqKnr48OGjR4+qUaOUlJQUHR394sWLzwsKKi1F4MtD4OnTp9HR0fHx8dXbNZVKFRMTEx0dnZOTU70109o+PAIqlerFixfHjh1bunTpwIEDGzVqZGtr26JFi549ey5cuPDSpUuZmZkfXiraIkXgQyIQFxdXvVMlmSSr0eL/QwJSo23l5uZGRET4+vqOHz++devWtra2Tk5OXbp0GTdu3OHDh589e0YJmxrFn1b+SSHw+vXr9evXr/6/36tXryoj3oULF/6vxOqAgIDq9USvjAA0D0WAIkARUIvAp0JzqhWOXqQIUAQoAhQBigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUAQoAkIEKM0pxIReoQhQBCgCFAGKAEWAIkARoAhQBCgCFAGKAEWAIkARoAhQBCgCFAGKAEWAIkARoAhQBD5pBCjN+Uk/HiocRYAiQBGgCFAEKAIUAYoARYAiQBGgCFAEKAIUAYoARYAiQBGgCFAEKAIUAYoARYAiIESA0pxCTOgVigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUAQoAh8UgcLCwoyMjA/aJG2MIvCZI0Bpzs/8AVLxKQIUAYoARYAiQBGgCFAEKAIUAYoARYAiQBGgCFAEKAIUAYoARYAiQBH4DBHIy8u7evXq5s2bx40bV7duXYRQly5dPvF+5OXlHTt27ADnFxcXVxmZk5KSQkJCHj16VJnMNA9FoJIIUJqzkkDRbBQBigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUAQoAhQBigBFgCJAEaAIUASqDYGTJ0926dLF3Nwc/d9v0aJF1VZ7zVR0//59MzOz/5P3//+/VatWycnJb23twIEDEolk7NixLMu+NTPNQBGoJAKU5qwkUDQbRYAiQBGgCFQzAkqlUqFQfM3Lmi8SAeiUQvBTKpUqlaqaxxCtjiLwySCgUqkUCsXXPMgpAp/MYKSCUATUI0BfUoqA+pFBr1IEviwEWJZV/vf7srr1Dr0hCHzNG+13wItmpQh8SghER0cDayiVSk+cOPEpiaZGFqA5xWJxnz59Bg4caGJighCaM2fOWzfFQHOOHj2aTlNqYKWXqooApTmrihwt9zkj8ObNm0ePHp0/fz4mJqaoqOhz7gqVnSLwGSOwZs0aLy+vyMjIz7gP7ye6j4+Pl5fXxYsX36+aT6v0ihUrvNT9xo8f//PPPy9YsCAwMPDJkydvXfh+Wr2i0lAE3obAzp07vby8QkJC3pbxi72/Z88eLy+v4ODgL7aHtGMUgc8cgS1btnh5eZ08efIz70fVxd+2bZuXl9exY8eqXgUtSRGgCHzyCCQnJ0+dOnXmzJmZmZmfvLA1ImBaWtqMGTOmT5+elpZWIw3QSikCFIEaQ+DOnTtAc1paWj58+LDG2qmeioHmbNiwYXJyskqlCgoKEovFUqn077//1s5fUpqzeh4AreX/RYDSnP8vHvSvTwMBpVJZUVGhVCqrVxyWZTMzM7/99lupVEp86kUiUYcOHZ4/f659Cq5eSWhtFIFPCgF44z487dSjRw+E0O7duz8pND6kMN9++y1CaNu2bR+y0Zpuy93dHSZY5v/9kVkXEuPGjSsuLq5pYWj9FAG1CLAsW1FRoVAo1N6t2sUff/wRITR//vyqFf8CSk2ZMgUhNHv27C+gL7QLFIGPjkDFf7/qFWPUqFEIoVWrVlVvtZ9RbePGjUMILV269DOSmYpKEfiyEaiJJVlMTIy5ubm9vX1iYuKXjZ6m3j158sTW1tba2vrJkyea8tDrFAGKQJURqIlFGhHGz88PFCZOTk4lJSXkenUlWJZVve1X+bZI0NolS5aAUn3JkiUMw5iZmd26dUtLPZTm1AIOvVVlBCjNWWXoaMEaRGDr1q0uLi4rV66s3ja2b9/u4OCAEJLJZM7Ozh4eHk2bNgXK09raev369ZTprF7AaW2fCwL+/v4uLi5r1679wAJTmvMLpjnbtGmzifPz8fH5888/f/311379+llaWsLCvXHjxvfu3fvAo442RxHAGL969crFxaVLly7ViAalOSnNWY3DiVb1lSOQl5fXsmXL9u3bv3nzphqhoDQnpTmrcTjRqigC1YLA06dPXVxcPDw8qqU2qITSnJTmrMbhRKuiCPAQyMvLa926dfv27WsiNKBCoRgwYABoSyZPnsxr+n3+zMnJOXXq1OrVq+fMmfPTTz/9qPn3008/Vd6LlNCcEolkz549LMvm5OR4eHgghDp37lxQUKBJZkpzakKGXn8fBCjN+T7o0bI1hcDy5csRQl5eXtXYwL179xiGQQiZmZlFRUXBKXEKheLo0aMymQwhxDDM+fPnq7FFWhVF4HNBYPHixQihSZMmfWCBKc35BdOcY8eOVTucVCpVSUnJkCFDYO3esmXLvLw8tTnpRYpAzSHw7NkzhJBYLK7GJijNSWnOahxOtKqvHIGsrCyxWMwwjBb1UBUgojQnpTmrMGxoEYpAjSLw4MGDal+SUZqT0pw1Omhp5V85AtnZ2VKplGGY3NzcaociPT3d2dkZVCX//vtvddW/b98+U1NTkUgENWv/VyQShYeHV7JpQnMihOzs7OLi4jDGiYmJOjo6CKGBAwdqChpHac5KIkyzvRMClOZ8J7ho5g+EQLXTnPn5+d26dUMI1atXD6Zdbk8ePHhgbW2NEBoyZEhFRQX3Fk1TBL4GBCjN+bGe8ldIcwLULMuuXLkSnOkXLVr0sfCn7X61CFCasyYePaU5awJVWufXiQClOWvouVOas4aApdVSBKqMAKU5qwydloKU5tQCDr1FEXhPBGqU5rx7927t2rURQiYmJmVlZe8pKsb45cuX3333HY/XFIlEUqlUpuGno6Nz+vTpSjYNNKe5uXm9evUQQt27dwcTvWPHjhkbG+vq6gYGBqqtitKcamGhF98TAUpzvieAtHiNIFDtNOfDhw8tLS1FItGuXbuEErMsO2PGDIRQ8+bNqzc2lLAteoUi8AkiQGnOj/VQvlqaE2NcUVHh5uaGEJJIJKmpqR/rEdB2v04EKM1ZE8+d0pw1gSqt8+tEgNKcNfTcKc1ZQ8DSaikCVUaA0pxVhk5LQUpzagGH3qIIvCcCNUpz7t69GyjJ77///j3lxBinpaXZ2NhAXEOEkEgk+vnnn2/fvp2dnV2g9adQKCrZOtCcLi4uUVFRBgYGCKEJEyYolUqFQjF16lSEkLGxcXJysrA2SnMKMaFX3h8BSnO+P4ZVrCEtLW39+vWenp4NGzY0MjKqX7/+N99888cff/BCYCuVSh8fH29vb02Hh9+9e9fb23vjxo1cOQICAry9vc+fP19RUXHhwoXp06e3aNHCzMzM2tq6ZcuWU6dOvXr1qtBz/Pr161OmTAkICFAoFE+fPv3zzz/d3d2trKxMTU0bNWo0fPjwkJAQTZMdy7L//vvvpEmTmjdvbm5ubmZm5uTkNHr06CNHjgj9I3///Xdvb+/U1NSHDx/OmzevTZs21tbWJ0+exBgfOHDA29u7Xbt2CKHGjRt7//e7fPkyt3dVSF+6dEkmk1lZWcXExKgtvmnTJoZhTExMqjc2lNq26MWPgoBSqbx169b06dM7dOhgZ2dnZmbWvHnzgQMHBgUFZWRkcEWSy+Vz5szx9vaWy+Xc6yS9d+9eb29vnn3TkiVLvL29nz9/XlxcvGfPnoEDB9avX7927doODg4eHh6rV69WS+SsW7fO29s7MjJSLpefOXNm8uTJzZs3NzU1tbGxadOmzcyZM2/evKn2yFiVSnXmzJkffvihWbNmZv/9nJycxowZc+zYMeFLmp6ePmfOnMWLFxcVFYWGho4YMaJx48Zdu3bFGO/bt8/b27tNmzYIoaZNm8Ibd+3aNdLZ90yoVKqTJ0+OGTOmcePGpqam1tbWbm5uixcvvnPnDsZYU9DalJSUlStXuru729raGhsbOzo69uvX759//lEb3RSQT0xMLC4u3r179/fff0+Q79at2+rVq9PS0jT1ory8/J9//undu7ejo6ORkZGdnV3Xrl1Xrlz54sULbhGWZffv308m1V27dnl6etrb25uYmLRv337ChAnBwcGaTO1UKtWpU6e8vLycnJxMTU2trKzat2+/cOHCW7dusSyrluYsKioKDg4eNGgQDAY7Ozs3N7cpU6ZcunSJK9Vb0+Xl5UePHh09enSTJk1MTU0tLCyaNWs2adKkM2fOKJVKbvHy8nIY8+Xl5Q8ePJg9e7aLi4uZmVn9+vX79u27ZMmSmJgYteOQWwlJu7u7I4Q0Ba0l2TDGT58+NTQ0RAitX7+ee52mqwuB9PR0Hx+f7t27N2rUqFatWvXr1+/SpcuyZct4n0KVSrVx40Zvb+9Hjx6pbfr+/fve3t4bNmwgw+D+/fvTp0/38fEpKyt7/vz5X3/91aVLFxsbGxMTk4YNGw4ePHjfvn3CuQhjvHjxYm9v75cvXxYXF+/cubN///716tWrXbt23bp1PT0916xZk56erlYGsEX97bff3Nzc7OzsjIyMHB0du3fv7uvrm52dzSty9OhRb2/vU6dOlZSUBAQEfPPNNw4ODhCX+9mzZ1OmTIHIjQzDwKS3Zs2a0tJSXiXCP1mWvXz5sre3d/PmzS3++7Vq1WrGjBmw3NIStPbRo0fz5893dXW1srIyMTFp0KDB8OHDDxw4IDzQJSMj45dffpk/f35WVlZ2dnZAQED37t3r1KljbGxcr169Pn36bNmyRYs9VlZW1rp167755ht7e3sjI6O6dev27t3b398/JyeH2x2lUvnXX395e3snJCTk5OT4+fm5u7tbW1tbWlp26dIFoCPPmluQZdmrV69OnTrVxcUFEGjZsuW0adPOnTsnl8vV0pylpaXh4eFjx45t3bq1hYWFtbV1mzZtvLy8Tp06pWna5LbITRcWFgYGBg4cOLBBgwYmJiZQ1axZs6Kionhr2szMzJkzZ86ZM6eiouLKlSsTJ06Eb1CTJk0GDRq0atWqxMREbs1a0iqV6tdff/X29s7NzT1//vzEiROdnZ3btGmj9puupR56Sy0CRUVFBw8eHDx4sIuLi6mpqZ2dXfv27SdPnhwREcHLHxkZOXXq1B07dqgdmQUFBcuWLZs7d+6rV6+goEKhWLRokbe396tXr4qKirZv396vX7969eoZGxvXrVu3e/fu69evz8rK4rWCMYZX49atW+Xl5WFhYZMmTXJ2djY1NbW1tXV1dZ07d+69e/fUyoAxzs7O3rhxY58+fRwdHWvXrm1ra+vm5rZgwQK139CgoCBvb++LFy/m5+f7+vp27ty5Tp06s2fPzszMnDJlyoQJE5j/fhMnToRpSsvcyO0Fy7Lnz5+fNGlS06ZNzczMLC0t27ZtO2fOnCtXriiVSk1Ba/Py8nx9fT08POrUqVOrVi0HB4cePXr4+fnxVsjQ0PLly729vWNjY0tKSg4ePDhy5MhGjRqZmJjY29u7u7v//vvvCQkJXJG4ablcHhQURJZqNjY2nTp1WrJkSWxsLDcbxvjff/+dMmXK/v37VSrVoUOH+vXrV7duXRMTkzZt2owZM2bbtm35+fm8IvAny7IRERE//fSTs7Ozubm5hYVFmzZtZs2adfHiRYVCoZbmfPPmzYkTJ0aOHNmyZUtzc3MbG5t27dpNmDDhzJkzaj9katvFGFd+cV5RUfHLL794e3uXlZU9ffp00aJFrVu3NjMzc3Bw6NWr16+//qpp/a+26WXLlnl7e6ekpDx58mThwoVt27a1srIKCQlRm5le/FgIvHz5cuXKlR4eHvXr1zc2Nm7YsCEse3iBppRKJTxQTfuXq1event7//PPP6Qjly5dgissy8bGxi5fvrxjx46WlpZmZmaNGzceNWrUkSNHeCt/jHFhYeH8+fNnzZr1+vXrgoKCrVu39urVq27durDz6tWr18aNG7UoRh4/fvzrr7+2bdvWxsbGyMioXr16vXv31rREgc1aenr6nTt3Zs6c2bJlS0dHxytXrjx48GDKlCnDhg2D84Ngrtu6dWsl37uysrLAwMA+ffrUq1cPJq5u3br5+PikpKRoClrLsuzt27dnzZrVunVrS0tLUHONHTv2+PHjJSUlBFJIxMfHz5o1a8WKFYWFhSkpKT4+Pl27drWzs6tdu3aDBg0GDBiwc+dOLaK+evVqxYoVnTp1IvvZ/v37BwYG8vazCoVi/vz53t7eeXl5qampf/31l5ubm6WlpY2NjYeHBywyNX10Kioqdu7c2bdv33r16hkZGdWpU8fDw2PdunVJSUmaaM7Xr18LtwbLly/nbQ14UAj/zMnJ8ff3h6bhe9e+fftff93VUdgAACAASURBVP31wYMHPGmfPn06ffr0P//8U6FQnD17dvTo0Q0aNDA1NW3WrNnQoUPXrVuXkpIirF/tldzc3Llz586bN6+goODUqVOjR492cnJyd3cvLy9Xm59efE8EiouLQ0JChgwZwl2k/fzzz8JF2rVr16ZOnRoYGMhbkIMAhYWFy5Ytmz17dlJSEhFJqHzu1KnTW5XPZWVlCxYsmDp1akpKSlFR0bZt27799ltHR0eYuHr06OHr68vb9ZAWMcbx8fELFy5s166dra0tTFy9evXy9/cXznWg8btw4UJBQcGGDRtgkTZr1qysrCxYpIlEIoZhfvjhB5i4Xr9+zW3ofdLDhw+HKTEgIABjXFRU1LNnz/bt27fj/Dp16iTcRQobLSoq+v7774E0FYvFgwcPjo6OFmZ7zyuE5szIyAgODjY0NKxVq9bBgwcxxnl5eV26dEEINWvWTPimU5rzPZGnxdUiQGlOtbDU+MXMzExHR0exWCz0HK9duzaXYygvL4fA3OfOnVMrFth6dO/enXu3T58+oDhevXp1rVq1eK0ghExNTffv388tgjHeuXOnSCTq3bv3mTNnbG1ticUHKa6jozNx4kThEpBl2dWrV4PhBskMCR0dHW9vb572UF9fHyF0/vx5JycnyMYwzN69ezHGI0eO5NWAENq8eTNP1Hf9c9++fQih+vXrE/UHr4a1a9cihOzt7QsLC3m36J9fBgIXLlwwNTUVji6JRPL9999zGc3c3FzIpkmVDMcKrly5kouMo6MjQujQoUPu7u4QipPblkgkatmypfDT3rFjR4TQP//8s3jxYngvuKUQQlZWVmFhYdyGQI2yYsUKtfl1dHSmT5/O0x1HR0dLJJI6deosW7ZMV1cXmmjUqBHGeOjQobwWEUKawkrwxHjrnxUVFb/99htpkdtQ7dq1t23bppbmfP78edOmTYXHBkgkkhYtWgg1y4D84cOHO3bsqBb5Vq1aCUthjLOysrp06SKRSLiCgY2bjY3N/fv3SQeVSuWIESMQQitWrBgyZAic5sstJZPJ1J4Pr1AoVqxYoaenx80MaWNj4y1btghpzpKSkgEDBgibQAgZGBjs2LGDSKU9oVKpZs+erRZ8PT291atXc7egOTk5INXp06ft7e150jIMY2trGxUVpb1FcrfyNCfGGE6nHzFihFD/QiqkiaohkJWVVa9ePU0rjStXrpBqy8vLW7VqhRA6deoUuchNwDfUw8OD7F3hWGt3d/fw8HB7e3vhgkEmk40YMUK4AXNwcEAIHT582NXVVe0L27p1a7WqvcuXL1tYWAgbEovFLVu25G6bMcagyF6yZMl3331H3vHevXtjjIODg3kjHCHk6uqqSWPOxWHv3r1GRkbC4gYGBkuWLNFEc967dw96zSsok8mGDBlSXFzMbSI+Pt7MzMzKyurEiRMNGjQQPj6JRNKlSxchs4sxTkpKcnFxUVukbt26XGKvrKwMZs7Tp09369ZNWERPT2/FihVcwSAdEhJiYmLC6whCSF9ff/78+UKaU6VSafoK6Orq/v7778ImNF1RKpXDhg0TiooQMjc3P3z4MLdgdHQ0QqhWrVpbt24FWwquzAzDtGnTppKkkUKhgAl58+bN5Onb2Ni8fPmS2yJNVwGB0tLSYcOGwck93AcE3zuuEh9jvG7dOoSQpo9FSkoKMIt3794FSeRyOXzOjhw50rJlSzIPkIbEYnG7du2EaikwtQwKCpo5c6bab6idnd3FixeF/c3NzfX09BSuXmB/cfXqVV4R2Kz5+vr27NmTDOzhw4ffvn2bCMlNaDJ45VarUqk2b96sdn1Yq1at1atXq6U5U1JSWrVqRWQgjYrF4jp16sTHx3ObwBg3adIEIXTgwIFBgwapXa44OTnxzMWghsLCwmHDhgmLMAxjYWHB3f9ijJcsWYIQGj9+/I8//igcJBKJZPjw4TzBMMYsywYGBqrdkxoaGv7xxx9CmrOiomLatGlqn7Went7atWuFrai9olKptCzOZ8yYwV2cFxQUAM53794FPAnskDAyMgoNDVXbkPAiPPHIyMhmzZqRenhvkLAUvfIhEUhLS6tTp45wfhCJRLa2tg8ePCDClJSUwHeWZ/tOMmzYsAEhNGjQIHLF398fzj87e/astbW1cKWko6Mzbdo07gjEGKenp1tZWRkaGh4/frxRo0ZqJ8mOHTtmZmaShkji5MmTpqamwoYkEomrq6twXoX368SJE3Xr1oUhqqend/r06YCAADJiSWLAgAGVYa3evHnTt29ftStJa2vrTZs2mZub29vbcxc/GONz587BWUWkOUiAzorHWV66dMnAwKB58+ZhYWF169YVPj6pVNq7d2+1C8iEhAQnJydhEYlE0rZtWy5Eb968gWyxsbFubm5CVA0MDNRqw968edO/f3+1CFhZWfn7+9va2lpbW3O/HZmZmVq2BpGRkeQRa08UFhb26tVL2Ds4mY/3iQwLC0MIOTs7r1q1Svh5Yhima9eulXniGOPnz59LJBJzc/NVq1aRSbt+/fo8ZaN24endSiJQVlY2YsQI4fcXFmlbt27l1uPr6wtHgKnd0aelpQETf/v2bVKqasrnoqIiW1tbsVh89OhRZ2dntRNX+/bt1S7yz549a2ZmJnzFxGJx27ZteZq6fv36IYTWrVvXq1cvskAaOnTonTt3eLMH/Pn48WPStfdJKBQKY2Nj2MXAK6lSqTIyMiDeIUJIKpVu2LAhNTWV7Mq1NBcWFkYgmjlzJu8roKXgO93i0pxyuXz8+PHAOMBe6eXLl/Xq1WMYZurUqbxqKc3JA4T+WS0IUJqzWmB8t0rkcvnYsWMRQtbW1uvXr3/58mVFRUVSUtLff//dtGlThFCHDh0Iv1JWVlZlmvObb74Ri8WmpqZLliyJjIzMycmJjo729/dv2LAhQkgmk+3bt48rOnxpHB0d9fX19fT0xo8ff+rUqYyMjBcvXhw5cqRr164SiUQkEk2bNo1bSqlUQsRLsVjcv3//CxcuFBUVpaWlnTp1CvalIpFo/Pjx3FkYlP6urq4IoSZNmnh7e2/duhW+K7GxsREREbAJ79GjR8R/P7UUBVeGt6blcnlGRkZOTg5XDFJKpVLBE+ncuTNdJBFYvqREVlaWpaUlQqhdu3YnT57Mzc0tLi5++PDh7NmzYW+wYMEC0l9C+ZDXkNyChBaas0WLFgzDtG7dOjAwMDY2NjMzEwxsQc3q4ODAs9gFmrN79+5isdjc3Hz58uXXr1/Pycm5f//++vXrQTOuo6Nz5MgRIoNCoZg3bx6E+vz+++8vXrxYVFSUmpoaFhb2ww8/yGQykUg0adIk7lAHmlNPT8/KykoikXh6ei5YsODEiRMY40ePHkVERIAVbd++feGNU8sxEAEqn/jzzz9lMplYLO7Vq1d4eHh+fv7r16+PHTs2aNAggB3WcLt37yZ13r9/387ODpy5/f39Y2Ji8vLyrl69umDBAmCpx40bRzJDApT1Li4uDMO0bdt2+/btjx8/BuQnT54MyDs6OvL0dHK5HM7rtbS0XLp0aVRUVEFBwf379319feFQgWbNmhEclEolWNXp6uqKRCIPD4+wsLDMzMzc3NzLly8PHToU1r68GRVjvHbtWnginp6ep06dysvLy8jIOHHixNChQwEBOHdh27ZtpFMHDhyQyWT6+vpTp06NjY0tLS3NzMw8duxYjx49RCKRrq4uTw9ICnITb968gVlUKpWOHTv2xo0bxcXFL168OHr0KIxesVg8f/58MkjImNfX17ewsJg/f35MTMybN28SExP//vtvUEn06NGD24SW9DvRnAsWLEAIderUSa2OQEsr9JZ2BCoqKiZMmAArjbVr15KVxtatW0EN6urqSsx6ysvLW7ZsWQWaE+zTdXR0Ro0aFRoampaWlpSUdPz48R49ekilUoZhJkyYwJMTpjUiw86dO588eZKRkXHx4sUff/wRXtiGDRs+f/6cW/D+/fsWFhbgdL5r167Xr18XFRVdu3Zt7dq1derUgRmDWwQU2Y0aNUIIWVhYjB49evXq1UDVZ2RkRERE/PPPP2AnC5PenTt3eLotbuuQPnjwIKjO27Rpc+DAgaysrJycnDNnzkyaNAlULfCVmT9/PrdsaGgoQNG6detdu3bFx8dnZGSAr5WOjg7DMDw2EWhOfX19BwcHkUjUq1evkJCQxMTE9PT006dPDxkyBFZQHh4ePLvjhISExo0bwxnkvr6+9+/fLywsjIqKWrZsmZWVFUJowIABpI+lpaUwcxoaGurq6g4aNOjChQv5+fkZGRn/+9//gKoxNDTkzTaHDx8GBFq0aLFv377MzMycnJyzZ8/+/PPPgAA0NHv2bIJAXFwcGNuBXqCoqCgvL+/ChQvDhw8Xi8UMwwQHB5PMWhLZ2dmtW7eGtevs2bNjY2OLi4vj4uL27t3btWtX+CAGBAQQ6w2gORmG0dHRsbe3X7t2bUJCQlFR0dOnT//44w/49Ai/JmoFIDQnfBo6duw4Z86cgwcPCm3+1BanF7UgcOzYMR0dHT09vcmTJz969KikpCQrKys0NLR3794ikUgikXBjGIA9YhVoTrK32r17d1xcXEZGxoULF3744QcYzM7OzjwjCaA5e/bsKRKJLC0tV61adfPmzezs7Dt37qxcudLGxgYhpKuryzMKSU1NhQmnVq1aS5cuhdgeMTExgYGBYEQilUoPHTrERQNoTtjlWVtbjx07du3atXfu3CksLIyIiAgJCQFHgbCwMJimKjPkAgMD9fT0GIbp2LHj0aNHs//7QUgJ0FSamZkhhFatWkUkSUlJad68OULIwcFh3bp1d+/eLSoqunnzJulsz549eU0DLdehQweGYRo1arRp06YHDx5kZWVdv3593rx5YA2gr69/8+ZN0grGWKlUDh48mGEYY2PjOXPmXL58OScn59GjR1u2bIEKTU1NuVpCoDllMhnDMK6urgcOHEhLS8vLy7t58+bEiRNBbefr68ttAmO8Z88eUKO3b9/+8OHDgEB4ePiECRMAAXNzc4TQ0qVLScHr16/r6+tLJJIxY8ZER0cXFxfn5uaeOXNm4MCB8AhgwUzyq00IF+fFxcUpKSmaFuf5+fmgGDU0NDQxMZkyZcqdO3dKS0tfvXoVHBwMo6JNmzZCUyG1rUOXYU/RqFGjn3/+ecuWLdQUQy1WH+ViaWlp7969EUJ16tQJCAhITk4uLy9PTEzcsGFD/fr1EUI9e/YkglWZ5mzQoAHsICZNmhQeHp6VlfX8+XMwwBX/95s7dy5phdCcUqm0fv36DMN4eHjs378/ISEhPT393Llzo0aNIq8Sj+k8e/assbExGAwdPHgwMzOzsLDw8uXLf/75JywD2rVrl5uby20LFgmw1HRxcZk2bdqOHTsyMzNTUlIiIiI2btwIZqYw18XExJAdCrcSbvrNmzcDBgyA2XjSpEk3b94sLS19+vTp7t2727dvzzAMvNRcmpNl2d27d8OSrHPnzsHBwYmJiWlpaadPnx45ciTDMCKR6O+//+a2AjSnmZmZhYWFVCodNGjQ0aNHk5OT4dXu27cvzCqDBw8myw8ofvv2bYDCyclp8+bNDx8+zM3NjYyMnDdvnomJCcMwEF8EMhOa08jIyMDAYPTo0ZGRkaBPO378eMeOHcHelMtWYozLysrAWFlXV3fChAlRUVElJSXPnj0LCgrq2LGjSCTS09OTyWRcmrOiogLoB2tr63Xr1nG3BjDntG/fvjJzTlpaGvgq6OvrL1myJCEhAfQqO3bsgA+oRCIJDg4mmJw8eRIhJBaLpVJpo0aNAgICXr58WVhYGBsbO3/+fDB8mTFjBhd5TWmgOWUyma2tLWzJf/3112PHjqml1jRVQq9XEoHQ0FAdHR1dXd2ffvqJu0jr06ePSCQSi8VcPrvKNOe7Kp+B5mQYBnY97u7uQUFBZHs1btw4mLiEDgZXrlwBbVKLFi2Cg4PT09OLioquXLmyevVqW1tbhFCLFi249gdAc8Ia0srKiizSioqKIiIiDh06BBuZ0NBQmLg0aQ4riTbJFhERAcsDrotOdna2p6enWCweNWoUV0hSSm2ivLwcdtwMwwwcOPCt86raSipzkUtzYozz8/M7deqEEHJzc8vIyGBZds+ePTAD7N27l8wMEMpRIpGMHj2ae7EyLdI8FAEtCFCaUws4NXUrLS2tSZMmYrGYt5DCGF+7dk0qlYrFYhI47n1oToSQra1tZGQkd0ZTqVSvXr2C/aSjoyPXIQBoTphVV65cyTOqys/PBy5QR0eHS9VkZWWB8tHb25s3uZeVlYF1oVgsPnv2LAGU+DZ169YNJj5yCxLVfjYnr37en9euXQNlx9SpU7lY8bLRPz9fBMAVydDQkGfYpVAoYGclk8mIyphQPrzxTLqvheZECHXt2vX169fcT3VFRcWZM2dq167NMAzPBxRUEgghR0fHe/fucYefSqV68eIFGCW0bNmSkECpqanm5uYMw8yYMYPHypeVlfn5+cFG4vz580RgoDnh1V68eDHPeQjCSCKEuDsuUrbKieTkZFhlDhgwgBc5pKSk5JdffgF5EEJcmnPSpEkMwzRv3vzp06fcppVK5YkTJxBCOjo6vG0eKOsRQh4eHunp6Vzk5XJ5eHi4sbGxSCRavXo1t0J/f38wQT1//jwXdozxgwcP6tatKxaLd+7cCUUIzYkQ8vT05MUaKi8v79mzJ7AIXBO5lJQUmFj69OnDi4xXVla2ePFiYkvIpTnBbbR37968GTg7Oxvow2XLlnE7ojZ97do1Q0NDqVS6evVqXj3FxcW///47sALEoJKMeRMTk3PnznEBYVkWXh+JRMJDXm3TGON3ojm3bdvGMIyzs7PayHiamqDX34pARkZGs2bNRCLRpk2beJlv3Lihq6srFouJy3KVaU54ixctWsRTghcWFoJjn0wm44UiJH6N3bt3503Icrk8NDTUyMhIJBJxldcKhQI2aTY2NlwlOPTrxo0bcOLI4sWLSU+B5gQvw7CwMO6QhjzvejZndnY20HUuLi68sBByuTwwMBCmO4QQl+YsKSnx9PSEyYE3DZaVlQHVqq+vz2VZgOYEYEeOHCmcbTZs2CD57/e///2P9BdjPGfOHIZh6tSpwwtGxLLs2bNngSCEaOEYY0JzIoS8vb15jy8lJaVZs2YMw3C9LXNzc2Gx16xZs5cvX3Jn2oqKiqCgIJjuEEJcmnP+/PkIITMzM8Kpg8zl5eXwjPr06cONpsDtETe9ZcsWkUhkYGAgPAohLy8PGP2GDRsSJIHmBOYmMTGRK61SqVy5ciUAQvJz2+KlCc2JEPrpp5/It5iXjf5ZBQTGjBkD327upxP0I+DozzVBqzLNCRQCT00vl8sPHTpkaGgoEol4XjKgpQXjifj4eO7soVQqExISYNXh4eFBVlMsy4L9mbGxcUREBLEnAEyys7NBWdalSxey1MQYA80J7sgRERHchiDgBGjQuEW0g5yRkQGWIq6ursROC4rI5XJfX1/iRsmlORctWsQwjLm5OVkSkFYuXryoq6srlUq5fDPx5gTbwVevXnHfL4VC8eDBA9DvT548mdup4OBgWHcdP36cd6DJixcvXF1deXMO0JwIobZt2wofH4T/cXFx4eKTmZkJE7VQvymXywMCAoj3D5fmhIOjGjduTB4oIFBWVjZ48GAIws97pgQikkhNTQUfEbWLc3C/E4vFZHFOaE5dXd3du3fzdPRnzpwBhQA37gJpS5ggH6BOnTrxVsLCzPTKh0cgLi7Ozs5OKpUePXqU2zrLsufOnYM1OdFcV5nmhJWDj48P7/3Kzc2Frauuru6zZ8+IAODNCaWEm7Xy8vLAwEBYLh44cICUqqioAHbBxcVF6LR97tw5MAndsGEDKYIxJq/ed999l5WVxZ00YOcFu1duEe3py5cvS6VSiUTy119/8fqbmpoKOxHwpCfenOnp6cCzTpw4kbe4Kikp8fHxAR817uQJNCdANG3aNB4F+ObNm4ULF4Jz1b1797gCjxs3DuyeeRG8FQrF0aNHYT9L9GmE5gQLDN6i6OHDh/b29iKRiOc8d+PGDTCl/eOPP3gIvH79Gmx5wdiRbN/S09OdnZ1FIpG/vz9XWoxxVFSUjo6OWCzmrSF52cBjHiZnIyOj8+fP8+bGnJwciJDZoUMHQnUDzQlfVeEnA3QCOjo65BUQNkquAM0JT2TevHm8J0Ky0US1IODl5YUQEvqBFBQUwO5m3rx55F2uMs0JT7PyymegOaGUUMcil8v37dunr68vFou3b99OcKioqAAFeMOGDbnTIGS4dOkS6Iu4qyNYuYFXolBfVHNnc86YMQN617VrV1gb5Obmdu7cWSaTbdq0ibdlIx1Um7hy5QpUZWJiwpuj1Oav8kUezYkxjomJsbe3B8N6jLFCofjtt98QQoaGhtyFDfXmrDLmtKAWBCjNqQWcmrr1/PlzW1tbXV3d8PBwXhsqlapDhw5mZmYQhhsMtarszQnqNu4OkzR3+fLlWrVqyWQy7rKV0JwtWrTgLbCg4OvXr8HRasiQIWQ/BtolY2Nj7qKQNIQxBgKge/fuhDQCmtPY2JjoWLn5McaaaM6zZ89uqfRPuF3ntULOUAG7YzMzMx6zIsxPr3ymCIBOE8K08rqgVCobNGhgZmZ248YNuEUoHzJieUW00JyaRpFcLv/hhx+AzuSq8wjNuWrVKrJM5DZ38uRJ/f9+ZLqAFaeFhYWmzQCsO/v06UNIUEJzDh06lFs5SYNDtpDmLCgo2Lt3byXfuV27dhHElErl5MmTIeguT7sNjebl5YHdHJfmfPDgAXh/8jweiJzgofjNN99w91SgcDQzM+PtJKFUeXk5GK7Wq1ePIP/q1Ss9PT2RSLR8+XJSOTexevVqhFCjRo2AIyQ0p5mZGU/XBqVg8nR1dSU7OpVKNXPmTPAk4+rgSCv5+fngG4QQ4tKcMCSEMT0wxqtWrTIzM6uMB1L//v1B/6hWI69UKuE0Vm9vb5jJyZgfN24cb6uMMa6oqADnp127dhH5tSTeiebct2+fWCyuV6/e+3vtaxHpK7z16tUre3t7HR0dYdQ7lUrVpUsXMzMzcqr3+9Cczs7OahcMmZmZwGj27NmT+8LCRQsLi+TkZOFzKSsrg9e8QYMGhKE/dOgQkFKaPut//PEHKKcIAUloTqEqBxp9V5pz8+bNCCFjY2NeRCOorbS0FAJQ82jO06dPSyQSfX3969evCzuLMYbpetq0aWSpRmjOunXrkjmcW7agoABoGBcXF4L848ePQT9FjDO4RTDGEydORAi1bt0aXvD/j733Dqvi+P7HZ/deei/SlGIBRSyosfcYNWJ5q9HYYkks0YgtJlasqIANUbFhDwQ1BjTGXhONFSsqahQrUkSQ3u7d+T3fnOczz/z23l0uV1DUuX/A7O7U1+7Onjmvc84QmrNq1aqas4QgCDCBDxgwgNQTERHB87ylpaXWmbagoKBPnz6wlqZpTpiLWrZsSeohiUOHDjk7O7dp00brpEqygagG8T9GjBhBP0skz71796pWrapQKIgSEGhOnue17vtbWFgIpKxoj21SIZ0gNKemoofOxtJ6INCmTRspE6vly5fb2dkNHjyYvBp605yOjo5azWjy8/OBxCLfehgCvF88z4eHh2sd1M6dO42MjCwtLcl7/eLFi1q1askIFadOnTIzMzMwMKCNPgnNqfW1TUtLKxPNKQgCyLq2trYiDT6MIicnp0WLFvCSEkXevXv3jIyMNH2YyMDHjx8PLg5ktiE0p5mZ2YkTJ0hOkhAEAZRZzs7OxLwjLS3N09OT4zh/f3+Sk05s3boVfN3IvEc06SJbGSj1119/GRgYVKtWjfjxC4KwbNkyhJCNjQ0RxugmcnNzgT4XeXN26dIFIdS9e3c6M6QjIyMdHBy6deumVZSl84Nw7uDgIC+cd+vWDQZIaM527dqRIZMKS0pKYMW9dOlSclImATSnkZERWcvIZGaX3j0Cly9ftrW1tbS01BRj1Gp1w4YN7ezsduzYAR17G5rT19dXU4zHGL948QI80YcNG0Z0OITmrFq1quZDiDHOyckBtszb25vMAOHh4eBDKRVTF3T0FhYW9LsANKebm5tWEeL69etlojmLiopgovb19SWLO/q2Pnv2DAL/0t6cW7ZsUSgULi4umgZzUBYkjUWLFpElOaE5RZ8J0lZ6ejqs5j777DOC/LVr12A9K2K1SSmIovTFF1+ASENoTnd3d03eTq1W+/n5IYTogGpFRUXNmjWDuGha793z58/BcY325nz8+HG1atWMjY21bojTunVrOzs7TeNI0m1IpKWl1a5dm+O4mTNnii7B4blz5ywtLQ0MDPbv3w9ngOY0NDTU3DMLY1xYWAi6QVEEEa2VE5qzV69eWjOwk+WIAGypqBmYB2O8cuVKOzu7gQMHkvnkbWjOMimfCc3p7OysVceSl5cHDKWXlxdZS4KMYWRkJKV/BrtMc3NzstAjNCdNlxJ4ZWjO69ev66g9Cw8Pp2O2YYzz8vIgeg0JvHH37t22bds6ODjoGP+G9BBjDKbtCKHWrVtrXUDRmd8mrUlzCoKwbt06MMzdvXu3IAj5+fkgbrVr145MdIzmfBvYWVkpBBjNKYVMBZ5//vy5l5cXx3FDhw4lHwbSXlJSUkJCAlkWvo03p6GhIZmmSf2QyM3NBfbx559/JpdAU69QKGSEDND0ETfQ/Px8CL24YMECUo8oERMTY2ho6O7uTuRaEnJNaraVojnJ+hxW6fJ/S/V5ys7O9vf3B/V9lSpVdN+NQDRAdlj5EdiyZQvYWm7bto0sXUi3ExMTExISiG0UoXwIaUdyQkKG5uzXrx9ZB4pK3bp1C55Y2pYKOC0ZA8bMzExYxoBOKj8/H+J0ERWVqBWM8a5duyAAEQlXBTSnoaHhrl27NPPLeHPeunULonvJv2tw1cHBgTBVr169ghhoZcxNQwAAIABJREFUtL28qOk///wTChJvTn9/f4hfKjUzPHjwQKlUmpmZ0UYVQHMOGDBACvmbN29CQ0Suhc35atSoIbLcJz3My8uDMETgWE9oTime+MCBA8bGxvXr1yf6+oyMDFiB084opH5IgIuViOYErWvdunXJ7SOlMjMzExISCMjkvCiRk5MDD4nMHqtLlizhOK5Zs2bwkJNnXnPdC5XD3KuVMBC1XlZvzqioKKVS6ebmppX00qycndERgeTkZG9vb47jBg8eXKqkoTfNqVAoiAWGZsd27twJGmfaaxNozmHDhkm95qDtQgiBRbkgCKBn//zzzzVnb2g0KysLZiqyFRnQnM7Ozlq1PxjjMtGcKpVq8ODBsOWMVLcvXLgA8wztzdmjRw+E0P/+9z/NWwA9j4qK4nm+VatWZL0HNCfHcUFBQZqQwhlinEvEKiAVmjRpItW9rKwskNbAf5HQnLQQSDcXFBSEEOrRowecFAQBLHV69OhBVAZ0fowx2VCQpjknTZoE+lBNwTI/P//BgweJiYlSfSb1v379GpzAaIqIXAUbYVAa9u3bF84DzWlsbEwcWOn8GGMIQiX1TaQzE5qTVn3SGVhabwQgGrynpyd5kklVb968SUhIoFcxetOco0ePlnoB4+Li4LWl9fXw7ba0tBSFYSB9S01NhXh9hAe9cOECz/PW1tZkZ1CSGRKFhYVNmjRBCI0ZM4ZcAprT1dVVq5q+rDQnMbbQNFkjLZ45cwbGS2RIMOpq2LAhUdCTzJDIycmBqYOwiYTmlAlv+PDhQ4hXQSLanT592sLCwtHRkTgwiRoqKCgAIoTwQEBztm3bVqs0fuvWLVtbWycnJ8JYFBUVgbHFN998I6qcHJ49exYQoKVT2FbZ3t6eSIkkf05Ozv379588eULodnKJThDhXBQ4hM4THR1tYGBQs2ZNkO4Izbl9+3Y6G0nD4yEjQ5KcGGOgOWmihb7K0u8dgTt37kCMTX9/f83p6Pnz5wkJCcQ6QW+aU6lU0nt8ikYN2xv7+PiQhoDm5DhuxowZoszk8Pz58/DKwJurUqlAsCFfW5KTJDIzM2FLDtpoFd7u/v37aw5fD2/O+Ph46JWMrRL4CNI0JxiWjRkzRup1hsXRV199RVaUQHPyPE9IaDJMkiDrWbKQGTNmDPjASYk38fHxCoXCxsYGxGNCcwYHB5Nq6QSIUvTMdvfuXUBAFD6dLgVGzDTN+fLlyzp16nAcN2TIEM0bIVJC0lXR6evXr/M8b25uLgpLTvIUFhZCvMpvv/0WTgLNWbVqVU0vOsgAVLGUjEdqJntzKpVKHU1v6bIsXVYEIGpCzZo1RVv/YIxBSHv27BlZmulNc5ZJ+YwxJjTnhAkTSOuioZElCZhJqdVqMKLVas8EZd+8eQOWATt37oQzQHNWq1ZNq5AmQ3OCpTu8oaX+bdq0Kd35u3fvEk+A+Pj4P//809XV1cPDIy4uTvOdpQtqTUPQFHA8aFvGX/v27WG3F601i05q0pxgKP/zzz9D6yAex8fHGxsbcxxHnKYYzSlCkh2WCwKM5iwXGMtWCXFWQAjVqFEjIiLi5s2bhNcU1fU2NGezZs1EtZFDQRDAtH/w4MHkJNCc1apV02oXA9kuXryoUCicnZ1BTLl//z7M3VoNpaHIjRs3HBwcaE95oDmJxyrpAElI0Zz+/v6ddf6RTxSpliTy8vIOHjxYv3592AeiTp06Wu2RSX6W+NAReP78OUTQUigUvXr1OnHixIMHD7TqTTDGhPKRyiBDc8oopktKSuDJp3dwBJqzdevWUggLggCxX0A1lpCQUOobFxcXZ/ffj6jtgOa0s7O7efOm1oakvDkTExO/+uorHd+5/v37kyDYDx8+9PDwMDExkbEeEAQBlsFAcwqCAGiMHz/+kcTv8uXLNjY2xsbGdEQdoDllDN4J8sQIDjwe2rdvf//+fYmmHgEZAxsyEZqTDuFII3nq1Clzc/N69eqRmfDp06eenp7GxsZHjx6lc4rSYGtMe3Nu27YNwsrZ2trOmzfv0qVLSUlJUutkUW1wePXqVdh0UOqzgjH+448/FAqFm5sbzPbkmad1ynTlvXv3RgjJPN505jJ5c0ZERMDmXrTRN10bS+uHQGFhITiXgBP5xo0bb968Sd5QUZ1605yOjo5ErSOqE2N8//59pVJpYWFB4vBjjOHNIo6kmqXICxsdHY0xLioqAu5fymwcagCNMCHYgOaUUcOVieYsKioCH6Dly5drdpicga8MoTkFQXBycoIXR2qe2bFjB1hIECYYaE4TExMZ5V1xcTHMEiC6kM/EsGHDpBp6+PAhhJyFJSuhOWNiYkj/6cTGjRsRQt26dYOTgiCAbZwo7jpdBGMM4yV3AWN89epViCFpbm7u7+9/7ty5J0+eSBGlotrI4YkTJ2BOI2QwuUQSEBOyQYMGcAZoTgsLC6lpEKYprY4FpE5IEJqTCYoiZN7+MCoqCiyKbGxsAgICLl68+OLFCym+TW+aU3OLENLzkpISUL7T1vRAc8psR61Wq8EPderUqVAV2NJJeWBDHtD10J7NMGtJRWgoK82ZmZnZtGlThUIhRZtBN8AihNCc8Jn4+uuvpaaOR48ewcx25swZghtEfqNdi8glSKhUKnCYJv70u3btUiqVPj4+V65ckWoLtmkgpm9Acw4ZMkSrCHT//n0XFxcnJyfi65mbm9uqVSvN0I6ivsEmyjTNeeLECeitpaXl1KlTz58//+zZM8JziIprPSTCObF108x25coVOzs7e3t7+CASmpNE1BQVgXU6ecZEV0WHQHPKf6FERdjhu0QgJycHvqEIIR8fn19++SU+Pl6rzzF488DqgKzjRF2F712fPn3IedgkyN3dXWr+xBgfP34coqeQaO1AcxoYGMhY/BQXF8MsDXHys7KygMEiRh6kD3QCvrA0aQczrdTsVFZvzn379iGEHBwc6EZF6b1794LDN7xigiDA7LdmzRqpKSgkJAS2eyQaAKA5bWxsZPhjYkZ26dIliOkKIXMmTZok1dA///xjZWVFxGNCc0oZZgUGBiKEBg0aRMZ48OBBiBhEzmgmDh48KNqbs7CwELaggn3cN23aJLM00KwQzsBWJg4ODsRAXDMnKBaaN28Ol4DmrFOnjpRbPOxgLWM3SZoAb04LCwsprEhOlnh7BHbt2gVvro2NzezZs+WFNL1pzjIpnwnNyXGcDNVdXFwMPQdNTm5u7hdffIEQCgkJkYEF1npEPACakzYvoMvK0Jxr167VUXvWuXNnUYiLP//8E5Z4VapU2bBhg7W1tZWVlYw+je6SKK1Wq4lDaqlsq2YGnud1eSWhUa00J6hVwSe4a9euMK8eOHAAFobh4eGCIDCaU3TX2GG5IMBoznKBscyVJCUljR07FhxuFAqFg4NDgwYNBg8e/Oeff4rMNN6G5iQmVFr7BwJT+/btyVWgORs3bkxkO3KJJO7evWtnZ2djYwPGtrCfhIWFhZQpDcb40aNH7u7u9M4uQPbIWJ9J0ZykG2+TSEtLGzhwIPRBqVROmzZNRkv7Ng2xspUKgYsXL4IMDcEP3dzcmjdvPnPmzFu3bomeXkL5SL0IMjSnvM4UbPnpDeRkIpQS9GDDpy+//BJjfOjQIYSQpaWlqM8kM3gpwQYwxAILaE4nJyfNPVSgoBTNSVdbpvTVq1ft7e1tbW2lPBtgHQgen6DSys7Odnd3B9+v6hI/Nzc3nucNDQ3J5kYYY6A5ZZboGGNYcM6ePRviH0I8RlNTUw8PD4mmqisUCoQQ6IwIzUmv2GlANGnO27dvOzo6WllZkaB2dH6Shk1iaJozNzd35cqVIJpzHGdtbV2nTp0ePXps2bJFSl9PaoMErD9tbW1lHpKLFy8qlUpjY2OokzzzUuvPiqM54Uvk6+srxcCJRscOdUfg5cuX48ePJ5JGlSpVGjRoMGjQoD/++EOkNdab5vT29pbR6iYlJTk6OpqYmND7ugHNKRXIC0YHczXElM7NzW3dujXHcaGhoTJjh5ea0HJAc44dO1aqSJlozoKCAlDrE/271mpheUxozrS0NPBncnBwkJpnHB0dOY7z8PAgmm6gOa2trUFfprUhjLGnpydCCGJd5uXlATFjZWUl1ZCHhwc4RP7+++/03pz0raHb0qQ5YXtU4i9LZybpTp06ifbmVKvVv/76K9k3ztzcvFatWp06dVq5ciWJMEyKSyXAtdTR0VFmTouJiYEdXyAP0JyWlpZSajg9aE4ZLadUz9l5eQTy8vJWr15NvndWVla1a9fu3r17RESEpiel3jQniZuntTMNGjRACNFOePA2/fTTT1rzw0nw/+vduzccTpkyBSEkY12KMd68eTMEviaPsby7XllpzpSUlOrVqxsaGoJST6rzIHYCzVlQUAARKS0tLaWmjurVq8PUQcu3MB/KxzYEJph4r4InmZGRkZubm1Rb8LUiLuZAc44aNUqr65UmzZmZmVmrVi2FQiEvEELHiB4THA62bNkCC0OEkIWFhaenZ9euXdesWUPHDpGCtKzCOcSVJTQnca0T1a8HzSlltiKqmR2+FwSePXv2zTffwOJCoVA4Ojr6+vqOGDHi2LFjZE6AjuntzdmiRQuRHokeaVxcnLW1taOjI2FPgeY0NjaWkgSgOAQ/APP0pKSkunXrKpVKeSkO4ivQMhjM81LWQmWlOUNDQxFC9erVowcoSsMOTcSb8+XLlyCSOTo6Sk1BdnZ2EKObBPMHmpOOSSZqBWKuurq6IoRgk4isrCww+bK1tZVqyNXVled5U1NTMB8hNKfUOl2T5ly3bh1CyNvbW7M/5MyFCxesra1pb06M8cuXL3/44QfNpcGBAwdESwNSjygBsT2JVZnoKhxu376d1lcAzVmvXj0pK7ey0pw2NjZSjqFa+8NO6odAfn4+2dOa4zgQ0vz8/DZt2qQppOlNc5ZJ+UxoTp7nDx8+LDMu0DJBJKr09PRGjRqVagcGRgBDhgyBaoEjlJIGZWhOmV6VegmUcrB9L/CdZmZmtOKr1BpIBkEQYCrWpDB1OWNgYCBvrE8awhhL0ZxwyczMjOM42HlErVbDHOLk5PTgwQNGc9IwsnR5IcBozvJCssz1lJSUxMTE9OnTp06dOnZ2diD1IoTc3NxOnTpFVnSl0pxgQdypUye6B7ByHjduHH1SlAaBiV6TA81JwhiK8sMh0JxWVlYQf2zPnj2lmpIlJiZ6eHhwHEciUcBKUjM0EGmxgmhOlUp1+vRp0LEaGRl9/vnnbAsTgvmnkMjMzFy0aFH79u09PDzMzc3JB37IkCG0vpVQPlI0J1A+IqcWINtohwBNSIHmpI22QN/0448/amYmZ4DmbNeuHcb4119/hcgP5Kpm4t9//61WrRrHcSRWGNCcrq6umiIpFC93mvPChQuWlpZOTk60F5eoq4IggHoRmIPk5GSI0eHm5tZA9te4cWN6nQzIg+5e1AQ5BJpz4sSJEN4Q4k/a2trKtvP/Lq5cuRJjTGhOqaitmjTntWvXbGxs7O3t6RjFpD8kAR2jaU64dOPGjZEjRzZo0MDJyQnixSGEbG1tIyMjpQLtkjph8e/q6krOaCYuXbqkVCp5ngcVno7PfEV4c/bq1Qsh1LVrV6ngopqdZ2d0R0ClUu3bt69Pnz7e3t60pOHq6nry5EmiDiuV5tyxYwdCqEOHDkQ42bt3r6GhYf369WX4aaA5jY2NydefeHPKEw+g7wAvluzsbF9f31IddMaNG4cQateuHfQQaE7apkQEWplozvz8fNBhyev1wFKY0Jwk3IWnp6f8VNOxY0cRzWljYyNjI4IxBrcnUDu+fv0aolO4uLjIN9SgQQPQgxNvTikDYRHNqVarwQyF3tBdBCnGuGvXriKaE/K8fPlyypQpTZo0gU2h4ONrZmYWEhIi5c5CVw7Rn7y8vOiTojT4digUCvDBIjSnlE5ND5qTeMCImmaHb4lAfHz86NGjGzZs6OzsDDodMHjauXMn7b8rT3M+e/bM3d2dDhtbVFRUrVo1hJCMYzTGGOQQ2lkcaE6p4A0wWKA5O3fuDIegGhOtxUSwbNu2DSGkVCqJuxUs1qQ88MpKcyYlJTk5ORkbGx87dkzUNH0IJB/QnFlZWRCR3snJqdSpg373geYkW+HS9ZM0NDRw4EA4M2PGDDBEqFevnnxbJEwr0JxSESY1ac7Xr1+7uLgYGBiA2xnpiSghctcgVxMTE/39/Rs1auTi4kKeQwsLi7Vr1xLOg2QWJcoknAOlRGhOKfMyPWhO5t4kui+V7bCoqCgyMrJnz561a9e2sbEBAwLYXpFYpurizQl70Gp6c7Zp04bIdZpjj4uLs7KyohcmQHOamJicPXtWMz85AzQnGHo+efKkRo0aRkZGUptcQKkBAwYghIYOHUoYXKA5ie81qRwSZaU5QVMkEwwJY/z3339bWloSmpPsYOLl5SU/Bfn5+ZFXHmjO6tWrEyFN1HOa5gQDi6SkJHAbdXd3l2/os88+++uvvzDGhOaUsrzXpDmDg4MRQsRdUrNXGONLly7Z2NiIaE5Y1cbGxpa6NNBaJ8Z4xIgREJJXKgPGGDatIN87oDnr169PPn+ismWlOe3s7EgQFFFV7LDcEbhz586YMWM0hbQdO3bQQpo8zfnixQsPDw/R/sR6KJ9pmlOe/AOaE3YxS05OrlOnjoGBAQQKkoJo+PDhCKHevXvDWhJoTikH0AqiOWGHYLCKI9Frv//+e6k+y58HLSIM6l4Zfw8fPtQ9rIUMzYkx/u2330xNTQ0NDSH6d0ZGBhj616pVKzQ0VKlUDh48mHws5EfErjIEdEGA0Zy6oFSBeQRBSElJiYuL+/3330ePHg0G73Z2dmQzg1JpTpByREtrWDnLBB/HGIPaiA7pBl8aLy8v+oslGvyNGzeMjY0dHBxgKxTw5lQoFFL28hhj2I7CwsKCRPAHmlOG/6ggmvOPP/4A8zovL6/Y2FiphaVoyOzwI0OgsLDw0aNH586d27p1K2hhOI6rXbs2WXqVSvnAh1krzSkfwwciZdGKIaA56ZWqJtqgPhs6dCgxGFcoFDKc0M2bNx0cHCwtLYklAdCcbm5uUu6A5U5z3rp1y8nJycrKSsYhSRAEYA6A5iwoKADCcsWKFZml/WiDUygl72MEyEMeQRAmTJiAEOrXr196erp8U6Ai14PmvHfvXrVq1czNzWEFq3lb4Qx0XpPmhKuZmZnx8fFHjhyZPXs2bBehVCqljApJE+DNqVQqte4kAdkgdJWDgwOs5Et95ivImzM/Px9ujb+/P5NuyR0s9wRIGlevXo2JiRkzZgxE57O1tSVq61JpzuXLl2ulOT08PGScXZ4+fWpqampubk6T/WBpBG6IUiOF8KqbN28G7Q8wUgsXLpTKjzHu168fQui7776DPEBz0v46orJlojkLCwtBBSP1qkLl4O9IaM6cnBzg8/bt2yc/z2RlZRH+GLw5zc3N5b0rIOI36BmLioqaN2+OEAoICJBvKDMzE3RMZaU5BUEA7kfefwvYVjpoLQ17bm5uQkLCqVOnQkJCgDTlOK5v375SzkykLHhzGhgYyKy3IyIiYCcIKFURNKdUTG/ST5Z4GwTevHlz+/bto0ePzpkzB1xqFArF5MmTyadBnuZ8+PChra2tVpqT3ilAs4egj6ZDKcKjTsz5NYtgjLt164YQIr5KkydPRgjVqlWLFk5EBSFaft26dcl5WKxJRfAuK8356tWr2rVrGxgY7NmzhzShmfDy8kIIAc1ZXFwMgTR//PFHHacOqBBoTnkmuGrVqqQhjPGaNWsQQi1btnz27Jl8W0R0KSvNmZWV5ePjo1Ao5O84cDZSX4ecnJy7d++eOHFi0aJFsGbkeX748OEy61yMMQSQ1FE4B7/wiqA56Q0dNG89O1NJEFCr1UlJSZcvX96zZ88333wD/J+TkxMxyCjVm/PHH39ECNGLRwha6+PjIzMFnT17FtypyV7IQHMaGhrKRNjCGMMCBCYW8ObkOI6eMzWBhYklICCAXIJh3rt3j5yhE2WlOTdt2oQQ8vT0pCsRpQ8dOmRiYkJozjdv3oBIduTIEfkpKDs7m3x3gOZ0dHQkewCLWsEYFxQUQAxGWPEVFBQ4OzsjhNasWSPfUGZmJtwvPWhOsD6sWbOmZn/ImVOnTpmZmWnSnJCBKCHppYGdnZ08D4QxhgDs1apVk3nY4Htdp04daKvcaU57e3sp020yfJYoXwSIkDZ37lwQ0nienzhxIlm/yNOciYmJdnZ2WmnOMimfaZpTXtqBTsKOReDNyXGczKZpGGPgNadMmQLQweGKFSu0IlkRNOfLly/But3a2nr37t27du0CVyhra2v9HngwsIP1kS52pVpHqstJeZqzqKgIzJFdXV3Bt+TFixcQlwjCGjGaUxeQWR7dEWA0p+5YlVvO/Pz8p0+fJiUlERGKVH3nzp2aNWuC1w6Y4xUWFtatWxchpNU0VRAEmDK00pwuLi5SZuxFRUWgtp40aRJpHWhOCwuLFy9ekJOixO+//w4up2BCRXaAl3IIwBiTmCFEtNWb5ly+fHlfnX90zCK1Wr13716lUqlQKLp27co2gRPd1o/7UBCE1NTUp0+farrBqdXq2NhY0BeTMFkZGRmwECK2nDQ+xcXFIH9opTknTZpEpD26FESJgWg54AkNV4HmdHV1ldLe5ufnt2/fHiEEGhlii0pXImro+PHjZmZm7u7uDx8+hEt605zJycnff/+9ju/ct99+S+SnJ0+e1KxZUz6mf2ZmJtjLkziQwDrT3q6ioalUqpT/fjRcwBT++OOPmjMqFCdxikj82CVLlgBnI2VVijFOSUlJTk4Gj149aM4XL17UqVOH53kZ96+srCxAgHAnKpXq6X8/zacoOzsbnFDNzMxkuo0xPn/+PDzAhOcWwYgxjoiI4Hne19cXXor3QnOq1WqwMeQ47uTJk5qdZGfeBoGCggIpSSMhIQE03ba2tiBpFBUVAY2nNeSdIAiTJk3SSnOamZkRAxHN3p48eRIhZG1tTfNDQHPOnDlT6oV98eIFTJUQbqGwsBD2Jx41apRmE3CmpKQEKEZwv8YYly/NWVxc3KVLF4SQjHtobm4uaPEIzYkxBkW/zM7BBQUFycnJaWlpxAMDaE6lUimjqX/06BFARMCH7UuHDx8uBRHos5KTk4FC0IPm7NGjB0JoypQpUjcuNzcXpDtCc6rVaqkJraSkZM6cOQYGBoaGhrQXi9b+HzhwAOY0KXcKQRCAZyJRixnNqRXJSnVS5nuXl5cHNvWmpqbEqAscmPr166dVtXr16lWe57XSnPPnz5d6aJ8/fw6vEuzEAfgAzenp6Sn1qc3JyQEfUDLhhIeHI4ScnZ2l/EvUajUsuwYPHkzuQvnSnLBnHsdxUrwpKAdhmz2gOTHGgPOAAQNIr0QJ0dQBV4Hm7N27N5m4RKVevXoFnmpkY6c9e/bA3pxSEBG5i9jalpXmzMvLA4FZJvJETk4OTNSE5pSfpiZPnqxQKIyNjeUDJOoinB87dowWzhnNKXpmPu7DnJycp0+fpqSkaM5FV69eBb9zZ2dnEP7z8/Nhb06tQR3IZKJJc1pZWb1580YKSSDGvL29SRAOoDl5nl+7dq1UqSdPnsAkSeh5MKuSsXIoLi4GdRY47kDN5Utzgp29oaEhvR4UDWHz5s08zxOaE2MM2wxv2rRJlJMc5ubmJicnp6enk9sENKd8XN9bt26BiELW3eCPRWQhUj9JlJSU0OtZPWhOELANDQ2ldH0Y46ioKJ7naZpTfmkArANZGpDeihIQgN3W1lZKYahWq8Gdl3xZGM0pwvCDOJQR0vLz88Gp19TUlKjXyJ7BWoW0Gzdu8DyvleYsk/KZ0Jwcx0n5WWKMnz17BhMXzKI5OTkQol8mglpxcTGsjolaRm+ac//+/Tpqz/r27UsvGzds2ACTScOGDV+9evX06VN4KxFCkyZNIvOS7s9PZmYmRLAzMjKiJ2Tda9AxpzzNiTHOzMwEI7PatWuD30V0dDRIpAghRnPqiDPLpiMCjObUEajyzPbXX3+5u7u3aNFC60oPDEIRQiA6CIIA0uTq1as1O5GTkwNeDlppToSQlJrsyZMnTk5OPM+vW7eOVAs0J0Lohx9+ICfpBDHnb9myJSz+i4uLQYvXqlUrrZ80jLG/vz9sn0B28NKb5iRe/PABkP8LMQqg/3fv3oVdEMaNG0fWz/TQWPojRqC4uHjIkCHu7u5SwhBoeQYNGgRPtUqlgsWY1o24jh8/Dg+eVprTx8dHytgKfJQtLS3pJxBoToSQVnYBY3zjxg07OzulUgnGlcXFxRC/okOHDlJv3NixYxFCjRo1IutYvWnOmzdvgimc/LsGVx0cHMiC582bN40aNUIIyajdv/32WyhIaE4wT3ZwcCBzheixPHr0qI+PT+PGjYnNBNmbs379+lK+qnPnzoUNQgjy0dHRsP0SXQ/d1p07d+rVq+fj4wPRcfWgObOzs+HmDho0iK6ZTsNuggghIk+/fv3a3d3dw8NDq0k+WUjLuMJjjIuKisAZbvjw4VpVkGq1Gnijnj17goLgvdCcZ8+eBfPnzz77TEqbTMPF0mVC4Pz58+7u7p999plWsx7Y5RchBASkIAht27ZFCGk1WSW6Y82gtQghqV3ABUGAcIje3t60HgpoTl9fX6mAChDb0MrKCl5YQRBA2e3q6koIDxEUsbGxsJolHpDlS3Oq1WqIH9iuXTt6LHQ3wOMQIUSvV2EjZ09PTynNY3h4uI+PT+/evcl0DTQnRHKm6ydpQRCgWjs7O+JgtHDhQoSQvb291tsNsct8/vvBd62sNCfG+IcffgBnLKlw7mDHTQetzcnJcf/vB7tPkSFAIikpCYxUpCRVkj83N9fKygo2S9a6yH/58iXw3MRcidGcBL1Km8jIyIDvHe3tTXp7584dkBCIvc7GjRs5juvcubPWJ3D69OlgVEGIARK09rPde0ykAAAgAElEQVTPPtM6dQiCAHtqWltbEz0dxhhoTqVSKRX99e+//7awsDA0NCS7Ft24ccPU1NTIyEhq54K7d++CRxTtD12+NGdhYWGfPn0QQn5+fgRGUWLmzJmAKqE5gTyWUVjHxcXB1EEzwUBzuri43L17V9QEHIJ3tZmZGXH3hwCSJiYmUqgmJiaC3EXk4bLSnMXFxYMGDUIIkWDCmn0DUZzYDmKMs7KyYJrSam+RmJgIhBPhazXrhN09QTjv2LGjlHAOIl/jxo1BWGU0p1YkP9aTe/fudXd379atm9boBVFRUQghAwMDWP6o1WqQlEjIDRqW5ORkCMaoSXPS31+6CMZYrVaDNVvnzp3JIwo0J0Koffv2ovxwKAgCkBm2trYw8arValg116pVS4pg27lzp6b5SPnSnImJidAEsTXR7H+7du0QQjTNCXH127Vrp/UjgjGeP3++j4/PiBEjyCcDaE6E0Ndff63ZBMZYEASwrnBwcCCe6BA0yNHRUUon8Oeff/r4+DRr1gzsJ/SgOQn9LKXcwBgDr0PTnP/884+7u3vTpk21yoqipYHW8WKM7927Z2ZmZmBgQG/YTGe+f/8+uMKTrV4YzUnj86GkiZBGxCq650RII1dBk/z555/TAhUpAos7rTRnmZTPhOaEJQmZzUhD8FbCmsXa2hpedkEQxo8fjxCqXr261MQVHR0NswoRBvSmOaEtELdK/du0aVPovCAIYFOLEBowYIBarS4pKRk5ciTU4OTkRAwpcnJyiFM+PXCtaXC/Rgi5uLgQiVprzrc5WSrNiTFOSEiAnewgUkthYSFs0slozrdBnpXVigCjObXCUrEn79y5Y2VlZWpqqnVvKohlb2BgQDSAELKyV69eIoW1IAiHDx8Ga1kpmrNNmzZEd0ZGVVBQAOoABwcHeookNCdC6MqVKyJdkkql2r17N0JIoVDQi71du3bBHm/0SWhLEIQHDx5AJF6adNSR5vzmm29InyGxffv2IJ1/9D4Tc+bMgX3ayXpbVDM7/LgRAGnDx8eHKIXp8UK0w9GjRxMXOjDmCg0NFb0FBQUF4DSDENJKcyKE1q5dq8nZPHnyxNfXl+M40Y65hOb08/PT1IPn5+eDlUDNmjXJ7qG//PKLUqmk9WtkLIIg3L9/H944uns60pwk3iOpMC0tbdWqVTq+c2FhYYRHxBhDvBqE0LFjxwiwpOa4uDgi9hGaMyUlBSzOpk+frim2Zmdnw06WjRo1oisERTlCaP369ZrIP378uEGDBhzH0dYbWVlZoHDs1KmT5iNRVFQEq/qqVatCN/SgOTHGsEcmQujw4cN0hwGE69evk82fCM1JWNtJkyaJJnzipqlQKKRoYAJvcHAwz/POzs6a6mO1Wn3jxg2wniPIv2Oas6Cg4NKlS7AGtrGxkYkERUbEEmVF4MGDB9bW1sbGxlq3rY2MjIRd4oikAWYH3bt3Fz14giCcOHECJA2tNCdC6Pz586KpUq1Ww16JPM/HxsbSnQflHUJo8+bNmi/sw4cPvb29OY6jreBv374NYsOMGTM0WcaMjAwwgYINjKEtHWlOjuPovsmkY2JiYMrasWOHCCKM8ZMnT0DvL6I5b968aWxsrFAotm7dqll5RkYGWOmOHDmSAEhoToTQwYMHNdu6cOGChYUFz/O0z9arV68sLS0RQt9//70mRLm5uWAwV7NmTahQD5rzzz//VCqVCKGIiAjNXj1//hz820RqVmAfO3XqpNmrxMREV1dXjuM0pUcRVkTT2rRpU83ZT6VS7dy5U6lU2tjYkM0RGM0pwrByHlavXh1Cv2p+8S9fvowQ4nmemE/FxMQYGhp6enrS3uEwrocPH8LDqdWbEyG0c+dOzSbu3btXq1YtjuNo0wRCcyKEBg4cSJTdBMC8vDyYLX19fcnTmJ2dDVvzduvWTVOoUKlUCxcu5Hnezc2NDAdjXL40J8YYvLUQQr///rum1HH//n0IpUjHkk1PTwcbgqFDh2rq/vLz80FRXr16dfqtJ9Pd7NmzNV/tzMxMQKN3794E9ry8PLB+a9GiBS0rArAqlSogIAAhVKVKFfJdKCvNiTEGIzaE0J49e+gOk+eESIzEmxNjXLt2bYTQV199RZomtxvW7DzPy2zBAJlhFjI0NNTkcbUK54zmJCB/ConTp0+bmpra2NhoDcazdu1ahJCpqSmh32ByGDhwoOhFFgRh586dIJJppTkRQtevXycSBWBbUlIC+1koFAr6+SQ0J0Jo37595G0ld+T69esQUZAYRmCML1++DIuI4OBgzSKpqangnEqCK0BtutCcPM+TpktNDBw4EGxYNY0tVCpVbGwsyGw0zXnw4EEDAwNzc3OtQXpfvXoFAuqcOXMIgITmRAidPn1a83YcO3YMPlU055ecnAzbQwQEBGhCBFvOw86aUKEeNCfGGDSERkZGmsavKpXqjz/+IOwIgejevXtWVlYmJibEmoTGWXNpQF8l6dzcXD8/PzAoIU8suapSqUJCQnier1q1amJiIpxnNCfB58NK1KhRAyE0ZswYzcf4ypUr8OQTDdX+/fuNjIxonRUZLBHSpGjOMimfs7OzyaaVu3fv1uzb7du33d3dOY6j42Zfu3YNZqEFCxZofush7L/ITEpvmvPYsWM6as+CgoJIAPCXL1+SNTLZ2yUuLg7kW57nYYPkkpKS4cOHa34dCNqiRFJSEig2EUIODg5nz57VlI5ERfQ41IXmxBhv3LiR53mlUnnkyBGYZsH6hHlz6oE5KyKDAKM5ZcCpqEsZGRngglmvXj2RJHrx4kXYrI42RCUbfqxdu5YsQVUqVWRkJFmvStGcCoWic+fOdKSdrKyssWPHgnw8bdo0IsZhjGma08vLS7Src0REBPh1de7cmRbyioqKQNapWbOmSJ164sQJUGE0aNCA6FIxxqXSnIsXL4Y9JzQ/QvrdlSZNmoiUj/rVw0p9oAicPXsWIs0OHDiQqKXA723z5s3gUkZvmQkRGmvVqnXlyhUy5Ozs7IkTJ8K6RYbmNDIymjVrFq3nunbtWrNmzTiOs7S0pNl3jDGhOZVKZffu3cl6AGP86tWrYcOGwau6cOFC8qrm5+fDlieenp4iU4kjR47AhmcNGzak37hSac558+aB4ZimpEiGX9bEmzdvQDh2c3MTRcn4+++/QfcNCzBCtmGMp02bBkAFBATQurOkpCRY0FpZWRFFNnSJKK2MjIwCAgJo5K9evdq0aVOO46ysrEjEWigVGxsL2H7zzTe0bXVOTs7cuXNhm3Ti7K4fzZmVlVWrVi2EUNWqVYm0Cq1fuHCBUAK0NyfGeObMmRzHwb6J5KZjjFNTU8EF09vbu9R78fLly/r163Mc5+vrS8eDVavVkZGR4JrQsmVLsjqtCJqzf//+edQvMzPzyZMncXFxK1eu7NWrF7xHQNWU41NXKjKfToY3b96AgXndunWvXr1KP0uXL1+Gt4aWHA4fPgxmTGFhYbSkER0dTRaTUjSnh4cHbBJJ4I2MjAQau127drTAgDEmSzhjY+N58+YR43eM8ZUrV5o0acJxnJ2dnUinvH79eo7jlErl9OnTacHg1atXvXr1UigU1tbW9D64pdKcT58+hflHygucjAUSeXl5sPGkpaVlcHAwPTvFx8e3bdsW5hORpFFYWNirVy8woV2zZg39qN+6dQs8aO3t7Wmmn6Y5ra2t6Q8TxvjkyZOwWK1du7YoIkhQUBDHcaamplOnTiV3EGOcnp4OtsDm5uZkNtCD5szPzwcvNwsLi0WLFtE37s6dOx06dCAI0BT1jh07FAoFx3FLliyh19V5eXkTJ05UKpUODg5EASfCnD68fv26sbExz/Pt2rWjAy0UFhYGBwfDR3z48OHkvjCak0av0qbnzp0LH+gdO3bQc9Tr16/BZdnLy4u8NQ8ePLCzs+M4bvTo0fRXOz4+nohSUjSnsbFxYGAgeTwwxhcvXmzUqBHHcY6OjvQTRdOcSqWyT58+NKv68uXLfv36waO+cuVKus+nT59W/Pfr0aMHsbiH3YV/+uknsD8LCAig3wJ5mjMjIwP2ZNLlBYFbnJOTAzHBbG1tw8LC6O4RQRTmPZq0CAsL4zjOyMhowoQJ9NTx5s2bH374ged5MzMzEStAaE5DQ8OxY8eSDQvA0ad9+/bgEiEK2k8sZnr27Pn48WPyWObl5YWFhdnY2PA8TwcG14PmzM3NBfHSyspqxYoVNNo3btxo2bIlmaZomnP16tU8zxsZGYlAy83NHTlyJM/zrq6uWp2fyBAwxnl5eSCce3l5aQrn8OGjwxgwmpNG76NPw5aWCKEmTZqQaPPgdXT69GkIpvq///2P4PDbb7+BSLZt2zYyBxYXF2/YsAG2tNe6Nye83XXr1hXtJbR27VrYn6V79+60SEbTnGZmZiLrXrJY8/DwEEWMDwwM5DjO3Nx88eLF9DyTkpLSqVMnjuOcnJxE8XLkac6EhATovKbJL8FElLh9+7atrS3Hca1atRKRx+vXr4fxirw5MzIywOTLw8Nj+/btZH4QBOHixYsg4zk5OdGDpWlOZ2dn0b6VsbGx8Gp/9tln5DZBPyGQvrW19bx58+hPz7Nnz8C62srKirjI60dz/vvvv/BNbN68OS0AY4w3b95MojHR3pyZmZkgefr4+Fy7do2+d5cvXwYdwhdffCGCWvPw7NmzCoWC5/lu3brdv3+fZMjLy5sxYwYs8X7++WeCCaM5CUQfVmLBggUQaXbbtm3005KRkdG/f3/YH5c83v/++6+DgwPHcaNGjaKlgtu3b7dq1QpecBmaU3flM01zGhsbi+wtzp8/DwbuLi4u9GSLMV62bBnHcbD8pIeTmpr65Zdf8jxfpUoV2t9RnubMyMgA7aKmnYF+dxmCXogs/ARBIPHPnJ2dr1y5snPnTgMDg1ItREkfBEGIjo4GeRIhZGNjM3r0aJHcSzLrndCR5iwsLAQXDisrK9ibZseOHUqlktGceiPPCmpFgNGcWmGp8JMnT54Eqk+hUPTo0SMkJGT58uXDhg0D4zgXFxdawMIYd+3alfvv1759+7lz5wYEBDRv3lz53w+YTlpZSQyEhw0bBia6xsbGXbp0mTVr1owZM0BfqVAo+vXrR0u6hOb09fUF+3qEUIMGDSZOnLho0SJwooKPmeiDAT5Gtra2sHSsX7/+zz//HBoa2rNnTzjj5uYGsxiBtVSaMyIiguM4a2vr+fPnh4aGHjlyhJTVLwHCrpmZmYvsr3379jRHol9brFTlRCAwMBCMoezt7SdOnBgWFjZ//nzwAeI4rmnTpoTywRjHxcWBjl6pVA4dOnTZsmVjx44FEwRLS0t46Wh3SeKE16NHD5B4qlSpMmTIkKCgoKFDh8IDb2JiIlpAEprz+++/B0ccU1NTPz+/gICAadOmwaIXOiB6Vf/++29Y2sFLOn369NDQ0O7du8Mb5+7uTrOzEPlWqVS6ublJKfTXrl3LcZyNjU1gYODKlStFJg5639CjR4/CKKCfU6dOnTt3LkwmSqWyU6dO4CVA05zPnz9v2rQpDMTBwWHYsGGhoaGjRo2CudHQ0FAzPBEQNt27dwfkHRwcvvnmm6CgoG+++QaQNzU1XbVqFS3OgmZh9OjR8EiYmJj06tVrxYoVU6ZMAfUBz/O9e/cmbhz60ZywMzExRqlXr96UKVPmz58PVIFCoejYsSMEJ6G9OZ89e0Y4YF9f33nz5oWHh48fPx78XA0NDenMMrdm//79VlZWwAw1a9YsICBg+fLlHTt2BGy9vb1pnV1F0JywnpH6y/O8g4OD7jK6zEjZJSkETp8+TSQNPz+/4ODgFStWDB8+HN4mZ2dnWjeBMe7WrRtIGm3btp07d+6cOXNatGgBe1rDY6xJc9apUwd24UUI1a1bd/z48UuWLIFYtQghV1dXosQhnQSV0Jdffglvn4ODw9ChQ4ODgwcPHgxaMFNT07Vr14pe2OLi4j59+sAiDYqsXbvW398f+C0TE5Np06bR9GepNKdarQZ36p49e27YsGHlypWaDkakz5B4+vQpGC4ghGrWrDl27NjAwMD27dsbGBjwPN+0aVOI5CbyDLt+/bqLiwu8d9WrV//hhx+WLl06ZMgQmK8sLCxo1wqMMdCc1tbWzZs3h1Kurq6jRo1asWKFn58fnLGwsNC0xH/16lWnTp0AIhsbm0GDBoWFhY0dOxZQVSgUAQEBBFU9aE7Y6sbLywsIjBo1aowZMyYwMLBjx46GhoY8zzdu3HjUqFEib87i4mKwz0AIubu7z5gxY/369T/99BN8YXmenzBhAlGEiQAXHW7YsAGmQRMTk44dOwYGBgYFBTVu3JjjOIVC0aJFC5r6YjSnCL3KeZiUlARxFBFC9evXnzt37rp16yZMmADvtVKpXLNmDd3zn3/+GZ5wNze3KVOmLF26tEePHiYmJsBWmpqaaqU5O3fuDLONo6PjsGHDQkJCBgwYANOgmZnZxo0byXsBbcE3ety4cfC8mZub9+rVa+7cuVOnToWA8AYGBmPGjBEJZhjjRYsWwZRrYWEBU+6iRYvAU1CpVH7++eeiSUae5hQEATpQt27d8PDwWbNm0ZZwNCx0Oj4+HlTVCKHatWv7+/sHBga2atUKKNhWrVqBhp2mOd+8edOjRw8A1tLS8uuvv169evUPP/xAPh9TpkwhfAC0BTTnwIEDYXqxsbEZMGBAYGDguHHjQJoFszMRsBjjgIAAKAIr06CgoOnTp8M2fjCH0CZ6etCcMIWCjR0sWn/44YfAwMA2bdpA5KHmzZtDYFua5szKyvr8889BXKlVq9asWbM2btw4ZcoUsAnjeX7OnDkiBGjMSfrvv/+2sbGBGbJBgwaawjkJ7gf7VEGL9JBJVRhjiJQ+depU+qRUGnh0rfsdSBVh598xAgcOHICH38jIqF+/fkv/+/Xv3x9EEQ8PD9EarW3bthzH8TzftWvXBQsWzJw5s1GjRgqFwtDQEJQ5mt6czZo1c3JygiewUaNGkydPDgwMJFaVPj4+dBAvjDHQnMbGxsRUy8XF5dtvv122bFnv3r1h2jQ3N4+KihK9y69fv+7YsSNMGi4uLiNHjly/fv2oUaNAsDE1NV22bJlohoSxi7hPcgvy8vKg7JAhQzb+9yPcCckjSpSUlMydOxdmco7jOnTosHDhQn9/f5gADQ0NBw4caGdnR3tzYozPnTsH/qkcx9WuXXvSpElBQUH9+/eHwdrY2IgYC6A53dzc6tWrBwJYrVq1xo4dGxIS0qFDB3iFbW1tT506JerekydPGjVqBEUcHR1HjBixcuXKkSNHQoeNjIzo/VD1ozlVKtXixYuhQoRQu3btFixYMHHiRPAxMDQ0/Prrr53++9G2MvTSoHv37ppLA9o7QjQo+jA4OBimHXNz8y+//DIoKGjx4sVgZ6NUKjt06EDPbIzmpKH7gNLJycngKwIbkM2ZM4cW0hQKhUjBMn36dHiVXF1dQUjr2bMnLaRppTnLqnwGmpPneTILOTk5DR8+fOnSpf369YMZ1czMbOvWraKJKycn58svv4SJy8nJacSIEevWrRs7dixIOyYmJgsXLqSXJPI0pyAIoGn39vZeu3bt7NmzRQr8st7oqKgomL1JGFuo4fHjx7BoggmH4ziy663uTcTExEBvoRLYTr5Vq1adpX9du3YV2RzLNKcjzQlB/iGiOHzO4IFhNKcMtuySHggwmlMP0MqnyOHDh+ENJ3MNQsjMzOyrr746ffq0aFJOTEwcPnw4iEokf82aNcPCwtasWYMQ+vLLL+luwcp52bJl58+f79mzJ0iWpKCtre28efMyMzPpIoTm7Nq168OHD8nqjpQyMjIaOHCg1PT9/Plzf39/EHfoIkOGDKHdFKBF+JYkJCSIOkAOb926BVt+QlVTpkwhl/RIENmRdEwqUadOHa3R5PVolBWpbAjk5uauWrWKcE7kGXB0dPzpp59oozOMcUlJyZEjR8AFk+QEcer06dPgZLB8+XJ6jEC2HTlyZOvWrfXr1xe9rT4+PiJvJygLLggbNmw4ffp0165dyVoFGq1SpUpQUJBILwYFnz59Om7cONGrbWxsPGzYMM03i3hz0lpguvMQlYiMVKSmp3OWKS0IwqVLlzp16gQSDKnfzc0tJCQkPz8fwppFRkbS1WZkZMyaNUskinEc16RJk507d9JsNJQC5I8ePbplyxZN5OvVqyfyQiBt5eXlbdq0iSgESfeqVasWEhJCh/smNKfWnQsxxqdOnTI3N2/YsKFoFxZBEOLi4jp37gyrd9JE1apVlyxZkpub261bN4SQKKDljRs3hg8fLrq5CoWidevWW7ZsKXXlTwZ4586dwYMHix4qMzMzf3//J0+ekGzg7wXGg1J2Hr1790YIhYaG0qWk0hCugAyWJAwNDW1sbHx8fPr377927doHDx6IvnRSFbLzeiNw5MgRooghN8LMzKxPnz4nT54U4f/48ePvvvtONHfVqFEjNDR03bp1EMmHFNm7d6+hoWHr1q0TEhKmT58O2n/ShIGBQd++fUU0KowCaM7jx49HRET4+PiImmvQoMGhQ4e0jjcrK2vTpk2EaCRtNWrU6I8//iAdg7JAcy5YsEBrVXBy6NChpHVvb286mKRUqQcPHvTv31/0TlWpUmXq1KnJyclA8tHac6gnOTl55MiRoklAoVB06tTpwIEDNDtLaE5HR8eLFy8uXboU1FVksLCHliZ5DA29efMmMDDQ3t6ezg+6iYiICFrlBDQnx3EiHwgy8I0bNyKEevXqRc5A4tGjR4MGDRLNTvb29pMnT37x4sW4ceMQQtOnT6dLPX78+OeffxZN6dCrZcuWEWsSuohU+uzZs5rTKZjEib5uQHNaW1tLTZgwTUntpEh3oKSkBJQmtGkInYGl3waBW7dufffdd7AuIM8tz/MtW7bcuHGj6Pbl5eUtWbIEiDSS2dLSctKkSVeuXPHw8LCxsSEm6mRvzlOnTm3YsAGiYZNSCKHGjRuLjAxgIEBz7ty58+jRox06dIC7Two6OjqGhoZqfW5VKtXhw4dbtmwpknns7e1DQ0NpB2hoCBZrIiqXBjMsLIxuXWtv6fyQvn37ds+ePemCCCFHR8fZs2enp6cDyUe2TIMi2dnZISEhxC6NDLZOnTrr1q3T9K8CmjM2Nnb37t1NmzYVjdfd3V1qw93CwsLo6GhiLUEasrGxmTNnjshDHWjOsWPHiqZ36PP9+/ddXFycnZ01hd67d+/27t1bNFE7ODhMnz49LS0Nvg400QsTL+HXSa/gIQkLC9O8d5qww5knT57oKJyDNyfP81ILT6A5Z8+eLdUWfR4W4JqGyHQeln7vCMTExIB9Lf2MWVpaDh48WFObfPfu3f79+4PWG/JzHOft7R0REQFRr2hN9+rVqxFCvXv3fvz4sb+/v2iSNDY2Hjp0KO1CDVAAzWlubn7u3LlVq1ZpylctW7YURSEiGGZkZKxYsQIsgOnhtGnT5tSpU5rvLIgNIp6V1KZSqXr06EHqad26tdR7QYpgjFUq1e+//05sQ0nxpk2b7t69Oy4uzt7e3s3NTTTwhw8ffv3116JZS6lU9ujR4+TJkyJ2FmjOevXq3bhxY/78+SS6CbTF87yfn5+mpgs6mZGRMW3aNNG9ANPqqKgoesEFqiqO46QE0cDAQITQiBEj6OEDAvv37wc/VDJ8mLh+/fXXmzdvuri4VK1aVcQuHzlyBMK90EXMzMz69u2r9d6JGoVDlUp19OjR1q1bi5C0s7Nbvnw5PTqMMdCcDRs2FEm8pGYweNLFzBrCn9rb24vMAkhVLFG+CMTHx48aNUokpHEc17Jlyw0bNmgKacHBwSKB39LScuLEiXFxcdWrV7eysqLdJSGUYFmVz0BzKhSKM2fOhIeH165dm54nEUJNmzbVtDwAWDIzM9esWQO6I/r5b968+dGjR0UTF9Cc9BYhImxXr15Ny1pv6ZkDW9dpRowrKSlZsWIFjJHjONoQX9QfmUO1Wn306FHNNRQNgijN87zu9ujx8fFVqlRp1KgRrUCT6s+FCxdIeDxolNGcUlix8/ohwGhO/XArn1KCIPz777/bt29ftmzZkiVLYmNjRQs8UTMpKSk7d+6cMGHCggULDh06pHWNDUUIzQmHycnJmzdvnjp1akBAQHR0tFbWhKY5IWZRSUnJ3r17Z8+e/eOPP4aHh5PA66Je0YfAaixcuHDOnDnh4eFSshpdRCqdlZUVFha2cOHC9evXv009UvWz858mAsXFxRcuXAgNDV2wYMHatWtPnz4tg4NKpbp58+by5csnTJgQFhYmMvAUFQSBCVTGarX6woULy5YtmzhxYlBQkChcKl2Q0Jxw8tmzZxs3bpw6deqcOXP27t0rWiTQBSEtCMKFCxcWLFgAPhBvo4R98+YNvHEbNmx4m3o0Owlbjq9evTooKCggIEBHETA/P3/Xrl1z586dPHnytm3b7t69S5vX0a0A8gCyWq0+f/780qVLJ06cGBwcTPaQp/OL0sXFxYcOHVq8eLG/v//q1asvXbpEB20TZdb78P79+6tXr16yZMns2bOlWBxR5SkpKbGxsStWrAgICIiMjJRaRYtKaR4WFRWdOXNm7n+/LVu2sGWhJkQf9xlBEB4+fLhjxw6QNGJiYuT3qE5NTf3ll18mTJgwf/78gwcPSs1ChOYE8qykpCQ2NnbOnDlTpkxZs2aNjNcR0JwQelqtVp87dw5e2JCQEFE8aqn78vjx402bNgUEBISEhGjuPitVSvN8UVHRr7/+unDhwpCQkPPnz+virAOVJCUlbdy4MTAwMCAg4LfffpOCSNRibm7u9u3bZ86cOW3atOjo6MTERNFyGvKDN6ejoyNoA1Uq1ZEjRxYtWuTv779y5UpdtNgFBQW//fbb/PnzJ0yYEBERcevWLSm9kqiHuh8mJydHREQAArt379a0PtGsKjMz8+jRoytXrpw1a9bWrVtFIQc088ucyX7bRLIAACAASURBVMrKOnjw4Ny5c+fNm/fbb7/JCMMylbBLlQqB1NTUffv2rVixYvbs2b/88ou8uJWXl3fo0KFp06b99NNPUVFRUh81QnPCw6ZWq//666/g4OAJEyYsXbpUylaABK0lRN2jR4/Cw8N//PHHefPm7d+/X6TU0wpjenr677//PmfOHJhFdZ9bNGu7cOHCokWLFi9evG/fPt3JNtgwODw8fPHixbNmzdq3b58uk0BhYWFMTAx4RG3cuPHGjRtSpYDmBGFGEIQbN26EhoZOnjx50aJFJDK25ljIGZVK9ddff4WEhEyaNGn58uXnzp0r09BIPfKJZ8+erV+/ftGiRbNnz46JidFFtHv9+vXBgwdXrlw5Y8aM7du309pY+bZEV8tROBfVzA4/dAQEQUhISNi8eXPIf78//vhDagaDkT5//nzLli0TJkxYtGjRiRMnpB5jQnMCS1dSUrJnz55Zs2b99NNP69atoyNv0wASmhNEC7Vaffz48SVLlvj7+y9fvlwX52BBEB48eLB27VqIGaP3UgVjXFBQEBERsXDhwqVLl169elVEN9LdFqUFQTh79uzSpUuXLVsWHBwsM7fTBV+9erV58+bp06fPmjVr7969UhARmhN0dCqV6sCBA/Pnz580aVJYWJgujo/5+fnR0dEgHm/fvj0hIeFtvgj0EEhaEIR//vkHEAgKCtJFloalAa2E1Hvt//r1a5D/58+ff+DAAanVOuktS3yICKSmpu7fv58Iabdu3ZIZRX5+/uHDh0FIi4yMlOG9CM1ZJuUzoTnBrE2tVp8+fTooKAikOzpqglQnBUF49OjR+vXrAwICli1bdvPmTamcpZ6/ePEiCGmxsbEVuh65e/duZGTk33///ZYTyN27d3/66aeBAwcOKO03cOBAvaWgUnFjGRgCFYoAozkrFN73VrmI5tSxH6IvjY6lWDaGAEOABK2V8oyRgkhEc0plY+dlEKBpTpls7BJDgCFQjgiIaE7da6ZpTt1LfTo5RTTnpzNwNlKGQPkiIKI5da8cvDkJzal7wU8nJ01zfjqjZiNlCFRaBEQ0p479FNGcOpb6pLKJaM5PauxssAyBikZAP+WziOas6E6y+hkCDIEPDgFGc35wt0ynDjOaUyeYWCaGQPkhQHtz6l4rozl1x0oqJ6M5pZBh5xkCFYcAozkrCFtGc1YQsKzaTw0BRnNW3B1nNGfFYctqZgjogQCjOfUATZcijObUBSWWhyGgHwKM5tQPN1aKIcAQkEeA0Zzy+HyoVxnN+aHeOdbvDxYBRnO+r1vHaM73hTxr91NGgNGcFXT3Gc1ZQcCyaj81BBjNWXF3nNGcFYctq5khoAcCjObUAzRdijCaUxeUWB6GgH4IMJpTP9xYKYYAQ0AeAUZzyuPzoV5lNOeHeudYvz9YBBjN+b5uHaM53xfyrN1PGQFGc1bQ3Wc0ZwUBy6r91BBgNGfF3XFGc1YctqxmhoAeCDCaUw/QdCnCaE5dUGJ5GAL6IcBoTv1wY6UYAgwBeQQYzSmPz4d61c/PT6FQrF69ukwD2Lp1q1Kp7NGjh9T+9mWqjWVmCHxSCNSsWVOhUFy8eLFMo27durVCodi2bVuZSrHMNAI1atRQKBSXL1+mT7I0Q4AhUKEI/P7778bGxh06dMjOzi5TQx4eHgqF4urVq2Uq9elkvn//fpUqVapWrZqYmPjpjJqNlCFQ7ggUFRW5ubkpFIobN26UqfJmzZopFIo9e/aUqdQnldnHx0ehUJw4ceKTGjUbLEOg0iKwZs0ahULRv39/tVqteyeTk5OdnZ2trKzu3bune6lPKueZM2csLS19fX1TU1M/qYGzwTIE3gEC+imfs7Ozq1WrZmhoGB8f/w46yZpgCDAEPjgEGM35wd0ynTqckZGRkpKSn5+vU+7/y5Sfn5+SkpKZmSkIwv+dY/8ZAgwBnRB49epVSkpKcXGxTrn/L9Pr169TUlIKCgr+7wT7X2YEAPmSkpIyl2QFGAIMAX0RKCgoSElJycjIKKvAkJaWlpKSwl5YKeBVKlVqampaWppKpZLKw84zBBgCpSIgCIJ+s016enpKSgqz+JRBGOSuoqIimTzsEkOAIfDOEMjLy0tJSXnz5k2ZWlSr1WlpaampqUzekMKtqKgoNTU1PT29TPyxVG3sPEOAIUAjoJ/yWW/pjm6apRkCDIGPGAFGc37EN5cNjSHAEGAIMAQYAgwBhgBDgCHAEGAIMAQYAgwBhgBDgCHAEGAIMAQYAgwBhgBDgCHwcSLAaM6P876yUTEEGAIMAYYAQ4AhwBBgCDAEGAIMAYYAQ4AhwBBgCDAEGAIMAYYAQ4AhwBBgCDAEPmIEGM35Ed/cD2loBQUFZd3f60MaHusrQ4AhwBD4/yOQk5OTl5f3/z/HjhgCDAGGAEOAIcAQYAgwBBgCDAGGAEOAIcAQYAgwBBgCDAGGAEOgDAgwmrMMYLGs5YhAbm7uxYsXo6KiAgICunbtWq9eve7du1eezbpevnx5qbTflStXHj16xIiKcnwqWFUMgY8YgbS0tJMnT27YsGH8+PHNmzf39vaeOHFi5RnvgwcPSpvzLl27di0pKYlt4VN57hrrCUOgciJQWFiYqsMvMzOzrBtaV87xsl4xBBgCHxYCKpUqPT291Fnq9evXBQUFZd2C+sOCgvWWIcAQYAh8HAjk5eWVOqunpaVlZWVVHq3jx4E8GwVDgCHAEKg8CDCas/Lci0+rJ2fOnKlbt66joyP6v1/v3r0rj/Y8ODj4//pV+n9PT8+JEyeePn06Jyfn07qLbLQMgXeOwIsXL1q1atWgQQNviZ+Pj0+bNm169+69YMGCQ4cOvXjxopLop1atWlW7dm0LCwsyp2zevPmd4yfZYK9evUjH5BMcx7Vp02bJkiXx8fFqtVqyRnaBIcAQ+FQR2LNnj/w0Ql+tVq3ad999t2/fvoyMjE8VMDZuhgBD4J0i8Pjx4xo1atATkUza0tKyV69emzZtevbs2TvtJWuMIcAQYAgwBHRGYPHixTIzueiSl5fX5MmTz5w5k5ubq3MLLCNDgCHAEGAIVHYEGM1Z2e/Qx9q/wsLCpKSky5cvE4Fj/vz5lWewhOZs+d+P53mEUIsWLeAQ/jZu3NjGxob039TUtHfv3iz0buW5iawnHyUCRUVFt27dOnHixGeffUbePoSQtbV1ly5dBg4c2KZNG2dnZ47jEEIGBgbe3t5BQUGFhYXvHY2cnJznz5/HxsZCt42NjV+9evXee0U6ADSnjY1Ny5YtfXx8OI4zNzcXTXr16tUzNjYmsDs7O0+fPp0xnQRDlmAIMAQAAUJz0kJUs2bNaCGqadOmtK2bkZFR69atb926xTBkCDAEGAIVjQChOb28vFq2bAlzkYeHBz1HtWzZskaNGrAGRAgpFApPT88dO3ZUEuO5ioaI1c8QYAgwBD4sBAjNSQufosWspgavb9+++fn5H9ZIWW8ZAgwBhgBDQAoBRnNKIcPOvwsEHj9+DBpznuf379//LprUrQ2gOWfMmAHZjYyMEEKa2vzi4uL+/fsjhNzc3ExMTBBCrVq1SktL060RloshwBDQH4Hjx48Tvo3n+ePHj5O6SkpK9u3b16ZNG3hzEUL169f/999/SYb3mDh58iR0u1GjRpUqWiPQnDAPnzlzRqFQNG3aVFOX9++//yKEjI2N69WrZ2BggBCaO3cui/zzHp8o1jRDoBIiADTnV199BX0zNTVFCGm1A1uyZAlCyNHR0c7ODiHk4+Pz9OnTSjgi1iWGAEPgY0IAaM6qVas+ePAAY/z9998jhFatWqU5xrNnzyKELCwsqlevzvO8ra3t4cOHNbOxMwwBhsA7QOD8+fNbtmw5e/bsO2gLmjh16tSWLVsuXbr0zlp8Bw2VlJSkp6c/ffo0LS2tqKjoHbT4bpoAmnP27NnQnJQGr6ioqE+fPhzHubu7g/1umzZtKpXx8buBi7XCEGAIMAQ+SgQYzflR3tYPZlC7d+8Gjb9SqaxUii0dac6SkpJBgwbxPL9u3bqYmBhzc3OE0Jw5czS5gQ/mlrCOMgQ+EASWL19OaM6GDRtqhrzOzs7+8ccfIQ/Hcc2aNUtJSXnvgxszZgx06dtvv9W0nHiP3dOR5nz69ClCyMPDIzk5edy4caDyqyQU8ntEjzXNEGAI0AjoTnOuWLECITR+/PhTp07Z2toihPz8/JjlBA0mSzMEGALljoDuNGdcXBxCqHnz5gkJCY0bN0YIVa9enbn+lPsdYRUyBHRBwN/fHyHUpUsXXTKXS56BAwcihPr06VMutb33SnJzc+fPn9+lS5fGjRt7enr6+vp+/vnnEydOTE1Nfe99e/sO6EhzgqOCQqGIiIjYu3cvaPAWLlzINHhvfwsqeQ15eXmPHj16/vx5Je9nxXUvPz//0aNHH1kE/tevXz969IhFn664x+aDq5nRnJXilqnV6rCwMD8/v/fi0ahWq1etWuXn5/fHH3+8SzgEQZg4cSJo/OvWratf01lZWQ8ePIiLi9u3b98vsr9ff/1V9ybKSnNu374dY7x48WKe5319fTMzM3Vvi+X8xBHIysrq27fv119//ebNm3cPxaZNm/z8/Hbt2vXum36bFgVBAGUTTCArVqyQqs3Pzw/yIIQ6d+78fh0oi4qKrK2tEUIcx4WFhUn1Wea8IAhpaWm3b98+e/ZsdHS07Jz3y9GjR2WqEl0qK81ZXFyclZXl5eWFEBo7dqyoNnbIEHiPCJw/f97Pzy8gIODd9yEtLc3Pz2/o0KHvvmn9WszLy0tMTLx27drBgwcjIyNlppSoqChNaxKpRstKc06ePBljfOTIESMjI1tb27i4OKma2XmGwEeAQEpKip+f34gRI979WPLz88eOHdu3b1/wYnz3HShri0VFRS9evLh58+aJEyd+/fVXmTkqMjLy/v37OtavB82JMX758iVIcevXr9exIZaNIaAVgUuXLvn5+c2cOVPr1Qo9+erVqw9LUKHRAJrziy++oE9WaBpozl69elVoK++m8uvXr8OeLzzPW1tbOzs7W1tbQ1xuLy+vv/766910A2MMGrwrV67ExsbKzOq//PJLmTR4ZaU5o6KiMMbz5s3jOK5JkyY5OTnvDAHW0HtB4NChQwihhg0bvpfWK0OjEA7Nx8dH9zVdZei2fB+mTZuGEPL395fPxq5+OggwmrNS3Gu1Wj1y5EiI/vfuO6RSqaD1efPmvcvWc3NzO3ToAAzE8uXLy9p0YWFhaGhomzZtHBwcYB8+QmZoTRgaGurehH40Z0JCgrm5ubW19cuXL3Vvi+X8xBFIT083MzPjOO69PDaTJ09GCE2aNOnDugvPnj0juyUZGxsnJiZK9f/q1atVqlSBOcHc3PzcuXNSOd/B+X/++Qd6wvO8HgGXEhMTx4wZ4+vrCw+M1omOPtm6dWvdB6UHzYkxjomJQQjVqFFD94ZYToZARSMAj6Wnp2dFN6RZ/7NnzxBCPM9rXqqEZ6Kjo7t06VKtWjWFQkFPHVrTSqUyLy9Px1HoR3NmZGQ0a9bM0NAwNjZWx4ZYNobAh4hAYmLi+5oosrOzYfvtd6nR1vseXb58ecCAAV5eXmQPAq2zE5zkOC48PFzHtvSjOTHG06dPRwgNHjxYx4ZYNoaAVgQOHDgAnsFar1boyefPn7+v+eftx3XkyJHAwMDIyMi3r0rHGmJiYgIDA3fv3q1j/kqbLTExsWrVqgghU1PT4ODg8+fP37lz5/z587Nnz1YqlQgha2vra9euVXT/CwoKVqxY0aZNmypVqpS7Bk8/mvPOnTtGRkY2Njbp6ekVPfwPq/6SkpLffvtt3bp178X98e7du2FhYfS2RG+PHqM5P2Kac/To0W//hLAaPg4EGM1ZKe7jp0lzJicnOzg4IISUSmWZAmUIgvDgwQNfX1/RWpfjOF76Z2xsrPvN1o/mLCkpsbe3Rwjdu3dP97ZYzk8cAUZz6vEA7N27l7z+vr6+MtaXWVlZbdu2JZmnTp2qR3PlVSQkJAR6YmpqWqbAGiUlJUeOHHF0dCQDgYT0hPf/rrRt21b3nutHcxYUFPA8z3FcYWGh7m2xnAyBCkWA0Zylwvvy5Uva0x3mE3khytDQsKJpTrVa3bdvX4TQpk2bSh0Cy8AQ+HARYDRnqfeuqKgoMDBQ0wJDRuxRKBTr1q0rtWbIoDfNuW/fPo7jWrdu/TF5QugIGstWjggwmrMcwWRVlYpAUVERuKWamZmdOnVKlP/YsWOwReWgQYMqLu6RIAj3799v2LChaDErL3yWSYOnH81ZUlJiYWGBEHr8+LEImU/8MC8vr3Xr1hzHxcTEvHsotm3bBhHjy7FpRnMymrMcHydWVaVFgNGcleLWfDo0Z3p6+tWrV+/fv19SUnLgwAGw4fL19S3Tbbh27Vrt2rWJhOTg4DBixIjVq1dHRkZGSf+io6N1b0U/mlMQBLCSu3r1qu5tsZyfOAKM5izrAyAIAsSmgElg2LBhMhu5CYIwbtw4Ml107ty5rM29TX6VSvXkyZNLly6lpKQUFRX169cPejJkyBDdqy0pKVm+fLmpqSkZRd26dadOnbpp0yb5Se/YsWO6t6IfzalWqw0NDRFC7yXksu6jYzk/KQQ+bprz+fPnd+/eJTc0Nzf36tWruhOQGOPk5OTWrVsTh3hzc/OvvvpqxYoVO3bskJahon799Vfd1fr6eXMKggBquNWrV5MBsgRD4OND4OOmOTMyMu7cuUPuWlFR0bVr15KSksiZUhNZWVmDBw8G6QIkn7Zt2y5cuHDr1q0yc1RUVJTukXj1pjkPHTrE83zz5s2ZdVep95FlkEGA0Zwy4LBL5Y7Av//+6+rqynHc7NmztVY+fPhwCOaZlZWlmaGkpOThw4d08KTXr1/fuHGjTJtZXr582dPTkyxmHR0dv/322/LV4OlHcwqCAI4K8fHxmmP/lM8wmvPju/uM5vz47ikbkSYCjObUxKSUM2/evImMjOzatauHh4erq2vbtm3DwsJevXqlVqtJydevX0dGRm7btk2rTZBarf7777+3bdu2c+fOgoKCs2fPbt26tV27dgih//3vf9v++z19+pTUhjEWBCEzM3P79u2dO3d2d3d3c3Nr3759eHh4eno63S7GWK1W79mzZ9u2bSqVKisra+fOnR06dKhWrVqLFi1+/vnnU6dO0S5EgiBA6+DtRFov902Jc3Nzjx071rhxY47jjI2NDQwMvv/++wEDBoCgU6Z93dLT093d3aGgoaFhy5YtaZGLBu1t0vrRnGlpaVZWVkqlstwBfJuxsLLlhUBWVtbu3bv9/PyqV69erVq1Vq1arVixIi0tTaT5ffjwIbzFWrdoLS4u3rVr17Zt26Kjo/Py8nbs2LFmzRojIyOO41atWqW1YFZWVlRU1JdffglzTps2bVatWiWac+Dd/+2337Zt21ZSUpKdnb1r165OnTq5uro2bdp06tSpx48fF737Fy9e3LZtW5cuXWDTSmj60aNHbwlXampqVFTUoUOHiouLnzx5MnPmzGbNmg0aNOgtq6WLFxUVde7cmSyT1q5dS1/VTMOaB/LXqVNHM0O5nxEEITU1NTQ01N7enud5ExMTY2Pj8PBwb29v6MaZM2d0b/T8+fNgZIoQsrCwmDFjhu5ldc+pH815584dhJCJiYnuDbGcDAFAQP3/sffdYVEk3d7VEwlDlCSIAREEc0BMqChGdFHUdVUwIuasa1rjrrgqKqK4CiKYMO+aFUHBrBgXA6igSFRAQEDSzHR/z33P/eqpp7tnGJDd6+47/KE11VWnqqu7Tp86vxOUyqSkpPnz57dv397S0tLJycnX1zc2NrasrIxcIrlcfunSpYiIiNu3b5P1uJyamrp///7IyMiMjIy0tLTIyEhI3WRpaQls7d69e7gxsMrnz5/Pnj27bdu2FhYWzs7O48ePj4uLY43LMMyTJ08iIiKePXtG03RycvKUKVNatmxpbW3t7e29ffv2N2/ekAJYWVnZ/v37t2zZAsl3YeioqKgaAZDkPHG5tLT05s2bGzdu/O677+rVq4cQGjJkCMMwlZWVoaGhwBw6derEnT+mQBZKSko6deoEjEgkEjk5OT148IBsUCfl2sGcZWVlHh4eAoHg74xHVyf3qyXyr1wBmqbz8/ODgoK6d+/eoEGDJk2aDBo06NChQ4WFhSzd7sOHDyMiIo4dO8a7DcvLyw8fPhwREXHjxo2SkpLIyMjNmzeTjOLkyZPl5eV4DSEJd2BgYNeuXW1sbOzs7AYPHnzkyJGioiLWuAzDgCwH7Oj58+cTJ050cnKysbH5/vvvQ0JC3r17h7tUVVWdOnXqt99+A4vMpUuXApv6+jB9VVVViYmJu3fv9vX1tbOzQwi1bNmSpmmFQvHw4cOmTZsihGxsbDTEIGmaXrNmDZbxrK2t/4pwkbWGOUNCQhBCf2dqQPxiaAv/JytQXl5+9erVH374wdHR0crKqn379kuWLElOTiYtLBUKxeXLlyMiIm7duoV3HDnbd+/egaDy/v379PT0yMjIuXPnIoTMzMxgG969e5dsr1QqX7x4MXfu3Hbt2llYWDg5OY0bN+7atWtcDkPT9JkzZyIiIqqqqkCtNGzYsEaNGjk7O/v7+x8/fpzc4LyCyuHDh8kTIjkNzcvnz5+PiIgARpSfnx8WFta7d28bGxsHB4fvvvvuxIkTxcXFqqiVl5enpKQsXLjQ3d3d1tbWwcFh8ODBe/bs+fTpE3cxMzIyIiIiWDG3Y2NjIyIi8vLyysrKYmJihg0b5uDgsHfv3uP/+eMOTdM0HJljY2O5s3r16lVkZOSlS5fAr/Hdu3cRERF37twhW9I0DWftUaNGOTs729rauru7L126NC0trbKykmyJy5WVlbdu3fL19XV2drawsGjTps3cuXOfPn36V3hPyuVyFlqZkJCgp6dnamp6//59PCWyEBwcTFFUvXr1cnNzoT4/P//y5curVq3q06cPiJqLFy+GtJoLFiwAUzkvLy8N55+Xl9ewYUNg7FKptHv37rxqUnJKtSjXDub8+PGjrq5uTcPL1WJ6/7guWpjzH/fIqp2wFuasdom0Df4FK6CFOWv2EO/du4fVQ/gAhhCytbXdu3cvppWdnd2qVSuEkJOTE9d89enTpzY2NhRFjR49uri42MPDgyQFZVZkgJs3b7Zr147brEmTJgcOHMDjMgyTl5cHzW7evNm1a1dWF6FQOGTIEAzCffnypU+fPqw2CKG6zYp0+/btPn36CAQCU1PTtWvXnj17dvPmzUZGRuCcJBQKyaUj74VbrqyshDSiCCEdHZ3AwEBVoiS3b41qagdzHj16VCwW29vbkyeKGo2rbfzNrsCTJ0+6devG3Sz169cPCQkhld2PHz+GZJDjx49nHUeVSuW2bdsQQkKhcNu2bY8ePeJNSvH8+XO8Dvfv33d1deWOa2trGxYWhpsxDPPp0ydodv/+fZz1FncUCoX9+vVLSUmBLlVVVUOGDMFXceHgwYMkzVqUf//9d4FA0LVr19DQ0Pr16wPlmnpsqx+3uLgYp9tECD19+lR9+61bt+IblMlk6ht//dXy8vLffvvNwcGBoqiWLVuGhIRcvHjxu+++k0qlYrEYIWRpaUkqR9SPmJ+fD0pDhJCDg8PNmzdZsLr67ppfrQXMiSNMenl5aT6QtqV2BRiGKSkpWbt2rampKd6bUJBIJAMGDMCcimGYqqqqqVOnIoSsrKySkpJYq1dcXNy5c2eEUIsWLdLS0n766ScWQYTQrFmzcK/i4uIVK1aYmJiwmkml0sGDB5NWUwqFYsyYMQihn3/+efPmzRBjn+xlaWm5Y8cOTPny5cvkVSibmpp+fT6b+/fv9+3bt3nz5pj+/v37P3/+7OfnBywF6i9cuIAno6YQHBwMSZhgZQoKCtQ0rvWl2sGcSUlJFhYWhoaGN27cqPXQ2o7aFaiTFaBp+uTJk9iwEu8+hFDr1q1ZyaKOHj2qr68vkUi4uSErKirGjRuHEBKLxefPnz99+jRJCsp2dnY4eYdSqYyKimrQoAG3Wfv27Vlbo6qqCozVdu3a9fPPP3M5qo2NTXh4OCxISkoKlspI4gkJCV+5YtnZ2X369OnYsSMm6+PjwzDMnj17ZDIZrgwICNBkoJSUFLDnQAi5ubklJydzoQ5N6KhvUzuYU6FQQM6UtWvXqqevvfrvWIGcnJxRo0aRn1p4n01NTefOnYsDmcjl8pkzZ4KEz3UIKy4uBp1M8+bN3759u3r1arwpcIG0+S4uLl61ahWvoDJo0CBSUAFpCohkZGSMGzeOda6kKKp169bYtvLKlSt4RFwwNDTEqqFaPzXQj4WHh0dGRjZu3BgTx4Xu3bs/efKES//z58+jR4+GiKm4MRSaNWsWFxfH6gI4Fis5LoBwd+/eHTNmDI5UMXv2bBsbG6lUevPmTRaRjIwMCIjdsGFDri3anDlzIP8uAHiLFi1CCJEPiGGYpKQkrp4NrFEXLFjAdfXOzc2dNGmSrq4u6x4NDQ0nTJiAkUXWPGvxs6qqKiYmZuLEiayjGXx61JibhISECAQCc3PzvLw8GPfAgQP9+vWztbXFc46Pj8/Ozu7fvz8OJy6VSv/8889q51lRUeHr6wt0dHV1t23b9hdp8GoHcx48eFAoFDo6OuIdXe0dfZsNHj58uHPnzlWrVq1Zs2b37t2JiYmseZaWlib+50+VIuLt27e4QWpqakJCAnzygoKCoJ67X96/fx8ZGblu3boVK1Zs2bLl2rVrvA+3qqoq6T9/9H/+7t27t23btpUrV+7cuTM2NvbTp0/kVIuKihITE3/++WeEUKtWrWDoDx8+kG3Ulz99+nTixIlff/112bJlgYGBFy5cAGMO9UFrS0tLL1y4sHnz5mXLlq1fvz4qKor3EJefn5+YmJiWlgZz+PDhw8GDB9euXbty5cqgoKCbN2/yrgA54bdv3+7bt2/t2rU//fTT1q1bpUmT8QAAIABJREFUr1+/zvtEUlJSEhMTQc2Ynp4eFha2atWqjRs3njlzhvUhIIlDuaCg4OTJk3gFzp07Bzme1MCc79+/P3r06ObNm1esWBEUFHT69OnaHRLz8/OPHz/+66+/Ll++fMOGDUeOHMnJyeHOsKio6NmzZ5mZmQzDlJeXX7x4cdOmTT/99NPevXtv376tJiMVlxSEeePNzfnp0yd4f3gfJZeUtubfsQJamLMGzzEmJgbi55ibm69cufLJkycvXrzYsmULmKkKhULSY+D9+/eGhoYIoQkTJpBsq7KyskOHDoCMpqSkgJtCWFgYSIdDhgwJ/88f6c156dIlGLd+/fpr1679888/nz9/vnHjRjh7C4VC0hI/NzcXZAgDAwORSOTh4XH9+vWCgoL79+/7+vqCmO7n5we3LZfLL168iEf/7rvvuKPXYIE4TZVK5fnz52HQRo0aYTSiuLgYwzB6enoPHz7kdOWvSE5OtrKyAgvo8ePHk9gSf4fa1tYC5qyoqICH6OPjo6FdW21np+33d6/A9evXpVIpQsjExGTZsmWPHj1KTk4ODg6G4MlCoZCV5SI8PFwkEkmlUpbeOTU1FV5gX19fhmHy8/PDw8M3bdoEG3zr1q2wAbEbaGxsLFwyMzNbuXLl48ePX758uXXrVsxzSONfbOJgaGgoFArd3NyuXr1aUFDw4MGDyZMnwzYExRP4M125ciU8PBw8uT08PGBoEl2o3SqfOnVKIBBYW1ubm5tTFCWTybp160aCAbUjS/aKjo7GJy4LC4tq9V/Lly/H7UUiEUmqzstyuXzJkiXUf/6+++477J/x8OFDPAfwxNJw6F9++QU66unpnT17VsNetWhWC5jzwoULUqmU+/7XYnRtl/+qFaBp2s/Pj6IooVDo7u4eFRWVnZ195cqVsWPHAsdzcnIirYXy8/MBZbS2tiat8jESKRKJAHV4+PBheHg4gAoWFhbA1jCfpGnax8cHDE369u177NixDx8+XLp0CSsxO3TogNmvQqEYPXo0QgjU9CYmJoGBgW/fvs3MzDxw4ED9+vVBmXjp0iV4dhkZGeHh4eCERFEUDH3o0KGvd5IA+nK5HDAMXV3dnJycwMBAsVgsk8mwTpOryOO+VEqlskWLFiBE9erV668TomoBc1ZVVXl5eSGE/gWaJu7Ka2v+cStw4MABMAhwdHTcvn17cnLyw4cPly1bBttQJBKRsaMrKyuBtxgbG7M0cUBHIBBs27aNYZi0tLTw8HAwyMCM4vjx41haCA0NhXGdnZ1DQkJev36dkJCwePFiOFSKxeJXr17hxayqqoLgFoaGhuCIExwcDO5iYWFhxsbGID+A59Pnz5+joqKCgoIgz/eSJUuATWGlNiZbu4JSqQR4g6KoLVu2JCUlyWQyQ0NDbFfBxYC5A9E0PXDgQJi2vb09yfC5jb+mphYwp1KpBIBKIpFg/ebXzEHb9xtfgZSUFDA4kEgkkyZNunbtWkZGxsGDByHqO0VRJNr96dMnLKiQjnQKhQJkEpFIdPnyZYZhHj16FB4ePnHiRIRQvXr1YBvieBU0TU+YMAEEpD59+hw9ejQnJ+fy5cujR48GAalNmzak6rm4uBj2i7m5uUAgaNCgwbFjxwoLC1++fLlmzRqwKW/dujXwpczMzPDw8LVr14IYAEMfPHjw6wUV0IFMnTpVJBIJhUJPT88TJ06kp6efP39+1KhRMHN9fX0W0imXy2G/i8XisWPHPnv2rLi4+P379yEhIWDrYGBgAEpw/KrAsYgFc+rr6yOEIOi9WCy2tbX19fVNSEjo3bs3Qgh8EDEFhmEOHDgAiyaTyVhTomna2dkZIbRv3z7osnDhQhbMWVlZCSdxmUy2fv36jIyMgoKC+Ph4Nzc3AFlZSYKzs7MBK5JIJKNHj758+fKHDx+OHTvWp08fwAtnzJhBTq925YqKigcPHnTt2hXEwg4dOpB0ysvLU1NT09PTVRnLgntx+/btWVw3Li4O0FkjI6OysrKRI0eKRCKcSEVXV5f8JJEjkuVnz57B7qAoavLkydWe3Mm+NSrXAuYsLy8H3eykSZNInW2Nxv0/b1xUVDR06FB4q8l/fXx8yPPU2bNn4ZWbP38+9wjw5s0bsCNv3rz5u3fvyAjDmCbmVAzDKBSKHTt2YMMC3KZNmzYvXrxgPeW7d+8ihKytrQsLC4El4vbgvnL8+HHcZcGCBeRVKC9btkyTdaZp+vr16xCFmCTSoEGDu3fvQrTwNm3asEjRNJ2ZmQl7n+wlk8n27NnDejGCg4MRQkOHDq2oqNi2bRsWcnDHnj17FhQU4Nshx6qqqtq0aRNuiQsdOnRgGXV9/vwZ9nJBQcGuXbvwcQ+6iESipUuX8uKpNE3fvXsXJD1MH4Jq3L59G6xyW7RoQbICpVIZFhZG2qVBRwsLi8jISO6rQt4RWVYoFJcuXcL8AY+uq6vLTX0CR+bJkycXFRVhaAB3sbOzYzFnciBWWRXMmZeXByEzpVLpmTNnWL20P//FK6CFOTV9uLm5ue3bt4fojiyrpZSUFMi41qxZM1Ku3bVrl1QqNTQ0PHfuHAxTUVExb948hJChoWF0dDQeW01uzuzsbGC4gwYNIn28GIZ59eoVqITatGmDJRIMcxoaGu7atYvE2yorK5cuXYoQMjIyIg/hCoUCXCRXr16Np1QnhcOHDxsZGUFIFvKj+OXLF7A+Rgg1aNCAaxakanSIFATmvSw/OVVdaldfI5iToqgpU6a4u7sjhCwsLDCaW7uhtb2+tRUoKCgALLBnz56PHz8mp5eWlgZ6cDs7O6wch3AuwBMaN2785s0b6PLp0ycw/GzatCmuBLBTX1+foqjs7GySeG5uLpjGe3h4sHhOamrqyJEjEUL29vbY8BDDnDKZbOvWraTcU1VVBWdaAwMD1ijAkebOnUsO/TVlgDlBRpk4cSLXnf1riENfHO8aIaSJyDtp0iQsMzVo0ODrJ6CKQlFR0dSpU0EM7dWrF2mcm5SUBHOgKOqXX35RRYFV//nz5+7du0PH+fPns4RsVuOv/FkjmNPCwiIsLAzcTEeOHKk5D//KSWq7/ztWABuNBQQEkJ9yCCNmbW0tlUpZkSqePHkCfkhLly7FB7OjR4/q6elJpdKtW7eSK6MqNyc2GmOFgqBpOioqytzcXEdH5+TJk0AKw5wIIWdnZxYT/vjxI8TYGDNmDClopaenI4QEAgE5nzopK5VKwFfatWu3f//+evXqrVixIj09fcSIEWZmZsOGDdOEP8THxwM/adasGWlOVyczJInUFOYcOHAgfEyNjY1ZfnIkWW1ZuwJ/zwokJSWBmmb8+PEsQOvRo0cgE44aNYp02cnMzIRAPp07d8Zf/6ysLHt7e4TQ8OHDSV6nKjfns2fPYFw/Pz+W4XlCQgJ4rk+aNAkLeBjmRAi5uLiw/N1zcnLgCDlz5kzMNouLi1u0aEFRFCvq49cvLE3TYIArFou3bNliZWU1YMCAT58+bdiwwdzc3NXVlXVHvCO+fv0aC2xRUVG8beqksqYwp4ODw6pVq2QymVQqDQwMrJM5aIl84yuwYMECiqLs7OxYRqvFxcVgQGlpaUmeqhITE62trQFXwzvuxIkT4Oq9efNm8n5V5eaMjo4GUHDjxo0kh6Fp+ujRo5aWljo6OkePHsWkMMwJ6giWQH769GkDAwOpVIpNshiGycjIqHNBBWBO0ISEhoaSclFFRcXRo0cB5Ro4cCDJCS9cuIAQ0tfXP3ToEAsSePXqFWDMrNhFamBOhFDjxo3/+OMPLA4dPHgQIdSoUSNcA5a+ODaYSCRiBcl/+vSpQCCQSqXY/YgLcwJOIJVKr169ih8EeNZC9BETExPyQWzYsEEoFFpYWJAPDlIPgMbJ1NT0axxqMzIygoKCevToAYCTSCQaMmQIKzIcOU9uOSUlpUmTJgih0aNHk8+OYZj4+HjwtfX29oZ4bGFhYc+ePXN1dbWyspo+fbomEEhQUBAw9l69emGbHu40vr6mRjCnQCCYNm0aoCCWlpZc38evn8/fQ+Hly5c9e/akKMrAwKB///7z58+fPXt2r169ICmSu7s7NmaCmPBCoVAikWAFNZ7k6NGjKYpq2LDh06dP8/Pzp0+f7unpCfZSrq6uw/7zl5ycDO0/fPjg5+cH74aLi8u0adN+/PHHoUOHAlBqa2vLivN869YtcHfu3bs3RVHOzs6zZs1auXKlv78/6BNMTU0vXrwIxPfu3Tts2LCWLVuCjwEMzdqqeNpkoaKiYvv27WAkYW1t7efnt3r16gkTJrRu3VooFOrq6kIwMy7MefToUThmNmjQ4Pvvv1++fPnEiRNhAkKhcO7cuSTjApizT58+o0aNEolERkZGgwYN+vHHH2fOnNmrVy/Yhi1btrx16xY5N4ZhsrOzx48fD8/F1dV1+vTpixcv9vLyggnb2dmRmsbCwkLYNVOmTNHX1zc2Nvb19V2zZs2cOXOwNcPixYtJ5gZcJSQkBFBeKyurSZMmrV69etKkSW3bthUKhRC7CGIg4Y8UTdObN28GsLZjx44LFy5ct27djBkzIDKZvr5+ZGQk60Z4fyqVyhUrVoABbqtWrebOnbtq1SofHx9YRj09vTlz5pCg+6pVqxBCbdu2bd68OXhoLFiwYMWKFWPGjIG3rnHjxtzoCLxD88Kcqampffr0oSjKyMiIxXt5iWgr/00roIU5NX2ax44dAwGFpeqC/qWlpRCHllTMyeVybGMLX5fr16/r6+sLBIKgoCByYDUw5759+wQCgaoQEx8/frS0tBSJRCdOnACCGOYcO3Ysi+uBPziIzrg9WOKogjlzc3OTNft79eoVhltgJm/evIEvn0QiYTkhff78GUQKhND06dPJpVBfBkMPiqI0j3OrnqCqq7ww58yZM2cTf5MnT/bw8CBDylhYWJDwlSri2vp/1gpcunRJJBKZmJhglyDW/CHVBMtys6ysDOp79+5dXl6uVCohXZxEInnx4gVJIT8/nxfmPHHihFAoNDc35zVlKisrg+xKWPLAMOd3332HVWB4oIqKCtj7LLWRKpgzLy9Ps63/P61Is2IMc7Ki5cBMwFZOQ8pv3rzhnoXKyspIo7lqk4l++fIFjHlBUnRxccFroqagVCrPnTsXFRVFqhjUtIdLQUFBINoaGRnh4zFcSkhIgAlIJBKWukQN2Tdv3oDGRCwWkzY0arrU+hIX5rS0tJw1axbmebNmzRo7dqyLiwvcCFiCt2zZ8q+eWK3vSNvx21yBL1++wEly2LBhvDMEjVK7du1YVyGbnY6ODpyxMR1PT0/y8MkwDC/MWVpaCu5QI0eOZFGGn9OnTweoAH5imFMoFPImEAoNDaUoqmPHjuSZTRXMWVlZqSHfS05O5o1EdP/+fdh6bm5uoMgglWi8d8StBCgRITRx4kRNNFNcChrW8MKcU6dOxfxk9uzZU6dOHTRoEHzI4Nb09fUxzKzhQNpm2hWo8xVQKpXg19K6dWusBiJHiY+Pl8lkZmZmrCPh69evTUxMKIqC6KyVlZXgPK2rq8tySOKFORUKhZ+fH0Koffv25HC4fOHCBV1dXSsrK5zkEsOcIpGIV0seEBCAEHJ3d8fsQhXMqVQqMzIyNGRTb9684UpH7969w3KOh4cHRVF4nvgWqi2Eh4cDER0dHa4EWG13zRvwwpxubm4kj5o1a9bw4cNJ9w6BQDBlyhQWDKD5oNqW/6AVyMvLAz3Gzp07eafdpk0bhND48ePJq0FBQRRF6ejogG06FlT69euH9yC054U5S0tLQd89fPhwkiwuz549GyFEOuphmFNfX588jkEXuVzeunVrhNDy5csxEVUwZ2Vl5atXrzRkAixBBcOcS5YsYQGWMO7u3bspijIxMSGDny1ZsgQhNHDgQDw3sjBt2jSEEMvTUT3MeerUKZJCZWUleCKSeENhYWGXLl309fXBgWHhwoVkF39/f4QQKaByYU4QRx0dHcmOUK6qqtLT06MoCofbLSgogDmocieApRs0aBCXmvoayA+6atUqcGYF6HrAgAE1NWL7+PEjdrUkFwpG3759O/Bk+DytWLFC/ax4r4Lej6Ko/fv38zaoq0pemJOrwevTpw+OdgBJMVj2THU1n7+BTmVlJWicxGIxqWGgaTo8PBx8N+fNm4dnUlZWBt4mbdu2Jbfqjh074EGTcRdU5eakaRqCUggEgnXr1pF0sLVHt27d8KAMwwDMCUOMHDmS/L5/+PABbKSaN29OdomIiEAIubq6kpXqy/Hx8RDCukmTJjgXAMMwFRUV4CUPE2DBnPiE2KFDB2ymxjAMTdNgvy6TycjIbQBzAilbW1vWIXHv3r1gr8ZaYZqmQbYUCoUbN24kb+TBgwfA+Xv16oXrMcyJEGrXrh3pUEHTNHwLzM3NWXqYu3fvYoyQ9GuqrKzEtvgsmDM9PR3AaZaXfElJCWAZNjY2eFZqClFRUbAmffv2JWdF0/S0adMoihIIBOTbBTAnKJQ2bNhAytvJycnwHFV9ClnT4MKcOTk58I2WSqU4bDurl/bnv3gFtDCnpg+3f//+IMtysUOwC4OUDP7+/qTmKDc3F+z9R44c+eLFC0it5OnpyRJD1cCcoKCfPn06ufPxpOVy+fjx4xFC+OuFYc7Tp0/jZmQBjtx79uzBlWq8OUH+A4al/l+KokJDQzHN9PR0fCz08vJixULJyclxcHAAgqoSoWNSZAFYsFQqnTp16q81/GMZUZJkuWVemFPNChgYGGzYsEETO2XuWNqab3wFwOxr+PDhqvQa4CQ9evRoFnOIiYkxNTXV0dEJDQ2Njo42NTWVSCRbtmxh3a8qmHPAgAEIoXHjxrHIQnelUgnyjZ+fH/AcDHMeOXKENQT8hINucHAweVUVzInPq2pee3wJQrEBWYA5pVIptsgjh/v06RNvyhZMiiwYGhqSh2Ggc/XqVdzG0dGRq2gjh4MAcWCgCr0gXDCrDevnp0+fPD09oX3Dhg1ZekxWY/wzLi4OnNelUunhw4dxPRT2798PBLnxl1gtyZ9Pnz4FJUuDBg1qyPD+p7kmZo94OC7MideZt1C/fv2jR4+q2hSYrLagXQHWCly8eFEsFpuZmbF0ZLjZhw8fwJQBmwzDpZKSEuDGdnZ2T58+haNXs2bNuKG2eWHOP/74A/JmsUwQ8LjZ2dkwLqjmMczZv39/3IYsnDt3TkdHp1WrVuQxUhXMiTkA725iVTo4OJADQXnKlCnQzMjISF9fX5XZDbcjWQOOZQghLy+vmrKUTZs2ab7feWFO1m2SPyUSyYwZM1i+aOTMtWXtCvxtK1BSUtKqVSuKoljyEp7Aly9f4HyE017CJYVCsXHjRohhk5CQsH79eoqizMzMuBoWXpgzLy/P0dFRJBKpMuUsKSmB0xMW8zDMSSrl8TwZhtm/f79QKOzcuTOO+qMK5szJyQFVKbkxVZWNjY1JnwMYEXM5PT09Y2PjGkkgeM4rV66EQVu0aFFTHrVx48ZHjx5hUuoLvDCnqvuF+p49e8bHx5P6XPVDaK/+o1cAzkfOzs4sOyp8UzExMQKBwMrKijR1KikpgdCRTZo0efLkCRzl7O3tuZA/L8wJISXNzc1VqRRycnJAUMGRQjHMqQpFgxA4JFioCuY8fPgwKy6imh3RrFkzvBQMw8CxUSQSsWx5cZvMzEzQg+E8JjRNHzt2bM6cOap0VjNmzEAIjRgxAhNhGEYNzFm/fn1Stw69vL29EULz58/HRFJTU83Nza2srCBIWPfu3fGlwsJCCwsLgUBw5coVXMmFOcEaQ19fn5chnDp1KiwsDJu2QH5Be3t7ljYM03/58iVgUaqkU9wSF+Ry+dWrV2fMmAG2sBRFOTg4LFmy5OHDh6QeErdXVaioqDh8+LCTkxMkaNi0aRO3JUQVFggE9erVc3R0rCmGCgTBt0xHR2f69Ok1Zew10uDxwpxqXmMDA4NNmzbhh8W9/W+/Br7y9erV4+pMGIY5ePCgVCq1tbUlWdCjR48gPMyECRPAMv7mzZsGBgYCgWDGjBmk3kkVzJmbm2tnZ0dR1Jo1a7jfxFevXgFod/z4cbyAGOYcOXIkV60dHx8PluKkaFELmBOCgbdq1Yp7xiwvLweUESFEwpxyufz7779HCDk4OHCDkH358gUitJEQIIY5pVIpmTwObpam6bCwMOClpCCUlpZma2vLxTih18uXL8F5BvNDDHNaW1tz+Wpqaipk1GL5KYJDuaOjI/nEYYiKigrINMyCOa9du6avr29kZMR113n79i24SbB8c/FjxYWPHz+C8n/YsGEs3yeAmSG4Wps2bfBZEmBOiqJWr17NZVzBwcEURTVu3Jj7UPCguMCCOV++fNmtWzewYDh//jxupi3896yAFubU9FmDGMGyESM7QzQGLy8v8tvAMExcXJyhoaFAIABttbW1NXfnq4E5IZMfyxuSHBc+5z/88ANUYphTlXwMAjd5dFcDc4KPuRrhAF9iwZybN2/GgjI39earV6+AL9vY2HA/jeTdkeXKyko8XC0KEomEpKa+zAtzBgcH79y5E/APqVQ6f/78o0ePQux4kUiUkJCgnqb26j90BSBmDssJkryX8PBwgUDQt29f1kmYpmkwU4U8nQihXr16cWE5VTAn8Bw1ri0gY3333XfAczDMqcogERAC1mlBFcwJSUQ03GhcmNPe3p53Gvn5+bCemlDmhTkh+i50Hzt2LFdQJh8NwzB37tyB0yMk5MPOr6xm5M87d+6A1xeMwvLTJVviMlY+IoQ6derEMmRhGAbO6gghlm0jpsBbuHnzpiYLpapNjcbiwpyNGjXasWPHpk2bACe2s7Pbs2fP6dOnu3TpAlk0/tHHQt4F11b+DSuwZ88egUDQo0cPVRofhmFAlY9PenhWcrkc1GQQ8MfAwIDX2Z0X5tyyZQvkHeA6u2P6gAKCNTSGOZcsWYIbkIXr168bGBg4OzuTMetUwZzYRUnVbiXruTBnZWUlyJDQ7OeffyZnomFZLpdjk39yOA3LIpGI5YyiZlxemDMwMHDnzp0TJkyAEUePHn3o0KEdO3aAbmX37t1qCGovaVfgb1uBgoICY2NjsVisxhBzzJgxLAcpmJ5SqQQ/CYlEAmjE2rVruScdXpgzIyPD0NCQmyuOvHH4UmMOgGFOlmcA7nL27FmxWOzi4oK1/6pgzqysLBA7NWEIXJiTpmkcBxIh5Onpyb1rPCtVBZqmwWhYkzlw21AURToKqBoF6nlhzuHDh+/cuRP0ZSDO7du37+LFi/Bp4EYOUD+E9uo/egUgeMmaNWtU3UVqaqqJiUm9evVY2mS5XA7aXiyocPXgDMPwwpyg2IU4QKrGhYR5OOAkhjlVGWUuXrwYITR58mRMUBXMGRkZibU33P3FquGFOVV5ooNLAOT3IRFH8JfCE8OFwsLC3bt3g7JIc5iT9FjFpCIiIiiKcnV1xTzw9OnTkP8IlGY6OjpYd3f16lWpVNqkSRMSuubCnK9evYLVkEqlM2fOVCNVMgwDsPecOXPwlFiF8vJyyKLHK9CyGtM0ffPmzXbt2sH3BXJRRUREVFRU1JTlFhUVDRgwAJ+RQ0NDuUhDWVkZgBxwv1wrXtb0eH9WVFSwXp4a/ayRBo8X5gQNHuC1Ojo6ixYtOnbsGCBeYrFYk2Xnva9voZKmaXCJmTZtGq9KpKCgoEOHDhRFsYI/x8XFCYVCiqIOHjzIMAyE4u/atStLTa0K5ly2bBlkYSNdDMkFWbduHUKoe/fu2GsTYE49PT3ShoDsAi7FpENqTWHOrKwseJ9VSUQfP34Ea3sS5rxz546enp5IJCIzrJETe/r0KbhK4+MehjkXLVpEtsRlnGW8Q4cOeAXmz58P2UkxL8LtoYC924GlYJiTm10Y2oOBApkLKTs7G1Zg3bp1LOLws6ioCPIKk7k5Y2Ji9PT0DAwMuDAnqLC6du1KPhdeyqdOnRKJRGok2EePHsHGx7o4gDmbNWtG8ltM/NGjR/r6+vXr12cZPeMGZIGEOd+9e+fo6AimG48ePaopYyTJasv/3BXQwpwaPbv8/HwQ+zp16jRQxR9sp65du2ILBSCtUCggvy7EFofk86xRVcGceXl5MK6rq6uKYQfC0Qt7uGOYUxUDrRHMSdfkD99UaWkpRB4AXzRcjwvwaYRc8biy2kJVVRUpadVIQgJOV+0QuAEvzAnCX05OTtu2bSmKGjNmjFKpLC8v9/X1RQjVq1dP1QEDk9UW/nErUFBQAHuwY8eOqvYgeEh36NABG8vj2ywvLwedFEKodevWvHaavDAn5jkuLi6qxgV1f5cuXUAYwjCnKokTZqIhzFmTrU/j+2UYBrw527RpQ4YKIRvUmjLYgsFxEbY/Ca+SQ+CyUqkcPHgw5hVmZmbY/Bm34RYePnwIRogQRgNLY9yWuCYqKgpO4wghrh9GQUEBjvXKvYqJcAt37twB20Z8CzUq9O7dm0tTVQ0X5nRxcQHR8OTJk2KxWCQS7d69m6bpgoICiFIwatQo9Wd7VWNp6/+bVwDCHJmZmfXr108VcwNIj9eu/OzZs1gSWLt2LVZOkUvKhTlpmgaTDgsLi/79+6saF3bx9u3bIZ4/hHglD5DkKDWCOUGXpzn3IwcCcw28952dnbmGFKz2vD8VCgUZZh8T1LCgo6PDMuXhHQUqeWFO+EQqFAovLy9QO378+FEul69du5aiKENDQ21WTjVLqr30t63Ay5cvqf/8de/eXRWvAK306NGjubP6+PEjJOlECHl4eLCUhtCeF+ZMSEigKEokEvXo0UPVuCCc4DiZGOZUZSVw7tw5DWHOr+RRRUVFYAKFEBKJRGrMc7krhmswo9aQKbGaCQQCMlgRJstb4IU5IacMTdOrVq2CLFYQeTI6OtrQ0FAikbDyQPNS1lb+C1bgy5cv4H/m7OysajP26NFDKBTyWmReuHABWyatWrWKpRqC9eHCnDRNAyRpbm5eraCCX0UMc5Iz7rl2AAAgAElEQVSBJchHAPpfTWDOr2EC4M3p5+dHDs0qQzxYb29vsp6m6devX+/bt2/x4sUjRoxwdXVt0KABxvBq5M0ZERFBUoYynOmsrKwgjDDDMD4+PgghcCoFjx/scxYQEEBR1IgRI8jTDRfmZBgmPDwcRyeSyWTu7u5Lliz5/fffMzIySK16RUUF2A3b29urepH69esnFosRQmT+VO6NMAxz7dq1Xr16QWMjIyMvL68DBw5oLphhml++fNm2bRu84RRF9evX7+rVq+S0cctjx45hNtu3b18uDopbqilUVVXBnDGpGhUMDAzUEGdd4oU5YdqQP5uiKF9fX9DgjR07FqIvaJj/jzXWt/BTqVTa2toihP744w9V8+G1ypLL5RAVrHnz5mCiZGRkdPPmTRYRVTAnqDVUgXwMw8TExEgkktatW+O0oABzmpmZ8drBMwwDO4W0768pzAmnP319fVU6KOzbQ8KcUVFRIpGodevWas5WIPLhXLwAcxoaGqrSuTEMc+TIEYSQo6Mj5swQBURN2GdACjt37gxkMcypKpP68OHDEUKkMe7Zs2cRQnp6enhQ1gNVKpVgTEbCnElJSeDd26lTp1OnTqmxQmZRI38GBgYihLhIOW5D07SrqytCyN/fHyoB5vT09MRIMG7MMExSUpKVlZWlpaUm2xPDnE+ePOnYsSNo/s+cOUMS1Jb/q1ZAC3Nq9LhxSqRqv8q8QRTj4+Oho52dHSt4NwyvCua8c+dOtSNCgxYtWgApDHOqMrqvEcyp0epwGmGRSCwWc30cca4LiqJUpbvgkPzfCsB09fX1t23bFlPDvxrZaqmBORmGiY6OBs+wX3/9lWGYsrIykJIHDRrE9dVTdS/a+n/ECmDLo2p3op2dHa94BBHMEEJjx47lvWVemBOncqx2XEdHRxAOMMypSjqpEczJO1VNKgHm7NKliypLC02IqGpTUFAAVswAQKoyu8Pdr127RsKEq1ev5j3F4fZQqKyshBBPCCE7Oztu2BNWe4ZhcHt9fX0u742PjwfbOolEwr3KpYZrnj9/Dn6lTk5ONWR4/9Oc93ODibMKamBOpVIJMZdkMhlkbYmOjhb+569apJk1ivandgUgu0+1nE1V6u43b95AyhOEkCrbUi7MqVAoQJ2hybgLFiwgYU740HMfXE1hTi4FzWu2bduGZ64hH+MljqORz5s3r6Ys5d69e5pruNTAnAzDPH/+3MzMjKIoyM4ul8sBUba3t9eE3/LemrZSuwJ1tQLAQPCOU1Mgox3i0SsrK728vKDXhg0bcD1Z4IU5Dx8+rGYs8pK7uztQwzAnK3wuHqtGMCfuVYtCeno6tqJo1aoVrwGKJmTh/AXhT2rKo65du8Yrh/OOqwbmBP4PQlGXLl1KSkqUSiUI8xKJpFoognc4beU/awXS09MhDwW573jLurq6XBP21NRUyCuGEMJul6wV4MKcSqUSUhHxDsSqxN6BGOZUpXCvEczJmqTmP0G6WLp0qZou4Mzk5uaG2yiVypUrVxoaGmKfQrhNMzMzf3//kSNH1gjm5AUDPn/+3KJFC4qiILSjXC43MDCgKAqAEIhb6+npCVMChz8y5hnDMLwwJ03T7969Gzt2LH7QCCGJRGJsbLxs2TIMbOfm5uI8TawnyP0JfnV4cbiF5cuX4/VJSEiondIpOzu7c+fOACSbmZlFRUWpAUohXCeE8FHlhMedJ7cGHMhkMllwcHBNGfvTp0+5BFXVqIE5aZq+dOkSaPDA5rukpKRz584IIRwZSxXZb7a+rKwM9s68efMCVfwBJOnj48O6i4KCAhzCQSgUnjlzhqsk4YU55XI54NZjx45VMWbgtGnTRCIRqfoGmLN+/folJSWsmcBPwMBOnDiBr9YU5gQX0latWmEK3ALIGCTMCal27e3tAwICVN0OZLvE4SIA5nR2dlYj6ty6dUtHRweHC8aLNm7cOFWjTJw4USgU4ihBGObkdZNgGGbcuHEIoR9//BHf5oYNGyAgLa7hFiACJQlzKpVKYM7AxJo0aTJ//nyuDp9LiqyBuGXDhg3jvkW4GSDrHTt2hBqAOX19fXkdkV+/fm1jY2NpaZmYmIgpqCrAZ65r1644U5VQKFRl/6eKiLb+37QCWphTo6eZk5MDUsX58+dT1f5lZWWx9nZqaqqDgwNFUWKxmKIoPz8/LkNUBXNmZWXBuJcuXVI7bCp2ov8WYM5hw4bBtFu1asWypqFpGseclMlkvPKomkcCjlxCoVBzc1011NRcUg9zQmYIsVisp6cH+ahv3LgBUddWrVrFfb5qBtJe+sZX4MOHD/Aynz59Wv0ezMzM5KqAL168qKOjIxAIRCKRQCDYvXs3tw0vzIl5zrlz59SPi3nONwVzduvWTZUU+zVP/MmTJ9jC19jYWBWgC0MUFRVB7Dh4gp06dSKNc9VPQ6FQxMTEnDp1SpU1HNm9rKwMe3+C1p68qlAoevbsCXPgVYmSjVnld+/egbGwTCbTZCas7jX6qQbmZBimpKTEw8MDIdS7d++ysjKapjdu3CiRSIRC4YULF1hfvRqNq23837YCkMy4X79+ycnJ6pkbV2enVCrHjBkDDk8URbm4uLBkDFhMLsxJ0/SsWbMgJ+Xr16/VjwveVzho7f85zKlQKMD5ACEklUpZ8fFq9P7AIiCEeGXRGpFS31g9zAnpgsDZZd++fUqlMi0tDbIh+vj4aM6o1c9Be1W7ArVbgSdPniCExGLxjRs31PMKLv+haXrHjh1isRgsgYRCITb/JyfDC3OCEtDQ0PD27dvqx83NzQVq3w7MCY4L4MrJzUVK3rv68tGjR0FeMjU1/Sus5fDo6mFOhmFwYI85c+ZUVVXRNO3j4yMQCJydnbXWGHgZ/62F4uJi8G7Zvn27+s347t07FtqkVCp9fX2xoNK+fXteJTUX5qRpGnTNnp6er169Uj8udhP/pmDOCRMmqHklwKsMp7irqqqCwKFSqbRPnz6//vrrhQsXXr58WVBQAMcKUNlrHrRWlV4evJeATlxcHEKoXbt2MM93797p6Ojo6+sXFhaWlJQYGxtTFMUK/MMLc+LbLC4ujo2NDQgIGDNmjL29PUVRAoFgyJAhkE/uy5cv4Ny/cuVK9Q80NTW1WkPY48ePOzs7g/1uo0aNVq9eXSMjfoZhEhMTIR6PmZnZ7Nmz1SfazMvLwxht+/bteQNL4nVQX4C8OUKhcN++fepbfuVVNTAnUF67dq1YLMZKyLi4OD09PYFAoCo8zFfO56/ufu/ePfhiVvsvjvxHTgk8NxBCPXv25EW7eWHOtLS0aoeDBlZWVtgVDyQca2trFsPE8/l6mBPsWQcMGIBpcgsAnZIwJ07YWe1NzZs3DwgCzOnm5saLz0Gbx48fm5iYmJmZQcrw1NTUaulDA1tb29TUVIZhMMypShbiwpyQ/9LDw4N747gmKiqKlZsTLu3fv799+/a6urp4no0bN542bdr58+dVPTJMk2EYCJ9GJoEmr0J506ZNCCEDAwNQhwLMOWnSJK52lGGYWsCcMHMnJ6devXohhMzNzV++fMmdhrbmv2EFtDCnRk+ZpmlwqVETEEAVIR8fH4qinJ2do6KiBAKBUCjcsmULq7EqmJOmabAR0zx3bt3CnAcPHlyq8R8WLnHYIk9PTxZbzM3NBYd9yAlcU4Hp+PHjOIovL0NkLWytf1YLc5aWloJfbMeOHSEM3e+//w5oVrW2eLWelbbj378CNE2DPS8rv7cmM3n79i3Esvbz89uyZQtFUWZmZtz88LwwJ+Y5v//+uyZjMQxTtzBnVFSUxlt/KXj4wTzBm1MVzFlRUbFz504NKa9evTo9PZ28fRzvGiE0adIk8hK3HBAQgDFRU1PTanOncyloWEO6/HLjY8TExGCPUt60MWpGKS8v79u3Lwht06dP/0vRRPUwJ8MwT548EfznD7QYCoUCcuw5OzvXlJOruWXtpX/9CgQFBVEU1bNnT/VmCrzrsGnTJtjUYWFhZmZmAoGAV6fGhTnBOAkh1K9fP2xlzzsErqxbmPPNmzca8r2lS5cGBgbiaTAMU15eDom+EEK+vr5fwwdevXoFQlSTJk2weRw5Vl2Vq4U5lUrlokWLEEJg6QzppgAZUhPQqa6mp6WjXQE1K5CXl6erqysWi3kz6qnpyDDMpUuXIPb11q1bIcyDq6srV3vIC3OmpaXp6OjIZDLNnVfqEOb88uVLcHCwhmxqzZo1oMTHqwFabISQq6vr1/CoDx8+YJGpdnng8JTUF6qFOWmaPnfuHEVRQqEQspq9f/++adOmFEUNGTJEPXHt1X/6CtA0DQCPqgxnam4wMDAQBJXQ0FBLS0uBQDBu3Dhuey7MyTDMxo0bKYrq06cPbxA/LhGGYeoQ5kxJSVm2bJmGTIAlqIA3p5OTE+8kGYaRy+Wgel65ciW0ycrKMjU1pShq0aJFvAIhHPq+Hua8e/cuBHL88uULZL+DoB2weq1atRKJRNevX4cc6l26dGFxMPUwJ75fuVz+4cOHLVu2gHcddmzt06cPQggDJLh9LQpKpTI3Nzc0NBTHmzUxMRk6dCgLl1VF+cmTJ/Xr16coytbW9t69e2oQGqBw//597KMfEBCgiqwm9YcOHYLDLHd5NemueZtqYc7i4mIw24VPFU3TJ0+eBA3ekSNHNB/oG2n5+PFjWNg9e/acUvtH6mpg8p8/f8Ywtp6eHq/zCS/MmZmZCYNu2rRJ7ZinLl68iDM6/Q0wJ4B82Dmb9xnt2bMHIUTCnLDBXV1djx07pv52cOBrgDm7dOmiZhPdu3dPJpNhoPf9+/ewaIGBgepHuXz5Mlg8YJgTryHrjrgw5/Tp0xFC/fv3Z7UkfwLQS3pzwlVIS/Ty5cvAwEA3NzecIEZPT2/+/PksrkgShDIIgTilArcBwzDg7GRjYwPUAOacPHkyr1a/djBns2bN3r17V1hYaGdnB0F0/wq/C96701Z+UyughTk1fRzg7z9p0iReBZlSqdy1a5e3t/eaNWswv1MoFBBnTFdXF/DRdevWicViCwsLFtShCuZkGAZMrmbOnMnrIwhDeHt749xRdQtztmzZEjhytf9SFBUaGgqriWFOlv6Rpun169fj4+vgwYMhI72qEO3cZ5OWlgY8C0AOXpmY26sWNdXCnAzDPHr0CKTMiRMnggpj9uzZAoHAwcGBN4FzLaah7fItrEDXrl0RQt9//70qF5OIiAhvb+/ly5eTh9KKigrwvwG778LCQpCqPTw8WO8tL8zJMAycGCdMmMDLc2ia/u2337y9vVevXg3MoW5hTkiQUO3GhwZk5FL1MGd+fn6DBg00JMtKeCOXy/H2pyjq7t27ql6PioqK/fv3Y4zT3Nz8LzU+wIc3kUjECqyRn58P7w+EAYGEEwUFBertZ8n7CgsLg+XS1dX9Sw9g1cKcDMMcOHAAjF5B+ZiSkgIHJG9vb1UiOHkv2rJ2BRiGOXHihEgksrCwSElJ4V2Q3NzcESNGeHt7szI1Xr58WSAQiMVi0LacPn1aX18fIRQaGso6IPHCnAcOHEAI1a9fn6Wdx3P48OEDjAvJ2OoW5gT1mYasz8HBAc+KYZiUlBTgZhKJBJtFkw1qVO7RowdMo1+/fp8+fapRX80bVwtzMgyTnp4OH5oBAwYAA9m5c6eurq6hoeHFixc1H0vbUrsCdbsCnz9/btKkiUAggORtXOJlZWXz58/39vZmRcTKycnp0KEDpHYDvxk4JkybNo1l9MkLc3748KFhw4YikUhVDu/S0tIZM2Z4e3vjELV1CHNmZWXh+HXVcipjY+PHjx/jlSkuLgbnbIqifv75Z1xfu8K0adNgAg4ODqo+E7WjTPaqFuaExjNnzhQIBPb29gAkxMfHQ/SO1atXqzoUkKNoy//cFYBQ6q1atWKd2vAdJSQkDB8+3NfXl8wQERMTIxKJxGIxaGbOnj0rk8kQQr/99htWEAEFXpjz8OHDAoHA0tJS1THh48ePIKhgN/E6hDkjIyPBEKpaDoAQatasGV4KfGhFCLF0XLjNixcv6tevLxQK8YkM0EeZTPbixQvcjCwAQPj1MKdSqYRIhnv37nV3dxeJRDgwZlVV1ejRoymK2rp1a5s2bRBCx44dI+fADVorl8uXLl3avXt3sH5gNca5P4cNGwbnd/AVc3R0VHVQSklJGT58uLe3t6p14A5RUlKybdu2zp07A+OVyWSTJ0+Oi4tjfWjIjjk5Oe3ataMoys3NTZUYTLZnGGbfvn2gtdPV1dWwC4sC/pmSktKoUSN4r/z9/VXtKdy+1oVqYU6GYR48eABsfMqUKaC6mT59OkVRzZs3/8d56peVlcEBAVwGNV83hUIBtoYNGzYcPHgwRVHm5ubJycksCrwwp1wuhxevRj4AfwPMCc6CDRs2ZN0F+XPlypUsmDMwMBCMSzR/LQHmbNSoEa+ODoaLiYkRCoVNmzYFk325XA42cKdOnSLno6ZcC5gToAdbW1s1ZAMCAni9OVldPn/+fPjw4X79+gETwOYprGb458SJExFCAwcOVLMmP/zwA0Jo6NCh0KvOYc5WrVrhLXzlyhUjIyOpVPpXx4DEK6AtfFMroIU5NX0c27dvpyjK2tqaVwT58uULuG2tWLECGzvExcVB7ItNmzaBDq6goAAgQJb1hxqYc8OGDRRFNWrUCLzXWdPNz88Hw1JsY1W3MOeKFSsmaPyHgxRhmBNnGIZpR0ZGwkcRpBxQlP/xxx8dOnRg3ZeqnwqFArtzicXitWvXqmr5lfWawJxgtQ1hG0ElgRMwuLi4VBt45CtnqO3+t63Avn37KIqqV68er10/TdNgDTBnzhysaqdp+qeffhIKhQKBIDY2FnhCYmKiVCqlKIpltaQK5tyxYwdFUfXr1+fVa5eVlTVv3hwhtHz5cqBftzDnqlWrNN76E6Kjo/HjUA9zlpSUzJ8/X0PK06ZNI/nen3/+iQ/elpaWeLXx0FCgaXrp0qU4e1+9evUuX76M2TKrcZ383LFjB0xMKpWSHwiapv39/XG+GRMTkxcvXsjlcn9/f/V2duSsysrKIHEIeMDz2lqS7Wtd1gTmlMvlIMU2adIE4mU9f/7cyMiIoqgVK1awNDi1nom24797BXJycsBF3tfXl/dO4QBmYGBAgnBlZWWggRo6dCjocWCng1k6K44rL8yZmZkJuWRUOYLD0dfAwACyu30NzElRFOvWbty4oSHfmzBhwpIlS8juONR/hw4d1OiwyC5qylFRUdhE18fH5y+yctUE5gQfcV1dXYqi5s6dq1AoysrKIBeXg4ODqhhNam5Ne0m7AnWyAnK53NfXFyHk4uLCK2ncu3fPxMRELBaTsXZomvb29qYoytjYOCkpCWYSGxsLOQtYehZemLOiomL48OFgfs57I3FxcQYGBhKJBEwxGIapQ5izsLBw3rx5GrKp6dOnkzDMtWvXQArS09PDc+O9BU0qc3NzIVw/QsjR0VFDRyVNKJNtNIQ5s7KyGjZsiBDq0qULsN+9e/dKJBIjI6PY2FiSoLb8L1uBp0+fgnoXWxWQN0jTNOTFaNGiBXbXrqqqAvP0IUOGQCWcBymKsrGxYUXPA5izcePGJNmsrCw4v7AsxXGbNWvWQNA/nIa21jAnV1C5deuWhhyAK6jgzN/+/v68x4H169eDwIZ3NPANQ0NDEifGd3rv3j0In/j1MCfDMIDotGnTpnHjxubm5mSsV0i727lzZ4FAYGVlxU2XwPLmpGkastB17twZz5YsgKHG8OHDQd3/8uVLOAlu2rSJbIbLkJKpXr16mqMs0LewsPDSpUvgiQFvhYuLy8WLF3k/W7/99hvcoObRAnBK+2HDhuHZ1q6AQTWw+l2/fn3t6FTbSxOYk2GYs2fPSiQSkUi0f/9+hmE+fvwIQHinTp3+WRo8pVIJ9kkHDhzgXRwISxASEkKKKwzDXLlyRU9PD9xUvnz5AsrbYcOGsW6fF+ZkGAaMFFWd4xiGefv2bUhISGRkJN5QfwPMefbsWYSQQCDAgf1Za1JRUQHbjfTmPHjwoEgksre3z8vLY7WHn0ql8rfffgsJCcGRCwHmFAqFDx8+5O3CMAxEIG/dujW2b4D41Sz1ONk9OTk5JCTk4MGD0KUWMOfFixdhBbgpFWCgqqoqCDRCenNeu3Zt2bJlUVFRXNZRUlIC8nCTJk1Idw5y2lAODAxECLVq1UpVlqXPnz/D8R/ngqlzmHPy5Ml4YpWVleDda2Fh8ZeGL8Ijagvf1ApoYU5NH0dqaip8/3r16vXs2TOsNKdp+v37956engghQ0NDLDZ9+vQJBL6+ffti/s4wTEJCAiR7mDlzJmYWSqVyypQpCKHFixdjyjCzpKQk+Hp5eHi8ePECX4XM5/3794fA0xgIqQXMqVQq/fz8WBmMNV0XvnYY5nR1dQUmW1xcHBERYWpq2q1bN7h9iqLy8/N///13HR0dbhRfPqr/W1dWVtajRw9sbOju7n7jxo2ayoVq6MMlDWFOuVwOsmyTJk1ARn/z5g04q82bN09r51vtOv8jGmRmZkLAwK5duz59+pSUADIyMkBakslk9+/fx7cTExMDKjCWVXtkZKSurq6Ojs7x48dx40+fPoFPEsuG7u3bt+C82LNnz8TERHLvv3//HiLgy2QybFBfO5hzwYIFCKGpU6di+nhitSuohzlrR5NhGJqmf/nlFwxzuri4sEgpFIrs7OyTJ09Cagc4R7m5ud2+fZvVss5/xsbG4onh3B4ZGRlTp06VyWTYm9PGxubjx48rV65s0KBBjRy+k5OTsQusSCRauHDhmzdv6py9aAJzMgzz7t07W1tbhFCvXr0A6QwJCZFIJPXq1YNExXW+vFqC/74VCA4Oho/4unXrSJitsrLy3LlzEORt7ty5+MZLS0sB/TI1NSUVNJmZma1bt0YIeXh44DxVDMOcOXMGIdSkSRPWNgGLXYTQr7/+ivWSDMNUVlaePHmyXr16QqHwxx9/hHFrB3PilOp1iNI1bdoUOAxpTIMXp6aFyspK8F0Amq1btz5//jxWmNaUmqr2GsKcDMPs2LFDKpUaGxuDB2dWVhZY8PTr1498pqoG0tZrV+CvWIG4uDjgUaNGjSJDzigUiqSkJDjfubi44JR7CoUCVDz6+vqsXAOzZs2iKKpp06akNQYOX0YyQIZhoqOjYVwfHx8yaL9CoXjx4gVk/XBzc8OB4msBc5aUlLRo0QIhxFJ6fs0ywqEJIdSgQYOv37Y0TYeFheHYP1ZWVqGhoZmZmaT4/TWzhb4awpwMw9y/fx+OrkuXLq2qqiotLQUtYbNmzUis9+unpKXwra3AiBEjEEKNGjW6cOECCd0VFhZClnEdHR0I08IwDH4xTE1N8dGMYZisrCzAPnv37k3uDtBHN2jQgCWobN26FZhAQEAACTlUVlb+8ccf5ubmQqFw4cKFeK1qAXP+FYIKhjmlUun69evJOy0tLd28eTNAfTNmzMDnzczMTCMjI7FYzLICqaiouHz5soWFBUgpQ4cOxV1wAgKc4BPWAc7RGITAi4MLMTEx4EqFEHJyciIltPj4eHyI8/Ly4roisWBOhmH++OMPYFBr1qwhebhCoXjy5Ako7shwx6DlMzMzO3LkCPkilZaWAvOUSCSRkZF4tjUqKJXK06dPe3h4QIBZgUDg7u5+6tQpFmYDkTxUwee8I9avXx8hJBQKuR6uvO3VV5aVlXXv3h3ebYRQnz59bt68Sb7h6rtreFVDmLOyshIeip2dXUZGBk4EiBBatGgR9x3QcPS/vxlN04MGDUIIDRo0iNcOMj093dHRkaIoHPmPYZhnz55BOrYRI0bAzV65ckVfX18kEoWEhJDbTRXMCX44QqEQq6BZ9z558mSEUKdOnfD54m+AOXNzc+FjvWDBAt44iM+fPzc2NmZ5cz569Ah87kNCQlh3AT/hUCkSiXD+I4A5EUJt27Ylj5O4O7bonTNnDl7P1atXUxRlYGDA0vjhXpC9uFevXsCgagFz5uXlgafyzJkzeV/jlJQUYBQkzAmnclX5dyHIrbW1NWl8jOeMC/Hx8QYGBiKRiFRy4qsQhQ4hpK+vj9+ZOoc5p0yZgkdkGAY7IHl4eGCwmWygLf+LV0ALc2r6cJVK5d69e8EVwNraeuzYsaGhoSdOnFixYkWzZs0QQlKp9MKFC3AGKy8vBxCC3Ml4pP3794vFYj09PdJpHazMnJyczpw58/vvv2OXIAiHC+M2aNBg3LhxYWFhx48fX7JkCWi+dHR0SF+lWsCcNE2DAOfs7Ayjs+wN8cw1LACPRgiJRKIuXbr4+/u7uLjo6OgMHTr01q1bYMcBqblMTEx8fX1rClK+f//ezc0Ni6SmpqZt27b94YcfFixYsFD1H8s9Qv29gNBpa2vr9p8/kGV5D9g5OTmg9Le3t4fGIJfLZLJz586pH0V79R+xAkql8tChQ+D+YmlpOXr06N27d588eXLNmjXgwy2RSE6ePIlfj6KiIicnJ4RQjx49sGwHd1peXg7K+qZNm+IToFwuh00xePDgS5cuHThwAGyOlEpleHg4yXP27Nlz4sSJn376CfOc8+fP43FrB3P+/PPPCCF7e/sTJ06cPn2aFXO1Fg/oL4I5nz17hhNIIIR0dXWXLl0aHx9/+/bt33//PSgoaPDgwQ4ODthfvGnTpnv37iVNTGpxLxp2KSsrw6He9PT0vLy8xowZY29vLxQKAwICZs2aBcxKR0enffv2UqkUx2vSkL5Sqbx48SKc4cFGr2HDhj179pw0aZJqhvc/V3bu3KnhEAzDAMzZokULNze31q1bUxTl4uKCRXOSzp9//glvbNu2bd3c3Dp06AABc2xsbHgtssm+2rJ2BQBWHDJkCEVREonE1dV16dKlf/zxR1hY2ODBg+H01bJly8zMTFgrpVIJYYgkEgnXe+bRo0ewNebOnYvPtPfv36coSiaTbdu2LTo6GoeaqKioAOMwqVTapUuX5cuXn5E8FFcAABotSURBVDlzZs+ePQMGDIBzb8eOHUncAmLWYbNT1rO7fv26gYGBs7MzaSVaWVkJurxJkyZFR0cfPHjwK7lQVVUVlnZ4j46sWWny8/PnzxMmTMAogr6+fsuWLYcPHz5nzhw1LGXx4sW8Z2beEQHmNDMzI4Uo3kNmcXExPBRra2toDJHNhELhhg0beIlrK7Ur8FevgFwuX7lyJexlBweHqVOnHjhwICoqatq0aWB1pK+vf/fuXfyJfPLkiYWFhUAgWLJkCa6ESWZmZtrY2EDSSqzSraiogA04Y8aM6Ojoo0ePwu6Qy+U//vijUCiEAHrTp08/dOjQ4cOH/fz8QMzQ19d/8OABHqIWMKdCoejYsSPYKl28eDEqKurrsTo4wyKEZsyYUSePpry8fOfOnRiWEAqF9vb2AwcOnDZtmhoetWjRIs0t2wDmlEqlHTt2dHNzA4V+UFAQ7/y3bt0qEolkMlmXLl3c3NwAJ0YI9e7d+ys5PO9w2spvZAXu3bsHh3pDQ0NPT8/NmzefOXMmMDAQhHnY74Ba0TS9detWsLC8fPkya/6PHz8GQYVMQvTkyROKovT09LZs2XLlyhXsBl1RUTFo0CCKoqRSaefOnZctW3b69OnQ0NCBAweCoNKuXTtS6qgFzIkFlQkT/icez4EDB77+NQaY08vLC0IZderUadmyZQcPHty7d2+fPn1gL7u7u5PY25cvXwChMTExGTt27MmTJ0+fPv3rr79269YNREE47To4OOzatevSpUuwqmDzWlOYE5sOI4QmTpxIPqCSkhI4ayOENm/eTF6CMhfmrKys9Pf3RwiJxeKePXuCq9yRI0emTp1qaWmJEGIdiJKSkuBeZDJZ3759AwICzp07FxQU5OrqCh51kydPxhIsdwKa1JSXl9+/f9/X1xfuRUdHx8vLi+wIE3N0dPxO7d/06dNBL4eFT2traxyfgCRYi/K7d++w7S9CyNTUtF27dqNHj65DDR7AnA0bNiSFT6wqIeecnZ0NX/NmzZpBY3Nzc3CK5W5hsuO3Vo6KihIKhTo6OmQKITzJefPmiUQic3NzbHtRWlo6cOBAwCCxWC6Xy9etWwcpbMkYXQBzIoRwnGegXFBQAK/0yJEjua/uoUOHwCt969ateCa1hjk7duyIZR5MTVUBpBELCwtu+Kv09HQQflgwp0KhAIdFY2NjrsX2hw8fwIC+d+/eeBoY5kQIrV27lrRdAHRtwIABCCETExPSrzQzM7NJkyYURfn6+mJS+Eb27dsH/uu7du2CylrAnAzDrFixAiFUr149VuYXhmEyMzOxPQoJc0ZHR+vp6UkkkoiICDwfKCiVSriXzp078+4j3L6iomLYsGFgGERaJEOD5ORkeGHIiEp/NczJMMyNGzeMjIwkEsm+ffvwVLWF/4YV0MKcNXvKsbGxTk5OWDcEuidIx0haooWFhQGQyWv9VFJSAlzA3t4ei5UnT57EMhZCiBXM4cKFCw4ODtxxnZycWMZfAHNSFMVrWsIwDLAqzEDh/lmj4xC4NVud/9/69evXwMSxbs7IyGjEiBG5ublv3ryBkyR8R6dNm/b/O9Xs//z8/GHDhoEQjEdRX5BIJJqPsWXLFi41Vcz9+fPnkH2H1cXExARDWZoPrW35ba7ArVu3WrVqxd2DTZs2DQ4Oxu9GeXk5+HeamZn9+eef3Ht5/fo1nDTc3d2xP/esWbNAmwavEJmW7OrVq87OztxxmzVrxkoKBTAnRVFYj8YaHXAsUuJkGObChQsgVMHQ1UbeZ9Hk/gSYs3v37jU1X+CSgprKysqZM2fiRJusXQaHTD09PRMTk8aNG3fo0GH48OFnzpxhGUerIl5X9cHBwRiGhBna2NjAUm/YsAFqIGiVqlQu1c4kMTGxc+fO5GeCuxSsmm7dulVLFjfw9vZmdVcFc9I0vXbtWmyQS/YaOXKk5kAIHlpb+C9cgaKioilTpoDOjnyF9PX1Bw4cSLo9Ac+EuKa8CxUYGCgWi42NjW/cuAEN0tPT4TQFlL29vXHHwsLCcePGgRUzOa5MJvP09CTzwGFvzo0bN+LuZAFgzhYtWmBkFK56e3tjjm1oaMg97JFEqi1jDaZIJMLQb7W9qm0ASf6srKx4NzK5MrgsEolUfVy4w0HcYNwXClifwmqfnp4OYSFZ7WUy2Vemg2INpP2pXQHNV4Cm6T179nD3iFAo7NixI6kHLCoqAtyrdevWJPyAx7p79y7YBpHR3QHJgHfe2toaB3JUKBTBwcGWlpasvSkUCl1dXTEWAsQxzKlKg3Pu3DmxWNypUydy9/3888+kTAU5RPBsa1EAxaJAIMAxjWpBhNslMjISLMZYnEHVT4qiVHljcImnpaXZ29uzSKmCOT9//uzu7s5qDOa8NbIn405DW/ONr0BaWpq7uzuO9A7vAKQUmTVrFlbjvH371srKCiE0c+ZMfCQkby0oKAhiHWM1enZ2NhjLAk0SlCosLJw4cSIwDfKtk8lkgwYNYsWDASGBoihVOocff/wRIcSKlDhixAgsqOjr62MIhJxzjcqgPQ8PD9+xY0fjxo3JUy3ofEaNGoXd0DHl5OTkdu3aYRNVuFmhUNi8efPdu3fHxMQYGBhAJXZgVQNzqgkgWVVVBUGGEUJcM3QvLy8YhZcCF+ZkGObz58++vr7gBEY+Iz09va5du5JCLNxsVlbWwIEDWXcKIdl8fX1VRZjEC6V54enTp99//721tTWZE6q8vJz1QSHnTJYdHBzgrS4pKYH6bt26kZ8PzWfC2zIvL8/Ly4sr/JNzYJVrpMEDs0gWBd4tyTDM06dPwfWN1d7ExITE43lv5NupLC0t7dixIzzfmTNnPnjwIC0tLT09PSEhAYJ2CoXCJUuWABQnl8t/+eUXMLDApgP4Xvr3709RVMeOHXHc0aqqKvj2LVq0KCcnJz09HdQ7EGQLeEiXLl2uX7/+5s2brKyspKSkwMBAAwMDiqL69u2LNV0Mw9QC5oSjRNOmTZ89e5aTk8NlIHjmuPDo0SPwP5FKpZs2bUpMTExPT09OTo6Ojm7bti3EbWbBnABMAuZtbm5+4MCBxMTEzMzMt2/fXr58uXv37gDJk4a2AHMaGBgIBAKhULh48eIHDx6kpqbCsgOKrKOjwzKTheRrsGg9evS4ceNGSkpKZmZmUlJSQECArq6uQCAYOHAg9sqtHcyZmJgIYf+lUmlAQACswKtXr2JjY11cXCiKAj0kCXOWlJTAU5ZIJDt27EhKSsrKysrMzHz69OnUqVPBm4uFHeAFJwvZ2dlg1WdtbX3s2LEXL15kZWWlpaWdPXsWbAisrKzI5M1/A8xZVVU1ffp0hFDjxo3xW03OWVv+t66AFuas2ZOlafrt27fHjx+fPXu2t7f3999/v2rVquPHj79//540ynj58mVMTMzt27dVqdozMjJi/vOH5eOKiopz585NmTJl7Nix8+bNY+nFaJpOSUk5cuTIrFmzvL29R40atXr16pMnT6anp5PjgpNETExMbGysqi/648ePY2JiWOdw1ui88EyNVur169d79+5dtGjR0qVLd+7cefv2bfgoVlRUHDx40M/Pb82aNdeuXdNcZcYdvby8PCEhYd26df369euqwV/Pnj25RFTVZGVlwQMi/2UtNe5L0zSsKtkYynWF9OCxtIX/qxWA8NSnTp2aO3fu8OHDR44c+dNPPx09evTdu3fki1FeXn7jxo2YmBjWFian/ezZs5iYmKtXr2JbhOLi4l27do37z9/KlStJxS6Epz5x4gTmOStXruTyHEjRpH7vP336NCYmhqUor6ysvHTpkr+//9ixY+fMmcObf5ScfLXljx8/xsbGPnz4kGXaVm1HVQ2USqWq/QW7LD4+/s6dO48ePUpJSSkqKiIfhyqadV5fUVFx69atwMDA+fPnr169OiIiIikpCcwbP3z4sG7duhkzZmzbtg2H6ajdBHJzc6Ojo2fMmOHm5qYBz+s6ffp0zQd6/vw5i4ORcZhZdIqKimJjY1ntY2JiHjx4wDXqZPXV/tSuAKyAXC6/d+/ehg0bxo8f7+np6e/vHxQUdP36ddZ3Mzs7GzibKqXD58+f4+PjY2JisE+SUqm8f//+zJkzx44dO2XKlLNnz5JrLpfL79y588svv4wbN87T03Pq1KnBwcE3b97EDBka0zQNvBqTJYkwDFNQUBAXF3fv3j2WpJednb1+/XofH5/x48dv2rSJ5dPPIlLtT7lcDhstLi6ubpmbXC5/9uwZuMJ369atWpbSo0cPfPaudtr5+flc/qDmo5CUlMRtHxMTo4lSo9rJaBtoV6B2K6BUKp8/f753715/f38vLy8fH5/169efPXuWpZIuKiqCt5er2sbjPnjwICYm5vHjx3gXvH//fvXq1T4+PhMmTNi+fTsZRFGpVCYmJu7Zs2fKlCleXl6+vr4bNmw4f/486RYAlPEBhHWsw+Pm5eVdvXr1wYMHeFyIrhkZGTlhwgRfX99ly5Z9fRiG169fg1hbtzxKqVSmpaUdPnx41KhR3bt3r5ZHdevWjYyThBeBt1BRUXHnzh0W21HF7SH0KKsx/Hz+/DkvfW3lv2YFPn36dOXKlSVLlowaNcrLy2vhwoX79u179uwZqWnJyckBQYW7SWEdiouLr1+/HhMTg4NgK5XKhIQEEFT8/PzOnDlDrphcLr97925AQAAISFOnTt2+ffuNGze4mhOFQgFDk3ucJPXmzZuYmBhsSAGXcnJyAgICQFD59ddf1UcjJKmpKmOYU6lUvnnzJioqatasWV5eXj/88MPKlSvj4uLI4K4kkYKCgrNnzy5dunTEiBHDhw9fuHDh+fPnQcFVXl4eExPzyy+/BAYGYofCt2/fxsTEsM5T165di4mJUTUEDIfFDJawxzBMamoqbGdeS03gb3gCePLl5eW3b98ODg4G9d20adM2btx48+ZNVVJfcXHxtWvXli//f+3dTUhUex8H8NRaFFRIpOb4ggqTUpuSTmkvtIjIigjaRUTdaFGbKIKgVa2MIIJeFlrQImhbEBERQYsMRYqiUsuKMsmEFmlKhS/zQAcGH8fu09O1e73nfFxNNvP3fD8/mxy/5/zn6Pbt2zdv3nzgwIHGxsaHDx+O/UZKL/5XboyMjDx79uzOnTvpRYaGhiZ81Zb5nNbU1BS+jkv/8Pknv9BIr/9/3QgvPD1+/PhP/gZv7dq1P79+d3d3Zqgf/cc0MjLy4MGDzPvfvn37RycN/PyR/J337Onp2bNnT3Z2dlZW1ty5cysqKpLJ5Lx588Jdcw4ePJiuG69cuRKetFFfX5/5gr21tTU3Nzc7O3vsexyG7881c+bMRYsWJZPJ9Dbd/f39DQ0N4YkIM2fOLCkpqaysTCQSYY23evXq9HNdSPELNWdLS8vs2bNzcnLKysoWLVp0+PDh/6k6PDzc3Ny8ePHicL/lvLy8ZDJZVFQUXlBeV1fX0NCQWXOmUqnm5uZwM7bs7Oy8vLzKysry8vLwvITc3NzLly+PfYINa84NGzacPHkyvG51zpw5ZWVlyWQyBMnJyTl16tS417OpVOrTp09nzpwJT4+YNWtWaWlpZWVlYWFh2FKvW7du7O8Af63mHB4ebm1tDd/SJScnZ/78+clksri4OBRYt27dhQsXpk2bNrbmTKVS79+/Dy9azcnJSSQSVVVVCxcuzMvLy8rKmj59+tGjRyd8bswcx/3798NN2mfMmFFQUFBVVVVRUREyLlu2bNzPon9DzRl22OGpz+vXr0//Q8g8cp+JmICaM2IDFYcAAQIECBAgQIAAAQIECBAgQIDA7xVI15y/98tYnQCBiQS+fft24sSJJUuWlJSU5OfnFxYWJpPJ2tramzdvpnv0wcHBffv2BUEwduPQcYudO3cu+P6RPjGiq6urtra2qKiosLCwvLz86tWrYx9y69atVatWlZWVFRQU5Ofnl5eXL1269PTp05kd6qNHj4Ig2LJlS+ZfhQvu3r07CIKxO88PDg7u37+/pKSksLCwpKTk59+ArLu7e8eOHclkMvH9o7i4uLq6+uzZs6lUqqmpKQiCcTtXhwcwMDCwd+/esKzNy8srLi6uqqratm3b69evx0ZOpVJhzbl169aRkZF79+7V1dVVVFSEAqWlpStXrrxx48a4h6T/ODo6ev369ZqamhCtoKCgoqKiurr6/Pnz42T6+/uDIFixYsWPyrljx44FQTDhZh49PT27du1auHBhIpEoKioqLi5esmRJuF9FS0tLEAQ7d+5Mf2OEx9bX13fo0KHFixeXlpaGj0omk3V1dbdu3Rpb8aaD/OjG169fjxw5Ul1dXV5evmDBgkQiUVlZ+ccff2SeA9TQ0BAEQX19/YQnInR1dW3atGnjxo3j+vIJv+7FixeDIBi3HWb6nq2trTU1NWvWrJncHUfS67sxBQXUnFNwKA6JAAECBAgQIECAAAECBAgQIECAwNQVUHNO3dk4stgIfP78+eXLl48fP25ra+vp6Rm32cwvMwwMDDx//ry9vb2rq2tcFZdKpYaGht68efP06dNwf9SBgYEJW6tf++pDQ0MvX75sa2vr7Oz888u1M9f/8OFDe3t7R0dHZ2fn2A0zMu+Z/szo6Ghvb29HR8ejR486Ozs/fvw4rgsM7zm25kylUqOjo+/evXvy5Mnjx49fvXqVeb14ev30jRDtyfePd+/eZV6mn77nX7nR29sbCrx48eInBfr6+l69etXR0fH8+fOenp6fvIgz8yC/fPny9u3bp0+ftre3/2g3psxH+QyByRJQc06WpHUIECBAgAABAgQIECBAgAABAgQIxEJAzRmLMQtJgMB/X83JgwCBKSig5pyCQ3FIBAgQIECAAAECBAgQIECAAAECBKaugJpz6s7GkREgMKkC467mnNS1LUaAwCQIqDknAdESBAgQIECAAAECBAgQIECAAAECBOIjsHz58qysrEuXLsUnsqQECMRTQM0Zz7lL/S8SUHP+i4blUAkQIECAAAECBAgQIECAAAECBAj88wLXrl1rbGx8/fr1P38ojoAAAQK/U0DN+Tt1rU1gEgTUnJOAaAkCBAgQIECAAAECBAgQIECAAAECBAgQIEAgYgLd3d13795ta2uLWC5xCERGQM0ZmVEKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAuAmrOuExaTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKREVBzRmaUghAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIi4CaMy6TlpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZATUnJEZpSAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE4iKg5ozLpOUkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEBkBNWdkRikIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgbgIqDnjMmk5CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECERGQM0ZmVEKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAuAmrOuExaTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKREVBzRmaUghAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIi4CaMy6TlpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZATUnJEZpSAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE4iKg5ozLpOUkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEBkBNWdkRikIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgbgIqDnjMmk5CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECERGQM0ZmVEKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAuAmrOuExaTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKREVBzRmaUghAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIi4CaMy6TlpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZATUnJEZpSAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE4iKg5ozLpOUkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEBkBNWdkRikIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgbgIqDnjMmk5CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECERGQM0ZmVEKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAuAmrOuExaTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKREVBzRmaUghAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIi4CaMy6TlpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZATUnJEZpSAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE4iKg5ozLpOUkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEBkBNWdkRikIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgbgIqDnjMmk5CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECERGQM0ZmVEKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAuAmrOuExaTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKREVBzRmaUghAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIi4CaMy6TlpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZATUnJEZpSAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE4iKg5ozLpOUkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEBmB/wAsJLpioS1YsQAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "6aecb58e-9de9-4264-959e-4180ab3fa27a", + "metadata": {}, + "source": [ + "When doing motif search, it's important to define the type of motif you want to extract from a series. We'll use the figure and definitions given by [1] and make some adjustement to clear out some confusion due to the naming of each method:\n", + "\n", + "![image.png](attachment:f492cb89-5bf3-4641-8be2-a77805f20b88.png)\n", + "\n", + "For now, the `StompMotif` estimators supports only the following configuration, which you will have to specify using the parameters of the `predict` method :\n", + "\n", + "- for **\"Pair Motifs\"** : This is the default configuration with ```{\"motif_size\": 1}```, meaning we extract the closest match to each candidate, so we end up with the pair ```(candidate, closest match)```\n", + "\n", + "- for **\"k-motif\"**, which we define as the extension of **Pair motifs** to : ```{\"motif_size\": k}```. For ```k=2```, we would extract ```(candidate, closest match 1, closest match 2)```\n", + "\n", + "- for **\"r-motifs\"**, which we renamed from **k-motif** in the figure, because it is a range-based method : ```{\"motif_size\": np.inf, \"dist_threshold\": r, \"motif_extraction_method\": \"r_motifs\"}```\n", + "\n", + "These configuration will extract the best motif only, if you want to extract more than one motifs, you can use the `k` parameter to extract the `top-k` motifs. \n", + "\n", + "**The term `k` of `top-k` motifs, while also used in `k-motifs`, is not the same. To avoid confusion of both terms, we use `motif_size` instead of `k` to specify the size of the motifs to extract. This avoids the phrasing \"extracting the `top-k` `k-motif`\", which would be confusing and ill defined. Rather, we extract the `top-k` `motif_size-motifs`**.\n", + "\n", + "The `top-k` using `motif_extraction_method=\"r_motifs\"` will be the motifs with the highest cardinality (i.e. the more matches in range `r`), while for `motif_extraction_method=\"k_motifs\"`,which is the default value, the best motifs will be those who minimize the maximum pairwise distance." ] }, { "cell_type": "code", "execution_count": 6, - "id": "23ad7adb-2b01-4425-a2e8-c393f3721a0f", + "id": "ff23faf5-2941-441a-8c4c-0cf66eaca121", "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "match 0 : [195 26] with distance 0.1973741999473598 to q\n", - "match 1 : [92 23] with distance 0.20753669049486048 to q\n", - "match 2 : [154 22] with distance 0.21538593730366784 to q\n", - "match 3 : [176 25] with distance 0.21889484294879047 to q\n", - "match 4 : [23 20] with distance 0.22668346183441293 to q\n", - "match 5 : [167 23] with distance 0.24774491003815066 to q\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\antoine\\Documents\\aeon\\aeon\\similarity_search\\query_search.py:270: UserWarning: Only 6 matches are bellow the threshold of 0.25, while k=inf. The number of returned match will be 6.\n", - " return extract_top_k_and_threshold_from_distance_profiles(\n" - ] + "data": { + "text/plain": [ + "([array([0.]),\n", + " array([0.]),\n", + " array([0.]),\n", + " array([3.88578059e-14]),\n", + " array([7.77156117e-14])],\n", + " [array([[30, 30]], dtype=int64),\n", + " array([[48, 48]], dtype=int64),\n", + " array([[0, 0]], dtype=int64),\n", + " array([[69, 69]], dtype=int64),\n", + " array([[87, 87]], dtype=int64)])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "# Here, the distance function (distance and normalise arguments)\n", - "top_k_search = QuerySearch(k=np.inf, threshold=0.25, distance=\"euclidean\")\n", - "top_k_search.fit(X_train)\n", - "distances_to_matches, best_matches = top_k_search.predict(q)\n", - "for i in range(len(best_matches)):\n", - " print(f\"match {i} : {best_matches[i]} with distance {distances_to_matches[i]} to q\")" + "from aeon.similarity_search.series import StompMotif\n", + "\n", + "motif = StompMotif(length=length, normalize=True).fit(series_fit)\n", + "motif.predict(\n", + " k=5,\n", + " motif_size=1,\n", + ")" ] }, { "cell_type": "markdown", - "id": "0efd83a5-b36f-4809-be96-94de734d931c", + "id": "d16036a3-f5b9-41d2-ae23-a1bcf0737c93", "metadata": {}, "source": [ - "You may also combine the `k` and `threshold` parameter :" + "\n", + "Note that we also support giving another series in `predict`, which will use this series to search for the motifs matching subsequences in the series given during `fit`. For those familiar with the matrix profile notations, this is the case of using `MP(A,B)`, while not using a series in `predict` is doing a self matrix profile `MP(A,A)`." ] }, { "cell_type": "code", "execution_count": 7, - "id": "65db1593-3873-4a47-9e2a-d8dfcf42dd1a", + "id": "59117ea7-2cbf-49d6-829a-792805b4aaf7", "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "match 0 : [195 26] with distance 0.1973741999473598 to q\n", - "match 1 : [92 23] with distance 0.20753669049486048 to q\n", - "match 2 : [154 22] with distance 0.21538593730366784 to q\n" - ] + "data": { + "text/plain": [ + "([array([0.01197907]),\n", + " array([0.0622802]),\n", + " array([0.14565364]),\n", + " array([0.70546699]),\n", + " array([1.19303001])],\n", + " [array([[83, 78]], dtype=int64),\n", + " array([[50, 49]], dtype=int64),\n", + " array([[32, 30]], dtype=int64),\n", + " array([[9, 4]], dtype=int64),\n", + " array([[101, 95]], dtype=int64)])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "# Here, the distance function (distance and normalise arguments)\n", - "top_k_search = QuerySearch(k=3, threshold=0.25, distance=\"euclidean\")\n", - "top_k_search.fit(X_train)\n", - "distances_to_matches, best_matches = top_k_search.predict(q)\n", - "for i in range(len(best_matches)):\n", - " print(f\"match {i} : {best_matches[i]} with distance {distances_to_matches[i]} to q\")" + "from aeon.similarity_search.series import StompMotif\n", + "\n", + "motif.predict(\n", + " series_predict,\n", + " k=5,\n", + " motif_size=1,\n", + ")" ] }, { "cell_type": "markdown", - "id": "ff62a385-d58e-4fb1-95dd-eb0474711531", + "id": "9190fdf4-db3d-4d51-b2c8-41b88a9f6f74", "metadata": {}, "source": [ - "It is also possible to return the **worst** matches (not that the title of the plots are not accurate here) to the query, by using the `inverse_distance` parameter :" + "You can also return the matrix profile with the same parameterization as `predict` (minus `motif_extraction_method` parameter) using :" ] }, { "cell_type": "code", "execution_count": 8, - "id": "6d6078ab-9104-462e-9856-1d0fc9594b24", + "id": "4c36738a-e6a0-4452-aee2-ccbad99d6d8b", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAE/CAYAAADCGZOXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAAClSUlEQVR4nOzdd5xddZ0//tc5t9fpLTOTOklIAiGEgdCLomiQUEQQEUGaWFDXn7vi6rLoWlB3v+sqKEQpKggoKIhIESRSQ0hCei+TTE2m3t7OPef3x7nn3Htn7qTM3Ln19Xw8WCd3bvnMbHLen/P+vD/vj6AoigIiIiIiIiIiIiprYr4HQERERERERERE+cckERERERERERERMUlERERERERERERMEhEREREREREREZgkIiIiIiIiIiIiMElERERERERERERgkogKzMyZM/HKK6/kexg588gjj+Ccc87J9zCIiIoG4wQRER0J4wTR5DBJRCXv7rvvxqc//emcfd6NN96Ib3/721Py3kNDQ7jiiivgcDgwY8YM/P73v5+SzyEiKielFCfuvfdetLe3w2Kx4MYbb5ySzyAiKjelEicikQhuvvlmzJgxAy6XC0uWLMELL7yQ9c+h4mbM9wCI6Nh98YtfhNlsxqFDh7BhwwZccsklOPnkk7Fo0aJ8D42IiArAtGnT8O1vfxsvvfQSQqFQvodDREQFRJIktLa24p///CemT5+Ov/3tb7j66quxefNmzJw5M9/DowLBSiIqOO+99x4WLlyIqqoqfPazn0U4HNa/99e//hVLlixBZWUlzjrrLGzatEn/3o9+9CM0NzfD5XJh/vz5ePXVV/Hiiy/iBz/4AZ588kk4nU6cfPLJGT9z5syZ+MlPfoLFixfD4XDg5ptvxqFDh/DRj34ULpcLF110EYaHh/Xnf+ITn0BjYyMqKipw3nnnYevWrQCAlStX4rHHHsOPf/xjOJ1OXHrppQCAzs5OXHnllairq0NNTQ2+9KUvpX3+17/+dVRVVWHWrFnjZvMDgQCefvpp/Nd//RecTifOOeccrFixAr/73e8m9osmIipSjBPjr/peeeWVuPzyy1FTU3P8v1giohLBOJE5TjgcDtx9992YOXMmRFHExz72McyaNQvr1q2b2C+aSpNCVEBmzJihLFq0SDl48KAyODionHXWWcq3vvUtRVEUZf369UpdXZ2yevVqRZIk5ZFHHlFmzJihhMNhZceOHUpLS4vS3d2tKIqi7N+/X9mzZ4+iKIryn//5n8p111131M9dtmyZ0tfXp3R1dSl1dXXKKaecoqxfv14JhULKhRdeqNx999368x988EHF6/Uq4XBY+cpXvqKcfPLJ+vduuOEGfcyKoiiSJCmLFy9WvvrVryp+v18JhULKG2+8oSiKojz88MOK0WhUVq5cqUiSpPziF79QmpqaFFmWx4xx/fr1is1mS3vsJz/5ifKxj33sOH7DRETFjXFi/DiR6lvf+pZyww03HPPvlYioVDBOHFucUBRF6evrUywWi7J9+/Zj++VSWWAlERWcL33pS2htbUV1dTW+9a1v4fHHHwegZtU/97nPYdmyZTAYDLjhhhtgsViwevVqGAwGRCIRbNu2DbFYDDNnzsScOXOO63PvuOMONDQ0oLm5Geeeey6WLVuGU045BVarFVdccQXef/99/bk33XQTXC4XLBYL7r77bmzcuBEejyfj+65ZswY9PT34yU9+AofDAavVmtZcbsaMGbj11lv1n6m3txeHDh0a8z5+vx9utzvtsYqKCvh8vuP6OYmIih3jROY4QUREKsaJo8eJWCyG6667DjfccANOOOGE4/o5qbQxSUQFp7W1Vf96xowZ6OnpAQAcOHAA//M//4PKykr9v87OTvT09KCtrQ0//elPcffdd6O+vh6f/OQn9dcdq4aGBv1rm8025s9+vx8AEI/Hceedd2LOnDlwu936/t2BgYGM79vZ2YkZM2bAaMzcAqyxsVH/2m63A4D+WamcTie8Xm/aY16vFy6X6xh+OiKi0sE4kTlOEBGRinHiyHFClmVcf/31MJvNuPfee4/th6OywSQRFZzOzk7964MHD2LatGkA1Iv9t771LYyMjOj/BYNBXHvttQCAT33qU3jzzTdx4MABCIKAb3zjGwAAQRCyOr7f//73ePbZZ/HKK6/A4/Ggo6MDAKAoSsbPa21txcGDByFJ0qQ+d968eZAkCbt379Yf27hxI5tWE1HZYZwgIqIjYZwYn6Ioer+kp59+GiaTadLvSaWFSSIqOPfddx+6urowNDSE73//+7jmmmsAALfeeivuv/9+vPvuu1AUBYFAAM8//zx8Ph927tyJf/zjH4hEIrBarbDZbBBF9a93Q0MDOjo6IMtyVsbn8/lgsVhQU1ODYDCIf//3f0/7fkNDA/bt26f/+fTTT0dTUxPuvPNOBAIBhMNhvPXWW8f9uQ6HA1deeSXuuusuBAIBvPXWW3j22Wdx/fXXT/pnIiIqJowT45MkCeFwGPF4HPF4HOFwmMknIio7jBPj+/znP4/t27fjueeeg81mm9TPQaWJSSIqOJ/61Kfw4Q9/GLNnz8acOXPw7W9/GwDQ3t6OX/3qV/jSl76EqqoqtLW14ZFHHgEARCIR3HnnnaitrUVjYyMOHz6MH/7whwDUkwMAoKamBkuXLp30+D7zmc9gxowZaG5uxsKFC3HGGWekff/mm2/Gtm3bUFlZicsvvxwGgwHPPfcc9uzZg+nTp6OlpQVPPvnkhD77F7/4BUKhEOrr63Httdfil7/8JSuJiKjsME6M73vf+x5sNhvuuecePProo7DZbPje97436Z+JiKiYME5kduDAATzwwAPYsGEDGhsb4XQ64XQ68dhjj036Z6LSIShaTRsREREREREREZUtVhIRERERERERERGTRERERERERERExCQRERERERERERGBSSIiIiIiIiIiIgKTREREREREREREBMCY7wGMp7a2FjNnzsz3MIiIClJHRwcGBgbyPYy8YpwgIhof4wTjBBHReI4UIwo2STRz5kysXbs238MgIipI7e3t+R5C3jFOEBGNj3GCcYKIaDxHihHcbkZEREREREREREwSERERERERERERk0RERERERERERIQC7klEVG5isRi6uroQDofzPRQqIFarFS0tLTCZTPkeChHlGeMEZcI4QUQaxgkabSIxgkkiogLR1dUFl8uFmTNnQhCEfA+HCoCiKBgcHERXVxdmzZqV7+EQUZ4xTtBojBNElIpxglJNNEZwuxlRgQiHw6ipqeEFnXSCIKCmpoarQUQEgHGCxmKcIKJUjBOUaqIxgpVEVJJkRUYgGoDD7IAoFE8ulBd0Go1/J4imRlyOIxALwGV2FdW/s2IaK+UG/04QTY1QLISQFIIoiDCKRlgMFpgMhb+tk9cESjWRvw9MElFJGAoNodfXC0/Eg4Oeg9g7tBcxOQazwYyFdQuxpHEJau21cJgcvHCOo6OjAx/72MewZcuWSb3PqlWrYDabcdZZZ2VpZEmPPPIIPvzhD2PatGlHfM7atWtx7733HvG9LrjgAvz3f/832tvbszK2DRs2oKenB8uXLwcA/OUvf8G2bdtw5513ZuX9iWjiFEVBf7Afh/yH4Il4sH94PzpGOhBX4rAZbTip4SQsbliMals17CZ7vodbsBgnJodxgqjwKIqCLm8Xtg9sx77hffCEPTCIBkiyhLA0tvrCJJrQ6GzEjMoZcJldMIpGTHNNQ5OrKQ+jLzyME5NTKHGCSSIqGoqioMfXgx5fD8JSGDE5hlAshE5vJ/r8fRlfE41HsaFvAzb0bQAA1Npr0T6tHac3n15UFUbFZNWqVXA6nVN2UT/xxBOPeFHPlw0bNmDt2rX6RX3FihVYsWJFnkdFVF5kRUanR40JkXgEsXgMgVgABz0HMRAcyPiakBTCmu41WNO9BgAwzTUNy5qXYXHDYi4qTBHGCcYJonyTZAmbD23G251voz/Yf8yvi8kxdHo70entTHt8Xs08fLTto6iyVWV7qGWJcSK/cYJJIioKYSmMP23/E3YN7jrqc4NRCfsHAjjsjaC5yoY5dU4YRHWiPxAcwIt7XsTGvo04f+b5aKtug1EsnH8Gd6+6O3efdcHYz5IkCddddx3Wr1+PRYsW4be//S3sdjvWrVuHr33ta/D7/aitrcUjjzyCpqYm/OxnP8P9998Po9GIhQsX4p577sH9998Pg8GARx99FD//+c9x7rnnJj/z7ruxf/9+7Nu3DwcPHsT//u//YvXq1XjhhRfQ3NyM5557DiaTCd/97nfx3HPPIRQK4ayzzsIDDzyAp59+GmvXrsV1110Hm82Gd955B1u2bMFXvvIVBAIBWCwWvPrqqwCAnp4efOQjH8HevXtxxRVX4Mc//vERfxePP/44fvCDH0BRFFxyySX40Y9+BAB48cUX8e///u+Ix+Oora3Fq6++ijVr1uArX/kKwuEwbDYbHn74YcyaNQt33XUXQqEQ3nzzTXzzm99EKBTSVyA6Ojpw0003YWBgAHV1dXj44Ycxffp03HjjjXC73Vi7di36+vrw4x//GFdddVX2/p9MVEa8ES/+uPWPYybuGZ8bjmF/fwBDgShm1Towo8auJ4R6fD34844/Y+OhjTi79WzMqppVUIsKjBOME4wTRBMnyRLW967HmwffhDfi1R+XFQW9I2H0+8IQRQGKAnhCMYSicRgMAkwGEWaDAKvJgNZqO2oc5rSFhF2Du7B/eD/Onn42zmo9C2aDOR8/HgDGCcaJyceJwrk7JhpHRIrg0U2PosvbNeZ7sqzAF5GwvdeLvYf98IZjiEiy/v2NXSOwm41ocFtQaTfjpOYKVDvM6PX34oktT8BisGBR/SKc0ngKWtwtZb9qvHPnTjz44IM4++yzcdNNN+EXv/gFvvKVr+COO+7As88+i7q6Ojz55JP41re+hYceegj33HMP9u/fD4vFgpGREVRWVuL222+H0+nE17/+9YyfsXfvXrz22mvYtm0bzjzzTDz99NP48Y9/jCuuuALPP/88Lr/8cnzpS1/CXXfdBQC4/vrr8de//hVXXXUV7r33Xr2kMxqN4pprrsGTTz6J0047DV6vFzabDYCahX///fdhsVgwf/583HHHHWhtbc04np6eHnzjG9/AunXrUFVVhQ9/+MN45plncPbZZ+PWW2/F66+/jlmzZmFoaAgAcMIJJ+CNN96A0WjEK6+8gn//93/H008/je9+97tpZamPPPKI/hl33HEHbrjhBtxwww146KGH8OUvfxnPPPMMAKC3txdvvvkmduzYgRUrVnDyTzQBvogPv9nwGwyGBsd8T5YVjIRi2NrjQcdAAL6IhOioOOG2mlDnsqDKbsbJrRVwWU3YN7wP+4b3wW6yY3HDYpzSeAoanA25/LEKEuME4wRRsRoIDuDJLU+mVQ4FIhLWHxzGth4vQrH4Mb+XxShCEARYjCLaZ1RjUbMbMTmGVR2rsK5nHS6dfynm1cybih+j4DFOFH+cYJKICpokS3hs82N6gmjPYT9e39WPUCwOSVagKMqY1xgNAloq7WhwW7H7sA9DgSj2D0gAAtjUNYLTZ1Zj6YwqmAwiIvEI1veux/re9ZhRMQMXt12Maa7CKz3MldbWVpx99tkAgE9/+tP42c9+ho985CPYsmULPvShDwEA4vE4mprUfdeLFy/Gddddh8svvxyXX375MX3GRz/6UZhMJpx00kmIx+P4yEc+AgA46aST0NHRAQB47bXX8OMf/xjBYBBDQ0NYtGgRLr300rT32blzJ5qamnDaaacBANxut/69D37wg6ioqAAALFy4EAcOHBj3ov7ee+/hggsuQF1dHQDguuuuw+uvvw6DwYDzzjtPPy6yuroaAODxeHDDDTdg9+7dEAQBsVjsqD/zO++8gz/96U8A1CD1b//2b/r3Lr/8coiiiIULF+LQoUNHfS8iSheMBfHbjb/VE0Sbukbw7r4hROIy4rKMDGECZqOI6VV2VDnM2NHngzccgzes/lve1D2Cs9tqceK0ChhEAcFYEKu7VmN112rMr5mPD835EGrttbn8EQsK4wTjBFEx6g/045ENjyAQCwAAPMEY1h4YwrZeL+KyGigqbCa0Vif60imA22aCw2KAJCuQ4jJicQWeUAwHBoMIRiUAQDgWx6s7DmFz9wgumF+PaZU2+KI+PL75cSyfuxynNZ+Wl583nxgnij9OMElEBe0f+/+Bg56DAIC9h/342+ZeyKkzfgEwG0TMrHFg4TQ3GlxWWE2iXhF0xuxqDPij8ISi2NcfwLZeL97ZN4i1B4bRVufE/EYXplfbIYoCDngOYOW6lTi16VR8eM6HYTFa8vEj59XoSipBEKAoChYtWoR33nlnzPOff/55vP7663juuefw/e9/H5s3bz7qZ1gs6u9VFEWYTCb9M0VRhCRJCIfD+MIXvoC1a9eitbUVd99993Ef26h9BgAYDAZIknRcrz+S//iP/8CFF16IP//5z+jo6MAFF1wwqfdLHWumpCcRHdnzu57XV4U3do3gtR2H074vCIDZaEBbnRMLm9yocZr1FWAAOHNODfp9EXhCMezo82Ffvx+v7TiMd/YOYm69Eyc0ujGt0gpBELBzcCd2D+3GWa1n4cKZF8IgGnL+8+Yb48TRMU4QFZbDgcP4zYbfIBALQFEUrN43hDUdQ/q/p7Y6J06dWYVGt/WYdhUoioJgNA5BADqHQnhjdz8O+yL4w9pOLGh044IT6mAxGvD87ucRjAVx/szzp/pHLCiME0dX6HGicDbZE43iCXvwbte7AIDukRCe36ImiE6dUYUvXNCGOz4wF1/5wFx84YI2LD+pCTNrHLCZDWkXJkEQUOeyoK3ehQ8vasTHl7ag0W1FLC5je58Xz2zoxq/f3Ie1HUOQZHX7wbredXhg3QPo9nbn5efOp4MHD+oX79///vc455xzMH/+fPT39+uPx2IxbN26FbIso7OzExdeeCF+9KMfwePxwO/3w+VywefzTXgM2gW8trYWfr8fTz31lP691PeeP38+ent78d577wEAfD7fhC7ep59+Ov75z39iYGAA8Xgcjz/+OM4//3ycccYZeP3117F//34A0MtDPR4PmpubAaSXgB7p5z7rrLPwxBNPAAAee+yxtH3VRDRx3d5ubO3fCgDYdcinJ4jOn1eHL1zQhi9/YC6+8sF5+Pz5c/ChhQ1orrLBakqPE6IgoMFtxbwGFy5d3IRLTmpCjcOMcCyOzd0e/HFdJx56qwNbuj2QFQWyIuPNg2/iwfcfxGBw7Pa2Usc4wThBVExGJ4je3DOAd/er1+4FTW585swZ+NjJ09BUYRuT3BAFERWWClRYKmA32fX+dIIgwGExwm42Yn6jCzecNROnz6qGQRSwvc+Lp9d16ZVGr3W8hnc6xyZGShnjRPHHCVYSUcF6/cDriCtxKIqC13f1Q5YVnNxSiXPaajNm+W1GG06oPQFVtirUO+pRYanAjoEd6PR2Yt/wPgBAa7Udnzx9OkaCUezo82Fnnw/DwSje3DOAzd0efPCEBkyvsWMoNISHNzyMT574SbRVt+X6R8+b+fPn47777sNNN92EhQsX4vOf/zzMZjOeeuopfPnLX4bH44EkSfjqV7+KefPm4dOf/jQ8Hg8URcGXv/xlVFZW4tJLL8VVV12FZ599dkyjuWNRWVmJW2+9FSeeeCIaGxv18k8AuPHGG3H77bfrjeaefPJJ3HHHHQiFQrDZbHjllVeO+2duamrCPffcgwsvvFBvNHfZZZcBAFauXIkrr7wSsiyjvr4ef//73/Fv//ZvuOGGG/C9730Pl1xyif4+F154Ie655x4sWbIE3/zmN9M+4+c//zk++9nP4ic/+YneaI6IJu+1jtcAAFJcxuu71Gqic9pqccr0zKfLuMwuzK+djwpLBZpcTbAardjevx2d3k4c9ByEIAiY2+DC3AYX+n0R7OzzYWefF75wDK9sP4SNnSO4aGEDGtxW9Ph68Kv1v8INJ99QVkcfM04wThAVi6HQ0JgE0boDwxAFActPakJbvVN/rsPkQPu0dsyrmQeXxQVFUeA0O9MqRmVFRo+vB/uH92MgOIDdQ7sRjAVhMog4a04tFjS58ez73Ymqoi5ctbQFTqsRL+19CS6LCyfWn5iPX0POMU4Uf5wQlAKtW21vb8fatWvzPQzKk6HQEO5dcy9kRcbew348t6kHdrMRnz17JkwGNYt/Yv2JaHA0wCgaUeeow8zKmeOeVBaRInh1/6tY17MOcSXZlE5RFBwYDOL13f0YCkQBAEunV+HstloYRAFmgxk3LrkxJ32Ktm/fjicPPTnln6PJdBoBFabt27djwYIFaY/xGsnfQbk76DmIh95/CACw4eAwVu3qR63TguuWTdcXEtqntaPCUgGTwYRGZyOmV0wf96Qyf9SPl/e+jM2HNkNBcmqkKAp2HfLjzT0D8IVjEEUBZ82uwakzqiAIApxmJ24+5eacHHvMOEHjYZzIjL+D8qUoCh7d9Cj2Du+Foih4Y/cA1h8cmyCym+y4YOYFOKXxFJgMpuP+nD1De/DSnpf0bc+BiIRnNnSj3xdBrdOCT7S3wGI0wCAYcOupt6LR2ZjVn3M0xgnK5HhjBCuJqCC9efBNyIoMRVHwzj61JPS0mVV6gui6k67D3Jq5x/x+FqMFy+cux3kzzsOOgR3YcngLOkY6IAgCZtY6ML3ajvc6hrB6/xDWHxzGSCiGjy1uQjQexWObHsMtS2/JyQ0AL7RERMfmnx3/BADE4jLWdAwDAM6YXQNBECAKIm479bbjmow7zU5cueBKfGDWB7C9fzs2H96MHl8PBEHA/EYX5tQ58OaeAWzoHEkkjCRcML8O/qgfj256FLcsvQU2k21KftZUjBNEREfX5+/D3uG9AIB1B4YzJoha3C247qTrJnXtbqtuw+zTZmNVxyq8fuB1OCxGXHlKC/6wthMD/gie29iLK05pBsQ4XtzzIm44+YYpP02ZcYImiz2JqODE5Ti2HlZ7TOzt92PAH4HTYsRJzWp3+TlVc44rQZTKaXaifVo7blxyI76y7Cs4bdppECBAFAUsm12DT5zaAotRxL5+P1btPAxFURCIBfDMjmfYLJKIqEAEogF98r+524NgVEK9y4o5dQ4AwJLGJRNera20VuLM1jNx26m34QunfUHfHmA0iLhgfj0uPXkaDKKAjV0jWHtATU4Nhgbxwp4XsvCTERFRNuwa3AVArSja2DkCALh4UWNaguj6xddnJbkvCiI+MOsD+GjbRwEANrMBl5/SDLvZiK7hIDZ0qrGiY6RDb4FBVMiYJKKC0+PrQSQeAQDsOaweU3nK9CoYE1VEF866MCufU2WrwiXzLsHt7bejwdEAAJhWacOKk5thEAVs6vJgY5cHAHDAcwCbDx+90z4REU29/SP79a/3HvYDANpnqtu/DIIB5804LyufU++ox1ULr8Jnl3wWldZKAMCcOicuXtQICMBbewawJ/H5mw5twoGRA1n5XCIimhwtSTTgj8IXkWA3GzGvQU0QucwuXL/4+qyfZLysZRk+MOsDAIAKmwkfWqjeX7zXMYyIpLa7eHX/q1x4poLHJBEVHC3DrigKDg4FAQAza+wAgOkV09Hibsnq5zU4G3DrqbdiUd0iAEBzlQ0fXqiuQL+9dwD+iNrh/uW9LyMsHd/RiURElH1anIhKMnq9YQgCML1ajRML6xbqCZ1smVE5A7e3344ZFTMAAPMaXDhnTi0AYNXOw4jF1dMxn9/9POJyfNz3ISKiqeeL+NDtU08p3j+gJvJn1Tr0bV5XLLgi6wkizbnTz8XJDScDUO9fplXaEI7F8f7BEQDqYviOgR1T8tlE2cIkERUcbfI/GIgiGJXgMBtR7TADwJSdNGYUjbhiwRWYVTkLADC/0YXZtU5EJRlv7FYb0fmjfrx+4PUp+XwiIjo2iqJg75C61ax7JARZVtDgssJqUk+gmao4YTVace1J16LeUQ8AWDqjCvUuC/wRCe/uV4+0PRw4jLU9bJJLdLy0I7AXLlyIRYsW4f/+7//GPEc7+aitrQ2LFy/G+vXr8zBSKga7h3brX+8bUHclzKpVtyM7TA59vj8VBEHARbMvgkk0QRAEnJ1YUFh/cBihqLqIsL6Xf3epsDFJRAUlGo+i09sJAHoV0fRqu575n101e8o+2yga8YlFn4DNqO5NPn9+HQyigJ19PnQNq2NZ17MOkixN2RiIiOjIhsPD8ETUrcCpcUIzq2rqJv9WoxVXL7oaBsEAURBw4Qlqwmj9wWEMJ07IXNO9hlsJiI6T0WjE//zP/2Dbtm1YvXo17rvvPmzbti3tOS+88AJ2796N3bt3Y+XKlfj85z+fp9FSodO2mgWjEvq8YRhEQY8Tc2vmTnnjaJfFhdObTweg7lCYXm1HVJKxt1+tajroOQhZkad0DESTMekkETP/lE0HRg7oF83OxOS/NXFRtxgsU34Uvd1kxwdnfxCAupe4fUY1AOgN7yLxCDpGOqZ0DESlhnGCsim16efoOFFnr4Pb4p7Sz6+11+Ks1rMAAE0VNixsckOWFWzuVhNXg6FBDAQHpnQMRKWmqakJS5cuBQC4XC4sWLAA3d3dac959tln8ZnPfAaCIOCMM87AyMgIent78zFcKmCSLOlxYv9AAFCAlio7zEb1tnd+zfycjOPs6WfDIKgVrjNr1CqmXo/atiISjzBOUEGbdJKImX/KJu2iHpcVdA2HACRXiGdVzYIoTH3x29KmpWhyNgEAFk5TbzYODAUhyWryaufAzikfQ6mQJFZdEeMEZZe21SwQkTDgj8BoENFUaQUwtdWmqc6dca6ejFo0TT15c1+/X68g2jnIOHGsGCdotI6ODrz//vtYtmxZ2uPd3d1obW3V/9zS0jImkUTU6+tFNK5WdnYMqgsJsxNbzQyCIWdxwm6yo8ml3k80Vqgxqs8T0r/f5e3KyThKAeNE7k36jpuZf8omLUnU5w0jFpdR7TDDaTUCyN3kXxRELGlcAkCtJqp1WhCVZHQnkla7BneV7FaC73//+5g3bx7OOeccXHvttfjv//5vXHDBBVi7Vu2xMTAwgJkzZwIA4vE4/vVf/xWnnXYaFi9ejAceeAAAsGrVKpx77rlYsWIFFi5ciLvuugs//elP9c/41re+lbGShEoX4wRli6IoejVnZ2IbcHOlDUZRnc7kKk6YDWacWH8iAKCpQu2HNBKKYTgYA5Dc6lCKGCdoKvn9fnz84x/HT3/6U7jdE6sKXLlyJdrb29He3o7+/v4sj5AKXZ+/T//6kFet3GmuUltJzKicMWUNqzPRDtupd1kgigIGg1H9lLNSThIxThQ/Yzbf7Hgz/01NTWnPW7lyJVauXAkAvKiXIUmWcDhwGAD0hExrVbLPRK4m/wAwr2YeXtjzgvq5tQ4M+CPY1x/AjBoHPBEPXtr7Ei6YeQGsRmv2P/zuu7P/nsfwGevWrcMTTzyBDRs2QJIkLF26FKeeeuq4b/Hggw+ioqIC7733HiKRCM4++2x8+MMfBgCsX78eW7ZswaxZs9DR0YErr7wSX/3qVyHLMp544gmsWbNmqn4yKnCMEzQZI+ERhCQ1PiTjhDr5FwURMypn5Gws82vm4+3OtyGKAmbVOLC9z4t9/X5UO6px0HMQ73a9i1OnnQqjmNWplopxgkpQLBbDxz/+cVx33XW48sorx3y/ubkZnZ2d+p+7urrQ3Nw85nm33XYbbrvtNgBAe3v71A2YCpKWJArH4vCGYjCIAqrt6gE4za6xf1+mkpYkMhpE1DktOOQN45Anguk19qlPEjFO0CRkbe9ONjL/t912G9auXYu1a9eirq4uW0OjIjEcGoYCtUJHawBa51Kz/XaTHTW2mpyNpcpWpZ9gM7vOCUA9HUGrIFrdtRq/WvcrDIWGcjamqfbGG2/giiuugN1uh9vtxooVK474/Jdffhm//e1vsWTJEixbtgyDg4PYvVs9TeL000/HrFlq89iZM2eipqYG77//Pl5++WWccsopqKnJ3f8vqXAwTtBkDYYG9a+HRsWJekf91CTux9Fa0aofdDC7Tt3KoJ2iAwAv7HkBD7//MALRQMbXFyPGCZoqiqLg5ptvxoIFC/C1r30t43NWrFiB3/72t1AUBatXr0ZFRcWYhQQiLUk04I8AAGqdahUPADQ6G3M6Fi1JBKhVpwDQm9hy1h/oR0SK5HQ8ucA4URqysryVrcw/lbfUyf9wUJ38V9pNAIAaW82Un0Qw2vya+TgcOIwGtwV2sxG+cAzdIyHUuSywGA0YDA3ilX2v4OpFV+d0XLlmNBohJ/oxhcNh/XFFUfDzn/8cF198cdrzV61aBYfDkfbYLbfcgkceeQR9fX246aabpn7QVHAYJygbBoPJODGS2NpVmVghrrXX5nQsoiBibs1cbDq0CdNr7BBFAb2eEIaDUTjMRpiNIrp93Xjz4Ju4uO3io79hEWOcoMl666238Lvf/Q4nnXQSlixZAgD4wQ9+gIMHDwIAbr/9dixfvhx/+9vf0NbWBrvdjocffjiPI6ZCJCsyDgUOAQD6fWoCRltIAHKfJKqwVMBpdsIf9at9iTrVlhoAoEDBPW/eg8+1fy7n48oHxoniMulKImb+KVtSJ//DIXXyX5WY/NfYc58pnl+rnn4gCILe8O6pdV345aq92JI4xWZ7/3aEYqFx36OYnHfeeXjmmWcQCoXg8/nw3HPPAVAz9+vWrQMAPPXUU/rzL774Yvzyl79ELJbowbFrFwKBzCvmV1xxBV588UW89957Y4IAlT7GCcoWbTEhKskIRCUYRAGuRN+6XFabarRTcixGA1oqbVAU4Ddvd+CX/9yrnqoD4P2+90umjx3jBE2Vc845B4qiYNOmTdiwYQM2bNiA5cuX4/bbb8ftt98OQJ2P3Xfffdi7dy82b97MrWQ0xmBwEJKsNjnWk0RONUlkNphRZavK6XgEQdCriZoq1MrTXk9YjwkKFDz0/kN6u41SwDhRGiZdScTMP2WLNvkPReOIxOIwGUTYzerRkfmY/De7mvXs/+KWChwcDiIciyMqydh92I8TmyugQEGPrwdzqufkfHzZtnTpUlxzzTU4+eSTUV9fj9NOOw0A8PWvfx1XX301Vq5ciUsuuUR//i233IKOjg4sXboUiqKgrq4OzzzzTMb3NpvNuPDCC1FZWQmDwZCLH4cKCOMEZYu2mDCiVZvaTBATVab5WEyYUz0HBsGAuBLHKdOrMBSIIiLJiMVl7O33Y1atA2EpjMHQYM4rnaYC4wQRFbLUptX9/vRKogZHQ05OSR6txd2CHQM74LYaYTcbEIzG8cbuAbitRixuqUQUUbzT+Q4uO+GynI9tKjBOlAZBKdDlrfb2dr0DOpWHh99/GAc8B9AzEsIf1nai3mXBp5apTUivXnQ1FtYtzPmY3jz4Jl7Z94r+Z284hofe3A+ryYDPnTcbgiDgg7M+iHNnnDvpz9q+fTsWLFgw6ffJlrvvvhtOpxNf//rXJ/1esixj6dKl+OMf/4i5c+dmYXTlJdPfDV4j+TsoRz9d/VOMhEews8+HF7b0Yk6dE5eePA0AcOvSW9Hszv0Wxed3PY/3et7T/9w9HMIf13WizmnBdWeoMezKBVdiccPiSX8W4wSNh3EiM/4Oysvf9/4db3W+hbis4Ber9iCuKPjC+W0wG0WcNu00XDLvkqO/SZZ1jHTgkQ2PAAD+urEHe/r9+veWn9SEeQ0uuC1ufO3MzJXWx4txgjI53hiR+3Qq0Ti0SqLRfSaA/FQSAcAZLWfgpPqT9D+7LOoqgHpiglrO2u3rHu/lBGDbtm1oa2vDBz/4QV7QiWjCJFmCJ6xu9dUqiapS40QeKokA4AOzPoA5Vclq0nq3BYIADASikOJq/4VuL+PEkTBOEFE2aJVEQ4Eo4rKCSpsZZqN6u5uvvj/Nrmb9kIPz5tXhrDk1aK1WT2/WtsR5I16EpfC470GME7k2BeeyEh2/iBSBP6pm1oczTP6rbdV5GZdRNOLKBVdimmsaXtr7EgRBQIPbiv0DAfR5w6iwm9Dl7YKiKDlvrD3V7s7S0ZkLFy7Evn37svJeRFS+hkJDyRMwg1rfOvVwA4fJkdOTzVLZTDZ8evGn8fzu57G2Zy1MBhE1DgsG/BEc9kUwrdJWsosJjBNEVCgURdGTRKP7EQH5SxKZDCacO+NcvLz3ZbhtJpw+qwZumxedQ0EMJk7pBNTTzlorWvMyxqnEOFGcWElEBSH1KPnkCrE6+a+wVMBkMOVlXIDadO6UplMgIHF8plu9EdFOJ/BH/fBFfXkbHxFROUiNE/oJmI78HW6QShAELGtepv+5YVSc6PX1Ii7H8zI2IqJy4I/6EYipDY9Hn2wmQEC9oz5vYzur9SysmJ88Cr7GoY5rKNE3CQD6g/05HxfReJgkooKgbTUDkivElXk82Ww0q9GqNx1tqFAn/4e8ybLQbG0lKNAWYZRH/DtBpNKaViuKMmYxIV9bklPV2GtgMagTf20xQYsTcSWuH8s8Wbwm0Gj8O0EEDAQH9K8HA1qSSL2XqLXX5nXBGQCWNi3FWa1nAQCqHCYIgoCRcEzflpzNE854TaBUE/n7wCQRFYS0yX8osUJcQJN/AHpD1AaXOvk/7AtDltV/dNnYSmC1WjE4OMgLO+kURcHg4CCs1vxsoyEqJPoJmLE4IpIMs1GEzZQ4AbMAFhNEQcQ0l9pEu6FCTRYd8mR3MYFxgkZjnCBSDYeH9a89IXXBucKWTBIVgjp7HQDAKIqotJkARe2fBKjbzbKBcYJSTTRGsCcRFQRt8u+PSJDiCuxmA6wFNPkH1MZzG/o2wGY2oMJmgicUw2AgijqXJSuT/5aWFnR1daG/n+WmlGS1WtHS0pLvYRDlnbaYMKL3IzLrveAKaTFh/8h+1DgsMBoEjIRiCMfisJoM6PZ14zScNqn3Z5ygTBgniICR8AgAQFYU+MLq4TJuq3qrW2Wrytew0qRueatxmDEcjGIwEEW925q1SiLGCRptIjGCSSIqCNrkf/RWM6CwJv+aRrcVnlAMfd4w6lwW9Ph6Jt282mQyYdasWdkYKhFRydEWE/R+RPbk1oFCWkwAAIMooN5pRY8nhD5vGDNrHFlZTGCcICLKbDikVhL5IxJkRYHDbITRoG6aqbRW5nFkSXWOOv3rGqcFe/r9evNqX9SHsBSe9CEMjBOUDdxuRgVh9OS/qgAn/w2OBhgEtbqpYVS/iUg8klbmSkRE2ZN+AmaykghQG5JWWQtjlTh1MUGLE4cTcWIgOIBYPJaXcRERlTqtksib2GrmtiXvJQolRpgNZj1hVeNUY1hq8+ps9iUimgwmiSjvIlIEYUmdRPtCWnmoemEXBbFgsv8G0YAGZwOA5GkJAykX9kP+7DQlJSKidN6IV//ap90AJOKE2+LOe0NSjcvsgsPkAJCME/1+dfFDgcLTa4iIpkgySZS4l7AlN8wUyr0EkOxLVJM4nVOrJAKy15eIaLKYJKK801aHASAQUS/szsQeYqfZCVEonL+mDQ41SVTrVCf/g/6o3hguWyfXEBFROl/Up3/tHxUn3BZ3XsaUiSAI+mJCbWKVeMDHxQQioqkUi8f0OKE3rbYmFw8KKUmk9SWqtJshCgI84RhiiRPOuJBAhaJw7r6pbKVN/qPq5N9hUSf/LrMrL2MaT6OzEQBgMxvgtBgRi8t6MOrz9+VzaEREJcsXScaJQDQOAHBa1O2/LkthxQltMaHaqTbWHglF9RsAxgkiouzzRDz6195w+nYzp9lZMNWmQLIvkUEU1N56CjCcqCbidjMqFEwSUd6lTf61FWItSVRok//ECjGQrCbqT6wSc4WYiGhqaIsJiqLocaLQFxOMoohquwmKoladAqw4JSKaClrTamBsT6JCqiICxp5wBgBDiSTRUGgoL2MiGo1JIsq7TNsIHObCnPxrK8QAUDuqL9FweBgRKZLxdURENHHaYkI0LiMWl2E0iDAnTq0p6MWEUXHikP+QvkWZiIiyQ+tHBCSTRNp2s0JpWq2ptlXrX1fY1CSRtivBE/YgLsfzMi6iVEwSUd5pk/9YXEZUkmEQBVhNhTn5t5lsev8Lrd+E1pQUYJkoEdFU0BYTApHEVjOzAYIgACi8xYRae63eS0+rONWSRCEplLYwQkREk6edMByXFfiiEgQh2beu0CqJrEYrbEYbgGRzbS1JpEBJ2zpHlC9MElHeJSf/ySqiQp38A8mtBHXa5D+lKSn7TRARZZ+2mDB6qxlQeIsJRtGIWnstgGSc6GecICKaMlolkS8cAxTAaTHBIKr3ElW2wqokApJjqkhsidP6KAHpW+eI8oVJIsq75ORfXSFOnfw7zc68jOlItC1nVXYzDKIAbziGiKSOnf0miIiyb8xiQpHEidTtZvpJmOxfR0SUVVpixRtSY4TbmowRhVZJBCS3wGlJIk9i3ED61jmifGGSiPJOm/zr/YgSJ9YAhbdCDCT7TYiioDecG9CaknLyT0SUVYqi6IsJ/kyVRAVcceowG2AzGRCRZPgSY+diAhFRdmmJFU+iIkdLvgCF15MISCauXFYTIAD+SAxxWV1I0LbOEeUTk0SUV6mT/9EnmwGFOflPa149asvZoQCbkhIRZVNICiGuqNWaek+ixGKCUTTCarTmbWzj0RYTBEEYEye43YyIKHvCUhghKQRg7MlmAgS9l2gh0babGUQBLot6CqYvkeDidjMqBEwSUV5F4hHEZPWiGIimrxAbBAPsJnvexjaeGnsNjKI6Rm3yPxhQJ//ReBTeiDdvYyMiKjXaQgIA+EfFCZfZpfewKySZFhMGU444lhU5L+MiIio1mU42cydONnNb3DCIhkwvy6vU6iZta5zWvJrbzagQMElEeeWP+pNfpzSuBtQ+E4U4+RcFETW2GgBApX3sXmKWiRIRZU9qnAiMihOFuCUZUOOXxaAmh5JxQr0BkBUZnjBPryEiyobUpMro7WaF2LQaSO+TpDevTtxL8D6CCgGTRJRXqSvEo7ebFerkHxh7KoE2+QdYJkpElE2pR8aPiRMFuCUZULeZVduqAYwTJ3gTQESUFemVRInG1Ymj5QuxaTWgjkuAuhCux4hEgisYCyIiRcZ9LVEuMElEeZU++ddON1PLQgt18g9An/y7U46ulBO9iIZCQ3kbFxFRqdEWExRFGdO4ulgXExgniIiyQ1ucleIyglEJoijoMaIQm1YDgEE06L2S3BliBLecUb4xSUR5ldZropgm/4mgYzKIsJuNkOXkzQtXiImIskdbTIhIMuKyArNRhNmoTl+KYTHBZTMCAuALS8nTa1hxSkSUFVpCxZuoxHFbjBAT7SoKtZIIGLuQ4GW1KRUQJokor7TJf1SSEYvLMBoEWIpg8p+6x1lfJQ7yVAIiomwbfQKm1o8IKI7FBKMowmk2qpVQYS4mEBFlk5Yk8uhbzUz69wo5SaSNLWOSiPcSlGdMElFeZZr8a82qC3nyr60QA2Mv7txGQESUPdpiwugtyUARLiYwThARZY2iKHrSXT/ZrEiSRNpCgt1sgEEUEIrFEZXUky+53YzyjUkiyitt8j96qxlQ2JP/CkvF2IZzieAUkkIIS+G8jY2IqJRoiwkZ40SRLSZocWI4NAwl0ceOiIgmJiSFEI1HAaRsN7Oq11uDYCjoGKEtJAiCoI9ZjxGsNqU8Y5KI8kqvJIoW1+TfIBpQYa0AwKakRERTRVGUZCVRNP1kM6CwFxPcFjdEQZ1mjY4TkXgEISmUt7EREZWC1Iob7fqqXW8rrBX6NbgQpVY5ZVpIIMqnwv2XQyUvbfKvbzcrjm0EAI58vDEv7kREkxaMBSEravn96J5EZoMZZoM5b2M7GlEQx/Sc4GICEVH2pM63k9vN1BhRyFvNgPST17Qx+xLVUJ6Ih9WmlFdMElHeROIRSLI66dd6TWgrxAbBAKvRmrexHQvt4p4xScQyUSKiSfNH/frXgVHbzZxmp97DrlBpiwmZjjjmYgIR0eSkVhJ5EwcDaFu3UpMwhchpdsIgqIvj2pi1nyEaj7LalPKKSSLKm9TJfzCxjcBuLp7Jv7aX2GEZ23COK8RERJOXHifUxQR7ouLUaXbmZUzHY8xiQpiLCURE2aIliSJSHOFYHEaDoMeIQq8kEgRBb13hSiSJfCkLCZ6wJy/jIgKYJKI8Slsh1ib/luKZ/GsrxBkbznGFmIho0jLFCUcRxgm72QCjQUQkpt7IAFxMICKarOTJZskqIm2RudCTRIB6EA6Q3G6mVRIBPOGM8otJIsqbQDSgfx0c1WuiGCb/qWWsYxrOcYWYiGjSArGUOJGh4rTQpZ5eU6FtJ+BiAhFRVmiJFL0fUeI6CySvv4VMS2Rp4/alVJt6Iqwkovxhkojypui3EdjGJom0IOUJexCX43kZFxFRqdDiRCwuIyrJMIgCLEZ16lIUcYKLCUTH5KabbkJ9fT1OPPHEjN9ftWoVKioqsGTJEixZsgTf/e53czxCKjSKouhJIm0rr3adBYqkkiix3cxuTrauiMXV1hWsJKJ8ykqSiBd2mght8h+XFYRicQgCYEskiRxmRz6HdkysRivsJjuAsZN/BQov7kQJjBE0UVqc0BcSTAZ9K4HDVPhxItNighYnvBGvfngDUbm78cYb8eKLLx7xOeeeey42bNiADRs24K677srRyKhQBWIB/Ro6+mQzk2gqihihJbIEQYArcShD6oIzUb5kJUnECztNhDb5DyUm/zaTEWJi8l8MK8TAkU84Y5KISMUYQROlxQntZDN7YhINFEecMBvM+jgrEjcvjBNEY5133nmorq7O9zCoiKRu2U3tSQSoyZdCPwAHSPYkAgCXLf2EM8YHyqesJIl4YaeJSK4Qa30mDPr3imHyDyRXACrsGY435lYCIgCMETRxoyuJHCUWJ3gTQHTs3nnnHZx88sn46Ec/iq1bt+Z7OJRnqfNs76jtZsWw1QxIH6fbqi4kaH2JGB8on3LWk4gXdhpNa0gaGNWPCCieyb+2lUBbufCGY1AUBQAv7kTHgzGCMtEOOBjdtBooojgxquLUm7qYwObVRMdk6dKlOHDgADZu3Ig77rgDl19++bjPXblyJdrb29He3o7+/v7cDZJySrt+KoqiJ9/dietsMTStBgC3xQ0BasWTy5peSRSSQojGo3kbG5W3nCSJjvXCzot6edFXiLWTzYpsGwGQXAEwG0XYzQbEZQWBiJr04uSf6Nhw8k+ZxOU4grEgAOjXVbsluZhQDL3rgLGn13jDEuTEYgIrTomOjdvthtOpzg2XL1+OWCyGgYGBjM+97bbbsHbtWqxduxZ1dXW5HCblkHb9DMdkxOIyzEZRP9ig2lYc1csG0QCXxQUg5YQzVptSAchJkuhYL+y8qJcPRVGSvSaKuZIo5eQaN0+uIZoQTv4pk2AsCAVqMkWrJHIkKolsRhuMonHc1xYSbUXbaBDhsBghKwr87DlBdFz6+vr0Su01a9ZAlmXU1NTkeVSUT9pirLbVzG016X2IUufnhU5fSEj0rdMqiQA2r6b8yckMq6+vDw0NDRAEgRd2AqCWUMqKesTj6Mm/STTBbDDnbWzHY/TJNX2eMDyhGJqrbJz8Ex0jxgjKRFtIAFJONyuiEzA1qTcrFTYTAhEJnlAMbpuJFadECddeey1WrVqFgYEBtLS04Dvf+Q5iMfXm//bbb8dTTz2FX/7ylzAajbDZbHjiiSeKojExTR1tMVZbnNW29ALFs90MSDav1rabaT2JAC4kUP5kJUnECzsdr9TJv15JlNhGUCxVRIB6YRcgQIEy5oSzYCyIiBSBxWjJ5xCJ8o4xgiYiPU6kn25WTHEitTFphc2EnpEQPKEYWsGKUyLN448/fsTvf+lLX8KXvvSlHI2GCl0sHoM34gWQ7POmbdcCirOSyGkxQhAAf1RCXFZgEAV4IqwkovzISpKIF3Y6XmkrxJH0SqJimvwbRAPcFjc8EQ8qrJlPrmlwNuRreEQFgTGCJiJTJZF2ulkxxYkKawVEQYSsyPpNjBYnwlIYYSkMq9GazyESERWV1AobfbuZLXkfYTKYMr2sIFVY1UoigyjAaTbCF5HgD0uosJtYSUR5k7PTzYhSaSfWAGO3ERTT5B9I3Us8NknEVWIioonRTsBUFGXM6WbFFCdEQYTb4gaAMRWnAA85ICI6Xqnza09IjQ/a9bWYqoiA9GpTly15WjLAnkSUP0wSUV5k3EZQhJN/ILnvucLOyT8RUbZocSIalyHFFRgNIsyJk2uKLk5Yx48TXCkmIjo+qfNrfbtZIsFSLCebabSeRADgtmrNqxNJIm43ozxhkojyQpv8S3EZUUmGKAqwmop78u+0GCGKAoJRCbG42pSbk38ioonR4sTorWZAEcYJbTFBWyVmxSkR0YRp101FUdJONwOKq2k1kNxuBgDOxM8QSLTi8Ef9+kE/RLnEJBHlxejJv91k0BvVFtvkXysTFQVBD1DaDQAn/0REE6PHiYi2JTnZRrFY44TDbIBBFBCKxRGR1J+LFadERMdHu24Go3HEZQU2k0GvNC227WZmg1nvS+dKHM7gC6tJIlmR03ZfEOUKk0SUF9oFb/RWM6C4jjYG0lcsRvebYCUREdHEjI0TyUoih6nI4kTipkUQhJRqIvXnYpwgIjo+2iKsZ9RWM6D4KokA6H3rnIkkkT9RSQRAP8WNKJeYJKK8GLONwFK82wjSjzdWL+5a0BoODUNRlHwMi4ioqJVunEhfTGDFKRHRsVMURa8kGr3VDCi+SiIgJUmU6EnkDzNJRPnFJBHlhXZqTSlsI3CZXTCK6vhHT/5jckz/WYmI6NhIsoSwFAYABCPpFacChJKrOOViAhHRsfFH/YjJ6vUz2bRajQ9G0Vh09xHA2EoiHyuJKM+YJKKckxUZgaiaOMm0jaDYLu6CIOgnE+g9iVJWAHh8JRHR8dFihPq1tpigxgm7yQ5RKK7pi8PkgElU44MWJ3yJFXBJlriYQER0jFK36HoS23a17WZV1iq9x2kx0ZJEdrMBoiggHItDShyCwyQR5UNxzbKoJARjQShQV03DMXXyb0tM/q1Gq16VU0y0rQQu69iTa9hvgojo+ARjQf3rUCw9SVRsVURAYjEhcYKNSzvimHGCiOi4pV4vte1mFUV6splGSxIJggCnOb0vEZNElA9MElHOpXbpTz3dDCi+KiKNliTSyl21FWKAk38iouOVliRKxAmbSb2+2k32vIxpspJxYmzFKeMEEdGxSUsSjWpcrVX2FxstSQQk+xJpJ5wxSUT5wCQR5UWruxVV1ipEJbUk1KqtEBfZiTUabfJvMxlgNAiISLJ+vDEn/0RExyc1SZSsOFWnLEWfJNK3JXMxgYjoeHkiahsHWVH0RIo7kVhJPSSgmKQmt0afcMYkEeVD8e3roaLX6GzEzUtvBgC8sPp1DEtDuGXJyWitEYuuz4RGC0qCIMBlMWE4GIU3JKHOZeDkn4joOKUmiYKx0qoksppEGA0iopKMcCwOq4lxgojoWGnXS39YgqwocJiNMBrU+wdtW2+xSa0k0rYkpyaJZEUu2nskKk7820Z5NRKMQYAJs2oaMaNyBlorWvM9pAlJXbnQSl61LWec/BMRHR8tSSTLCiKxOCAAFlNpVBIJgqCvemur4IwTRETHRjsQRqvG1ObdQPFWElmMFlgMFgAplUSJ+JB64A9RrjBJRHmjKAqGAlEAQLXdnOfRTE5akkhrSpoy+efxxkREx05LEmlNq21GA8TEiTXFniQCxm45Y5KIiOjoFEXRr5cevR9RcmNMsfYkApLVRK5RiwgAt5xR7jFJRHkTiMYRjcuwmQz66WbFyml2wiCoP8PoE85icgwhKZS3sRERFRvtSHitH5HVlIwRpZAkGn3CmSfs4WICEdFRhKQQYrJ63fSG1CSKdrKZQTAU7QE4QDJJ5LSoP48/kuxbxyQR5RqTRJQ3Q/5EFZGjuKuIAHX7AE84IyLKDq2SSD8BM2UhoVgPOHCYHDCKanxIbktWb3JiciytDxMREY2VdrLZqO1mldZKCImK02KkJ4lG9SQCmCSi3GOSiPJmKFg6SSIg08k1PN6YiGgitIRJKVUSpS0m8IQzIqLjpvUjApKVmBWJJFGxNq3WaEkiu9kAQRAQjMYhyTIAJoko95gkorwZCkQAlHCSKMTJPxHRROiVRFpPInPxJ4mAZJxIbjfjYgIR0bFKvU7qPYmsyUqiYqYliURBgDMR8wIRNQYySUS5xiQR5c1gCW03A5LByWExQBQFhGJxxOLqCgAn/0REx0ZRlGTj6sR2M1sJVBIBKYsJo07BBBgniIiOxhNRK4nisgJ/VIIgJLdnFXPTaiCZJAJStpwldiUwSUS5xiQR5c1wiW0308pcBUGAy8LjjYmIJiISj0BW1AR7eFQlkUk0wWQwjfvaQqfdxDjMBhi4mEBEdFy066QvHAMUtcmzQVT7EJVKJRGQbF7tSzSvZpKIco1JIsqbwUBpJYkyHm8c4vHGRETHI7WBc3BUJVExVxEByTiRupjAOEFEdGy062Ryq5lR/16p9CQC1F0JQHK7mS/q4wmYlFNMElHeDJdwkkjvNxFOTv55cSciOrpANKB/PbqSqFSSRADgsqUfcsAkERHRkWmNq7Xrpta0Gij+SiKr0aqfgOlMLCIEEiecSbKEsBTO29io/DBJRHkzVGJJIpfZBYOg3siMPt44Go8iJIXyNjYiomKRqZLIXmKVRECy4tTHxQQioqOKSBF9Lq1VYGrzbQECXGZX3saWDYIgwGl2AgAciSSRP5I83MAX9eVlXFSemCSivCm1JJEgCHqpa6YTzlKP7SQiosxSk0RaJZE1UUnkMDvyMqZscZqdycWEUSecxeQYFxOIiMahNa0Gxp5s5ra4YRANGV9XTLRE1+hKIgDwR/15GROVJyaJKG9KLUkEJJuSJrebJS/uqcGNiIgy05JEiqIgFCutnkSpiwkubTEhzMUEIqKjSd2Sqy3CatvNir0fkcZlUZNEWiVRIFFNCwC+CCuJKHeYJKK80ZNE9hJKEmmVRBmON+bkn4jo6LQkUSyuIC4rMBpEmAzqdKXYk0RAcjHBbdNOwUyJE1xMICLKKHUerS3CatfRYu9HpNEqiZKNqyV9GzK3m1EuMUlEeRGLy/CGJYhCetO5YqdN/p0WIwQB8EclxGX14s7JPxHR0WlJotCok82AEkkSjd6WnFpxysUEIqKMtEqiWFxGMCpBFAW94kabfxc7rZLInFgcicVlROMyAFYSUW4Zj/4UouwbDqpVRFV2M0RRyPNoskeb/BtEAU6zEb6IBF84hkq7mZN/IqJjoCeJYiWaJEpbTBAQiEiQZBlGUeRiAhHROE5qOAlVtips7e2FSZZQ7ZBQaa2AL+IruUoiQRDgMBswEpIRiMRhMRpYSUQ5xSQR5UUp9iMC0lcy3DZTIkkkqUkiTv6JiI4qmSRSK2xs5hJLEiUWE0RRgNNihC8cg1+LE1xMICLKqNHZiEZnI3zew3DIIk6vr8XXzlyGuByHgtI4GVKrJALUvkQjoRgCEQnVDjMriSinuN2M8kJLElWVWpIopXHe6KaknPwTER1dIBYAAISiaol9qVYSASknnCW2nHExgYjoyDqH1YWEliobAMAgGmAUS6PuQaskApLNq/2JE85YSUS5xCQR5YWWJKoptSRRpsl/KHlxl2Qp4+uIiEhVLpVEQEpfohAXE4iIjkXnkJYkKv54MFpqJZFTO+FMSxJFfHoTa6KpxiQR5cVwiVYSmQwmOEwOAMkTzlKPN2apKBHR+OJyHGEpDKBMKolGnXDGxQQioiPrGg4BAFqriz8ejGYxWGAS1fsHh54kUvvzxZU4QlIob2Oj8sIkEeXFYIlWEgHJVWKXlccbExEdj9QJ8OhKIpvRBlEo/mlL6mKCK8MJZ1xMoHJ00003ob6+HieeeGLG7yuKgi9/+ctoa2vD4sWLsX79+hyPkArF6O1mpUQQBDjNTgCAw6LGPn+U8YFyLyuzLV7Y6XjplUT2EkwSWUYdbxxKXty14zuJyg3jBB0LbasZMLaSqBSqiDTaYsLo7WYA4wSVpxtvvBEvvvjiuN9/4YUXsHv3buzevRsrV67E5z//+RyOjgpJ51CikqgEt5sByS1no7ebAexLRLmTlSQRL+x0vPRKImcJJolGVRL5IxLkxB5i9pugcsU4QcciLUk0qpKopJJE2mKCLb1xNcCKUypP5513Hqqrq8f9/rPPPovPfOYzEAQBZ5xxBkZGRtDb25vDEVIh8IZj8IRisJpE1JbgPQSQbF7tyJQkYiUR5UhWkkS8sNPxGg6WfiWR0SDCbjZCVhT9As/JP5Urxgk6FulJotKvJHKmLibIXEwgGk93dzdaW1v1P7e0tKC7uzuPI6J86EpUEbVU2SEIQp5HMzW0SiKHORkftIbVrCSiXMnJeYHjXdibmppy8fFUgAb9apKouoR7EgHqCWfBqARvSILLauLkn2gcjBMEAPNq5uHLy76MYCyIx1e9BHs8iOVzF8NojKHGVpPv4WWNvpgginCYjQhEJfgjEtw2ExcTiCZp5cqVWLlyJQCgv78/z6OhbNL6EbWWYD8ijVZJZDaKMBtFRCUZEUmG1WRgJRHlTE6SRMeKF/XyoVUSlWSSKO3kGhP6vGF4wzE0w8bJP9EkMU6UNqNoRLWtGi5zJSLhRlgF4MNt50EUS2vFOG0xwaYmibzhmJok4mIC0RjNzc3o7OzU/9zV1YXm5uaMz73ttttw2223AQDa29tzMj7Kjc6hRJKoBE8202iVRIBaTRSVoghEJFhNBvij/jyOjMpJTo4JOdYL+2233Ya1a9di7dq1qKury8XQKA8URcFQoISTRCmT/9EnnHnCHr1klIiSGCcoVeqW5FJLEAHpiwnaCWe+MLclE41nxYoV+O1vfwtFUbB69WpUVFSw0rQMdQ2XdtNqIFlJBKT2JYoDALwRb17GROUnJ0kiXtgplS8iIRZXYDcbYE30miglDpMDRlG9qI8+4Swmx9J6bhCRinGCUmkLCVUluJAAjN6WnH7CGRcTqBxde+21OPPMM7Fz5060tLTgwQcfxP3334/7778fALB8+XLMnj0bbW1tuPXWW/GLX/wizyOmfOhKbDdrKeXtZimVRE6Lep/ki6jxgT2JKFeyst3s2muvxapVqzAwMICWlhZ85zvfQSym/mW+/fbbsXz5cvztb39DW1sb7HY7Hn744Wx8LBWp4RKuIgIAQRBQYanAYGgQblti8h9OHm/siXjgMDvyNTyivGCcoONRytWmQHIxQZKlMSecaYsJjBNUTh5//PEjfl8QBNx33305Gg0VKq2SqKVMKomcFvU+QjsAxxfxQVZkiEJO6jyojGUlScQLOx2PwRKf/ANApbVSTRLp282Sx1eOhEcwzTUtX0MjygvGCToeepKoBE/ABNS/75XWSgwEB1K2myUXE0bCI0wSERGN0j2iJomaS7iSyGK0wGq0IiyF9RMwtfsIBQr8UT/cFnc+h0hlgGlIyrlSryQC1CQRkOw14Q3H9O0DI+GRPI2KiKg46HHCWfpxQltM0LabAYwTRESjecMx+MISrCYRVXZTvoczpbQkkDPRk8gfSS42sy8R5QKTRJRz5VJJBKjHV1pNBsRlBcGo2nSOk38ioiPT4kRNGcQJbVuyLyJxMYGIaBzdia1mzZU2CELpHWiQSksSaQfg+MNMElFuZWW7GdHxGC7xbQRAcvIPqKvE4Vgc3nAMDotx/Ml/PA4YSq+RNxHR8dLiRFUZxAmTQYTNZEAoFkcwGs8cJxgfiKjM9ehbzUq3H5HmuCqJnnkGEEWgsjL5X3MzYwZNCpNElHNDZbSNAFC3nB32ReANSWiqOMIK8TPPALt3p1/kTzkFaGiY8vESERUSvZKojOJEKBaHJzTOYsJvfgMMDKTHh2XLgIoKEBGVA70fUWXp9iPSaEkiu9kAURAQisUhxWUYDWJ6kkhRgC1bAElKf4NvfAOwlf7viaYOk0SUc6XekBQYVUlkS29KOhIegaIoY0tlPR4gHAb6+tT/AGDuXCaJiKjsDAfLp5IIANw2Iw77ks1JxySJRkaAYFD9r6dHfWzp0pyMk4ioEHTrJ5uVfvJDSxIJggCHxQhfOAZ/REKl3ZyeJAoExiaILBbAas3haKkUsScR5VypH20MAE6zEwZBLfPUm5ImJv/ReBQhKTT2RSMjYx+rrJyiERIRFa5Bf+nHifRtyclDDoDkYgIAdauZzzf2DVhFRERlpCtRSTStsvQTIKmnl7lGbTlLSxJluneoqABKvGcTTT0miSjnhoKlP/nXjjcGMO7xxmkkiTcBREQJw2UQJxwmB4yiOvl36cccq3EiJscQjAXVJ3o86paCVE4nYCrt032IiFLpPYkqy6cnEQA4RzWv9oQ9ySdygZmmCJNElHPlUEkEHOfxxl7v2JsAlwswckcoEZUXRVHKIk6kLibolUSh5LYBPU7wJoCIKHm6WRlsN6uwJBeJtebVvkQlkS/qg6zI6jcZH2iKMElEOVcOk39g7PHG3vARjjfmRZ6ICIBaUh+LK7CbDbCaSvt0lrFxIsNigseDMRgfiKiMRKQ4DvsiMIgCGlyWfA9nylmMFlgM6s85upJIVmQEogH1ibx/oCnCJBHlVFSS4QtLMIiCvnJaqrTJv8UowmwUEYvLiEhq5v+YkkTcakZEZahcFhIApGxL1rabZVhM4E0AEZW53pEwAKDRbYXRUB63r9qWs9E9iYCUvkRcRKApUh7/yqhgjOgn1pggiqXdVE2b/AuCAJdF20qQbEqahjcBREQAyjNJZDUZ9MWEcGzUYgLjAxGVuW69H1HpbzXTaEkivZIoU5KIi8w0RZgkopwaLMPJP6AebwwkTzhjkoiIKLNyTBIBmU84U78YGftC3gQQURnRk0Rl0I9Ik6wk0g7AGZUkUhTeP9CUYZKIcmo4oFUScfKvpDaq5kWeiAhASpKo7OJE+glnrCQiIlLpTavLsJLIbjFAEAQEYxLisnrv4I14gWAQiMXSX2QyAfbSP/2Nph6TRJRTWiVRjbP0J/9Os3PM8cbadrNoPJo83hjgTQARUUK5VhK5Rp1wNhIegSJJ6umXY15YOfYxIqISVc6VRKIgwGE2AAoQSGw580a84987CKXdzoNyg0kiyqnhYPlUEgmCoB9hqZ1ck1oq6okkms3F44DPN/YNuJ2AiMrQkBYnyiBJ5DA59MWE0SecxeQYgoN96paCtBc51NViIqIyoVUSTSvDSiJgbF8ib8TLptU0pZgkopwa8Ccqicpg8g+kHG9sTW9cDaRsJfB6x94EOJ28CSCisjRYRnFCEISUOJHeuw4AfIc6x76INwFEVGa6RtTq+9YyrCQCkiecaYvNnoiHuxBoSjFJRDnV71OPsKxzW/M8ktyosGqVRInJf8rJBOw3QUQ01mFfBABQ77bkeSS5MbriNHUxITDQM/YFjA9EVEakuIyeEfX+oWwriRLNq7VKIl/EB2V4eOyLuAuBsoRJIsqpw97E5N9VHpN/bYXYZjLAaBAQicURkeIAAE84USbKJBERke6wV70ZqHeVx2KCFidcoxpXA0BooDfDCypzMCoiosLQ5w0jLitocFtgNRnyPZycsRqtMIlqckjfbpaoJIorcUQGD499EeMDZQmTRJRT+gpxmSWJBEEYc4QljzcmIhqrv0zjhL6YIMn6YkJk4FCGF1TmbnBERHnWOaT2I2qpKq9TuwRB0KuJnNp2s0hyESEy0Df2RYwPlCVMElFOHU5sN6svl+1mlmSyZ/RWAm43IyJKF4vLGAxEIQpAjbM8kkTatmRBEFL616mLCdEhrhQTUXnrHC6/fkQaLUnkGlVJBEVBdKh/7AsYHyhLmCSinInLir5CXFcmk//0443Tm5Lqp5sxSUREBCBZRVTjtMAglscxvulxQqs4VRcT5KGhDC+oHPsYEVGJ6kqcbNZaXV6VRADGVBJpPYmMUQnR4KiTkY1G9fRLoixgkohyZjAQgawA1Q4zzMby+KvnsrggCurP6h41+Q9LYYSlMJNEREQJ2pbkhjJpWg2kJ4n0E85CMQiygrhnGMro0y+5HZmIykjXkFpJ1FLGlUQOixEQgEBUgiwrsPrDiMQj6U+uqACE8lhcoalXHnfqVBDKrWk1AIiCmHJyTXLyrxkJDgE+39gX8iaAiMpQuTWtBgCn2QmDoDZj1bclhyWYgxHIcQmSnDwVE3Y7YDbnY5hERHmhVxKVWU8iIJkkMogC7CYjFEVNFFkDEUSkUUkiLjBTFjFJRDmjbzUroyQRkOw3ofeaCCcn/N6BbkCW01/AmwAiKlPldrgBoC4maDcCyTgRgzWg/i7CUjj5ZC4gEFGZ0XoSlVvjaiCZJAJS+hJFJFjGqyQiyhImiShn9KbVZbRCDCS3EiQbkiYriQL9PWNfwIs8EZWpckwSAck4od0E+MISLAE1ZqbdCDA+EFEZiUoy+rxhiALQVFle9w9AepJI70sUHqeSiPGBsohJIsqZQ9p2szLqNQEkJ/8OiwGiKCAUiyMWV6uHggO9Y1/AizwRlSltu1ldmZyAqdEXE1JOwcxYScTtBERURnpGQlAUoKnCBpOh/G5bMyWJfBF1ESESj6T3rOP9A2VR+f1ro7zRKokaymyFWOtJJAgCXNoFXmtePXgowwt4kSei8qQ3ri63OJHYluwwG2BILCYYvWofDm43I6JypfUjKsem1QBgN9n1nnVOa3olkazI6T3rGB8oi5gkopzRG1eX6QoxkLrlTL2oR4f6x76AF3kiKlP6tuQyjROpiwnKSAAAk0REVL7KuR8RoMYErZpIiw3+CLcj09Rjkohyptx7TQApJ5wlKomk4cGxL+BFnojKVDmeggmMjhPqYgJGWElEROWtK5Ekaq0uz0oiILnlTKskCgajMIeiAJDel8jtHvNaoolikohypl9PEpXXCrHb4oYAAQDgGnXCmeD1ppeKArwJIKKyFJcVDPjVOFHrLN8kkRYnDB715ohJIiIqV51D2naz8qwkAlKSRIlKInhDEBKtiPRKIqcTMBrzMDoqVUwSUU4oipKyjaC8Jv8G0aBf4CsSK8SeoFpJZA1E0m8AAN4EEFFZGvRHICtAtcMMs7G8picuswuioP7MFTYjLFIc8cRKsSRLiMVjgMEAOBz5HCYRUU5p281ay7QnEQC4LC4AySSRwRvSG1brlUS8d6AsK69ZGOXNcDCGWFyB22qE1WTI93ByrtpWDQCotKtJopFgFMaoBGNUQjAWTD7RYFBXA4iIyky5bkkG1MUErZqo0m6GOxxFOCbr3w9JIfUmQBDyNEIiotzTGle3VrOSyGgQYTMZ4ApHEYurSaJoXF1MYJKIso1JIsqJcm1GqtGSRFV2MwBgJBSD2acGvlAslHwibwKIqEwxTiQXE9yRGMKxuP69YCzImwAiKivhWBz9vghMBgENZRoXgGSSCFCridyRGKJxdRFB327G+EBZlpUk0Ysvvoj58+ejra0N99xzz5jvP/LII6irq8OSJUuwZMkS/PrXv87Gx1IRKddmpJoaew0AwGoywGoyIBaXIY+oFUQhaVSSiKgEMU7Q0ZR9nLCpcaLSZlaTRFJc31IQioUYH6jkMU5QKq2KaFqlDQaxfBdQ05JEViPc4Riikpok0ltWMD5Qlk26w1U8HscXv/hF/P3vf0dLSwtOO+00rFixAgsXLkx73jXXXIN77713sh9HRaqctxEAyck/oK4S93nikAb9AJC+3YwXeSpBjBN0LMo+TiQWE8xGEQ2yDEUBIpIMq8mQ3G5GVKIYJ2g0rR9RSxn3IwKACkvy2u+2muCORBERk0kiRVEgMD5Qlk26kmjNmjVoa2vD7NmzYTab8clPfhLPPvtsNsZGJeSQl9sINFU2dctZPBH8xmw3IyoxjBN0LPQ4UaZJotQ40SgnbgASW8643YxKHeMEjab3Iyrjk80AwGl2wiiqdR0VNnU7ciTRs05WZMTkGOMDZd2kk0Td3d1obW3V/9zS0oLu7u4xz3v66aexePFiXHXVVejs7Jzsx1KR6RlJlIxWlGeSqMpWBQFqqazWvFoZDgAAYnJMPbkG4EWeShLjBB0LPU5UlueqcWrFaYOeJFL/NxQLQXG7M76OqBQwTtBoXUOsJAIAQRD0gw3cVqO+HVnD7cg0FXLSuPrSSy9FR0cHNm3ahA996EO44YYbMj5v5cqVaG9vR3t7O/r7+3MxNMqRzsRqQEuZrgYYRWPayTUAIHiSFUR6XyJe5KlMMU5QuceJCmsFDIJ6+mdtXAKQrCSKK3EEHKa8jY2oEDBOlBeebJak3UPUGgSY47JeSQQAIUiAnb8jyq5JJ4mam5vTMvldXV1obm5Oe05NTQ0sFrV8/JZbbsG6desyvtdtt92GtWvXYu3atairq5vs0KiAdGn7iqvLdzVA6zdRlagkMniTvYj0LWdMElEJYpygo1EUpezjhCiIqLZVQ5AVVCdWiUMpJ5wNGmP5GhrRlGOcoNHYkyipyloFAKhT1JiQerCB3yrwZGTKukkniU477TTs3r0b+/fvRzQaxRNPPIEVK1akPae3t1f/+i9/+QsWLFgw2Y+lIqIoCrrLfIUYSD3e2AwoCgyBSPLkGq2SiNsJqAQxTtDRDAaiCMdktd+CtXwrZqpt1TCHorCZ1OmZVkkUs5gwJPnyOTSiKcU4QaN1JrablXtPIkBtWwEArmgcRlGAogCxuHoP4bMwQUTZN+nTzYxGI+69915cfPHFiMfjuOmmm7Bo0SLcddddaG9vx4oVK/Czn/0Mf/nLX2A0GlFdXY1HHnkkC0OnYtHviyAiyaiym+C0TPqvXNHS+k2YjSJqAQiyop9cE4wFAasVMJvzO0iiKcA4QUfTyd4TANSK055gBFajuu0sIsmQFQURuxmDocE8j45o6jBOUCp/RMJwMKbOmZ3leZhBKm27mSUQgWAyQIpIiEhxmI0iRkzxI7+YaAKycse+fPlyLF++PO2x7373u/rXP/zhD/HDH/4wGx9FRaiTe4oBJLebAUCzOv9HOBZXjzeOhQCXK08jI5p6jBN0JDzFRlVjq4ElGIEoCrAYRUQktfdExG5BIMgkEZU2xgnSdKVsNRNFVspo283MwQhEo4hARD3YwGUFhk1SnkdHpSgnjaupvHVxTzGA9OONmxLxTju5JhgLQnE68zEsIqK869K3JDNOWIJRAIDVpK4mhGNxRO0WVhIRUdnoGuLCQSptu5klFIXFpFWaqhVEw6Y44jKriSi7mCSiKdfFfkQA1FJRUVD/yTVAO944eXJN2M6tZkRUntigVFVjr4E5GAGQTBKFYnFE7GYMhYb0PnZERKWMMSGd1WiF1WiFORiB1aj1rEvcS9hM8Ea8+RwelSAmiWjKaZVErWV+oddOrgGAeq1hdcrJNV4zJ/9EVJ541LHKZXbBEVLjgjWleXXUboEkS/BEPPkcHhFRTjAmjFVlrYIlEBlTSRS1WzAcHs7n0KgEMUlEU46VREm19loAQN2oSiIAGOLxxkRUppLbkss7TgiCgOq4WlVqS6skUhu3DgQH8jY2IqJc4WEGY1XZqtTtZqMqiSIOC0bCI3kcGZUiJoloyvFCn6QliaoTyaGIJEOW1QqiQSaJiKgMybLCnkQpqmJqcijZk0hGJLEdmUkiIioHh7xhAEBTBWOCptLkgimsJokEALG4eg8RtZkxHGIlEWUXk0Q0JcKxOFbtPIyIFEf3CCuJNDU29YQzaziavAFIlIseFkN5GxcRUa55wzG8sbsfh30RRCUZ1Q4zHJasHLpa1Cqi6skGFqMIQVBvBHxm9ffCJBERlYN+n9qbrd5lyfNICkeNbIWgqBWn5kQ1kc9ggGwQud2Mso6zMZoSj685iO88tw3nzatDLK6g1mmGzWzI97DyTqsksgSjsJpEhGNxhKJx2M1GHBKDeR4dEVHu/PzV3fjVG/tx3rw6AKwiAgBEo3AqJgDqjYDNZIA/JuNQHGgEk0REVPoURcGAXz3lsdbJJJGmOmaEL/G11WRARJIxYlTvrVhJRNnGSiKaEgcTW8xe39UPAGhmFREANUkkxmWYIjG930Q4FociAIeFICRZyvMIiYhyY3ScYJIIgM8HuykZL60mA/xmI4ZD6nZkJomIqNR5QxKicRlOi5ELzCkqY8nfhdaXaDCRJGJPIso2JoloSvjC6cmOcj/ZTGMz2VAZTe83EYrJiNrMUEQBQ6GhfA6PiChnxsYJLibA64XNmIyXNpMBPrMJwwF1Vd0f9SMshfM1OiKiKdfvV7ea1XGrWRpXNPm1dg8xKKq38oFYABEpko9hUYlikoimhDex6qlluqfzCEtdo+IAkH5yTdTGk2uIqLx4w2qc0I5651HHAHw+GEQDrEYrgESSyGLCUDB5dzAYHMzX6IiIppzWj6jWac7zSAqLMRCCxaDeL2j3V/1C8laefYkom9iTiKaEtkL83csWYWefH9efOSPPIyoc9fHE5N+c3G4WtvHkGiIqL1qc+Ok1S7Bm/zAuWzItzyMqAD6144TdZEdYCsNqNsCvGDEcSJ5+ORAcQLO7OV8jJCKaUqwkGofXC5vJhkg8AktiofkwBGiRczg0jEZnY/7GRyWFSSKaEtoK8YImN645bXqeR1NYquNmDAEwigIMooC4rMDLk2uIqMxoFaenzazGR05syvNoCkQiSaRtObOaRPgFE0ZCUciKAlEQGCeIqKQNJCqJ6ti0Op3Pp1eZWhOVRL0QcLKiQBAEVhJRVnG7GU0JLUnktpryPJLCUy2pCSHt5BoAGEiUi3LyT0TlQFEUeBOVRC7GiSSvFwD05tVGUYTksCIuK3rlFeMEEZUyrZKIJ5uN4vPpCwhGgwiDKGDEYEAoFgfAE84ou5gkoinh0yf/LFYbrSKa/GenNZ47LAgA1Mm/oih5GRcRUa6EYnHEZQVWkwizkVMRXcp2M42hUv1aa17NJBERlTKtJxG3m43i88FmSh5sYDWK8FuM8CSqcllJRNnEmRllnaIo+jYCrhCP5QjHIUBNCmmVRH2JSqJoPApf1Je3sRER5YI3pC4ksNp0lAxJIlPidFCtefVQaAiyIud+bEREOTDASqKxolEgHNa3mwGA2WxEwJRMEvGEZMomJoko6wLROGRFTYBwhXgs0R/QVwJsZvX30xNPfp8n1xBRqdO2JLPaNIWi6Ekis8EMg6AuIpir1RMxtUqiuBLHSHgkL0MkIppqrCTKwOMBkOxXBwBxpxUQBH1hfiQ8wgUEyhrewVPW+Tj5H58kASMj+iqxtt2sO+WaPhhikoiISpsWJ9w2VhLpRkaAuLpiIAgC7CY7JLMRrorEdrNg8oQzLiYQUaka4OlmY/X3AwCMolFfQIgntiJrlUSyIsMb8eZnfFRymCSirNO3EXDyP9bgICDLaUkiv8WI/rgMSVYzRew3QUSljtvNMjh8OO2PNpMNgQo7qh1mAMBwYrsZwDhBRKVJlhUM+NVrXY3TnOfRFJBEkkg99EatJpJqnQAATyKeAmxeTdnDJBFlXfJkM1YSjZG4CdCSRKIgwF/hgKIAnsQqMVeIiajUcbtZBombAI3dZEew0gGX1QiDKCAQkRCR1EojVpwSUSkaDkYRlxVU2EywGA35Hk7hSFlE0LacyfVuAMlKIoDNqyl7mCSirEtuN+MK8RiJm4DUPcWRGheA5CoxV4iJqNR5w6w4HWNUJZHdZEegygFREFBpU1fURxKLCYwTRFSKtCqiWlYRpUtZRNCbV9dXQBAAfySGuKyejMzm1ZQtTBJR1nG72RGMqiQCgHidmiQaCiQbz0myNPa1REQlQmu0ye1mKTIliSrVptVVDvX3pDWvZsUpEZUiNq3OIB5X21UkaNvNwtVOOC0m9cyDxAI9t5tRtjBJRFnn43az8SVuAkwGE0yiOulXEuWiWiWRAoUXeSIqab5EJRG3myXIMjCQXh1kM9oQSDQmrban9yXyRX2ISJHcjpGIaIr1+8MAgDqX9SjPLCNDQ/qhBoBaSRS1mhCzmlCRWJDXtpxxuxllC5NElHVeffLPFeI0sRgwnLx4a9VEhsZEkijApqREVB68PN0s3fCwevplCoPDCWtlLQCgKtG8eij1hDP2JSKiEjPg43azMUYfamC06VWmWpJI24o8FBqCoii5HR+VJCaJKOv0bQQ2rhCnGRgAUi7cNpMNYYcl5XjjqH5h5+SfiEpZcrsZ4wSAMU2rAQB1dah11AEAqrRKopTFBG45I6JS0+/ndrMxRsUHq9GKUJV6slmlPb2SKCyFEZJCuR0flSQmiSjr9IakrCRKl+HkmkClA3azAWajiIgkIxhVy0lZSUREpczHOJFu1EoxAKC+HjW2GgDJnkQjoeRiAuMEEZUarSdRrZNJIt2o+CAIAgwNTQCAylGVRACbV1N2MElEWcejjceRoSlpsNIBQRCSq8RBNiUlotKX3G7GOAEgcyVRfT1q7ep2M4vRALvZCCmu6Ak2VpwSUanRG1czSZSUIT5YGlsAAJWJ+4eRULLKlEkiygYmiSjrktvNuEKcJtOe4ip1T3GyKSmPNyai0qfFCfauS8hUSVRXhxp7jf7HqsS2Am0xgXGCiErN/oEAAGB6jf0ozywTo04209iaZwBAWuNqWWtZwYVmygImiSjruI1gHKNWAmwmG0KV6p7i0ccbh6QQfBFfbsdHRJQjjBMpMpxsBiCtkghIaV4dSFacskEpEZWKQERC90gIJoOA6dVMEgFQTzaT5fTHnE5UVqnbzcxGEXazEXFZgT+ixlVWElE2MElEWadvI+B2syRZBjyetIdEQYS5YRqA5N7rQ96w/v0ub1fuxkdElEPcbpbC60073hgAYLMBDgfcFjeMovo70rZfHPaq2zFicgy+KBcTiKg0aFVEM2ocMBl4iwoAGBkZ+1hNDapt1foftSrT1BPOiCaL/wIp67yhxAoxt5sleTxjVwIcDkyrnQUAaKqwAQD6vGHEZXVluNPbmdMhEhHlQlSSEY7JMIgCbCZDvoeTf5luAqqqAKiLCdrNQFOFFQDQ40meXMMtZ0RUKvYc9gMA2uqceR5JARkeHvtYVVVakqhCb16tVpkySUTZwCQRZZ1PryRikkiX6SagshItbrXxnM1sQJXdjLis6E37Oj1MEhFR6fGlVJsKgpDn0RSAcW4CNNqWs1qnBSaDCE8ohkBEggCB25KJqGTs7U8kieqZJNKNc/9Qaa2EKKi38Vrzak+i119ICiEUC419HdFxYJ03ZVU4FkdEkmEUBVhNzEHqxrkJaK1o1f/YVGHFcDCKXk8IjRVW9Pp7IcmSvtWAiKgUeMOsNk0zzk2AZpprGnwRH2rttVhSNw3buhW0152Djy85gfGBiEqGVkk0p96R55EUkHHig0E0oNJaiaHQECr1Qw1i+lOGQkNoNjXnaJBUingXT1nlS5n8c4U4xTgX+XpHPcwGdQWgqVLdctbrUfsSSbKEPn9frkZIRJQTyZPNmOAAcNRKonOmn4Obl96My064DB+ZdwFMSiv2HTIwQUREJUWvJKpz5XkkBeQI8UHbclapnXCW2G4GcMsZTR6TRJRVPjatzmyci7woiPqWM63fRO9IskSUW86IqNTwZLNRjlJJlGrpdPXmYP2BDDGFqMi9+OKLmD9/Ptra2nDPPfeM+X4kEsE111yDtrY2LFu2DB0dHbkfJE0JKS7rjatn17GSSHeE+KAliSq0xtWhmH7i5WBoMBejoxKWlSQRL+qk0bYRuDj5T5cpSZS4yLe61S1nNQ4zzEYRvoikJ9vYvJpKBeMEabSTzVhJlHCUSqJUp0yvBABs7PIgKskZn0NUjOLxOL74xS/ihRdewLZt2/D4449j27Ztac958MEHUVVVhT179uBf/uVf8I1vfCNPo6Vs6xwOIRZXMK3CCoeFsQEAEA4DoVG9hQwGwKVWWmlJIovRALvZgLiswB9R78NYSUSTNekkES/qlMrHY40zO8LpNVpfIkEQ9FPOtC1nnZ5OfVWAqFgxTlAqHm6QQpIA36jm04IAVFRkfHql3Yy2eieikoytPZ4cDJAoN9asWYO2tjbMnj0bZrMZn/zkJ/Hss8+mPefZZ5/FDTfcAAC46qqr8Oqrr3KOVCKS/YjYtFqX6d6hogIQ1dv31BPOKm1q64qRRF8iJolosiadJOJFnVJ5Q9xGMEYsBvj96Y+l3ARo282A1C1napLIF/XBE+GNABU3xglKpccJNq7OfBPgcgHG8RdaTk1sOVvHLWdUQrq7u9HamjzMo6WlBd3d3eM+x2g0oqKiAoOD3FZTCrR+RHPqmCTSHaXKtMZWo3+dbF6t9iVikogma9JJomxe1FeuXIn29na0t7ejv79/skOjPOA2ggwy3QS43WrJKACr0Yp6Rz0AoMGtJokO+8L6U9mXiIod4wSlYpxIcRz9iDSLW9UFhq093uyPh6gEME4UH1YSZXCU+FBprYQA9ZCgaodaSTQUUJNEwVgQoVhozMuJjlVBNa6+7bbbsHbtWqxduxZ1dXX5Hg5NALcRZHCEfkQarZqo3mUBAPT7I3oVBfsSESUxThQ/Nq5OcRz9iDQnTlOTRFu6WWVKpaO5uRmdncn5TldXF5qbm8d9jiRJ8Hg8qKmpwWiME8VnZ5+67XYuk0RJR4kPBtGASmslgLFJIgAYDrPalCZu0kmibF7Uqfit2a9ekOrdljyPpIAcoR+RRmte7bAY4bAYEZVkBCLArMpZepURUbFinCCNoihYs18tg2ecwIQqieY3umAQBezt9yMUjU/JsIhy7bTTTsPu3buxf/9+RKNRPPHEE1ixYkXac1asWIHf/OY3AICnnnoKH/jAByAIQj6GS1kUjsWxvdcLQQBObM7cj60sHUN80PoS1TqtEBU3gsF6LGtehuVzl8Nldk39GKlkTbrWO/Wi3tzcjCeeeAK///3v056jXdTPPPNMXtRL2LYeL17ZfghWk4grTmk5+gvKxTFUErVWtKLKWoUWdwuW1s/E+/sNOK/pQqw4mb9HKn6ME6T5x47D2NbrRZ3LgosWNOR7OPk3gUoiq8mAufVO7OjzYXufF0unH/n5RMXAaDTi3nvvxcUXX4x4PI6bbroJixYtwl133YX29nasWLECN998M66//nq0tbWhuroaTzzxRL6HTVmwrdcLSVYwr8EJJ082SzqGReaPtH0ERtEIp9mN5996GRG/jLNbL2KlLk3apP8l8qJOmvte2wMAuPb06ahzcYVYdwwX+Vp7Lb5yxlcAAAe6dmLz/j3Y1uPHipNzMD6iKcY4QYBaRfSzf6hx4nPnzYbVZMjziArAMSwiZLJoWgV29PmwtdvDJBGVjOXLl2P58uVpj333u9/Vv7ZarfjjH/+Y62HRFNvYOQIAOLmlMq/jKCiKckzxoc6R3E45u86J7b1e7D3sxymMCzRJWUnX8qJOew778LctvTAbRHzuvDn5Hk5hOc6bgIXTtKak7DdBpYNxgt7YPYCNnSOodpjxqWXT8z2cwnAMiwiZLJrmxtPr2byaiIqfniRqrczrOApKMKiejpzKZALs9nFfMrdeTRLtZpKIsqCgGldT8Xp09UEoCvCJ9hY0Jo5xJ4y/EnCEm4ATm90A1Mk/jwAnolLx6OoDAICbz5kFu5lbChAOA6FRp88YDIDr6H0ktL4dW7iYQERFbmOXeh1bwiRR0nj3DkfYhq81/dZOiiOaDCaJaNIURcHftx0CAFx1KnvopAmHgUgk/TGj8Yg3Ac2VNlTaTRgKRNHrCU/xAImIpl4oGsfru9WjqD++lHECQOYqoooKQDz61GzhNHUxYWefD1FJzvLAiIhyYyQYxf6BACxGEfMb2WhZN4GtyG2JJNHuQ74pGBCVGyaJaNK29njRPRJCvcvC/cSjZbrIV1QccSVAEAQsmpasJiIiKnZv7O5HOCbj5NZKVptqJtC0WuO0GDGr1oFYXMHuw7whIKLipFURndhcAZOBt6W6CWxFntuQqCTqZyURTR7/NdKkvZyoIvrQwgaIIk8jSjPBm4ATE32JNndzKwERFT8tTnx4IU80000iSQRAX0zYwjhBREWKTavHMYH4MKPGAaMooGs4hGBUmqKBUblgkogm7eWtfQDUJBGNMsGmpFq/ic1dGV5PRFREpLiMV7czSTRGpvhwDCebaU5KxIlNXUwSEVFxSjatrsjvQArNBOKDySBiZq0DigLs6w9MybCofDBJRJPSORTEjj4fnBYjzpxTk+/hFJ4JrhRrzfs2dI6weTURFbV1B4YxHIxhVq1D75lAmHQlkRYn3j84kp3xEBHlkKIo2JhYDD2lladxpZlgfNCaV+9iXyKaJCaJaFK0LQQXzK+DxWjI82gK0AQazwFAS5UNtU4LhoMxHBgMZn9cREQ5krrVTDhCP7ayM8kk0UktFTCIAnYe8nFrAREVne6REAb8UVTZTWittuV7OIVDlgFPhgrRY7h/OKFR3Ya8o49JIpocJoloUlbtPAwAuGgBtxBkNMHtZoIgJFeJOzPcSBARFYnXEnHig4wTSYoy6e1mdrMR8xtciMsKNnPLGREVmQ36VrNKLiCk8nrVRFEqux2wWI760gVN6glx23jwDU0Sk0Q0YYGIhHf3DUEQgPPm1eV7OIVHliecJAKAU6ZXAuBWAiIqXgcGA9jXH4DbasTSxDWNAPj9gDSq+sdiAWzHt5qux4nEzRYRUbFg0+pxTKLKdGHiQIPtvV62q6BJYZKIJuztvYOIxmUsaa1EtcOc7+EUHp8PiMfTH7Na1f+OgTb538DJPxEVqVU7+wEA586rg5HHGyeNdxNwnKvpp0xXbxw2cDGBiIrMxk61AnIJFxDSTbBVBQA0V9rgthoxGIjisC+S3XFRWeGMjSZM20Jw4fz6PI+kQE2iiggAFrdUQhDUktFwLH70FxARFRjGiXFMsh+RRtuWvP7gMFeNiahoSHEZm7vVJBEriUaZxP2DIAhY0KRWE23r5ZYzmjgmiWhCFEXBPxMrxBfM51azjCZ5E+C0qP0mJFnBlm72myCi4hKOxfHO3kEAwPnckpxukv2INLNrHXBbjTjsi6DXE570sIiIcmH3YT9CsTimV9u5G2G0Sd4/6Eki9iWiSWCSiCZk92E/ukdCqHWaceK0inwPpzBNolxUwy1nRFSs3tk3iIgkY3FLBepcR2+4WVayVEkkigKWaFvOGCeIqEhsTGlaTaNMchFB60vESiKaDCaJaEJe2a4eaXz+vHqIIk8kyGiS282AZL+JtxOr8URExeLVRJy4gFvNxspSkgiA3hD87b0DkxgQEVHu6CebtXCheYxJxoeFTcnm1UQTxSQRHTdFUfDM+90AgIsX8UjjcWXhJuCCxBaNt/YMIBiVjvJsIqLCEJHi+OumXgCMExllodJUo/V7enX7YfYlIqKisKZjCEByMZQSYjH19MtUggBUHHsybW6DE0ZRwP6BAO8daMKYJKLjtrnbg12H/KhxmHHhCVwhzkiWgf7+sY8fZ5Ko3m3FktZKRCQZb+zmKjERFYfXdhzGSDCGExpdWMQtyemCQfX0y9EmmCQ6qbkCDW4Lej1hbGUPCiIqcF3DQezrD8BlNbKSaLSenrGPud2AwXDMb2ExGtBW74SiADv7MsQaomPAJBEdt6fXdQEAViyZBhOPNM7s4EEgFEp/zGSa0E3Ahxaqq/B/33YoCwMjIpp6T61Tq02vOrUlzyMpQLt2AaMrfqqr1RgxAaIo4IML1DjxMuMEERW413epi55nz6mFkfcR6XbsGPtYU9Nxv4225YwH39BE8V8mHZeIFMezG9UsNyf/R5DpIt/WdlwrARotSfSPHYcRl7mVgIgK24A/glU7D8MgCrhsSXO+h1N4MsWHefMm9ZZanHiFSSIiKnCv71Ir7c+dV5vnkRQYRckcH0444bjfakmiV936gyOTGxOVLSaJ6Lj8Yzu3EByVogDbt499fAIXeQCYW+/E9Go7hgJRrD+YoY8FEVEBeeb9bkiyggvn1/FUs9FiMWDv3rGPL1gwqbc9c3YN7GYDtvV60TUcnNR7ERFNFSku461Ek/3z5tbleTQF5vDhsf3qBGFCiwhLE72eeN9AE8UkER0zRVHwy3+qk9ur21vzPJoC1tcHeEaVd4rihFeKBUHQV4lf3to32dEREU2ZiBTHQ2/uBwBcdSrjxBh796qJolR2O9A6ud+V1WTA+YmDDrg1mYgK1cauEfjCEmbXOtBabc/3cApLpiqiGTPUGHGcTmh0wWYy4MBgEAP+SBYGR+WGSSI6Zq9sP4xNXR7UOi249vTp+R5O4RrvIm+zTfgtP3JiIwDg+U29kLnljIgK1BNrOtHjCeOERhc+vJCnmo2Rqcp0/nx1IWGStDihnSpHRFRo/pnoR3TePFYRjZGlrWYAYDSIWJxoCv4+t5zRBDBJRMdElhX8v7/vAgB84YI5sJmPv7dO2ch0kZ/kVoJTp1dhWoUVPZ4w1h5g6SgRFZ5QNI57X9sDAPjqRfMgikKeR1RgZFltWj3aBG8CRrtoQQOsJhHrDgyjc4hbzoiosCiKolfEn8d+ROk8HqA3Q4J/EvFh6QxuOaOJY5KIjslzm3qwvdeLRrcVn1rGKqJxjYwAhzKU+s+fP6m3FUUBly6ZBgD4y8buSb0XEdFUeOTtDvT7Ijix2Y2LF7GKaIzOzsynXs6enZW3d1iM+NBCtZrouU0ZjlEmIsqjjV0e7OjzodphxtltTBKlybSA0Ng4oVORNXpfIi4u0wQwSURH1ecJ4z//shUA8JWL5sJqYhXRuDJd5JuagIrJN/m+7GT1lKC/be5DLC5P+v2IiLJle68X/5uoNv3Xi0+AILCKaIydO8c+NmeOmijKkhUnJxYTNjBJRESF5fF3DwJQT0e2GHkvkSbT/cMkF5hPSZxwtqnLA4n3DXScmCSiI5JlBV/7wwaMBGO4YH4dPnkaG5EeUaabgEkebaxZ0ORCW70TQ4Eo3twzkJX3JCKarHAsji8//j6icRnXnj5db6BMo0zBTcBo582rhdtqxI4+H3Yd8mX1vYmIJsoXjuEvG9XkNe8lRolGgf37xz4+yfuHWqcFM2rsCMXi2NHHeEDHh0kiOqKH3tqPt/cOotZpxk+uOpmrw0cSiQAdHWMfz9JNgCAIuCyxSvz/Xt6FYFTKyvsSEU3Gj17cgd2H/Zhd58B/fGxy/ddK1uAgMDAquS8IwNy5Wf0Yi9GA5Sc1AQB++LftXD0mooLwl409CMXiWDarGrPrnPkeTmHZtw+QRs3pnU5g2rRJv/Wpib5Eb+/l4jIdHyaJaFydQ0H8z8vqyuePPr4YdS5LnkdU4PbtA+Lx9MdcLnW7WZZcf+YMTK+2Y3O3B//y5AaedEZEebWhcwSPvN0Bgyjg/645BXazMd9DKkyZqoiam9UbgSz7wgVtqLSb8NrOfnzv+QynqRER5VBEiuPXb6iVMjwdOYNM8WHuXHUhYZIunF8PQD2hmuh4MElEGSmKgrue3YJQLI5LFjfhgwvYhPSoxttqlsXqq0q7GQ/d2A6X1YiXth7ST5wjIso1KS7jm3/aDEUBbj5nFk5qmXzvtZKV6SYgS1uRR5teY8fK69thNoh45O0O/D7RB4SIKB9+/cZ+7B8IYE6dQ690pARFAXbvHvt4luLD+fPrYDIIWNsxhKFANCvvSeWBSSLK6K+bevHazn64rEb856UL8z2cwheP5+wmoK3ehfs/fSpEAbj3tT34567+rH8GEdHRPPjmfmzv9aKlyoavXpTdbVMlJRAADhwY+/gUJYkA4PRZ1fjhlScBAO5+biu29nim7LOIiMbTPRLCvf/YAwD47mUnwmzkrWeazk7AN6pfkMGgHmqQBW6rCWfMroGsAK/tYDURHTv+S6Ux+n0R3PXsFgDANz+6APUua55HVAT27QOCwfTHjMasHW082tlttfiXi9QbjH95cgP6POEp+Rwiokz2HPbjfxKVjN+7/ERuMzuSbdsAeVRvoIoKoGFqK3Q/fmoLrj29FVFJxpd+/z78EfaxI6LcCcfi+LenNqq7Ek5q4rH3mWzZMvaxWbMAszlrH3FRYjfIK9sPZe09qfQxSVQmej0h/PadDhzyHjmZoCgKvv3MZgwHYzinrRbXns4TCI7J5s1jH5s/P6tHG4/2hQvbcO7cWgwFovjkynewt98/ZZ9FRKVvb78fv1t9AJ5g7IjPk+Iy/r8/bkRUknF1ewsuSPQ8oHFkuglYtCirW5HH85+XLsIJjS7sHwjgU79ajcNHmQMQEWVDVJLxxcfW4609g6hxmPFtHmowliwDW7eOffzEE7P6MRctVJNE/9zVj3AsfpRnE6mYJCpxsqzgd+904EP/73Xc9exWnP+T1/DfL+3EcIZ9qYqi4ME39+OlrYfgtBjxo6sW8zSzYxGLATt2jH38pJOm9GMNooCfXrMEi6a50TEYxBX3vYWn1nUhKvE0GyI6dlFJxs9e3Y2P/vQN/MczW3DeT17Dytf3IpCh8kSWFfzwhR3Y2DmCpgorvv0xbkc+Io8n81azKY4PGqvJgPs/fSpaq23Y1OXBZfe9hZe29vHQAyKaMoqi4Ot/3IhXdxxGpd2ER29ZhqYKW76HVXj271e3I6cyGoETTsjqxzRX2rCwyY1gNI43dvOUMzo2TBKVuO/+dRv+49mt8EckzGtwIhyTce9re3DmPa/im3/ahJ196j7YQETCt5/Zop+E8p+XLkRzJS/ox2TXLiA6KulmtQJtbVP+0TVOC/7wuTPxoYUN8IYlfP2PG3H+T17DY+8e4NHHRHRUiqLgjsfX4//9fReicRlz653whGL4wd924Iwfvorv/XUbOofUrbTDgShuf3QdHnxzPwyigB99fDHc1qmrliwJmVaJa2uBxsacDWFmrQPPfOFstM+oQq8njM/9bh0u+t9/4q+beqAoTBYR0bELx+IYCR65AfIjb3fgLxt74DAb8OjNy7CgyZ2j0RWZTFWmc+eq9xBZtmLJNADAr9/Yl/X3ptI0qSYCQ0NDuOaaa9DR0YGZM2fiD3/4A6qqqsY8z2Aw4KTEqtn06dPxl7/8ZTIfS8foLxt78MjbHTAZBPz0mlNwyeImrDswjJ//YzdW7ezH42s68fiaTpzQ6MK+/gCicRlmo4ifXLUYly1pzvfwi8fGjWMfW7BAXQ3IAYfFiAc+fSr+9H43HvjnXuw+7Me3/rwFv3m7A+fOrUOt04LTZ1XjlNZKiCIrwyi3GCcK2wOv78NLWw/BZTXigetPxZmza7BqVz9+8doevNcxjF+/uR8PvbUfJzS6sfOQD3FZgdtqxH3XLcW5c+vyPfzCpiiZ48OJJ+Zkq1mqGqcFj926DL9/9yB+/cZ+7OsP4Eu/fx8PTt+P02ZWo85pwdlttVjQ5GIFMeUc40Th6xwKYuXr+/Dshm54wxLOn1eHm8+ZhXPn1qZdM97eM4DvJxacf/KJk3FiM0+9zCgcBrZvH/t4lreaaT61bDrue20P3t0/hHUHhnDqjOop+RwqHYIyiWWkf/u3f0N1dTXuvPNO3HPPPRgeHsaPfvSjMc9zOp3w+4+vX0p7ezvWrl070aGVvT2HfVhx71sIRuP4r8sW4fozZ6Z9f2+/H795uwNPretCMBqHIACnTq/Cty5ZgFOmjw3MNI6ODuCRR8Y+fv31WTuZ4HjIsoK/benFPS/sQNdwKO17jW4r5jY4Ueu04MzZNfjISepKdsdAAEOBKELROE6ZXoXGCjYqLwbFco1knChcq/cN4lO/Wg1ZAX79mXa9b4Fmc5cHD7+1H89t6kEsrsAoCjhzTg3uXrEIc+qceRp1Edm4Efjzn8c+fscdQE1N7seTEIvL+OPaLvy/v+/EgD+9ImB6tR0zax2od1lw/rw6XLSgAaFYHAcGAxgJxhCR4lg2qwZVjuw1VaWpUyzXSMaJwtY5FMSVv3wb/b4IAMAoCpASW1bPnVuL286bjcPeCJ7b1INVO9UTd286exbu4unI43v5ZeDtt9MfM5uBf/3XKetn+pOXduC+1/bigyfU48EbT5uSz6DicqTr46SSRPPnz8eqVavQ1NSE3t5eXHDBBdi5c+eY5/GinluyrOATD7yDdQeGcdmSafjpNUvGXRn0hGLY0DmCRdPcqHVacjzSIifLwMqVQF9f+uNuN/DVrwJi/nZzhmNx/H3bIfSMhNA1HMKr2w+hZ9QJaAZRQHxUXwpRAM6bV4er21vxwQX1iMUVbOn24OBgEH3eMOpdFsxtcOHEZjcsRkMufyQapViukYwThSkci+PD//s6Dg4F8fkL5uAbHxm/B8JhXxg7+3xY3FKJChu3lx2TaBT4+c/HHm3c0gLcckt+xjSKLxzDy1sP4ZAvjAMDQbyy/RAGR/UrzBQnzAYRH1rYgE+0t+DcuXXwhyVs7vbg4FAQA/4IplXaML/BhQVNLhgN7GqQT8VyjWScKFzDgSg+fv/b2NcfwOmzqnH3pYvQVGHF79ccxAP/3AtvOL13nc1kwGfOnIGvXzwfJv77z2xwEPjFL4D4qCbSS5cCK1ZM2ccO+CM450f/QDgm4693nMMqLzri9XFS+2EOHTqEpqYmAEBjYyMOHcp8tF44HEZ7ezuMRiPuvPNOXH755ZP5WDqKP73fjXUHhlHrtOC/Lj/xiKXjFTYTzp/HLQMT8u67YxNEAPCBD+Q1QQSozUovPXma/ufvrFiEXYd96POE0Tkcwt829WL1/kFYTSJm1jhQ51IThKv3DWLVzn6s2tkPp8WIYFRCpv6mDrMB582rwy3nzsapM1h5RuNjnChMK1/fh4NDQcxrcOJrH5p3xOfWu6yod7HC8JgpCvDqq2MTRADwwQ/mfjzjcFlN+PipLfqfpbiMHX0+HPaFsa8/gOc29WJj5wgcZgNm1TlQ7bAgKsWxZv8Qnt/ci+c398JlNcIXHtvgHAAq7SZcOL8en79gDuY1uHL1Y1ERYpwoTOFYHLf8di329QdwQqMLv76hXe9D98UL23Dt6dPxf6/swtoDw5hZ48CJzRW45rRWVLPScHySBDz//NgEkckEnH/+lH50rdOC65bNwINv7se3n9mCpz9/FgxsQ0HjOGqS6KKLLkJfhhvh73//+2l/FgRh3GTEgQMH0NzcjH379uEDH/gATjrpJMzJsBVn5cqVWLlyJQCgv7//mH4ASucJxfDDv6l7XL91yQlsKjpV1qwBXnpp7OPTpgEnn5z78RyFKAo4odGNExrV5oHXnzEDwagEq9GQ1qdoKBDFsxu68Ye1Xdje64VRFHBisxttdU7Uu6045A1ja48Huw758cKWPry4tQ83nz0LX794PqwmVhaVK8aJ4tI5FMR9r+0BAHz3shO52ptNWoLo3XfHfu+EE4BZs3I/pmNkNIiJleUKfOAE4JZzZyMQkWA3G9L+3fZ6QvjT+m78cW0nOgaDMBtFnNRcgVm1DtQ6LegaDmJztwcHBoP48/vdeH5TL75y0Vx87rzZrCwqY4wTxSUuK/jKE+9j3YFhTKuw4pHPnj7mnqLaYcZ3LpuaHjolKRYDnnwS2JehefTZZwMVU1/Z89WL5uL5Tb3Y0DmCR97uwM3nFG5MovzKyXazVDfeeCM+9rGP4aqrrjri81geOjHfeW4rHn6rA6fPrMaTnzuDDSizTZaB114D3ngj8/dvugmYPj23Y5oiPSMhVDvMGZM/XcNBPLr6IFa+vheyApzQ6MJ91y1ln5IcKpZrJONE4fnc79bipa2HcPmSafjpJ0/J93BKh7ZC/P77Y79nMABf/CJQXTrNQhVFQddwCA1uK8zGscmfvf1+/PqNfXh8TScA4PRZ1fj5taegwc2qtFwplmsk40Th+e5z2/DQW/vhthrx1OfPYjXgZPl8wB/+AHR2jv2e2632qpuiXkSjvbLtEG757VrYTAY8/+VzMJtz97J1pOvjpJZ0VqxYgd/85jcAgN/85je47LLLxjxneHgYkYja6GxgYABvvfUWFi5kI7OpsH8ggN+9cwCCANy9YhETREcjy8DBg8C2bcCBA+qfjyQUAh5/fPwE0dKlJZMgAoBplbZxq4Naquy486Mn4M9fOBuzah3Y0efDip+/ib9vy1wiTuWLcaKwvLtvEC9tPQSbyYBvLl+Q7+EULkkC9u9X40NXl1ohdCQeD/Dww5kTRABw3nkllSAC1IqP1mp7xgQRAMypc+KHVy7Gb286HfUuC9bsH8Ly/3sD6w4M53ikVOgYJwrLcxt78NBb+2EyCFj5mXYmiEbz+YBNm4C1a9U4cbT7h85OtYdppgSRIAAf+1jOEkQAcNHCBqw4eRpCsTg+89Aa9I3qWUpTQ4rLOOQNY0efF1u6PdjQOYLXdhzGn9/vwotb+vDWngG8s3cw7b939w3ivY4hrDswjPcPDmNT1wi2dHuwrceL7b1ebOoawXsdQ+gcCmZ9vJPqSXTnnXfi6quvxoMPPogZM2bgD3/4AwBg7dq1uP/++/HrX/8a27dvx+c+9zmIoghZlnHnnXfyoj5F7nlhOyRZwdXtLVg4zZ3v4RQmSQL27gW2bgV27VKPoNTY7cD8+cCiReqWAENKgmT/fvWUGq838/suWgRccsnUjr0AndxaiefuOAff/NNmPLexB198bD0evLGdR2OTjnGicMiygu8ntiN/7vzZrOgYLRpV48LWrWqciKY0cXa5gAUL1OOJW1uTR9grippIeu659HiS6owz1CRRmTpvXh2e//K5+OqT7+OtPYO48eE1eOK2M7BoGpumkopxonDs7ffjzqc3AQD+42MLccbs/J3EWFA8HmDLFjU+9PSkf89uV7cTa/cPWl9SSQLeegv45z8zJ5IEAbjiCmDekfsCToUfXnkSDg4FsaFzBJ956F08dssZen9SOrK4rGBfvx+7DvnhCcXgj8TgD0vwRST1f8MS/BHtzzH4E48HovGjv/kEffHCOfjXi8c/gGQiJrXdbCqxPPT4rN43iE+uXA2byYBV/3oBJ/+ZdHUBTz8NDB/DKqbVCrS1qTcGnZ3qa8dz8snAZZflvVl1PimKgu/+dRsefqsDNpMBj96yjA2tpxivkfwdHK8/re/C1/6wEQ1uC177+gWwmye1TlRadu0Cnn0WCASO/lynU40PFgvQ0QGM02QXAHDuuephBqzsRVxWcMfj6/G3zX2ocZjxx9vP5DaHKcZrJH8Hx+OwL4xrHliN/QMBXHryNPzsk+OfjlxW3nkHeOWVsc2mM7Fagdmz1XuC/fvHjykGA3DllWpiKU+GA1Fc/cA72H3Yj0a3Fb/49FIsnZ7duftQIIrV+wbR4LZiTp0DDosRRnH8vmOFZvchH1bt7MfBoSC6R0LoGg6icyiEUOz4Ez6ioPbxqrKbYTKIMIgCqhxmVNpMCMXi8IVjaUXLSuL/xBUFsqJAlhXIihpLZUWBogBmowizUcTlpzTj+jNmHPeYpux0MyoMh31hfPWJDQC4Ojyujg7g979PXxk+knBYXTE4mgsvVFeIi+RiN1UEQcB/XLIQvrCEp9Z14ZbfvIc/f+FszKx15HtoRARgz2Ef7np2KwDg//vwfCaIUm3dqi4gHG3LgMbvBzZsOPJzDAZg+XLg1FMnPbxSYRAF/O81S+CPrMPru/px48Pv4c9fOAs1Tq5eE+XbcCCK63+9BvsHAljY5MYPrzypaG7kp4yiAKtWqZVAxyocVqtLj8TpBK6+Ou8tKqocZjx26zJ88bH1eK9jGNc88A5uPXc2vnhhGxyWic8RZFntV/e3Lb247x974Iukn4BpNopY0OjCktZKXHZKM05prSyIv2uD/gjWHhjGlm4PukdC2N7rw/bezDtImittWNDkRq3TDKfFCKfVCJfVBFfia6fFCJdV/c9pMcFpNcJuSj8sqNBxlljkIlIcn390Pfq8YZw2swpfuKAt30MqPJ2dwGOPqacKZIvVqpaIzp+fvfcscqIo4J4rT8KAP4JVO/tx0yPv4U9fOAuVdh6FSpRPnlAMt/52HfwRCZcsbsInUo49L3vbtwNPPXX0nkPHw+0GPvEJdVsapbEYDbj/00txzQOrsbnbg9t+tw6P3bKMp2MS5Um/L4I/ruvEQ292YMAfQVu9E7+7+XQ4J5EkKBlvvnl8CaJj0dKiJojchdEWpN5lxe9vPQM/+Nt2PPxWB36xai+eWteFOz96Ai5f0nzEpEZUknFgMIA9h/3YfdiPPYn/9vb7EZGSiy5Lp1ciHJNxcCiIcCyOqCRjY5cHG7s8+M07B7BomhvXLZuBy5ZMm1RyaiJGglE8t7EHz27owdoM/fJcViMuXtSIBU1utFTZ0FxpQ2uVHRX20j89nFeAIhaMSrjj98njKX9x3anjNpAsW7KsbiEYL0FkMqlbBsJhde/wsZg5U00Q5eCoymJjNIi491NLcdUv38aOPh8+89Aa/Pam05koIsqTQX8EN/9mLfYPBLCgyY2fXLW4IFbsCkIkAvzlL+MniCwWNUYEg8deZbRwIXDppYDNlr1xlhi72Yhf39COy+97C+sODOP2R9fh/k+fykQRUZYpioKRYAzdIyF0DAbQMxLCYCCK4UAUQ4EY9g34sa8/uR1qcUsFfvWZdlb3AcDQEPCPf4z//epqtWJ0ZOTYFqEFQd15cN556T1PC4DJIOI/L12ES0+ehu88tw0bO0fwtT9sxCNvd+DC+fVoq3fCZBAQjMaxt9+vJ4UODgYhyZnjZ4PbgvmNbtxyziycNy+9T6k3HMOWLg9W7erHH9d2YmuPF//+58344d+246sfmocbz5oJwxRW3CiKgvc6hvH4moN4fnMvoomElsUoYun0KiydUYkZ1Q40V9lw6oyqso1NTBIViXAsjp19PoyEYvCGYvCGY3hiTSc2d3tQaTdh5Wfa2XAsk23bgIGBsY9XVgIXXwzMnQsYjeo2tN271W0He/Zk3pZWWwucfbbag6iM+w8djdNixEM3noZrVr6DTV0eXPPAavzultNR7+I2SKKp5I9I2HXIB28oBk8iVvz6zf04MBhEc6UNK68/ldvMUq1dq55aOVpDgxofZs5Ur/XhMLBjhxof9u/PvKAwbZraf+iEE8p++/GxaHBb8fBnT8O1K1dj1c5+3PjwGvz6htNYvUB0FIqiwBuS0O8Po98XRb8/ggFfRP/fAb/2dRQD/si4N/Eam8mAZbOrcdPZs3Du3FouImjefDPzAsIJJwAf+hBQk2jofbT7B0FQDz0491ygqWnqxz0JS6dX4c+fPwt/er8bP3pxBzZ1ebCpyzPu8wUBmF5tR1u9E3PrnZhT70Rb4j+3dfxKG7fVhLPaanFWWy2+9qF5eHFLHx5dfQBrDwzjv/66DX/Z0I0VS5rRPqMKi1sqsvZ3cigQxZ/Wd+HxNQexN5EcFQT1cIWPL23GRQsacl7JVMhK7jfxjac24ZkN3TAZRBgNAoyiAKOofm0xiqh3WVHtNCMSkyEril46ZjGKMBhEmEQBBlHQG0oZRQEKgMFAFN5QDBajCKvJoDeMspkNsBhFhKJxRCQZFqOYeEx9XJIVSHEZ0bgMKZ5oNAX1Ih+Xgaikvi4qyYhIMiJSPOVr9c8D/ig2dI7omc5U06vteOSzp7H5YyaKkvm4+sZG4IYb0ld6zWa1edyiReoNwMGDQF+f+rUoqhf22bM5+T9G0ypt+OPnzsJ1v16NnYd8uOaB1Xj0lmVoruTqOuXf9Q++i/c6hmASRRgMaowwGdRrv81kQIPbigq7CZFEY8LWajumVdhgMggwGkQ1ruj/q8YJSVYw6I/CH5FgNanXfzkxwbSbjfoqXFSSYTWpccRmMsBkFCHFFcTiMmIZ4oQkK3pMiCZiQiSmxpRILBEz4jJ6PWFs6vIgnuGG4MRmNx664TTUs19dUiwGvP322MdnzwauvTb9OGKrFViyRP0vGlV73PX3q01MDQZ1W1nqiWd0TP7/9u4+OKry3gP49+ye3WxeNuElCYmbhLAEkpCQgBAoWtsLClcvTLCACmKdqr3Qt2k7jtqZO3M791pLOt5hWufeOo5SlToo0+t1lAGLrehtGSBeJGin+IawgYSEAHkhr/t6fvePs7vkDSG7yZ6T5fsZdjY5eTk/nt093+xznvM8ZXmZ+MPWZdi84wPUn+7A5h0fYOdDNRx5Sqbww1cbcLHbB9U68n1B5PhvCb/m9SM2gOGTzkI/jg/7UrTvYei2Yd836IsDgRAuRTuB/PCHrnNkI4BMh4oZmQ4UZ6ejcGoapmfYMS1dv+VnOVCenwmblSc+h7h8Gfj445Hba2r0ueYGH+uHv39oatJHIWmaniMzZwJTJ89CLhaLgg2LCnBnZR4OfNqGT1q70XhJ71CxWS2YlZ0e7QianZMR9ygbh82Kuxe6cPdCF/78SRv+9c2/Ry9FA4DFM6fiZ3eVoaZ4Wsz7aO/14T/f+xKvfnA2+trJdabg3sWFuK+mEIXT0uL6PySrpOsk8oU7XXyjdKgAiPYcTkZzZ2RgRqYDmQ4bnA4VuZkOPLhsJrI5LHR0X3wx+qozd9751ZcCqKr+RsHtnrjabgB5WQ78YesyfPt3/4dPWrtx73NH8LvvLEZZnjmuw6Ybly+gwRvQ4MXoOXHyQm+CKxofVouCefmZyHamwOlQkemwoWBqKr5zSzHPjg3X0DBy1RlFAdasGdpBNJzdri9XbMCSxclozgwnXv/eLbh/Rz0+burCxufr8cKDi/lHOxnu46YuNHeOMtLQBJwpKrKdKcjJSEG2067fZ6Qgxzno3pmC6en2G/ZSmbgcPjxyJbPUVOCOO776ZICqArNm6bdJLiNFxdoFLqxd4ErYPlfOm4Gvuadh399a0XC2E+9+egEfnunEPc8dwR3luXjsH0tROsN5zZFF3kAIfz93GQ1nO9FwpgsHT15Enz8ERQH+oTQHm5YUYUVZLjtHryHp/mr8j3uqUbeuCgFNPyMbDGnh0TyCgUAIbd1edPb7owfNpo5+tF726mdwNUEoJAhoGkKaREcBAfqSdZmpNviD+puLyPNqwK/BGwwhzWaFw2aFP6hhIBDCQHhiLjV89iFyttkSPvNgUQCLosCuWpCiWpCiWgd9bEGKzQq71YIUmwXpdhXVhVMwLZ1n166bCPDXv47cXlSk9+pTQkzPSMFrW76Gh18+imNnOnHXMwextvom3LO4EAuLpsR16cuAP4Qv2vSVBz5p7cYXbT0Y8IcgQHSkn4h+Mi7VZoHTYYPVokS/polAURRYFf3NtUXRzxZaBp0dHC7dbkVmqg0WRUFICx8zwseKUCh8r2lQFP13RF7zaniEor4PIKQBgZCGwmmp2PKN2TG3AcVm1z8vDY/cCT9+IQ2B8H2fL4S2Hi+6BwJItVkR0gRnOvrR1u1FSJPwz1zJFf3x16BAwfQMOzIcaniEjxYeiSro9+mjfdLtKuyqBb5gCAMBDQN+fbs9MppJtYSXhkU0J6wWJZwF+uikSC4MzQwrMlNVLCicAudXDPGmsFAIOHRo5PbKSn2eCUqooulp+O/vLcMDOz7AZ+d7sGL7/2JjTRFqF9yEqoIspKixv8nt8Qbw+flITvTg1IVe+IKj50S63YoMhwqLoueEJvrojmg2hI/fkY9He6OiAEhPUZGZqmfblVy4kg+RzyO/16oosFrD94P2E9T0EYZVrim4t4aToCfas5tvRr8/FD7ua4OO//oxPxgShEQQeRZEng+DnxWRp0j0ftBXR/szY/jviHyP3WqJdgrlOFPY8TOR+vqAY8dGbl+6VJ+njiaU02HDxiVF2LikCD3eAF446MGOg6fx7qcX8O6nF8KjvVOQm+nAtDQ7vMEQ+nxB9HiD6PMH0esNotsbHDGqenlpDn52VxlPVI9B0nUS2awW2KxAKkY/gJbmORNcERnC4wHOnRu5ncvVJ1xWqg2vPLIEdW9/ht1Hz+LNj1rw5kctUC0KZmWnw52TjkyHDXbVEr1FLtcEgJCmX34TCGk42zGALy/0ovXyALr6x3G1OoMsnjmVnUQG0HPi6meQ5oF/RCS1v/0N6B5lWdvbbkt8LQQAyM9KxR+2LsOTez/Bno9b8Er9GbxSfwZ21QJ3OCcyUvROVrvVOigrLJBwh44mAl9QQ+OlPpy62IvWy170eK9zQQoTq60OspPIAFUFU4wugYxQXz9y3jm7Xe8kooRyOmx4dOVcfPtrM/Ff753E/zScQ68viMb2fjS291/15xQFKMtzYmHRVNxcNAWLi6dhVnZ6AitPDknXSUQEQJ9wbrj8fGA235AbIc2u4hd3V2LLN9x4pf4Mjpxqx4mWyzgZXiEhFqpFgTsnHeX5mZiXn4my/ExkOtTwKB79jF2kP3AgEEKPNwARfYQG9H/62eTwWV0tPE9YSCQ6N8BgIkCfP4jugWB0/9bwnDSReQoiZ4YB/SywFj57rIlE55oJaaKPDlEtmME5YogSS9NGz4fyciA3N/H1UNT0jBQ8s3Ehfri8BK8cOYMPPO34oq0Xn53vwWfne2L6nXbVgjm5GSjPz0R5fibK8pxIs1vDI4GG5kSfL4hen358H5ITop+sCIl+TA+Fj+OjEQF6fEH0eANQoIyaE1aLBVaL/lSM/K5IXlzJIoFq1edKc2dzzkmihPD5gKNHR25fvJgrVhoox5mCf19biX+rrUCvL4i2bh8udHvR0e9Hmt2KdLuKDIeKjJTwzaHGNQKVdOwkouRz7hxw+vTI7bfdxlFEBiucloZ/+adyAEC/P4jTF/vgudSHfn/wyuS84Ql5/SENCsKX3Vj0jp+bpqSiJDdDn3wx3Q7LBC6RSURJ6LPPgPb2kdu//vXE10KjmjvDiV/cXQlAv1zs9MU+NLb3RS/PHDyReyQnrBb98i/VoqBwWipKcpxwTU3F1DQbV2siouvz4Yf6apaDWa3AsmXG1ENDKIoCp8MGp8OGklx2nk80dhJRctE04M9/Hrk9O1s/U0ymkWZXUenKQqUry+hSiOhG4PcD778/crvbDbgSNzknXT+nw4bqwimoLpxidClElMx6ekZf8XLBAsDJqUroxsNpvSm5/PGP+vLEw916K0cRERHdqESA11/Xl64fjqOIiIhuXIEAsGvX6Cte3nqrMTURGYwjicg47e36AdhqBSwW/V5R9FswqN8GBvShn6GQfgsE9O2hkH7f369/j88HNDUBHR0j95OVBVRVJf7/R0REY6dpej5YrVduFot+A/RjfyBw5dg/OB8CAf3nA4Gh+fDll/rnwxUUJMVyxUREN4RgEOjsHJoPkfcPInoW+P3Xzoe+Pv39hdcLfPrpyCXvAa54STc0dhKRcZ5/Xj+ATyRFAWpr9QAhIiLz8/mA3/524vdjswFr1nCUKRHRZHHpEvDccxO/n4wMYNWqid8PkUnxcjMyzmi99uPtjju4ohkR0WSSiGwAgLVrgby8xOyLiIjil4h8sFqBe+/lXER0Q2MnERkjMiR0Ii1YANxyy8Tug4iIxlci3gR885v6pQRERDR5THQ+KAqwejVQVDSx+yEyOV5uRsYQ0W8T4aabgCVLgOpqXkZARDTZaNrE/e6ZM/WTB6WlE7cPIiKaGBPVSWSx6Fce3HYbO4iIwE4iMoqm6cvSh0L6x5GJ5SKdR6qqD/dMTQUcjiuf22xXPo58PS0NSEkB7Hb90oHp043+3xERUTwi+RC5adrQfFDVK/kQyQObTb9FJrpOS9NvdrueES6XvpABERFNTlbryHwY3HEUyYLUVP24P9r7B1XVsyE1Vc+H1FR9EYP0dOP+X0Qmw04iMoaqAj/6kdFVEBGR2UydynwgIqKRioqYD0QJwDmJiIiIiIiIiIiInURERERERERERMROIiIiIiIiIiIiAjuJiIiIiIiIiIgI7CQiIiIiIiIiIiKwk4iIiIiIiIiIiMBOIiIiIiIiIiIiAjuJiIiIiIiIiIgI7CQiIiIiIiIiIiIAioiI0UWMJjs7G8XFxTH97MWLF5GTkzO+BY0j1hc/s9fI+uLD+q6tsbERly5dMrQGozEnjMP64mP2+gDz18j6ro05wZwwEuuLD+uLj9nrA4yv8asywrSdRPFYvHgxPvzwQ6PLuCrWFz+z18j64sP6aKKZ/TFkffFhffEze42sjyaa2R9D1hcf1hcf1hc/M9fIy82IiIiIiIiIiIidRERERERERERElKSdRFu2bDG6hK/E+uJn9hpZX3xYH000sz+GrC8+rC9+Zq+R9dFEM/tjyPriw/riw/riZ+Yak3JOIiIiIiIiIiIiGpukHElERERERERERERjk3SdRPv370dpaSlKSkrwq1/9yuhy0NTUhOXLl2PevHmoqKjAM888AwDo6OjAypUrMWfOHKxcuRKdnZ2G1hkKhbBw4UKsWbMGAODxeLB06VKUlJTgvvvug9/vN6y2rq4ubNiwAWVlZSgvL8eRI0dM1X6//vWvUVFRgcrKSmzatAler9fQ9nv44YeRm5uLysrK6LartZeI4Mc//jFKSkpQVVWFhoYGQ+p7/PHHUVZWhqqqKnzrW99CV1dX9Gt1dXUoKSlBaWkp3nnnHUPqi9i+fTsURYkuF2lE+1H8mBOxYU7EjjkRf33MCUok5sTYmTkjAObEWDEnxr++iEmRE5JEgsGguN1uOXXqlPh8PqmqqpITJ04YWlNLS4scO3ZMRES6u7tlzpw5cuLECXn88celrq5ORETq6urkiSeeMLJM2b59u2zatElWr14tIiL33HOPvPbaayIisnXrVnn22WcNq+3BBx+UF154QUREfD6fdHZ2mqb9mpubpbi4WPr7+0VEb7eXXnrJ0Pb7y1/+IseOHZOKiorotqu11759++TOO+8UTdPkyJEjsmTJEkPqe+eddyQQCIiIyBNPPBGt78SJE1JVVSVer1dOnz4tbrdbgsFgwusTETl79qysWrVKioqK5OLFiyJiTPtRfJgTsWNOxIY5MT71MScoUZgTsTFzRogwJ8aKOTH+9YlMnpxIqk6iw4cPy6pVq6Kfb9u2TbZt22ZgRSPV1tbKn/70J5k7d660tLSIiH7gnzt3rmE1NTU1yYoVK+TAgQOyevVq0TRNpk+fHn2RDW/XROrq6pLi4mLRNG3IdrO0X3NzsxQUFEh7e7sEAgFZvXq17N+/3/D283g8Qw5KV2uvLVu2yKuvvjrq9yWyvsHeeOMNuf/++0Vk5Gt41apVcvjwYUPqW79+vXz00Ucyc+bM6EHdqPaj2DEnYsOciB1zYnzqG4w5QROJOTF2Zs4IEeZErJgT41/fZMmJpLrc7Ny5cygsLIx+XlBQgHPnzhlY0VCNjY04fvw4li5dira2NuTn5wMA8vLy0NbWZlhdP/3pT/H000/DYtGfDu3t7ZgyZQpUVQVgbDt6PB7k5OTgoYcewsKFC/Hd734XfX19pmk/l8uFxx57DEVFRcjPz0dWVhYWLVpkmvaLuFp7mfE18+KLL+Kuu+4CYJ763nrrLbhcLlRXVw/Zbpb66PqZ/TFjTowdc2J8MCfiw5xIHmZ/zMyYE2bOCIA5MV6YE/GZTDmRVJ1EZtbb24v169fjN7/5DTIzM4d8TVEUKIpiSF179+5Fbm4uFi1aZMj+ryUYDKKhoQHf//73cfz4caSnp4+4NtzI9uvs7MRbb70Fj8eDlpYW9PX1Yf/+/YbUcr2MbK9r+eUvfwlVVbF582ajS4nq7+/Htm3b8OSTTxpdCiU55kRsmBPjjzkxNswJShQz5oTZMwJgTkwE5sTYTLacSKpOIpfLhaampujnzc3NcLlcBlakCwQCWL9+PTZv3ox169YBAGbMmIHW1lYAQGtrK3Jzcw2p7dChQ9izZw+Ki4uxceNGvPfee/jJT36Crq4uBINBAMa2Y0FBAQoKCrB06VIAwIYNG9DQ0GCa9nv33Xcxa9Ys5OTkwGazYd26dTh06JBp2i/iau1lptfMyy+/jL1792LXrl3R0DFDfadOnYLH40F1dTWKi4vR3NyMm2++GefPnzdFfTQ2Zn3MmBOxY06MD+ZE7JgTycWsj5lZc8LsGQEwJ8YLcyJ2ky0nkqqTqKamBidPnoTH44Hf78fu3btRW1traE0igkceeQTl5eV49NFHo9tra2uxc+dOAMDOnTuxdu1aQ+qrq6tDc3MzGhsbsXv3bqxYsQK7du3C8uXL8frrrxteX15eHgoLC/H5558DAA4cOIB58+aZpv2KiopQX1+P/v5+iEi0PrO0X8TV2qu2tha///3vISKor69HVlZWdBhpIu3fvx9PP/009uzZg7S0tCF17969Gz6fDx6PBydPnsSSJUsSWtv8+fNx4cIFNDY2orGxEQUFBWhoaEBeXp5p2o+uH3Ni7JgT8WFOjA/mBCUKc2JszJ4RAHNivDAnYjfpcsKYqZAmzr59+2TOnDnidrvlqaeeMrocOXjwoACQ+fPnS3V1tVRXV8u+ffvk0qVLsmLFCikpKZHbb79d2tvbjS5V3n///eiKBKdOnZKamhqZPXu2bNiwQbxer2F1HT9+XBYtWiTz58+XtWvXSkdHh6na7+c//7mUlpZKRUWFPPDAA+L1eg1tv40bN0peXp6oqioul0t27Nhx1fbSNE1+8IMfiNvtlsrKSjl69Kgh9c2ePVsKCgqir5GtW7dGv/+pp54St9stc+fOlbffftuQ+gYbPNGcEe1H8WNOxI45ERvmRPz1MScokZgTsTFrRogwJ8aKOTH+9Q1m9pxQRESM7aYiIiIiIiIiIiKjJdXlZkREREREREREFBt2EhERERERERERETuJiIiIiIiIiIiInURERERERERERAR2EhEREREREREREdhJREREREREREREYCcRERERERERERGBnURERERERERERATg/wHYm9QfAzcDgAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAACMCAYAAADLJCYtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAAApyElEQVR4nO3dZ3iUVdrA8f8kk056MukhhCSkkEYCQQSkCCJgkKKCuMurKHaxi27TtYDsquDaFisqisoqJSAgRcEAIhBaAoSEJKSR3vvMnPdDJLsomDbJtPO7Lj4w5Zn7yZM895x2H4UQQiBJkiRJRsRC3wFIkiRJUnfJ5CVJkiQZHZm8JEmSJKMjk5ckSZJkdGTykiRJkoyOTF6SJEmS0VH254d5eHgQFBTUnx8pSZIkGbDc3FzKy8u7/b5+TV5BQUEcOnSoPz9SkiRJMmCJiYk9ep/sNpQkSZKMjkxekiRJktGRyUuS+klDi5qn1h2nuKZJ36FIktGTyUuS+knK8SK+OJTPjlOl+g5FkoyeTF6S1E/WpxUBkFveoOdIJMn4yeQlSf3gQk0zB3IqAJm8JEkXZPKSpH6w6VgRQkC4tyM5FTJ5SVJvyeQlSf1g/dFCYv2dGTdExfmKRtQarb5DkiSjJpOXJPWxrNI60otqmRHnR7CHA2qtoLBazjiUpN6QyUuS+tj6tCIsFDA91ocgDwcAcuS4lyT1Sr+Wh5IkcyOEYMOxQq4O8UDlaNvxeG55AwzRY2CSZORky0uS+tCR89XkVzaRHOsLgOcAGxysLcmtaNRzZJJk3GTykqQ+tOlYEdZKC64b6g2AQqFgkKcD52S3oST1ikxektRHNFrBlhPFjAvzxMnWquPxIHcHudZLknpJJi9J6iM/51ZSWtfC9F+6DC8a5OFAQVUjrWo5XV6SekomL0nqI5uOFWFnZcm1EapLHg9yd0ArIL9KjntJUk/J5CVJfUCt0fLtyQtMiFBhb33ppN5Bnr9Mly+TXYeS1FMyeUlSH9iXXUFlQys3xPj+5rlB7u3JK1eWiZKkHpPJS5L6QMrxIgbYKBk3xPM3z7k6WONsZyUXKktSL8jkJUk61qrWsvXkBSZFemFrZXnZ1wzycJAtL0nqBZm8JEnHdp0upbZZzQ2xPld8zSAPB3LL5YQNSeopmbwkSYeEELy5O4tAN3vGhP62y/CiIHcHCqubaG7T9GN0kmQ6ZPKSJB3aeaqUE4U1PDAhBCvLK/95BXnYA5Any0RJUo/I5CVJOiKEYMXOTAa62zMr3u93XxvsMQCQ1eUlqadk8pIkHdlxqpSThbU8MD4E5e+0ugAC3dtbXgVyobIk9YhMXpKkA0IIVuxob3XN7KTVBeBkq8RGaUFpXUs/RCdJpkcmL0nSgW9PXiC9qJYHJ4R22uqC9uryno42lMnkJUk90uXkpdFoiI+PZ/r06QDk5OSQlJRESEgIt9xyC62trX0WpCQZstK6Zv68/iSRPk7cGPfbihpXonK0obSuuQ8jkyTT1eXktXLlSiIiIjr+/9RTT/HII4+QlZWFq6sr77//fp8EKEmGTKsVPP7VcRpa1Lw+L65Lra6LVI62lNbKlpck9USX/tIKCgrYvHkzd955J9Dev79r1y7mzJkDwIIFC1i/fn2fBSlJhmr1/lz2ZJbx5+mRhKgcu/VeT0cbyupl8pKknuhS8nr44YdZvnw5FhbtL6+oqMDFxQWlsr1atr+/P4WFhX0XpSQZoPSiGpZ+e5prI1TclhTY7ferHG2obmyjRS0XKktSd3WavFJSUlCpVCQkJPToA1atWkViYiKJiYmUlZX16BiSZGj2Z1cwb9UBXO2teHl2DAqFotvHUDnZAMhJG5LUA8rOXpCamsrGjRvZsmULzc3N1NbWsnjxYqqrq1Gr1SiVSgoKCvDzu/z04EWLFrFo0SIAEhMTdRu9JOnBN2kFPLnuOAPdHfjw/4bjPsCmR8fxdPxv8vJ3tddliJJk8jpteS1dupSCggJyc3NZu3YtEyZMYM2aNYwfP55169YBsHr1ambMmNHnwUqSPlU3tvLsxnQe+eIYCQNd+c89owhw63nSUTnaAsi1XpLUAz1e5/Xyyy/z6quvEhISQkVFBQsXLtRlXJJkMFrUGt7dc46xy3fz8f5c/jByIB/fkYSzvVWvjqtylN2GktRTnXYb/q9x48Yxbtw4AIKDgzl48GBfxCRJBkEIweYTxby89TT5lU1cE+bJ01PDCfd20snx3RysUShky0uSeqJbyUuSzMWh3Epe2nKKI+erCfd25JOFI353i5OeUFpa4O5gQ5lcqCxJ3WYSyeviHkoTwr2I9NXNt2LJ/Agh+D6zjLe/z+ZgTiWejjYsnx3D7AR/LC26P5uwK2SJKEnqGZNIXtllDfxzeybl9a08mxyl73AkI9PQomb90UI+2Z/H6Qt1+Djb8tfpkcwdEYC9dd/+ibSXiJLJS5K6yySS167TJQDkV8rtJaSuEUJw5HwV36QVsj6tiPoWNZE+TiyfE8ONcX5YK/unZrXK0YYzF+r65bMkyZSYRPLaeaoUgHy5N5L0O4QQHC+oYWv6BTYdK6KgqgkbpQVTo334w1UDiQ9w6dFi497wdLShvL4FrVZg0Uddk5Jkiow+edU0tnEorworSwXnKxsRQvT7DUgybM1tGl7ZfoaU48UU1zRjaaHg6hAPHrk2jOuGejPARn9/BipHG9RaQVVja48XO0uSOTL65PV9ZikareCGOF/WHy2irL6lY/GnJGm0gke+OMq3Jy8wKdKLxyYPYWK4ClcHa32HBoDK6b8LlWXykqSuM/rNKHedLsXNwZobYtv3UZLjXtJFQgie25TOtycv8OdpEbz7x0TmJPgbTOKCS0tESZLUdUadvNQaLd+fKWP8EBUD3R0AyK9s0nNUkqF46/tsPt6fx6Kxwdw5Jljf4VzWxSobcsahJHWP0SWv0tr/Lug8cr6amqY2Jkao8He1A+C8bHlJwLb0C/xj2xlujPNlyZRwfYdzRbLlJUk9Y1TJK7Okjqtf3sWT645RUtvMztMlKC0UjAn1wNbKEi8nG5m8JAqrm3hy3XGi/Zx5eU6MQc/is7dWMsBGSamssiFJ3WJUEza8HG1ZcFUQq/fnsulYMbZWFiQFu+Fo214gNdDNXiYvM6fWaHl4bRpqjZZ/zYvHRmmp75A6JRcqS1L3GVXLy9neij9Pj2THo9cwIVxFVWMbU6N9Op4PcLOnQCYvs/b6zrP8nFvFizOjCfJw0Hc4XSJLRElS9xlVy+uige4OvDl/GH+tbe4Y8AYIcLXnm9pCWtQao/jGLenWgXMV/Gt3FrOH+XNj/OU3RzVEno42pBfV6jsMSTIqRtXy+jUvJ9tLFiQHutkjBBRWyRmH5qa6sZVHvjhKkLsDf59hXPUtVY62l0xEkiSpc0advH4t0L19V9t8mbzMihCCJf85QXl9C6/PjcdBjxUzekLlZENDq4aGFrW+Q5Eko2FSySvAtT15yUkb5uWLn/PZmn6BxycPIdrfWd/hdJvnADldXpK6y6SSl8rRBmulhayyYUayy+p5blMGV4e4c5eBLkTujMrpl+RVL5OXsfvpXAUHzlXoOwyzYFz9K52wsFAQ4GrH+QqZvMxBq1rL4rVp2FhZ8OrNcQa9nuv3XKzFWVork5exKqlt5vmUDFKOFwMwJcqbP0+PwP+X3iBJ90wqeUH7pA25NYp5eG1HJicLa3nntgS8nIy3GLNnR4koOWnDGH35cz5/T8mgVaPlkWvDUFoqeGNXFrtfKeWhiaHcPTYYpaVJdXIZBJP7iQa42XO+on1rFFNUUd/CR6k5aLSmeX5dtT+7gnd+yGbu8ACmDPXWdzi94mpvhau9FVtPXujx760QguKaJnadLmF7es+PI3XP4bwqlnx9nKF+Tnz3yFgWXxvK/eND2PlY+1rUf2w7w9xVB+RQRh8wyZZXXYuamqY2XOwNp3q4LtQ2t/HHDw6SXlRLhI8TScHu+g5JL2oa23jsy6MMdLPnL9Mj9R1OrykUCp6cEs7TX59g3eECbkoM6PQ9xTVNHMuv5nhBDScKazhZWENVY1vH8xPDVfzzpliDqqBvahpb1Tz25VF8nO1494+JHZV+AHxd7Hj7tgTWpxXyl/UnmbpyLy/MHMqMOONZf2joTC55Bbj9d8ahKSWvplYNd350qGPL+BOFNWabvP628SQldS38595RRjct/kpuSQzgP4cLeGnLKSZGeOH2q6RT36Im5VgRe86WkXa+muKa9i5GpYWCId6OTI70JtLXiUhfJ04W1rB0y2mmvr6X1+fFMzzITR+nZPKWfXua3IpGPr9r5CWJ63/dGO9HwkBXHvniKIvXHuXHs+U8NyMKe2vT+L3VJ5P7CV6cLp9f2USMv4t+g9GRVrWW+9Yc5ue8Sv41L56XNp/ieEGNvsPSi29PFLP+aBEPXxtKXICLvsPRGQsLBS/OjGba63tZuuUU/7gpljaNlrTz1Xx9pICNx4pobNXg52LH8CA3hgW6EBfoSri3I7ZWl1aTGR7kxvAgNx747AjzVh1gzZ1JZvtFp6/sPVvGx/vzWDh6EFcN/v2fbYCbPWsXjWTlzrO8sTuLtPxq3rg1nnBvp36K1jSZXvJyM72tUf616yy7z5Tx0sxopsf4sulYEScKzS95lde38Kf1J4n2c+b+8SH6Dkfnhng7cueYYN75IZuy+hYO51ZR16LGzsqSG2J9mDsikPgAl0uqylzJUD9nNj44mhlvpPLg52lsfmhMx8QQqXeqG1t54qvjhKgG8MR1Q7r0HqWlBY9NHsLIYHce/uIoyW+k8tSUcG4fFWS0s2T1zeQmbDjaWuHuYM25snp9h6IT5ysa+feec9wY58utSYEAxPi7kFPeQE1TWyfvNh1CCJ75+gT1LWpeuTkWKxOdvbV4YighqgGcLalneqwPb88fxsE/TWT5nFiGBbp2KXFd5GRrxdu3DaO2uY2HPk8z+0k+uiCE4Jlv2qu5vHZz3G9avZ25OsSDbxePYUyIB8+nZPCHD36iuEZWBOoJk7wDRPs7m0y32gubM1BaKFhyfUTHY9F+7VUk0s2o9fVNWiHbM0p4fHIYYV6O+g6nz9hZW7Lj0Wv48anxLJ0Vw/XRPlccT+mKcG8nnp8xlP3nKnjtu0wdRmqe1h0uYMuJCzw6OazH1Vw8Btjw3oJEls2KJu18Nde9toeDOZU6jtT0mWTyig9wJbO0jrpm426Z7MksY3tGCQ9MCMHb+b/rmC4mr+NmkrxK65p5blMGCQNdWTjaOKtodFd3WliduSkxgJsT/Xljdxa7z5Tq7LjmJq+igWc3ppM0yI27xw7u1bEUCgVzRwSy5aExeDja8If3f+K7jBIdRWoeTDN5BbogBEbd+mrTaPl7SgYD3e1ZOHrQJc+5OlgT4GbHCSM+v+7424Z0mto0LJ8Tg6UcH+iRv88YSri3I49+cZSiatlN1V1tGi2L1x7F0kLBa7fE6ez3MMjDgXX3jCLc25F7Pj3Ml4fydXJcc9Bp8srPz2f8+PFERkYSFRXFypUrAaisrGTSpEmEhoYyadIkqqqq+jzYror9ZRZa2nnDiam7vjyUT1ZpPX+ZFnnZvcli/Fw4Xljd/4H1s29PFPPtyQs8fG0ogz0H6Dsco2VrZclb84fRqtby4OdptGm0+g7JqPxz2xmO5lfz0qxofF3sdHpsNwdrPrtrJKMGu/PkuuO8sv0MWjk+2alOk5dSqeSVV14hIyODAwcO8Oabb5KRkcGyZcuYOHEiZ8+eZeLEiSxbtqw/4u0SZzsrBns6kHa+Wt+h9Nh3GSUEezowMUJ12eej/Z3Jr2yiqqG1nyPrP9WNrfxlQzpD/ZxYZKRFdw1JsOcAls6O4XBeFf/Ydkbf4RiNXadL+Peec8xPCmR6jG+ffIaDjZL3FwznlsQA/rUri3vXHJZb5HSi0+Tl4+PDsGHDAHB0dCQiIoLCwkI2bNjAggULAFiwYAHr16/v00C7Kz7QlbT8aqMsk9Oq1vLTuUrGhHhccewj5pdxL1OeMv98yimqG1t5eXaMrA2nI8mxvtw2MpBVe86x9eQFfYdj8Iqqm3j0y2NE+Dj1eTUXa6UFy2ZH89fpkXyXUcLst/fJslK/o1t3hNzcXNLS0khKSqKkpAQfHx8AvL29KSm5/GDjqlWrSExMJDExkbKyst5H3EXxgS5UNrQa5XqvtPNVNLVpuDrE44qviTLx5PXj2XL+c6SAu68JJsrX+PboMmR/nhZJrL8zj391jKzSOn2HY7DaNL90saq1vDV/WLenxfeEQqHgjtGD+Oj2ERRVN3HDGz/yQ2b/3TeNSZeTV319PbNnz2bFihU4OV26MlyhUFyxhbBo0SIOHTrEoUOH8PT07F203RAf4ApglF2HqVnlWChg5O+s3He2s2KQhwPHC6r7L7B+0tSq4ZlvTjDIw4EHJ4TqOxyTY2tlydu3JWCjtGDRJ4epNfJZuX3lxc2nOJxXxdLZMQzycOjXzx4b5smmB0fj7WTL/314kDd2nZXjYL/SpeTV1tbG7NmzmT9/PrNmzQLAy8uL4uL2vWuKi4tRqS4/NqMvYV4DsLe25Gh+tb5D6bYfs8qJDXDBqZP1PdF+ziY543DFzkzOVzby4syh/fJt1xz5utjx5vxh5FU08ugXx+SN8Ve+SSvgo3253HH1IJJj+2acqzMD3R34+r5RJMf68s/tmXy8P1cvcRiqTpOXEIKFCxcSERHBo48+2vF4cnIyq1evBmD16tXMmDGj76LsAaWlBTH+zkY347C2uY1jBTWM/p0uw4ti/J0pqmk2qe3j04tqeG9vDjcn+jNqcOc/A6nnRga78+dpEew4VcKbu7P0HY7BOFlYw5L/nCBpkBtPTw3Xayz21kpW3BLHqMHu/GtXFvVyEkeHTpNXamoqn3zyCbt27SIuLo64uDi2bNnCkiVL+O677wgNDWXHjh0sWbKkP+LtlvhAV9KLamlu0+g7lC776VwlGq343fGuiy4WHj6cZ1wJ+ko0WsHTX5/A1d6KZ6ZGdP4Gqdf+b1QQM+J8eXVHJj+eLdd3OHpX1dDKPZ8extXemjfnDzOIMmQXt8ypaGjl/b05+g7HYHRamHf06NFXnLG3c+dOnQekS/EBLqi1gvSiGhIGGse2EKlZ5dhZWRIf6NLpa+MDXXC0UfL9mVKj35AR4KN9uRwvqGHl3DiT2s7GkCkUCl6aGU16US2L17YX8P3fai7mpFWt5Z5PD1Na18KXd1+FxwDDKWQcF+DClChv3t17jttGBuJuQLHpi/6/VvShuF8SgDFN2vgxq5wRg9wuuzD516wsLRgT5sHuM6VGuSTgfxVWN/HK9jOMG+KptzEGc+Vgo+Sd24bR1Kbhgc+OmOUCZiEEf9uYzk85lbw8O9ogt9t5/LohNLaqeXN3tr5DMQgmnbxUjrb4u9rxc65xFL28UNNMVml9l8a7Lho/REVJbQvpRbV9GFnfEkLwl/UnEQJeuHGoTuv6SV0TonJk2ewYDuVV8UJKhr7D6Xcf78/j84PnuXfcYGbG++s7nMsKUQ3gpoQAPj2QR0GV8S0B0jWTTl4AY0I9SM2qoFVt+N8mU7Paxxy6Mt510bghKhQK2H3aeAuubjlxgV2nS3lschj+v2wmKvW/5Fhf7hoziNX78/jkQJ6+w+k3358p5e8pGVwboeKJyV3bn0tfFl8bCgp463vZ+jL55DUx3Iv6FjU/5VToO5RO7cuuwM3BmnDvrm/54eloQ4y/CzuNNHlVNbTyt43pRPs583+jgvQdjtlbcn0EE8JVPLsx3SwmcBwvqOa+NUcY4uXIirnxBr8xpK+LHbOH+bPucAGldc36DkevTD55XR3igY3Sgp2nDP/mfiivkoSBrt3+A5owRMWxgmoq6o1vyvyzm9Kpbmxl+RxZAsoQWFooWDk3jhDPAdy35jDZJrKp6+XkVTRwx0c/42pvzUe3D2eAjXFsLH/32GDUGi0fpubqOxS9Mvm7hZ21JaNDPNhxqsSgJzWU1bWQV9HI8CDXbr93QrgKIeD7M8ZVRmZ7+gU2HC3iwQmhRPg4df4GqV842lrx3oJErJUW/OG9n0yyvl55fQsLPjiIWitYfccIVE7GM8MyyMOB64f68On+PLOujmLyyQvg2kgvCqqayCwx3G+Rh/PaJ5X0ZEp/lK8Tno427DKijQarG1v50/qTRPg4cd/43m3sJ+legJs9H9+RREOrhlvfO2BSe4BdqGnmln/v50JtM+8vSCREZXxb7dxzzWDqWtR89tN5fYeiN2aRvCaGt5eu2nHKcHcqPZRbhbXSgqF+3W+BWFgoGD/Ekz2ZZUYzzfm5TRlUNbTyz5tiDGIhqPRbkb5OfLJwBNUNbcx/7ydKa41/jCW/spGb/72fCzXNrL59hNGs//y1aH9nRod48P6POUZVhEGXzOKuoXKyJcbfmZ2GnLzyqoj1d+7S+q7LmRCuoq5Zzc85hr8sYPPxYr5JK+S+8SGyYryBi/F34aM7RlBS28zMt/Zx0oh3McgsqeOWf++nurGVNXeNJCn4yoWvjcG94wZTVtfCV2a6+7JZJC9on3WYll9NuQFOamhu0/S6CsjYME+c7az4cF+u7gLrA8U1TTzzzQliA1x4cEKIvsORuiBhoCtrF41EKwRz3tnHhqOF+g6pW4QQfH7wPMlv/EirRsvni0Ya5CLk7ho12J0Rg9xYvu0MF2qMv1XcXeaTvCLaJzUY4nqoY/nVtGkEiQO7P1njIntrJQtGBfFdRgmZJYa5R5NWK3j8q2O0qrWsuCVOdhcakRh/FzY+MJoYPxcWrz3Ki5szjKKLuqqhlQc+S+Ppr0+QONCNLQ+NMZnWvkKhYPnsGNo0WpZ8fdygJ6T1BeOYG6oDUb5O+Djbsi29hJsSA/QdziUO/VJYN6EXyQvg9lFBvLvnHO/8kM2rN8fpIDLd+iA1h9SsCpbOiu73/ZGk3vN0tOHTO5N4cXMG7+7N4Wh+NW/cOgyvfpip16rWkna+in3ZFWi0Ai9nW3ycbAlRDWCgu/1vqrLklDfwwY85rDtcQJtGy1NTwrl7bLDBr+PqriAPB56aEs5zmzL46nABN+vw3lZR30JqdgVHz1ejFQJLCwU2SgtGBrtz1WB3vX/5NJvkpVAouDHej3d+yCa7rJ7BnoYzw+hwXhWDPR1wdehdMVpXB2vmjQjk4/25PDrJsKpVZBTVsnzrGSZFejF3uGF9eZC6zlppwXMzhjJsoCtPf32Caa/v5dWb4xgbpvuNZptaNew4VcKmY0WkZpXT0KrBQtH+t6z5n/3HPB1tGB7kiruDDYXVTRRWNZFZWoeVhQUz4ny5a2wwYV5dX/hvbBZcFcS3Jy/w/KYMxoR64ONs1+NjldQ28/WRQlKOF3WUnLO1ssDa0gKNVtCi1vLW99m42FsxOdKL+UkDidVTF6zZJC+AhaMH8WFqDm/uzjKYlolWKzicV8WUKN1Uhb9r7CA+OZDLu3vO8dyMoTo5Zm81tWp48PMjuNhb8fLsGFm70ATMiPMj0seJe9cc4Y8fHGRypBfPTI0gqJct6jaNlh+zytl0rIhtJy/Q0KrBy8mGG+P9GBPqyVWD3Rlgo6SivoWimmbSi2r4OaeSn3OrqGtuw8/VnkB3e6ZG+zAvKQCVo/Gs3+opCwsF/5gTw5QVe1nwwUHeuS2B4G58OW9q1fDdqRK+PlLAnswytKK9F+jxyWGMDvUk2s8Zy19arM1tGvZklrHlRDFbTlxgxCB3vSUvhejHjtLExEQOHTrUXx93Wc+nZPDRvlx2PXYNA93133V1tqSOSa/tYfmcGJ01+Z9cd4wNR4tIXTLBILZ1eOabE3x+8DyfLkzqVt1GyfA1t2l4/8f2L4RtGi03JwYwOcqbpEFuXd4Fu7lNw/7sCrZnlLD1ZDFVjW042iqZOtSHGXG+JAW7d9w8pStLzSr/ZVcAwT9vimHKUJ8rvrZVrWVfdjkpx4vZevIC9S1qfJ1tmTXMnzkJ/l36EtKi1iAEvd7tvKd5waxaXtBeWuWTA3m8tTubl+fE6DucjvGu3kzW+LV7rhnMusMFLPv2NP+8KVZnx+2JrSeL+eyn89x9TbBMXCbI1sqS+8eHcFOCP69sz+SrwwWs+ek8tlYWDA9yI9bfhWh/ZwZ7DqBFraGhRUNtUxtFNe3de9ll9aRmVdDUpsHe2pJrI7y4IdaXsWEePV42Yq6uDvEg5aEx3LfmCPd8eoRJkV4kDnQl2t8ZZzsriqqbKapu4sj5KnadKqWuRY2jjZKp0d7MjPcnaZBbt8YE9X19zC55qZxsmTc8gDU/nefBiSF6Hxf68Ww57g7WOp3AEOw5gAfGh/D6rizGhHowI85PZ8fujryKBp76zwli/J15bJJhV+uWekflZMvLc2J4NjmKn3Iq+CGzjP3ZFbz9Q/Yl41P/y9rSAj9XO2Yn+HFthBcjg917/S3e3Pm52PHl3SN5ZXsmW04U813Gb9e2utpbcX20N1OGejNqsIfR/szNLnkB3H3NYD47eJ63vs/mpZnReovjUG4lm08Us2hssM7HgR6aGEpqdgV//uYk8QGuBLr3b5KubW5j4er2roDX58ZjrZTT4s2BnbUl44aoGDekvapNc5uGjOJa8ioasLNS4mBjiaOtFb7OtngMsDG52X+GwEZpyTNTI3hmagSVDa2cKKyhoUWNr4sdvi62eDiYxs/dLJOXr4sdt44I5OMDeUwMVzExwqvfY2jTaPnTNyfxdbZl8cRQnR9faWnByrlxXL9yLw+tTeOre67qt6mtao2W+9ccIbe8gU8WJvV6EF8yXrZWlgwLdGVYoO66xaWuc3Ow5po+mAlqCMz26/DTUyOI8nXi4bVH9bLtw/s/5nCmpI5nk6Nw6KOtGPxd7Vk2K4aj+dU8te54v23I+feUDPaeLefFmUO5arBxl+CRJMkwmW3ysrWy5N9/SMRKacGijw9R149bC+RXNrJiRyaTIr2YrKMp8lcyLcaHxyaF8XVaIQs+OEhNY9+dpxCCf2w7zcf787hrzCBuGR7YZ58lSZJ5M9vkBe2Dm2/eOozcikYe/DytXxKYViv40/qTWCgUPJsc1eefB/DgxFBeuyWWQ3mVzHo7ldzyBp1/hhCC51NO8ebubOaNCODp6yN0/hmSJEkXmXXyArhqsDt/nxHFnswyrl+5l0O5fVuV/c3dWezJLOPpqRH4ufR8JXx3zYz355OFSZTXtzJ5xR5e+y5TZ1spqDVa/rT+JB+k5vB/o4J4aWa0SQwIS5JkuMw+eQHMTxrIV/dchUIBN/97Py9vPd0nrbC9Z8t4dUcmN8b5cltS/3epjQx2Z9vDY5kS5c3KnWeZ+MoPfPlzfq/O9cj5KpLfSOWzn85z77jB/O2GSFlBQ5KkPmd2FTZ+T32Lmuc2pvPV4QJc7K24a0wwC0YFMUAHEyoKq5uY/vpePB1tWH//1dhb63ei5/7sCp7blM7pC3VYKy2YGK5ibJgnvi52+LnY4uloi6ON8jctKCEEpXUtnC2pJ+V4EWt/zsfLyYa/TI9kWrSPTFySJHVLT/OCTF6XcSy/mhU7Mtl9pgxnOytujPNlTkIAQ/2cun1zFkLwQ2YZz6dkUFLbwoYHrjaYosBCCNLyq9l4tIiU48W/2etMoQBHG+UlibahRU1dixoASwsFd1wdxOJrw3SS4CVJMj8yefWBo/nVvLf3HNszSmhVaxns6UBsgAthXo6EeQ3A28kOlZMNbvbWl7RQ1BotJXUtZJXW88732ew/V4G/qx3LZsUwOtQwSyRptILimiaKa9pLyJTVtVDbrKa2qY3GVjUK2s/P1sqCwaoBhKgGEO7thFsvK+FLkmTeZPLqQzVNbaQcL2LryQucuVBHad2lLRRLCwW2SguslBYoLRRUNbZ1lMRxd7DmwQkh3Jo0UFaZkCRJ+hW9FObdunUrixcvRqPRcOedd7JkyZLeHM5gOdtZMT9pIPOTBgJQ09hGVlkdJbUtlNW1/2tu09Cq0dKm0eLmYI2/qz1+LnYkDHTts0XIkiRJ5qrHd1WNRsP999/Pd999h7+/P8OHDyc5OZnIyEhdxmeQnO2tSBjopu8wJEmSzFaP+7EOHjxISEgIwcHBWFtbM3fuXDZs2KDL2CRJkiTpsnqcvAoLCwkI+O/mif7+/hQWFuokKEmSJEn6PX0+GLNq1SpWrVoFQFlZWV9/nCRJkmQGepy8/Pz8yM/P7/h/QUEBfn6/3fRw0aJFLFq0CAAPDw8SExN7+pEdysrK8PQ0zTL/V2KO5wzyvM2NOZ63OZ4z/Pe8c3Nze/T+Hk+VV6vVhIWFsXPnTvz8/Bg+fDifffYZUVF9X2zWWKfc94Y5njPI8zY35nje5njO0Pvz7nHLS6lU8sYbb3Ddddeh0Wi44447+iVxSZIkSVKvxrymTp3K1KlTdRWLJEmSJHWJUZZ8uDiGZk7M8ZxBnre5McfzNsdzht6fd7+Wh5IkSZIkXTDKlpckSZJk3owqeW3dupUhQ4YQEhLCsmXL9B1On8nPz2f8+PFERkYSFRXFypUrAaisrGTSpEmEhoYyadIkqqqq9Byp7mk0GuLj45k+fToAOTk5JCUlERISwi233EJra6ueI9S96upq5syZQ3h4OBEREezfv98srvVrr71GVFQUQ4cOZd68eTQ3N5vk9b7jjjtQqVQMHTq047ErXV8hBA899BAhISHExMRw5MgRfYXda5c77yeeeILw8HBiYmKYOXMm1dXVHc8tXbqUkJAQhgwZwrZt2zr/AGEk1Gq1CA4OFtnZ2aKlpUXExMSI9PR0fYfVJ4qKisThw4eFEELU1taK0NBQkZ6eLp544gmxdOlSIYQQS5cuFU8++aQ+w+wTr7zyipg3b56YNm2aEEKIm266SXz++edCCCHuvvtu8dZbb+kzvD7xxz/+Ubz77rtCCCFaWlpEVVWVyV/rgoICERQUJBobG4UQ7df5ww8/NMnr/cMPP4jDhw+LqKiojseudH03b94spkyZIrRardi/f78YMWKEXmLWhcud97Zt20RbW5sQQognn3yy47zT09NFTEyMaG5uFufOnRPBwcFCrVb/7vGNJnnt27dPTJ48ueP/L730knjppZf0GFH/SU5OFtu3bxdhYWGiqKhICNGe4MLCwvQcmW7l5+eLCRMmiJ07d4pp06YJrVYr3N3dO37Zf/07YAqqq6tFUFCQ0Gq1lzxu6te6oKBA+Pv7i4qKCtHW1iamTZsmtm7darLXOycn55Kb+JWu76JFi8Rnn3122dcZo1+f9//6+uuvxa233iqE+O39fPLkyWLfvn2/e2yj6TY011qKubm5pKWlkZSURElJCT4+PgB4e3tTUlKi5+h06+GHH2b58uVYWLT/WlZUVODi4oJS2b6iwxSveU5ODp6entx+++3Ex8dz55130tDQYPLX2s/Pj8cff5zAwEB8fHxwdnYmISHB5K/3RVe6vuZ0n/vggw+4/vrrgZ6dt9EkL3NUX1/P7NmzWbFiBU5OTpc8p1AoUCgUV3in8UlJSUGlUpGQkKDvUPqVWq3myJEj3HvvvaSlpeHg4PCb8VxTu9YAVVVVbNiwgZycHIqKimhoaGDr1q36DksvTPH6dubFF19EqVQyf/78Hh/DaJJXV2spmoq2tjZmz57N/PnzmTVrFgBeXl4UFxcDUFxcjEql0meIOpWamsrGjRsJCgpi7ty57Nq1i8WLF1NdXY1arQZM85r7+/vj7+9PUlISAHPmzOHIkSMmfa0BduzYwaBBg/D09MTKyopZs2aRmppq8tf7oitdX3O4z3300UekpKSwZs2ajqTdk/M2muQ1fPhwzp49S05ODq2traxdu5bk5GR9h9UnhBAsXLiQiIgIHn300Y7Hk5OTWb16NQCrV69mxowZ+gpR55YuXUpBQQG5ubmsXbuWCRMmsGbNGsaPH8+6desA0ztnaO8yCggI4MyZMwDs3LmTyMhIk77WAIGBgRw4cIDGxkaEEB3nberX+6IrXd/k5GQ+/vhjhBAcOHAAZ2fnju5FU7B161aWL1/Oxo0bsbe373g8OTmZtWvX0tLSQk5ODmfPnmXEiBG/fzAdjcv1i82bN4vQ0FARHBwsXnjhBX2H02f27t0rABEdHS1iY2NFbGys2Lx5sygvLxcTJkwQISEhYuLEiaKiokLfofaJ3bt3d8w2zM7OFsOHDxeDBw8Wc+bMEc3NzXqOTvfS0tJEQkKCiI6OFjNmzBCVlZVmca3/+te/iiFDhoioqChx2223iebmZpO83nPnzhXe3t5CqVQKPz8/8d57713x+mq1WnHfffeJ4OBgMXToUPHzzz/rOfqeu9x5Dx48WPj7+3fc1+6+++6O17/wwgsiODhYhIWFiS1btnR6fFlhQ5IkSTI6RtNtKEmSJEkXyeQlSZIkGR2ZvCRJkiSjI5OXJEmSZHRk8pIkSZKMjkxekiRJktGRyUuSJEkyOjJ5SZIkSUbn/wHSJ2ZllvoImAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -368,99 +437,136 @@ } ], "source": [ - "# Here, the distance function (distance and normalise arguments)\n", - "top_k_search = QuerySearch(k=3, inverse_distance=True, distance=\"euclidean\")\n", - "top_k_search.fit(X_train)\n", - "distances_to_matches, best_matches = top_k_search.predict(q)\n", - "plot_best_matches(top_k_search, best_matches)" + "MP, IP = motif.compute_matrix_profile()\n", + "\n", + "plt.figure(figsize=(7, 2))\n", + "plt.plot([MP[i][0] for i in range(len(MP))])\n", + "plt.show()" ] }, { "cell_type": "markdown", - "id": "b5240535-5123-4ac5-a5e0-e0502ef80b3e", + "id": "5f9f5a86-19b9-4259-8cdc-2664b22532ae", "metadata": {}, "source": [ - "## Using the speed_up option for similarity search" + "## 1.3 Motif search with KMotiflets estimator" ] }, { "cell_type": "markdown", - "id": "b5e13c31-2aa3-4987-8d44-8a296c81a318", + "id": "7d2522e0-e6f4-412e-b0cb-2945016d188a", "metadata": {}, "source": [ - "In the similarity search module, we implement different kind of optimization to decrease the time necessary to extract the best matches to a query. You can find more information about these optimization in the other notebooks of the similarity search module. An utility function is available to list the optimizations currently implemented in aeon :" + "# 2. Collection estimators\n", + "\n", + "Now, we'll explore estimators of the `collection` module, where you must provide single series of shape `(n_cases, n_channels, n_timepoints)` during fit and predict." + ] + }, + { + "cell_type": "markdown", + "id": "5aea3e4f-e613-4646-b012-e64c5ec9586f", + "metadata": {}, + "source": [ + "## 2.1 Approximate nearest neighbors with RandomProjectionIndexANN\n", + "\n", + "This method uses a random projection locality sensitive hashing index based on cosine similarity. W we define a hash function as a boolean operatio such as, given a random vector ``V`` of shape ``(n_channels, L)`` and a time ser ``X`` of shape ``(n_channels, n_timeponts)`` (with ``L<=n_timepoints``), we com \n", + " ``X.V > 0`` to obtainhash of ``X``e \r\n", + " In the case where ``L 0``` instead.\n", + "\n", + "The ```RandomProjectionIndexANN``` estimators use the parameter ```n_hash_funcs``` to create that much random hash function as defined above. Each series `X` of the collection given in fit is then represented as an array of ```n_hash_funcs``` boolean, which is then hashed to a dictionnary as ```{hash(bool_array): case_id_array}```.\n", + "\n", + "To compute the nearest neighbors of a series ``X`` given in predict, we first transform this series to a boolean array using our previously defined hash functions, and then do ```hash(bool_array)``` to look at the bucket in which ``X`` falls, and consider the ```case_id_array``` as the indexes of its neighbors. If this bucket doesn't exists, we compute a distance matrix between the boolean array of ``X`` and every boolean array making the keys of the dictionnary to get similar buckets.\n", + "\n", + "This method will not provide exact results, but will perform approximate searchs. This also ignore any temporal correlation and consider series as high dimensional points due to the cosine similarity distance.y distance.\r\n" ] }, { "cell_type": "code", "execution_count": 9, - "id": "d22e2d74-f44d-4c81-ba1b-72d618bd5862", + "id": "cc719800-0119-42f9-9018-32288c2db69b", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "match 0 : 130 with distance 1.0\n" + ] + }, { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAE/CAYAAADCGZOXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAACT40lEQVR4nOzdd3wc933n/9fMbMcuei8ECfYmSiySSFG9SxYtOXKLbMuWbTmXxHbuHr7EF9/PD10uzilO7i5n+1KUSyLbiSXFkm0Vq1iNkqjGIvbeQBC9960z8/tjgCUhkhJlliXI9/Ph8e7sLnY+s4QA7Hu/38/XcF3XRURERERERERELmhmrgsQEREREREREZHcU0gkIiIiIiIiIiIKiURERERERERERCGRiIiIiIiIiIigkEhERERERERERFBIJCIiIiIiIiIiKCQSERGRSWTq1Km89NJLuS7jrHn44YdZuXJlrssQERGRC4RCIhEREbmgPfDAA3zuc587a8f74he/yH/9r//1jDx3b28vd911F3l5edTX1/Ozn/3sjBxHREREzk++XBcgIiIiIqfHH/zBHxAIBOjo6GDTpk3cfvvtLFq0iPnz5+e6NBEREZkENJJIREREJpV169Yxb948ioqK+NKXvkQikcje98wzz3DxxRdTWFjIihUr2LJlS/a+v/zLv6SmpoZYLMbs2bN5+eWXef755/mLv/gLHnvsMaLRKIsWLTruMadOncpf/dVfcdFFF5GXl8eXv/xlOjo6uPXWW4nFYtxwww309fVlH//JT36SyspKCgoKuOqqq9i+fTsADz30EP/2b//G97//faLRKHfccQcAhw8f5hOf+ARlZWWUlJTwh3/4hxOO/61vfYuioiKmTZvGc889d9waR0ZGeOKJJ/jv//2/E41GWblyJatWreKnP/3pb/dCi4iIyAVHIZGIiIhMKv/2b//GCy+8wP79+9mzZw9//ud/DsDGjRu57777+Id/+Ad6enr42te+xqpVq0gmk+zevZsf/ehHrFu3jqGhIV544QWmTp3KLbfcwp/+6Z/y6U9/muHhYTZv3nzC4z7xxBO8+OKL7Nmzh6effppbb72Vv/iLv6CrqwvHcfjBD36Qfeytt97K3r176ezsZPHixdxzzz0A3H///dxzzz388R//McPDwzz99NPYts3HPvYx6uvraWxspKWlhc985jPZ53r33XeZPXs23d3d/PEf/zFf/vKXcV33mPr27NmDz+dj1qxZ2dsWLVqUDahEREREPoxCIhEREZlU/vAP/5C6ujqKi4v5zne+wyOPPAJ4o3S+9rWvcdlll2FZFvfeey/BYJB33nkHy7JIJpPs2LGDdDrN1KlTmT59+kc67te//nUqKiqoqanhyiuv5LLLLuOSSy4hFApx1113sXHjxuxj77vvPmKxGMFgkAceeIDNmzczMDBw3Oddu3Ytra2t/NVf/RV5eXmEQqEJzarr6+v56le/mj2ntrY2Ojo6jnme4eFh8vPzJ9xWUFDA0NDQRzpPERERuXApJBIREZFJpa6uLnu9vr6e1tZWAA4dOsT//J//k8LCwux2+PBhWltbmTFjBn/zN3/DAw88QHl5OZ/5zGeyX3eyKioqstfD4fAx+8PDwwDYts23v/1tpk+fTn5+PlOnTgWgu7v7uM97+PBh6uvr8fmO3yqysrIyez0SiQBkj3W0aDTK4ODghNsGBweJxWIncXYiIiIiColERERkkjl8+HD2elNTE9XV1YAXHn3nO9+hv78/u42OjvLZz34WgN/93d9lzZo1HDp0CMMw+JM/+RMADMM4rfX97Gc/48knn+Sll15iYGCAxsZGgOwUsfcfr66ujqamJjKZzCkdd9asWWQyGfbu3Zu9bfPmzWpaLSIiIidNIZGIiIhMKv/3//5fmpub6e3t5Xvf+x6f/vSnAfjqV7/K3//93/Puu+/iui4jIyP8+te/ZmhoiN27d/PKK6+QTCYJhUKEw2FM0/szqKKigsbGRhzHOS31DQ0NEQwGKSkpYXR0lD/90z+dcH9FRQUHDhzI7l966aVUVVXx7W9/m5GRERKJBG+++eZHPm5eXh6f+MQn+O53v8vIyAhvvvkmTz75JJ///OdP+ZxERETkwqCQSERERCaV3/3d3+Wmm26ioaGB6dOn81//638FYOnSpfzjP/4jf/iHf0hRUREzZszg4YcfBiCZTPLtb3+b0tJSKisr6ezs5H/8j/8BeCuRAZSUlLB48eJTru8LX/gC9fX11NTUMG/ePC6//PIJ93/5y19mx44dFBYWcuedd2JZFk8//TT79u1jypQp1NbW8thjj/1Wx/7bv/1b4vE45eXlfPazn+Xv/u7vNJJIRERETprhHm95DBERERERERERuaBoJJGIiIiIiIiIiCgkEhERERERERERhUQiIiIiIiIiIoJCIhERERERERERQSGRiIiIiIiIiIgAvlwX8EFKS0uZOnVqrssQERERERERETlvNDY20t3dfczt53RINHXqVNavX5/rMkREREREREREzhtLly497u2abiYiIiIiIiIiIgqJREREREREREREIZGIiIiIiIiIiHCO9yQSERERERERkQ+XTqdpbm4mkUjkuhQ5h4RCIWpra/H7/Sf1eIVEIiIiIiIiIpNcc3MzsViMqVOnYhhGrsuRc4DruvT09NDc3My0adNO6ms03UxERERERERkkkskEpSUlCggkizDMCgpKflIo8sUEomIiIiIiIicBxQQyft91O8JTTcTERGZJFzXJWknGUmNMJwaZjg1TNJOkswkSdpJUnYqez1tp/GZPoK+IEErmL0M+UIErACmYWIYBgbGhEvgmNtO5j7XdXFcZ8Lm4t0W8oWIBWJEA1EsDEinIZn0Lk0TLOvI5dHX9YeuiIjIpNHY2MjHPvYxtm3bdkrPs3r1agKBACtWrDhNlR3x8MMPc9NNN1FdXf2Bj1m/fj0/+tGPPvC5rrnmGv76r/+apUuXnpbaNm3aRGtrK7fddhsATz31FDt27ODb3/72aXn+k6WQSERE5GS5LmQyH7ylUjA87G1DQ942fj0eB58PAgEcn4+k6TBqZBglTcLNYNsp7HQKO5PCtjM4Y9fT6SSpdJx0KoFrZzBtF8NxMFwXx7JIhfykwgFS4QDpscsJt4W8fdc6zgBi18XKOPiTaXzJNL60jeG4GK6L4bjgHnUdwDBwTQMXvEvDAMPASmfwJ9IEEmn8yTT+eMq7THjPaWVsrHSGkGMRsAIEfUECVgDHdbAdG9u1J1w6roPr9+H4fbh+P67PhxPwQ8CPY5nYuDgG2IaLDbi42IaL67qYgOHi1e0aGK6DgYHPNfAZFj5MfJhYhndpGiZGKAx5eRCNYkSjmNEYZl4MMxrFZ/rxmz78ph+f5cNv+PCZPgwXMm6GtJ0mY6dJO95lxs7guM4Jv40snx+/P4Q/EMLvDxEIhL3rwTApbBJumoSdJJ6Ok8gkSGQSpOxUNpQbD/hMw8TAC9JSdoq0kyY9VkfKTpG207i4+EwflmF5l6aV3XdxyTgZbMf2Ll07u+/9UxvZ5z/62EFfkIg/QtgXJuKPeNf9YQJWgLTtHfv9m+3aJwwYxy/Hz+f9waTruke+XXFPeNup3m6Z1oRA9ehLy7COqXn8dTENDcwXETmdVq9eTTQaPWMh0YIFCz4wJMqVTZs2sX79+mxItGrVKlatWnXW61BIJCIi5zfX9cKZkZHjb+MjWj4s/BnbXNfNvqEeHzEzHmo4rvOBt2ecTPZNfzKTnPBm9cMYQOA4t48HPJH+ERwXbMfFdlwc18U0wDJNLNPANCAT8pMKBcgE/V6oMxbimM7J13Gq0jiknTQj6ZEPf3AyDckju+ZRl6f6B4w9tqVO8XnOFNcwcCwD1zRxzKMuLe/Sscxjbjvevmsa2ONhH4yFft6le/TXnODrj7nPNDAdF9N2jtkMxyXjt7ADPjIBn3fd7106lpkNG42xGo4OH10DL4A0jAnXM36LTNCP7TPP2ZFlPtPnBZ+WF3yOh6B+01tFxsULL4++BI4J7sbDO2DCz5Lx8PSDrjtjQahpmFimhWl44ed4uHWirx2vwzKtCZfjdZ3otvcHlUdfHz//kC+UHb04vu8z9dZD5Ex7YPUDZ+9Y1xx7rEwmwz333MN7773H/Pnz+clPfkIkEmHDhg38p//0nxgeHqa0tJSHH36YqqoqfvCDH/D3f//3+Hw+5s2bx4MPPsjf//3fY1kW//qv/8oPf/hDrrzyyiPHfOABDh48yIEDB2hqauJ//+//zTvvvMNzzz1HTU0NTz/9NH6/nz/7sz/j6aefJh6Ps2LFCv7hH/6BJ554gvXr13PPPfcQDod5++232bZtG9/85jcZGRkhGAzy8ssvA9Da2sott9zC/v37ueuuu/j+97//ga/FI488wl/8xV/gui633347f/mXfwnA888/z5/+6Z9i2zalpaW8/PLLrF27lm9+85skEgnC4TD/8i//wrRp0/jud79LPB5nzZo1/Jf/8l+Ix+PZEU2NjY3cd999dHd3U1ZWxr/8y78wZcoUvvjFL5Kfn8/69etpb2/n+9//Pnffffcp/bvqJ7WIiExutg2HDkFLizdiZ2QERkePhECjo+CceFTHhKdy7GOmbY1fT9mp7P4HjRI5VY7r4jgutuviOGC7LhnbIW27pG0nu6Vsl3TG8UIh1wuGPoxlGt5mGNn32+OTyMb+l3X0+3HjePcf+bKxPRfXhbH8wXsjPLbvMw0CPhO/ZRLwmQQsE7/PxG8ZuEcFW/b4uTsujuvV4OUFxoTrwNibbe9YjutOOCbGUXUfVadpeGGZaRiY5pHrXog2tm8aE46TK4brYmVc4OS/17wpf2RDwvHXxRx7/d5/iQvO2L/b+GPHLyfU8r7vBZ9l4DONs/oaOZZJOugjHfSTDvrJBP3ZQMs1jAlhlmuO7Run737DnRiMGUdf9178bPiWBtJH7Y/fD0y4zR17cbOh2PiL7U4M0hgP18Zeh/EALhPweSHcUaHccUcLnkPCvjAFoQIKggXkB/Oz1wtCBZTnlRPyhXJdooicot27d/NP//RPXHHFFdx333387d/+Ld/85jf5+te/zpNPPklZWRmPPfYY3/nOd/jnf/5nHnzwQQ4ePEgwGKS/v5/CwkJ+7/d+j2g0yre+9a3jHmP//v28+uqr7Nixg+XLl/PEE0/w/e9/n7vuuotf//rX3HnnnfzhH/4h3/3udwH4/Oc/zzPPPMPdd9/Nj370o+wUsVQqxac//Wkee+wxli1bxuDgIOFwGPBG9WzcuJFgMMjs2bP5+te/Tl1d3XHraW1t5U/+5E/YsGEDRUVF3HTTTfzqV7/iiiuu4Ktf/Sqvv/4606ZNo7e3F4A5c+bwxhtv4PP5eOmll/jTP/1TnnjiCf7sz/5swjS3hx9+OHuMr3/969x7773ce++9/PM//zPf+MY3+NWvfgVAW1sba9asYdeuXaxatUohkYiIXIDSadi3D3btgj17vJFCJ8F1XeKZOKPp0ew2HgYlM8nsJ+un29Fv3pMZm2TG8ba0TWrsesp2jvsG/aPwRg55IZBpGseMLBq/Lh/OC4/Gg6Wx7ah97724kQ31HNfFdsle/6BX2TQMrLFAavzfajyochyXjONiO87YpZu9PBLMTQz5XI4f7pxplumFRT7LxG+Ofc8dFVq+P7A6MkXrSO1H9o0jIeT7Asn3c0+4c8zuhHtO9PqM3zweGPrG/l2yoepYoHikPOOoIPLIv+PRj7fGvl8gmw95xxkPMzkSWhpj31PjAZ73Ne6Ef9fxEDQb5I09r+seCWcBHN/4SC7v0guRLBzDwHHGpmWOfa2Di8NYDaaJYY6HpwaG98ME/Bau3wKfhRs4cj0dCTJSlEcm6D/hK3488Uyc+HCc9uH2Y+4zMCiNlFKbX5vdyvLKNJ1PZJKpq6vjiiuuAOBzn/scP/jBD7jlllvYtm0bN954IwC2bVNVVQXARRddxD333MOdd97JnXfeeVLHuPXWW/H7/SxcuBDbtrnlllsAWLhwIY2NjQC8+uqrfP/732d0dJTe3l7mz5/PHXfcMeF5du/eTVVVFcuWLQMgPz8/e9/1119PQUEBAPPmzePQoUMnDInWrVvHNddcQ1lZGQD33HMPr7/+OpZlcdVVV2WXni8uLgZgYGCAe++9l71792IYBul0+kPP+e233+YXv/gF4IVef/zHf5y9784778Q0TebNm0dHR8eHPteHUUgkIiKTQyoFO3d62/79XlD0ARzXYSg5RH+in+HUcDYU+ihTvMB7k5saC3HSY5epjJMd9eKMvWlzxoIgxznq+lGjOT6K8cBg/M2pz/RG3fjHR+FYY/uWic868gb1g0Z2uO6RwOHomtzs/72/V8tR949dyfaDmXDbEe8f7TO+n7Hd7OuWth1GMBhxIY4XbAUAPwZ+A/y4+ACfO957Znx00pE3xuCO9YWZOMrIPOr8J3SgGdvJ/pscJ9R5/7+X47p4rXnOnVBtQshwgrLGg4fx7yHDOHLe7x8xlB1VxHFGGR193KOO5bgTgysv+Dy50U4u7/+mOubscsrGJX1mcuLzkt+AZMBPdzREbyTkXeaFGImGcMIBgn6LgM8k6DMJ+CyCPpNoyEcs6CMW8hML+Qj6zCOjA3HpGu2ia7SLje0bAQhaQWrya6gvqGd68XSqY9UKjUTOce//W2R8cYv58+fz9ttvH/P4X//617z++us8/fTTfO9732Pr1q0feoxgMAiAaZr4/f7sMU3TJJPJkEgk+P3f/33Wr19PXV0dDzzwwEdaAv7oYwBYlkUmk/lIX/9B/r//7//j2muv5Ze//CWNjY1cc801p/R8R9fqftQ/Oo9DIZGIiJz7du6EZ57xpo+dgOu6jKRH6E/00xfvoz/R/4Ejg7zeQi6JsdE8adshlTkSZqTGpnW9f+SNbRikLZOMaWCbBhnDJGN6m20aZEyDUb+P4YCP4aCf4YCf4aCPRCiAHfSTH7Ao8pkU+00KfQaFPosCyyDPZ+DzWxg+68gUmLHjJE/QN8YdaxgdiKe8LZEmEE/hH98/+rZk2psmZB37WjimQTo0No0n4POm2YxPtzmqOfXYC3dMTxnDdbEt02uSHfSTCvm95wsFSIf8R/rT+Cwcn4VrHj1JzWs7lHx/UWMNtb2G13b20szYWLZzZArO8frbHNVY++g+N+Pn8/7bDCCYTGdfL2s0iTWaxDeawkxkjkyDw8UemwJoj0/lssyxUUEmlumNyHj/yJMJpwW4toubsXEyDmRs3IyDazu4GRs/EHBdfJbpjWgZG9lijj/heGh21HQ+IDuF8GxNARv/7ydju2Qch4ztvSZHj2QbDy9NE0yMbK3vr/1IIOm+b/+DRxQZx1wZ3z3xV33QyzNh6qPjYrtHRnOdKDQdD9yOTJdkwtTJo4959LTN8eDTcY+9HP+ao0PQ8TBv/N/YC/aYEJaO13P0qKPx64ZheA3djaOD1SPhzIRpm+P1cLzbjnotXMhLpslLpqnvGZrwWtqGwUjAx9DYz7/hgJ/hgI+OUIDdoQD9oQCjfgu/zyIW8lEQ9lOZH6KywNuCYz+oknaSA30HONB3gFcbXyXkCzGtcBoNRQ1ML55Ocbj4xP+gIpITTU1NvP322yxfvpyf/exnrFy5ktmzZ9PV1ZW9PZ1Os2fPHubOncvhw4e59tprWblyJY8++ijDw8PEYjEGBwd/6xrGA6HS0lKGh4d5/PHHs1OwYrEYQ0Pez6zZs2fT1tbGunXrWLZsGUNDQ9npZh/FpZdeyje+8Q26u7spKirikUce4etf/zqXX345v//7v8/Bgwez082Ki4sZGBigpqYGmDil7Oja3m/FihU8+uijfP7zn+ff/u3fJvRpOt1OS0h033338cwzz1BeXn7c5e5c1+Wb3/wmzz77LJFIhIcffpjFixefjkOLiMj5LB6HZ5+FD/hUaTA5SOtQK73xXlL2sW2IXddlxDDoM0z6DINuDLpcg04XBnwGiZBF2vTCmIxpkrHGgx9vH59JMOwnHA4QDPvJC/mJBi2CPmtsqo2BzzSzlwHLIGIaVI69yR9/o/+Bo3yA4ZN8SSzDIhqIZrewP5xdgWm8ee5409yMk8lOpUumRkkPDWAPDeCMjpIJ+sgE/GTCAWzLHOuJcmyD3fFPpD7oPsd1so1rx7eQYRIZ+8R/JDXCUGqIVHr0JM8SMAxsv4Xtt+Cj/702uY0FXqbjrWJnOq7XA+cD9rN9ct73mA/qfZMN+U50jOPd57o4lnncDcBKZbzV7NIZfOPXUxlM28kGmxMCyKNqObqvz3htvrFV885mc3X5YEd+JnDc0PLooG186qSdTJCJO6R6xqbXZhyGgJ6An/6wFxr1hoNsCAfoyQsSLIhQVRimsiBMdUGI4rwAhmGQyCTY2b2Tnd07ASgKFTGzZCZzSudQX1CPZR4nBReRs2r27Nn83//7f7nvvvuYN28e/+E//AcCgQCPP/443/jGNxgYGCCTyfBHf/RHzJo1i8997nMMDAzgui7f+MY3KCws5I477uDuu+/mySefPKZx9ckoLCzkq1/9KgsWLKCysjI7nQzgi1/8Ir/3e7+XbVz92GOP8fWvf514PE44HOall176yOdcVVXFgw8+yLXXXpttXP3xj38cgIceeohPfOITOI5DeXk5L774In/8x3/Mvffey5//+Z9z++23Z5/n2muv5cEHH+Tiiy/mv/yX/zLhGD/84Q/50pe+xF/91V9lG1efKYZ7GsYjvf7660SjUb7whS8cNyR69tln+eEPf8izzz7Lu+++yze/+U3efffdD33epUuXsn79+lMtT0REJqM9e+Cpp7xm1O/jui59iT6aBpq8EUM+i96aYgZLY6TCAfpMg4OjNvvjafYOpxmyjz8dJuAzKYoEiAZ95AV9RIPW2KUve3n0dIjTLWAFKAwVUhgqJD+YT8gXwm/6syskBawAfstPyBciz59HNBAl5AvlvKnybyvjZBhODTOUHGIoNUQ8Hc+uDDW+ItL4dZ/p86bIHbV60/iqTEB2Bafx1ZeOXsnp6BWkjg60Mk5mwjLxx7s8mceMXzquk/038pv+CZcfNCUm42SOu0x8yk4RsAKEfKFjtqDlDSV3XAcX17t03WxAd/Txj67JNMxjlrcf3zcwJqyudfQKVuPeHwzaju31lUl7vb3Ge3zF03HSTnrC9+7R29Grdp0ocHz/5fi54boYY2GRlUhiJVJYyRSG42TDNJyxkAzgqLAL50i4dbzbcb2vMxwXJ5Mmk0ljZ5LYmTR2JpW9HF9Rzh5rau1YJrbljSZ8f/h2UvscaWINHGl+Pdax/ejRcOMj+VzDW83w6ADOl/Kuj99mTKIsbXwKbDLjEE/bDCcyDCczjKQyJEyTnkiQvnCQrrwQzdXFxGqLmFIcYUpxhLzgsZ9zh3whZhZ7gdGM4hkEfcHjHFXk/LZz504e63jsrB3veKubyblp586dzJ07d8JtJ8pbTstIoquuuirbIOp4nnzySb7whS9gGAaXX345/f39tLW1ZZtViYiIZCUS8PzzsGnTMXe5rtezommgiT4jSXddCd31C+muKGB/f4Km3hGaOuP0j04cURQJ+CiNBiiKBCjOO7JFAtZvFbj4TB9hXzj7Rtxn+k76eiwQywZDkznw+W34TF/23EXOB67rknbSx10FMW2nx6aDTVwifjzIPF54l3G8nhdHLzV/MtdNw8R1HZxkAicex03EcZMJ3HgcN5XEYmyUH8bYdYOxarAdG8fO4Li2N+rHSeM4Nk4mjZtK4aZSOKkkbtq77iYT+PoG8PcP4tpeaPv+IHH8XMbP7+hzG2cYYyMxLZO8oI/S6HgQ6jKS9AKj4ZFRBnsGSR9sp7EwysaqYl4siVGcH2ZKcYSpJXnUFIWxTG+U0dbOrWzt3IplWDQUNXDFlCuYWjj1rH5PiOSaghs5VWelJ1FLS8uETuC1tbW0tLQoJBIRkYkOHIBf/QreNw/ddV3ahttoGmiiuSqP5iUzGCgvIOm4bG0ZYOO7TQwnj7wBCfhMagsjTCkOM6UkQlEkcFJhjGmYRANRYoEYsWAse5kfzJ9w24UW7ojI8RmGkR0tFQ1Ec13O2ZXJQE8PdHZCV5d32d0NQ0OQPKbLGI7rZMO0RCZB0vYuE5kEw6nh7HRh0zDGGlv7ocD7+T+aspkST7OosY32A21srChkU2Ux74UCBHwm00ryaCiLMrU0QtBnYbs2e3v3srd3L5fWXMpN02/CZ6oVq4jIyTjnflo+9NBDPPTQQwB0dXXluBoRETkrHAdWr4Y33pi4lBKQyCTY3rmdPuLsvXwGHdMrGE3bbDrQw+bm/uzKSiV5AWZVxJhSEqEiFjrS6Pd9glaQ0kgppZFSyvLKKAmXUBAqID+YT8Qf0co5IiInw+eDigpve79UyguLjtrMgQFC/f2Eensp6OvzQqYxruuStJMMJgez21ByKNt0O29sCnB1YZjZjsviZJL+PU1sDId4oaKY3RmH3R1DmKZBXVGEhrI85lTGCPos1raspWmgiU/O+yQlkZKz+AKJiExOZyUkqqmp4fDhw9n95ubmbDfv97v//vu5//77AW+OnIiInOeGhuCJJ+A405Z7473s6NpBR1U+e1YsoNM02bC7i+2tA9lVx6oLwyybWsTUkrxjRvdYhkVdQR0NRQ3U5tdSGiklFohpFJCIyJkUCEBJibcdj+t6/eb6+qC3F6O3l1BPD6Hubsp7eyHt9fwaSg7Rl+ijN96bDY1M06Ag7Kcg7KceuKWnh/VGhifLi9mXyHCoZ4RDPSOsb+zj1gWVVBeGaR9u5x82/AO3z7ydRZWLzupLISIy2ZyVkGjVqlX86Ec/4jOf+QzvvvsuBQUFmmomIiJw8KAXEL2vObXruhwaOMT+kWb2XT6d1hkVbG4e4PV93dllpRtK81g6tZjqwiNLXxkYVEYraShqoKGogSkFU/Bb/rN6SiIi8iEMA2Ixb5syZeJ9rguDg5g9PRS0tlKwcSNTe3rIOBn6E/30xb3QKJ6JAxDyW6wcGOby0Ti759XxelkBG1uG6BxK8PMNzayYXsLS+iJSdopf7volB/oOcPus2wlYgRycuIjIue+0hESf/exnWb16Nd3d3dTW1vLf/tt/I51OA/B7v/d73HbbbTz77LPMmDGDSCRyRpdrExGRScBxvKllq1cfM70sbafZ0bWDA4Uuu29YymAowEvbO9jTMQTA7MoYl04tpiR6ZOUan+njkspLWF63nOJw8dk8ExEROZ0MAwoKvK2hAa64Ahob8a1fT+nOnZRGSgGIp+N0j3bTPdrNQHIAX9pm/uZGphVEuHzpdJ5JhNlwqI8393VzuHeUm+dXkhf0sbljMy1DLdw9724qo5U5PlkRkXOP4bruObtY5omWZBMRkUlsZAR+8QvYv/+YuwaTg2zv2sGuBZU0XVRPTzzFM1va6B1J4bdMbpxXwayKWPbxIV+IZdXLuKz2sguvaayIyIVmeBg2boQNG6C/P3tzyk7RG++le7SbntEeXFx6akt4cWYNTzb2EU/bRAI+bplfyZSSCOB9uPCJuZ9gXtm8HJ2MyOl3vGXOReD43xsnylvOucbVIiJyHhsagn/5F+jtPeau9uF2to4cZPv1c+ivKmJ3+xAv7ewgbTsU5wX42EXVFOd50wOigSgr6lawpGoJQV/wmOcSEZHzUDQKV17pjS5avx5eeQUSCQJWgMpoJZXRSoaSQ+zo2kFJcw+f6B6kbvlsHulO0Nw3yi82NbOsvpjlDSVkyPDz7T/nhoYbWFG3Qr3qRM5RmUwGn0+xxdmkJVxEROTsGB2Fn/zkuAFR61Ar7/jaWbdqCT0Vhaze3clz29pI2w6zK2N8ZtmUbEA0o3gGv7/s91lRt0IBkYjIhcg04dJL4RvfgKVLvSlqY2LBGEuql1CeV04gkWbF6u18I+SyfFoxBrCusZcnN7eSzNi4uLx44EWe2fMMtmPn7nxEziPf+973mDVrFitXruSzn/0sf/3Xf80111yTHbHS3d3N1KlTAbBtm//8n/8zy5Yt46KLLuIf/uEfAFi9ejVXXnklq1atYt68eXz3u9/lb/7mb7LH+M53vsP/+T//52yf2gVDkZyIiJx5iQT89KfQ1XXMXS2DLbxUm6Lx4kXEbYenNjTTOhDHNA2unlnGRbUFGIaBgcE1U6/hqvqr9ImviIhAJAIf+5gXFD33HBw6BHhTyeaWzqUoVMTe3r3MWrefL04rZ8pFdTy1o5NDPSP8+7pmPn5JNfkhPxvaNtCf6OeT8z9JyBfK8UmJnAYPPJCTY2zYsIFHH32UTZs2kclkWLx4MUuWLDnhU/zTP/0TBQUFrFu3jmQyyRVXXMFNN90EwHvvvce2bduYNm0ajY2NfOITn+CP/uiPcByHRx99lLVr156pM7vgKSQSEZEzK5WCn/0M2tqOuasp1cWvloTprakhkbb5xXvNdA4liQZ93H5RFVUF3splEX+E35n7O0wvnn62qxcRkXNdZSV88YuwfTu88AIMDWEYBlWxKvKD+ezo2kHFwU7uGBil5PJZPLKvl56RJI+uPczHL66mIj/E/r79/PPGf+aehfdQECrI9RmJTEpvvPEGd911F5GI1/tr1apVH/j43/zmN2zZsoXHH38cgIGBAfbu3UsgEODSSy9l2rRpAEydOpWSkhI2btxIR0cHl1xyCSUlJWf2ZC5gColEROTMyWTgscegqemYuxrj7TyxLI+h0hjxlBcQdQ0nKQj7uXtJLbGQt3R9bX4tn5z3Sf3RLiIiJ2YYsGABTJ0KP/95dlRRXiCPxVWL2du7l/bedq59eQuFK2bz024fh/tG+fmGw9wyv4oZ5VE6Rzr5x/f+kd9d+LtUx6pzez4i5xGfz4fjOAAkEons7a7r8sMf/pCbb755wuNXr15NXl7ehNu+8pWv8PDDD9Pe3s5999135ou+gKknkYiInBm2DY8/ftxVzBpHWvjl4jBDpTFGUxmeGAuICiMBPrmkLhsQLatexpcu/pICIhEROTnRKHzhC3DZZdmbLNNidslsphVOw5/MsGz1dv4gDPOq8snYLs9sbeW9Q324rstwapiHNz1M08CxH26IyAe76qqr+NWvfkU8HmdoaIinn34a8EYCbdiwASA7agjg5ptv5u/+7u9Ip9MA7Nmzh5GRkeM+91133cXzzz/PunXrjgmV5PRSSCQiIqef48CvfgW7dh1z18HBwzx5cZiBigJGkhke39BM93CSokiATy6pJRryBrleXX81t828Dcu0znLxIiIyqVkW3Hor3HUXjK2KZBgG9YX1zCubh4XJnLX7+Eo6wYqGEnDh9b1dvLq7E8d1Sdkp/nXLv3J44HCOT0Rkclm8eDGf/vSnWbRoEbfeeivLli0D4Fvf+hZ/93d/xyWXXEJ3d3f28V/5yleYN28eixcvZsGCBXzta18jk8kc97kDgQDXXnstn/rUp7As/W14Jhmu67q5LuJEli5dmu2CLiIik8hzz8G77x5zc+NgE89cHKF7SinDyQxPbGimbzRFSV6ATyyuJS/o/TF/7dRruXrq1We7ahEROd+0tcGjj8LAQPamgcQA2zq3kXbSNM+r5dd15fxmZwe24zK3Mp8b51dgGgZBK8gXFn2BmvyaHJ6AyMnbuXMnc+fOzXUZWQ888ADRaJRvfetbp/xcjuOwePFifv7znzNz5szTUN2F5XjfGyfKWzSSSERETq/du48bELUOt/Hc/CDdU0oZSqR5fCwgKo0G+Z0lRwKi66ddr4BIREROj6oq+NrXYKwBLkBBqIDFVYsJ+8LU7mjm4/tb+cSiavyWyc72QV7a0YHruiTtJD/d8lNah1pzeAIismPHDmbMmMH111+vgOgsUONqERE5fUZG4Kmnjrm5e7SbZ2ZCx/SKsR5ELfSPpiiLBvnE4lrCAW/Y8E3Tb2JF3YqzXbWIiJzPIhH4/Oe930+bNgEQ9odZXLWYbZ3bYF87N6cyGBdN5Rdb29nRNohpGFw/t5xEJsFPN/+ULyz6AlWxqtyeh8gk88ADD5yW55k3bx4HDhw4Lc8lH04jiURE5PRwXXj6aS8oOspAYoBfT0nSOruKtO3w5KZW+o8aQTQeEN0y4xYFRCIicmaYJnz843D55dmb/JafRZWLKAmXUNrUza3r9/E788rxWQbbWgd4ZVcnrusSz8T5yeaf0D7cnsMTEBE5OxQSiYjI6bF58zGNqkdSI7weaOPg/Gpsx+XXW9roGEyQH/Jz1yU1hPxeQHTbzNu4vPby4z2riIjI6WEYcPPNcN112ZtMw2R++XyKw8UUtffzsbV7+Z3Z5VimwdaWAVbv7poQFHWOdObwBEQ+3Dncclhy5KN+TygkEhGRU9ff7zWrPkoyk+S9gV1svXwaLvDyzg4ae0YI+y3uuqQm24Polhm3cGnNpWe/ZhERufAYBlx1Fdx+u3cdLyhaUL6AolARsZ4hbtu4nzvnV2CZBpub+3ltjxcUjaZH+cnmnzCYHMzxSYgcXygUoqenR0GRZLmuS09PD6FQ6KS/Rj2JRETk1Liut9x9Mpm9KeNk2NKxhS1XTCUVCfLWvm52tA3is0xWXVxNUV4AgJVTVmoEkYiInH3LlkEoBL/8JThONija2rkVuvq5ddsh7IXTeHpbG5sO92MaBlfOLGU4Ncxj2x7jS5d8CZ+pt1JybqmtraW5uZmurq5clyLnkFAoRG1t7Uk/Xj/ZRETk1Lz9NjQ2Zncd12Fb5zYO1EXpmlrGpsP9rGvsxTAMbl9YRVVBGIBFFYu4ftr1OSpaREQueAsXQjAI//7vkMlgmRYLyxd6QdHhHm4KB3AWVPPMtnbea+qjMOLnotpCWoZa+PWeX7Nq9iqMsdFIIucCv9/PtKNW8hP5bWi6mYiI/PY6O+HllyfctLdnLx1mnL2Xz2RvxxCr93j9G26YW8600jwAZhTP0B/XIiKSe7NmwT33gOX1yBsPigqCBVTvaeO6lm5unFsBwOo9XbT0xwHY2L6Rda3rcla2iMiZopBIRER+O7YNv/iFdzmmZ7SHtuE2dq2cw6GRNM9vbwcXVkwvZX51AQDVsWo+Nf9TWKaVq8pFRESOmDYNPvGJbI8iy7RYWLGQ/GA+Uzcf4vrBYS6ZUoQztgDDUCINwPP7nudQ/6FcVi4ictopJBIRkd/Oa69B+5HlgNN2mt09u2meV0tbWT7PbWvDdlwW1RaybGoRAMXhYu5ZeA8BK5CrqkVERI41fz7cckt212f6WFC+gKAVZOY7e7jL71JXFGE0leGZLW1kbAfHdfj37f/OQGIgh4WLiJxeColEROSj6+2FN9+ccNO+3n30RX0cWDyN1/Z0MZzMUFkQ4upZZRiGQZ4/j89d9DnyAnk5KlpEROQDXHYZrFyZ3Q1YARaUL8DCZMGaXfxueZhYyE/HYIJXdnXiui4j6REe2/4YaTudw8JFRE4fhUQiIvLRvfjihGlmXSNdtI92svOquezti7OzbRDLNLhpXiWmaeAzfdxz0T0Uh4tzWLSIiMiHuP56uPji7G4sGGN2yWxM22HZGzv5zLRCfJbBjrZBNjd7I4hah1r59d5fa9lxETkvKCQSEZGPprERdu7M7qbsFHt69tC0oI6uWISXd3qNqq+YXkrx2FL31069lupYdS6qFREROXmGAXfcATNnZm+qiFZQm1+LL5Xh6vX7uHlmKQCv7+miuW8UgE3tm1jbsjYnJYuInE4KiURE5OQ5DrzwQnbXdV329uxlOGTQdFE9r+7uZDSVoaYwzCVTCgGoy69jed3yHBUsIiLyEVkWfPKTUFOTvWl60XSKQkVE+0a4o7GDJVMKcVyvkfXgWCPr3+z/DT2jPbmqWkTktFBIJCIiJ2/zZmhry+52jXbRNdrFwcUN7OodZU/HED7L5MZ5FRiGgd/0c+ecOzEN/boREZFJJBCAe+6BYm+atGEYzCubR8gXonJfO3c7GaYUR4inbZ7d0objutiuzXP7ntO0MxGZ1PRXu4iInJxkEl5+Obs7Ps1sqDjKgboSXtnlTTO7ckYphRFvmtn1DddTEinJSbkiIiKnJBKBT30KfD4A/JafBeULMA2T2ev28cnqGNGgj/bBBNtavP5E+3r3sat7Vy6rFhE5JQqJRETk5KxZA8PDgDfNbHf3bjJOhr3LpvPKri7iaZu6oggX1RYAMLVwKpfVXJbLikVERE5NZSXcfnt2NxqIMqd0DqbtsHTNTq6fWgTAW/t7iKe8BR2e3/e8VjsTkUlLIZGIiHy4/n54++3sbsdIBz3xHrrqy1hrWOzrGibgOzLNLGAF+Pjsj2MYRu5qFhEROR0uucTbxpTnlVOeV054OMHH9jQzpShMIm3z5v5uAAaSA7zR9EauqhUROSUKiURE5MO9+CJkMgAkM0n29e7DMQ22LpzCq7u7ALhqZhn5YT8AN02/iaJwUc7KFREROa1uuw0qKrK704umYxkWZYd7+JKbxjQNtrUO0D6QAODNpjfVxFpEJiWFRCIi8sGammD7dmBsmlmPN83s8Lxanm4eJJm2qS/JY351PgANRQ0sqVqSy4pFREROL7/f608UDAIQ9AWZWjgVgIu3H+aWiAUuvLq7U02sRWRSU0gkIiIn5rrw/PPZ3fbhdnrjvaRCfp4vK+Rg9wgBn8kNc8sxDIOgFdQ0MxEROT+VlMCdd2Z3a/JryPPnYbgunzvYRqkBHYMJtrcMAmpiLSKTk0IiERE5sS1boLUVgEQmwb7efQBsWzCFlw/2AXDNrHJiIW+a2S0zbqEgVJCbWkVERM60uXNh+XIATMNkZslMACLJNL8fHwHgzf3damItIpOWQiIRETk+x4HXXwe8aWa7undhuzZDRXn8OAGpjENDaZS5VTEAZhbP5OLKi3NYsIiIyFlwww1QVwdAYaiQ8rxyAC7p6me5k1ETaxGZ1BQSiYjI8e3cCT1e083WoVb6E/0APFtXwaH+OCG/xfVj08xCvhCrZq/SNDMRETn/WRZ88pMQCgFHmlgbhsFXu3sJuo6aWIvIpKWQSEREjuW6sGYNAPF0nP19+wFoKc3n8YEUANfOLicv6APgtpm3EQvGclOriIjI2ZafDzfeCExsYl2cyvCl4RE1sRaRSUshkYiIHGv/fmhry04zc1wH13X5SSBE2naYWR5lVkUUgDmlc1hYvjDHBYuIiJxlixfD1KmA18Q64o8AcEP/IDMTyWOaWO/p2ZOrSkVETppCIhEROdbYKKKWoRYGkgMA7LD8vGtYhP0W187xpplF/BE+NutjmmYmIiIXHsOAVavA58M0TGaVzALAZxj8h75+TMfhzf3dJNJeE+sX9r9AxsnksmIRkQ+lkEhERCY6fBgaGxlNj3Kg7wAAibTNT8NhMAyun1tOJOBNM7t95u1EA9FcVisiIpI7xcVw7bXAxCbW0zIZVvUPkUjbvL3f60fUG+/lneZ3claqiMjJUEgkIiITrVmD67rs6dmTnWa2bjTDrsIosytjzCj3eg/NL5vP/PL5OS5WREQkx5Yvh6oqYGIT67sHhygdTbClpZ/u4SQArx96ncHkYC6rFRH5QAqJRETkiM5O2L2bzpHO7GpmHYNJXigtJC/o59rZ3iekef48bp91ew4LFREROUeYJnz842CaBH1B6gvrAYj6TL7a1YfruKze3YXruqTsFC8deCnHBYuInJhCIhEROeLNN8k4mexqZqmMw/bRNDvKCrh2ThkhvwXAHbPvyDboFBERueBVVsKKFQDU5tcS9oUBWILN8s5+mvtG2dc5DMCWji00DTTlrFQRkQ+ikEhERDz9/bB1Kwf7DpKyvWXuD/WO8FZ1CVPKYkwv83oPLSxfyJzSOTksVERE5Bx09dVQUoJpmEwvng6AzzL53MAAsWSa1/d2k7YdAJ7b+xyO6+SyWhGR4zotIdHzzz/P7NmzmTFjBg8++OAx9z/88MOUlZVx8cUXc/HFF/P//t//Ox2HFRGR0+mttxiKD9Ay1ALAQDxNU9JhW3UJ1872VjML+ULcPOPmHBcqIiJyDvL7vdXOgJJwCcXhYgCqw37ubO1mKJFmfWMfAG3DbWxs25izUkVETuSUQyLbtvmDP/gDnnvuOXbs2MEjjzzCjh07jnncpz/9aTZt2sSmTZv4yle+cqqHFRGR02lkBGfDBvb07AHAcV0Odo+woaaEJTNKKYj4Abh+2vVazUxERORE6uth6VIMw2BG8QwMDAzD4EY7xbTeIdYf6mUgngbg5YMvE0/Hc1ywiMhEpxwSrV27lhkzZtDQ0EAgEOAzn/kMTz755OmoTUREzpZ33qGtr4mh1BAArf1xBh2XA9MrWVxfBEBNrIYl1UtyWaWIiMi574YbIC+PiD9CbX4tAPkhP5/r7IWMzRt7uwAYTY+yunF1DgsVETnWKYdELS0t1NXVZfdra2tpaWk55nFPPPEEF110EXfffTeHDx8+1cOKiMjpkkySfGcNB/sPApBI27T0x3mvqpgrFlbjM00MDD4262OYhlrZiYiIfKBQCG72pmbXF9YTsAIALAiZrGzpYV/nME29owCsa11H50hnzkoVEXm/s/LX/h133EFjYyNbtmzhxhtv5N577z3hYx966CGWLl3K0qVL6erqOhvliYhc2Nav50DrDjJOBtd1aeweIW0YDC6eSl2xt4LZpTWXUhWrynGhIiIik8TChTB1Kj7TR0NRAwBBn8XvDA1TNJrktd2d2I6L4zo8v+95XNfNccEiIp5TDolqamomjAxqbm6mpqZmwmNKSkoIBoMAfOUrX2HDhg0nfL7777+f9evXs379esrKyk61PBER+SC2Tc+rz9Ix0gFA32iK/niandXFLFno/SyPBqJcO+3aXFYpIiIyuRgG3H47mCYVeRXEAjEAaqMBPt7UQc9wkq3N/QAc6DvA/r79OSxWROSIUw6Jli1bxt69ezl48CCpVIpHH32UVWNd/ce1tbVlrz/11FPMnTv3VA8rIiKngb1tK/sPeaur2I5LY/coLmBeOYe8oA+Am6ffTMgXymGVIiIik1BZGaxYgWEYzCyZCYBpGlxlOMzpHuSdg70kMzYAL+5/Ecd1clmtiAhwGkIin8/Hj370I26++Wbmzp3Lpz71KebPn893v/tdnnrqKQB+8IMfMH/+fBYtWsQPfvADHn744VM9rIiInCrXpfmFnzOa9voiNPeNkrIdOupKmDanAoCGogYWlC/IZZUiIiKT19VXQ2Eh+cF8KqOVABRF/HyitQsnnmJ9Yx8AHSMdbOnYkstKRUQAMNxzeALs0qVLWb9+fa7LEBE5L7mNjaz73u8zmh4lkbbZdLgfgMF7ryQwvRzLsPj9Zb9PSaQkt4WKiIhMZrt3wyOPkMwkebflXRzXYSiR5mHDz+qZNXxxxVRiIT/5wXy+funX8Vv+XFcsIheAE+UtWqZGROQC1fnSk9lRRB2DCQDcmiICDV4/uJVTViogEhEROVWzZ8Ps2QR9QeryvVWhYyE/N/UPUzI4ytv7ewAYTA7ybsu7uaxUREQhkYjIBamnh8733gC8XkSdQ0kA0stngmEQDURZOWVlLisUERE5f9x6K/j91BXU4Te9kUL1xWFu2d/GjrYBusZ+D79x6I3sBzgiIrmgkEhE5AI09NqL9Ix2A9A9nMR2XNyCCO6CWgCWVi/VcHcREZHTpbAQrr4an+ljauFUAEJ+i8WuzfyOftbs834nJ+0krzW+lrs6ReSCp5BIRORCE4/TvuZ5AFzXpX3Am2oWX9aAaxpYhsXS6qW5rFBEROT8s3w5lJVRFasi7AsDUFMU5oZDnbR1DNLU440gWte6jt54by4rFZELmEIiEZELTPrdt2nvOwzAYCJDPG3jBn1YlzYAML98PtFANJclioiInH8sC269FdMwaSjyfuf6LZNZYR8rmjp5Y18XruviuA4vH3g5x8WKyIVKIZGIyIXEtml75Sls1wagfSAOwPDCOtyQN73ssprLclaeiIjIea2hAebOpTRSSn4wH4DKghBXdPSR6RhkV/sQANu7ttM82JzLSkXkAqWQSETkAuJu3Up72x4AEmmbvtE0GAbWylkA1ObXUpNfk8sSRUREzm8334zh9zO9aDoAlmlQXxjihgNtvLW/h4ztAPDi/hdxXTeXlYrIBUghkYjIhcJ16Xr5qeyqKe1jy94PzajALPaml2kUkYiIyBlWWAhXXEFBqIDSSCkAZdEgC4dHKW/pYXNzPwCHBg6xp2dP7uoUkQuSQiIRkQtFYyPt+zYB3rL348vtulfMBCAWiDGvbF6uqhMREblwrFwJBQU0FDVgYGAYBlOKI9xwoI0N+7tJpL1p4S8eeBHHdXJcrIhcSBQSiYhcIIZW/ya7WkrXkLfs/XBlIYGGcgCW1SzDMq1cligiInJh8Pvh5puJ+CNUxaoAKAj7mYrLRYe6WHvQ+33dPdrNe23v5bJSEbnAKCQSEbkQdHfT/t7rwNiy92NTzZKXjfVDMCyWVC3JWXkiIiIXnLlzYdo0phZOxTKs7GiiFU2d7N/fxUA8DcDqxtWk7FSOixWRC4VCIhGRC0D6nbdoH24HYCCeJpG2iUdDRBZNAWBhxULyAnm5LFFEROTCYhhwyy0E/CHqCuoAyAv6qA77uWp/G2/t7wZgODXMW4ffymWlInIBUUgkInK+S6VoX/P8UcvejzWsXjINw+f9GlDDahERkRyoqIBly6jLryNgBQCoKwqzoKufkd3tdIyN/H3r8FsMJYdyWamIXCAUEomInOfcLVto7T4IQDxt0x9PY1sm4bGpZlMKpmT7IYiIiMhZds01WNEY0wqnARD0W1Tmh7juQBtv7OnEdV1SdorXDr2W40JF5EKgkEhE5HzmurS+8iTxTByAjrFRRINzqvFHg4BGEYmIiORUOAzXX09ltJKIPwJATWGYupEE+XvaaewZBeC9tvfoGunKZaUicgFQSCQich7LNDVyeM86AFIZh86xZe/N5TMAyA/mM6d0Ts7qExEREeCSSzCqqphe5I3y9VkmtYVhrm5s5+1dHTiOi+M6vHTgpRwXKiLnO4VEIiLnsf0vPEoi440eau4bxXFd0tVFBKeUALCsWsvei4iI5Jxpws03UxwupjBUCEBFQYjyjM20vW3saBsEYHfPbg71H8phoSJyvlNIJCJynkoM9tK59lUA4ik7O4rIf8VMAMK+MMtqluWsPhERETnKtGkYs2dnRxOZhkFdcYQVTZ1s3NVB2nYA+M3+3+C6bi4rFZHzmEIiEZHz1Nbnf4KdSQHQ1Ov1MygoySM1rwaAq+qvIuQL5aw+EREReZ8bbyQWyqc8rxyAkrwAxZbJJXtb2djUB0DLUAs7unbkskoROY8pJBIROQ8NjPbRu+ZFAIYSafpGU5iGgXVpA45lUhgq1CgiERGRc01ZGSxZwrTCaRgYGIbBlJIIi9t62b+zndFUBoCXDryE7dg5LlZEzkcKiUREzkNrX3+E4OAIrutyaGxVlMrCEL0L6gC4ftr1+ExfLksUERGR47nmGsJ5BdTkeyN/C8J+isM+Vuxr5d0DvQD0JfrY0LYhl1WKyHlKIZGIyHmmY7iDwTUvA9A3mmI4mcFnGgTn1ZCIhamKVrGgfEGOqxQREZHjikZh5UrqC+qzH+hMKY4wu3uQvu2t9I96U8lfP/Q6aTudy0pF5DykkEhE5Dzz+qYnKW7pwXFdmnrjANQWReicVwvAjdNvxDCMXJYoIiIiH2T5cvyFxUwpmAJAJOCjLBrkmgOtvLO/B4Dh1DDrWtflskoROQ8pJBIROY8c7DtI/N01GC50DiVJpG1Cfov86gJ6a4qZUTyDhqKGXJcpIiIiH8Tvh+uvpza/lqAVBKCmKEzNcBxj22F6hr0VS9c0rSGZSeayUhE5zygkEhE5T7iuy0t7nqdqTxu249LS5/UiqisK0z6nBkyTGxpuyHGVIiIiclIuugizqpr6wnoAQn6L8liQaw62s25vNwCj6VHebXk3l1WKyHlGIZGIyHlie9d2Mtu24E+mae2Pk7ZdokEfRfkh2mZUclHFRVRGK3NdpoiIiJwM04SbbqIyWknIFwKgpjBCYTJN/uZGOocSALx1+C0SmUQuKxWR84hCIhGR84DjOrxy8BWqd7WQyji0DXh/LE4pjtBVX4abF+G6adfluEoRERH5SBoaMGfNZmrhVAACPpOK/BDLm7p4b1cHAIlMgrcPv53DIkXkfKKQSETkPLCnZw/J1sMUdA3S0h/HcV2KIn7yw35a59RwWc1lFIQKcl2miIiIfFQ33kh5tJKIPwJATWGYPNuhfPMh2ga8BSrebn6b0fRoLqsUkfOEQiIRkfPA2pa1VO5tI2M7dA15DSzriiMMF+WRqq5g5ZSVOa5QREREfivl5ZiXXJIdTeS3TCoLQixr7mHTjnYAUnaKN5vezGGRInK+UEgkIjLJdY92c7B7H5X7O+gaTuK4LvlhP5GAj7ZZ1VxRv5KwP5zrMkVEROS3dc01lMUqyfPnAVBdECKEy5TNh2geW6hibctahpJDuaxSRM4DColERCa5dS3rKGnuwZdI0THWi6gyP4RjmfTOqGFJ1ZIcVygiIiKnpKAA47LLmFY0DQCfZVJVEOKStl62b23FdV3STpo1TWtyXKiITHYKiUREJrFkJsmm9k1U7W1nIJ4mkXEIWCZFET/dU0qZO2WxRhGJiIicD1aupKSwmlggBkBlQYiAATO3HKKp1xtNtL51PQOJgVxWKSKTnEIiEZFJbEvHFhgcpLilh/ZBbxRRRX4IwzBom1HJpTWX5rhCEREROS3y8jCuuOLIaCLTpKowzLzOfvZsOozrutiuzeuHXs9xoSIymSkkEhGZpFzXZW3LWir2t5NM2fSPpjEMKM8PksgLEptzEZXRylyXKSIiIqfL8uUUldRSEPRWLK3MD+G3DOZtbeJg9wgAG9s30hvvzWWVIjKJKSQSEZmkGvsb6RrppGpvOx1jo4hK8oL4LZP2GZVcWnd5jisUERGR0yoQwLj66uxoIss0qC4MM713iMb1h3BdF8d1eK3xtRwXKiKTlUIiEZFJam3LWgo6BggMjNI5tux9ZX4IgKG505lbOjeX5YmIiMiZsGQJhZVTKQoVAVARCxGwTBZtb2Jvh7e62ZaOLXSNdOWyShGZpBQSiYhMQgOJAXZ176JqXzs9w0lsxyUv6CMa8tFXVcTCOVdhmVauyxQREZHTzeeDa6/NjiYyTYOaojA1g6N0vHsQx3VxcVnduDq3dYrIpKSQSERkEtrQtgEzlabsYGe2YfX4KKKOWdVa9l5EROR8tnAh+XUzKAmXAFAWCxL0mVy8s5k9rYMAbO/aTvtwey6rFJFJSCGRiMgkk3EybGjdQHljF6MjSUZTNj7ToCQvQCbgo2zxlcSCsVyXKSIiImeKacINNzC1cKq3a3ijicpGE/S9sx/bcQE0mkhEPjKFRCIik8yOrh2MpEeo3NtG+4A3iqg8P4RpGnRMK2dp/fIcVygiIiJn3MyZxGbOpyxSBkBZNEjIb7Fwbys7WwcA2NW9i5bBllxWKSKTjEIiEZFJZm3LWiIDo4Tb+ukdTQFQEQsCkFm0kCkFU3JZnoiIiJwNhgHXX58dTWQYBrVFYUpHk/S9e4CM4wDwauOrOSxSRCab0xISPf/888yePZsZM2bw4IMPHnN/Mpnk05/+NDNmzOCyyy6jsbHxdBxWROSC0zrUSvNgM5V72+gcSuC6UBQJEPRbDBflsWDRjRiGkesyRURE5Gyorydv1nwq8ioAKMkLEPZbLNrXxrZmbzTRvt59HOo/lMsqRWQSOeWQyLZt/uAP/oDnnnuOHTt28Mgjj7Bjx44Jj/mnf/onioqK2LdvH//xP/5H/uRP/uRUDysickFa27IWw3Yo39dOx+DYsvcFXsPq3jn1LKy8KJfliYiIyNl21VXUF9ZjYGAYBnXFEcpHEvSuayRte6OJXjn4Cq7r5rhQEZkMTjkkWrt2LTNmzKChoYFAIMBnPvMZnnzyyQmPefLJJ7n33nsBuPvuu3n55Zf1Q0pE5CNKZpJs79xOcUsvI93DpG2HkN8iP+TDMQ2ql99MwArkukwRERE5m6ZNI9Iwm8poJQBFET95AR+X7G9jy+E+AA4NHOJg/8FcVikik8Qph0QtLS3U1dVl92tra2lpaTnhY3w+HwUFBfT09JzqoUVELii7uneRdtJU7Wuna8gbRVSRH8QwDHrqSlk888ocVygiIiJnnWEcM5qotjhM1XCc7veaSGU0mkhETt4517j6oYceYunSpSxdupSurq5clyMics7Y0rEFfyJNrLGL/ngaAyiNeg2r/UsupThcnNsCRUREJDdmzCA0pYGqWBUAhWE/0aCPpQfa2XioF4DmwWb29u7NZZUiMgmcckhUU1PD4cOHs/vNzc3U1NSc8DGZTIaBgQFKSkqO+3z3338/69evZ/369ZSVlZ1qeSIi54Wh5BAH+g5QeqiL3iFv2fuCiB+/ZZKMBGhYdmOOKxQREZGcGR9NVFCPaZjZ3kQ1g6N0bzlMIm0D8OrBVzWaSEQ+0CmHRMuWLWPv3r0cPHiQVCrFo48+yqpVqyY8ZtWqVfz4xz8G4PHHH+e6667T6jsiIh/Bts5tuLiUN3bRPewtez8+iqh3eg1zyuflsjwRERHJtdmzCdZMoTpWDUBB2E9+yM+yAx281+T1JmobbmNn985cViki57hTDol8Ph8/+tGPuPnmm5k7dy6f+tSnmD9/Pt/97nd56qmnAPjyl79MT08PM2bM4H/9r//Fgw8+eMqFi4hcSDZ3bCYQTxFs6mYkmcEyDYojXpPqwiVXqGG1iIjIhW5sNNGUgilYhgVAXXGYKQMjdG1pZjSVAbzRRI7r5LJSETmH+U7Hk9x2223cdtttE277sz/7s+z1UCjEz3/+89NxKBGRC07nSCftw+3UNHbRM9awujgSwDQN4tEQsxZek9sCRURE5Nwwbx6ByhpqBmtoGmgiFvJTGPZzaWMHGw7VcOXMMrpGu9jWuY2LKi7KdbUicg465xpXi4jIRFs6tgBQdrCD7mEvJCqNeVPNhmbVM624IWe1iYiIyDnEMODKK6nLr8NneuMBaosjTOsbpnN7KyNJbzTR6sbVGk0kIselkEhE5Bzmui5bO7YSHE5gNfWQzDgELJP8kPeHX9ml12Ia+lEuIiIiYxYswF9WQW1+LQDRoI/iSIDLGjtYe9Bb6aw33svm9s25rFJEzlF6ZyEicg47NHCIgeQA5Y1ddI1NNSuJBjAMg5GCCHPmXZXjCkVEROScYppw5ZXU5tceNZoozIzeITp3tzMYTwPeaKKMk8llpSJyDlJIJCJyDhufalZyoIOeEW9Vs7KxqWapubOojFXlrDYRERE5R110Eb7iUqYUTAEgEvBRkhfg8kNHRhMNJAfY2LYxl1WKyDlIIZGIyDkq42TY0bWD8GAc53AvtuMSCVhEAt6ngpWXXY9hGDmuUkRERM45lgUrV1ITq8mugFpbFGF29yCdezvoH/U+eHr90Ouk7XQuKxWRc4xCIhGRc9Senj0kMgnKD3YeaVgd9UYRDRdHmTv3ylyWJyIiIueyiy/GKizKjiYKByzKokEub+rk3QPeaKKh1BDrW9fnskoROccoJBIROUeNTzUr2tdO39gnfiVR79NAY8FCCkOFuSpNREREznU+H1xxBdWxaoKW9yFTTVGYed2DdBzsomfsA6g1TWtI2alcVioi5xCFRCIi56DR9Ch7e/aS1zdCqqUP14X8sJ+gzwKgZvnNOa5QREREznmLF2PG8qkvrAcg5LeoiAVYcaiTd8ZGE42kR3i3+d1cViki5xCFRCIi56AdXTuwXZvyg510ZaeaeaOIhsoKmT3jslyWJyIiIpOB3w8rVlAZrSTkCwFQUxhhfvcAXYe66RxKAPDm4TdJZBK5rFREzhEKiUREzkFbOraA65K/p42hRAbDgOI8LyQKX7KUsD+c4wpFRERkUli6FDMvytTCqQAEfCZVsSDLD3fxzv4eABKZBG8ffjuHRYrIuUIhkYjIOaYv3kfTQBPR3mFG2wYAKI4E8JkmrgFTVtya4wpFRERk0ggEYPlyKvIqiPgjANQUhlnUOUBPcx9tA3EA3jr8FoPJwVxWKiLnAIVEIiLnmPGG1WUHOo6sahbzGk6OVpXRMGVRzmoTERGRSejSSzEikexoIr9lUp0f5LLDXazZ243ruqSdNC8feDm3dYpIzikkEhE5hziuw3tt74HrkrerjXjaxmcaFIT9AOQvWYHP9OW4ShEREZlUgkG47DLKImXk+fMAqC4IsbSrn8GOQfZ1DgOwuWMzLYMtuaxURHJMIZGIyDlkT88eBpID5HcNMtjuTTUrjQYxDQPXMJi64rYcVygiIiKT0mWXYYRCNBQ1AOCzTOoLw1za3MUbe7vJ2A4Az+97Htd1c1mpiOSQQiIRkXPI2pa1ABTubad7OAVARb63Gkmqvpbaylk5q01EREQmsXAYLr2UkkgJxeFiAMpjQa7oHsQeHGXj4X4ADg8eZlvnthwWKiK5pJBIROQc0TXSxYG+A5gZG3NzE47rUhD2Ew5YAFRefgOGYeS4ShEREZm0li+HQIDpRdMxMDAMg4aiEMuau1l7sJeRZAaAlw68RNpO57hYEckFhUQiIueIda3rAK9hdV+31xtgfBQRPh+zrliVq9JERETkfBCJwNKl5AXyqI5VA1AYCXDDwDC+RIq39ncDMJAc4K3Db+WyUhHJEYVEIiLngGQmyeb2zeC6hDc0ksw4BHwmRRGvYXXeJZcRjhXluEoRERGZ9FasAJ+PqYVTs4thTC8McWlrD9vbBukcTACwpmkNg8nBXFYqIjmgkEhE5BywpWMLSTtJfvcQiUPep3gV+aHs9LL6mz6Zy/JERETkfBGNwtKl+C0/UwunAhD2W3xseIRg2ua1PV24rkvaSfPygZdzW6uInHUKiUREcsx13SMNqzcdon80jWF4zSQBfHX1lM+8OIcVioiIyHllxQqwLKpj1UT8EQCmRQNc0dFHS3+cfZ3etPfNHZtpGWzJZaUicpYpJBIRybHG/ka6Rrvwx1MY25oBKMkL4re8H9GV16kXkYiIiJxG+fmweDGmYTK9aDoAPsvkrvgogYzNG3u7ydgOAM/vex7XdXNZrYicRQqJRERybHwUUdnuVroH4gBUFngNq828KNOu+FjOahMREZHz1BVXgGlSEimhOFwMQG3Q4pq+IQYTaTYe7gfg8OBhtnZuzWGhInI2KSQSEcmhgcQAu7p3YTgugfUHsR2XvKCPaNBrJFmw/FqsQDDHVYqIiMh5p7AQLr4YgOlF0zEwMAyDu0dH8Ns2aw/2MpLMAPDCvheIp+O5q1VEzhqFRCIiObS+dT0uLsWHuxlsHwCgcnzZe8Og4cZP5bA6EREROa+tXAmmSV4gj+pYNQDllsHt8Thp2+G1PV0AjKRH+M3+3+SyUhE5SxQSiYjkSMbJsKFtAwB5Gw8xmrLxmQYleQEAwvMWEauoy2WJIiIicj4rLoaFCwGYWjgVn+mNZL5reIQQsKdjiIPdIwBsbN/Iwb6DuapURM4ShUQiIjmyvXM7o+lRwgOj2LvbACjPD2Ga3rL3dTd8IpfliYiIyIXgyivBMPBbfqYVTgOgIGPzu5YNwCu7OkllvCbWz+x5hrSdzlmpInLmKSQSEcmR8YbVJdsO0zuSAqAif2zZ+9JyqhatzFltIiIicoEoLYX58wGojlWTH8wH4KbOPqoifoYSad4+0ANAT7yHN5reyFmpInLmKSQSEcmBlsEWWoZasNI25sZDuEBRJEDQZwFQdvVtGKZ+RIuIiMhZcOWVABiGweyS2RgYhOIpvhDymllvOtxH+0ACgDVNa+gY7shltSJyBukdiIhIDrzd/DYApfvb6evx5vqPL3tvBII0XKupZiIiInKWVFTA3LkA5AXymFIwBYBLDrSztDYf14WXdnZgOy6O6/D0nqdxXCeXFYvIGaKQSETkLOuN97K9czu4Lv61B0jbDmG/RX7IaxYZW7IcfzQ/x1WKiIjIBeWqq7JX6wvrifgjhIYTfByb/JCf7uEkG5v6AGgebGZ96/pcVSoiZ5BCIhGRs+ytw2/h4pLfMcDIIW+Of1VBCMPwGlZP07L3IiIicrZVVcGsWQCYhsmsEu/6jC2HuHFmCQDvHOyhf9Tro/jSgZcYSAzkplYROWMUEomInEXDqWE2tW8CwL/uAPG0TcAyKY15DavzGuZQ1DAvhxWKiIjIBeuo0USFoUKqolWERpJc2drDnMoYGdvllV2duK5Lyk7x7N5ncV03hwWLyOmmkEhE5Cx6t/ldMk6GQDyFu60F8HoRmWOjiKbc8Du5LE9EREQuZLW12dFEAA1FDQSsAFO2Heam6hghv0VT7yi72ocA2N2zm909u3NVrYicAQqJRETOkmQmybrWdQAENhxkNJ7CMg0q8r2G1dGiCiouvTaXJYqIiMiF7uabwfJWW/VbfmYUz8C0HRZuPsRVM8sAeG1PF/GUDcDz+54nbadzVq6InF4KiUREzpINbRtIZBIYjoux/iAAlfkhLNMbRVR91cfA58tliSIiInKhKymByy/P7pZFyigJl1B2qIvlZKgrjpBI27y1vxuA/kQ/bx5+M1fVishpppBIROQsyDgZ3j7sLXvv29VKuncEwziy7H00GKPq2jtyWaKIiIiI56qrIBoFwDAMZpbMxDIsZq3dz3UzSzENg62tA3QMJgBY07SGvnhfLisWkdNEIZGIyFmwtWMrQylv/r7z9j4AymNB/Jb3Y7hi8VUYhYW5Kk9ERETkiGAQbrwxuxvyhZhaOJW8/hEWHO7mkimF4MKrY02sM06G5/c9n7t6ReS0UUgkInKGua6bHYbttPcTOOQNz64qCAPeH141N9yVs/pEREREjnHRRV4j6zE1+TVE/BGmbWpkZWWMvICP9sEEO9oGAa+J9d6evbmqVkROE4VEIiJn2K7uXXSPesFQ6s19uEBJXoCQ32sKWTV1IWbD9BxWKCIiIvI+hgG33prdNQ2TmcUz8aUyzN7WxJWzSgFYs7ebRNprYv3cvufIOJmclCsip4dCIhGRM8h1XdY0rQEgPZIkuqMZgOpCbxSR3/RTc92d3h9iIiIiIueSmhq45JLsblG4iLJIGVV7Wlnig5rCMPG0zTsHegDojfdmezCKyOR0SiFRb28vN954IzNnzuTGG2+kr+/4zcosy+Liiy/m4osvZtWqVadySBGRSeXQwCFahloAGH5nP760TUHYT17QW8WspnQavsVLclmiiIiIyIldf73Xo2jM9OLpWJjMWrufa2aVYRiwubmfrqEkAK8fep2BxECuqhWRU3RKIdGDDz7I9ddfz969e7n++ut58MEHj/u4cDjMpk2b2LRpE0899dSpHFJEZFLJjiLK2ETeawSOjCKyDIuqFTdDKJSr8kREREQ+WDQK11yT3Q35QtQX1FPQOcCCrgEW1RbiurB6t9fEOu2k+c3+3+SuXhE5JacUEj355JPce++9ANx777386le/Oh01iYicFzqGO9jX661k1rWlhYKhOHlBH/khbxRRdaya4PKVuSxRRERE5MNdeimUlmZ36wrqCPvCTF+/n5W1BYT9Fi39cXZ3eCu5bu/azoG+A7mqVkROwSmFRB0dHVRVVQFQWVlJR0fHcR+XSCRYunQpl19+uYIkEblgvN3szcl3HBdr7X4AqgtCGIaBgUH1guVQUZHLEkVEREQ+nGUd08R6RvEMAvEUc7YfZuUML0B6Y083qYwDwHN7n8N27JyUKyK/Pd+HPeCGG26gvb39mNu/973vTdg3DAPjBI1XDx06RE1NDQcOHOC6665j4cKFTJ9+/JV8HnroIR566CEAurq6PvQERETORcOpYbZ2bAWgpamX6W19hHwmxXkBACqiFYRXXJXLEkVERERO3vTpMHcu7NwJQEmkhJJwCe7OZi6dXsGW/BAdgwnePdjDlTPL6BrtYm3LWpbXLc9x4SLyUXxoSPTSSy+d8L6Kigra2tqoqqqira2N8vLy4z6upqYGgIaGBq655ho2btx4wpDo/vvv5/777wdg6dKlH3oCIiLnonUt67Bd79Oz9Dv7MF2XyoJINkyvrZ7j/aElIiIiMlnccgvs2wfpNAAzimfQ19rHrHf3cd0Vc3hk/WE2NvUzv7qA4rwAqxtXs6B8AbFgLMeFi8jJOqXpZqtWreLHP/4xAD/+8Y/5+Mc/fsxj+vr6SCa9Tvfd3d28+eabzJs371QOKyJyTkvbada1rgOgvXeEKfvasUyDspi3MkhxuJjo8qu9odsiIiIik0VBAVx9dXY37A9Tl19HQecAi7oGWFBdgOO62SbWSTvJSwdOPOhARM49pxQSffvb3+bFF19k5syZvPTSS3z7298GYP369XzlK18BYOfOnSxdupRFixZx7bXX8u1vf1shkYic17Z0bGE0PQrA4NqDRFMZKmIhLHNsFFFhPSzRsvciIiIyCS1fPqGJ9ZSCKQStIA3r93N1bQFBv0VT7yj7u4YB2NyxmaaBplxVKyIfkeG6rpvrIk5k6dKlrF+/PtdliIicNNd1+dt1f0vXaBdDw0n8P/wNRfEUF08pJOizyPPnsfSGL2B8+tO5LlVERETkt3PgAPzkJ9ndrpEutndtp2V2NY/XlfPqrk5iIT9fWF6P3zKpjFZy/5L7MY1TGqMgIqfRifIW/VcqInIa7e/bT9eo13R/5K19FMZTFEcDBH3e1LLa/FqM5WrgKCIiIpNYQwMsWJDdLY2UUhQqonpPKyuCJmXRIEOJNOsaewFoH25nQ+uGXFUrIh+BQiIRkdPo7cPesveZZIbyDQcAqCoIAxCwApQvWgFTpuSsPhEREZHT4qabIOCt2moYBjNLZmK6BrPf3ct1s8oA2HCoj/7RFAAvH3yZkdRIzsoVkZOjkEhE5DTpHOlkf99+AFJv7iESTxEL+YgGvYUkq2PVWDfcmMsSRURERE6P/Hy49trsbsQfoTa/lvzuIZZ09TO3Kh/bcXltjzfCOpFJ8PLBl3NVrYicJIVEIiKnyfgoIiOVoWCtFxaNjyIyDZPKZddCdXXO6hMRERE5rS69FMrLs7v1hfUErADT3jvAtbX5BHwmB7tHODDWxHpj20ZaBltyVa2InASFRCIip8FwapitnVsBMN/aizWaIugzKYr4ASiPVhK68dZcligiIiJyelkW3H57dtdn+pheNB1/MsOC7Ye5vKEEgNf2dJGxHVxcnt37LOfw2kkiFzyFRCIip8H61vVknAy+ZJq87CiiEIbhLXtftfzGCZ+0iYiIiJwX6uth0aLsbnleOQXBAqr2trEyZFGSF2Agnua9pj4AWoZa2Ni+MVfVisiHUEgkInKKMk6GdS3rAMh7dz+p4SSWaVAWCwFQFCmh4JaP57JEERERkTPnxhshGAQmNrGes24f14w1sV7b2MtgPA3Ai/tfZCg5lLNyReTEFBKJiJyiLR1bGEmP4I+nCK7zVjQrjwWxTG8UUfnKm6G4OJclioiIiJw50eiEJtbRQJTqWDX5XYMs6xtiVkWMjO2yek8XrusSz8R5avdTmnYmcg5SSCQicgoyToa3Dr8FQNmGAwwOxAGoLPBGEYVDMSpv/3TO6hMRERE5K5Ytg7Ky7O60omn4TT8NGw5wbX0hAZ/Jga5hdrZ5I4j29u5lQ9uGXFUrIiegkEhE5BS8cvAVuke7CY4k8a07CEBJXoCgz/KuX3UzRkFBLksUEREROfMsC267LbvrM31ML55OIJ5iwa4Wrh6bdrZ6TyeDCW/a2Qv7XqBntCcn5YrI8SkkEhH5LR3oO5AdRZT/9l66+kaBo5a9D4ap/9jnclafiIiIyFk1bRrMm5fdrciroChURO3OFpaGLaaXRUllHH6zvR3XdUk7aX6565c4rpPDokXkaAqJRER+C6PpUX6161cAxBq7SL29DxeozA8RDfkAyL/qBvz5hTmrUUREROSsu/lm8PsBr4n1nNI5+A2LWWv3c/2cMiIBi+a+OBub+gFoHmxmTdOaHBYsIkdTSCQi8hG5rssze55hMDlIXu8w0V+sJ5m2iQQsphRHAPBHYsz7+FdyXKmIiIjIWVZQACtXZneDviCzSmZR1NbHlPZ+bphbAcCb+7vpGU4CsLpxNa1DrTkpV0QmUkgkIvIRbWrfxI6uHQTiKaqeXE9f/yiGATPKo5imgYHBjFVfJBBVLyIRERG5AF1xBRQVZXfL88opzytnxrr9zCgKs6C6ANtxeX5bO7bj4rgOv9j5C9J2OodFiwgoJBIR+Uh64708t+85zIzNzOc3036oF4ApxREiAW+aWflFK6i46a5clikiIiKSOz6fN+3sKDOLZ1IQd5my7TBXzSojP+ynazjJOwe8xtXdo928fPDlXFQrIkdRSCQicpJsx+aJHU+QyiSZ/cYuune1kXFcCsJ+KvO9Je8DlTXM/g/fAVM/XkVEROQCNns2TJ+e3fVbfuaUzmHK1iZK+oa5ZX4lhgHrD/XS2h8H4J3md9jfuz9XFYsIColERE7aa4deo2WohWkbG3E2NzEQT+MzDaaXRTEMAycSZt43/hwzHMl1qSIiIiK5ZRhw660TPjgrChdRF6li4SvbmOY3WVJfjOvCC9vbSWW8Fc4e3/E4vfHeXFUtcsFTSCQichI2tW/ijUNvULGvndJ1+2kaW+5+elmUgM/EsUwqv/xHFFZPy3GlIiIiIueI0lJYvnzCTQ1FDRRmfCx4ZRtXTCmkNBpkIJ7mlV0duK5LPBPnka2PkMgkclS0yIVNIZGIyAdI2Sl+ueMXvPTmT2lYt4+Zb+5iX+cwrgvlsSBFeQEAMnfcztzFN+W4WhEREZFzzDXXQFVVdtcyLeaWziW/Z5j5b+3m1vkV+C2TXe1DrD/UB0DXaBeP73gcx3VyVLTIhUshkYjICXQe2smvH/rPBP/h/7H06Q1UbD7EnpZB4mmbkN+iviQPgK5l87nqY3+AYRg5rlhERETkHOP3w2c/C9Fo9qZYMEZ9YT3ljV0s3t/OLfMrwYA393Wzr3MYgH29+/jN/t/kqmqRC5Yv1wWIiJwTRkehuxu6u3G7uji0+TWadr5D0dgnWAOjafZ1DZG2XXymwczyKJZp0Dmtgkt/91uEfKEcn4CIiIjIOSo/Hz7zGXj4YchkAKgvqGcwOQibGrm8MI/e6aW8ua+bF7a3UxCuoywW5J3mdyiLlLGkeklu6xe5gCgkEpELi+t6YVBTE7S0ZIMhRr0eQ8lMkn29++ga7Rp7uEtzX5yWsVU38kN+ZpR7fYgGyvIp/eyXmVqkPkQiIiIiH6i2Flatgl/8AgDDMJhXNo/32t5jzpqdjN5yMb1V+exsG+SpTS185tIp5AV9/HrvrykOFzNNf2+JnBUKiUTk/JZOQ2urFwodPuxt8fiEh9iOTfdoNx0jHRNW00hmbPZ1DjOU8D7xqi0KU1MYBtOkbXoFsVV3c+3MG8/q6YiIiIhMWhddBF1d8MYbAPhMHwvLF/Je23ssfHU78VsvoX80RdtAgqe3tHL34lp8Fvz79n/nq0u+SnG4OMcnIHL+U0gkIuen3l5Yswa2bMkOaz6a67r0J/rpGOmga6QL27Un3N83mmJ/5zAZx8Vvmcwoj+JOLWVvQwV906q4aeGdXFx5sfoQiYiIiHwU113nBUW7dgEQ9oeZXz6fze2bWfzKNhJXz+enW9tpH0jw0s5Obp5fQTwT52dbf8aXL/kyYX84xycgcn5TSCQi55eeHnj9ddi6FZwjK2Kk7TSDycHsNpQaIuNMDI/StkPPcIqu4SQjSe++dEUBsRUz2DGzkmQ0RHleOffN+yRleWVn9bREREREzguGAXfdBf/8z9DRAUBhqJBZJbPY3bObK17dRmLFHH66vYNd7YMU5wW4dFox3aPd/Gzrz/j8os8TsAI5PgmR85dCIhE5P3R1eeHQtm3gumScDD2jPfTGexlMDhLPxI/7ZY7r0jeSomM0zQHXoDscpLciwlA0TOWCambNr6ZrbLTQ4qrF3DrjVvyW/2yemYiIiMj5JRj0Vjx76KFsX8iqWBUj6RGa+5u54c2dDC2ezs/39fDW/m4KI35mVcQ4PHiYf9/+73x2wWexTCvHJyFyflJIJCLHl8lAX5/X1Dkeh1AI8vK8LRKBcNj7JCiXHAcaG2HDBtixg3QmRU+8h66RLnrjvbi4x3yJ67qMuNAYCbE7GGCDY9Ba6mcgFADTpL44wtyqfBaW5eG3TAACVoA7Zt3BwoqFZ/kERURERM5ThYXeimc//anXQxKYXjSd0fQoDPTyifX7GJg7hd+0DvH89nYCPpOpJXns693HL3b+gt+Z9zuYhpnbcxA5DykkEhGvf8+BA14g1NPjXfb3eyuBnYhpemFRLAY1NTBlircVFJz58KizEzZvxt2yhXhvB/2JfrpHu+mL9x0TDGVsh14H9uRH2BkIsMXnoyUYwDGP/FFRFgtyZWU+sytj5AUn/lisza/lrjl3URIpObPnJCIiInKhmTIFPvc5+Ld/g1RqwopnDI3ype2NJGbU8npPnGe2tPGJS2qoLgyzvWs7oT0hPjbrY+oPKXKaGa77Qe8Cc2vp0qWsX78+12WInL96e+HVV7NTtE6L/PwjgVFdHZSXg3WKw4EzGejvZ2T7JobWv8lo036GkkPH7SsEXm+h3pEUrSmH35QUsKGqmJTvSA3RoI+qghCVBSHqS/IojQYnfL3f9DO3bC6LKhbRUNSgPz5EREREzqTmZvjXf4VEAoB4Os7G9o2k7BSJSID/M7WatwdTBHwmn1xSR1nM+9tt5ZSV3NBwQy4rF5m0TpS3KCQSuRANDsJrr8HGjROaO58Rfj9UVXmjjca3wkJvtJHresOLR0a8bXQUhoe9UUz9/WR6e+hr3U9v92H6RntIZBInPEwq4wVDvSMp2h2Xd2pL2VhVTMbnBULjW2V+mGjo2EGUBgZTC6eyqHIRc0vnEvQFj3MUERERETkjWlu9qWdxr4/kSGqEje0byTgZkiE/f11bybqETSTg45NLaymKeM2rb2i4gZVTVuaycpFJSSGRiHghzJo1sHbtcZeFP2siES88Ghk5po5EJpFtON2X6MNxjw2xXNclnrYZTmQYTnrbaMpmOODjnboytlSXUF0aZWZ5lIayKOHA8UcymYZJVbSKOaVzuKjiIgpCBWfkdEVERETkJHR0wE9+4v2NCAwmB9nUvgnHdUj5TP53RSlvGz5iIT+fXlqX/eDv1hm3cmnNpRr9LfIRKCQSuZA5Drz5phcQJZMn/3WxGJSWelPIEomJI34+yvN8iEQmQedIJ50jnQynho9TvstgIs1APM1wMsNI0sYZ+9HlGAYHiqLsqCwiPbOKhup8ppXmEfIfGwwVBAuoza/NbpXRSq1UJiIiInIu6eqCH//YG10O9MZ72dqxFReXjAs/KipgdTSP4rwAn1xSl/0wcE7pHO6YdQd5gbxcVi8yaSgkErlQxePw+OOwf/8HPy4vD5Ys8XoIlZR4WyCA7dgMp4aJZ+IkMgniae8ykRgmNdhHoKuXWEc/sbYeIj0D+F0Tv+nHZ/rwW/4TrjqRttN0jXbROdJJf6L/mPtTGYf+0RR9o1445LzvR1VfcZSO6ZWMzK6isDxGeSyYXY1snM/0MaN4BnNL59JQ1EAsGPtIL52IiIiI5EBPjxcUDQ4C0DXSxfau7YC3KMm/BCP8uqKIioIwdyyqJjq28EieP49Vs1cxu3R2zkoXmSwUEolciDo74dFHvQbVJxIKwRVXwGWXMWpkaB9up2O4g/bhdtqH2+ka7TrulK/jMTM2+d1DFHQMkN85QH73EKGUkw2MxsMjx3WOu0T9aCpDz3CK/tEUIyl7wn1uLIS/LEamvpTEglooyz9uDX7Tz8ySmcwrm8fM4pnqLSQiIiIyGfX1eauedXcD0DbUxu6e3YD3YeLjrsXj9RUEgn6um1POrIojHwZeUnkJt8y4RX8HinwAhUQiF5pdu+AXv4BU6vj3+/1w2WU0L6xnbe9WGvsbGUwOfqRDOK6L64JlnmD+t+sSGk6Q3z1ErGuQ/O4hor1DWJkjoVPchZaUzaGETafjMur3MRj0MxIJEKkooLCmkIopxeTlHf+XvGVYVEYrqY5V01DUwIziGZpCJiIiInI+iMe9DzwPHQLg8MBh9vd5o+NTGYfXHYP/V1dBwu9jdkWMa+eUZ1sOFIYKuXPOnUwtnJqr6kXOaQqJRC4Urguvv+4tbX88hgFLl9K7bAEvdb3Ljq4dx33YSDJD93CSrqEkfaNpEmmbZMYmmXZIZBySGZvUWNjjt0xCfouQzyQUsAj5LEJ+77aw3/LuG9+3TPLjCQ73Jdjcn+DgUALwQqagz2RmeYzp5VHqisL4rGOnqhWHi6nNr6UmVkNNfg2V0Up85rGrlYmIiIjIeSCTgSefhK1bATjYd5BDA15o5Lou+zD5PyVFNEdC5AV93DSvgvqSI32JLqq4iOumXUdhqDAX1YucsxQSiVwIkkn41a9g587j3x8KEV91G6v9LaxvXY/telO6MrbDge4ROgYTdA+n6BpKMpo6idXPDG/p+FP5MWKZBtNK85hTmc/U0gg+89i+QtMKpzGzZCazSmbpF7yIiIjIhcZ1vQ9AX38dgPbhdvb27M3+LRvPOPw8EuHJ0kJs0+Si2kKunFma7VfpM31cVnMZV9ZfScgXytlpiJxLFBKJnO/icXj4YW/p0OOwi4tYd9V0Vg9vI5FJAN6nL7vah3hrfw9DifSExwd8JqXRIGXRIMXRABG/RdBvEfSZhHwWQb9J0Of94k3ZDom0QyJtj23e9fj79se3ZMahJBpkbqU3auj9K5HFAjFml85mZvFMphVNI2AFTv/rJSIiIiKTy3vvwTPPgOOQyCTY1b0ruwCK67rstOHvSoo4HIuQH/azckYpM8ujGIY3aj3sC3P11KtZWr1UI9HlgqeQSOR85jjws5/Bvn3HvbutKsbPZ9v0Mpq97XDvKG/s7aJzyFvKvjQaZHpZlLKYFwzlh33ZX6hnQ9AKMr98PgvLF1JfWH/CVdFERERE5AK2fz/8+79DMonrurQMtXCg70B2oZXhVIYnQhGerigmY5lU5oe4cmYZNUXh7FMUhYq4qv4q5pfP14eRcsFSSCRyPnv5ZXjjjWNudlyH92ZGeaZmxOtFBHQPJ1mzt5vGnhEAokEfK6aXMqcqhnmCUCjkCxELxAj5QoT9Ye/S510ahkEik2A0PUo8HSeeiRNPxxlNj5LIJI5ZwexolmExq2QWCysWMqtklj7REREREZEP19npLdDS3g7ASGqEnd07GU4NA96oov2OwY+LCtgai4Bh0FAWZeWMUorzjoRCASvAgvIFXFJ5CbX5tWf1A1KRXDsjIdHPf/5zHnjgAXbu3MnatWtZunTpcR/3/PPP881vfhPbtvnKV77Ct7/97VMqWkSOsnMnPPbYMTcnDJtfzw+wtdSbq51I26zZ2832tgFc15tOtrS+mMVTCic0iC4OF1MZraQir4LKaCWV0Uryg/m/1S9N13VJZBLEM/EJIVIyk6QgVEBdfh1hf/jDn0hERERE5Gi2DW++Ca+9BraN4zoc6j9E00BT9kNK23HZbbv8MpzHprJ8Mj4fC6rzuayhhGhw4oeTpZFSLqm8hIsqLiIWjOXijETOqjMSEu3cuRPTNPna177GX//1Xx83JLJtm1mzZvHiiy9SW1vLsmXLeOSRR5g3b95vXbSIjOnqgn/8x2OWue+J9/LExUFaq7yVHToGE/x6axuD8TSmYbCwpoDLGoqJBI78cpxbOpcbGm6gJFJyVk9BREREROS31tnprX7W0gJ4o4oO9B2gJ96TfUgq47B/JMULkTw2VBczHAowrSTCvOoCppXmYZkTPwyNBWKU5ZVRFimbcBnxR87eeSWTMDg4cRsYgJERME2wLPD5Jl76/RAKHdnC4SPXIxEIaGqdHHGivOWU5nbMnTv3Qx+zdu1aZsyYQUNDAwCf+cxnePLJJ08qJBKRD5BIwKOPTgiIXNflYP9BXmuwaK0qxnVdtjQP8PreLmzHpSwW5NYFVROG2dbl13Hj9BuZUjAlF2chIiIiIvLbKy+HL38Z3n4bXn2VPPJYWLGQvngfB/oOMJQaIuAzmVsQYmoqSdP2g7wTDrO/KI81h3t5JT/MnKoC5lfnUxINAjCUGmIoNcSBvgMTDpUfzKc6Vk1NrIbqWDXVseqTGxXvupBOe1smc+T68PCxQdD4lkye/tcqHIaCAm8rLDxyvagISksVIglwiiHRyWhpaaGuri67X1tby7vvvnumDytyfnNd+OUvoefIJyTJTJIdXTvYX+Hn0EXzSWZsXtrZyd6OIQAuqi3kqpml2allxeFibmi4gbmlczX/WkREREQmL9OEK66A2bPhqaegqYmicBGLQ4vpHOnkYP9BEpkE4YCP2eVRpmUcurv76DrYTpdh0Jyfx86CCMmaYorLY5SGfJSEfBQHfQQBw3EwbQcr3clAejfDGZt9aRsrnaHQjFDmKyDfDBF1/ERcH2HXR9g2sDK294Gubef6FfLE49421svpGEVFUFbmBW/jl8XFXnik9wsXjA8NiW644Qbaj/NN9L3vfY+Pf/zjp72ghx56iIceegiArq6u0/78IueF116D3buzu8lMko3tG+nNM9m5ciGdw0me3dJGfzyN3zK5YW4Fsyu9udWmYXLdtOtYXrscy7ROdAQRERERkcmltBS+9CVvxd+338Y4cICKaAVleWW0DLZwaOAQGSdDwGdSXRimqiDESNKmcyhBz8FB7P1txz6nzyQUsAj7LaJBH3lBH0GfOeFD1iTQNbYdzW/6CfqCBKwAASuA3/QfuW758Zt+TMPEMi1Mw/SuG1buPsDt6/O2PXsm3h4IQDQKsdjELRw+MqXt6Eu/X6HSJPahIdFLL710Sgeoqanh8OHD2f3m5mZqampO+Pj777+f+++/H+CEjbBFLmh79sDq1dndjJNha+dWho00265bwuauEV7d3YntuJRGg9y+sIqisell+cF8Pjnvk9QV1J3gyUVEREREJjHDgJkzva2jA955B3PLFuoK6qiOVdM92k3bcBv9iX4MwyAa8hENRakvcRmIpxhJ2sTTNvGUTSJtk8w4JDMO/aSzh/CZBnlBXzY0ygtaBCzzmHAn7aRJp9Lvr/DDTwHjuOHR+PXxoOl4m8/0nf6QKZWC3l5vOxmWdSRIys8/cnn09VjM66Uk55wz/q+ybNky9u7dy8GDB6mpqeHRRx/lZz/72Zk+rMj5qa/PW+5zjO3YbO3YynBqmF3XLeCdoRSv7OoEYEFNAdfMKstOL5tZPJO75t51dhvuiYiIiIjkSkUFfPzjcP31sH491rp1VJgWFdEK4uk47cPttA+3k7STWKZBcV6Q4rwjX+64Lsm0zWjK20aSGYaTGTKOy0A8zUD8SABkGBCwTAI+k6DPIujzrgd8Jn7LxG8Z+C0T8yQCHBeXtOEwHPaTzAuSjASzl6mI1zfJtJ2xaXAZTCeNaQ9hZmwCaYeo4yNq+8izTcK2SSRjEEpm8GNhmRY+05fdLMM6/cGSbUN/v7d9kEjk2ODo/aFSKKRRSWfZKYVEv/zlL/n6179OV1cXt99+OxdffDEvvPACra2tfOUrX+HZZ5/F5/Pxox/9iJtvvhnbtrnvvvuYP3/+6apf5MKRycDPf+41rMZrUr2zeycDyQEaF9XzdjDIK9u8IbLXzi5nUV0hcGR62RV1V6j3kIiIiIhceKJRuOYaWLkSDh6EpibChw4xrSXK1MKp9CX66BjuYCA5QCKTyH6ZaRiEAz7CAR/j6/+6rksq4zA8FhiNJG1GU15wND7qaIjMMSWkTZOMaeD6LcyAD9NvYQf9xPOCJMIBEpEAybyQFwTlBcmEA/h8Jj7TxGcZ+C0jez0S8JEXsLIfBp8Mw3EJxFMERxKERpKEhgcJDicIDSfI64sTG83gt/wTpsUdb99v+k9fqDQ66m0n6pEE3mij/Hyv0XZJiTelsLTUu15QoADpDDBc13VzXcSJnGhJNpEL0vPPwzvvAN4vpz09e2gbbqOnpphnF0/nV5tbsR2X5Q0lXNbg/RqLBWLcPe9u6gvrc1m5iIiIiMi5J5OB1lZoavK2jg4ydpoRJ8mQPcqQHWcwM8qgPcKQE8f2Wdh+C9tnkfEfuW4HfCRNg0Hbpd+BAduh14a+jM2gDYNpm9G0w2ja5nS+/Q74TPICPiIBi7zgkcu8gI9I0CIv4E2FC/s/vM+RlbaJDIyS1z/y/7d3r8F1lfe9x7/rsm+6WrYlS9bFsixf5As22NgQLglQCA2MKeDTmAMNbZJDJulMk3TS6buemU5SUmYyDZnTN5ykk6Rl4p5wIKYmOAyFOUkoFFxDwBiMbexi2bJlW/d9W7fnvFjStmXLtxppC/n3mVl51l577b3/2zxao/z0PM+iYiBLZX+WisEcqbyHHUbjzrWwSDgJUk6KTCJD2k2TcUfbRIaUk5qaP04nEnFY1NgICxfGW03N5H/uDHGuvEWTAEU+Cd5/vxQQARwcOEjPSA+FqjS/XrOQf3mnhzAyrG6ZxfqFswGoS9fxxau/SHWqulxVi4iIiIhMX64LbW3xNnYIqB3dTlcICvQM93B4+DBHho/QO3SYweLgWW9ZPbq1TPBxxhgKfkTOC8h5IV4YEYSGIDqzNfhhRBCZs573QzM6/S3ACyK8wKM/d/6vaVkWmYRN8rRpcCnn1HS4TMIhk3SoSDpk5tZS0TSbTDI+1wJcLyCV80jmiqTycZvMeySKAW7Rx/UGSHgncHPxYyeitGB3ykmRclOldmxk0tiopMsKk3w/HoV09Ci89VZ8bM4caG+PA6P29ngUmVwShUQi093AAPziF6WH3UPd/OfgfxLZFq+uX8zP3+vFCyKWzKvmM0vr4wX4klX80eo/UkAkIiIiIvIxSLtpFtYtZGHdwtKxEW+EnuEe+vJ9DBYHGSwMltphb/is97Asi0wyDmTmnPXspTEmnt6WLcaBU9YLyBXjdmwKXHb0ceG0dZUuhW1bZBIOFaeHSEmXippqKuY4VGcS1GYSVKdcbNsaKwzHD0nlPVLZIqlcMQ6XsnlS+UFS2SLJfBwyWQZc2y2FRqcvzm1Z8eLdY4t4X3SY1LcP9v47MLoA+PxmMsuvomblOioWLtb0tIugkEhkOgtDeOqp0jpER0eOsq9vHwC7Vy3gx4eGyHkhbbMruGPFPCzLIuWkeHDVg8zOzC5n5SIiIiIiM1pVsorFcxZP+FwQBQwVhxjxRsh6WbJ+dtx+1svihV58B7TQx498gijAD30MF56SZlkW6YRDOnHhwCmMTOlObV4QUQzC0TZ+PHY3t5wXkveD0TY+J1sMyBbPXmPpzFqq0y61o6FRTTpBddqlKp2iqraSqrRL4oz1k0prJOWKcXCUiwOlVM47FSzlijhBdI5PvUhDh+D91+DpJ6CykqhzEe6y5VQuu4p5c9qYVzmPhJO4vM+YYRQSiUxnL70E3d0AHB46zN6+vQAcnV/H9wswmPeZV5Pm7qvm49rxrTE3r9xMU3VTOasWEREREbmiubbL7MzsS/7DrTGG0ISlwGgsRAqiAD/yKQbFUuA0XBxmxBspbcPeMEF0dqDj2Fa8VlHq0r5DEMYB0tgopPxpIVKuGDJUiO/wNlIMGMr7DOV9Dp3jvZKuTXXKpTLlkk7E6ySlR0copdMpMtUVJF0bx7JwbAvbtnCAVBhRkStSOZynYihP5WCOiqEclUN5XH/i8MrCGm05NcIJIJvF/t3bRL97m0H7n/mgYx4H1i9mVl0T86vn01TVRFN1E41VjSSd5KX9Y80gColEpqu9e+GVVzDG8NHgRxwYOADASCbJ31bXcCLrUVeR5J4180m68VDMTcs3jRsCKyIiIiIinxyWZeFa8e3p0276kl5rjMELvVJgdHqAlPfzFIICxbAYt0GxtO+F3oTv5zo21Y5Ndfr8I22CMGKoEDA4GhSNBUfZYsDwaOsFEScDj5PZiT/r4iWgshYqaqj0A+aNFFgwMELbQJbGkTxnTiZLOvZpU+UcKhIumaSDAzTtO0pdTz/v3dTFW429vMVbQHx36I66Dq5vuZ6Ouo4r7g7RColEpqOhIXjmGYwx7O/fT/dQPJrIiwx/O2sWB7I+VSmXP7i6mYpk/GN895K76arvKmfVIiIiIiJSJpZlxYtEuynmVFz8qkdBFJSmweX83Lgpcae3OT/HiDdy1mgl17GZXZlkduXEo2/GFuweLvrkiiEFP57OFrfxaKWCF+KHEaExhJEhigyhiafKhVE04QQ8P+HQXZGiu6GWV4CUF9AymGVBfxwazRnJ44URXj5iMO+Pe23KtUfvBJdn4TNvcGxtB0fXdWBsi8hE7Ovbx76+fTRVNXFD2w0sr1+ObdkTVDHzKCQSmW58H37+c0w2y56Tezg6chSAYhDyw4oq3nFcZmUS3HtNC7WZONW/pf0W1s5fW86qRURERETkE8i1XWrTtdSmz7yn29mMMfiRz3BxmP5CP/35fvoL/QwUBujP99OX76MYFse95vQFu5nC++oEQ3lSH/aS+bCXqkMn8Qp+vP7S6PpMxcCjb2xk07a3GH51PzvWL2ZWSx3Lm2pIujY9Iz08tfsp6tJ1fKr1U6xpXDPj1zCyjDEXXhWrTNatW8eOHTvKXYbI1AlD2LKF6IM97D6+mxO5EwDkvZDnPcNPl7YytzrNvVc3U5mKM97rW67njkV3XHHDIEVEREREZHoxxlAMiwwXhxkqDjFUHGLYO7Wf9eIRSfkgnv42VewgpK5ngDndJ6nffww/V4zv/jY6HS7rhUTGUHRsfrW4mf3Nc1jdUsua1lmlmRsAlYlKNrRs4Nr515JJZKas/slwrrxFIZHIdBFF8PTTBG+/xbu979Jf6AcgWwx4oy/PE6sXUVtfzT1r5pNOOAB8pv0zfHrBpxUQiYiIiIjIJ0oYheSDPDk/R87P4Yc+oQkJo3Bce+b0tnNFGGfeFS7v5zmeO87x7HH68n2l59MjBbp+/R61vYPj3jPvh2SLIb1DBX5bV832xc3Yjs2K+bWsbaujtuLUCKKkk2Rt01o+1fopqlNTODzqY3SuvEXTzUSmA2Pg+efJvfk6u3p3kfNzAAzlfXb3jvB/V7ZT31TL3Vc1lW4feWfnnVzXcl05qxYREREREfkvcWyHqmQVVcmqSf8sP/Q5kTvB8dxxerO99DR3kfvtv9G4cw+WiafEVSRdKpIu9dUp2go+rYd7+d/NDbzdPcA7hwdY3FDNugV1NNSk8UKPV7tfZXn98k9sSHQuColEpoOXX+bk/9vOeyfeKyXlfVmPD3pHeGZZK+kljdy5ojG+HaRlc8/Se1jduLrMRYuIiIiIiEx/CSdBU3V8i/sxZs0XGN77Lrn/8yT540cY9oYZKAwQmYjqdILPEbI0LPCj5gbe7x3hg2PDHDyZ5X/c1EHCsWmrbaO1trWM32pyKCQSKTPzyit89Ow/lm5xb4zh8ECe7v48zy9uJrGmjVuXNWBbFq7tsmn5JpbNXVbmqkVERERERD65LMuiZslKar71P2HbNti1Cy/06B7q5sjwEYIoYNHRfr6Rdnn9+sX8R/cgKdcuzey4se3GMn+DyaGQSKSM/B2v88GT3+d47jgQ3+Jxf+8IfTmPlzoaqbxxCde212FZFkknyQMrH2Bh3cIyVy0iIiIiIjJDpNNw//3Q2kry+efpqOugrbaNnuEeDg0douHgcdYD1Tcvx9jxWrANlQ0snr24vHVPEoVEIuVgDAO/fZG9//g4WW8EgIIfsufoMHk/5I32eTTdvYaFcysByLgZHrrqIZprmstZtYiIiIiIyMxjWbBhAzgObNuGa7u01rbSXNPMsZFjVBw+BL/ezXujQdENrTfM2JsHKSQSmWI9x/bz0T/+Lwq73iqtsD+Q89jbO0IYGfYtbKDlv11LXVUKgPqKejav3MycijnlLFtERERERGRmW7cubrdtA8C2bJqqm2isaqQjd5I5bxzjnRsWs7JhZRmLnFwKiUSmgDGGD/s/5HevPkPlcy+Qynml4z2DBT7qi+9m1tcxj4b/fh3JZPyj2TW3iz9Y9gek3FTZahcREREREblinBEUQbx+0dyKudyaM3zqUAOOKVNtU0AhkUypIAooBAX80MePfIIoKO37oU9oQiITjduMMXGLwcLCsqyLaiH+YQ6jkNCE49ogCohMhGM7OJaDa7vj9m3LLo3yMcacd9+Y0cfEdYZR/B3GvksYhew7vofMb16lbdchACJj6BvxODKYJ+eFca1LmqjYvAFcB4BbF97KTW03zdhhjCIiIiIiItPSBEERxP//MrNnPzz9NNx3Xzw9bYZRSCQXxRhDISiQD/Lk/Bw5P0fez5eCnrFtLIDxI5+8ny+dn/fj1o/8cn+VqWUM1SdHWPJve6jui6eT9Q4X6Bks4AURQLw6/voOsnesAscm5aS4r+s+ls5dWubiRURERERErlDr1sVrFf3Lv5z93MGDMDQEdXVTXtZkU0g0k0URBAGEYdwaA5WV4DgYYwhNSDEo4oUeWT/LcHGYYW/4rDbrZckHeSITTflXsMKIVK5IKlvECSMi28LYdtw6dulxmHAIEg6RY8c/yBfBGPOxj9KxIkNV3wi1xwaYdWyQmmMDuAWfIDR8NFTg2FCBMIpHHqUTDnPrqzh5xyr6O+YBMCczhwdWPcDcirkfa10iIiIiIiJyidaujdvTg6LKSnj44RkZEIFCokmz58QeBgoDNFU3Ma9y3se2pkxkIrJedvzUKz/A3vMBzjvvYo4cxsuPUCxmKfoFimGRYlCkGMZhUBiFFFIOubRDIZPAq0hRrEjiZZKECZcg4RAmnLP2I/fC4Us8LQyCKCIIDcUgouCH5P2Qgh9S8CO8ok+U87CLAU4xwPF83IKP4wU4XkC66FOZ96gueFTlPTJeHG4FQACMVWBZYGHhjB5LEO8Yy8JzHXzXwXNtPMfBty18K948i9HWIsDC2BaWbWHb8b8ljh3vA5YxOJHBNgZrrDUGOxxtjcGOTOk8N4poGMoThSF9xnDSwERTVatTLk2zMrCogT03dVGsjPvG8vrlbFy6kbSb/lj6ioiIiIiIiFym04Oiioo4IGpoKG9Nk0gh0STZ2bOTPSf3AHGYMTszm6bqJpqq4pXRm6qbqEhUjHuNMYZiWCTn58h6WQYKAwwUBugv9Jf2BwuDhCYEY5h1bJB5+45S/5/Hcf3womuzclCZg8pzPB8Zgx9GeEGEH8b7fmTIWxY5yyZnWWSBrGXhjZ1vIAQMFtFokpMKI9JBSE0Qkg5CUkFEIrq00UjBeZ+deLUwyw9JAslL+qSPz0T/JWzLojaTYP6sNFWZJB9es5BDK1uxLJtlc5dyQ+sNtNa2TnmtIiIiIiIicgFr18brD82fP6MDIlBINGmOjhwt7RsMJ/MnOZk/ya7eXaXjNaka6tJ149b5udCUrlS2SNueI8z78BjpkcIF6zg98PGCiNAYwsgQRYYwovQ4iMaHQudjAVWj21nPWXEgYgGuY+PaFq5j4SYd3LQb79s2tg2OZWFb8Sgee/R1tkVpCtjYaKGxAUwWp2Ihc1o+dGoh6dOOmVPPWpZVeq+x97etsWfjcyNjxrVj72md/r9nDKSyTj112kLZ8aFTn8m4KW25mgw7b15OvqGOtfNWc33r9ZpaJiIiIiIiMt2tWVPuCqaEQqJJkPNzDBYHAXivZ4jBvE9DdYr66hRVKbcUGgwVhxgqDp33vYwx5P2QoXxAzZ4jdPz7XsKiz2EzfurVWExhAD+IKJZGAv3X1hFKODZJxybpWriOTWI08EmcHvw49mjQMxoMWXzi7sQ1FvQ4TF7doWszNLeGk61z6F/ewdr261nfvJ6q5EQxm4iIiIiIiEh5KCSaBKePInqvZ4iP+nKlx5mEQ311iobqNPXVKSpTDgU/Iu+H5L1wXDtS8BkqBARByGcOHKW9+wRHLqEOAwSOjeM6OEmHtGNTGYQ4thVvloVjg23Ho3viUMgm4ViTGvYk7ASO7WBbNrZl41jxvmM7o6N9bIDSreyjygqC6kqiZBJMiBVEEIXxgtxhhBVF2J6P5flYQTD63U/dpt627NHRQ3bp/cfee+y29fF6StG4x2NKI5tOC5JO//c587hJpSg2z6PY3IjfMp+gsZ4GN8nKygYWzFpA0inXRDgRERERERGRc1NINAl6hntK+6tbZlFfnaJ3qEjvSJG8H/JRX25ccHQ+GT/g8x90s2Q4R6oiSTphk3JtbMsaN/XKTzh8NL+Og6315OfVUlmRpLIiQWXSxRmdW5UHBsKIZN4jlfdI5oqkch6pXBG36BP4IUU/xPEDXD/EOW3fDiNsyyZhJ0g4iVI7FvBMtLm2i2u748+3XaxMBtLps7ex47W18VZTE2/uJXTTIADPg2Lx1BYEE29hODrXLIrbsW1s3STbjuednt5e6Fh1NdTXX/Qd1kRERERERESmC4VEk6Bn5FRItKihikUN8bQiYwzDhYDe4SLHhwv0Dhcp+BGZhEMmaZNJuGSSNumEQ0XSoTFX5MbXPqC6Ngm1Z48+MRb0z5/N0UXzONE2l8h1aL5AbcaxKValKValsS2blJMi6SRJu2mqU9VUJ6vPaquSVVTYKRKhiUOXsRDG8yYOWsb2U6mzg6BkcnIDFNeNt4qKC58rIiIiIiIiIiUKiSbBNU3XMDszm57hHo6OHGXYGwbiqUg1mQQ1mQSdDedfj6b+QC/LXnkfJzh7TSHHchhY1MyHG5bgVaQwGFLGlKZYVSYqqUnVTLil3TRJJ0nKTeFYzqVPK8tkLu18EREREREREflEUEg0CTrqOuio6yg9HvFGSoFRz0gPPcM99Bf6J3ytazkse/sI7e8cIpmYRTqTJu2mybgZ0m6aVCJD4o47sW64QVOaRERERERERORjo5BoClQlq1g8ZzGL5ywuHSsEBY5nj+OFHplEhopEBZVWisS2X8LJEObPO/uN0mnYtAk6O6ewehERERERERG5EigkKpO0m6a1tvXUgUIBtvwzHDgw8QsaGmDzZpg9e2oKFBEREREREZErikKi6WBoCP7pn6C3d+Lnu7rg3nvjRZ9FRERERERERCaBQqJy6+2NA6KhoYmf/8xn4NOf1vpDIiIiIiIiIjKpFBKV08GDsGVLPNXsTLYNGzfCmjVTXZWIiIiIiIiIXIEUEk01z4vDoX374D/+A8Lw7HOSSfjDP9QC1SIiIiIiIiIyZRQSTTZjoKcH9u+Pt0OHJg6GxlRVwYMPQlPT1NUoIiIiIiIiIlc8hUSTZc8eeOcd+PBDyOUu7jVz58JDD8GsWZNamoiIiIiIiIjImRQSTZaDB2HXros/v7UVHngAKiomrSQRERERERERkXOxy13AjLVo0cWdZ9uwbh184QsKiERERERERESkbDSSaLIsWACuC0Fw9nM1NXGItGgRdHQoHBIRERERERGRslNINFkSCWhri9ckSiSgvf1UMDR3LlhWuSsUERERERERESlRSDSZPv1puOmmeL0hV//UIiIiIiIiIjJ9XdaaRD//+c9ZsWIFtm2zY8eOc57X3t7OqlWrWLNmDevWrbucj/xkWbAAFi5UQCQiIiIiIiIi095lpRcrV67k6aef5itf+coFz3355ZeZO3fu5XyciIiIiIiIiIhMkssKibq6uj6uOkREREREREREpIwua7rZxbIsizvuuIO1a9fyxBNPTMVHioiIiIiIiIjIJbjgSKLf+73f4+jRo2cd/853vsM999xzUR/y29/+lubmZnp7e7n99ttZtmwZN99884TnPvHEE6Ug6fjx4xf1/iIiIiIiIiIicnkuGBK9+OKLl/0hzc3NADQ0NHDvvffy+uuvnzMkeuSRR3jkkUcArqxFrkVEREREREREymjSp5tls1mGh4dL+y+88AIrV66c7I8VEREREREREZFLcFkh0TPPPENLSwuvvvoqd911F5/97GcBOHLkCJ/73OcAOHbsGDfeeCOrV69m/fr13HXXXdx5552XX7mIiIiIiIiIiHxsLGOMKXcR57Ju3Tp27NhR7jJERERERERERGaMc+Ut0zokmjt3Lu3t7eUu47IdP36c+vr6cpch05T6h1yI+oicj/qHnI/6h5yP+oecj/qHXIj6yCfbwYMHOXHixFnHp3VINFNoRJScj/qHXIj6iJyP+oecj/qHnI/6h5yP+odciPrIzDTpC1eLiIiIiIiIiMj0p5BIREREREREREQUEk2FRx55pNwlyDSm/iEXoj4i56P+Ieej/iHno/4h56P+IReiPjIzaU0iERERERERERHRSCIREREREREREVFINOm2b9/O0qVL6ezs5Lvf/W65y5EyO3ToELfccgvLly9nxYoVPP744wD09fVx++23s3jxYm6//Xb6+/vLXKmUUxiGXH311dx9990AHDhwgA0bNtDZ2cnnP/95PM8rc4VSLgMDA2zatIlly5bR1dXFq6++quuHlPzd3/0dK1asYOXKlTzwwAMUCgVdP65wX/ziF2loaGDlypWlY+e6Zhhj+LM/+zM6Ozu56qqr2LlzZ7nKlikyUf/4i7/4C5YtW8ZVV13Fvffey8DAQOm5Rx99lM7OTpYuXcqvfvWrMlQsU2mi/jHme9/7HpZllW6fruvHzKKQaBKFYcif/umf8vzzz7N7925+9rOfsXv37nKXJWXkui7f+9732L17N6+99hp///d/z+7du/nud7/Lbbfdxt69e7ntttsUKF7hHn/8cbq6ukqP//Iv/5JvfvOb7Nu3j7q6On70ox+VsTopp69//evceeedvP/++/zud7+jq6tL1w8B4PDhw/zgBz9gx44d7Nq1izAM2bJli64fV7g//uM/Zvv27eOOneua8fzzz7N371727t3LE088wVe/+tVylCxTaKL+cfvtt7Nr1y7efvttlixZwqOPPgrA7t272bJlC++++y7bt2/na1/7GmEYlqNsmSIT9Q+I/+j9wgsv0NbWVjqm68fMopBoEr3++ut0dnbS0dFBMplk8+bNbN26tdxlSRk1NTVxzTXXAFBdXU1XVxeHDx9m69atPPzwwwA8/PDD/OIXvyhjlVJO3d3dPPfcc3z5y18G4r/MvPTSS2zatAlQ/7iSDQ4O8utf/5ovfelLACSTSWbNmqXrh5QEQUA+nycIAnK5HE1NTbp+XOFuvvlmZs+ePe7Yua4ZW7du5Qtf+AKWZXHdddcxMDBAT0/PVJcsU2ii/nHHHXfgui4A1113Hd3d3UDcPzZv3kwqlWLhwoV0dnby+uuvT3nNMnUm6h8A3/zmN3nsscewLKt0TNePmUUh0SQ6fPgwra2tpcctLS0cPny4jBXJdHLw4EHefPNNNmzYwLFjx2hqagKgsbGRY8eOlbk6KZdvfOMbPPbYY9h2fHk+efIks2bNKv3CpuvIlevAgQPU19fzJ3/yJ1x99dV8+ctfJpvN6vohADQ3N/Otb32LtrY2mpqaqK2tZe3atbp+yFnOdc3Q761ypn/4h3/g93//9wH1D4lt3bqV5uZmVq9ePe64+sfMopBIpAxGRka4//77+f73v09NTc245yzLGpfMy5Vj27ZtNDQ0sHbt2nKXItNQEATs3LmTr371q7z55ptUVlaeNbVM148rV39/P1u3buXAgQMcOXKEbDY74TQBkdPpmiHn8p3vfAfXdXnwwQfLXYpME7lcjr/5m7/hr//6r8tdikwyhUSTqLm5mUOHDpUed3d309zcXMaKZDrwfZ/777+fBx98kPvuuw+AefPmlYZk9vT00NDQUM4SpUxeeeUVnn32Wdrb29m8eTMvvfQSX//61xkYGCAIAkDXkStZS0sLLS0tbNiwAYBNmzaxc+dOXT8EgBdffJGFCxdSX19PIpHgvvvu45VXXtH1Q85yrmuGfm+VMT/+8Y/Ztm0bTz75ZClEVP+Q/fv3c+DAAVavXk17ezvd3d1cc801HD16VP1jhlFINImuvfZa9u7dy4EDB/A8jy1btrBx48ZylyVlZIzhS1/6El1dXfz5n/956fjGjRv5yU9+AsBPfvIT7rnnnnKVKGX06KOP0t3dzcGDB9myZQu33norTz75JLfccgtPPfUUoP5xJWtsbKS1tZU9e/YA8K//+q8sX75c1w8BoK2tjddee41cLocxptQ/dP2QM53rmrFx40Z++tOfYozhtddeo7a2tjQtTa4c27dv57HHHuPZZ5+loqKidHzjxo1s2bKFYrHIgQMH2Lt3L+vXry9jpTLVVq1aRW9vLwcPHuTgwYO0tLSwc+dOGhsbdf2YaYxMqueee84sXrzYdHR0mG9/+9vlLkfK7De/+Y0BzKpVq8zq1avN6tWrzXPPPWdOnDhhbr31VtPZ2Wluu+02c/LkyXKXKmX28ssvm7vuussYY8z+/fvNtddeaxYtWmQ2bdpkCoVCmauTcnnzzTfN2rVrzapVq8w999xj+vr6dP2Qkr/6q78yS5cuNStWrDAPPfSQKRQKun5c4TZv3mwaGxuN67qmubnZ/PCHPzznNSOKIvO1r33NdHR0mJUrV5o33nijzNXLZJuofyxatMi0tLSUfk/9yle+Ujr/29/+tuno6DBLliwxv/zlL8tYuUyFifrH6RYsWGCOHz9ujNH1Y6axjDGm3EGViIiIiIiIiIiUl6abiYiIiIiIiIiIQiIREREREREREVFIJCIiIiIiIiIiKCQSEREREREREREUEomIiIiIiIiICAqJREREREREREQEhUQiIiIiIiIiIoJCIhERERERERERAf4/b2Xrl/KbIXIAAAAASUVORK5CYII=", "text/plain": [ - "{'normalised euclidean': ['fastest', 'Mueen'],\n", - " 'euclidean': ['fastest', 'Mueen'],\n", - " 'normalised squared': ['fastest', 'Mueen'],\n", - " 'squared': ['fastest', 'Mueen']}" + "
" ] }, - "execution_count": 9, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "match 1 : 56 with distance 3.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAE/CAYAAADCGZOXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAACgr0lEQVR4nOzdd5Qc13nn/W9Vde7JCWFmkAORCBAAcwLFTImUKMsSlUyJooJXcff4yLTs1cv1rr1ceXffPbKcuLJFvbZEyhIlMUgERVKERJAgAkGAAJHDYHJOnUNVvX/UTGOAGRBhBhiE3+ecOlVdXX3rVk/PTPfTz32u4bqui4iIiIiIiIiIXNLMye6AiIiIiIiIiIhMPgWJREREREREREREQSIREREREREREVGQSEREREREREREUJBIRERERERERERQkEhERERERERERFCQSERERC4gs2bN4uWXX57sbpwzTzzxBDfccMNkd0NEREQuEQoSiYiIyCXt0Ucf5VOf+tQ5O99nPvMZ/uIv/uKstN3b28v9999PNBpl5syZ/PjHPz4r5xEREZGLk2+yOyAiIiIiE+PLX/4ygUCAjo4Otm3bxvvf/36WL1/OkiVLJrtrIiIicgFQJpGIiIhcUDZv3szixYspLy/ns5/9LOl0unDf888/z4oVKygrK+O6667jnXfeKdz3P/7H/6C2tpbi4mIWLlzIK6+8wtq1a/nrv/5rfvKTn1BUVMTy5cvHPOesWbP4m7/5Gy6//HKi0Sif+9zn6Ojo4O6776a4uJjbbruNvr6+wvF/+Id/yNSpUyktLeWmm27i3XffBeDxxx/nRz/6Ed/5zncoKiri3nvvBaCpqYkPf/jDVFdXU1lZyVe+8pVjzv8nf/InlJeXM3v2bF544YUx+5hIJHj66af5r//1v1JUVMQNN9zAfffdx7/+67+e2RMtIiIilxwFiUREROSC8qMf/YgXX3yRgwcPsm/fPv7bf/tvALz99ts89NBD/NM//RM9PT188Ytf5L777iOTybB3716+973vsXnzZmKxGC+++CKzZs3irrvu4lvf+hYf+9jHiMfjbN++/YTnffrpp3nppZfYt28fzz33HHfffTd//dd/TVdXF47j8N3vfrdw7N13383+/fvp7Oxk5cqVfPKTnwTgC1/4Ap/85Cf55je/STwe57nnnsO2bT7wgQ8wc+ZMGhoaaGlp4YEHHii0tXHjRhYuXEh3dzff/OY3+dznPofruqP6t2/fPnw+HwsWLCjsW758eSFAJSIiInIyChKJiIjIBeUrX/kK9fX1VFRU8Od//uc8+eSTgJel88UvfpGrr74ay7J48MEHCQaDvPnmm1iWRSaTYdeuXeRyOWbNmsXcuXNP67xf/epXmTJlCrW1tdx4441cffXVXHHFFYRCIe6//37efvvtwrEPPfQQxcXFBINBHn30UbZv387AwMCY7W7atInW1lb+5m/+hmg0SigUOqZY9cyZM/n85z9fuKa2tjY6OjpGtROPxykpKTlmX2lpKbFY7LSuU0RERC5dChKJiIjIBaW+vr6wPXPmTFpbWwE4cuQI/+t//S/KysoKS1NTE62trcybN4//83/+D48++ig1NTU88MADhcedqilTphS2w+HwqNvxeBwA27Z55JFHmDt3LiUlJcyaNQuA7u7uMdttampi5syZ+Hxjl4qcOnVqYTsSiQAUzjVSUVERg4ODx+wbHBykuLj4FK5OREREREEiERERucA0NTUVthsbG5k+fTrgBY/+/M//nP7+/sKSTCb5+Mc/DsAnPvEJ1q9fz5EjRzAMgz/90z8FwDCMCe3fj3/8Y5555hlefvllBgYGaGhoACgMETv+fPX19TQ2NpLP58d13gULFpDP59m/f39h3/bt21W0WkRERE6ZgkQiIiJyQfm7v/s7mpub6e3t5a/+6q/42Mc+BsDnP/95/vEf/5GNGzfiui6JRIJf/epXxGIx9u7dy29/+1symQyhUIhwOIxpem+DpkyZQkNDA47jTEj/YrEYwWCQyspKkskk3/rWt465f8qUKRw6dKhw+6qrrmLatGk88sgjJBIJ0uk0r7/++mmfNxqN8uEPf5hvf/vbJBIJXn/9dZ555hk+/elPj/uaRERE5NKgIJGIiIhcUD7xiU9wxx13MGfOHObOnctf/MVfALB69Wr+7//9v3zlK1+hvLycefPm8cQTTwCQyWR45JFHqKqqYurUqXR2dvLf//t/B7yZyAAqKytZuXLluPv3R3/0R8ycOZPa2loWL17MNddcc8z9n/vc59i1axdlZWV86EMfwrIsnnvuOQ4cOMCMGTOoq6vjJz/5yRmd++///u9JpVLU1NTw8Y9/nH/4h39QJpGIiIicMsMda3oMERERERERERG5pCiTSEREREREREREFCQSEREREREREREFiUREREREREREBAWJREREREREREQEBYlERERERERERATwTXYH3ktVVRWzZs2a7G6IiIiIiIiIiFw0Ghoa6O7uHrX/vA4SzZo1iy1btkx2N0RERERERERELhqrV68ec7+Gm4mIiIiIiIiIiIJEIiIiIiIiIiKiIJGIiIiIiIiIiHCe1yQSERERERERkZPL5XI0NzeTTqcnuytyHgmFQtTV1eH3+0/peAWJRERERERERC5wzc3NFBcXM2vWLAzDmOzuyHnAdV16enpobm5m9uzZp/QYDTcTERERERERucCl02kqKysVIJICwzCorKw8rewyZRKJiIjIBSHv5EnmktiOTdAXJGgFsUxrsrslIiJy3lCASI53uq8JBYlEREQuUbZjk7EzZO0sWTtLJj9ie4z9eScPgIuL67rHrC3DIuQLHbMEfUFCvhB5J08mnyFjZ45ZZ+3sMf0Z+SbGdmwSuQTJXJJE1ltn7Myoa/Cb/sJ5glYQn3n0rY2Le3Tbdd9zf8AKELACheDT8LZpmIU+JHKJQl8SuQS2YxMNRCkKFFEcKKYoUORtB4sJ+UInfN5Nw8Q0TCzDwjKtwrZpmFimNea2i0s8GyeejRPLxLx11lvnnTxRf7Rw/pFLwAqQd/JjLqZhErAC+C2/tzb9hdsAjuvgui6O6xQWFxcDA8MwjlkDZO0sA5kBBtIDhXV/up/BzCAubuF5Kg4WUxIsKWyHfeFR1z38nNiuTd7Jk7Nzo/qfc8bYZ+dwcYn6oxQHiwvnCFrBU3qT7LgOOTtXeO3nHG/bwMBn+gr9HLke+bsw/Bwdv+3iFp7P47dP53FBK1i4rog/og+DInJeaWho4AMf+AA7d+4cVzvr1q0jEAhw3XXXTVDPjnriiSe44447mD59+nses2XLFr73ve+9Z1tr1qzhf/7P/8nq1asnpG/btm2jtbWVe+65B4Bnn32WXbt28cgjj0xI+6dKQSIREZEh6XyazkQnHfEOupPd2K5N0AoeE4QYDn4YGNiuje3YOK5T2B5r7bjOSe8b+aE3Z+fIObnC2mf6KAuVUR4qpyJcQXl4aB0qxzTMQvBi5DqZS5406GO79mQ/5eOWc3Lksjni2fiknH84cNNO+6Sc/0LSmeictHP7TX8hIHWi39Xh378LhWVYhYBRUaAIx3VGBWIzdoa8k/eCnsf9LRsOiA7/TTt+X8gXojhYTNQfVcaeiJxT69ato6io6KwFiZYuXfqeQaLJsm3bNrZs2VIIEt13333cd99957wfChKJiMglI2fnjslOSeQS9CR76Eh00BHvYCAzMNldPKHBzCCNA42Tcm7HccnaDrbj5eB4WQ3guoDrZeZYpkHQZ+G3jJNmN7iuS852ydlOIafn+Ec4rksqa5PK2aSyNsmhdSpnYzsuQZ9JwGcSsEyCPouAzyToM7FMr6VCrpA7vBqZSTRyv3duv2Xi9xkELQu/zyBgeW0ZhkHedgrnT2Ztktk8qazXj2jQRyRgEQ36vG2/hWme/ewO13VJ5WwSGZu84xAJ+IgGLHzW+VFu0nVdMnmHwXSOWCqP43rPVdHQ82Sdg+dopJyTozfVe07PebbZrk1/up/+dP9Jjx0OEMeysdM+j4FBxB+hOFhcyAYrDZVSFamiKlJFZbiykH0mIpPv0XWPnrtzrRl9rnw+zyc/+Um2bt3KkiVL+P/+v/+PSCTCW2+9xX/6T/+JeDxOVVUVTzzxBNOmTeO73/0u//iP/4jP52Px4sU89thj/OM//iOWZfFv//Zv/O3f/i033njj0XM++iiHDx/m0KFDNDY28v/+v/8vb775Ji+88AK1tbU899xz+P1+/vIv/5LnnnuOVCrFddddxz/90z/x9NNPs2XLFj75yU8SDofZsGEDO3fu5Otf/zqJRIJgMMgrr7wCQGtrK3fddRcHDx7k/vvv5zvf+c57PhdPPvkkf/3Xf43rurz//e/nf/yP/wHA2rVr+da3voVt21RVVfHKK6+wadMmvv71r5NOpwmHw/zgBz9g9uzZfPvb3yaVSrF+/Xr+7M/+jFQqVchoamho4KGHHqK7u5vq6mp+8IMfMGPGDD7zmc9QUlLCli1baG9v5zvf+Q4f+chHxvVzVZBIREQuOnknT8tgCw39DRwZOEJvqpdENkHOyZ1yG9m8Q852CoGH8Q7rcF0Xx3awXbBdLwhiuy6O42IPLXnHJW+75B2H3NA6b7v4LIPSsJ+ycIBo0PL64roYjotrGnBc34Y/oGeGriE7Yp21vbaH951of9Z2yA3ttx33BFc1mmEYBIcCNsOBHNsZajdr4+bykM0TyNn4HQfHMHAMA3to7Zjetm0a5EwDx5y8oIdpGliGQc52Tv1BBkT8Fn7LHBX4KhxiGJiGgWmCZRiYpnfbMg1MgxHb3m3LNHCBZNYmkcmTzORJ5GycMX4uQZ/pBYyCFpGAD79lkHdcbNt7fQ2/zmzHwTC8YJjfMvBZphcoswz8llkIBjrusWt3KKpm4L3svCFn3rnzjks8nfcCQ+n8ez5vw4G1oqCPgM/0rrnwXFC4/mN+NxyncB3D15A/7rryjnfO6NBzUAhMBbzgVMBn4jhu4ffPdlwcB2zXJT/0OzD8e+H9Hnj7AXymUXhNmKb3M7IM47jAqfdc4YKD93y57vAQzaPHOe6xwdbh59YbXuY9R447+vEhv3lMsG14HQlYhWBuNn/0dzqbd8g7Ln7r6O/j0eCqORRcfe/grovrZSnmEid4yRuUhcqojlZTFaliSnQKM8tmUhYqO+HPX0QuXnv37uWf//mfuf7663nooYf4+7//e77+9a/z1a9+lWeeeYbq6mp+8pOf8Od//uf8y7/8C4899hiHDx8mGAzS399PWVkZX/rSlygqKuJP/uRPxjzHwYMHefXVV9m1axfXXnstTz/9NN/5zne4//77+dWvfsWHPvQhvvKVr/Dtb38bgE9/+tM8//zzfOQjH+F73/teYYhYNpvlYx/7GD/5yU+48sorGRwcJBwOA15Wz9tvv00wGGThwoV89atfpb6+fsz+tLa28qd/+qe89dZblJeXc8cdd/DLX/6S66+/ns9//vP8/ve/Z/bs2fT2el9WXHbZZbz22mv4fD5efvllvvWtb/H000/zl3/5l8cMc3viiScK5/jqV7/Kgw8+yIMPPsi//Mu/8LWvfY1f/vKXALS1tbF+/Xr27NnDfffdpyCRiIhIzs7RPNjMkYEjNPQ30DzYfMrDRhzHpT+VpTuepTuW8dbxDIPpoYCS6+IzIGoYhE2ImAZhw8DvuBi2jZF3CmvTdrByNsFsnmg6SyiTI5rJEc7kiWZzhG0vKJIzDXKW6S2miW2ZYBgEXZeQ62I5LpbrYrpguQ6W42IO3fa7LhHLJOLzMndc02DQshi0TPotiz7TpN8wiQcskn4fCb+PRMBH0u8j6beODbq4LgHbIZyzCefzhPI2JXln6Fze+QxcTCBgGHhJKiauCa5heIvpra1sHl8mRyCTI5rNE87bhHN5IjmbgG0TsB18I4Iaw4GQ0Y7mFvktA9NnQcCHEfBhBH2YQR+OzyLnuuQcl5wLWcfbzg59qDZcFwMwXRfDHVqPuH3M/QCOS9JnEfNZxIaeywHLJO7zkfJ5mUFhn0nIbxEKWEQsk1DAwjTwspuGlnTOJp3Lj0hjOsFrbmQwzDDIjwiMOUNre8TaMUYHAsELCEWDPnymSTKbJ5m1h4KDWfqSp/TyP6v8lklJyEdxyI9pGiQyeeKZfKGvyaxNV2x0namJkD1PnoMLhoEXOLKGA0kWYb9JZCjA5gWjjmbMRQNWIajk4tKX7qMv3ce+nn2FJkuDpcwqm8XMspnMLJ1JRbhCNZRELgH19fVcf/31AHzqU5/iu9/9LnfddRc7d+7k9ttvB8C2baZNmwbA5Zdfzic/+Uk+9KEP8aEPfeiUznH33Xfj9/tZtmwZtm1z1113AbBs2TIaGhoAePXVV/nOd75DMpmkt7eXJUuWcO+99x7Tzt69e5k2bRpXXnklACUlJYX7br31VkpLSwFYvHgxR44cOWGQaPPmzaxZs4bq6moAPvnJT/L73/8ey7K46aabClPPV1RUADAwMMCDDz7I/v37MQyDXO7kX2Ju2LCBn//854AX9PrmN79ZuO9DH/oQpmmyePFiOjo6TtrWyShIJCIiFyTXdWnob2Bb+zZ2d+8eVQQZgLxNvDfBYG8CN5aBhLeYSW+xUlncVA7TdqhxXKY7XiDD5zj4XQjiQt4ZGlc1fobh/eP1uy6m7WDYjpeNYRzNIBnOMDELWRUmjuuSzjmkczZ5xyVjO2SyAEffVPiB6qEFvEyM4UyH4W3TMMiF/NgBH2HHIZy38RkUjjFP8BjTOPWZMRy/i20Z2I5F3vGyiIYzQ0a2e8YfFh0bsmPUUhoz4cg4bn0qbG+xwcmncV1O6/qHh9LZJ3rNDI11c1yOZqCM2B4zwwSwTQPLZ+EL+PAFLPx+C8Nn4ZgGrmXimF7gKeNC2nFJO5B0HPIY+HDx4f0cfcPZSYBtQB6DnAs5A7Iu5FzIA7aX5uQFFS0Dd3htmBiOg+U4mHkHc2htuC4+F3yRAIFogEA0iDn0WssHfLiWieG4GK6LazukszapdI5UJo/tDGfYGeQNL4PGGeqH47eww37yoQBu0I81lNnns0x8poFv6PU0fHs48JjM5oln7EJgKjG0ZG136HXIsVlBhoFvKItqOLOqkGU1FFg9mnnkHrNteClVmENZVSMzrIa3zVH7jaPZWCO2zaHXmWkMHcfQ/UPb6ZxTuJ6R62TWHhryeTRTyD9iCGYu75K1vSBidijLcGTGUW5EBhKnELezTIPySICK6LFLWcRfeL4GMgNs79jO9o7tABQHiplTPocVU1cwq2yWAkYiF6njf7cNw8B1XZYsWcKGDRtGHf+rX/2K3//+9zz33HP81V/9FTt27DjpOYLBIACmaeL3+wvnNE2TfD5POp3mP/yH/8CWLVuor6/n0UcfPa0p4EeeA8CyLPL5iatZ95//83/mlltu4Re/+AUNDQ2sWbNmXO2N7Ks7Ae9ZFSQSEZELSm+ql+3t3geP/nQ//lSWyuYeSrpj+FJZsgNJUr1J0gNJsrE0Idul6iRtBnwm0YA3PCccsIgGLEL+o9+UO87RIS3DC1D4EHj0A51x7D6O/YA3ER+K8o5DZihglMk7GDA0VGj4A66JzzIKHzbPNdMwMC0D/1mqc+s3/ZiGSd7Jn/XC2+bwD+40GIZBwHeWn/u87S3no76z17RrQD7gIx/wkwv6cCzTy2YbWjvmUGabaRYy3I7f55gGLsPL0OOGs+IME9d1cJyh+x0D1/GOMYYCu8PB3eFt04vqeS+ToUy1k94e2sYwcIeiQy4Ubg9nuw0PKTVGZMA5luk9B36LfMCHXewjXxk6ensoKOecZm2qkUPVhgNIXs2roQBbNk8iYxcCU6mcTXc8Q3f82IiSYRhUFwWpKw9TWx6mtixMaOiPQSwbKwSNKsIVrJy2khVTV1AUKDrj14SInH8aGxvZsGED1157LT/+8Y+54YYbWLhwIV1dXYX9uVyOffv2sWjRIpqamrjlllu44YYbeOqpp4jH4xQXFzM4OHjGfRgOCFVVVRGPx/nZz35WGIJVXFxMLObVZ1u4cCFtbW1s3ryZK6+8klgsVhhudjquuuoqvva1r9Hd3U15eTlPPvkkX/3qV7nmmmv4D//hP3D48OHCcLOKigoGBgaora0Fjh1SNrJvx7vuuut46qmn+PSnP82PfvSjY+o0TTQFiURE5LxnOzY7OnewtW0rjQONhAeSVDV2M7uph6KOfvoTWXoSWQZTOfLH1WnxWybFId+o2is+y8BvesWKfSepe2OaBoFzXGj3RHymiS/oDTOamPZ8o6b0tgxrzOm+TcM8ZspzOBr4clxnzGnWbccuTGs+fK6RbR8fOBv+BswwDPymH7/lP2Y98njXdQtTpA/PEOeOMdbLeI9Iz/A3nCNnuhpub3j2ueHzHz9NvIFRKAh8/CxyjnviejynMvX58dOgu65b6EPQChKwAoXFMq1R/RheXNfFNMxRy8jrPn72veG+Hz/N/Yl+ViOf85GzZQ3PkBW0gpiGWXhuRs6+NfxcnejavSy7o/22HAszY2JmR1/T8AIcc66snR3zdXEipmGO+p0AjvZzRB8d1ym8vkb+brzXNnDM8/le28c/PufkCs/fe73GHNPA9vsKAaVCQMprsBCUAgqBKu9neXTbMQ0cn4XtM721ZeIELJywj5g/SGvAT6PPR0fOoS+RpTeRZSCdozOWpjOWZmtjHxhQFfWCRnXlEWZVRvBZJr2pXl4+9DK/PfxbFlYuZNX0Vcwpn1P4+YnIhWvhwoX83d/9HQ899BCLFy/mj//4jwkEAvzsZz/ja1/7GgMDA+Tzeb7xjW+wYMECPvWpTzEwMIDrunzta1+jrKyMe++9l4985CM888wzowpXn4qysjI+//nPs3TpUqZOnVoYTgbwmc98hi996UuFwtU/+clP+OpXv0oqlSIcDvPyyy+f9jVPmzaNxx57jFtuuaVQuPqDH/wgAI8//jgf/vCHcRyHmpoaXnrpJb75zW/y4IMP8t/+23/j/e9/f6GdW265hccee4wVK1bwZ3/2Z8ec42//9m/57Gc/y9/8zd8UClefLYY7EflIZ8nq1avZsmXLZHdDREQmieM6vNPxDusa1pHpaGXagXaqGrsJ9ydIZGy64mm649ljCisHLJOSsFcHpSTkJ+Q3TyuDJ2gFKQoUEQ1ECVrBo8GOoeDBcAABKHyA9YaTHA2gDG+Pus8wh4akjL7vmA/CQwGZ4eBKzs6RyqdI59OkcilS+RSpXIq0k8FwGRW8GL49MhjzXkGfc8YwIBDwlmAQfD4vo8JxwLa9ZeR2NjthQ/3k0uW6LjknVwhIneh3dGQA7Xw3HOAbDoLlnBwGRuH3fGRA1jTMUX+/xvqbdvy+nJ0jY2dOWt8tEwmSKI+SKI0wWBLmiGNwKGtzMJWnMZnDHvErHPRbLJpazNLaUqqKgse0Ux4q5/a5t7O4evHZeMpELgm7d+/mJx0/OWfnG2t2Mzk/7d69m0WLFh2z70TxFmUSiYjIecd1XXZ17eLVhlfpiXUyc0cjM7cfIZez6Ypn2BfLkM4dHW4TCVhUFwcpjwQI+k78Ic/AGJWZErACRPyRQmDIZ47xr9E0vYDGqS6RCBQXQ1HRsetQyAuC5HJeAGTk2ra981jW0WXodsCyiI64XbjPMLzHJxJHl3j8xNup1Ohr8/shHPb6HA57fTTNo4thHN32fjjeNTjOsdt+v9dGNOqtR26HQl5gyOcbswDze7wQjgaLhp+rbBby+RP3Y/jnNdzvU1kDJJPHPo/Dy3ANg5H9Ht4+2b4TGRkIO5XFOY3Z1WQUbxY3L+vqYmEYBj7Dhy/gI0r0pMf7DN/Yf9tOgeM6x2RlZewMyVySZC5JIpuAZIZgMkNFizdrz5IRj82ZBt2mSZsNR3IORxzoPxLg9VCAYE0xM+dWM296KX7LpC/dx7+/++8srl7MPfPv0TA0kTOkwI2M14QEiR566CGef/55ampq2Llz56j7Xdfl61//Or/+9a+JRCI88cQTrFy5ciJOLSIiFxHXdTnQe4DfHv4tbfE2irtjrHp9D/6uQQ73peiKZQqDRvyWQVVRkKqi4JhDryzDoiRUSknZFMoqphMtr8FfXIYRjXrBi+ElHD550Gcip2EfDvKEQhPT3nBmTnn5yY+1bS8Ykk57mTzhsBfcOV8ZxtGfwaVsOFh2JstQ7Zsxl+HA2lhBqRMFqxzHe/2O9XsCkMmMvQwHQY9fRvalMN/7iKBfOu0FN5NJrx0550zDLAwdHEvOzhWCRrFsjP50P8mcN7Wc33GZ5thMA1b6IJHJ09kZpzuewd7p4v4WkuEAgamlTJ9TjV0RpbO0mx8c3smaK+5n6fQVF0Rml4jIxWRC3nV95jOf4Stf+Qp/9Ed/NOb9L7zwAvv372f//v1s3LiRP/7jP2bjxo0TcWoREblIdCe7eXbvszQONGLaDrO3NTBt+xFa+5J0DKYLo44qIgGqi4OURvyF4syp4jDdM6oonbOIaVPmUTttAVOqZ2MVFU9sgOdCZ1leRlNx8WT3RE6HgmUe2/aCRsOBzpEBrbHWE3nfyGzCkUGykVl9wwucODA38pjhgNjIbccZne02sv1c7mjgLZ0+8focZp/5LT+lVimloVKm4U1pnbWzDKQH6E/305/uJ5FLABAN+pgd9DGjIkJPIkPnYAYjlYXDXXQf6WZ2VZQ50QCGYdD99O/ZWjODRYtvJrJ8FSxZcn4HtUVELhIT8m7jpptuoqGh4YT3P/PMM/zRH/0RhmFwzTXX0N/fT1tbG9OmTZuI04uIyAVud9dufrnnl2TsDCVdg8z5/W5iR3rYNpDGGfoQVRENUF8eJhzw/nUNVpfQPaMKZ8F8LrvsBq6fupySYMlkXoaInE2WdTQDUE7Mdb0hmcNBo+HaXscHpEZuj3V7eGjs8UsmA7290NXlrceoGxawAlRHq6mOVgOQyWdoj7fTFm8jnU9jmQY1xSFqikMks3kaupMMpnPs74xTEQkwqypKwGcS62hka9eTzH1nE1OrZmEsXw4rV8LUqefimRQRuSSdk6+kWlpaqK+vL9yuq6ujpaVFQSIRkUuc4zq8evhVXmt8DcN2mP32Yfyv72d/X7JQjLos4qe+PEI06MM1DI4srad72VwWzlrFHVNXUFtcq+EIIiLDDMPLuPH7z37WYC4HPT1ewKiz09uOxbwaaLGYF6wCgr4gM8tmMqN0Bn3pPtpibXQnu3FxiQR8LJpWTGcsQ2Nvkt5kloHmHLMqo1QVBcg7efb27KU31ctlqSTWpk1QWwurVsHSpd5wWxERmTDnXd7y448/zuOPPw5AV1fXJPdGRETOlmQuydO7nuZg30FCsRTzf7uTrt1ttCVzABSHvCEJxSFveEG8oogjN69g5cr384npq/FbGnYgIjKp/H4vq2eszB7X9bKZhgNGg4MYfX1U9PVR0d9PpquD9rZ9NA40YmMzpSREWcTPoa4EA6kcB7vi9MT9zK6OEvRZdCW7SLYlWVqzlHBLC7S0wIsvwrXXwnXXKVgkIjJBzkmQqLa2lqampsLt5uZmamtrxzz2C1/4Al/4whcAb0o2ERG5+LTF2vjJuz+hP91PdUMXda++y6GmPjJ5B8s0mFtdRHnEj2EYOKZB2xXzqX//x3l4xnUEfcGTn0BERCaXYXjF8cNhqK4edXcQmJnLUdrWwKtbn6a3eT/hwSRTB5JEmvvobOmnP5XjneYB5tcUURYJkMgleKvtLRZXL6YiXOENfVu3DrZuhdtug2XLTm8GRRERGeWcBInuu+8+vve97/HAAw+wceNGSktLNdRMROQStb19O8/tew4nl2X+pgME3zrM3q4EjusSCVgsmFJMyG8BkKwqo/ijn+LDV7yfsD88yT0XEZEJ5fdTNmM+H6r/U7a2beU3B39DxvZmsUvFM2zf1ED5nhbSXQPMKbWZXhoi7+R5p+Md5pbPpa6kzhtuPDgIP/85bNoEd90FdXWTfGEiMlHy+Ty+S33ihnNsQp7tj3/846xbt47u7m7q6ur4L//lv5DLecMFvvSlL3HPPffw61//mnnz5hGJRPjBD34wEacVEZELiOu6rGtYx++O/I7IQJLL1r1L34FOmgbSAFQVBZldFcUyDVzDgFtu4aaPfoOikIpRi4hczAzDYNX0VcyrmMfz+55nf+9+wkVBrr5lAW/OrOJv93eyuLOfO5JJrg6YWKbBwb6DxLIxFlYuxDK9LxZobobvf9/LKLrtNigtndwLE7kE/dVf/RU//OEPqampob6+nlWrVvH888/zP//n/2T16tV0d3ezevVqGhoasG2bRx55hHXr1pHJZPjyl7/MF7/4RdatW8d//s//mfLycvbs2cMDDzxARUUF3/jGNwD48z//c2pqavj6178+uRd7kZqQINGTTz75nvcbhsHf/d3fTcSpRETkAuS6Lq8cfoX1jeupPtzJnN/v5nBLP4PpPAYwszLKlJIghmGQLgpR9UdfYtWVH1RBahGRS0hpqJRPLPsE73S8w6/3/5qMneHauZVUFwd58V0/22yHxY7NQ36HuY3ddCY6SeaSLKtZduxQ5B07YM8euOMOWL1aQ9Dk0vPoo5NyjrfeeounnnqKbdu2kc/nWblyJatWrTphE//8z/9MaWkpmzdvJpPJcP3113PHHXcAsHXrVnbu3Mns2bNpaGjgwx/+MN/4xjdwHIennnqKTZs2na0ru+Qpb0tERM4q13V56dBLvNH0BlMOdjD71XfZ3TpAJu/gt0wWTCkqFKcenFPL5Q//BbOmL5rkXouIyGQwDIPlU5dTW1LLkzuepCfVw7yaIsoj9Tz3Thu7kln+wgzwh2uWcvOBVmjqYXvHdlZOW4nPHPHRJpeDX/0KmprgAx9QYWuRc+C1117j/vvvJxKJAF7Zmffym9/8hnfeeYef/exnAAwMDLB//34CgQBXXXUVs2fPBmDWrFlUVlby9ttv09HRwRVXXEFlZeXZvZhLmIJEIiJy1riuy4sHX+TN5jepPtzJ7FffZVfrANm8QzToY+GUYgI+E8c0GLz5Wm756DcpDZdNdrdFRGSSVUWq+Pyqz/Pz3T9nX88+KouCPHBlPWt3ttPQk+DfDvTQvKCeNYvqmLv5AO92vsvlUy4fnYH6zjvQ3g4f+xjoQ6XIpPD5fDiOA0A6nS7sd12Xv/3bv+XOO+885vh169YRjUaP2ffwww/zxBNP0N7ezkMPPXT2O30JMye7AyIicnFyXZe1B9byZvObVDV2M+eVnYUAUVHQx6JpXoAoWRIm99kH+cCn/1IBIhERKQj5Qnx86ce5aeZN3m2/xX0rpnPlrApcF17d28lmn4+37l3Nm1dUsyfdPHZDnZ3w+OOwe/c57L3Ipeemm27il7/8JalUilgsxnPPPQd4mUBvvfUWQCFrCODOO+/kH/7hHwr1jPft20cikRiz7fvvv5+1a9eyefPmUUElmVjKJBIRkQnnui6/3v9rNrdupqK5hzkvvcPulgGythcgumxaMT7TpKeukhkP/UeunHPDZHdZRETOQ4Zh8L7Z72Na0TR+secXZO0s18+rIuAzef1AN2vf7aBklR934XSenp3no20lLDg8OLqhTAZ+8hO4/nq49VYw9V25yERbuXIlH/vYx1i+fDk1NTVceeWVAPzJn/wJH/3oR3n88cd5//vfXzj+4YcfpqGhgZUrV+K6LtXV1fzyl78cs+1AIMAtt9xCWVkZlmWdi8u5ZBmu67qT3YkTWb16NVu2bJnsboiIyGlwXZfn9z3PW21vUd7ax7wXtrGnuZ+c7VAc8nHZ1BIs06C3toLZX/ozrqi/crK7LCIiF4DORCdP7niSvnQfruvym10d7G4bpCjo44GrZlAU9GEaJp81VlL/2navLtFYZs+GP/xDGKqbInKx2L17N4sWnT91HR999FGKior4kz/5k3G35TgOK1eu5Kc//Snz58+fgN5dWsZ6bZwo3qIQuoiITKhXDr/CW21vUdrez9y1YweI+qeWM/dL31KASERETllNtIY/Wv5HRPwRDMPg1kU1TC8LE8/keW57KznbwXEdfmTupOcT90NFxdgNHT4M//zP0N9/TvsvImdm165dzJs3j1tvvVUBonNAQSIREZkw+3r2sb5xPSVdg8x74W32NnkBopKQvxAgGqgpZe6X/4Ll9asnu7siInKBKQ+X87ElH8MyLHymyQcun0ZJ2E/HYJrfvNuB67qk82l+1Pkyyc9+Ci67bOyGenq8QFFHx7m9AJFLyKOPPjohWUSLFy/m0KFD/K//9b8moFdyMgoSiYjIhBhID/CL3b/An8py2UvvcGAoQFQa9rNwajGWaRCrLmXeV/8fltWvmuzuiojIBWpm2UzuXXgvAJGAjw8un07AZ7K/M8abh3oB6E318u8Hn8X+w4/AbbfB8bOeAcRi8IMfwJEj57L7IiLnNQWJRERk3GzH5me7fkYql2Th63tobuojk3eIBCwWTvECRPHKYuZ+9f9hSf3Kye6uiIhc4FZMXcH19dcDUFkU5O6l0zAM2Hi4hz3tXuHqhv4GXjz0G7jhBvj0pyEUGt1QOg3/+q+wZ8+57L7IWXMelxyWSXK6rwkFiUREZNx+e/i3NA02MX1vK/l3W+lNZLFMg/lTijFNg0RFEfO+9l9YPEMBIhERmRi3zbmNy6q84WSzq6LcNL8agJd2ddA2kAJgU8sm9nTvgTlz4LOfheLi0Q3l897MZ0NTdItcqEKhED09PQoUSYHruvT09BAaK0h+Ar6z2B8REbkE7OvZx+tNrxPpTzB1/V529yYA7w172G+RC/qpfPjrXDZTASIREZk4hmHw4UUf5l/e/hfa4+2sqC+jN5FlR8sAv97RzievnkHIb/HMnmeYtnoapVOmwOc+B//2b9DdfWxjrgvPPQeJBNx449jD00TOc3V1dTQ3N9PV1TXZXZHzSCgUoq6u7pSPV5BIRETO2HAdIsN2mL/uXQ62DuC6MKUkSFVREIDU++/gtkW3TXJPRUTkYhSwAnx86cf5v1v/L/FsnDULa+iMZegYTPPy7g7ev2waqXyKn+/+OQ+ueBCzrAweegh+9CNoaRnd4G9/C44Da9ac60sRGTe/38/s2bMnuxtygdNwMxEROSOFOkT5FLO2HqJrb0ehDtHMiigAfUvncdvdX8bQN7IiInKWlIZKeWDpA1iGhWUa3LN0GgGfyYHOODtaBgA4MnCE14685j0gEoEHH4R588ZucN062LTp3HReROQ8oyCRiIickeE6RGXt/QQ2HBhVhyhVGmHVg48Q8Ucmu6siInKRqyup4/a5twNQGvHzvstqAPjdvi564hkA1jWso3Gg0XtAIAAf/zhcfvnYDb7wAuzYcdb7LSJyvlGQSERETtuB3gO83vQ6vkyOupfeobHn2DpErmFQ9akvMqP6BN/SioiITLCra69mfsV8AC6bWsLiaSXYjsuvd7STtx1cXJ7e9TSpnFfUGsuC+++Hq68e3Zjrwi9+AQcOnMMrEBGZfAoSiYjIacnaWZ7b+xy4LrPX76HpcM+oOkS5m29g9er7JrmnIiJyKTEMgw9d9iGKAkUArFlYQ3kkQE8iw+/3e4V8BzIDPLv32aOzPxkG3HUXXHHF6AYdx5v1rKnpXF2CiMikU5BIREROy7qGdQxkBphysIPM1iOj6hBlaqdyw8f/VHWIRETknIsGonx40YcxMAj4TO5eOhXLNHineYADnXEAdnfv5q22EdPdGwbcey9cdtnoBnM5r8h1R8c5ugIRkcmlIJGIiJyytlgbbza/iS+To/q1PXTGMhgGzK8pwjQN7ICfxV/8CyLBosnuqoiIXKLmlM/h+hnXA1BTEuL6eVUAvLS7g8F0DoC1B9bSmeg8+iDThI98BGbNGt1gOg3/9m/Q13e2uy4iMukUJBIRkVPiuA7P73sex3WYsfUwLc39AEwvDRMO+AAo+4NPUj9j6ST2UkREBG6ZdQt1JXUAXFFfxuyqKJmczYs723Ecl7yT5/l9zx8ddgbg83nFrKdNG91gLAb/+q+QTJ6jKxARmRwKEomIyCnZ0rqFllgL0b4ExqZDpHI2IZ9JbVkYgOyiBay4/dOT3EsRERGwTIs/WPQHBK0ghmFw++IpRAI+WvpTbG30MoIaBxrZ1bXr2AcGg/CpT0Fl5ehGe3vhZz/zahWJiFykFCQSEZGTimVivHLoFXBdpq/fQ2vv0Gxm1UPDzHwWSz71n7BMa5J7KiIi4ikPl/OBBR8AIBLwcfviKQBsauglkckD8JuDvyFn5459YDQKn/40lJSMbvTQIXj11bPabxGRyaQgkYiInNQLB14gY2eoPNLF4M4WXBeqioKUhv0AhN93B7W1YxT8FBERmUTLpixjxdQVAMyuijK7Kko277DhUA/gzXa2oXnD6AeWlXmBonB49H2vvQZ79py9TouITCIFiURE5D3t69nHrq5dmLZDyau7GUjlsEyDmZURAJyyUlZ++MuT3EsREZGx3TH3DkK+EAA3zq/GNAx2tg7QGUsDsL5xPbFMbPQDq6u9YtZjzdb5i19AT8/Z7LaIyKRQkEhERE4oa2f59f5fAzBlWwPdjb0AzKyI4Le8fyH1f/gwoZBmMxMRkfNTxB9hzaw1AFREA1xeVwou/H5fF67rkrWzvHL4lbEfPHcu3HLL6P2ZDDz1FGSzZ6/jIiKTQEEiERE5od81/I7+dD/BRAbjd3vI2Q7FIR/VxUEAAvMXMe/a909yL0VERN7bldOvpDLsFaO+Zk4lIb9Fc1+Kg11ejb1t7dtojbWO/eAbb4SFC0fv7+qCZ5+FkTOkiYhc4BQkEhGRMbXH2wt1Gsp/v5ve/hSG4dV0MAwDw7RY/On/hGHqX4mIiJzfLNPiznl3AhDyW1w7xwsYvba/i/zQbGVrD6zFHSvgYxhw//1QUTH6vp074c03z1q/RUTONb2zFxGRURzX4bm9z+G4DkVt/WS2NAAwrTRMJOADoHLNPZTNmD+JvRQRETl18yvmM7d8LgDLakupiAYYSOXY1tgPQONAI7u6do394FAIPvYx8PtH3/fSS9DQcHY6LSJyjilIJCIio2xq2URLrAXDcQmufYdUziboM6kr82Z5CRSXs+gjX5rkXoqIiJw6wzC4c96dGBiYpsHNC6oB2NTQSyKTB+A3B39Dzs6N3cCUKXDffaP3Ow789KeQSJytrouInDMKEomIyDH60/28csgr4BnZ2USyoQvwhpmZpjfDy5yPPIwViU5aH0VERM5ETbSG1dNXAzCzMsrsqijZvMOGQ95MZQOZgcJQ6zEtWwbXXDN6fyIBL7xwNrosInJOKUgkIiIFruvy/L7nyTk5yNvYr+zCdaGqKEhZJABAxZwlTL3x7knuqYiIyJm5ZfYthHwhAG6cX41pGOxsHaAzlgZgfeN6YpnYiRu4/XaYMWP0/p07Yffus9FlEZFzRkEiEREp2NG5gwO9BwCIbzoEfQl8psHMyggAASvAgk99HVSsWkRELlARf4Q1s9YAUBENsLyuDFz43d4uXNcla2d55fArJ27AsuAP/xDC4dH3/epXkEyelX6LiJwLepcvIiIAJHNJ1h5Y622ncgRe2wfArKoofsv7dzHzqjsIzVkwaX0UERGZCFdOv5LKsDfD2dVzKgj5LVr6Uxzs8uoKbWvfRmus9cQNFBfD3WNk1cbjsHbt2eiyiMg5oSCRiIgA8OKBF0nmvG8/G3+3j5JEmrKwn8qoN8ysKlJF7fsfmMwuioiITAjLtLhz3p0AhPwW187xAkav7e8i7zgArD2wFtd1T9zIsmWwYIwvTt55B/btm/A+i4icCwoSiYgIB3oPsL1jOwAHO2NM396AaRjMro5iGAY+08fcVbdDXd0k91RERGRizK+Yz9zyuQAsqy2lIhpgIJVjW2M/AI0Djbzb9e6JGzAM+MAHIBQafd9zz0E6fRZ6LSJydilIJCJyicvaWZ7f9zwAmbzNkdcPUJNIU18RJuizAJhTPofwrXdOZjdFREQmlGEY3DnvTgwMTNPg5gXVAGxq6CWRyQPw0sGXyNm5EzdSUgJ3jvH/MRaDF188G90WETmrFCQSEbnEvXr4VfrT/QC8sb+bFQfaKAr6mFrifTNaGixl2uKrYebMSeyliIjIxKuJ1rB6+moAZlZGmV0VJZt32HCoB4CBzAAbmje8dyMrVsC8eaP3v/02HDgwwT0WETm7FCQSEbmEdcQ7eLP5TQBa+1MM7GymNpZiztAwMwODhVULMW6+2UurFxERucjcMvsWQj7vi5Eb51djGgY7WwfojHnDxdY3rieWiZ24AcOAe++FQGD0fc89B5nM2ei2iMhZoSCRiMglbF3DOlxcbMfl5d0dXN/YxfSyMJGAD4BZZbOIzJwHc+dOck9FRETOjog/wppZawCoiAZYXlcGLvxubxeu65K1s7xy+JX3bqS0FO64Y/T+gQF46aUJ77OIyNmiIJGIyCWqPd7O7u7dAOxuGyTa2sf8RIrasjAAUX+U+tJ6uPFGZRGJiMhF7crpV1IZ9mY4u3pOBSG/RUt/ioNdCQC2tW+jNdb63o2sWgWzZ4/ev2ULNDZOdJdFRM6KCQkSrV27loULFzJv3jwee+yxUfc/8cQTVFdXs2LFClasWMH3v//9iTitiIiMw7qGdQDYjsumw71c29hJXUUE0/QCQgurFmJOmQqXXTaJvRQRETn7LNPiznleAeqQ3+LaOV7A6LX9XeQdB4C1B9biuu6JGzEMuO8+8PtH3/fcc2DbE95vEZGJNu4gkW3bfPnLX+aFF15g165dPPnkk+zatWvUcR/72MfYtm0b27Zt4+GHHx7vaUVEZBzaYm3s6d4DDGURdQ6wOJ6iMurVU6iJ1lASLFEWkYiIXDLmV8xnbrk3vHpZbSkV0QADqRzbGvsBaBxo5N2ud9+7kfJyuO220fu7uuD11ye4xyIiE2/cQaJNmzYxb9485syZQyAQ4IEHHuCZZ56ZiL6JiMhZ8rsjvwNGZBE1dVFXHsYYCgjNLJ0JFRWwZMlkdlNEROScMQyDO+fdiYGBaRrcvKAagE0NvSQyeQBeOvgSOTv33g1deSXU1o7e//vfQ2/vRHdbRGRCjTtI1NLSQn19feF2XV0dLS0to457+umnufzyy/nIRz5CU1PTeE8rIiJn6PgsokBPjMsHE8dkEUUDUbjhBjBVuk5ERC4dNdEaVk9fDcDMyiizq6Jk8w4bDvUAMJAZYHPr5vduxDS92c6O/x+az8Pzz8N7DVkTEZlk5+Td/7333ktDQwPvvPMOt99+Ow8++OAJj3388cdZvXo1q1evpqur61x0T0TkknJ8FtE1x2URzSqb5c3Ssnz5JPZSRERkctwy+xZCvhAAN86vxjQMdrYO0BP3prJf37ieTP4k09pPnQrXXDN6/6FDsGPHRHdZRGTCjDtIVFtbe0xmUHNzM7XHpVdWVlYSDAYBePjhh3nrrbdO2N4XvvAFtmzZwpYtW6iurh5v90REZITjs4joT7CyP35MFlHEH4HrrwfLmsyuioiITIqIP8KaWWsAqIgGWFpbCi5sOOhlEyVzSd5sfvPkDa1Z433pcrwXX4RUauI6LCIygcYdJLryyivZv38/hw8fJpvN8tRTT3Hfffcdc0xbW1th+9lnn2XRokXjPa2IiJyB47OIVrX2MKMsdGwWUSQCV1wxib0UERGZXFdOv5KKcAUAV82uwDINDnTF6RhMA/BG0xukcicJ9AQC8P73j96fSMBLL010l0VEJsS4g0Q+n4/vfe973HnnnSxatIiPfvSjLFmyhG9/+9s8++yzAHz3u99lyZIlLF++nO9+97s88cQT4z2tiIicpuOziDLxNNf1DBayiKZEp3hZRFddNfb0vSIiIpcIy7QK2URFQR8r6suAo9lEGTvD602nMFvZggWwePHo/Vu3wpEjE9RbEZGJY7ju+Vs5bfXq1WzZsmWyuyEiclF4cseT7O3Zi+24/PCNBhbtb+XziThVRd5w4KtqryISKYX/+B+9bCIREZFLmOM6/MPmf6Ar2UUqa/Mvrx8mZzt8dHU908vC+E0/X7/m6xQFit67oVgMvvc9yBxXx6iqCr70JfD5zt5FiIicwIniLZq2RkTkEtAWa2Nvz14AdrUNEk9muKmrf3QW0YoVChCJiIgApmFyy+xbAAgHLFbOKAPg9QPduK5LzsmxvnH9yRsqLoZbbx29v7sb3nhjAnssIjJ+ChKJiFwC1jWsA47WIlrSOcDCiK9Qi2hm2UwwDLj22knspYiIyPllUdUiphVNA+CKGeUE/RYt/Smaer16RJtbNjOQHjh5Q6tXw3GT+wDw+99DX99EdllEZFwUJBIRuci1x9uPySKKpbLc0tU3Ooto0SKoqJjMroqIiJxXDMPgfbPfB0DIb7FqRjkArx/0sols1+b3R35/8oZME+6911uPlM/D2rUT3W0RkTOmIJGIyEVueJpex3HZfLiXOX1xLvcbx2YRAVx33WR1UURE5Lw1r2Ie9SX1AFwxo4xIwKJjMM3h7gQAb7e/TW+q9+QNTZ0K11wzev/evbBv30R2WUTkjClIJCJyEYtlYuzo2AHAga44g+kct3SMkUU0cybU1U1mV0VERM5LhmFw6xyvppDfMrlylpd1+8bBHlzXxXGdwrDuk7r5Zq9G0fFeeMHLKhIRmWQKEomIXMQ2t27Gdm0Atjb2MTWW5EonrywiERGR0zCrbBZzyucAsKy2lKKgj+54hn0dcQB2dOygK9F18oaCQbjzztH7+/rg9dcnsssiImdEQSIRkYtUzs6xuWUzAK39KdoH0lzf1kt1sTflfWW40ssiqqqCBQsms6siIiLnveHaRD7L5OrZlQC8eagHx3FxcXm14dVTa2jJEpg9e/T+115TEWsRmXQKEomIXKS2d2wnlfdmX3m7sY/SVJab0mks08siqisZGl523XXezGYiIiJyQnUldSysXAjA4ukllIb99CWz7G4fBGBX1y464h0nb8gw4J57VMRaRM5LChKJiFyEXNctFKweSOU40BXn6rYeppWEACgKFFEWKoOiIrj88knsqYiIyIXjltm3AGCZBtfM8bKJNh7uxXFcAF5vOsUhY9XVKmItIuclBYlERC5C+3v3053sBmBbYz/BbJ73xRIEfN6f/bqSOq8u0dVXg883mV0VERG5YEwtmsqS6iUALJxaTFkkwGAqx77OGAA7O3fSn+4/tcZUxFpEzkMKEomIXIQ2NG0AIJO32dk6wPL2PuqLvBnNAlaAmmgNBAKwevVkdlNEROSCs2bWGgBMw2DVjHIA3mroK8x0NpzJe1IqYi0i5yEFiURELjLt8XYO9x8GYGfLIPm8zS39MaJBL2OotrgW0zBh5UoIhyezqyIiIhec6mh1oTbRomnFRAI+uuIZGnuTALzV+hbJXPLUGlMRaxE5zyhIJCJykRnOInIcl22NfczribEw4P25Nw2T6cXTvaKZV189md0UERG5YN0w4wbAm+lsRX0ZAFuOeEGdnJNjS+uWU2vIMODuu8cuYv3iixPVXRGRU6YgkYjIRSSWibGzcycA+zvjxDJ5buoZoCziB7xaCn7LD/PnQ3n5ZHZVRETkglVfWs+M0hkAXF5Xit8yaepN0jGYBmBj80Zydu7UGqupGbuI9Z49cPjwRHVZROSUKEgkInIR2dSyCdu1cV2XrY19VCbSXGXnvCLVjJj2/qqrJrGXIiIiF77r668HIOS3WFZbCsBbQ9lEiVyCbe3bTr2xExWxfvFFcJzxdlVE5JQpSCQicpHI2tlCenvbQJqOwTTXdPZTVRQEoDJcScQfgcpKmDt3MrsqIiJywVtQuYDqSDUAV8wowzQN9nfG6E9mAXij6Q0c9xQDPMEg3Hrr6P3t7bB9+0R1WUTkpBQkEhG5SGxv304qnwJg65E+AnmbW5NJLNPLIqovrfcOvOoqrwaCiIiInDHDMLiu/joAikN+LptSjOvC1sZ+APrSfezu2n3qDS5fDtOnj97/yiuQyUxAj0VETk5BIhGRi4DruoUpd/uTWQ50x7m8q5+6qDftfVGgiNJgqTft/fLlk9lVERGRi8blUy6nOOANE1s106v1927rAMlsHoDXm17Hdd1Ta8ww4M47R++Px2H9+gnpr4jIyShIJCJyETjQe4CeVA8A25r6wXG5O5Yg4PP+zNeX1Ht1iZYvh1BoEnsqIiJy8bBMi2vrrwWgsijI7KootuOyvakfgNZYK4f7T6P49MyZsHjx6P0bNkB///g7LCJyEgoSiYhcBDa2bAQgk7fZ1TbIrP44l1nefQErQHXUq5nAlVdOUg9FREQuTqumrSLk876AWT2rAoBtzQNk8149otcbXz+9Bm+/HSzr2H35PLz88rj7KiJyMgoSiYhc4HqSPRzoPQDA7tZBsnmH2/tjRIM+AGqLazENE2bP9qbZFRERkQkT9AVZPX01ANNLQ0wrDZHJ2bzbOgDAwb6DtMfbT73B8nK49trR+3fuhKamieiyiMgJKUgkInKB29SyCfDqEm1vHqA0neWarDezimmYTC8eKoKpae9FRETOiqtrr8YyLAzDYNVML5toa2M/tuPVIzrtbKIbb4RodPT+tWvhVGsciYicAQWJREQuYJl8hm3t2wA40pOkL5nluq5+KiJ+AGqiNfgtP5SWwsKFk9hTERGRi1dxsJgVU1cAMLc6SnkkQCydY39HDIB3u96lL9V36g0Gg/C+943e39ICO3ZMQI9FRMamIJGIyAVsW/s2MrY3Le62pn58tsPtyZRXpBpvqBkAq1eDqT/5IiIiZ8u19ddiYAxlE3kznW050ofrujiuU5iF9JRdcQVMmTJ6/8svw1DGsIjIRNMnBhGRC5TruoWhZn3JLA09CZZ2D1Af8opdlgZLKQ4Wg88HK1dOZldFREQuelWRKi6rugyAy6YVEw346I5nONKTBGBr21aSueSpN2iacNddo/cPDnqznYmInAUKEomIXKAO9h0sTHu/vakfXJd7Ygn8lvenvbZkKIto6dKx6xqIiIjIhLp+xvUA+EyTK2aUAV42EUDOyRW+3Dlls2ePPVz89dchkRhPV0VExqQgkYjIBWpjszftfTbvsKttkOmxFEsMb7rdoBWkKlLlHaiC1SIiIudEXUkdM0tnArCsrpSAz6S5L0n7QBrwJpvI2bnTa/SOO0YPGc9m4Xe/m4gui4gcQ0EiEZELUE+yh/29+wHY3eZNe/++WKIw7f304unetPd1dTB9+mR2VURE5JIynE0U9Fksqy0F4K0jvQAkc0nebn/79BqsrPRqCx5vyxbo6RlXX0VEjqcgkYjIBWhz62bAq0u0ramfQN7mxlQK8Ka9n1Y8zTtwrDeVIiIictbMr5hPTbQGgCtmlGOaBvu74vQnvWLTbzS9geM6p9fozTdDIHDsPseBV16ZiC6LiBQoSCQicoHJ5DO83eZ9C9nY6017v3IgTnXQK1hdE60hYAW86XMXL57MroqIiFxyDMPg+novm6go6GPR1GJw4a2h2kT96X52de06vUajUbjhhtH7d+2C5ubxdllEpEBBIhGRC8z2ju3HTHsPcHcqhXn8tPfLlo3+1lFERETOuqU1SykNekPNVs0sB2BX2yCJTB6A9Y3rcV339Bq95hooLh69/6WX4HTbEhE5AQWJREQuICOnve9PZjnck2BqMs1i23vTWZj2HjTtvYiIyCSxTItr6q4BoCIaZE51EbbjerORAu3xdg71HTq9RgMBWLNm9P4jR2DfvvF1WERkiIJEIiIXkEN9h+hOdgOwvWkAXLgnnR497f20aSpYLSIiMolWTltJyBcCYPVQNtH25n6yea8e0etNr59+o1dcAVVVo/e//LJXo0hEZJwUJBIRuYBsbDk67f27bQNYjsONiSQAAStwdNp7ZRGJiIhMqqAvyFW1VwEwvSzM9NIwmbzDzpYBwPvipzXWenqNmibcdtvo/V1dsG3bOHssIqIgkYjIBSOejbO/Z2ja+3Zv2vsb0hnKvVJE1BbXetPe+/1ePSIRERGZVFfVXoXP9AGwepaXTbS1sQ/b8WoIvdH0xuk3unAhzJgxev+rr0Iud8Z9FREBBYlERC4YOzp24OK9qdzVOgjAnSkvi8jAODrt/eLFEApNSh9FRETkqKJAESumrgBgdlWUimiAeCbP3vYYAO92vktfqu/0GjUMuP320ftjMXjzzXH2WEQudQoSiYhcILZ3bAegN5GlYzBNTS7HwkQagOpotTftPWiomYiIyHnkuvrrMDAwDKMw09lbR3pxXRcX98yyierrvS+Fjrd+PSQS4+yxiFzKFCQSEbkAdMQ7aI+3A7CnzcsiuiuZwjK9sWZTi6Z6B1ZVjZ2CLiIiIpOiIlzBoupFAFw2tYRo0EdPIktDjxfM2da+jXQ+ffoN33qrV6NopEwGNmwYb5dF5BKmIJGIyAXgnY53AHBdl93tMUzH4YbBOOAVrC4Ped9MsnKll4YuIiIi543r668HwDINrqgvA+Dtxn4Ack6Ot9vePv1GKyth1arR+zdtUjaRiJyxCQkSrV27loULFzJv3jwee+yxUfdnMhk+9rGPMW/ePK6++moaGhom4rQiIpcEx3UKQaKW/hSxdI7L4ymqh+oTTYlOwTAMsCxYvnwyuyoiIiJjqC2pZVbZLACW1pbis0wae5P0JrIAbG7djOu6p9/wzTeDz3fsvmxW2UQicsbGHSSybZsvf/nLvPDCC+zatYsnn3ySXbt2HXPMP//zP1NeXs6BAwf4j//xP/Knf/qn4z2tiMgl43DfYWJZr8Dl7jZvfUcq5QWGgClFU7wDFy6EaHRS+igiIiLv7Zq6awAI+S0um1oMwPamfgB6U70c6D1w+o0WFcHq1aP3K5tIRM7QuINEmzZtYt68ecyZM4dAIMADDzzAM888c8wxzzzzDA8++CAAH/nIR3jllVfOLFIuInIJGs4iytsO+ztjFGdyrEimAIj6oxQFirwDVbBaRETkvLWgcgGlwVIAVgwNOdvVNkgmbwOwsWXjmTV8/fXKJhKRCTPuIFFLSwv19fWF23V1dbS0tJzwGJ/PR2lpKT09PeM9tYjIRS9rZ9ndvRuAg10JsnmHm2MJIn4LGFGwuqwM5s6dpF6KiIjIyZiGyZW1VwJQVRSktixMznYKWcIHeg/QkzyDz0jFxcomEpEJc94Vrn788cdZvXo1q1evpqura7K7IyIyqXZ37SZre/UK9rQPguuyJhYv3F8TrfE2rrhCBatFRETOcyunrcRnelk/w9lE25v6C6MsNrduPrOGlU0kIhNk3EGi2tpampqaCrebm5upra094TH5fJ6BgQEqKyvHbO8LX/gCW7ZsYcuWLVRXV4+3eyIiF7ThoWbJbJ6GniT1sRQzh/5yl4fKCfqCXnBoxYrJ66SIiIickog/wrKaZQDMqS6iKOijL5mlsTcJwNttbxe+HDotyiYSkQky7iDRlVdeyf79+zl8+DDZbJannnqK++6775hj7rvvPn74wx8C8LOf/Yz3ve99hYKrIiIytsHMIIf6DgGwtz2G67qsSaXwW96f7sJQszlzoLR0sropIiIip+Gq2qsAsEyDy+u8/9/DBawzdobt7dvPrGFlE4nIBBh3kMjn8/G9732PO++8k0WLFvHRj36UJUuW8O1vf5tnn30WgM997nP09PQwb948/vf//t889thj4+64iMjFbkfHDtyhae53t8UwHYdrhwpWW4ZFVaTKO/DyyyeriyIiInKaphVPo77Eq9e6tLYUyzQ41JNgIJUDYFPLpjOb5EfZRCIyAXwnP+Tk7rnnHu65555j9v3lX/5lYTsUCvHTn/50Ik4lInJJcF2X7R3eN4k98QydsTQLY0mmWl4WZlWkCsu0vG8ML7tsMrsqIiIip+mq2qtoGmwiEvCxoKaY3e2DvNPcz43zq+lKdtHQ38Ds8tmn3/D118OWLZDPH903nE10220TdwEictE67wpXi4gIdCQ66Ex0ArC73Zv15NZMFtP0gkRTiqZ4By5cCMHgpPRRREREzszi6sUUBYoAWD5UwHpn6yA52wG8bKIzomwiERknBYlERM5Dw/UIXNdlT9sgPtthdcIrahmwApSHyr0Dly2brC6KiIjIGbJMi9XTvWDO1NIQU0pCZHI2e4e+GNrTvYf+dP+ZNa7aRCIyDgoSiYicZxzXYUfnDgCa+1LEM3lWxFOU+4ayiKJTvOL/oRDMmzeZXRUREZEztGraKkzD+zi2YiibaFtTP67r4uKypXXLmTX8XtlEyeQZ9lZELhUKEomInGcO9R0ino0DsLttEID3ZdOFWSELQ80WLRr9TaGIiIhcEIqDxSyuXgzA/ClFhP0W3fEMrf1pALa2bSVn586s8RNlE73xxni6LCKXAAWJRETOM8NDzXK2w/7OOKFcnuUJb1azokBRoYaBhpqJiIhc2K6uvRoAn2myrLYUgG3N/QAkc0l2du48s4aVTSQiZ0hBIhGR80gyl2RX1y4ADnbGydkO16XTRH3en+sp0aEsoqIimDVrknopIiIiE6GupI5pRdMAWFZXimEYHOiME097s5Od8ZAzUDaRiJwRBYlERM4j73S8g+3aAOxoGQBgTTpduL8mWuNtLF0Kpv6Ei4iIXMgMw+Cq2qsAKA75mVcdxXVddrZ67wFaYi20x9vPrHFlE4nIGdAnDBGR84TrurzV+hYAfYksLf0pyvI2i9MZACrDlQR9Q9Pda6iZiIjIRWFpzVLCvjAAy2rLAHi3dRDHdQGvNtEZUzaRiJwmBYlERM4TzYPNdCW7AArfIN6Ry+AbKlg9rdhLR6eiAqZPn5Q+ioiIyMTyW36WT10OQH1FmJKwn1g6x5EeL9vnnY53zryAtbKJROQ0KUgkInKeeKvNyyKyHZddrd6sZjemvILVAStAZbjSO3DZMhgKHImIiMiFb9W0VYA3/GzpdK+A9c6hYefpfLpQr/CMKJtIRE6DgkQiIueBdD7Nu53vAnCoK04qZzPXcKhLePWIphVNwxgODGmomYiIyEWlOlrNjNIZACyZXoJhGBzuTpDIeAWsh79IOiPKJhKR06AgkYjIeWBHxw5yjpdKPlyw+q58rhAYmlo01Ttw2jSoqpqUPoqIiMjZs3LaSgCiQR9zqqI4rsuuNi+zuHGgka5E15k3rmwiETlFChKJiJwHhotSDqRyNPYlsQy4ejABQHmonLDfK2ipLCIREZGL05LqJYR8IQCW1h4dcuZORAFrZROJyClSkEhEZJK1xlppi7cBsKt1AFy4JmRSMjzUbLhgtWHA0qWT1U0RERE5i/yWn8unXA7AzMoIxUEfA6kcTX1efcLtHdvJO/kzP4GyiUTkFChIJCIyyYa/GXQcl3eHClbfOjTtvd/0UxUZGl42cyaUlExKH0VEROTsGx5yZhoGS2qPLWCdzCXZ3bX7zBtXNpGInAIFiUREJlHWzrKjYwcADT0J4pk8VQGLpZ19gFeLyDSG/lRrqJmIiMhFbWrRVGqLa4HhAtZwoCtOMutlEI1ryBkom0hETkpBIhGRSfRu57tkbC9raGeLl0V0t5snMDSbSWGomWXBokWT0kcRERE5d1ZNXwVAccjPrMoojuOyuy0GwOH+w/Qke868cWUTichJKEgkIjKJhr8RjGfyHO5JYAJrevoBKA2WEvFHvAOXLoVIZHI6KSIiIufM0pqlBKyAtz19ggtYw4mziTZsGF+7InJRUJBIRGSSdCY6aRpsAryC1a7rcq0PKge9ApWFLCKAq66ajC6KiIjIORawAiyr8YaYz66KEg346Etmae33JrTY1r4N27HP/ATFxbBq1ej9Gzcqm0hEFCQSEZksw98Euq7LzqGC1ffE4gD4TB/VkWrvwLo6qK2dlD6KiIjIuTc85Mw0DZZM9yat2DFUwDqRS7C3Z+/4TnDDDcomEpExKUgkIjIJ8k6e7e3bAWjsTTKYyjENl0W9XrBoSnQKlml5B1999WR1U0RERCbBtKJpTC2aClCY5Wx/Z4x0zssgeqv1rfGdQNlEInICChKJiEyCXV27SOW9YWXDBas/mE5heuUGjg41KyqCxYsno4siIiIySQzDYNU0L4hTGvYzoyKC7bjsafPeMxzqO0R/un98J1E2kYiMQUEiEZFzzHVdNjR5b8ASmTwHu+P4XIcb+rw3fsWBYooCRd7Bq1d7M5uJiIjIJWXZlGX4Tb+3PZRNtKNlENd1cXHZ2LxxfCdQNpGIjEFBIhGRc6yhv4G2eBsA7zT34zgut2VzFNkOANOLp3sHWtbY09SKiIjIRS/kC7GkZgkAc6qLiAQsehIZmvu8TOQtrVuIZ+PjO4myiUTkOAoSiYicY280vQFAznbY3jwArsv7RxSsronWeAcuWeINNxMREZFL0vCQM8s0WFFfBsCbh3oAyDm5wnuKM6ZsIhE5joJEIiLnUGeik/29+wHY1TpIOmezwrGpS3nT2k4vnq6C1SIiIgJAXUkd9SX1ACyvLyPoM2npT9Hc5wVwNrdsJpFNjO8kyiYSkREUJBIROYeGaxE5rsvWxj4APpROYRgGBga1xUNT3dfWatp7ERGRS5xhGNw862YAgj6LK2aUA7DxUC/gZRNtaB5nMEfZRCIygoJEIiLnSCwT452OdwA41BVnIJVjuuFyeX8MgClFUwj6gt7ByiISERERYG753MKXSCvqywj4TJr6krT0e7WJNrVsIpkbZzBH2UQiMkRBIhGRc2RTyyZs18Z1XbYc8bKI/iCfLUx7P5xOTlGRV49IRERELnmGYbBm1hoAQn6LK+qHs4m82kRZO1vIVD5jyiYSkSEKEomInANZO8vm1s0AtA2kaR9IEzENrusZAKAiXEE0EPUO1rT3IiIiMsK8inmF2U+vmOFlEzX2JmkdkU2UyqXGd5ITZRO9Mc7i2CJyQVGQSETkHHi77W3Sea849VtDWUT3GTbhbB4YkUVkmmN/kyciIiKXLMMwuHmmV5so5LdYUVcGwMbDXm2ijJ3hzeY3x3eSE2UTbdgAvb3ja1tELhgKEomInGWO6xSKSvYlshzsjmMZcFv/IABFgSLKQmXewUuWeG/SREREREZYULmAaUXTALhiRjl+y+RIT4K2AS+D6M3mN89ONpFtwwsvgOuOr20RuSAoSCQicpbt7tpNf7ofwJvRzIWbQhZVA94Y//qSegzD8A5WwWoREREZw8iZzsIBixX1ZcDRmc4ydoaNLRvHd5LiYrj22tH79++HvXvH17aIXBAUJBIROYtc1+WNJm8sfzKbZ1eblz30gUQcgKAVpDpa7R2sae9FRETkPSysXMiU6BQAVg5lEzX0JGgf8Ia0v9n8ZmF4+xm78UYoLR29f+1ayOXG17aInPcUJBIROYuODByhJdYCwPamAWzHZUmRnzlt/QDUldRhGkN/iq+6CoYzikRERESOc3w20eV1XjBn02FvprN0Ps2mlk3jO0kgAHfeOXp/fz+sXz++tkXkvKcgkYjIWTScRZSzHd5p7gfgQ9kMhutiGRbTir3aAkSjmvZeRERETmpR1SJqojUArJpZjs8yOdSdoHPQyyDa0LRh/NlEixbB3Lmj97/+uopYi1zkFCQSETlLuhJd7OvZB8DutkFSOZvp0QDLW7xv+6YXT8dnDhWHXL16dKFIERERkeOMnOksEvBxea2XTfTm0ExnqXyK3zX8brwngbvvBss6dn8+7w07E5GLloJEIiJnyWuNrwHguC5bh6a9v9d0CGRyGBjUldR5B5qmFyQSEREROQWLqxdTHfFqGnrZRAaHuuI093mTYmxs2Uh3snt8J6mqGruI9b59KmItchFTkEhE5CzoS/Wxs3MnAPs74vSncpSE/VzX6QWLaqI1BH1B7+DFizXtvYiIiJwywzC4aeZNAESDPlbPrABg3d4uHNfFcR3WHliLO95p62+6CUpKRu9XEWuRi5aCRCIiZ8H6xvU4roPrumxu8NK/7yz2UdoTA6C+tP7owZr2XkRERE7T0pqlTC+eDnjZRMUhP93xDDtbBgA40HuA/b37x3eSExWx7uvz6hOJyEVnXEGi3t5ebr/9dubPn8/tt99OX1/fmMdZlsWKFStYsWIF991333hOKSJy3hvMDLKtfRsAh7sTdMczRIM+bukbBKAyXElRoMg7ePp0qKubpJ6KiIjIhcowDO6edzcAfsvkxvlVALxxsId0zgZg7YG15J38+E60eDHMmTN6//r1XrBIRC4q4woSPfbYY9x6663s37+fW2+9lccee2zM48LhMNu2bWPbtm08++yz4zmliMh5b0PTBmzXxnVdNg0Vkby+JsrUI15tgJllM48efPXVmvZeREREzkh9aT2XT7kcgPk1RdSWhUnnbN485E2S0ZvqZWPzxvGdZLiItXncR8d8Hn79axjvkDYROa+MK0j0zDPP8OCDDwLw4IMP8stf/nIi+iQicsFK5pJsad0CQFNfivbBNGG/xR3xBKbjUh4qpyQ4NLZf096LiIjION025zYCVgDDMFizsAbDgO3NA/TEMwD87sjviGVi4ztJdfXYRaz374fdu8fXtoicV8YVJOro6GDatGkATJ06lY6OjjGPS6fTrF69mmuuueakgaTHH3+c1atXs3r1arq6usbTPRGRc+7N5jfJOV4hx+EsolV1Jcw40A7AjNIZRw9etUrT3ouIiMi4lARLuHHGjQBUFwdZVluK67r8bl8XruuStbO8cviV8Z/oREWsX3gBMpnxty8i54WTBoluu+02li5dOmp55plnjjnOMAyMEwyZOHLkCFu2bOHHP/4x3/jGNzh48OAJz/eFL3yBLVu2sGXLFqqrq0/zckREJk86n2ZTyyYAWvtTNPclCfhMbrXzBFJZSoIllIXKvIM17b2IiIhMkGvrr6U8VO5tz6ki6Ldo7E1ysCsBwLb2bTQPNo/vJMGgN+zseLEY/Pa342tbRM4bJw0Svfzyy+zcuXPU8sEPfpApU6bQ1tYGQFtbGzU1NWO2UVtbC8CcOXNYs2YNb7/99gRegojI+WFzy2bS+bS3PTSj2fK6Mubu9/5OziydeTSYvnjx2N/GiYiIiJwmn+njjrl3ABAOWFw7uwKA1/Z3kbcdAF7Y/wLueOsHXXYZLFgwev+mTdDaOr62ReS8MK7hZvfddx8//OEPAfjhD3/IBz/4wVHH9PX1kRlKP+zu7ub1119n8eLF4zmtiMh5J2tn2dC8AYDOWJrD3Ql8lsmasElJ1yBFgSIqwhVHH3DVVZPUUxEREbkYXVZ1GXPKvVnILq8rozIaYCCVY2tjPwAtsRbe6XhnfCcxDLjnHvD7j93vuvD88+A442tfRCbduIJEjzzyCC+99BLz58/n5Zdf5pFHHgFgy5YtPPzwwwDs3r2b1atXs3z5cm655RYeeeQRBYlE5KKztW0ryVwSgM2Hvelgl00rYfGORsCrRVTIIpo2DerrJ6WfIiIicnEyDIO75t2FaZiYpsHNC71RHpsbeomn8wC8ePDF8RexLiuDNWtG729thS1bxte2iEy6cVVMrays5JVXRhdBW716Nd///vcBuO6669ixY8d4TiMicl7LO3leb3wdgN5Elv1dMSzT4I6AQXl7PxF/hOrIiBprmvZeREREzoKaaA1XTr+SjS0bmVERYW51EQe74vxufxf3LJ1KMpfkF3t+wacv//QJ68mekmuuge3bobPz2P2vvAKLFkFx8fguREQmzbgyiUREBLa3byeW9b6V29zQCy4smlrM0nfHyCKqrITLL5+sroqIiMhFbs2sNUT8EQBuWlCN3zLZ3xFjV9sgAIf6DrG+cf34TmJZ8IEPjN6fycDateNrW0QmlYJEIiLjEM/GWdewDoCBVI497TEMw+Bew6G4J0bIF6ImOqKo/623ejObiYiIiJwFYX+Y981+HwClYT+3DA07e3VvF72JrLfd8CpNA03jO9GMGbBy5ej9774LBw6Mr20RmTT6pCIicobyTp6f7PxJIYto46EeXNdlUXWUZbu9N171JfWYxtCf2unTvRRsERERkbNo1bRVhSLWi6YVs3BqMXnb4YUdbeQdB8d1eHr304VZWc/Y7bdDJDJ6/69+Bbnc+NoWkUmhIJGIyBlwXZdf7/81TYNeMOjdlgF2tQ1imgb3uzkigykCVoBpxdOOPui221SLSERERM46wzC4/7L7ifqjGIbB+y6roTTspyueYf3+bgD60/08t/c5XNc98xOFw3DnnaP39/XB+nEOaRORSaEgkYjIGdjUsomtbVsBaO1P8cper3Dj7XMruXxvC3BcFtGcOd4iIiIicg4UB4u5f9H9AAR9FncvnYZpGGxr6udQVxyAd7ve5e32t8d3ossvh1mzRu9fvx56esbXtoiccwoSiYicpkN9h3jx4IsAxNI5nn+nDcdxWV5Xxh2DcYLJLCXBEmpLao8+6NZbJ6m3IiIicqmaVzGP6+qvA2BqaYjr51UC8JtdHcTTeQBe2P8CXYmuMz+JYXhFrC3r2P22DS+8AOPJVBKRc05BIhGR09Cb6uWn7/4Ux3XI2Q7PbW8lmc1TXx7hfTPLmLmjkaAVZGnN0qNZRIsXQ23tezcsIiIichbcOvtWphdPB2DljHJmVkZJ52zWvtuG47rknBw/2/UzcvY4aghVVcF1143ef+AA7Nlz5u2KyDmnIJGIyCnK5DM8ueNJUvkUruvy0q4OOmMZSsN+7lk2jVm7mgnkHJbWLCVgBbwHGQa8732T23ERERG5ZFmmxUcWf4SAFcAwDO5YPIVIwEdzX4rNh3sB6Eh08MPtPySWiZ35iW68EUpLR+9fuxay2TNvV0TOKQWJREROge3Y/Hz3z+lKeunYW470sa8jht8yuXf5dErzeep2N7OwciHFweKjD7ziCu/bNREREZFJUhGu4AMLPgBANOjjziVTAHjzcC+NPUkAmgebefytx2kZbDmzkwQCcNddo/cPDMBrr51ZmyJyzilIJCJyEh3xDr6/9fvs7dkLwKGuOK8f9GYGuWvJVKqKgszcfoTZ0TqmFE05+kCfD26+eTK6LCIiInKMy6dczvIpywGYWRll9cwKXNfll9ta2NEyAEAsG+MH237Ajo4dZ3aSyy6DefNG73/jDejuPtOui8g5pCCRiMgJOK7D74/8nsffepy2eBsAnYNp1r7bDi5cO6eSuTVFVDV2s6wpw+yy2cc2cNVVY6ddi4iIiEyCe+bfQ0W4AoDr5lWyckY5juvyyu4OXt3Tie245J08T+9+mpcPvYzjOqd3AsOAe+4Zu4j1r3+tItYiFwAFiURExtCZ6OT7W7/Pbw//Ftu1sR2XjYd6eGpLE9m8w/yaYq6aXUFx1yCrNhxhcdUiDMM42kAwCDfcMHkXICIiInKcoC/IR5d8lKAVxDQMblpQze2Lp2CZBtub+/nF2y2ksjYA6xvX89TOp0jn06d3koqKsd8DHToEu3ZNwFWIyNmkIJGIyAjJXJLXjrzGP235J1pjrQB0xzP8ZHMTGw714Dgul9eVcueSKYQTGa5Yt4flFYvwmb5jG7rhBohEJuEKRERERE5satFUPrPiM5QGvWznJdNL+YOVdUPFrJM8ubmR7ngGgH09+/j7zX/Pjo4duKeTBXTDDVBWNnr/2rWQyUzAVYjI2WK4p/Xbfm6tXr2aLVu2THY3ROQilslnODJwhMN9hzncf5j2eHvhPsdx2XKkj42He7Adl+KQn9sXT2FGRQRfNs+qX2/j6uCcQtp2wbx58IlPgKk4vIiIiJyf4tk4//7uv9M40AhALJ3jue1tdMbS+C2TO5dMZV5NUeH4+pJ67p5/N9OLp5/aCfbuhSefHL3/uuvgjjsm4hJEZBxOFG9RkEhELimu69KV7GJ3124O9B6gJdYy5nj73kSGF9/toGPQS7FeWlvKjfOrCPosDNvhmnUHuDpXQ1mo7NgHTp0Kn/2sN9xMRERE5DxmOza/2v8rtrZtBSBvO7y0u4O97TEAFk8r4fp5VUSDRzOmV0xdwa2zbz12NtcT+fGPYd++Y/cZBnzyk2MXuBaRc0ZBIhG5ZLmuS3u8nV1du9jdvZvu5OjZNWzHpWMwTVNvkqa+JK0DaRzHpTjo47bFU5hZGR1ujPe/m+OKTnP0ELOSEnj4YW8tIiIicgFwXZfNrZtZe2Atjuvgui5vHenjjaFh9n7L5KrZFVwxowzfUJZ0wApw44wbuabuGvyW/8SN9/XB3/0d5PPH7g8G4XOfg5qas3hlIvJeFCQSkUtOe7ydHR072NW1i7503zH3ua5LdzxLY2+Spt4kLf0pcvaIjCIDlkwr5aYFXvYQQGmwlI921VC7df/okwWD8NBDMGXK2bwkERERkbPiUN8hfvruT0nlUwD0JbO8tq+bQ91xAErDfm6cX83c6mhhso6SYAlrZq1hxdQVmMYJhtn/7nfw6quj95eVeV+uFRWNvk9EzjoFiUTkkuC6Lvt797OhaQOH+w+Puq99MM2BzjgHOuMMpHLH3F8eCTCjIkJ9RZi68gghvxcc8mVy3Jio4tqBEgJHmkaf1DS9GkRKmxYREZELWG+ql39/99+PqdF4pCfB7/d10ZPIAlBXHuHmBdVUFx8dWl8ZruR9s9/H4urFx872CmDb8KMfebObHa+uDh58EPzvkY0kImeFgkQiclHLO3m2t2/nzeY36Up2Ffa7rkvrQJr9HTEOdsaJZY6mO0cCFrMqo9RXRKiviFA0Yry9L5unsrGbmc0xrs5UURksP/HJ770XVq06K9clIiIici7Zjs2W1i2sa1hXyCpyHJcdLQNsONRDOmeDAYumlnDNnEpKw0cDPNOLp3Pr7FuZUz7n2GBROg3f/z50jx7yz9Kl8Ad/4NUqEpFzRkEiEbnoDBeh3tW1i80tm0nkEoX7MnmbnS2DbGvqJ5Y+mjFUFPQxr6aIeTVFTC8L43NcwgNJIoMpIgNJwoNJyhMOdUkflYFSaqI1J06fBrjxRrj11rN5mSIiIiLnXDKXZF3DOra0bilM8pHO2bx5qId3mgdwXBfLNFhWW8pVsyuIBI5+2TarbBbX1V/H/Ir5R4NFvb1eoCiZHH2yNWu8RUTOGQWJROSCl3fytAy20DTYRONAI00DTYVvuIYNpnNsa+xnZ+sA2bz3hqYk5Gf+lCLmV0aYl89T2h2jtGuQ4q5BQok0fsNHWaiM8lA5ZaEyIv7I6FTpsSxbBh/+sL75EhERkYtWZ6KTFw+8yMG+g4V9/cksbx7qYU9HDFzwWyYrZ5SzcmZZoZYjQFWkimvrruXyKZd7Ba4bG+GHP/SGoB3vD/7Ae28lIueEgkQickHJ2Tk6Eh20x9sLS1usDdsd400F0DGY5q0jfezvjDP8Z21GaZC7AgZLcjkvKNQTwxoKHIV8Iaoj1VRFqigJlpxaUGhYWRlccw1cdZVXj0hERETkIua6Lvt69vHiwRfpTfUW9nfFMrxxsJvD3V42d8hvsXpmOcvqSo8JFkX8Ea6cfiVX1l5J0Z5D8POfjz6JZXn1iWbMOOvXIyIKEonIeSyejR8TDGqPt9OT7MFl7D9PrusykMrR2p+mdSBFa3+K3qFiioZhsKgqwoeyaZYf7iSYzBQeF/aFqY5WUx2ppihQdHqBoZISWLLEGzc/fbqyh0REROSSYzs2W9u28rsjvyOejRf2t/SneH1/N60DXoZ3wGeyZHopV9SXUTKiZpFlWCytWcp1+9PUvLVn9HuxQMCbDGTWrHNxOSKXNAWJROSMuK5L3smTyqdI5VKk82lS+aF1znsjUBQooiRYQkmwhOJgMT7TN6qNjJ0hkU2QyCUYzAweExAa+SZjLJm8TXc8S8dgmtb+FK39aZLZ/DHHBHwmK2uifCCZZMGBdgJDdYhMw2Rq0VSmF08n6o+eXmCoqAgWL/YCQ/X1CgyJiIiIAFk7y6aWTaxvXE86nwa893sNPUneOtJHc59Xd8gwYF5NMStnlDGtNHy0Adfl6jebWdoJU4qmELACR+/z+eCBBzRrrMhZpiCRiLynZC5Jb6qXnmQPvalebzvlbQ//8z9VEX/EG8KFQSKXIJFNnHCY2Eiu6xLP5OmKZbwl7q2Pn6oeIOy3mFYWprYsxMywj5VN3czY24pvKHjkN/3UltRSW1zrjYF/LyUlUFUFlZXHrktLFRgSEREROYFULsXrTa+zsXkjOefo+7XOwTRbG/vZ1xHDGfq4Ob00zPL6MubWRPGZJmbeZsXabZR2x6mKVDGteBqlwVIs0/KGnv3BH3hf1onIWaEgkYiMksgmeKvtLba1b/PGl7suwWSW8KA329fwrF++TI58wEcuHCAX9JMN+cmF/ORCATKRAImyKK51erV5HMelN5kdFRBK50YHkyzToDIaoLo4yPTSMNPKwlSEfFS09THlUCdVjV2FWkMRf4T6knqmFE0Ze1aySMTLCqqr89bTp3upzSIiIiJyRmKZGK81vsbbbW8fEyyKp/Nsa+pnR0s/maH3amG/xaJpJSytLWWKCSte3E60/+gMtVF/lOJgMcXBEvx/8IdUXvM+L3AkIhNKQSIRKWiPt7OxeSM7OndgxhPU7WqmorWP8GASK+/gui7ZvEM655DK22RzDnnHIe+45B0X2z66DWD6LQYqiumvKSE+pZTktDICJWEMA5JZm2TWJjW0TmbzJLM2fckstjP6z0/Qb1FTFKS6+OhSHglgmQa4LiXdMaYc7KC6oZNAOoeBQVGgiNJQKZXhSspCZaOHlC1aBJdd5gWGKiqUHSQiIiJyFiRzSba0bmFTy6Zjyglk8w672wbZ0TJAd/xovcjpZWGuqIrykXcOUd47dvmBg9deRnz5IiL+CGF/2Fv7vPVw9npJsITSUClhX/j0SguIXMIUJBK5xDmuw57uPWxs3siRgSP4U1lm7Gyidk8LqWSW7niGdM4hnbNJ523G+5ehJxyktSRCa3GY9qIwnUUh7ONmAisJ+6keERCqKQ5SFPRhAP50jlAiQyieLiwVLb0UxbOUhkopDZYW3hSM+e2SaXq1hG68Eaqrx3cxIiIiInLK8k6enZ072dC0gY5ER2G/67p0DGbY2TrA3vYYOdvLLirC5eFDrcxPpIgGfRQFffhGZKkfXDWHpmUnn/XMb/oLAaOoP4plWpiGOWqxDAuf6RtzCfvDFAeKKQoUEfKFFHSSi5aCRCKXsD3de1h7YC396X58mRz1O5uo3dXMwECK9sE0sXR+1GP8lknIbxLyWwR9Jn7LxDINfKaBzzK9ten908zaDtm8t2TyDjnbKaQU+y0Tv2Vg+S0SFUUkqktITSklEglQZDv401n86Rz+TI5AOoc/lSWUSGPlHfymn6JAEUWBIoqD3j/rk35DZFmwYgXccAOUl5+Np1NEREREToHruhzuP8yGpg0c6D1wzMy12bzDvo4YO1oG6BhM47MdPrzrCHP6vIyikM8kGvQRDfoIWCYNi2o5uGouoaCPUMAkYJlnPYDjM32FgFFxsJigFcRn+vBbfvymv7AdsAIUB4oLX2AquCQXAgWJRC5BOTvHiwdfZEvrFqxsnrpdzUx7p5He3gTtg2myQ4EcyzSoLgpSHPIR8luE/JY3vOscCvvChYDQ8BKwAqf+DzYU8oJD113nFaIWERERkfNGf7qft9ve5u32txnMDB57XzJL20Ca7r4ky1/fw5TmnjGz2vdXFvPsZfXkLAvTMAj7LYpCPoqDPopDfopDPu92yEfYb2EYBqYBpmFgGgbG0LZlevvPViBnZEZTUaCIoBUsBJNGLmFfuJAhH/QFz0pfRE5EQSKRS0xnopOf7foZnYlOytr7mf/bnXS09NMdzzBcCijkt5haEqK6OFgICuX9FqmSCKmSMMmSMKmSCNloiCLHRzQH0bxBNAvhrEsk4xDo7iMfGyBjZ8jaWbJ2dsz+mIaJ3/T+OfotP0EreExA6IwKEvp8sGABXH65N02qz3emT5eIiIiInAOO63Cg9wBb27ayr2cfjuscc7/huMxfv4fS3S3EM14ty/xwPUzboTUS4qnFM+nzja+YtWGAZXrZ8cPZ8pbpBZ6GM5iKghbRgG/otjUim97EZ3mBp4kS8oUoC5VRGiylNFRKWaiMinAFFeEKykPlJ5+tV+Q0nSjeok9UIhcZ13V5q+0t1h5YS97OUbe7harX9rC3PUZ2aNx3adjP1NIQZWE/hmFg+0waL6tlcPlllNXMoDJSxcyhf0qVkcqj05GOfULo7YWmJmhqwmk8QratmUzeK0o4HBSyDGtivq0xDJg9G5Yt8wpSh0Ljb1NEREREzgnTMFlQuYAFlQuIZWK80/EORwaO0DLYQiKXwDUN9t14GfP9FrV7W0c9fhmwZrCPbWuW0FkSIZbOE0vniWdyhe1YOk8mb+O43ntjxwXHdQvbtuviDAWd8qMn1j1l1lBgKWiZRIcymopC/qG1V1spGvDh9xn4hwJMJ3o/nM6naY+30x5vH/P+kmAJ5aFyKsIVFAeLCfvChP3hUeuIPzL2DL8ip0iZRCIXkVQuxbN7n2V3927MvM2C9XvJbW2gpT8FQFHQx5zqKJGAFx92LJPWhdPx3bSGVfNvZl7FvIkJ5KRS0NwMra3e0tIC8bFnrDghvx/KykYvM2ZAcfH4+ygiIiIi5w3XdRnIDNAaa6VlsIXWwRaMDW8yY9OeMY+3fSa7b1pM94yqMzqf47rYjrcMZynlHZdk1iaRyQ8tNomst53M2uQKM/w65O0z+BhtgN/0an0GLINwwCoMkysJ+SkJHx02FzzDTCkDg7DfK+MQ9UcLWfvRwIjtof0Rf+TMsvnloqDhZiIXubZYG0/tfIqBzAChWIq5v3mHzr3thaLU08vC1JWHMQ0DxzToXlhP2R33sXLhGqoiZ/bP9ZS5LsRiRwNGXV1eRlA0CpHI0WX4dkmJt1bBPxEREZFLluu6pN7Zivvzp8lnUuScHDk7R87JkXfyZOwsDavmsn9RDYPZGHln9GQsZ7NvwwGmTN4hns4Ty+SIp/PEM8PZTUeHy2VtB9s59Y/eIb9FadhPWcRPWdhPaThAWcRPadhP2G9hTlD90Ig/QlGgqDDM7fh1caBYgaSLlIabiVzEepI9/HD7D0nnvWnia369jYaWfmzHxW+ZzKspojTsjWMenFpO9Sc+z32L30fId46GahmGF/gpKYHLLjs35xQRERGRC5phGESWr4LqafDkk96XjsdZdATupgT3A58gWRphIDPAYGaQTD6Di4vjOqMW27ELgaaRS9bOksgmiGVjxDIxbPfEY9EMw8BnGfisowEdCL/n9TiOS85xyNku2bxDMusFkwZTOWKZofVQsCmds0nnbDoG02O2FfCZhHzW0dmI/RZhv0nY79VPigR8RAIWkYBXY8lvjT0ELZlLkswl6Ux0nrDfIV+IqD9KNBAl4o+MuR31e7eVnXThUyaRyAUua2f5/tbv0xnvoH5HI+ZLO+kY8P6ZlIX9zK0pKvxTGFyxiKs++xdMLa2dzC6LiIiIiJyegQEvUNQ+ds0efD646Sa4/nqwxh+kcF2XdD5dCBglc8lCJlPeyR+zncwlGcwMFpb3Ci6d6rmTWZv+ZI7+VJaBVI7+ZI6BVI7BVI503h5z9rf34rfMQtDoaADJRyRoURT0FYa8BX3muMtPhHwhQr4QQStIwAoQ9AUL2yFfiJJgSWH2t9JgKdFAVHWUJoEyiUQuQq7r8tze5+hMdFK7u4XQK7toGkhjGDCjIsLUkhCGYeBYJsZ9H+SuD/wxASsw2d0WERERETk9paXw2c/C00/Dvn2j78/n4be/hXffhfvug9rxfSlqGF5tn7A/TE205pQf57puIWg0kBkgnU8XZgA+fhnMDDKQ9jKfXI5GfQzDKMywVls+OjvJdb0hbpmcQzpvD2UdOaRyNsmsN8QtOVRPKZn19uVsh4GUw0Aq957991smxaGjtZGiAYuw3yI8FFgKD99+jyFv6XyadH7sDKixmIZJSbCEslAZ9SX1zC6fTX1JvWZ0myTKJBK5gG1s3sgLB16grK2Pmc9sYW/rIAALpxRTHvWCQfniImo//59YdPn7JrOrIiIiIiLj5zjw0kuwYcOJjzEMuOYauOUWCJz/X5A6rkMsE6M/3c9AZoD+dD+9qV76Un30pnqJZUcPszsdruuStR2SGbsQNEpmjwaR4sOzwmVyZPPOqTVqQMjnBYuGg0eRgEXY7yPsNwn4LAI+k4Bl4vcZBH1ewe6Q3zrh0LeRLMOirqSO2eWzmV02m7qSOg1jm2AqXC1ykWkcaOSJbU8QGEyw9Beb2XOom7zjUlsWpr4iAoA7Zw4rvvxfKa/U8DIRERERuYgcPgzPPgt9fSc+JhyGlSvhyiu9WXIvUFk7S1+qj750HwPpAVL5FKlcatQ6kUucVgbPWDJ52wsYpXMMpvMkMzapnE1qKKDkbduk8jacYSQh6LcoHhriVhzyURT0spYqowGqioOYYwx3C1gBllQv4br666iOVo/rGsVzVoJEP/3pT3n00UfZvXs3mzZtYvXq1WMet3btWr7+9a9j2zYPP/wwjzzyyLg6LXKpi2Vi/NNb/0QqMcDy59/iyK42Epk8pWE/l00txjAM4ksXcvvX/g/BwHsX0BMRERERuSDlcrBuHbzxBu9ZpMcwYNEiuPpqmDHjwppB13EgHveKdg8OQiLh9d/n82ovjVz7fOQDPhKmTcKyiTtp4rkEiWyCeDZOPBsnkfO2E9kEqXzqzLvluqRzXmZSKmsfG0DK5cnmveylXN6b2S07tE7n7Pec5S3oM6krj1BX7n3xXRkNjKqRtLByIdfPuJ4ZpTPOuP9ylmoSLV26lJ///Od88YtfPOExtm3z5S9/mZdeeom6ujquvPJK7rvvPhYvXjyeU4tcsmzH5qe7fko8E2PJ+j10H+gkkckT9JnMrynyAkTTKrn6C/9FASIRERERuXj5/XD77bBkiZdVdKKi1q4Lu3Z5y9SpcNVVMGeOV+doMgNG+bwX+BkOAA0vI2/H416g6BT5gNKhBcuCUMhbIhFvpuHS6d51V5WSL46SCPsYNHMMZL36SAOZgcJ6MDNIMpcc8zymYQwVwD69kILruqRyw9lKeeLpoZnd0nk6BtMMpnIc7IpzsCsOQCRgUVseYUFNEXNrijANg709e9nbs5f6knqun3E9CysXjrvYthw1riDRokWLTnrMpk2bmDdvHnPmzAHggQce4JlnnlGQSOQMvXToJRoHGpm5/QjujiY6YxkMAxZMKcZnmaSjQeZ84RGqS6ZOdldFRERERM6+6dPh85/36hStW+cFX06kvd0LKIEXNKmv97KL6uu9AJJ5XL0c1wXb9trM5SCTgWz22GWsfcP7czlvGX78yHV6fEPDTsq2vcyjRAJ6ekbdXQgoBQLUV1dDYZkHddVQVobtOqTyKRLZBIlcgmQuWdhOZIduD22fynA3Y0RwaUrJ6PsHUjma+5I09aZo6kuSyOTZ3xFjf0eMsrCflTPLWTytBJ9l0jTYxFM7n6IqUsUts25hcfViBYsmwFmf3aylpYX6+vrC7bq6OjZu3Hi2TytyUdrRsYM3m9+kqrGb6o0HeLcnAfD/t3ffwVHfd/7Hn99tWml3JaHekIQQCAmJ3lKMC6bYYPMz5mwcJ3HigpPcJLnc3M3Nr8zN/W7ic8YzmbvcXMmRxI7ts03iin8uuOGciW2CRTMgigwSqPe60vbv748vCHM0Y5BWwOsx852v9qvv7r61/vAZ6eVPYVKGB0+Cg6jDhvtb36Vi0vw4VyoiIiIiMobsdvj616GiArZuhb17zx8WgTVSZ/9+6wBrZFJiovW8k8FQ9NK2s78ihELQ1GQdn+d0Yp8wAa/Xi9fnA68XRs45MCHR+rzcbuuzw5r1MBwZJhQNEYwErXM0OPL1YGhwZOe3k7u7BaPBkbdMSXSSkpjC9LwUTNOkdyhMXZef3Q299A6H2XKwnW1Hu5g1MZUZBam4nXY6hzp5vuZ5pmVMY9XUVXhd3rH89K46FwyJbr75ZlrPMmzvkUceYfXq1Ze9oA0bNrBhwwYAOjo6Lvvri1ypjnQf4ZWDr+Dp8VP6/n5q2gYwTcjyJZDlcwMwcMsSbl94V5wrFRERERGJk7Q0WL0abr4ZduyATz6xpm99ESdH/YglHIb2duu4EIcD3G7sbjfexEQrSEpOtkIln+/U1+k+SEg47amBSIDu4W7qe+up66njWN8xQtEQhmEwweNigsfFrIJUatsH2XGsm/aBIB8d6eKT+h4q81OYVzQBT4KDg50HOdZ7jFun3EplVqVGFX1JFwyJ3n333Ut6g/z8fBoaGkYeNzY2kp9/7p2W1q9fz/r16wHOuRC2yLXmeN9xNu7biBEMUv7eXo429xGKxPAkOCjO8ADQPncat972Y2zGhbeUFBERERG5qnk8sHgxfO1rcOAAbNsGjY3xrurLSUy0QpbkZCt8gdNHOn1+OlwgcOoYy1FQkYi1ftLg4IXvdblOC5Dcycnk+Xzk+VL56oTFRCd6aGGAuv7jHOk5Qn1vPTabQVmOj6nZXhp6hqmu7+Z49xC7jvdwoKWfG8oyKcv2MRwZ5sUDL7K/Y79GFX1Joz7dbP78+dTW1lJXV0d+fj4bN27k2WefHe23FblqtAy08MynzxCOhqj44ADNn3XQPxzGaTeYmm0t3tZVmMlXvvW/1AmKiIiIiHye3Q6VldbR1AT79sHx49DSclELQo8Kwzg14ubzx8mRNye/PjGV66KY5ql1j4aHrXWJ+vrOfoz16KlQCDo7reMs7EABUODxcJ3PR58rm/2hRg7E2vGnJJKYnEjRrHza/EH+WNvJ8e4hNu9rpbZtkJumZZ02quiWKbdQlVWlUUUX4ZJCopdffpkf/vCHdHR0sHLlSmbNmsVbb71Fc3MzDz74IG+88QYOh4N/+Zd/Yfny5USjUe6//36mT59+ueoXuap1+Dt4+tOnCUaDFOxroH/nMbqHQthtBtNykklw2PGnJFH4nR8zMVVbQIqIiIiInFN+vnWAFYw0NUFDw6lj+Bxbwtts1nQql+vUkZBw+uPzXXc4rKDn5Pnk1wkJZy6UfbkYxqn38vnOfZ9pWmszdXScfrS3Wwtvx9OJRbdTgK/iZE4kncaDjbQMtBA2Ygz7ErkxOZG92HhtMEx9LMbTvcOnjSp66cBLHO46zP+Y9j9w2EZ9jMxVwTBN04x3Eecyb948qqur413GJYmZMU3/kS+lZ7iHx3c9zkBogOTWXlKf+Yj2vmFshkF5rg+f20nEaSf8wHdZsfBepeMiIiIiIl+WaVprF5mmNfrI4Th1vhZ/zzZNK6Tp77emkA0MnH4eHLRCtZMjlcZwVFY4GqZ5oJnjfceJmtaUumAkyuGuIWqcTo6neKEkk8qFk0hMcgFQll7GXdPvwm6zj1md49258hZFaaPINE1ePvAyboebFaUr1CDlC+sP9vPUnqcYCA3gHA6R9FI17X3DGAaU5VgBEUDktlUsX/gNBUQiIiIiIpfCMKzpXWI5ORXO+wWWszDNU+shDQ/D0JAVJp08+vtPf3yJayU57U6KUovI9mZzqPMQPYEeEhx2KrO8ZA8EOdbQTvRYG2w9QGZVAWZZDsfzh3jRZmdtxVoN4rgAhUSjaOvxrext3wtA13AXd02/C7fDHeeqZLzzh/w8vedpegI9GDGThJeq6W3tA2Bqlo+URCsgMhctYumqH6mTExERERGR+DGMU1PrLhS0meb5Q6STX/v9F3xbt8PNjOwZtAy2cKT7CFGiZCW7SUlycrTDT99wmK7dxylv66HU7WTYt5ePKvfw1SXfwVY8yRolJmfQdLNRsr99P8/XPH/atYykDL5R9Q3SEtPiVJWMd/6Qnyf3PEm739pmMvLOPrxbDwFQmuUlw2ttF+ksKmHB//43nC6FjiIiIiIicpWJRq0pbf391tHdDV1dp46hodNuD0QCI6OKwJrVc6TDT+dgELvNoDw3GW+CFQrleHMoy6nEmDMHliyx1oa6Bmm62RhqHmjmlYOvABAIR2nuHaYk00vnUCe/2vEr7q68m+LU4rjWKOPPQHCAp/Y8RcdQBwAdu49TcCIgmpThGQmIEpPTmfWjnykgEhERERGRq5PdDikp1nE2Q0NWWNTaCvX1uOvrmWGfQetgK591f0aUKJMzPcRMk25/iAMt/VTkJuNJcNA62IqtzcaUP4UxamvhjjugUJsAnaSQ6DLrD/bz3N7nCMfCxEyTN/a2cLx7iK9OTmd+cRrDkWGe2vMUq6auYk7unHiXK+NEf7CfJ3c/SddwFwBHatspfm0XBlCYlkR2shUIeVxeqr7/f0lIz4pjtSIiIiIiInGUlGQdEyfC/PlgmhidneTW1+OoqebTbZuwDwcozfJS2zZIz9CJoCgvmSSXg+aBZgwMSinFeOIJuO46uP56K5y6xmkxk8usZaCFobA19O3kH/gY8NGRLt7a30okGiNmxnj10Ku8feRtYubYrQIv41NfoI/f7v7tSEBUU99F6is78IQiFKYlkZeaCECiI5HKtT/AXV4Zz3JFRERERETGF8OAzEyYP5/M+75PySP/xu7VCzk2p4SsyjxSklxEYiYHWgYYDlkLZzcNNHG056i1TtIHH8BvfmONTrrGKSS6zMoyyrhv1n14nB4Mw2BecRq3zcjDabdxsHWAF3c2MhSKAPBRw0ds3LeRYCQY56olXnoDvTyx+wm6h7sB+LSui/SXPiF/YIiizwVECfYEqr6ymsSbV8SzXBERERERkXFvUloJq65/iMZZJexZNZf2Hy7jk4VT2JOezKftgwTCVlDU0N9A22Cb9aTmZvjlL6G62gqOrlEKiUZBYUohD819iCyPNSVocqaXu+ZNxJfgoKUvwHPbG+gctIKhw12HeXzX4/QF+uJZssRB93A3T+x6gt5ALwC767pI27SDol4/xekeck8ERG6Hm1lTriPp7m+CTf9kRURERERELqQ0rZS7pt+FzbBhehKYtqKSHYum8u8zS3jPHyUUsWb1HO46TCASsJ4UDsNrr8Hvfw+RSByrjx/9xTlKUt2pPDD7AaakTQEg05fAugWF5CS7GQiE+d0nDdR1DgLQ5m/jid1P4A9deJs/uTrU99bzxK4n6Ata4WD10S5SXttFafcAkzI85KRYaxAlOhKZVTCPxHu+BV5vPEsWERERERG5opRllPFnFX+GzbDhtNtYPSsfd04Kv55exO9SkokZEDWjHOg4wGkbvx84AM8+a4VG1xiFRKMowZHAPVX3sKhgEQCeBAdr5xZQlu0jHI3x6p5mdh23tujrDfTy+/2/JxqLxrNkGWXRWJT3jr7Hk7ufZCA0AMCfjnSS8uYeyjv6KMnwjCxSnehIZGbeHNz3fAuKiuJZtoiIiIiIyBWpPLOcNeVrMDBwOWysrMrF5XLw4oRknpk1mWFfIn3BPo73HT/9iUePwjPPQCgUn8LjRCHRKLMZNlaUruC2qbdhM2w47DZWVOawqCQd04T/OtxBTXM/AMf6jrH5s81xrlhGS/dwN4/vepytx7diYhKOxni3phXvO/uoauthcqaXrBMBUZIziVl5c3DfdQ+UlcW5chERERERkStXZVYlt065FQCf28nN06ylYV7pCvDWTVU0T82lvree/mD/6U+sr4f//E8IXjvrCCskGiNz8+byrRnfwu1wYxgGi0rSufFEw3zvYButfdYcyE+aP6G6uTqepcplZpome1r38MvqX9I00ARA+0CAZ/90nLQPDzOvpYvSLC+ZvgQAPE4Ps3JmkXDHWqjUTmYiIiIiIiKXal7ePMozygGYku2jIjeZaMzktUMd1Cyawv7F06jpOnjm7J7jx+HppyEQiEPVY08h0RiaNGESD815iPTEdABmFqQyoyCFaMzk/33ajD9oLYz1Ru0bHOs9Fs9S5RKZpknPcA81HTW8UPMCLx98mVA0hGma7DzWw0vb6lm4u44lrd1U5qWQ4bUCIq/Ly6ycWbhWrYbZs+P8U4iIiIiIiFwdDMPgtrLb8Ll8ANxQlkVKopPOwSAffdZFe0k21V+bxOGeI2c+ubERnnoKhofHuOqxZ5jm+N3bbd68eVRXX32jagaCA2zYsYGB0ADRmMlLOxtp6h0mJ8XN2rkFOGw2PE4P6+euJ8WdEu9y5b+JmTGCkSDBaPC081B4iDZ/Gy0DLbQMtpxaIf8EfzDCW/tbCdd3ctuhRsqdUJjmwW4zAEhJSKEyqxLnshVw3XXx+NFERERERESuake6j/D0p08D0NI3zO+rGzFNkzWzCyhMTyL9eCd31xhkudPPfHJODnz725CUNMZVX37nylsUEsVJY38jT+x6gqgZZSgU4bntDQwEwlTkJrO0IhvDMMj15nL/7Ptx2p3xLveKYZomMTNGOBYmEosQjoYZCg/hD/utc8g6D4WHGI4ME41FiZkxomaUaCx6xvlc37sYsZhJXaef9/a3MudoC4sbOynN8JDmcY3cU5RSRFFqEbbF18OSJZf7YxEREREREZET3vrsLT5u/BiAPx3t4uOjXXhcDr65qIhEl53cVj/3HXTjxn7mk7OyrKDoCt99WiHROLS7dTevHHwFgPb+AL/f0UAkanLD1ExmFU4AoCqrylqJ3TDiWOnlEYgEaOhroDfQi8nZm13MjI2EO5FYZCTsOdu1k4//+7VzvfZYiMZMugaDtA+cPAJ0DgbxDQRYdaiR8kiY0kwvLoc10zPBnkB5Zjmp7lRYuBBWrICr4L+1iIiIiIjIeBWJRfjVjl/R5m8jFjN5YUcjzX3DTM70smpGLoZhUDXo4Y7dQWyRyJkvkJEB990HPt/YF3+ZnCtvccShFjlhVs4sWgdb2da4jaxkN0vLc3hzXwv/VdtJujeBiWlJ7G3fS443h68Vfi3e5V60YCTI8b7j1PfWU9dbR8tAS1wDnJMisRjDoSjBSIxozCQaM4mZnz9z6nHMJGqePHPi/hjBSIxQJEYoeuIcsa71BcLEYtbPaIvFyB0cZmGPn8Wt3Uz0OMnN8I0EfplJmUxNn4rTnQTLlsG8eQqIRERERERERpnD5uDOijvZsGMDESIsr8zhmT8d40jHIPub+6nMT2Gv10/614q54eNmCIVOfwG3G1yus7/4FU4hUZwtm7yMdn87R3uOUpbjo2MwSHV9N6/vbeGeBYWkJDp59+i75PpyKZlQcv4XCwSgvd1qwJEIRKOnnwE8Hivt9Pms4XHOyzuVbSg8xI7mHRzuOkzTQBMxM3bRr2HETJz+AM7BAPbBIM6BAM7BYYjECANhA8IYRDAIGyZh0yBkMwjYbQzbbARsJ86GwbDdxmDMZDAcwx+NMXwi0LlsTBObaWI3TZxRkyL/MOWBENOCQSYNBUl22vC47Djyk0eeYjfslKaVkuPNwcjPhzVrrCRaRERERERExkSWJ4tlk5fxRu0bpCQ6ubEsi7f2t/KHwx1k+RLISnbzB6OetKXzmPHuXggGrSfm5cE3vwkJCfH9AUaJppuNA0PhIX6141f0BHqImSav7m6mvstPhjeBu+dPxGm3keRMYv3c9da0pM+LRKC2Fj79FA4ftgKhi+F2nwqMXC6roV/M2W4HwyBmwI6WnWypf5/hmPWPxxGO4ghFsAXC9PT46er00901yHB/gIRwlITI548YCZEoiaEwicEwRmx0mmXEZhC12bA57BhOG4bNhmHDGsFjs2EYBobNwDDAbprYAYdpYgMcJtixrjlPHA4D7DZj5Ehw2EcWoj6bVHcqU9OnkuTywOLF1mE/yzxXERERERERGVWmafLs3mep7a7FNE3eqWmjpqUfb4KDexYU4klwYDNs3Je+hKLXtkJqqjXNLDEx3qVfMq1JNM61Dbbxm12/IRQNEYxE2bi9gZ6hEGU5PlZMz8EwDPJ8edw/+34chh2OHbOCoZoaawRRHPUF+qjtrmUwNDhyzR+M0Dccpj8QZiAQIfolQh/DAJthnDhOfG373NenXT/zmnHiusNmw2k3cNhtOE+EOWOxxpOBgcflwevy4nP5SHGn4HV5YcIEa/TQxImjXoOIiIiIiIic22BokH//5N/xh/1EYjFe2tFEc98w2clu/mxuAQ67DbfDzfq820nLKb4qdjYDhURXhAMdB/jd/t8B0DUYZOMnDYSjMa6fmsnswgkYMZOb2j1c1+KEvr44VwuhaIijPUdpHWwduRYIRznW5adnKHzavW6nnWS3g+REJz63A9t5QpqTQc94Xqzbbthx2BzYbSfOJx677C68Li9elxePy4PNsJ3+xDlzYPnyq3ZoooiIiIiIyJXmWO8xntrz1Mju4xu3N9AfCDM128ctldagjfTEdB6c8yCJzit/FBFo4eorQnlmOYuLFvPBsQ9I9yawtCKbN/a2sLW2k4IEOzfvriPa0kNz+lTyfHlxq9M0TZoHmqnrrSMSs9Y6isVMmvuGaeodxjStKVhpSS6SE50kJzpIcIzdlCoDA5thGzmcdidOm/Os55P3nHyOYRhnPD7b975wgOXxQGGhdZSWQmbm6P7wIiIiIiIiclGKUou4rew2Xjn4CkkuB7fPyuN3nzRwuG2ANI+LRSXpdA138XzN89xbdS9229W7ZIhConHmhuIbaB5o5rPuz5ia7aOtP0DTviYynvgAT0YSOGzUdtXidXlJTkg+8wW8XsjOBofDWuvm8+dYDAYHrWNgwDrHLm4R52AkyIHOA/QGekeu9fhD1Hf5CZ5YEDrDm0BhWtLINu+f57Q5SXWn4rSffcHsk4EMSUmYyT7M5GRITsFITsZITMSJDXsMnKYNOwYO08AeM3FETOzhCPZwBFsobC0qdvI4uXj3xa7X9EXZbNZnbLNZn//EiaeCofR07VgmIiIiIiIyzs3KmUWHv4MPGz4kw5vArVU5bNrTzLajXaR5XEzN9nG05yhvfvYmK6esHNczXy6FQqJxxmbYuLPc2oqvJ9DD2miY8OEGhoZCHG6LUpGXjM2A/e37mZs3F5fdZS0gXV4OM2bApElWWPFFxGIwNGQFRsPDVqASCp3z3NHdyI5j24i6w9gdbsL+EPUdA/T4Q9hME0+Ck0kZSaQmWM0q6rCD201KajYTUnPImFBAckoWRmKitWD2uY7k5Mu+6xoApmkFRp/f8c00Tz9iMesMp4c/J4/PPz6xaLdCIBERERERkSvfkpIldA51cqjrEJMyvCwuzeSD2g7e2t9KsttJToqb6uZqMpMyWViwMN7ljgqtSTROtfQ08MEv/yfZhxoJR2PsbewjFI2RnexmUoYH0wD7lDK+vuoH2KaVW0HRKDFNk63Ht/J+3fuYWM1lf1Mf7x9uJxI1cTlsLCpJZ2ZB6sjOXl6nh2Wly6nMqjxzXR4RERERERGRcSgYCfL4rsdp87dhmibvHWhnX3MfHpeDdQsm4nM7MTC4d8a9lKaVxrvcL+1ceYv+eh+P+vrIfWEz13d5AXDabUzN9mEYWNPPglE+vXkGW76ay7uetlENiIbCQzy791m21G3BxCQcjfH2/lbeOdBGJGpSlu3jvq8UM6dwAnabNVXsKwVf4YcLf8SM7BkKiEREREREROSKkeBI4J6qe/A4PRiGwY3TsshPTcQfivDqnmbC0RgmJs/vf54Of0e8y73s9Bf8eNPYCBs2QFMTOd4c8n35AHjdDorTPbR6E/k/E3M4lGxtu/dRw0fsb98/OqX0N/If1f9BbXctAN3+EL/7pIGaln4cdoOlFdncUpWL58T0suLUYr4373ssL11OgkO7d4mIiIiIiMiVJ9WdyrrKddgNO3abwaoZeaQkOsnwJoysNhKMBkf+Vr6aaE2i8eTAAXjxRWutnBMmp01mIDRAf7Cf2Owidqam0NM2yGuftvCNBYW4nXY2HdpElieLTM/l2zmrurmaN2vfJGpaiz0fbhvgnZo2wtEYE5JcrJyRS4bXCoK8Li/LJ1tTy67WxbtERERERETk2jExZSKrp63mpQMvkeiyc/f8iSQ67RiGgd2ws2rqKmbnzo53mZedQqLxwDRh2zZ4++1TiyafYDNsTM+Zwe8LBzhSksrimEnbcCNt/QHe3NfK6ll5hKIhNu7byENzH8LtcF9SKTEzxjtH3uHjxo8BiMRibD3cyZ7GXgCmZPu4uTxrZEv7SamTuLPiTrwu7yW9r4iIiIiIiMh4MiN7Bh3+DrYe30qSy4pPkpxJ3D39bopSi+Jc3ejQdLN4i8XgzTfhrbfOCIgASE4m4aHvsfjOv8Rms+Ow21hZlYvbaedYl58/He0CoGu4i1cOvsKlrEMeiob43b7fjQRE/mCEF6ob2dPYi81mcENZFrdW5owERIuLFvOtmd9SQCQiIiIiIiJXpZsm3UR5RjkAmUmZPDTnoas2IAKNJIqvUAheeAEOHz7793Nz4RvfAJ+PImDZ5GVs/mwzyYlObq3M5eXdjfyprpvsZDclmV4Odh7kj8f/yHVF1110Kf3Bfp7b+xwtgy0AdA4G2bSriYFgBJ/bycqqXHJSrFFKiY5E1pSvYUr6lC/7k4uIiIiIiIiMe4ZhcEf5HaTWpXJ98fWXPHtnvNNIoniIxaChAZ544twB0dSp8N3vgs83cmlh/kKqsqoAKExP4quTMwDYvL+VnqEQAFvqtnCk+8hFldM62Mqvd/56JCCq7/Tz++oGBoIRclLc3LNg4khAVJBcwPfmfU8BkYiIiIiIiFwTXHYXy0uXX/UBEWgk0dgwTejqgqNHraOuDoLBc9+/YAGsWAG20zM8wzC4rew22v3ttPnbmFc0gba+AJ91DPLanhbWLZiI027jxQMvsn7uelLdqRcoy+RQ1yFeOvASoagVMu1p6OUPh9sxTZia7WNZRTYOu1XHwvyFLJu8DLvNfkkfh4iIiIiIiIiMPwqJRovffyoUOnoU+vou/BzDgGXLYNEiOMcuYS67i7sr72bDjg0EIgGWTs+ma3uILn+Qd2rauKUyh6HwEE/ufpLZubOpyKwgIynjtNfoD/bzadun7G7dTedQJwAx02Tr4U52NfQAsGBSGl8pSccwDGyGjVVTVzEnd86lfSYiIiIiIiIiMm4pJBot77wDu3d/8fsdDrjzTigvv+CtaYlprClfw7N7nyXBYee2mXk8t/04h9sGyElxM6dwAj2BHrbUbWFL3RYykzKpyKxgQuIE9rbt5WjPUUxOLXAdisTYvK+Fo51+bDaDm6dlU5GXDIDb4eau6XdRMqHkYj8BEREREREREbmCKCQaLSUlXzwk8nph3TooKPjCLz81fSo3FN/AH+r/QJrHxbKKbF7f28LW2k6C4ShTsn2ke1wYhkHHUAf/dey/zniNzsEgNc39HGwdYCgUwe20s2pGLgUTkgCY4J7AN6q+QaYn8wvXJSIiIiIiIiJXJoVEo6XkAiNvEhJg0iSYPBlmzLAeX6Tri66nqb+J2u5apmT7mDcQpLq+mz/VWUdqkovSLC+lmV6ykxMwDIPhUJSDrf0caOmnfeDUukgZ3gRWzshlQpILgInJE1lXuQ6Py3PRdYmIiIiIiIjIlUch0WjxeiE7G9rarMc2G0ycaIVHJSWQn3/GwtQXyzAM1pSvYcOODfQEevja5HQmTkiktm2QIx2D9A6FqK7vprq+G5/bSZrHRUPPELGYNdUswWFjaraPirxkcpLdGCfWQarKqmL1tNU4bGoeIiIiIiIiItcKpQCjadYsa8HqkhIoLgaX67K/RaIzkXuq7uG3u3/LUHiIonQPRekebopl0dQ7zGftg3zWPshAIMxAIIxhQHG6h4q8ZEoyPCM7lwHYDTvXF1/PdYXXjQRGIiIiIiIiInJtMEzTNC9829k9//zz/N3f/R0HDhxg+/btzJs376z3FRcX4/P5sNvtOBwOqqurv9Drz5s37wvfe63rC/TxUcNH7O/Yz2Bo8LTvmaZJS1+A3qEwRelJeBJOzwZTElKYmTOTOblzSHWnjmHVIiIiIiIiIjLWzpW3XNJIosrKSl566SUefvjhC977/vvvk5GRccH75MtJcadwy5RbWF66nMb+Rmo6ajjQcYC+YB+GYZCXmkheauLI/U6bk4rMCmblzKI4tVgjh0RERERERESucZcUEpV/ge3aZWzZDBuFKYUUphSyfPJyWgZbqOmo4Uj3EQZCA2R7sqnMqqQis4IEx8Uvli0iIiIiIiIiV6cxWZPIMAyWLVuGYRg8/PDDrF+/fize9ppnGAZ5vjzyfHncXHJzvMsRERERERERkXHsgiHRzTffTGtr6xnXH3nkEVavXv2F3uSPf/wj+fn5tLe3s3TpUqZNm8bixYvPeu+GDRvYsGEDAB0dHV/o9UVERERERERE5NJcMCR69913L/lN8vPzAcjKyuKOO+5g+/bt5wyJ1q9fPzLS6FwLYYuIiIiIiIiIyOVlu/Atl8bv9zMwMDDy9dtvv01lZeVov62IiIiIiIiIiFyESwqJXn75ZQoKCvj4449ZuXIly5cvB6C5uZlbb70VgLa2Nr7+9a8zc+ZMFixYwMqVK1mxYsWlVy4iIiIiIiIiIpeNYZqmGe8izmXevHlUV1fHuwwRERERERERkavGufKWUZ9uJiIiIiIiIiIi459CIhERERERERERUUgkIiIiIiIiIiLjfE2ijIwMiouL413GJevo6CAzMzPeZcg4pfYhF6I2Iuej9iHno/Yh56P2Ieej9iEXojZyZauvr6ezs/OM6+M6JLpaaAFuOR+1D7kQtRE5H7UPOR+1DzkftQ85H7UPuRC1kauTppuJiIiIiIiIiIhCIhERERERERERUUg0JtavXx/vEmQcU/uQC1EbkfNR+5DzUfuQ81H7kPNR+5ALURu5OmlNIhERERERERER0UgiERERERERERFRSDTqNm/eTFlZGaWlpfzsZz+LdzkSZw0NDdx4441UVFQwffp0fvGLXwDQ3d3N0qVLmTJlCkuXLqWnpyfOlUo8RaNRZs+ezapVqwCoq6tj4cKFlJaWcvfddxMKheJcocRLb28va9euZdq0aZSXl/Pxxx+r/5AR//iP/8j06dOprKzknnvuIRAIqP+4xt1///1kZWVRWVk5cu1cfYZpmvzoRz+itLSUGTNmsHPnzniVLWPkbO3jr//6r5k2bRozZszgjjvuoLe3d+R7jz76KKWlpZSVlfHWW2/FoWIZS2drHyf9/Oc/xzCMke3T1X9cXRQSjaJoNMqf//mf8+abb1JTU8Nzzz1HTU1NvMuSOHI4HPz85z+npqaGbdu28a//+q/U1NTws5/9jCVLllBbW8uSJUsUKF7jfvGLX1BeXj7y+G/+5m/4yU9+wmeffcaECRP4zW9+E8fqJJ5+/OMfs2LFCg4ePMiePXsoLy9X/yEANDU18c///M9UV1ezb98+otEoGzduVP9xjfvOd77D5s2bT7t2rj7jzTffpLa2ltraWjZs2MD3v//9eJQsY+hs7WPp0qXs27ePTz/9lKlTp/Loo48CUFNTw8aNG9m/fz+bN2/mBz/4AdFoNB5lyxg5W/sA6396v/322xQWFo5cU/9xdVFINIq2b99OaWkpJSUluFwu1q1bx6ZNm+JdlsRRbm4uc+bMAcDn81FeXk5TUxObNm3ivvvuA+C+++7jlVdeiWOVEk+NjY28/vrrPPjgg4D1f2a2bNnC2rVrAbWPa1lfXx8ffPABDzzwAAAul4vU1FT1HzIiEokwPDxMJBJhaGiI3Nxc9R/XuMWLF5OWlnbatXP1GZs2beLb3/42hmGwaNEient7aWlpGeuSZQydrX0sW7YMh8MBwKJFi2hsbASs9rFu3ToSEhKYNGkSpaWlbN++fcxrlrFztvYB8JOf/ITHHnsMwzBGrqn/uLooJBpFTU1NTJw4ceRxQUEBTU1NcaxIxpP6+np27drFwoULaWtrIzc3F4CcnBza2triXJ3Ey1/8xV/w2GOPYbNZ3XNXVxepqakjv7CpH7l21dXVkZmZyXe/+11mz57Ngw8+iN/vV/8hAOTn5/NXf/VXFBYWkpubS0pKCnPnzlX/IWc4V5+h31vlv3v88ce55ZZbALUPsWzatIn8/Hxmzpx52nW1j6uLQiKROBgcHOTOO+/kn/7pn0hOTj7te4ZhnJbMy7XjtddeIysri7lz58a7FBmHIpEIO3fu5Pvf/z67du3C4/GcMbVM/ce1q6enh02bNlFXV0dzczN+v/+s0wREPk99hpzLI488gsPh4N577413KTJODA0N8Q//8A/8/d//fbxLkVGmkGgU5efn09DQMPK4sbGR/Pz8OFYk40E4HObOO+/k3nvvZc2aNQBkZ2ePDMlsaWkhKysrniVKnHz44Ye8+uqrFBcXs27dOrZs2cKPf/xjent7iUQigPqRa1lBQQEFBQUsXLgQgLVr17Jz5071HwLAu+++y6RJk8jMzMTpdLJmzRo+/PBD9R9yhnP1Gfq9VU767W9/y2uvvcYzzzwzEiKqfciRI0eoq6tj5syZFBcX09jYyJw5c2htbVX7uMooJBpF8+fPp7a2lrq6OkKhEBs3buT222+Pd1kSR6Zp8sADD1BeXs5f/uVfjly//fbbefLJJwF48sknWb16dbxKlDh69NFHaWxspL6+no0bN3LTTTfxzDPPcOONN/LCCy8Aah/XspycHCZOnMihQ4cAeO+996ioqFD/IQAUFhaybds2hoaGME1zpH2o/5D/7lx9xu23385TTz2FaZps27aNlJSUkWlpcu3YvHkzjz32GK+++ipJSUkj12+//XY2btxIMBikrq6O2tpaFixYEMdKZaxVVVXR3t5OfX099fX1FBQUsHPnTnJyctR/XG1MGVWvv/66OWXKFLOkpMT86U9/Gu9yJM62bt1qAmZVVZU5c+ZMc+bMmebrr79udnZ2mjfddJNZWlpqLlmyxOzq6op3qRJn77//vrly5UrTNE3zyJEj5vz5883Jkyeba9euNQOBQJyrk3jZtWuXOXfuXLOqqspcvXq12d3drf5DRvzt3/6tWVZWZk6fPt385je/aQYCAfUf17h169aZOTk5psPhMPPz881f//rX5+wzYrGY+YMf/MAsKSkxKysrzU8++STO1ctoO1v7mDx5sllQUDDye+rDDz88cv9Pf/pTs6SkxJw6dar5xhtvxLFyGQtnax+fV1RUZHZ0dJimqf7jamOYpmnGO6gSEREREREREZH40nQzERERERERERFRSCQiIiIiIiIiIgqJREREREREREQEhUQiIiIiIiIiIoJCIhERERERERERQSGRiIiIiIiIiIigkEhERERERERERFBIJCIiIiIiIiIiwP8HiyLrp3ufqNMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "QuerySearch.get_speedup_function_names()" + "from aeon.similarity_search.collection import RandomProjectionIndexANN\n", + "\n", + "X_fit = X[:199]\n", + "# you can use a single series, but it will be converted into a collection internally !\n", + "X_predict = X[199]\n", + "index = RandomProjectionIndexANN().fit(X_fit)\n", + "indexes, distances = index.predict(X_predict, k=2)\n", + "# as X_predict is converted to a collection, we select the first returns\n", + "# to obtain its results\n", + "indexes = indexes[0]\n", + "distances = distances[0]\n", + "\n", + "for i in range(len(indexes)):\n", + " print(f\"match {i} : {indexes[i]} with distance {distances[i]}\")\n", + " # A bit of hacking of the function defined for series estimator to show best mathces\n", + " plot_best_matches(X_fit[indexes[i]], X_predict, 0, [0], X_predict.shape[1])" ] }, { "cell_type": "markdown", - "id": "bf12616c-6ace-478b-806f-5419c2c19f2b", + "id": "c4c7a34a-3620-475c-96b8-a9bb605d09c3", "metadata": {}, "source": [ - "By default, the `fastest` option is used, which use the best optimisation available. You can change this behavior by using the values of t with the corresponding distance function and normalization options in the estimators, for example with a `QuerySearch` using the `normalised euclidean` distance:" + "You can then play with the different parameter of the estimator to affect the speed vs accuracy of the index, for example increasing ```n_hash_funcs``` from the default 128 to 512, and considering larger vectors (``V`` of shape ``(n_channels, L)``) for the hash functions by tuning ```hash_func_coverage``` (a float between 0 and 1, with 0.25 as default) such as ```L = n_timepoints * hash_func_coverage```:" ] }, { "cell_type": "code", "execution_count": 10, - "id": "6313f26a-5788-42dc-881a-40746458414c", - "metadata": {}, - "outputs": [], - "source": [ - "top_k_search = QuerySearch(distance=\"euclidean\", normalise=True, speed_up=\"Mueen\")" - ] - }, - { - "cell_type": "markdown", - "id": "6ab51d84-7220-4333-b50e-2db695eaf45d", - "metadata": {}, - "source": [ - "For more information on these optimizations you can refer to the [distance profile notebook](distance_profiles.ipynb) for the theory, and to the [analysis of the speedups provided by similarity search module](code_speed.ipynb) for a comparison of their performance." - ] - }, - { - "cell_type": "markdown", - "id": "4149c40f", - "metadata": {}, - "source": [ - "# Series search\n", - "For series search, we are not interest in exploring the relationship of the input dataset `X` (given in `fit`) and a single query, but to all queries of size `query_length` that exists in another time series `T`. For example, with using again our simple GunPoint dataset:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "d510c4cc", + "id": "1b22b743-5710-4691-b740-8edaa3bbac2e", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "match 0 : 130 with distance 9.0\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAJcCAYAAAC4425vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAADT3klEQVR4nOzdd3hUZcLG4WdKeu+9EELvEKoKiAURxa4oKNiwrvWzrLrq2svquq6uig0UBduuYAE7iiAlVAGBAOkFUgikl5nz/RGIBAhFSc4k+d3XlWvamXOemQyT4Zn3vMdiGIYhAAAAAAAA4Dizmh0AAAAAAAAA7RPFEwAAAAAAAFoExRMAAAAAAABaBMUTAAAAAAAAWgTFEwAAAAAAAFoExRMAAAAAAABaBMUTAAAdWFZWlnx9feVwOMyO0uJmzJihE088sUXWvXDhQsXGxv7h+/v6+mr79u2SpKlTp+qBBx5odlmLxaKtW7ce9bqPdXlX4kqvz//973+Ki4uTr6+vVq9erV69emnhwoWSpIcffliTJ082NyAAAC6K4gkAgA4sPj5e5eXlstlsx22dq1evlr+/f5OyY+XKlQoMDFRGRsZx287xlJGRIYvFovr6elO2X15erqSkpD+9ntGjR+uNN944DolaXmJior799tvDLtMSr88/6v/+7//00ksvqby8XAMGDNCGDRs0evRos2MBAODyKJ4AAOigWqpkGTBggG6++WZde+21MgxDdXV1uuqqq/TII48oMTGxRbaJ9qc1S8Cj2VZmZqZ69erVCmkAAGhfKJ4AAGiDnn76acXExMjPz0/dunXTd999J0lyOp166qmn1LlzZ4WEhOjiiy9WSUmJpN9H9bz55puKj4/XmDFjDhrps3v3bl199dWKiopSTEyMHnjggcbdnLZu3apRo0YpICBAoaGhuuSSS5rN99BDDyk/P1/Tp0/XE088IV9fX918882HXPZQo432H7lzuO1u2rRJp512moKDg9WtWzd9+OGHjbcVFxdrwoQJ8vf315AhQ7Rt27Zm844cOVKSFBgYKF9fX/3yyy9yOp167LHHlJCQoPDwcF1xxRXavXt3878USU888YRCQ0OVmJio995775CPRzp4t7/D7Q737LPPKioqStHR0Xrrrbea3fb999+vRYsW6eabbz7o+f7222/VpUsXBQYG6qabbpJhGI23vfXWW+rRo4eCgoI0duxYZWZmHnL9+35Pb7/9tuLi4hQUFKRXX31VK1asUN++fRUYGNhkm9u2bdOYMWMUEhKi0NBQTZo0SaWlpZKkyy+/XFlZWTr77LPl6+urZ5555oivz5KSEsXGxuqzzz6T1DBKLDk5We+8884h844ePVp//etfNWTIEPn7++ucc8457L+F5n7fNTU1jbv79evXT507d5Z0+BFbS5cu1YgRIxQYGKh+/fo17pIHAECHZAAAgDZl06ZNRmxsrJGbm2sYhmGkp6cbW7duNQzDMF544QVj6NChRnZ2tlFdXW1MmzbNmDhxYuNykozLL7/cKC8vNyorKxuvq6urMwzDMM4991xj2rRpRnl5ubFjxw5j8ODBxquvvmoYhmFMnDjReOyxxwyHw2FUVVUZixYtOmzOn3/+2QgICDD8/PyM3377rdnlDsxgGIYxatQo4/XXXz/sdsvLy43Y2FjjrbfeMurq6oxVq1YZISEhxoYNGwzDMIxLLrnEuOiii4zy8nLj119/NaKjo40TTjjhqDO8+eabRufOnY1t27YZZWVlxnnnnWdMnjz5kPf/4YcfDJvNZtx+++1GdXW1sXDhQsPb29vYtGnTQY/HMAzj7bffbpJFkpGWlmYYhmFMmTLFuP/++w3DMIz58+cb4eHhxq+//mqUl5cbl156aZNlD3Tgdvate/z48cauXbuMzMxMIzQ01Jg/f75hGIbx6aefGp07dzY2btxo1NXVGY8++qgxfPjwwz5H1113nVFVVWV89dVXhoeHh3HOOecYO3bsMHJycoywsDBj4cKFhmEYRlpamvH1118b1dXVxs6dO42TTjrJuPXWWxvXl5CQYHzzzTcHrf9wr8+vvvrKiIiIMHbs2GFcc801xgUXXHDIrPuei+jo6Mbn7vzzzzcmTZrU7LaO9Ps+8HnfP/9DDz3UuO6cnBwjODjY+OKLLwyHw2F8/fXXRnBwsLFz585mswIA0J4x4gkAgDbGZrOppqZGGzduVF1dnRITExtHYbz66qt6/PHHFRsbKw8PDz388MP6+OOPm4wmevjhh+Xj4yMvL68m692xY4e+/PJLvfDCC/Lx8VF4eLhuv/12zZkzR5Lk5uamzMxM5eXlydPT84gTdffu3Vt2u119+vRR9+7d//DjbW67n3/+uRITE3XllVfKbrdrwIABuuCCC/TRRx/J4XDok08+0SOPPCIfHx/17t1bU6ZMOabtvvfee7rjjjuUlJQkX19fPfnkk5ozZ85hd8t69NFH5eHhoVGjRmn8+PFNRmD9ER9++KGuvPJK9e7dWz4+Pnr44Yf/0HruvfdeBQYGKj4+XieffLLWrFkjqeH18te//lU9evSQ3W7XfffdpzVr1jQ76kmS/va3v8nT01Onn366fHx8dOmllyo8PFwxMTE66aSTtHr1aklScnKyTjvtNHl4eCgsLEx33HGHfvzxxyNmbe71KUmnn366LrroIp1yyin68ssv9dprrx12XZdffnnjc/foo4/qww8/bDJR+f7b+iO/70OZNWuWzjzzTJ155pmyWq067bTTlJKSoi+//PKY1gMAQHtB8QQAQBuTnJysF154QQ8//LDCw8M1ceJE5eXlSWqYh+a8885TYGCgAgMD1aNHD9lsNu3YsaPx/nFxcYdcb2Zmpurq6hQVFdV4/+uuu047d+6UJD3zzDMyDENDhgxRr169DrvblyTdeeedGjVqlHJychrLqz+iue1mZmZq2bJljVkDAwP13nvvqaCgQIWFhaqvr2/yWBMSEo5pu3l5eU3uk5CQoPr6+ibP5f6CgoLk4+PTZPl9v5c/Ki8v7089hn0iIyMbz3t7e6u8vFxSw3N46623Nj5/wcHBMgxDubm5za4rIiKi8byXl9dBl/ete8eOHZo4caJiYmLk7++vyZMnq6io6IhZm3t97jNt2jStX79eU6dOVUhIyFGvKyEhQXV1dU0y7H/7sf6+m5OZmamPPvqoyevy559/Vn5+/jGtBwCA9oLiCQCANuiyyy7Tzz//rMzMTFksFt1zzz2SGv4jPX/+fJWWljb+VFdXKyYmpvG+FovlkOuMi4uTh4eHioqKGu+7Z88ebdiwQVJDefH6668rLy9Pr732mm688cZm5yX69ttvNW/ePL322mt65ZVXdOuttzbOr3OgfWVNZWVl43UFBQWN55vbblxcnEaNGtXksZaXl+uVV15RWFiY7Ha7srOzG9eTlZXV7PN5qOckOjq6ycifrKws2e32JkXL/nbt2qWKioomy0dHRzc+xuYe3+FERUUd9WNo7nEcTlxcnF577bUmz2FVVZVGjBhxTOs5lPvuu08Wi0W//vqr9uzZo1mzZjWZW6q5rId7DA6HQ9OmTdMVV1yh//znP82+/vY58Llzc3NTaGjoIbd1rL/v5sTFxenyyy9v8pxWVFTo3nvvPab1AADQXlA8AQDQxmzevFnff/+9ampq5OnpKS8vL1mtDX/Sr7/+et1///2N/4EuLCzU3Llzj2q9UVFROv3003XnnXdqz549cjqd2rZtW+PuUR999JFycnIkNYzusVgsjdvdX0VFhaZNm6Z//vOfCg0N1ZlnnqnTTjtNt99++yG3GxYWppiYGM2aNUsOh0NvvfVWk4nAm9vuWWedpS1btujdd99VXV2d6urqtGLFCv3222+y2Ww6//zz9fDDD6uyslIbN27UzJkzm33sYWFhslqt2r59e+N1l156qf75z38qPT1d5eXluu+++3TJJZfIbrc3u56HHnpItbW1WrRokT7//HNddNFFkqT+/fvrv//9ryorK7V161a9+eabza5jfxdffLFmzJihjRs3qrKyUn//+98Pu3xERESTx3Ak119/vZ588snGcnH37t366KOPjvr+h1NWViZfX18FBAQoNzdXzz777J/KKjVM3m6xWPTWW2/prrvu0hVXXNFk17kDzZo1q/G5e/DBB3XhhRfKZrMdctk/8vs+lMmTJ+uzzz7TV199JYfDoerqai1cuLDxNQwAQEdD8QQAQBtTU1Oje++9V6GhoYqMjNTOnTv15JNPSpJuvfVWTZgwQaeffrr8/Pw0bNgwLVu27KjX/c4776i2tlY9e/ZUUFCQLrzwwsZdhFasWKGhQ4fK19dXEyZM0L/+9S8lJSUdtI777rtP3bt316RJkxqve+GFFzR//nx98803h9zu66+/rmeffVYhISHasGFDkxE3zW3Xz89PX3/9tebMmaPo6GhFRkbqnnvuUU1NjSTppZdeUnl5uSIjIzV16lRdeeWVzT5ub29v3X///TrhhBMUGBiopUuX6qqrrtLll1+ukSNHqlOnTvL09NS///3vZtcRGRmpoKAgRUdHa9KkSXr11Vcb57a6/fbb5e7uroiICE2ZMqXJc3M448aN02233aYxY8YoOTlZY8aMOezyt956qz7++GMFBQXplltuOeL6zzvvPN1zzz2aOHGi/P391bt3b82fP/+osh3JQw89pFWrVikgIEDjx4/X+eef3+T2v/71r3rssccUGBiof/zjH0dc38qVK/X888/rnXfekc1m0z333COLxaKnnnqq2ftcfvnlmjp1qiIjI1VdXa0XX3yx2WWP9ffdnLi4OM2dO1dPPPGEwsLCFBcXp2effVZOp/OY1wUAQHtgMfYf8wwAAAC0A6NHj9bkyZN1zTXXmB0FAIAOjRFPAAAAAAAAaBEUTwAAAAAAAGgR7GoHAAAAAACAFsGIJwAAAAAAALSIYzs+bBsVGhqqxMREs2MAAAAAAAC0GxkZGSoqKjrsMh2ieEpMTFRqaqrZMQAAAAAAANqNlJSUIy7DrnYAAAAAAABoERRPAAAAAAAAaBEUTwAAAAAAAGgRFE8AAAAAAABoERRPAAAAAAAAaBEUTwAAAAAAAGgRFE8AAAAAAABoERRPAAAAAAAAaBF2swMAAAA0p97hVHW9UzV1DtU5DNU7nap3GKp3GnI4m7/ccL7h1NPNKh8Pu7zcbPLxsMvb3SZvd5s87DbVOZyqrXeq1uFUTZ1TtQ6HauqdkiR/TzcFeLvJ190uq9Vi8jMBAADQNlE8AQCAP62m3qHdlXUqrarTropa7a6qU63DqTqHU3X1RuP52nqnauqdKquuU1l1vcpq6htO916urKlvLJqq651yOA2zH5qsFsnP003+XnYFeLnJw25rvM0wfs93YNL9bjroNjVzP+OABY39bj3wNne7VYFebgrydleAt5sCvdwV6O2mQG83hfh4KNzfQ+F+HgrwcpPFQnEGAADMQfEEAACOyDAMFZbVaFNBmbbsKNOmgjKl7ShTYVmNSqvqVFnrOKb1ebpZ5efpJj9Pu/w87PLzdFOkv6d8POzydLPKw2476NTdbpXNapHdatl7apXd1vSyzWqRm+33yxZLQylWWbvvp77htMahmnqH3GxWudt/X7+73Sp3m1WSoT1V9dpTXafdVXXaU9VwuruqTnWOpg3Q4Tqd/QsfS5PrD1iumfsc7n7VdU4Vlddqa2G5SisbirtDcbdbFe7XUEKF+XnI290ud5tVbnZL4+N3t1llt1rlcDpVv3e0WJ2jofjb93h9PWzy9XCT797fma+nXb4eDWVciK+7Qn095OlmO2QGAADQcVE8AQCAg5RU1GpFRolWpJdofd5ubS4o067Kusbbw/w81C3CT10i/BTo5bZ3pM3eETde7vL3ssvTzdZYbLjZLA1lR+Nlppk83uodTu2prteuyloVldVo576fPdV7z1crvahC1XUNI8/2382w1uFsHFG1r7hz21fs2awyDKmipl5VdYcvGH3cbQrx9VCIr7tCfDwUFeCphBBvxQV7N5wGecvHg4+fAAB0JPzlBwAAyiut0oqMEi1Lbyib0naWS2oYLdMzyl9je0WqW6SfukX6qXukv4J93E1OjAPZbVYF+7gr2MddncN8j+m+hmHIaTTsVni43fLqHU5V1DhUXluv8up6ldfUaVdFnUoqalVUUaPi8loVl9eoqLxWObsqtSy9+KCRWKG+7ooP9tbQpBCd2iNCA+ICmUMLAIB2jOIJAIAOqrrOoc/W5mnGkgxtyNsjSfL1sGtQQpDOHRCjoZ2C1Sc2oMmcRmifLBaLbEfR/dhtVgV4WxXg7XbU6y6trFVWSaWySiqVWVyp7JJKbSss1+s/bdcrC7cp1NdDp/YI16k9InRil1B21wMAoJ2heAIAoIPJ312lWUszNXt5tkoqatUl3FcPjO+hYUkh6hHlLxujT3AcNeyC6a6+sYFNrt9dVaeFm3fqm4079MW6fM1ZkS1PN6tGdgnTtJFJSkkMNicwAAA4riieAADoAAzD0MrMXXp7SYYWrC+Q0zB0ao8IXTkiUcM7h3DUM7S6AC83ndM/Ruf0j1FtvVPL0ov1zcYd+vLXfF346i8a3S1Md57WTX1iA8yOCgAA/gSLYRx4cN72JyUlRampqWbHAADAFIZh6MG5G/Tu0kz5e9o1cUi8Lh+WoLhgb7OjAQepqnVo5i8ZevXHbSqtrNMZvSJ1x+ld1TXCz+xoAADgAEfTtzDiCQCAdswwDD3y+Ua9uzRTV53QSf83tqu83fnzD9fl5W7T9aM667Kh8Xrr53S9sShdX20s0Ln9Y3TrKV2UGOpjdkQAAHAMOJYxAADtlGEYemrBJr29OENXnpCov53Vg9IJbYa/p5tuO7WrFt19sqaNTNL89fk6/Z8/afbyLLOjAQCAY0DxBABAO/XCt2l67cftmjwsXg+e1ZN5nNAmBfm466/jeuinu07WsM4h+ut/f9U9H69TdZ3D7GgAAOAoUDwBANAOvfzDVv3ruzRdnBKrRyb0pnRCmxfu76m3pw7WX8Yk64PUbF306i/K2VVpdiwAAHAEFE8AALQzbyzarme/2qxz+0fryfP7ymqldEL7YLNadOfp3fT6FSnKKKrQ2f/+WYvSCs2OBQAADoPiCQCAduSdXzL02Be/aXyfKP3jon6yUTqhHTqtZ4Tm/eVEhft5aspby/XyD1vldLb7AzUDANAmUTwBANBOLN1erAfnbtBpPSP0wsT+stv4M4/2q1Ooj/530wid1Tdaz361WbfMWU35BACAC+ITKQAA7cRrP25TqK+7/n3pALlROqED8Ha3618T++v/Tu+qz9fl65Uft5kdCQAAHIBPpQAAtANbd5brh82FunxYojzdbGbHAVqNxWLRTScn6+x+0Xru681asq3I7EgAAGA/FE8AALQDby1Ol7vdqknD4s2OArQ6i8WiJ8/vo8RQH90ye4127qk2OxIAANiL4gkAgDaupKJW/12Vo/MHxCjU18PsOIApfD3semXSIJXX1Okvs1er3uE0OxIAABDFEwAAbd77yzJVXefUVSd2MjsKYKpukX564rw+WpZeoue+2WJ2HAAAIIonAADatJp6h2b+kqmRXcPUNcLP7DiA6c4fGKtLh8TplYXb9N1vO8yOAwBAh0fxBABAG/b52nwVltXoGkY7AY0eOruXekb5644P1yq7pNLsOAAAdGguVTxdddVVCg8PV+/evQ95+8KFCxUQEKD+/furf//+euSRR1o5IQAArsMwDL3xc7q6RvjqpC6hZscBXIanm02vTB4op2HopvdXqabeYXYkAAA6LJcqnqZOnaoFCxYcdpmTTjpJa9as0Zo1a/Tggw+2UjIAAFzPL9uL9Vv+Hl19YidZLBaz4wAuJSHER89e2E/rcnbryS83mR0HAIAOy6WKp5EjRyo4ONjsGAAAtAlvLkpXiI+7zukfY3YUwCWd0TtSU0ckasaSDC3eWmR2HAAAOiSXKp6Oxi+//KJ+/fpp3Lhx2rBhQ7PLTZ8+XSkpKUpJSVFhYWErJgQAoOVtLyzXd5t2avKwBHm62cyOA7ise87orqRQH9398TqVVdeZHQcAgA6nTRVPAwcOVGZmptauXau//OUvOvfcc5tddtq0aUpNTVVqaqrCwsJaLyQAAK3grcXpcrdZNXlYgtlRAJfm5W7TPy7up/zdVXrs89/MjgMAQIfTpoonf39/+fr6SpLOPPNM1dXVqaiIYdMAgI6ltLJWH6/M0bkDohXm52F2HMDlDYwP0vWjOuuD1Gx9v2mH2XEAAOhQ2lTxVFBQIMMwJEnLly+X0+lUSEiIyakAAGhd7y3LUnWdU1ed2MnsKECbceupXdQ90k/3fPKrdlXUmh0HAIAOw252gP1deumlWrhwoYqKihQbG6u///3vqqtr2Bf/+uuv18cff6xXXnlFdrtdXl5emjNnDkfxAQB0KLX1Tr3zS4ZO6hKq7pH+ZscB2gwPu03/uKifzn15sR6at0EvXjrA7EgAAHQILlU8zZ49+7C333zzzbr55ptbKQ0AAK7n640F2rGnRk+e38fsKECb0zsmQLec0kXPf7NFZ/SO1Jl9osyOBABAu9emdrUDAKCjm7U0U7FBXhrVNdzsKECbdMPozuobG6AHPl2vwrIas+MAANDuUTwBANBGbN1ZpqXbS3TZ0HjZrOxqDvwRbjarnruon8pr6nX//35tnD8UAAC0DIonAADaiFlLs+Rms+jilDizowBtWpcIP911ejd9vXGH5q3NMzsOAADtGsUTAABtQFWtQ5+sytG43lEK9fUwOw7Q5l11Yif1iw3Qk19uUmVtvdlxAABotyieAABoAz5bm6ey6npNHpZgdhSgXbBZLfrbWT1VsKda03/abnYcAADaLYonAADagFnLMtU1wleDE4PMjgK0GymJwRrfJ0qv/bhdBburzY4DAEC7RPEEAICLW5dTqnU5uzVpaIIsFiYVB46ne8d1l8Np6NmvNpsdBQCAdoniCQAAFzdraaa83Gw6b2CM2VGAdicu2FtXnpioT1bl6Nec3WbHAQCg3aF4AgDAhe2urNO8tXk6d0C0/D3dzI4DtEs3n5ysEB93PfrFRhmGYXYcAADaFYonAABc2CerclRd59SkoUwqDrQUP0833XF6Vy1PL9FXGwrMjgMAQLtC8QQAgIsyDEPvLctU/7hA9Y4JMDsO0K5dkhKnrhG+euLLTaqpd5gdBwCAdoPiCQAAF/XL9mJtK6zQ5GGMdgJamt1m1QPjeyqrpFLvLMk0Ow4AAO0GxRMAAC7qvaVZCvBy01l9o8yOAnQII7uGaXS3ML34fZqKy2vMjgMAQLtA8QQAgAvauadaX20o0EWDYuXpZjM7DtBh3H9mD1XWOvSv79LMjgIAQLtA8QQAgAv6YEW26p2GJrGbHdCqukT46bIh8XpvWZa27iwzOw4AAG0exRMAAC7G4TQ0e3mWTkwOVadQH7PjAB3O7ad1lbebTU/N32x2FAAA2jyKJwAAXMz3m3Yqb3e1Jg+LNzsK0CEF+7jr+tGd9e1vO7Q8vcTsOAAAtGkUTwAAuJhZSzMV4e+hU3tEmB0F6LCuOqGTIvw99OT832QYhtlxAABosyieAABwIVnFlfoprVATB8fLbuPPNGAWL3eb7jitq1ZnlWrB+gKz4wAA0GbxiRYAABfy3vJMWS0WXTqE3ewAs10wMFZdwn31zFebVedwmh0HAIA2ieIJAAAXUVPv0EepOTq1R7giAzzNjgN0eHabVfeO6670ogrNWZFtdhwAANokiicAAFzEgvUFKqmo1eRhCWZHAbDXmO7hGtIpWP/6dovKa+rNjgMAQJtD8QQAgIuYtTRTCSHeOqFzqNlRAOxlsVh035k9VFReq9d/2m52HAAA2hyKJwAAXMCmgj1akbFLk4bGy2q1mB0HwH76xwVqfJ8ovb5ou3aWVZsdBwCANoXiCQAAF/De0iy52626aFCc2VEAHMJdY7uptt6pf32bZnYUAADaFIonAABMVlFTr/+tztVZfaIU5ONudhwAh5AY6qNJQ+M1Z0W2thWWmx0HAIA2g+IJAACTfbomV+U19ZrEpOKAS/vLKV3kabfq2QWbzY4CAECbQfEEAICJDMPQrKVZ6hHlr4HxgWbHAXAYob4eum5UZy3YUKC12aVmxwEAoE2geAIAwESrskr1W/4eTR4WL4uFScUBV3fViZ0U4OWml37YanYUAADaBIonAABM9N7STPl62HVu/xizowA4Cr4edl11Qid9s3GHfsvfY3YcAABcHsUTAAAm2VVRq89/zdd5A2Lk42E3Ow6AozR1RKJ8Pex66XtGPQEAcCQUTwAAmOSjldmqrXdqMpOKA21KgLebpoxI0Jfr87V1Z5nZcQAAcGkUTwAAmMDpNPTesiwNTgxSt0g/s+MAOEZXn5gkT7tNL/+wzewoAAC4NIonAABM8PPWImUWVzLaCWijgn3cNXlYvOauyVVGUYXZcQAAcFkUTwAAmGDW0kyF+LjrjN6RZkcB8AddOzJJbjarXlnIqCcAAJrjUsXTVVddpfDwcPXu3fuQtxuGoVtuuUXJycnq27evVq1a1coJAQD48/J3V+nb33boopQ4edhtZscB8AeF+3nq0iHx+mRVjnJ2VZodBwAAl+RSxdPUqVO1YMGCZm+fP3++0tLSlJaWpunTp+uGG25oxXQAABwfs5dny5A0aWi82VEA/EnTRibJYpFe/ZFRTwAAHIpLFU8jR45UcHBws7fPnTtXV1xxhSwWi4YNG6bS0lLl5+e3YkIAAP6cOodTc5ZnaVTXMMUFe5sdB8CfFB3opQsHxenDFTnasafa7DgAALgclyqejiQ3N1dxcXGNl2NjY5Wbm3vIZadPn66UlBSlpKSosLCwtSICAHBY327coZ1lNZo8lEnFgfbixtGd5TAMvfbjdrOjAADgctpU8XQspk2bptTUVKWmpiosLMzsOAAASJJmLctUdICnTu4ebnYUAMdJXLC3zu0fo/eXZ6qovMbsOAAAuJQ2VTzFxMQoOzu78XJOTo5iYmJMTAQAwNHbXliuxVuLdemQeNmsFrPjADiObjq5s2rrnXp9EaOeAADYX5sqniZMmKB33nlHhmFo6dKlCggIUFRUlNmxAAA4Ku8vy5LdatElQ+KOvDCANiUpzFdn9Y3WrF8ytbuqzuw4AAC4DLvZAfZ36aWXauHChSoqKlJsbKz+/ve/q66u4Q/39ddfrzPPPFNffvmlkpOT5e3trbffftvkxAAAHJ3qOoc+Wpmjsb0iFe7naXYcAC3g+lGdNW9tnt5blqkbRyebHQcAAJfgUsXT7NmzD3u7xWLRyy+/3EppAAA4fj5fl6/dVXWaNCze7CgAWkjPaH+d1CVUby/O0NUndpKH3WZ2JAAATNemdrUDAKCtmrU0U53DfDQ8KcTsKABa0LSRSSosq9Hc1XlmRwEAwCVQPAEA0MLW5+7WmuxSTRqaIIuFScWB9uzE5FD1jPLX9EXb5XQaZscBAMB0FE8AALSw95ZlytPNqgsGxZodBUALs1gsmjYySVt3luuHzTvNjgMAgOkongAAaEF7quv06eo8TegXrQAvN7PjAGgF4/tGKSbQS6/9uN3sKAAAmI7iCQCAFvS/VbmqqnNo8rAEs6MAaCVuNquuOrGTlmeUaHXWLrPjAABgKoonAABaiGEYmrU0U31jA9Q3NtDsOABa0cTBcfL3tGv6T4x6AgB0bBRPAAC0kOXpJUrbWa7JQxntBHQ0Ph52TR6WoAUbCpRRVGF2HAAATEPxBABAC5m1LEv+nnad3S/a7CgATDB1RKLcrFa98TOjngAAHRfFEwAALaCwrEYL1ufrgkGx8nK3mR0HgAnC/T113oAYfZSao+LyGrPjAABgCoonAABawIep2apzGJrEbnZAh3btyE6qqXfqnV8yzY4CAIApKJ4AADjOHE5D7y/L0vCkECWH+5odB4CJksP9dGqPcL3zS4aqah1mxwEAoNVRPAEAcJz9uGWnckurNHkYo50ASNeN6qxdlXX6aGW22VEAAGh1FE8AABxns5ZmKczPQ6f3ijA7CgAXkJIQpAHxgXpjUbocTsPsOAAAtCqKJwAAjqPskkr9sHmnLkmJk5uNP7MAJIvFoutGJimrpFIL1heYHQcAgFbFJ2IAAI6j2cuzZJF06dB4s6MAcCGn9YxUYoi3pv+0TYbBqCcAQMdB8QQAwHFSW+/Uh6nZGtM9XDGBXmbHAeBCbFaLrjkpSWtzdmtZeonZcQAAaDUUTwAAHCdfbShQUXmtJjGpOIBDuHBQrEJ83DX9p+1mRwEAoNVQPAEAcJzMWpqpuGAvjeoSZnYUAC7I082mK4Yn6vtNO7VlR5nZcQAAaBUUTwAAHAdpO8q0LL1Elw1JkNVqMTsOABd1+fAEebpZGfUEAOgwKJ4AADgO3luWJXebVRenxJodBYALC/Zx1yUpcZq7JlcFu6vNjgMAQIujeAIA4E+qrK3XJytzNK5PpEJ8PcyOA8DFXXNSkhxOQ28vSTc7CgAALY7iCQCAP+nztfkqq6nXZCYVB3AU4oK9Na5PlN5fmqWy6jqz4wAA0KIongAA+JPmrMhS5zAfpSQEmR0FQBtx3cgkldXUa87ybLOjAADQoiieAAD4E7buLNOqrFJdMjhOFguTigM4On1jAzUsKVhv/pyu2nqn2XEAAGgxFE8AAPwJH6zIlt1q0fkDmVQcwLG5bmRnFeyp1mdr88yOAgBAi6F4AgDgD6qtd+qTVbk6tUeEQplUHMAxGt0tTF0jfPX6ou0yDMPsOAAAtAiKJwAA/qDvftuhkopaXTI4zuwoANogi8WiaSM7a1NBmX7cUmh2HAAAWgTFEwAAf9CcFdmK9PfUyK5hZkcB0EZN6BetSH9PvfrjNrOjAADQIiieAAD4A/JKq/RTWqEuSomVzcqk4gD+GHe7Vdec1ElLt5doZWaJ2XEAADjuKJ4AAPgDPl6ZI8OQLk5hNzsAf86lQ+IV5O2m//zAqCcAQPtD8QQAwDFyOg19mJqtE5JDFBfsbXYcAG2cj4ddU0d00nebduq3/D1mxwEA4LiieAIA4Bgt2VasnF1VjHYCcNxMGZEgH3ebXlnIqCcAQPtC8QQAwDGasyJLAV5uGtsr0uwoANqJQG93TR6WoM/X5SmzuMLsOAAAHDcUTwAAHINdFbX6esMOnTcgRp5uNrPjAGhHrj6xk+w2q179cbvZUQAAOG5crnhasGCBunXrpuTkZD311FMH3T5jxgyFhYWpf//+6t+/v9544w0TUgIAOqpP1+Sq1uFkNzsAx124v6cuGhSrT1bmaMeearPjAABwXLhU8eRwOHTTTTdp/vz52rhxo2bPnq2NGzcetNwll1yiNWvWaM2aNbrmmmtMSAoA6IgMw9AHK7LVNzZAPaP9zY4DoB26bmRn1TudemMRo54AAO2DSxVPy5cvV3JyspKSkuTu7q6JEydq7ty5ZscCAECStC5ntzYVlDHaCUCLiQ/x1oR+0XpvWZZ2VdSaHQcAgD/NpYqn3NxcxcX9/mE+NjZWubm5By33ySefqG/fvrrwwguVnZ19yHVNnz5dKSkpSklJUWFhYYtlBgB0HB+kZsvTzaoJ/aPNjgKgHbthdLIqax2a+UuG2VEAAPjTXKp4Ohpnn322MjIytG7dOp122mmaMmXKIZebNm2aUlNTlZqaqrCwsFZOCQBob6pqHZq3Jk9n9omSv6eb2XEAtGPdIv10ao8Ivb04Q+U19WbHAQDgT3Gp4ikmJqbJCKacnBzFxMQ0WSYkJEQeHh6SpGuuuUYrV65s1YwAgI7pu007VF5TrwsHxZodBUAHcOPJnbW7qk6zl2WZHQUAgD/FpYqnwYMHKy0tTenp6aqtrdWcOXM0YcKEJsvk5+c3np83b5569OjR2jEBAB3QZ2vzFO7noaGdQsyOAqADGBgfpBGdQ/T6ou2qqXeYHQcAgD/MpYonu92ul156SWPHjlWPHj108cUXq1evXnrwwQc1b948SdKLL76oXr16qV+/fnrxxRc1Y8YMc0MDANq9PdV1+mFzoc7sEyWb1WJ2HAAdxI2jk7WzrEafrDx4zlMAANoKi2EYhtkhWlpKSopSU1PNjgEAaKM+WZmjOz9aq09uGKFBCUFmxwHQQRiGoXNfXqzSqjp9d8co2W0u9Z0xAABH1bfw1wsAgCP4fF2eYgK9NDA+0OwoADoQi8WiG0YnK7O4Ul/8mn/kOwAA4IIongAAOIxdFbValFaks/pFyWJhNzsArev0nhFKDvfVKwu3qQPsqAAAaIcongAAOIwFGwpU7zR0dt9os6MA6ICsVotuHN1ZmwrK9P2mnWbHAQDgmFE8AQBwGJ+tzVOnUB/1ivY3OwqADursftGKCfTSyz9sZdQTAKDNoXgCAKAZO8uqtXR7sc7uy252AMzjZrPq+lFJWpVVqmXpJWbHAQDgmFA8AQDQjPm/FshpNIw2AAAzXZQSp1Bfd738w1azowAAcEwongAAaMZna/PULcJPXSL8zI4CoIPzdLPp6hOTtCitSL/m7DY7DgAAR43iCQCAQ8grrVJq5i6d3S/K7CgAIEmaPCxefp52/Wcho54AAG0HxRMAAIfwxbp8SdJZHM0OgIvw83TTlOGJWrChQFt3lpsdBwCAo0LxBADAIXy2Lk99YwOUGOpjdhQAaHTlCYnysFv16o/bzI4CAMBRoXgCAOAAGUUVWpezW2f1ZTc7AK4lxNdDEwfH69PVucrZVWl2HAAAjojiCQCAA3zxa8NuduPZzQ6AC5o2MkmS9PpP201OAgDAkVE8AQBwgM/W5iklIUgxgV5mRwGAg0QHeun8gTGasyJbO8uqzY4DAMBhUTwBALCfLTvKtKmgTGf3Y7QTANd14+hkOZyG/vVtmtlRAAA4LIonAAD28/naPFkt0rg+kWZHAYBmJYb6aNLQeM1Zkc0R7gAALo3iCQCAvRxOQ/PW5mlYUojC/TzNjgMAh/WXU7rIy82mZxZsMjsKAADNongCAGCvj1dmK6O4UpOHJZgdBQCOKNTXQ9ePStLXG3doRUaJ2XEAADgkiicAACRV1NTrH19v0aCEII3rzW52ANqGq09MUoS/h5748jcZhmF2HAAADkLxBACApOk/bVdhWY3uH99DFovF7DgAcFS83G2687RuWp1VqvnrC8yOAwDAQSieAAAd3o491Zr+03aN7xulgfFBZscBgGNywaBYdY3w1TMLNqm23ml2HAAAmqB4AgB0eM99vVn1TqfuGdvd7CgAcMxsVov+Oq6HMoorNXt5ltlxAABoguIJANCh/Za/Rx+tzNGU4YmKD/E2Ow4A/CGju4VpeFKI/vVdmsqq68yOAwBAI4onAECHZRiGnvjyN/l7uukvY7qYHQcA/jCLxaK/ntldJRW1eu3H7WbHAQCgEcUTAKDD+nFLoRalFemWU7oowNvN7DgA8Kf0jQ3UhH7ReuPn7SrYXW12HAAAJFE8AQA6qHqHU098+ZsSQrx1+bAEs+MAwHFx19hucjql57/ZbHYUAAAkUTwBADqoj1bmaMuOct17Rne52/lzCKB9iAv21hXDE/TRyhytzS41Ow4AABRPAICOp6KmXs99vUWDEoJ0Ru9Is+MAwHF166ldFObroQc+XS+H0zA7DgCgg6N4AgB0OK/9tF1F5TW6f3wPWSwWs+MAwHHl5+mmv53VU7/m7taspZlmxwEAdHAUTwCADqWytl4zFqdrbK8IDYwPMjsOALSIs/pG6aQuofrHV5u1cw8TjQMAzEPxBADoUP63Old7qut1zUlJZkcBgBZjsVj0yDm9VeNw6tEvfjM7DgCgA6N4AgB0GIZhaOaSDPWM8ldKAqOdALRvnUJ9dOPozvpsbZ4WpRWaHQcA0EFRPAEAOoxfthdry45yTT0hkbmdAHQI14/qrMQQbz04d4Oq6xxmxwEAdEAUTwCADmPG4gwFebtpQr9os6MAQKvwdLPp0XN7K72oQq/+uM3sOACADojiCQDQIWSXVOrb33bo0iHx8nSzmR0HAFrNSV3CdHa/aP1n4TZlFFWYHQcA0MFQPAEAOoRZSzNlsVg0eViC2VEAoNX9bXwPedis+tvc9TIMw+w4AIAOxOWKpwULFqhbt25KTk7WU089ddDtNTU1uuSSS5ScnKyhQ4cqIyOj9UMCANqUqlqH5qzI1theEYoO9DI7DgC0unB/T915elctSivSF7/mmx0HANCBuFTx5HA4dNNNN2n+/PnauHGjZs+erY0bNzZZ5s0331RQUJC2bt2q22+/Xffcc49JaQEAbcWna3K1u6pOU4Ynmh0FAExz+fBE9Y7x1yOfbVRZdZ3ZcQAAHYRLFU/Lly9XcnKykpKS5O7urokTJ2ru3LlNlpk7d66mTJkiSbrwwgv13XffMVwYANAswzA0c0mGekT5a0inYLPjAIBpbFaLHj+3jwrLa/Tc11vMjgMA6CBcqnjKzc1VXFxc4+XY2Fjl5uY2u4zdbldAQICKi4sPWtf06dOVkpKilJQUFRYWtmxwAIDLWrq9RJsKyjR1RIIsFovZcQDAVP3iAjV5aILe+SVD63N3mx0HANABuFTxdDxNmzZNqampSk1NVVhYmNlxAAAmmbkkQ4Hebjqnf4zZUQDAJfzf2G4K9vHQ/Z+ul8PJngMAgJblUsVTTEyMsrOzGy/n5OQoJiam2WXq6+u1e/duhYSEtGpOAEDbkLOrUl9vLNDEwfHydLOZHQcAXEKAl5seGN9Da7NLNXt5ltlxAADtnEsVT4MHD1ZaWprS09NVW1urOXPmaMKECU2WmTBhgmbOnClJ+vjjjzVmzBh2nQAAHNKspQ3/obp8eILJSQDAtZzTP1ojOofomQWbVFhWY3YcAEA75lLFk91u10svvaSxY8eqR48euvjii9WrVy89+OCDmjdvniTp6quvVnFxsZKTk/X888/rqaeeMjk1AMAVVdc5NGdFlk7vGamYQC+z4wCAS7FYLHr03N6qrnPqiS9/MzsOAKAdsxgd4JBwKSkpSk1NNTsGAKAVfbAiS/d88qvmTBumYUnskg0Ah/Lc15v17++36v1rh2pE51Cz4wAA2pij6VtcasQTAADHg2EYentxhrpH+mlop2Cz4wCAy7rp5GTFB3vrb5+uV2290+w4AIB2iOIJANDuLE8v0aaCMk0dkcg8gABwGJ5uNj1yTi9tK6zQ64u2mx0HANAOUTwBANqdGUsyFODlpnP6xxx5YQDo4EZ3C9eZfSL14ndpyiquNDsOAKCdoXgCALQruaVV+nrjDk0cEicvd5vZcQCgTXjwrF6yWy266+O1cjjb/RSwAIBWRPEEAGhXZi3NlGEYunxYgtlRAKDNiAzw1CPn9Nay9BL967s0s+MAANoRiicAQLtRXefQnOVZOq1nhGKDvM2OAwBtygWDYnXBwFj9+/s0LdlaZHYcAEA7QfEEAGg35q3J067KOk0ZkWh2FABokx49t5c6h/nq1g/WqLCsxuw4AIB2gOIJANAuGIahGUsy1C3CT8OTQsyOAwBtkre7XS9fNlB7qup0+wdr5GS+JwDAn0TxBABoF1Zk7NLG/D2aMiJRFovF7DgA0GZ1i/TT3yf00s9bi/SfhVvNjgMAaOMongAA7cLMJRkK8HLTuQOizY4CAG3eJYPjdE7/aD3/zRYtTy8xOw4AoA2jeAIAtHl5pVVasKFAlwyOk7e73ew4ANDmWSwWPX5eHyWE+OiW2atVUlFrdiQAQBtF8QQAaPPeW5YpwzB0+bAEs6MAQLvh62HXS5cNUEllre74kPmeAAB/DMUTAKBNq65zaPbybJ3SI0Jxwd5mxwGAdqVXdID+Nr6HFm4u1Cs/bjM7DgCgDaJ4AgC0aZ+tzVNJRa2uHJFodhQAaJcmD0vQOf2j9Y+vN+v7TTvMjgMAaGMongAAbZZhGJqxJENdI3w1vHOI2XEAoF2yWCx66vy+6hnlr1tnr9G2wnKzIwEA2hCKJwBAm/XD5p3akLdHU0YkymKxmB0HANotL3ebpl+RIne7Vde+k6o91XVmRwIAtBEUTwCANmnh5p26YdYqdY3w1XkDYsyOAwDtXkygl/4zaaCyiit1+xwmGwcAHB2KJwBAm/P1hgJNe2elOof5as604fJ2t5sdCQA6hKFJIXro7J76btNOPf/NFrPjAADaAD6pAwDalC/W5evWOavVKyZA71w5RAHebmZHAoAOZfKwBK3P3aOXftiqntH+OrNPlNmRAAAujBFPAIA247+rcvSX2as0ID5Qs66mdAIAM1gsFj1ybi8NjA/UnR+u1W/5e8yOBABwYRRPAIA2YfbyLN350VoNSwrRzKuGyM+T0gkAzOJht+nVyYPk52nXtHdTlbOr0uxIAAAXRfEEAHB5M5dk6K///VWjuobpramDmdMJAFxAuL+nXrt8kEor6jThpcVasq3I7EgAABdE8QQAcGlv/Zyuh+Zt0Ok9I/Ta5YPk6WYzOxIAYK8B8UH69OYTFOzjrsvfXK43Fm2XYXC0OwDA7yieAAAua+aSDD3y+Uad0StSL08aKA87pRMAuJrOYb769KYTdFqPCD32xW+6dc4aVdU6zI4FAHARFE8AAJf07tJMPTRvg07rGaEXLx0gNxt/sgDAVfl62PXK5IG6a2w3fbYuT+f9Z7Gyipn3CQBA8QQAcEHvL8vS3z5dr1N7hOvlywbK3c6fKwBwdRaLRTednKy3pw5WXmmVzn7pZ/24pdDsWAAAk/FJHgDgUj5YkaX7/verTu4WppcnUToBQFszulu4PvvLiYoK8NTUt5fr8S82qqaeXe8AoKPi0zwAwGV8lJqte/ceve6VyYOY0wkA2qiEEB/998YRmjQ0Xq8vStc5Ly3Wb/l7zI4FADABxRMAwCX8d1WO7v5knU5MDuXodQDQDni72/XYuX309tTBKiqv1TkvLdZrP26Tw8lR7wCgI6F4AgCYyjAMvbFou+78aK2GJ4Xo9StSKJ0AoB05uXu4vr59pE7uHqYn52/SZa8vVc4uJh4HgI6C4gkAYBqH09BD8zbosS9+07jekXpr6mBKJwBoh4J93PXq5EF69sK+2pC3R+NeWKR3f8lQZW292dEAAC2M4gkAYIrK2npd926q3vklU9NGJumlSwdSOgFAO2axWHRRSpzm33qSekT5629zN2jo49/pb5+u18Y85n8CgPbKbnYAAEDHs7OsWtfMTNX63N169Jxeunx4otmRAACtJC7YWx9cN0ypmbv0/rIsfZCarXeXZqp/XKAuGxqvs/tGy8udLyIAoL2wGIbR7mf3S0lJUWpqqtkxAACS0naUaerbK1RSUauXLhugU3pEmB0JAGCi0spafbIqV+8vy9S2wgr5edp1Ws8InZgcqhOSQxXh72l2RABAM46mb2HEEwCg1fy0pVA3vb9Knm42fXjdcPWJDTA7EgDAZIHe7rr6xE666oRELU8v0ZwV2fph0079d1WuJKlLuK9O2FtCDU0Klr+nm8mJAQDHwmWKp5KSEl1yySXKyMhQYmKiPvzwQwUFBR20nM1mU58+fSRJ8fHxmjdvXmtHBQAco/W5u/WPrzdr4eZCdQn31dtXDlZskLfZsQAALsRisWhoUoiGJoXI6TS0MX+PFm8t0uJtxZqzIkszlmTIZrVoaKdgjesTpbG9IhTux2goAHB1LrOr3d13363g4GDde++9euqpp7Rr1y49/fTTBy3n6+ur8vLyY1o3u9oBgDm2F5br+W+26PN1+QrwctMNoztryvBE5u4AAByTmnqHVmWWalFaoRZsKND2wgpZLNLgxGCN6x2pM3pHKirAy+yYANDhHE3f4jLFU7du3bRw4UJFRUUpPz9fo0eP1ubNmw9ajuIJAFxf/u4q/evbNH20MkcedquuOqGTrh2ZpAAvdo8AAPw5hmEobWe5vvw1X/N/LdDmHWWSpH5xgeoT46/kMF8lh/spOdxXEf4eslgsJicGgParTRVPgYGBKi0tldTwxyQoKKjx8v7sdrv69+8vu92ue++9V+eee+4h1zd9+nRNnz5dklRYWKjMzMwWSg4AkKTdVXX6aUuhvt+0U1/8mi/DMDRpaIJuOjlZYX4eZscDALRT2wrLtWB9gb7ftFNbdpSprLq+8TY/D7uSwn3VOdRHUYGeigzwUpS/p6ICPRUV4KUgbzeKKQD4E1yueDr11FNVUFBw0PWPP/64pkyZ0qRoCgoK0q5duw5aNjc3VzExMdq+fbvGjBmj7777Tp07dz7sdhnxBADH375vnL/ftFPfb9qplZm75HAaCvJ20xm9I3Xj6GTFBTOPEwCg9RiGocLyGm3dWa5tO8u1dWe5thaWK6OoUjv2VKve2fS/Pu52q6ICPBXp79lwGuC199RT0QFeCvF1l7+Xm3zcbRRUAHAILndUu2+//bbZ2yIiIpSfn9+4q114ePghl4uJiZEkJSUlafTo0Vq9evURiycAwPGRXVKp5eklWp5eosXbipSzq0qS1CPKX9ePStKY7hHqHxcom5UP5wCA1mexWBTu56lwP0+N6Bza5DaH01BxeY3yd1crf3eV8ndXq2B3deNpauYu7diTrzrHwd/LWy2Sv5eb/D3d5O9ll7+nmyL9PRUb7K3YIC/FBXkrLthLUQFe/A0EgAO4zFHtJkyYoJkzZ+ree+/VzJkzdc455xy0zK5du+Tt7S0PDw8VFRVp8eLFuvvuu01ICwDtn2EY2l5U0Vg0LU8vUW5pQ9EU4OWmIZ2CdePoZJ3cPYwJXQEALs9mtSjc31Ph/p7qFxd4yGWcTkPFFbUq2F2tvN1V2lVRqz3VddpTVb/3tE57qutVWlmrpduLlb8mV/vvP2K3WhQZ4Cl/Tzd5u9vk7WGXt5tN3h42ebvb5OVmk81qlc2qhlOLRXabRVaLRVaL5DQkp2HIMIzG806j4W+yccDlfefd7VZ5u9nk5W6Tt7u9YTt7tyVJDsOQ09mwrMPZsG6LRQr0dlewT8NPkLc7hRmAFuMyxdO9996riy++WG+++aYSEhL04YcfSpJSU1P16quv6o033tBvv/2m6667TlarVU6nU/fee6969uxpcnIAaF6dw6ni8loVltVoZ1m1Cstq9p6vUXFFjXw97Arz89j77azH7+f9PeTp1rpHfttdWac1OaVanbVLa7JLtSa7VKWVdZKkUF8PDe0UrGkjkzQ0KVhdw/1k5QMqAKCdsVotCtv797hPbMARl6+tdyqvtEo5u6qUvatS2SWVyiutUnmNQ5W19dpdVaeC3VWqqHGoqq7hOqezoQxyOI9+xhOLRY3llGXvqdVikUVSrcN5yFFax8JiafhSKdjHXWG+HooP9lZCiLfiQ3wazgd7K5D5sAD8QS4zuXhLYo4nAC2ltt6p1IwS/VZQ1qRY2vdTUlmrQ73LBno3fLirqKlXUXntIT98+nnYFebvsbeQaiimDiynwnw9jvmDYGllrTKKK5VZXKGMokqlF5VrXe5ubS+skNTw4bNruJ8GxAeqf1ygBncKVlKoDx82AQA4jvaNanI4G0oop2HIZrXsVzL9XjQdSZ3Dqcpah6pqG8qtylqHquscsuy9v81iaVy3zWqR09nweaC4olYlB/zs2FOtrJJK7SyrabINP0+7ukf6aUinYA3pFKJBCUHy9XCZcQwATOJyczwBQHtQWFajhZsbJtRelFak8pqGo+e426yN35LGBXtrYEJQY1EU5uuhcH9Phfl5KNTXXR7230czOZyGSip+HxW184DyamdZtdbllGrnnhpV1TkOyrNvu6F+HvL3tMuy9xvQfZ9TG85bVFxeo4ziSu2uqmty/6gAT/WK9tcFA2M1IC5QfWID5Ofp1lJPHwAA0L5CSMdlFzc3m1UBXlYFeB2/v99VtQ5llVQqq6Thy6qskkqty9mtV3/crpd/2Cab1aLe0f4amhSiIYnBGt45RD4UUQAOgRFPAHAUduyp1gcrsvXdpp1am10qSYrw99CY7hEa0z1cKQlBrTIEvbymXjv3VDfurrdzv3KqsKxGZdX1MiTtG2Zl7D1ryFCQt7sSQ3yUEOKthBAfJYZ4Ky7Yu9V36QMAAG1XRU29VmXt0rLtDfM/rskuVa3DKW93m87sE6ULB8VqSGIwu+QDHcTR9C0UTwBwGE6nofeWZerpBZtVUVuvfrGBOqV7uMb0CFfPKH92PwMAAB1adZ1DqzJ3ad7aPH2+Ll/lNfWKC/bSBQNjdcHAWMUFe5sdEUALonjai+IJwB+xZUeZ/vrfX7Uyc5dOTA7VY+f2VmKoj9mxAAAAXFJVrUMLNuTr45U5WrKtWIYhDUsK1tUnJunUHuF8YQe0Q8zxBAB/QHWdQ//5Yate+XGbfD3seu6ifjp/YAwflgAAAA7Dy92m8wbE6rwBscotrdL/VuVozopsXftOqnpG+euWU7ro9J4R7IYHdDCMeAKA/SxPL9G9/12n7YUVOm9AjB4Y30Mhvh5mxwIAAGiT6hxOzV2Tp5d/2Kr0ogp1j/TTX8Z00bjekRRQQDvAiCcAOEq7q+r01PxNmr08S7FBXpp51RCN6hpmdiwAAIA2zc1m1YWDYnVu/2h9vi5f//4+TTe9v0pdwn1185hkndU3+rgc2Q+A66J4AtChGYah+esL9NC8DSour9G0kUm67dQu8nbn7REAAOB4sdusOndAjM7uF60vf20ooG6ds0avLNymu8Z205juzAEFtFf8zwpAh5VXWqUH527Qt7/tUO8Yf709dbB6xwSYHQsAAKDdslktOrtftMb3idLnv+br+a836+qZqRqcGKS7z+iuwYnBZkcEcJxRPAHocBxOQ7OWZuqZBZvkNKT7z+yhK09IlN1mNTsaAABAh2C1WjShX7TG9Y7Uh6nZ+te3abro1V90Svdw3XVGN3WP9Dc7IoDjhOIJQIdRVevQVxsK9PbidK3N2a2RXcP0+Lm9FRfsbXY0AACADsnNZtWkoQk6f0Cs3l6SrlcWbtO4fy3ShH7RuvakJEajA+0AxROAds0wDK3M3KWPV+bo83X5Kq+pV1ywl164pL/O6R/NXAIAAAAuwMvdphtHJ+uyIfF65cdteveXTM1dk6fBiUG68oROOr1nBKPTgTbKYhiGYXaIlnY0h/cD0H5U1TqUW1qprzbs0Mcrc5ReVCFvd5vO7BOlCwfFakhiMIfvBQAAcGF7quv04YpszfwlQ9klVYoJ9NLlwxM0cXCcAr3dzY7XbtTWO5Wzq1KZJZXKKq5UZnGlcnZVqqbeKYfT+P3HMFTvNOR07n/qlNNQw6lTcu6tFvZ9yt7/C16LpeGn4XbLfucld7tVXm42ee798XKzycu94byfp11+HvaGU0+3xlNfj4YxNIYMGYZkqOEL58bTxuv2v75hee1/mww59y7jNAzVOxoeX73TUL3DuffUkMP5+/n9b3M4G+7n3G/dzr3b33fd/hn23Rbq66HbT+va4r/f1nA0fQvFE4A/xbn3D9G+P0pN/iAd8Afq92Ua/jg1/LHa+2a+3zoO/CN3qHXvu25PdZ0KdlerYE+1CnZXK393tXZX1TXmG5YUrAsHxWlc70j5eDDIEwAAoC1xOA1999sOzViSoSXbiuXpZtV5A2J15QmJ6hrhZ3Y8l1dV61De7irllTb85JZWN57PKqlUXmmVnPs1Al5uNsUFe8nLzSab1XLAj1V2q0VWi0X2g26zyGppKHOk34udhvN7mx79XhDtv0ydw6mqOoeqah2qrnM0nN97uay6XjX1ztZ6uo6Z1dIwYb5FFsnScNmihufCYrHIon2lW9PrEkK89d8bTzA7/nFB8bRXeyieSipq9d1vO1TrcKqu3qk6h6Fah1O19c79rnPuvc5ocl2d09D+v2Zjv+a13mk0rKPe+fv69p4/3EvDZrXIbrXKbmt407HbrHtPLQc12A1nLPs1301b8P2vb7jP7wscy5iUo34hH+WCxlEuuP+ba8Plpm+kTTa5321N72v8fr6Z9R24fHPL/r6t5nPtu+9B6zngITuNAwogx8HfdriCUF8PRQV4KsLfU1EBnooM8FSkv6cGJwYrPoT5mwAAANqDTQV7NGNxhv63Olc19U6dkByiK0d00pju4R16NHtZdZ0yiyuVXlShjKIKZRRXKqO4QpnFFSoqr22yrMUiRfh5KirQU3FB3koM8VZ8iI8SQryVEOKtMF8Pl5uKorbeqbLqOpXX1Kusul57qutUUeOQpP2Knf2Lnv0Kn73/N7XsXXj/yxZLw3nr3hsb/o9r2ft/XGtjueZms+49bXrZbrW43HNlBoqnvdpD8bQ+d7fO+vfPh7zNzWaRu80qN7tVbjar3G1Wudute69raKZ//4fXYN8/RpvVIne7VR723+/jvve8tZl/RIahhvLB4dxvKGJDGebYr+RqWnDsO39wAbbv/KGuM3Rs5dPR/ru3HOVaj3p9+5dmB9xv35vRwQXbwbf/fj9LM8sevI0Dt73/ydFs+4BNNlm/RZLd9vu3GlZr01Ob5eDrmn4DYpXNqqanlt+/FTnUNyW2vevdf5km67Y1vd3b3S53O/v7AwAAdBS7Kmo1e0WW3v0lU/m7q5UQ4q0rhifq4pRY+Xm6mR2vxZTX1CttR5m27CjTlh3le0/LtGNPTZPlIv09lRjqrU6hPooN8lZMoJeiA70av6B1Y64sHEcUT3u1h+Kppt6hnXtq5L6vXLJbGwsnWlYAAAAAHU2dw6mvN+zQ24vTlZq5Sz7uNo3pEaFB8YFKSQxW90i/NjEheWVtvYrKalVYXqOifT9ltSoqr1FhWcPl/N3Vyi2taryPp5tVXcL91DXCT8nhvuoU6q3EUB8lBPvIy91m4qNBR3M0fQsTnrQRHnYbh3wHAAAAgL3cbFaN7xul8X2j9GvObs38JUM/pxXps7V5khrmK+ofF6hBCUEamBCo2CBvBXm7K8jbrcULqYqa+ibFUWF5rYrK9iuWyn8vliprHYdcR6C3m0J9PRTq666UxCBdFhGvLuG+6hbpp9ggb9k68O6FaFsongAAAAAAbVqf2AD946J+kqS80iqtzNyllZm7tCprl175cZscB8xN6u9pV4ivh4K83RTg1bB7Xv1hDmiz7wA5+899Wn/AXKj1BxwY50AWixTk7a5QX3eF+nqoX2ygwvw8GsulUD8Phfk2XA72cWc6CbQbFE8AAAAAgHYjeu+cRmf3i5bUsCvbhrw92rGnWrsqalVSUaeSihqVVDacFpbXyGrZb35Ri0UeblZ5H3gUN9t+c5Tum3t070GXrPtdtlks8vO0NxRKfg2lUtjeMqkt7PoHHG8UTwAAAACAdsvb3a7BicFmxwA6LOpWAAAAAAAAtAiKJwAAAAAAALQIiicAAAAAAAC0CIonAAAAAAAAtAiKJwAAAAAAALQIiicAAAAAAAC0CIonAAAAAAAAtAiKJwAAAAAAALQIiicAAAAAAAC0CIthGIbZIVpaaGioEhMTzY5xXBQWFiosLMzsGHBRvD5wOLw+cDi8PnA4vD5wOLw+cCS8RnA4vD7atoyMDBUVFR12mQ5RPLUnKSkpSk1NNTsGXBSvDxwOrw8cDq8PHA6vDxwOrw8cCa8RHA6vj/aPXe0AAAAAAADQIiieAAAAAAAA0CIontqYadOmmR0BLozXBw6H1wcOh9cHDofXBw6H1weOhNcIDofXR/vHHE8AAAAAAABoEYx4AgAAAAAAQIugeAIAAAAAAECLoHhqIxYsWKBu3bopOTlZTz31lNlxYLLs7GydfPLJ6tmzp3r16qV//etfkqSSkhKddtpp6tKli0477TTt2rXL5KQwk8Ph0IABA3TWWWdJktLT0zV06FAlJyfrkksuUW1trckJYabS0lJdeOGF6t69u3r06KFffvmF9xA0+uc//6levXqpd+/euvTSS1VdXc17SAd21VVXKTw8XL179268rrn3C8MwdMsttyg5OVl9+/bVqlWrzIqNVnKo18ddd92l7t27q2/fvjrvvPNUWlraeNuTTz6p5ORkdevWTV999ZUJidHaDvUa2ee5556TxWJRUVGRJN5D2iuKpzbA4XDopptu0vz587Vx40bNnj1bGzduNDsWTGS32/Xcc89p48aNWrp0qV5++WVt3LhRTz31lE455RSlpaXplFNOoaTs4P71r3+pR48ejZfvuece3X777dq6dauCgoL05ptvmpgOZrv11lt1xhlnaNOmTVq7dq169OjBewgkSbm5uXrxxReVmpqq9evXy+FwaM6cObyHdGBTp07VggULmlzX3PvF/PnzlZaWprS0NE2fPl033HCDGZHRig71+jjttNO0fv16rVu3Tl27dtWTTz4pSdq4caPmzJmjDRs2aMGCBbrxxhvlcDjMiI1WdKjXiNTwZfrXX3+t+Pj4xut4D2mfKJ7agOXLlys5OVlJSUlyd3fXxIkTNXfuXLNjwURRUVEaOHCgJMnPz089evRQbm6u5s6dqylTpkiSpkyZok8//dTElDBTTk6OvvjiC11zzTWSGr49+v7773XhhRdK4vXR0e3evVs//fSTrr76akmSu7u7AgMDeQ9Bo/r6elVVVam+vl6VlZWKioriPaQDGzlypIKDg5tc19z7xdy5c3XFFVfIYrFo2LBhKi0tVX5+fmtHRis61Ovj9NNPl91ulyQNGzZMOTk5khpeHxMnTpSHh4c6deqk5ORkLV++vNUzo3Ud6jUiSbfffrueeeYZWSyWxut4D2mfKJ7agNzcXMXFxTVejo2NVW5uromJ4EoyMjK0evVqDR06VDt27FBUVJQkKTIyUjt27DA5Hcxy22236ZlnnpHV2vA2X1xcrMDAwMYPgbyPdGzp6ekKCwvTlVdeqQEDBuiaa65RRUUF7yGQJMXExOj//u//FB8fr6ioKAUEBGjQoEG8h6CJ5t4v+NyKA7311lsaN26cJF4f+N3cuXMVExOjfv36Nbme10j7RPEEtGHl5eW64IIL9MILL8jf37/JbRaLpcm3B+g4Pv/8c4WHh2vQoEFmR4GLqq+v16pVq3TDDTdo9erV8vHxOWi3Ot5DOq5du3Zp7ty5Sk9PV15enioqKg65iwSwD+8XaM7jjz8uu92uSZMmmR0FLqSyslJPPPGEHnnkEbOjoJVQPLUBMTExys7Obryck5OjmJgYExPBFdTV1emCCy7QpEmTdP7550uSIiIiGoei5ufnKzw83MyIMMnixYs1b948JSYmauLEifr+++916623qrS0VPX19ZJ4H+noYmNjFRsbq6FDh0qSLrzwQq1atYr3EEiSvv32W3Xq1ElhYWFyc3PT+eefr8WLF/Megiaae7/gcyv2mTFjhj7//HO99957jcUkrw9I0rZt25Senq5+/fopMTFROTk5GjhwoAoKCniNtFMUT23A4MGDlZaWpvT0dNXW1mrOnDmaMGGC2bFgIsMwdPXVV6tHjx664447Gq+fMGGCZs6cKUmaOXOmzjnnHLMiwkRPPvmkcnJylJGRoTlz5mjMmDF67733dPLJJ+vjjz+WxOujo4uMjFRcXJw2b94sSfruu+/Us2dP3kMgSYqPj9fSpUtVWVkpwzAaXx+8h2B/zb1fTJgwQe+8844Mw9DSpUsVEBDQuEseOo4FCxbomWee0bx58+Tt7d14/YQJEzRnzhzV1NQoPT1daWlpGjJkiIlJYYY+ffpo586dysjIUEZGhmJjY7Vq1SpFRkbyHtJeGWgTvvjiC6NLly5GUlKS8dhjj5kdByZbtGiRIcno06eP0a9fP6Nfv37GF198YRQVFRljxowxkpOTjVNOOcUoLi42OypM9sMPPxjjx483DMMwtm3bZgwePNjo3LmzceGFFxrV1dUmp4OZVq9ebQwaNMjo06ePcc455xglJSW8h6DRgw8+aHTr1s3o1auXMXnyZKO6upr3kA5s4sSJRmRkpGG3242YmBjjjTfeaPb9wul0GjfeeKORlJRk9O7d21ixYoXJ6dHSDvX66Ny5sxEbG9v4OfW6665rXP6xxx4zkpKSjK5duxpffvmlicnRWg71GtlfQkKCUVhYaBgG7yHtlcUwDMPs8gsAAAAAAADtD7vaAQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAAAAAoEVQPAEAAAAAAKBFUDwBAAAAAACgRVA8AQAAtLJFixapW7duZseQJL3yyiuKiIiQr6+viouL5evrq+3bt0uSpk6dqgceeOC4b3PHjh0aOXKk/Pz8dOeddx739QMAANdB8QQAAFqVr69v44/VapWXl1fj5ffee++4bOPDDz/UiBEj5O3trdGjRx+XdR4ti8WirVu3HnaZk046SZs3b26lRM2rq6vTHXfcoa+//lrl5eUKCQlReXm5kpKSWnS706dPV2hoqPbs2aPnnnvuoNsvuOACXXvttU2uO++883TzzTe3aC4AAHD82c0OAAAAOpby8vLG84mJiXrjjTd06qmnHtdtBAcH67bbbtOmTZv0/fffH9d1/1n19fWy21vnI9iRtrVjxw5VV1erV69erZJnn8zMTPXs2VMWi+WQt7/88svq1auXLrvsMp188sn64IMPtGrVKr377rutmhMAAPx5jHgCAAAuoaamRrfddpuio6MVHR2t2267TTU1NZKkhQsXKjY2Vk888YRCQ0OVmJh42NFRp556qi6++GJFR0cfcbv71v3MM88oPDxcUVFR+vTTT/Xll1+qa9euCg4O1hNPPNG4/PLlyzV8+HAFBgYqKipKN998s2prayVJI0eOlCT169dPvr6++uCDDxrX//TTTysyMlJXXnll43WStG3bNgUHB2vVqlWSpLy8PIWFhWnhwoWHzJuYmKgnn3xSPXv2VFBQkK688kpVV1c3eSz7b6u553XLli2Nu/sFBgZqzJgxkg4/Yuvzzz9X//79FRgYqBEjRmjdunXNPq9LlizR4MGDFRAQoMGDB2vJkiWSGnbfmzlzpp555hn5+vrq22+/Pei+kZGReu6553TttdcqKytLt9xyi1577TX5+vo2uz0AAOCaKJ4AAIBLePzxx7V06VKtWbNGa9eu1fLly/XYY4813l5QUKCioiLl5uZq5syZmjZt2nHbXa2goEDV1dXKzc3VI488omuvvVazZs3SypUrtWjRIj366KNKT0+XJNlsNv3zn/9UUVGRfvnlF3333Xf6z3/+I0n66aefJElr165VeXm5Lrnkksb1l5SUKDMzU9OnT2+y7c6dO+vpp5/W5MmTVVlZqSuvvFJTpkw57C6C7733nr766itt27ZNW7ZsOeh52n9bzT2vXbt21YYNGyRJpaWlRxwZtnr1al111VV67bXXVFxcrOuuu04TJkxoLAf3V1JSovHjx+uWW25RcXGx7rjjDo0fP17FxcWaMWOGJk2apLvvvlvl5eXNjnabOnWqOnfurIEDB+qMM87QGWeccdh8AADANVE8AQAAl/Dee+/pwQcfVHh4uMLCwvTQQw8dtGvVo48+Kg8PD40aNUrjx4/Xhx9+eFy27ebmpvvvv19ubm6aOHGiioqKdOutt8rPz0+9evVSz549tXbtWknSoEGDNGzYMNntdiUmJuq6667Tjz/+eNj1W61W/f3vf5eHh4e8vLwOuv3aa69VcnKyhg4dqvz8fD3++OOHXd/NN9+suLg4BQcH6/7779fs2bOb3dbRPK9HY/r06bruuus0dOhQ2Ww2TZkyRR4eHlq6dOlBy37xxRfq0qWLLr/8ctntdl166aXq3r27Pvvss2Pa5kknnaTi4mJNnjz5mPMCAADXQPEEAABcQl5enhISEhovJyQkKC8vr/FyUFCQfHx8mr39zwgJCZHNZpOkxmIoIiKi8XYvL6/Guam2bNmis846S5GRkfL399d9992noqKiw64/LCxMnp6eh13m2muv1fr16/WXv/xFHh4eh102Li6u8fyBz8OB2zrS83q0MjMz9dxzzykwMLDxJzs7+5DrOnCb+7abm5t71NtLS0vTP/7xD91444268847VVdXd8yZAQCA+SieAACAS4iOjlZmZmbj5aysrCZzNO3atUsVFRXN3t5abrjhBnXv3l1paWnas2ePnnjiCRmGcdj7NDeJ9j7l5eW67bbbdPXVV+vhhx9WSUnJYZfPzs5uPH/g83Dgto70vB6tuLg43X///SotLW38qays1KWXXnrQsgduc992Y2JijmpbhmHommuu0W233aZ///vf8vHx0dNPP33MmQEAgPkongAAgEu49NJL9dhjj6mwsFBFRUV65JFHDtrF6qGHHlJtba0WLVqkzz//XBdddNEh1+VwOFRdXa36+no5nU5VV1cftxEzZWVl8vf3l6+vrzZt2qRXXnmlye0RERHavn37Ma3z1ltvVUpKit544w2NHz9e119//WGXf/nll5WTk6OSkhI9/vjjjXNJHcrRPK9H49prr9Wrr76qZcuWyTAMVVRU6IsvvlBZWdlBy5555pnasmWL3n//fdXX1+uDDz7Qxo0bddZZZx3Vtl555RUVFRXpvvvuk9Vq1ZtvvqlnnnlGmzZtOubcAADAXBRPAADAJTzwwANKSUlR37591adPHw0cOFAPPPBA4+2RkZEKCgpSdHS0Jk2apFdffVXdu3c/5LreffddeXl56YYbbtCiRYvk5eWla6+99rjk/Mc//qH3339ffn5+uvbaaw8qfR5++GFNmTJFgYGBRzUH1dy5c7VgwYLGAuv555/XqlWrDnvUvssuu0ynn366kpKS1Llz5ybP04GO9LwerZSUFL3++uu6+eabFRQUpOTkZM2YMeOQy4aEhOjzzz/Xc889p5CQED3zzDP6/PPPFRoaesTtZGVl6b777tObb74pd3d3SVLPnj1155136tprrz3i6DIAAOBaLAZ/vQEAgItbuHChJk+erJycHLOjmC4xMVFvvPFGs0eDAwAAcCWMeAIAAAAAAECLoHgCAAAAAABAi2BXOwAAAAAAALQIRjwBAAAAAACgRdjNDtAaQkNDlZiYaHYMAAAAAACAdiMjI0NFRUWHXaZDFE+JiYlKTU01OwYAAAAAAEC7kZKScsRlWnRXuwULFqhbt25KTk7WU089ddDtzz//vHr27Km+ffvqlFNOUWZmpiRpzZo1Gj58uHr16qW+ffvqgw8+aLzP1KlT1alTJ/Xv31/9+/fXmjVrWvIhAAAAAAAA4A9qsRFPDodDN910k7755hvFxsZq8ODBmjBhgnr27Nm4zIABA5Samipvb2+98soruvvuu/XBBx/I29tb77zzjrp06aK8vDwNGjRIY8eOVWBgoCTp2Wef1YUXXthS0QEAAAAAAHActNiIp+XLlys5OVlJSUlyd3fXxIkTNXfu3CbLnHzyyfL29pYkDRs2TDk5OZKkrl27qkuXLpKk6OhohYeHq7CwsKWiAgAAAAAAoAW0WPGUm5uruLi4xsuxsbHKzc1tdvk333xT48aNO+j65cuXq7a2Vp07d2687v7771ffvn11++23q6am5pDrmz59ulJSUpSSkkJpBQAAAAAAYIIWnePpaM2aNUupqam66667mlyfn5+vyy+/XG+//bas1oaoTz75pDZt2qQVK1aopKRETz/99CHXOW3aNKWmpio1NVVhYWEt/hgAAAAAAADQVIsVTzExMcrOzm68nJOTo5iYmIOW+/bbb/X4449r3rx58vDwaLx+z549Gj9+vB5//HENGzas8fqoqChZLBZ5eHjoyiuv1PLly1vqIQAAAAAAAOBPaLHiafDgwUpLS1N6erpqa2s1Z84cTZgwockyq1ev1nXXXad58+YpPDy88fra2lqdd955uuKKKw6aRDw/P1+SZBiGPv30U/Xu3bulHgIAAAAAAAD+hBY7qp3dbtdLL72ksWPHyuFw6KqrrlKvXr304IMPKiUlRRMmTNBdd92l8vJyXXTRRZKk+Ph4zZs3Tx9++KF++uknFRcXa8aMGZKkGTNmqH///po0aZIKCwtlGIb69++vV199taUeAgAAAAAAAP4Ei2EYhtkhWlpKSopSU1PNjgEAAAAALqO6zqFPVuVowfoCDUsK0SWD4xTq63HkOwLAXkfTt7TYiCcAAAAAgOvZXVmnd5dmaMaSDBWV1yo2yEuL0or0r2/TdGafSF0+PEED44NksVjMjgqgHaB4AgAAAIAW5nQaqql3qrrOoao6h7zcbArycW/VDHmlVXrr53TNXp6lilqHRncL0/WjOmtop2BtK6zQrKWZ+mRljj5dk6eeUf66fHiCzukfLW93/tsI4I9jVzsAAAAAOE62F5br9g/WaE91vapqHaqud6iq1qGaemeT5WxWi8b2itCVJ3RSSkLLji7aXFCm137apnlr8mRImtAvWtNGJqlHlP9By1bU1OvTNbl695dMbSook5+nXRcOitUVwxPVKdSnxTICaJvY1Q4AAAAAWtG8tXlal7tbZ/WNlpebVV5uNnm62eThZtt73ipPN5vSiyo0Z3mWvvy1QL2i/XXlCZ10dr8oedhtfzpDbb1T6/N2a0V6iX7eWqRFaUXycrPp8uEJuvrETooN8m72vj4edk0amqDLhsQrNXOX3vklU7OWZur9ZVn66raRSqR8AnCMGPEEAAAAAMfJRa8uUU29U/NuPvGIy1bW1ut/q3M1Y3GG0naWK9TXXZcNidfkYQkK9/c86m1W1NRrdVaplmeUaEV6iVZn71J1XcMIq6RQH507IEaXD0v4w7v2ZRVXasxzC3XF8EQ9eHbPP7QOAO0TI54AAAAAoJWU7y2Arh2ZdFTLe7v/Prpo8dZizViSrn//sFX/WbhN4/tGaUz3cNXWOxvnhqqpd6qmzqHqvZer6xzaXFCm9Xl75HAaslqkntH+unRIvIYkBislMVhhfn/+KHXxId4a3zdKH6Vm647Tu8rXg/9GAjh6vGMAAAAAwHGwPL1Y9U5DJyaHHtP9LBaLTuwSqhO7hCqjqEIzf8nQR6k5mrsm7xDLSh72ht31POxWJQT76PpRSRqcGKxBCUHy83Q7Xg+niakjEjV3TZ7+uypHVwxPbJFtAGifKJ4AAAAA4DhYlFYkD7tVgxKC/vA6EkN99NDZvfR/p3dTXmnV3vmhrPKwN8wP5W6ztuhE5M0ZEB+kfnGBmrEkQ5OHJshqbf0MANomq9kBAAAAAKA9WLy1SEM6BcvT7c9PEO7jYVeXCD/FBXsr3M9TAV5u8rDbTCmd9rlyRKK2F1Zo0dYi0zIAaHsongAAAADgT9q5p1pbdpTrhGPcza4tObNPlML8PDRjcbrZUQC0IRRPAAAAAPAnLd7WMAroWOd3akvc7VZNGhqvHzYXKr2owuw4ANoIiicAAAAA+JN+TitWoLebekb5mx2lRV02NF5uNotmLskwOwqANoLiCQAAAAD+BMMwtHhrkU7oHNruJ90O9/PUWX2j9VFqtsqq68yOA6ANoHgCAAAAgD9hW2GFCvZUt+v5nfY3dUSiKmod+nhljtlRALQBFE8AAAAA8Cf8nFYoSTqpS8convrFBWpAfKBmLsmQ02mYHQeAi6N4AgAAAIA/4eetxYoP9lZcsLfZUVrN1BGJyiiu1I9bCs2OAsDFUTwBAAAAwB9U73Bq6fbiDrOb3T7jekcp3M9DbzPJOIAjoHgCAAAAgD9obc5uldfU68QOVjy5262aPCxBP20p1Nad5WbHAeDCKJ4AAAAA4A9avLVIFos0vHOI2VFa3aVD4uVus+qdXzLMjgLAhVE8AQAAAMAf9PPWIvWK9lewj7vZUVpdmJ+HzuoXpY9X5mhPdZ3ZcQC4KIonAAAAAPgDKmrqtTprV4eb32l/V47opMpahz5KzTE7CgAXRfEEAAAAAH/A8vQS1TmMDje/0/76xAZoUEKQZi7JkMNpmB0HgAuieAIAAACAP+DnrUVyt1s1ODHY7CimmjoiUVkllVq4eafZUQC4oBYtnhYsWKBu3bopOTlZTz311EG3P//88+rZs6f69u2rU045RZmZmY23zZw5U126dFGXLl00c+bMxutXrlypPn36KDk5WbfccosMg1YdAAAAQOtbvLVIgxOD5OlmMzuKqc7oHakIfw/NWJJhdhQALqjFiieHw6GbbrpJ8+fP18aNGzV79mxt3LixyTIDBgxQamqq1q1bpwsvvFB33323JKmkpER///vftWzZMi1fvlx///vftWvXLknSDTfcoNdff11paWlKS0vTggULWuohAAAAAMAh7Syr1qaCsg49v9M+bjarLhgYq8Vbi1RV6zA7DgAX02LF0/Lly5WcnKykpCS5u7tr4sSJmjt3bpNlTj75ZHl7e0uShg0bppychgnpvvrqK5122mkKDg5WUFCQTjvtNC1YsED5+fnas2ePhg0bJovFoiuuuEKffvppSz0EAAAAADikX7YVS1KHnt9pfwPig+Q0pA15u82OAsDFtFjxlJubq7i4uMbLsbGxys3NbXb5N998U+PGjTvsfXNzcxUbG3tU65w+fbpSUlKUkpKiwsLCP/twAAAAAKDRz2lFCvByU6/oALOjuIS+sQ3Pw7ociicATdnNDiBJs2bNUmpqqn788cfjts5p06Zp2rRpkqSUlJTjtl4Af16dw6mi8hrt3FOjwrIa7SxrOC0sr1ZljUN1TkP1DqfqHIYcTqfqnYbqHE7VOww5DEPRAV7qHO6rzmE+6hzmq85hvvJy79hzKwAAgNZjGIYWby3SiM4hslktZsdxCRH+norw99C6nFKzowBwMS1WPMXExCg7O7vxck5OjmJiYg5a7ttvv9Xjjz+uH3/8UR4eHo33XbhwYZP7jh49WjExMY274x1unQBaV2VtvX7cXKiy6nqV1zT8VBxwWl5Tr10VdSosr1FJRe0h1xPk7SZvd7vcbBbZbVbZrRa52ayy2xpOPdysssiiDXm7NX99vvY/Ym9MYEMZlRzmqy4RvhqWFKLEEG9ZLHwYBAAAx9f2ogrl7a7WjSezm93++sYGal0uI54ANNVixdPgwYOVlpam9PR0xcTEaM6cOXr//febLLN69Wpdd911WrBggcLDwxuvHzt2rO67777GCcW//vprPfnkkwoODpa/v7+WLl2qoUOH6p133tFf/vKXlnoIAI6CYRi67t2VWpRW1OR6D7tVvh52+XjY5bv3Jz7EWymJQQrz81C4n+feUw+F+Xko1NdD7vaj3/u3us6hzOJKbSss17ad5dpaWK5theWanV6iqrqGSS1jAr10UpdQndglVCd0DlWQj/txfewAAKBjWry14XPPSV0onvbXLzZA32zcoT3VdfL3dDM7DgAX0WLFk91u10svvaSxY8fK4XDoqquuUq9evfTggw8qJSVFEyZM0F133aXy8nJddNFFkqT4+HjNmzdPwcHB+tvf/qbBgwdLkh588EEFBwdLkv7zn/9o6tSpqqqq0rhx4xrnhQJgjm9/26lFaUX6v9O76twBMY1lk5utxaaQkyR5utnULdJP3SL9mlzvdBrKLKnUz1uL9HNaob74NV9zVmTLYpH6xAToxOSGImpQQpA87OyeBwAAjt3PaUWKDfJSfLC32VFcSp/YQEnS+pzdGsGk6wD2shiGYRx5sbYtJSVFqampZscA2p2aeofG/vMn2W1Wzb/1pBYvm/6IeodTa3N26+e0Iv28tVCrskrlcBoK8HLTTSd31hXDE+XpRgEFAACOTr3DqQGPfqPxfaL01AV9zY7jUnZV1GrAo9/o3nHddf2ozmbHAdAKjqZvcYnJxQG0TTOXZCijuFIzrhzskqWTJNltVg1KCNKghCDdemoXlVXXaen2Es1amqknvtykmUsydefpXXVu/xhZmRwUAAAcwa+5u1VWXa8TGNFzkCAfd8UFezHBOIAmXPN/igBcXmFZjV78bqvGdA/X6G7hR76Di/DzdNNpPSM086ohev+aoQr2cdcdH67V+H//rJ+2FJodDwAAuLh98zuN6BxichLX1Dc2UOtymGAcwO8ongD8Ic99vVnVdQ7dP76H2VH+sBHJoZp70wn618T+Kq+p0xVvLdfkN5ZpPUdjAQAAzfh5a5F6RvkrxNfD7CguqW9MgHJ2Vam4vMbsKABcBMUTgGO2Pne3PkjN1pQRieoc5mt2nD/FarXonP4x+vaOUXrwrJ7akLdbZ/37Z902Z7WySyrNjgcAAFxIZW29VmWW6kSOZtesvnsnGP+VL/IA7EXxBOCYGIahRz7fqCBvd91yShez4xw3Hnabrjqxk368+2TdOLqz5q8v0CnP/6hnFmxSeU292fEAAIAL+GlLkWodTo3qGmZ2FJfVO8ZfFovY3Q5AI4onAMfky18LtDy9RHee3lUBXm5mxznu/D3ddPcZ3bXwrtE6q2+U/rNwm0Y/u1AfrsiWw9nuDwIKAAAOY8H6fAV6u2lIp2Czo7gsP083JYX6MME4gEYUTwCOWnWdQ098+Zu6R/pp4uB4s+O0qKgALz1/cX99etMJig/20t2frNOEl37Wsu3FZkcDAAAmqK136rvfduq0HhEuezRfV9GPCcYB7Id3TABH7Y1F25VbWqUHz+4pm9VidpxW0T8uUJ/cMEIvXjpAuypqdcn0pbph1kplFTP/EwAAHcnibUUqq6nXGb0jzY7i8vrEBmhnWY0KdlebHQWAC6B4AnBUduyp1n8WbtPYXhEa0bljTahpsVg0oV+0vrtztO48rasWbi7Uqc//qKfmb9Ke6jqz4wEAgFaw4NcC+XrYmVj8KOybYJzd7QBIFE8AjtLTCzap3mHo/jN7mh3FNF7uNv3llC764f9G66x+UXr1x20a8vi3um3Oai1KK2QOKAAA2ql6h1Pf/LZDY7qHy8NuMzuOy+sZ5S+b1cLudgAkSXazAwBwfauzdum/q3J1w+jOig/xNjuO6SIDPPX8xf111QmdNHt5lj5bm6dP1+Qp0t9T5w6I0QUDY9Qlws/smAAA4DhZnlGikopadrM7Sl7uNnWN8NO6XIonABRPAI7AMAw98vlGhfl56KaTk82O41J6xwTo8fP66G9n9dT3m3bqk5U5en3Rdr364zb1iQnQBQNjNKF/jIJ93M2OCgAA/oQF6wvk6WbV6G5hZkdpM/rGBOirjQUyDEMWS8eYGxTAobGrHYDD+nrjDq3OKtVdY7vJ14Ou+lA83Ww6s0+U3pw6WMvuO0V/O6unnIahhz/bqCGPf6u7PlqrnF1MRg4AQFvkdBr6akOBRnUNk7c7n4WOVt+4AJVW1im7pMrsKABMxjsngMP6duMOBXi56YKBsWZHaRNCfT109YmddPWJnbSpYI/mLM/W+8uzNHdNni4bGq+bxyQr1NfD7JgAAOAorc4u1Y49Nexmd4z6xgRKktblljJVA9DBMeIJQLMMw9CSbcUanhQim5Uh0seqe6S/Hp7QSwv/b7TOHxijd5dmauQzP+gfX23maHgAALQRC9bny81m0ZjuEWZHaVO6RfrJ3WZlgnEAFE8AmpdZXKnc0iqdkBxidpQ2LTrQS09d0Fff3D5SY7qH66Uftuqkp3/Qqz9uU1Wtw+x4AACgGYZhaMGGAp2QHKoALzez47Qp7narekT7a11OqdlRAJiM4glAsxZvK5IkjUgONTlJ+5AU5quXLhuoz/9yogbEB+qp+Zs06tkf9O7STNU5nGbHAwAAB9iQt0fZJVUax252f0jfmACtz90jp9MwOwoAE1E8AWjWkq3FivT3VFKoj9lR2pXeMQGaceUQfXjdcCWEeOtvn67XWS/+rF+2FZsdDQAA7GfB+gJZLdKpPdjN7o/oGxug8pp6bS+qMDsKABNRPAE4JKfT0JJtRRqRHMIhcFvIkE7B+vC64Zp++SBV1Nbr0teX6i+zVyt/N0d/AQDAFcxfn6+hnUIUwoFB/pC+sYGSxO52QAdH8QTgkH4r2KNdlXU6oTO72bUki8Wi03tF6ts7Rum2U7vo6w0FOuW5H/XKwm2qqWf+JwAAzLJ1Z5m2FVZoXB92s/ujksN95eVmY4JxoIOjeAJwSEu2Nuz2dQLzO7UKTzebbju1q769Y5ROTA7V0ws2adwLi/TjlkKzowEA0CHN/7VAknR6T4qnP8pmtah3DBOMAx0dxROAQ1q8rUidw3wUGeBpdpQOJS7YW9OvSNGMKwfLkDTlreWa9k6qsksqzY4GAECHMn99gQbGB/JZ6E/qGxuoDXl7OJAK0IG1aPG0YMECdevWTcnJyXrqqacOuv2nn37SwIEDZbfb9fHHHzde/8MPP6h///6NP56envr0008lSVOnTlWnTp0ab1uzZk1LPgSgQ6qtd2rZ9hJGO5lodLdwLbjtJN01tpsWpRXp1Od/1NuL0zkqDAAArSCruFIb8/doXO8os6O0eX1jA1RT71TajnKzowAwSYsVTw6HQzfddJPmz5+vjRs3avbs2dq4cWOTZeLj4zVjxgxddtllTa4/+eSTtWbNGq1Zs0bff/+9vL29dfrppzfe/uyzzzbe3r9//5Z6CECHtSa7VFV1Do1gfidTedhtuunkZH135yiN6Byiv3+2UZe/tUx5pUw+DgBAS1qwIV+SdEZvdrP7s5hgHECLFU/Lly9XcnKykpKS5O7urokTJ2ru3LlNlklMTFTfvn1ltTYf4+OPP9a4cePk7e3dUlEBHGDx1iJZLdLwpBCzo0BSdKCX3po6WE+c10ers0o19oWf9L/VOTIMRj8BANAS5q8vUK9of8UF83+QPysxxFt+nnaty2WCcaCjarHiKTc3V3FxcY2XY2NjlZube8zrmTNnji699NIm191///3q27evbr/9dtXU1BzyftOnT1dKSopSUlJUWMjkvMCxWLKtSL1jAhTg7WZ2FOxlsVh02dB4zb/1JHWN8NPtH6zVTe+vUklFrdnRAABoVwp2V2t1VqnGMdrpuLBYLOobG8CIJ6ADc+nJxfPz8/Xrr79q7Nixjdc9+eST2rRpk1asWKGSkhI9/fTTh7zvtGnTlJqaqtTUVIWFhbVWZKDNq6ip1+qsUnazc1EJIT768LrhuvuMbvpm4w6NfeEnfb9ph9mxAABoN77a0HA0O3azO376xgZqU36ZquscZkcBYIIWK55iYmKUnZ3deDknJ0cxMTHHtI4PP/xQ5513ntzcfh91ERUVJYvFIg8PD1155ZVavnz5ccsMQFqeUaJ6p6ETktnNzlXZrBbdODpZc286USE+7rpqRqr++t9fVVFTb3Y0AADavPnr85Uc7qvkcD+zo7QbfWMCVO80tKmgzOwoAEzQYsXT4MGDlZaWpvT0dNXW1mrOnDmaMGHCMa1j9uzZB+1ml5/fMNGfYRj69NNP1bt37+OWGYC0ZGuR3G1WpSQEmx0FR9Az2l9zbz5B141K0pwVWRr/4iJt3ckHOgAA/qji8hotTy9hN7vjrG9coCQmGAc6qhYrnux2u1566SWNHTtWPXr00MUXX6xevXrpwQcf1Lx58yRJK1asUGxsrD766CNdd9116tWrV+P9MzIylJ2drVGjRjVZ76RJk9SnTx/16dNHRUVFeuCBB1rqIQAd0uKtxRqYECgvd5vZUXAUPOw2/XVcD825dpjKaxw67+UlWrh5p9mxAABok77ZuENOQxrbi+LpeIoO8FSIj7vW5TDBONARWYwOcFiklJQUpaammh0DcHklFbUa+Og3+r/Tu+rmMV3MjoNjlFtapWtmpmpzwR49ML6nrjwhURaLxexYAAC0GVPeWq7tReX66a6T+Rt6nF359nLlllbp69tHHXlhAG3G0fQtLj25OIDW9cu2YknSiGQmFm+LYgK99PH1w3Vqjwg98vlG3fe/9apzOM2OBQBAm7BzT7UWby3Smb2jKJ1aQJ/YQG3dWc6clEAHRPEEoNHibUXy87Crb0yA2VHwB/l42PXq5EG6cXRnzV6epcvfXKZdFbVmxwIAwOW9tyxL9U5DE4fEmx2lXeoXGyCnIW3I22N2FACtjOIJQKPFW4s0NClYdhtvDW2Z1WrR3Wd01/MX99OqzFKd+5/F2rqz3OxYAAC4rNp6p95fnqXR3cLUKdTH7DjtUp/Yhi82mWAc6HjsR7NQbm6uMjMzVV//+7DIkSNHtlgoAK0vZ1elMosrNWV4otlRcJycPzBWCSHeuu7dlTrvP4v18mUDNbJrmNmxAABwOfPX56uwrEZTRySaHaXdCvfzVFSAp9YywTjQ4RyxeLrnnnv0wQcfqGfPnrLZGo5yZbFYKJ6AdmbJ1ob5nU5gfqd2ZVBCsD696QRdMzNVU99ersfP66NL2YUAAIAm3l6coU6hPhrZhS9oWtLA+CAtTy+WYRjMowV0IEcsnj799FNt3rxZHh4erZEHgEkWbytSqK+Hukb4mh0Fx1lskLc+uWGEbnhvlf726Xr1iQlQb+bxAgBAkrQ2u1Rrskv10Nk9ZbVShrSkk7qE6otf87VlR7m6RfqZHQdAKzniRC5JSUmqq6trjSwATGIYhpZsK9aIziF8+9RO+XjY9eLE/gr2cdcdH65RdZ3D7EgAALiEmUsy5ONu04WDYs2O0u7t2+X/py2FJicB0JqaHfH0l7/8RRaLRd7e3urfv79OOeWUJqOeXnzxxVYJCKDlpe0sV2FZjU5IDjE7ClpQoLe7nr6wr658e4X++e0W/XVcD7MjAQBgqqLyGn2+Ll8Th8TJz9PN7DjtXnSgl5LDffVTWqGuHZlkdhwAraTZ4iklJUWSNGjQIE2YMKHVAgFofYu3FkmSRnRmfqf27uRu4bp0SJym/7Rdp/WIUEpisNmRAAAwzexlWap1OHUFB1dpNSO7hGnWskxV1Trk5W4zOw6AVtBs8TRlyhRJUkVFhTw9PRsnFnc4HKqpqWmddABaxeKtxUoI8VZcsLfZUdAK7h/fUz9vLdKdH63Vl7ecJB+PozrAKQAA7Uqdw6lZyzJ1UpdQJYczx2VrGdk1VG8tTtey9GKN7hZudhwAreCIczydcsopqqqqarxcVVWlU089tUVDAWg99Q6nlm0vZrRTB+LrYdezF/ZTVkmlnpq/yew4AACY4qsNBdqxp0ZTRySaHaVDGdopRO52q37aUmR2FACt5IjFU3V1tXx9f/8GwNfXV5WVlS0aCkDr+TV3t8pq6pnfqYMZlhSiq07opHeXZmpRGhN8AgA6nhmLMxQf7M2om1bm5W7T0E7B+onPH0CHccTiycfHR6tWrWq8vHLlSnl5ebVoKACtZ8m2YknS8CSKp47mrrHdlBzuq7s/XqfdVRy9FADQcazP3a3UzF26YniCbFaO6NvaRnYJ09ad5corrTrywgDavCMWTy+88IIuuuginXTSSTrxxBN1ySWX6N///ndrZAPQCn5OK1KPKH+F+HoceWG0K55uNj13UT/tLKvR3z/bYHYcAABazcwlGfJys+milDizo3RII7uGSRKjroEO4ogzyvbt21ebNm3S5s2bJUndunWT0+ls8WAAWl51nUMrs3bpimEJZkeBSfrFBeqm0Z314vdbNbZXpMb2ijQ7EgAALaqkolZz1+bpwkGxCvByMztOh9Q1wleR/p76aUuRLhkcb3YcAC3siCOehg8fLjc3N/Xu3Vu9e/eWm5ubhg8f3hrZALSgPdV1uvn9VaqtdzK3QQd385gu6hXtr/v++6uKyzlqKQCgfZuzIku19U4mFTeRxWLRSV1C9fPWIjmchtlxALSwZoungoICrVy5UlVVVVq9erVWrVqlVatWaeHChUwuDrRxaTvKdO5Li7Vwc6EePrsnE4t3cO52q56/uL/Kqut1///WyzD4AAgAaJ/qHU7N+iVTIzqHqGuEn9lxOrSRXcO0u6pOa3NKzY4CoIU1u6vdV199pRkzZignJ0d33HFH4/V+fn564oknWiUcgOPvy1/z9X8frZW3u13vXztMQzoFmx0JLqBbpJ/uOL2rnpq/Se8vz9Kkoex+CQBof779bYfydlfroQm9zI7S4Z2YHCqLRfppS6EGxgeZHQdAC2q2eJoyZYqmTJmiTz75RBdccEFrZgLQAhxOQ//4erNeWbhNA+ID9cqkQYoM8DQ7FlzItSclafHWIt3/v/XKK63Snad1k5Uj/QAA2pG3F2coJtBLp/aIMDtKhxfk466+MQH6aUuhbju1q9lxALSgI04ufsEFF+iLL77Qhg0bVF1d3Xj9gw8+2KLBABw/uypqdcuc1VqUVqTLhsbrobN7ysNuMzsWXIzNatGbUwbroXnr9fIP27RlR7n+eUl/+Xoc8U8FAAAu77f8PVqWXqJ7x3WXjS9WXMLIrmF6+Yet2l1ZpwBvJnoH2qsjTi5+/fXX64MPPtC///1vGYahjz76SJmZma2RDcBxsCFvt85+6Wct216ipy/ooyfO60PphGa526164rw+/9/efYc3VfZvAL8zuvemk1K66KItKZS9l2gZIpQ9RRF+IvgqKorr9RV9HYioiDIVKFOKCIiCbOiglFVGC90tpYPS3aTJ+f1RqPIyWqDhNO39ua5eIScnJ3fKISTfPM/3wXvP+GH/xet49ttjyCxiXz8iItJ9q4+mwUAuxWiFq9hR6JYe3nbQCMDRKwViRyEiLaq38HTs2DGsXbsWVlZWePfdd3H8+HFcvnz5SWQjoscUnZiNZ787BrVGwKYXO3O5WmoQiUSCyV3bYM2Ujsi9WYmIpUdw4mqh2LGIiIgeWXxaETadzERkmCusTPTFjkO3BLtawsxAjkOX88WOQkRaVG/hycjICABgbGyMnJwc6OnpITc3V+vBiOjxZBdXYu7GRAQ5W+LX/+uGYFdLsSORjunmZYvo2d1gZaKP8T/GYH1MhtiRiIiIHlqFsgb/2nwazpZGeG2Qr9hx6B/0ZFJ08bTBocv5XFWXqBmrt/D09NNPo7i4GK+99hpCQ0Ph7u6OMWPGNOjge/bsgY+PDzw9PbFo0aK7bj906BBCQ0Mhl8uxZcuWO26TyWQIDg5GcHAwIiIi6ranpqaiU6dO8PT0xOjRo6FUKhuUhail2ZGYA40AfD6qPWxNDcSOQzqqja0Jts/qiq6etnjrl7N4N/ocVGqN2LGIiIga7NM9l5BWWIFPRwaxb2ET1MPbDjk3q3Alv0zsKESkJfUWnt555x1YWlri2WefRXp6Oi5evIgPP/yw3gOr1WrMmjULu3fvRlJSEjZs2ICkpKQ79nFzc8Pq1asxduzYu+5vZGSExMREJCYmYseOHXXb58+fj7lz5yIlJQVWVlZYsWJFQ54nUYsTnZiNDq2t4GptLHYU0nHmhnpYOTkMz3dvgzXH0zFpZSyS80r5zSQRETV5x68UYvWxNEzu4o4ubW3FjkP30MPLDgBw8DL7PD1IZlEFXt10GtGJ2ahUqsWOQ/RQ6i35q9Vq/Pbbb0hLS0NNTU3d9nnz5j3wfrGxsfD09ISHhwcAIDIyEtHR0fDz86vbx93dHQAgldZb/wIACIKA/fv3Y/369QCASZMm4b333sPMmTMbdH+iluLitRJcvFaKD4b6ix2FmgmZVIIFQ/zg7WCGBb+cQ/8vD8HD1gT9/R0w0L8Vgl0sIeUKQURE1ISUVdfgtS2n4W5jjNcH+Ygdh+7D1doYHrYmOJycj2nd2ogdp8n6en8ytiZkYWtCFkz0ZXgq0BEjQl3QqY0134NRk1dv4emZZ56BoaEhAgMDG1wgAoDs7Gy4uv69YoSLiwtiYmIafP+qqiooFArI5XK88cYbGDZsGAoLC2FpaQm5XF53zOzs7Hvef/ny5Vi+fDkAID+fzeqoZYlOzIFMKsGQQEexo1Az85zCFd297PBH0jXsTcrDisOp+P7gVdiZGaC/nwMG+Dmgc1sbrpxIRESi+8+uC8gursTmFzrDWJ9T7JqyHt52iIrLQJVKDUM9vof4X/ml1dh+Kgfjw93wdJATtiVkYdfZa9h8MgvOlkYYHuKM4aHOaGtnKnZUonuq9xU4KysLZ86ceRJZ7pCeng5nZ2dcvXoVffr0QWBgICwsLBp8/xkzZmDGjBkAAIVCoa2YRE2ORiNgR2IOenjZwoa9nUgLWlkYYkJnd0zo7I6bFSr8dek69iZdw/ZT2VgfkwEzAzm6ednCwdwQxvoymBjIay/15TA2uHWpL4OeXIoqlRpVKjUqlGpUKtWoVNVeVihrt5sayNHF0xbtXSwglzX8yw8iImrZDl3Ox/qYDDzfvQ0U7tZix6F69PC2xepjaYhPu4FuXpwS+b9+OpEOlUaDad080MbWBOEeNng/IgB7k65hW0I2vj2QgqV/paC9qyWmdHHHsBBnsSMT3aHewtPgwYOxd+9eDBgw4KEO7OzsjMzMzLrrWVlZcHZu+D+A2/t6eHigV69eOHXqFJ599lkUFxejpqYGcrn8oY9J1BLEp99AdnElXhvIIeWkfRbGehgW4oxhIc6oUqlx7EoB9p7Pw9ErBTiaUoBypRpqzaP1gjKQS6FUa/D5H5dhZihH17a26O5tix5eduxdRkRE91VSpcL8rWfQ1s4Erw7g+yFdEO5hA32ZFIeS81l4+h9VKjV+PpGOfu0c0MbWpG67kb4MQ4OdMTTYGddLqhCdmINN8Zl4ZWMiWlkYItzDRsTURHeqt/AUHh6O4cOHQ6PRQE9PD4IgQCKRoKSk5IH3CwsLQ3JyMlJTU+Hs7IyoqKi63kz1uXHjBoyNjWFgYICCggIcPXoUr7/+OiQSCXr37o0tW7YgMjISa9aswdChQxv2TIlaiOjEbBjpydDfz0HsKNTCGOrJ0MfXAX18/z73BEGAUq1BRbUa5coaVCjVKK+uvVTWaGCoJ4ORvgzG+jIY3fqzkV7tj1QqwY1yJY5dKcTh5HwcupyPPeevAQDcbYzR3csO3b1s0dXTFiZcpYiIiG758Nck5JVUYdtLXTltS0cY68uhcLfCocv5eOupdmLHaVK2JWSjqFyJ6Q/of2Vvbojne3hgfHhr9PviIBZGn8NvL3eHHkeLUxNR7zv1efPm4fjx4wgMDIRE0vCmZXK5HEuXLsXAgQOhVqsxdepU+Pv7Y+HChVAoFIiIiEBcXByGDx+OGzdu4Ndff8W7776L8+fP48KFC3jhhRcglUqh0Wjwxhtv1DUl/+STTxAZGYm3334bISEhmDZt2qM/e6JmRlmjwW9nc9Hfz4EfxKlJkEgkMJDLYCCXwcpE/6Hvb2WijyFBjhgS5AhBEHC1oByHL+fjcHIBtiZk4acT6bAy1sOs3p4YH96aHzCIiFq4fRfysPlkFmb1botgV0ux49BD6OFth0W7LyKvpAoO5oZix2kSNBoBK45cRaCzBTq2qX/KqJG+DO9F+OP5tfFYdTQVM3q0fQIpieonEepZD7tHjx44cODAQzUWb2oUCgXi4+PFjkGkdX8m5WH62nisnKy4Y9QJUXOkrNEgLq0Iyw5eweHkAjhZGOKVft4YEerMflBERC1QcYUS/b88BBsTfUTP7sqFLnRMUk4JnlpyGP8dGYTnFK7136EF+OvidUxZHYevIoMxNLjhLWamrY7D8auF2PdqTzhaGGkxIVHD6i31Dom43WNp8ODBMDD4u1HxvHnzHj8hETWq6NM5sDLWQ3cvO7GjEGmdvlyKrp61U+2OpRTgk98v4fWtZ/D9oSv41wAfDApo9VAjdYmISLe9u+M8bpQrsXpKGItOOqidoxnszAxwKLmAhadbfjxyFa3MDfHUQ65U/V6EP/p9cRAf7kzCt+M6aCkdUcPV+5VwmzZt0LdvXyiVSpSWltb9EFHTUlZdgz+SrmFIkCPnc1OL08XTFttf6oJl4ztAIpFg5roEDPvmKI6mFIgdjYiInoAtJ7MQnZiD/+vjBX+nhq+ETU2HRCJBdy9bHEnOf+SFSZqTpJwSHE0pxOSu7g/93t7V2hize3ti19lrOHg5X0sJiRqu3hFP77777pPIQUSPae/5a6hSaTDsIYbhEjUnEokEgwJaob+fA7YlZGHxn8kY92MMunra4I1B7RDowg8iRETNTVl1DT78NQkb4zMR5m6Fl3qzp40u6+lth20J2TiXfRPtW3iPrhVHUmGsL8OYMLdHuv+Mnh7Ydiob70afw55XerAPJomKwyKImonoxBy4WBmhQ2srsaMQiUomleA5hSv2/6snFj7thwu5pXhm6RHM25iI3JuVYscjIqJGcjK9CE99dRibT2bipV5tsW56OEd967iunrYA0OJH6eSVVGHH6WyMUrjCwljvkY5hIJfhg6H+SCuswPcHrzZyQqKHw1dmomagoKwaR1IKENHeiT1tiG4xkMswtVsbHHytF2b2aoudZ3PR+7MD+HzvJZRX14gdj4iIHpFKrcFnv1/Cc8uOQyMI2PhCZ7w+yBf6cn600XW2pgbo6G6NbQlZqGcNrGZt7fE01GgETO3a5rGO093LDkOCHPHNgRSkF5Y3Ujqih8dXZ6JmYOfpHKg1AoaFcJod0f8yM9TD/EG+2DevJwb4tcLX+1PQ67MD2BiXwR4SREQ6JuV6GUZ8ewxL/0rBiFAX7J7THWHu9S8zT7pjTCdXpBVW4PjVQrGjiKJCWYN1MRkY6NcKbjbGj328d4b4QU8qwXs7zrfoYh6J65EKTx988EFj5yCixxB9OgftHM3h7WAmdhSiJsvV2hhLxoRg20td4GplhPlbz2LIksM4nNyyh/MTEekCQRCw5lgahiw5jKwbFVg2PhSfPdceZoaPNg2Jmq7BAY6wMNLD+pgMsaOIYmtCNoorVJje/fFGO93WysIQc/t7469L+diblNcoxyR6WPU2F7+XH3/8EQsXLmzsLET0CNILy3EqoxhvDPYVOwqRTgh1s8LWmV2w6+w1LNpzARNWxKKHtx3aOZoBAnD7u0BBECD847qhnhRDAp3g52QuVnQiohalSqVGemEFUgvKsT42A4cu56Ontx3+OzII9uaGYscjLTHUk2FEqDN+PpGOwrJq2JgaiB3pidFoBKw8kor2rpaN2rd1Uhd3bDmZhfd3nEd3L1sY6z9SGYDokd33jDM3v/cba0EQUFnJ5qxETcWOxBwAQER7J5GTEOkOiUSCIUGO6OdnjzXH0vD9was4cbUQkrrbAQkkty5rVddo8M1fVxDiZonxnVpjSJAjV4ghohbtZoUKJVUqaAQBao0AjVD7WUEj4Nb12gK+RFL7I5VIbv3Uvg5LJbULQqjUAjJvVCA1vxypBeVIKyzH1fxy5NysxO2ZQYZ6Unw41B/jw1uzn2ULMLajG1YdTcPWhCzM6NFyVircf/E6UgvK8fWYkEY9z/VkUnw4LADPLTuOr/enYP4gfmFNT9Z9C0+WlpaIi4uDg4PDXbe5urpqNRQRNYwgCNiemI2ObazhZGkkdhwinWMgl2FGj7YNelN7s0KFLQlZWBeTjlc3n8YHO5MwsoMLxnVyg4ed6RNIS0Qkjhq1BlcLynEhtwQXr5XWXuaW4lpJVaM/lpmhHB62Jghzt0IbW1e42xrDw9YUHnYmMDHgKI2WwsvBDGHuVtgQm4nnu3u0mGLjD4evwtnSCIMDWjX6scPcrTGygwt+OHQVz4Y6w9OeLTroybnvq/fEiRORnp5+z8LT2LFjtRqKiBrmfE4JruSXY1o3D7GjEDV7FsZ6mNatDaZ2dceJq0X4OSYda46lYcWRVHRpa4Px4a3R38+BS3kTkc5T1miw+1wuDicX4EJuCZKvl0FZowEA6MkkaGtnis5tbeDbygw2pgaQ3h7NJJX8/edbl7cLBrWjn2pHQ2mEf46OEiCBBC5WRmhjawJrE/0WU2SgBxvT0Q3zNp3G8auF6NLWVuw4Wnc26yZiUovw9pB2kGvpvcSbg33xR1IeRi47Dt9WZnC3MYGbjTHcbUzQ2sYYrW1MYNqAAq9KrYFKreGUPWowidACWtsrFArEx8eLHYOo0X30WxJWH0tD3IJ+sDTWFzsOUYtzvbQKm+OzsD4mA9nFlXC2NMIPExXsA0VEOqm4Qol1MRlYezwNeSXVsDXVRztH81s/ZvBtZY62dqbQl7PATtpXpVKj03/2oYe3Hb4eEyJ2HK17JeoU/rxwHcfe7ANzLTbNj7laiI3xmUgvrEB6YTkKypR33G5raoDWNsYw1JOiUqlGhVKNKlXtZaVKjUqlGjW3VgUeEeKM/4wIZOuBFq4h9RaWKIl0lFojYMfpHPT0tmfRiUgk9maGmNXbEy/2bIuDl69jwS/n8NyyY1g6LhS9fezFjkdE1CBX88uw8mgqtp7MRqVKje5etvjk2SD08LKDVMrRRySOO5uM+zXrJuNZNyqw80wuJnVx12rRCQA6edigk4dN3fXSKhXSCyuQUVSBtMJypBfUXlYq1TDWl8PG1ABGejIY68tgpC+r+3NBmRKrj6UhJb8M30/oAEcLtv2g+2PhiUhHxVwtRF5JNd55mk3FicQmk0rQx9cBv7xkgamr4zB9TTw+GOqPcZ1aix2NiOieBEHA8auFWHE4FfsuXoe+TIphIU6Y2q0NfFtx1CY1DWNaSJPxT/dcglwmwfTubZ74Y5sZ6iHA2QIBzhYPfd8ubW0wd2Minvn6KL6fEIoOra21kJCaA46TJdJR0Yk5MNGXoV+7u/uwEZE4WlkYYtOLndHDyxYLfjmHj3dfgEbT7Ge0E5GOOZJcgKeWHMHYH2KQmFmMOX29cPSNPvh0ZHsWnahJ8XYwg6J1bZPx5tohJiHjBnaczsGM7h46N2pogH8r/DKrK0wMZIhcfgJRsRliR6ImqkGFp4SEBCxZsgRff/01EhIStJ2JiOpRXl2DXWdzMSiAy7kTNTWmBnL8MFGB8eFu+P7gVfzfhlOoUqnFjkVEBLVGwJd/XMaElTGoUqnxybOBOPpGH8zt7w07s+Y7jYl029hObkgtKMfxq4ViR2l0giDg3zuTYGdmgBd66uaILm8HM0TP6opwDxu8se0sFkafg0qtETsWNTH1Fp4++OADTJo0CYWFhSgoKMCUKVPw73//+0lkI6L7+PV0DkqrazCmo6vYUYjoHuQyKT4cGoAFT7XDrnO5GPvDCRSWVYsdi4hasMKyakxeFYuv9iVjeIgzdr3cHaPD3PgFFjV5TwU6wtxQjg2xmWJHaXS/nc1FQkYxXhvgA5MGrCbXVFka62PV5DDM6OGBtcfTMWFFDN/30B3qXdXOx8cHp0+fhqGhIQCgsrISwcHBuHTp0hMJ2Bi4qh01NxFLj6BapcGeV7pzyWGiJm732Vy8sjERDuaGWDUlDG3tTMWOREQtzMn0IsxadwpFFUq8H+GPyDBXvn8gnfLejvNYF5OOE2/2bTZNxqtUavT74iDMDPWw8/+6QdZMGvn/cioL87eehZ2pAZZP7AB/p4fvHUW6pSH1lnpHPDk5OaGqqqruenV1NZydnR8/HRE9kjNZxTiTdRPjwt34ppFIBwwOdMSGGeEor67BiG+P4dDl/Gbbp4KImhZBELDiSCpGf38C+nIpts3sgjEd+f6BdM/YTm5QqQVsTcgSO0qjWX0sDVk3KvH2kHbNpugEAMNDXLD5hc5QawSM/O44dp3NFTsSNQH1Fp4sLCzg7++PyZMnY8qUKQgICIClpSVefvllvPzyy08iIxH9w/qYDBjpyTAshAVgIl0R6maFX17qCltTfUxcGYuIpUexOT6TvZ+ISGtKq1R4aV0CPtyZhN6+9vj1/7o90qpVRE1Bc2syXlBWjW/2p6BfO3t09bQVO06ja+9qiR3/1xW+jmZ4aV0Cvt6X3Cz+3ujR1TuRdPjw4Rg+fHjd9V69emkzDxE9QEmVCjtO5yCivRPMDfXEjkNED8HNxhi//l83bE3IxtpjaXhtyxn8Z9cFRHZ0w/jw1nC21K2VbIio6bqQW4KX1iUgo6gCbw72xYweHhzlRDpvTEc3vLr5NI5fLUSXttot1lwvrcLus9fw25lcmBrWLhrSmKOSFv95GZUqNd58ql2jHbOpsTczxIbnw/HmtrP4/I/LSL5ehk9HBrGvXAtVb+Fp0qRJUCqVuHz5MoDank96evzASySG6FPZqFCqMS7cTewoRPQIjPXlmBDeGuM7ueH4lUKsPpaG7w9ewfcHr6C/nwMmdXFHZw8bfkAkokciCAI2x2fhnehzsDDSw4bnw9GxjbXYsYgaxZAgR7z/63lsiM3USuGpqFyJ3edysfN0LmJSC6ERABcrI2SlVSIqLgPjOrVulMe5nFeK9TEZmBDeutn3fTTUk+GLUe3haW+K//5+CelFFfhhQgfYmxuKHY2esHoLTwcOHMCkSZPg7u4OQRCQmZmJNWvWoEePHk8iHxHdIggC1sVkIMDZHEEulmLHIaLHIJFI0MXTFl08bZFZVIF1MRmIisvA7+fz4O1gis4eNjDUl8FQLoOhngxGelIY6sn+8SOFIAAqtQYqtYAaTe2lSq1Bza1tGkGAmaEcVsb6sDLRh5WxHqyM9WFhpAe5rN6Z9kSkY8qqa/D2L2exPTEHXdraYHFkMOzN+OGOmg9DPRlGhLpgfUwGCsuqG6XJ+M0KFX4/fw2/nsnBsSuFUGsEeNiZYHYfLzwd5Agve1NELj+BT/dcwuAAR1ib6D/2Y/5n1wWYGMgxp5/3Yx9LF0gkEszq7Ym2dqaYuzERQ785ih8mKjj1t4Wpd1W7Dh06YP369fDx8QEAXL58GWPGjMHJkyfrPfiePXswZ84cqNVqTJ8+HW+88cYdtx86dAivvPIKzpw5g6ioKIwcORIAkJiYiJkzZ6KkpAQymQwLFizA6NGjAQCTJ0/GwYMHYWFRe6KuXr0awcHBD8zBVe2oOTiZfgPPfncMH48IxJiOHPFE1NxUqdTYcToH606kI7WgHFU1GihrNFp5LHNDOaxM9OFkYYTIjq4YEujIYhSRDjufcxOz159CemE5XunnjVm9PZtVs2Ki2y5dK8XAxYfw1lO+mNGj7SMfp6y6Bp/vvYSfT6RDpRbgZm2Mp4Mc8XSQE9o5mt0x8vjStVI8teQwRilc8PGIoMfKf/ByPiatjMWCp9rh+R4ej3UsXXQu+yaeXxuP4goVvhzdHoMCHMWORI2gIfWWekc8qVSquqITAHh7e0OlUtX74Gq1GrNmzcIff/wBFxcXhIWFISIiAn5+fnX7uLm5YfXq1fjss8/uuK+xsTHWrl0LLy8v5OTkoEOHDhg4cCAsLS0BAP/973/rilRELcW6mHSYGsgR0d5J7ChEpAWGejKMUrhilMK1bptaI6C6Ro0qlQaVKjWq/vEjkUigL5NCLpNALpX+/WdZ7XaJRIKSShWKK1S4UaGs/SlX4kaFCsUVShRVqHAu+ybmRCXi0z2XMK1bG4wOc4WJQb1vDbQip7gSao0AY30ZTAzkMJBLOeWQqB6CIODnE+n48LcLsDLWw/rnwxHuYSN2LCKt8Wllhg63mow/3/3Repftv5iHt385h9ySKkSGuWJMRzcEOlvc91g+rcwwpYs7VhxNxegwNwS7Wj5S9hq1Bh/9lgQ3a2NM7NI40/Z0TYCzBaJnd8WMtSfx4s8J+NeA2kI5/79v/up9d6lQKDB9+nSMHz8eALBu3TooFIp6DxwbGwtPT094eNRWciMjIxEdHX1H4cnd3R0AIJXe+S2rt/ffww6dnJxgb2+P/Pz8usITUUtTXKHEzjO5GKVwEe1DIRE9eTKpBMb6chg/4sh+CyM9uD6gvYtGI2DfxetYfugKPtiZhMV/Xsb48NaY3NX9iUzRySmuxK+ncxCdmIOk3JI7bqt97jKY6MthbFB7aWOqj8+fa98o0yuIdF1JlQpvbD2DXWevoae3Hb4YxX8b1DKMvdVk/Ms/LmNCZ3fYmTXsvL9eWoX3f03Cb2dy4e1gii1ju6BDa6sG3XdOPy9En87Bwuhz+OWlro80onBTfBYu55Xhu3GhMJC33Abb9maGiJoRjvlbz+CzvbVNx/8zPJCfcZq5ev92v/vuO3zzzTdYsmQJAKB79+6YNWtWvQfOzs6Gq+vf39q6uLggJibmoQPGxsZCqVSibdu/h1IuWLAAH3zwAfr27YtFixbBwODuF5vly5dj+fLlAID8/PyHflyipmRrQjaUNRqM7dgyvx0hIu2QSiXo7+eA/n4OSMi4geUHr+K7g1fw4+FUDA9xxvM9POBp37iNT2+UK7HrXC6iE3MQm1oEoHbZ5beHtIOlsT7Kq2tQrqxBRbX6jsuSqhocuJSPXeeuYUI4XwupZTudWYzZGxKQU1yFNwb7YkZ3D0g5tY5aiCFBjvjlVDaW7E/BtweuoI+vPUYpXNHLx+6e08Y1GgEb4zPx8a4LqKrR4F8DvDGjR1voyxs+xdzMUA9vD2mHOVGJj9RovLRKhS/+uIQwdysMCmj1UPdtjgz1ZFg8OhjeDmb4bO8lnM4sxleRIWj/iKPJqOmrt/C0bNkyzJs3D/Pmzavb9tVXX2HOnDlaDQYAubm5mDBhAtasWVM3Kurjjz9Gq1atoFQqMWPGDHzyySdYuHDhXfedMWMGZsyYAQANGqFF1FTVNhVPR4ibJfyczMWOQ0TNVKibFZZN6IDUgnL8ePgqtpzMwsb4TATeav6pUtf2nKqu0dT++dZ1ZY0GhnoyOJgbwMHcEK3MDeFgYQgHMwO0sjCEg7khbE0NkJBxAzsSc3Dwcj5qNALa2png1f7eeKa9E9xtTerNJwgCen12APsv5LHwRC2WIAhYeTQNi3ZfgL2ZITa90LnBIzaImgtDPRl+nt4JKddLsSk+C9sSsrA3KQ92ZgZ4NtQFzylc6laLS7lehrd+OYvY1CJ0amONj0cEwuMRV5KLaO+E9TEZj9Ro/LsDV1BQpsSKSWGcVnbL7abjoW5WeHVTIp797hhe6eeFmb3Yo645qrfwtGbNmruKTKtXr6638OTs7IzMzMy661lZWXB2dm5wsJKSEgwZMgQfffQRwsPD67Y7OtY2IDMwMMCUKVPu6g9F1NycuFqEq/nl+Oy59mJHIaIWoI2tCT4aHoi5/b3x0/F0nEy/AT2ZBPpyKfRkUujLpTC4/edb1yuUalwvrcK1m1WISS3C9dIqqNR3r13iaGGIad3aICLYCX6O5g/15lsikaCvrwN+jklHhbIGxvockk8tS5VKjTe2nsH2xBz093PAf0cGwfJR5+ESNQOe9mZ466l2eG2gD/66eB2b4rPww+GrWHbwChStrRDgbIH1MRkw0pfh02eD8JzC5bGKPhKJBB8MDcBTSw7jv79fbFCjcUEQsOpoGr4/dBXDQ5w5ouceOre1we45PbBg+1l8tvcyDl0uwBej28PFyljsaNSI7vuubcOGDVi/fj1SU1MRERFRt720tBTW1g9oGHFLWFgYkpOTkZqaCmdnZ0RFRWH9+vUNCqVUKjF8+HBMnDjxribiubm5cHR0hCAI2L59OwICAhp0TCJdtT42A+aGcjwdxFUfiOjJsTU1wNz+j7bUs0YjoKhCiWs3q3C9tAp5JdVoY2uCju7WjzUdqG87e6w8mopjKYXo5+fwyMch0jX5pdV44ad4JGQUsxkv0f/Qk0kxwL8VBvi3wvWSKmw7lY1NcZlYfSwNTwc54t1n/BvcB6o+/2w0PkrhihC3+484rFSq8ea2v4vFHwz1b5QMzZGFsR6+HhOCPr72WBh9HoMXH8a/hwdgaHDDB65Q0yYRBOHuryQBpKenIzU1FW+++SYWLVpUt93MzAxBQUGQy+v/pnHXrl145ZVXoFarMXXqVCxYsAALFy6EQqFAREQE4uLiMHz4cNy4cQOGhoZo1aoVzp8/j59//hlTpkyBv//f/zhXr16N4OBg9OnTB/n5+RAEAcHBwVi2bBlMTR88XLIhy/sRNUUFZdXo/PE+jA9vjXef4X9WRNSyKWs0CP3wDzzT3vGxl7Qm0hVJOSV4fm08Csur8eWoYAwO5BdRRPURBAHFFSpYPcR0uIYqrVKh7+cH4WBuiO2z7t1oPLOoAi/8dBIXrpVgXr/aYjH7sDVMZlEFXtmYiJPpNzA02AkfDguAuaGe2LHoARpSb7lv4ak5YeGJdNWyg1ewaPdF/DmvBzztzcSOQ0QkupfWnUR82g3EvNWXIz6o2fsjKQ9zok7B3FAPP05SIOBWzzUiEld0YjbmRCXio+EBdzUaP3Q5Hy9HnYJGI+CryBD09rUXKaXuqlFr8O2BK/hqXzJamRticWQwwtzrn3VF4mhIvaXhrfyJ6InSaASsj8lAxzbWLDoREd3Sx9cB10urcT6nROwoRFojCAKWHbyCGT/Fw8veFDtmd2XRiagJiWjvhE5trPHpnksoKlcCqP13+92BK5i8KhYOZobYMbsbi06PSC6T4uW+XtjyYmfIZRJELj+BVUdT0QLGzDRbLDwRNVFHUgqQUVSBcZ3cxI5CRNRk9Paxg0QC7LtwXewoRFpRXaPGvzafwaLdFzEk0BEbX+gMe3NDsWMR0T/cbjReVl2D//5+EeXVNZi1PgGf7LmIwYGO2PZSlwat2EoPFuJmhZ3/1w19fO3x/q9J+NfmM6hSqcWORY+gQUvCKJVKXL58GQDg4+MDPT3OsSTStvUxGbA20ceggFZiRyEiajJsTA0Q4mqJfRfzMKefl9hxiBpVYVk1XvjpJOLTb2BuP2+83JdNxImaqn82Gj9+pRAZRRV46ylfPN/dg/9uG5GZoR6+H98BS/YnY/GfyUi5XoplEzrA0cJI7Gj0EOod8XTgwAF4eXlh1qxZeOmll+Dt7Y1Dhw49iWxELVZeSRX+uJCH5zq4wEAuEzsOEVGT0redA85k3cT1kiqxoxA1mmMpBYhYehTncm7im7GhmNPPix9eiZq4Of28YG9mgJuVKvw0rRNm9GjLf7daIJVK8Eo/b3w/oQNSrpfhma+PIj6tSOxY9BDqLTy9+uqr2Lt3Lw4ePIhDhw7h999/x9y5c59ENqIWKyo2E2qNgDEdOc2OiOh/9bnVM+OvS5xuR7qvrLoGC345i7E/xkBfLsWmFzpjSBBXriPSBWaGevh1djfse7UXunraih2n2Rvo3wrbZ3WFqYEMY344gXUx6WJHogaqt/CkUqng4+NTd93b2xsqlUqroYhasms3q/DD4avo62vPueFERPfg28oMzpZG7PNEOu9YSgEGfnkI62MzML1bG+ye0x1BLpZixyKih2BvbghrE32xY7QYXg5miJ7dDV3a2mLBL+fw5razUNZoxI5F9ai3x5NCocD06dMxfvx4AMC6deugUCi0HoyopXpvx3mo1BosfMZP7ChERE2SRCJBH197bE3IQpVKDUM9Tkkm3VJWXYOPd13AupgMeNiaYMuLndGhNZcKJyJqCAsjPaycHIbP9l7Cdweu4HJeKb4bHwp7My7E0FTVW3j67rvv8M0332DJkiUAgO7du2PWrFlaD0bUEv2RlIc956/h9UE+aG3D0U5ERPfTp509fjqRjhNXC9HLh8tVk+44llKA17acQc7NSkzv1gb/GujD4ikR0UOSSSWYP8gX/k7meG3zGTz11RF8Pqo9enrbPdLxBEHAqcxiSCUSOJgbwNbUAHqyeieINYhaIyCvpAqZRRXIvFGJjKIKyKUSvNy35SySUm/hadmyZZg3bx7mzZtXt+2rr77CnDlztBqMqKUpq67Bwuhz8G1lhue7e4gdh4ioSevsYQMjPRn2X7zOwhPpBI5yIiJqfE8HOcHT3hQvbziFSStjMb1bG7w2yOehFmhKKyjHO9HncDi5oG6bRALYmOjD3swQ9uYGcDAzhIO5AWxMDSCVSgBBgHBrX0G4fVn7hwqVGlk3KmsLTUUVyC6uhEot3HHsIGeLFlV4kgi3fzv3ERoaioSEhDu2hYSE4NSpU1oN1pgUCgXi4+PFjkH0QO//eh6rj6Vh68wuCHWzEjsOEVGTN31NPC7kluDI/N5cRYiatH0X8rAw+jxyblZiWleOciIiamxVKjX+s+sC1h5Ph5+jOZaMCYGnvekD71Ndo8ayA1fxzYEUGMikmNvfG61tjJFXUo28kipcL63G9ZIq5JVW4XpJNQrKqqF5YPXkb9Ym+nC1MoKLtTFcrYzham1069IYTpaGzWrl8obUW+474mnDhg1Yv349UlNTERERUbe9tLQU1tb8doaoMZ3JKsaaY2kY36k1i05ERA3Ur509/ryQh8t5ZfBpZSZ2HKK7XLtZhfd/PY/d567B28GUo5yIiLTEUE+GD4YGoLuXHV7fchrPfH0E7z7jh9Fhrvf8cupYSgHe3n4OVwvK8XSQI9552g8O5g/uEVWj1qC4UlU3wkkiAW4f+fZjSADoy6UwMah3clmLct/fRpcuXeDo6IiCggK8+uqrddvNzMwQFBT0RMIRtQQ1ag3e2HoWtqYGeG2QT/13ICIiAEBv39opdn9eyGPhiZoUtUbAzyfS8d/fL0Gl1uD1QT6Y3s0D+vLG6RdCRET31t/PAXte6YF5mxLxxrazOHg5Hx+PCISlce3Kg/ml1fjPrgv45VQ23KyNsWZqxwb3hZLLpLA1NdBm/GbrvoWn1q1bo3Xr1jh+/PiTzEPU4qw6moak3BJ8Oy4U5oZ6YschItIZDuaGCHS2wP6L1zGrt6fYcYgAAOdzbuKtbWdxOusmunvZ4t/DArhgCBHRE+RgboifpnbCD4ev4r+/X0JiZjE+H9UeqQXl+GT3RVSq1Pi/Pp6Y1duT056fEI7/IhJRZlEFvvjjMvr62mNwQCux4xAR6Zw+vvZYsj8ZReVKWJvoix2HWrDy6hos/vMyVh5Ng5WxHr6KDEZEeyf2HyMiEoFUKsELPduic1sbvLzhFMb+EAMACPewxr+HBdbb/4kaFwtPRCIRBAELo89BIgE+GBbAN6ZERI+gXzsHfLUvGQcuXceIUBex41ALdTSlAK9vOYPs4kqM6eiGNwb5wsKYo5iJiMQW5GKJ317ujqV/pcDbwRTDgp35uUsE9U40/+qrrxq0jYgezm9nc/HXpXzM6+8NZ0sjseMQEekkfydz2JsZYN/F62JHoRZqc3wmJq2MhaGeFFte7IyPRwSy6ERE1ISYGMgxf5Avhoe4sOgkknoLT2vWrLlr2+rVq7WRhajFuFmpwvu/JiHA2RyTu7iLHYeISGdJpRL08bXHoUv5UNZoxI5DLYggCFi6PxmvbTmDTh7W2D6rKxTuXLGOiIjof913qt2GDRuwfv16pKamIiIiom57SUkJrK35nyrR4/hkz0UUllVj1eQwyGVc4YaI6HH08bVHVFwm4tOK0MXTVuw41AKoNbXT5dfFZGBYsBM+HdmeK9YRERHdx30LT126dIGjoyMKCgrw6quv1m03MzNDUFDQEwlH1BydTL+B9TEZmNatDQKcLcSOQ0Sk87p52UJfLsW+i9dZeCKtq1Sq8XLUKfyRlIcXe7bF6wN9IJVy6gYREdH93Lfw1Lp1a7Ru3Rp//vknjIyMIJVKcfnyZVy8eBGBgYFPMiNRs7Ls4BXYmupjXn9vsaMQETULxvpydGlrg/0Xr+Odp/3EjkPNWFG5EtPWxCExsxjvR/hjEqfLExER1aveMcE9evRAVVUVsrOzMWDAAPz000+YPHnyE4hG1PxcL6nC/ovXMbKDK0wMuKgkEVFj6etrj9SCclzJLxM7CjVTmUUVGPndMZzPKcF340JZdCIiImqgegtPgiDA2NgY27Ztw0svvYTNmzfj/PnzTyIbUbOzJSELao2A0WGuYkchImpWevvaAwD2X+DqdtT4zmXfxPBvj6GwXIl10zthUICj2JGIiIh0RoMKT8ePH8e6deswZMgQAIBarW7Qwffs2QMfHx94enpi0aJFd91+6NAhhIaGQi6XY8uWLXfctmbNGnh5ecHLy+uOlfVOnjyJwMBAeHp64uWXX4YgCA3KQiQ2QRCwKS4THdtYo42tidhxiIiaFRcrY/i2MsO+i3liR6FmRBAE/HYmF6O/Pw4DuRRbZ3ZGGFeuIyIieij1Fp4WL16Mjz/+GMOHD4e/vz+uXr2K3r1713tgtVqNWbNmYffu3UhKSsKGDRuQlJR0xz5ubm5YvXo1xo4de8f2oqIivP/++4iJiUFsbCzef/993LhxAwAwc+ZM/PDDD0hOTkZycjL27NnzMM+XSDQxqUVIK6xAJEc7ERFpRb92DohLu4Htp7LFjkLNQF5JFV746SRmrU+Ap70ptr3UBZ72ZmLHIiIi0jn1Npnp2bMnevbsWXfdw8MDS5YsqffAsbGx8PT0hIeHBwAgMjIS0dHR8PP7u+mnu7s7AEAqvbP+9fvvv6N///6wtq79Rql///7Ys2cPevXqhZKSEoSHhwMAJk6ciO3bt2Pw4MH15iES28a4TJgZyjGYw/OJiLTi+e4eiE0rwisbE3HhWgleH+gLGVcbo4ckCAI2xWfi379dgLJGgzcH+2JatzaQy+r9vpaIiIju4b6Fp1deeQWLFy/GM888A4nk7jdtO3bseOCBs7Oz4er698gOFxcXxMTENCjUve6bnZ2N7OxsuLi43LX9XpYvX47ly5cDAPLz8xv0uETacrNShV1nc/GcwgVG+jKx4xARNUsWxnr4eVonvP/reXx/8CouXyvFV2NCYG6oJ3Y00hHpheV4c9tZHLtSiE5trLHo2SBOjyciInpM9y08TZgwAQDwr3/964mFaUwzZszAjBkzAAAKhULkNNTS7UjMRnWNBpFhbmJHISJq1vTlUnw0PBC+juZ4f8d5DP/mKH6cFMbiAT2QWiNg1dFUfLb3EuRSKT4aHoAxYW6QcsQcERHRY7tv4alDhw4Aaqfa3R4xZGdn1+ADOzs7IzMzs+56VlYWnJ2dG3zfAwcO3HHfXr16wdnZGVlZWY90TCIxRcVlwt/JHAHOFmJHISJqESaEt0ZbOxPMWpeAoUuP4Jtxoeju1fD3MdRyXLxWgvlbz+J0ZjH6+trj38MD4GhhJHYsIiKiZuOBk9Xfe+892NrawsfHB97e3rCzs8MHH3zQoAOHhYUhOTkZqampUCqViIqKQkRERIPuO3DgQOzduxc3btzAjRs3sHfvXgwcOBCOjo4wNzfHiRMnIAgC1q5di6FDhzbomERiOZd9E+dzSjCaTcWJiJ6oLm1tsWN2NzhaGGHSylisOJLK1XAJGo2Ac9k38d2BKxiz/ASeXnIEmUUVWDImBD9OUrDoRERE1MjuO+Lpiy++wNGjRxEXF4c2bdoAAK5evYqZM2fiyy+/xNy5cx98YLkcS5cuxcCBA6FWqzF16lT4+/tj4cKFUCgUiIiIQFxcHIYPH44bN27g119/xbvvvovz58/D2toa77zzDsLCwgAACxcurGs0/u2332Ly5MmorKzE4MGD2VicmryNcZkwkEsxtD1H5xERPWmu1sbY+lIXzNuYiA93JuFibgn+PTwABnL222tJ8kurcSQlH4cuF+Bwcj4KypQAAN9WZpje3QMzenjA2kRf5JRERETNk0S4z1d/ISEh+OOPP2Bra3vH9vz8fAwYMACnTp16IgEbg0KhQHx8vNgxqAWqVKrR8T9/ol87B3w5OljsOERELZZGI2Dxn5exZH8K3KyNoXC3QoCTBQJdLODnaA4Tg3oX+iUdIggCzmbfxJ5z13DgUj6ScksAANYm+ujmaYse3nbo7mULB3NDkZMSERHptobUW+77LkulUt1VdAJq+zypVKrHT0fUAuw+l4vSqhqMUnCaHRGRmKRSCeYN8IG/swWiYjNw6HIBtiXUrowrkQBtbE0Q6GyBACcLBDhbwM/JHBZGXA1Pl9wuNv12Nhe7zuYis6gSMqkEHVpb4bWBPujuZYsAJws2DCciInrC7lt40te//3DjB91GRH/bGJcJdxtjhHtYix2FiIgADPRvhYH+rQAAeSVVOJd9E2ezb+JcdgliU4sQnZhTt6+zpRH8nMzRztEcfo5m8HO0gIuVEQsXTci9ik1yqQRdPW3xf729MMDfAZbGfN9KREQkpvsWnk6fPg1zc/O7tguCgKqqKq2GImoOruaXISa1CK8P8oFEwg8pRERNjYO5IRzMDdG3nUPdtvzSapzLuYmknBJcyK392XchD5pbjQlMDeRo52iGdo7mGBzgiHAPa77G/8OF3BL8dek6qlUa1Gg0qFELUKprL2s0GqjUAmrUGqgFQILa0WZSiQQSAPjHn6USCe71a/3nthq1gBOphSw2ERERNXH3LTyp1eonmYOo2dkUnwWZVIKRoS5iRyEiogayMzNAbx979Paxr9tWqVTjUl5pXSEqKacEW09mYe3xdLR3tcTMnm0xwM+hxY6EUqk12Hs+D2uOpyE2tahuu0wqgZ5MAj2pFHKZBHKZFHpSCfTkUkglEgiCAAGAIAAaQcDtrqMaQYDmHi1I79WVtJ2jOf6vjxcG+LHYRERE1FSxkyaRFqjUGmxNyEJvH3vYs3EpEZFOM9KXIdjVEsGulnXbqlRqbDmZheWHruLFn0/Cw84EL/TwwLAQ5xazYl5BWTU2xGRgXUwGrpVUwdXaCAueaodnO7jAyliPI8GIiIgIAAtPRFrx18XryC+tRmQYm4oTETVHhnoyjA9vjcgwV+w+dw3LDl7B/K1n8cUflzGtWxuM6egGM8Pm2Zw8MbMYa4+lYeeZXCjVGnT3ssW/hwWgt689ZC101BcRERHdHwtPRFqwMS4T9mYG6OVjJ3YUIiLSIrlMimfaO+HpIEccTi7AsoNX8J9dF/H1/hRM7Nwas3p7wli/ebzdyiupwsyfTyIhoxgm+jKM6eiKCZ3d4WlvKnY0IiIiasKaxzshoibk2s0q/HXpOl7s2RZymVTsOERE9ARIJBL08LZDD287nM4sxrKDV/DtgSuIS7uBVZPDYGKg22+5NBoB/9p8GhdyS/F+hD9GhDo32xFdRERE1Lj4qZiokW1NyIJGAEYpOM2OiKglau9qie/Gd8BXkSGITyvClNVxqFDWiB3rsaw6lobDyQV4++l2mNTFnUUnIiIiajAWnogakUYjYGNcJjp72MDd1kTsOEREJKKI9k5YfLv4tEp3i08Xr5Xgkz0X0dfXHmM7uokdh4iIiHQMC09EjaS8ugaf/H4RGUUVGM2m4kREhNri05ejgxGXVoSpOjjyqUqlxitRiTA3lOOTkUFcqY6IiIgemm43HCBqAtQaAVsTsvDZ75dwvbQaQ4OdMDiwldixiIioiRga7AwAmLsxEdNWx2Pl5DAY6ctETtUwn++9hIvXSrFysgK2pgZixyEiIiIdxMIT0WM4dqUA/955AUm5JQi+1dOjQ2srsWMREVETMzTYGYIAzNuUiKmr43Si+HQ0pQA/HE7F+HA39PF1EDsOERER6SgWnogewdX8Mny8+yL+SMqDs6URlowJwTNBjpyCQERE9zUsxBkCBLy66TSmrYnDiklNt/h0s0KFVzedhoedCRY85Sd2HCIiItJhLDwRPYTiCiWW7EvB2uNpMNST4fVBPpjatQ0M9ZrmBwciImpahoe4AADmbTqN6Wvj8OPEpld8EgQBb20/i4Kyamyb2KXJ5SMiIiLdwsITUQMdSynAS+sTUFKpwugwN8zr7w07M/a7ICKihzM8xAWCALy6+TSeXxuPVVPCoCdrOuu9bE/Mxm9ncvHaQB8EuViKHYeIiIh0HAtPRA2wKT4Tb207Cw87E0TNCIdvK3OxIxERkQ4bEeqCKpUGb/1yFnvP52FIkKPYkQAAmUUVWLj9PBStrfBiz7ZixyEiIqJmoOl8vUbUBAmCgM9+v4TXt5xB57Y22DKzC4tORETUKEaHucLZ0ggbYjPEjgKgdpXWVzedhgDgy9HBkEnZt5CIiIgeHwtPRPdRpVJjTlQilv6VgsgwV6ycHAZzQz2xYxERUTMhk0oQGeaKIykFSC8sFzsOvj90BbFpRXg/wh+u1sZixyEiIqJmgoUnonsoKldi/I8x2HE6B/MH+eLjEYFNqv8GERE1D88pXCGVABvjMkXNcb2kCl/+cRlPBbbCiFBnUbMQERFR88JP0kT/42p+GUZ8exRnsm/im7GhmNmrLSQSTjcgIqLG18rCEH18HbApPgsqtUa0HL+cyoZKLeDVAT78P4+IiIgaFQtP1KSVVKnw18XriE8rQsr1MhSVK6HWCFp7vNjUIoz47hhKqmqw4fnwJtPslYiImq+xnVxRUFaNfRfyRHl8QRCw+WQWQt0s0dbOVJQMRERE1HxxVTtqkgRBwPbEbHz020UUlFXfcZtEAlgY6cHaWB+WxnqwNtGHpbE+LI30YGWiDwsjPVga68HK+M4/y6QSVKnUqFSpUalUo0qlQaVKjapbP6kF5fh0zyW4WBth9eSOcLNhfwsiItK+nt72cLQwxIbYTAwKePJfeCRmFiPlehk+HhH4xB+biIiImj+tFp727NmDOXPmQK1WY/r06XjjjTfuuL26uhoTJ07EyZMnYWNjg40bN8Ld3R3r1q3Df//737r9zpw5g4SEBAQHB6NXr17Izc2FkZERAGDv3r2wt7fX5tOgJ+xyXine2X4OMalFaO9qic9HtYcEwI0KJW6UK1FUoUJxhRJF5UrcqFAip7gK53NKUFyhQqVK/ViP3amNNb6f0AGWxvqN82SIiIjqIZNKMErhiiX7k5FZVPHEG3tvPpkFQz0pnuYoXyIiItICrRWe1Go1Zs2ahT/++AMuLi4ICwtDREQE/Pz86vZZsWIFrKyskJKSgqioKMyfPx8bN27EuHHjMG7cOADA2bNnMWzYMAQHB9fdb926dVAoFNqKTiIpr67BV/uSsfJIKkwN5fjP8EBEhrlC+hDLOVep1LhZqULxreLUjQoVblbWXmoEAUZ6MhjpyWB468dIXwZDuRRG+jIY68vgYWv6UI9HRETUGEaFueLr/cnYFJ+JVwf4PLHHrVKp8evpHAwOcIQZV24lIiIiLdBa4Sk2Nhaenp7w8PAAAERGRiI6OvqOwlN0dDTee+89AMDIkSMxe/ZsCIJwR1PLDRs2IDIyUlsxqQkQBAG7zl7DhzuTcK2kCqMVrpg/2BfWJg8/6uh2QcnB3FALSYmIiLTD2dIIPb3tsCk+E3P6ekH+hFZS/f38NZRW1WBkB5cn8nhERETU8mjtXU12djZcXV3rrru4uCA7O/u++8jlclhYWKCwsPCOfTZu3IgxY8bcsW3KlCkIDg7Ghx9+CEG4d6Pp5cuXQ6FQQKFQID8/vzGeEmnBlfwyTFwZi1nrE2Bjqo9tL3XBJyODHqnoREREpMvGdHRDXkk1/rr05N63bDmZBWdLI3T2sHlij0lEREQtS5Ne1S4mJgbGxsYICAio27Zu3TqcPXsWhw8fxuHDh/HTTz/d874zZsxAfHw84uPjYWdn96Qi00M4fqUQgxcfRmJmMd6P8MeO2d0Q6mYldiwiIiJR9PG1h72ZATbEZjyRx8sursSRlAI828GF08yJiIhIa7RWeHJ2dkZmZmbd9aysLDg7O993n5qaGty8eRM2Nn9/4xYVFXXXaKfbxzAzM8PYsWMRGxurradAWlRSpcKrmxLhbGWEfa/2xKQu7pDxTS8REbVgcpkUo8NcceDSdeQUV2r98badzIIgAM9xmh0RERFpkdYKT2FhYUhOTkZqaiqUSiWioqIQERFxxz4RERFYs2YNAGDLli3o06dPXX8njUaDTZs23dHfqaamBgUFBQAAlUqFnTt33jEainTHe9HnkVdajS9GtYe9GfsxERERAcAohSsEAJviM+vd93EIgoAtCVkI97B+4qvoERERUcuitcKTXC7H0qVLMXDgQLRr1w6jRo2Cv78/Fi5ciB07dgAApk2bhsLCQnh6euKLL77AokWL6u5/6NAhuLq61jUnB4Dq6moMHDgQQUFBCA4OhrOzM55//nltPQXSkt1nc7HtVDZm9fZECKfWERER1XG1NkZ3LztsjMuEWnPvPpaNIS7tBtILK/BcB9f6dyYiIiJ6DBLhft25mxGFQoH4+HixYxCA6yVVGLj4EFytjbF1ZhfoPaFVe4iIiHTFnnO5ePHnBKycrEAfXwetPMZrm09j19lcxL3dD8b6WlvkmIiIiJq5htRb+KmfnhhBEDB/6xlUKNX4YlQwi05ERET30LedA2xNDbAhVjvT7cqra/Db2VwMCXJk0YmIiIi0jp/86YnZEJuJvy7l443BvvC0NxU7DhERUZOkJ5PiOYUL9l+8jms3qxr9+LvO5qJCqcZzCk6zIyIiIu1j4YmeiLSCcvz7tyR09bTBpM7uYschIiJq0iLDXKHWCNishSbjm09moY2tCRSt2WeRiIiItI+FJ9K6GrUG8zYlQiaV4L8j20MqlYgdiYiIqElrbWOCrp42iIrLhKYRm4ynF5YjNrUIIzu41K0kTERERKRNLDyR1n1/6CoSMorx4dAAOFkaiR2HiIhIJ4zp6Ibs4kocTilotGNuPZkFiQQYHuLcaMckIiIiehAWnkirzmXfxJd/XMaQIEcMDXYSOw4REZHOGODXCjYm+tgQk9Eox9NoBGxNyEY3T1t+EURERERPDAtPpDVVKjXmbkyEtYk+PhoWwCH9RERED0FfLsWoMFf8nnQN0YnZj328Y1cKkV1cyabiRERE9ESx8ERa89nvl5B8vQyfjgyCpbG+2HGIiIh0zpy+Xujobo1XN53G/ot5j3WszSczYW4oxwA/h0ZKR0RERFQ/Fp5IK1Kul2HF0VSM6+SGXj72YschIiLSSYZ6Mvw4SQE/J3PM/DkBJ64WPtJxSqpU2HPuGiKCnWCoJ2vklERERET3x8ITacWaY2nQk0oxt7+32FGIiIh0mpmhHlZP6Qg3a2NMXxOPM1nFD32MnadzUV2jwcgOnGZHRERETxYLT9ToblaqsDUhC8+0d4KtqYHYcYiIiHSetYk+fprWCZbGepi0MhbJeaUNvu+ZrGL8cPgqvOxN0d7FQospiYiIiO7GwhM1us3xmahQqjG5i7vYUYiIiJqNVhaGWDe9E+QyKcaviEFmUcUD988prsS8jYmIWHoUJZUqvP20Hxf6ICIioieOhSdqVGqNgLXH06FobYVAfqtKRETUqFrbmODnaZ1QpdJg/IoYXC+pumuf8uoafL73Enp/dgA7z+ZiZq+2+Ou1XujpbSdCYiIiImrpWHiiRvXXxevIKKrA5K7uYkchIiJqlnxamWH1lDDkl1ZjwopYFFcoAdR++RMVm4Fenx3A1/tTMNC/FfbN64n5g3xhbqgncmoiIiJqqeRiB6DmZfWxNLQyN8RA/1ZiRyEiImq2Qtys8ONEBSavjsPkVXGY3dsTn+29hIvXShHqZonvJ3RAqJuV2DGJiIiIOOKJGk9yXimOpBRgQufW0JPx1CIiItKmLp62WDomBGezb2L62niUVddg6dgQbJ3ZhUUnIiIiajI44okazepjadCXSxEZxqWaiYiInoQB/q2wfEIHZBZVILKjGwz1ZGJHIiIiIroDC0/UKG5WqLAtIRtD2zvBxtRA7DhEREQtRt92DmJHICIiIrovzoeiRrEpPhOVKjWbihMRERERERFRHRae6LGpNQLWHE9DxzbW8HeyEDsOERERERERETURLDzRY9t3IQ9ZNyoxpYu72FGIiIiIiIiIqAlh4Yke2+pjaXCyMER/P/aYICIiIiIiIqK/sfBEj+XStVIcu1KICZ3dIZfxdCIiIiIiIiKiv2m1UrBnzx74+PjA09MTixYtuuv26upqjB49Gp6enujUqRPS0tIAAGlpaTAyMkJwcDCCg4Px4osv1t3n5MmTCAwMhKenJ15++WUIgqDNp0D1WH0sDQZyKSLDXMWOQkRERERERERNjNYKT2q1GrNmzcLu3buRlJSEDRs2ICkp6Y59VqxYASsrK6SkpGDu3LmYP39+3W1t27ZFYmIiEhMTsWzZsrrtM2fOxA8//IDk5GQkJydjz5492noKVI/iCiV+OZWF4SHOsDLRFzsOERERERERETUxWis8xcbGwtPTEx4eHtDX10dkZCSio6Pv2Cc6OhqTJk0CAIwcORL79u174Aim3NxclJSUIDw8HBKJBBMnTsT27du19RSoHhvjMlGl0mASm4oTERERERER0T1orfCUnZ0NV9e/p1+5uLggOzv7vvvI5XJYWFigsLAQAJCamoqQkBD07NkThw8frtvfxcXlgce8bfny5VAoFFAoFMjPz2/U50ZAjVqDtcfTEe5hjXaO5mLHISIiIiIiIqImSC52gHtxdHRERkYGbGxscPLkSQwbNgznz59/qGPMmDEDM2bMAAAoFAptxGzR/ryQh+ziSrzztJ/YUYiIiIiIiIioidLaiCdnZ2dkZmbWXc/KyoKzs/N996mpqcHNmzdhY2MDAwMD2NjYAAA6dOiAtm3b4vLly3B2dkZWVtYDj0nad+1mFZb+lQJnSyP0a2cvdhwiIiIiIiIiaqK0VngKCwtDcnIyUlNToVQqERUVhYiIiDv2iYiIwJo1awAAW7ZsQZ8+fSCRSJCfnw+1Wg0AuHr1KpKTk+Hh4QFHR0eYm5vjxIkTEAQBa9euxdChQ7X1FOh/VKnUWLo/Gb0/O4DLeWWYP9gXcplWF0YkIiIiIiIiIh2mtal2crkcS5cuxcCBA6FWqzF16lT4+/tj4cKFUCgUiIiIwLRp0zBhwgR4enrC2toaUVFRAIBDhw5h4cKF0NPTg1QqxbJly2BtbQ0A+PbbbzF58mRUVlZi8ODBGDx4sLaeAt0iCAJ+P5+Hj3YlIbOoEoP8W+Gtp9rBzcZY7GhERERERERE1IRJhActI9dMKBQKxMfHix1DJyXnleL9X5NwJKUA3g6mePcZf3T1tBU7FhERERERERGJrCH1libZXJzuVlyhxK+nc2BragAbUwPYmOrD1tQA5oZySCSSRn+8mxUqfPnnZfx0Ih2mBnK8H+GPcZ3cOLWOiIiIiIiIiBqMhScdcbWgHO9E372yn55MAhuTvwtR1ib6MDWQw8RADlMD2a1Led02EwM59GQSVCjVqFSqUa6sQUW1GhXKGpQray/Lqmqw43QOblaqMLaTG+b194G1ib4Iz5qIiIiIiIiIdBkLTzqivYslYhf0RWGZEoVlShSUVaOgrBqF5UoUlNZeFpZV40p+Gcqra1BWXQOV+uFnUcqkEhjry9DexRJvPdUOfk7mWng2RERERERERNQSsPCkI2RSCezNDGFvZtjg+1TXqFFera4rRP2zIGWiL4OxgRwm+jIY6ctgoi+HsYEM+jKpVqbuEREREREREVHLw8JTM2Ygl8FALuM0OSIiIiIiIiISBTtFExERERERERGRVrDwREREREREREREWsHCExERERERERERaQULT0REREREREREpBUsPBERERERERERkVaw8ERERERERERERFrBwhMREREREREREWkFC09ERERERERERKQVLDwREREREREREZFWSARBEMQOoW22trZwd3cXO0ajyM/Ph52dndgxiB4Jz1/SZTx/SdfxHCZdxvOXdB3PYdJlDzp/09LSUFBQ8MD7t4jCU3OiUCgQHx8vdgyiR8Lzl3QZz1/SdTyHSZfx/CVdx3OYdNnjnr+cakdERERERERERFrBwhMREREREREREWkFC086ZsaMGWJHIHpkPH9Jl/H8JV3Hc5h0Gc9f0nU8h0mXPe75yx5PRERERERERESkFRzxREREREREREREWsHCExERERERERERaQULTzpiz5498PHxgaenJxYtWiR2HKIHyszMRO/eveHn5wd/f3989dVXAICioiL0798fXl5e6N+/P27cuCFyUqIHU6vVCAkJwdNPPw0ASE1NRadOneDp6YnRo0dDqVSKnJDo3oqLizFy5Ej4+vqiXbt2OH78OF+DSad8+eWX8Pf3R0BAAMaMGYOqqiq+BlOTNXXqVNjb2yMgIKBu2/1ecwVBwMsvvwxPT08EBQUhISFBrNhEde51Dr/22mvw9fVFUFAQhg8fjuLi4rrbPv74Y3h6esLHxwe///57vcdn4UkHqNVqzJo1C7t370ZSUhI2bNiApKQksWMR3ZdcLsfnn3+OpKQknDhxAt988w2SkpKwaNEi9O3bF8nJyejbty+LqNTkffXVV2jXrl3d9fnz52Pu3LlISUmBlZUVVqxYIWI6ovubM2cOBg0ahIsXL+L06dNo164dX4NJZ2RnZ2PJkiWIj4/HuXPnoFarERUVxddgarImT56MPXv23LHtfq+5u3fvRnJyMpKTk7F8+XLMnDlTjMhEd7jXOdy/f3+cO3cOZ86cgbe3Nz7++GMAQFJSEqKionD+/Hns2bMHL730EtRq9QOPz8KTDoiNjYWnpyc8PDygr6+PyMhIREdHix2L6L4cHR0RGhoKADAzM0O7du2QnZ2N6OhoTJo0CQAwadIkbN++XcSURA+WlZWF3377DdOnTwdQ+w3l/v37MXLkSAA8h6npunnzJg4dOoRp06YBAPT19WFpacnXYNIpNTU1qKysRE1NDSoqKuDo6MjXYGqyevToAWtr6zu23e81Nzo6GhMnToREIkF4eDiKi4uRm5v7pCMT3eFe5/CAAQMgl8sBAOHh4cjKygJQew5HRkbCwMAAbdq0gaenJ2JjYx94fBaedEB2djZcXV3rrru4uCA7O1vEREQNl5aWhlOnTqFTp07Iy8uDo6MjAKBVq1bIy8sTOR3R/b3yyiv49NNPIZXW/ldZWFgIS0vLuv+A+VpMTVVqairs7OwwZcoUhISEYPr06SgvL+drMOkMZ2dn/Otf/4KbmxscHR1hYWGBDh068DWYdMr9XnP52Y500cqVKzF48GAAj3YOs/BERFpTVlaGZ599FosXL4a5ufkdt0kkEkgkEpGSET3Yzp07YW9vjw4dOogdheih1dTUICEhATNnzsSpU6dgYmJy17Q6vgZTU3bjxg1ER0cjNTUVOTk5KC8vv2sKCJEu4Wsu6bKPPvoIcrkc48aNe+RjsPCkA5ydnZGZmVl3PSsrC87OziImIqqfSqXCs88+i3HjxmHEiBEAAAcHh7qhxLm5ubC3txczItF9HT16FDt27IC7uzsiIyOxf/9+zJkzB8XFxaipqQHA12JqulxcXODi4oJOnToBAEaOHImEhAS+BpPO+PPPP9GmTRvY2dlBT08PI0aMwNGjR/kaTDrlfq+5/GxHumT16tXYuXMn1q1bV1c8fZRzmIUnHRAWFobk5GSkpqZCqVQiKioKERERYsciui9BEDBt2jS0a9cO8+bNq9seERGBNWvWAADWrFmDoUOHihWR6IE+/vhjZGVlIS0tDVFRUejTpw/WrVuH3r17Y8uWLQB4DlPT1apVK7i6uuLSpUsAgH379sHPz4+vwaQz3NzccOLECVRUVEAQhLpzmK/BpEvu95obERGBtWvXQhAEnDhxAhYWFnVT8oiakj179uDTTz/Fjh07YGxsXLc9IiICUVFRqK6uRmpqKpKTk9GxY8cHHksiCIKg7cD0+Hbt2oVXXnkFarUaU6dOxYIFC8SORHRfR44cQffu3REYGFjXH+c///kPOnXqhFGjRiEjIwOtW7fGpk2b7mpiR9TUHDhwAJ999hl27tyJq1evIjIyEkVFRQgJCcHPP/8MAwMDsSMS3SUxMRHTp0+HUqmEh4cHVq1aBY1Gw9dg0hnvvvsuNm7cCLlcjpCQEPz444/Izs7mazA1SWPGjMGBAwdQUFAABwcHvP/++xg2bNg9X3MFQcDs2bOxZ88eGBsbY9WqVVAoFGI/BWrh7nUOf/zxx6iuroaNjQ2A2gbjy5YtA1A7/W7lypWQy+VYvHhxXf+n+2HhiYiIiIiIiIiItIJT7YiIiIiIiIiISCtYeCIiIiIiIiIiIq1g4YmIiIiIiIiIiLSChSciIiIiIiIiItIKFp6IiIiIiIiIiEgrWHgiIiIirfjoo4/g7++PoKAgBAcHIyYmBgCwePFiVFRUPPTxVq9ejZycnLrr06dPR1JSUqNk7dKly0Ptf+DAATz99NON8tj3Ul1djX79+iE4OBgbN26847b//T24u7ujoKBAa1m0KScnByNHjmzw/mq1Gh06dMChQ4fqtg0YMACbN2/WRjwiIiJqBHKxAxAREVHzc/z4cezcuRMJCQkwMDBAQUEBlEolgNrC0/jx42FsbNzg46nVaqxevRoBAQFwcnICAPz444+NlvfYsWONdqzGcOrUKQBAYmLiXbf97++hKaqpqYFcXv/bTCcnJ2zZsqXBx5XJZPj222/x/PPP4+TJk9iyZQukUimee+65x4lLREREWsQRT0RERNTocnNzYWtrCwMDAwCAra0tnJycsGTJEuTk5KB3797o3bs3AGDmzJlQKBTw9/fHu+++W3cMd3d3zJ8/H6GhodiwYQPi4+Mxbtw4BAcHo7KyEr169UJ8fDwAwNTUFAsWLED79u0RHh6OvLw8AMCVK1cQHh6OwMBAvP322zA1Nb1n3tvbDxw4gF69emHkyJHw9fXFuHHjIAgCAGDPnj3w9fVFaGgotm3bVnff8vJyTJ06FR07dkRISAiio6MBAHPmzMEHH3wAAPj999/Ro0cPaDSaOx63qKgIw4YNQ1BQEMLDw3HmzBlcv34d48ePR1xcHIKDg3HlypW6/bds2XLX7wEAvv76a4SGhiIwMBAXL158YK5/EgQBs2fPho+PD/r164ennnqqrhD0z5FU8fHx6NWr1wOPu3r1akRERKBPnz7o27cvJk6ciO3bt9c91rhx4+7KkJaWhoCAgLr7jxgxAoMGDYKXlxdef/31e/5dderUCZ07d8Z7772Ht956C0uXLr3nfkRERNRECERERESNrLS0VGjfvr3g5eUlzJw5Uzhw4EDdba1btxby8/PrrhcWFgqCIAg1NTVCz549hdOnT9ft98knn9Tt17NnTyEuLu6e1wEIO3bsEARBEF577TXhww8/FARBEIYMGSKsX79eEARB+O677wQTE5N75r29/a+//hLMzc2FzMxMQa1WC+Hh4cLhw4eFyspKwcXFRbh8+bKg0WiE5557ThgyZIggCILw5ptvCj/99JMgCIJw48YNwcvLSygrKxPKy8sFPz8/Yf/+/YK3t7eQkpJy1+POnj1beO+99wRBEIR9+/YJ7du3r8tx+/j/639/D61btxaWLFkiCIIgfPPNN8K0adMemOuftm7dKvTr10+oqakRsrOzBQsLC2Hz5s11x7399xQXFyf07NnzgcddtWqV4OzsXPf3eeDAAWHo0KGCIAhCcXGx4O7uLqhUqjsePzU1VfD39xcEQRBWrVoltGnTRiguLhYqKysFNzc3ISMj456/g8LCQsHY2Fh466237nk7ERERNR0c8URERESNztTUFCdPnsTy5cthZ2eH0aNHY/Xq1ffcd9OmTQgNDUVISAjOnz9/R9+m0aNHN+jx9PX163oudejQAWlpaQBqp/zdnoY1duzYBh2rY8eOcHFxgVQqRXBwMNLS0nDx4kW0adMGXl5ekEgkGD9+fN3+e/fuxaJFixAcHIxevXqhqqoKGRkZMDY2xg8//ID+/ftj9uzZaNu27V2PdeTIEUyYMAEA0KdPHxQWFqKkpKRBOf9pxIgRdz33++X6p0OHDmHMmDGQyWRwcnJCnz596n2sBx23f//+sLa2BgD07NkTycnJyM/Px4YNG/Dss8/WO/2ub9++sLCwgKGhIfz8/JCenn7P/Q4dOgQLCwucO3eu3rxEREQkLvZ4IiIiIq2QyWTo1asXevXqhcDAQKxZswaTJ0++Y5/U1FR89tlniIuLg5WVFSZPnoyqqqq6201MTBr0WHp6epBIJHWPW1NT88i5b08PbOixBEHA1q1b4ePjc9dtZ8+ehY2NzR3NwLXhduZ/5n1QroaQy+V1UwP/+Xdyv+PGxMTc9fc1ceJE/Pzzz4iKisKqVasa/Dz+97n8U3l5OV5//XXs378fU6ZMwa5du/DUU0891HMjIiKiJ4cjnoiIiKjRXbp0CcnJyXXXExMT0bp1awCAmZkZSktLAQAlJSUwMTGBhYUF8vLysHv37vse85/3a6jw8HBs3boVABAVFfWwT6OOr68v0tLS6votbdiwoe62gQMH4uuvv67rBXW7MXh6ejo+//xznDp1Crt3765b1e+funfvjnXr1gGo7S9la2sLc3PzB2Zp6O/hfrn+qUePHti4cSPUajVyc3Px119/1d3m7u6OkydPAkDd77Chx71t8uTJWLx4MQDAz8+v3swN8cEHH2DUqFHw9fXFt99+i7lz595RGCMiIqKmhYUnIiIianRlZWWYNGkS/Pz8EBQUhKSkJLz33nsAgBkzZmDQoEHo3bs32rdvj5CQEPj6+mLs2LHo2rXrfY85efJkvPjii3c01a7P4sWL8cUXXyAoKAgpKSmwsLB4pOdjaGiI5cuXY8iQIQgNDYW9vX3dbe+88w5UKhWCgoLg7++Pd955B4IgYNq0afjss8/g5OSEFStWYPr06XcVSN577z2cPHkSQUFBeOONN7BmzZp6szT093CvXP9r+PDh8PLygp+fHyZOnIjOnTvX3fbuu+9izpw5UCgUkMlkD3Xc2xwcHNCuXTtMmTKl3ufVEOfPn8cvv/yCBQsWAABCQkIwcOBAfPLJJ41yfCIiImp8EuH211VEREREzUxFRQWMjIwgkUgQFRWFDRs23HN1N6o1efJkPP300xg5cmSjHK+iogKBgYFISEh45KIfERER6Tb2eCIiIqJm6+TJk5g9ezYEQYClpSVWrlwpdqQW488//8S0adMwd+5cFp2IiIhaMI54IiIiIiIiIiIirWCPJyIiIiIiIiIi0goWnoiIiIiIiIiISCtYeCIiIiIiIiIiIq1g4YmIiIiIiIiIiLSChSciIiIiIiIiItKK/wcXVvsFS0BwogAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAE/CAYAAADCGZOXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAACT40lEQVR4nOzdd3wc933n/9fMbMcuei8ECfYmSiySSFG9SxYtOXKLbMuWbTmXxHbuHr7EF9/PD10uzilO7i5n+1KUSyLbiSXFkm0Vq1iNkqjGIvbeQBC9960z8/tjgCUhkhJlliXI9/Ph8e7sLnY+s4QA7Hu/38/XcF3XRURERERERERELmhmrgsQEREREREREZHcU0gkIiIiIiIiIiIKiURERERERERERCGRiIiIiIiIiIigkEhERERERERERFBIJCIiIiIiIiIiKCQSERGRSWTq1Km89NJLuS7jrHn44YdZuXJlrssQERGRC4RCIhEREbmgPfDAA3zuc587a8f74he/yH/9r//1jDx3b28vd911F3l5edTX1/Ozn/3sjBxHREREzk++XBcgIiIiIqfHH/zBHxAIBOjo6GDTpk3cfvvtLFq0iPnz5+e6NBEREZkENJJIREREJpV169Yxb948ioqK+NKXvkQikcje98wzz3DxxRdTWFjIihUr2LJlS/a+v/zLv6SmpoZYLMbs2bN5+eWXef755/mLv/gLHnvsMaLRKIsWLTruMadOncpf/dVfcdFFF5GXl8eXv/xlOjo6uPXWW4nFYtxwww309fVlH//JT36SyspKCgoKuOqqq9i+fTsADz30EP/2b//G97//faLRKHfccQcAhw8f5hOf+ARlZWWUlJTwh3/4hxOO/61vfYuioiKmTZvGc889d9waR0ZGeOKJJ/jv//2/E41GWblyJatWreKnP/3pb/dCi4iIyAVHIZGIiIhMKv/2b//GCy+8wP79+9mzZw9//ud/DsDGjRu57777+Id/+Ad6enr42te+xqpVq0gmk+zevZsf/ehHrFu3jqGhIV544QWmTp3KLbfcwp/+6Z/y6U9/muHhYTZv3nzC4z7xxBO8+OKL7Nmzh6effppbb72Vv/iLv6CrqwvHcfjBD36Qfeytt97K3r176ezsZPHixdxzzz0A3H///dxzzz388R//McPDwzz99NPYts3HPvYx6uvraWxspKWlhc985jPZ53r33XeZPXs23d3d/PEf/zFf/vKXcV33mPr27NmDz+dj1qxZ2dsWLVqUDahEREREPoxCIhEREZlU/vAP/5C6ujqKi4v5zne+wyOPPAJ4o3S+9rWvcdlll2FZFvfeey/BYJB33nkHy7JIJpPs2LGDdDrN1KlTmT59+kc67te//nUqKiqoqanhyiuv5LLLLuOSSy4hFApx1113sXHjxuxj77vvPmKxGMFgkAceeIDNmzczMDBw3Oddu3Ytra2t/NVf/RV5eXmEQqEJzarr6+v56le/mj2ntrY2Ojo6jnme4eFh8vPzJ9xWUFDA0NDQRzpPERERuXApJBIREZFJpa6uLnu9vr6e1tZWAA4dOsT//J//k8LCwux2+PBhWltbmTFjBn/zN3/DAw88QHl5OZ/5zGeyX3eyKioqstfD4fAx+8PDwwDYts23v/1tpk+fTn5+PlOnTgWgu7v7uM97+PBh6uvr8fmO3yqysrIyez0SiQBkj3W0aDTK4ODghNsGBweJxWIncXYiIiIiColERERkkjl8+HD2elNTE9XV1YAXHn3nO9+hv78/u42OjvLZz34WgN/93d9lzZo1HDp0CMMw+JM/+RMADMM4rfX97Gc/48knn+Sll15iYGCAxsZGgOwUsfcfr66ujqamJjKZzCkdd9asWWQyGfbu3Zu9bfPmzWpaLSIiIidNIZGIiIhMKv/3//5fmpub6e3t5Xvf+x6f/vSnAfjqV7/K3//93/Puu+/iui4jIyP8+te/ZmhoiN27d/PKK6+QTCYJhUKEw2FM0/szqKKigsbGRhzHOS31DQ0NEQwGKSkpYXR0lD/90z+dcH9FRQUHDhzI7l966aVUVVXx7W9/m5GRERKJBG+++eZHPm5eXh6f+MQn+O53v8vIyAhvvvkmTz75JJ///OdP+ZxERETkwqCQSERERCaV3/3d3+Wmm26ioaGB6dOn81//638FYOnSpfzjP/4jf/iHf0hRUREzZszg4YcfBiCZTPLtb3+b0tJSKisr6ezs5H/8j/8BeCuRAZSUlLB48eJTru8LX/gC9fX11NTUMG/ePC6//PIJ93/5y19mx44dFBYWcuedd2JZFk8//TT79u1jypQp1NbW8thjj/1Wx/7bv/1b4vE45eXlfPazn+Xv/u7vNJJIRERETprhHm95DBERERERERERuaBoJJGIiIiIiIiIiCgkEhERERERERERhUQiIiIiIiIiIoJCIhERERERERERQSGRiIiIiIiIiIgAvlwX8EFKS0uZOnVqrssQERERERERETlvNDY20t3dfczt53RINHXqVNavX5/rMkREREREREREzhtLly497u2abiYiIiIiIiIiIgqJREREREREREREIZGIiIiIiIiIiHCO9yQSERERERERkQ+XTqdpbm4mkUjkuhQ5h4RCIWpra/H7/Sf1eIVEIiIiIiIiIpNcc3MzsViMqVOnYhhGrsuRc4DruvT09NDc3My0adNO6ms03UxERERERERkkkskEpSUlCggkizDMCgpKflIo8sUEomIiIiIiIicBxQQyft91O8JTTcTERGZJFzXJWknGUmNMJwaZjg1TNJOkswkSdpJUnYqez1tp/GZPoK+IEErmL0M+UIErACmYWIYBgbGhEvgmNtO5j7XdXFcZ8Lm4t0W8oWIBWJEA1EsDEinIZn0Lk0TLOvI5dHX9YeuiIjIpNHY2MjHPvYxtm3bdkrPs3r1agKBACtWrDhNlR3x8MMPc9NNN1FdXf2Bj1m/fj0/+tGPPvC5rrnmGv76r/+apUuXnpbaNm3aRGtrK7fddhsATz31FDt27ODb3/72aXn+k6WQSERE5GS5LmQyH7ylUjA87G1DQ942fj0eB58PAgEcn4+k6TBqZBglTcLNYNsp7HQKO5PCtjM4Y9fT6SSpdJx0KoFrZzBtF8NxMFwXx7JIhfykwgFS4QDpscsJt4W8fdc6zgBi18XKOPiTaXzJNL60jeG4GK6L4bjgHnUdwDBwTQMXvEvDAMPASmfwJ9IEEmn8yTT+eMq7THjPaWVsrHSGkGMRsAIEfUECVgDHdbAdG9u1J1w6roPr9+H4fbh+P67PhxPwQ8CPY5nYuDgG2IaLDbi42IaL67qYgOHi1e0aGK6DgYHPNfAZFj5MfJhYhndpGiZGKAx5eRCNYkSjmNEYZl4MMxrFZ/rxmz78ph+f5cNv+PCZPgwXMm6GtJ0mY6dJO95lxs7guM4Jv40snx+/P4Q/EMLvDxEIhL3rwTApbBJumoSdJJ6Ok8gkSGQSpOxUNpQbD/hMw8TAC9JSdoq0kyY9VkfKTpG207i4+EwflmF5l6aV3XdxyTgZbMf2Ll07u+/9UxvZ5z/62EFfkIg/QtgXJuKPeNf9YQJWgLTtHfv9m+3aJwwYxy/Hz+f9waTruke+XXFPeNup3m6Z1oRA9ehLy7COqXn8dTENDcwXETmdVq9eTTQaPWMh0YIFCz4wJMqVTZs2sX79+mxItGrVKlatWnXW61BIJCIi5zfX9cKZkZHjb+MjWj4s/BnbXNfNvqEeHzEzHmo4rvOBt2ecTPZNfzKTnPBm9cMYQOA4t48HPJH+ERwXbMfFdlwc18U0wDJNLNPANCAT8pMKBcgE/V6oMxbimM7J13Gq0jiknTQj6ZEPf3AyDckju+ZRl6f6B4w9tqVO8XnOFNcwcCwD1zRxzKMuLe/Sscxjbjvevmsa2ONhH4yFft6le/TXnODrj7nPNDAdF9N2jtkMxyXjt7ADPjIBn3fd7106lpkNG42xGo4OH10DL4A0jAnXM36LTNCP7TPP2ZFlPtPnBZ+WF3yOh6B+01tFxsULL4++BI4J7sbDO2DCz5Lx8PSDrjtjQahpmFimhWl44ed4uHWirx2vwzKtCZfjdZ3otvcHlUdfHz//kC+UHb04vu8z9dZD5Ex7YPUDZ+9Y1xx7rEwmwz333MN7773H/Pnz+clPfkIkEmHDhg38p//0nxgeHqa0tJSHH36YqqoqfvCDH/D3f//3+Hw+5s2bx4MPPsjf//3fY1kW//qv/8oPf/hDrrzyyiPHfOABDh48yIEDB2hqauJ//+//zTvvvMNzzz1HTU0NTz/9NH6/nz/7sz/j6aefJh6Ps2LFCv7hH/6BJ554gvXr13PPPfcQDod5++232bZtG9/85jcZGRkhGAzy8ssvA9Da2sott9zC/v37ueuuu/j+97//ga/FI488wl/8xV/gui633347f/mXfwnA888/z5/+6Z9i2zalpaW8/PLLrF27lm9+85skEgnC4TD/8i//wrRp0/jud79LPB5nzZo1/Jf/8l+Ix+PZEU2NjY3cd999dHd3U1ZWxr/8y78wZcoUvvjFL5Kfn8/69etpb2/n+9//Pnffffcp/bvqJ7WIiExutg2HDkFLizdiZ2QERkePhECjo+CceFTHhKdy7GOmbY1fT9mp7P4HjRI5VY7r4jgutuviOGC7LhnbIW27pG0nu6Vsl3TG8UIh1wuGPoxlGt5mGNn32+OTyMb+l3X0+3HjePcf+bKxPRfXhbH8wXsjPLbvMw0CPhO/ZRLwmQQsE7/PxG8ZuEcFW/b4uTsujuvV4OUFxoTrwNibbe9YjutOOCbGUXUfVadpeGGZaRiY5pHrXog2tm8aE46TK4brYmVc4OS/17wpf2RDwvHXxRx7/d5/iQvO2L/b+GPHLyfU8r7vBZ9l4DONs/oaOZZJOugjHfSTDvrJBP3ZQMs1jAlhlmuO7Run737DnRiMGUdf9178bPiWBtJH7Y/fD0y4zR17cbOh2PiL7U4M0hgP18Zeh/EALhPweSHcUaHccUcLnkPCvjAFoQIKggXkB/Oz1wtCBZTnlRPyhXJdooicot27d/NP//RPXHHFFdx333387d/+Ld/85jf5+te/zpNPPklZWRmPPfYY3/nOd/jnf/5nHnzwQQ4ePEgwGKS/v5/CwkJ+7/d+j2g0yre+9a3jHmP//v28+uqr7Nixg+XLl/PEE0/w/e9/n7vuuotf//rX3HnnnfzhH/4h3/3udwH4/Oc/zzPPPMPdd9/Nj370o+wUsVQqxac//Wkee+wxli1bxuDgIOFwGPBG9WzcuJFgMMjs2bP5+te/Tl1d3XHraW1t5U/+5E/YsGEDRUVF3HTTTfzqV7/iiiuu4Ktf/Sqvv/4606ZNo7e3F4A5c+bwxhtv4PP5eOmll/jTP/1TnnjiCf7sz/5swjS3hx9+OHuMr3/969x7773ce++9/PM//zPf+MY3+NWvfgVAW1sba9asYdeuXaxatUohkYiIXIDSadi3D3btgj17vJFCJ8F1XeKZOKPp0ew2HgYlM8nsJ+un29Fv3pMZm2TG8ba0TWrsesp2jvsG/aPwRg55IZBpGseMLBq/Lh/OC4/Gg6Wx7ah97724kQ31HNfFdsle/6BX2TQMrLFAavzfajyochyXjONiO87YpZu9PBLMTQz5XI4f7pxplumFRT7LxG+Ofc8dFVq+P7A6MkXrSO1H9o0jIeT7Asn3c0+4c8zuhHtO9PqM3zweGPrG/l2yoepYoHikPOOoIPLIv+PRj7fGvl8gmw95xxkPMzkSWhpj31PjAZ73Ne6Ef9fxEDQb5I09r+seCWcBHN/4SC7v0guRLBzDwHHGpmWOfa2Di8NYDaaJYY6HpwaG98ME/Bau3wKfhRs4cj0dCTJSlEcm6D/hK3488Uyc+HCc9uH2Y+4zMCiNlFKbX5vdyvLKNJ1PZJKpq6vjiiuuAOBzn/scP/jBD7jlllvYtm0bN954IwC2bVNVVQXARRddxD333MOdd97JnXfeeVLHuPXWW/H7/SxcuBDbtrnlllsAWLhwIY2NjQC8+uqrfP/732d0dJTe3l7mz5/PHXfcMeF5du/eTVVVFcuWLQMgPz8/e9/1119PQUEBAPPmzePQoUMnDInWrVvHNddcQ1lZGQD33HMPr7/+OpZlcdVVV2WXni8uLgZgYGCAe++9l71792IYBul0+kPP+e233+YXv/gF4IVef/zHf5y9784778Q0TebNm0dHR8eHPteHUUgkIiKTQyoFO3d62/79XlD0ARzXYSg5RH+in+HUcDYU+ihTvMB7k5saC3HSY5epjJMd9eKMvWlzxoIgxznq+lGjOT6K8cBg/M2pz/RG3fjHR+FYY/uWic868gb1g0Z2uO6RwOHomtzs/72/V8tR949dyfaDmXDbEe8f7TO+n7Hd7OuWth1GMBhxIY4XbAUAPwZ+A/y4+ACfO957Znx00pE3xuCO9YWZOMrIPOr8J3SgGdvJ/pscJ9R5/7+X47p4rXnOnVBtQshwgrLGg4fx7yHDOHLe7x8xlB1VxHFGGR193KOO5bgTgysv+Dy50U4u7/+mOubscsrGJX1mcuLzkt+AZMBPdzREbyTkXeaFGImGcMIBgn6LgM8k6DMJ+CyCPpNoyEcs6CMW8hML+Qj6zCOjA3HpGu2ia7SLje0bAQhaQWrya6gvqGd68XSqY9UKjUTOce//W2R8cYv58+fz9ttvH/P4X//617z++us8/fTTfO9732Pr1q0feoxgMAiAaZr4/f7sMU3TJJPJkEgk+P3f/33Wr19PXV0dDzzwwEdaAv7oYwBYlkUmk/lIX/9B/r//7//j2muv5Ze//CWNjY1cc801p/R8R9fqftQ/Oo9DIZGIiJz7du6EZ57xpo+dgOu6jKRH6E/00xfvoz/R/4Ejg7zeQi6JsdE8adshlTkSZqTGpnW9f+SNbRikLZOMaWCbBhnDJGN6m20aZEyDUb+P4YCP4aCf4YCf4aCPRCiAHfSTH7Ao8pkU+00KfQaFPosCyyDPZ+DzWxg+68gUmLHjJE/QN8YdaxgdiKe8LZEmEE/hH98/+rZk2psmZB37WjimQTo0No0n4POm2YxPtzmqOfXYC3dMTxnDdbEt02uSHfSTCvm95wsFSIf8R/rT+Cwcn4VrHj1JzWs7lHx/UWMNtb2G13b20szYWLZzZArO8frbHNVY++g+N+Pn8/7bDCCYTGdfL2s0iTWaxDeawkxkjkyDw8UemwJoj0/lssyxUUEmlumNyHj/yJMJpwW4toubsXEyDmRs3IyDazu4GRs/EHBdfJbpjWgZG9lijj/heGh21HQ+IDuF8GxNARv/7ydju2Qch4ztvSZHj2QbDy9NE0yMbK3vr/1IIOm+b/+DRxQZx1wZ3z3xV33QyzNh6qPjYrtHRnOdKDQdD9yOTJdkwtTJo4959LTN8eDTcY+9HP+ao0PQ8TBv/N/YC/aYEJaO13P0qKPx64ZheA3djaOD1SPhzIRpm+P1cLzbjnotXMhLpslLpqnvGZrwWtqGwUjAx9DYz7/hgJ/hgI+OUIDdoQD9oQCjfgu/zyIW8lEQ9lOZH6KywNuCYz+oknaSA30HONB3gFcbXyXkCzGtcBoNRQ1ML55Ocbj4xP+gIpITTU1NvP322yxfvpyf/exnrFy5ktmzZ9PV1ZW9PZ1Os2fPHubOncvhw4e59tprWblyJY8++ijDw8PEYjEGBwd/6xrGA6HS0lKGh4d5/PHHs1OwYrEYQ0Pez6zZs2fT1tbGunXrWLZsGUNDQ9npZh/FpZdeyje+8Q26u7spKirikUce4etf/zqXX345v//7v8/Bgwez082Ki4sZGBigpqYGmDil7Oja3m/FihU8+uijfP7zn+ff/u3fJvRpOt1OS0h033338cwzz1BeXn7c5e5c1+Wb3/wmzz77LJFIhIcffpjFixefjkOLiMj5LB6HZ5+FD/hUaTA5SOtQK73xXlL2sW2IXddlxDDoM0z6DINuDLpcg04XBnwGiZBF2vTCmIxpkrHGgx9vH59JMOwnHA4QDPvJC/mJBi2CPmtsqo2BzzSzlwHLIGIaVI69yR9/o/+Bo3yA4ZN8SSzDIhqIZrewP5xdgWm8ee5409yMk8lOpUumRkkPDWAPDeCMjpIJ+sgE/GTCAWzLHOuJcmyD3fFPpD7oPsd1so1rx7eQYRIZ+8R/JDXCUGqIVHr0JM8SMAxsv4Xtt+Cj/702uY0FXqbjrWJnOq7XA+cD9rN9ct73mA/qfZMN+U50jOPd57o4lnncDcBKZbzV7NIZfOPXUxlM28kGmxMCyKNqObqvz3htvrFV885mc3X5YEd+JnDc0PLooG186qSdTJCJO6R6xqbXZhyGgJ6An/6wFxr1hoNsCAfoyQsSLIhQVRimsiBMdUGI4rwAhmGQyCTY2b2Tnd07ASgKFTGzZCZzSudQX1CPZR4nBReRs2r27Nn83//7f7nvvvuYN28e/+E//AcCgQCPP/443/jGNxgYGCCTyfBHf/RHzJo1i8997nMMDAzgui7f+MY3KCws5I477uDuu+/mySefPKZx9ckoLCzkq1/9KgsWLKCysjI7nQzgi1/8Ir/3e7+XbVz92GOP8fWvf514PE44HOall176yOdcVVXFgw8+yLXXXpttXP3xj38cgIceeohPfOITOI5DeXk5L774In/8x3/Mvffey5//+Z9z++23Z5/n2muv5cEHH+Tiiy/mv/yX/zLhGD/84Q/50pe+xF/91V9lG1efKYZ7GsYjvf7660SjUb7whS8cNyR69tln+eEPf8izzz7Lu+++yze/+U3efffdD33epUuXsn79+lMtT0REJqM9e+Cpp7xm1O/jui59iT6aBpq8EUM+i96aYgZLY6TCAfpMg4OjNvvjafYOpxmyjz8dJuAzKYoEiAZ95AV9RIPW2KUve3n0dIjTLWAFKAwVUhgqJD+YT8gXwm/6syskBawAfstPyBciz59HNBAl5AvlvKnybyvjZBhODTOUHGIoNUQ8Hc+uDDW+ItL4dZ/p86bIHbV60/iqTEB2Bafx1ZeOXsnp6BWkjg60Mk5mwjLxx7s8mceMXzquk/038pv+CZcfNCUm42SOu0x8yk4RsAKEfKFjtqDlDSV3XAcX17t03WxAd/Txj67JNMxjlrcf3zcwJqyudfQKVuPeHwzaju31lUl7vb3Ge3zF03HSTnrC9+7R29Grdp0ocHz/5fi54boYY2GRlUhiJVJYyRSG42TDNJyxkAzgqLAL50i4dbzbcb2vMxwXJ5Mmk0ljZ5LYmTR2JpW9HF9Rzh5rau1YJrbljSZ8f/h2UvscaWINHGl+Pdax/ejRcOMj+VzDW83w6ADOl/Kuj99mTKIsbXwKbDLjEE/bDCcyDCczjKQyJEyTnkiQvnCQrrwQzdXFxGqLmFIcYUpxhLzgsZ9zh3whZhZ7gdGM4hkEfcHjHFXk/LZz504e63jsrB3veKubyblp586dzJ07d8JtJ8pbTstIoquuuirbIOp4nnzySb7whS9gGAaXX345/f39tLW1ZZtViYiIZCUS8PzzsGnTMXe5rtezommgiT4jSXddCd31C+muKGB/f4Km3hGaOuP0j04cURQJ+CiNBiiKBCjOO7JFAtZvFbj4TB9hXzj7Rtxn+k76eiwQywZDkznw+W34TF/23EXOB67rknbSx10FMW2nx6aDTVwifjzIPF54l3G8nhdHLzV/MtdNw8R1HZxkAicex03EcZMJ3HgcN5XEYmyUH8bYdYOxarAdG8fO4Li2N+rHSeM4Nk4mjZtK4aZSOKkkbtq77iYT+PoG8PcP4tpeaPv+IHH8XMbP7+hzG2cYYyMxLZO8oI/S6HgQ6jKS9AKj4ZFRBnsGSR9sp7EwysaqYl4siVGcH2ZKcYSpJXnUFIWxTG+U0dbOrWzt3IplWDQUNXDFlCuYWjj1rH5PiOSaghs5VWelJ1FLS8uETuC1tbW0tLQoJBIRkYkOHIBf/QreNw/ddV3ahttoGmiiuSqP5iUzGCgvIOm4bG0ZYOO7TQwnj7wBCfhMagsjTCkOM6UkQlEkcFJhjGmYRANRYoEYsWAse5kfzJ9w24UW7ojI8RmGkR0tFQ1Ec13O2ZXJQE8PdHZCV5d32d0NQ0OQPKbLGI7rZMO0RCZB0vYuE5kEw6nh7HRh0zDGGlv7ocD7+T+aspkST7OosY32A21srChkU2Ux74UCBHwm00ryaCiLMrU0QtBnYbs2e3v3srd3L5fWXMpN02/CZ6oVq4jIyTjnflo+9NBDPPTQQwB0dXXluBoRETkrHAdWr4Y33pi4lBKQyCTY3rmdPuLsvXwGHdMrGE3bbDrQw+bm/uzKSiV5AWZVxJhSEqEiFjrS6Pd9glaQ0kgppZFSyvLKKAmXUBAqID+YT8Qf0co5IiInw+eDigpve79UyguLjtrMgQFC/f2Eensp6OvzQqYxruuStJMMJgez21ByKNt0O29sCnB1YZjZjsviZJL+PU1sDId4oaKY3RmH3R1DmKZBXVGEhrI85lTGCPos1raspWmgiU/O+yQlkZKz+AKJiExOZyUkqqmp4fDhw9n95ubmbDfv97v//vu5//77AW+OnIiInOeGhuCJJ+A405Z7473s6NpBR1U+e1YsoNM02bC7i+2tA9lVx6oLwyybWsTUkrxjRvdYhkVdQR0NRQ3U5tdSGiklFohpFJCIyJkUCEBJibcdj+t6/eb6+qC3F6O3l1BPD6Hubsp7eyHt9fwaSg7Rl+ijN96bDY1M06Ag7Kcg7KceuKWnh/VGhifLi9mXyHCoZ4RDPSOsb+zj1gWVVBeGaR9u5x82/AO3z7ydRZWLzupLISIy2ZyVkGjVqlX86Ec/4jOf+QzvvvsuBQUFmmomIiJw8KAXEL2vObXruhwaOMT+kWb2XT6d1hkVbG4e4PV93dllpRtK81g6tZjqwiNLXxkYVEYraShqoKGogSkFU/Bb/rN6SiIi8iEMA2Ixb5syZeJ9rguDg5g9PRS0tlKwcSNTe3rIOBn6E/30xb3QKJ6JAxDyW6wcGOby0Ti759XxelkBG1uG6BxK8PMNzayYXsLS+iJSdopf7volB/oOcPus2wlYgRycuIjIue+0hESf/exnWb16Nd3d3dTW1vLf/tt/I51OA/B7v/d73HbbbTz77LPMmDGDSCRyRpdrExGRScBxvKllq1cfM70sbafZ0bWDA4Uuu29YymAowEvbO9jTMQTA7MoYl04tpiR6ZOUan+njkspLWF63nOJw8dk8ExEROZ0MAwoKvK2hAa64Ahob8a1fT+nOnZRGSgGIp+N0j3bTPdrNQHIAX9pm/uZGphVEuHzpdJ5JhNlwqI8393VzuHeUm+dXkhf0sbljMy1DLdw9724qo5U5PlkRkXOP4bruObtY5omWZBMRkUlsZAR+8QvYv/+YuwaTg2zv2sGuBZU0XVRPTzzFM1va6B1J4bdMbpxXwayKWPbxIV+IZdXLuKz2sguvaayIyIVmeBg2boQNG6C/P3tzyk7RG++le7SbntEeXFx6akt4cWYNTzb2EU/bRAI+bplfyZSSCOB9uPCJuZ9gXtm8HJ2MyOl3vGXOReD43xsnylvOucbVIiJyHhsagn/5F+jtPeau9uF2to4cZPv1c+ivKmJ3+xAv7ewgbTsU5wX42EXVFOd50wOigSgr6lawpGoJQV/wmOcSEZHzUDQKV17pjS5avx5eeQUSCQJWgMpoJZXRSoaSQ+zo2kFJcw+f6B6kbvlsHulO0Nw3yi82NbOsvpjlDSVkyPDz7T/nhoYbWFG3Qr3qRM5RmUwGn0+xxdmkJVxEROTsGB2Fn/zkuAFR61Ar7/jaWbdqCT0Vhaze3clz29pI2w6zK2N8ZtmUbEA0o3gGv7/s91lRt0IBkYjIhcg04dJL4RvfgKVLvSlqY2LBGEuql1CeV04gkWbF6u18I+SyfFoxBrCusZcnN7eSzNi4uLx44EWe2fMMtmPn7nxEziPf+973mDVrFitXruSzn/0sf/3Xf80111yTHbHS3d3N1KlTAbBtm//8n/8zy5Yt46KLLuIf/uEfAFi9ejVXXnklq1atYt68eXz3u9/lb/7mb7LH+M53vsP/+T//52yf2gVDkZyIiJx5iQT89KfQ1XXMXS2DLbxUm6Lx4kXEbYenNjTTOhDHNA2unlnGRbUFGIaBgcE1U6/hqvqr9ImviIhAJAIf+5gXFD33HBw6BHhTyeaWzqUoVMTe3r3MWrefL04rZ8pFdTy1o5NDPSP8+7pmPn5JNfkhPxvaNtCf6OeT8z9JyBfK8UmJnAYPPJCTY2zYsIFHH32UTZs2kclkWLx4MUuWLDnhU/zTP/0TBQUFrFu3jmQyyRVXXMFNN90EwHvvvce2bduYNm0ajY2NfOITn+CP/uiPcByHRx99lLVr156pM7vgKSQSEZEzK5WCn/0M2tqOuasp1cWvloTprakhkbb5xXvNdA4liQZ93H5RFVUF3splEX+E35n7O0wvnn62qxcRkXNdZSV88YuwfTu88AIMDWEYBlWxKvKD+ezo2kHFwU7uGBil5PJZPLKvl56RJI+uPczHL66mIj/E/r79/PPGf+aehfdQECrI9RmJTEpvvPEGd911F5GI1/tr1apVH/j43/zmN2zZsoXHH38cgIGBAfbu3UsgEODSSy9l2rRpAEydOpWSkhI2btxIR0cHl1xyCSUlJWf2ZC5gColEROTMyWTgscegqemYuxrj7TyxLI+h0hjxlBcQdQ0nKQj7uXtJLbGQt3R9bX4tn5z3Sf3RLiIiJ2YYsGABTJ0KP/95dlRRXiCPxVWL2du7l/bedq59eQuFK2bz024fh/tG+fmGw9wyv4oZ5VE6Rzr5x/f+kd9d+LtUx6pzez4i5xGfz4fjOAAkEons7a7r8sMf/pCbb755wuNXr15NXl7ehNu+8pWv8PDDD9Pe3s5999135ou+gKknkYiInBm2DY8/ftxVzBpHWvjl4jBDpTFGUxmeGAuICiMBPrmkLhsQLatexpcu/pICIhEROTnRKHzhC3DZZdmbLNNidslsphVOw5/MsGz1dv4gDPOq8snYLs9sbeW9Q324rstwapiHNz1M08CxH26IyAe76qqr+NWvfkU8HmdoaIinn34a8EYCbdiwASA7agjg5ptv5u/+7u9Ip9MA7Nmzh5GRkeM+91133cXzzz/PunXrjgmV5PRSSCQiIqef48CvfgW7dh1z18HBwzx5cZiBigJGkhke39BM93CSokiATy6pJRryBrleXX81t828Dcu0znLxIiIyqVkW3Hor3HUXjK2KZBgG9YX1zCubh4XJnLX7+Eo6wYqGEnDh9b1dvLq7E8d1Sdkp/nXLv3J44HCOT0Rkclm8eDGf/vSnWbRoEbfeeivLli0D4Fvf+hZ/93d/xyWXXEJ3d3f28V/5yleYN28eixcvZsGCBXzta18jk8kc97kDgQDXXnstn/rUp7As/W14Jhmu67q5LuJEli5dmu2CLiIik8hzz8G77x5zc+NgE89cHKF7SinDyQxPbGimbzRFSV6ATyyuJS/o/TF/7dRruXrq1We7ahEROd+0tcGjj8LAQPamgcQA2zq3kXbSNM+r5dd15fxmZwe24zK3Mp8b51dgGgZBK8gXFn2BmvyaHJ6AyMnbuXMnc+fOzXUZWQ888ADRaJRvfetbp/xcjuOwePFifv7znzNz5szTUN2F5XjfGyfKWzSSSERETq/du48bELUOt/Hc/CDdU0oZSqR5fCwgKo0G+Z0lRwKi66ddr4BIREROj6oq+NrXYKwBLkBBqIDFVYsJ+8LU7mjm4/tb+cSiavyWyc72QV7a0YHruiTtJD/d8lNah1pzeAIismPHDmbMmMH111+vgOgsUONqERE5fUZG4Kmnjrm5e7SbZ2ZCx/SKsR5ELfSPpiiLBvnE4lrCAW/Y8E3Tb2JF3YqzXbWIiJzPIhH4/Oe930+bNgEQ9odZXLWYbZ3bYF87N6cyGBdN5Rdb29nRNohpGFw/t5xEJsFPN/+ULyz6AlWxqtyeh8gk88ADD5yW55k3bx4HDhw4Lc8lH04jiURE5PRwXXj6aS8oOspAYoBfT0nSOruKtO3w5KZW+o8aQTQeEN0y4xYFRCIicmaYJnz843D55dmb/JafRZWLKAmXUNrUza3r9/E788rxWQbbWgd4ZVcnrusSz8T5yeaf0D7cnsMTEBE5OxQSiYjI6bF58zGNqkdSI7weaOPg/Gpsx+XXW9roGEyQH/Jz1yU1hPxeQHTbzNu4vPby4z2riIjI6WEYcPPNcN112ZtMw2R++XyKw8UUtffzsbV7+Z3Z5VimwdaWAVbv7poQFHWOdObwBEQ+3Dncclhy5KN+TygkEhGRU9ff7zWrPkoyk+S9gV1svXwaLvDyzg4ae0YI+y3uuqQm24Polhm3cGnNpWe/ZhERufAYBlx1Fdx+u3cdLyhaUL6AolARsZ4hbtu4nzvnV2CZBpub+3ltjxcUjaZH+cnmnzCYHMzxSYgcXygUoqenR0GRZLmuS09PD6FQ6KS/Rj2JRETk1Liut9x9Mpm9KeNk2NKxhS1XTCUVCfLWvm52tA3is0xWXVxNUV4AgJVTVmoEkYiInH3LlkEoBL/8JThONija2rkVuvq5ddsh7IXTeHpbG5sO92MaBlfOLGU4Ncxj2x7jS5d8CZ+pt1JybqmtraW5uZmurq5clyLnkFAoRG1t7Uk/Xj/ZRETk1Lz9NjQ2Zncd12Fb5zYO1EXpmlrGpsP9rGvsxTAMbl9YRVVBGIBFFYu4ftr1OSpaREQueAsXQjAI//7vkMlgmRYLyxd6QdHhHm4KB3AWVPPMtnbea+qjMOLnotpCWoZa+PWeX7Nq9iqMsdFIIucCv9/PtKNW8hP5bWi6mYiI/PY6O+HllyfctLdnLx1mnL2Xz2RvxxCr93j9G26YW8600jwAZhTP0B/XIiKSe7NmwT33gOX1yBsPigqCBVTvaeO6lm5unFsBwOo9XbT0xwHY2L6Rda3rcla2iMiZopBIRER+O7YNv/iFdzmmZ7SHtuE2dq2cw6GRNM9vbwcXVkwvZX51AQDVsWo+Nf9TWKaVq8pFRESOmDYNPvGJbI8iy7RYWLGQ/GA+Uzcf4vrBYS6ZUoQztgDDUCINwPP7nudQ/6FcVi4ictopJBIRkd/Oa69B+5HlgNN2mt09u2meV0tbWT7PbWvDdlwW1RaybGoRAMXhYu5ZeA8BK5CrqkVERI41fz7cckt212f6WFC+gKAVZOY7e7jL71JXFGE0leGZLW1kbAfHdfj37f/OQGIgh4WLiJxeColEROSj6+2FN9+ccNO+3n30RX0cWDyN1/Z0MZzMUFkQ4upZZRiGQZ4/j89d9DnyAnk5KlpEROQDXHYZrFyZ3Q1YARaUL8DCZMGaXfxueZhYyE/HYIJXdnXiui4j6REe2/4YaTudw8JFRE4fhUQiIvLRvfjihGlmXSNdtI92svOquezti7OzbRDLNLhpXiWmaeAzfdxz0T0Uh4tzWLSIiMiHuP56uPji7G4sGGN2yWxM22HZGzv5zLRCfJbBjrZBNjd7I4hah1r59d5fa9lxETkvKCQSEZGPprERdu7M7qbsFHt69tC0oI6uWISXd3qNqq+YXkrx2FL31069lupYdS6qFREROXmGAXfcATNnZm+qiFZQm1+LL5Xh6vX7uHlmKQCv7+miuW8UgE3tm1jbsjYnJYuInE4KiURE5OQ5DrzwQnbXdV329uxlOGTQdFE9r+7uZDSVoaYwzCVTCgGoy69jed3yHBUsIiLyEVkWfPKTUFOTvWl60XSKQkVE+0a4o7GDJVMKcVyvkfXgWCPr3+z/DT2jPbmqWkTktFBIJCIiJ2/zZmhry+52jXbRNdrFwcUN7OodZU/HED7L5MZ5FRiGgd/0c+ecOzEN/boREZFJJBCAe+6BYm+atGEYzCubR8gXonJfO3c7GaYUR4inbZ7d0objutiuzXP7ntO0MxGZ1PRXu4iInJxkEl5+Obs7Ps1sqDjKgboSXtnlTTO7ckYphRFvmtn1DddTEinJSbkiIiKnJBKBT30KfD4A/JafBeULMA2T2ev28cnqGNGgj/bBBNtavP5E+3r3sat7Vy6rFhE5JQqJRETk5KxZA8PDgDfNbHf3bjJOhr3LpvPKri7iaZu6oggX1RYAMLVwKpfVXJbLikVERE5NZSXcfnt2NxqIMqd0DqbtsHTNTq6fWgTAW/t7iKe8BR2e3/e8VjsTkUlLIZGIiHy4/n54++3sbsdIBz3xHrrqy1hrWOzrGibgOzLNLGAF+Pjsj2MYRu5qFhEROR0uucTbxpTnlVOeV054OMHH9jQzpShMIm3z5v5uAAaSA7zR9EauqhUROSUKiURE5MO9+CJkMgAkM0n29e7DMQ22LpzCq7u7ALhqZhn5YT8AN02/iaJwUc7KFREROa1uuw0qKrK704umYxkWZYd7+JKbxjQNtrUO0D6QAODNpjfVxFpEJiWFRCIi8sGammD7dmBsmlmPN83s8Lxanm4eJJm2qS/JY351PgANRQ0sqVqSy4pFREROL7/f608UDAIQ9AWZWjgVgIu3H+aWiAUuvLq7U02sRWRSU0gkIiIn5rrw/PPZ3fbhdnrjvaRCfp4vK+Rg9wgBn8kNc8sxDIOgFdQ0MxEROT+VlMCdd2Z3a/JryPPnYbgunzvYRqkBHYMJtrcMAmpiLSKTk0IiERE5sS1boLUVgEQmwb7efQBsWzCFlw/2AXDNrHJiIW+a2S0zbqEgVJCbWkVERM60uXNh+XIATMNkZslMACLJNL8fHwHgzf3damItIpOWQiIRETk+x4HXXwe8aWa7undhuzZDRXn8OAGpjENDaZS5VTEAZhbP5OLKi3NYsIiIyFlwww1QVwdAYaiQ8rxyAC7p6me5k1ETaxGZ1BQSiYjI8e3cCT1e083WoVb6E/0APFtXwaH+OCG/xfVj08xCvhCrZq/SNDMRETn/WRZ88pMQCgFHmlgbhsFXu3sJuo6aWIvIpKWQSEREjuW6sGYNAPF0nP19+wFoKc3n8YEUANfOLicv6APgtpm3EQvGclOriIjI2ZafDzfeCExsYl2cyvCl4RE1sRaRSUshkYiIHGv/fmhry04zc1wH13X5SSBE2naYWR5lVkUUgDmlc1hYvjDHBYuIiJxlixfD1KmA18Q64o8AcEP/IDMTyWOaWO/p2ZOrSkVETppCIhEROdbYKKKWoRYGkgMA7LD8vGtYhP0W187xpplF/BE+NutjmmYmIiIXHsOAVavA58M0TGaVzALAZxj8h75+TMfhzf3dJNJeE+sX9r9AxsnksmIRkQ+lkEhERCY6fBgaGxlNj3Kg7wAAibTNT8NhMAyun1tOJOBNM7t95u1EA9FcVisiIpI7xcVw7bXAxCbW0zIZVvUPkUjbvL3f60fUG+/lneZ3claqiMjJUEgkIiITrVmD67rs6dmTnWa2bjTDrsIosytjzCj3eg/NL5vP/PL5OS5WREQkx5Yvh6oqYGIT67sHhygdTbClpZ/u4SQArx96ncHkYC6rFRH5QAqJRETkiM5O2L2bzpHO7GpmHYNJXigtJC/o59rZ3iekef48bp91ew4LFREROUeYJnz842CaBH1B6gvrAYj6TL7a1YfruKze3YXruqTsFC8deCnHBYuInJhCIhEROeLNN8k4mexqZqmMw/bRNDvKCrh2ThkhvwXAHbPvyDboFBERueBVVsKKFQDU5tcS9oUBWILN8s5+mvtG2dc5DMCWji00DTTlrFQRkQ+ikEhERDz9/bB1Kwf7DpKyvWXuD/WO8FZ1CVPKYkwv83oPLSxfyJzSOTksVERE5Bx09dVQUoJpmEwvng6AzzL53MAAsWSa1/d2k7YdAJ7b+xyO6+SyWhGR4zotIdHzzz/P7NmzmTFjBg8++OAx9z/88MOUlZVx8cUXc/HFF/P//t//Ox2HFRGR0+mttxiKD9Ay1ALAQDxNU9JhW3UJ1872VjML+ULcPOPmHBcqIiJyDvL7vdXOgJJwCcXhYgCqw37ubO1mKJFmfWMfAG3DbWxs25izUkVETuSUQyLbtvmDP/gDnnvuOXbs2MEjjzzCjh07jnncpz/9aTZt2sSmTZv4yle+cqqHFRGR02lkBGfDBvb07AHAcV0Odo+woaaEJTNKKYj4Abh+2vVazUxERORE6uth6VIMw2BG8QwMDAzD4EY7xbTeIdYf6mUgngbg5YMvE0/Hc1ywiMhEpxwSrV27lhkzZtDQ0EAgEOAzn/kMTz755OmoTUREzpZ33qGtr4mh1BAArf1xBh2XA9MrWVxfBEBNrIYl1UtyWaWIiMi574YbIC+PiD9CbX4tAPkhP5/r7IWMzRt7uwAYTY+yunF1DgsVETnWKYdELS0t1NXVZfdra2tpaWk55nFPPPEEF110EXfffTeHDx8+1cOKiMjpkkySfGcNB/sPApBI27T0x3mvqpgrFlbjM00MDD4262OYhlrZiYiIfKBQCG72pmbXF9YTsAIALAiZrGzpYV/nME29owCsa11H50hnzkoVEXm/s/LX/h133EFjYyNbtmzhxhtv5N577z3hYx966CGWLl3K0qVL6erqOhvliYhc2Nav50DrDjJOBtd1aeweIW0YDC6eSl2xt4LZpTWXUhWrynGhIiIik8TChTB1Kj7TR0NRAwBBn8XvDA1TNJrktd2d2I6L4zo8v+95XNfNccEiIp5TDolqamomjAxqbm6mpqZmwmNKSkoIBoMAfOUrX2HDhg0nfL7777+f9evXs379esrKyk61PBER+SC2Tc+rz9Ix0gFA32iK/niandXFLFno/SyPBqJcO+3aXFYpIiIyuRgG3H47mCYVeRXEAjEAaqMBPt7UQc9wkq3N/QAc6DvA/r79OSxWROSIUw6Jli1bxt69ezl48CCpVIpHH32UVWNd/ce1tbVlrz/11FPMnTv3VA8rIiKngb1tK/sPeaur2I5LY/coLmBeOYe8oA+Am6ffTMgXymGVIiIik1BZGaxYgWEYzCyZCYBpGlxlOMzpHuSdg70kMzYAL+5/Ecd1clmtiAhwGkIin8/Hj370I26++Wbmzp3Lpz71KebPn893v/tdnnrqKQB+8IMfMH/+fBYtWsQPfvADHn744VM9rIiInCrXpfmFnzOa9voiNPeNkrIdOupKmDanAoCGogYWlC/IZZUiIiKT19VXQ2Eh+cF8KqOVABRF/HyitQsnnmJ9Yx8AHSMdbOnYkstKRUQAMNxzeALs0qVLWb9+fa7LEBE5L7mNjaz73u8zmh4lkbbZdLgfgMF7ryQwvRzLsPj9Zb9PSaQkt4WKiIhMZrt3wyOPkMwkebflXRzXYSiR5mHDz+qZNXxxxVRiIT/5wXy+funX8Vv+XFcsIheAE+UtWqZGROQC1fnSk9lRRB2DCQDcmiICDV4/uJVTViogEhEROVWzZ8Ps2QR9QeryvVWhYyE/N/UPUzI4ytv7ewAYTA7ybsu7uaxUREQhkYjIBamnh8733gC8XkSdQ0kA0stngmEQDURZOWVlLisUERE5f9x6K/j91BXU4Te9kUL1xWFu2d/GjrYBusZ+D79x6I3sBzgiIrmgkEhE5AI09NqL9Ix2A9A9nMR2XNyCCO6CWgCWVi/VcHcREZHTpbAQrr4an+ljauFUAEJ+i8WuzfyOftbs834nJ+0krzW+lrs6ReSCp5BIRORCE4/TvuZ5AFzXpX3Am2oWX9aAaxpYhsXS6qW5rFBEROT8s3w5lJVRFasi7AsDUFMU5oZDnbR1DNLU440gWte6jt54by4rFZELmEIiEZELTPrdt2nvOwzAYCJDPG3jBn1YlzYAML98PtFANJclioiInH8sC269FdMwaSjyfuf6LZNZYR8rmjp5Y18XruviuA4vH3g5x8WKyIVKIZGIyIXEtml75Sls1wagfSAOwPDCOtyQN73ssprLclaeiIjIea2hAebOpTRSSn4wH4DKghBXdPSR6RhkV/sQANu7ttM82JzLSkXkAqWQSETkAuJu3Up72x4AEmmbvtE0GAbWylkA1ObXUpNfk8sSRUREzm8334zh9zO9aDoAlmlQXxjihgNtvLW/h4ztAPDi/hdxXTeXlYrIBUghkYjIhcJ16Xr5qeyqKe1jy94PzajALPaml2kUkYiIyBlWWAhXXEFBqIDSSCkAZdEgC4dHKW/pYXNzPwCHBg6xp2dP7uoUkQuSQiIRkQtFYyPt+zYB3rL348vtulfMBCAWiDGvbF6uqhMREblwrFwJBQU0FDVgYGAYBlOKI9xwoI0N+7tJpL1p4S8eeBHHdXJcrIhcSBQSiYhcIIZW/ya7WkrXkLfs/XBlIYGGcgCW1SzDMq1cligiInJh8Pvh5puJ+CNUxaoAKAj7mYrLRYe6WHvQ+33dPdrNe23v5bJSEbnAKCQSEbkQdHfT/t7rwNiy92NTzZKXjfVDMCyWVC3JWXkiIiIXnLlzYdo0phZOxTKs7GiiFU2d7N/fxUA8DcDqxtWk7FSOixWRC4VCIhGRC0D6nbdoH24HYCCeJpG2iUdDRBZNAWBhxULyAnm5LFFEROTCYhhwyy0E/CHqCuoAyAv6qA77uWp/G2/t7wZgODXMW4ffymWlInIBUUgkInK+S6VoX/P8UcvejzWsXjINw+f9GlDDahERkRyoqIBly6jLryNgBQCoKwqzoKufkd3tdIyN/H3r8FsMJYdyWamIXCAUEomInOfcLVto7T4IQDxt0x9PY1sm4bGpZlMKpmT7IYiIiMhZds01WNEY0wqnARD0W1Tmh7juQBtv7OnEdV1SdorXDr2W40JF5EKgkEhE5HzmurS+8iTxTByAjrFRRINzqvFHg4BGEYmIiORUOAzXX09ltJKIPwJATWGYupEE+XvaaewZBeC9tvfoGunKZaUicgFQSCQich7LNDVyeM86AFIZh86xZe/N5TMAyA/mM6d0Ts7qExEREeCSSzCqqphe5I3y9VkmtYVhrm5s5+1dHTiOi+M6vHTgpRwXKiLnO4VEIiLnsf0vPEoi440eau4bxXFd0tVFBKeUALCsWsvei4iI5Jxpws03UxwupjBUCEBFQYjyjM20vW3saBsEYHfPbg71H8phoSJyvlNIJCJynkoM9tK59lUA4ik7O4rIf8VMAMK+MMtqluWsPhERETnKtGkYs2dnRxOZhkFdcYQVTZ1s3NVB2nYA+M3+3+C6bi4rFZHzmEIiEZHz1Nbnf4KdSQHQ1Ov1MygoySM1rwaAq+qvIuQL5aw+EREReZ8bbyQWyqc8rxyAkrwAxZbJJXtb2djUB0DLUAs7unbkskoROY8pJBIROQ8NjPbRu+ZFAIYSafpGU5iGgXVpA45lUhgq1CgiERGRc01ZGSxZwrTCaRgYGIbBlJIIi9t62b+zndFUBoCXDryE7dg5LlZEzkcKiUREzkNrX3+E4OAIrutyaGxVlMrCEL0L6gC4ftr1+ExfLksUERGR47nmGsJ5BdTkeyN/C8J+isM+Vuxr5d0DvQD0JfrY0LYhl1WKyHlKIZGIyHmmY7iDwTUvA9A3mmI4mcFnGgTn1ZCIhamKVrGgfEGOqxQREZHjikZh5UrqC+qzH+hMKY4wu3uQvu2t9I96U8lfP/Q6aTudy0pF5DykkEhE5Dzz+qYnKW7pwXFdmnrjANQWReicVwvAjdNvxDCMXJYoIiIiH2T5cvyFxUwpmAJAJOCjLBrkmgOtvLO/B4Dh1DDrWtflskoROQ8pJBIROY8c7DtI/N01GC50DiVJpG1Cfov86gJ6a4qZUTyDhqKGXJcpIiIiH8Tvh+uvpza/lqAVBKCmKEzNcBxj22F6hr0VS9c0rSGZSeayUhE5zygkEhE5T7iuy0t7nqdqTxu249LS5/UiqisK0z6nBkyTGxpuyHGVIiIiclIuugizqpr6wnoAQn6L8liQaw62s25vNwCj6VHebXk3l1WKyHlGIZGIyHlie9d2Mtu24E+mae2Pk7ZdokEfRfkh2mZUclHFRVRGK3NdpoiIiJwM04SbbqIyWknIFwKgpjBCYTJN/uZGOocSALx1+C0SmUQuKxWR84hCIhGR84DjOrxy8BWqd7WQyji0DXh/LE4pjtBVX4abF+G6adfluEoRERH5SBoaMGfNZmrhVAACPpOK/BDLm7p4b1cHAIlMgrcPv53DIkXkfKKQSETkPLCnZw/J1sMUdA3S0h/HcV2KIn7yw35a59RwWc1lFIQKcl2miIiIfFQ33kh5tJKIPwJATWGYPNuhfPMh2ga8BSrebn6b0fRoLqsUkfOEQiIRkfPA2pa1VO5tI2M7dA15DSzriiMMF+WRqq5g5ZSVOa5QREREfivl5ZiXXJIdTeS3TCoLQixr7mHTjnYAUnaKN5vezGGRInK+UEgkIjLJdY92c7B7H5X7O+gaTuK4LvlhP5GAj7ZZ1VxRv5KwP5zrMkVEROS3dc01lMUqyfPnAVBdECKEy5TNh2geW6hibctahpJDuaxSRM4DColERCa5dS3rKGnuwZdI0THWi6gyP4RjmfTOqGFJ1ZIcVygiIiKnpKAA47LLmFY0DQCfZVJVEOKStl62b23FdV3STpo1TWtyXKiITHYKiUREJrFkJsmm9k1U7W1nIJ4mkXEIWCZFET/dU0qZO2WxRhGJiIicD1aupKSwmlggBkBlQYiAATO3HKKp1xtNtL51PQOJgVxWKSKTnEIiEZFJbEvHFhgcpLilh/ZBbxRRRX4IwzBom1HJpTWX5rhCEREROS3y8jCuuOLIaCLTpKowzLzOfvZsOozrutiuzeuHXs9xoSIymSkkEhGZpFzXZW3LWir2t5NM2fSPpjEMKM8PksgLEptzEZXRylyXKSIiIqfL8uUUldRSEPRWLK3MD+G3DOZtbeJg9wgAG9s30hvvzWWVIjKJKSQSEZmkGvsb6RrppGpvOx1jo4hK8oL4LZP2GZVcWnd5jisUERGR0yoQwLj66uxoIss0qC4MM713iMb1h3BdF8d1eK3xtRwXKiKTlUIiEZFJam3LWgo6BggMjNI5tux9ZX4IgKG505lbOjeX5YmIiMiZsGQJhZVTKQoVAVARCxGwTBZtb2Jvh7e62ZaOLXSNdOWyShGZpBQSiYhMQgOJAXZ176JqXzs9w0lsxyUv6CMa8tFXVcTCOVdhmVauyxQREZHTzeeDa6/NjiYyTYOaojA1g6N0vHsQx3VxcVnduDq3dYrIpKSQSERkEtrQtgEzlabsYGe2YfX4KKKOWdVa9l5EROR8tnAh+XUzKAmXAFAWCxL0mVy8s5k9rYMAbO/aTvtwey6rFJFJSCGRiMgkk3EybGjdQHljF6MjSUZTNj7ToCQvQCbgo2zxlcSCsVyXKSIiImeKacINNzC1cKq3a3ijicpGE/S9sx/bcQE0mkhEPjKFRCIik8yOrh2MpEeo3NtG+4A3iqg8P4RpGnRMK2dp/fIcVygiIiJn3MyZxGbOpyxSBkBZNEjIb7Fwbys7WwcA2NW9i5bBllxWKSKTjEIiEZFJZm3LWiIDo4Tb+ukdTQFQEQsCkFm0kCkFU3JZnoiIiJwNhgHXX58dTWQYBrVFYUpHk/S9e4CM4wDwauOrOSxSRCab0xISPf/888yePZsZM2bw4IMPHnN/Mpnk05/+NDNmzOCyyy6jsbHxdBxWROSC0zrUSvNgM5V72+gcSuC6UBQJEPRbDBflsWDRjRiGkesyRURE5Gyorydv1nwq8ioAKMkLEPZbLNrXxrZmbzTRvt59HOo/lMsqRWQSOeWQyLZt/uAP/oDnnnuOHTt28Mgjj7Bjx44Jj/mnf/onioqK2LdvH//xP/5H/uRP/uRUDysickFa27IWw3Yo39dOx+DYsvcFXsPq3jn1LKy8KJfliYiIyNl21VXUF9ZjYGAYBnXFEcpHEvSuayRte6OJXjn4Cq7r5rhQEZkMTjkkWrt2LTNmzKChoYFAIMBnPvMZnnzyyQmPefLJJ7n33nsBuPvuu3n55Zf1Q0pE5CNKZpJs79xOcUsvI93DpG2HkN8iP+TDMQ2ql99MwArkukwRERE5m6ZNI9Iwm8poJQBFET95AR+X7G9jy+E+AA4NHOJg/8FcVikik8Qph0QtLS3U1dVl92tra2lpaTnhY3w+HwUFBfT09JzqoUVELii7uneRdtJU7Wuna8gbRVSRH8QwDHrqSlk888ocVygiIiJnnWEcM5qotjhM1XCc7veaSGU0mkhETt4517j6oYceYunSpSxdupSurq5clyMics7Y0rEFfyJNrLGL/ngaAyiNeg2r/UsupThcnNsCRUREJDdmzCA0pYGqWBUAhWE/0aCPpQfa2XioF4DmwWb29u7NZZUiMgmcckhUU1PD4cOHs/vNzc3U1NSc8DGZTIaBgQFKSkqO+3z3338/69evZ/369ZSVlZ1qeSIi54Wh5BAH+g5QeqiL3iFv2fuCiB+/ZZKMBGhYdmOOKxQREZGcGR9NVFCPaZjZ3kQ1g6N0bzlMIm0D8OrBVzWaSEQ+0CmHRMuWLWPv3r0cPHiQVCrFo48+yqpVqyY8ZtWqVfz4xz8G4PHHH+e6667T6jsiIh/Bts5tuLiUN3bRPewtez8+iqh3eg1zyuflsjwRERHJtdmzCdZMoTpWDUBB2E9+yM+yAx281+T1JmobbmNn985cViki57hTDol8Ph8/+tGPuPnmm5k7dy6f+tSnmD9/Pt/97nd56qmnAPjyl79MT08PM2bM4H/9r//Fgw8+eMqFi4hcSDZ3bCYQTxFs6mYkmcEyDYojXpPqwiVXqGG1iIjIhW5sNNGUgilYhgVAXXGYKQMjdG1pZjSVAbzRRI7r5LJSETmH+U7Hk9x2223cdtttE277sz/7s+z1UCjEz3/+89NxKBGRC07nSCftw+3UNHbRM9awujgSwDQN4tEQsxZek9sCRURE5Nwwbx6ByhpqBmtoGmgiFvJTGPZzaWMHGw7VcOXMMrpGu9jWuY2LKi7KdbUicg465xpXi4jIRFs6tgBQdrCD7mEvJCqNeVPNhmbVM624IWe1iYiIyDnEMODKK6nLr8NneuMBaosjTOsbpnN7KyNJbzTR6sbVGk0kIselkEhE5Bzmui5bO7YSHE5gNfWQzDgELJP8kPeHX9ml12Ia+lEuIiIiYxYswF9WQW1+LQDRoI/iSIDLGjtYe9Bb6aw33svm9s25rFJEzlF6ZyEicg47NHCIgeQA5Y1ddI1NNSuJBjAMg5GCCHPmXZXjCkVEROScYppw5ZXU5tceNZoozIzeITp3tzMYTwPeaKKMk8llpSJyDlJIJCJyDhufalZyoIOeEW9Vs7KxqWapubOojFXlrDYRERE5R110Eb7iUqYUTAEgEvBRkhfg8kNHRhMNJAfY2LYxl1WKyDlIIZGIyDkq42TY0bWD8GAc53AvtuMSCVhEAt6ngpWXXY9hGDmuUkRERM45lgUrV1ITq8mugFpbFGF29yCdezvoH/U+eHr90Ouk7XQuKxWRc4xCIhGRc9Senj0kMgnKD3YeaVgd9UYRDRdHmTv3ylyWJyIiIueyiy/GKizKjiYKByzKokEub+rk3QPeaKKh1BDrW9fnskoROccoJBIROUeNTzUr2tdO39gnfiVR79NAY8FCCkOFuSpNREREznU+H1xxBdWxaoKW9yFTTVGYed2DdBzsomfsA6g1TWtI2alcVioi5xCFRCIi56DR9Ch7e/aS1zdCqqUP14X8sJ+gzwKgZvnNOa5QREREznmLF2PG8qkvrAcg5LeoiAVYcaiTd8ZGE42kR3i3+d1cViki5xCFRCIi56AdXTuwXZvyg510ZaeaeaOIhsoKmT3jslyWJyIiIpOB3w8rVlAZrSTkCwFQUxhhfvcAXYe66RxKAPDm4TdJZBK5rFREzhEKiUREzkFbOraA65K/p42hRAbDgOI8LyQKX7KUsD+c4wpFRERkUli6FDMvytTCqQAEfCZVsSDLD3fxzv4eABKZBG8ffjuHRYrIuUIhkYjIOaYv3kfTQBPR3mFG2wYAKI4E8JkmrgFTVtya4wpFRERk0ggEYPlyKvIqiPgjANQUhlnUOUBPcx9tA3EA3jr8FoPJwVxWKiLnAIVEIiLnmPGG1WUHOo6sahbzGk6OVpXRMGVRzmoTERGRSejSSzEikexoIr9lUp0f5LLDXazZ243ruqSdNC8feDm3dYpIzikkEhE5hziuw3tt74HrkrerjXjaxmcaFIT9AOQvWYHP9OW4ShEREZlUgkG47DLKImXk+fMAqC4IsbSrn8GOQfZ1DgOwuWMzLYMtuaxURHJMIZGIyDlkT88eBpID5HcNMtjuTTUrjQYxDQPXMJi64rYcVygiIiKT0mWXYYRCNBQ1AOCzTOoLw1za3MUbe7vJ2A4Az+97Htd1c1mpiOSQQiIRkXPI2pa1ABTubad7OAVARb63Gkmqvpbaylk5q01EREQmsXAYLr2UkkgJxeFiAMpjQa7oHsQeHGXj4X4ADg8eZlvnthwWKiK5pJBIROQc0TXSxYG+A5gZG3NzE47rUhD2Ew5YAFRefgOGYeS4ShEREZm0li+HQIDpRdMxMDAMg4aiEMuau1l7sJeRZAaAlw68RNpO57hYEckFhUQiIueIda3rAK9hdV+31xtgfBQRPh+zrliVq9JERETkfBCJwNKl5AXyqI5VA1AYCXDDwDC+RIq39ncDMJAc4K3Db+WyUhHJEYVEIiLngGQmyeb2zeC6hDc0ksw4BHwmRRGvYXXeJZcRjhXluEoRERGZ9FasAJ+PqYVTs4thTC8McWlrD9vbBukcTACwpmkNg8nBXFYqIjmgkEhE5BywpWMLSTtJfvcQiUPep3gV+aHs9LL6mz6Zy/JERETkfBGNwtKl+C0/UwunAhD2W3xseIRg2ua1PV24rkvaSfPygZdzW6uInHUKiUREcsx13SMNqzcdon80jWF4zSQBfHX1lM+8OIcVioiIyHllxQqwLKpj1UT8EQCmRQNc0dFHS3+cfZ3etPfNHZtpGWzJZaUicpYpJBIRybHG/ka6Rrvwx1MY25oBKMkL4re8H9GV16kXkYiIiJxG+fmweDGmYTK9aDoAPsvkrvgogYzNG3u7ydgOAM/vex7XdXNZrYicRQqJRERybHwUUdnuVroH4gBUFngNq828KNOu+FjOahMREZHz1BVXgGlSEimhOFwMQG3Q4pq+IQYTaTYe7gfg8OBhtnZuzWGhInI2KSQSEcmhgcQAu7p3YTgugfUHsR2XvKCPaNBrJFmw/FqsQDDHVYqIiMh5p7AQLr4YgOlF0zEwMAyDu0dH8Ns2aw/2MpLMAPDCvheIp+O5q1VEzhqFRCIiObS+dT0uLsWHuxlsHwCgcnzZe8Og4cZP5bA6EREROa+tXAmmSV4gj+pYNQDllsHt8Thp2+G1PV0AjKRH+M3+3+SyUhE5SxQSiYjkSMbJsKFtAwB5Gw8xmrLxmQYleQEAwvMWEauoy2WJIiIicj4rLoaFCwGYWjgVn+mNZL5reIQQsKdjiIPdIwBsbN/Iwb6DuapURM4ShUQiIjmyvXM7o+lRwgOj2LvbACjPD2Ga3rL3dTd8IpfliYiIyIXgyivBMPBbfqYVTgOgIGPzu5YNwCu7OkllvCbWz+x5hrSdzlmpInLmKSQSEcmR8YbVJdsO0zuSAqAif2zZ+9JyqhatzFltIiIicoEoLYX58wGojlWTH8wH4KbOPqoifoYSad4+0ANAT7yHN5reyFmpInLmKSQSEcmBlsEWWoZasNI25sZDuEBRJEDQZwFQdvVtGKZ+RIuIiMhZcOWVABiGweyS2RgYhOIpvhDymllvOtxH+0ACgDVNa+gY7shltSJyBukdiIhIDrzd/DYApfvb6evx5vqPL3tvBII0XKupZiIiInKWVFTA3LkA5AXymFIwBYBLDrSztDYf14WXdnZgOy6O6/D0nqdxXCeXFYvIGaKQSETkLOuN97K9czu4Lv61B0jbDmG/RX7IaxYZW7IcfzQ/x1WKiIjIBeWqq7JX6wvrifgjhIYTfByb/JCf7uEkG5v6AGgebGZ96/pcVSoiZ5BCIhGRs+ytw2/h4pLfMcDIIW+Of1VBCMPwGlZP07L3IiIicrZVVcGsWQCYhsmsEu/6jC2HuHFmCQDvHOyhf9Tro/jSgZcYSAzkplYROWMUEomInEXDqWE2tW8CwL/uAPG0TcAyKY15DavzGuZQ1DAvhxWKiIjIBeuo0USFoUKqolWERpJc2drDnMoYGdvllV2duK5Lyk7x7N5ncV03hwWLyOmmkEhE5Cx6t/ldMk6GQDyFu60F8HoRmWOjiKbc8Du5LE9EREQuZLW12dFEAA1FDQSsAFO2Heam6hghv0VT7yi72ocA2N2zm909u3NVrYicAQqJRETOkmQmybrWdQAENhxkNJ7CMg0q8r2G1dGiCiouvTaXJYqIiMiF7uabwfJWW/VbfmYUz8C0HRZuPsRVM8sAeG1PF/GUDcDz+54nbadzVq6InF4KiUREzpINbRtIZBIYjoux/iAAlfkhLNMbRVR91cfA58tliSIiInKhKymByy/P7pZFyigJl1B2qIvlZKgrjpBI27y1vxuA/kQ/bx5+M1fVishpppBIROQsyDgZ3j7sLXvv29VKuncEwziy7H00GKPq2jtyWaKIiIiI56qrIBoFwDAMZpbMxDIsZq3dz3UzSzENg62tA3QMJgBY07SGvnhfLisWkdNEIZGIyFmwtWMrQylv/r7z9j4AymNB/Jb3Y7hi8VUYhYW5Kk9ERETkiGAQbrwxuxvyhZhaOJW8/hEWHO7mkimF4MKrY02sM06G5/c9n7t6ReS0UUgkInKGua6bHYbttPcTOOQNz64qCAPeH141N9yVs/pEREREjnHRRV4j6zE1+TVE/BGmbWpkZWWMvICP9sEEO9oGAa+J9d6evbmqVkROE4VEIiJn2K7uXXSPesFQ6s19uEBJXoCQ32sKWTV1IWbD9BxWKCIiIvI+hgG33prdNQ2TmcUz8aUyzN7WxJWzSgFYs7ebRNprYv3cvufIOJmclCsip4dCIhGRM8h1XdY0rQEgPZIkuqMZgOpCbxSR3/RTc92d3h9iIiIiIueSmhq45JLsblG4iLJIGVV7Wlnig5rCMPG0zTsHegDojfdmezCKyOR0SiFRb28vN954IzNnzuTGG2+kr+/4zcosy+Liiy/m4osvZtWqVadySBGRSeXQwCFahloAGH5nP760TUHYT17QW8WspnQavsVLclmiiIiIyIldf73Xo2jM9OLpWJjMWrufa2aVYRiwubmfrqEkAK8fep2BxECuqhWRU3RKIdGDDz7I9ddfz969e7n++ut58MEHj/u4cDjMpk2b2LRpE0899dSpHFJEZFLJjiLK2ETeawSOjCKyDIuqFTdDKJSr8kREREQ+WDQK11yT3Q35QtQX1FPQOcCCrgEW1RbiurB6t9fEOu2k+c3+3+SuXhE5JacUEj355JPce++9ANx777386le/Oh01iYicFzqGO9jX661k1rWlhYKhOHlBH/khbxRRdaya4PKVuSxRRERE5MNdeimUlmZ36wrqCPvCTF+/n5W1BYT9Fi39cXZ3eCu5bu/azoG+A7mqVkROwSmFRB0dHVRVVQFQWVlJR0fHcR+XSCRYunQpl19+uYIkEblgvN3szcl3HBdr7X4AqgtCGIaBgUH1guVQUZHLEkVEREQ+nGUd08R6RvEMAvEUc7YfZuUML0B6Y083qYwDwHN7n8N27JyUKyK/Pd+HPeCGG26gvb39mNu/973vTdg3DAPjBI1XDx06RE1NDQcOHOC6665j4cKFTJ9+/JV8HnroIR566CEAurq6PvQERETORcOpYbZ2bAWgpamX6W19hHwmxXkBACqiFYRXXJXLEkVERERO3vTpMHcu7NwJQEmkhJJwCe7OZi6dXsGW/BAdgwnePdjDlTPL6BrtYm3LWpbXLc9x4SLyUXxoSPTSSy+d8L6Kigra2tqoqqqira2N8vLy4z6upqYGgIaGBq655ho2btx4wpDo/vvv5/777wdg6dKlH3oCIiLnonUt67Bd79Oz9Dv7MF2XyoJINkyvrZ7j/aElIiIiMlnccgvs2wfpNAAzimfQ19rHrHf3cd0Vc3hk/WE2NvUzv7qA4rwAqxtXs6B8AbFgLMeFi8jJOqXpZqtWreLHP/4xAD/+8Y/5+Mc/fsxj+vr6SCa9Tvfd3d28+eabzJs371QOKyJyTkvbada1rgOgvXeEKfvasUyDspi3MkhxuJjo8qu9odsiIiIik0VBAVx9dXY37A9Tl19HQecAi7oGWFBdgOO62SbWSTvJSwdOPOhARM49pxQSffvb3+bFF19k5syZvPTSS3z7298GYP369XzlK18BYOfOnSxdupRFixZx7bXX8u1vf1shkYic17Z0bGE0PQrA4NqDRFMZKmIhLHNsFFFhPSzRsvciIiIyCS1fPqGJ9ZSCKQStIA3r93N1bQFBv0VT7yj7u4YB2NyxmaaBplxVKyIfkeG6rpvrIk5k6dKlrF+/PtdliIicNNd1+dt1f0vXaBdDw0n8P/wNRfEUF08pJOizyPPnsfSGL2B8+tO5LlVERETkt3PgAPzkJ9ndrpEutndtp2V2NY/XlfPqrk5iIT9fWF6P3zKpjFZy/5L7MY1TGqMgIqfRifIW/VcqInIa7e/bT9eo13R/5K19FMZTFEcDBH3e1LLa/FqM5WrgKCIiIpNYQwMsWJDdLY2UUhQqonpPKyuCJmXRIEOJNOsaewFoH25nQ+uGXFUrIh+BQiIRkdPo7cPesveZZIbyDQcAqCoIAxCwApQvWgFTpuSsPhEREZHT4qabIOCt2moYBjNLZmK6BrPf3ct1s8oA2HCoj/7RFAAvH3yZkdRIzsoVkZOjkEhE5DTpHOlkf99+AFJv7iESTxEL+YgGvYUkq2PVWDfcmMsSRURERE6P/Hy49trsbsQfoTa/lvzuIZZ09TO3Kh/bcXltjzfCOpFJ8PLBl3NVrYicJIVEIiKnyfgoIiOVoWCtFxaNjyIyDZPKZddCdXXO6hMRERE5rS69FMrLs7v1hfUErADT3jvAtbX5BHwmB7tHODDWxHpj20ZaBltyVa2InASFRCIip8FwapitnVsBMN/aizWaIugzKYr4ASiPVhK68dZcligiIiJyelkW3H57dtdn+pheNB1/MsOC7Ye5vKEEgNf2dJGxHVxcnt37LOfw2kkiFzyFRCIip8H61vVknAy+ZJq87CiiEIbhLXtftfzGCZ+0iYiIiJwX6uth0aLsbnleOQXBAqr2trEyZFGSF2Agnua9pj4AWoZa2Ni+MVfVisiHUEgkInKKMk6GdS3rAMh7dz+p4SSWaVAWCwFQFCmh4JaP57JEERERkTPnxhshGAQmNrGes24f14w1sV7b2MtgPA3Ai/tfZCg5lLNyReTEFBKJiJyiLR1bGEmP4I+nCK7zVjQrjwWxTG8UUfnKm6G4OJclioiIiJw50eiEJtbRQJTqWDX5XYMs6xtiVkWMjO2yek8XrusSz8R5avdTmnYmcg5SSCQicgoyToa3Dr8FQNmGAwwOxAGoLPBGEYVDMSpv/3TO6hMRERE5K5Ytg7Ky7O60omn4TT8NGw5wbX0hAZ/Jga5hdrZ5I4j29u5lQ9uGXFUrIiegkEhE5BS8cvAVuke7CY4k8a07CEBJXoCgz/KuX3UzRkFBLksUEREROfMsC267LbvrM31ML55OIJ5iwa4Wrh6bdrZ6TyeDCW/a2Qv7XqBntCcn5YrI8SkkEhH5LR3oO5AdRZT/9l66+kaBo5a9D4ap/9jnclafiIiIyFk1bRrMm5fdrciroChURO3OFpaGLaaXRUllHH6zvR3XdUk7aX6565c4rpPDokXkaAqJRER+C6PpUX6161cAxBq7SL29DxeozA8RDfkAyL/qBvz5hTmrUUREROSsu/lm8PsBr4n1nNI5+A2LWWv3c/2cMiIBi+a+OBub+gFoHmxmTdOaHBYsIkdTSCQi8hG5rssze55hMDlIXu8w0V+sJ5m2iQQsphRHAPBHYsz7+FdyXKmIiIjIWVZQACtXZneDviCzSmZR1NbHlPZ+bphbAcCb+7vpGU4CsLpxNa1DrTkpV0QmUkgkIvIRbWrfxI6uHQTiKaqeXE9f/yiGATPKo5imgYHBjFVfJBBVLyIRERG5AF1xBRQVZXfL88opzytnxrr9zCgKs6C6ANtxeX5bO7bj4rgOv9j5C9J2OodFiwgoJBIR+Uh64708t+85zIzNzOc3036oF4ApxREiAW+aWflFK6i46a5clikiIiKSOz6fN+3sKDOLZ1IQd5my7TBXzSojP+ynazjJOwe8xtXdo928fPDlXFQrIkdRSCQicpJsx+aJHU+QyiSZ/cYuune1kXFcCsJ+KvO9Je8DlTXM/g/fAVM/XkVEROQCNns2TJ+e3fVbfuaUzmHK1iZK+oa5ZX4lhgHrD/XS2h8H4J3md9jfuz9XFYsIColERE7aa4deo2WohWkbG3E2NzEQT+MzDaaXRTEMAycSZt43/hwzHMl1qSIiIiK5ZRhw660TPjgrChdRF6li4SvbmOY3WVJfjOvCC9vbSWW8Fc4e3/E4vfHeXFUtcsFTSCQichI2tW/ijUNvULGvndJ1+2kaW+5+elmUgM/EsUwqv/xHFFZPy3GlIiIiIueI0lJYvnzCTQ1FDRRmfCx4ZRtXTCmkNBpkIJ7mlV0duK5LPBPnka2PkMgkclS0yIVNIZGIyAdI2Sl+ueMXvPTmT2lYt4+Zb+5iX+cwrgvlsSBFeQEAMnfcztzFN+W4WhEREZFzzDXXQFVVdtcyLeaWziW/Z5j5b+3m1vkV+C2TXe1DrD/UB0DXaBeP73gcx3VyVLTIhUshkYjICXQe2smvH/rPBP/h/7H06Q1UbD7EnpZB4mmbkN+iviQPgK5l87nqY3+AYRg5rlhERETkHOP3w2c/C9Fo9qZYMEZ9YT3ljV0s3t/OLfMrwYA393Wzr3MYgH29+/jN/t/kqmqRC5Yv1wWIiJwTRkehuxu6u3G7uji0+TWadr5D0dgnWAOjafZ1DZG2XXymwczyKJZp0Dmtgkt/91uEfKEcn4CIiIjIOSo/Hz7zGXj4YchkAKgvqGcwOQibGrm8MI/e6aW8ua+bF7a3UxCuoywW5J3mdyiLlLGkeklu6xe5gCgkEpELi+t6YVBTE7S0ZIMhRr0eQ8lMkn29++ga7Rp7uEtzX5yWsVU38kN+ZpR7fYgGyvIp/eyXmVqkPkQiIiIiH6i2Flatgl/8AgDDMJhXNo/32t5jzpqdjN5yMb1V+exsG+SpTS185tIp5AV9/HrvrykOFzNNf2+JnBUKiUTk/JZOQ2urFwodPuxt8fiEh9iOTfdoNx0jHRNW00hmbPZ1DjOU8D7xqi0KU1MYBtOkbXoFsVV3c+3MG8/q6YiIiIhMWhddBF1d8MYbAPhMHwvLF/Je23ssfHU78VsvoX80RdtAgqe3tHL34lp8Fvz79n/nq0u+SnG4OMcnIHL+U0gkIuen3l5Yswa2bMkOaz6a67r0J/rpGOmga6QL27Un3N83mmJ/5zAZx8Vvmcwoj+JOLWVvQwV906q4aeGdXFx5sfoQiYiIiHwU113nBUW7dgEQ9oeZXz6fze2bWfzKNhJXz+enW9tpH0jw0s5Obp5fQTwT52dbf8aXL/kyYX84xycgcn5TSCQi55eeHnj9ddi6FZwjK2Kk7TSDycHsNpQaIuNMDI/StkPPcIqu4SQjSe++dEUBsRUz2DGzkmQ0RHleOffN+yRleWVn9bREREREzguGAXfdBf/8z9DRAUBhqJBZJbPY3bObK17dRmLFHH66vYNd7YMU5wW4dFox3aPd/Gzrz/j8os8TsAI5PgmR85dCIhE5P3R1eeHQtm3gumScDD2jPfTGexlMDhLPxI/7ZY7r0jeSomM0zQHXoDscpLciwlA0TOWCambNr6ZrbLTQ4qrF3DrjVvyW/2yemYiIiMj5JRj0Vjx76KFsX8iqWBUj6RGa+5u54c2dDC2ezs/39fDW/m4KI35mVcQ4PHiYf9/+73x2wWexTCvHJyFyflJIJCLHl8lAX5/X1Dkeh1AI8vK8LRKBcNj7JCiXHAcaG2HDBtixg3QmRU+8h66RLnrjvbi4x3yJ67qMuNAYCbE7GGCDY9Ba6mcgFADTpL44wtyqfBaW5eG3TAACVoA7Zt3BwoqFZ/kERURERM5ThYXeimc//anXQxKYXjSd0fQoDPTyifX7GJg7hd+0DvH89nYCPpOpJXns693HL3b+gt+Z9zuYhpnbcxA5DykkEhGvf8+BA14g1NPjXfb3eyuBnYhpemFRLAY1NTBlircVFJz58KizEzZvxt2yhXhvB/2JfrpHu+mL9x0TDGVsh14H9uRH2BkIsMXnoyUYwDGP/FFRFgtyZWU+sytj5AUn/lisza/lrjl3URIpObPnJCIiInKhmTIFPvc5+Ld/g1RqwopnDI3ype2NJGbU8npPnGe2tPGJS2qoLgyzvWs7oT0hPjbrY+oPKXKaGa77Qe8Cc2vp0qWsX78+12WInL96e+HVV7NTtE6L/PwjgVFdHZSXg3WKw4EzGejvZ2T7JobWv8lo036GkkPH7SsEXm+h3pEUrSmH35QUsKGqmJTvSA3RoI+qghCVBSHqS/IojQYnfL3f9DO3bC6LKhbRUNSgPz5EREREzqTmZvjXf4VEAoB4Os7G9o2k7BSJSID/M7WatwdTBHwmn1xSR1nM+9tt5ZSV3NBwQy4rF5m0TpS3KCQSuRANDsJrr8HGjROaO58Rfj9UVXmjjca3wkJvtJHresOLR0a8bXQUhoe9UUz9/WR6e+hr3U9v92H6RntIZBInPEwq4wVDvSMp2h2Xd2pL2VhVTMbnBULjW2V+mGjo2EGUBgZTC6eyqHIRc0vnEvQFj3MUERERETkjWlu9qWdxr4/kSGqEje0byTgZkiE/f11bybqETSTg45NLaymKeM2rb2i4gZVTVuaycpFJSSGRiHghzJo1sHbtcZeFP2siES88Ghk5po5EJpFtON2X6MNxjw2xXNclnrYZTmQYTnrbaMpmOODjnboytlSXUF0aZWZ5lIayKOHA8UcymYZJVbSKOaVzuKjiIgpCBWfkdEVERETkJHR0wE9+4v2NCAwmB9nUvgnHdUj5TP53RSlvGz5iIT+fXlqX/eDv1hm3cmnNpRr9LfIRKCQSuZA5Drz5phcQJZMn/3WxGJSWelPIEomJI34+yvN8iEQmQedIJ50jnQynho9TvstgIs1APM1wMsNI0sYZ+9HlGAYHiqLsqCwiPbOKhup8ppXmEfIfGwwVBAuoza/NbpXRSq1UJiIiInIu6eqCH//YG10O9MZ72dqxFReXjAs/KipgdTSP4rwAn1xSl/0wcE7pHO6YdQd5gbxcVi8yaSgkErlQxePw+OOwf/8HPy4vD5Ys8XoIlZR4WyCA7dgMp4aJZ+IkMgniae8ykRgmNdhHoKuXWEc/sbYeIj0D+F0Tv+nHZ/rwW/4TrjqRttN0jXbROdJJf6L/mPtTGYf+0RR9o1445LzvR1VfcZSO6ZWMzK6isDxGeSyYXY1snM/0MaN4BnNL59JQ1EAsGPtIL52IiIiI5EBPjxcUDQ4C0DXSxfau7YC3KMm/BCP8uqKIioIwdyyqJjq28EieP49Vs1cxu3R2zkoXmSwUEolciDo74dFHvQbVJxIKwRVXwGWXMWpkaB9up2O4g/bhdtqH2+ka7TrulK/jMTM2+d1DFHQMkN85QH73EKGUkw2MxsMjx3WOu0T9aCpDz3CK/tEUIyl7wn1uLIS/LEamvpTEglooyz9uDX7Tz8ySmcwrm8fM4pnqLSQiIiIyGfX1eauedXcD0DbUxu6e3YD3YeLjrsXj9RUEgn6um1POrIojHwZeUnkJt8y4RX8HinwAhUQiF5pdu+AXv4BU6vj3+/1w2WU0L6xnbe9WGvsbGUwOfqRDOK6L64JlnmD+t+sSGk6Q3z1ErGuQ/O4hor1DWJkjoVPchZaUzaGETafjMur3MRj0MxIJEKkooLCmkIopxeTlHf+XvGVYVEYrqY5V01DUwIziGZpCJiIiInI+iMe9DzwPHQLg8MBh9vd5o+NTGYfXHYP/V1dBwu9jdkWMa+eUZ1sOFIYKuXPOnUwtnJqr6kXOaQqJRC4Urguvv+4tbX88hgFLl9K7bAEvdb3Ljq4dx33YSDJD93CSrqEkfaNpEmmbZMYmmXZIZBySGZvUWNjjt0xCfouQzyQUsAj5LEJ+77aw3/LuG9+3TPLjCQ73Jdjcn+DgUALwQqagz2RmeYzp5VHqisL4rGOnqhWHi6nNr6UmVkNNfg2V0Up85rGrlYmIiIjIeSCTgSefhK1bATjYd5BDA15o5Lou+zD5PyVFNEdC5AV93DSvgvqSI32JLqq4iOumXUdhqDAX1YucsxQSiVwIkkn41a9g587j3x8KEV91G6v9LaxvXY/telO6MrbDge4ROgYTdA+n6BpKMpo6idXPDG/p+FP5MWKZBtNK85hTmc/U0gg+89i+QtMKpzGzZCazSmbpF7yIiIjIhcZ1vQ9AX38dgPbhdvb27M3+LRvPOPw8EuHJ0kJs0+Si2kKunFma7VfpM31cVnMZV9ZfScgXytlpiJxLFBKJnO/icXj4YW/p0OOwi4tYd9V0Vg9vI5FJAN6nL7vah3hrfw9DifSExwd8JqXRIGXRIMXRABG/RdBvEfSZhHwWQb9J0Of94k3ZDom0QyJtj23e9fj79se3ZMahJBpkbqU3auj9K5HFAjFml85mZvFMphVNI2AFTv/rJSIiIiKTy3vvwTPPgOOQyCTY1b0ruwCK67rstOHvSoo4HIuQH/azckYpM8ujGIY3aj3sC3P11KtZWr1UI9HlgqeQSOR85jjws5/Bvn3HvbutKsbPZ9v0Mpq97XDvKG/s7aJzyFvKvjQaZHpZlLKYFwzlh33ZX6hnQ9AKMr98PgvLF1JfWH/CVdFERERE5AK2fz/8+79DMonrurQMtXCg70B2oZXhVIYnQhGerigmY5lU5oe4cmYZNUXh7FMUhYq4qv4q5pfP14eRcsFSSCRyPnv5ZXjjjWNudlyH92ZGeaZmxOtFBHQPJ1mzt5vGnhEAokEfK6aXMqcqhnmCUCjkCxELxAj5QoT9Ye/S510ahkEik2A0PUo8HSeeiRNPxxlNj5LIJI5ZwexolmExq2QWCysWMqtklj7REREREZEP19npLdDS3g7ASGqEnd07GU4NA96oov2OwY+LCtgai4Bh0FAWZeWMUorzjoRCASvAgvIFXFJ5CbX5tWf1A1KRXDsjIdHPf/5zHnjgAXbu3MnatWtZunTpcR/3/PPP881vfhPbtvnKV77Ct7/97VMqWkSOsnMnPPbYMTcnDJtfzw+wtdSbq51I26zZ2832tgFc15tOtrS+mMVTCic0iC4OF1MZraQir4LKaCWV0Uryg/m/1S9N13VJZBLEM/EJIVIyk6QgVEBdfh1hf/jDn0hERERE5Gi2DW++Ca+9BraN4zoc6j9E00BT9kNK23HZbbv8MpzHprJ8Mj4fC6rzuayhhGhw4oeTpZFSLqm8hIsqLiIWjOXijETOqjMSEu3cuRPTNPna177GX//1Xx83JLJtm1mzZvHiiy9SW1vLsmXLeOSRR5g3b95vXbSIjOnqgn/8x2OWue+J9/LExUFaq7yVHToGE/x6axuD8TSmYbCwpoDLGoqJBI78cpxbOpcbGm6gJFJyVk9BREREROS31tnprX7W0gJ4o4oO9B2gJ96TfUgq47B/JMULkTw2VBczHAowrSTCvOoCppXmYZkTPwyNBWKU5ZVRFimbcBnxR87eeSWTMDg4cRsYgJERME2wLPD5Jl76/RAKHdnC4SPXIxEIaGqdHHGivOWU5nbMnTv3Qx+zdu1aZsyYQUNDAwCf+cxnePLJJ08qJBKRD5BIwKOPTgiIXNflYP9BXmuwaK0qxnVdtjQP8PreLmzHpSwW5NYFVROG2dbl13Hj9BuZUjAlF2chIiIiIvLbKy+HL38Z3n4bXn2VPPJYWLGQvngfB/oOMJQaIuAzmVsQYmoqSdP2g7wTDrO/KI81h3t5JT/MnKoC5lfnUxINAjCUGmIoNcSBvgMTDpUfzKc6Vk1NrIbqWDXVseqTGxXvupBOe1smc+T68PCxQdD4lkye/tcqHIaCAm8rLDxyvagISksVIglwiiHRyWhpaaGuri67X1tby7vvvnumDytyfnNd+OUvoefIJyTJTJIdXTvYX+Hn0EXzSWZsXtrZyd6OIQAuqi3kqpml2allxeFibmi4gbmlczX/WkREREQmL9OEK66A2bPhqaegqYmicBGLQ4vpHOnkYP9BEpkE4YCP2eVRpmUcurv76DrYTpdh0Jyfx86CCMmaYorLY5SGfJSEfBQHfQQBw3EwbQcr3clAejfDGZt9aRsrnaHQjFDmKyDfDBF1/ERcH2HXR9g2sDK294Gubef6FfLE49421svpGEVFUFbmBW/jl8XFXnik9wsXjA8NiW644Qbaj/NN9L3vfY+Pf/zjp72ghx56iIceegiArq6u0/78IueF116D3buzu8lMko3tG+nNM9m5ciGdw0me3dJGfzyN3zK5YW4Fsyu9udWmYXLdtOtYXrscy7ROdAQRERERkcmltBS+9CVvxd+338Y4cICKaAVleWW0DLZwaOAQGSdDwGdSXRimqiDESNKmcyhBz8FB7P1txz6nzyQUsAj7LaJBH3lBH0GfOeFD1iTQNbYdzW/6CfqCBKwAASuA3/QfuW758Zt+TMPEMi1Mw/SuG1buPsDt6/O2PXsm3h4IQDQKsdjELRw+MqXt6Eu/X6HSJPahIdFLL710Sgeoqanh8OHD2f3m5mZqampO+Pj777+f+++/H+CEjbBFLmh79sDq1dndjJNha+dWho00265bwuauEV7d3YntuJRGg9y+sIqisell+cF8Pjnvk9QV1J3gyUVEREREJjHDgJkzva2jA955B3PLFuoK6qiOVdM92k3bcBv9iX4MwyAa8hENRakvcRmIpxhJ2sTTNvGUTSJtk8w4JDMO/aSzh/CZBnlBXzY0ygtaBCzzmHAn7aRJp9Lvr/DDTwHjuOHR+PXxoOl4m8/0nf6QKZWC3l5vOxmWdSRIys8/cnn09VjM66Uk55wz/q+ybNky9u7dy8GDB6mpqeHRRx/lZz/72Zk+rMj5qa/PW+5zjO3YbO3YynBqmF3XLeCdoRSv7OoEYEFNAdfMKstOL5tZPJO75t51dhvuiYiIiIjkSkUFfPzjcP31sH491rp1VJgWFdEK4uk47cPttA+3k7STWKZBcV6Q4rwjX+64Lsm0zWjK20aSGYaTGTKOy0A8zUD8SABkGBCwTAI+k6DPIujzrgd8Jn7LxG8Z+C0T8yQCHBeXtOEwHPaTzAuSjASzl6mI1zfJtJ2xaXAZTCeNaQ9hZmwCaYeo4yNq+8izTcK2SSRjEEpm8GNhmRY+05fdLMM6/cGSbUN/v7d9kEjk2ODo/aFSKKRRSWfZKYVEv/zlL/n6179OV1cXt99+OxdffDEvvPACra2tfOUrX+HZZ5/F5/Pxox/9iJtvvhnbtrnvvvuYP3/+6apf5MKRycDPf+41rMZrUr2zeycDyQEaF9XzdjDIK9u8IbLXzi5nUV0hcGR62RV1V6j3kIiIiIhceKJRuOYaWLkSDh6EpibChw4xrSXK1MKp9CX66BjuYCA5QCKTyH6ZaRiEAz7CAR/j6/+6rksq4zA8FhiNJG1GU15wND7qaIjMMSWkTZOMaeD6LcyAD9NvYQf9xPOCJMIBEpEAybyQFwTlBcmEA/h8Jj7TxGcZ+C0jez0S8JEXsLIfBp8Mw3EJxFMERxKERpKEhgcJDicIDSfI64sTG83gt/wTpsUdb99v+k9fqDQ66m0n6pEE3mij/Hyv0XZJiTelsLTUu15QoADpDDBc13VzXcSJnGhJNpEL0vPPwzvvAN4vpz09e2gbbqOnpphnF0/nV5tbsR2X5Q0lXNbg/RqLBWLcPe9u6gvrc1m5iIiIiMi5J5OB1lZoavK2jg4ydpoRJ8mQPcqQHWcwM8qgPcKQE8f2Wdh+C9tnkfEfuW4HfCRNg0Hbpd+BAduh14a+jM2gDYNpm9G0w2ja5nS+/Q74TPICPiIBi7zgkcu8gI9I0CIv4E2FC/s/vM+RlbaJDIyS1z/y/7d3r8F1lfe9x7/rsm+6WrYlS9bFsixf5As22NgQLglQCA2MKeDTmAMNbZJDJulMk3TS6buemU5SUmYyDZnTN5ykk6Rl4p5wIKYmOAyFOUkoFFxDwBiMbexi2bJlW/d9W7fnvFjStmXLtxppC/n3mVl51l577b3/2zxao/z0PM+iYiBLZX+WisEcqbyHHUbjzrWwSDgJUk6KTCJD2k2TcUfbRIaUk5qaP04nEnFY1NgICxfGW03N5H/uDHGuvEWTAEU+Cd5/vxQQARwcOEjPSA+FqjS/XrOQf3mnhzAyrG6ZxfqFswGoS9fxxau/SHWqulxVi4iIiIhMX64LbW3xNnYIqB3dTlcICvQM93B4+DBHho/QO3SYweLgWW9ZPbq1TPBxxhgKfkTOC8h5IV4YEYSGIDqzNfhhRBCZs573QzM6/S3ACyK8wKM/d/6vaVkWmYRN8rRpcCnn1HS4TMIhk3SoSDpk5tZS0TSbTDI+1wJcLyCV80jmiqTycZvMeySKAW7Rx/UGSHgncHPxYyeitGB3ykmRclOldmxk0tiopMsKk3w/HoV09Ci89VZ8bM4caG+PA6P29ngUmVwShUQi093AAPziF6WH3UPd/OfgfxLZFq+uX8zP3+vFCyKWzKvmM0vr4wX4klX80eo/UkAkIiIiIvIxSLtpFtYtZGHdwtKxEW+EnuEe+vJ9DBYHGSwMltphb/is97Asi0wyDmTmnPXspTEmnt6WLcaBU9YLyBXjdmwKXHb0ceG0dZUuhW1bZBIOFaeHSEmXippqKuY4VGcS1GYSVKdcbNsaKwzHD0nlPVLZIqlcMQ6XsnlS+UFS2SLJfBwyWQZc2y2FRqcvzm1Z8eLdY4t4X3SY1LcP9v47MLoA+PxmMsuvomblOioWLtb0tIugkEhkOgtDeOqp0jpER0eOsq9vHwC7Vy3gx4eGyHkhbbMruGPFPCzLIuWkeHDVg8zOzC5n5SIiIiIiM1pVsorFcxZP+FwQBQwVhxjxRsh6WbJ+dtx+1svihV58B7TQx498gijAD30MF56SZlkW6YRDOnHhwCmMTOlObV4QUQzC0TZ+PHY3t5wXkveD0TY+J1sMyBbPXmPpzFqq0y61o6FRTTpBddqlKp2iqraSqrRL4oz1k0prJOWKcXCUiwOlVM47FSzlijhBdI5PvUhDh+D91+DpJ6CykqhzEe6y5VQuu4p5c9qYVzmPhJO4vM+YYRQSiUxnL70E3d0AHB46zN6+vQAcnV/H9wswmPeZV5Pm7qvm49rxrTE3r9xMU3VTOasWEREREbmiubbL7MzsS/7DrTGG0ISlwGgsRAqiAD/yKQbFUuA0XBxmxBspbcPeMEF0dqDj2Fa8VlHq0r5DEMYB0tgopPxpIVKuGDJUiO/wNlIMGMr7DOV9Dp3jvZKuTXXKpTLlkk7E6ySlR0copdMpMtUVJF0bx7JwbAvbtnCAVBhRkStSOZynYihP5WCOiqEclUN5XH/i8MrCGm05NcIJIJvF/t3bRL97m0H7n/mgYx4H1i9mVl0T86vn01TVRFN1E41VjSSd5KX9Y80gColEpqu9e+GVVzDG8NHgRxwYOADASCbJ31bXcCLrUVeR5J4180m68VDMTcs3jRsCKyIiIiIinxyWZeFa8e3p0276kl5rjMELvVJgdHqAlPfzFIICxbAYt0GxtO+F3oTv5zo21Y5Ndfr8I22CMGKoEDA4GhSNBUfZYsDwaOsFEScDj5PZiT/r4iWgshYqaqj0A+aNFFgwMELbQJbGkTxnTiZLOvZpU+UcKhIumaSDAzTtO0pdTz/v3dTFW429vMVbQHx36I66Dq5vuZ6Ouo4r7g7RColEpqOhIXjmGYwx7O/fT/dQPJrIiwx/O2sWB7I+VSmXP7i6mYpk/GN895K76arvKmfVIiIiIiJSJpZlxYtEuynmVFz8qkdBFJSmweX83Lgpcae3OT/HiDdy1mgl17GZXZlkduXEo2/GFuweLvrkiiEFP57OFrfxaKWCF+KHEaExhJEhigyhiafKhVE04QQ8P+HQXZGiu6GWV4CUF9AymGVBfxwazRnJ44URXj5iMO+Pe23KtUfvBJdn4TNvcGxtB0fXdWBsi8hE7Ovbx76+fTRVNXFD2w0sr1+ObdkTVDHzKCQSmW58H37+c0w2y56Tezg6chSAYhDyw4oq3nFcZmUS3HtNC7WZONW/pf0W1s5fW86qRURERETkE8i1XWrTtdSmz7yn29mMMfiRz3BxmP5CP/35fvoL/QwUBujP99OX76MYFse95vQFu5nC++oEQ3lSH/aS+bCXqkMn8Qp+vP7S6PpMxcCjb2xk07a3GH51PzvWL2ZWSx3Lm2pIujY9Iz08tfsp6tJ1fKr1U6xpXDPj1zCyjDEXXhWrTNatW8eOHTvKXYbI1AlD2LKF6IM97D6+mxO5EwDkvZDnPcNPl7YytzrNvVc3U5mKM97rW67njkV3XHHDIEVEREREZHoxxlAMiwwXhxkqDjFUHGLYO7Wf9eIRSfkgnv42VewgpK5ngDndJ6nffww/V4zv/jY6HS7rhUTGUHRsfrW4mf3Nc1jdUsua1lmlmRsAlYlKNrRs4Nr515JJZKas/slwrrxFIZHIdBFF8PTTBG+/xbu979Jf6AcgWwx4oy/PE6sXUVtfzT1r5pNOOAB8pv0zfHrBpxUQiYiIiIjIJ0oYheSDPDk/R87P4Yc+oQkJo3Bce+b0tnNFGGfeFS7v5zmeO87x7HH68n2l59MjBbp+/R61vYPj3jPvh2SLIb1DBX5bV832xc3Yjs2K+bWsbaujtuLUCKKkk2Rt01o+1fopqlNTODzqY3SuvEXTzUSmA2Pg+efJvfk6u3p3kfNzAAzlfXb3jvB/V7ZT31TL3Vc1lW4feWfnnVzXcl05qxYREREREfkvcWyHqmQVVcmqSf8sP/Q5kTvB8dxxerO99DR3kfvtv9G4cw+WiafEVSRdKpIu9dUp2go+rYd7+d/NDbzdPcA7hwdY3FDNugV1NNSk8UKPV7tfZXn98k9sSHQuColEpoOXX+bk/9vOeyfeKyXlfVmPD3pHeGZZK+kljdy5ojG+HaRlc8/Se1jduLrMRYuIiIiIiEx/CSdBU3V8i/sxZs0XGN77Lrn/8yT540cY9oYZKAwQmYjqdILPEbI0LPCj5gbe7x3hg2PDHDyZ5X/c1EHCsWmrbaO1trWM32pyKCQSKTPzyit89Ow/lm5xb4zh8ECe7v48zy9uJrGmjVuXNWBbFq7tsmn5JpbNXVbmqkVERERERD65LMuiZslKar71P2HbNti1Cy/06B7q5sjwEYIoYNHRfr6Rdnn9+sX8R/cgKdcuzey4se3GMn+DyaGQSKSM/B2v88GT3+d47jgQ3+Jxf+8IfTmPlzoaqbxxCde212FZFkknyQMrH2Bh3cIyVy0iIiIiIjJDpNNw//3Q2kry+efpqOugrbaNnuEeDg0douHgcdYD1Tcvx9jxWrANlQ0snr24vHVPEoVEIuVgDAO/fZG9//g4WW8EgIIfsufoMHk/5I32eTTdvYaFcysByLgZHrrqIZprmstZtYiIiIiIyMxjWbBhAzgObNuGa7u01rbSXNPMsZFjVBw+BL/ezXujQdENrTfM2JsHKSQSmWI9x/bz0T/+Lwq73iqtsD+Q89jbO0IYGfYtbKDlv11LXVUKgPqKejav3MycijnlLFtERERERGRmW7cubrdtA8C2bJqqm2isaqQjd5I5bxzjnRsWs7JhZRmLnFwKiUSmgDGGD/s/5HevPkPlcy+Qynml4z2DBT7qi+9m1tcxj4b/fh3JZPyj2TW3iz9Y9gek3FTZahcREREREblinBEUQbx+0dyKudyaM3zqUAOOKVNtU0AhkUypIAooBAX80MePfIIoKO37oU9oQiITjduMMXGLwcLCsqyLaiH+YQ6jkNCE49ogCohMhGM7OJaDa7vj9m3LLo3yMcacd9+Y0cfEdYZR/B3GvksYhew7vofMb16lbdchACJj6BvxODKYJ+eFca1LmqjYvAFcB4BbF97KTW03zdhhjCIiIiIiItPSBEERxP//MrNnPzz9NNx3Xzw9bYZRSCQXxRhDISiQD/Lk/Bw5P0fez5eCnrFtLIDxI5+8ny+dn/fj1o/8cn+VqWUM1SdHWPJve6jui6eT9Q4X6Bks4AURQLw6/voOsnesAscm5aS4r+s+ls5dWubiRURERERErlDr1sVrFf3Lv5z93MGDMDQEdXVTXtZkU0g0k0URBAGEYdwaA5WV4DgYYwhNSDEo4oUeWT/LcHGYYW/4rDbrZckHeSITTflXsMKIVK5IKlvECSMi28LYdtw6dulxmHAIEg6RY8c/yBfBGPOxj9KxIkNV3wi1xwaYdWyQmmMDuAWfIDR8NFTg2FCBMIpHHqUTDnPrqzh5xyr6O+YBMCczhwdWPcDcirkfa10iIiIiIiJyidaujdvTg6LKSnj44RkZEIFCokmz58QeBgoDNFU3Ma9y3se2pkxkIrJedvzUKz/A3vMBzjvvYo4cxsuPUCxmKfoFimGRYlCkGMZhUBiFFFIOubRDIZPAq0hRrEjiZZKECZcg4RAmnLP2I/fC4Us8LQyCKCIIDcUgouCH5P2Qgh9S8CO8ok+U87CLAU4xwPF83IKP4wU4XkC66FOZ96gueFTlPTJeHG4FQACMVWBZYGHhjB5LEO8Yy8JzHXzXwXNtPMfBty18K948i9HWIsDC2BaWbWHb8b8ljh3vA5YxOJHBNgZrrDUGOxxtjcGOTOk8N4poGMoThSF9xnDSwERTVatTLk2zMrCogT03dVGsjPvG8vrlbFy6kbSb/lj6ioiIiIiIiFym04Oiioo4IGpoKG9Nk0gh0STZ2bOTPSf3AHGYMTszm6bqJpqq4pXRm6qbqEhUjHuNMYZiWCTn58h6WQYKAwwUBugv9Jf2BwuDhCYEY5h1bJB5+45S/5/Hcf3womuzclCZg8pzPB8Zgx9GeEGEH8b7fmTIWxY5yyZnWWSBrGXhjZ1vIAQMFtFokpMKI9JBSE0Qkg5CUkFEIrq00UjBeZ+deLUwyw9JAslL+qSPz0T/JWzLojaTYP6sNFWZJB9es5BDK1uxLJtlc5dyQ+sNtNa2TnmtIiIiIiIicgFr18brD82fP6MDIlBINGmOjhwt7RsMJ/MnOZk/ya7eXaXjNaka6tJ149b5udCUrlS2SNueI8z78BjpkcIF6zg98PGCiNAYwsgQRYYwovQ4iMaHQudjAVWj21nPWXEgYgGuY+PaFq5j4SYd3LQb79s2tg2OZWFb8Sgee/R1tkVpCtjYaKGxAUwWp2Ihc1o+dGoh6dOOmVPPWpZVeq+x97etsWfjcyNjxrVj72md/r9nDKSyTj112kLZ8aFTn8m4KW25mgw7b15OvqGOtfNWc33r9ZpaJiIiIiIiMt2tWVPuCqaEQqJJkPNzDBYHAXivZ4jBvE9DdYr66hRVKbcUGgwVhxgqDp33vYwx5P2QoXxAzZ4jdPz7XsKiz2EzfurVWExhAD+IKJZGAv3X1hFKODZJxybpWriOTWI08EmcHvw49mjQMxoMWXzi7sQ1FvQ4TF7doWszNLeGk61z6F/ewdr261nfvJ6q5EQxm4iIiIiIiEh5KCSaBKePInqvZ4iP+nKlx5mEQ311iobqNPXVKSpTDgU/Iu+H5L1wXDtS8BkqBARByGcOHKW9+wRHLqEOAwSOjeM6OEmHtGNTGYQ4thVvloVjg23Ho3viUMgm4ViTGvYk7ASO7WBbNrZl41jxvmM7o6N9bIDSreyjygqC6kqiZBJMiBVEEIXxgtxhhBVF2J6P5flYQTD63U/dpt627NHRQ3bp/cfee+y29fF6StG4x2NKI5tOC5JO//c587hJpSg2z6PY3IjfMp+gsZ4GN8nKygYWzFpA0inXRDgRERERERGRc1NINAl6hntK+6tbZlFfnaJ3qEjvSJG8H/JRX25ccHQ+GT/g8x90s2Q4R6oiSTphk3JtbMsaN/XKTzh8NL+Og6315OfVUlmRpLIiQWXSxRmdW5UHBsKIZN4jlfdI5oqkch6pXBG36BP4IUU/xPEDXD/EOW3fDiNsyyZhJ0g4iVI7FvBMtLm2i2u748+3XaxMBtLps7ex47W18VZTE2/uJXTTIADPg2Lx1BYEE29hODrXLIrbsW1s3STbjuednt5e6Fh1NdTXX/Qd1kRERERERESmC4VEk6Bn5FRItKihikUN8bQiYwzDhYDe4SLHhwv0Dhcp+BGZhEMmaZNJuGSSNumEQ0XSoTFX5MbXPqC6Ngm1Z48+MRb0z5/N0UXzONE2l8h1aL5AbcaxKValKValsS2blJMi6SRJu2mqU9VUJ6vPaquSVVTYKRKhiUOXsRDG8yYOWsb2U6mzg6BkcnIDFNeNt4qKC58rIiIiIiIiIiUKiSbBNU3XMDszm57hHo6OHGXYGwbiqUg1mQQ1mQSdDedfj6b+QC/LXnkfJzh7TSHHchhY1MyHG5bgVaQwGFLGlKZYVSYqqUnVTLil3TRJJ0nKTeFYzqVPK8tkLu18EREREREREflEUEg0CTrqOuio6yg9HvFGSoFRz0gPPcM99Bf6J3ytazkse/sI7e8cIpmYRTqTJu2mybgZ0m6aVCJD4o47sW64QVOaRERERERERORjo5BoClQlq1g8ZzGL5ywuHSsEBY5nj+OFHplEhopEBZVWisS2X8LJEObPO/uN0mnYtAk6O6ewehERERERERG5EigkKpO0m6a1tvXUgUIBtvwzHDgw8QsaGmDzZpg9e2oKFBEREREREZErikKi6WBoCP7pn6C3d+Lnu7rg3nvjRZ9FRERERERERCaBQqJy6+2NA6KhoYmf/8xn4NOf1vpDIiIiIiIiIjKpFBKV08GDsGVLPNXsTLYNGzfCmjVTXZWIiIiIiIiIXIEUEk01z4vDoX374D/+A8Lw7HOSSfjDP9QC1SIiIiIiIiIyZRQSTTZjoKcH9u+Pt0OHJg6GxlRVwYMPQlPT1NUoIiIiIiIiIlc8hUSTZc8eeOcd+PBDyOUu7jVz58JDD8GsWZNamoiIiIiIiIjImRQSTZaDB2HXros/v7UVHngAKiomrSQRERERERERkXOxy13AjLVo0cWdZ9uwbh184QsKiERERERERESkbDSSaLIsWACuC0Fw9nM1NXGItGgRdHQoHBIRERERERGRslNINFkSCWhri9ckSiSgvf1UMDR3LlhWuSsUERERERERESlRSDSZPv1puOmmeL0hV//UIiIiIiIiIjJ9XdaaRD//+c9ZsWIFtm2zY8eOc57X3t7OqlWrWLNmDevWrbucj/xkWbAAFi5UQCQiIiIiIiIi095lpRcrV67k6aef5itf+coFz3355ZeZO3fu5XyciIiIiIiIiIhMkssKibq6uj6uOkREREREREREpIwua7rZxbIsizvuuIO1a9fyxBNPTMVHioiIiIiIiIjIJbjgSKLf+73f4+jRo2cd/853vsM999xzUR/y29/+lubmZnp7e7n99ttZtmwZN99884TnPvHEE6Ug6fjx4xf1/iIiIiIiIiIicnkuGBK9+OKLl/0hzc3NADQ0NHDvvffy+uuvnzMkeuSRR3jkkUcArqxFrkVEREREREREymjSp5tls1mGh4dL+y+88AIrV66c7I8VEREREREREZFLcFkh0TPPPENLSwuvvvoqd911F5/97GcBOHLkCJ/73OcAOHbsGDfeeCOrV69m/fr13HXXXdx5552XX7mIiIiIiIiIiHxsLGOMKXcR57Ju3Tp27NhR7jJERERERERERGaMc+Ut0zokmjt3Lu3t7eUu47IdP36c+vr6cpch05T6h1yI+oicj/qHnI/6h5yP+oecj/qHXIj6yCfbwYMHOXHixFnHp3VINFNoRJScj/qHXIj6iJyP+oecj/qHnI/6h5yP+odciPrIzDTpC1eLiIiIiIiIiMj0p5BIREREREREREQUEk2FRx55pNwlyDSm/iEXoj4i56P+Ieej/iHno/4h56P+IReiPjIzaU0iERERERERERHRSCIREREREREREVFINOm2b9/O0qVL6ezs5Lvf/W65y5EyO3ToELfccgvLly9nxYoVPP744wD09fVx++23s3jxYm6//Xb6+/vLXKmUUxiGXH311dx9990AHDhwgA0bNtDZ2cnnP/95PM8rc4VSLgMDA2zatIlly5bR1dXFq6++quuHlPzd3/0dK1asYOXKlTzwwAMUCgVdP65wX/ziF2loaGDlypWlY+e6Zhhj+LM/+zM6Ozu56qqr2LlzZ7nKlikyUf/4i7/4C5YtW8ZVV13Fvffey8DAQOm5Rx99lM7OTpYuXcqvfvWrMlQsU2mi/jHme9/7HpZllW6fruvHzKKQaBKFYcif/umf8vzzz7N7925+9rOfsXv37nKXJWXkui7f+9732L17N6+99hp///d/z+7du/nud7/Lbbfdxt69e7ntttsUKF7hHn/8cbq6ukqP//Iv/5JvfvOb7Nu3j7q6On70ox+VsTopp69//evceeedvP/++/zud7+jq6tL1w8B4PDhw/zgBz9gx44d7Nq1izAM2bJli64fV7g//uM/Zvv27eOOneua8fzzz7N371727t3LE088wVe/+tVylCxTaKL+cfvtt7Nr1y7efvttlixZwqOPPgrA7t272bJlC++++y7bt2/na1/7GmEYlqNsmSIT9Q+I/+j9wgsv0NbWVjqm68fMopBoEr3++ut0dnbS0dFBMplk8+bNbN26tdxlSRk1NTVxzTXXAFBdXU1XVxeHDx9m69atPPzwwwA8/PDD/OIXvyhjlVJO3d3dPPfcc3z5y18G4r/MvPTSS2zatAlQ/7iSDQ4O8utf/5ovfelLACSTSWbNmqXrh5QEQUA+nycIAnK5HE1NTbp+XOFuvvlmZs+ePe7Yua4ZW7du5Qtf+AKWZXHdddcxMDBAT0/PVJcsU2ii/nHHHXfgui4A1113Hd3d3UDcPzZv3kwqlWLhwoV0dnby+uuvT3nNMnUm6h8A3/zmN3nsscewLKt0TNePmUUh0SQ6fPgwra2tpcctLS0cPny4jBXJdHLw4EHefPNNNmzYwLFjx2hqagKgsbGRY8eOlbk6KZdvfOMbPPbYY9h2fHk+efIks2bNKv3CpuvIlevAgQPU19fzJ3/yJ1x99dV8+ctfJpvN6vohADQ3N/Otb32LtrY2mpqaqK2tZe3atbp+yFnOdc3Q761ypn/4h3/g93//9wH1D4lt3bqV5uZmVq9ePe64+sfMopBIpAxGRka4//77+f73v09NTc245yzLGpfMy5Vj27ZtNDQ0sHbt2nKXItNQEATs3LmTr371q7z55ptUVlaeNbVM148rV39/P1u3buXAgQMcOXKEbDY74TQBkdPpmiHn8p3vfAfXdXnwwQfLXYpME7lcjr/5m7/hr//6r8tdikwyhUSTqLm5mUOHDpUed3d309zcXMaKZDrwfZ/777+fBx98kPvuuw+AefPmlYZk9vT00NDQUM4SpUxeeeUVnn32Wdrb29m8eTMvvfQSX//61xkYGCAIAkDXkStZS0sLLS0tbNiwAYBNmzaxc+dOXT8EgBdffJGFCxdSX19PIpHgvvvu45VXXtH1Q85yrmuGfm+VMT/+8Y/Ztm0bTz75ZClEVP+Q/fv3c+DAAVavXk17ezvd3d1cc801HD16VP1jhlFINImuvfZa9u7dy4EDB/A8jy1btrBx48ZylyVlZIzhS1/6El1dXfz5n/956fjGjRv5yU9+AsBPfvIT7rnnnnKVKGX06KOP0t3dzcGDB9myZQu33norTz75JLfccgtPPfUUoP5xJWtsbKS1tZU9e/YA8K//+q8sX75c1w8BoK2tjddee41cLocxptQ/dP2QM53rmrFx40Z++tOfYozhtddeo7a2tjQtTa4c27dv57HHHuPZZ5+loqKidHzjxo1s2bKFYrHIgQMH2Lt3L+vXry9jpTLVVq1aRW9vLwcPHuTgwYO0tLSwc+dOGhsbdf2YaYxMqueee84sXrzYdHR0mG9/+9vlLkfK7De/+Y0BzKpVq8zq1avN6tWrzXPPPWdOnDhhbr31VtPZ2Wluu+02c/LkyXKXKmX28ssvm7vuussYY8z+/fvNtddeaxYtWmQ2bdpkCoVCmauTcnnzzTfN2rVrzapVq8w999xj+vr6dP2Qkr/6q78yS5cuNStWrDAPPfSQKRQKun5c4TZv3mwaGxuN67qmubnZ/PCHPzznNSOKIvO1r33NdHR0mJUrV5o33nijzNXLZJuofyxatMi0tLSUfk/9yle+Ujr/29/+tuno6DBLliwxv/zlL8tYuUyFifrH6RYsWGCOHz9ujNH1Y6axjDGm3EGViIiIiIiIiIiUl6abiYiIiIiIiIiIQiIREREREREREVFIJCIiIiIiIiIiKCQSEREREREREREUEomIiIiIiIiICAqJREREREREREQEhUQiIiIiIiIiIoJCIhERERERERERAf4/b2Xrl/KbIXIAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -470,39 +576,50 @@ "name": "stdout", "output_type": "stream", "text": [ - "Index of the 20-th query best matches : [[195 26]]\n" + "match 1 : 184 with distance 19.0\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAE/CAYAAADCGZOXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAAsTAAALEwEAmpwYAACmZ0lEQVR4nOzdd5Qc53nn+29Vde7JeTAzyIEAiEAQIIhAihQzKSatLMqiJEpUsK+t4L3Hx9bauzq6XtvLlXfv7pHlxLu2KMtisEmZQcwZDCCAAQEQOYdJmJx6OlfV/aMGAwx6BoGYGaTf55w63f12V/XTTbCn+6nnfV7DdV0XERERERERERG5rJnnOwARERERERERETn/lCQSEREREREREREliUREREREREREREkiERERERERERFBSSIREREREREREUFJIhERERERERERQUkiERERuYhMnTqVN95443yHMWEee+wxVq9efb7DEBERkcuEkkQiIiJyWfvxj3/MV77ylQl7vq9//ev85//8n8fl2F1dXdx///1Eo1GmTJnC448/Pi7PIyIiIpcm3/kOQERERETGxu///u8TCARobW1l8+bN3HXXXSxatIj58+ef79BERETkIqBKIhEREbmobNiwgXnz5lFcXMw3vvENksnk0H2/+c1vWLx4MUVFRaxcuZJPPvlk6L7//t//OzU1NeTn5zNnzhzefPNNXnnlFf7yL/+Sp556iry8PBYtWjTic06dOpW/+qu/YuHChUSjUb75zW/S2trKHXfcQX5+PjfffDPd3d1Dj/+t3/otqqqqKCws5Prrr2f79u0APProo/zqV7/iJz/5CXl5edx9990ANDQ08PnPf57y8nJKS0v57ne/O+z5//AP/5Di4mKmTZvGyy+/PGKMAwMDPPPMM/zX//pfycvLY/Xq1dxzzz388pe//HRvtIiIiFx2lCQSERGRi8qvfvUrXn31Vfbv38+ePXv48z//cwA2bdrEww8/zD/8wz/Q2dnJ7/zO73DPPfeQSqXYvXs3P/vZz9iwYQP9/f28+uqrTJ06ldtvv50/+ZM/4YEHHiAWi7Fly5ZRn/eZZ57h9ddfZ8+ePbzwwgvccccd/OVf/iXt7e04jsNPf/rTocfecccd7N27l7a2NpYsWcKDDz4IwHe+8x0efPBB/uiP/ohYLMYLL7yAbdt87nOfY8qUKRw6dIimpia+9KUvDR1r3bp1zJkzh46ODv7oj/6Ib37zm7iumxPfnj178Pl8zJ49e2hs0aJFQwkqERERkdNRkkhEREQuKt/97nepq6ujpKSEP/3TP+WJJ54AvCqd3/md32H58uVYlsVDDz1EMBjko48+wrIsUqkUO3bsIJPJMHXqVGbMmHFWz/u9732PyspKampquO6661i+fDlXXXUVoVCI+++/n02bNg099uGHHyY/P59gMMiPf/xjtmzZQm9v74jHXb9+Pc3NzfzVX/0V0WiUUCg0rFn1lClT+Pa3vz30mlpaWmhtbc05TiwWo6CgYNhYYWEh/f39Z/U6RURE5PKlJJGIiIhcVOrq6oauT5kyhebmZgAOHz7M//yf/5OioqKhraGhgebmZmbOnMn//t//mx//+MdUVFTwpS99aWi/M1VZWTl0PRwO59yOxWIA2LbND3/4Q2bMmEFBQQFTp04FoKOjY8TjNjQ0MGXKFHy+kVtFVlVVDV2PRCIAQ891ory8PPr6+oaN9fX1kZ+ffwavTkRERERJIhEREbnINDQ0DF0/cuQIkyZNArzk0Z/+6Z/S09MztMXjcX77t38bgC9/+cu8//77HD58GMMw+OM//mMADMMY0/gef/xxnnvuOd544w16e3s5dOgQwNAUsZOfr66ujiNHjpDNZs/peWfPnk02m2Xv3r1DY1u2bFHTahERETljShKJiIjIReVv/uZvaGxspKuri7/4i7/ggQceAODb3/42f//3f8+6detwXZeBgQFefPFF+vv72b17N2+99RapVIpQKEQ4HMY0va9BlZWVHDp0CMdxxiS+/v5+gsEgpaWlxONx/uRP/mTY/ZWVlRw4cGDo9jXXXEN1dTU//OEPGRgYIJlM8sEHH5z180ajUT7/+c/zox/9iIGBAT744AOee+45vvrVr57zaxIREZHLg5JEIiIiclH58pe/zK233sr06dOZMWMG//k//2cAli5dyv/3//1/fPe736W4uJiZM2fy2GOPAZBKpfjhD39IWVkZVVVVtLW18d/+238DvJXIAEpLS1myZMk5x/e1r32NKVOmUFNTw7x587j22muH3f/Nb36THTt2UFRUxH333YdlWbzwwgvs27ePyZMnU1tby1NPPfWpnvtv//ZvSSQSVFRU8Nu//dv83d/9nSqJRERE5IwZ7kjLY4iIiIiIiIiIyGVFlUQiIiIiIiIiIqIkkYiIiIiIiIiIKEkkIiIiIiIiIiIoSSQiIiIiIiIiIihJJCIiIiIiIiIigO98B3AqZWVlTJ069XyHISIiIiIiIiJyyTh06BAdHR054xd0kmjq1KnU19ef7zBERERERERERC4ZS5cuHXFc081ERERERERERERJIhERERERERERUZJIRERERERERES4wHsSiYiIiIiIiMjpZTIZGhsbSSaT5zsUuYCEQiFqa2vx+/1n9HgliUREREREREQuco2NjeTn5zN16lQMwzjf4cgFwHVdOjs7aWxsZNq0aWe0j6abiYiIiIiIiFzkkskkpaWlShDJEMMwKC0tPavqMiWJRERERERERC4BShDJyc7234SSRCIiIudZV6KLpr4mYukYruue73DGl+NAKgV9fdDZCd3d3vVYDBIJSKchm4VL/X0QERG5xBw6dIgrr7zynI/zzjvv8OGHH45BRLkee+wxmpubT/uY7373u6c91g033EB9ff1YhcbmzZt56aWXhm4///zzPPLII2N2/DOlnkQiIiJnynW9BMaptnTaS3jEYtDf723HricS4PNBIIDjs2hOdbC3/zBd2X5cy8RwXAJY5PuiFPii5Psi5Flh8qwwITOIHwNs+/jmOOD3QzQKeXneduz6yWPRKFjWyK8pk4F43IsvlQLHIZ1JEk/FSKTjg5cDAEQDeURD+eQF8gkHoxiWBYbh7RePw8DAsEs71k8q3k860U863k8mGSdtp0nZKbJOdlhS7OQzXY7PwvH7cfwWrs+H4/c21+fDtCxMy3d8M7zbPstH0PATMP0ETe8yYPgIGH5sO0M6myKTSZHOJoeuZ50sZjiCv6CYQGExwYISgoUlhApLMaN5OLgkMwmSmSRJO0kynSBpJ3Ecm6g/Sl4gjzx/lJAvxBmdqzNNsCwyOPRn4/RlB+izB0i4GcKhPKoKayiLlmMaF9a5PNd1iWfimIbpvVadrRYRkXHwzjvvkJeXx8qVK8f82I899hhXXnklkyZNGvNjn6vNmzdTX1/PnXfeCcA999zDPffcM+FxKEkkIiKXNtf1kh8DAyNvqZSXJDld8ufYdo6yqQQtR1to7GskZacwgNIRHtc3uJ3IZ/oIWkFCvhBBX5CgFcQyLWzHxnEdbHfwcvB2wAoQDXhJjKg/ihUdTBqFw5BK4Q4MkOjrIpbooT/VT3+6n2Q2SdpO47jOiPF3nHDdNEyCVpCgL4hpmGSdLLZjY7s2tmN7SSAu7oogy7CwXXvU+098PwwMgr4gASuAz/RhjJAycnG9JFk2RcbJ5NyfALoAw7SIhPLJixSSHy4iP1yE5Q94iT7L8pKNpgU+C8sXIBiMYPr8x+8/tpmml0x03dxtMFk19LiT97UsXNOkeeAou7r3crD/CEknjem4mLZDCB9h/ITweZsZoKSomrqKmRQVVUEweHzz+bw4jm2ue/w6eIlGw/DiOPF6MOj9e/X7vTERETmlH7/z44l7rhtynyubzfLggw/y8ccfM3/+fP75n/+ZSCTCxo0b+b//7/+bWCxGWVkZjz32GNXV1fz0pz/l7//+7/H5fMybN49HHnmEv//7v8eyLP7lX/6Fv/7rv+a66647/pw//jEHDx7kwIEDHDlyhP/1v/4XH330ES+//DI1NTW88MIL+P1+/uzP/owXXniBRCLBypUr+Yd/+AeeeeYZ6uvrefDBBwmHw6xdu5Zt27bxgx/8gIGBAYLBIG+++SYAzc3N3H777ezfv5/777+fn/zkJ6d8L5544gn+8i//Etd1ueuuu/jv//2/A/DKK6/wJ3/yJ9i2TVlZGW+++Sbr16/nBz/4AclkknA4zM9//nOmTZvGj370IxKJBO+//z7/6T/9JxKJBPX19fzsZz/j0KFDPPzww3R0dFBeXs7Pf/5zJk+ezNe//nUKCgqor6/n6NGj/OQnP+ELX/jCOf13VZJIREQubrYNhw9DU5NXsXNiJcux687ICY+x4LgO/al+upPd9CR7SGaTGBjDEjnHLnuSPTT3Nw9LOqSzDq19SQbSWUI+i1DAIuz3Nr9lDKvWyDpZsk6WgczAp4o15AuRF8gjaAWJZ+L0p/vJOp8+8eW4DolsgkQ2cVb7ua5LxnbJ2Gf33+XEHIFpGJiG4eUSBi8Nxr4Xw6kSRCdzcUlmkySz5770sOvYDMR7GIj30Mrh0z7+2L+5sD9M2Bceuh60vASeYRjeJcbQdcuwRn2/EpkErQOtHI0dJZlNYgEzTxcz0Dm4RfwRSsOllEXKKAgWDHse13XJOBnSdpq0nQYgYAUIWkEvuTZSTD6flyyKRLwtHM5NcI3npeMMTxbb9vHrIyXgRtq8F398O5YMO3k7lkAb6dLng1DIS56deHns+kjVgiIiE2j37t384z/+I6tWreLhhx/mb//2b/nBD37A9773PZ577jnKy8t56qmn+NM//VP+6Z/+iUceeYSDBw8SDAbp6emhqKiI3/3d3yUvL48//MM/HPE59u/fz9tvv82OHTtYsWIFzzzzDD/5yU+4//77efHFF7nvvvv47ne/y49+9CMAvvrVr/Kb3/yGL3zhC/zsZz/jf/yP/8HSpUtJp9M88MADPPXUUyxbtoy+vj7C4TDgVfVs2rSJYDDInDlz+N73vkddXd2I8TQ3N/PHf/zHbNy4keLiYm699VaeffZZVq1axbe//W3WrFnDtGnT6OrqAuCKK67gvffew+fz8cYbb/Anf/InPPPMM/zZn/3ZUFIIvKqnY773ve/x0EMP8dBDD/FP//RPfP/73+fZZ58FoKWlhffff59du3Zxzz33KEkkIiKXoUwG9u2DXbtgzx6vUmiCHJty053spjvhJYZGSiScLnEST2dp6U3SEUud0H5neGWJZRqE/BYhn0nQZxHwmQR95tClZR5PIrmui+OC7bg4rovrugR8FpZ5/Af3qRIYjuuSSNskMjaZrDOUxEnbDhnbuw0Q8JkErONxHNsMvN+xtutiO4Pb4PWM7ZDJHjvW2SeHzoZlGvhMA59p4rMGr1smPtPAcV2ytkvWcck6ztB123GxTAO/5T3Wbxr4LW9/yzSwnRP2s53B/b332G+ZQ+9JwGcO3baOZa1O5kLGcUhnvS2VPXbdJuO4BH0m0YCPSNAiGvARDfqG/TccjYv7qRJ2lmHht/z4TT8+04ff8pO20/Qke4Y9znFcuuNpehMZTMMYem98pjn4HnvvWcjvJSnimTjxTJyGvgb8pp/CUCEZO0PKTpHKpkatMDMwvITRYEWWgYGL916feAleYinqjxINRIn4I4R94XNOEjquQyqb8t7LTGKoss4yLSL+yNDz+U3/hTndzu/PTSIFg16iC44noka7fuJty/KON9KWlwcVFV6yTkTkBHV1daxatQqAr3zlK/z0pz/l9ttvZ9u2bdxyyy0A2LZNdXU1AAsXLuTBBx/kvvvu47777juj57jjjjvw+/0sWLAA27a5/fbbAViwYAGHDh0C4O233+YnP/kJ8Xicrq4u5s+fz9133z3sOLt376a6upply5YBUFBQMHTfTTfdRGFhIQDz5s3j8OHDoyaJNmzYwA033EB5eTkADz74IGvWrMGyLK6//vqhpedLSkoA6O3t5aGHHmLv3r0YhkEmk1tZfLK1a9fy61//GvCSXn/0R380dN99992HaZrMmzeP1tbW0x7rdJQkEhGRi0M6DTt3etv+/V6iaBwcq3I4llBJZpNDPxaPbSP9wHVdl0TGJpbMYpnG8QSKZQ5L5PQls7T0JuiJH4+/JBKgJC9AOuuQyNhDyRrbcRlIZRlIjRzrsQoaLyk08mOCPpNIwEckYHlb0EfQZ5JI2wykssRSWQbSNvF09ox6RWdsh09Xx3Rc2jIh4MPw+zBxMV0XwwXLcTBdF9MB66TpbifG5nI8KXbs0hl8wLEEVYqzS0Q5tkvGBjjzyiGAVNaBUf77fBrxtE08bUPs+FhosLJsWK7ohByUaRgEB5OJIb9F0G/iM8+sn5Ht2thZmyS5yUPXdRlI27T3p+iIpbCd0/8DCfktiiN+SqIB8oJeVVDGydAR7zjtvuAlu1J2ipR99m+qaZhDySLHdbzpj649NA3yWNWcaZjDNsu0MA2TtJ0+4yowv+kfSk75TN+w3lonfj4YGEPPc2I1l2mY+EwflmlhGRaWaXm3DWv0aqozkcl4W3//qA/JOlli6RgD6QEc1yHkC3nvmz989n2w8vNxy8vpzvfRGMrQkWcQLp/E7LrFlEbLPt1rEJGL2smfX4Zh4Lou8+fPZ+3atTmPf/HFF1mzZg0vvPACf/EXf8HWrVtP+xzBYBAA0zTx+48n7U3TJJvNkkwm+b3f+z3q6+upq6vjxz/+8VktAX/icwBYlkV2DFoOHPNf/st/4cYbb+Tf//3fOXToEDfccMM5He/EWMdiARQliURE5MK3cyf85jfe9LExksqm6Ex0ksgkhqobTlflAOCYBo7Ph2OZxB2XzlSWjmSW9kSWuOOSNQ3ipo+Y6SPm9zMQ9ONEQxgFYfpMg57+FH7HIeS6XFkWYWFlPimfSavj4pgGrmXimAYWkHZcupM2PWmbvkyW/oxDb9qmN52lN+2QchyCWYdoOks0m6Uwa1OYtcnL2uRlspgDKcKpLNFMhkg8Peprsg2DhN8H0SCBaBB/wMLv9+H3W/j9Jv6Aj4Df+/GYStsnbFnS6SzptE3GMkmH/GSDAbIRP9lQADsSwAkFMKMBAtEgwUiAcCRIKHS8OmbUlIzrYmUdrKyNlbGHLs2sjc/2pt4YjosxmGAyXBcn65B1HFK2S9J2SdoOKdsZvHQxLRN/wEui+P0+gn6LgN+H3zJw4ynoT+LGkhgDKYyBFOZACiuV9SqSLNOrMjpWbWR51VNJ26sGStkuqYxN0vYqg06VUAmYBhHLIHzCZdg0CBiQSmVJxjMMpLPEU1niGZvk4HY2fINVaH7LHDYVzzS8S4PBqisrt+rKALoG0rT3p0ic8LzRgEVpXhADhqqpso6DPVhllRiMs6XXpqU3ic80KI4GKI4ECAcsr5pssKIsfcJ1w8CrwLJM/IOJVb9lHK9QO3GmFscTokH/8CSs4zrE0jFi6RMybCOwXfuMpxE6jkvKdvAPvjfHZJwMPcmenIqrsWAaJgXBAkrCJZSES4j6o2edNHJch4ydIetkSWQTQ+9LLB0bNRFmYHjVUoPJr4g/MlRhdqzKzDK8SrGBzID3+tt66NneczwBh5cz3WIa5JVUMWnSHKqrZ2MVFkF+PhQVQXGxt0Uio/aZimfiHI0dpSPege3Y5AfzKQwWUhgqJC+Qd8E1dReR444cOcLatWtZsWIFjz/+OKtXr2bOnDm0t7cPjWcyGfbs2cPcuXNpaGjgxhtvZPXq1Tz55JPEYjHy8/Pp6zu5M+OZO5YQKisrIxaL8fTTTw9NwcrPz6d/MJE+Z84cWlpa2LBhA8uWLaO/v39outnZuOaaa/j+979PR0cHxcXFPPHEE3zve9/j2muv5fd+7/c4ePDg0HSzkpISent7qampAYZPKTsxtpOtXLmSJ598kq9+9av86le/GtanaayNSZLo4Ycf5je/+Q0VFRVs27Yt537XdfnBD37ASy+9RCQS4bHHHmPJkiVj8dQiInIpSyTgpZfgDM4qnVIwCNEoTiRMqxtjb6qZg+k2MiE/mUAUx1eAY5k4lontM4euO5aJbRrEHehO2/RkbHqTWXrjGZp6EnSflHiJBHzUFIdxHJf+ZJZYKuNVhQBkvMqWcDTI3LoiFtYWEgn4hvq4BKzAUNPnE+UNbidzXderYgFv6o9h5PyQtAenCDXFUnT1Jol1DZDsHsCOpwnkhcgvjlBYlkdJUZiKwhBBn4WD9yPvTOs4DCA4uI0pw8D2W9h+Cz7ljBb/4DbS+3dMhpMn+Z07g1N/wXLwCoVGTWUMJsBMx8XJ2vT0J+kbSIPtYDoOpn3sfgfTcbEzNgPxNPGBNPFEmngiA7aD5boYDFZeYeAag9cH/50YrovpguW63ua4WK53TCtsYYbChE2DyYUhphSFKAr4vGScZWJYJtZgsuzY/ythx6W3O05n5wBd3QM48TSBrEOwP43PcbENA8cwcAy8S8sHPi+mY4k+I+1iYHsVZa5LKGsTzthYo5wZtUzD6+EVsIgMXgZ9Fs6J0x4dl+zgbdd1h/pZmQaY5vHrWWcw0ZdxSGZtUhkviXWM3zKJBIY/VzhgYWIMSyufmGQ2GeyXdRZJHsd1hhJQB7oPELSCQwmjkC80rJ/TiduxpFDGyYzaeP5UXFwGMgOn7XlmGuaox886DpZhYDoQ72hhX0cLh7a9T2W0kur8aqL+KC6uV9kVsMgW5JMpyKMvatEazNISSHPEH6fLSo2aQDqWRCsMFlIcLqa2oJYphVMoi5RdmFMARS4zc+bM4W/+5m94+OGHmTdvHv/X//V/EQgEePrpp/n+979Pb28v2WyWP/iDP2D27Nl85Stfobe3F9d1+f73v09RURF33303X/jCF3juuedyGlefiaKiIr797W9z5ZVXUlVVNTSdDODrX/86v/u7vzvUuPqpp57ie9/7HolEgnA4zBtvvHHWr7m6uppHHnmEG2+8cahx9b333gvAo48+yuc//3kcx6GiooLXX3+dP/qjP+Khhx7iz//8z7nrrruGjnPjjTfyyCOPsHjxYv7Tf/pPw57jr//6r/nGN77BX/3VXw01rh4vhjsG9Uhr1qwhLy+Pr33tayMmiV566SX++q//mpdeeol169bxgx/8gHXr1p32uEuXLqW+vv5cwxMRkYvRnj3w/PNeM+rTCQRg5kyoqRm+5HskAtEo/XaCTUc38XHLxzln/jO2QyyVJZb0pl71D17Gkln6khn6khnS2ZF/EAV8JrVFYepKIkwuiVASDeT8SMk6DrGkd9ys41BbHMF/QkVCcaiYa2uv5arqq/CZProT3XTEO+iId9CZ6KQj3kFvspe+VN+YrRTmOC7mafrcmIY51H8lL5BHXiDPmy6X6qMv1UdvqveMml4fq07IC+SRH8z3LgP55AfzvRXXzNxGuyN9NTnxtR9bwe1YI+9j04qO9bxJZLzePPFMfOh6MpvEMqyhaTVhX3joMugLksqmvB/I6QHimTgDmYGhpsoAQSuYsx9ALB2jP91PX6rvUzUBzwvkURgspCBYQMgXoiPewdHY0RFXPjtTrusykLLpSaRJZhwc18UZ7BF1rG+U43hJxmTGJpkdTIwMVgKlsw7VhWHmTSpgWll0WE8kA2Oob9HpYugcSHOgPcaB9gEG0jb5QR/RkI+8oM+7HvSRF/LhOC4D6SwDKW8K5LHrx6ZAmkDQcYjYNpGMTSRrE8hkicUzZDNZb7W1wWSXOZjw8qYtnngbrBNuGyc8zjpp/xP3s4CwaZB0XdIYZE0v0ZU1TbKmd3ks+YZhDCbkvEScd+kl6DC9ZBGmMZiYMgmYDPbPMrw+WKZBwDCIBH2UF4aIhHxgml5Sz/CSfFbWwcpk8aWz+DK2d5nODo0Zo3xEHEsqx094bwdSNlnH9ZJdfmtYAizgM88o4ZLK2vQlBj8rExlSWYeQ36IiP0h5fnDYZ93ZyPot4oUREgURBoqjtE8uI1EYOeU+EX+EyYWTmVI4hcmFk6nOr1bFkVx2du7cyVOtT03Y8420uplcmHbu3MncuXOHjY2WbxmTSqLrr79+qEHUSJ577jm+9rWvYRgG1157LT09PbS0tAw1qxIRERmSTMIrr8Dmzad+XCQCc+bA3LkwbZrXTPUkzf3NvL/7VXZ17Bp25judddjd2s+2pl5a+04/Rz3gMykI+SkM+ykI+ykM+agoCFFZEDptU2GfaVIUCVAUCQwbr8mvYWXdSuaWzx32Q6Y0UkpppJQ5zBn2+GOrqPWmvITRscQRMNR4+MRLgPaBdtoG2mgdaB16LDAsQWQZFhXRCiblT2JS/iSq86spChWdtgmw63qNkvtSffSn+nFxCVpes+ETGw9fKA1+jyWeziaWrJMlbacJWsERk1knHz9lp+hP9Z921bigFaQgWEBBsGDE4zquQ1eii5b+Fo7GjtISa/GShIOv4VjC7NjteCY+rIePYRjkhbwEzFgpDZeyuGoxi6oWURAswHZsr1/XYAJuID3AwZ6D7O7YTXeyG8MwKMsLUpYX5JpppWMWx4lc1yWetukaSNM5kKYzlqJrIE0slcV/cnP1wYbipjHYiPyExuXepUPAMimMeP+fF4UDFIb9g4kag6Drkkxk6B5I0xlL0zmQojOWpieRHpr+dmwa34n/xI41cD/r/K4NhY6fqcVRppRGqCuJ5CRcXNclbTteH6uUTTKdJZtIYyczuPE0TiKDm8iQTXhxZrMORAcrtmAooWTgDksuGa6L3zQp8JtEDIgYXjFfGAgbLmHbxeqKQUc/6RGmQSYzNke64jR0xymOBKjID1IYPv3nwLG+bvHBfmnxI93E0zaO6xKyTPorizg8s5LuKeVEIwHyQz5Ko0HCgePN0nd17GJXxy7A+2wrDBVSHCqmKFREcXjwMlRMebScgBU4VTgiFy0lbuRcTUhPoqampmGdwGtra2lqalKSSEREhjtwAJ59Fk41D33OHFixAiZPPr5iz0lS2RRvHXyL9U3rh1WgtPUn2drYy+7W/qHqINM0hiob8gYrG/IGr+cPJoZC/lOfVbcMi9qCWqYXT2da8TR8pm9YIudYYieVTVGZV8nV1VczuXDyWSUsTMOkMOT15Pg04pm4lzCKtZKyU0T8ESblT6IiWoHPPPuvA4ZhDPUtqcqr+lQxTaRPk6g61ovlTI8f8oUI+UKUR8vP+rlOZBomZZEyyiJlLKhccNrHH0vYdSW66E5005Xo8q4nu0llU17llWtjO/aw66drDh20gsyvmM9VVVdRW1A77D20TItowKs0O2ZO2Rxum3EbbQNt7O7cze6O3TT1N414bL/ppyBYQH4wf6iXUH+q/6wqqAzDIDpYkVRXcuoqk3NlGMZQsnfGWf7ndQcby5+48l/WcUlnvZUDj/VmymS9HlqtvUkOd8XpTWTY0tjDlsYeLNOgpiiM3zK9KqDBZvNZ+3TZJxPCIQiHiAZ8lA1W+JTneZdhv0VX3EuwecmvNF0DqePTZEdTWow1w6EqnWGeCbMNh+m2TUU6Q6IjRlfXAD3xDF0DaboG0gR8JmV5QUyD46swDlW3eSsexjP2qM3zE45NXmMn8xs7iQV8fFJVzNqqEvpCAUqjASYVhakpDlNTFCY/5CXJbdce+n/hZJZhMaVoCrNLZzO7dDYl4ZIz+C8pInJ5uOAaVz/66KM8+uijALS3t5/naEREZEI4DrzzDrz3HqP+SgiF4I47YOHCUXtVAOzp3MOLe16kN9ULQNb2qoa2NvZy9ISqoUmFYRbUFjKrIm9YQ9ozEbSClEZKmVo0lenF05lcODnnrPSk/ElndczxFvFHmFo0lalFU893KDLGTkzY1RbUnvF+juuQzCaHTcuLZ+JknSzFoWLqCuvOutrCMAwq8yqpzKvk+inX05/qp7m/mUQ2QV4gz0sMBfIJ+UI5ibtj1VjHEkbHeuMMrUJmWEPXM06G9oF22uPtQ5enmwJ3psK+MCXhEorDxRSHiikMFdKf6qc97lXmdSW6zqrnjzG4CqGJgf/UBWlDHNeltS/JoY44hzoHaO1PcqQrnvM4n2UQHVy9MOy3vFXuTljpLjTYO6k0GiAaHPlrf03AS66cKJG2iaWyJDO215h9sEfTsV5N+SEftcURKvKDQ5WJDYMbgJWxyXQPcPhQJ81HujFiCQqSGQpTaYoTaYqSXp+qk524GmM06F1apkE66zWITw/GMqWzl1tau9maF+G9unK2DqTZ2uR95ueH/NQUhSnN86rBCkZI9tuuzYHuAxzoPsAr+16hNFw6lDCqK6z7VIlzEZFLxYR8AtbU1NDQ0DB0u7Gxcaib98m+853v8J3vfAfw5siJiMglrr8fnnkGTjFtmVmz4O67oaBg1IfE0jFe2fcK29qO98Zr7I7zxs42egYbTAd8JvOqC7iyppCyvNFbLQeswFCfmBOnKBy7frqpWCIXg2NLxkf841eFkx/MZ05wzukfyPBqrLLI6ZdPn106e+i667r0pnppH2gnkU14Ux4Hpz8GfUGCVpCgL4hlWEPNnbNOdlizZ7/ppzhcTMgXOuXzZp0sHfEO2gfah5LR4PVr8qacHf9sOFa1ZbteD61j1zO213z62IqKx64fS9KZhkF1YZjqwjArZpQST2dp7E4AeEmhoEU04K3M92k+iwqDhVTlVRHxR+iId9A20DassuxYU+4zZRomk/InURwqZnfnbtKkMSsKmFZRwNRlUznSFedIV5w+w6DFMvGbUJCxKUymKUqkKE6kqcpkKIwlCfcnsE7qA+e3TKIjfGTPd13ubmtnM8W8NKmM/cks/ckMu47mVqSdOG24riTCtLIohWGv6qgz0cnaxrWsbVyLaZiUhkupzKukIlpBZdS7LAoV6XNfRC4LE5Ikuueee/jZz37Gl770JdatW0dhYaGmmomICBw86CWIRmtOHQzCbbfBVVeNWj3kui6bj27mtf2vkch6P6KSGZv393awrdn7AVccCbB0ajGzK/OH9fWwDIu55XOZXjx9aLWcgmABQd+Yr9UlIuPIMAyKQkUUhYpO+1jLtAiew3p8PtNHVV7VuEyztB2bhr4G9nXtY2/nXloHWgFv5cTZlflnfBwDY1ij9dJw6VDMlXmVOYlB13XpT/fTNtBG20AbHfEOBtIDJLPJYb2njlVrmYZJdV4104qnMbVoKnUFdUOfm2k7zfa27Wxs2UhjXyOGYTClNMqU0mhOnMf0D26DwRAcSFGdDlAXs6jc24zb0UEymyRlp4b1+zINg/yQn+v6YqxIJDi4cApb6sppiqXoiXvNtHsTxxcg6Iil6Iil2N8e453dUBINMK0syrSyKJMKw5imgeM6XoVafPiMhpAvxJzSOdwy4xbyAqdaM1FE5OI2Jqub/fZv/zbvvPMOHR0dVFZW8v/8P/8PmYyXwf/d3/1dXNflu9/9Lq+88gqRSISf//znZ1QlpNXNREQuUY7jTS17553Rp5dNmwb33gtFRaMeJpFJ8MzOZ9jXtQ/wfujsa4vx9u524ukslmmwbGoJS6cW4zuhf1FJuISrq69mcdXiYT1VREQuJH2pPvZ17WNf1z464h04rjO02uCJ27GVCI8lhYJWcFyqXmzH9pq5+4JntHJYa6yVTUc3sbN951DVlWmYQw3ujzW3D/qClEXKqIxWUpVXRUW04niy3nW9StP6eti5k2w2TSrrVV31pnrpTfbSnx5KMREvjLDvmpl01RzvM+S6LsmMQ18yQ0csxaGOOIe7BoatXBn0W0wujlCeH6QsL0BZfpD8oC/nfSwKFfGNxd/41P3hRMbTSCtYicDZrW42Jkmi8aIkkYjIJWhgAH79a9i/f+T7DQNuuAGuu27UxtQAHfEOntj6BJ2JTgD6kxne3tXOgQ6vKmlSYZib51VQMjhHwcBgbvlclk5ayrSiaZo2ICIygTJ2xustdZqVAk8pFoNNm2DjRujpGRrOOtmhxQJ6kj3E0jHaaorYc+0sUnkjTx+0HZfmngQHOwY42DFAdzy3p1XAZ1IWDVKaF2BqaZQZFV4FUVmkjIevenhcp2qKfBpKEsloziZJpK5sIiIycfr74ec/h67c1WYAyMuD//AfvCqiU9jXtY+ndzxNMus1ot7b2s/rO1tJZx0CPpPVM8tYUFM4lAiqzqvm7jl3X3DNpEVELhd+y3/uB8nL804grFrlVRa99RYkk/hMHyXhkqFVylzXJetkiW82ab19JW0VEXqSPXQlumjsayRtp7FMg7qSCHUlEa6fXU53PE1zd4KOWHpoWloiY9Pcm6C5N8HWpl6un13OksnFdMQ7+NUnv+Jri76m6cki4yybzeLzKW0xkfRui4jIxIjH4Z//efQE0dSp8IUveD8CRuG6Luua1vHqvldxcb3bB7v46IBXTTSjPI8b51SQF/L+vPlNPzdMvYEVdSvOaGqEiIhcBEwTrrkGrrzSSxRt3Dhs6rJhGPgtP4VZKHzpI2bfeissvwsMg6yT5XDPYfZ07mFP5x66k92A17uuODJ8Nb+BVJbOWJrG7jjrD3WxZk87IZ/FvEkFNPU38dT2p/jygi9rNTSRE/zFX/wFv/jFL6ioqKCuro6rr76a3/zmN/yP//E/WLp0KR0dHSxdupRDhw5h2zY//OEPeeedd0ilUvz+7/8+v/M7v8M777zDf/kv/4Xi4mJ27drFl770JUpKSviDP/gDAP70T/+UiooKfvCDH5zfF3uJ0ieaiIiMv2QSfvlLaG8f+f7rr/emmJ1iepnt2Ly490U+bvkYgIzt8Nr2o+xti2EYcN2scq6qO776zPTi6Xxu9ueGziyLiMglJhKBz30Oli6Fl1+Gw4dzH+M48Mor0NQE99yDz+9nRskMZpTM4PaZt9OZ6GRP5x72de2jpb9laAEEgGjQRzToY3JphJDfYs3edl7f2UrIbzK9PI8D3Qd4Zscz/Nb839KJCLmw/PjH5+U5Nm7cyJNPPsnmzZvJZrMsWbKEq6++etRD/OM//iOFhYVs2LCBVCrFqlWruPXWWwH4+OOP2bZtG9OmTePQoUN8/vOf5w/+4A9wHIcnn3yS9evXj9cru+wpSSQiIuMrnYbHH4eWltz7wmFvetnMmac8RG+yl1/v/DWHe70fAP3JDM9vaaa9P0XAZ3LnldVMLfMaUId9YW6feTsLKxeq75CIyOWgqgq+/nXYvh1efdWb2nyyrVu9ExUPPADFxYBXcVQWKaMsUsbKupW4rkssHaN1oJW2gTZaY60c6D5Af7qfJVOKSWRsNhzq4sWtLdx/VQ21xRF2duzkN3t+w92z79bfHLnsvffee9x///1EIl6/rnvuueeUj3/ttdf45JNPePrppwHo7e1l7969BAIBrrnmGqYNth+YOnUqpaWlbNq0idbWVq666ipKS0vH98VcxpQkEhGR8ZPNwlNPwZEjufcFg/DVr8Kk0fsEtfS3sLZxLdvatuG43io0Lb0JXtjSQjydpSjs557Fk4aaU1dGK/ntBb99Rstgi4jIJcQwvOlnU6fCv/3byFVFR4/Co496U5tnzBjhEAb5wXzyg/nMLPFOXvQme/nHTf9IX6qPlTNKSWZstjb18vyWZr6wpJaKghAft3xMxB/h5uk3j/OLFLk4+Xw+HMf7HpdMJofGXdflr//6r7ntttuGPf6dd94hGh2++uy3vvUtHnvsMY4ePcrDDz88/kFfxlQXKSIi48O24emnR17FzO+HBx8cMUHkui57O/fyi82/4B82/gOftH6C4zq4rsuO5j6e3thIPJ2lrjjCl66ZPJQguqLsCr655JtKEImIXM7y8uBrX4Ply0e+P5GAf/kX2LDhjA5XGCrka4u+RsQfwTAMbryiglmV+aSzDs9ubhpaFe39I+/z1sG3uIAXjhYZd9dffz3PPvssiUSC/v5+XnjhBcCrBNq4cSPAUNUQwG233cbf/d3fkclkANizZw8DAwMjHvv+++/nlVdeYcOGDTlJJRlbqiQSEZGx5zjw7LOwa1fufZYFX/oSTJ48bNh1Xba1beO9I+/RNtA2NG47Lnvb+vn4cDdt/SkAFtYW8ZnZ5VimV9p//ZTruXHqjSr1FxER7+/MHXd4JyJeeMGraj2R68KLL3oJo+uu86qQTqEsUsZXFn6FxzY/RtpOc/v8KlIZmyNdcX79cRMPLK0jL+RjzeE1tA+0c//c+wlYgVMeU+RStGTJEh544AEWLVpERUUFy5YtA+AP//AP+eIXv8ijjz7KXXfdNfT4b33rWxw6dIglS5bgui7l5eU8++yzIx47EAhw4403UlRUhGVZE/FyLluGewGnu5cuXUp9ff35DkNERM7Wyy/DunW546YJX/wiXHHFsGHbsfn1zl+zvX370Fgqa7O9qY9NDT30J70zTGG/xcrB5e0BfKaPe+fcy4LKBeP3WkRE5OLV0gJPPgm9vSPff+21cNttp00UARzsPsi/fPIv2K5NOuvw602NHO1NUhQJcM+iSZREvcSQpj7L+bJz507mzp17vsMY8uMf/5i8vDz+8A//8JyP5TgOS5Ys4d/+7d+YNWvWGER3eRnp38Zo+RZNNxMRkbG1e/fICSLDgPvuy0kQZZ0sT21/aihBFEtmeW9vO//4/kHW7G2nP5mhOBLgprmVfHP1tKEEUX4gn28s/oYSRCIiMrrqavid34HBBrg5PvoInnvOq4A9jWnF0/jCvC9gYBDwmdy3uIbyvCA98TRPbjjCwQ5vmkzrQCuPbnyUQz2HxvCFiFy+duzYwcyZM7npppuUIJoAqiQSEZGxMzAAf/u33uXJ7r4bTloGNWNneHLbk+zv9voWNfckeHZzE+ms92W9pijM1VOKmVYWHTaVbHrxdO674j4KggXj91pEROTS4Tjw/POwefPI919xhdfQ2nf6bhybWjbx3O7nAEhnHV7bcZR9bTEMA1bPLGfJ5CIMw8A0TO6YeQfLapaN4QsRGd2FVkkkF46zqSRSTyIRERkbruv1fhgpQXTzzTkJorSd5vGtjw+daW3oivP8lmYytsOU0igrppdSVRgaeryBwZyyOayoXcHkwsnqPyQiImfONOHeeyEU8qqHTrZrF/zqV17PvGDwlIe6qvoqMk6Gl/e+TMBncteCatYd7OKjA528t7edjv4UN82twGfBi3tfpHWglTtn3YlpaBKHiFz4lCQSEZGxsWXLyI2qZ82CVauGDSWzSX71ya9o6GsA4HDnAM9vacZ2XOZWF3DLvErMwSSQz/SxuGox19ZeS1mkbNxfhoiIXKIMw+s/FInAW2/l3n/wIPziF/DVr0I4fMpDXVNzDcWhYp7e8TQpO8W100spjQZ4dUcrO4/20RVPc/eiSeQFfdQ312MaJnfOunOcXpjIca7r6kSaDHO2k8eUzhYRkXPX0+M1qz5ZJAL33DOsIWgik+CXW345lCA60B4bShBdOamQWwcTRH7Tzw1Tb+A/Xvsf+dzszylBJCIi584w4Prr4a67Rm5W3dwMjz8Og0tyn8qs0ll8++pvUxou9W5X5vPA0jryQ35a+5I8sf4IbX1JANY3rWdf174xfSkiJwuFQnR2dp51UkAuXa7r0tnZSSgUOv2DB6knkYiInBvX9c68HjqUe98Xvwjz5g3djGfi/HLLL2mJtQCwr62fl7YdxXFcFtUWccOccgzDIGgFeXDhg0wunDxBL0JERC47W7fCv//7yE2r58yBBx7wpqmdRjKb5OkdTw8lgeLpLC9+0kJTT4K8oI+vrphC0GdRECzg95b9HiHfmf9YEzkbmUyGxsZGksnk+Q5FLiChUIja2lr8fv+wcfUkEhGR8bF27cgJooULhyWIHNfhia1PDCWIdh/t55XtR3FdlyWTi7luVhmGYRDyhfjqwq9SU1AzQS9AREQuSwsWeP2H/vVfIZsdft/u3fDii/C5z41ccXSCkC/Elxd8mTcOvMGHDR8SCfj4/JJa/rW+gda+JGv2dHDLvEr6Un28uu9V7r3i3nF8UXI58/v9TBttJT+RM6TpZiIi8um1tcGbb+aOFxTAncN7L6w5vGZoitnOlj5e2d6C67osm1oylCCK+CM8tOghJYhERGRizJ4NDz4IlpV738aN8M47Z3QY0zC5dcat3H/F/ViGhWUa3DqvEss02N7cy8EOb1GHTUc3sadzzxi+ABGRsaUkkYiIfDq2Db/+tXd5svvu81aQGdTY18iaw2sA6IileGNnK64LK6aXsmqmlyCK+qN8ffHXqc6vnqAXICIiAkybBp///MgVQ+++C2fR/mJR1SJunHYjAKV5QVZM9/oVvbGzlWTG+3v5wu4XSGQS5x63iMg4UJJIREQ+nXffhaNHc8evvRamTx+6mbbT/PvOf8dxHbKOwyvbjg41qV4++OU5P5DPN676BhXRiomKXkRE5Lj58+H220e+78UXYefOMz7UyrqV1OR7FbFLphRTVRhiIJVlzZ52APrT/byy75VzDllEZDwoSSQiImevqws++CB3vLwcbrpp2NBr+1+jM9EJwNr9nXTEUhSF/Vw/uxw4niDS6mUiInJeLV8Oq1fnjrsuPPMMHD58RocxDZP7rrgPn+nDNAxunVeFZRrsaOnjYEcMgC2tW9jdsXssoxcRGRNKEomIyNl7/fXcaWam6ZXrn7Bywp7OPdQ3e2X6jd1xNh7pxjAMbruyioDP+xN0/9z7KQmXTFjoIiIio7rpJli8OHc8m4UnnoDOzjM6THm0nBunetPOSqIBVs7wToS8saPt+LSzPS8Qz8THJGwRkbGiJJGIiJydQ4dGLrtftQqqj/cTGkgP8Pzu5wFIZW1e3d4KLlwztYTqwjAAK2pXML14eu6xREREzgfDgLvvhlmzcu9LJr2V0DKZMzrUiroV1BbUAnDV5CKqC8MMpLO8u9ubdhZLx3h578tjFrqIyFhQkkhERM6c48Crr+aO5+fDddcN3XRdlxf2vEAs7ZXVv72rnf5khsqCENdM86qGKqIV3DT9ptxjiYiInE+WBb/1W1Azwkqbra1ejyLXPe1hcqedeaud7Tzax/527+/j1ratbGvbNtavQETkU1OSSEREztyWLdDSkjt+000QCAzd3HR0E7s6dgGwp7WfXUf78Fkmt8/3+jJYhsXn534en+mbqMhFRETOXCAADz4IJSNMh968GTZtOqPDlEXKuGmad0KkOBpg1Uxv2tmbO9tIpL1pZ8/uepaG3oYxCVtE5FwpSSQiImcmlYI338wdr66GRYuGbnYluoZWbYkls7y5qw2A62eVURz1EkmfnfZZqvKqxj9mERGRTysSgS9+EXwjnNB46aWRV/gcwfLa5UwunAzAVXVF1BSFiaezvLytBdtxyTpZntj2BJ3xM+t3JCIynpQkEhGRM/P++xCL5Y7ffrvXwwFvmtnzu58nbadxXZfXdhwllbGZWhplQU0hAFOLprKibsVERi4iIvLpVFXBXXfljmez8NRTXp+i0zANk3vn3Ivf9GMYBrfOryLstzjSFeetXa24rks8E+dXW3/FQHpgHF6EiMiZU5JIREROr6cH1q7NHZ83D6ZMGbq5s2Mnh3oOAbClsZcjXXHCfotb5lViGAZBK8h9V9yHaejPj4iIXCSuusrbTtbdDc8+e0b9iUojpdw8/WYACsN+7l1cg88y2N7cx/qDXYBXifvEtifI2GfWGFtEZDzoW7qIiJze6697Z01PZFlwyy1DN7NOltf2vwZAPJ3lw/0dANw0t4Jo0CvVv2v2XRSFiiYkZBERkTFz551QWZk7vmvXyCdRRnBNzTVcVeUlm6oKQ9wxvxoMWHugkx3NfQA09jXy652/xnGdMQtdRORsKEkkIiKnduQIbN+eO75iBRQXD938qPEjepI9AKzd30k66zClNMrMinwA5pfPZ0HFgomIWEREZGz5/V5/omAw97433oDDh097CMMw+NzszzGjeAYAMyryuGFWuXeIna00dMUBryr39f2vj13sIiJnQUkiEREZnevCK6/kjkejw5a8j6VjrDm8BoD2/hTbmnsxDIPPzPZWcQlaQe6cdSfGYO8iERGRi05pKdx3X+6448DTT0M8ftpDWKbFF+d/kcqoV5W0eHIxSyYX47guL3zSTEcsBcDaxrWsa1w3ltGLiJwRJYlERGR0n3wCzc254zfdNOxs6lsH3xpqVr1mbzuuC4tqCymJeo/5zNTPEA1EJypqERGR8TF3rldJe7L+fnjttTM6RNAX5MGFD1IQLADgulllzKzII511eG5TE7GUN737lX2v0NDbMGahi4icCSWJRERkZI4Da9bkjldVweLFQzdb+lvY1LIJgAMdAzR0xQn6LZZPKwWgJFzC8prlExGxiIjI+Lv5Zqiryx3fvBn27z+jQxQEC3hwwYMErSCGYXD7/CqqC0P0p7I8t6mJjO3g4vLGgTfGNnYRkdNQkkhEREa2cyd0duaO33YbmN6fD9d1eWXfK7i4ZB2H9/a0A3DttBLCAQuAW2fcimVaExa2iIjIuLIs+K3fglAo974XXoB0+owOU5lXyRfnfxHTMPFZJvcsqqEo7Kc9lmJLQw8Ah3sPczR2dAyDFxE5NSWJREQkl+vC++/njs+YAdOmDd3c2bGTw71es84tDb30JDIURwIsrC0CYHrxdOaUzpmIiEVERCZOQcGwFT6H9PTAW2+d8WFmlMzg7tl3AxAOWHxmTgUAWxp6cBwX8BaGEBGZKEoSiYhIrv37oaUld3z16qGrJy95v+6gV3V0/exyLNPAwOC2GbepWbWIiFyaliyBqVNzx9etg8bGMz7MVdVXcXX11QBMLY1QHAnQn8qyvz0GwNbWrQykB8YiYhGR01KSSEREco1URVRTM+zL8GhL3k8r8xpUXz3pairzKicgWBERkfPAMOCee8DnGz7uuvD882DbZ3yoFXUrBg9psKiuCIBNR3oAsF2b+ub6sYhYROS0lCQSEZHhGhrg0KHc8euu874QM/qS99fPOr7k/Y1Tb5yoiEVERM6PkhK4cYS/d21tI59wGUVZpIxZJbMAmFddQMBn0tyboLUvCcCG5g3YzpknnUREPi0liUREZLiRvtSWl8Oc472FXtv/2ohL3pfmacl7ERG5zKxYAdXVueNr1kB7+xkfZnmttxJowGdy5aRCADYPVhPF0jG2t28/51BFRE5HSSIRETmurQ12784dX716qIpoT+cePmn9BID97SMveX9NzTUTFrKIiMh5ZZpw771DK38OsW1v2pnrntFhZhTPoDxSDsCiuiIMA3a39TOQygLeNG/3DI8lIvJpKUkkIiLHffBB7lhhIVx5JQDJbJLf7PmNdz1j8/auNgBWnLTkvc/05R5HRETkUlVVBStX5o43NMCGDWd0CMMwhqqJCsN+ppfl4TgunzT2AtDc30xj35k3xBYR+TSUJBIREU9PD2zdmju+ciVYXgLo9f2v05fqA+C9ve0MpLNUF4ZYONhkc1rRNC15LyIil6fPfAZKS3PH33gD+vrO6BALKxcS8oUAuGpyEQBbm3rIOg7gVROJiIynMUkSvfLKK8yZM4eZM2fyyCOP5Nz/2GOPUV5ezuLFi1m8eDH/5//8n7F4WhERGUsffgiDX0KHRKPeEr/Age4DbGzZCMDhzgG2N/dhmQa3zKvCNAx8po+7Zt+lJe9FROTy5Pd7q52dLJ2GV189o0MErABXV18NQE1RmLK8IPG0zZ6jMQB2duykN9k7ZiGLiJzsnJNEtm3z+7//+7z88svs2LGDJ554gh07duQ87oEHHmDz5s1s3ryZb33rW+f6tCIiMpYGBuDjj3PHly8Hv5+0neb53c8DkM46vLHTm2a2fFopJdEAADdOvZGySNmEhSwiInLBmTIFli7NHd++HfbtO6NDXFNzDaZhYhjGUDXRpoZuXNfFcR02NJ/Z9DURkU/jnJNE69evZ+bMmUyfPp1AIMCXvvQlnnvuubGITUREJspHH0E2O3wsEIBlywB488Cb9CR7APhgXwf9yQwV+UGunlIMwKT8SayoWzGREYuIiFyYbr7Zq8Q92Usv5f6tHUFhqJAryq4AYE5lPmG/RXt/iuaeJAAbmzeSsTNjGrKIyDHnnCRqamqirq5u6HZtbS1NTU05j3vmmWdYuHAhX/jCF2hoaDjXpxURkbGSSo3cVHPZMgiHOdJ7hPVN6wFo7I6zpbEH0/CmmVmmgWVY3DvnXkxDbe5EREQIheC223LHu7rg/ffP6BDX1l4LgM8yWVhbCHjVRACJbIItrVvGJlYRkZNMyDf6u+++m0OHDvHJJ59wyy238NBDD4362EcffZSlS5eydOlS2tvbJyI8EZHLW309JJPDx3w+uPZaMnaG53Y9h4tLxnZ4Y0crAMumllCeHwTg+inXU5lXOdFRi4iIXLgWLICpU3PH338fOjtPu3tdQR3VedUALKwtwjQN9rfH6E14FUTrGtfhuu5YRiwiAoxBkqimpmZYZVBjYyM1NTXDHlNaWkow6P2Y+Na3vsXGjRtHPd53vvMd6uvrqa+vp7y8/FzDExGRU7FtWLcud3zxYsjP551D79CZ8L7Mrt3fSU8iQ2k0yDXTSgCojFayevLqCQxYRETkImAYcNddYJ70cyub9aadnSbBYxjGUDVRNOhjdkUergufNPYA0B5vZ1/XmfU4EhE5G+ecJFq2bBl79+7l4MGDpNNpnnzySe45qat/S0vL0PXnn3+euXPnnuvTiojIWNixI3dZXsOAlStp6W/hw4YPAWjpTbCpoRvDgFvmVWKZBqZhcu8V92KZ1nkIXERE5AJXXg4rV+aO79/v/f09jfkV88kL5AGwuM7rAbitqZdU1gbgtf2vYTv22MUrIsIYJIl8Ph8/+9nPuO2225g7dy5f/OIXmT9/Pj/60Y94/nlvJZyf/vSnzJ8/n0WLFvHTn/6Uxx577FyfVkREzpXrwtq1ueNXXAElJaw5vAYXl6zj8PqOVlwXlkwupqowBMCqulVMyp80wUGLiIhcRD7zGSgqyh1/5RWvJ+Ap+EwfSyd5K6VVFYaoKQqTyjqsP9gFeNVEWulMRMaa4V7Ak1mXLl1KfX39+Q5DROTSdPgw/PznueMPP0xfZRH/a+3/wsVlW1Mvb+xspSgS4CvLJ+OzTMoiZfzu0t/FZ/omPm4REZGLye7d8MQTuePXXgu3337KXWPpGP/7o/9N1slytDfJk/VHMA2Dry6fQnE0QNAK8v3l3ycaGGE1NRGRUxgt36KlaERELlcjVRHV1EBdHRubN+Li4rouWwb7HyyfVoLPMjEwuHfOvUoQiYiInIk5c7ztZOvWwdGjp9w1L5DHqrpVgFdNNL+6EMdxeXePt8BPyk7x5sE3xzxkEbl8KUkkInI56uz0zmyebMUKbNfh45aPATjal6S9P0XIbzGrwuuLML9iPnWFdRMZrYiIyMXtjjvA7x8+5rrw4ounbWK9evJqCoOFAKyaWUrAZ3Koc4CDHTEANrVsorm/eVzCFpHLj5JEIiKXo48+yv1SWlgI8+axu3M3/el+AD5p7AVg/qQCfJb3J2PZpGUTGqqIiMhFr6jI6090soYG2Lr1lLv6LT+3zrgVgEjAx7XTSgF4d3c7WcfBxeXlvS9zAXcREZGLiJJEIiKXm0QCNm/OHV++HEyTDU1eE8xE2mZPq5csWlDjncGsiFYwuXDyREUqIiJy6Vixwlvx7GSvv37aJtbzyucxtWgqAIvqiiiJBuhJZNh0pAeAhr4GPmn9ZIwDFpHLkZJEIiKXm/p6yGSGjwWDsGQJHfEODvYcBGBHSx+24zKlNEpRJADA0klLMQxjoiMWERG5+FmWN+3sZP39sGbNKXc1DIM7Zt6BgYFlGnxmtpdsWn+wi1gqC8AbB94glT11sklE5HSUJBIRuZzYNqxfnzu+ZAmEQtQ3eyscuK7L1sGG1QtrvSqigBVgUeWiiYpURETk0jN9Osydmzv+0Udev8BTqMyrZFmNN+V7SmmUGeV5ZGyHD/Z2ANCf7ue9I++NecgicnlRkkhE5HKybZt3xvJEhgHLl5O202w+uhmAI11xehIZ8oM+ppV5y+ourFxI0Bec4IBFREQuMbfdBr6TVgi1bXjlldPueuPUGwn7wgBcP6scyzTYebSP5p4EAGsb1tIZP3WySUTkVJQkEhG5XLjuyMvez5sHRUVsa9tGMpsEjjesXlBbiDk4vWzppKUTFqqIiMglq6gIVq3KHd+7F/bsOeWuYX+Yz077LACFET9XTy4G4J3d7Tiui+3avLLv9MkmEZHRKEkkInK5OHQIjh7NHV+xAtd1hxpW9yczHOiIYRoG8yd5U83qCuqoyquawGBFREQuYatXe6uKnuyVVyCbPeWuV0+6euhv8rJpJeQFfbT1J9nR3AfA3q69HO45POYhi8jlQUkiEZHLxUhVRHV1UFtLc38zLbEWALY19eK6MKMij2jQK4c/1gNBRERExoDf7007O1lXl9ef6BRMw+SOmV4DbL9lct0sr4n1h/s7yNqOd73hw7GNV0QuG0oSiYhcDjo6Ri5hX7ECgA3NXhWR7bhsa/LORC4abFgd8UeYVz5vYuIUERG5XMydC9Om5Y6vWZPbP/AkU4qmcGXFlQDMrsyjIj9EPG2zs8Xbb3fnbjriHWMesohc+pQkEhG5HGzYkDtWXAxXXEEik2Bb2zYADrTHGEhnKYkGqCnyGmNeVXUVPtOXu7+IiIh8eoYBt98O5kk/ydJpeP310+5+y/RbMA0TwzC4eorXm+jjI924rguomkhEPh0liURELnXpNGzenDu+fDmYJpuPbibreP0Ptgw2rF5YW4RhGBgYXD3p6gkMVkRE5DJSWQnLRpjS/ckncOTIKXctDBWyoGIBALMq8sgP+emOpznQPgDAlqNbiKVjYx6yiFzalCQSEbnUbd0KqdTwMb8fFi/GdV3qm+sB6BpI0dgdx2eZzK3OB2BGyQxKwiUTHbGIiMjl44YbIBLJHX/1VW9l0lNYWbcSANM0WDK5CICNh7sBsF2b9U3rxzJSEbkMKEkkInIpc92Rp5otXAihEHu79tKZ6ASOL3t/RVU+QZ8FwLJJalgtIiIyrsJhuOmm3PGmJti27ZS7VuZVMqN4BgDzJxUS9Jk09yZo7kkAsKFpA2k7PeYhi8ilS0kiEZFLWWPjyMveL1tG1snyyr5XAEhmbHa0eA2rFw42rC4MFjKrdNaEhSoiInLZuuoqqKrKHX/zTchmT7nrqsmrAAj4TBbWFgHw8WA1USKbYPPRzWMZqYhc4pQkEhG5lI1URVRbC1VVrG1YS1eiC4CPDnSSzjrUFIWpyA8BcPWkqzEN/ZkQEREZd6YJt92WO97TA+vWnXLXaUXTqMrzEkyL64qwTIN9HTG6414F0dqGtTiuM9YRi8glSt/+RUQuVfE4bN+eO75sGb3JXtYcXgNAe3+KLY09GAbcMKcCAL/pZ0n1komMVkRE5PI2bRrMnp07vmaN9zd9FIZhDPUmigZ9XFGVDy5sOuJVE3Unu9nZvnNcQhaRS4+SRCIil6pNm8C2h49FIjB/Pq/uf5WMk8F1Xd7e3YbrwsKaIsrzgwBcN+U68gJ55yFoERGRy9gtt4BhDB9LpeDdd0+52/zy+RQGveniSyYXA7C9uY942puq9mHDh7inaYItIgJKEomIXJocB+rrc8evuor9fYfZ0b4DgF1H+2nuSRD2W6yYUQpASbhk6IykiIiITKDycrj66tzxDRugs3PU3SzT4traawEozQsyrSyK7bhDi1I09TdxpPfIuIQsIpcWJYlERC5F+/dDd/fwMcPAXnIVL+97GYBU1ua9vR0ArJ5VRsjvrWh2x8w78Jm+CQ1XREREBt1wAwQCw8ccB95445S7LaleQtDyKoKvnuJVE21p6CFje/2IPmj4YMxDFZFLj5JEIiKXopEaVs+cydqBXXTEvcTQRwe6iKezVBWGmFddAMCc0jla0UxEROR8ysuD1atzx3fuhMOHR90t6AuydNJSAGqKwlQWhEhkbHYOrl66p3MP7QPt4xKyiFw6lCQSEbnUdHfD3r05w7FFc4eaVXfEUmxu6AEDPjunAsMw8Jk+bp95+wQHKyIiIjlWrID8/Nzx116DU/QWWl67HMuwMAxjqJro48PdOIP7rG1cOy7hisilQ0kiEZFLzcaNuV8gi4p42d1L2k57zap3teG6LgtrCqko8Ja8Xz15NcXh4vMQsIiIiAzj98NNN+WONzWNvHLpoIJgAQsqFwAwszyPgpCfnkSGA+0DAGw5uoWeZM94RCwilwgliURELiXZLHz8cc5w05xJbO/0lr/d3dpPU0+CkN9i5YwyAIpDxayqWzWhoYqIiMgpLFwIVVW542+84f29H8WK2hUAmKbBkslFAGw41IXrutiuzdsH3x6PaEXkEqEkkYjIpWTHDojHhw05pslvIo0ApLPO8WbVM483q7595u34Lf/ExioiIiKjM0249dbc8Z4eWL9+1N0q8yqZWTITgPk1hUQCPlr7kuxtiwHwSesnHI0dHY+IReQSoCSRiMilZISG1Udq8mhxvaaV6w52MpDKUlkQYv4kr1n17NLZzCmbM6FhioiIyBmYPh1mjbCgxHvvQTI56m7XTb4OAL9lcu30EgA+3NeB7bi4uLxx4NQrpYnI5UtJIhGRS0VbGzQ0DBtyXZc1FV5l0UAq6zWrBj57hZpVi4iIXBRuuQUMY/hYIgEffjjqLlOKpjC7dDYAV04qpDgSoCeRYVtTLwD7uvZxsPvguIUsIhcvJYlERC4VmzblDLXlGRzIywDw8ZFubMdlRnkelYPNqlfVraIkXDKhYYqIiMhZqKiAxYtzx9euhVhs1N1unn4zBgamabBqZingVRSnsw4Arx94HfcUK6WJyOVJSSIRkUuBbcOWLTnD66tsMAySGZutg2cPl071VjAL+8Ksmqxm1SIiIhe8G24Ayxo+lsnAmjWj7lIRrWBR1SIAZpTnUVUQIp62+fhINwDN/c3saN8xXhGLyEVKSSIRkUvBnj05Dat7sjG2VHhnC7c29ZLOOtQWR6guDAOwvHY5ASsw4aGKiIjIWSoshGuuyR2vr4fu7lF3u3HqjfhMH4ZhsHqWt6LpxsPdxNPe6mhvHnwT27HHJWQRuTgpSSQicikYYarZtuIs2aCfrO2w6UgPAMsGq4j8pp9rakb4sikiIiIXptWrIRgcPuY48NZbo+5SGCoc+ntfWxxhWlmUjO2w7kAXAF2JLj5u+XjcQhaRi4+SRCIiF7u+Pti7d9jQQHqAjVVeFdGOlj7i6Szl+UEml0QAuHrS1UT8kQkPVURERD6laBRWrswd37oVjo6+pP11k68j5BvsRTizDAyvwrgnngbgnUPvkLbT4xKyiFx8lCQSEbnYbdkCJzWe3O900lNdjOO4bDzslaEvm1qCYRiYhsmK2hXnI1IRERE5FytWeMmik7355qi7hP1hrpt8HQBleUHmVRXguC4f7u8EYCAzwIcNo6+UJiKXFyWJREQuZq6bM9UsmU2yucrFNQ32tsXoTWQoDPuZWZEHwIKKBRSGCs9HtCIiInIuAgG4/vrc8b174fDhUXe7puYaCoIFAFw7oxTLNNjT2k9rXxKADxs+JJYefaU0Ebl8KEkkInIxO3IEurqGDTX0NtA8owLXddlwyLtv6ZQSTMMA0IpmIiIiF7Orr4aiotzxN97IqSw+xm/5uXHqjQAUhPwsrvP2f39vB67rkrbTrDk8+kppInL5UJJIRORidlIVUdpOszM/RTI/zOHOOB2xFJGAj7nV+QDMKZ1DRbTifEQqIiIiY8HngxtvzB1vaPBWOx3FoqpFlEfKAW8KetBn0tAd53CXtzrqxy0fq5pIRJQkEhG5aKVSsH37sKGmviYaZ3pfAI9VES2ZXITP8j7uV09ePbExioiIyNhbsAAqRjjp8+ab3opnIzANk5un3wxAyG+xdGoJAOsHVzrLOlnWNa4bn3hF5KKhJJGIyMVq+3bIZIZu2o7N4VQbHZPLaOlN0NSTIOAzWVDr9R+aUjiFusK68xWtiIiIjBXThJtvzh1va4Nt20bdbXbpbCYXTgZgUW0RQb9Fc2+C5p4EABuaN5DKpsYlZBG5OChJJCJysTppqllzfzNNU4pxfBb1h7wVzRbVFhH0WYCqiERERC4ps2bB5Mm54++9N2pvIsMw+MyUzwAQ8JksGjyRVD9YfZzMJtnYsnF84hWRi4KSRCIiF6OODq/3wCDXdWnsa+TorGq6BlLsb49hmcZQY8rKaCUzS2aep2BFRERkzBkG3HRT7nh7O+zYMepu04unU51XDcDiuiIs0+BAxwCdMa+C6KPGj7Ade1xCFpEL35gkiV555RXmzJnDzJkzeeSRR3LuT6VSPPDAA8ycOZPly5dz6NChsXhaEZHL10lVRD3JHjoLfPSX5rHxcA8A86oLiAZ9gFdFZAyubiYiIiKXiClTYOrU3PE1a05ZTXRspdNIwMf8SQUAbDzsVSH3pfr4pPWTcQlXRC5855wksm2b3//93+fll19mx44dPPHEE+w4KXP9j//4jxQXF7Nv3z7+43/8j/zxH//xuT6tiMjly7Zhy5ZhQ20DbRydVU3Wddnb1g/AVZOLASgKFTG/Yv6EhykiIiIT4Prrc8daW2H37lF3mVc+j+KQ9z3h6sklGAbsau2nP+n1Ovyg4QPcUZJMInJpO+ck0fr165k5cybTp08nEAjwpS99ieeee27YY5577jkeeughAL7whS/w5ptv6kNHROTT2rcPYseXqHVdl7ZUJ63TKjjSGSeddSjLC1ISDQCwbNIyTEOzi0VERC5J06ZB3QgLU5yimsg0TFbWrQSgMOJnVkU+juOy6UgPAB3xDnZ3jp5kEpFL1zn/amhqaqLuhA+l2tpampqaRn2Mz+ejsLCQzs7Oc31qEZHL0whTzY5OKiQTDrC31Useza7MG7pfVUQiIiKXMMMYuZqoudk7sTSKxVWLifqjACyd4lUVbW3qJZnx+hF9cOSDsY9VRC54F9yp5UcffZSlS5eydOlS2tvbz3c4IiIXlngc9uwZNtQ20EbLrCqyjsP+Di9JNKsiH4Ca/BqKQkUTHaWIiIhMpJkzYdKk3PFTVBP5LT/La5cDUFEQYnJJhIzt8EljLwANfQ0c6T0ybiGLyIXpnJNENTU1NJywwk5jYyM1NTWjPiabzdLb20tpaemIx/vOd75DfX099fX1lJeXn2t4IiKXlp07wXGGbrquSzP9dE8qGTbVrHhwqpmqiERERC4Do1UTNTTAwYOj7rZs0jIClvedYemUEgA2N3STtb3vGu8feX/sYxWRC9o5J4mWLVvG3r17OXjwIOl0mieffJJ77rln2GPuuecefvGLXwDw9NNP89nPflar7IiIfBrbtw+72ZPsoXFyEa5pnDDVLH/o/nnl8yY0PBERETlP5syBysrc8TVrRt0l7A+zpHoJAHUlYSryg8TTNjta+gDY07mHtoG2cQlXRC5M55wk8vl8/OxnP+O2225j7ty5fPGLX2T+/Pn86Ec/4vnnnwfgm9/8Jp2dncycOZP/9//9f3nkkUfOOXARkctOLJZzNrBtoI22aRXDp5oN9iOqLajVVDMREZHLxWjVRIcOweHDo+62onYFpmFiGAZLp3rVRBsPd+MMTlNTbyKRy4tvLA5y5513cueddw4b+7M/+7Oh66FQiH/7t38bi6cSEbl87dgxrK+A67o0WgP0l+VzpGPg+FSziFc2rioiERGRy8y8eVBeDif3dl2zBr761RF3KQwVsqBiAVtatzCzIo/CsJ/eRIZ9bTFmV+aztW0rn532WQpDhRPwAkTkfLvgGleLiMgotm0bdrM72U3j5CIwNNVMRERE8KqJrrsud3z/fmhsHHW3VZNXAWAaBksGVzqrP9SN67o4rsOHDR+OS7gicuFRkkhE5GLQ2wtHhq8w0j7QrqlmIiIiMtyVV0JJSe74KXoTVUQrmF06G4D51QVEAhZt/UmOdMUBqG+upzfZOy7hisiFRUkiEZGLwUkNq13X5UggwUBxdGhVs3JNNRMRERHTHLmaaM8eaGkZdbfVk1cD4LNMFtd51URr93fiui62a7Pm8OhJJhG5dChJJCJyMTiDqWazNNVMREREABYuhKKi3PFTVBPVFdQxuXAyAIvriogELI72JTnYMQDApqOb6Ix3jke0InIBUZJIRORC19UFzc3DhtoH2mnXVDMREREZiWXB6tW54zt3QmvriLsYhsFnp30WgIDPZNngSmcfDlYTOa7DO4feGa+IReQCoSSRiMiF7qQqIsd1OBxOES+MaKqZiIiIjGzxYigoyB1/771Rd5laNJXpxdMBWFBTSH7QR0csxZ7BquVtbdtojY2cZBKRS4OSRCIiF7qTkkQ9yR5vqhloqpmIiIiMzOeDVatyx7dvh46OUXe7adpN3u6WyfLppQCsPdCJ47i4uLx18K1xCVdELgxKEomIXMja2rztBFrVTERERM7IkiWQlzd8zHVPWU1UU1DDFWVXADCvuoCiSICeeJodLX0A7O7cTWNf47iFLCLnl5JEIiIXshGmmh3My5DMC4041Wx++fzzEaWIiIhciPx+WLkyd3zrVq/n4ShunHojBgamabBisJpo3YFOsrYDoGoikUuYkkQiIhcq1z3lVLM9mmomIiIip7N0KUQiw8ccB95/f9RdKvMqWVC5AIDZlXmU5QXpT2XZ2tQLwIHuAxzsPjhuIYvI+aMkkYjIhero0ZyzfO3xDtqmlpN1HA6MMNWsMFQ44WGKiIjIBSwQgBUrcsc3b4aenlF3u2HqDZiGiWEYrJzhVRNtONRFOutVE7158E1c1x2HgEXkfFKSSETkQjXCVLP9BVnSkaCmmomIiMiZu+YaCIeHjzkOfPDBqLuUhEu4quoqAKaVRakqDBFP22xu6AGgsa+RvV17xytiETlPlCQSEbkQnXaqWT+gqWYiIiJyBoJBWL48d/zjj6Gvb9TdPjP1M/hMH4ZhsGpGGQAbD3eRzNgAvHlA1UQilxoliURELkSNjdDbO2yoNd5O+5RysrbD/vYBwOsTAJpqJiIiIqexfLmXLDqRbcOHH466S0GwgGWTlgFQVxKhriRCKuuw8XA3AK0DrWxv3z5uIYvIxFOSSETkQjTCVLO9RTaZkJ+DHQNkbIfKghBFg1PNrqy48nxEKSIiIheLcNibdnay+nqIxUbdbfXk1QQs7/vGsd5Emxp6GEhlAXj74Ns4rjP28YrIeaEkkYjIhSaTgU8+GTbUleiieUoJcHyq2ZzBqWYGhvoRiYiIyOmtWOE1sj5RNgtr1466SzQQ5draawGoLgwzvSyPrO2w4ZC3uEZnopPNRzePV8QiMsGUJBIRudBs2waJxLCho8lOOiaXkc46HOjwppodW9VsStEU8oP5OYcRERERGSYSgaVLc8c3bIB4fNTdVtatJOzzGl+vmFEKBmxt6qUvmQHg3UPvknWy4xKyiEwsJYlERC4krgvr1w8bsh2bnZUm2YCPA+0xbMdlUlGY/JAf0FQzEREROQsrV4LPN3wsnYaPPhp1l5AvxKrJqwAozw8ypyIf23FZf8CrJupN9bKxeeO4hSwiE0dJIhGRC0lTE7S0DBvqTHRyZE4VkDvVzDRM5pbNndgYRURE5OKVlzdyNdG6dZBMjrrbNTXXkBfwqpivnVGKYRhsb+mjO54GYM3hNaTt9LiELCITR0kiEZELyUlVRACHohn6y/JJZmwOdcUxDJhZ4X1Jm148nWggOtFRioiIyMVs5UqwrOFjqZSXKBpFwApw3eTrACiOBJg/qQDXdflofycAA5kB1jWOvr+IXByUJBIRuVAMDMD24cvIZp0smyd7DSb3t8VwHJe64gjRoFcmrqlmIiIictYKCmDJktzxjz7ykkWjuHrS1RQGCwFYPq0EyzTY3dpPe7+3zwcNH5DMjl6NJCIXPiWJREQuFB9/DLY9bKjNjXF0irfc7O7BqWazB6eaWYbFFWVXTGyMIiIicmlYtQrMk34OJhJeE+tR+EwfN0y9AYD8kJ+FNUUArN3fAUAym+TDhg/HI1oRmSBKEomIXAgcB+rrc4Z31oVxLJN4OktDdxzTMIamms0smUnIF5roSEVERORSUFQEixfnjn/4odfIehSLqhZRGvZOYC2bVozfMjnQMUBLr7cy60eNHzGQHhiHgEVkIihJJCJyIdizB3p7hw2lnSz1k7zre9tiuC5MKY0Q8ns9BDTVTERERM7J6tW51UTxOGwcfaUy0zD57LTPAhAJ+LiqrgiAD/d5vYnSdpr3jrw3LuGKyPhTkkhE5EIwQml3Y1WYRF4QgD1Hh08185t+5pTNmbj4RERE5NJTUgILFuSOf/ABZDKj7javfB5Ved7Kq0umFBP0mTR0xznSFQdgQ9MGepO9o+4vIhcuJYlERM63zk7Yvz9neHOtH4D+ZIam3gSWaTC93FvJbHbpbAJWYELDFBERkUvQddeBYQwfi8Vg06ZRdzEMY6iaKOS3uHpKCQAf7uvAdV1s1+bdw++OW8giMn6UJBIROd9GqCJKFkTYmu+djdvbGgMXppVGCfo01UxERETGUFkZzJ+fO/7++5DNjrrbrJJZ1BXUAXDV5CIiAYujfUkOdHj9iDYf3UxHvGNcQhaR8aMkkYjI+ZROw+bNOcP7Z5TgDp7U23NsVbMqb6pZ0Aoyq3TWREUoIiIil7rrrssd6+uDLVtG3cUwDG6afhMAfstk2VSvmmjt/k4c18VxHd448Ma4hCsi40dJIhGR82nrVkgmh4/5/Wwo9/oA9CYyHO1L4rdMppV5U82uKLsCn+mb6EhFRETkUlVZCXPn5o6/9x7Y9qi7TS2ayvTi6QAsqC0kP+SnI5ZiZ0sfALs6dnGo59B4RCwi40RJIhGR88V1Yf36nOGBOdM5lG4FjlcRTS+P4re8j2xNNRMREZExd/31uWM9Pd4JrVO4aZpXTeQzTVbNLAXgw/2dZGwHgNf2v4brumMaqoiMHyWJRETOl4YGaG3NGd4xNTp0ffdJq5qFfeGhM3YiIiIiY6a6GmbPzh1/++1TrnRWU1DD/HKvp9GcynwqC0IMpLJsPNwNQHN/M1vbTp1oEpELh5JEIiLnywhVRE5tDWvtQwB0DaTpiKUI+EymlEYAb8lZy7QmMkoRERG5XIxUTdTb6zWxPoWbp9+MZVgYhsF1s8oA2Hi4m4GU1/j6zQNvkrFHTzSJyIVDSSIRkfMhFoOdO3OGD84soyvRBcCWhh4AZlXk4zM11UxERETGWW3tyNVEH3zgTT0bRXG4mOW1y71DFEeYUZ5HxnZYu78TgN5UL+ua1o1HxCIyxpQkEhE5HzZuzGkE6UYivB32pp8l0jbbW3oBb1lZgIJgAVOKpkxomCIiInKZue02sE6qWs5m4bXXTrnbdZOvI+wLA7B6ZhmmYbC9pZeOWAqA9w6/x0B6YFxCFpGxoySRiMhEcxwvSXSS1jk1NCaOArClsYes7TKtLEpZXhCA5TXLMQ19bIuIiMg4Ki2Fa6/NHd+xAw4eHHW3sD/MZ6Z+BoDiaIAFNYW4Lry3twOAlJ3i3cPvjkvIIjJ29GtDRGSi7doFfX3DxwyDNWVxADK2w+bBqWZXTykGIGgFuXrS1RMZpYiIiFyurr8e8vJyx19+2TvZNYplk5ZREi4B4NrppQR8Joc7BzjU6VUQ1TfX0xHvGJeQRWRsKEkkIjLRNmzIGeqdUsWOTBMAO5r7SGZsKgtC1BR5ZdtLJy0l5AtNaJgiIiJymQoG4ZZbcsfb2kb8HnOMZVrcMt3bLxywuGaqlzB6f28HjuviuA6v7399XEIWkbGhJJGIyERqbx+xVHtdjQuA47h8fMRbMnbplGIMw8AyrKFmkCIiIiITYuFCr5H1yd5+GwZG7y10RdkVTC6cDMDiuiLyQ346Yil2NHtV1Ls7d3Oo59B4RCwiY0BJIhGRiTTC2bdEUR4f+b2G1fvaY/QmMhSF/cyo8Mq8F1YupCBYMKFhioiIyGXOMOCOO3LHk0kvUTTqbga3zrgVAJ9lsmpmKQAf7u8knfWmqr2450WS2eTYxywi50xJIhGRiZJKwZYtOcOf1AVwcHFdl/pDXhXRkinFmIYBwMq6lRMapoiIiAgANTVw1VW54xs3QkvLqLvVFtRyZcWVAMypzKeyIEQ8naX+UBcA7fF2/nX7v2I79qjHEJHz45ySRF1dXdxyyy3MmjWLW265he7u7hEfZ1kWixcvZvHixdxzzz3n8pQiIhevTz7xEkUnyPhM3in0PjsbuxO09ScJ+y3mVXuVQ7NLZ1MeLZ/wUEVEREQAuOkmr0fRiVzXa2LtuqPvNu0mLMPCMAyun+V9l1l/uIt9bTEADnQf4Pndz+Oe4hgiMvHOKUn0yCOPcNNNN7F3715uuukmHnnkkREfFw6H2bx5M5s3b+b5558/l6cUEbk4uS6sX58zvKcmSMLnfTmqP+wlixbXFeGzvI/nVXWrJi5GERERkZPl5cENN+SOHzkCW7eOultxuJhra68FoKY4zIrppeDCy9taaOlNALCldQvvHHpnHIIWkU/rnJJEzz33HA899BAADz30EM8+++xYxCQicuk5fNhrWn0Cx3V4t9xb9r69P8XhzgF8lsnC2iLAK9U+1vhRRERE5Ly55hooK8sdf+01r0fRKK6fcj2lYa8n0TXTSrhyUiG24/L85mZ64mkA3j38Lh+3fDwuYYvI2TunJFFrayvV1dUAVFVV0draOuLjkskkS5cu5dprr1UiSUQuTyM0rD5SZNKW5/Ud2jhYRXTlpALCAQvwqoiMwb5EIiIiIueNZY3cxDoWg3feGXW3oC/IgwsfJOKPYBgGn72igimlURIZm3/f1EQ8nQXgN3t+w76ufeMUvIicjdMmiW6++WauvPLKnO25554b9jjDMEb9MXP48GHq6+t5/PHH+YM/+AP2798/6vM9+uijLF26lKVLl9J+0ll3EZGLUn8/7Nw5bMh1XT6s8s6g9SUz7GntxzAMrppcDEBpuJQ5ZXMmPFQRERGREc2YAXPn5o6vWwdHj466W0m4hC8v+DJ+049pGty1oJry/CC9iQzPb24mYzs4rsO/bv9XWvpHb4YtIhPjtEmiN954g23btuVs9957L5WVlbQMdrVvaWmhoqJixGPU1NQAMH36dG644QY2bdo06vN95zvfob6+nvr6esrL1axVRC4BGzeC4wwbajcT7K3wAbDpSA+O6zK7Mo/CsB/wVjQzDS1AKSIiIheQ228Hv3/4mOvCSy+dsol1bUEt/2Hef8DAIOAzuW9xDfkhP0f7kry87SiO65K20/xq66/oTfaO84sQkVM5p18g99xzD7/4xS8A+MUvfsG9996b85ju7m5Sg6v5dHR08MEHHzBv3rxzeVoRkYuHbXtJohO4rsv6KhvXMklmbLY1eV+Grp7iVRFF/VEWVS2a8FBFRERETqmwED7zmdzxI0dgy5ZT7npF2RXcMcubshYN+rj/qkkEfSYH2mO8u7sd13WJpWM8veNpHNc55bFEZPycU5Lohz/8Ia+//jqzZs3ijTfe4Ic//CEA9fX1fOtb3wJg586dLF26lEWLFnHjjTfywx/+UEkiEbl8bNvmTTc7QXe6j621AQA2N/SQsR0ml0SoyA8BsLx2OT7TN+GhioiIiJzWihUjN7F+/XVIJE656zU117CybiUAJdEgdy+ahGUabGnsYUujd9Ksoa+Bjxo/GvOwReTMnNOvkNLSUt58882c8aVLl/J//s//AWDlypVsPcXSiCIilyzbHrGZ4yfFKVLRQtJZh00NPYC34gdAwAqwbNKyCQxSRERE5CxYFtx5J/zzPw8fHxiAt96Cu+465e63TL+FvlQf29q2UVsc4ZZ5lbyy7Sjv7W1nckmEkmiAtw6+xezS2ZRFRkhGici4UsMLEZHxsmkTdHcPG+pN9rJpShCArU09pDI2kwrD1BSFAVg6aSlhf3jCQxURERE5Y9Onw5VX5o7X10Nz8yl3NQyD+664jymFUwC4oqqAudUF2I7Lazu8/kRZJ8u/7/x3TTsTOQ+UJBIRGQ/ZLKxZkzO8rSBJb2UhWdth4+EeAJZNK8EwDHymjxW1KyY4UBEREZFP4dZbIRAYPua68OKLOQt2nMxn+njgygfID+QD8JnZ5USDPo72Jvn4sHeCram/iQ8bPhyX0EVkdEoSiYiMhw0boK9v2FAsHeOj2REAtjf3EU9nKc8PMrXUG7uq6iryg/kTHqqIiIjIWSsogBtvzB1vaoKPPz7t7hF/hLvn3A1AyG9x89xKANYe6KRrwFv46O2Db9M20DZ2MYvIaSlJJCIy1tJpeP/9nOGtJTb9ZfnYjkv94Fmya6Z6VUSmYbJq8qqJjlRERETk07vmGqioyB1/802vR9FpzC6dzeKqxQBMK4syf1IhtuPy6vZWHMfFdm2e3fUstmOPceAiMholiURExtpHH+V8MRrIJnh/hrdWwO6j/fQnMxRHAsysyANgYeVCikJFEx2piIiIyKdnWSM3qk4kvCbWZ+D2mbdTECwA4PrZZeQHfbT2Jdl4xDuh1tzfzAcNH4xZyCJyakoSiYiMpUQCPsydP7+tAgaKoziuy4ZDXQAsG6wiMjBYPXn1REcqIiIicu6mTIFFi3LHP/74tE2sAUK+EHfP9qadBX0WN8/zpp19dKCTjpg37ezdQ+/SGmsdu5hFZFRKEomIjKUPP4RkcthQwknz7jQDgH1tMbrjaQpCfuZUef2H5pXP0xKvIiIicvG65RYIBoePuS689JJ3eRqzSmexpHoJAFNKo1xZ4007e217K7amnYlMKCWJRETGysAArFuXM7xtko94fgjXdVl/0KsiunpqMZbpJY6um3LdhIYpIiIiMqby8kZuYt3YCFu2nNEhbp1xK4XBQgCun1VOfshPW3+S+sEK7JZYC6/tf23MQhaRkSlJJCIyVt57z2tafYIUNm9P8ZaBPdQZpyOWIhrwMb/am3s/u3Q2VXlVEx6qiIiIyJhatgzKy3PH33gjp8p6JCFfiHvm3ANAwGdyy+C0s3WHumjr8/Zf17SOdY25J+REZOwoSSQiMhb6+qC+Pmd42+QQ8bBvWBXRkinF+Czv4/e6yaoiEhERkUuAZcGdd+aOx2Lw7rtndIgZJTNYOmkpAJNLIiyqLcJxXJ7f0kwslQXglX2vsKdzz5iFLSLDKUkkIjIW1qyBbHbYUK+T5M0ar7KosTtBS2+CkN9iQY1XSj2taBp1hXUTHqqIiIjIuJg2DebNyx1ftw7a28/oELdMv2VoxdfrZpcxqShMLJXl+c1NZGwHF5endzzN0djRMQxcRI5RkkhE5Fzt2QMbNw4bGkgP8HJJJ/GggeO6fHSgE4Cr6ooI+AariNSLSERERC41t90Gfv/wMceBl18+oybWQV+Qz8/9PJZh4TNN7l44icKwn7b+FC9vPYrjuqTtNI9vfZz+VP84vQiRy5eSRCIi56K1FZ5+etiXnkQmwcfdO9g3twLXdXlrVxtNPQmCPpNFdUUA1OTXMK1o2nkKWkRERGScFBbC6tW54wcOwK5dZ3SIyYWTh/oThQMW9y6uIei3ONAR4/29HQD0pfp4fOvjpO30qQ4lImdJSSIRkU8rFoPHHx/WrDqVTbGldQt751WSCfh4f18H25p6sUyDuxdNIuS3APjM1M9gGMb5ilxERERk/KxaBcXFueOvvgqZzBkdYlHVIq6fcj0AJdEAn1tQjWkYfHykm08aewBvxbNf7/w1juuMVeQilz0liUREPo1MBp54Anp7jw/ZGT5p/YTmijAN8+vYcKibjYe7MQ2Dzy2cRG1xBIAFFQuYVTLrfEUuIiIiMr58Pm/a2cl6euCDD874MDdOvZErK64EoK4kwk1zKwB4e3c7hzoHANjVsYsX97xI1smOehwROXNKEomInC3XhWefhaamoSHbsdnatpW2iMuOG+azubmXD/d3gAG3za9iWlkUgBnFM7j3intVRSQiIiKXtjlzYMaM3PH33x/2HepUDMPgvivuo67AW+hj/qRClk0twXVdXtraQkcsBcDGlo383Ya/41DPobGKXuSypSSRiMjZevtt2L596GYqm2Jr21Y6jARbb17Atq44b+9uA+CzcyqYU5UPQG1BLQ9c+QA+03dewhYRERGZMIYBd9wB5kk/ObNZrxq7r++MDuMzfXzpyi9RHPKmr62cUcqsinzSWYfnNjdztDcJQGeik8c2P8YLu18gmU2O6UsRuZwoSSQicja2bPGWu8dLDu3r2se6pnV0ZfrY9tkr2ZG0eXV7K7iwamYZC2uLAKiMVvLgggcJWIHzGLyIiIjIBCorgxUrcsdjMXjyyTPuTxQNRPnygi8T8oUwDIPb5ldSVRiiP5nhqfojrNnTTsb2+hJtbNnI36z/G3a27xzLVyJy2VCSSETkdFwXWlrgtdfg+edJZVPs7dzLuqZ1NPY14rgOO1fOZrNh8eLWFlzX5eopxSybWgJASbiEry76KmF/+Dy/EBEREZEJdsMNUF2dO97c7E3fP2GF2FMpj5bzxflfxDRMfJbJf1hSy9VTvOqij49088u1h4f6FPWn+3lq+1M8te0p4pn4GL0QkcuD4bpn+H/lebB06VLq6+vPdxgicrnq7IStW2HbNujoIJlN0tDbQEusZWgVDdd1WT+9ml9EojT3JgC4sqaQm66owDAM8gP5fHPJNykKFZ3HFyIiIiJyHvX1waOPehVEJ7vxRvjMZ874UFuObuG53c8NfRdr7Uvyxo5W2gf7E82tKuD62eWEA96KsqXhUr6++OvkB/PP/XWIXEJGy7coSSQiAhCPQ0fH8e3QIWhuxnVduhJdNPU30ZXoGnq467r0JjK8FQrzz3UVYBiE/BZXTynm6inFmIZBxB/hG4u/QXm0/Py9LhEREZELQWMjPPaY15PoZF/8Isybd8aHOtJ7hOd3P09HvAMA23H5+Eg3Hx3oxHZcwn6LG6+oYHallxgqi5Tx9cVfJy+QNxavROSSoCSRiAh4Jc0dHXDkiLeyxrGkUHx4KXLaTtPS30JzfzMpO3XC7l5yqLE7we5ggMcXTsMf9LNkcjGL64oI+LxZvEEryNcWfY2agpoJfXkiIiIiF6xPPoFf/zp33O+Hhx8eeVraKLJOljWH1/D+kfeHqop64mne2NlGY7f3ve7GKypYNNgfsjxSzkOLH1KiSGSQkkQicnnKZLw570eOQEODtyUSpLIpBjIDpO00GTtDxskMXabtNP2pflyOfzxmHYeO/jStfUkGsg7bKor4YE4tV84sY1Ht8eQQQF1BHfdecS9lkbLz8YpFRERELlxvvgnvvZc7XlgI3/425J1dEqc11srzu5+nqb8J8E7ofXykh/f2tgNw0xWVLKgtBKAiWsFDix4iGoie22sQuQQoSSQil5euLnj/ffjkE9xMhlg6Rl+qj95UL32pvjNeGnUglaW1L0lHLM3hggjbywtpmFTC3JnlLBwhOXTD1BuYXjwdwzDG65WJiIiIXLxcF556Cnbtyr2vqgq+9jWIRM7qkI7rsL5pPW8dfIu0nQZg05Fu3t3jJYpunlvJlTVeoqgyWsnXFn1NiSK57ClJJCKXrFQ2RXeym1g6RvJoE9b7H+DfvotMNkUymySWjmG79imP4bguWdslYztkHZdkxqatP8V+v58dFYXsKiukoLqQBTVFzKzIwzKPJ4EmF07mhqk3MK1ompJDIiIiIqeTSsE//RO0tubeV1HhJYrOsqIIoDvRzS8/+eVQH8mPD3ezZrCi6Ja5lcw/IVH00OKHiPjPLhklcilRkkhELinJbJId7Tv4pPUTDvccJtwTY8qWw1QcasM4xadaxnboT2aJJbP0pzKks15SKO1CVzhIZyRIVyRAVzhIU36EeEGYudUFLKwtoiQaGHYsJYdEREREPqWeHm/Fs/gIS9SXlXmJooKCsz5sX6qPxzY/NpQo2ni425t6ZsCtc6uYN8k7ZlVeFV9Z+BX1KJLLlpJEInJ2slno7vaaOicSEApBNOptkQiEwzDBiRHbsdnXtY8trVvY07kHO5uh6GgP1XuaKT/cPiw5ZDteVVDGdoinbS8xlMqSzNhkTJPmgjBNBRGa8yN0RIL0hYOEAj7CfpOQ3yISsJhaFmV2ZT5+6/iUMp/pY375fJZOWkptQa2SQyIiIiKf1pEj8Mtfej0kT1ZSAg895PUqOku9yV4e2/wY3cluAOoPdfH+vg4w4LZ5Vcyt9hJFYV+YO2fdyZUVV+o7nVx2lCQSkdF1dcGBA15CqLPTu+zp8eaMj8Y0vWRRfj7U1MDkyd5WWDgmyaNkNkl3opvuZDfdiW464h3s7txNPBMn2j1A5f6jVB5ow+hL0BFLEUtmydgOadshY7s4J8Se9FkcLM6jsSBCa3EeZnURVcURqotCFEUChP0WQZ95yi8HpeFSlk5ayqKqRSpNFhERERkrhw/Dr34F6XTufUVFXqKouPisD9uT7OGxzY/Rk+wBYP3BLj7c34FheM2s508qGPrud0XZFdw16y7yg/nn8EJELi5KEolIrq4uePtt2Lbt1Amhk2SdLKlsamhp+LAvTMgX8v7QFhQcTxjV1Xnzyi1rxOOksik6E510xjuHXXYnuklkE0OPM22HUCxJSWMnlftbiXT00zWQpj2Woi8xwpknvDxVNhRg+/Qqjsyqpqw8j0mFIcrygpjmmSWxLMNiTtkclk5aqillIiIiIuOlsRH+5V8gOcLCIgUFXqKotPSsD9uT7OHnm35Ob6oXgPUHO/lwfycAM8rz+OwVFUSDPsD7PnvHrDtYULFA3/nksqAkkYgc19cH774LmzaB44z4ENd16U/305PsIZFJkMwmSdkpUtnUiE2gLcMiGogS9UeJBqLkBfLwmT5Shku8rIC+snx6SqN0FofoDNp0JbvpT/VhZR38yTSBZAZ/MkMgkSYUS56wJQgk0thZh1gqS3ssRfdAGmfwk8swoDgSoDgSIOgz8VsmbjRI88LJtFxRg+0fOUEFUBIuoTqvmmggSsQfIer3Lo9tpZFSfKZvTN5yERERETmF5mZv6lkikXtfXp7Xo6ii4qwP253o5rHNjw0lirY19bJmbzvprEPIb3HDnHLmVOYPJYbmlM7hc7M/p6oiueQpSSQiXmPA99+H9eu9nkMncF2XRDYxNMWrJ9lD1smOcqBzkwn6sX0mgWQG03aGnj+ddUhkbFJZh+TgZSpjk8w62M7wj6r8kI+yvCCl0QC+wZ5BqUiAhisn0zy7Gsc3PDnkM33U5NdQW1BLXWEddQV1WvpURERE5ELS2gr//M8wMJB7XzAIDzwA06ef9WG7El08tvkx+lJ9APQlM7yxo5UjXV7T7Onledx0UlXRPXPuYW753E//WkQucEoSiVzOHAc++MBLEKVSw+6KZ+I09jXSGe8cmj52TCoSYKAgQn/AR2YgDbEkDKQgnsJNeiuDuS5EAhaRgG/w0hpK2pzsxGbSyYyXEEoObomMfeoWSIZB2G9SHA1QlhckNFgh5BoGXTUldM2uwz/3SqKRwqFKprxAHlF/lIJgARXRCixz9KoiEREREbkAtLfDL34BsVjufaYJ99wDixef9WH7Un08u+tZDnQfALwTlNub+4aqioJ+ixtml/P/t3fnwXXV993H32e5u3bJsmTJsi2v8oIBG0gTggGzJSY4GJ6ndNJpNoY8SadN02mn/avT6SRNJtNMm0470+FpO0mfJnEDBEwhGEqgQAjEOHbZbGNjS7Zla1/vvpxznj+OdC1hSbaxpSvsz2vmN+fcc7ffFUcH63N/v+9vTcOZUUWbGjdx14q7CFiBi/lEIvOSQiKRK1U6DY8+CkePTjrsei4nRk5wfPg4Hh65cICuVYtIVsfoDwU45ED7aJaTgykS2bNHFFmuSyxXoD6ZoXkkyeKRFA2JNJbnEbRMokEL0zTGQiE/HPrgaKAPClgm4YBJ2LYIja0yFrL9rW0ak+aHj9aV07e8kfJrf4t1y65ndd1qTQ0TERERuRwMDPhB0ejo1Pdv2QI333zBi6V4nse+rn08d/S54pej8Uye5w/2cnzAH720YkEZt61dWPxCsi5ax/1r76ehrOFDfxyR+UghkciVqLcXdu70C1RPEM/GOdR/iGQ+SSFoc3xtM79cWE37aJYTgykGk5NXlwjaJpXhAGVhm7KQTXk4MLa18YD+RJaBRJbhkQzB7iEah5I0jaZojKeI5s/ULzIMPwgKWCbhsfAnErQIByzCARPbnHoEEvijmjJlEYYbqjA3Xs3qNZ9gff16rTQmIiIicjkaGvJXPevvn/r+jRv9UUXTLJAyk5HMCE++9yRHh/wvUT3P40DXKC8d9kcVlYVs7lzXwOIa/9+ZlmFx+/LbuaHpBhW1lsuGQiKRK82hQ/Czn01aTtRxHY6PHOfkyEkKtsGptmb2L63n50cH6Rk9s5pEwDJpqoqwuCZKS02UurLgef8P0fU8RlJ5+hNZHNdlQd5hUTxN/WiS2qEE5YMJrMKZYtmuZZIPBciFA+TDAfLhINlYiExZmEBtPZG6RmILFlFVVkd1pJqm8iaqIxe+DKqIiIiIfMSk0/4XnsePT33/smXwv/83RCIX/NKe57G/ez/Pvv9scVTRSDrP7ne66BrJgAHXL6nhhtZarLGVcVfWrGT7mu2UBcs+9EcSmS8UEolcKTwPXn7ZX9p+gpHMCIf6D5Fy0pxetYhjG1r4ZU+SNzoGcT2P8pDN2kWVtNREaagMF/9nOBXTMCkPllMRqqDgFuhL9Z13kWvD9QjH02AY5MIByspqqI3VURuppTZaS120jupwNVXhKtUQEhEREbnSFQqwaxe8/fbU99fVwY4dsGjRh3r5D44qcl2PX7cPsKdjEM+Dhsown1rXSGXUr0sUsSNsbd3KpsZNGlUkH2kKiUSuBNksPPEEHDxYPOR5Hh3DHRwfOU4haHPgpjYOlMf4rwPdDIxNK7uquZJPrKgj9IEVwUzDpKm8idbqVhaWLaQiVEFlyC8MbRpnpoa5nstgepDeZC89iR56kj0MpAZwPdcvHj2hkPR4qwhVUBupVSFAEREREZmZ5/lfgL788tT3myZ8/ON+nSL7wmtUep7HnlN7eO7oczieXyqhcyjF7ne6SWQLBG2TW9fUs6ahovicpvImtq3axqLyDxdOiZSaQiKRy106DT/4gb906BjP8zg6dJTO0U5SlVH2b1nLL/rT7D85hOdBVSTAbWsX0lx9pq5Pfaye1upWWqtbWVK5hJAdKsGHERERERH5gH374Kmn/JV7p1JXB9u3w+LFH+rluxPdPHbgMfpSfQBk8g7PH+jh/T5/pbXWBWXcvGoBFRH/S04Dg82LNnPrsluJBC58yptIKSkkErmcuS78+Mfw/vvFQxMDooHmWn61eTmPvdvDcDqPYcC1LdV8rLWWwNhy9VXhKj6z6jMsr1leqk8hIiIiIjKzo0fhpz/1R9BPxTDgYx+DW2+FwIWPWM87eZ49+ix7T/t/h3qexzunR3n5cB95x8W2DK5fWsumJdXF8gyxQIxblt3CqtpVVIQqZnp5kXlDIZHI5ewXv4BXXine9DyPY0PHODl6kuNXLWH/6kU8uu8UiWyB2liQ29c20FAZBvxvQK5vup6trVsJWsFSfQIRERERkfPT2+sv0NLdPf1jamrgzjth1So/OLpAB/sO8uR7T5IupAFIZAu8fLiPwz1xAKqjQW5ZXU9L7eSVditCFTRXNLO4YjHNFc00ljdimxc+BW6ueZ7HcGaYnmQP3YluehI9DKYH8fAImAFs0yZgjW0v4Pa5HjuxhIXMrVkJiR555BH+8i//koMHD7Jnzx42b9485eN2797N17/+dRzH4cEHH+TP//zPL6rTIjLBwYPwH/9RvOl5Hu3D7bQnOzl0YxvvL6zi0b0niWcLNFVF2H51E0HbvxjXReu4Z/U9tFS2lKr3IiIiIiIXznHg1VfhpZf8/enU1vojizZuhOCFfSE6mh3l8YOP0z7cXjx2YjDFi4d6GUr5tT1XLixny8oFlIWnDoJMw6QqXEV1uJrqSPWk/YpQBdFAdNaDkoJbIJVPTdkSuUSxruj4Km9zyTKsYmgUskJ+DdRwJRWhimI91IpQBbFgjJAVwjZtFQy/RGYlJDp48CCmafKVr3yFv/mbv5kyJHIch1WrVvFf//VfNDc3c9111/GTn/yEtWvXfuhOi8iYvj74v/930jL37UPtdIwe5+2tG2ivreDR33QSz+RZVBnhs9f4AZGBwY0tN7Jl6ZaPxDcbIiIiIiJT6u31Vz87dWrmx0UisGkTXH89VJz/lDDP83ir5y2eO/ocyXwSAMf1+M3xIfZ0DFBwPCzToL48TGPleItMGxpNJWyHiQaixRaxI1j5AsZoHDOeGGtJ7HgCM5XGtGwMO4AZCGLaNlYghGkH8AI2KcslaTokLYeE5RA38qRtj3wogBM4v5WDPc9jNF2gP5nFdT1sy8Q2DWzLwDbNse3k/bkKbizDImSHCFmh4rYqXEVjeSONZY00ljdqdsR5mi5vuai/Dtva2s75mD179rBixQpaW1sBeOCBB9i1a9d5hUQiMoNMBnbunBQQja9i1nHNMjrqKnhsLCBqqAyz/ZpFxYBoR9sONizcUMLOi4iIiIhcAvX18OUvw2uv+SugFQpTPy6dhl/+En71K2hrgxUrYMkSqK6ecTqaYRhsbNjI6rrVvND+Am+cegPLhOuX1bCmoZyXDvdxtC9B10iarpF08XllIZvGygj1FSEqwzY1AYuqgEnUANv1MAsOwXSOUDJLKJU9a2vnpx8d5Y21acp3Extr9R84ng/ZZGNhMrEQmbIwmWiI0VCQLtvkuGnRnSnQF88xkMySK0z36lOzzLODo/FwyZqwP/F4MXQa2w8HLMpCNuVhm1jQxjTP/u/ieE5xFNS44yPHebPnTcAvpVEbrWVR+SIayxpZUrWExrJGjT66ALM+hODUqVMsnlBdvrm5mV//+tez/bYilzfPg8cfh4GB4qETIyfoGO6gv6WOd1Y18thvOhlN51lYEebea5oI2RYGBp9d81kFRCIiIiJy+TBN+MQnYPVqePJJOHFi+se6Lrz7rt8AysqgpeVMi8X8oMlx/O3YfrhQ4NO5JVxnWfzq2H8zONyNlS+wKe/gWnnioxmSoxmS8QzpZBYrVyDguAQdF2vC5B3LNAjZJiHbImj7AUnA8oMT0zTAMnFMAwc/BPI8D9ebvDUNw28mZ/YNwICC41FwPPKuO7bvknfHto5HYex43nEpuH6/asfacDhIfzREXyxMsjKKW19BqjxC2jAouJ7fxl+jeNvFcb1iy04bXV0Yw4BY0KYsbFMeChAJmgQt/2cWsk2CYy1km9TEgkSDfrTh4dGf6qc/1c9bPW8B/gI96xasY339ehrKGhQYncM5Q6LbbruN7ikKgn3rW99i+/btl7xDDz/8MA8//DAAfX19l/z1RS4LL70E771XvDmYHuTY0DFSlVHeuG4Fj+0/zUg6T3355IBo+5rtbGzYWMKOi4iIiIjMkro6+OIX/RV/X3sNjh0793MSCThwwG/nYQFwjxekOxHk6NBJCu4HRi5FLbxIhHTeIZEpkMo7ZPMu2YJDtuAHKqmcQyo3Qx2lOTQeWkWDNi1Bi1jQIGoWCKQS0JEAwLEtcpEg2WiQXDRENuJv8yGbQihAPmCRCVhkbIuMZZM1oeBxJlByxgKlifvO5KCp4Hpkcg7xbIF4pkAqXyCR9Vs3mXN+jrKQTX1FmIXlIeorwtSXh4iF/LhjODPMqydf5dWTr1ITqWF9/XrWLVhHfaxegdEUzhkSPf/88xf1Bk1NTZw8ebJ4u7Ozk6ampmkf/9BDD/HQQw8BTFsIW+SKdvgw/Pd/F2/mnTyH+g9RCFj85qY2fvp2N8OpHAvKQ+y4tonw2Nzjz6z+DFc3XF2aPouIiIiIzAXDgJUr/dbTA6+/Dm+9NXNx6wt+C4PG8kbqY/X0pfoYzgwzmh0tToEyDINo0C6ObhnneX4oMh4a5YujeyaP+Ck4/ggf0/BfyzD8EUOG4U+n8kcV+SOLJm49D2zLIDA+pcsyCIxN/woUp3iZ/silsePmeYQkVsEhEk8TiafP+VgA1zSKYVI2FvL3oyGysbFjFf4x15q+YLfjen5IlCkQz+bHfmYuuYJLznHIFfzb6bzDQCLnP7YvwbG+RPE1ykM2rQvKWNVQzqLKMIZhMJge5OXjL/Py8ZcpC5ZRH6unPlbPguiC4n7IDp3X57xczfp0s+uuu44jR47Q3t5OU1MTO3fu5Mc//vFsv63I5WloyF/uc4znebw38B45J8ehLet5pjvJUCpHbSzEjmuazwREqz7DtY3XlqrXIiIiIiJzb+FC2L4dtm6FvXvhjTcgmbxkL2+ZFg1lDTSUNQD+l7ej2dFii+fik0YaGYY/tSxgmZSd409x1zTOBCsTtrmoH2DYjovhupiOi+l6/rbgYOcKxRbIntkPpnMY51izysAgFoxRFiwjFvC3ASuA67k4roPrucXmeGduT3mf6+ImXNx4HsfNTPncbNA6ExxNDJOiQbLREKFYiMqqMBiRGfvteR5DqTy9oxl64ll6RzP0xrPEswXe7Bzmzc5hykI2KxeWs2phGQ0VfmCUyCVI5BIcG5o84qwyVElzRTMtlS0srlxMQ1nDrK9AN59cVEj0+OOP8wd/8Af09fWxbds2rr76ap599llOnz7Ngw8+yM9//nNs2+Yf/uEfuPPOO3Echy996UusW7fuUvVf5MpRKMAjj/gFq8f0JHvoT/XTsXEJr4VCHDg8iGUabLuqgUjQD4i2rdzGpkWbStVrEREREZHSKiuDm2+GG2+E9na/ZtHx4/6KaJdwhFHAClAbraU2WguMjxwqkC6kSVMgRZ6UlyNJjqSbJWW5JCLWWUFQNhYiFw7MWFD7QhgYRK0wlXmLqqxBRcajPO0QSxeIJfPERtNUpByigeichiGe5+Hh+SFTyiUXz5F1smQLGbLOCNlCljR54iGDRNRmtCxAoiJMqjJKujJKJhYCw19ZrSYWpCYWZE3jmdfujWc53BPncE+CeCbP/hND7D8xRHk4wPIFMerLw9SW+c8LTBjVNJIdYaRvhHf7/LpVQStYDI1aKltoKm+6rEcbGZ53jjixhKZbkk3kirR7tz9cdkw6n2bv6b30LqrktU+28e+/PkEm73DL6no2Lq4C4Jalt7Bl6ZYSdVhEREREZB4rFOD0aT80OnHCn57meWDbYFmTt7YNweCZFgrNvD++DQT8504T+Diu44dI+XRx1a50IY2BgWVaWIaFZVrYpo1lWJiGieM55J08BbdA3h3bOnlczyUSiBANRIkFYkQDUaKBKGE7fO7aO7kc9PdDby/09fnb/n6Ix6dfMW6O+dPs/JFIBbdAwTJIVUToK7c4UWNxtMplMHB2Xz3Po3s0w+HuBEd64ySyH3iMAVXhADVlIepiQRaUh1hUFSnWNPogA4OGsgaWVC3hzuV3fmTrGk2Xt8z6dDMRuQQOHZoUEHmex8H+gyRjAQ58cg3PHeghk3dYUhvjquZKAFoqW/jkkk+WqsciIiIiIvObbZ9Z1axELNOiLFhGWbCsZH0A/EBr0SK/TeR5/kyGeHxySyQgnfZbJjN5ewlHZ01kGIYfmmERtIIAVCSgIeGwocvB8zwyVWUM1JfRWRPgzcgIXcT9GlKVERorI9y0qo7TwxlODqUYSOYYTGQZSuUZTvvt2IS1syojARZVRVhUGWFRVZiaWBDDMPDw6Ep0UXALGCs+mgHRTBQSicx3w8PwxBOTDp0YOcFwPs67t13D3t4kJwZThAMWd6xdiGEYhKwQ966594qaOysiIiIiIpeYYUAk4rf6+nM/3vP8UUnxOIyO+m18f+I2kfAfe0m7ahAZSdI8kqQZuMHziNfEeL/W5H8qU5woczAMg6bqCE3VZ+ocOa7HUCrHQCJHfyJLz2iGrpEMI+k8I+k8B7tGAQgFLJqrItx9VSOGYdBSWbpwcTYpJBKZzxwHHn10Uh2i0ewoHcMdHLuulY5IiF++fQKA29oWFodEfnrlp6mOVJekyyIiIiIicoUyDH+qXSgEdXXTP851/aBopiBpdBTy+YvoikHFUIprh+AazyMecDlWZ/FuVZ72GpPCWA1XyzSoKwtRVxZiNeVj3fPoT2Q5PZzm9EiGU8NpktkC8UyhOL1MIZGIzL0XXoDOzuJNx3U42HeQvsU1dKxZxO43OnFcj3WLKllR7w9RXbdgHVctvKpUPRYREREREZmZaUJFhd+m43mQzcLICAwM+K2//0zLZs/77QzDoKJgcXU3XN0dwDFgZPUSOm9YS487Sm+yl95kLyPZkbHuGdRXhKmvCHM1frmP0UyBTP7MVDqFRCIyt44cgVdfnXTo6NBRhkIuh25cw2vHBulLZKmMBNiyagEA5cFy7l5190e2eJqIiIiIiAjgj0oKh/22cOHk+zwPkkno6vJXrOvo8PfPcwqb5UHNoePUdA3Djh1w1e2AvzhQ52gnJ0ZOcGLkBKfip/zaQ4ZBZSRAZSQA+H93VYWrLt1nnUcUEonMR6Oj8Pjjkw4Npgc5lejiwKeupiOV5zcnhjAMuHNdA0Hbrz10b9u9RAKRqV5RRERERETk8mAYUFYGK1f6Dfyi2ceP+6FRe7u/Qtu5jIzAD34AN90EW7YQCURYWbuSlbX+axbcAl3xrmJodHL0JKl8ipbKlsv2i3mFRCLzTT4PjzwCqVTxUMEt8F7/e7Rfu4y+mjKeff0EeHD9sloWVfmh0G81/xat1a2l6rWIiIiIiEjpRCKwZo3fwA+AjhyBw4fh2DEoFKZ+nufBSy/5j9mxA6rP1Ha1TZvFlYtZXLmYT/AJPM9jID2A67lz8IFKQyGRyHziOPDTn8LJk5MOHx08SldDjBPrF/PKoV7imTwLK8Jcv6wGgPpYPVtbt5aixyIiIiIiIvNPZSVs3uy3fN4fXXT4MLz99tT1jE6ehH/6J7j7btiwYcqXNAyDuugMBbkvA1ofW2S+cF1/itmRI5MOD6YH6XAHOHjjGo4Ppnjn1AiWaXDH2oVYpoFlWOxo24FtKvMVERERERE5SyAAq1b5AdBXvwot0xSdzmbhscfgySf9v8+uQAqJROYDz4NnnoF33pl0uOAWODh0hAM3rSURsHj+oD+v9oZltdSWhQC4eenNNJQ1zHmXRUREREREPnKqquALX4Cbb/ZrG01l3z4/LLoCgyKFRCLzwYsvwhtvnHX4/aFj/M/HWxlpqOKVI/3FaWabl/jzZBeVL+ITLZ+Y696KiIiIiIh8dJmmHxJ98Yt+aDSVd9+9IoMihUQipfarX8HLL591eDA9yEsbyulbuoDjA8lJ08zMsWlmn13zWUxDv8YiIiIiIiIXrKUF/s//gfXrp77/CgyK9NelSCnt3w/PPXfW4YJb4NnlHl2rGskWHJ4/0AOcPc2sPlY/p90VERERERG5rITDcN998KlPTX3/FRYUqdKtSCl4HuzdCz//+ZR372kN8d7SWgB/mlm2oGlmIiIiIiIis8Ew4IYbwLLgqafOvv/dd/3tfff5U9UuYwqJROZaKuVXyz90aMq7T69exHMNpwBD08xERERERETmyubN/namoGjHDj9MukwpJBKZS8eO+cvcx+NT3p1evZwfL+6CgqFpZiIiIiIiInPtCg+KFBKJzAXHgRdegFdfnfYh7vJWHl3tkBhNAfDSe32aZiYiIiIiIjLXruCgSCGRyGzyPOjqgv/8T387nU2beKUtytHOVwA4cHqUA12jmmYmIiIiIiJSCps3+7WK/vM/z76vowNGR6G6es67NdsUEl3OXBcKBX8US6HgBxax2Ecr7XQc/5dvdBTyeb/vU7VgEEIhsG3/F7lUXBe6u+H4cb+dOOHXIJpOJAL33EN7Q5j/fvPfABhIZHnhvV4Ablldr2lmIiIiIiIipbBpk7+dGBTFYvD5z1+WAREoJLo85PN+EeS33oLTpyGXOxMKTSUWg/Lyya2szA9ZQqEzgcvE/UDg0oQvjgOZzOSWTp/ZTyZhZORMSyan/xxTMc0zfR9vtj11syz/8YZxpo3fBj/wcRx/O3F/umP5vD9aKJc7v74uWwb33ksibPLY3n/CwyPvuDz9dhcFx2VNQwXrFlUAsLRqqaaZiYiIiIiIzLWJQVE06gdE9Zfvl/cKiT6qPM8fqfLmm3DgAGSz5//cZNJv3d3n/xzDmDo8sqzJ4cr4Pvh9+mAglM9f2Oe8UK7rh07p9Oy+z8UwTdi6FT7+cVw8Hnvz/5HIJQB48VAvg8kc1dEgt66pxzAMYoEY97Xdp2lmIiIiIiIipbBpk/+376JFl3VABAqJPnpGR2HvXn/U0PDw3L2v5/mhz4WEUXK22lq47z7/4gK83PES7cPtALx7eoQDXaPYlsG2qxoJ2iYGBjvadlAeKi9lr0VERERERK5sV19d6h7MCYVEHyVvvw1PPjn7o3Hk0goEoLkZVq3yE+hgEIBjQ8d4qeMlwK9D9OKEOkR1Y3WIblpyE8trlpem3yIiIiIiInJFUUj0UeC68Pzz8KtfXdjzDONM7R3b9l9npiLK81VZGVRW+tPbxuv/fLDlcv4op0Kh1L2FcBhaWmDJEr81Np5VLLw32cvPDv7sA3WIPNoaK1jbeKYO0ZalW0rxCUREREREROQKpJBovkul4NFH4dixmR8XCsHatbBxoz+VybbP1AaayHEgkYB4/EwbHfVr+GSzZ8KWD+5fqvDFMPwQZaoWifjbykq/VVT4zb6A07RQmNzv8b5P1RzHn0bnuv52vLmu/1qmeaa49fj2XMfKy2HBgmmLfHuex/7u/Txz5Bnybh7P83hhrA5RTUx1iERERERERKR0FBLNZz09sHMnDA1Nfb9hwPLlfjC0Zo0/relcLOtMCHMhJo7WmbidKmgZ3w+Fzg6CgsHZXaJ+fOWyaHT23uNDyhayPHX4Kd7ufRsA1/N4/egAB7tGsS2TbRsaCVh+HaL71t6nOkQiIiIiIiIypxQSzVfvvgtPPDF9/aF16+Cuu/yRK3PBsvyRPpHI3LzfZaYr3sUjBx5hMD0IQCJT4Jl3ujg1nAYDtq6pp3asDtGWpVtorW4tZXdFRERERETkCqSQaL7xPHjhBXjllanvNwy47Tb4+Mdnd0TOh+S4Dsl8klQ+heM6eHi4novnjW3x8DwPwzAwDX/UzMR9y7SIBWJEA1Es0zr3G85zjuuw9/Renjv6HI7nANDen+S5d7tJ5x2iQZu71jfQUuOPfFpWtYybltxUyi6LiIiIiIjIFUoh0XxSKMCuXf4qZlMJh+H++2HFivN+yWQuSVeii55ED/FcvBjYjIc1E0OboBWc1EJWiKDlr8SVd/Pknfykbc7JkcqnSOQSxZbKX7rC2GE7XAyMYsEYYTuMwVigZBiT9i3DwjZtLNPf2qZdPBYNRCkLllEeKicaiM56nZ+RzAjvD77P+4Pvc2zoGFknC4DjevzqaD+/Oe5PH2ypiXLnugZiIf/XcGFsIfevvV91iERERERERKQkFBLNF5kM/Md/QHv71PfX18MDD0BNzbQvMZodpXO0k+5EN13xLroT3cRz8Vnq8OzLFDJkChkG0gOX7DVNwyQWiFEeKqc8WF4Mjz64HwlEKLgF8k7e346FYzPtx3Nxjg0dozfZe9b7jqTzPPN2F92jGQzD4OPLa9m8pBpjbDTY1Q1X8+mVny6GciIiIiIiIiJzTSHRfDA6Cv/+79B7drgAQFsb3HuvX/R5AtdzOTlykiODRzg8cHjKcGKc53nkHNevKY2H540f928bhkHAMghYJuZ5TGNzPY+C45HOOSRzBVK5Asms429zDqmcg+t6eGPv7XqMjVzy39MwwICxqWaMjQwCyzSIBC2iAYtI0G/RoE0kYBG0TQwDTAz/+QZj09X851mmcc6+u55LPBefk/AsmS1wfCBFx0CS9v4kecelPGTzqQ2NLKryazsFrSB3r7qbqxZeNev9EREREREREZmJQqJZkHNyHB8+jmmYxelQ4/vjtXfG9wP9Q5T99AmsRLI4qmSSm2+GLVvwgHQ+RTwbpzvRzeGBwxwdOkqmkDnrKa7nMZzK0RvP0jehpfPOefXftgwCpknANgla/tSnguOSdz0KjkvB9XBc7yJ+QrPHNIxiYGSZBvZY6BQL2pSFbGIhfz8WGm8WkYA19c/+ArmuR/doho7+JB0DSXrj2Un3L19Qxu1rFxIO+LWWGsoa+F9r/xe10dqLfm8RERERERGRi6WQaBaMZEb40ds/OufjqrqHWf/CO9i5gh8YmQECVoCgFcS2Q3TefC2dlccY/fX/EM/Gi4WPP8j1PHrGwonjgyn6E1kKztkhTsAysUxjbAQPMD4iB3A9KLguOcel4HgUHGfmUMkA2zSJBCyiYyFMNHRmGw1Y2JYBTB4pZI69oed5Y6OYJu575MdGJ6XzDumxEUnpfIFUziHveJMe63ngjj3fcT0cz8P1PFzHY2LXR9LTrBA3xjQM/zOMB0dBi3DAojAhFCs4HgXX/9nkx7aO65Efv9/172fCj90yDZqroyytjbK0NkZ17MxIsOubrueO5Xdgm/oVFBERERERkflBf6HOAtdzp73PyjtUdQ9Tc2qQxsOnMcdG5LieS9bJknWyOLbFuzeuY7A2CSPJKV8nk3c4PpCivT/J8YHkWYFOeTjAgvIQ9eUhFoy18pB9zhEznucHHrmCS95xyRVcMCBgmv4II8vEHhulcylG31xK49PanLHAxhkLb1I5h2S2MNb86XHF2zmHTN4hkS2QyBYuug9VkQBL62IsqY2xuDqCbU0uQh2xI9yz+h7aFrRd9HuJiIiIiIiIXEoKiWbBxJDo1SN9FE4OsmQwzuKBOPUjSSzXIwm8b4BlGGfCF8vAjYXY94k28jXlOMkcybHw4szWYTSTpzeeKdYVAqgIB1hWF2NpXYzGynBxStOFmlib6MOKBqLEAjECVmDSCmQTl7z3Ax23uLra+P74imkfZpU0f5UzfwRPkDP9r47O/LyC45KcGCTlHHIFB9s0sSx/ytp4OGaPb8f3x6bm2db0NZFMw6SlsoVVtau4tvFawnb4gj+biIiIiIiIyGxTSDQLPDxqT/SzsL2Xqr0dZEbSxftGZ3jeQCTET5c1M3J0EI4OzvgepmHQXB1haV2MZXUxqqOBaUf21EZqaShrYGHZQkJWqLh8/MSt67nknNxZLVvI+sHR2FS4iVvbtAnbYcpD/spgZcEyYoEYlvnhAqqJXM8llU+RzCX9bT5J3smfFSqN7zueQ8Et4Lj+tuAWcDyHnJMjkUuQyCWIZ+PF5egnsi2TyohJZSRw0f0eVxmqZEXNClbWrmRZ1TJCduiSvbaIiIiIiIjIbFBINAtcz6Wqe5j69l7KyoPko4Hiyl5MrMODX+w473qcrojyxtWtVBkmoZxfg8cyjbFiy37R5bIJxZYXlIcI2WeHMRWhClqrW1lUvsgPhmILP5IBhWmYxeDpUhoPjeJZf4WzeDbu3/7Afs7JFYOwiaHYTPu2aVMeLGdp1VLqonXzbjqeiIiIiIiIyEwUEs0C13MZaqph8YFOosGZf8SeYdC1qpH0dcu5eYrQ51wMDBZXLmZV7SpW1qykPlavcGIGQStITaSGmkhNqbsiIiIiIiIiMq8oJJoFYTtM7ZprqXztFEbBGRs15BW3uViY4aZahptq6VtYzqhVwJ1m5bKJbNOmIlRBebCcmkgNy2uWs7x6OZFAZA4+lYiIiIiIiIhczhQSzYL6WD2f2/QFeNeEY8cgEIClS2H5cr/V1Y2vQQ/4U8+yTrZYgyeZ9+vwmIZJebCc8lA55cFywnZYo4REREREREREZFYoJJpNW7bAJz8JixeDPf2P2jAMwnaYsB3WNCgRERERERERKYkPv8458Mgjj7Bu3TpM02Tv3r3TPm7p0qVs2LCBq6++ms2bN1/MW360LFkCy5bNGBCJiIiIiIiIiMwHF5VerF+/np/97Gd85StfOedjX3zxRerq6i7m7UREREREREREZJZcVEjU1tZ2qfohIiIiIiIiIiIldFHTzc6XYRjccccdbNq0iYcffngu3lJERERERERERC7AOUcS3XbbbXR3d591/Fvf+hbbt28/rzf55S9/SVNTE729vdx+++2sWbOGm266acrHPvzww8Ugqa+v77xeX0RERERERERELs45Q6Lnn3/+ot+kqakJgPr6eu6991727NkzbUj00EMP8dBDDwFcWUWuRURERERERERKaNanmyWTSeLxeHH/ueeeY/369bP9tiIiIiIiIiIicgEuKiR6/PHHaW5u5rXXXmPbtm3ceeedAJw+fZpPf/rTAPT09HDjjTeyceNGrr/+erZt28Zdd9118T0XEREREREREZFLxvA8zyt1J6azefNm9u7dW+puiIiIiIiIiIhcNqbLW+Z1SFRXV8fSpUtL3Y2L1tfXx4IFC0rdDZmndH7IuegckZno/JCZ6PyQmej8kJno/JBz0Tny0dbR0UF/f/9Zx+d1SHS50IgomYnODzkXnSMyE50fMhOdHzITnR8yE50fci46Ry5Ps164WkRERERERERE5j+FRCIiIiIiIiIiopBoLjz00EOl7oLMYzo/5Fx0jshMdH7ITHR+yEx0fshMdH7IuegcuTypJpGIiIiIiIiIiGgkkYiIiIiIiIiIKCSadbt372b16tWsWLGC73znO6XujpTYyZMnueWWW1i7di3r1q3j+9//PgCDg4PcfvvtrFy5kttvv52hoaES91RKyXEcrrnmGu6++24A2tvbueGGG1ixYgW//du/TS6XK3EPpVSGh4e5//77WbNmDW1tbbz22mu6fkjR3/7t37Ju3TrWr1/P7/zO75DJZHT9uMJ96Utfor6+nvXr1xePTXfN8DyPP/zDP2TFihVcddVV7Nu3r1Tdljky1fnxp3/6p6xZs4arrrqKe++9l+Hh4eJ93/72t1mxYgWrV6/m2WefLUGPZS5NdX6M+973vodhGMXl03X9uLwoJJpFjuPw+7//+zzzzDMcOHCAn/zkJxw4cKDU3ZISsm2b733vexw4cIDXX3+df/zHf+TAgQN85zvfYevWrRw5coStW7cqULzCff/736etra14+8/+7M/4xje+wfvvv091dTX/8i//UsLeSSl9/etf56677uLQoUO8+eabtLW16fohAJw6dYq///u/Z+/evbzzzjs4jsPOnTt1/bjCfeELX2D37t2Tjk13zXjmmWc4cuQIR44c4eGHH+arX/1qKbosc2iq8+P222/nnXfe4a233mLVqlV8+9vfBuDAgQPs3LmTd999l927d/O1r30Nx3FK0W2ZI1OdH+B/6f3cc8/R0tJSPKbrx+VFIdEs2rNnDytWrKC1tZVgMMgDDzzArl27St0tKaHGxkauvfZaAMrLy2lra+PUqVPs2rWLz3/+8wB8/vOf54knnihhL6WUOjs7efrpp3nwwQcB/5uZF154gfvvvx/Q+XElGxkZ4eWXX+bLX/4yAMFgkKqqKl0/pKhQKJBOpykUCqRSKRobG3X9uMLddNNN1NTUTDo23TVj165d/N7v/R6GYfCxj32M4eFhurq65rrLMoemOj/uuOMObNsG4GMf+xidnZ2Af3488MADhEIhli1bxooVK9izZ8+c91nmzlTnB8A3vvENvvvd72IYRvGYrh+XF4VEs+jUqVMsXry4eLu5uZlTp06VsEcyn3R0dLB//35uuOEGenp6aGxsBKChoYGenp4S905K5Y/+6I/47ne/i2n6l+eBgQGqqqqK/2DTdeTK1d7ezoIFC/jiF7/INddcw4MPPkgymdT1QwBoamriT/7kT2hpaaGxsZHKyko2bdqk64ecZbprhv7dKh/0r//6r3zqU58CdH6Ib9euXTQ1NbFx48ZJx3V+XF4UEomUQCKR4L777uPv/u7vqKiomHSfYRiTknm5cjz11FPU19ezadOmUndF5qFCocC+ffv46le/yv79+4nFYmdNLdP148o1NDTErl27aG9v5/Tp0ySTySmnCYhMpGuGTOdb3/oWtm3zuc99rtRdkXkilUrx13/91/zVX/1Vqbsis0wh0Sxqamri5MmTxdudnZ00NTWVsEcyH+Tzee677z4+97nPsWPHDgAWLlxYHJLZ1dVFfX19KbsoJfLqq6/y5JNPsnTpUh544AFeeOEFvv71rzM8PEyhUAB0HbmSNTc309zczA033ADA/fffz759+3T9EACef/55li1bxoIFCwgEAuzYsYNXX31V1w85y3TXDP27Vcb94Ac/4KmnnuJHP/pRMUTU+SFHjx6lvb2djRs3snTpUjo7O7n22mvp7u7W+XGZUUg0i6677jqOHDlCe3s7uVyOnTt3cs8995S6W1JCnufx5S9/mba2Nv74j/+4ePyee+7hhz/8IQA//OEP2b59e6m6KCX07W9/m87OTjo6Oti5cye33norP/rRj7jlllt49NFHAZ0fV7KGhgYWL17Me++9B8AvfvEL1q5dq+uHANDS0sLrr79OKpXC87zi+aHrh3zQdNeMe+65h3/7t3/D8zxef/11Kisri9PS5Mqxe/duvvvd7/Lkk08SjUaLx++55x527txJNpulvb2dI0eOcP3115ewpzLXNmzYQG9vLx0dHXR0dNDc3My+fftoaGjQ9eNy48msevrpp72VK1d6ra2t3je/+c1Sd0dK7JVXXvEAb8OGDd7GjRu9jRs3ek8//bTX39/v3Xrrrd6KFSu8rVu3egMDA6XuqpTYiy++6G3bts3zPM87evSod91113nLly/37r//fi+TyZS4d1Iq+/fv9zZt2uRt2LDB2759uzc4OKjrhxT9xV/8hbd69Wpv3bp13u/+7u96mUxG148r3AMPPOA1NDR4tm17TU1N3j//8z9Pe81wXdf72te+5rW2tnrr16/33njjjRL3XmbbVOfH8uXLvebm5uK/U7/yla8UH//Nb37Ta21t9VatWuX9/Oc/L2HPZS5MdX5MtGTJEq+vr8/zPF0/LjeG53leqYMqEREREREREREpLU03ExERERERERERhUQiIiIiIiIiIqKQSEREREREREREUEgkIiIiIiIiIiIoJBIRERERERERERQSiYiIiIiIiIgIColERERERERERASFRCIiIiIiIiIiAvx/CR9vCiuylmkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "from aeon.similarity_search import SeriesSearch\n", + "index = RandomProjectionIndexANN(n_hash_funcs=512, hash_func_coverage=0.75).fit(X_fit)\n", + "indexes, distances = index.predict(X_predict, k=2)\n", "\n", - "query_length = 35\n", - "estimator = SeriesSearch(distance=\"euclidean\").fit(X_train) # X_test is a 3D array\n", - "mp, ip = estimator.predict(X_test, query_length) # X_test is a 2D array\n", - "plot_matrix_profile(X_test, mp, 0)\n", - "print(f\"Index of the 20-th query best matches : {ip[20]}\")" + "indexes = indexes[0]\n", + "distances = distances[0]\n", + "\n", + "for i in range(len(indexes)):\n", + " print(f\"match {i} : {indexes[i]} with distance {distances[i]}\")\n", + " # A bit of hacking of the function defined for series estimator to show best mathces\n", + " plot_best_matches(X_fit[indexes[i]], X_predict, 0, [0], X_predict.shape[1])" ] }, { "cell_type": "markdown", - "id": "0dca5122", + "id": "7828c48c-abdb-4807-bc94-d9b8414b5282", "metadata": {}, "source": [ - "Notice that we find the same best match for the 20-ith query, which was the query that we used for `QuerySearch` !\n", - "\n", - "`SeriesSearch` returns two lists, `mp` and `ip`, which respectively contain the distances to the best matches of all queries of size `query_length` in `X_test` (the `i-th` query being `X_test[:, i : i + query_length]`) and the indexes of these best matches in `X_train` in the `(ix_case, ix_timepoint)` format, such as `X_train[ix_case, :, ix_timepoint : ix_timepoint + query_length]` will be the matching subsquence.\n", - "\n", - "Most of the options (`k`, `threshold`, `inverse_distance`, etc.) from `QuerySearch` are also available for `SeriesSearch`." + "This type of method is mostly interesting where speed of the search is paramount, or when the dataset size grows large (> 10k samples)." ] }, { - "cell_type": "code", - "execution_count": null, - "id": "ff23faf5-2941-441a-8c4c-0cf66eaca121", + "cell_type": "markdown", + "id": "1610adf3-5cb1-466e-9cad-fb248148fd5a", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "## References\n", + "[1] Patrick Schäfer and Ulf Leser. 2022. Motiflets: Simple and Accurate Detection\n", + " of Motifs in Time Series. Proc. VLDB Endow. 16, 4 (December 2022), 725–737." + ] } ], "metadata": {