-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_process.py
248 lines (213 loc) · 9.41 KB
/
video_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import cv2
import pickle
# load calibration parameters
calibration = pickle.load(open("camera_calibration.p", "rb"))
mtx = calibration['mtx']
dist = calibration['dist']
init = True
left_fit_glob = []
right_fit_glob = []
ploty_glob = []
def undistort(image):
dst_image = cv2.undistort(image, mtx, dist, None, mtx)
return(dst_image)
def threshold_combine(image):
# HLS features
hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
s_channel = hls[:,:,2]
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Sobel x
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0) # Take the derivative in x
abs_sobelx = np.absolute(sobelx) # Absolute x derivative to accentuate lines away from horizontal
scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
# Threshold x gradient
thresh_min = 20
thresh_max = 100
sxbinary = np.zeros_like(scaled_sobel)
sxbinary[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1
# Threshold color HLS
s_thresh_min = 150
s_thresh_max = 255
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)] = 1
# Combine the two binary thresholds
combined_binary = np.zeros_like(sxbinary)
combined_binary[(s_binary == 1) | (sxbinary == 1)] = 1
return combined_binary
def perspective_transform(image, img_size, mode='src_dst'):
# Source points
src = np.float32([ #x , y. y=0 is at most top, x = 0 is at most left
[830, 525], #top right
[1080, 670], #bot right
[340, 670], #bot left
[510, 525]]) #top left
# Destination points, X destination is taken as mid value of src X top and bot
dst = np.float32([
[960, 525],
[960, 670],
[400, 670],
[400, 525]])
# Given src and dst points, calculate the perspective transform matrix
M = cv2.getPerspectiveTransform(src, dst)
Minv = cv2.getPerspectiveTransform(dst, src)
if (mode=='src_dst'):
transform_mat = M
else:
transform_mat = Minv
# Warp the image using OpenCV warpPerspective()
warped = cv2.warpPerspective(image, transform_mat, img_size, flags=cv2.INTER_LINEAR)
return warped
def find_line_new(image, y_start=475, x_start=100, x_end=1180):
# Take a histogram of the part specified of the image
histogram = np.sum(image[y_start:,:], axis=0)
# Create an output image to draw on
out_img = np.dstack((image, image, image))*255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(image.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = image.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = image.shape[0] - (window+1)*window_height
win_y_high = image.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2)
cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, image.shape[0]-1, image.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
return ploty, left_fitx, right_fitx, left_fit, right_fit
def find_line(image, left_fit, right_fit, y_start = 400):
""" find line base on previous finding """
nonzero = image.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 50
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin)))
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, image.shape[0]-1, image.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
return ploty, left_fitx, right_fitx, left_fit, right_fit
def sanity_check(ploty, left_fit, right_fit):
""" give the line distance """
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
#bottom of image
y_max = np.max(ploty)
y_min = np.min(ploty)
x_left_max = left_fit[0]*(y_max**2) + left_fit[1]*y_max + left_fit[2]
x_right_max = right_fit[0]*(y_max**2) + right_fit[1]*y_max + right_fit[2]
x_left_min = left_fit[0]*(y_min**2) + left_fit[1]*y_min + left_fit[2]
x_right_min = right_fit[0]*(y_min**2) + right_fit[1]*y_min + right_fit[2]
distance_max = x_right_max - x_left_max
distance_max_meter = distance_max * xm_per_pix
distance_min = x_right_min - x_left_min
distance_min_meter = distance_min * xm_per_pix
return distance_max_meter, distance_min_meter
def process_image(image):
global init
global left_fit_glob
global right_fit_glob
global ploty_glob
undistorted_img = undistort(image)
combined_binary = threshold_combine(undistorted_img)
img_size = (image.shape[1], image.shape[0])
warped_img = perspective_transform(combined_binary, img_size, mode="src_dst")
# distance between lines on the bottom of image
distance = 0
# distance between lines on the top part of the line
distance_min = 0
#this is the start of video
if (init == True):
ploty, left_fitx, right_fitx, left_fit, right_fit = find_line_new(warped_img, y_start=400)
left_fit_glob = left_fit
right_fit_glob = right_fit
ploty_glob = ploty
init = False
else:
ploty, left_fitx, right_fitx, left_fit, right_fit = find_line(warped_img, left_fit_glob, right_fit_glob, y_start=400)
distance, distance_min = sanity_check(warped_img, left_fit, right_fit)
# if line distance is outside this range, find using window sliding
if (distance > 2 and distance < 3.2) and (distance_min > 2 and distance_min < 3.2):
left_fit_glob = left_fit
right_fit_glob = right_fit
ploty_glob = ploty
else:
ploty, left_fitx, right_fitx, left_fit, right_fit = find_line_new(warped_img, y_start=400)
left_fit_glob = left_fit
right_fit_glob = right_fit
ploty_glob = ploty
# Create an image to draw the lines on
warp_zero = np.zeros_like(warped_img).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = perspective_transform(color_warp, img_size, mode="dst_src")
# Combine the result with the original image
result = cv2.addWeighted(undistorted_img, 1, newwarp, 0.3, 0)
return result