forked from facebookresearch/muavic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmtedx_utils.py
324 lines (292 loc) · 12.3 KB
/
mtedx_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os
import cv2
import sox
import shutil
import ffmpeg
import tempfile
import pandas as pd
from functools import partial
from collections import defaultdict
from tqdm.contrib.concurrent import process_map
from utils import *
def download_mtedx_data(download_path, src, tgt):
"""Downloads mTEDx data from OpenSLR"""
tgz_filename = f"mtedx_{src}-{tgt}.tgz" if src != tgt else f"mtedx_{src}.tgz"
download_extract_file_if_not(
url = f"https://www.openslr.org/resources/100/{tgz_filename}",
tgz_filepath = download_path / tgz_filename
)
def download_mtedx_lang_videos(mtedx_path, src_lang):
# keep track of non-found videos on YouTube
try:
not_found_videos = set(read_txt_file(mtedx_path / "not_found_videos.txt"))
except FileNotFoundError:
not_found_videos = set()
# get files id per split
for split in ["train", "valid", "test"]:
out_path = mtedx_path / "video" / src_lang / split
out_path.mkdir(parents=True, exist_ok=True)
if not is_empty(out_path):
if split == "train":
print(f"\nDownloading {src_lang} videos from YouTube")
# get youtube-ids from audio filenames inside `wav` directory
wav_dir_path = mtedx_path/f"{src_lang}-{src_lang}"/"data"/split/"wav"
yt_ids = [wav_filepath.stem for wav_filepath in wav_dir_path.glob('*')]
# download videos from YouTube
downloading_status = process_map(
partial(download_video_from_youtube, out_path),
yt_ids,
max_workers=os.cpu_count(),
desc=f"Downloading {src_lang}/{split} Videos",
chunksize=1,
)
assert len(yt_ids) == len(downloading_status)
for yt_id, downloaded in zip(yt_ids, downloading_status):
if not downloaded:
not_found_videos.add(yt_id)
with open(mtedx_path / "not_found_videos.txt", 'w') as fout:
fout.writelines([f"{id_}\n" for id_ in not_found_videos])
def segment_normalize_audio_file(
out_dir, in_file_info, out_sr=16_000, out_channels=1, out_format="wav"
):
in_filepath, fid, seg_id, start_sec, end_sec = in_file_info
out_filepath = out_dir / fid / f"{seg_id}.{out_format}"
if not in_filepath.exists() or out_filepath.exists():
return
out_filepath.parent.mkdir(parents=True, exist_ok=True)
tfm = sox.Transformer()
tfm.set_output_format(rate=out_sr, channels=out_channels)
tfm.trim(start_sec, end_sec)
tfm.build_file(
input_filepath=str(in_filepath),
output_filepath=str(out_filepath)
)
def preprocess_mtedx_audio(mtedx_path, src_lang, muavic_path):
# get files id per split
for split in ["train", "valid", "test"]:
# create directory for segmented & normalized audio
out_path = muavic_path / src_lang / "audio" / split
out_path.mkdir(parents=True, exist_ok=True)
if not is_empty(out_path):
if split == "train":
print(f"\nSegmenting {src_lang} audio files")
# collect needed info from segment file
segments_info = []
split_dir_path = mtedx_path / f"{src_lang}-{src_lang}" / "data" / split
wav_dir_path = split_dir_path / "wav"
segment_file = split_dir_path / "txt" / "segments"
for line in read_txt_file(segment_file):
seg_id, fid, start, end = line.strip().split(' ')
segments_info.append(
(wav_dir_path/(fid+".flac"), fid, seg_id, float(start), float(end))
)
# preprocess audio files
process_map(
partial(segment_normalize_audio_file, out_path),
segments_info,
max_workers=os.cpu_count(),
desc=f"Preprocessing {src_lang}/{split} Audios",
chunksize=1,
)
def segment_normalize_video_file(
mean_face_metadata, metadata_path, in_path, out_path, video_info
):
out_fps = 25
video_format = "mp4"
video_id, video_segments = video_info
in_filepath = in_path / f"{video_id}.{video_format}"
video_metadata = load_video_metadata(metadata_path / f"{video_id}.pkl")
tmp_dir = tempfile.mkdtemp()
(
ffmpeg
.input(str(in_filepath)).video
.filter('fps', fps=25)
.output(f"{tmp_dir}/%d.png", start_number=0)
.run(quiet=True)
)
for seg in video_segments:
out_filepath = out_path / video_id / f"{seg['id']}.{video_format}"
out_filepath.parent.mkdir(parents=True, exist_ok=True)
# start segmenting
seg_metadata_length = len(video_metadata[seg["id"]])
fstart = round(seg["start_sec"] * out_fps)
fend = (
round(seg["end_sec"] * out_fps)
if seg_metadata_length == 0
else
fstart+seg_metadata_length
) # handles minor mismatches between metadata-length and video length
if fstart == fend: fend = fstart+1 #adding 1-frame
num_frames = fend-fstart
video_frames = (
cv2.imread(f"{tmp_dir}/{i}.png")
for i in range(fstart, fend)
)
if len(video_metadata[seg["id"]]) > 0:
frames = crop_patch(
video_frames,
num_frames,
video_metadata[seg["id"]],
mean_face_metadata,
std_size=(256,256),
)
else:
frames = [
cv2.resize(frame, (96, 96))
for frame in video_frames
]
# save video
save_video(frames, out_filepath, out_fps)
shutil.rmtree(tmp_dir)
def preprocess_mtedx_video(mtedx_path, metadata_path, src_lang, muavic_path):
# load all metadata for all video files in the given language
mean_face_filepath = metadata_path / "20words_mean_face.npy"
if not mean_face_filepath.exists():
download_file(
"https://dl.fbaipublicfiles.com/muavic/metadata/20words_mean_face.npy",
metadata_path
)
mean_face_metadata = np.load(mean_face_filepath)
# get files id per split
for split in ["train", "valid", "test"]:
out_path = muavic_path / src_lang / "video" / split
out_path.mkdir(parents=True, exist_ok=True)
if not is_empty(out_path):
if split == "train":
print(
f"\nSegmenting {src_lang} videos files" +
"(It takes a few hours to complete)")
segment_file = (
mtedx_path / f"{src_lang}-{src_lang}" / "data" / split / "txt" / "segments"
)
# collect needed info from segment file
video_segments = defaultdict(list)
for line in read_txt_file(segment_file):
seg_id, fid, start_sec, end_sec = line.strip().split()
video_segments[fid].append({
"id": seg_id,
"start_sec": float(start_sec),
"end_sec": float(end_sec),
})
video_dir_path = mtedx_path / "video" / src_lang / split
process_map(
partial(
segment_normalize_video_file,
mean_face_metadata,
metadata_path / src_lang / split,
video_dir_path,
out_path,
),
video_segments.items(),
max_workers=os.cpu_count(),
chunksize=1,
)
def get_mtedx_fileids(mtedx_path, lang_pair, split):
# get segments file in mtedx dataset
segments_path = (
mtedx_path / lang_pair / "data" / split / "txt" / "segments"
)
# TODO: filter ids based on existing audio & video
return (
f"{split}/{ln.split()[0].rpartition('_')[0]}/{ln.split()[0]}"
for ln in read_txt_file(segments_path)
)
def get_audio_video_info(audio_path, fileid):
audio_filepath = audio_path / f"{fileid}.wav"
video_filepath = (
str(audio_filepath)
.replace("audio", "video")
.replace("wav", "mp4")
)
#TODO: handle the case if either audio or video or both are not found!
dur = sox.file_info.duration(audio_filepath)
return {
"id": fileid,
"video": video_filepath,
"audio": audio_filepath,
"video_frames": round(dur*25),
"audio_samples": round(dur*16_000),
}
def prepare_mtedx_manifest(mtedx_path, src_lang, muavic_path):
for split in ["train", "valid", "test"]:
manifest_filepath = muavic_path / src_lang / f"{split}.tsv"
if not manifest_filepath.exists():
if split == "train":
print(f"\nCreating manifests for {src_lang}")
lang_pair = f"{src_lang}-{src_lang}"
fileids = list(get_mtedx_fileids(mtedx_path, lang_pair, split))
audio_datapath = muavic_path / src_lang / "audio"
av_manifest_df = pd.DataFrame(
process_map(
partial(get_audio_video_info, audio_datapath),
fileids,
desc=f"Creating {src_lang}/{split} manifest",
max_workers=os.cpu_count(),
chunksize=1
)
)
# write down the manifest TSV file
with open(manifest_filepath, 'w') as fout: fout.write('/\n')
av_manifest_df.to_csv(
manifest_filepath, sep='\t', header=False, index=False,
mode='a'
)
def prepare_mtedx_translation(mtedx_path, mt_trans_path, lang, muavic_path):
# download & extradt pseudo-translation if that wasn't done already
lang_pair = f"{lang}-en"
tgz_filename = f"{lang_pair}.tgz"
tgz_filepath = mt_trans_path / tgz_filename
url = f"https://dl.fbaipublicfiles.com/muavic/mt_trans/{tgz_filename}",
download_extract_file_if_not(url, tgz_filepath)
for split in ["train", "valid", "test"]:
# set output files
out_src_filepath = muavic_path / lang / f"{split}.{lang}"
out_tgt_filepath = muavic_path / lang / f"{split}.en"
if not out_src_filepath.exists() or not out_tgt_filepath.exists():
if split == "train":
print(f"\nCollecting translation data for {lang}-en")
# combine human translation with mt translation for "train" & "valid"
if split != "test":
# load pseudo-translations from mt_trans_path
pseudo_trans = pd.DataFrame({
"id": list(
get_mtedx_fileids(mtedx_path, f"{lang}-{lang}", split)
),
lang: read_txt_file(
mtedx_path / f"{lang}-{lang}" / "data" / split / "txt" / f"{split}.{lang}"
),
"en": read_txt_file(
mt_trans_path / f"{lang}-en" / f"{split}.en"
),
}).set_index("id")
# load real translations from mtedx_path
mtedx_trans_path = mtedx_path / f"{lang}-en" / "data" / split / "txt"
human_trans = pd.DataFrame({
"id": list(
get_mtedx_fileids(mtedx_path, f"{lang}-en", split)
),
lang: read_txt_file(
mtedx_trans_path / f"{split}.{lang}"
),
"en": read_txt_file(
mtedx_trans_path / f"{split}.en"
),
}).set_index("id")
# combine pseudo translation with human translation
pseudo_trans.update(human_trans)
all_trans = pseudo_trans.copy()
write_txt_file(all_trans[lang].tolist(), out_src_filepath)
write_txt_file(all_trans["en"].tolist(), out_tgt_filepath)
# use only human translation for "test"
else:
mtedx_trans_path = mtedx_path / f"{lang}-en" / "data" / split / "txt"
# copy source language
shutil.copyfile(
src = mtedx_trans_path/f"test.{lang}",
dst = out_src_filepath
)
# copy target language
shutil.copyfile(
src = mtedx_trans_path / "test.en",
dst = out_tgt_filepath
)