-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMSP4.hs
110 lines (90 loc) · 4.36 KB
/
MSP4.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
module MSP4 where
{-
This is like MSP2 and is based on §3.7 for “Controlled Inlining”.
If you load this into ghci and execute $$(run fact), it will stall.
Read the paper and fix this.
-}
import Language.Haskell.TH hiding (Exp) -- Metaprogramming support for Haskell
import Language.Haskell.TH.Syntax hiding (Exp)
import Prelude hiding (repeat)
type Code a = Q (TExp a)
data Exp = Int Int
| Var String
| App String Exp
| Add Exp Exp
| Sub Exp Exp
| Mul Exp Exp
| Div Exp Exp
| Ifz Exp Exp Exp
deriving (Show)
-- “Declaration f x b” denotes “f = (λ x → b)”; i.e., top level items
data Declaration = Declaration { name :: String , parameter :: String , body :: Exp}
deriving (Show)
-- The main method is the expression to be evaluated, given auxiliary definitions.
data Program = Program {supercombinators :: [Declaration] , mainMethod :: Exp}
deriving (Show)
fact :: Program
fact = let 𝓍 = Var "x" in Program
{supercombinators = [ Declaration { name = "fact"
, parameter = "x"
, body = Ifz 𝓍
{- then -} (Int 1)
{- else -} (𝓍 `Mul`(App "fact" (𝓍 `Sub` Int 1)))
}
]
, mainMethod = App "fact" (Int 10)
}
-- A simple interpreter
type VariableTable = String -> Code Int
type FunctionTable = String -> (Code Int -> Code Int) -- Unlike MSP2, "Code" between the arrow.
-- Function patching: f[x ≔ v] behaves like f but now goes to v at position x.
patch :: Eq a => (a -> b) -> a -> b -> (a -> b)
patch f x v = \y -> if x == y then v else f y
-- Main difference at case "App", from MSP2.
eval :: Exp -> VariableTable -> FunctionTable -> Code Int
eval (Int i) env fenv = [|| i ||]
eval (Var v) env fenv = env v
eval (App name exp) env fenv = (fenv name) (eval exp env fenv) -- Only difference from MSP2.
eval (Add e1 e2) env fenv = [|| $$(eval e1 env fenv) + $$(eval e2 env fenv) ||]
eval (Sub e1 e2) env fenv = [|| $$(eval e1 env fenv) - $$(eval e2 env fenv) ||]
eval (Mul e1 e2) env fenv = [|| $$(eval e1 env fenv) * $$(eval e2 env fenv) ||]
eval (Div e1 e2) env fenv = [|| $$(eval e1 env fenv) `div` $$(eval e2 env fenv) ||]
eval (Ifz c e1 e2) env fenv = [|| if $$(eval c env fenv) == 0
then $$(eval e1 env fenv)
else $$(eval e2 env fenv)
||]
-- repeat n f = f^n = f.f.f...f (n-many times)
repeat :: Int -> (a -> a) -> (a -> a)
repeat 0 f = id
repeat n f = f . repeat (n-1) f
-- Lift a declaration into a function
deval :: Declaration -> VariableTable -> FunctionTable -> (Code Int -> Code Int) -- Again, typing changed from MSP2
deval (Declaration name var body) env fenv =
let
ff :: (Code Int -> Code Int) -> Code Int -> Code Int
ff that x = eval body (patch env var x) (patch fenv name that)
-- Evaluate “body[var, name ≔ x, that]”;
-- i.e., replace strings with actual values and functions then simply “body”.
this :: Code Int -> Code Int
this x = ((repeat 0 ff) this) x
{- i.e.,
λ x → “body[var, name ≔ x, λ y → body[var, name ≔ y, this]]”;
i.e., we evaluate “body” where references to “name” go to the function
that again evaluates “body” and its references to “name” invoke a recursive call.
That is, every occurrence of “name” in “body” is unfolded once, rather than a direct call.
Hence, if “name = λvar → body” is interpreted as “name = λ var → body[name ≔ λ y → body[x ≔ y]]”.
Therefore, only one function call is needed for every two iterations.
-}
in
this
peval :: Program -> VariableTable -> FunctionTable -> Code Int
peval (Program [] exp) env fenv = eval exp env fenv
peval (Program (d:ds) exp) env fenv = peval (Program ds exp) env fenv'
where df = deval d env fenv
fenv' = patch fenv (name d) df
-- Usage: $$(run p)
run :: Program -> Code Int
run p = peval p emptyEnv emptyEnv
where emptyEnv = \x -> error ("Yikes! The name " ++ x ++ " is not defined")
fact_direct :: Int
fact_direct = let f n = if n == 0 then 1 else n * f (n - 1) in f 10