-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRBCInVessel.m
181 lines (158 loc) · 6.96 KB
/
RBCInVessel.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
%% Red blood cell flow inside a vessel
% Spectral Galerkin BIE for an RBC motion and deformation and
% direct BEM for the rigid vessel implementations are put together
% to analyze the stresses develop on the cell membrane while flowing
% in a vessel with a size comparable to red cell or while squeezing
% through a constriction.
%%
clear all; close all; clc;
addpath(genpath('../RBCFlowInRigidTube.m'))
verbose_Plot = false;
Starttime = tic;
%% Input the model and parameters for the analysis from Models folder
LoadElasRBC_Short_Pr4_2_Time0_75s
% LoadElasRBC_RefCons_6mic_Pr8
% LoadElasRBC_LongConVes_Pr8
% LoadMemVisRBC_Short_muMem10_Pr4_2_Time0_75
% LoadMemVisRBC_RefCons_6mic_muMem_3_18_Pr8
% LoadMemVisRBC_LongConVes_muMem_3_18_Pr40
%% Vessel set-up
ParametersForTheAnalysis_Vessel
%% RBC set-up
ParametersForTheAnalysis_RBC
%% Check the geometry and position of RBC
if verbose_Plot
figure('Color','white')
hold on
VisualizeGeometry(nlat, nlon, aXi, bXi, 'r', true)
Patch_Mesh(coord, connect, 0.1)
axis on
xlabel('X'); ylabel('Y'); zlabel('Z');
view([0 90])
end
%% Field points (Gauss quadrature nodes)
[FieldPts, BasisFn, NormalV, Weights] = ...
FieldProperties(coord, connect, numElem, ...
numDofPerNode, numNodesPerElem, gx, gw);
%% Precomputations Vessel
[VesselVessel_LHS, VesselVessel_RHS, VesselVessel_Preconditioner] = ...
PrecomputeBEM_Vessel(coord, connect, inletelem, outletelem, ...
elemDofNum, ...
NeumannDofs, NeumannNode, DirichletElem, ...
FieldPts, NormalV, Weights, BasisFn, ...
Telem, ...
grx, grw, gtx, gtw, mu, numGaussPoints, ...
numNodes, numDofPerNode);
%% Masks to go between Spherepack and vector representations of SH coeff
mask_a = repmat(triu(true(N+1),0),1,1,3);
mask_b = mask_a;
mask_b(1,:,:) = false;
%% Initialization
xi = Xi; axi = aXi; bxi = bXi;
viscousStress_prev = zeros(UpSampleFactor*N+1, 2*UpSampleFactor*N+1, 4);
epsilbrev_prev = zeros(UpSampleFactor*N+1, 2*UpSampleFactor*N+1, 4);
%% Set up time integration
Solution = zeros(ModelSize,1);
%% Set up output file
fidTime = fopen(['Time_',name,'.dat'],'w');
fidCoord = fopen(['Coord_',name,'.dat'],'w');
fidMemFor = fopen(['MemFor_',name,'.dat'],'w');
fidSol = fopen(['Sol_',name,'.dat'],'w');
%% Time-stepping
for nstep = 0:NSTEPS
if (nstep==0 || mod(nstep,SaveAtIncrementalSteps)==0)
%% Write the time to file
fwrite(fidTime, Time, 'double');
%% Write the position of cell to file
cxi = [axi(mask_a); bxi(mask_b)];
fwrite(fidCoord, cxi, 'double');
end
[u, au, bu, Solution, f, viscousStress_prev, epsilbrev_prev, ITER] = ...
SolveSpectralBIE_BEM(VesselVessel_LHS, VesselVessel_RHS, ...
VesselVessel_Preconditioner, ...
coord, connect, coordLocation, ...
numDofPerElem, elemDofNum, NeumannDofs, ...
inletelem, DirichletElem, NeumannElem, ...
FieldPts, NormalV, Weights, BasisFn, ...
Telem, ...
EE, FF, GG, WW, JXibrev, ...
LL, MM, NN, ...
UpSampleFactor, ...
ES, ED, EB, ...
StVenantKirchhoff, ...
NeoHookean, Skalak, ...
MembraneViscoelasticity, ...
mu_Mem, Tau, DT, ...
viscousStress_prev, ...
epsilbrev_prev, ...
axi, bxi, xi, ...
RotationMatrix, ...
nlatEqSpaced, nlonEqSpaced, N_EqSpaced, ...
RotationMatrix_EqSpaced, ...
NGSphere, NGthet, NGphi, ...
eta, wg, ...
nlat, nlon, mask_a, mask_b, ...
mu, lam, N, ...
grx, grw, gtx, gtw, numGaussPoints, ...
numNodes, numDofPerNode, ModelSize, ...
ToleranceGMRES, Solution);
if (nstep==0 || mod(nstep,SaveAtIncrementalSteps)==0)
%% Write output to file
writef = f(:)';
fwrite(fidMemFor,writef,'double');
writeSolution = Solution';
fwrite(fidSol,writeSolution,'double');
end
%% Display
f_norm = sqrt(reshape(f(:,:,1).^2+f(:,:,2).^2+f(:,:,3).^2,nlat,nlon));
u_norm = sqrt(reshape(u(:,:,1).^2+u(:,:,2).^2+u(:,:,3).^2,nlat,nlon));
fprintf('# of step %d;\t remaining # of steps %d; \n', ...
nstep, NSTEPS-nstep)
fprintf('DT: %g;\t Time %d \n', DT, Time);
fprintf('normf = %g;\t normu = %g\n',max(max(f_norm)),max(max(u_norm)))
fprintf('Position of RBC min: %g max: %g \n', ...
min(min(xi(:,:,1))), max(max(xi(:,:,1))))
fprintf('Number of GMRES iteration: %d\n', ITER(2))
fprintf('# of stableCounter %d\n', stableCounter)
fprintf('# of counterTime %d\n', counterTime)
fprintf('\n')
%% Update state (Forward Euler time scheme)
axi = axi + DT*au;
bxi = bxi + DT*bu;
xi = shsgcm(axi,bxi);
if constrainCenterOfMassToInitialPosition
%% Set the center of the mass of RBC to initial position, InitXi
[gxi_thet, gxi_phi] = gradgcm(axi, bxi);
normalVector = cross(gxi_thet, gxi_phi, 3);
xi_dot_normalVector = sum(xi.*normalVector,3);
xi_xi_dot_normalVector = xi.*xi_dot_normalVector;
V = sum(sum(xi_dot_normalVector.*weight))*(2*pi/nlon)/3;
Int_xi_xi_dot_normalVector_dA = ...
sum(sum(xi_xi_dot_normalVector.*weight))*(2*pi/nlon)/4;
CenterMass = reshape(Int_xi_xi_dot_normalVector_dA./V,3,1);
xi = xi - reshape((CenterMass - InitXi),1,1,3);
end
[axi,bxi] = shagcm(xi);
%% Update current time
Time = Time + DT;
%% Update time step increment
[DT, counterTime, IterationCounter, stableCounter, maxStableDT] = ...
updateDT(DT, minDT, maxDT, ...
ITER, IterationCounter, ...
counterTime, maxCounterTime, ...
stableCounter, maxStableDT, ...
nstep);
%% Return if RBC touches the outlet surface
%% or time is larger than the final time
if max(max(xi(:,:,1))) > max(coord(1,:)) || Time - DT > EndTime
load handel
sound(y,Fs)
fclose('all');
TimeInHours = toc(Starttime)/60/60 % in hours
return
end
end
load handel
sound(y,Fs)
fclose('all');
TimeInHours = toc(Starttime)/60/60 % in hours