-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathonlineQuerry.py
43 lines (34 loc) · 1.01 KB
/
onlineQuerry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from mlabwrap import mlab
import pickle
from decaf.scripts.imagenet import DecafNet
import numpy,scipy,PIL,csv
from PIL import Image
from sklearn.decomposition import PCA
ucfloc = 'decaf/ucfaction/'
imgnetPath = 'decaf/imagenet_pretrained/'
numFrames = 2
#load Imagenet training dataset
net = DecafNet(imgnetPath+'imagenet.decafnet.epoch90', imgnetPath+'imagenet.decafnet.meta')
def loadPCA():
with open('pcaData.pkl', 'rb') as input:
pca = pickle.load(input)
return pca
def imToNumpy(img):
return numpy.asarray(PIL.Image.open(img))
def getFeature(img):
scores = net.classify(img, center_only=True)
feature = net.feature('fc6_cudanet_out')
return feature
def listtoFile(lst,fname):
with open(fname,'wb') as m:
writer = csv.writer(m)
writer.writerows(lst)
def main():
querryImage = 'img5.jpg' # bhupkas tcp function
pca = loadPCA()
sketch = pca.transform(getFeature(imToNumpy(querryImage)))
listtoFile(sketch,'querry_tmp.csv')
result = mlab.LmnnQuerry()
print int(result[0][0])
if __name__ == '__main__':
main()