-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreduce_cuda.cu
446 lines (386 loc) · 14 KB
/
reduce_cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#include <torch/extension.h>
#include <torch/torch.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include "reduce.hh"
#define CHECK_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
// implements parallelization over ...index_put_({reduce_mapping[i], "..."}, output_grad.index({i, "..."}));
template <typename scalar_t>
__global__ void reduce_cuda_kernel_backward_mapping(
long int ** __restrict__ reduce_mapping, // should pointer of pointers or simplify life
scalar_t* __restrict__ output_grad,
const int reduce_mapping_rows,
const int * reduce_mapping_cols_per_row,
scalar_t* __restrict__ input_grad,
const int input_grad_tot_cols
) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < reduce_mapping_rows) {
for (int j=0; j < reduce_mapping_cols_per_row[i]; j++) {
for (int k=0; k<input_grad_tot_cols; k++) {
input_grad[reduce_mapping[i][j]*input_grad_tot_cols+k] = output_grad[i*input_grad_tot_cols+k];
}
}
}
}
void reduce_cuda_backward_mapping(
std::vector<torch::Tensor> & reduce_mapping,
torch::Tensor & input_grad,
torch::Tensor & output_grad
) {
if (not output_grad.is_contiguous()) {
output_grad = output_grad.contiguous();
}
for (int i=0; i<reduce_mapping.size(); i++) {
CHECK_INPUT(reduce_mapping[i]);
}
CHECK_INPUT(input_grad);
CHECK_INPUT(output_grad);
std::vector<int> reduce_mapping_cols_per_row(reduce_mapping.size());
for (int i=0; i<reduce_mapping.size(); i++) {
reduce_mapping_cols_per_row[i] = reduce_mapping[i].sizes()[0];
}
int *d_reduce_mapping_cols_per_row;
cudaMalloc(&d_reduce_mapping_cols_per_row,
reduce_mapping.size()*sizeof(int));
cudaMemcpy(d_reduce_mapping_cols_per_row,
reduce_mapping_cols_per_row.data(),
reduce_mapping.size()*sizeof(int),
cudaMemcpyHostToDevice);
std::vector<long int*> reduce_mapping_ptrs(reduce_mapping.size());
for (int i=0; i<reduce_mapping.size(); i++) {
reduce_mapping_ptrs.at(i) = reduce_mapping[i].data<long int>();
}
long int ** d_reduce_mapping_ptrs;
cudaMalloc(&d_reduce_mapping_ptrs,
reduce_mapping.size()*sizeof(long int*));
cudaMemcpy(d_reduce_mapping_ptrs,
reduce_mapping_ptrs.data(),
reduce_mapping.size()*sizeof(long int*),
cudaMemcpyHostToDevice);
int input_grad_tot_cols{1};
for (int i=1; i<input_grad.sizes().size(); i++) {
input_grad_tot_cols *= input_grad.sizes()[i];
}
const int threads = 64;
const int blocks = (reduce_mapping.size() + threads - 1) / threads;
AT_DISPATCH_FLOATING_TYPES(input_grad.type(), "reduce_cuda_kernel_backward_mapping", ([&] {
reduce_cuda_kernel_backward_mapping<scalar_t><<<blocks, threads>>>(
d_reduce_mapping_ptrs,
output_grad.data<scalar_t>(),
static_cast<int>(reduce_mapping.size()),
d_reduce_mapping_cols_per_row,
input_grad.data<scalar_t>(),
input_grad_tot_cols
);
}));
cudaFree(d_reduce_mapping_ptrs);
cudaFree(d_reduce_mapping_cols_per_row);
}
static std::vector<torch::Tensor> _reduce_grad(
torch::Tensor gradient,
torch::Tensor keys,
torch::Tensor indexes
) {
auto new_keys = keys.clone();
auto new_keys_accessor = new_keys.accessor<int32_t, 2>();
for (int grad_i=0; grad_i<keys.sizes()[0]; grad_i++) {
auto sample = new_keys_accessor[grad_i][0];
new_keys_accessor[grad_i][0] = indexes[sample].item<int32_t>();
}
auto unique_result = torch::unique_dim(new_keys, 0);
auto reduced_keys = std::get<0>(unique_result);
torch::Tensor grad_indexes = torch::empty(
{gradient.sizes()[0]},
torch::TensorOptions()
.dtype(torch::kInt32)
.device(gradient.device())
);
for (int i = 0; i < reduced_keys.sizes()[0]; i++) {
// FIXME: this might be slow
auto mask = new_keys.eq(reduced_keys.index({torch::indexing::Slice(i, i+1)}));
auto idx = torch::all(mask, /*dim=*/1);
grad_indexes.index_put_({idx}, i);
}
std::vector<int64_t> reduced_shape = gradient.sizes().vec();
reduced_shape[0] = reduced_keys.sizes()[0];
torch::Tensor reduced_gradient = torch::zeros(
reduced_shape,
torch::TensorOptions()
.dtype(gradient.dtype())
.device(gradient.device())
);
reduced_gradient.index_add_(0, grad_indexes, gradient);
return {reduced_gradient, reduced_keys};
}
std::vector<std::vector<torch::Tensor>> reduce(
torch::Tensor input,
torch::Tensor keys,
int64_t col,
torch::optional<torch::Tensor> position_grad,
torch::optional<torch::Tensor> position_grad_keys,
torch::optional<torch::Tensor> cell_grad,
torch::optional<torch::Tensor> cell_grad_keys
) {
/* Accumulates the entries in the first dimensions of the input tensors
* according to the keys in column col with the same value
*
* @param input The tensor to be reduced @param keys The meta information
* about the first dimension of the input @param col The column number of
* key in keys to be used for the reduction @return The input tensor with
* the accumulated entries in the first dimension
*/
// unique is used differently on the c++ frontend
// see https://stackoverflow.com/a/70809901
// https://pytorch.org/cppdocs/api/function_namespaceat_1a70a940329a0c5d01c1f3e651f7acec98.html
torch::Tensor key = keys.index({"...", col});
auto unique_result = at::_unique2(key);
auto reduced_keys = std::get<0>(unique_result);
torch::Tensor indexes = torch::empty(
{input.sizes()[0]},
torch::TensorOptions()
.dtype(torch::kInt32)
.device(input.device())
);
for (int i = 0; i < reduced_keys.sizes()[0]; i++) {
auto idx = torch::where(key == reduced_keys[i])[0];
indexes.index_put_({idx}, i);
}
std::vector<int64_t> reduced_shape = input.sizes().vec();
reduced_shape[0] = reduced_keys.sizes()[0];
torch::Tensor reduced_input = torch::zeros(
reduced_shape,
torch::TensorOptions()
.dtype(input.dtype())
.device(input.device())
);
reduced_input.index_add_(0, indexes, input);
auto reduced_position_grad = torch::Tensor();
auto reduced_position_grad_keys = torch::Tensor();
if (position_grad) {
assert(position_grad_keys);
auto result = _reduce_grad(
position_grad.value(),
position_grad_keys.value(),
indexes
);
reduced_position_grad = result[0];
reduced_position_grad_keys = result[1];
}
auto reduced_cell_grad = torch::Tensor();
auto reduced_cell_grad_keys = torch::Tensor();
if (cell_grad) {
assert(cell_grad_keys);
auto result = _reduce_grad(
cell_grad.value(),
cell_grad_keys.value(),
indexes
);
reduced_cell_grad = result[0];
reduced_cell_grad_keys = result[1];
}
return {
// values
{reduced_input, reduced_keys.reshape({-1, 1})},
// positions grad
{reduced_position_grad, reduced_position_grad_keys},
// cell grad
{reduced_cell_grad, reduced_cell_grad_keys}
};
}
torch::autograd::variable_list ReduceValuesAutograd::forward(
torch::autograd::AutogradContext *ctx,
torch::Tensor values,
torch::Tensor keys,
int64_t col
) {
torch::Tensor key = keys.index({"...", col});
auto unique_result = at::_unique2(key);
auto reduced_keys = std::get<0>(unique_result);
std::vector<int64_t> reduced_shape = values.sizes().vec();
reduced_shape[0] = reduced_keys.sizes()[0];
torch::Tensor indexes = torch::empty(
{values.sizes()[0]},
torch::TensorOptions()
.dtype(torch::kInt32)
.device(values.device())
);
auto reduce_mapping = std::vector<torch::Tensor>();
for (int i = 0; i < reduced_keys.sizes()[0]; i++) {
auto idx = torch::where(key == reduced_keys[i])[0];
indexes.index_put_({idx}, i);
reduce_mapping.push_back(idx);
}
torch::Tensor reduced_values = torch::zeros(
reduced_shape,
torch::TensorOptions()
.dtype(values.dtype())
.device(values.device())
);
reduced_values.index_add_(0, indexes, values);
ctx->save_for_backward({values});
ctx->saved_data["reduce_mapping"] = reduce_mapping;
ctx->mark_non_differentiable({reduced_keys});
return {reduced_values, reduced_keys.reshape({-1, 1}), indexes};
}
torch::autograd::variable_list ReduceValuesAutograd::backward(
torch::autograd::AutogradContext *ctx,
torch::autograd::variable_list outputs_grad
) {
auto reduced_input_grad = outputs_grad[0];
auto input = ctx->get_saved_variables()[0];
auto reduce_mapping = ctx->saved_data["reduce_mapping"].toTensorVector();
auto input_grad = torch::Tensor();
if (input.requires_grad()) {
input_grad = torch::zeros_like(input);
reduce_cuda_backward_mapping(reduce_mapping, input_grad, reduced_input_grad);
//for (int i=0; i<reduce_mapping.size(); i++) {
// input_grad.index_put_({reduce_mapping[i], "..."}, reduced_input_grad.index({i, "..."}));
//}
}
return {
// values & keys
input_grad,
torch::Tensor(),
// dim
torch::Tensor(),
};
}
torch::autograd::variable_list ReduceGradientAutograd::forward(
torch::autograd::AutogradContext *ctx,
torch::Tensor gradient,
torch::Tensor keys,
torch::Tensor indexes
) {
auto new_keys = keys.clone();
auto new_keys_accessor = new_keys.accessor<int32_t, 2>();
for (int grad_i=0; grad_i<keys.sizes()[0]; grad_i++) {
auto sample = new_keys_accessor[grad_i][0];
new_keys_accessor[grad_i][0] = indexes[sample].item<int32_t>();
}
auto unique_result = torch::unique_dim(new_keys, 0);
auto reduced_keys = std::get<0>(unique_result);
torch::Tensor grad_indexes = torch::empty(
{gradient.sizes()[0]},
torch::TensorOptions()
.dtype(torch::kInt32)
.device(gradient.device())
);
auto mapping = std::vector<torch::Tensor>();
for (int i = 0; i < reduced_keys.sizes()[0]; i++) {
// FIXME: this might be slow
auto mask = new_keys.eq(reduced_keys.index({torch::indexing::Slice(i, i+1)}));
auto idx = torch::all(mask, /*dim=*/1);
grad_indexes.index_put_({idx}, i);
mapping.push_back(idx);
}
std::vector<int64_t> reduced_shape = gradient.sizes().vec();
reduced_shape[0] = reduced_keys.sizes()[0];
torch::Tensor reduced_gradient = torch::zeros(
reduced_shape,
torch::TensorOptions()
.dtype(gradient.dtype())
.device(gradient.device())
);
reduced_gradient.index_add_(0, grad_indexes, gradient);
ctx->save_for_backward({gradient});
ctx->saved_data["reduce_mapping"] = mapping;
ctx->mark_non_differentiable({reduced_keys});
return {reduced_gradient, reduced_keys};
}
torch::autograd::variable_list ReduceGradientAutograd::backward(
torch::autograd::AutogradContext *ctx,
torch::autograd::variable_list outputs_grad
) {
auto reduced_gradient_grad = outputs_grad[0];
auto gradient = ctx->get_saved_variables()[0];
auto reduce_mapping = ctx->saved_data["reduce_mapping"].toTensorVector();
auto gradient_grad = torch::Tensor();
if (gradient.requires_grad()) {
gradient_grad = torch::zeros_like(gradient);
for (int i=0; i<reduce_mapping.size(); i++) {
gradient_grad.index_put_({reduce_mapping[i], "..."}, reduced_gradient_grad.index({i, "..."}));
}
}
return {
// gradient & keys
gradient_grad,
torch::Tensor(),
// indexes
torch::Tensor(),
};
}
std::vector<std::vector<torch::Tensor>> reduce_custom_autograd(
torch::Tensor values,
torch::Tensor keys,
int64_t col,
torch::optional<torch::Tensor> position_grad,
torch::optional<torch::Tensor> position_grad_keys,
torch::optional<torch::Tensor> cell_grad,
torch::optional<torch::Tensor> cell_grad_keys
) {
auto result = ReduceValuesAutograd::apply(
values,
keys,
col
);
auto reduced_values = result[0];
auto reduced_keys = result[1];
auto indexes = result[2];
auto reduced_position_grad = torch::Tensor();
auto reduced_position_grad_keys = torch::Tensor();
if (position_grad) {
assert(position_grad_keys);
auto result = ReduceGradientAutograd::apply(
position_grad.value(),
position_grad_keys.value(),
indexes
);
reduced_position_grad = result[0];
reduced_position_grad_keys = result[1];
}
auto reduced_cell_grad = torch::Tensor();
auto reduced_cell_grad_keys = torch::Tensor();
if (cell_grad) {
assert(cell_grad_keys);
auto result = ReduceGradientAutograd::apply(
cell_grad.value(),
cell_grad_keys.value(),
indexes
);
reduced_cell_grad = result[0];
reduced_cell_grad_keys = result[1];
}
return {
{reduced_values, reduced_keys},
{reduced_position_grad, reduced_position_grad_keys},
{reduced_cell_grad, reduced_cell_grad_keys}
};
}
TORCH_LIBRARY(reduce_cuda_cpp, m) {
m.def(R"(
reduce(
Tensor values,
Tensor keys,
int dim,
Tensor? positions_grad = None,
Tensor? positions_grad_keys = None,
Tensor? cell_grad = None,
Tensor? cell_grad_keys = None
) -> Tensor[][]
)", reduce);
m.def(R"(
reduce_custom_autograd(
Tensor values,
Tensor keys,
int dim,
Tensor? positions_grad = None,
Tensor? positions_grad_keys = None,
Tensor? cell_grad = None,
Tensor? cell_grad_keys = None
) -> Tensor[][]
)", reduce_custom_autograd);
}