Follow these instructions to create your own custom tools.
You can take a tool implementation easily from:
- LangChain
- Tools: Tools | 🦜️🔗 LangChain
- Retrievers: Retrievers | 🦜️🔗 LangChain
- Vector Store: Vector stores | 🦜️🔗 LangChain
- Llama index
- Data Connectors: Data Connectors | Llama Index
- Connector
- Custom implementation
There are three types of tools:
- Data Loader: This tool type retrieves data from a source. Examples include the LangChain Wikipedia retriever and Arxiv.
- File Loader: This tool type loads and parses files. Examples include the LangChain Vector DB Retriever and LlamaIndex Upload PDF Retriever.
- Function: This is a unique tool type that performs a specific action. Examples include the Python Interpreter and Calculator.
Add your tool implementation here (please note that this link might change). The specific subfolder used will depend on the type of tool you're implementing.
If you need to install a new module to run your tool, execute the following command and run make dev
again.
poetry add <MODULE> --group community
If you're working on a File or Data Loader, follow the steps outlined in Implementing a Retriever.
If you're implementing a Function Tool, refer to the steps in Implementing a Function Tool.
Add the implementation inside a tool class that inherits BaseRetrieval
and needs to implement the function def retrieve_documents(self, query: str, **kwargs: Any) -> List[Dict[str, Any]]:
You can define custom configurations for your tool within the __init__
function. Set the exact values for these variables during Step 4.
You can also develop a tool that requires a token or authentication. To do this, simply set your variable in the .env file.
For example, for Wikipedia we have a custom configuration:
class LangChainWikiRetriever(BaseRetrieval):
"""
This class retrieves documents from Wikipedia using the langchain package.
This requires wikipedia package to be installed.
"""
def __init__(self, chunk_size: int = 300, chunk_overlap: int = 0):
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
def retrieve_documents(self, query: str, **kwargs: Any) -> List[Dict[str, Any]]:
wiki_retriever = WikipediaRetriever()
docs = wiki_retriever.get_relevant_documents(query)
text_splitter = CharacterTextSplitter(
chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap
)
documents = text_splitter.split_documents(docs)
return [
{
"text": doc.page_content,
"title": doc.metadata.get("title", None),
"url": doc.metadata.get("source", None),
}
for doc in documents
]
And for internet search, we need an API key
class TavilyInternetSearch(BaseRetrieval):
def __init__(self):
if "TAVILY_API_KEY" not in os.environ:
raise ValueError("Please set the TAVILY_API_KEY environment variable.")
self.api_key = os.environ["TAVILY_API_KEY"]
self.client = TavilyClient(api_key=self.api_key)
def retrieve_documents(self, query: str, **kwargs: Any) -> List[Dict[str, Any]]:
content = self.client.search(query=query, search_depth="advanced")
if "results" not in content:
return []
return [
{
"url": result["url"],
"text": result["content"],
}
for result in content["results"]
Note that all Retrievers should return a list of Dicts, and each Dict should contain at least a text
key.
Add the implementation inside a tool class that inherits BaseFunctionTool
and needs to implement the function def call(self, parameters: str, **kwargs: Any) -> List[Dict[str, Any]]:
For example, for calculator
from typing import Any
from py_expression_eval import Parser
from typing import List, Dict
from backend.tools.function_tools.base import BaseFunctionTool
class CalculatorFunctionTool(BaseFunctionTool):
"""
Function Tool that evaluates mathematical expressions.
"""
def call(self, parameters: str, **kwargs: Any) -> List[Dict[str, Any]]:
math_parser = Parser()
to_evaluate = parameters.get("code", "").replace("pi", "PI").replace("e", "E")
result = []
try:
result = {"result": math_parser.parse(to_evaluate).evaluate({})}
except Exception:
result = {"result": "Parsing error - syntax not allowed."}
return result
To make your tool available, add its definition to the tools config here.
Start by adding the tool name to the ToolName
enum found at the top of the file.
Next, include the tool configurations in the AVAILABLE_TOOLS
list. The definition should include:
- Name: Use the Enum definition you just created.
- Implementation: Link the class you made in Step 3.
- Parameter_definitions: If your class has specific configurations or fields that need to be set on
__init__
, set their values here. - Is_visible: A boolean value indicating whether this function should be visible in the UI.
- Is_available: A boolean value indicating that this tool is ready to use. The class definition should help check for any variables or api keys that are required.
- Error_message: A message returned when is_available is False.
- Category: The type of tool.
- Description: A brief description of the tool.
- Env_vars: A list of secrets required by the tool.
Function tool with custom parameter definitions:
ToolName.Python_Interpreter: ManagedTool(
name=ToolName.Python_Interpreter,
implementation=PythonInterpreterFunctionTool,
parameter_definitions={
"code": {
"description": "Python code to execute using an interpreter",
"type": "str",
"required": True,
}
},
is_visible=True,
is_available=PythonInterpreterFunctionTool.is_available(),
error_message="PythonInterpreterFunctionTool not available, please make sure to set the PYTHON_INTERPRETER_URL environment variable.",
category=Category.Function,
description="Runs python code in a sandbox.",
)
Now, when you run the toolkit, all the visible tools, including the one you just added, should be available!
- Run
make dev
- Open http://localhost:4000/
- Open the side panel
- Your tool should be there!
- Select it and send a message that triggers it
- Appreciate a grounded response with something ✨you created from scratch✨!
Remember, you can also access your tools via the API.
- List tools:
curl --location --request GET 'http://localhost:8000/tools' \
--header 'User-Id: me' \
--header 'Content-Type: application/json' \
--data '{}'
- Chat turns with tools:
curl --location 'http://localhost:8000/chat-stream' \
--header 'User-Id: me' \
--header 'Content-Type: application/json' \
--data '{
"message": "Tell me about the aya model",
"tools": [{"name": "Arxiv"}]
}
'
If you would like to go above and beyond, it would be helpful to add some unit tests to ensure that your tool is working as expected. Create a file here and add a few cases.