forked from nurecas/visualmanual
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRoyalEnfield.js
76 lines (67 loc) · 1.66 KB
/
RoyalEnfield.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// Classifier Variable
let classifier;
// Model URL
let imageModelURL = 'https://teachablemachine.withgoogle.com/models/s379EsNn/';
// Video
let video;
let flippedVideo;
// To store the classification
let label = "";
let img;
// Load the model first
function preload() {
classifier = ml5.imageClassifier(imageModelURL + 'model.json');
img = loadImage('data/logo.jpg');
}
function setup() {
createCanvas(400, 660);
// Create the video
//video = createCapture(VIDEO);
var constraints = {
audio: false,
video: {
facingMode: "environment"
}
};
video = createCapture(constraints);
video.size(400, 660);
video.hide();
flippedVideo = ml5.flipImage(video)
// Start classifying
classifyVideo();
}
function draw() {
background(0);
// Draw the video
image(video, 0, 0);
// Draw the label
fill(255);
textSize(30);
textAlign(CENTER);
text(label, width / 2, height - 60);
image(img, 10, height-100, 100, 52);
}
// Get a prediction for the current video frame
function classifyVideo() {
flippedVideo = ml5.flipImage(video)
classifier.classify(flippedVideo, gotResult);
}
// When we get a result
function gotResult(error, results) {
// If there is an error
if (error) {
console.error(error);
return;
}
// The results are in an array ordered by confidence.
// console.log(results[0]);
if(results[0].confidence>0.85){
label = results[0].label;
}
else{
label = "...";
}
flippedVideo.remove();
// Classifiy again!
classifyVideo();
}