-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathZuluNNet.py
55 lines (43 loc) · 2.08 KB
/
ZuluNNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class ZuluNNet(nn.Module):
def __init__(self,game,args):
self.board_x, self.board_y = game.getBoardSize()
self.action_size = game.getActionSize()
self.args = args
super(ZuluNNet,self).__init__()
self.conv1 = nn.Conv2d(1,args.num_channels,3,stride=1,padding=1)
self.conv2 = nn.Conv2d(args.num_channels,args.num_channels,3,stride=1,padding=1)
self.conv3 = nn.Conv2d(args.num_channels,args.num_channels,3,stride=1)
self.conv4 = nn.Conv2d(args.num_channels,args.num_channels,3,stride=1)
self.bn1 = nn.BatchNorm2d(args.num_channels)
self.bn2 = nn.BatchNorm2d(args.num_channels)
self.bn3 = nn.BatchNorm2d(args.num_channels)
self.bn4 = nn.BatchNorm2d(args.num_channels)
self.bn_metadata_1 = nn.BatchNorm2d(64)
self.fc_metadata_1 = nn.Linear(args.num_metadata, 64)
self.fc1 = nn.Linear(args.num_channels * (self.board_x-4) * (self.board_y-4) + 64, 1024)
self.fc_bn1 = nn.BatchNorm1d(1024)
self.fc2 = nn.Linear(1024+64,512)
self.fc_bn2 = nn.BatchNorm1d(512)
self.fc3 = nn.Linear(512,self.action_size)
self.fc4 = nn.Linear(512,1)
def forward(self,s,data):
#s shape: (batch,3,8)
s = s.view(-1,1,self.board_x,self.board_y)
s = F.relu(self.bn1(self.conv1(s)))
s = F.relu(self.bn2(self.conv2(s)))
s = F.relu(self.bn3(self.conv3(s)))
s = F.relu(self.bn4(self.conv4(s)))
s = s.view(-1,self.args.num_channels * (self.board_x-4) * (self.board_y-4))
data = F.relu(self.bn_metadata_1(self.fc_metadata_1(data)))
s = torch.concat([s,data],dim=-1)
s = F.dropout(F.relu(self.fc_bn1(self.fc1(s))), p=self.args.dropout,
training=self.training)
s = F.dropout(F.relu(self.fc_bn2(self.fc2(s))), p=self.args.dropout, training=self.training) # batch_size x 512
pi = self.fc3(s)
v = self.fc4(s)
return F.log_softmax(pi,dim=1), torch.tanh(v)