-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtests.py
242 lines (212 loc) · 6.53 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import torch
import load_cpp_extension
import reduce_python
def test_same_result(
context,
function_1,
function_2,
args,
verbose,
):
(input, input_keys, dim) = args
(reduced_1, reduced_keys_1), _, _ = function_1(input, input_keys, dim)
(reduced_2, reduced_keys_2), _, _ = function_2(input, input_keys, dim)
same_keys = torch.all(reduced_keys_1 == reduced_keys_2)
same_shape = reduced_1.shape == reduced_2.shape
all_close = torch.allclose(reduced_1, reduced_2)
test_fails = not same_keys or not same_shape or not all_close
if test_fails and verbose:
print(f"tests failed for {context}")
print(" input\n", input)
print(" input_keys\n", input_keys)
print(" dim", dim)
print(" reduced_1\n", reduced_1)
print(" reduced_2\n", reduced_2)
assert same_keys, f"{context}: keys error {reduced_keys_1} vs {reduced_keys_2}"
assert same_shape, f"{context}: shape error {reduced_1.shape} vs {reduced_2.shape}"
error = torch.linalg.norm(reduced_1 - reduced_2)
assert all_close, f"{context}: different values, absolute error {error}"
def test_right_values():
X = torch.tensor(
[
[1.0, 11.0],
[2.0, 22.0],
[3.0, 33.0],
]
)
keys = torch.tensor(
[
[0, 0],
[5, 0],
[0, 2],
]
)
(reduced, reduced_keys), _, _ = reduce_python.reduce(X, keys, dim=0)
expected = torch.tensor(
[
[4.0, 44.0],
[2.0, 22.0],
]
)
if not torch.all(expected == reduced):
raise Exception("wrong values")
expected_keys = torch.tensor(
[
[0],
[5],
]
)
if not torch.all(expected_keys == reduced_keys):
raise Exception("wrong keys")
gradient = torch.tensor(
[
[1.0, 11.0],
[2.0, 22.0],
[3.0, 33.0],
[4.0, 44.0],
[5.0, 55.0],
]
)
gradient_keys = torch.tensor(
[
[0, 0],
[1, 0],
[0, 1],
[1, 2],
[2, 0],
]
)
(
(reduced, reduced_keys),
(reduced_grad, reduced_grad_keys),
_,
) = reduce_python.reduce(X, keys, 0, gradient, gradient_keys)
expected = torch.tensor(
[
[6.0, 66.0],
[3.0, 33.0],
[2.0, 22.0],
[4.0, 44.0],
]
)
if not torch.all(expected == reduced_grad):
raise Exception("wrong gradients")
expected_keys = torch.tensor(
[
[0, 0],
[0, 1],
[1, 0],
[1, 2],
]
)
if not torch.all(expected_keys == reduced_grad_keys):
raise Exception("wrong gradients keys")
def test_autograd(X, X_keys, dim, pos_grad, pos_grad_keys, cell_grad, cell_grad_keys):
torch.autograd.gradcheck(
lambda *args: reduce_python.reduce_custom_autograd(*args)[0][0],
(X, X_keys, dim),
fast_mode=True,
)
torch.autograd.gradcheck(
lambda *args: torch.ops.reduce_cpp.reduce_custom_autograd(*args)[0][0],
(X, X_keys, dim),
fast_mode=True,
)
torch.autograd.gradcheck(
lambda *args: reduce_python.reduce_custom_autograd(*args)[1][0],
(
X,
X_keys,
dim,
pos_grad,
pos_grad_keys,
None,
None,
),
fast_mode=True,
)
torch.autograd.gradcheck(
lambda *args: reduce_python.reduce_custom_autograd(*args)[2][0],
(X, X_keys, dim, None, None, cell_grad, cell_grad_keys),
fast_mode=True,
)
if __name__ == "__main__":
# very rudimentary test for sanity checks, can be extended if needed
torch.manual_seed(0)
# check that we get what we want
test_right_values()
# small test for debugging
n = 10
X = torch.rand((n, 3))
X_keys = torch.randint(2, (n, 2), dtype=torch.int32)
for dim in range(2):
test_same_result(
"python / C++",
reduce_python.reduce,
torch.ops.reduce_cpp.reduce,
(X, X_keys, dim),
verbose=True,
)
# test_same_result(
# "python / py autograd",
# reduce_python.reduce,
# reduce_python.reduce_custom_autograd,
# (X, X_keys, dim),
# verbose=True,
# )
test_same_result(
"python / C++ autograd",
reduce_python.reduce,
torch.ops.reduce_cpp.reduce_custom_autograd,
(X, X_keys, dim),
verbose=True,
)
if torch.cuda.is_available():
test_same_result(
"python / C++ autograd -- CUDA",
reduce_python.reduce,
torch.ops.reduce_cpp.reduce_custom_autograd,
(X.to(device="cuda"), X_keys, dim),
verbose=True,
)
# large tests
n = 100
X = torch.rand((n, 10, 6, 6))
X_keys = torch.randint(10, (n, 4), dtype=torch.int32)
for dim in range(4):
test_same_result(
"python / C++",
reduce_python.reduce,
torch.ops.reduce_cpp.reduce,
(X, X_keys, dim),
verbose=False,
)
test_same_result(
"python / py autograd",
reduce_python.reduce,
reduce_python.reduce_custom_autograd,
(X, X_keys, dim),
verbose=False,
)
test_same_result(
"python / C++ autograd",
reduce_python.reduce,
torch.ops.reduce_cpp.reduce_custom_autograd,
(X, X_keys, dim),
verbose=False,
)
# custom autograd checks
X = torch.rand((n, 60), requires_grad=True, dtype=torch.float64)
X_keys = torch.randint(2, (n, 4), dtype=torch.int32)
pos_grad = torch.rand((3 * n, 3, 60), requires_grad=True, dtype=torch.float64)
pos_grad_keys = torch.randint(n, (3 * n, 3), dtype=torch.int32)
cell_grad = torch.rand((n, 3, 3, 60), requires_grad=True, dtype=torch.float64)
cell_grad_keys = torch.randint(n, (n, 1), dtype=torch.int32)
test_autograd(X, X_keys, 2, pos_grad, pos_grad_keys, cell_grad, cell_grad_keys)
if torch.cuda.is_available():
# autograd on CUDA
X = X.to(device="cuda")
pos_grad = pos_grad.to(device="cuda")
cell_grad = cell_grad.to(device="cuda")
test_autograd(X, X_keys, 2, pos_grad, pos_grad_keys, cell_grad, cell_grad_keys)
print("All tests passed!")