-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGradientCheck.py
46 lines (38 loc) · 1.38 KB
/
GradientCheck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from NumericalGradient import *
from Layers import *
def main():
CheckAllLayers()
def CheckAllLayers():
CheckBias()
CheckMatMul()
CheckReLU()
CheckSigmoid()
def CheckBias():
bias = Bias(10)
test_input = np.random.randn(50, 10)
dout = np.random.randn(50, 10)
dx_num = numerical_gradient_layer(lambda x : bias.Forward(x), test_input, dout)
dx, db = bias.Backward(test_input, dout)
print('Bias dx error:', np.max(relative_error(dx, dx_num)))
def CheckMatMul():
mm = MatMul(30, 10)
test_input = np.random.randn(50, 30)
dout = np.random.randn(50, 10)
dx_num = numerical_gradient_layer(lambda x : mm.Forward(x), test_input, dout)
dx, dW = mm.Backward(test_input, dout)
print('MatMul dx error:', np.max(relative_error(dx, dx_num)))
def CheckReLU():
relu = ReLU()
test_input = np.random.randn(50, 30)
dout = np.random.randn(50, 30)
dx_num = numerical_gradient_layer(lambda x : relu.Forward(x), test_input, dout)
dx = relu.Backward(test_input, dout)
print('ReLU dx error:', np.max(relative_error(dx, dx_num)))
def CheckSigmoid():
sig = Sigmoid()
test_input = np.random.randn(50, 30)
dout = np.random.randn(50, 30)
dx_num = numerical_gradient_layer(lambda x : sig.Forward(x), test_input, dout)
dx = sig.Backward(test_input, dout)
print('Sigmoid dx error:', np.max(relative_error(dx, dx_num)))
main()