-
Notifications
You must be signed in to change notification settings - Fork 0
/
RunnerCassieVanilla.py
553 lines (472 loc) · 16.8 KB
/
RunnerCassieVanilla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import numpy as np
import gymnasium.utils as utils
import mujoco as m
import gymnasium as gym
from gymnasium.envs.mujoco.mujoco_env import MujocoEnv
from gymnasium.spaces import Box
import torch
import os
import cv2
import ray
from ray.rllib.agents.ppo import PPOTrainer
import tensorflow as tf
import tensorboard
import cv2
import os
import scipy.stats as stats
# names of the sensors and number of readings for each
sensor_names = [
"left-foot-input",
"left-foot-output",
"left-hip-pitch-input",
"left-hip-roll-input",
"left-hip-yaw-input",
"left-knee-input",
"left-shin-output",
"left-tarsus-output",
"pelvis-angular-velocity",
"pelvis-linear-acceleration",
"pelvis-magnetometer",
"pelvis-orientation",
"right-foot-input",
"right-foot-output",
"right-hip-pitch-input",
"right-hip-roll-input",
"right-hip-yaw-input",
"right-knee-input",
"right-shin-output",
"right-tarsus-output",
]
sensor_sizes = [1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1]
def p_between_von_mises(a, b, kappa, x):
# Calculate the CDF values for A and B at x
cdf_a = stats.vonmises.cdf(2 * np.pi * x, kappa, loc=2 * np.pi * a)
cdf_b = stats.vonmises.cdf(2 * np.pi * x, kappa, loc=2 * np.pi * b)
# Calculate the probability of A < x < B
p_between = np.abs(cdf_b - cdf_a)
return p_between
# First we need to define the environment
# First we need to define the environment
# The constants are defined here
THETA_LEFT = 0.5
THETA_RIGHT = 0
MAX_STEPS = 300
OMEGA = 1
STEPS_IN_CYCLE = 50
a_swing = 0
b_swing = 0.5
a_stance = 0.5
b_stance = 1
FORWARD_QUARTERNIONS = np.array([1, 0, 0, 0])
KAPPA = 25
X_VEL = 0.2
Y_VEL = 0
Z_VEL = 0
c_swing_frc = -1
c_stance_frc = 0
c_swing_spd = 0
c_stance_spd = -1
# The camera configuration
DEFAULT_CAMERA_CONFIG = {
"trackbodyid": 0, # use the body id of Cassie
"distance": 4.0,
"lookat": np.array((0.0, 0.0, 0.85)), # adjust the height to match Cassie's height
"elevation": -20.0,
}
# The environment class
class CassieEnv(MujocoEnv):
metadata = {
"render_modes": [
"human",
"rgb_array",
"depth_array",
],
"render_fps": 100,
}
def __init__(self, config, **kwargs):
utils.EzPickle.__init__(self, config, **kwargs)
self._forward_reward_weight = config.get("forward_reward_weight", 1.25)
self._ctrl_cost_weight = config.get("ctrl_cost_weight", 0.1)
self._healthy_reward = config.get("healthy_reward", 5.0)
self._terminate_when_unhealthy = config.get("terminate_when_unhealthy", True)
self._healthy_z_range = config.get("healthy_z_range", (0.3, 2.0))
actuator_ranges = {
"left-hip-roll": [-4.5, 4.5],
"left-hip-yaw": [-4.5, 4.5],
"left-hip-pitch": [-12.2, 12.2],
"left-knee": [-12.2, 12.2],
"left-foot": [-0.9, 0.9],
"right-hip-roll": [-4.5, 4.5],
"right-hip-yaw": [-4.5, 4.5],
"right-hip-pitch": [-12.2, 12.2],
"right-knee": [-12.2, 12.2],
"right-foot": [-0.9, 0.9],
}
# create the action space using the actuator ranges
low = [actuator_ranges[key][0] for key in actuator_ranges.keys()]
high = [actuator_ranges[key][1] for key in actuator_ranges.keys()]
self.action_space = gym.spaces.Box(
np.array(low), np.array(high), dtype=np.float32
)
self._reset_noise_scale = config.get("reset_noise_scale", 1e-2)
self.phi = 0
self._exclude_current_positions_from_observation = config.get(
"exclude_current_positions_from_observation", True
)
self.steps = 0
self.previous_action = np.zeros(10)
observation_space = Box(low=-np.inf, high=np.inf, shape=(31,), dtype=np.float64)
MujocoEnv.__init__(
self,
config.get("model_path", "cassie.xml"),
20,
render_mode=config.get("render_mode", None),
default_camera_config=DEFAULT_CAMERA_CONFIG,
observation_space=observation_space,
**kwargs
)
# set the camera settings to match the DEFAULT_CAMERA_CONFIG we defined above
@property
def healthy_reward(self):
return (
float(self.is_healthy or self._terminate_when_unhealthy)
* self._healthy_reward
)
@property
def is_healthy(self):
min_z, max_z = self._healthy_z_range
is_healthy = min_z < self.data.qpos[2] < max_z
return is_healthy
@property
def terminated(self):
terminated = (
(not self.is_healthy)
if (self._terminate_when_unhealthy or self.steps > MAX_STEPS)
else False
)
return terminated
def _get_obs(self):
p = np.array(
[
np.sin((2 * np.pi * (self.phi + THETA_LEFT))),
np.sin((2 * np.pi * (self.phi + THETA_RIGHT))),
]
)
# getting the read positions of the sensors and concatenate the lists
return np.concatenate([self.data.sensordata, p])
def get_pos(self):
# Robot State
qpos = self.data.qpos.flat.copy()
qvel = self.data.qvel.flat.copy()
# Desired velocity
# Phase ratios and clock inputs
# p = {sin(2pi(phi+theta_left)/L),sin(2pi(phi+theta_right)/L)} where L is the number of timesteps in each period
p = (
np.sin((2 * np.pi * (self.phi + THETA_LEFT))),
np.sin((2 * np.pi * (self.phi + THETA_RIGHT))),
)
"""
Position [1], [2] -> Pelvis y, z
[3], [4], [5], [6] -> Pelvis Orientation qw, qx, qy, qz
[7], [8], [9] -> Left Hip Roll (Motor[0]), Yaw (Motor[1]), Pitch (Motor[2])
[14] -> Left Knee (Motor[3])
[15] -> Left Shin (Joint[0])
[16] -> Left Tarsus (Joint[1])
[20] -> Left Foot (Motor[4], Joint[2])
[21], [22], [23] -> Right Hip Roll (Motor[5]), Yaw (Motor[6]), Pitch (Motor[7])
[28] -> Rigt Knee (Motor[8])
[29] -> Rigt Shin (Joint[3])
[30] -> Rigt Tarsus (Joint[4])
[34] -> Rigt Foot (Motor[9], Joint[5])
"""
pos_index = np.array(
[1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 20, 21, 22, 23, 28, 29, 30, 34]
)
"""
Velocity [0], [1], [2] -> Pelvis x, y, z
[3], [4], [5] -> Pelvis Orientation wx, wy, wz
[6], [7], [8] -> Left Hip Roll (Motor[0]), Yaw (Motor[1]), Pitch (Motor[2])
[12] -> Left Knee (Motor[3])
[13] -> Left Shin (Joint[0])
[14] -> Left Tarsus (Joint[1])
[18] -> Left Foot (Motor[4], Joint[2])
[19], [20], [21] -> Right Hip Roll (Motor[5]), Yaw (Motor[6]), Pitch (Motor[7])
[25] -> Rigt Knee (Motor[8])
[26] -> Rigt Shin (Joint[3])
[27] -> Rigt Tarsus (Joint[4])
[31] -> Rigt Foot (Motor[9], Joint[5])
"""
vel_index = np.array(
[0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 31]
)
return np.concatenate([qpos[pos_index], qvel[vel_index], [p[0], p[1]]])
# computes the reward
def compute_reward(self, action):
# Extract some proxies
qpos = self.data.qpos.flat.copy()
qvel = self.data.qvel.flat.copy()
pos_index = np.array(
[1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 20, 21, 22, 23, 28, 29, 30, 34]
)
vel_index = np.array(
[0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 31]
)
qpos = qpos[pos_index]
qvel = qvel[vel_index]
# Feet Contact Forces
contact_force_right_foot = np.zeros(6)
m.mj_contactForce(self.model, self.data, 0, contact_force_right_foot)
contact_force_left_foot = np.zeros(6)
m.mj_contactForce(self.model, self.data, 1, contact_force_left_foot)
# Some metrics to be used in the reward function
q_vx = 1 - np.exp(
-2 * OMEGA * np.linalg.norm(np.array([qvel[0]]) - np.array([X_VEL])) ** 2
)
q_vy = 1 - np.exp(
-2 * OMEGA * np.linalg.norm(np.array([qvel[1]]) - np.array([Y_VEL])) ** 2
)
q_vz = 1 - np.exp(
-2 * OMEGA * np.linalg.norm(np.array([qvel[2]]) - np.array([Z_VEL])) ** 2
)
q_left_frc = 1.0 - np.exp(
-OMEGA * np.linalg.norm(contact_force_left_foot) / 400
)
q_right_frc = 1.0 - np.exp(
-OMEGA * np.linalg.norm(contact_force_right_foot) / 400
)
q_left_spd = 1.0 - np.exp(-OMEGA * np.linalg.norm(qvel[12]) ** 2)
q_right_spd = 1.0 - np.exp(-OMEGA * np.linalg.norm(qvel[19]) ** 2)
q_action_diff = 1 - np.exp(-np.linalg.norm(action - self.previous_action) / 10)
q_orientation = 1 - np.exp(
-3
* (
1
- (
(self.data.sensor("pelvis-orientation").data.T)
@ (FORWARD_QUARTERNIONS)
)
** 2
)
)
q_torque = 1 - np.exp(-0.05 * np.linalg.norm(action))
q_pelvis_acc = 1 - np.exp(
-0.10
* (
np.linalg.norm(self.data.sensor("pelvis-angular-velocity").data)
+ np.linalg.norm(self.data.sensor("pelvis-linear-acceleration").data)
)
)
# Responsable for the swing and stance phase
I = lambda phi, a, b: p_between_von_mises(a, b, KAPPA, phi)
I_swing_frc = lambda phi: I(phi, a_swing, b_swing)
I_swing_spd = lambda phi: I(phi, a_swing, b_swing)
I_stance_spd = lambda phi: I(phi, a_stance, b_stance)
I_stance_frc = lambda phi: I(phi, a_stance, b_stance)
C_frc = lambda phi: c_swing_frc * I_swing_frc(
phi
) + c_stance_frc * I_stance_frc(phi)
C_spd = lambda phi: c_swing_spd * I_swing_spd(
phi
) + c_stance_spd * I_stance_spd(phi)
R_cmd = -1.0 * q_vx - 1.0 * q_vy - 1.0 * q_vz - 1.0 * q_orientation
R_smooth = -1.0 * q_action_diff - 1.0 * q_torque - 1.0 * q_pelvis_acc
R_biped = 0
R_biped += C_frc(self.phi + THETA_LEFT) * q_left_frc
R_biped += C_frc(self.phi + THETA_RIGHT) * q_right_frc
R_biped += C_spd(self.phi + THETA_LEFT) * q_left_spd
R_biped += C_spd(self.phi + THETA_RIGHT) * q_right_spd
reward = 1.5 + 0.5 * R_biped + 0.375 * R_cmd + 0.125 * R_smooth
return reward
# step in time
def step(self, action):
# clip the action to the ranges in action_space
action = np.clip(action, self.action_space.low, self.action_space.high)
self.do_simulation(action, self.frame_skip)
observation = self._get_obs()
reward = self.compute_reward(action)
terminated = self.terminated
self.steps += 1
self.phi += 1.0 / STEPS_IN_CYCLE
self.phi = self.phi % 1
self.previous_action = action
return observation, reward, terminated, False, {}
# resets the simulation
def reset_model(self):
m.mj_inverse(self.model, self.data)
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
self.previous_action = np.zeros(10)
self.phi = 0
self.steps = 0
qpos = self.init_qpos + self.np_random.uniform(
low=noise_low, high=noise_high, size=self.model.nq
)
qvel = self.init_qvel + self.np_random.uniform(
low=noise_low, high=noise_high, size=self.model.nv
)
self.set_state(qpos, qvel)
observation = self._get_obs()
return observation
import os
log_dir = "/home/alhussein.jamil/ray_results"
sim_dir = "./logs/"
checkpoint_path = None
# load the trainer from the latest checkpoint if exists
# get the full directory of latest modified directory in the log_dir
if os.path.exists(log_dir):
latest_log_directory = max(
[d for d in os.listdir(log_dir) if d.startswith("PPO_")], default=0
)
print(latest_log_directory)
# check that the folder is not empty
if latest_log_directory == 0:
print("No checkpoints found")
else:
# get the latest directory in the latest log directory
latest_directory = max(
[
d.split("_")[-1]
for d in os.listdir(os.path.join(log_dir, latest_log_directory))
if d.startswith("checkpoint")
],
default=0,
)
# load the trainer from the latest checkpoint
checkpoint_path = os.path.join(
log_dir,
latest_log_directory,
"checkpoint_{}/".format(latest_directory, latest_directory),
)
print(checkpoint_path)
# register the environment in rllib
# import the necessary libraries to initialize ray and register_env
from ray.tune.registry import register_env
# initialize ray and choose the log directory
# initialize ray and register the environment
ray.init(ignore_reinit_error=True)
register_env("cassie-v0", lambda config: CassieEnv(config))
config = {
"framework": "torch",
"log_level": "WARN",
"num_gpus": 0,
"num_cpus": 8,
"num_workers": 30,
"num_envs_per_worker": 1,
"rollout_fragment_length": 300,
"train_batch_size": 50000,
"sgd_minibatch_size": 9000,
"observation_space": None,
"num_sgd_iter": 5,
"optimizer": {"type": "Adam", "lr": 3e-4, "epsilon": 1e-5},
"model": {
"conv_filters": None,
"fcnet_activation": "tanh",
"fcnet_hiddens": [256, 256, 128, 64],
"vf_share_layers": False,
"free_log_std": True,
},
"entropy_coeff": 0.01,
"gamma": 0.99,
"lambda": 0.95,
"kl_coeff": 0.5,
"clip_param": 0.2,
"num_workers": 6,
"batch_mode": "truncate_episodes",
"observation_filter": "NoFilter",
"reuse_actors": True,
"disable_env_checking": True,
"num_gpus_per_worker": 0,
"num_cpus_per_worker": 1,
# Evaluation parameters
"evaluation_interval": 10,
"evaluation_num_episodes": 10,
"evaluation_config": {
"env": "cassie-v0",
"seed": 1234,
},
}
if checkpoint_path is not None and latest_directory != 0:
# load the a temporary trainer from the checkpoint
temp = PPOTrainer(config, "cassie-v0")
temp.restore(checkpoint_path)
# Get policy weights
policy_weights = temp.get_policy().get_weights()
# Destroy temp
temp.stop()
else:
temp = None
trainer = PPOTrainer(config=config, env="cassie-v0")
# only use the temporary if they have the same policy architecture
if (
checkpoint_path is not None
and temp is not None
and temp.get_policy().get_weights().keys()
== trainer.get_policy().get_weights().keys()
and latest_directory != 0
):
# Set the policy weights to the second trainer
trainer.get_policy().set_weights(policy_weights)
# Define video codec and framerate
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
fps = 30
# Training loop
max_test_i = 0
checkpoint_frequency = 5
simulation_frequency = 10
env = CassieEnv({})
env.render_mode = "rgb_array"
if not os.path.exists(sim_dir):
os.makedirs(sim_dir)
# Find the latest directory named test_i in the sim directory
latest_directory = max(
[int(d.split("_")[-1]) for d in os.listdir(sim_dir) if d.startswith("test_")],
default=0,
)
max_test_i = latest_directory + 1
# Create folder for test
test_dir = os.path.join(sim_dir, "test_{}".format(max_test_i))
os.makedirs(test_dir, exist_ok=True)
# Define video codec and framerate
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
fps = 30
# Set initial iteration count
i = trainer.iteration if hasattr(trainer, "iteration") else 0
while True:
# Train for one iteration
result = trainer.train()
i += 1
print(
"Episode Reward Mean for iteration {} is {}".format(
i, result["episode_reward_mean"]
)
)
# Save model every 10 epochs
if i % checkpoint_frequency == 0:
checkpoint_path = trainer.save()
print("Checkpoint saved at", checkpoint_path)
# Run a test every 20 epochs
if i % simulation_frequency == 0:
# make a steps counter
steps = 0
# Run test
video_path = os.path.join(test_dir, "sim_{}.mp4".format(i))
env.reset()
obs = env.reset()[0]
done = False
frames = []
while not done:
# Increment steps
steps += 1
action = trainer.compute_single_action(obs)
obs, _, done, _, _ = env.step(action)
frame = env.render()
frames.append(frame)
# Save frames as video
height, width, _ = frames[0].shape
video_writer = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
for frame in frames:
video_writer.write(frame)
video_writer.release()
print("Test saved at", video_path)
# Increment test index
max_test_i += 1