-
Notifications
You must be signed in to change notification settings - Fork 13
/
flappy.py
executable file
·621 lines (500 loc) · 19.6 KB
/
flappy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
from itertools import cycle
import random
import sys
import pygame
from pygame.locals import *
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation
FPS = 60
SCREENWIDTH = 288.0
SCREENHEIGHT = 512.0
# amount by which base can maximum shift to left
PIPEGAPSIZE = 100
# gap between upper and lower part of pipe
BASEY = SCREENHEIGHT * 0.79
# image, sound and hitmask dicts
IMAGES, SOUNDS, HITMASKS = {}, {}, {}
load_saved_pool = False
save_current_pool = True
current_pool = []
fitness = []
total_models = 50
next_pipe_x = -1
next_pipe_hole_y = -1
generation = 1
# START ADD
highest_fitness = -1
best_weights = []
# END ADD
def save_pool():
for xi in range(total_models):
current_pool[xi].save_weights("SavedModels/model_new" + str(xi) + ".keras")
print("Saved current pool!")
def create_model():
# [TODO]
# create keras model
model = Sequential()
model.add(Dense(3, input_shape=(3,)))
model.add(Activation('relu'))
model.add(Dense(7, input_shape=(3,)))
model.add(Activation('relu'))
model.add(Dense(1, input_shape=(3,)))
model.add(Activation('sigmoid'))
model.compile(loss='mse',optimizer='adam')
return model
def predict_action(height, dist, pipe_height, model_num):
global current_pool
# The height, dist and pipe_height must be between 0 to 1 (Scaled by SCREENHEIGHT)
height = min(SCREENHEIGHT, height) / SCREENHEIGHT - 0.5
dist = dist / 450 - 0.5 # Max pipe distance from player will be 450
pipe_height = min(SCREENHEIGHT, pipe_height) / SCREENHEIGHT - 0.5
# [TODO]
# Feed in features to the neural net
# Reshape input
# Get prediction from model
neural_input = np.asarray([height,dist,pipe_height])
neural_input = np.atleast_2d(neural_input)
output_prob = current_pool[model_num].predict(neural_input, 1)[0]
if(output_prob[0] <= .5):
return 1
return 2
# [TODO]
def model_crossover(parent1, parent2):
# obtain parent weights
# get random gene
# swap genes
global current_pool
weight1 = current_pool[parent1].get_weights()
weight2 = current_pool[parent2].get_weights()
new_weight1 = weight1
new_weight2 = weight2
gene = random.randint(0,len(new_weight1)-1)
new_weight1[gene] = weight2[gene]
new_weight2[gene] = weight1[gene]
return np.asarray([new_weight1,new_weight2])
# [TODO]
def model_mutate(weights):#,generation):
# mutate each models weights
for i in range(len(weights)):
for j in range(len(weights[i])):
if( random.uniform(0,1) > .85):
change = random.uniform(-.5,.5)
weights[i][j] += change
return weights
def showGameOverScreen(crashInfo):
# Perform genetic updates here
global current_pool
global fitness
global generation
new_weights = []
total_fitness = 0
# START ADD
global highest_fitness
global best_weights
updated = False
# END ADD
# Adding up fitness of all birds
for select in range(total_models):
total_fitness += fitness[select]
# START ADD
if fitness[select] >= highest_fitness:
updated = True
highest_fitness = fitness[select]
best_weights = current_pool[select].get_weights()
# END ADD
# REMOVE HERE
'''
# Scaling bird's fitness by total fitness
for select in range(total_models):
fitness[select] /= total_fitness
# Add previous fitness to selected bird and store
if select > 0:
fitness[select] += fitness[select-1]
'''
# ADD HERE
# Get top two parents
parent1 = random.randint(0,total_models-1)
parent2 = random.randint(0,total_models-1)
for i in range(total_models):
if fitness[i] >= fitness[parent1]:
parent1 = i
for j in range(total_models):
if j != parent1:
if fitness[j] >= fitness[parent2]:
parent2 = j
for select in range(total_models // 2):
# [TODO]
cross_over_weights = model_crossover(parent1,parent2)
if updated == False:
cross_over_weights[1] = best_weights
mutated1 = model_mutate(cross_over_weights[0])
mutated2 = model_mutate(cross_over_weights[0])
new_weights.append(mutated1)
new_weights.append(mutated2)
# Reset fitness scores for new round
# Set new generation weights
for select in range(len(new_weights)):
fitness[select] = -100
current_pool[select].set_weights(new_weights[select])
if save_current_pool == 1:
save_pool()
generation += 1
return
# Initialize all models
for i in range(total_models):
model = create_model()
current_pool.append(model)
# reset fitness score
fitness.append(-100)
if load_saved_pool:
for i in range(total_models):
current_pool[i].load_weights("SavedModels/model_new"+str(i)+".keras")
# for i in range(total_models):
# print(current_pool[i].get_weights())
# list of all possible players (tuple of 3 positions of flap)
PLAYERS_LIST = (
# red bird
(
'assets/sprites/redbird-upflap.png',
'assets/sprites/redbird-midflap.png',
'assets/sprites/redbird-downflap.png',
),
# blue bird
(
# amount by which base can maximum shift to left
'assets/sprites/bluebird-upflap.png',
'assets/sprites/bluebird-midflap.png',
'assets/sprites/bluebird-downflap.png',
),
# yellow bird
(
'assets/sprites/yellowbird-upflap.png',
'assets/sprites/yellowbird-midflap.png',
'assets/sprites/yellowbird-downflap.png',
),
)
# list of backgrounds
BACKGROUNDS_LIST = (
'assets/sprites/background-day.png',
'assets/sprites/background-night.png',
)
# list of pipes
PIPES_LIST = (
'assets/sprites/pipe-green.png',
'assets/sprites/pipe-red.png',
)
def main():
global SCREEN, FPSCLOCK
pygame.init()
FPSCLOCK = pygame.time.Clock()
SCREEN = pygame.display.set_mode((int(SCREENWIDTH), int(SCREENHEIGHT)))
pygame.display.set_caption('Flappy Bird')
# numbers sprites for score display
IMAGES['numbers'] = (
pygame.image.load('assets/sprites/0.png').convert_alpha(),
pygame.image.load('assets/sprites/1.png').convert_alpha(),
pygame.image.load('assets/sprites/2.png').convert_alpha(),
pygame.image.load('assets/sprites/3.png').convert_alpha(),
pygame.image.load('assets/sprites/4.png').convert_alpha(),
pygame.image.load('assets/sprites/5.png').convert_alpha(),
pygame.image.load('assets/sprites/6.png').convert_alpha(),
pygame.image.load('assets/sprites/7.png').convert_alpha(),
pygame.image.load('assets/sprites/8.png').convert_alpha(),
pygame.image.load('assets/sprites/9.png').convert_alpha()
)
# game over sprite
IMAGES['gameover'] = pygame.image.load('assets/sprites/gameover.png').convert_alpha()
# message sprite for welcome screen
IMAGES['message'] = pygame.image.load('assets/sprites/message.png').convert_alpha()
# base (ground) sprite
IMAGES['base'] = pygame.image.load('assets/sprites/base.png').convert_alpha()
# sounds
if 'win' in sys.platform:
soundExt = '.wav'
else:
soundExt = '.ogg'
SOUNDS['die'] = pygame.mixer.Sound('assets/audio/die' + soundExt)
SOUNDS['hit'] = pygame.mixer.Sound('assets/audio/hit' + soundExt)
SOUNDS['point'] = pygame.mixer.Sound('assets/audio/point' + soundExt)
SOUNDS['swoosh'] = pygame.mixer.Sound('assets/audio/swoosh' + soundExt)
SOUNDS['wing'] = pygame.mixer.Sound('assets/audio/wing' + soundExt)
while True:
# select random background sprites
randBg = random.randint(0, len(BACKGROUNDS_LIST) - 1)
IMAGES['background'] = pygame.image.load(BACKGROUNDS_LIST[randBg]).convert()
# select random player sprites
randPlayer = random.randint(0, len(PLAYERS_LIST) - 1)
IMAGES['player'] = (
pygame.image.load(PLAYERS_LIST[randPlayer][0]).convert_alpha(),
pygame.image.load(PLAYERS_LIST[randPlayer][1]).convert_alpha(),
pygame.image.load(PLAYERS_LIST[randPlayer][2]).convert_alpha(),
)
# select random pipe sprites
pipeindex = random.randint(0, len(PIPES_LIST) - 1)
IMAGES['pipe'] = (
pygame.transform.rotate(
pygame.image.load(PIPES_LIST[pipeindex]).convert_alpha(), 180),
pygame.image.load(PIPES_LIST[pipeindex]).convert_alpha(),
)
# hismask for pipes
HITMASKS['pipe'] = (
getHitmask(IMAGES['pipe'][0]),
getHitmask(IMAGES['pipe'][1]),
)
# hitmask for player
HITMASKS['player'] = (
getHitmask(IMAGES['player'][0]),
getHitmask(IMAGES['player'][1]),
getHitmask(IMAGES['player'][2]),
)
movementInfo = showWelcomeAnimation()
global fitness
for idx in range(total_models):
fitness[idx] = 0
crashInfo = mainGame(movementInfo)
showGameOverScreen(crashInfo)
def showWelcomeAnimation():
return {
'playery': int((SCREENHEIGHT - IMAGES['player'][0].get_height()) / 2),
'basex': 0,
'playerIndexGen': cycle([0, 1, 2, 1]),
}
def mainGame(movementInfo):
global fitness
score = playerIndex = loopIter = 0
playerIndexGen = movementInfo['playerIndexGen']
playersXList = []
playersYList = []
for idx in range(total_models):
playerx, playery = int(SCREENWIDTH * 0.2), movementInfo['playery']
playersXList.append(playerx)
playersYList.append(playery)
basex = movementInfo['basex']
baseShift = IMAGES['base'].get_width() - IMAGES['background'].get_width()
# get 2 new pipes to add to upperPipes lowerPipes list
newPipe1 = getRandomPipe()
newPipe2 = getRandomPipe()
# list of upper pipes
upperPipes = [
{'x': SCREENWIDTH + 200, 'y': newPipe1[0]['y']},
{'x': SCREENWIDTH + 200 + (SCREENWIDTH / 2), 'y': newPipe2[0]['y']},
]
# list of lowerpipe
lowerPipes = [
{'x': SCREENWIDTH + 200, 'y': newPipe1[1]['y']},
{'x': SCREENWIDTH + 200 + (SCREENWIDTH / 2), 'y': newPipe2[1]['y']},
]
global next_pipe_x
global next_pipe_hole_y
next_pipe_x = lowerPipes[0]['x']
next_pipe_hole_y = (lowerPipes[0]['y'] + (upperPipes[0]['y'] + IMAGES['pipe'][0].get_height()))/2
pipeVelX = -4
# player velocity, max velocity, downward accleration, accleration on flap
playersVelY = [] # player's velocity along Y, default same as playerFlapped
playerMaxVelY = 10 # max vel along Y, max descend speed
playerMinVelY = -8 # min vel along Y, max ascend speed
playersAccY = [] # players downward accleration
playerFlapAcc = -9 # players speed on flapping
playersFlapped = [] # True when player flaps
playersState = []
for idx in range(total_models):
playersVelY.append(-9)
playersAccY.append(1)
playersFlapped.append(False)
playersState.append(True)
alive_players = total_models
while True:
for idxPlayer in range(total_models):
if playersYList[idxPlayer] < 0 and playersState[idxPlayer] == True:
alive_players -= 1
playersState[idxPlayer] = False
if alive_players == 0:
return {
'y': 0,
'groundCrash': True,
'basex': basex,
'upperPipes': upperPipes,
'lowerPipes': lowerPipes,
'score': score,
'playerVelY': 0,
}
for idxPlayer in range(total_models):
if playersState[idxPlayer]:
fitness[idxPlayer] += 1
next_pipe_x += pipeVelX
for idxPlayer in range(total_models):
if playersState[idxPlayer]:
if predict_action(playersYList[idxPlayer], next_pipe_x, next_pipe_hole_y, idxPlayer) == 1:
if playersYList[idxPlayer] > -2 * IMAGES['player'][0].get_height():
playersVelY[idxPlayer] = playerFlapAcc
playersFlapped[idxPlayer] = True
#SOUNDS['wing'].play()
for event in pygame.event.get():
if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE):
pygame.quit()
sys.exit()
"""if (event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP)):
if playery > -2 * IMAGES['player'][0].get_height():
playerVelY = playerFlapAcc
playerFlapped = True
SOUNDS['wing'].play()
"""
# check for crash here, returns status list
crashTest = checkCrash({'x': playersXList, 'y': playersYList, 'index': playerIndex},
upperPipes, lowerPipes)
for idx in range(total_models):
if playersState[idx] == True and crashTest[idx] == True:
alive_players -= 1
playersState[idx] = False
if alive_players == 0:
return {
'y': playery,
'groundCrash': crashTest[1],
'basex': basex,
'upperPipes': upperPipes,
'lowerPipes': lowerPipes,
'score': score,
'playerVelY': 0,
}
# check for score
gone_through_a_pipe = False
for idx in range(total_models):
if playersState[idx] == True:
pipe_idx = 0
playerMidPos = playersXList[idx]
for pipe in upperPipes:
pipeMidPos = pipe['x'] + IMAGES['pipe'][0].get_width()
if pipeMidPos <= playerMidPos < pipeMidPos + 4:
next_pipe_x = lowerPipes[pipe_idx+1]['x']
next_pipe_hole_y = (lowerPipes[pipe_idx+1]['y'] + (upperPipes[pipe_idx+1]['y'] + IMAGES['pipe'][pipe_idx+1].get_height())) / 2
gone_through_a_pipe = True
# score += 1
fitness[idx] += 25
# SOUNDS['point'].play()
pipe_idx += 1
if(gone_through_a_pipe):
score += 1
# playerIndex basex change
if (loopIter + 1) % 3 == 0:
playerIndex = next(playerIndexGen)
loopIter = (loopIter + 1) % 30
basex = -((-basex + 100) % baseShift)
# player's movement
for idx in range(total_models):
if playersState[idx] == True:
if playersVelY[idx] < playerMaxVelY and not playersFlapped[idx]:
playersVelY[idx] += playersAccY[idx]
if playersFlapped[idx]:
playersFlapped[idx] = False
playerHeight = IMAGES['player'][playerIndex].get_height()
playersYList[idx] += min(playersVelY[idx], BASEY - playersYList[idx] - playerHeight)
# move pipes to left
for uPipe, lPipe in zip(upperPipes, lowerPipes):
uPipe['x'] += pipeVelX
lPipe['x'] += pipeVelX
# add new pipe when first pipe is about to touch left of screen
if 0 < upperPipes[0]['x'] < 5:
newPipe = getRandomPipe()
upperPipes.append(newPipe[0])
lowerPipes.append(newPipe[1])
# remove first pipe if its out of the screen
if upperPipes[0]['x'] < -IMAGES['pipe'][0].get_width():
upperPipes.pop(0)
lowerPipes.pop(0)
# draw sprites
SCREEN.blit(IMAGES['background'], (0,0))
for uPipe, lPipe in zip(upperPipes, lowerPipes):
SCREEN.blit(IMAGES['pipe'][0], (uPipe['x'], uPipe['y']))
SCREEN.blit(IMAGES['pipe'][1], (lPipe['x'], lPipe['y']))
SCREEN.blit(IMAGES['base'], (basex, BASEY))
# print score so player overlaps the score
showScore(score)
for idx in range(total_models):
if playersState[idx] == True:
SCREEN.blit(IMAGES['player'][playerIndex], (playersXList[idx], playersYList[idx]))
pygame.display.update()
FPSCLOCK.tick(FPS)
def getRandomPipe():
"""returns a randomly generated pipe"""
# y of gap between upper and lower pipe
gapY = random.randrange(0, int(BASEY * 0.6 - PIPEGAPSIZE))
gapY += int(BASEY * 0.2)
pipeHeight = IMAGES['pipe'][0].get_height()
pipeX = SCREENWIDTH + 10
return [
{'x': pipeX, 'y': gapY - pipeHeight}, # upper pipe
{'x': pipeX, 'y': gapY + PIPEGAPSIZE}, # lower pipe
]
def showScore(score):
"""displays score in center of screen"""
global generation
scoreDigits = [int(x) for x in list(str(score))]
generation_digits = [int(x) for x in list(str(generation))]
totalWidth1 = 0 # total width of all numbers to be printed
totalWidth2 = 0
for digit in scoreDigits:
totalWidth1 += IMAGES['numbers'][digit].get_width()
for digit in generation_digits:
totalWidth2 += IMAGES['numbers'][digit].get_width()
Xoffset1 = (SCREENWIDTH - totalWidth1) / 2
Xoffset2 = (SCREENWIDTH - totalWidth2) / 2
for digit in scoreDigits:
SCREEN.blit(IMAGES['numbers'][digit], (Xoffset1, SCREENHEIGHT * 0.1))
Xoffset1 += IMAGES['numbers'][digit].get_width()
for digit in generation_digits:
SCREEN.blit(IMAGES['numbers'][digit], (Xoffset2, SCREENHEIGHT * 0.2))
Xoffset2 += IMAGES['numbers'][digit].get_width()
def checkCrash(players, upperPipes, lowerPipes):
"""returns True if player collders with base or pipes."""
statuses = []
for idx in range(total_models):
statuses.append(False)
for idx in range(total_models):
statuses[idx] = False
pi = players['index']
players['w'] = IMAGES['player'][0].get_width()
players['h'] = IMAGES['player'][0].get_height()
# if player crashes into ground
if players['y'][idx] + players['h'] >= BASEY - 1:
statuses[idx] = True
playerRect = pygame.Rect(players['x'][idx], players['y'][idx],
players['w'], players['h'])
pipeW = IMAGES['pipe'][0].get_width()
pipeH = IMAGES['pipe'][0].get_height()
for uPipe, lPipe in zip(upperPipes, lowerPipes):
# upper and lower pipe rects
uPipeRect = pygame.Rect(uPipe['x'], uPipe['y'], pipeW, pipeH)
lPipeRect = pygame.Rect(lPipe['x'], lPipe['y'], pipeW, pipeH)
# player and upper/lower pipe hitmasks
pHitMask = HITMASKS['player'][pi]
uHitmask = HITMASKS['pipe'][0]
lHitmask = HITMASKS['pipe'][1]
# if bird collided with upipe or lpipe
uCollide = pixelCollision(playerRect, uPipeRect, pHitMask, uHitmask)
lCollide = pixelCollision(playerRect, lPipeRect, pHitMask, lHitmask)
if uCollide or lCollide:
statuses[idx] = True
return statuses
def pixelCollision(rect1, rect2, hitmask1, hitmask2):
"""Checks if two objects collide and not just their rects"""
rect = rect1.clip(rect2)
if rect.width == 0 or rect.height == 0:
return False
x1, y1 = rect.x - rect1.x, rect.y - rect1.y
x2, y2 = rect.x - rect2.x, rect.y - rect2.y
for x in range(rect.width):
for y in range(rect.height):
if hitmask1[x1+x][y1+y] and hitmask2[x2+x][y2+y]:
return True
return False
def getHitmask(image):
"""returns a hitmask using an image's alpha."""
mask = []
for x in range(image.get_width()):
mask.append([])
for y in range(image.get_height()):
mask[x].append(bool(image.get_at((x,y))[3]))
return mask
if __name__ == '__main__':
main()