-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRealTimePunisherExptSequence_CLOUD.m
executable file
·496 lines (418 loc) · 22.9 KB
/
RealTimePunisherExptSequence_CLOUD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
function [blockData patterns] = RealTimePunisherExptSequence_CLOUD(subjectNum,runNum,rtfeedback,typeNum,expDay)
% function [testTiming blockData] = RealTimePunisherExptOutline_CLOUD(subjectNum,runNum,rtfeedback,typeNum,expDay)
%
% Face/house attention experiment with real-time classifier feedback
%
%
% REQUIRED INPUTS:
% - subjectNum: participant number [any integer]
% if subjectNum = 0, no information will be saved
% - runNum: run number [any integer]
% - rtfeedback: if you're doing rt-feedback in that run (no for first run, yes for others)
% - typeNum: if you want to show negative/positive/neutral faces during NF
% - expDay: day of NF training (determines how many runs there are)
%
% OUTPUTS
% - testTiming: elapsed time for each iteration of SVM testing
% - patterns: ?????
%
% Written by: Megan deBettencourt/Anne Mennen
% Version: 2.0
% Last modified: Jan 2020 - changing to be used with toml file
%% check inputs
%check that there is a sufficient number of inputs
if ~isnumeric(subjectNum)
error('subjectNum must be a number');
end
if ~isnumeric(runNum)
error('runNum must be a number');
end
if (rtfeedback ~= 0) && (rtfeedback ~= 1)
error('rtfeedback must be either 0 or 1');
end
%% Boilerplate
seed = sum(100*clock); %get random seed
RandStream.setGlobalStream(RandStream('mt19937ar','seed',seed));%set seed
% ACM: took out the if statement on 2/13
%if strcmp(computer,'MACI');
dataHeader = ['data/subject' num2str(subjectNum)];
dayHeader = [dataHeader '/day' num2str(expDay)];
runHeader = [dayHeader '/run' num2str(runNum)];
classOutputDir = [runHeader '/classoutput'];
expDayInt = floor(expDay); % make sure you get the actual day number
%% create subject folder
%somehow assert that subject/run combo has not already been run!
if (~isdir(dataHeader))
mkdir(dataHeader);
end
if (~isdir(dayHeader))
mkdir(dayHeader);
end
if (~isdir(runHeader))
mkdir(runHeader);
end
if (~isdir(classOutputDir))
mkdir(classOutputDir);
end
%% Experimental Parameters
%scanning parameters
disdaqs = 20; %#ok<NASGU> % [secs] # seconds to drop at the beginning of run
TR = 2; %#ok<NASGU> % [secs] # seconds per volume
nTrialsPerTR = 2; % [trials]#trials per TR
labelsShift = 2; % [TRs] # volumes to shift label
%experimental design
instructLen = 1; % [TRs] # TRs to dedicate to instructions
IBI = 2; % [TRs] # TRs to dedicate to rest between blocks
nTRs = 230; % [TRs] # TRs per epi sequence
%trial phases (phase 1 & 2)
nTrialsPerBlock = 50; % [trials]#trials per block
nBlocksPerPhase = 4; % [blocks]#blocks per phase
%fixation
nTRsFix = 3; % [TRs] # TRs to dedicate to training the model
STABLE = 1; % numerical designation of the block type stable
RTFEED = 2; % numerical designation of the block type feedback
%experimental order of block types
if (rtfeedback == 1)
%typeOrder = [RTFEED*ones(1,nBlocksPerPhase) RTFEED*ones(1,nBlocksPerPhase)];
typeOrder = [STABLE*ones(1,nBlocksPerPhase) RTFEED*ones(1,nBlocksPerPhase)];
elseif (rtfeedback == 0)
typeOrder = [STABLE*ones(1,nBlocksPerPhase) STABLE*ones(1,nBlocksPerPhase)];
end
%numerically designate the block categories
nCategs = 2;
SCENE = 1;
FACE = 2;
%numerically designate the subcategories
nSubCategs = 8; % in total, across all categorires
INDOOR = 1; % scenes
OUTDOOR = 2; % scenes
MALE = 3; % faces
FEMALE = 4; % faces
MALESAD = 5;
FEMALESAD = 6;
MALEHAPPY = 7;
FEMALEHAPPY = 8;
% TypeNum:
NEUTRAL = 1;
SAD = 2;
HAPPY = 3;
%experimental design
goCategPercent = .9;% prevalence of category with go response
nNoGoTrials = ceil(nTrialsPerBlock*(1-goCategPercent)); % min number of no-go trials per block
%% Response Mapping and Counterbalancing
% skyra: use current design button box (keys 1,2,3,4)
LEFT = KbName('1!');
% counterbalancing response mapping based on subject assignment
% correctResp spells out the responses for {INDOOR,OUTDOOR,MALE,FEMALE}
respMap = mod(subjectNum-1,4)+1;
switch (respMap)
case 1
goSubCategs = [INDOOR MALE];
nogoSubCategs = [OUTDOOR FEMALE];
correctResp = {LEFT,NaN,LEFT,NaN};
case 2
goSubCategs = [OUTDOOR FEMALE];
nogoSubCategs = [INDOOR MALE];
correctResp = {NaN,LEFT,NaN,LEFT};
case 3
goSubCategs = [OUTDOOR MALE];
nogoSubCategs = [INDOOR FEMALE];
correctResp = {NaN,LEFT,LEFT,NaN};
case 4
goSubCategs = [INDOOR FEMALE];
nogoSubCategs = [OUTDOOR MALE];
correctResp = {LEFT,NaN,NaN,LEFT};
otherwise
error('Impossible response mapping!');
end
for i = 1:nCategs
randSampAttCategList(i,:) = [goSubCategs(i)*ones(1,goCategPercent*10) nogoSubCategs(i)]; %#ok<AGROW> %just where to choose 10% of the time have it be a nogo trial
randSampInattCategList(i,:) = [goSubCategs(i)*ones(1,goCategPercent*10) nogoSubCategs(i)]; %#ok<AGROW>
end
%% Load Images
cd images;
for categ=1:nSubCategs
% move into the right folder
if (categ == INDOOR)
cd indoor_NEW;
elseif (categ == OUTDOOR)
cd outdoor_NEW;
elseif (categ == MALE)
cd male_neut_NEW;
elseif (categ == FEMALE)
cd female_neut_NEW;
elseif (categ == MALESAD)
cd male_sad_NEW;
elseif (categ == FEMALESAD)
cd female_sad_NEW;
elseif (categ == MALEHAPPY)
cd male_happy_NEW;
elseif (categ == FEMALEHAPPY)
cd female_happy_NEW
else
error('Impossible category!');
end
% get filenames
dirList{categ} = dir; %#ok<AGROW>
dirList{categ} = dirList{categ}(3:end); %#ok<AGROW> skip . & ..
if (~isempty(dirList{categ}))
if (strcmp(dirList{categ}(1).name,'.DS_Store')==1)
dirList{categ} = dirList{categ}(2:end); %#ok<AGROW>
end
if (strcmp(dirList{categ}(end).name,'Thumbs.db')==1)
dirList{categ} = dirList{categ}(1:(end-1)); %#ok<AGROW>
end
numImages(categ) = length(dirList{categ}); %#ok<AGROW>
if (numImages(categ)>0)
% get images
for img=1:numImages(categ)
% read images
images{categ,img} = imread(dirList{categ}(img).name); %#ok<AGROW>
tempFFT = fft2(images{categ,img});
imagePower{categ,img} = abs(tempFFT); %#ok<NASGU,AGROW>
imagePhase{categ,img} = angle(tempFFT); %#ok<NASGU,AGROW>
end
% randomize order of images in each run
imageShuffle{categ} = randperm(numImages(categ)); %#ok<AGROW>
cd ..;
end
else
error('Need at least one image per directory!');
end
end
cd ..;
%% Generate Trial and Block Sequences
% counterbalance block order across runs and subjects
% counterbalance block order across runs and subjects
% this is fine if type is NEUTRAL--counterbalance across all
if (mod(subjectNum,8) == 1) || (mod(subjectNum,8) == 2) || (mod(subjectNum,8) == 3) || (mod(subjectNum,8) == 4)
if mod(expDayInt,2)==1
if (mod(runNum,2)==1)
blockSequencePhase1 = [SCENE FACE FACE SCENE];
categOrderPhase1 = repmat(blockSequencePhase1,1,nBlocksPerPhase/numel(blockSequencePhase1));
blockSequencePhase2 = [FACE SCENE SCENE FACE];
categOrderPhase2 = repmat(blockSequencePhase2,1,nBlocksPerPhase/numel(blockSequencePhase2));
else
blockSequencePhase1 = [FACE SCENE SCENE FACE];
categOrderPhase1 = repmat(blockSequencePhase1,1,nBlocksPerPhase/numel(blockSequencePhase1));
blockSequencePhase2 = [SCENE FACE FACE SCENE];
categOrderPhase2 = repmat(blockSequencePhase2,1,nBlocksPerPhase/numel(blockSequencePhase2));
end
else
if (mod(runNum,2)==1)
blockSequencePhase1 = [FACE SCENE SCENE FACE];
categOrderPhase1 = repmat(blockSequencePhase1,1,nBlocksPerPhase/numel(blockSequencePhase1));
blockSequencePhase2 = [SCENE FACE FACE SCENE];
categOrderPhase2 = repmat(blockSequencePhase2,1,nBlocksPerPhase/numel(blockSequencePhase2));
else
blockSequencePhase1 = [SCENE FACE FACE SCENE];
categOrderPhase1 = repmat(blockSequencePhase1,1,nBlocksPerPhase/numel(blockSequencePhase1));
blockSequencePhase2 = [FACE SCENE SCENE FACE];
categOrderPhase2 = repmat(blockSequencePhase2,1,nBlocksPerPhase/numel(blockSequencePhase2));
end
end
else
if (mod(expDayInt,2)==1)
if (mod(runNum,2)==1)
blockSequencePhase1 = [FACE SCENE SCENE FACE];
categOrderPhase1 = repmat(blockSequencePhase1,1,nBlocksPerPhase/numel(blockSequencePhase1));
blockSequencePhase2 = [SCENE FACE FACE SCENE];
categOrderPhase2 = repmat(blockSequencePhase2,1,nBlocksPerPhase/numel(blockSequencePhase2));
else
blockSequencePhase1 = [SCENE FACE FACE SCENE];
categOrderPhase1 = repmat(blockSequencePhase1,1,nBlocksPerPhase/numel(blockSequencePhase1));
blockSequencePhase2 = [FACE SCENE SCENE FACE];
categOrderPhase2 = repmat(blockSequencePhase2,1,nBlocksPerPhase/numel(blockSequencePhase2));
end
else
if (mod(runNum,2)==1)
blockSequencePhase1 = [SCENE FACE FACE SCENE];
categOrderPhase1 = repmat(blockSequencePhase1,1,nBlocksPerPhase/numel(blockSequencePhase1));
blockSequencePhase2 = [FACE SCENE SCENE FACE];
categOrderPhase2 = repmat(blockSequencePhase2,1,nBlocksPerPhase/numel(blockSequencePhase2));
else
blockSequencePhase1 = [FACE SCENE SCENE FACE];
categOrderPhase1 = repmat(blockSequencePhase1,1,nBlocksPerPhase/numel(blockSequencePhase1));
blockSequencePhase2 = [SCENE FACE FACE SCENE];
categOrderPhase2 = repmat(blockSequencePhase2,1,nBlocksPerPhase/numel(blockSequencePhase2));
end
end
end
% now modify based on types
if rtfeedback % if this is a feedback run
if typeNum == SAD
emblocks = [0 0 0 0 1 1 1 1]; %emotion blocks
blockSequencePhase2 = [SCENE SCENE SCENE SCENE]; % we only want to attend to scenes
categOrderPhase2 = repmat(blockSequencePhase2,1,nBlocksPerPhase/numel(blockSequencePhase2));
elseif typeNum == HAPPY
emblocks = [0 0 0 0 1 1 1 1];
blockSequencePhase2 = [FACE FACE FACE FACE]; % we only want to attend to faces
categOrderPhase2 = repmat(blockSequencePhase2,1,nBlocksPerPhase/numel(blockSequencePhase2));
else
emblocks = [0 0 0 0 0 0 0 0];
end
else
emblocks = [0 0 0 0 0 0 0 0]; % if not a feedback run
end
attCategOrder = [categOrderPhase1 categOrderPhase2]; % SAYS IF THAT BLOCK ATTEND TO SCENE OR FACE, ALL 8 BLOCKS IN RUN
inattCategOrder = (attCategOrder==1)+1; % JUST THE REVERSE OF BEFORE, WHAT YOU'RE NOT PAYING ATTENTION TO
numBlocks = numel(attCategOrder);
categCounter = zeros(1,nSubCategs);
%% set up block data structure
trialCounter = 0;
TRCounter = 0;
for iBlock=1:numBlocks
% set up block data structure
blockData(iBlock).block = iBlock; %#ok<AGROW>
blockData(iBlock).type = typeOrder(iBlock); %#ok<AGROW>
blockData(iBlock).attCateg = attCategOrder(iBlock); %#ok<AGROW>
blockData(iBlock).inattCateg = inattCategOrder(iBlock); %#ok<AGROW>
blockData(iBlock).trialsPerBlock = nTrialsPerBlock; %#ok<AGROW>
blockData(iBlock).trial = 1:blockData(iBlock).trialsPerBlock; %#ok<AGROW>
blockData(iBlock).trialLabel = repmat(blockData(iBlock).attCateg,1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).trialCount = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).actualblockonset = nan; %#ok<AGROW>
blockData(iBlock).plannedinstructonset = nan; %#ok<AGROW>
blockData(iBlock).actualinstructonset = nan; %#ok<AGROW>
blockData(iBlock).plannedtrialonsets = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).actualtrialonsets = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).corrresps = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).rts = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).resps = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).accs = zeros(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).pulses = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).predict = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).classOutputFileLoad = nan(2,ceil(blockData(iBlock).trialsPerBlock/2)); %#ok<AGROW>
blockData(iBlock).classOutputFile = cell(2,ceil(blockData(iBlock).trialsPerBlock/2)); %#ok<AGROW>
blockData(iBlock).fileList = {}; %#ok<AGROW>
blockData(iBlock).newestFile = {};
blockData(iBlock).categsep = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).attImgProp = nan(2,ceil(blockData(iBlock).trialsPerBlock/2)); %#ok<AGROW>
blockData(iBlock).smoothAttImgProp = nan(2,ceil(blockData(iBlock).trialsPerBlock/2)); %#ok<AGROW>
blockData(iBlock).categs{blockData(iBlock).attCateg} = PsychRandSample(randSampAttCategList(blockData(iBlock).attCateg,:),[1 blockData(iBlock).trialsPerBlock]); % this randomly samples the probability list so that ratio of go/no trials are kept
tempNoGoTrials = find(blockData(iBlock).categs{blockData(iBlock).attCateg}==nogoSubCategs(blockData(iBlock).attCateg)); % this finds where the no go trials are
while ((numel(tempNoGoTrials)~=nNoGoTrials) || (tempNoGoTrials(1)<10) || (any(diff(tempNoGoTrials)<4)) || (tempNoGoTrials(end)>47)) % don't want the no go trials to be too early, too frequent, or too late
blockData(iBlock).categs{blockData(iBlock).attCateg} = PsychRandSample(randSampAttCategList(blockData(iBlock).attCateg,:),[1 blockData(iBlock).trialsPerBlock]); %#ok<AGROW>
tempNoGoTrials = find(blockData(iBlock).categs{blockData(iBlock).attCateg}==nogoSubCategs(blockData(iBlock).attCateg)); %#ok<NOPRT>
end
% if this block is emotional and we're going to attend to scenes and
% AWAY from happy
if emblocks(iBlock) && typeNum==SAD % this says for every trial in block, what category is the unattended stimulus going to be
blockData(iBlock).categs{blockData(iBlock).inattCateg} = PsychRandSample(randSampInattCategList(blockData(iBlock).inattCateg,:)+2,[1 blockData(iBlock).trialsPerBlock]); %#ok<AGROW>
tempNoGoTrials = find(blockData(iBlock).categs{blockData(iBlock).inattCateg}==nogoSubCategs(blockData(iBlock).inattCateg)+2); %#ok<NOPRT>
while (numel(tempNoGoTrials)~=nNoGoTrials) || (tempNoGoTrials(1)<10) || (any(diff(tempNoGoTrials)<4)) || (tempNoGoTrials(end)>47)
blockData(iBlock).categs{blockData(iBlock).inattCateg} = PsychRandSample(randSampInattCategList(blockData(iBlock).inattCateg,:)+2,[1 blockData(iBlock).trialsPerBlock]); %#ok<AGROW>
tempNoGoTrials = find(blockData(iBlock).categs{blockData(iBlock).inattCateg}==nogoSubCategs(blockData(iBlock).inattCateg)+2); %#ok<NOPRT>
end
else
blockData(iBlock).categs{blockData(iBlock).inattCateg} = PsychRandSample(randSampInattCategList(blockData(iBlock).inattCateg,:),[1 blockData(iBlock).trialsPerBlock]); %#ok<AGROW>
tempNoGoTrials = find(blockData(iBlock).categs{blockData(iBlock).inattCateg}==nogoSubCategs(blockData(iBlock).inattCateg));
while (numel(tempNoGoTrials)~=nNoGoTrials) || (tempNoGoTrials(1)<10) || (any(diff(tempNoGoTrials)<4)) || (tempNoGoTrials(end)>47)
blockData(iBlock).categs{blockData(iBlock).inattCateg} = PsychRandSample(randSampInattCategList(blockData(iBlock).inattCateg,:),[1 blockData(iBlock).trialsPerBlock]); %#ok<AGROW>
tempNoGoTrials = find(blockData(iBlock).categs{blockData(iBlock).inattCateg}==nogoSubCategs(blockData(iBlock).inattCateg)); %#ok<NOPRT>
end
if emblocks(iBlock) && typeNum == HAPPY % then get happy images--redo attended categories
blockData(iBlock).categs{blockData(iBlock).attCateg} = PsychRandSample(randSampAttCategList(blockData(iBlock).attCateg,:)+4,[1 blockData(iBlock).trialsPerBlock]); % this randomly samples the probability list so that ratio of go/no trials are kept
tempNoGoTrials = find(blockData(iBlock).categs{blockData(iBlock).attCateg}==nogoSubCategs(blockData(iBlock).attCateg)+4); % this finds where the no go trials are
while ((numel(tempNoGoTrials)~=nNoGoTrials) || (tempNoGoTrials(1)<10) || (any(diff(tempNoGoTrials)<4)) || (tempNoGoTrials(end)>47)) % don't want the no go trials to be too early, too frequent, or too late
blockData(iBlock).categs{blockData(iBlock).attCateg} = PsychRandSample(randSampAttCategList(blockData(iBlock).attCateg,:)+4,[1 blockData(iBlock).trialsPerBlock]); %#ok<AGROW>
tempNoGoTrials = find(blockData(iBlock).categs{blockData(iBlock).attCateg}==nogoSubCategs(blockData(iBlock).attCateg)+4); %#ok<NOPRT>
end
end
end
blockData(iBlock).images{SCENE} = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).images{FACE} = nan(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
blockData(iBlock).files = cell(1,blockData(iBlock).trialsPerBlock); %#ok<AGROW>
if iBlock == (nBlocksPerPhase+1) %first feedback block
TRsFix = (TRCounter+1):(TRCounter+nTRsFix);
patterns.block(TRsFix) = zeros(1,nTRsFix);
patterns.type(TRsFix) = zeros(1,nTRsFix);
patterns.attCateg(TRsFix) = zeros(1,nTRsFix);
patterns.stim(TRsFix) = zeros(1,nTRsFix);
patterns.regressor(1:2,TRsFix+labelsShift) = zeros(2,nTRsFix); % ACM added 8/11-labelshift not there before
TRCounter = TRCounter+nTRsFix;
end
%account for instruction TRs
for TRCounter = (TRCounter+1):(TRCounter+instructLen);
patterns.block(TRCounter) = iBlock;
patterns.type(TRCounter) = blockData(iBlock).type;
patterns.attCateg(TRCounter) = blockData(iBlock).attCateg;
patterns.stim(TRCounter) = 0;
switch patterns.attCateg(TRCounter)
case 1
patterns.regressor(:,TRCounter+labelsShift) = [0;0];
case 2
patterns.regressor(:,TRCounter+labelsShift) = [0;0];
end
end
% prep images over all 50 trials in the block
for iTrial = 1:blockData(iBlock).trialsPerBlock;
% prep images
for half=[SCENE FACE]
% update image counters
categCounter(blockData(iBlock).categs{half}(iTrial)) = categCounter(blockData(iBlock).categs{half}(iTrial))+1; % counts the number of times that category was shown in the trial
% reset counter and reshuffle images if list has been exhausted
if (categCounter(blockData(iBlock).categs{half}(iTrial)) > numImages(blockData(iBlock).categs{half}(iTrial)))
categCounter(blockData(iBlock).categs{half}(iTrial)) = 1; % start counter over, and reshuffle images
imageShuffle{blockData(iBlock).categs{half}(iTrial)} = randperm(numImages(blockData(iBlock).categs{half}(iTrial))); %#ok<AGROW>
end
% get current images--out of the imageShuffle for that
% category, take the next image in imageShuffle from that
% category
blockData(iBlock).images{half}(iTrial) = imageShuffle{blockData(iBlock).categs{half}(iTrial)}(categCounter(blockData(iBlock).categs{half}(iTrial))); %#ok<AGROW
end
if blockData(iBlock).categs{blockData(iBlock).attCateg}(iTrial) > 4 % then we're using an emotion
if blockData(iBlock).categs{blockData(iBlock).attCateg}(iTrial) > 6 % then subtract 4 because happy
blockData(iBlock).corrresps(iTrial) = correctResp{blockData(iBlock).categs{blockData(iBlock).attCateg}(iTrial)-4};
else
blockData(iBlock).corrresps(iTrial) = correctResp{blockData(iBlock).categs{blockData(iBlock).attCateg}(iTrial)-2};
end
else
blockData(iBlock).corrresps(iTrial) = correctResp{blockData(iBlock).categs{blockData(iBlock).attCateg}(iTrial)}; %#ok<AGROW>
end
trialCounter = trialCounter+1;
blockData(iBlock).trialCount(iTrial) = trialCounter; %#ok<AGROW>
if (mod(iTrial,nTrialsPerTR)==1)
TRCounter = TRCounter + 1;
patterns.block(TRCounter) = iBlock;
patterns.type(TRCounter) = blockData(iBlock).type;
patterns.attCateg(TRCounter) = blockData(iBlock).attCateg;
patterns.stim(TRCounter) = 1;
switch patterns.attCateg(TRCounter)
case 1
patterns.regressor(:,TRCounter+labelsShift) = [1;0];
case 2
patterns.regressor(:,TRCounter+labelsShift) = [0;1];
end
end
end
for TRCounter = (TRCounter+1):(TRCounter+IBI);
patterns.block(TRCounter) = iBlock;
patterns.type(TRCounter) = blockData(iBlock).type;
patterns.attCateg(TRCounter) = blockData(iBlock).attCateg;
patterns.stim(TRCounter) = 0;
switch patterns.attCateg(TRCounter)
case 1
patterns.regressor(:,TRCounter+labelsShift) = [0;0];
case 2
patterns.regressor(:,TRCounter+labelsShift) = [0;0];
end
end
if iBlock == numBlocks
TRsExtra = (TRCounter+1):nTRs;
patterns.block(TRsExtra) = zeros(1,numel(TRsExtra));
patterns.type(TRsExtra) = zeros(1,numel(TRsExtra));
patterns.attCateg(TRsExtra) = zeros(1,numel(TRsExtra));
patterns.stim(TRsExtra) = zeros(1,numel(TRsExtra));
patterns.regressor(1:2,TRsExtra) = zeros(2,numel(TRsExtra));
end
end
lastVolPhase1 = find(patterns.block==(nBlocksPerPhase),1,'last'); %#ok<NASGU>
firstVolPhase2 = find(patterns.block==(nBlocksPerPhase+1),1,'first'); %#ok<NASGU>
%% save variables to load during experiment
save([runHeader '/blockdatadesign_' num2str(runNum) '_' datestr(now,30)],'blockData','STABLE','RTFEED','disdaqs','TR','nTrialsPerTR','labelsShift','instructLen',...
'IBI','SCENE','FACE','nSubCategs','INDOOR','OUTDOOR','MALE','FEMALE','FEMALESAD','MALESAD','MALEHAPPY', 'FEMALEHAPPY', 'firstVolPhase2','rtfeedback');
save([runHeader '/patternsdesign_' num2str(runNum) '_' datestr(now,30)],'patterns','TR','labelsShift','STABLE','RTFEED','instructLen','disdaqs','nBlocksPerPhase','nTRs','nTRsFix','firstVolPhase2','lastVolPhase1','rtfeedback');
% clean up and go home
fclose('all');
end