-
Notifications
You must be signed in to change notification settings - Fork 0
/
Makefile
126 lines (111 loc) · 3.63 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
.PHONY: install webapp train test test_visualize dataset browse_dataset tensorboard format
PYTHON := python3.10
export ROOT_DIR=$(shell pwd)
export MMDIR=$(HOME)
export PYTHONPATH=$(ROOT_DIR)/training_pipeline_mmlab
## Install environment
install:
@echo ">> Delete previous venv"
@rm -rf venv/
@echo ">> Create venv"
@$(PYTHON) -m venv venv
@#./venv/bin/python -m pip install -U pip
@echo ">> Installing PyTorch"
@./venv/bin/python -m pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118 --no-build-isolation
@echo ">> Installing dependencies"
@./venv/bin/python -m pip install -r requirements.txt
@echo ">> Installing MMCV"
@./venv/bin/python -m pip install -U openmim
@./venv/bin/python -m mim install mmengine
@./venv/bin/python -m mim install "mmcv>=2.0.0rc4, <2.2.0"
@echo ">> Installing MMDetection"
@./venv/bin/python -m pip install -v -e $(MMDIR)/mmdetection
@echo ">> Installing MMPretrain"
@./venv/bin/python -m mim install -e $(MMDIR)/mmpretrain
## Run webapp
webapp:
@./venv/bin/python -m training_pipeline_mmlab.webapp
## Train
train:
@./venv/bin/python -m training_pipeline_mmlab.main ++mode=train
## Test
test:
@./venv/bin/python -m training_pipeline_mmlab.main ++mode=test
## Visualize test
test_visualize:
@./venv/bin/python -m training_pipeline_mmlab.main ++mode=test_visualize
## Create dataset
dataset:
@./venv/bin/python -m training_pipeline_mmlab.main ++mode=dataset
## Tensorboard
tensorboard:
@./venv/bin/python -m tensorboard.main --logdir ./exps
## Visualize dataset
browse_dataset:
@./venv/bin/python -m training_pipeline_mmlab.main ++mode=browse_dataset
## Dump training results
dump:
@./venv/bin/python -m training_pipeline_mmlab.main ++mode=dump
## Run the training pipeline on the gcp vm instance
remote:
@./venv/bin/python -m training_pipeline_mmlab.main_remote
## Format files with ruff
format:
./venv/bin/python -m ruff format . || exit 0
./venv/bin/python -m ruff check . --fix --exit-zero
#################################################################################
# Self Documenting Commands #
#################################################################################
.DEFAULT_GOAL := help
# Inspired by <http://marmelab.com/blog/2016/02/29/auto-documented-makefile.html>
# sed script explained:
# /^##/:
# * save line in hold space
# * purge line
# * Loop:
# * append newline + line to hold space
# * go to next line
# * if line starts with doc comment, strip comment character off and loop
# * remove target prerequisites
# * append hold space (+ newline) to line
# * replace newline plus comments by `---`
# * print line
# Separate expressions are necessary because labels cannot be delimited by
# semicolon; see <http://stackoverflow.com/a/11799865/1968>
.PHONY: help
help:
@echo "$$(tput bold)Available commands:$$(tput sgr0)"
@sed -n -e "/^## / { \
h; \
s/.*//; \
:doc" \
-e "H; \
n; \
s/^## //; \
t doc" \
-e "s/:.*//; \
G; \
s/\\n## /---/; \
s/\\n/ /g; \
p; \
}" ${MAKEFILE_LIST} \
| awk -F '---' \
-v ncol=$$(tput cols) \
-v indent=19 \
-v col_on="$$(tput setaf 6)" \
-v col_off="$$(tput sgr0)" \
'{ \
printf "%s%*s%s ", col_on, -indent, $$1, col_off; \
n = split($$2, words, " "); \
line_length = ncol - indent; \
for (i = 1; i <= n; i++) { \
line_length -= length(words[i]) + 1; \
if (line_length <= 0) { \
line_length = ncol - indent - length(words[i]) - 1; \
printf "\n%*s ", -indent, " "; \
} \
printf "%s ", words[i]; \
} \
printf "\n"; \
}' \
| more $(shell test $(shell uname) = Darwin && echo '--no-init --raw-control-chars')