-
Notifications
You must be signed in to change notification settings - Fork 2
/
ml-algorithms.yaml
34 lines (34 loc) · 1.08 KB
/
ml-algorithms.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# 2-half-days exploring machine learning algorithms.
title: Machine Learning Algorithms
environment: geoml
scripts:
- mlutils.py # Copied to all notebook directories.
curriculum:
1a:
- Quick course overview
- Introductions
- What is machine learning?
- Linear_regression.ipynb
1b:
- Classification_algorithms.ipynb
- Choosing algorithms # Conceptual: evaluating performance, model tuning.
- Check out and feedback
2a:
- Check in and review
- Linear_regression_algorithms.ipynb # KNN, SVR, Trees and forests.
2b:
- Unsupervised_learning_algorithms.ipynb # Very quick treatment: PCA, KMeans, DBSCAN, manifolds.
- Neural networks and beyond # Qualitative, depends on time.
- Check out and feedback
extras:
- Binary_classification.ipynb
- Intro_to_classification.ipynb
- Intro_to_NumPy_for_ML.ipynb
- Intro_to_regression.ipynb
- Loading_messy_data.ipynb
- Nonlinear_regression_with_Gardner_equation.ipynb
- Read_and_write_LAS.ipynb
- Read_SEG-Y_with_segyio.ipynb
- What_is_gradient_descent.ipynb
references:
- Dramsch_2020.pdf