You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
There are 8k+ 256*256 images in my datasets, I set batchsize=32 and trained with 4 12GB GPUs, but it's not as good as I set batchsize = 4 and trained with one GPU,neither the training speed nor the image quality. Why a smaller batch size results better results? Is there a best batchsize?
Beside,I set batchsize=4, when epoch>70, g-loss went up obviously,and qualities of generated images went worse.Why did this happen? (Training process was interrupted when epoch = 54, I reloaded weight files and optimer states from epoch 53 )
Thanks!
The text was updated successfully, but these errors were encountered:
Well, there are some known issues regarding the multi-gpu training since the last couple of updates of PyTorch. I will have to investigate this, but it's quite difficult given my schedule right now. The training instability in this resumed training could be because of improper loading of state/weights.
There are 8k+ 256*256 images in my datasets, I set batchsize=32 and trained with 4 12GB GPUs, but it's not as good as I set batchsize = 4 and trained with one GPU,neither the training speed nor the image quality. Why a smaller batch size results better results? Is there a best batchsize?
Beside,I set batchsize=4, when epoch>70, g-loss went up obviously,and qualities of generated images went worse.Why did this happen? (Training process was interrupted when epoch = 54, I reloaded weight files and optimer states from epoch 53 )
Thanks!
The text was updated successfully, but these errors were encountered: