Skip to content

Latest commit

 

History

History
63 lines (44 loc) · 2.47 KB

readme.md

File metadata and controls

63 lines (44 loc) · 2.47 KB

AggMe

AggMe is a python framework for aggregating overlapped annotations in computer vision tasks (object detection, semantic or instance image segmentation, video annotation).

It allows you to aggregate the annotations from crowdsourcing platforms or generated from neural networks. Current version of AggMe supports several types of data:

  • Bounding Boxes (images)
  • Segmentation Masks (images)
  • Time Intervals (video timeline or audio timeline)

title

Get Started

  1. Install the AggMe package. Run the following command in the command shell:
$ pip install aggme

Note that aggme framework supports only python=3.10+

  1. To use AggMe with Visualisation module and see results, install jupyter notebook
$ pip install notebook
  1. Simple code example to start using framework:
from aggme.aggregation import BboxAggregation
from aggme.utils import AnnotationData
from aggme.utils.processing import toloka_bboxes_to_template
import pandas as pd


df = pd.read_csv("markups.csv") # read dataframe with annotations
data = AnnotationData(markup_type='bboxes') # init aggregator

data.load_markups(df, toloka_bboxes_to_template)

aggregator = BboxAggregation()
results = aggregator.get_aggregation_results(data)

Examples

For more information see examples dir.

example

Authors and Credits

Links

License

Creative Commons License
This work is licensed under a variant of Creative Commons Attribution-ShareAlike 4.0 International License.

Please see the specific license.