-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathscc.py
70 lines (55 loc) · 1.63 KB
/
scc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Python implementation to find Strongly Connected Components
from collections import defaultdict
class Graph:
def __init__(self, vertex):
self.V = vertex
self.graph = defaultdict(list)
# Add edge to the graph
def add_edge(self, s, d):
self.graph[s].append(d)
# DFS
def dfs(self, d, visitedVertex):
visitedVertex[d] = True
print(d, end=' ')
for i in self.graph[d]:
if not visitedVertex[i]:
self.dfs(i, visitedVertex)
def fill_order(self, d, visitedVertex, stack):
visitedVertex[d] = True
for i in self.graph[d]:
if not visitedVertex[i]:
self.fill_order(i, visitedVertex, stack)
stack = stack.append(d)
# transpose the matrix
def transpose(self):
g = Graph(self.V)
for i in self.graph:
for j in self.graph[i]:
g.add_edge(j, i)
return g
# Print stongly connected components
def print_scc(self):
stack = []
visitedVertex = [False] * (self.V)
for i in range(self.V):
if not visitedVertex[i]:
self.fill_order(i, visitedVertex, stack)
gr = self.transpose()
visitedVertex = [False] * (self.V)
while stack:
i = stack.pop()
if not visitedVertex[i]:
gr.dfs(i, visitedVertex)
print("")
g = Graph(8)
g.add_edge(0, 1)
g.add_edge(1, 2)
g.add_edge(2, 3)
g.add_edge(2, 4)
g.add_edge(3, 0)
g.add_edge(4, 5)
g.add_edge(5, 6)
g.add_edge(6, 4)
g.add_edge(6, 7)
print("Strongly Connected Components:")
g.print_scc()