forked from amathislab/DeepDraw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
path_utils.py
63 lines (44 loc) · 3.25 KB
/
path_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
### Change the following path with the folder where you downloaded the data.
ROOT_PATH = '/PATH_TO_DATA'
################### PCR-DATA-GENERATION and RL-DATA-GENERATION ###################
#
# PCR-dataset generation
PATH_TO_STARTPOINT = os.path.join(ROOT_PATH,'PCR-data-generation','start_points')
PATH_TO_SPINDLES = os.path.join(ROOT_PATH,'spindle_datasets')
PATH_TO_SAVE_SPINDLEDATASET = os.path.join(ROOT_PATH,'spindle_datasets','pcr_dataset')
PATH_TO_UNPROCESSED_DATA = os.path.join(ROOT_PATH,'spindle_datasets','pcr_dataset','unprocessed_data') # '../data/' #or PATH_TO_SPINDLES but make sure that volume is connected to the docker
PATH_TO_UNPROCESSED_RL_DATA = os.path.join(ROOT_PATH,'spindle_datasets','rl_dataset','unprocessed_data')
PATH_TO_CONVERTED_RL_DATA = os.path.join(ROOT_PATH,'spindle_datasets','rl_dataset','converted_data')
PATH_TO_SAVE_RL_DATASET = os.path.join(ROOT_PATH,'spindle_datasets','rl_dataset')
################### NETWORKS TRAINING ###################
### Path to datasets
PATH_TO_DATA = os.path.join(ROOT_PATH, 'spindle_datasets', 'pcr_dataset')
PATH_TO_DATA_RL = os.path.join(ROOT_PATH, 'spindle_datasets', 'rl_dataset')
PATH_TO_DATA_SPIKES = os.path.join(ROOT_PATH,'exp_analysis','beh_exp_datasets','MonkeySpikeRegressDatasets')
### Path to models dataframe (hyperparameters)
PATH_TO_OLD = os.path.join(ROOT_PATH,'models','deepdraw_models')
### Path for saving models (should contains also exp: 4015, 5015, 4045 for initialization)
MODELS_DIR = os.path.join(ROOT_PATH,'models')
### Path for saving datadriven models
PATH_TO_RESULTS_DATADRIVEN = os.path.join(ROOT_PATH,'exp_analysis','results','data_driven')
PATH_TO_DATAFRAME_DATADRIVEN = os.path.join(ROOT_PATH,'exp_analysis','results','dataframes','data_driven')
################### EXPERIMENTAL DATA ###################
### Path to experimental data
PATH_TO_BEH_EXP = os.path.join(ROOT_PATH,'exp_analysis','beh_exp_datasets')
PATH_MONKEY_PROCESSED_DATAFRAMES = os.path.join(ROOT_PATH,'exp_analysis','beh_exp_datasets','processed_dataframes')
PATH_MONKEY_PROCESSED_DICT = os.path.join(ROOT_PATH,'exp_analysis','beh_exp_datasets','processed_dict')
### Datasplit used for active data
PATH_TO_DATASPLITS = os.path.join(ROOT_PATH,'exp_analysis','beh_exp_datasets','MonkeySpikeRegressDatasets')
### Path where original matlab files are saved
PATH_TO_MATLAB_DATA = os.path.join(ROOT_PATH,'exp_analysis','beh_exp_datasets','matlab_data')
### Path where Neural data is stored
PATH_TO_NEURAL_DATA = os.path.join(ROOT_PATH,'exp_analysis','beh_exp_datasets','MonkeyAlignedDatasets_new')
PATH_TO_NEURAL_DATA_NOTALIGN = os.path.join(ROOT_PATH,'exp_analysis','beh_exp_datasets','MonkeyDatasets')
PATH_TO_SPIKE_REGRESS_DATA_PASSIVE = os.path.join(ROOT_PATH,'exp_analysis','beh_exp_datasets','MonkeySpikeRegressDatasets_passive')
### Path for saving predictions from linear models
PATH_TO_SAVE_LINEAR = os.path.join(ROOT_PATH,'exp_analysis','predictions')
### Path for activations and predictions
PATH_TO_ACTIVATIONS = os.path.join(ROOT_PATH,'exp_analysis','activations')
PATH_TO_PREDICTIONS = os.path.join(ROOT_PATH,'exp_analysis','predictions')
PATH_TO_RESULTS = os.path.join(ROOT_PATH,'exp_analysis','results')