function VALUE-ITERATION(mdp, ε) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s′ | s, a),
rewards R(s), discount γ
ε, the maximum error allowed in the utility of any state
local variables: U, U′, vectors of utilities for states in S, initially zero
δ, the maximum change in the utility of any state in an iteration
repeat
U ← U′; δ ← 0
for each state s in S do
U′[s] ← R(s) + γ maxa ∈ A(s) Σ P(s′ | s, a) U[s′]
if | U′[s] − U[s] | > δ then δ ← | U′[s] − U[s] |
until δ < ε(1 − γ)/γ
return U
Figure ?? The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (??).
function VALUE-ITERATION(mdp, ε) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s′ | s, a),
rewards R(s,a,s′), discount γ
ε, the maximum error allowed in the utility of any state
local variables: U, U′, vectors of utilities for states in S, initially zero
δ, the maximum change in the utility of any state in an iteration
repeat
U ← U′; δ ← 0
for each state s in S do
U′[s] ← maxa ∈ A(s) Q-VALUE(mdp,s,a,U)
if | U′[s] − U[s] | > δ then δ ← | U′[s] − U[s] |
until δ < ε(1 − γ)/γ
return U
Figure ?? The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (??). ~