-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
48 lines (38 loc) · 2.09 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import tensorflow as tf
from config import config
class BasicRNN(object):
def __init__(self):
'''
Initializes parameters and creates placeholders for input data
'''
# training parameters
self.learning_rate = 0.005
# num. of hidden units
self.num_hidden = 128
# num of classes
# self.num_classes = dataUtil.num_classes
self.num_classes = config.data.num_classes
# create placeholders
self.X = tf.placeholder(tf.float32, [None, config.data.max_sequence_length, config.data.num_valid_characters], name='input_x')
self.y = tf.placeholder(tf.float32, [None, self.num_classes], name='input_y')
# cell
self.cell = tf.contrib.rnn.BasicRNNCell(self.num_hidden)
# use dynamic rnn and grab outputs
self.outputs, self.states = tf.nn.dynamic_rnn(self.cell, self.X, dtype=tf.float32)
# set weight and biases
self.W = tf.Variable(tf.truncated_normal([self.num_hidden, self.num_classes],stddev=0.1), name='weight')
self.b = tf.Variable(tf.constant(0.1, shape=[self.num_classes]), name='bias')
# predict y based on final RNN output
self.y_hat = tf.add(tf.matmul(self.outputs[:,-1,:], self.W), self.b, name='prediction')
# compute the cross entropy loss
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.y_hat, labels=self.y))
# create an optimizer and define training operation where loss needs to be minimized
self.optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate, momentum=0.9)
self.train_step = self.optimizer.minimize(self.loss)
# compute metrics
self.predicted_label = tf.argmax(self.y_hat,1, name='predicted_label')
self.correct_label = tf.argmax(self.y,1)
self.correct_prediction = tf.equal(self.predicted_label, self.correct_label)
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32), name='accuracy')
self.accuracy = tf.multiply(100.0, self.accuracy, name='accuracy_percentage')