-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
102 lines (83 loc) · 3.92 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import torch.nn as nn
import torchvision.models as models
import torch.nn.functional as F
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, batch_size, device, num_layers=1):
super().__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.num_layers = num_layers
self.batch_size = batch_size
self.device = device
self.embedding = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size)
self.hidden = self.init_hidden()
def init_hidden(self):
# The axes dimensions are (n_layers, batch_size, hidden_dim)
return (torch.zeros(self.num_layers, self.batch_size, self.hidden_size),
torch.zeros(self.num_layers, self.batch_size, self.hidden_size))
def forward(self, features, captions):
# (batch_size, captions, vocab_size)
outputs = torch.zeros(self.batch_size, captions.shape[1], self.vocab_size)
lstm_out = None
self.hidden = self.init_hidden()
#embed captions for teacher-forcer method
embedded_captions = self.embedding(captions)
for i in range(captions.shape[1]):
h, c = self.hidden
h, c = h.to(self.device), c.to(self.device)
if i == 0:
lstm_out, self.hidden = self.lstm(features.view(self.batch_size,1,-1), (h,c))
else:
lstm_out, self.hidden = self.lstm(embedded_captions[:, i, :].view(len(features),1,-1), (h,c))
tag_outputs = self.linear(lstm_out.view(self.batch_size, -1))
# set the [batch, i-th caption, scores]
outputs[:, i, :] = tag_outputs
return outputs
def sample(self, inputs, states=None, max_len=20):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
outputs = []
lstm_out = None
prev_out = None
self.hidden = self.init_hidden()
for i in range(max_len):
h, c = self.hidden
h, c = h.to(self.device), c.to(self.device)
if i == 0:
lstm_out, self.hidden = self.lstm(inputs, (h,c))
else:
lstm_out, self.hidden = self.lstm(prev_out, (h,c))
tag_outputs = self.linear(lstm_out.view(len(inputs), -1))
prev_out = torch.zeros(self.batch_size, 1)
# get the index of the max value
max_val, max_idx = tag_outputs.max(1)
for a in range(len(max_idx)):
# get the word for this batch
predicted_idx = max_idx[a].item()
# set the idx of this word to 1 for the next input to lstm
prev_out[a, 0] = predicted_idx
prev_out = prev_out.long().to(self.device)
# embed for next input
prev_out = self.embedding(prev_out)
outputs.append(max_idx.item())
# stop when <end> is found
if predicted_idx == 1:
break
return outputs