-
Notifications
You must be signed in to change notification settings - Fork 2
/
READ.ME
110 lines (84 loc) · 4.2 KB
/
READ.ME
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
1. keras_MLP_toy_classification.py is a toy example with two layers, train, test, validation, categorical_cross_entropy, accuracy
- you can test different synthetic datasets
- epoch
- change size of the net
- show the plotted net
- show the dataset
- change the batch size
- different optimizers
2. keras_reuter_MLP is a real example similar to the above one
3. keras_Iris is a real example similar to the above one
4. keras_MINST is a real example similar to the above one
- change the size of the net 128, 512 , 2048
5. keras_XOR learn the XOR function
6. keras_CreditDefaulDetection.py is a credit defaul detection net
- increase Dropout
- however this net is not decreasing the loss, tried:
-- expand the layers
-- normalization
-- increase dropout
7. CIFAR10 is a classification into 10 categories
- training is separated from evaluation
8. CIFAR100 -- TBD
9. FACE_DETECTION
- a simple net
- a convnet similar to YLC one
- data augumentation TBD
- comparing netd TBD
- overfitting study TBD
- changing size and shape of net TBD
- training specialists
- this is a great place to deep-dive: http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/
10. history -- TBD
-- https://groups.google.com/forum/#!msg/keras-users/XK_a5r1vhZQ/Vs5dnVObBAAJ
-- http://nbviewer.jupyter.org/github/dnouri/nolearn/blob/master/docs/notebooks/CNN_tutorial.ipynb
11. Swallow -- TBD
- http://nbviewer.jupyter.org/github/dnouri/nolearn/blob/master/docs/notebooks/CNN_tutorial.ipynb
12. image caption -- TBD
-- http://datascience.stackexchange.com/questions/10368/image-captioning-in-keras
13. visul q&a -- TBD
-- http://iamaaditya.github.io/2016/04/visual_question_answering_demo_notebook
14. LSTM, RNN, BIDIRECTIONAL -- TBD
-- https://github.com/craffel/Lasagne-tutorial/blob/master/examples/tutorial.ipynb
15. SEQUENCES
-- https://bigaidream.gitbooks.io/subsets_ml_cookbook/content/dl/theano/theano_keras_sequence2sequence.html
16. CONV AUTOENCODER
-- https://github.com/mikesj-public/convolutional_autoencoder/blob/master/mnist_conv_autoencode.ipynb
17. VGG16
-- google pretrained convnet for image reco
-- it works with cam images
-- pretrained
-- https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3
18. Stock Pred
-- http://eugenezhulenev.com/blog/2014/11/14/stock-price-prediction-with-big-data-and-machine-learning/
19. GPUS
-- http://blog.dominodatalab.com/gpu-computing-and-deep-learning/
-- https://www.kaggle.com/c/facial-keypoints-detection/details/deep-learning-tutorial
-- http://markus.com/install-theano-on-aws/
20. Visualization Convnet notebook
-- https://github.com/fchollet/keras/issues/431
21. Sequence to Sequence
-- https://github.com/fchollet/keras/issues/395
22. Neon | Nervana
-- http://www.nervanasys.com/neon-v1-4-0-released/
ExAMPLES
-- https://github.com/fchollet/keras/tree/master/examples
-- https://www.microway.com/hpc-tech-tips/keras-theano-deep-learning-frameworks/
-- http://blog.mathandpencil.com/training-MNIST-using-lasagne/
-- http://lasagne.readthedocs.org/en/latest/user/tutorial.html
-- http://blocks.readthedocs.org/en/latest/tutorial.html
-- https://github.com/Newmu/Theano-Tutorials
-- http://katbailey.github.io/post/neural-nets-in-python/
-- http://nbviewer.jupyter.org/github/dnouri/nolearn/blob/master/docs/notebooks/CNN_tutorial.ipynb
-- http://www.pyimagesearch.com/2014/09/22/getting-started-deep-learning-python/
-- https://home.zhaw.ch/~dueo/bbs/files/ConvNets_24_April.pdf
-- http://www.slideshare.net/roelofp/python-for-image-understanding-deep-learning-with-convolutional-neural-nets
-- https://medium.com/@jiefeng/deep-learning-playbook-c5ebe34f8a1a#.krk4y6mvk
-- https://nyghtowl.io/2015/04/12/pycon-2015-neural-nets-for-newbie/
-- https://www.kifi.com/gdz-pseudi/deep-learning
-- http://blog.christianperone.com/2015/08/convolutional-neural-networks-and-feature-extraction-with-python/
KERAS Examples
-- https://github.com/fchollet/keras/tree/master/examples
ALPHAGO
-- https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner
-- https://github.com/spragunr/deep_q_rl