-
Notifications
You must be signed in to change notification settings - Fork 0
/
talk.lagda.tex
329 lines (281 loc) · 10.3 KB
/
talk.lagda.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
\documentclass[aspectratio=169,presentation]{beamer}
% Credit to George Kaye for color theme
\definecolor{backg}{RGB}{9,72,61}
\definecolor{accent}{RGB}{0,150,136}
\definecolor{dracback}{RGB}{40, 42, 54}
\definecolor{dracfore}{RGB}{248, 248, 242}
\definecolor{dractitle}{RGB}{56, 58, 89}
\definecolor{dracblock}{RGB}{98, 114, 164}
\definecolor{draccent}{RGB}{255, 121, 198}
\setbeamercolor{normal text}{bg=dracfore}
\setbeamercolor{frametitle}{bg=dractitle, fg=dracfore}
\setbeamercolor{title separator}{fg=draccent}
\setbeamercolor{progress bar}{fg=draccent, bg=draccent}
\setbeamercolor{block title}{fg=dracfore, bg=dracblock}
\setbeamercolor{alerted text}{fg=draccent}
\setbeamercolor{structure}{fg=dractitle}
\usepackage{agda}
% \usepackage{fancyvrb}
\usepackage{amsthm}
\newtheorem{prop}[theorem]{Proposition}
\usepackage{amsmath}
\usepackage{microtype}
% \DefineVerbatimEnvironment{code}{Verbatim}{}
\usepackage[utf8]{inputenc}
\usepackage{newunicodechar}
\newunicodechar{λ}{\ensuremath{\mathnormal\lambda}}
\newunicodechar{ℓ}{\ensuremath{\mathnormal\ell}}
\newunicodechar{𝓖}{\ensuremath{\mathcal{G}}}
\newunicodechar{≡}{\ensuremath{\equiv}}
\newunicodechar{⟨}{\ensuremath{\langle}}
\newunicodechar{⟩}{\ensuremath{\rangle}}
\newunicodechar{⌊}{\ensuremath{\lfloor}}
\newunicodechar{⌋}{\ensuremath{\rfloor}}
\newunicodechar{→}{\ensuremath{\mathnormal\to}}
\newunicodechar{∀}{\ensuremath{\mathnormal\forall}}
\newunicodechar{∎}{\ensuremath{\mathnormal\qed}}
\newunicodechar{∘}{\ensuremath{\mathnormal\circ}}
\newunicodechar{⁻}{\ensuremath{\mathnormal{}^{-}}}
\newunicodechar{¹}{\ensuremath{\mathnormal{}^{1}}}
\newunicodechar{≈}{\ensuremath{\mathnormal\approx}}
\newunicodechar{′}{\ensuremath{\mathnormal{{}^\prime}}}
\newunicodechar{ε}{\ensuremath{\varepsilon}}
\newunicodechar{η}{\ensuremath{\eta}}
\newunicodechar{Σ}{\ensuremath{\Sigma}}
\newunicodechar{∈}{\ensuremath{\in}}
\newunicodechar{ι}{\ensuremath{\iota}}
\usetheme{Warsaw}
% \affiliation{?}
\title{Strictly Associative Group Theory using Univalence}
\author{Alex Rice\inst{1}}
\institute[1]{University of Cambridge}
\date{HoTT/UF 2023}
\titlegraphic{\includegraphics[width=0.3\textwidth]{../cambridge}}
\setbeamertemplate{footline}[frame number]
\setbeamertemplate{navigation symbols}{}
\begin{document}
{
\setbeamertemplate{footline}{}
\setbeamertemplate{headline}{} %
\begin{frame}[noframenumbering]
\maketitle
\end{frame}}
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\section{What did I do?}
\begin{frame}
\frametitle{Motivation}
\begin{code}[hide]
module talk where
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Prelude
open import Groups.Symmetric.Representable using (RSymGroup) renaming (inc≡ to ι≡)
variable
A B C D : Type
\end{code}
\begin{code}
InvUniqueLeft : ∀ {ℓ} (𝓖 : Group ℓ) → Type ℓ
InvUniqueLeft 𝓖 = ∀ g h → h · g ≡ 1g → h ≡ inv g
where
open GroupStr (𝓖 .snd)
\end{code}
\only<2>{\begin{code}
inv-unique-left : ∀ {ℓ} (𝓖 : Group ℓ) → InvUniqueLeft 𝓖
inv-unique-left 𝓖 g h p =
h ≡⟨ sym (·IdR h) ⟩
h · 1g ≡⟨ cong (h ·_) (sym (·InvR g)) ⟩
h · (g · inv g) ≡⟨ ·Assoc h g (inv g) ⟩
(h · g) · inv g ≡⟨ cong (_· inv g) p ⟩
1g · inv g ≡⟨ ·IdL (inv g) ⟩
inv g ∎
where
open GroupStr (𝓖 .snd)
\end{code}}
\only<3>{\begin{code}
inv-unique-left-strict : ∀ {ℓ} (𝓖 : Group ℓ) → InvUniqueLeft 𝓖
inv-unique-left-strict 𝓖 = strictify InvUniqueLeft
λ g h p →
h · 1g ≡⟨ cong (h ·_) (sym (·InvR g)) ⟩
h · g · inv g ≡⟨ cong (_· inv g) p ⟩
1g · inv g ∎
where
open GroupStr (RSymGroup 𝓖 .snd)
open import Groups.Reasoning 𝓖 using (strictify)
\end{code}}
\end{frame}
\begin{frame}
\frametitle{Strictify}
\begin{itemize}
\item Given a group \AgdaBound{𝓖}, we create a new group \AgdaFunction{RSymGroup}\AgdaSpace{}\AgdaBound{𝓖}.
\begin{theorem}[Cayley's Theorem]
Every group is isomorphic to a subgroup of a symmetric group.
\end{theorem}
\item In \AgdaFunction{RSymGroup}\AgdaSpace{}\AgdaBound{𝓖}, various rules hold by reflexivity.
\item We show that \AgdaFunction{RSymGroup}\AgdaSpace{}\AgdaBound{𝓖} is isomorphic to 𝓖.
\item By univalence and the structure identity principle, \AgdaFunction{RSymGroup}\AgdaSpace{}\AgdaBound{𝓖} is equal to 𝓖.
\item The \AgdaFunction{strictify} function transports a proof from \AgdaFunction{RSymGroup}\AgdaSpace{}\AgdaBound{𝓖} back to 𝓖.
\end{itemize}
\end{frame}
\begin{frame}
In the strictified group the following equations hold definitionally:
\begin{itemize}
\item \(a (b c) = (a b) c\),
\item \(a 1 = a = 1 a\),
\item \({a^{-1}}^{-1} = a\),
\item and \((f g)^{-1} = g^{-1} \cdot f^{-1}\).
\end{itemize}
\end{frame}
\section{How did I do it?}
\begin{frame}
\frametitle{Functions compose strictly}
\begin{theorem}[Cayley's Theorem]
Every group is isomorphic to a subgroup of a symmetric group.
\end{theorem}
\pause{}
\begin{code}[hide]
module A where
\end{code}
\begin{code}
_∘_ : (f : B → C) → (g : A → B) → (A → C)
(f ∘ g) x = f (g x)
comp-assoc : (f : C → D)
→ (g : B → C)
→ (h : A → B)
→ f ∘ (g ∘ h) ≡ (f ∘ g) ∘ h
comp-assoc f g h = refl
\end{code}
\end{frame}
\begin{frame}
\frametitle{Do invertible functions compose strictly?}
\begin{code}[hide]
module X where
\end{code}
\begin{code}
record Inverse (A : Type) (B : Type) : Type where
field
↑ : A → B
↓ : B → A
ε : ∀ x → ↓ (↑ x) ≡ x
η : ∀ y → ↑ (↓ y) ≡ y
\end{code}
\end{frame}
\begin{frame}
\frametitle{Strict invertible functions}
\begin{code}[hide]
module Y where
\end{code}
\begin{code}
record Inverse (A : Type) (B : Type) : Type where
constructor ⌊_,_,_,_⌋
field
↑ : A → B
↓ : B → A
ε : ∀ b {x} → x ≡ ↓ b → ↑ x ≡ b
η : ∀ a {y} → y ≡ ↑ a → ↓ y ≡ a
\end{code}
\begin{code}[hide]
infixr 30 _∘_
\end{code}
\begin{code}
_∘_ : Inverse B C → Inverse A B → Inverse A C
_∘_ ⌊ f , g , p , q ⌋ ⌊ f' , g' , p' , q' ⌋ =
⌊ (λ x → f (f' x)) ,
(λ y → g' (g y)) ,
(λ b r → p b (p' (g b) r)) ,
(λ a r → q' a (q (f' a) r)) ⌋
\end{code}
\begin{code}[hide]
open Inverse public
\end{code}
\end{frame}
\begin{frame}
\frametitle{Strict invertible functions}
\begin{code}
assoc : (f : Inverse C D)
→ (g : Inverse B C)
→ (h : Inverse A B)
→ f ∘ (g ∘ h) ≡ (f ∘ g) ∘ h
assoc f g h = refl
id-inv : Inverse A A
id-inv = ⌊ (λ x → x) , (λ x → x) ,
(λ b r → r) , (λ a r → r) ⌋
id-unit-left : (f : Inverse A B)
→ id-inv ∘ f ≡ f
id-unit-left f = refl
id-unit-right : (f : Inverse A B)
→ f ∘ id-inv ≡ f
id-unit-right f = refl
\end{code}
\end{frame}
\begin{frame}
\frametitle{Strict invertible functions}
\begin{code}
inv-inv : Inverse A B → Inverse B A
inv-inv ⌊ f , g , ε , η ⌋ = ⌊ g , f , η , ε ⌋
inv-involution : (f : Inverse A B)
→ inv-inv (inv-inv f) ≡ f
inv-involution f = refl
inv-comp : (f : Inverse B C)
→ (g : Inverse A B)
→ inv-inv (f ∘ g) ≡ inv-inv g ∘ inv-inv f
inv-comp f g = refl
\end{code}
\end{frame}
\begin{frame}
\frametitle{Representable functions}
The map \(\iota : g \mapsto g \cdot \_\) includes the group 𝓖 in the symmetric group. We now want to restrict the symmetric group to those functions that are in the image of \(\iota\).
\begin{prop}
A function \(f : \mathcal{G} \to \mathcal{G}\) is in the image of \(\iota\) if and only if for all \(g,h \in 𝓖\), \(f (g \cdot h) = f (g) \cdot h\).
\end{prop}
\pause
\begin{code}[hide]
module _ (𝓖 : Group ℓ-zero) where
open GroupStr (𝓖 .snd)
\end{code}
\begin{code}
Representable : Inverse ⟨ 𝓖 ⟩ ⟨ 𝓖 ⟩ → Type
Representable f = ∀ x g h → x ≡ g · h → ↑ f x ≡ ↑ f g · h
Repr : Type
Repr = Σ[ f ∈ Inverse ⟨ 𝓖 ⟩ ⟨ 𝓖 ⟩ ] Representable f
\end{code}
\end{frame}
\begin{frame}
\frametitle{Representable symmetric group}
\begin{itemize}
\item<+-> Let \AgdaFunction{RSymGroup}\AgdaSpace{}\AgdaBound{𝓖} be the subgroup of the symmetric group on \(\mathcal{G}\) consisting of those functions that are representable.
\item<+-> This subgroup still has strict composition.
\item<+-> The inclusion \(ι\) is an isomorphism from \(\mathcal{G}\) to the representable symmetric group.
\item<+-> By univalence we get an equality:
\[ \iota\mathord\equiv~\mathcal{G}: \mathcal{G} \equiv \AgdaFunction{RSymGroup}~\mathcal{G} \]
\item<+-> This lets us define:
\begin{code}
strictify : (𝓖 : Group ℓ-zero)
→ (P : Group ℓ-zero → Type)
→ P (RSymGroup 𝓖)
→ P 𝓖
strictify 𝓖 P p = transport (sym (cong P (ι≡ 𝓖))) p
\end{code}
\end{itemize}
\end{frame}
\section{Further thoughts}
\begin{frame}
\frametitle{Further thoughts}
\pause{}
\begin{center}
Does this all work with categories instead of groups?
\end{center}
\end{frame}
\begin{frame}
\frametitle{Conclusion}
\begin{itemize}
\item For each group \(\mathcal{G}\) we can generate an isomorphic group \(\AgdaFunction{RSymGroup}~\mathcal{G}\).
\item This group has nice definitional properties
\item Univalence allows us to generate an equality between the two groups.
\item This allows us to prove theorems about an arbitrary group by instead proving them on the strictified group.
\item \small\url{https://alexarice.github.io/posts/sgtuf/Strict-Group-Theory-UF.html}
\end{itemize}
\end{frame}
\end{document}