2
2
3
3
4
4
# pyinfraformat
5
- Python library for Finnish Infraformat (version 2.5)
5
+ Python library for reading, writing and analyzing Finnish borehole format Infraformat (version 2.5).
6
+ Well suited for scientific and research applications.
6
7
7
8
## Installation
8
9
@@ -23,3 +24,55 @@ Library can be installed also by `git clone` / downloading zip.
23
24
To install inplace for development work, use ` -e ` command.
24
25
25
26
python -m pip install -e .
27
+
28
+ ## Quickstart
29
+ Basic usage
30
+ ``` python
31
+ import pyinfraformat as pif
32
+ pif.set_logger_level(50 ) # Suppress non-critical warnings, recommended for large files
33
+ holes = pif.from_infraformat(" *.tek" )
34
+ holes = holes.project(" TM35FIN" )
35
+ bounds = holes.bounds
36
+
37
+ bounds = [6672242 - 200 , 385795 - 200 , 6672242 + 200 , 385795 + 200 ]
38
+ gtk_holes = pif.from_gtk_wfs(bounds, " TM35Fin" )
39
+ print (gtk_holes) # View holes object
40
+ # Infraformat Holes -object:
41
+ # Total of 203 holes
42
+ # - PO ......... 161
43
+ # - HP ......... 13
44
+ # - PA ......... 12
45
+ # - NO ......... 2
46
+ # - NE ......... 1
47
+ # - KE ......... 5
48
+ # - KR ......... 9
49
+
50
+
51
+ html_map = gtk_holes.plot_map()
52
+ html_map.save(" soundings.html" )
53
+ html_map # View map in jupyter
54
+ ```
55
+ ![ image] ( https://github.com/user-attachments/assets/a463e181-4ab4-479d-94f6-edcb19c0f598 )
56
+
57
+ ``` python
58
+ hole_figure = gtk_holes[10 ].plot()
59
+ hole_figure # View hole in jupyter
60
+ ```
61
+
62
+ ![ image] ( https://github.com/user-attachments/assets/33b9c797-b084-44b2-88c8-dadd15fc540f )
63
+
64
+ Plot histograms from labratory tests
65
+ ``` python
66
+ import pandas as pd
67
+ bounds = [6672242 - 2000 , 385795 - 2000 , 6672242 + 2000 , 385795 + 2000 ]
68
+ gtk_holes = pif.from_gtk_wfs(bounds, " TM35FIN" , maxholes = 25_000 )
69
+ labratory_tests = gtk_holes.filter_holes(hole_type = [" NO" , " NE" ], start = " 1990-01-01" )
70
+ df = labratory_tests.get_dataframe()
71
+ df[' data_Soil type' ] = df[' data_Soil type' ].astype(" string" )
72
+ clay_samples = df[df[' data_Soil type' ].str.endswith(" Sa" , na = False )].reset_index()
73
+ clay_samples[' data_Laboratory w' ] = pd.to_numeric(clay_samples[' data_Laboratory w' ])
74
+ fig = clay_samples[' data_Laboratory w' ].plot.hist(bins = ' fd' )
75
+ fig.set_title(" Clay samples water content, %" )
76
+ fig
77
+ ```
78
+ ![ image] ( https://github.com/user-attachments/assets/e3e6030b-ccfc-4c59-9929-40a7f9900fa4 )
0 commit comments