-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_cnn.py
206 lines (182 loc) · 8.36 KB
/
train_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
from torch import nn
from torch.utils.data import DataLoader
import os
import argparse
import numpy as np
import sys
import yaml
import time
import wandb
from models.catRSDNet import CatRSDNet
from utils.dataset_utils import DatasetCataract101
from utils.logging_utils import timeSince
import glob
from sklearn.metrics import confusion_matrix
from torchvision.transforms import Compose, RandomResizedCrop, RandomVerticalFlip, RandomHorizontalFlip, ToPILImage, \
ToTensor, Resize
def main(output_folder, log, basepath):
# specify videos of surgeons for training and validation
config = {'train': {}, 'val': {}, 'data': {}}
config["train"]['batch_size'] = 50
config["train"]['epochs'] = 3
config["train"]['weighted_loss'] = True
config['train']['sub_epoch_validation'] = 100
config['train']['learning_rate'] = 0.0001
config["val"]['batch_size'] = 150
config['input_size'] = [224, 224]
config['data']['base_path'] = basepath
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# specify if we should use a GPU (cuda) or only the CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
num_devices = torch.cuda.device_count()
# --- training params
n_step_classes = 11
training_phases = ['train', 'val']
img_transform = {}
img_transform['train'] = Compose([ToPILImage(), RandomHorizontalFlip(), RandomVerticalFlip(),
RandomResizedCrop(size=config['input_size'][0], scale=(0.4,1.0), ratio=(1.0,1.0)),
ToTensor()])
img_transform['val'] = Compose([ToPILImage(), Resize(config['input_size']), ToTensor()])
# --- logging
if log:
run = wandb.init(project='cataract_rsd', group='catnet')
run.config.data = config['data']['base_path']
run.name = run.id
# --- glob data set
dataLoader = {}
for phase in training_phases:
data_folders = sorted(glob.glob(os.path.join(config['data']['base_path'], phase, '*')))
labels = sorted(glob.glob(os.path.join(config['data']['base_path'], phase, '**', '*.csv')))
dataset = DatasetCataract101(data_folders, img_transform=img_transform[phase], label_files=labels)
dataLoader[phase] = DataLoader(dataset, batch_size=config[phase]['batch_size'],
shuffle=(phase == 'train'), num_workers=4, pin_memory=True)
output_model_name = os.path.join(output_folder, 'catRSDNet_CNN.pth')
print('start training... ')
# --- model
base_model = CatRSDNet()
model = base_model.cnn
if num_devices > 1:
model = nn.DataParallel(model).to(device)
else:
model = model.to(device)
# --- optimizer
optim = torch.optim.Adam(model.parameters(), lr=config['train']['learning_rate'])
# --- loss
# loss function
if config['train']['weighted_loss']:
label_sum = np.zeros(n_step_classes)
for fname_label in glob.glob(os.path.join(config['data']['base_path'], 'train', '**', '*.csv')):
labels = np.genfromtxt(fname_label, delimiter=',', skip_header=1)[:, 1]
for l in range(n_step_classes):
label_sum[l] += np.sum(labels==l)
loss_weights = 1 / label_sum
loss_weights[label_sum == 0] = 0.0
loss_weights = torch.tensor(loss_weights / np.max(loss_weights)).float().to(device)
else:
loss_weights = None
criterion = nn.CrossEntropyLoss(weight=loss_weights)
expertise_criterion = nn.CrossEntropyLoss()
# --- training
best_loss_on_test = np.Infinity
start_time = time.time()
stop_epoch = config['train']['epochs']
for epoch in range(stop_epoch):
#zero out epoch based performance variables
all_loss_train = torch.zeros(0).to(device)
model.train() # Set model to training mode
for ii, (img, labels) in enumerate(dataLoader['train']):
img = img.to(device) # input data
step_label = labels[:, 0].long().to(device)
expertise = labels[:, 2].long().to(device) - 1
with torch.set_grad_enabled(True):
prediction, expertise_pred = model(img)
loss = criterion(prediction, step_label) + expertise_criterion(expertise_pred, expertise)
# update weights
optim.zero_grad()
loss.backward()
optim.step()
all_loss_train = torch.cat((all_loss_train, loss.detach().view(1, -1)))
# compute sub-epoch validation loss for early stopping
if ii % config['train']['sub_epoch_validation'] == 0:
model.eval()
with torch.no_grad():
val_subepoch_loss = torch.zeros(0).to(device)
conf_mat = np.zeros((11, 11))
conf_mat_exp = np.zeros((2, 2))
for jj, (img, label) in enumerate(dataLoader['val']): # for each of the batches
img = img.to(device) # input data
step_label = label[:, 0].long().to(device)
expertise = (label[:, 2] - 1).long().to(device)
prediction, expertise_pred = model(img) # [batch size, n_classes]
loss = criterion(prediction, step_label) + expertise_criterion(expertise_pred, expertise)
val_subepoch_loss = torch.cat((val_subepoch_loss, loss.detach().view(1, -1)))
hard_prediction = torch.argmax(prediction.detach(), dim=1).cpu().numpy()
conf_mat += confusion_matrix(step_label.cpu().numpy(), hard_prediction,
labels=np.arange(11))
exp_pred = torch.argmax(expertise_pred.detach(), dim=1).cpu().numpy()
conf_mat_exp += confusion_matrix(expertise.cpu().numpy(), exp_pred,
labels=np.arange(2))
# compute metrics
val_subepoch_loss = val_subepoch_loss.cpu().numpy().mean()
print('val loss: {0:.4f}'.format(val_subepoch_loss), end='')
if log:
wandb.log({'/val/loss': val_subepoch_loss})
if val_subepoch_loss < best_loss_on_test:
# if current loss is the best we've seen, save model state
if num_devices > 1:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
best_loss_on_test = val_subepoch_loss
print(' **')
state = {'epoch': epoch + 1,
'model_dict': state_dict
}
torch.save(state, output_model_name)
else:
print('')
model.train()
all_loss_train = all_loss_train.cpu().numpy().mean()
if log:
wandb.log({'epoch': epoch, '/train/loss': all_loss_train})
log_text = '%s ([%d/%d] %d%%), train loss: %.4f' %\
(timeSince(start_time, (epoch+1) / stop_epoch),
epoch + 1, stop_epoch , (epoch + 1) / stop_epoch * 100,
all_loss_train)
print(log_text)
print('...finished training')
if __name__ == "__main__":
"""The program's entry point."""
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
script_dir = os.path.dirname(sys.argv[0])
parser = argparse.ArgumentParser(description='Training CNN for Cataract Tool Detection')
parser.add_argument(
'--out',
type=str,
default='output',
help='Path to output file, ignored if log is true (use wandb directory instead).'
)
parser.add_argument(
'--log',
type=str2bool,
default='False',
help='if true log with wandb.'
)
parser.add_argument(
'--basepath',
type=str,
default='data/cataract101',
help='path to data.'
)
args = parser.parse_args()
main(output_folder=args.out, log=args.log, basepath=args.basepath)