To prepare the datasets required for our hierarchical action segmentation benchmarks, follow the steps below. Each dataset should be placed in its corresponding directory under a main data
directory.
First, create the necessary directories:
mkdir -p data/Shot7M2
mkdir -p data/hBABEL
mkdir -p data/MABe22
Download the Shot7M2 dataset from HuggingFace and place it in the data/Shot7M2
directory.
- Ensure Git LFS is installed:
git lfs install
- Clone the dataset:
git clone https://huggingface.co/datasets/amathislab/SHOT7M2 data/Shot7M2
The hBABEL dataset is an extension of the BABEL dataset developed for hierarchical action segmentation. Please cite both the original BABEL paper and our ECCV paper when using hBABEL.
-
Follow the instructions on the TEACH GitHub repository to download and process the AMASS and BABEL datasets.
-
You should end up with the same data folders, as described in the TEACH repository.
- Perform Procrustes alignment on the pose data:
python -m datasets.hBABEL.prepare_hbabel_data
- Generate the hBABEL dataset:
python datasets/hBABEL/prepare_hbabel_labels.py
The MABe 2022 dataset is publicly available. Follow the steps below to download the mouse triplet data:
wget "https://data.caltech.edu/records/8kdn3-95j37/files/mouse_triplet_train.npy" -O "data/MABe22/mouse_triplet_train.npy"
wget "https://data.caltech.edu/records/8kdn3-95j37/files/mouse_triplet_test.npy" -O "data/MABe22/mouse_triplet_test.npy"
wget "https://data.caltech.edu/records/8kdn3-95j37/files/mouse_triplets_test_labels.npy" -O "data/MABe22/mouse_triplets_test_labels.npy"