This evaluation has been implemented in our released version 1.0, while the latest version 1.1 still need to debug.
2 steps to re-implement our results in Tab. 1 of the main paper.
-
Set paths:
a. change the dataset_rootdir in configs/eval_3dpw_challenge.yml to the absolute path of the folder that contains 3DPW dataset.
b. change the model_path in configs/eval_3dpw_challenge.yml to the absolute path of model checkpoint.
c. change the output_dir in configs/eval_3dpw_challenge.yml to the absolute path of saving the results.zip file. -
Run:
cd ROMP
CUDA_VISIBLE_DEVICES=0 python romp/lib/evaluation/collect_3DPW_results.py --configs_yml=configs/eval_3dpw_challenge.yml
- Results of ROMP (HRNet-32) on different device:
The model is trained in mixed precision (fp16) mode.
On Tesla P40/ V100 GPU (Centos, Pytorch 1.6.0):
DS/EM | MPJPE | PA_MPJPE | PCK | AUC | MPJAE | PA_MPJAE |
---|---|---|---|---|---|---|
pw3d_chal | 82.7 | 60.5 | 36.5 | 59.7 | 20.5 | 18.9 |
On a GTX 1070Ti GPU (Ubuntu, Pytorch 1.6.0):
DS/EM | MPJPE | PA_MPJPE | PCK | AUC | MPJAE | PA_MPJAE |
---|---|---|---|---|---|---|
pw3d_chal | 81.8 | 58.6 | 37.3 | 59.9 | 20.8 | 19.1 |
2 steps to re-implement our results in Tab. 2 and Tab. 3 of the main paper.
-
Set paths:
a. change the dataset_rootdir in configs/eval_3dpw_test.yml to the absolute path of 3DPW datasets.
b. change the model_path in configs/eval_3dpw_test.yml to the absolute path of model checkpoint. -
Run:
cd ROMP
# to evaluate the model taking HRNet-32 as backbone without fine-tunning on 3DPW, please run
python -m romp.test --configs_yml=configs/eval_3dpw_test.yml
# to evaluate the model taking ResNet-50 as backbone without fine-tunning on 3DPW, please run
python -m romp.test --configs_yml=configs/eval_3dpw_test_resnet.yml
# to evaluate the model taking HRNet-32 as backbone with fine-tunning on 3DPW, please run
python -m romp.test --configs_yml=configs/eval_3dpw_test_ft.yml
# to evaluate the model taking ResNet-50 as backbone without fine-tunning on 3DPW, please run
python -m romp.test --configs_yml=configs/eval_3dpw_test_resnet_ft.yml
Results of ROMP (HRNet-32) on different device:
On Tesla P40/ V100 GPU (Centos, Pytorch 1.6.0):
DS/EM | MPJPE | PA_MPJPE | PVE |
---|---|---|---|
pw3d_vibe | 85.48 | 53.14 | 103.02 |
On a GTX 1070Ti GPU (Ubuntu, Pytorch 1.6.0):
DS/EM | MPJPE | PA_MPJPE |
---|---|---|
pw3d_vibe | 87.10 | 53.11 |
1 step to re-implement our results in Tab. 5 of the main paper.
cd ROMP
python -m romp.test --configs_yml=configs/eval_cmu_panoptic.yml
2 steps to re-implement our results in Tab. 6 of the main paper.
- Install the official evaluation toolkit.
# if you didn't install the evaluation code of crowdpose, then install it via
cd ROMP/romp/lib/evaluation/crowdpose-api/PythonAPI
python setup.py install
- Evaluation on the test/val set of crowdpose.
cd ROMP
# to generate the predictions on the test set of crowdpose.
python -m romp.test --configs_yml=configs/eval_crowdpose_test.yml
# to generate the predictions on the val set of crowdpose.
python -m romp.test --configs_yml=configs/eval_crowdpose_val.yml
To re-implement our results in Tab. 7 of the main paper. Please try our webcam demo.
On a GTX 1070Ti GPU (Ubuntu, Pytorch 1.9.0, CUDA 10.2):
Backbone | HRNet-32 | ResNet-50 |
---|---|---|
FPS | 23.8 | 30.9 |