-
Notifications
You must be signed in to change notification settings - Fork 164
/
dbpn_iterative.py
102 lines (82 loc) · 3.65 KB
/
dbpn_iterative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import torch.nn as nn
import torch.optim as optim
from base_networks import *
from torchvision.transforms import *
class Net(nn.Module):
def __init__(self, num_channels, base_filter, feat, num_stages, scale_factor):
super(Net, self).__init__()
if scale_factor == 2:
kernel = 6
stride = 2
padding = 2
elif scale_factor == 4:
kernel = 8
stride = 4
padding = 2
elif scale_factor == 8:
kernel = 12
stride = 8
padding = 2
self.num_stages = num_stages
#Initial Feature Extraction
self.feat0 = ConvBlock(num_channels, feat, 3, 1, 1, activation='prelu', norm=None)
self.feat1 = ConvBlock(feat, base_filter, 1, 1, 0, activation='prelu', norm=None)
#Back-projection stages
self.up1 = UpBlock(base_filter, kernel, stride, padding)
self.down1 = DownBlock(base_filter, kernel, stride, padding)
self.up2 = UpBlock(base_filter, kernel, stride, padding)
self.down2 = D_DownBlock(base_filter, kernel, stride, padding, 2)
self.up3 = D_UpBlock(base_filter, kernel, stride, padding, 2)
self.down3 = D_DownBlock(base_filter, kernel, stride, padding, 3)
self.up4 = D_UpBlock(base_filter, kernel, stride, padding, 3)
self.down4 = D_DownBlock(base_filter, kernel, stride, padding, 4)
self.up5 = D_UpBlock(base_filter, kernel, stride, padding, 4)
self.down5 = D_DownBlock(base_filter, kernel, stride, padding, 5)
self.up6 = D_UpBlock(base_filter, kernel, stride, padding, 5)
self.down6 = D_DownBlock(base_filter, kernel, stride, padding, 6)
self.up7 = D_UpBlock(base_filter, kernel, stride, padding, 6)
#Reconstruction
self.output_conv = ConvBlock(num_stages*base_filter, num_channels, 3, 1, 1, activation=None, norm=None)
for m in self.modules():
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
torch.nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
elif classname.find('ConvTranspose2d') != -1:
torch.nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
x = self.feat0(x)
l = self.feat1(x)
results = []
for i in range(self.num_stages):
h1 = self.up1(l)
l1 = self.down1(h1)
h2 = self.up2(l1)
concat_h = torch.cat((h2, h1),1)
l = self.down2(concat_h)
concat_l = torch.cat((l, l1),1)
h = self.up3(concat_l)
concat_h = torch.cat((h, concat_h),1)
l = self.down3(concat_h)
concat_l = torch.cat((l, concat_l),1)
h = self.up4(concat_l)
concat_h = torch.cat((h, concat_h),1)
l = self.down4(concat_h)
concat_l = torch.cat((l, concat_l),1)
h = self.up5(concat_l)
concat_h = torch.cat((h, concat_h),1)
l = self.down5(concat_h)
concat_l = torch.cat((l, concat_l),1)
h = self.up6(concat_l)
concat_h = torch.cat((h, concat_h),1)
l = self.down6(concat_h)
concat_l = torch.cat((l, concat_l),1)
h = self.up7(concat_l)
results.append(h)
results = torch.cat(results,1)
x = self.output_conv(results)
return x